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Abstract. In a pure C∗-algebra (i.e., one having suitable regularity properties in its Cuntz
semigroup), any element on which all bounded traces vanish is a sum of 7 commutators.

1. Introduction

This paper is concerned with the problem of representing trace zero elements
in a C∗-algebra as sums of commutators. This problem has a long history,
going back to the result by Shoda that a matrix of zero trace is expressible
as a single commutator (i.e., has the form xy − yx). In a general C∗-algebra,
one can deduce from the Hahn–Banach theorem that the elements that vanish
on every bounded trace belong to the norm closure of the linear span of the
commutators. One can even arrange, by a result of Cuntz and Pedersen [7], for
a series of commutators converging in norm to any given trace zero element.
A problem that has occupied numerous authors [9, 15, 29, 22, 17, 25] is that
of turning this infinite sum of commutators into a finite one. Examples in [21]
and more recently [25] show that this is not always possible; not even for simple
nuclear C∗-algebras with a unique tracial state. Marcoux [15], continuing work
of Fack [9] and Thomsen [29], was the first to show that C∗-algebraic regularity
properties, such as Blackadar’s strict comparison of projections, could be used
to obtain a positive answer. This idea has proven fruitful, and the present
paper extends further the work in this direction. We prove our results in the
setting of pure C∗-algebras; i.e., C∗-algebras whose Cuntz semigroups have
certain algebraic regularity properties. The class of pure C∗-algebras includes
all Z-stable C∗-algebras (i.e., those tensorially absorbing the Jiang–Su algebra)
and tensorially prime examples such as the reduced C∗-algebra of the free group
in infinitely many generators.

Let us fix some notation: Let A be a C∗-algebra. By a commutator in A we
understand an element of the form xy − yx; we denote it by [x, y]. We denote
by [A,A] the linear span of the commutators of A.
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Following Winter [31], we say that A is pure if its Cuntz semigroup has the
properties of almost divisibility and almost unperforation. The latter prop-
erty is equivalent to the strict comparison of positive elements by lower semi-
continuous 2-quasitraces (see Section 3). We prove the following theorem:

Theorem 1.1. Let A be a pure C∗-algebra whose lower semi-continuous [0,∞]-

valued 2-quasitraces are traces. Then for every h ∈ [A,A] we have h =∑7
i=1[xi, yi], with xi, yi ∈ A such that ‖xi‖ · ‖yi‖ 6 C‖h‖ for all i, and where

C is a universal constant.

A significant departure in this theorem from past results is that the existence
of a unit in the C∗-algebra is not assumed. This brings new technical difficulties
that can nevertheless be overcome. The assumption of simplicity for the C∗-
algebra, typically present in previous results on this question, has also been
dropped.

Part of the motivation for this paper has been to investigate pure C∗-
algebras for their own sake. Indeed, toward the proof of Theorem 1.1, we
establish a number of results on pure C∗-algebras of intrinsic interest. Pure
C∗-algebras arise naturally in the classification program for simple nuclear
C∗-algebras and in various C∗-algebra constructions. For example, the tensor
product of any C∗-algebra with the Jiang–Su algebra Z is pure. However,
while it is reasonable to expect that many naturally occurring simple C∗-
algebras are pure, there is no evidence that Z-stability is a prevalent property
beyond the realm of nuclear C∗-algebras. Theorem 1.1 applies to infinite re-
duced free products which can be both nonexact and tensorially prime (see
Example 4.11).

On the way to proving Theorem 1.1, we investigate traces of products and
ultraproducts of C∗-algebras; a topic also of independent interest. Traces of
ultraproducts show up in the recent work on the Toms–Winter conjectures:
[13, 30, 6]. Given a C∗-algebra A let us denote by T1(A) the traces on A of
norm at most one (endowed with the weak-∗ topology). We prove the following
theorem:

Theorem 1.2. Let A1, A2, . . . be C
∗-algebras with strict comparison of positive

elements by traces. The following are true:

(i) The convex hull of the sets T1(A1),T1(A2), . . . is weak-
∗ dense in the set

T1(
∏∞

n=1 An).
(ii) For any free ultrafilter U in N we have T1(

∏
U Ai) =

∏
U T1(Ai).

Both (i) and (ii) also hold if we instead assume that the C∗-algebras A1, A2, . . .
all have strict comparison of full positive elements by bounded traces and that
their primitive spectra are compact.

A special case of the theorem above is [20, Thm. 8], where the C∗-algebras
are unital, Z-stable, and exact. Here, Z-stability and exactness have been
replaced by strict comparison by traces (which we show implies that “2-quasi-
traces are traces”; see Theorem 3.6).
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Here is a brief overview of the paper: In Section 2 we introduce the notion
of “commutator bounds” for a C∗-algebra and discuss its basic properties. We
then go over a number of techniques, particularly a method originally due to
Fack, for proving that a C∗-algebra has finite commutator bounds. We take
special care to adapt these techniques to the nonunital case. In Section 3 we
investigate the property of strict comparison by traces and some variations on
it. We show that strict comparison by lower semi-continuous traces implies
that (lower semi-continuous) 2-quasitraces are traces. In Section 4 we prove
Theorems 1.1 and 1.2. In Section 5 we use nilpotents of order 2, rather than
commutators, to represent trace zero elements of a pure C∗-algebra. In Sec-
tion 6 we look at multiplicative commutators of unitaries and the kernel of the
de la Harpe–Skandalis determinant in a pure C∗-algebra.

2. Commutator bounds

Let us start by fixing some notation. Let A be a C∗-algebra. Let Asa and
A+ denote the sets of selfadjoint and positive elements of A respectively. Let
A∼ denote the minimal unitization of A and M(A) the multiplier C∗-algebra
of A.

By a commutator in A we understand an element of the form [x, y] :=
xy − yx, with x, y ∈ A. We denote the linear span of the commutators by
[A,A]. We regard A/[A,A] as a Banach space under the quotient norm and let

Tr : A → A/[A,A] denote the quotient map (called the universal trace on A).
We regard Tr as also defined on Mn(A) for all n ∈ N by

Tr((ai,j)
n
i,j=1) = Tr

( n∑

i=1

aii

)
.

We denote by T1(A) the traces on A of norm at most 1; i.e., the positive
linear functionals on A that vanish on [A,A] and have norm at most 1. It fol-
lows from Hahn–Banach’s theorem and the Jordan decomposition of bounded
traces that

‖Tr(a)‖ = sup{|τ(a)| | τ ∈ T1(A)}

(see [7, Thm. 2.9] and the proof of [29, Lem. 3.1]). In particular,

[A,A] = kerTr =
⋂

{ker τ | τ ∈ T1(A)}.

We will often write a ∼Tr b meaning that Tr(a− b) = 0; i.e., a− b ∈ [A,A].
In [15], Marcoux calls commutator index of a C∗-algebra the least m ∈ N

such that every element h ∼Tr 0 is expressible as a sum of m commutators.
We introduce here a variation on this concept where only approximation by
sums of commutators is required. Furthermore, we keep track of the norms of
the elements appearing in the commutators.

Definition 2.1. Let us say that a C∗-algebra A has commutator bounds
(m,C) if for all h ∈ [A,A] and ε > 0, there exist x1, y1, . . . , xm, ym ∈ A
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such that

(1)
∥∥∥h−

m∑

i=1

[xi, yi]
∥∥∥ < ε

and

(2)
m∑

i=1

‖xi‖ · ‖yi‖ 6 C‖h‖.

If (1) and (2) hold with ε = 0 for some xi, yi ∈ A, then we say that A has
commutator bounds (m,C) with no approximations.

Remark 2.2. We can alternatively define commutator bounds without as-
suming h ∈ [A,A] as follows: for each h ∈ A and ε > 0 there exist xi, yi ∈ A,
with i = 1, . . . ,m such that

∥∥∥h−

m∑

i=1

[xi, yi]
∥∥∥ 6 ‖Tr(h)‖ + ε

and (2) hold.

Many classes of C∗-algebras can be shown to have finite commutator bounds:
unital C∗-algebras with no bounded traces have finite commutator bounds
with no approximations [22]; C∗-algebras of nuclear dimension m ∈ N have
commutator bounds (m+1,m+1) (see [25, Rem. 3.2]); by Theorem 1.1 from the
introduction (proven below), pure C∗-algebras whose 2-quasitraces are traces
have commutator bounds (7, C) with no approximations. On the other hand,
even among simple unital nuclear C∗-algebras there are some that have no
finite commutator bounds [25, Thm. 1.4].

Before going over a number of results on the computation of commutator
bounds, let us discuss an application of this concept to traces of products and
ultraproducts. Let Ai, i = 1, 2, . . . be C∗-algebras. Recall that the product C∗-
algebra

∏∞
i=1 Ai is the C∗-algebra of bounded sequences (ai)

∞
i=1, with ai ∈ Ai

for all i. For a given free ultrafilter U of the positive integers, the ultraproduct∏
U Ai is the quotient of

∏∞
i=1 Ai by the ideal of sequences (ai)

∞
i=1 such that

limU ai = 0. For each n ∈ N, let us view τ ∈ T1(An) as an element of
T1(

∏∞
i=1 Ai) by τ((ai)i) = τ(an). For each sequence of traces (τi)i, with

τi ∈ T1(Ai) for all i, there is a trace on
∏

U Ai given by

T1

(∏

U

Ai

)
∋ (ai)i 7→ lim

U
τi(ai).

Let us denote by
∏

U T1(Ai) the weak-∗ closure (in T1(
∏

U Ai)) of the set of
traces that arise in this way.

Proposition 2.3. Let Ai, with i = 1, 2, . . . , be C∗-algebras, all with commu-
tator bounds (m,C) for some m ∈ N and C > 0. Then the convex span of the
sets T1(Ai), with i = 1, 2, . . . , is weak-∗ dense in T1(

∏∞
i=1 Ai). Moreover, we

have
∏

U T1(Ai) = T1(
∏

U Ai) for any free ultrafilter U .
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Proof. The proof is the same as that of [20, Thm. 8] by Ozawa, except that [20,
Thm. 6] is replaced with this paper’s Remark 2.2. (Notice that Ozawa denotes
by

∏
U T1(Ai) the set of tracial states obtained as limits along the ultrafilter

U rather than its weak-∗ closure.) �

Let us now look into permanence properties for the commutator bounds:

Proposition 2.4. Let A be a C∗-algebra and I a closed two-sided ideal of A.

(i) If A has commutator bounds (m,C), then so do I and A/I.
(ii) If I and A/I have commutator bounds (m,C) and (n,D), respectively,

then A has commutator bounds (m+ n,C +D).
(iii) Let A be the inductive limit of C∗-algebras (Aλ)λ∈Λ, each with commuta-

tor bounds (m,C). Then A has commutator bounds (m,C) too.

Proof. (i) Let h ∈ [I, I]. Since A has commutator bounds (m,C), we can find
x1, y1, . . . , xm, ym ∈ A that satisfy (1) and (2). Let (eλ)λ be an approximately
central approximate unit of I. Then for λ large enough x′

i = xieλ and y′i = yieλ
satisfy (1) and (2) and belong to I.

Let us suppose now that h ∈ A/I and h ∼Tr 0. It suffices to assume that
‖h‖ = 1. Let ε > 0 be given. By [18, Lem. 2.1 (i)], there exists a lift h′ ∈ A
of h such that h′ ∼Tr 0 and ‖h′‖ 6 1 + ε

2 . Since A has commutator bounds
(m,C), there exist x1, y1, . . . , xm, ym ∈ A such that

(3)
∥∥∥
(
1 +

ε

2

)−1

h′ −
m∑

i=1

[xi, yi]
∥∥∥ <

ε

2

and
m∑

i=1

‖xi‖ · ‖yi‖ 6 C.

Observe now that ‖h′ − (1 + ε
2 )

−1h′‖ = ‖h′‖ · ‖1 − (1 + ε
2 )

−1‖ 6 ε
2 . Hence,

from inequality (3) we get

∥∥∥h′ −

m∑

i=1

[xi, yi]
∥∥∥ < ε.

Thus, the images in the quotient A/I of x1, y1, . . . , xm, ym, and h′ satisfy (1)
and (2), as desired.

(ii) Let h ∈ A with h ∼Tr 0. Let h
′ ∈ A/I denote the image of h in A/I. Let

ε > 0 be given. Since the quotient C∗-algebra A/I has commutator bounds
(n,D), there exist x′

1, y
′
1, . . . , x

′
n, y

′
n ∈ A/I such that

∥∥∥h′ −
n∑

i=1

[x′
i, y

′
i]
∥∥∥ <

ε

3
and

n∑

i=1

‖x′
i‖ · ‖y

′
i‖ 6 D‖h′‖.

For i = 1, . . . , n, let us find lifts x′′
i and y′′i in A of x′

i and y′i , respectively, such
that ‖x′′

i ‖ = ‖x′
i‖ and ‖y′′i ‖ = ‖y′i‖. Let (eλ)λ be an approximately central

approximate unit of the ideal I. We can choose an index λ such that

‖h− eλheλ − (1− eλ)h(1− eλ)‖ <
ε

3
,
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and ∥∥∥(1 − eλ)h(1− eλ)−
n∑

i=1

[xi, yi]
∥∥∥ <

ε

3
,

where xi = (1 − eλ)
1/2x′′

i (1 − eλ)
1/2 and yi = (1 − eλ)

1/2y′′i (1 − eλ)
1/2 for

i = 1, . . . , n. Note that
n∑

i=1

‖xi‖ · ‖yi‖ 6

n∑

i=1

‖x′′
i ‖ · ‖y

′′
i ‖ 6 D‖h′‖ 6 D‖h‖.

Since eλheλ ∈ I and the ideal I has commutator index (m,C), we can find
elements xn+1, yn+1, . . . , xn+m, yn+m ∈ I such that

∥∥∥eλheλ −

n+m∑

i=n+1

[xi, yi]
∥∥∥ <

ε

3

and
n+m∑

i=n+1

‖xi‖ · ‖yi‖ 6 C‖eλheλ‖ 6 C‖h‖.

Hence,
m+n∑

i=1

‖xi‖ · ‖yi‖ 6 (C +D)‖h‖

and

∥∥∥h−

m+n∑

i=1

[xi, yi]
∥∥∥ 6 ‖h− eλheλ − (1− eλ)h(1− eλ)‖

+
∥∥∥(1− eλ)h(1 − eλ)−

n∑

i=1

[xi, yi]
∥∥∥+

∥∥∥eλheλ −
n+m∑

i=n+1

[xi, yi]
∥∥∥ < ε.

(iii) Since we have already shown that the commutator bounds pass to

quotients, we may assume that Aλ ⊆ A for all λ and that
⋃

λ∈ΛAλ = A.
Let h ∈ A be such that h ∼Tr 0. Let ε > 0 be given. Let us prove the

existence of x1, y1, . . . , xm, ym ∈ A satisfying (1) and (2). It is clear that we
may reduce ourselves to the case ‖h‖ = 1. We claim there exist λ ∈ Λ and a
contraction h′ ∈ Aλ such that ‖h − h′‖ < ε/2 and h′ ∼Tr 0 in Aλ. To prove
this, we first approximate h sufficiently by a finite sum of commutators:

∥∥∥h−
k∑

j=1

[vj , wj ]
∥∥∥ <

ε

4
.

Next, we choose λ ∈ Λ and v′1, w
′
1, . . . , v

′
k, w

′
k ∈ Aλ such that ‖vj − v′j‖ and

‖wj − w′
j‖ are sufficiently small for all j, so that

∥∥∥h−

k∑

j=1

[v′j , w
′
j ]
∥∥∥ <

ε

4
.
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Finally, we set

h′ =
(
1 +

ε

4

)−1 k∑

j=1

[v′j , w
′
j ].

Notice then that

‖h− h′‖ 6

∥∥∥h−
(
1 +

ε

4

)
h′
∥∥∥+

ε

4
‖h′‖ <

ε

2
,

and that h′ ∼Tr 0 in Aλ, as desired.
Since Aλ has commutator bounds (m,C), there exist x1, y1, . . . , xm, ym ∈

Aλ such that

∥∥∥h′ −

m∑

j=1

[xi, yi]
∥∥∥ <

ε

2
and

m∑

i=1

‖xi‖ · ‖yi‖ 6 C‖h′‖ 6 C.

These are the desired elements. �

It is possible to reduce the number of commutators by passing from a C∗-
algebra A with commutator bounds (m,C) to a matrix algebra Mn(A). This,
however, is achieved at the expense of increasing the constant C. Marcoux ob-
tains such a reduction for unital C∗-algebras in [16, Lem. 4.1] and [15, Lem. 2.2].
Here, we cover the nonunital case and give explicit bounds for the norms of
the commutators.

Lemma 2.5. Let d1, . . . , dn in A be such that
∑n

i=1 di = 0. Then there exist
X,Y ∈ Mn(A), with ‖X‖ · ‖Y ‖ 6 4nmaxi‖di‖, such that the main diagonal of
[X,Y ] equals (d1, . . . , dn).

Proof. For k = 1, . . . , n − 1, let sk =
∑k

i=1 di. Let us write sk = qkrk for

some qk, rk ∈ A such that ‖qk‖ = ‖rk‖ = ‖sk‖
1/2 (e.g., qk = v|sk|

1/2 and
rk = |sk|

1/2, where sk = v|sk| is the polar decomposition of sk in A∗∗). Let

X =




0 q1
r1 q2

r2
. . .

. . . qn−1

rn−1




, Y =




0
r1 q1

r2 q2
. . .

. . .

rn−1 qn−1




.

A straight-forward computation shows that X and Y are as required. For the
convenience of the reader, here is the 3× 3 case:

XY − Y X =



0 q1 0
0 r1 q2
0 0 r2







0 0 0
r1 q1 0
0 r2 q2


−




0 0 0
r1 q1 0
0 r2 q2






0 q1 0
0 r1 q2
0 0 r2




=



q1r1 ∗ ∗
∗ r1q1 + q2r2 ∗
∗ ∗ r2q2


−



0 ∗ ∗
∗ r1q1 + q1r1 ∗
∗ ∗ r2q2 + q2r2
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=



q1r1 ∗ ∗
∗ q2r2 − q1r1 ∗
∗ ∗ −q2r2




=




d1 ∗ ∗
∗ d2 ∗
∗ ∗ d3



 . �

Lemma 2.6. Let h ∈ Mn(A), with h = (hj,k)j,k. Suppose that hj,j = [xj , yj ]
for some xj , yj ∈ A for j = 1, . . . , n. Then h = [X,Y ] for some X,Y ∈ Mn(A)
such that

‖X‖ · ‖Y ‖ 6 36n2(n− 1)‖h‖+ 3n
n∑

k=1

‖xk‖ · ‖yk‖.

Proof. Let h ∈ Mn(A) and xj , yj ∈ A, with j = 1, . . . , n, be as in the statement
of the lemma. Let us also assume that xj is a contraction for all j (replacing
yj with ‖xj‖yj if necessary). Let λj = 3(j−1) and dj = xj +λj1 ∈ A∼ for j =
1, . . . , n. Notice that the spectrum of dj is contained in {z ∈ C | |z − λj | < 1}
for all j. In particular, the spectra of the dj ’s are pairwise disjoint. Notice
also that [dj , b] = [xj , b] for all b ∈ A∼ and j = 1, . . . , n. Let us fix k, j
with 1 6 k, j 6 n and k 6= j. By [12, Cor. 3.2], the Rosenblum operator
Tk,j : A

∼ → A∼, defined by Tk,j(b) = dkb− bdj , is invertible. Let bk,j ∈ A∼ be
such that Tk,j(bk,j) = dkbk,j − bk,jdj = hk,j . Since hk,j ∈ A, and by our choice
of λk and λj , we must have that bk,j ∈ A.

Let us define bk,k := yk for k = 1, . . . , n. Let X,Y ∈ Mn(A) be given by

X = diag(d1, . . . , dn), Y = (bk,j)
n
k,j=1.

It is a straight-forward computation to show that [X,Y ] = a (see [15, Lem. 2.2]).
Let us find bounds for the norms ofX and Y . The bound ‖X‖=maxj‖dj‖6

3n is straight-forward. In order to bound ‖Y ‖, we first estimate ‖bk,j‖. Fix
k, j such that 1 6 k, j 6 n and k 6= j. By [12, Cor. 3.20],

(4) bk,j =
1

2πi

∫

Γk

(dk − α1)−1hk,j(dj − α1)−1dα,

where Γk is the positively oriented simple closed contour given by Γk(t) =
λk + 3

2e
it for t ∈ [0, 2π]. We have

(dk − α1)−1 =
1

λk − α

(
1−

dk − λk1

α− λk

)−1

.

But ‖dk − λk1‖ = ‖xk‖ 6 1 and |α− λk| = 3/2 for all α ∈ Γk. So,
∥∥∥
dk − λk1

λk − α

∥∥∥ 6
1

3/2
=

2

3
,

from which we deduce that

‖(dk − α1)−1‖ 6
2

3

∞∑

l=0

(2
3

)l

= 2
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for all α ∈ Γk. Next, since k 6= j, we have |λj − α| > 3/2 for all α ∈ Γk. Also,
‖dj − λj1‖ = ‖xj‖ 6 1. Hence,

‖(dj − α1)−1‖ =
1

‖λj − α‖

∥∥∥
(
1−

dj − λj1

α− λj

)−1∥∥∥ 6
2

3

∞∑

l=0

(2
3

)l

= 2

for all α ∈ Γk. Thus, ‖(dk −α1)−1‖ 6 2 and ‖(dj −α1)−1‖ 6 2 for all α ∈ Γk.
From this and (4), we get

‖bk,j‖ 6

( 1

2π

)
4‖hk,j‖ · length(Γk) =

( 1

2π

)
4‖hk,j‖(6π) = 12‖hk,j‖ 6 12‖h‖

for all k 6= j. Recall that, by our conventions, ‖bk,k‖ = ‖yk‖ = ‖xk‖ · ‖yk‖.
Then

‖Y ‖ 6 n(n− 1)12‖h‖+

n∑

k=1

‖xk‖ · ‖yk‖.

This, together with ‖X‖ 6 3n, proves the lemma. �

Theorem 2.7. Let A be a C∗-algebra and n ∈ N.

(i) If Mn(A) has commutator bounds (m,C) (with no approximations), then
A has commutator bounds (mn2, Cn) (with no approximations).

(ii) If A has commutator bounds (m,C) (with no approximations), then
Mn(A) has commutator bounds (2, C′) (with no approximations) for all
n > m, where C′ 6 36n3 + (2C − 36)n2 + n.

Proof. (i) Let h ∈ A with h ∼Tr 0. Then a ⊗ 1n ∈ Mn(A) and a ⊗ 1n ∼Tr 0
in Mn(A). Let ε > 0 be given. Since Mn(A) has commutator bounds (m,C),
there exist Xj , Yj ∈ Mn(A) (1 6 j 6 m) such that

(5)
∥∥∥h⊗ 1n −

m∑

j=1

[Xj , Yj ]
∥∥∥ < ε

and

(6)
m∑

j=1

‖Xj‖ · ‖Yj‖ 6 C‖a⊗ 1n‖ = C‖h‖.

Averaging along the main diagonal in (5), we get

∥∥∥h−
1

n

m∑

j=1

n∑

k,l=1

[xj,k,l, yj,l,k]
∥∥∥ < ε,

where Xj = (xj,k,l)
n
k,l=1 and Yj = (yj,k,l)

n
k,l=1. On the other hand, using (6),

we get

1

n

m∑

j=1

n∑

k,l=1

‖xj,k,l‖ · ‖yj,l,k‖ 6
1

n

m∑

j=1

n∑

k,l=1

‖Xj‖ · ‖Yj‖

= n

m∑

j=1

‖Xj‖ · ‖Yj‖ 6 nC‖h‖,
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as required. The same arguments as above, but with ε = 0, prove the result
for commutator bounds with no approximations.

(ii) Let us deal with the case of commutator bounds with no approximations.
Let h ∈ Mn(A) be such that h ∼Tr 0. Then

∑n
i=1 hi,i ∼Tr 0 in A. But A

has commutator bounds (m,C) with no approximations. Hence,
∑n

i=1 hi,i =∑m
i=1[xi, yi] for some xi, yi ∈ A. By Lemma 2.5, there exist X1, Y1 ∈ Mn(A)

such that the entries along the main diagonal of [X1, Y1] equal

h1,1 − [x1, y1], . . . , hm,m − [xm, ym], hm+1,m+1, . . . , hn,n.

Now, by Lemma 2.6, h − [X1, Y1] = [X2, Y2] for some X2, Y2 ∈ Mn(A). The
bound on C′ follows from the norm bounds in Lemmas 2.5 and 2.6.

In the case that the algebra A has commutator bounds (m,C) with approx-
imations, the initial element h ∼Tr 0 can be slightly perturbed along the main
diagonal so that, for the perturbed element, the sum of the diagonal entries is
exactly a sum of m commutators. The arguments above then show that the
perturbed element is a sum of two commutators. �

The proof of Theorem 2.9 below relies on a technique first used by Fack in
[9]. Despite its technical statement, Theorem 2.9 constitutes our main tool in
proving that a C∗-algebra has finite commutator bounds with no approxima-
tions. Before stating the theorem, we introduce some definitions and prove a
lemma.

Let us define the direct sum of positive elements in A ⊗ K. Fix isometries
v1, v2 ∈ B(ℓ2) generating the Cuntz algebraO2. Let us regard them as elements
of the multiplier algebra M(A ⊗ K) via the natural embeddings 1 ⊗ B(ℓ2) ⊆
M(A) ⊗ B(ℓ2) ⊆ M(A ⊗ K). Then, given a, b ∈ (A ⊗ K)+, let us define
a⊕ b ∈ (A⊗K)+ by a⊕ b = v1av

∗
1 + v2bv

∗
2 .

Next, let us introduce a preorder relation on the positive element of a C∗-
algebra. Let a, b ∈ A+. Let us write a � b if a = x∗x and xx∗ ∈ her(b) for
some x ∈ A. In [19], this relation is called Blackadar’s relation. It can be
alternatively described as saying that the right ideal aA embeds into bA as a
Hilbert module. (Thus, it is clearly transitive.) We will make repeated use of
the following fact (see [19, Prop. 4.6]): Say a = x∗x and xx∗ ∈ her(b). Let
x = v|x| be the polar decomposition of x in A∗∗. Then vy ∈ bA for any y ∈ aA.

Lemma 2.8. Let a, b ∈ A+ be such that a � b⊕n (in A ⊗ K). Then for
all h ∈ her(a) there exist z1, w1, . . . , zn, wn ∈ A and h′ ∈ her(b) such that
h =

∑n
i=1[zj , wj ] + h′, ‖zj‖ · ‖wj‖ 6 ‖h‖ for all j, and ‖h′‖ 6 n‖h‖.

Proof. Let us regard A as a subalgebra of Mn(A) embedded in the top left
corner. The assumption a � b⊕n can be rephrased as a � b ⊗ 1n in Mn(A).
That is, there exists x ∈ Mn(A) such that a = x∗x and xx∗ ∈ her(b ⊗ 1n).
Let x = v|x|, with v ∈ Mn(A)

∗∗, be the polar decomposition of x. Recall
that Mn(A)

∗∗ is canonically isomorphic to Mn(A
∗∗) so we may regard v as an

element of the latter. Let (v1, . . . , vn) denote the first row of v (the rest of
the rows are 0). Finally, let us write h = h1h2, with h1, h2 ∈ her(a) such that
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‖h1‖ · ‖h2‖ = ‖h‖ (e.g., as in the proof of Lemma 2.5). Then

h = h1

( n∑

j=1

v∗j vj

)
h2 =

n∑

j=1

[h1v
∗
j , vjh2] +

n∑

j=1

vjh2h1v
∗
j .

Hence, the elements zj = h1v
∗
j and wj = vjh2 for j = 1, . . . , n, as well as h′ =∑n

j=1 vjh2h1v
∗
j are as required. �

Theorem 2.9. Let A be a C∗-algebra and e0 ∈ A+ a strictly positive element.
Suppose that the following are true:

(i) There exist an integer L > 1 and pairwise orthogonal positive elements
e1, e2, . . . ∈ A+ such that ej � e⊕L

j+1 for j = 0, 1, . . . .
(ii) There exist constants C > 0, M ∈ N, and 0 < λ < 1, such that for all

j ∈ {0, 1, . . .} and h ∈ her(ej) such that h ∼Tr 0 (in her(ej)), there exist
x1, y1, . . . , xM , yM ∈ her(ej) such that

∥∥∥h−

M∑

i=1

[xi, yi]
∥∥∥ 6 λ‖h‖,

and ‖xi‖ · ‖yi‖ 6 C‖h‖ for all i.

Then A has finite commutator bounds (M,C) with no approximations, where
M and C depend only on L,M, λ, C.

Proof. Let us choose L1 ∈ N such that λL1 < 1/(2L). From hypothesis (ii) we
deduce the following:

(ii′) For all j ∈ {0, 1, . . .} and h ∈ her(ej) such that h ∼Tr 0 (in her(ej)), there
exist x1, y1, . . . , xL1M , yL1M ∈ her(ej) such that

∥∥∥h−

L1M∑

i=1

[xi, yi]
∥∥∥ < λL1‖h‖ <

1

2L
‖h‖,

and ‖xi‖, ‖yi‖ 6 C1/2‖h‖1/2 for all i.

Let h ∈ A be such that h ∼Tr 0. By hypothesis (i) and Lemma 2.8, we have

h =

L∑

j=1

[zj , wj ] + h1,

where h1 ∈ her(e1) and ‖h1‖ 6 L‖h‖. By (ii′) above, applied in the hereditary
algebra her(e1), there exist x

(1)
1 , y

(1)
1 , . . . , x

(1)
L1M

, y
(1)
L1M

, h′
1 ∈ her(e1) such that

h1 =

L1M∑

i=1

[x
(1)
i , y

(1)
i ] + h′

1,

and ‖h′
1‖ 6 1

2L‖h1‖ 6
‖h‖
2 . Again by hypothesis (i) and Lemma 2.8, we have

h′
1 =

L∑

j=1

[z
(1)
j , w

(1)
j ] + h2,
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where h2 ∈ her(e2), z
(1)
j , w

(1)
j ∈ her(e1 + e2) for all j, and ‖h2‖ 6 L‖h′

1‖.

Applying (ii′) in her(e2), we get

h2 =

L1M∑

i=1

[x
(2)
i , y

(2)
i ] + h′

2,

with ‖h′
2‖ 6

‖h′

1
‖

2 6
‖h‖
4 . Continuing in this way, we construct, for each n ∈ N,

elements

(i) hn, h
′
n ∈ her(en) such that

‖h′
n‖ 6

1

2n
‖h‖, ‖hn‖ 6

L

2n−1
‖h‖,

(ii) x
(n)
1 , y

(n)
1 , . . . , x

(n)
L1M

, y
(n)
L1M

∈ her(en), such that

‖x
(n)
i ‖, ‖y

(n)
i ‖ 6 C

1

2 ‖hn‖
1

2 for all i,

and

hn =

L1M∑

i=1

[x
(n)
i , y

(n)
i ] + h′

n,

(iii) z
(n)
1 , w

(n)
1 , . . . , z

(n)
L , w

(n)
L ∈ her(en + en+1), such that

‖z
(n)
j ‖, ‖w

(n)
j ‖ 6 ‖h′

n‖
1

2 for all j,

and

h′
n =

L∑

j=1

[z
(n)
j , w

(n)
j ] + hn+1.

It follows that

h1 =
n∑

k=1

L1M∑

i=1

[x
(k)
i , y

(k)
i ] +

n∑

k=1

L∑

j=1

[z
(k)
j , w

(k)
j ] + hn+1.

We can gather terms belonging to orthogonal hereditary subalgebras and define

Xi =

∞∑

n=1

x
(n)
i , Yi =

∞∑

n=1

y
(n)
i ,

for i = 1, . . . , L1M , and

Zj,0 =

∞∑

n odd

z
(n)
j , Zj,1 =

∞∑

n even

z
(n)
j ,

Wj,0 =

∞∑

n odd

w
(n)
j , Wj,1 =

∞∑

n even

w
(n)
j ,

for j = 1, . . . , L. Note that the terms in the series defining the elements
Xi, Yi, Zj,k,Wj,k are pairwise orthogonal. Also, the norm estimates on the ele-
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ments x
(n)
i , y

(n)
i , z

(n)
j , w

(n)
j guarantee that these series converge. Furthermore,

it is clear that norm estimates on Xi, Yi, Zj,k,Wj,k can be obtained from those
on x

(n)
i , y

(n)
i , z

(n)
j , w

(n)
j . We have

h =

L∑

j=1

[zj , wj ] +

L1M∑

i=1

[Xi, Yi] +

L∑

j=1

[Zj,0,Wj,0] +

L∑

j=1

[Zj,1,Wj,1].

This shows that A has commutator bounds (3L+ L1M,C′) with no approxi-
mations, for some C′. �

Remark 2.10. From the proof of Theorem 2.9, we can see that the commu-
tator bounds M and C′ in the statement of Theorem 2.9 can be chosen as
M = 3L+ L1M and C′ = 3L+ LL1MC.

3. Strict comparison of positive elements

Here we review and explore the strict comparison of positive elements by
traces and 2-quasitraces. Some of these results will be used in the proof of
Theorem 1.1 in the next section.

Let us start by recalling the definition of the Cuntz semigroup. Let A be a
C∗-algebra. Let a, b ∈ (A ⊗ K)+. Let us write a �Cu b if d∗nbdn → a for some
dn ∈ A ⊗ K. In this case we say that a is Cuntz smaller than b. Let us write
a ∼Cu b if a �Cu b and b �Cu a, in which case we say that a and b are Cuntz
equivalent. Let [a] denote the Cuntz class of a ∈ (A⊗K)+.

The Cuntz semigroup of A, denoted by Cu(A), is defined as the quotient
set (A ⊗ K)/∼Cu, endowed with the following order and addition: [a] 6 [b] if
a �Cu b and [a]+ [b] = [a⊕ b], with the direct sum a⊕ b ∈ (A⊗K)+ as defined
in the previous section. The reader is referred to [1, 2] for the basic theory of
the Cuntz semigroup (some of which will be used below).

Let us denote by T(A) the cone of lower semi-continuous [0,∞]-valued traces
on A; i.e., the lower semi-continuous maps τ : A+ → [0,∞] that are additive,
homogeneous, map 0 to 0, and satisfy that τ(x∗x) = τ(xx∗) for all x ∈ A.
Let us denote by QT(A) the lower semi-continuous [0,∞]-valued 2-quasitraces
on A+. Traces and 2-quasitraces extend uniquely to traces and quasitraces
on (A ⊗ K)+, and we shall regard them as defined on this domain (see [5,
Rem. 2.27 (viii)]). Recall from the previous section that we denote by T1(A)
the convex set of traces on A of norm at most 1.

A topology on QT(A) can be defined as follows: Let (τλ)λ be a net in QT(A)
and τ ∈ QT(A). Let us say that τλ → τ if for any a ∈ (A⊗K)+ and ε > 0 we
have

lim sup
λ

τλ((a− ε)+) 6 τ(a) 6 lim inf
λ

τλ(a).

In this way QT(A) is a compact Hausdorff space and T(A) and T1(A) are
closed subsets of QT(A) (see [8, Sec. 3.2 and 4.1]).

The dimension function associated to τ ∈ QT(A) is defined as

dτ (a) = lim
n

τ(a1/n) = ‖τ |her(a)‖
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for all a ∈ (A⊗K)+. The value dτ (a) depends only on the Cuntz class of the
positive element a. Thus, by a slight abuse of notation, we also write dτ ([a]).

The ordered semigroup Cu(A) is called almost unperforated if

(k + 1)x 6 ky ⇒ x 6 y

for all k ∈ N and x, y ∈ Cu(A). The ordered semigroup Cu(A) is called almost
divisible if for all n ∈ N, x ∈ Cu(A) and x′ ≪ x (i.e., x′ compactly contained
in x), there exists y ∈ Cu(A) such that

ny 6 x and x′
6 (n+ 1)y.

The C∗-algebra A is called pure if Cu(A) is both almost unperforated and
almost divisible. By [26], C∗-algebras that absorb tensorially the Jiang–Su
algebra are pure. There are, however, tensorially prime pure C∗-algebras.

It is shown in [8, Prop. 6.2] (and in [26, Cor. 4.6] for simple C∗-algebras)
that almost unperforation in Cu(A) is equivalent to the property of strict com-
parison of positive elements by 2-quasitraces. We consider here the following
generalization of the latter property:

Definition 3.1. Let A be a C∗-algebra and K ⊆ QT(A) a compact subset.
Let us say that A has strict comparison of positive elements by 2-quasitraces
in K if dτ (a) 6 (1−γ)dτ(b) for all τ ∈ K and some γ > 0 implies that [a] 6 [b]
for all a, b ∈ (A⊗K)+.

For K = QT(A), this notion agrees with the strict comparison of positive
elements mentioned above. Another case of interest is K = T(A). In this
case we say that A has strict comparison of positive elements by traces. (In
the context of simple unital C∗-algebras, strict comparison by traces is often
taken to mean that the inequality dτ (a) < dτ (b) for all bounded traces τ
implies that [a] 6 [b]. Although the definition of strict comparison that we
have given above is formally weaker than this property, they can be seen to be
equivalent in the simple unital case.) If A is unital or more generally Prim(A)
is compact, it is also interesting to consider the property of strict comparison
by traces restricted to full positive elements only (i.e., those generating A as a
two-sided ideal). Let us define this more formally:

Definition 3.2. Let A be a C∗-algebra such that Prim(A) is compact. Let us
say that A has strict comparison of full positive elements by traces if dτ (a) 6
(1 − γ)dτ (b) for all τ ∈ T(A) and some γ > 0 implies that [a] 6 [b] for all full
positive elements a, b ∈ (A⊗K)+.

Lemma 3.3. Let K ⊆ QT(A) be compact and a, b ∈ (A⊗ K)+. Suppose that
dτ (a) 6 (1− γ)dτ (b) for all τ ∈ K and some γ > 0. Then for each ε > 0 there
exists δ > 0 such that

dτ ((a− ε)+) 6
(
1−

γ

2

)
dτ ((b − δ)+) for all τ ∈ K.

Proof. As shown in the proof of [8, Lem. 5.11], we have
{
τ ∈ K | dτ ((a− ε)+) > 1

}
⊆

{
τ ∈ K |

(
1−

γ

2

)
dτ (b) > 1

}
.
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The left side is compact while the right side is covered by the open sets
{
τ ∈ K |

(
1−

γ

2

)
dτ

((
b−

1

n

)

+

)
> 1

}
, n = 1, 2, . . . .

Thus, one of these open sets covers {τ ∈ K | dτ ((a − ε)+) > 1}. This proves
the lemma. �

Lemma 3.4. Let A be a C∗-algebra with strict comparison of positive elements
by K, where K ⊆ QT(A) is compact. Let a, b ∈ (A⊗K)+.

(i) If dτ (a) 6 dτ (b) for all τ ∈ K, then dτ (a) 6 dτ (b) for all τ ∈ QT(A).
(ii) If τ(a) 6 τ(b) for all τ ∈ K, then τ(a) 6 τ(b) for all τ ∈ QT(A).

Proof. (i) Let k ∈ N. Then dτ (a⊗ 1k) 6 (1 − 1
k+1 )dτ (b ⊗ 1k+1) for all τ ∈ K.

Since A has strict comparison by 2-quasitraces in K, we have a⊗1k � b⊗1k+1,
which in turn implies that dτ (a) 6 (1 + 1

k+1 )dτ (b) for all τ ∈ QT(A). Letting

k → ∞, we get that dτ (a) 6 dτ (b) for all τ ∈ QT(A), as desired.
(ii) Let ε > 0. By a compactness argument as in the proof of Lemma 3.3,

we find that there exists δ > 0 such that τ((a − ε)+) 6 τ((b − δ)+) for all
τ ∈ K (see [8, Prop. 5.1 and 5.3]). Let fε, g, gδ : QT(A) → [0,∞] be as follows:
fε(τ) = τ((a − ε)+), g(τ) = τ(b), and gδ(τ) = τ((b − δ)+) for all τ . The
functions fε and g (and also gδ) belong to the realification of Cu(A), as defined
in [24]. That is, fε = fn ↑ and g = gn ↑, where fn(τ) = 1

rn
dτ ([an]) and

gn(τ) =
1
sn
dτ ([bn]) for some [an], [bn] ∈ Cu(A) and rn, sn ∈ N for n = 1, . . . .

(This follows from the fact that

τ(c) =

∫ ‖c‖

0

dτ ([(c− t)+])dt

for all c ∈ (A⊗ K)+ and τ ∈ QT(A).) By [8, Prop. 5.1 and 5.3], the function
gδ is way below g, so that gδ 6 gn for some n. Hence, fm(τ) 6 gn(τ) for
all τ ∈ K and all m ∈ N; i.e., 1

rm
dτ (am) 6 1

sn
dτ (bn) for all τ ∈ K and m.

By (i), this same inequality holds for all τ ∈ QT(A); whence, fm 6 g for all m.
Passing to the supremum over m, we get τ(a − ε)+ 6 τ(b) for all τ ∈ QT(A)
and ε > 0. Now passing to the supremum over all ε > 0, we get τ(a) 6 τ(b)
for all τ ∈ QT(A), as desired. �

There is a version of the previous lemma for strict comparison of full positive
elements by traces:

Lemma 3.5. Let A be a C∗-algebra with Prim(A) compact and with strict
comparison of full positive elements by traces. Let a, b ∈ (A ⊗ K)+ be full
positive elements.

(i) If dτ (a) 6 dτ (b) for all τ ∈ T(A), then dτ (a) 6 dτ (b) for all τ ∈ QT(A).
(ii) If τ(a) 6 τ(b) for all τ ∈ T(A), then τ(a) 6 τ(b) for all τ ∈ QT(A).

Note: Since b is full, the inequality dτ (a) 6 dτ (b) need only be verified on
densely finite traces, for otherwise dτ (b) = ∞.
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Proof. The same proof as the one of Lemma 3.4, with the obvious modifica-
tions, works here. When taking functional calculus cut-downs (a − ε)+ and
(b− δ)+, we must take care to choose them so that they are still full (which is
possible by the compactness of Prim(A)). �

Theorem 3.6. Let A be a C∗-algebra.

(i) If A has strict comparison of positive elements by traces, then every lower
semi-continuous 2-quasitrace on A is a trace.

(ii) If Prim(A) is compact and A has strict comparison of full positive ele-
ments by traces, then every densely finite lower semi-continuous 2-quasi-
trace on A is a trace.

Proof. (i) Let a, b ∈ A+. Let c, d ∈ M2(A) be defined as

c =

(
a+ b

0

)
, d =

(
a

b

)
.

Then τ(c) = τ(d) for all τ ∈ T(A). By Lemma 3.4 (ii), we get that τ(c) = τ(d)
for all τ ∈ QT(A). But τ(c) = τ(a + b) and τ(d) = τ(a) + τ(b). So all
τ ∈ QT(A) are additive, as desired.

(ii) The same proof as in (i), but relying now on Lemma 3.5 (ii), shows
in this case that the lower semi-continuous 2-quasitraces on A are additive
on pairs of full positive elements. Let us now prove that the densely finite
ones are additive on any pair of positive elements. Let τ be one such 2-quasi-
trace and let a, b ∈ A+. Say w ∈ A+ is full (whose existence is guaranteed
by the compactness of Prim(A)) and let e1, e2, . . . be an approximate unit of
C∗(a, b, w) such that en+1en = en for all n. Notice that en is full for large
enough n by the compactness of Prim(A). So

τ(enaen + enben) + 2τ(en+1) = τ(enaen + en+1 + enben + en+1)

= τ(enaen + en+1) + τ(enben + en+1)

= τ(enaen) + τ(enben) + 2τ(en+1).

In the first and third equalities we have used the additivity of τ on commutative
C∗-algebras and in the middle equality the additivity of τ on pairs of full
elements. Since τ(en+1) < ∞, we get

τ(enaen + enben) = τ(enaen) + τ(enben)

for all n ∈ N. Letting n → ∞ and using the lower semicontinuity of τ , we
obtain that τ(a+ b) = τ(a) + τ(b), as desired. �

Remark 3.7. In view of part (i) of the previous theorem, the property of strict
comparison of positive elements by traces is equivalent to “strict comparison
by 2-quasitraces” and “2-quasitraces are traces” (all traces and 2-quasitraces
are assumed to be lower semi-continuous). Observe also that if A has strict
comparison of positive elements by 2-quasitraces and its densely finite 2-quasi-
traces are traces, then A has strict comparison of full positive elements by
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traces. Indeed, if b ∈ (A ⊗ K)+ is a full element, the inequality dτ (a) 6 (1 −
ε)dτ (b) need only be verified on all densely finite traces (otherwise τ(b) = ∞).

4. Proof of Theorem 1.1

In this section we prove Theorem 1.1 from the introduction. The proof is
preceded by a number of preparatory results.

Theorem 4.1. Let A1, A2, . . . be C∗-algebras with strict comparison by traces.
Let h ∈

∏∞
n=1 An be such that hn ∼Tr 0 for all n ∈ N. Then h ∼Tr 0.

Proof. Let h ∈
∏∞

n=1 An be such that hn ∼Tr 0 for all n. First, let us show
how to reduce ourselves to the case that the C∗-algebras An are σ-unital for all
n ∈ N. Fix n ∈ N. Since hn ∈ [An, An], there exist finite sums of commutators∑Nk

i=1[x
(k)
i , y

(k)
i ], with x

(k)
i , y

(k)
i ∈ An for all i, k, converging to hn as k → ∞.

Consider the C∗-subalgebra

Bn = her
(
{x

(k)
i , y

(k)
i | i = 1, . . . , Nk, k ∈ N}

)
.

Then Bn has strict comparison by traces and is σ-unital. Furthermore, hn ∈
[Bn, Bn]. To prove the theorem, it suffices to show that h ∼Tr 0 in

∏∞
n=1 Bn.

Thus, from this point on, we assume that the C∗-algebras A1, A2, . . . are all
σ-unital.

Let us set
∏∞

n=1 An = A. As before, let h ∈ A be such that hn ∼Tr 0
for all n. We may assume that ‖h‖ 6 1. Let us suppose, for the sake of
contradiction, that µ(h) 6= 0 for some trace µ on A of norm 1. Notice then that
(hn)+ ∼Tr (hn)− for all n ∈ N, but µ(h+) 6= µ(h−). We wish, however, to find
positive elements an, bn ∈ An agreeing on all traces in T(An) (i.e., lower semi-
continuous and [0,∞]-valued) while at the same time µ((an)n) 6= µ((bn)n). Let
us show how to achieve this: Assume, without loss of generality, that µ(h) > 0.
Set µ(h) = δ. Fix n ∈ N. Let (e

(i)
n )i be an approximate unit of An such that

e(i+1)
n e(i)n = e(i)n for all i.

We can find h
(i)
n ∈ her(e

(i)
n ) for i large enough such that ‖h

(i)
n − hn‖ < δ

2
and h

(i)
n ∼Tr 0 in her(e

(i)
n ). (This is achieved as follows: first, sufficiently

approximate hn by a finite sum of commutators; next, multiply the elements
in these commutators by e

(i)
n and let i → ∞.) Let

an := (h(i)
n )+ + e(i+1)

n ,

bn := (h(i)
n )− + e(i+1)

n .

Let τ ∈ T(An). Suppose first that τ(e
(i+1)
n ) < ∞. Then τ is bounded on

her(e
(i)
n ), and so τ(h

(i)
n ) = 0, because h

(i)
n ∼Tr 0 in her(e

(i)
n ). Hence,

τ(an) = τ((h(i)
n )+) + τ(e(i+1)

n )

= τ((h(i)
n )−) + τ(e(i+1)

n )

= τ(bn).
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On the other hand, if τ(e
(i+1)
n ) = ∞, then again we find that τ(an) = ∞ =

τ(bn). Furthermore,

τ((an − t)+) = τ((h(i)
n )+ + (e(i+1)

n − t)+)

= τ((h(i)
n )− + (e(i+1)

n − t)+)

= τ((bn − t)+)

for all 0 6 t < 1 and all τ ∈ T(An). (This equality is again verified both if
τ((e

(i+1)
n − t)+) < ∞ and if τ((e

(i+1)
n − t)+) = ∞.)

Let a = (an)n and b = (bn)n. Notice that µ(a) − µ(b) = µ((h
(i)
n )n) > δ/2.

Let K =
⋃∞

n=1 T(An). Let us show that τ(a) = τ(b) for all τ ∈ K. Consider
the set

Q = {τ ∈ T(A) | τ((a − t)+) = τ((b − t)+) for all 0 6 t < 1}.

Clearly, τ(a) = τ(b) for all τ ∈ Q. So it suffices to show that K ⊆ Q. By
our construction of a and b, we have

⋃∞
n=1 T(An) ⊆ Q. We will be done once

we have shown that Q is closed in T(A). Suppose that τλ → τ in T(A), with
τλ ∈ Q for all λ. Let 0 6 t < 1 and choose t < t′ < 1. Then

τ((a − t′)+) 6 lim inf τλ((a− t′)+) 6 lim sup τλ(b− t′)+ 6 τ(b − t)+.

Passing to the supremum over all t′ > t on the left, we get that τ((a − t)+) 6
τ((b− t)+). By symmetry, we also have τ((b− t)+) 6 τ((a− t)+). Thus, τ ∈ Q
as desired.

Let us now show that A has strict comparison of positive elements by K (as
defined in Definition 3.1). Let c, d ∈ (A⊗K)+ be such that dτ (c) 6 (1−γ)dτ(d)
for all τ ∈ K and some γ > 0. In order to show that [c] 6 [d], it suffices to
show that [(c − ε)+] 6 [d] for all ε > 0. But, for each ε > 0 and δ > 0,
we have (c − ε)+ ∼Cu c′ ∈ MN(A) and (d − δ)+ ∼Cu d′ ∈ MN(A) for some
N > 0. Thus, applying Lemma 3.3, we may reduce the proof to the case that
c, d ∈ MN(A) for some N ∈ N. Let us assume this. Let us fix ε > 0. Again by
Lemma 3.3, there exists δ > 0 such that

dτ ((c− ε)+) 6
(
1−

γ

2

)
dτ ((d − δ)+) for all τ ∈ K.

Since MN(A) ∼=
∏

n MN(An), we can write c = (cn)n and d = (dn)n, with
cn, dn ∈ MN (An) for all n. Projecting onto An, we get

dτ ((cn − ε)+) 6
(
1−

γ

2

)
dτ ((dn − δ)+) for all τ ∈ T(An).

Since the C∗-algebra An has strict comparison of positive elements by traces,
we get that [(cn − ε)+] 6 [(dn − δ)+]. Thus, (cn − 2ε)+ = x∗

nxn and xnx
∗
n ∈

her((dn − δ)+) for some xn ∈ An. Then (c − 2ε)+ = x∗x and xx∗ 6 Md for
some M > 0, where x = (xn)n. Hence, [(c− 2ε)+] 6 [d] for all ε > 0. Letting
ε → 0, we get [c] 6 [d], as desired.

We now know that τ(a) = τ(b) for all τ ∈ K and that A has strict compar-
ison by K. By Lemma 3.4 (ii), we conclude that τ(a) = τ(b) for all τ ∈ T(A).
But this contradicts that µ(a) 6= µ(b), which completes the proof. �
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Essentially the same proof, with some modifications, yields the following
theorem:

Theorem 4.2. Let A1, A2, . . . be C
∗-algebras with Prim(An) compact and with

strict comparison of full positive elements by traces. Let h ∈
∏∞

n=1 An be such
that hn ∼Tr 0 for all n ∈ N. Then h ∼Tr 0.

Proof. Let us sketch the necessary modifications to the proof of Theorem 4.1
that yield a proof of the present theorem: As before, we can reduce to the
case that the C∗-algebras A1, A2, . . . are σ-unital. To this end, we use that
Prim(An) is compact if and only if there exist cn ∈ (An)+ and ε > 0 such that
(cn − ε)+ is full. Now defining

Bn = her
(
{cn, x

(k)
i , y

(k)
i | i = 1, . . . , Nk, k ∈ N}

)
,

we guarantee that Bn has compact primitive spectrum for all n and is σ-unital.
Next, the elements an and bn in the first part of the proof are constructed as
before, except that we take care that they be full elements. This is possible
since the elements of the approximate unit (e

(i)
n )i are full for large enough i.

The definitions of the sets K and Q remain unchanged, and again we find that
K ⊆ Q and that Q is closed. In the next segment of the proof of Theorem 4.1
it is shown that A has strict comparison of positive elements by K. The
same arguments can be used to show that, in the present case, the strict
comparison by K holds for full positive elements; i.e., assuming that c and d
are full. We finish the proof as before, now relying on Lemma 3.5, rather than
Lemma 3.4. �

We deduce from the previous theorems the following corollaries:

Corollary 4.3. There exists N ∈ N such that if A is a C∗-algebra with strict
comparison of positive elements by traces and h ∈ A is such that h ∼Tr 0, then

∥∥∥h−

N∑

i=1

[xi, yi]
∥∥∥ 6

1

2
‖h‖

for some xi, yi ∈ A such that ‖xi‖ · ‖yi‖ 6 ‖h‖ for all i.

Proof. Let us suppose for the sake of contradiction that no such N exists.
Then there exist C∗-algebras A1, A2, A3, . . . with strict comparison by traces
and contractions hn ∈ An such that hn ∼Tr 0 and the distance from hn to
elements of the form

∑n
i=1[ui, vi], with ‖ui‖, ‖vi‖ 6 1 for all i, is at least 1/2

for all n ∈ N. Let h = (hn) ∈
∏∞

n=1 An. By Theorem 4.1, h ∼Tr 0. Hence,

‖h−
∑N

j=1[xj , yj ]‖ < 1/2 for some N and some x1, y1, . . . , xN , yN ∈
∏∞

n=1 An.

Increasing N if necessary, we may assume that ‖xj‖, ‖yj‖ 6 1 for all j =
1, . . . , N . We get a contradiction projecting onto the N -th coordinate. �

The same proof, now relying on Theorem 4.2, yields the following corollary:
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Corollary 4.4. There exists N ′ ∈ N such that if A is a C∗-algebra with
Prim(A) compact and with strict comparison of full positive elements by traces,
and h ∈ A is such that h ∼Tr 0, then

∥∥∥h−
N ′∑

i=1

[xi, yi]
∥∥∥ 6

1

2
‖h‖

for some xi, yi ∈ A such that ‖xi‖ · ‖yi‖ 6 ‖h‖ for all i.

From these corollaries we deduce the theorem on traces of products and
ultraproducts stated in the introduction:

Proof of Theorem 1.2. Imitate the proof of [20, Thm. 8], now relying on Corol-
lary 4.3 or Corollary 4.4 instead of on [20, Thm. 6]. �

In order to obtain finite commutator bounds for a pure C∗-algebra whose
2-quasitraces are traces, we intend to apply Theorem 2.9. We have already
shown that condition (ii) of that theorem is met by this class of C∗-algebras
(in Corollary 4.3). In the next lemmas we establish the existence of a sequence
of pairwise orthogonal positive elements as in Theorem 2.9 (i).

Recall that, given positive elements a and b, by b � a we mean that b = x∗x
and xx∗ ∈ her(a) for some x ∈ A.

Lemma 4.5. Let A be a pure C∗-algebra and a, b ∈ (A⊗K)+. If dτ (b) 6 γdτ (a)
for all τ ∈ QT(A) and some γ < 1/2, then b � a.

Proof. The proof follows closely that of [4, Thm. 4.4.1], but we take care to
remove the assumption on finite quotients needed there. First, using functional
calculus, let us find bi, b

′
i, b

′′
i ∈ C∗(b)+, with i = 1, 2, . . . , such that

(i) b′ibi = bi and b′′i b
′
i = b′i for all i,

(ii) b′′i ⊥ b′′j for all i, j such that i 6= j and i− j is even,

(iii) b =
∑∞

i=1 bi,
(iv) ‖b′i‖ = 1.

Since b �
⊕∞

i=1
1
i bi, it suffices to show that

⊕∞
i=1

1
i bi � a. Let us prove this.

We have that
∞∑

i=1

dτ (b
′′
i ) 6

∞∑

i=1

dτ (b
′′
2i) +

∞∑

i=1

dτ (b
′′
2i−1) 6 2dτ (b) 6 2γdτ (a)

for all τ ∈ QT(A). Since A is pure, for each N ∈ N there exists d ∈ (A ⊗K)+
such that N [d] 6 [a] 6 (N + 1)[d]. By choosing N large enough we can
arrange that dτ (b

′′
1 ⊕ d) 6 γ1dτ (a) for some γ1 ∈ (2γ, 1) and all τ ∈ QT(A).

It follows by the strict comparison property of A that [b′′1 ⊕ d] 6 [a]. Notice
also that, by our choice of d, we have that [b′′1 ] 6 k[d] for some k ∈ N. Since
[b′1] ≪ [b′′1 ] (where ≪ is the relation of compact containment in Cu(A)), there
exists ε > 0 such that [b′1] 6 k[(d − ε)+]. Let d′ = (d − ε)+. We then have
that b′1 ⊕ d′ � (a − δ)+ for some δ > 0. Let v ∈ (A ⊗ K)∗∗ be a partial
isometry implementing this subequivalence. Let c′1, e ∈ her((a− δ)+) be given
by c′1 = vb′1v

∗ and e = vd′v∗. Let gδ(a) ∈ C∗(a) be strictly positive and such
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that gδ(a)(a− δ)+ = (a− δ)+. Notice that gδ(a) acts as a multiplicative unit
for every element in her((a − δ)+). In particular, gδ(a)c

′
1 = c′1. Since c′1 is

a contraction (because b′1 is one), we have that gδ(a) − c′1 > 0. Let us set
a1 = gδ(a)− c′1. Then

∞∑

i=2

dτ (b
′′
i ) + dτ (c

′
1) 6 2γdτ (a) 6 2γdτ (a1) + dτ (c

′
1)

for all τ ∈ QT(A). If dτ (c
′
1) < ∞, we get

(7)

∞∑

i=2

dτ (b
′′
i ) 6 2γdτ (a1),

Suppose that dτ (c
′
1) = ∞. Then dτ (b

′
1) = dτ (c

′
1) = ∞. Since [b′1] 6 k[d′],

we also have dτ (e) = dτ (d
′) = ∞. But a1e = (gδ(a) − c′1)e = e. Hence,

dτ (a1) = ∞. So again we have (7). Let c1 = vb1v
∗ and notice that a1 ⊥ c1. We

can repeat the same arguments, now finding positive elements c2, a2 ∈ her(a1)
such that b2 ∼ c2, a2 ⊥ c2 and

∑∞
i=3 dτ (b

′′
i ) 6 2γdτ (a2). Continuing this

process ad infinitum, we obtain c1, c2, . . . ∈ her(a) such that bi ∼ ci for all i
and ci ⊥ cj for all i 6= j. Hence,

∞⊕

i=1

1

i
bi ∼

∞∑

i=1

1

i
ci ∈ her(a),

which proves the lemma. �

The previous lemma implies that in a pure C∗-algebra the ordered semi-
group W (A) is hereditary in Cu(A). This will not be needed later on but has
independent interest. Recall that W(A) is defined as

W(A) =
{
[a] ∈ Cu(A) | a ∈

∞⋃

n=1

Mn(A)
}
.

Corollary 4.6. Let A be a pure C∗-algebra. The ordered semigroup W(A) is
a hereditary (in the order-theoretic sense) subsemigroup of Cu(A).

Proof. Let a ∈ A⊗K and b ∈ Mn(A) be positive elements such that [a] 6 [b].
By Lemma 4.5, a � b⊕3 ∈ M3n(B). Hence a ∼ a′ ∈ her(b⊕3) ⊆ M3n(B),
which in turn implies that [a] = [a′] ∈ W(A). �

In the following lemma we make use of the abundance of soft elements in
the Cuntz semigroup of a pure C∗-algebra (see [1]). It will not be necessary
here to recall their definition and multiple properties. We will merely need the
following fact:

Let A be a pure C∗-algebra and [a] ∈ Cu(A). Then there exists [a]s ∈ Cu(A)
such that [a]s 6 [a], dτ ([a]s) = dτ ([a]) for all τ ∈ QT(A), and [a]s is exactly
divisible by all n ∈ N; i.e., for each n ∈ N there exists [b] ∈ Cu(A) such that
n[b] = [a]s.

A proof of this fact can be extracted from [1] as follows: By [1, Thm. 7.3.11],
the Cuntz semigroup of a pure C∗-algebra has Z-multiplication (in the sense
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of [1, Def. 7.1.3]). Here Z denotes the Cuntz semigroup of the Jiang–Su C∗-
algebra Z. Then [a]s = 1′ · [a], with 1′ ∈ Z denoting the “soft” 1, has the
desired properties. See [1, Prop. 7.3.16].

Lemma 4.7. Let A be a σ-unital pure C∗-algebra and e0 ∈ A+ a strictly posi-
tive element. Then there exist pairwise orthogonal positive elements e1, e2, . . . ∈
A+ such that ei � e⊕5

i+1 for all i > 1 and e0 � e⊕11
1 .

Proof. Let [e0]s 6 [e0] be the soft element associated to the Cuntz semigroup
element [e0]. Let us find [f1], [f2], . . . ∈ Cu(A) such that 5[f1] = [e0]s and
2[fi+1] = [fi] for all i > 1. Let f ∈ (A⊗K)+ be given by f = f1⊕

1
2f2⊕

1
3f3⊕· · · .

Then

dτ (fi) =
2

5
dτ (f

⊕5
i+1),

dτ (e0) =
5

11
dτ (f

⊕11
1 ),

dτ (f) =
2

5
dτ (e0),

for all τ ∈ QT(A). Hence, by Lemma 4.5, fi � f⊕5
i+1, e0 � f⊕11

1 , and f � e0.
Let v ∈ (A⊗K)∗∗ be the partial isometry implementing the comparison f � e0.
Then, the positive elements ei = vfiv

∗, with i = 1, 2, . . . , have the desired
properties. �

Let us now prove Theorem 1.1 from the introduction.

Proof of Theorem 1.1. We first prove that every C∗-algebra A as in the theo-
rem has finite commutator bounds with no approximations. We then reduce
the number of commutators to 7.

Let h ∈ [A,A]. Then
∑kn

i=1[x
(n)
i , y

(n)
i ] → h for some x

(n)
i , y

(n)
i ∈ A. Passing

to the hereditary C∗-subalgebra her({x
(n)
i , y

(n)
i | i = 1, . . . , kn, n = 1, . . .}) if

necessary, we may assume that A is σ-unital (since hereditary subalgebras of
pure C∗-algebras are again pure). Let e0 ∈ A+ be a strictly positive element.
By Lemma 4.7, A contains a sequence of pairwise orthogonal positive elements
(ei)

∞
i=1 such that ei � e⊕7

i+1 for all i and e0 � e⊕11
1 . Furthermore, Corollary 4.3 is

applicable to every hereditary subalgebra ofA. Thus, Theorem 2.9 is applicable
to A. That is, A has finite commutator bounds (n,C) with no approximations,
for some n ∈ N and C > 0.

Let us now reduce the number of commutators to 7. Since A is pure, we
can find b ∈ (A ⊗K)+ such that (2n+ 1)[b] 6 [e0] 6 (2n+ 2)[b] (with n as in
the end of the previous paragraph). Then

dτ (b
⊕n) 6

n

2n+ 1
dτ (e0) and dτ (e0) 6

2n+ 2

5n
dτ (b

⊕5n).

Hence, by Lemma 4.5, there exists f ∈ A+ such that b⊕n ∼ f and e0 � f⊕5.
Now let h ∈ A be such that h ∼Tr 0. From Lemma 2.8 we obtain that
h =

∑5
i=1[xi, yi] + h′ for some h′ ∈ her(f) such that h′ ∼Tr 0 in her(f).

But her(f) ∼= Mn(her(b)). Thus, by Theorem 2.7 (ii), h′ = [x6, y6] + [x7, y7].
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Furthermore, the sum
∑7

i=1‖xi‖ · ‖yi‖ is bounded by C′‖h‖ for some C′ > 0,
as can be seen from the statements of Lemma 2.8 and Theorem 2.7. �

In Theorem 1.1, it is possible to reduce further the number of commutators
under a variety of additional assumptions. We show in Theorem 4.10 below
that if the C∗-algebra is assumed to be unital, then three commutators suffice.
We need a couple of lemmas.

Lemma 4.8. Let d ∈ M(A) be a multiplier positive contraction satisfying that
d ⊕ d ⊕ d � 1 − d in M(A). Then for each h ∈ A there exist x, y ∈ A and
h′ ∈ her(1 − d) such that h = [x, y] + h′ and ‖x‖ · ‖y‖ 6 2‖h‖.

Proof. We have h = dh+ (1− d)hd+ (1− d)h(1 − d). Let

f = dh+ (1 − d)hd,

e = d+ h∗d2h+ (1− d)hd2h∗(1 − d).

Since dh ∈ her(d + h∗d2h) and (1 − d)hd ∈ her(d + (1 − d)hd2h∗(1 − d)), we
have that f ∈ her(e). Also, e � d ⊕ d⊕ d � 1 − d. We can apply Lemma 2.8
(with n = 1) to f ∈ her(e). We get f = [x, y] + f ′, with f ′ ∈ her(1 − d) and
‖x‖ · ‖y‖ 6 ‖f‖ 6 2‖h‖. Hence, h = [x, y] + (1− d)h(1− d) + f ′, which proves
the lemma. �

Let Zn−1,n denote the dimension drop C∗-algebra:

Zn−1,n = {f ∈ M(n−1)n(C[0, 1]) | f(0) ∈ Mn−1 ⊗ 1n, f(1) ∈ Mn ⊗ 1n−1}.

Proposition 4.9. Let A be a pure unital C∗-algebra. Then for all n ∈ N there
exists a unital homomorphism φ : Zn−1,n → A.

Proof. Let n ∈ N. Since Cu(A) is almost divisible, we can find [a] ∈ Cu(A) such
that n[a] 6 [1] and [1] 6 (n+1)[(a− ε)+] for some ε > 0. In turn, this implies
that there exist pairwise orthogonal positive elements b1, b2, . . . , bn ∈ A+ such
that (a − ε

2 )+ ∼ b1 ∼ · · · ∼ bn. Using functional calculus, let us modify bi so
that there exists b′i ∈ her(bi)+, with bib

′
i = b′i and b′i ∼ (a − ε)+ for all i. Set∑n

i=1 bi = b. Then (1 − b)b′i = (1 − bi)b
′
i = 0 for all i. That is, 1 − b ⊥ b′i for

all i. We have

dτ (1− b) + ndτ (b
′
1) = dτ (1− b) + dτ

( n∑

i=1

b′i

)
6 dτ (1) 6 (n+ 1)dτ (b

′
1)

for all τ ∈ QT(A). Hence,

dτ (1− b) 6 dτ (b
′
1) =

1

3
dτ (b

′
1 ⊕ b′2 ⊕ b′3).

By Lemma 4.5, this implies that 1− b � b′1 ⊕ b′2 ⊕ b′3. Let us assume now that
n = 3k for some k ∈ N. By [27, Prop. 5.1], there exists a unital homomorphism
from the dimension drop C∗-algebra Zk,k+1 into A. �
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Theorem 4.10. Let A be a pure C∗-algebra with compact Prim(A) and with
strict comparison of full positive elements by traces. Then A has commutator
bounds (7, C1), with no approximations, for some universal constant C1. If A
is unital, then it has commutator bounds (3, C2), with no approximations, for
some universal constant C2.

Proof. Let us first show that A has finite commutator bounds. To this end,
we proceed as in the proof of Theorem 1.1, but with a few small modifications.
(The main difference with Theorem 1.1 being that now we only require strict
comparison by traces on full positive elements.) Lemma 4.7 is applicable to A,
yielding a sequence of pairwise orthogonal positive elements (ei)

∞
i=1 such that

e0 � e⊕11
1 and ei � e⊕7

i+1 for all i. Here e0 ∈ A+ is strictly positive. The
hereditary subalgebras her(ei) have compact primitive spectrum for all i (since
they are full in B). Hence, Corollary 4.4 is applicable in each of them. Now
Theorem 2.9 implies that A has finite commutator bounds (n,C) with no
approximations.

The arguments for reducing the number of commutators to 7 in the proof
of Theorem 1.1 apply here as well.

Let us now show that if A is unital, then the number of commutators can
be reduced to 3. By Proposition 4.9, the dimension drop C∗-algebra Zn,n+1

maps unitally into A. By [27, Prop. 5.1], there exist mutually orthogonal
f1, . . . , fn ∈ A+ such that f1 ∼ fi for all i and 1−

∑n
i=1 fi � (f1−ε)+ for some

ε > 0. Let us assume without loss of generality that n > 3. By Lemma 4.8,
for each h ∈ [A,A] we have h = [x1, y1] + h′, with h′ ∈ her(f1, . . . , fn). But
her(f1, . . . , fn) ∼= Mn(her(f1)), and her(f1) has commutator bounds (n,C)
with no approximations. It follows by Theorem 2.7 that h′ = [x2, y2]+ [x3, y3].

�

Example 4.11. Let (Ai, τi), with i = 1, 2, . . . , be unital C∗-algebras with
faithful tracial states. Assume that for infinitely many indices i1, i2, . . . there
exist unitaries uin ∈ Ain such that τin(uin) = 0 for all n. Let A = A1 ∗A2 ∗ · · ·
and τ = τ1∗τ2∗· · · be the reduced free product C∗-algebra and tracial state. It
is known that A is simple and τ is its unique tracial state (by [3]). Furthermore,
by [23, Prop. 6.3.2], A has strict comparison of positive elements by the trace τ .
It follows that A is pure and, by Theorem 3.6, that the only bounded 2-quasi-
traces on A are the scalar multiples of τ . By Theorem 4.10, if h ∈ A is such
that τ(h) = 0, then h is a sum of three commutators.

5. Sums of nilpotents of order 2

Let A be a C∗-algebra. Let N2 = {x ∈ A | x2 = 0}; i.e., N2 denotes the set
of nilpotent elements of order 2 in A (a.k.a, square zero elements).

Lemma 5.1. Let z ∈ N2. Then z = [u, v] and z + z∗ = [w∗, w] for some
u, v, w ∈ A.
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Proof. We may assume that ‖z‖ = 1. The universal C∗-algebra generated by
a square zero contraction is M2(C0(0, 1]). Thus, there exists a homomorphism
φ : M2(C0(0, 1]) → A such that z̃ := ( 0 t

0 0 )
φ
7→ z. So it suffices to express z̃ and

z̃ + z̃∗ as commutators. Indeed,
(
0 t
0 0

)
=

[(
t
1

2 0
0 0

)
,

(
0 t

1

2

0 0

)]
,

(
0 t
t 0

)
=

1

4

[(
t
1

2 −t
1

2

t
1

2 −t
1

2

)
,

(
t
1

2 t
1

2

−t
1

2 −t
1

2

)]
. �

The preceding lemma implies that the linear span of N2 is contained in
[A,A]. In Theorem 5.3 below we show, conversely, that if A is a pure unital
C∗-algebra, then every commutator is expressible as a sum of at most 14× 256
order 2 nilpotents.

Lemma 5.2. Let A be a C∗-algebra and a, b ∈ A.

(i) If a, b ∈ N2, then [a, b] is a sum of three order 2 nilpotents.
(ii) If A = M2(B) or A = M3(B), then [a, b] is at most a sum of 14 order 2

nilpotents.

In both cases, the norm of the nilpotents is bounded by C‖a‖ · ‖b‖, where C is
a universal constant.

Proof. (i) Let a, b ∈ N2. Normalizing a and b if necessary, we may assume that
they are contractions. Then, as pointed out in [14, Lem. 3.2],

[a, b] = (ab+ aba− b− ba) + (−aba) + (b),

and each term on the right-hand side is an order 2 nilpotent of norm at most 4.
(ii) This is proven by Marcoux in [14, Thm. 5.6 (ii)] for n = 2, and in [14,

Thm. 3.5 (ii)] for n = 3 (see also the remarks after [15, Thm. 5.1]). Although
in the statements of these theorems Marcoux assumes that B is unital, a quick
inspection of the proofs reveals that this is not used. �

Theorem 5.3. Let A be a pure unital C∗-algebra and a, b ∈ A.

(i) Then [a, b] is a sum of at most 14× 256 nilpotents of order 2. The norm
of the order 2 nilpotents is bounded by C‖a‖ · ‖b‖, where C is a universal
constant.

(ii) If [a, b] is selfadjoint, then it is a sum of 14 × 256 commutators of the
form [x∗, x] with x ∈ N2, with ‖x‖2 6 C′‖a‖ · ‖b‖ and C′ is a universal
constant.

Proof. (i) Let us choose s1 and s2 such that 0 < s1 < s2 < 1. Let f1, f2, f3, f4 ∈
C([0, 1])+ be functions such that f1 is supported on [0, s1), f2 is supported on
(0, s2), f3 is supported on (s1, 1), f4 is supported on (s2, 1], and f1+ f2+ f3+
f4 = 1. Let us regard C([0, 1]) embedded in Z2,3 via the map f 7→ f · 16.
Further, by Proposition 4.9, Z2,3 maps unitally into A. In this way, we can
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view f1, f2, f3, f4 as elements of A. Then

[a, b] =
∑

16i,j,k,l64

[fiafj, fkbfl].

We will show that each of the 256 terms on the right-hand side is expressible
as a sum of at most 14 nilpotents of order 2.

Let us examine the commutator [fiafj, fkbfl]. Since herA(f1 + f2 + f3) ∼=
M2(B) and herA(f2 + f3 + f4) ∼= M3(B

′) for some B,B′ ⊆ A, if not all
four functions appear in [fiafj , fkbfl], then by Lemma 5.2 this commutator is
expressible as a sum of at most 14 order 2 nilpotents.

Let us examine the commutators [fiafj , fkbfl] where all four functions ap-
pear; i.e., such that {i, j, k, l} = {1, 2, 3, 4}. Let us assume that i = 1. If l = 3
or l = 4, then [fiafj, fkbfl] is itself an order 2 nilpotent and we are done.
Suppose that l = 2. Since we are assuming that all four indices must appear,
either k = 4 and j = 3, or k = 3 and j = 4. Suppose that k = 4 and j = 3.
Since f1af3 and f4bf2 are both order 2 nilpotents, [f1af3, f4bf2] is a sum of
three order 2 nilpotents by Lemma 5.2 (i). Suppose now that k = 3 and j = 4.
The commutator is then [f1af4, f3bf2], which can be dealt with as follows:

[f1af4, f3bf2] = [f1a(f4f3)
1

2 , (f4f3)
1

2 bf2]

+ [(f4f3)
1

2 b(f2f1)
1

2 , (f2f1)
1

2 a(f4f3)
1

2 ]

+ [(f2f1)
1

2 af4, f3b(f2f1)
1

2 ].

Each of the commutators on the right side is a commutator of order 2 nilpotents
and is thus expressible as a sum of three order 2 nilpotents. So, [f1af4, f3bf2]
is expressible as a sum of 9 nilpotents of order 2.

Let us assume now that i 6= 1. As argued above, we may reduce ourselves to
the case that one of the indices j, k, l is 1. On the grounds of the symmetry of
our set-up, any of these cases can be dealt with just as we did above for i = 1.
(Notice that only the orthogonality relations between the functions were used
in our analysis; the asymmetry of the dimension drop C∗-algebra played no
role.) We are thus done.

(ii) Suppose that [a, b] is selfadjoint. By (i), it can be written as a sum
with 14 × 256 terms, each of the form z + z∗, with z ∈ N2. In turn, each of
these terms is expressible as a commutator of the form [x∗, x], with x ∈ N2,
by Lemma 5.1. �

Theorem 5.4. Let A be a pure unital C∗-algebra whose bounded 2-quasitraces
are traces. Then the sets [A,A], [A,A], and the linear span of N2, are equal.
Each h ∈ A such that h ∼Tr 0 is expressible as a sum of 3×14×256 square zero
elements. If h is selfadjoint, then it is also expressible as sum of 3× 14× 256
commutators of the form [x∗, x], with x ∈ N2.

Proof. The assumptions onA imply that it has strict comparison of full positive
elements by traces (see Remark 3.7). By Theorem 4.10, each h ∈ [A,A] is
expressible as a sum of three commutators. Each of these commutators, in
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turn, is expressible as a sum of 14×256 square zero elements. If h is selfadjoint,
then it is also expressible as a sum of 14× 256 terms of the form z + z∗, with
z ∈ N2, and each of these is a commutator [x∗, x] with x ∈ N2. �

6. The kernel of the determinant map

Let us briefly recall the definition of the de la Harpe–Skandalis determinant,
as defined in [10]. Let A be a C∗-algebra. Let GL∞(A) denote the infinite
general linear group ofA and GL0

∞(A) the connected component of the identity.
(If A is nonunital, the general linear groups GLn(A) are defined as the subgroup
of GLn(A

∼) of elements of the form 1n + x, with x ∈ Mn(A), and GL∞(A) is
the direct limit.) Let x ∈ GL0

∞(A). Let η : [0, 1] → GL0
∞(A) be a path such

that η(0) = 1 and η(1) = x. Let

∆̃η(x) =
1

2πi
Tr

(∫ 1

0

η′(t)η(t)−1
)
∈ A/[A,A].

If ζ is another path connecting 1 to x, then ∆̃η(x)− ∆̃ζ(x) belongs to the (ad-
ditive) subgroup {Tr(p)−Tr(q) | p, q projections in M∞(A)}, which we denote
by Tr(K0(A)). The de la Harpe–Skandalis determinant ∆Tr(x) is defined as the

image of ∆̃η(x) in the quotient of A/[A,A] by Tr(K0(A)). If x =
∏n

k=1 e
ihk ,

then ∆Tr(x) can be computed to be the image of
∑n

k=1 hk in this quotient.
Let U(A) denote the unitary group of A and U0(A) the connected compo-

nent of the identity. (If A is nonunital, U(A) is defined as the unitaries in
U(A∼) of the form 1 + x, with x ∈ A.) Given unitaries u, v ∈ U0(A), let us
denote by (u, v) the multiplicative commutator uvu−1v−1. Let DU0(A) denote
the derived or commutator subgroup of U0(A). It is clear that DU0(A) is con-
tained in the kernel of ∆Tr (since ∆Tr is a group homomorphism with abelian
codomain). In this section we prove the following theorem:

Theorem 6.1. Let A = M3(B), where B is a unital pure C∗-algebra whose
bounded 2-quasitraces are traces. Then ker∆Tr ∩ U0(A) = DU0(A).

The proof is preceded by a number of lemmas.

Lemma 6.2. Let A be a pure unital C∗-algebra and p ∈ Mm(A) a projection.
Then there exists h ∈ Asa such that h ∼Tr p and eih = (u, v) for some unitaries
u, v ∈ U0(A).

Proof. Let B = pMm(A)p. Choose n ∈ N. Since B is pure and unital, there
exists a unital homomorphism φ : Zn−1,n → B, by Proposition 4.9. Let e ∈
Zn−1,n be a positive element such that rank(e(t)) = n for all t ∈ (0, 1] and
rank(e(0)) = n − 1 (so that (n − 1)[e] 6 [1] 6 n[e] in the Cuntz semigroup
of Zn−1,n). In the proof of [18, Lem. 5.4] a selfadjoint element h ∈ her(e) is
constructed such that h ∼Tr 1 (in Zn−1,n) and eih = (u, v) for some unitaries
u, v ∈ U0(her(e)). Moving these elements with the homomorphism φ, we get
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e′ ∈ B+, h
′ ∈ her(e′)sa, and u′, v′ ∈ U0(her(e′)), such that

(n− 1)[e′] 6 [p] 6 n[e′], h′ ∼Tr p, and eih
′

= (u′, v′).

Now choose n > 2m. Then (2m+1)[e′] 6 [p] 6 m[1], where 1 is the unit of A.
By Lemma 4.5, this implies that e′ � 1; i.e., there exists x ∈ Mm(A) such
that x∗x = e′ and xx∗ ∈ A. Let x = w|x| be the polar decomposition of x (in
Mn(A)

∗∗). Then the selfadjoint h′′ = wh′w∗, and the unitaries u′′ = wuw∗

and v′′ = wvw∗ have the desired properties. �

Lemma 6.3. Let A be a pure unital C∗-algebra. Let u ∈ U0(A) be such that

∆Tr(u) = 0. Then u =
∏M

j=1(uj , vj) · e
ih for some u1, v1, . . . , uM , vM ∈ U0(A)

and some h ∈ Asa such that h ∼Tr 0.

Proof. Since u ∈ U0(A) we have u =
∏n

j=1 e
ihj , where h1, . . . , hn ∈ Asa,

and since ∆Tr(u) = 0 we also have
∑n

j=1 hj ∼Tr p − q for some projections

p, q ∈ Mm(A). Applying the previous lemma, we can write

u = (u′, v′)(u′′, v′′)

n+2∏

j=1

eihj ,

where now
∑n+2

j=1 hj ∼Tr 0. It thus suffices to prove the lemma for the unitary
∏n+2

j=1 eihj . Let N ∈ N. Then

n+2∏

j=1

eihj =

n+2∏

j=1

(eihj/N )N =

M∏

j=1

(uj , vj) ·
( n+2∏

j=1

eihj/N
)N

.

Here the commutators (uj , vj) result simply from rearranging the factors of the
first product. In particular, uj, vj ∈ U0(A) for all j. We can choose N large

enough so that
∏n+2

j=1 eihj/N = eih for some h ∈ Asa. By [10, Lem. 3 (b)], the
trace of the logarithm of a product of n+2 unitaries belonging to a sufficiently
small neighborhood of the identity is equal to the sum of the trace of the
logarithm of each of the unitaries. Thus, for N large enough, we have that
h ∼Tr

∑n+2
j=1 hj/N ∼Tr 0. Therefore,

u =

M∏

j=1

(uj , vj) · e
iNh,

with h ∈ Asa such that h ∼Tr 0. This proves the lemma �

Lemma 6.4. Let m ∈ N, R > 0, and ε > 0. Then there exists M ∈ N with
the following property: If A is a C∗-algebra and a1, . . . , am ∈ Asa are such that
‖ai‖ 6 R for all i, then there exist x1, y1, . . . , xM , yM ∈ Asa and c ∈ Asa such
that

ei(a1+···+am) =

M∏

k=1

(eixk , eiyk) · eia1 · · · eiam · eic,
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‖xk‖, ‖yk‖ 6 ε ·

m∑

j=1

‖aj‖ for k = 1, . . . ,M,

‖c‖ 6 ε ·

m∑

j=1

‖aj‖, and c ∼Tr 0.

Proof. By [28, Thm. 2], for λ ∈ R such that |λ| < 1
mR · (ln 2− 1

2 ) we have

eiλa1+···+iλam = eiλa1eiλa2 · · · eiλam · eic(λ),

where ‖c(λ)‖ 6 Lλ2 maxj‖aj‖
2 and the constant L > 0 is dependent on m

and R only. Furthermore, by [10, Lem. 3 (b)], for |λ| small enough (depending
only on m and R), the trace of the logarithm of the right side is equal to∑m

j=1 iλTr(aj) + Tr(c(λ)); whence c(λ) ∼Tr 0. Now let us choose λ = 1
N , with

N ∈ N. Then for N large enough (depending only on m and R) we have that

(8) eia1/N+···+iam/N = eia1/Neia2/N · · · eiam/N · ecN ,

where cN ∈ Asa satisfies that cN ∼Tr 0 and

‖cN‖ 6
L

N2
·max

i
‖ai‖

2 6
LR

N2
·max

i
‖ai‖.

Raising to the N on both sides of (8) we get

eia1+···+iam = (ea1/Nea2/N · · · eam/NecN )N

=
M∏

k=1

(eixk , eiyk) · ea1ea2 · · · eameNcN .

The commutators (eixk , eiyk) in the last expression result from rearranging
the terms in (ea1/Nea2/N · · · eam/N · ec)N . Notice that M depends only on N
and m. Choosing N > 1

ε we arrange for ‖xk‖, ‖yk‖ 6 εmaxj‖aj‖. Choosing

N > LR
ε we also get that

‖NcN‖ 6
LR

N
·max

i
‖ai‖ 6 εmax

j
‖aj‖. �

Proposition 6.5. There exists N ∈ N such that the following holds: If
A = M2(B), where B is a pure C∗-algebra with compact Prim(B) and whose
bounded 2-quasitraces are traces, and h ∈ Asa is such that h ∼Tr 0 and ‖h‖ 6 1,
then

eih =

N∏

j=1

(uj , vj) · e
ic

for some c ∈ Asa and some u1, v1, . . . , uN , vN ∈ U0(A) such that

c ∼Tr 0, ‖c‖ 6
1

2
‖h‖,

and

‖uj − 1‖, ‖vj − 1‖ 6 ‖eih − 1‖
1

2 for all j = 1, . . . , N .
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Proof. Let h ∈ Asa be such that h ∼Tr 0 and ‖h‖ 6 1. By Theorem 4.10, h is a
sum of seven commutators, and by Lemma 5.2 (ii), each of these commutators
is a sum of at most 14 nilpotents of order 2. Furthermore, since h is selfadjoint,
we can assume that these nilpotent elements have the form [z∗, z], with z2 = 0.
We thus have h =

∑m
k=1[z

∗
k, zk] for some z1, . . . , zm ∈ A such that z2k = 0.

Here m = 7×14 and ‖zk‖
2 6 C′‖h‖ for all k, where C′ is a universal constant.

However, dividing the elements zk by a large natural number (> C′1/2) and
enlarging m, we can assume instead that ‖zk‖

2 6 ‖h‖ for all k = 1, . . . ,m. Let
us assume this. Notice that now ‖[zk, z

∗
k]‖ 6 ‖h‖ 6 1. By Lemma 6.4 applied

with ε = 1
2 , m, and R = 1

2 , we have

eih = ei[z1,z
∗

1
]+···+i[zm,z∗

m] =

M∏

k=1

(eixk , eiyk) ·

m∏

k=1

ei[z
∗

k,zk] · eic,

where x1, y1, . . . , xM , yM ∈ A and c ∈ Asa are such that c ∼Tr 0, ‖c‖ 6 1
2‖h‖,

and ‖xk‖, ‖yk‖ 6 1
2‖h‖ for all k. Notice that ‖e

ixk−1‖, ‖eiyk−1‖ 6 ‖eih−1‖1/2

for all k = 1, . . . ,M . It remains to show that the terms ei[zk,z
∗

k] are also
expressible as commutators. By [18, Lem. 2.4 (ii)], for all z ∈ A such that

z2 = 0 and ‖z‖2 6 π
2 we have ei[z

∗,z] = (u, v) for some unitaries u, v ∈ U0(A)

such that ‖u − 1‖, ‖v − 1‖ 6 ‖e[z,z
∗]−1‖1/2. Applying this to each zk, we get

ei[zk,z
∗

k] = (uk, vk), where uk, vk ∈ U0(A) are such that

‖uk − 1‖, ‖vk − 1‖ 6 ‖ei[zk,z
∗

k] − 1‖
1

2 6 ‖eih − 1‖
1

2

for all k = 1, . . . ,m. �

Lemma 6.6. Let A be a pure C∗-algebra with strictly positive element d ∈ A+.
Let ε > 0. Then there exist pairwise orthogonal positive elements such that
ai ∼ bi and bi � ai+1 + bi+1 for all i, and [(d− ε)+] 6 11[a1].

Proof. Let [d]s ∈ Cu(A) denote the “soft” element associated to [d]. Using that
this element is infinitely divisible, we can find [c1], [c2], [c3], . . . ∈ Cu(A) such
that [ci] = 2[ci+1] for all i and 10[c1] = [ds]. Let us pick the representatives
ci such that ‖ci‖ → 0. Since [d] 6 11[c1], there exists δ1 > 0 such that
[(d− ε)+] 6 11[(c1 − δ+1)]. Let us continue choosing δ2, δ3, . . . such that

(ci − δi)+ � (ci+1 − δi+1)+ ⊕ (ci+1 − δi+1)+

for all i. Consider the element

c =

∞⊕

i=1

(ci ⊕ ci) ∈ (A⊗K)+.

Notice that dτ (c) 6 2
5dτ (d) for all τ ∈ QT(A). By Lemma 4.5, c � d. Let

v ∈ her(d)∗∗ denote the partial isometry implementing this subequivalence.
Let us define

ai = v((ci − δi)+ ⊕ 0)v∗,

bi = v(0 ⊕ (ci − δi)+)v
∗,
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for all i. The elements a1, b1, a2, b2, . . . are pairwise orthogonal. They satisfy
ai ∼ bi and bi � ai+1 + bi+1 for all i and [(d− ε)+] 6 11[(c1 − δ1)+] = 11[a1],
as desired. �

Lemma 6.7. Let A be a pure C∗-algebra with Prim(A) compact and whose
bounded 2-quasitraces are traces. Let a1, b1, a2, b2, . . . ∈ A+ be pairwise or-
thogonal positive elements as in the previous lemma. Let h ∈ her(a1) be a
selfadjoint element such that h ∼Tr 0. Then eih ∈ DU0(A).

Proof. The proof uses the multiplicative version of “Fack’s technique”, as ap-
plied in [18, Lem. 6.5].

Since eih = (eih/N )N for all N ∈ N we can assume that ‖h‖ < δ for any
prescribed δ. Let us choose δ such that [11, Prop. 5.18] is applicable to any
unitary within a distance of at most δ of 1.

By Proposition 6.5 applied in her(a1 + b1), there exist unitaries u
(1)
i , v

(1)
i in

U0(her(a1 + b1)) for i = 1, . . . , N , such that

eih =

N∏

i=1

(u
(1)
i , v

(1)
i )eih

′

1 ,

where h′
1 ∈ her(a1 + b1)sa, h

′
1 ∼Tr 0, and ‖h1‖

′ < ‖h‖/21.
Next, by [11, Prop. 5.18] (see also [18, Lem. 6.4]), there exist unitaries

w
(1)
1 , x

(1)
1 , w

(1)
2 , x

(1)
2 in U0(her(a1 + b1)) such that

eih
′

1 = (w
(1)
1 , x

(1)
1 )(w

(1)
2 , x

(1)
2 )eih

′′

1 ,

and h′′
1 ∈ her(b2)sa. Finally, by [11, Lem. 5.17] applied in her(b1 + a2 + b2),

we have eih
′′

1 = (y(1), z(1))eih2 , with y(1), z(1) ∈ U0(her(b1 + a2 + b2)) and
h2 ∈ her(a2 + b2)sa. Next, we apply again Proposition 6.5 in her(a2 + b2):

eih2 =
N∏

i=1

(u
(2)
i , v

(2)
i )eih

′

2 ,

with h′
2 ∼Tr 0 and ‖h′

2‖ < 1
22 , followed by applications of [11, Prop. 5.18] and

[11, Lem. 5.17]:

eih
′

2 = (w
(2)
1 , x

(2)
1 )(w

(2)
2 , x

(2)
2 )eih

′′

2 ,

= (w
(2)
1 , x

(2)
1 )(w

(2)
2 , x

(2)
2 )(y(2), z(2))eih3 ,

where h′′
2 ∈ her(b2)sa and h′′

2 ∼Tr 0, and h3 ∈ her(a3 + b3)sa and h3 ∼Tr 0.
Continuing this strategy, we construct, for each n ∈ N,

(i) unitaries u
(n)
1 , v

(n)
1 , . . . , u

(n)
N , v

(n)
N and w

(n)
1 , x

(n)
1 , w

(n)
2 , x

(n)
2 in U0(her(bn)),

(ii) unitaries y(n), z(n) in U0(her(bn + an+1 + bn+1), and
(iii) a selfadjoint hn ∈ her(en)sa,

such that hn ∼Tr 0 and

eih =

n−1∏

k=1

( N∏

i=1

(u
(k)
i , v

(k)
i )

)
(w

(k)
1 , x

(k)
1 )(w

(k)
1 , x

(k)
1 )(y(k), z(k)) · eihn .
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Notice that hn → 0. Thus, the above formula yields an expression of eih as an
infinite product of commutators. By the pairwise orthogonality of the elements
an and bn, we can gather the terms of this infinite product into subsequences,
each of them equal to a finite product of commutators. This is done in the
same manner as in the proof of [11, Prop. 6.1]. First, we group together the
commutators (y(k), z(k)) in the product above:

eih =

n−1∏

k=1

( N∏

i=1

(ũ
(k)
i , ṽ

(k)
i )

)
(w̃

(k)
1 , x̃

(k)
1 )(w̃

(k)
1 , x̃

(k)
1 )

n−1∏

k=1

(y(k), z(k)) · eihn ,

where

ũ
(k)
i = (y(k−1), z(k−1))u

(k)
i (y(k−1), z(k−1))−1,

ṽ
(k)
i = (y(k−1), z(k−1))v

(k)
i (y(k−1), z(k−1))−1,

w̃
(k)
j = (y(k−1), z(k−1))w

(k)
j (y(k−1), z(k−1))−1,

x̃
(k)
j = (y(k−1), z(k−1))x

(k)
j (y(k−1), z(k−1))−1,

for all i = 1, . . . , N , j = 1, 2, and k = 2, . . . , n. Since (y(k), z(k))− 1 belongs to
her(bk)+her(ak+1 + bk+1), the modified unitaries ũ

(k)
i , ṽ

(k)
i , w̃

(k)
j , x

(k)
j continue

to belong to U0(her(ak + bk)). Therefore,

(i)
∏∞

k=1

(∏N
i=1(ũ

(k)
i , ṽ

(k)
i )

)
· (w̃

(k)
1 , x̃

(k)
1 ) · (w̃

(k)
2 , x̃

(k)
2 ) is a product of N + 2

commutators,
(ii)

∏∞
k=1(y

(2k−1)), z(2k−1)) is a single commutator,

(iii)
∏∞

k=1(y
(2k)), z(2k)) is a single commutator.

We thus arrive at an expression of eih as a product of N +4 commutators. �

Proof of Theorem 6.1. It is clear that every unitary in DU0(A) is in ker∆Tr.
To prove the converse, it suffices, by Lemma 6.3, to show that eih, with h ∼Tr 0
is a finite product of commutators. Writing eih = (eih/N )N , we can assume
that ‖h‖ < δ for any prescribed δ. We will specify how small should δ be

soon. By [11, Prop. 5.18], eih is a product of commutators times eih
′

, with
h′ ∈ her(e1,1) and h′ ∼Tr 0. Let us choose d ∈ her(e2,2 + e3,3) and ε > 0 such
that

N [d] 6 [e2,2 + e3,3] 6 (N + 1)[(d− 2ε)+],

for N large enough (how large to be specified soon). Let us find pairwise
orthogonal elements d1, . . . , dN ∈ her(e2,2 + e3,3) such that di ∼ (d − ε)+ for
all i. Since [e1,1] 6 N [(d − 2ε)+], we have e1,1 � (

∑
i di − ε)+. By repeated

application of [11], we can express eih
′

as a finite product of commutators times

eih
′′

, with h′′ ∈ her((d1−ε)+) selfadjoint such that h′′ ∼Tr 0 (in her((d1−ε)+)).
Let us choose a sequence a1, b1, a2, b2 . . . ∈ her(d2+ · · ·+d13) as in Lemma 6.6.
Then 12[d1] = [d2+ · · ·+d13] 6 11[a1]. Thus, (d1−ε)+ � a1. We can therefore

express eih
′′

as a commutator times eih
′′′

, with h′′′ ∈ her(a1) and h′′′ ∼Tr 0.

By Lemma 6.7, eih
′′′

is a finite product of commutators. �
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