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Abstract. A leafwise Hodge decomposition was proved by Sanguiao for Riemannian folia-
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1. Introduction

Christopher Deninger has proposed a program to study arithmetic zeta
functions by finding an interpretation of the so-called explicit formulas as
a (dynamical) Lefschetz trace formula for foliated flows on suitable foliated
spaces [16, 17, 18, 19, 20]. Hypothetically, the action of the flow on some
reduced leafwise cohomology should have some Lefschetz distribution. Then
the trace formula would describe it using local data from the fixed points and
closed orbits. The precise expression of these contributions was previously
suggested by Guillemin [27]. Further developments of these ideas were made
in [22, 35, 36, 33].

Deninger’s program needs the existence of foliated spaces of arithmetic na-
ture, where the application of the trace formula has arithmetic consequences.
Perhaps some generalization of foliated spaces should be considered. Anyway,
to begin with, we consider a simple foliated flow φ = {φt} on a smooth closed
foliated manifold (M,F). We assume that F is of codimension one and the
orbits of φ are transverse to the leaves without fixed points.

The first two authors proved such a trace formula when {φt} has no fixed
points [3]. A generalization for transverse actions of Lie groups was also
given [4]. It uses the space C∞(M ; ΛF) of leafwise forms (smooth sections
of ΛF =

∧
TF∗ over M), which is a differential complex with the leafwise

derivative dF . Its reduced cohomology is denoted by H̄∗(F) (the leafwise re-
duced cohomology). Since φ is foliated, there are induced actions φ∗ = {φt∗}
on C∞(M ; ΛF) and H̄∗(F). In this case, F is Riemannian, and therefore it
has a leafwise Hodge decomposition [2],

(1) C∞(M ; ΛF) = ker∆F ⊕ im dF ⊕ im δF ,

where δF and ∆F are the leafwise coderivative and leafwise Laplacian. More-
over, the leafwise heat operator e−u∆F defines a continuous map

(2) C∞(M ; ΛF)× [0,∞] → C∞(M ; ΛF), (α, t) 7→ e−u∆Fα,

where ΠF = e−∞∆F is the projection to ker∆F given by (1). This projection
induces a leafwise Hodge isomorphism

(3) H̄∗(F) ∼= ker∆F .

These properties are rather surprising because the differential complex dF is
only leafwise elliptic. Of course, the condition on the foliation to be Riemann-
ian is crucial to make up for the lack of transverse ellipticity. The decomposi-
tion (1) may not be valid for non-Riemannian foliations [21].

On the other hand, the action φ∗ on H̄∗(F) satisfies the following properties
[3, 4]. For all f ∈ C∞

c (R) and 0 < u ≤ ∞, the operator

(4) Pu,f =

ˆ

R

φt∗e−u∆Ff(t) dt

is smoothing, and therefore it is of trace class since M is closed. Moreover,
its super-trace, TrsPu,f , depends continuously on f and is independent of u,
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and the limit of TrsPu,f as u ↓ 0 gives the expected contribution of the closed
orbits. But, by (3) and (4), the mapping f 7→ TrsP∞,f can be considered as
a distributional version of the super-trace of φ∗ on H̄∗(F); i.e., the Lefschetz
distribution Ldis(φ), solving the problem in this case.

We would like to extend the trace formula to the case where φ has fixed
points, which are very relevant in Deninger’s program. But their existence
prevents the foliation from being Riemannian, except in trivial cases. However,
the foliations with simple foliated flows have a precise description [6]. For
example, the F -saturation of the fixed point set of φ is a finite union M0 of
compact leaves, and the restriction F1 of F to M1 = M \M0 is a Riemannian
foliation. Moreover, F1 has bounded geometry in the sense of [44, 5] for certain
bundle-like metric g1 on M1. Then, instead of C∞(M ; ΛF), we consider in [7]
the space I(M,M0; ΛF) of distributional leafwise forms conormal to M0 (the
best possible singularities). This is a complex with the continuous extension
of dF , and we have a short exact sequence of complexes,

0 → K(M,M0; ΛF) →֒ I(M,M0; ΛF) → J(M,M0; ΛF) → 0,

where K(M,M0; ΛF) is the subcomplex supported in M0, and J(M,M0; ΛF)
is defined by restriction to M1. A key result of [7] is that we also have a short
exact sequence in (reduced) cohomology,

0 → H∗K(F) → H̄∗I(F) → H̄∗J(F) → 0,

with corresponding actions φ∗ = {φt∗} induced by φ. Thus we can now define
Ldis(φ) = Ldis,K(φ)+Ldis,J(φ), using distributional versions of the super-traces
of φ∗ on H∗K(F) and H̄∗J(F).

On the one hand, H∗K(F) can be described using Novikov cohomologies
on M0. Under some conditions and taking coefficients in the normal density
bundle, we can define Ldis,K(φ) in this way, with the expected contribution
from the fixed points.

On the other hand, H̄∗J(F) can be described using the reduced cohomol-
ogy H̄∗H∞(F1) of the cochain complex defined by dF1 on the Sobolev space
H∞(M1; ΛF1) (defined with g1); actually, leafwise Novikov versions of this
complex are also needed. At this point, to define Ldis,J(φ), we need a gener-
alization of (1)–(4) for Riemannian foliations of bounded geometry using this
type of cochain complex. This generalization is the purpose of this paper.

Precisely, let F be a Riemannian foliation of bounded geometry on an open
manifold M with a bundle-like metric. Then Sanguiao [44] proved versions
of (1)–(3) using H∞(M ; ΛF) and H̄∗H∞(F) instead of C∞(M ; ΛF) and
H̄∗(F). We explain again the proof in terms of our study of Riemannian
foliations of bounded geometry [5].

Moreover, let φ be a simple foliated flow on M transverse to the leaves.
If the infinitesimal generator of φ is C∞ uniformly bounded, then we also
get that (4) defines a smoothing operator Pu,f , and whose Schwartz kernel is
described for 0 < u < ∞. But now the operators Pu,f are not of trace class
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because M is not compact. So additional tools will be used in [7] to define and
study Ldis,J(φ) (see also [34]).

Finally, we show how to extend these results to leafwise versions of the
Novikov complex, as needed in [7].

2. Preliminaries on section spaces and differential operators

Let us recall some analytic concepts and fix their notation.

2.1. Distributional sections. Let M be a (smooth, i.e., C∞) manifold of di-
mension n, and let E be a (smooth complex) vector bundle over M . The space
of smooth sections, C∞(M ;E), is equipped with the (weak) C∞ topology (see,
e.g., [32]). This notation will be also used for the space of smooth sections of
other types of fiber bundles. If we consider only compactly supported sections,
we get the space C∞

c (M ;E), with the compactly supported C∞ topology.
Let ΩaE (a ∈ R) denote the line bundle of a-densities of E, and let

ΩE = Ω1E. Let TM and T ∗M be the (complex) tangent and cotangent vector
bundles, respectively, ΛM =

∧
T ∗M , ΩaM = ΩaTM and ΩM = Ω1M . More-

over, let X(M) = C∞(M ;TM) and Xc(M) = C∞
c (M ;TM). The restriction of

vector bundles to any submanifold L ⊂ M may be denoted with a subindex,
like EL, TLM , T ∗

LM and Ωa
LM . Redundant notation will be removed; for in-

stance, C∞(L;E) and C∞(M ; Ωa) will be used instead of C∞(L;EL) and
C∞(M ; ΩaM). We may also use the notation C∞(E) = C∞(M ;E) and
C∞

c (E) = C∞
c (M ;E) if there is no danger of confusion. As usual, the triv-

ial line bundle is omitted from this notation: the spaces of smooth (complex)
functions and its compactly supported version are denoted by C∞(M) and
C∞

c (M).
A similar notation is used for other section spaces. For instance, consider

also the spaces of distributional (or generalized) sections of E, and its com-
pactly supported version,

C−∞(M ;E) = C∞
c (M ;E∗ ⊗ Ω)′,

C−∞
c (M ;E) = C∞(M ;E∗ ⊗ Ω)′,

where we take the topological1 dual spaces with the weak-∗ topology. A con-
tinuous injection C∞(M ;E) ⊂ C−∞(M ;E) is defined by 〈u, v〉 =

´

M
uv for

u ∈ C∞(M ;E) and v ∈ C∞
c (M ;E∗ ⊗ Ω), using the canonical pairing of E

and E∗. There is a similar continuous injection C∞
c (M ;E) ⊂ C−∞

c (M ;E).
If E is endowed with a Hermitian structure, we can also consider the Banach
space L∞(M ;E) of its essentially bounded sections, whose norm is denoted by
‖·‖L∞ . If M is compact, then the equivalence class of ‖·‖L∞ is independent of

1This term is added to algebraic concepts on topological vector spaces to mean that they
are compatible with the topologies. For instance, the topological dual V ′ consists of continu-
ous linear maps V → C, an isomorphism is called topological if it is also a homeomorphism,
and a direct sum is called topological if it has the product topology.
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the Hermitian structure. Also, for any2 m ∈ N0, C
m(M ;E) denotes the space

of Cm sections.
When explicitly indicated, we will also consider real objects with the same

notation: real vector bundles, Euclidean structures, real tangent vectors and
vector fields, real densities, real functions and distributions, etc.

2.2. Operators on section spaces. Let E and F be vector bundles over M ,
and let A : C∞

c (M ;E) → C∞(M ;F ) be a continuous linear operator. The
transpose of A,

At : C−∞
c (M ;F ∗ ⊗ Ω) → C−∞(M ;E∗ ⊗ Ω),

is given by 〈Atv, u〉 = 〈v,Au〉 for u ∈ C∞
c (M ;E) and v ∈ C−∞

c (M ;F ∗ ⊗ Ω).
For instance, the transpose of the continuous dense injection C∞

c (M ;E∗⊗Ω) ⊂
C∞(M ;E∗⊗Ω) is the continuous dense injection C−∞

c (M ;E) ⊂ C−∞(M ;E).
If there is a restriction At : C∞

c (M ;F ∗ ⊗ Ω) → C∞(M ;E∗ ⊗ Ω), then Att :
C−∞

c (M ;E) → C−∞(M ;F ) is a continuous extension of A, also denoted by A.
The Schwartz kernel, KA ∈ C−∞(M2;F ⊠ (E∗ ⊗ Ω)), is determined by the
condition 〈KA, v ⊗ u〉 = 〈v,Au〉 for u ∈ C∞

c (M ;E) and v ∈ C∞
c (M ;F ∗ ⊗ Ω).

The mapping A 7→ KA defines a bijection (the Schwartz kernel theorem)3

L(C∞
c (M ;E), C−∞(M ;F )) → C−∞(M2;F ⊠ (E∗ ⊗ Ω)).

Note that

KAt = R∗KA ∈ C−∞(M2; (E∗ ⊗ Ω)⊠ F ),

where R : M2 → M2 is given by R(x, y) = (y, x).
There are obvious versions of the construction of At and Att when both the

domain and target of A have compact support, or no support restriction.

2.3. Differential operators. Let Diff(M) ⊂ End(C∞(M)) be the C∞(M)-
submodule and subalgebra of differential operators, filtered by the order. Every
Diffm(M) (m ∈ N0) is C

∞(M)-spanned by all compositions of up to m tangent
vector fields, where X(M) is considered as the Lie algebra of derivations of

C∞(M). In particular, Diff0(M) ≡ C∞(M). Any A ∈ Diffm(M) has the
following local description. Given a chart (U, x) of M with x = (x1, . . . , xn),
let ∂j = ∂

∂xj and Dj = 1
i ∂j . For any multi-index I = (i1, . . . , in) ∈ Nn

0 ,

let ∂I = ∂i1
1 · · · ∂in

n , DI = DI
x = Di1

1 · · ·Din
n and |I| = i1 + · · · + in. Then

A =
∑

|I|≤m aID
I on C∞

c (U) for some local coefficients aI ∈ C∞(U).

On the other hand, let P (T ∗M) ⊂ C∞(T ∗M) be the graded C∞(M)-
module and subalgebra of functions on T ∗M whose restriction to the fibers
are polynomials, with the grading defined by the degree of the polynomials.
In particular, P [0](T ∗M) ≡ C∞(M) and P [1](T ∗M) ≡ X(M). The princi-

pal symbol of any X ∈ X(M) ⊂ Diff1(M) is σ1(X) = iX ∈ P [1](T ∗M). The

2We use the notation N = Z+ and N0 = N ∪ {0}.
3For locally convex (topological vector) spaces X and Y , the notation L(X, Y ) is used for

the space of continuous linear operators X → Y with the topology of bounded convergence.
End(X) := L(X,X) is an associative algebra with the operation of composition.
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map σ1 can be extended to a homomorphism of C∞(M)-modules and algebras,
σ : Diff(M) → P (T ∗M), obtaining for every m the principal symbol surjection

(5) σm : Diffm(M) → P [m](T ∗M),

with kernel Diffm−1(M).
For vector bundles E and F overM , the above concepts can be extended by

taking the C∞(M)-tensor product with C∞(M ;F ⊗E∗), obtaining the filtered
C∞(M)-submodule

Diff(M ;E,F ) ⊂ L(C∞(M ;E), C∞(M ;F )),

the graded C∞(M)-submodule

P [m](T ∗M ;F ⊗ E∗) ⊂ C∞(T ∗M ;π∗(F ⊗ E∗)),

where π : T ∗M → M is the vector bundle projection, and the principal symbol
surjection

(6) σm : Diffm(M ;E,F ) → P [m](T ∗M ;F ⊗ E∗),

with kernel Diffm−1(M ;E,F ). Using local trivializations of E and F , any
A ∈ Diffm(M ;E,F ) has local expressions

A =
∑

|I|≤m

aID
I : C∞

c (U,Cl) → C∞
c (U,Cl′),

as above, where l = rankE and l′ = rankF , with local coefficients aI ∈
C∞(U ;Cl′ ⊗ Cl∗). If E = F , then we use the notation Diff(M ;E), which is
also a filtered algebra with the operation of composition. Recall that A ∈
Diffm(M ;E,F ) is called elliptic if σm(A)(p, ξ) ∈ Fp⊗E∗

p ≡ Hom(Ep, Fp) is an
isomorphism for all p ∈ M and 0 6= ξ ∈ T ∗

pM .
Using integration by parts, it follows that the class of differential operators

is closed by transposition. So any A ∈ Diff(M ;E,F ) defines continuous linear
maps (Section 2.2),

A : C−∞(M ;E) → C−∞(M ;F ),

A : C−∞
c (M ;E) → C−∞

c (M ;F ).

2.4. Sobolev spaces. The Hilbert space L2(M ; Ω1/2) is the completion
C∞

c (M ; Ω1/2) with the scalar product 〈u, v〉 =
´

M
uv̄. There is a continuous

inclusion L2(M ; Ω1/2) ⊂ C−∞(M ; Ω1/2).
Suppose first that M is compact. Then L2(M ; Ω1/2) is also a C∞(M)-

module. Thus the Sobolev space of order m ∈ N0,

(7) Hm(M ; Ω
1
2 ) = {u ∈ L2(M ; Ω

1
2 ) | Diffm(M ; Ω

1
2 )u ⊂ L2(M ; Ω

1
2 )},

is also a C∞(M)-module. In particular, H0(M ; Ω1/2) = L2(M ; Ω1/2). By the

elliptic estimate, an elliptic operator P ∈ Diff1(M ; Ω1/2) can be used to equip
Hm(M ; Ω1/2) with the Hilbert space structure defined by

(8) 〈u, v〉m = 〈(1 + P ∗P )mu, v〉.
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The equivalence class of the corresponding norm ‖ · ‖m is independent of the
choice of P . Thus Hm(M ; Ω1/2) is a Hilbertian space with no canonical choice
of a scalar product in general. Now, the Sobolev space of order −m is the
Hilbertian space

(9) H−m(M ; Ω
1
2 ) = Hm(M ; Ω

1
2 )′ ≡ Diffm(M ; Ω

1
2 )L2(M ; Ω

1
2 ).

For any vector bundle E, the C∞(M)-module H±m(M ;E) can be defined
as the C∞(M)-tensor product of H±m(M ; Ω1/2) with C∞(M ;E ⊗ Ω−1/2);
in particular, this defines L2(M ;E). A Hermitian structure ( · , · ) on E and
a non-vanishing smooth density ω on M can be used to define an obvious
scalar product 〈 · , · 〉 on L2(M ;E). Using, moreover, an elliptic operator

P ∈ Diff1(M ;E), we get a scalar product 〈 · , · 〉m on Hm(M ;E) like in (8),
with norm ‖ · ‖m. Indeed, this scalar product makes sense on C∞(M ;E) for
any order m ∈ R, where (1 + P ∗P )m is defined by the functional calculus
given by the spectral theorem. Then, taking the corresponding completion of
C∞(M ;E), we get the Sobolev spaceHm(M ;E) of orderm ∈ R. In particular,
H−m(M ;E) ≡ Hm(M ;E∗ ⊗ Ω)′.

When M is not compact, any choice of P , ( · , · ) and ω can be used to
equip C∞

c (M ;E) with a scalar product 〈 · , · 〉m as above, and the correspond-
ing Hilbert space completion can be denoted by Hm(M ;E); in particular, this
defines L2(M ;E) = H0(M ;E). But now the equivalence class of ‖ · ‖m (and
therefore Hm(M ;E)) depends on the choices. However, their compactly sup-
ported and their local versions, Hm

c (M ;E) and Hm
loc(M ;E), are independent

of the choices involved. In particular, we have L2
c(M ;E) and L2

loc(M ;E). The
formal adjoint of any differential operator is locally defined like in the compact
case.

In any case, the notation ‖ · ‖m,m′ (or ‖ · ‖m if m = m′) is used for the

induced norm of operators Hm(M ;E) → Hm′

(M ;E) (m,m′ ∈ R). For exam-
ple, when M is compact, any A ∈ Diffm(M ;E) defines a bounded operator
A : Hm+s(M ;E) → Hm(M ;E) for all s ∈ R. Taking s = 0, we can consider A
as a densely defined linear operator in L2(M ;E) with domain Hm(M ;E). Its
adjoint A∗ in L2(M ;E) is defined by the formal adjoint A∗ ∈ Diffm(M ;E),
which is locally determined using integration by parts. Recall that A is called
formally selfadjoint or symmetric if it is equal to its formal adjoint.

2.5. Differential complexes. A topological (cochain) complex (C, d) is a
cochain complex, where C is a graded topological vector space and d is con-
tinuous. Then the cohomology H(C, d) = ker d/ im d has an induced topology,
whose maximal Hausdorff quotient, H̄(C, d) := H(C, d)/0 ≡ ker d/im d, is
called the reduced cohomology. The elements in H(C, d) and H̄(C, d) defined

by some u ∈ kerd will be denoted by [u] and [u], respectively. The continu-
ous cochain maps between topological complexes induce continuous homomor-
phisms between the corresponding (reduced) cohomologies. Topological graded
differential algebras can be similarly defined by assuming that their product is
continuous.
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Recall that a differential complex of order m is a topological complex of the
form (C∞(M ;E), d), where E =

⊕
r E

r and d =
⊕

r dr, for a finite sequence
of differential operators of the same order m,

C∞(M ;E0)
d0−−−−→ C∞(M ;E1)

d1−−−−→ · · ·
dN−1

−−−−→ C∞(M ;EN ).

The compactly supported version (C∞
c (M ;E), d) may be also considered. Neg-

ative or decreasing degrees may be also considered without essential change.
Such a differential complex is called elliptic if the symbol sequence,

0 → E0
p

σm(d0)(p,ξ)
−−−−−−−−→ E1

p

σm(d1)(p,ξ)
−−−−−−−−→ · · ·

σm(dN−1)(p,ξ)
−−−−−−−−−−→ EN

p → 0,

is exact for all p ∈ M and 0 6= ξ ∈ T ∗
pM .

Suppose that every Er is equipped with a Hermitian structure, and M
with a distinguished non-vanishing smooth density. Then the formal adjoint
δ = d∗ also defines a differential complex, giving rise to symmetric operators
D = d+δ and ∆ = D2 = dδ+δd (a generalized Laplacian) in the Hilbert space
L2(M ;E). The differential complex d is elliptic if and only if the differential
complex δ is elliptic, and if and only if the differential operator D (or ∆) is
elliptic. If d is elliptic and M is closed, then D and ∆ have discrete spectra,
giving rise to a topological and orthogonal decomposition (a generalized Hodge
decomposition)

(10) C∞(M ;E) = ker∆⊕ im δ ⊕ im d,

which induces a topological isomorphism (a Hodge isomorphism)

(11) H(C∞(M ;E), d) ∼= ker∆.

Thus H(C∞(M ;E), d) is of finite dimension and Hausdorff.

2.6. Novikov differential complex. The most typical example of elliptic dif-
ferential complex is given by the de Rham derivative d on C∞(M ; Λ), defining
the de Rham cohomology H∗(M) = H∗(M ;C). Suppose that M is endowed
with a Riemannian metric g, which defines a Hermitian structure on TM .
Then we have the de Rham coderivative δ = d∗, and the symmetric operators
D = d+ δ and ∆ = D2 = dδ + δd (the Laplacian).

With more generality, take any closed θ ∈ C∞(M ; Λ1). For the sake of
simplicity, assume that θ is real. Let V ∈ X(M) be determined by g(V, · ) = θ,
let LV denote the Lie derivative with respect to V , and let θy = −(θ∧)∗ = −ιV .
Then we have the Novikov operators defined by θ, depending on z ∈ C,

dz = d+ z θ∧, δz = d∗z = δ − z̄ θy,

Dz = dz + δz = D + ℜz Rθ + iℑz Lθ,

∆z = D2
z = dzδz + δzdz = ∆+ ℜz (LV + L∗

V )− iℑz (LV − L∗
V ) + |z|2|θ|2,

where, for α ∈ C∞(M ; ΛrM),

Lθα = θ · α = θ ∧ α+ θyα, Rθα = (−1)rα · θ = θ ∧ α− θyα.

The subindex “M” may be added to this notation if needed. Here, the dot
denotes Clifford multiplication defined via the linear identity ΛM ≡ Cl(T ∗M).
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We may write θ · = Lθ. The differential operator LV + L∗
V is of order zero,

and LV − L∗
V is of order one. The differential complex (C∞(M ; Λ), dz) is el-

liptic; indeed, it has the same principal symbol as the de Rham differential
complex. Actually, ∆z is a generalized Laplacian [9, Definition 2.2], and there-
fore Dz is a generalized Dirac operator, and dz is a generalized Dirac complex.
The terms Novikov differential complex and Novikov cohomology are used for
(C∞(M ; Λ), dz) and its cohomology, H∗

z (M) = H∗
z (M ;C).

If θ is exact, say θ = dF for some R-valued F ∈ C∞(M), then the Novikov
operators are called Witten operators ; in particular, dz = e−zF d ezF and δz =
ez̄F δ e−z̄F . Thus the multiplication operator ezF on C∞(M ; Λ) induces an
isomorphism H∗

z (M) ∼= H∗(M) in this case.
In the general case, the above kind of argument shows that the isomorphism

class of H∗
z (M) depends only on [θ] ∈ H1(M). We can also take a regular

covering π : M̃ → M so that the lift θ̃ = π∗θ is exact, say θ̃ = dF for some R-
valued F ∈ C∞(M̃). Thus we get the Witten derivative d

M̃,z
= e−zF d

M̃
ezF

on C∞(M̃ ; Λ), which corresponds to the Novikov derivative dM,z on C∞(M ; Λ)
via π∗.

For any smooth map φ : M → M , take a lift φ̃ : M̃ → M̃ ; i.e., πφ̃ = φπ.
Then φ̃∗

z = e−zF φ̃∗ ezF = ez(φ̃
∗F−F ) φ̃∗ is an endomorphism of Witten differ-

ential complex (C∞(M̃ ; Λ), d
M̃,z

), which can be called a Witten perturbation
of φ̃∗. For all γ ∈ Γ, we have T ∗

γ (φ̃
∗F − F ) = φ̃∗F − F , obtaining T ∗

γ φ̃
∗
z =

φ̃∗
zT

∗
γ . Therefore φ̃∗

z induces an endomorphism φ∗
z of Witten differential com-

plex dM,z on C∞(M ; Λ), which can be considered as a Novikov perturbation
of φ∗. This φ∗

z depends on the choice of the lift φ̃ of φ. However, any flow
φ = {φt} has a unique lift to a flow φ̃ = {φ̃t} on M̃ , giving rise to a canonical
choice of φt∗

z , called the Novikov perturbation of φt∗.
If M is oriented, then

(12) θy = (−1)nr+n+1 ⋆ θ∧ ⋆, δ = (−1)nr+n+1 ⋆ d ⋆,

on C∞(M ; Λr), using the Hodge operator ⋆ on ΛM . So

(13) δz = (−1)nr+n+1 ⋆ d−z̄ ⋆ .

3. Preliminaries on bounded geometry

The concepts recalled here become relevant when M is not compact. Equip
M with a Riemannian metric g, and let ∇ denote its Levi-Civita connection,
R its curvature, and injM : M → R+ its injectivity radius function. Suppose
that M is connected, obtaining an induced distance function d. Actually, in
the non-connected case, we can take d(p, q) = ∞ if p and q belong to different
connected components. Observe that M is complete if inf injM > 0. For r > 0,
p ∈ M and S ⊂ M , let B(p, r) and B(p, r) denote the open and closed r-balls
centered at p, and let Pen(S, r) and Pen(S, r) denote the open and closed
r-penumbras of S (defined by the conditions d( · , S) < r and d( · , S) ≤ r,
respectively). We may add the subindex “M” to this notation if needed, or a
subindex “a” if we are referring to a family of Riemannian manifolds Ma.
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3.1. Manifolds and vector bundles of bounded geometry. It is said
that M is of bounded geometry if inf injM > 0 and sup|∇mR| < ∞ for every
m ∈ N0. This concept has the following chart description.

Theorem 3.2 (Eichhorn [23]; see also [42, 45, 46]). M is of bounded geometry
if and only if, for some open ball B ⊂ Rn centered at 0, there are normal
coordinates yp : Vp → B at every p ∈ M such that the corresponding Christoffel
symbols Γi

jk, as a family of functions on B parametrized by i, j, k and p, lie

in a bounded set of the Fréchet space C∞(B). This equivalence holds as well
replacing the Christoffel symbols with the metric coefficients gij.

Remark 3.3. Any non-connected Riemannian manifold of bounded geometry
can be considered as a family of Riemannian manifolds (the connected compo-
nents), which are of equi-bounded geometry in the sense that they satisfy the
condition of bounded geometry with the same bounds. Conversely, any dis-
joint union of Riemannian manifolds of equi-bounded geometry is of bounded
geometry.

Assume that M is of bounded geometry and consider the charts yp : Vp → B
given by Theorem 3.2. The radius of B will be denoted by r0.

Proposition 3.4 (Schick [45, Theorem A.22], [46, Proposition 3.3]). For every
multi-index I, the function |∂I(yqy

−1
p )| is bounded on yp(Vp ∩ Vq), uniformly

on p, q ∈ M .

Proposition 3.5 (Shubin [47, Appendices A1.2 and A1.3]; see also [46, Propo-
sition 3.2]). For any 0 < 2r ≤ r0, there are a subset {pk} ⊂ M and some
N ∈ N such that the balls B(pk, r) cover M , and every intersection of N + 1
sets B(pk, 2r) is empty. Moreover, there is a partition of unity {fk} subordi-
nated to the open covering {B(pk, 2r)}, which is bounded in the Fréchet space4

C∞
ub(M).

A vector bundle E of rank l over M is said to be of bounded geometry when
it is equipped with a family of local trivializations over the charts (Vp, yp), for
small enough r0, with corresponding defining cocycle apq : Vp∩Vq → GL(C, l) ⊂
Cl2 , such that, for every multi-index I, the function |∂I(apqy

−1
p )| is bounded

on yp(Vp ∩ Vq), uniformly on p, q ∈ M . When referring to local trivializations
of a vector bundle of bounded geometry, we always mean that they satisfy the
above condition. If the corresponding defining cocycle is valued in U(l), then
E is said to be of bounded geometry as a Hermitian vector bundle.

Example 3.6. (1) If E is associated to the principal O(n)-bundle P of
orthonormal frames ofM and any unitary representation of O(n), then
it is of bounded geometry in a canonical way. In particular, this applies
to TM and ΛM .

(2) The properties of 1 can be extended to the case where E is associated
to any reduction Q of P with structural group H ⊂ O(n), and any
unitary representation of H .

4The definition of C∞

ub
(M) is given in Section 3.7.
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(3) The condition of bounded geometry is preserved by operations of vec-
tor bundles induced by operations of vector spaces, like dual vector
bundles, direct sums, tensor products, exterior products, etc.

3.7. Uniform spaces. For every m ∈ N0, a function u ∈ Cm(M) is said to

be Cm-uniformly bounded if there is some Cm ≥ 0 with |∇m′

u| ≤ Cm on M
for all m′ ≤ m. These functions form the uniform Cm space5 Cm

ub(M), which
is a Banach space with the norm ‖ · ‖Cm

ub
defined by the best constant Cm.

As usual, the super-index “m” may be removed from this notation if m = 0,
and we have Cub(M) = C(M)∩L∞(M). Equivalently, we may take the norm
‖ · ‖′Cm

ub
defined by the best constant C′

m ≥ 0 such that |∂I(uy
−1
p )| ≤ C′

m

on B for all p ∈ M and |I| ≤ m; in fact, by Proposition 3.4, it is enough to
consider any subset of points p so that {Vp} covers M . The uniform C∞ space
is C∞

ub(M) =
⋂

m Cm
ub(M), with the inverse limit topology, called uniform C∞

topology. It consists of the functions u ∈ C∞(M) such that all functions uy−1
p

lie in a bounded set of C∞(B), which are said to be C∞-uniformly bounded .
Of course, if M is compact, then the Cm

ub topology is just the Cm topology,
and the notation ‖ · ‖Cm and ‖ · ‖′Cm is preferred. On the other hand, the
definition of uniform spaces with covariant derivatives can be also considered
for non-complete Riemannian manifolds.

For a Hermitian vector bundle E of bounded geometry over M , the uniform
Cm space Cm

ub(M ;E), of Cm-uniformly bounded sections, can be defined by
introducing ‖ · ‖′Cm

ub
like the case of functions, using local trivializations of E

to consider every uy−1
p in Cm(B,Cl) for all u ∈ Cm(M ;E). Then, as above,

we get the uniform C∞ space C∞
ub(M ;E) of C∞-uniformly bounded sections,

which are the sections u ∈ C∞(M ;E) such that all functions uy−1
p define a

bounded set of C∞(B;Cl), equipped with the uniform C∞ topology. In par-
ticular, Xub(M) := C∞

ub(M ;TM) is a C∞
ub(M)-submodule and Lie subalgebra

of X(M). Observe that

(14) Cm
ub(M) = {u ∈ Cm(M) | Xub(M)

(m)
· · · Xub(M)u ⊂ L∞(M)}.

Let Xcom(M) ⊂ X(M) be the subset of complete vector fields.

Proposition 3.8. We have Xub(M) ⊂ Xcom(M).

Proof. Let X ∈ Xub(M). The maximal domain of the local flow φ of X is an
open neighborhood Ω of M × {0} in M × R. By the Picard–Lindelöf theorem
(see, e.g., [29, Theorem II.1.1]) and the C∞-uniform boundedness of X , there
is some α > 0 such that {p} × (−α, α) ⊂ Ω for all p ∈ M . So Ω = M × R,
since φ is a local flow. �

3.9. Differential operators of bounded geometry. Like in Section 2.3,
by using Xub(M) and C∞

ub(M) instead of X(M) and C∞(M), we get the fil-
tered subalgebra and C∞

ub(M)-submodule Diffub(M) ⊂ Diff(M) of differential

5Here, the subindex “ub” is used instead of the common subindex “b” to avoid similarities
with the notation of b-calculus used in [7].
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operators of bounded geometry. Let Pub(T
∗M) ⊂ P (T ∗M) be the graded

subalgebra generated by P
[0]
ub (T

∗M) ≡ C∞
ub(M) and P

[1]
ub (T

∗M) ≡ Xub(M),
which is also a graded C∞

ub(M)-submodule. Then (5) restricts to a surjection

σm : Diffm
ub(M) → P

[m]
ub (T ∗M) whose kernel is Diffm−1

ub (M). These concepts
can be extended to vector bundles of bounded geometry E and F over M
by taking the C∞

ub(M)-tensor product with C∞
ub(M ;F ⊗ E∗), obtaining the

filtered C∞
ub(M)-modules Diffub(M ;E,F ) (or Diffub(M ;E) if E = F ) and

Pub(T
∗M ;F ⊗ E∗), and the surjective restriction

σm : Diffm
ub(M ;E,F ) → P

[m]
ub (T ∗M ;F ⊗ E∗)

of (6), whose kernel is Diffm−1
ub (M ;E,F ). Bounded geometry of differential op-

erators is preserved by compositions and by taking transposes, and by taking
formal adjoints in the case of Hermitian vector bundles of bounded geometry;
in particular, Diffub(M ;E) is a filtered subalgebra of Diff(M ;E). Using local
trivializations of E and F over the charts (Vp, yp), we get a local description of
any element of Diffm

ub(M ;E,F ) by requiring the local coefficients to define a
bounded subset of the Fréchet space C∞(B,Cl′ ⊗ Cl∗), where l and l′ are the
ranks of E and F . Using the norms ‖ · ‖′Cm

ub
, it easily follows that every A ∈

Diffm
ub(M ;E,F ) defines bounded operators A : Cm+s

ub (M ;E) → Cs
ub(M ;F )

(s ∈ N0), which induce a continuous operator A : C∞
ub(M ;E) → C∞

ub(M ;F ).

Example 3.10. (i) In Example 3.6 1, the Levi-Civita connection ∇ induces
a connection of bounded geometry on E, also denoted by∇. In particular,
∇ itself is of bounded geometry on TM , and induces a connection ∇ of
bounded geometry on ΛM . This holds as well for the connection on E
induced by any other Riemannian connection of bounded geometry on
TM .

(ii) In Example 3.6 2, if a Riemannian connection of bounded geometry on
TM is given by a connection on Q, then the induced connection on E is
of bounded geometry.

(iii) In Example 3.6 3, bounded geometry of connections is preserved by taking
the induced connections in the indicated operations with vector bundles
of bounded geometry.

(iv) The standard expression of the de Rham derivative d on local coordinates
shows that it is of bounded geometry, and therefore δ is also of bounded
geometry.

Let E and F be Hermitian vector bundles of bounded geometry. Then any
unitary connection ∇ of bounded geometry on E can be used to define an
equivalent norm ‖ · ‖Cm

ub
on every Banach space Cm

ub(M ;E), like in the case of
Cm

ub(M).
It is said that A ∈ Diffm(M ;E,F ) is uniformly elliptic if there is some

C ≥ 1 such that, for all p ∈ M and ξ ∈ T ∗
pM ,

C−1|ξ|m ≤ |σm(A)(p, ξ)| ≤ C|ξ|m.
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This condition is independent of the choice of the Hermitian metrics of bounded
geometry on E and F . Any A ∈ Diffm

ub(M ;E,F ) satisfies the second inequality.

3.11. Sobolev spaces of manifolds of bounded geometry. For any Her-
mitian vector bundle E of bounded geometry overM , any choice of a uniformly
elliptic P ∈ Diff1

ub(M ;E), besides the Riemannian density and the Hermit-
ian structure, can be used to define the Sobolev space Hm(M ;E) (m ∈ R)
(Section 2.4). Any choice of P defines the same Hilbertian space Hm(M ;E),
which is a C∞

ub(M)-module. Every A ∈ Diffm
ub(M ;E,F ) defines bounded op-

erators A : Hm+s(M ;E) → Hs(M ;F ) (s ∈ R), which induce continuous maps
A : H±∞(M ;E) → H±∞(M ;F ).

Proposition 3.12 (Roe [42, Proposition 2.8]). If m′ > m + n/2, then we

have Hm′

(M ;E) ⊂ Cm
ub(M ;E), continuously. Thus H∞(M ;E) ⊂ C∞

ub(M ;E),
continuously.

3.13. Schwartz kernels on manifolds of bounded geometry. Let E and
F be Hermitian vector bundles of bounded geometry over M .

Proposition 3.14 (Roe [42, Proposition 2.9]). The Schwartz kernel mapping,
A 7→ KA, defines a continuous linear map

L(H−∞(M ;E), H∞(M ;F )) → C∞
ub(M ;F ⊠ (E∗ ⊗ Ω)).

Remark 3.15. Let A ∈ L(H−∞(M ;E), H∞(M ;F )) and r > 0. Obviously,

suppKA ⊂ {(p, q) ∈ M2 | d(p, q) ≤ r}

if and only if, for all u ∈ H−∞(M ;E),

suppAu ⊂ Pen(suppu, r).

Recall that a function ψ ∈ C(R) is called rapidly decreasing if, for all k ∈ N0,
there is some Ck ≥ 0 so that |ψ(x)| ≤ Ck(1 + |x|)−k. They form a Fréchet
space denoted by R = R(R), with the best constants Ck as semi-norms. If P ∈
Diffm

ub(M ;E) is uniformly elliptic and formally selfadjoint, then it is selfadjoint
as an unbounded operator in the Hilbert space L2(M ;E), and the functional
calculus given by the spectral theorem defines a continuous linear map

R → L(H−∞(M ;E), H∞(M ;E)), ψ 7→ ψ(P ).

Thus the linear map

(15) R → C∞
ub(M ;E ⊠ (E∗ ⊗ Ω)), ψ 7→ Kψ(P ),

is continuous by Proposition 3.14, see [42, Proposition 2.10].
For any closed real θ ∈ C∞

ub(M ; Λ1) and z ∈ C, we have the corresponding

Novikov operators, Dz ∈ Diff1
ub(M ; Λ) and ∆z ∈ Diff2

ub(M ; Λ) (Section 2.6),
which are uniformly elliptic and formally selfadjoint; indeed, Dz is a generalized
Dirac operator. Thus, for the symmetric hyperbolic equation

∂tαt = iDzαt, α0 = α,
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on any open subset of M and with t in any interval containing 0, any solution
satisfies the finite propagation speed property, see the proof of [14, Proposi-
tion 1.1] (see also [13, Theorem 1.4] and the proof of [43, Proposition 7.20]),

(16) suppαt ⊂ Pen(suppα, |t|).

In particular, for the Novikov wave operator eitDz and any α ∈ C∞(M ; Λ),
αt = eitDzα satisfies (16). On the other hand, using the expression of the
inverse Fourier transform, we get

(17) ψ(Dz) = (2π)−1

ˆ ∞

−∞

eiξDz ψ̂(ξ) dξ.

According to Remark 3.15, it follows from (16) and (17) that, for all r > 0,

(18) supp ψ̂ ⊂ [−r, r] ⇒ suppKψ(Dz) ⊂ {(p, q) ∈ M2 | d(p, q) ≤ r}.

For ψ ∈ R, the operator ψ(Dz) is smoothing and we may use the notation
kz = kψ,z = Kψ(Dz). We may also use the notation ku,z = kψu,z for any
family of functions ψu ∈ R depending on a parameter u. For instance, for

ψu(x) = e−ux2

(u > 0), we get the Novikov heat kernel ku,z = Ke−u∆z .

3.16. Maps of bounded geometry. For a ∈ {1, 2}, let Ma be a Riemannian
manifold of bounded geometry, of dimension na. Consider a normal chart
ya,p : Va,p → Ba at every p ∈ Ma satisfying the statement of Theorem 3.2. Let
ra denote the radius of Ba. For 0 < r ≤ ra, let Ba,r ⊂ Rna denote the ball
centered at the origin with radius r. We have Ba(p, r) = y−1

a,p(Ba,r).
A smooth map φ : M1 → M2 is said to be of bounded geometry if, for some

0 < r < r1 and all p ∈ M1, we have φ(B1(p, r)) ⊂ V2,φ(p), and the compositions

y2,φ(p)φy
−1
1,p define a bounded family of the Fréchet space C∞(B1,r,R

n2). This
condition is preserved by composition of maps. The family of smooth maps
M1 → M2 of bounded geometry is denoted by C∞

ub(M1,M2).
For m ∈ N0 and φ ∈ C∞

ub(M1,M2), using ‖ · ‖′Cm
ub
, we easily get that φ∗

induces a bounded homomorphism

(19) φ∗ : Cm
ub(M2; Λ) → Cm

ub(M1; Λ),

obtaining a continuous homomorphism

(20) φ∗ : C∞
ub(M2; Λ) → C∞

ub(M1; Λ).

On the other hand, recall that φ is called uniformly metrically proper if, for
any s ≥ 0, there is some ts ≥ 0, so that, for all p, q ∈ M1,

d2(φ(p), φ(q)) ≤ s ⇒ d1(p, q) ≤ ts.

For 0 < 2r ≤ r1, r2, take {p1,k} ⊂ M1, {p2,l} ⊂ M2 and N ∈ N satisfying the
statement of Proposition 3.5. Then φ ∈ C∞(M1,M2) is uniformly metrically
proper if and only if there is some N ′ ∈ N such that every set φ−1(B2(p2,l, r))
meets at most N ′ sets B1(p1,k, r). Using ‖ · ‖′m on Hm(Ma; Λ) (Section 3.7),
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it follows that, if φ is of bounded geometry and uniformly metrically proper,
then φ∗ induces a bounded homomorphism

(21) φ∗ : Hm(M2; Λ) → Hm(M1; Λ)

for all m, obtaining induced continuous homomorphisms

(22) φ∗ : H±∞(M2; Λ) → H±∞(M1; Λ).

If φ ∈ Diffeo(M1,M2), and both φ and φ−1 are of bounded geometry, then φ
is uniformly metrically proper.

3.17. Smooth families of bounded geometry. Consider the notation of
Sections 3.1, 3.7 and 3.9. Let T be a manifold, and let pr1 : M × T → M
denote the first factor projection. A section u ∈ C∞(M × T ; pr∗1 E) is called a
smooth family of smooth sections of E (parametrized by T ), and we may use the
notation u = {ut | t ∈ T } ⊂ C∞(M ;E), where ut = u( · , t). Its T -support is

{t ∈ T | ut 6= 0}. If the T -support is compact, then u is said to be T -compactly
supported . It is said that u is T -locally C∞-uniformly bounded if any t ∈ T
is in some chart (O, z) of T such that the maps u(yp × z)−1 define a bounded
subset of the Fréchet space C∞(B × z(O),Cl), using local trivializations of E
over the normal charts (Vp, yp).

In particular, we can consider smooth families of C-valued functions, tangent
vector fields and sections of C∞(M ;F ⊗ E∗), which can be used to define a
smooth family of differential operators , A = {At | t ∈ T } ⊂ Diff(M ;E,F ),
like in Section 2.3. The T -support of A and the property of being T -compactly
supported is defined like in the case of sections. Adapting Section 3.9, if the
smooth families of functions, tangent vector fields and sections used to describe
A are T -locally C∞-uniformly bounded, then it is said that A is of T -local
bounded geometry.

On the other hand, with the notation of Section 3.16, a smooth map φ : M1×
T → M2 is called a smooth family of smooth maps M1 → M2 (parametrized
by T ). It may be denoted by φ = {φt | t ∈ T }, where φt = φ( · , t) : M1 → M2.
It is said that φ is of T -local bounded geometry if every t ∈ T is in some chart
(O, z) of T such that, for some 0 < r < r1, we have φ(B1(p, r) × O) ⊂ V2,φ(p)

for all p ∈ M1, and the compositions y2,φ(p)φ(y1,p × z)−1, for p ∈ M1, define a
bounded subset of the Fréchet space C∞(B1,r×z(O),Rn2). The composition of
smooth families of maps parametrized by T has the obvious sense and preserves
the T -local bounded geometry condition. In particular, for a flow φ = {φt |
t ∈ R} = {φt} on M , it makes sense to consider the R-local bounded geometry
condition. The following result complements Proposition 3.8.

Proposition 3.18. Let X ∈ Xcom(M) with flow φ. Then X ∈ Xub(M) if and
only if φ is of R-local bounded geometry.

Proof. The “if” part is obvious because Xp = φ∗(0p,
d
dt (0)) for all p ∈ M ,

where 0p denotes the zero element of TpM .
Let us prove the “only if” part. First, given 0 < r < r0 and t0 ∈ R, since

|X | is uniformly bounded on M , there is some ǫ > 0 such that φt(B(p, r)) ⊂
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B(φt0 (p), r0) = Vp for all p ∈ M if t ∈ O = (t0 − ǫ, t0 + ǫ); in particular, the
compositions yφt0(p)φ(yp × idO)

−1, for all p ∈ M , define a bounded subset of
C(Br ×O,Rn). Then the argument of the proof of [29, Theorem V.3.1] shows
that the maps yφt0(p)φ(yp × idO)

−1, for all p ∈ M , define a bounded subset

of C1(Br ×O,Rn), where Br ⊂ Rn is the ball centered at the origin of radius
r. Continuing by induction on m, it also follows, like in the proofs of [29,
Corollary V.3.2 and Theorem V.4.1], that the maps yφt0 (p)φ(yp × idO)

−1, for
all p ∈ M , define a bounded subset of Cm(Br ×O,Rn) for all m. �

4. Preliminaries on foliations

Standard references on foliations are [30, 31, 10, 26, 11, 12, 49].

4.1. Foliations. Recall that a (smooth) foliation F on manifold M , with codi-
mension codimF = n′ and dimension dimF = n′′, can be described by a
foliated atlas of M , which consists of charts (Uk, xk) of the smooth structure
of M , called foliated charts or foliated coordinates , with

(23) xk = (x′
k, x

′′
k) : Uk → xk(Uk) = Σk ×B′′

k ⊂ R
n′

× R
n′′

≡ R
n,

such that Σk is open in Rn′

and B′′
k is an open ball in Rn′′

, and the corre-
sponding changes of coordinates are locally of the form

(24) xlx
−1
k (u, v) = (hlk(u), glk(u, v)).

The notation

xk = (x1
k, . . . , x

n
k ) = (x′1

k , . . . , x
′n′

k , x′′n′+1
k , . . . , x′′n

k )

will be also used. In the case of codimension one, the notation (x, y) =
(x, y1, . . . , yn−1) will be often used instead of (x′, x′′). It may be also said
that (M,F) is a foliated manifold . The open sets Uk and the projections
x′
k : Uk → Σk are said to be distinguished , and the fibers of x′

k are called

plaques . The smooth submanifolds x′′−1
k (v) ⊂ Uk (v ∈ B′′

k ) are called local
transversals defined by (Uk, xk), which can be identified with Σk via x′

k. All
possible plaques form a base of a finer topology on M , becoming a smooth
manifold of dimension n′′ with the obviously induced charts whose connected
components are called leaves . The leaf through any point p may be denoted
by Lp. Foliations on manifolds with boundary are similarly defined, where the
boundary is tangent or transverse to the leaves. The F-saturation of a subset
S ⊂ M , denoted by F(S), is the union of leaves that meet S.

If a smooth map φ : M ′ → M is transverse to (the leaves of) F , then the
connected components of the inverse images φ−1(L) of the leaves L of F are
the leaves of a smooth foliation φ∗F on M ′ of codimension n′, called pullback
of F by φ. In particular, for the inclusion map of any open subset, ι : U →֒ M ,
the pullback ι∗F is the restriction F|U , which can be defined by the charts of
F with domain in U .

Given foliations Fa on manifolds Ma (a = 1, 2), the products of leaves of
F1 and F2 are the leaves of the product foliation F1 × F2, whose charts can
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be defined using products of charts of F1 and F2. Any connected manifold
M ′ can be considered as a foliation with one leaf. We can also consider the
foliation by points on M ′, denoted by M ′

pt. Thus we get the foliations F ×M ′

and F ×M ′
pt on M ×M ′.

4.2. Holonomy. After considering a possible refinement, we can assume that
the foliated atlas {Uk, xk} is regular in the following sense: it is locally finite;

for every k, there is a foliated chart (Ũk, x̃k) such that Uk ⊂ Ũk and x̃k extends
xk; and, if Ukl := Uk ∩Ul 6= ∅, then there is another foliated chart (U, x) such
that Uk∪Ul ⊂ U . In this case, (24) holds on the whole of Ukl, obtaining diffeo-
morphisms hkl : x

′
l(Ukl) → x′

k(Ukl) determined by the condition hklx
′
l = x′

k on
Ukl, called elementary holonomy transformations . The collection {Uk, x

′
k, hkl}

is called a defining cocycle. The elementary holonomy transformations hkl gen-
erate the so-called holonomy pseudogroup H on Σ :=

⊔
k Σk, which is unique

up to certain equivalence of pseudogroups [28]. The H-orbit of every p̄ ∈ Σ
is denoted by H(p̄). The maps x′

k define a homeomorphism between the leaf
space, M/F , and the orbit space, Σ/H.

The paths in the leaves are called leafwise paths when considered in M . Let
c : I := [0, 1] → M be a leafwise path with p := c(0) ∈ Uk and q := c(1) ∈ Ul,
and let p̄ = x′

k(p) ∈ Σk and q̄ = x′
k(q) ∈ Σl. There is a partition of I, 0 = t0 <

t1 < · · · < tm = 1, and a sequence of indices, k = k1, k2, . . . , km = l, such that
c([ti−1, ti]) ⊂ Uki

for i = 1, . . . ,m. The composition hc = hkmkm−1
· · ·hk2k1

is
a diffeomorphism with p̄ ∈ domhc ⊂ Σk and q̄ = hc(p̄) ∈ imhc ⊂ Σl. The
tangent map hc∗ : Tp̄Σk → Tq̄Σl is called infinitesimal holonomy of c. The
germ hc of hc at p̄, called germinal holonomy of c, depends only on F and the
end-point homotopy class of c in L := Lp.

4.3. Infinitesimal transformations and transverse vector fields. The
vectors tangent to the leaves form the tangent bundle TF ⊂ TM , obtaining
also the normal bundle NF = TM/TF , the cotangent bundle T ∗F = (TF)∗

and the conormal bundle N∗F = (NF)∗, the tangent/normal density bun-
dles , ΩaF = ΩaTF (a ∈ R) and ΩaNF (removing “a” from the notation
when it is 1), and the tangent/normal exterior bundles , ΛF =

∧
T ∗F and

ΛNF =
∧
N∗F . The complex versions of these vector bundles are taken, un-

less it is explicitly indicated that the real versions are considered. The terms
tangent/normal vector fields, densities and differential forms are used for their
smooth sections. Sometimes, the terms “leafwise” or “vertical” are used in-
stead of “tangent”. By composition with the canonical projection TM → NF ,
any X in TM or X(M) defines an element of NF or C∞(M ;NF) denoted by
X. For any smooth local transversal Σ of F through a point p ∈ M , there is
a canonical isomorphism TpΣ ∼= NpF .

A smooth vector bundle E over M , endowed with a flat TF -partial con-
nection, is said to be F-flat . For instance, NF is F -flat with the TF -partial
connection ∇F given by ∇F

V X = [V,X ] for V ∈ X(F) := C∞(M ;TF) and
X ∈ X(M). For every leafwise path c from p to q, its infinitesimal holonomy
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can be considered as a homomorphism hc∗ : NpF → NqF , which equals the
∇F -parallel transport along c.

X(F) is a Lie subalgebra and C∞(M)-submodule of X(M), whose normal-
izer is denoted by X(M,F), obtaining the quotient Lie algebra X(M,F) =
X(M,F)/X(F). The elements of X(M,F) (respectively, X(M,F)) are called
infinitesimal transformations (respectively, transverse vector fields) of (M,F).
The projection of everyX ∈ X(M,F) to X(M,F) is also denoted by X ; in fact,
X(M,F) can be identified with the linear subspace of C∞(M ;NF), consisting
of the ∇F -parallel normal vector fields (those that are invariant by infinitesi-
mal holonomy). Any X ∈ X(M) is in X(M,F) if and only if every restriction
X |Uk

can be projected by x′
k, defining an H-invariant vector field on Σ, also

denoted by X. This induces a canonical isomorphism of X(M,F) to the Lie
algebra X(Σ,H) of H-invariant tangent vector fields on Σ.

When M is not closed, we can consider the subsets of complete vector fields,
Xcom(F) ⊂ X(F) and Xcom(M,F) ⊂ X(M,F). Let Xcom(M,F) ⊂ X(M,F)
be the projection of Xcom(M,F).

4.4. Holonomy groupoid. On the space of leafwise paths in M , with the
compact-open topology, two leafwise paths are declared to be equivalent if
they have the same end points and the same germinal holonomy. This is an
equivalence relation, and the corresponding quotient space, G = Hol(M,F),
becomes a smooth manifold of dimension n+n′′ in the following way. An open
neighborhood U of a class [c] in G, with c(0) ∈ Uk and c(1) ∈ Ul, is defined
by the leafwise paths d such that d(0) ∈ Uk, d(1) ∈ Ul, x

′
kd(0) ∈ domhc, and

hd and hc have the same germ at x′
kd(0). Local coordinates on U are given

by [d] 7→ (xkd(0), x
′′
l d(1)). Moreover, G is a Lie groupoid, called the holonomy

groupoid , where the space of units G(0) ≡ M is defined by the constant paths,
the source and range projections s, r : G → M are given by the first and last
points of the paths, and the operation is induced by the opposite of the usual
path product6. Note that G is Hausdorff if and only if H is quasi-analytic
in the sense that, for any h ∈ H and every open O ⊂ Σ with O ⊂ domh,
if h|O = idO, then h is the identity on some neighborhood of O. Observe
also that s, r : G → M are smooth submersions, and (r, s) : G → M2 is a
smooth immersion. Let RF = {(p, q) ∈ M2 | Lp = Lq} ⊂ M2, which is
not a regular submanifold in general, and let ∆ ⊂ M2 be the diagonal. We
have (r, s)(G) = RF and (r, s)(G(0)) = ∆. For any leaf L and p ∈ L, we
have Hol(L, p) = s−1(p) ∩ r−1(p), the map r : s−1(p) → L is the covering

projection L̃hol → L, and s : r−1(p) → L corresponds to r : s−1(p) → L by the
inversion of G. Thus (r, s) : G → M2 is injective if and only if all leaves have
trivial holonomy groups, but, even in this case, it may not be a topological
embedding. The fibers of s and r define smooth foliations of codimension n
on G. We also have the smooth foliation s∗F = r∗F of codimension n′ with

6A product of leafwise paths, c2 · c1, is defined if c1(1) = c2(0), and it is equal to c1
followed by c2, reparametrized in the usual way.
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leaves s−1(L) = r−1(L) = (r, s)−1(L2) for leaves L of F , and every restriction
(r, s) : (r, s)−1(L2) → L2 is a smooth covering projection.

Let Fk = F|Uk
, Gk = Hol(Uk,Fk) and Rk = RFk

. Then
⋃

k Gk (respec-

tively,
⋃

k Rk) is an open neighborhood of G(0) in G (respectively, of ∆ in RF ).
Furthermore, by the regularity of {Uk, xk}, the map (r, s) :

⋃
k Gk → M2 is a

smooth embedding with image
⋃

k Rk; we will write
⋃

k Gk ≡
⋃

k Rk.

4.5. The convolution algebra on G and its global action. Consider the
notation of Section 4.4. For the sake of simplicity, assume that G is Hausdorff.
The extension of the following concepts to the case where G is not Hausdorff
can be made like in [15].

Given a vector bundle E over M , consider the vector bundle S = r∗E ⊗
s∗(E∗ ⊗ ΩF) over G. Let C∞

cs (G;S) ⊂ C∞(G;S) denote the subspace of
sections k ∈ C∞(G;S) such that supp k ∩ s−1(K) is compact for all compact
K ⊂ M ; in particular, C∞

cs (G;S) = C∞
c (G;S) if M is compact. Similarly,

define C∞
cr (G;S) by using r instead of s. Both C∞

cs (G;S) and C∞
cr (G;S) are

associative algebras with the convolution product defined by

(k1 ∗ k2)(γ) =

ˆ

δǫ=γ

k1(δ) k2(ǫ)

=

ˆ

s(ǫ)=s(γ)

k1(γǫ
−1) k2(ǫ) =

ˆ

r(δ)=r(γ)

k1(δ) k2(δ
−1γ),

and C∞
csr(G;S) := C∞

cs (G;S) ∩ C∞
cr (G;S) and C∞

c (G;S) are subalgebras.
There is a global action of C∞

cs (G;S) on C∞(M ;E) defined by

(k · u)(p) =

ˆ

r(γ)=p

k(γ)u(s(γ)).

In this way, C∞
cs (G;S) can be understood as an algebra of operators on

C∞(M ;E). Moreover, C∞
csr(G;S) preserves C∞

c (M ;E), obtaining an algebra
of operators on C∞

c (M ;E). It can be said that these operators are defined by
a leafwise version of the Schwartz kernel (cp. Section 2.2).

Let S′ be defined like S with E∗ ⊗ ΩF instead of E. Then the mapping
k 7→ kt, where kt(γ) = k(γ−1), defines the anti-homomorphismsC∞

cs/cr(G;S) →
C∞

cr/cs(G;S′) and C∞
csr(G;S) → C∞

csr(G;S′), obtaining a leafwise version of the
transposition of operators (cp. Section 2.2). Similarly, using E = Ω1/2F , or if
E has a Hermitian structure and we fix a non-vanishing leafwise density, we
get a leafwise version of the adjointness of operators.

4.6. Leafwise distance. Assume that M is a Riemannian manifold, and con-
sider the induced Riemannian metric on the leaves. The leafwise distance is
the map dF : M2 → [0,∞] given by the distance function of the leaves on RF ,
and with dF (M

2 \ RF ) = ∞. Note that dF ≥ dM . Given p ∈ M , S ⊂ M
and r > 0, the open and closed leafwise balls , BF(p, r) and BF (p, r), and the
open and closed leafwise penumbras , PenF (S, r) and PenF(S, r), are defined
with dF like in the case of Riemannian metrics (see Section 3).
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Equip G with the Riemannian structure so that the smooth immersion
(r, s) : G → M2 is isometric. Let dr : G → [0,∞] denote the leafwise distance
for the foliation on G defined by the fibers of r, and consider the correspond-
ing open and closed leafwise penumbras, Penr(G

(0), r) and Penr(G
(0), r). Note

that we get the same penumbras by using s instead of r; indeed, they are defined
by the conditions dholF < r and dholF ≤ r, respectively, where dholF : G → [0,∞)
is defined by dholF (γ) = infc length(c), with c running in the piecewise smooth
representatives of γ.

We have dholF ≡ dF on
⋃

k Gk ≡
⋃

k Rk. Using the convexity radius (see,
e.g., [39, Section 6.3.2]), it follows that, after refining {Uk, xk} if necessary, we
can assume dF is continuous on

⋃
k Rk.

From now on, suppose that the leaves are complete Riemannian manifolds.
Then the exponential maps of the leaves define a smooth map, expF : TF →
M , on the real tangent bundle of F .

Lemma 4.7. For all compact Q ⊂ M and r > 0, PenF(Q, r) is relatively
compact in M , and Penr(G

(0), r) ∩ s−1(Q) and Pens(G
(0), r) ∩ r−1(Q) are

relatively compact in G.

Proof. The set E = {v ∈ TF | ‖v‖ ≤ r} is a subbundle of TF with compact
typical fiber, B

Rn′′ (0, r). So its restriction EQ is compact, obtaining that

expF (EQ) = PenF (Q, r) is compact.
For every v ∈ TF , let cv : I → M denote the leafwise path defined by

cv(t) = expF (tv). A smooth map σ : TF → G is defined by σ(v) = [cv]. We
get that σ(EQ) = PenF(G

(0), r)∩s−1(Q) is compact, as well as Pens(G
(0), r)∩

r−1(Q) = (Penr(G
(0), r) ∩ s−1(Q))−1. �

With the notation of Section 4.5, let C∞
p (G;S) ⊂ C∞(G;S) denote the

subspace of sections supported in leafwise penumbras of G(0). By Lemma 4.7,
this is a subalgebra of C∞

csr(G;S), and the leafwise transposition restricts to an
anti-homomorphism C∞

p (G;S) → C∞
p (G;S′).

4.8. Foliated maps and foliated flows. A foliated map φ : (M1,F1) →
(M2,F2) is a map φ : M1 → M2 that maps leaves of F1 to leaves of F2.
In this case, assuming that φ is smooth, its tangent map defines morphisms
φ∗ : TF1 → TF2 and φ∗ : NF1 → NF2, where the second one is compati-
ble with the corresponding flat partial connections. We also get an induced
Lie groupoid homomorphism Hol(φ) : Hol(M1,F1) → Hol(M2,F2), defined by
Hol(φ)([c]) = [φc]. The set of smooth foliated maps (M1,F1) → (M2,F2) is
denoted by C∞(M1,F1;M2,F2). A smooth family φ = {φt | t ∈ T } of foli-
ated maps (M1,F1) → (M2,F2) can be considered as the smooth foliated map
φ : (M1 × T,F1 × Tpt) → (M2,F2).

For example, given another manifold M ′, if a smooth map ψ : M ′ → M is
transverse to F , then it is a foliated map (M ′, ψ∗F) → (M,F).

Let Diffeo(M,F) be the group of foliated diffeomorphisms (or transfor-
mations) of (M,F). A smooth flow φ = {φt} on M is called foliated if
φt ∈ Diffeo(M,F) for all t ∈ R. More generally, a local flow φ : Ω → M ,
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defined on some open neighborhood Ω of M × {0} in M ×R, is called foliated
if it is a foliated map (Ω, (F × Rpt)|Ω) → (M,F). Then X(M,F) consists of
the smooth vector fields whose local flow is foliated, and Xcom(M,F) consists
of the complete smooth vector fields whose flow is foliated.

Let X ∈ Xcom(M,F), with foliated flow φ = {φt}. With the notation of
Sections 4.2 and 4.3, let φ̄ be the local flow on Σ generated by X ∈ X(Σ,H).
Since X |Uk

corresponds to X |Σk
via x′

k : Uk → Σk, the local flow defined by
φ on every Uk also corresponds to the restriction of φ̄ to Σk. Hence φ̄ is
H-equivariant in an obvious sense.

4.9. Differential operators on foliated manifolds. Like in Section 2.3,
using X(F) instead of X(M), we get the filtered C∞(M)-submodule and sub-
algebra of leafwise differential operators , Diff(F) ⊂ Diff(M), and a leafwise
principal symbol surjection for every order m,

Fσm : Diffm(F) → P [m](T ∗F) → 0,

whose kernel is Diffm−1(F). Moreover, these concepts can be extended to
vector bundles E and F over M like in Section 2.3, obtaining the filtered
C∞(M)-submodule Diff(F ;E,F ) (or Diff(F ;E) if E = F ) of Diff(M ;E,F ),
and the leafwise principal symbol surjection

Fσm : Diffm(F ;E,F ) → P [m](T ∗F ;F ⊗ E∗),

whose kernel is Diffm−1(F ;E,F ). The diagram

(25)

Diffm(F ;E,F )
Fσm−−−−→ P [m](T ∗F ;F ⊗ E∗)

y
y

Diffm(M ;E,F )
σm−−−−→ P [m](T ∗M ;F ⊗ E∗)

is commutative, where the left-hand side vertical arrow denotes the inclu-
sion homomorphism, and the right-hand side vertical arrow is defined by
the restriction morphism T ∗M → T ∗F . The condition of being a leafwise
differential operator is preserved by compositions and by taking transposes,
and by taking formal adjoints in the case of Hermitian vector bundles; in
particular, Diff(F ;E) is a filtered subalgebra of Diff(M ;E). It is said that
A ∈ Diffm(F ;E,F ) is leafwisely elliptic if the leafwise symbol Fσm(A)(p, ξ) is
an isomorphism for all p ∈ M and 0 6= ξ ∈ T ∗

pF .
A smooth family of leafwise differential operators, A = {At | t ∈ T } with

At ∈ Diffm(F ;E,F ), can be canonically considered as a leafwise differential
operator A ∈ Diffm(F ×Tpt; pr

∗
1 E, pr∗1 F ), where pr1 : M ×T → M is the first

factor projection.
On the other hand, using the canonical injection N∗F ⊂ T ∗M , it is said

that A ∈ Diffm(M ;E,F ) is transversely elliptic if the symbol σm(A)(p, ξ) is
an isomorphism for all p ∈ M and 0 6= ξ ∈ N∗

pF .
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4.10. Riemannian foliations. The H-invariant structures on Σ are called
(invariant) transverse structures . For instance, we will use the concepts of
a transverse orientation, a transverse Riemannian metric, and a transverse
parallelism. The existence of these transverse structures defines the classes
of transversely orientable, (transversely) Riemannian, and transversely par-
allelizable (TP) foliations. If a transverse parallelism of F is a base of a Lie
subalgebra g ⊂ X(Σ,H), it gives rise to the concepts of transverse Lie structure
and (g-)Lie foliation. If G is the simply connected Lie group with Lie algebra g,
then F is a g-Lie foliation just when H is equivalent to some pseudogroup on
G generated by some left translations.

By using the canonical isomorphism X(M,F) ∼= X(Σ,H), the condition on
F to be TP means that there is a global frame of NF consisting of transverse
vector fieldsX1, . . . , Xn′ , also called a transverse parallelism; and the condition
on F to be a g-Lie foliation means that, moreover, X1, . . . , Xn′ form a base
of a Lie subalgebra of g ⊂ X(M,F). With this point of view, if, moreover,
X1, . . . , Xn′ ∈ Xcom(M,F), then the TP or Lie foliation F is called complete.

Similarly, a transverse Riemannian metric can be described as a Euclidean
structure on NF that is invariant by infinitesimal holonomy. In turn, this
is induced by a Riemannian metric on M such that every x′

k : Uk → Σk is a
Riemannian submersion, called bundle-like metric. Thus F is Riemannian if
and only if there is a bundle-like metric on M .

It is said that F is transitive at a point p ∈ M when the evaluation
map evp : X(M,F) → TpM is surjective, or, equivalently, the evaluation map

evp : X(M,F) ⊂ C∞(M ;NF) → NpF is surjective. The transitive point set
is open and saturated. The foliation F is called transitive if it is transitive at
every point. It is said that F is transversely complete (TC ) if evp(Xcom(M,F))
generates TpM for all p ∈ M . Since the evaluation map Xcom(F) → TpF is

surjective [37, Section 4.5], F is TC if and only if evp(Xcom(M,F)) generates
NpF for all p ∈ M .

All TP foliations are transitive, and all transitive foliations are Riemannian.
On the other hand, Molino’s theory [37] describes Riemannian foliations in
terms of TP foliations. A Riemannian foliation is called complete if, using
Molino’s theory, the corresponding TP foliation is TC. Furthermore, Molino’s
theory describes TC foliations in terms of complete Lie foliations with dense
leaves. In turn, complete Lie foliations have the following description due to
Fedida [24, 25] (see also [37, Theorem 4.1 and Lemma 4.5]). Assume that M is
connected and F is a complete g-Lie foliation. Let G be the simply connected
Lie group whose Lie algebra (of left-invariant vector fields) is (isomorphic to) g.

Then there is a regular covering space, π : M̃ → M , a fiber bundle D : M̃ → G

(the developing map) and a monomorphism h : Γ := Aut(π) ≡ π1L/π1L̃ → G

(the holonomy homomorphism) such that the leaves of F̃ := π∗F are the fibers
of D, and D is h-equivariant with respect to the left action of G on itself by
left translations. As a consequence, π restricts to diffeomorphisms between the

leaves of F̃ and F . The subgroup HolF = imh ⊂ G, isomorphic to Γ, is called
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the global holonomy group. The F̃ -leaf through every p̃ ∈ M̃ will be denoted

by L̃p̃. Since D induces an identity M̃/F̃ ≡ G, the π-lift and D-projection of
vector fields define the identities7

(26) X(M,F) ≡ X(M̃, F̃ ,Γ) ≡ X(G,HolF).

These identities give a precise realization of g ⊂ X(M,F) as the Lie algebra of
left invariant vector fields on G. The holonomy pseudogroup of F is equivalent
to the pseudogroup on G generated by the action of HolF by left translations.
Thus the leaves are dense if and only if HolF is dense in G, which means
g = X(M,F).

4.11. Differential forms on foliated manifolds.

4.11.1. The leafwise complex. Let dF ∈ Diff1(F ; ΛF) be given by (dFξ)|L =
dL(ξ|L) for every leaf L and ξ ∈ C∞(M ; ΛF). Then (C∞(M ; ΛF), dF ) is a
differential complex, called the leafwise (de Rham) complex . This gives rise
to the (reduced) leafwise cohomology8 (with complex coefficients), H∗(F) =
H∗(F ;C) and H̄∗(F) = H̄∗(F ;C). Compactly supported versions may be also
considered when M is not compact.

Similarly, we can take coefficients in any complex F -flat vector bundle E
over M , obtaining the differential complex (C∞(M ; ΛF ⊗ E), dF ), with dF ∈
Diff1(F ; ΛF ⊗ E), and the corresponding (reduced) leafwise cohomology with
coefficients in E, H∗(F ;E) and H̄∗(F ;E). For example, we can consider the
vector bundle E defined by the GL(n′)-principal bundle of (real) normal frames
and any unitary representation of GL(n′), with the F -flat structure induced by
the F -flat structure of NF . A particular case is ΛNF , which gives rise to the
differential complex (C∞(M ; ΛF ⊗ ΛNF), dF) and its compactly supported
version. Note that

ΛF ≡ ΛF ⊗ Λ0NF ⊂ ΛF ⊗ ΛNF ,

inducing an injection of topological complexes and their (reduced) cohomolo-
gies, and the same holds for the compactly supported versions. In fact, these
are topological graded differential algebras with the exterior product, and the
above injections are compatible with the product structures.

For any φ ∈ C∞(M1,F1;M2,F2), the morphisms φ∗ : TF1 → TF2 and
φ∗ : NF1 → NF2 induce a morphism

φ∗ : φ∗(ΛF2 ⊗ ΛNF2) → ΛF1 ⊗ ΛNF1

over idM1
, which in turn induces a continuous homomorphism of graded dif-

ferential algebras,

(27) φ∗ : C∞(M2; ΛF2 ⊗ ΛNF2) → C∞(M1; ΛF1 ⊗ ΛNF1),

7Given an action, the group is added to the notation of a space of vector fields to indicate
the subspace of invariant elements.

8The term tangential cohomology is also used.
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and continuous homomorphisms between the corresponding (reduced) leafwise
cohomologies. By restriction, we get the homomorphism

φ∗ : C∞(M2; ΛF2) → C∞(M1; ΛF1),

with analogous properties.

4.11.2. Bigrading. Consider any splitting

(28) TM = TF ⊕H ∼= TF ⊕NF ,

given by a transverse distribution H ⊂ TM , and let ΛH =
∧
H∗. It induces a

decomposition

(29) ΛM ≡ ΛF ⊗ ΛH ∼= ΛF ⊗ ΛNF ,

giving rise to the bigrading of ΛM defined by9

Λu,vM ≡ ΛvF ⊗ ΛuH ∼= ΛvF ⊗ ΛuNF ,

and the corresponding bigrading of C∞(M ; Λ) with terms

C∞(M ; Λu,v) ≡ C∞(M ; ΛvF ⊗ ΛuNF).

This bigrading depends on H, but the spaces Λ≥u,·M and C∞(M ; Λ≥u,·) are
independent of H (see, e.g., [1]). In particular, every Λ≥u,·M/Λ≥u+1,·M is
independent of H; indeed, there are canonical identities

(30) Λ≥u,·M/Λ≥u+1,·M ≡ Λu,·M ≡ ΛF ⊗ ΛuNF ,

where only the middle bundle depends on H. The de Rham derivative on
C∞(M ; Λ) decomposes into bi-homogeneous components,

(31) d = d0,1 + d1,0 + d2,−1,

where the double subindex denotes the corresponding bi-degree. We have

d0,1 ∈ Diff1(F ; ΛM), d1,0 ∈ Diff1(M ; Λ), d2,−1 ∈ Diff0(M ; Λ).

Moreover,10

(32) d0,1 ≡ dF ,

via (29), and d2,−1 = 0 if and only if H is completely integrable. Note that

(33) d0,1 = d : C∞(M ; Λn′,·) → C∞(M ; Λn′,·).

By comparing bi-degrees in d2 = 0, we get (see, e.g., [1])

(34) d20,1 = d0,1d1,0 + d1,0d0,1 = 0.

For any φ ∈ C∞(M1,F1;M2,F2), we have restrictions

φ∗ : C∞(M2; Λ
≥u,·) → C∞(M1; Λ

≥u,·)

9We have reversed the order given in [2] for the factors of the tensor product in the
definition of Λu,vM because the signs in some expressions become simpler. But we keep the
same order for the “transverse degree” u and the “tangential degree” v in Λu,vM because this
is the usual order in the Leray spectral sequence of fiber bundles, generalized to foliations.

10The sign of [2, Lemma 3.4] is omitted here by our change in the definition of Λu,vM .
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of φ∗ : C∞(M2; Λ) → C∞(M1; Λ), which induce (27) using (30). Like in (31)
and (32),

(35) φ∗ = φ∗
0,0 + φ∗

1,−1 + · · · : C∞(M2; Λ) → C∞(M1; Λ)

and

(36) φ∗
0,0 ≡ φ∗,

via (29), where the right-hand side is (27).
For any X ∈ X(M), let ιX denote the corresponding inner product, and

let V : TM → TF and H : TM → H denote the projections defined by (28).
By comparing bi-degrees in Cartan’s formula, LX = dιX + ιXd, we get a
decomposition into bi-homogeneous components,

LX = LX,−1,1 + LX,0,0 + LX,1,−1 + LX,2,−2;

for instance,

(37) LX,0,0 = d0,1ιVX + ιVXd0,1 + d1,0ιHX + ιHXd1,0.

It is easy to check that LX,−1,1, LX,1,−1 and LX,2,−2 are of order zero, and

(38) LX,0,0(α ∧ β) = LX,0,0α ∧ β + α ∧ LX,0,0β.

Moreover, LX,0,0 = X and LX,−1,1 = LX,1,−1 = LX,2,−2 = 0 on C∞(M).
Assume that X ∈ X(M,F) from now on. Then LX,−1,1 = 0 by (35), and

therefore

(39) LX,0,0d0,1 = d0,1LX,0,0,

by comparing bi-degrees in the formula LXd = dLX . Let ΘX be the operator
on C∞(M ; ΛF ⊗ΛNF) that corresponds to LX,0,0 via (29). By (38) and (39),

ΘX(ξ ∧ ζ) = ΘXξ ∧ ζ + ξ ∧ΘXζ, ΘXdF = dFΘX .

Let (U, x) be a foliated chart of F , with x = (x′, x′′), like in (23). To em-
phasize the difference between the coordinates x′ and x′′, we use the following
notation on U or x(U). Let x′i = xi and ∂′

i = ∂i for i ≤ n′, and x′′i = xi

and ∂′′
i = ∂i for i > n′. Thus, when using x′i or ∂′

i, it will be understood that
i runs in {1, . . . , n′}, and, when using x′′i or ∂′′

i , it will be understood that i
runs in {n′ + 1, . . . , n}. For multi-indices of the form I = (i1, . . . , in) ∈ Nn

0 ,
write ∂I = ∂′

I∂
′′
I , where ∂′

I = ∂i1
1 · · ·∂

in′

n′ and ∂′′
I = ∂

in′+1

n′+1 · · · ∂in
n . For multi-

indices of the form J = {j1, . . . , jr} with 1 ≤ j1 < · · · < jr ≤ n, let
dxJ = dxj1 ∧· · ·∧dxjr be denoted by dx′J or dx′′J if J only contains indices in
{1, . . . , n′} or {n′ + 1, . . . , n}, respectively. Using functions fI , fIJ ∈ C∞(U),
dF can be locally described by

(40) dF (fI dx
′′I) = ∂′′

j fI dx
′′j ∧ dx′′I ,

and (32) means that

(41) d0,1(fIJ dx′′I ∧ dx′J ) = dF (fIJ dx′′I) ∧ dx′J .
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4.11.3. Compatibility of orientations. A transverse orientation of F can be de-
scribed as a (necessarily∇F -invariant) orientation ofNF . It is determined by a

non-vanishing real form ω ∈ C∞(M ; Λn′

NF); i.e., some real ω ∈ C∞(M ; Λn′

)
with

TF = {Y ∈ TM | ιY ω = 0}.

On the other hand, an orientation of TF is called an orientation of F , which
can be described by a non-vanishing form χ ∈ C∞(M ; Λn′′

F) ≡ C∞(M ; Λ0,n′′

).
When F is equipped with a transverse orientation (respectively, an orienta-
tion), it is said to be transversely oriented (respectively, oriented). Given
transverse and tangential orientations of F described by forms ω and χ as
above, we get an induced orientation of M defined by the non-vanishing form
χ ∧ ω ∈ C∞(M ; Λn′,n′′

) = C∞(M ; Λn).
Suppose that, moreover, M is a Riemannian manifold, and take H = TF⊥.

Then, using (29), the induced Hodge star operators, ⋆ on ΛM , ⋆F on ΛF and
⋆⊥ on ΛH satisfy11 [8, Lemma 4.8], [2, Lemma 3.2],

(42) ⋆ ≡ (−1)u(n
′′−v)⋆F ⊗ ⋆⊥ : Λu,vM → Λn′−u,n′′−vM.

If we take ω = ⋆⊥1 ∈ C∞(M ; Λn′

H) ≡ C∞(M ; Λn′,0) and χ = ⋆F1 ∈

C∞(M ; Λn′′

F) ≡ C∞(M ; Λ0,n′′

), then χ ∧ ω = ⋆1 ∈ C∞(M ; Λn).

4.11.4. Bihomogeneous components of the coderivative. Let g be a Riemannian
metric onM . On the one hand, g induces a Hermitian structure on ΛF⊗ΛNF ,
and we can consider δF = d∗F on C∞(M ; ΛF ⊗ΛNF). On the other hand, by
taking formal adjoints in (31) with H = TF⊥, we get the decomposition into
bi-homogeneous components,

(43) δ = δ0,−1 + δ−1,0 + δ−2,1,

where δ−i,−j = d∗i,j . From (34), it follows that

(44) δ20,−1 = δ0,−1δ−1,0 + δ−1,0δ0,−1 = 0.

Lemma 4.12. The metric g is bundle-like if and only if δ0,−1 ≡ δF via (29).

Proof. By working locally, we can assume that F is transversely oriented and
oriented, and consider the induced orientation ofM according to Section 4.11.3.
By (41) and (42), and since ⋆⊥ determines g|H, we get that g is bundle like
if and only if d0,1 commutes with 1 ⊗ ⋆⊥, which is equivalent to δ0,−1 ≡ δF
by (12). �

With the notation of (41), the equality δ0,−1 ≡ δF means that

(45) δ0,−1(fIJ dx′′I ∧ dx′J ) = δF (fIJ dx′′I) ∧ dx′J .

11The sign of this expression is different in [2, Lemma 3.2] by the different choice of
induced orientation of M , given by ω ∧ χ in that paper.
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5. Riemannian foliations of bounded geometry

With the notation of Section 4, suppose that F is Riemannian. Let g be a
bundle-like metric on M , ∇ its Levi-Civita connection and R its curvature.

The vector subbundle TF⊥ ⊂ TM is called horizontal , giving rise to the
concepts of horizontal vectors, vector fields and frames. Now, we take H =
TF⊥ in (28), and therefore V : TM → TF and H : TM → H are the orthogo-
nal projections. The O’Neill tensors [38] of the local Riemannian submersions
defining F can be combined to produce (1, 2)-tensors T and A on M , defined
by

TEF = H∇VE(VF ) +V∇VE(HF ),

AEF = H∇HE(VF ) +V∇HE(HF ),

for all E,F ∈ X(M). According to [38, Theorem 4], if M is connected, given g
and any p ∈ M , the foliation F is determined by T, A and TpF .

A Riemannian connection ∇̊ on M , called adapted , is defined by [8]

∇̊EF = V∇E(VF ) +H∇E(HF ),

for all E,F ∈ X(M). For V,W ∈ X(F) and X ∈ C∞(M ;H), we have

(46) ∇V − ∇̊V = TV , ∇X − ∇̊X = AX ,

and (see [5, Eqs. (3.8)–(3.10)])

∇F
V W = ∇̊V W,(47)

∇F
V X = ∇̊V X − AXV ,

V([X,V ]) = ∇̊XV − TV X.(48)

By (47), the ∇̊-geodesics that are tangent to the leaves at some point remain
tangent to the leaves at every point, and they are the geodesics of the leaves.
So the leaves are ∇̊-totally geodesic, but not necessarily ∇-totally geodesic.
By the second equality of (46) and [38, Lemma 2], ∇̊ and ∇ have the same
geodesics orthogonal to the leaves.

Given any p ∈ M , let x′ : U → Σ be a distinguished submersion so that
p ∈ U . Consider the Riemannian metric on Σ such that x′ is a Riemannian
submersion, and let ∇̌ and ˇexp denote the corresponding Levi-Civita con-
nection and exponential map of Σ. From [38, Lemma 1 (3)], it follows that

∇̊XY ∈ X(U,F|U ) for all horizontal X,Y ∈ X(U,F|U ) and, moreover,

(49) ∇̊XY = ∇̌XY .

Let ˚exp denote the exponential map of the geodesic spray of ∇̊ (see, e.g.,
[40, pp. 96–99]). Observe that the exponential map of the leaves is a restriction
of ˚exp. The maps ˚exp and ˇexp restrict to diffeomorphisms of some open neigh-
borhoods, V of 0 in TpM and V̌ of 0 in Tx′(p)Σ, to some open neighborhoods,
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O of p in M and Ǒ of x′(p) in Σ. Moreover, we can suppose that O ⊂ U ,
x′
∗(V ) ⊂ V̌ and x′(O) ⊂ Ǒ. By (49),

(50) x′ ˚exp = ˇexpx′
∗

on V ∩ TpF
⊥. Let κp (or simply κ) be the smooth map of some neighborhood

W of 0 in TpM to M defined by

κp(X) = ˚expq(P̊HXVX),

where q = ˚expp(HX), and P̊HX : TpM → TqM denotes the ∇̊-parallel trans-
port along the ∇̊-geodesic t 7→ ˚expp(tHX), 0 ≤ t ≤ 1, which is also a ∇-
geodesic because it is orthogonal to the leaves. By choosing W small enough,
we have W ⊂ V and κ(W ) ⊂ O; thus x′

∗(W ) ⊂ V̌ and x′κ(W ) ⊂ Ǒ. For
X,Y ∈ W , we have X − Y ∈ TpF if and only if κ(X) and κ(Y ) belong to
the same plaque of U [5, Proposition 6.1]. We also have x′κ(X) = ˇexpx′

∗(X)
for all X ∈ W ∩ TpF

⊥ by (50). Furthermore, κ defines a diffeomorphism of
some neighborhood of 0 in TpM to some neighborhood of p in M . By choosing

horizontal and vertical orthonormal frames at p, we get identities TpF
⊥ ≡ Rn′

and TpF ≡ Rn′′

. Then, for some open balls centered at the origin, B′ in Rn′

and B′′ in Rn′′

, we can assume that κ is a diffeomorphism of B′ ×B′′ to some
open neighborhood of p. From now on, we use the notation U = κ(B′ × B′′)
and κ−1 = x = (x′, x′′) on U , like in (23). This foliated chart (U, x) is called
normal , as well as the foliated coordinates x. As usual, gij denotes the corre-
sponding coefficients of the bundle-like metric, and let (gij) = (gij)

−1. On U ,
we have12

V = gikg
kj ∂′′

j ⊗ dx′i + ∂′′
i ⊗ dx′′i,(51)

H = ∂′
i ⊗ dx′i − gikg

kj ∂′′
j ⊗ dx′i,(52)

where k runs in {n′ + 1, . . . , n}, see [5, Eq. (7.2)].
It will be said that F has positive injectivity bi-radius13 if there are normal

foliated coordinates xp : Up → B′ ×B′′ at every p ∈ M such that the balls B′

and B′′ are independent of p.

Definition 5.1 (Alvarez–Kordyukov–Leichtnam [5, Definition 8.1]). It is said
that F is of bounded geometry if it has positive injectivity bi-radius, and the
functions |∇mR|, |∇m

T| and |∇m
A| are uniformly bounded on M for every

m ∈ N0.

Another definition of bounded geometry for Riemannian foliations was given
by Sanguiao [44, Definition 1.7]. Definition 5.1 also has the following chart
characterization, which is at least as strong as Sanguiao’s definition [5, Re-
mark 8.5].

12We use the convention that repeated indices are summed.
13In [5, Section 8], the concept of transverse injectivity radii was introduced for a defining

cocycle, and it was wrongly stated that its positivity is independent of the defining cocycle.
Then some step in the proof of [5, Theorem 8.4] does not work. This problem is clearly
solved with the new concept of positive injectivity bi-radius.
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Theorem 5.2 (Álvarez–Kordyukov–Leichtnam [5, Theorem 8.4]). With the
above notation, F is of bounded geometry if and only if there is a normal
foliated chart xp : Up → B′×B′′ at every p ∈ M such that the balls B′ and B′′

are independent of p, and the corresponding coefficients gij and gij, as family
of smooth functions on B′ × B′′ parametrized by i, j and p, lie in a bounded
subset of the Fréchet space C∞(B′ ×B′′).

In this section, assume from now on that F is of bounded geometry. Then
M and the disjoint union of the leaves are of bounded geometry [5, Remark 8.2
and Proposition 8.6]. Consider the foliated charts xp : Up → B′ ×B′′ given by
Theorem 5.2. The radii of the balls B′ and B′′ will be denoted by r′0 and r′′0 . By
the usual expression of the Christoffel symbols Γk

ij of ∇ in terms of the metric
coefficients gij and gij , and by (51) and (52), it follows that the Christoffel

symbols Γ̊k
ij of ∇̊, as family of smooth functions on B′ ×B′′ parametrized by

i, j, k and p, also lie in a bounded subset of the Fréchet space C∞(B′ ×B′′).

Proposition 5.3 (Álvarez–Kordyukov–Leichtnam [5, Proposition 8.6]). For
some r > 0, we have B(p, r) ⊂ Up for all p ∈ M .

Proposition 5.4 (Álvarez–Kordyukov–Leichtnam [5, Proposition 8.7]). For
every multi-index I, the function |∂I(xqx

−1
p )| is bounded on xp(Up ∩ Uq), uni-

formly on p, q ∈ M .

For 0 < r′ ≤ r′0 and 0 < r′′ ≤ r′′0 , let B′
r′ and B′′

r′′ denote the balls in

Rn′

and Rn′′

centered at the origin with radii r′ and r′′, respectively, and set
Up,r′,r′′ = x−1

p (B′
r′ ×B′′

r′′).

Proposition 5.5 (Álvarez–Kordyukov–Leichtnam [5, Proposition 8.8]). Let
r′, r′′ > 0 with 2r′ ≤ r′0 and 2r′′ ≤ r′′0 . Then there is a collection of points pk
in M , and there is some N ∈ N such that the sets Upk,r′,r′′ cover M , and every
intersection of N + 1 sets Upk,2r′,2r′′ is empty. Moreover, there is a partition
of unity {fk} subordinated to the open covering {Upk,2r′,2r′′}, which is bounded
in the Fréchet space C∞

ub(M).

Let yp : Vp → B be normal coordinates satisfying the statement of Theo-
rem 3.2. The radius of B is denoted by r0. According to Proposition 5.3, we
can assume that Vp ⊂ Up for all p.

Proposition 5.6. The functions xpy
−1
p , for p ∈ M , define a bounded subset

of the Fréchet space C∞(B,Rn′

× Rn′′

).

Proof. By Theorem 3.2, the statement is equivalent to requiring that, for all
m ∈ N0, the functions |∇mxp| are bounded on Vp, uniformly on p ∈ M .

By (46), this in turn is equivalent to requiring that the functions |∇̊mxp| are
bounded on Vp, uniformly on p ∈ M . But this follows from Theorem 5.2,
since the functions xpx

−1
p = idB′×B′′ obviously define a bounded subset of the

Fréchet space C∞(B′ ×B′′,Rn′

× Rn′′

). �
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Take 0 < r′ < r′0 and 0 < r′′ < r′′0 such that r′+r′′ < r0. Then Up,r′,r′′ ⊂ Vp

for all p ∈ M by the triangle inequality. The proof of the following result is
similar to the proof of Proposition 5.6.

Proposition 5.7. The functions ypx
−1
p , for p ∈ M , define a bounded subset

of the Fréchet space C∞(B′
r′ ×B′′

r′′ ,R
n).

Let E be the Hermitian vector bundle of bounded geometry associated to
the principal O(n)-bundle of orthonormal frames on M and a unitary repre-
sentation of O(n) (Example 3.6 1). Since ∇ on TM is of bounded geometry,

it follows from (46) that ∇̊ is also of bounded geometry. Thus we get induced

connections ∇ and ∇̊ of bounded geometry on E (Example 3.10 i). By (46),

we also get that ∇̊ can be used instead of ∇ to define equivalent versions of
‖ · ‖Cm

ub
and 〈 · , · 〉m in the spaces Cm

ub(M ;E) and Hm(M ;E) (Sections 3.7
and 3.11). By Propositions 5.6 and 5.7, if B′ and B′′ are small enough, then
we can use the coordinates (Up, xp) instead of (Vp, yp) to define equivalent ver-
sions of ‖ · ‖′Cm

ub
and 〈 · , · 〉′m. Similarly, given another bundle F like E, we

can use the coordinates (Up, xp) instead of (Vp, yp) to describe Diffm
ub(M ;E,F )

(Section 3.9) by requiring that the local coefficients form a bounded subset of

the Fréchet space C∞(B′ × B′′;Cl′ ⊗ C
l∗), where l and l′ are the ranks of E

and F .
The conditions of being leafwise differential operators and having bounded

geometry are preserved by compositions, and by taking transposes and formal
adjoints. Moreover,

Diffub(F ;E,F ) = Diff(F ;E,F ) ∩Diffub(M ;E,F )

is a filtered C∞
ub(M)-submodule of Diff(F ;E,F ). The notation Diffub(F ;E)

is used if E = F ; this is a graded subalgebra of Diff(F ;E). The concepts of
uniform leafwise ellipticity for operators in Diff(F ;E,F ), and uniform trans-
verse ellipticity for operators in Diff(M ;E,F ), can be defined like uniform
ellipticity (Section 3.9). If P ∈ Diff1

ub(F ;E) is uniformly leafwise elliptic and

Q ∈ Diff1
ub(M ;E) is uniformly transversely elliptic, then Hm(M ;E) can be

described with the scalar product 〈u, v〉m = 〈(1+P ∗P +Q∗Q)mu, v〉 (m ∈ R).
The normal foliated coordinates (Up, xp) can be used in a standard way to

endow TF with the structure of a vector bundle of bounded geometry, and let
Xub(F) = C∞

ub(M ;TF), which equals Xub(M)∩X(F). On the other hand, let
Xub(M,F) = Xub(M) ∩ X(M,F).

6. Operators of bounded geometry on differential forms

The principal O(n)-bundle P of orthonormal frames of M has a reduction
Q with structural group O(n′) × O(n′′) ⊂ O(n), which consists of the frames
of the form (e′, e′′), where e′ and e′′ are orthonormal frames in H and TF ,
respectively. Then H and TF are associated to Q and the unitary repre-
sentations of O(n′)×O(n′′) on Cn′

and Cn′′

induced by the canonical unitary
representations of O(n′) and O(n′′). Thus H and TF are of bounded geometry
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(Example 3.6 2). Moreover, ∇̊ can be restricted to connections on H and TF ,
which are of bounded geometry because they are induced by the restriction to
Q of the connection on P defined by ∇̊ (Example 3.10 ii). Thus every Λu,vM

is of bounded geometry (Example 3.6 3), and the connection ∇̊ on Λu,vM is of
bounded geometry (Example 3.10 iii).

Consider the induced connections ∇ and ∇̊ of bounded geometry on ΛM .

By using ∇̊ instead of ∇ in the definitions of ‖ · ‖Cm
ub

and 〈 · , · 〉m, it follows
that the spaces Cm

ub(M ; Λ) and Hm(M ; Λ) inherit the bigrading of ΛM , and
therefore C∞

ub(M ; Λ) and H±∞(M ; Λ) have an induced bigrading: their terms
of bi-degree (u, v) are the uniform and Sobolev spaces for Λu,vM . In particular,
all of this applies to ΛF ≡ Λ0,·M .

Lemma 6.1. The canonical projection of ΛM to every Λu,vM is of bounded
geometry for all u and v.

Proof. This follows from (51), (52) and Theorem 5.2. �

Using the decompositions (31) and (43), let

D0 = d0,1 + δ0,−1, D⊥ = d1,0 + δ−1,0,

∆0 = D2
0 = d0,1δ0,−1 + δ0,−1d0,1.

Note that D0 ∈ Diff1(F ; ΛM), D⊥ ∈ Diff1(M ; Λ) and ∆0 ∈ Diff2(F ; ΛM).

Corollary 6.2. The differential operators di,j, δ−i,−j, D0, D⊥ and ∆0 are of
bounded geometry.

Proof. This follows from Lemma 6.1, since d is of bounded geometry, and this
property is preserved by taking formal adjoints and compositions. �

It is elementary that

Fσ(d0,1)(p, ξ) = iξ∧, σ(d−1,0)(p, ζ) = iζ∧,(53)

Fσ(δ0,−1)(p, ξ) = iξy, σ(δ0,−1)(p, ζ) = iζy,

for all p ∈ M , ξ ∈ T ∗
pF and ζ ∈ N∗

pF . So

Fσ(D0)(p, ξ) = i(ξ∧+ ξy), Fσ(∆0)(p, ξ) = |ξ|2,(54)

σ(D⊥)(p, ζ) = i(ζ∧+ ζy).

Thus we get the following.

Proposition 6.3. D0 and ∆0 are uniformly leafwise elliptic, and D⊥ is uni-
formly transversely elliptic.

Let us extend the arguments of [2, Section 3] to open manifolds using
bounded geometry. The expression (48) defines a differential operator

Θ: X(F) → C∞(M ;H∗ ⊗ TF), ΘXV = V([X,V ]),
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for X ∈ C∞(M ;H) and V ∈ X(F). It induces a differential operator

Θ: C∞(M ; ΛF) → C∞(M ;H∗ ⊗ ΛF),

(ΘXα)(V1, . . . , Vr) = Xα(V1, . . . , Vr)−

r∑

j=1

α(V1, . . . ,ΘXVj , . . . , Vr),

for X ∈ C∞(M ;H), α ∈ C∞(M ; ΛrF) and Vj ∈ X(F). If X ∈ X(M,F) ∩
C∞(M ;H), then this expression agrees with the operator ΘX of Section 4.11.
According to [2, Lemma 3.3], a zero order differential operator

Ξ: C∞(M ; ΛF) → C∞(M ;H∗ ⊗ ΛF)

is locally defined by

ΞX = (−1)(n
′′−v)v[ΘX , ⋆F ]⋆F

on C∞(M ; ΛvF) for any X ∈ C∞(M ;H), where ⋆F is the local leafwise star
operator determined by g and any local orientation of F . This Ξ can be
considered as a vector bundle morphism ΛF → H∗ ⊗ ΛF . By tensoring Ξ
with the identity morphism on ΛH, we get a vector bundle morphism ΛM →
H∗⊗ΛM according to (29), which is also denoted by Ξ. On any normal foliated
chart (U, x), let K be the endomorphism of ΛU given by

K = dx′i∧ΞH∂′

i
.

This local definition gives rise to a global endomorphism K of ΛM .

Proposition 6.4. The endomorphism K is of bounded geometry.

Proof. Take a normal foliated chart (U, x). By (52),

ΘH∂′

i
∂′′
b = V([H∂′

i, ∂
′′
b ]) = V([∂′

i − gikg
kj∂′′

j , ∂
′′
b ]) = ∂′′

b (gikg
kj)∂′′

j ,

where k runs in {n′ + 1, . . . , n}. Hence

(ΘH∂′

i
dx′′a)(∂′′

b ) = H∂′
i(dx

′′a(∂′′
b ))− dx′′a(ΘH∂′

i
∂′′
b )

= −∂′′
b (gikg

kj) dx′′a(∂′′
j ) = −∂′′

b (gikg
kα),

giving

ΘH∂′

i
dx′′a = −∂′′

b (gikg
ka) dx′′b.

It follows that ΘH∂′

i
dx′′I = fiIK dx′′K , where the functions fiIK are universal

polynomial expressions of the functions gab and gab, and their partial deriva-
tives. On the other hand, for any choice of an orientation of F on U , we have
⋆Fdx

′′I = hIK dx′′K , where the functions hIK are universal expressions of the
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functions gab and gab. So

ΞH∂′

i
dx′′I = (−1)(n

′′−v)v[ΘH∂′

i
, ⋆F ] ⋆F dx′′I

= ΘH∂′

i
dx′′I − (−1)(n

′′−v)v ⋆F ΘH∂′

i
⋆F dx′′I

= fiIK dx′′K − (−1)(n
′′−v)v ⋆F ΘH∂′

i
(hIL dx′′A)

= fiIK dx′′K − (−1)(n
′′−v)v ⋆F

(
(∂′

i − gikg
kj∂′′

j )(hIA) dx
′′A

+ hIAfiAB dx′′B
)

=
(
fiIK − (−1)(n

′′−v)v
(
(∂′

ihIA − gikg
kj∂′′

j hIA)hAK

+ hIAfiABhBK

))
dx′′K . �

Like in the case of compact manifolds [2, Proposition 3.1], using the local
expression δF = (−1)v ⋆F dF ⋆F on C∞(U ; ΛvF), and (34), (41), (44) and (45),
we get

(55) D⊥D0 +D0D⊥ = KD0 +D0K.

7. Leafwise Hodge decomposition

With the notation of Section 5, since M is complete, by (54) and the com-
mutativity of (25), given any α ∈ C∞

c (M ; Λ), the hyperbolic equation

(56) ∂tαt = iD0αt, α0 = α,

has a unique solution αt ∈ C∞
c (M ; Λ) depending smoothly on t ∈ R, see [14,

Theorem 1.3]. The solutions of (56) defined on any open subset of M and for t
in any interval containing zero satisfy (see [41, Proposition 1.2])

(57) suppαt ⊂ PenF(suppα, |t|).

This can be proved like (16), or it also follows from (16) by taking restrictions
to the leaves.

The operators D0 and ∆0, with domain C∞
c (M ; Λ), are essentially self-

adjoint in L2(M ; Λ) [14, Theorem 2.2], and their selfadjoint extensions are
also denoted by D0 and ∆0. Using the functional calculus of D0 given by the
spectral theorem, we get a unitary operator eitD0 and a bounded selfadjoint
operator e−t∆0 on L2(M ; Λ) with ‖e−t∆0‖ ≤ 1. The solution of (56) is given by
αt = eitD0α. Let Π0 (or e−∞∆0) denote the orthogonal projection of L2(M ; Λ)
to the kernel of ∆0 in L2(M ; Λ).

Proposition 7.1. For every m ∈ N0, there is some Cm ≥ 0 such that, for all
α ∈ C∞

c (M ; Λ) and t ∈ R,

‖eitD0α‖m ≤ eCm|t|‖α‖m.

Proof. We adapt arguments from [48, Section IV.2]. The case where M is
compact is stated in [41, Proposition 1.4] with more generality.

By Proposition 6.3, we can assume that, for all α ∈ C∞
c (M ; Λ),

‖α‖m = ‖α‖+ ‖Dm
0 α‖ + ‖Dm

⊥α‖.
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254 Jesús A. Álvarez López, Yuri A. Kordyukov, and Eric Leichtnam

Writing αt = eitD0α, we have

d

dt
‖Dm

0 αt‖
2 = 〈iDm+1

0 αt, D
m
0 αt〉+ 〈Dm

0 αt, iD
m+1
0 αt〉 = 0,

d

dt
‖Dm

⊥αt‖
2 = 〈iDm

⊥D0αt, D
m
⊥αt〉+ 〈Dm

⊥αt, iD
m
⊥D0αt〉

= i〈[∆m
⊥ , D0]αt, αt〉.

But, by (55),

[∆m
⊥ , D0] =

m−1∑

j=0

∆m−1−j
⊥ [D⊥, D⊥D0 +D0D⊥]∆

j
⊥

=

m−1∑

j=0

∆m−1−j
⊥ [D⊥,KD0 +D0K]∆j

⊥.

This expression can be written as a sum of 4m terms,
∑

l PlQl, where, up to
sign, Pl and Ql are operators of the one of the following forms: Da

⊥KD0D
b
⊥,

Da
⊥D0KDb

⊥ or Dm
⊥ , for a, b ∈ N0 with a + b + 1 = m. In particular, Pl, Ql ∈

Diffm
ub(M ; Λ) by Corollary 6.2 and Lemma 6.4. Hence there is some Cm > 0,

independent of α, such that

d

dt
‖Dm

⊥αt‖
2 ≤

∑

l

|〈Qlαt, P
∗
l α〉| ≤

∑

l

‖Qlαt‖ · ‖P
∗
l α‖ ≤ Cm‖αt‖

2
m.

Therefore
d

dt
‖αt‖

2
m ≤ Cm‖αt‖

2
m,

and the result follows by using Gronwall’s inequality. �

Recall also that the Schwartz space S = S(R) is the Fréchet space of func-
tions ψ ∈ C∞(R) such that ψ(m) ∈ R for all m ∈ N0, with the semi-norms
defined by applying the semi-norms of R to derivatives of arbitrary order. Let
A denote the Fréchet algebra and C[z]-module of functions ψ : R → C that can
be extended to entire functions on C such that, for every compact K ⊂ R, the
set {x 7→ ψ(x+ iy) | y ∈ K} is bounded in S, see [41, Section 4]. It contains all
functions with compactly supported smooth Fourier transform, as well as the

Gaussian x 7→ e−x2

. Furthermore, if ψ ∈ A and u > 0, then ψu ∈ A, where
ψu(x) = ψ(ux). By the Paley–Wiener theorem, for every ψ ∈ A and c > 0,
there is some Ac > 0 such that, for all ξ ∈ R,

(58)
∣∣ψ̂(ξ)

∣∣ ≤ Ace
−c|ξ|.

The semi-norms on A, ‖ · ‖A,C,r (C > 0 and r ∈ N0), can be defined by

‖ψ‖A,C,r = max
j+k≤r

ˆ ∞

∞

|ξj∂k
ξ ψ̂(ξ)| e

C|ξ| dξ.

Proposition 7.2. The functional calculus map, ψ 7→ ψ(D0), restricts to a
continuous homomorphism A → End(H∞(M ; Λ)) of C[z]-modules and alge-
bras.
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Proof. This follows like in the case where M is compact [41, Proposition 4.1].
Precisely, for every ψ ∈ A, it follows from the inverse Fourier transform that

(59) ψ(D0) =
1

2π

ˆ ∞

−∞

ψ̂(ξ)eiξD0 dξ.

So, by Proposition 7.1 and (58), ψ(D0) defines an endomorphism of every
Hm(M ; Λ) with

(60) ‖ψ(D0)‖m ≤
1

2π

ˆ ∞

−∞

|ψ̂(ξ)| eCm|ξ| dξ ≤
Ak

2π

ˆ ∞

−∞

e(Cm−k)|ξ| dξ,

which is finite for k > Cm. �

According to Proposition 7.2, the operator e−t∆0 (t > 0) restricts to a
continuous endomorphism of H∞(M ; Λ). As pointed out in [44], by using (55),
Corollary 6.2, and Propositions 6.3, 6.4 and 7.2, the arguments of the proof
of [2, Theorem A] can be adapted to show the following result, where ∆0 is
considered on H∞(M ; Λ).

Theorem 7.3 (Sanguiao [44]). There is a topological direct sum decomposition,

(61) H∞(M ; Λ) = ker∆0 ⊕ im d0,1 ⊕ im δ0,−1.

Moreover, (t, α) 7→ e−t∆0α defines a continuous map

[0,∞]×H∞(M ; Λ) → H∞(M ; Λ).

By Corollary 6.2, (H∞(M ; Λ), d0,1) is a topological complex. The terms of
the direct sum decomposition (61) are orthogonal in L2(M ; Λ). Thus Π0 has
a restriction H∞(M ; Λ) → ker∆0, which induces the isomorphism stated in
the following corollary. Its inverse is induced by the inclusion map ker∆0 →֒
H∞(M ; Λ).

Corollary 7.4 (Sanguiao [44]). As topological vector spaces,

H̄∗(H∞(M ; Λ), d0,1) ∼= ker∆0.

By (29) and (32), we can consider (H∞(M ; ΛF), dF) as a topological sub-
complex of (H∞(M ; Λ), d0,1), and the notation H∗H∞(F) and H̄∗H∞(F) is
used for its (reduced) cohomology. By Lemma 4.12, δF on H∞(M ; ΛF) is also
given by δ0,−1. Thus we get the operators DF = dF + δF and ∆F = D2

F =
δFdF + dFδF on H∞(M ; ΛF), which are essentially selfadjoint in L2(M ; ΛF).
Then Propositions 7.1 and 7.2, Theorem 7.3 and Corollary 7.4 have obvious
versions for dF , δF , DF and ∆F ; in particular, we get the following.

Theorem 7.5 (Sanguiao [44]). Let F be a Riemannian foliation of bounded
geometry on a Riemannian manifold M with a bundle-like metric. Then there
is a topological direct sum decomposition,

(62) H∞(M ; ΛF) = ker∆F ⊕ im dF ⊕ im δF .

Moreover, (t, α) 7→ e−t∆Fα defines a continuous map

[0,∞]×H∞(M ; ΛF) → H∞(M ; ΛF).
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Corollary 7.6 (Sanguiao [44]). We have H̄∗H∞(F) ∼= ker∆F , as topological
vector spaces.

Theorem 7.3 and Corollary 7.4 can be considered as versions of Theorem 7.5
and Corollary 7.6 with coefficients in ΛNF . We could also take leafwise differ-
ential forms with coefficients in other Hermitian vector bundles associated to
NF , like the bundles of transverse densities or transverse symmetric tensors14.

Compare Theorem 7.3 and Corollary 7.6 with (10) and (11) (the case of an
elliptic complex on a closed manifold).

8. Foliated maps of bounded geometry

For a = 1, 2, let Fa be a Riemannian foliation of bounded geometry on
a manifold Ma with a bundle-like metric. Set n′

a = codimFa and n′′
a =

dimFa. Consider a normal foliated chart xa,p : Ua,p → B′
a × B′′

a at every
p ∈ Ma satisfying the conditions of Theorem 5.2. Let r′a and r′′a denote the
radii of B′

a and B′′
a , respectively. For 0 < r′ < r′a and 0 < r′′ < r′′a , let

Ua,p,r′,r′′ = x−1
a,p(B

′
a,r′ × B′′

a,r′′), where B′
a,r′ ⊂ Rn′

a and B′′
a,r′′ ⊂ Rn′′

a de-

note the balls centered at the origin with respective radii r′ and r′′. Like in
the cases of Cm

ub(M ;E), Hm(M ;E) and Diffm
ub(M ;E,F ) (Section 5), in the

definition of bounded geometry for maps M1 → M2 (Section 3.16), we can re-
place the charts (V1,p, y1,p) and (V2,φ(p), y2,φ(p)) with the charts (U1,p, x1,p) and
(U2,φ(p), x2,φ(p)), and we can replace the sets B1(p, r) with the sets U1,p,r′,r′′ .
Let

C∞
ub(M1,F1;M2,F2) = C∞(M1,F1;M2,F2) ∩C∞

ub(M1,M2).

Form ∈ N0 and φ ∈ C∞
ub(M1,F1;M2,F2), using the version of ‖·‖′Cm

ub
defined

with the charts (Up, xp), it follows that φ
∗ induces a bounded homomorphism

φ∗ : Cm
ub(M2; ΛF2) → Cm

ub(M1; ΛF1),

obtaining a continuous homomorphism

φ∗ : C∞
ub(M2; ΛF2) → C∞

ub(M1; ΛF1).

These homomorphisms are induced by (19) and (20) via (29). Similarly, if φ is
also uniformly metrically proper, then φ∗ induces a bounded homomorphism

φ∗ : Hm(M2; ΛF2) → Hm(M1; ΛF1)

for all m, and therefore it induces a continuous homomorphism

φ∗ : H±∞(M2; ΛF2) → H±∞(M1; ΛF1).

By (36), these homomorphisms are induced by (21) and (22) via (29).
Now, let φ = {φt} be a foliated flow on (M,F) of R-local bounded geom-

etry, and let Z ∈ Xub(M,F) be its infinitesimal generator (Proposition 3.18).

14However, this is not true for any Hermitian vector bundle with a flat Riemannian F-
partial connection, contrary to what was wrongly asserted in [2, Corollary C] when M is
compact. A counterexample was provided to the first two authors by S. Goette.
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Every φt is uniformly metrically proper because φ±t is of bounded geometry
(Section 3.16). Thus φt∗ induces continuous homomorphisms,

C∞
ub(M ; ΛF) → C∞

ub(M ; ΛF), H±∞(M ; ΛF) → H±∞(M ; ΛF).

Proposition 8.1. We have ΘZ ∈ Diff1
ub(M ; ΛF).

Proof. Since d ∈ Diff1
ub(M ; ΛF) and Z ∈ Xub(M,F), we obtain that LZ =

dιZ + ιZd is of bounded geometry. So ΘZ ≡ LZ,0,0 is of bounded geometry by
Lemma 6.1 and using the identity (29). �

By (37) and (53),
σ(ΘZ)(p, ζ) = iζ(Z)

for all p ∈ M and ζ ∈ N∗
pM , obtaining the following.

Proposition 8.2. ΘZ is uniformly transversely elliptic if infM |Z| > 0.

9. A class of smoothing operators

Suppose that F is of codimension one15. Assume also that M is equipped
with a bundle-like metric g so that F is of bounded geometry. Let φ = {φt} be
a foliated flow of R-local bounded geometry, whose infinitesimal generator is
Z ∈ Xub(M,F) (Proposition 3.18). Suppose that infM |Z| > 0; in particular,
the orbits of φ are transverse to the leaves. Moreover, let A = {At | t ∈ R} ⊂
Diffm(F ; ΛF) be a smooth R-compactly supported family of R-local bounded
geometry. For every ψ ∈ A, the operator

(63) P =

ˆ

R

φt∗At dt ψ(DF)

on H−∞(M ; ΛF) is defined by the version of Proposition 7.2 for DF . The
subindex “ψ” may be added to the notation of P if needed, or the subindex
“u” in the case of functions ψu ∈ A depending on a parameter u.

Proposition 9.1. Pψ is a smoothing operator, and the linear map

A → L(H−∞(M ; ΛF), H∞(M ; ΛF)), ψ 7→ Pψ ,

is continuous.

Proof. According to the proof of Proposition 7.2, ψ(DF ) defines a bounded op-
erator on every Hm(M ; ΛF). Since, moreover, φ and A are of R-local bounded
geometry, and A is R-compactly supported, it follows that P also defines a
bounded operator on every Hm(M ; ΛF).

Since ΘZ ∈ Diff1
ub(M ; ΛF) is uniformly transversely elliptic (see Proposi-

tions 8.1 and 8.2) andDF ∈ Diff1
ub(F ; ΛF) is uniformly leafwise elliptic (Corol-

lary 6.2 and Proposition 6.3), to get that P is smoothing, it suffices to prove
that ΘN

Z P and DN
F P are of the form (63) for all N ∈ N0. In turn, this follows

by showing that ΘZP and QP are of the form (63) for any Q ∈ Diffub(F ; ΛF).

15The higher dimensional case could be treated like in [4], but we only consider codimen-
sion one here for the sake of simplicity.
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We have

QP =

ˆ

R

φt∗Bt dt ψ(DF ),

where Bt = φ−t∗Qφt∗At. Since φ
t is a foliated map, this defines a smooth fam-

ily B = {Bt | t ∈ R} ⊂ Diff(F ; ΛF). Moreover, B is R-compactly supported
and of R-local bounded geometry because A is R-compactly supported, and φ,
Q and A are of R-local bounded geometry. Thus QP is of the form (63).

Let C = {Ct | t ∈ R} ⊂ Diff(F ; ΛF) be the smooth family given by
Ct = d

dsAt−s|s=0. Note that C is of R-local bounded geometry because the
family A is of R-local bounded geometry and R-compactly supported. Like in
the proof of [4, Proposition 6.1], we get

ΘZP =
d

ds

ˆ

R

φt+s∗At dt
∣∣∣
s=0

ψ(DF)

=
d

ds

ˆ

R

φr∗Ar−s dr
∣∣∣
s=0

ψ(DF ) =

ˆ

R

φt∗Ct dt ψ(DF ),

which is of the form (63).
By (60), for any N ∈ N0 and ψ ∈ A, the operator (1+∆F)

Nψ(DF ) extends
to a bounded operator on every Hm(M ; ΛF) with

(64) ‖(1 + ∆F )
Nψ(DF )‖m ≤

1

2π

ˆ ∞

−∞

|(1− ∂2
ξ )

N ψ̂(ξ)| eCm|ξ| dξ.

Hence, by the above argument, it can be easily seen that, for integers m ≤ m′,
there are some C,C′ > 0 and N ∈ N0 such that

(65) ‖P‖m,m′ ≤ C′

ˆ

|(id−∂2
ξ )

N ψ̂(ξ)| eC|ξ| dξ ≤ C′‖ψ‖A,C,2N .

Here, C depends on m and m′, and C′ depends on m, m′ and A. Then the
mapping ψ 7→ Pψ of the statement is continuous. �

Corollary 9.2. The linear map

A → C∞
ub(M

2; ΛF ⊠ (ΛF∗ ⊗ ΩM)), ψ 7→ KPψ
,

is continuous.

Proof. This follows from Propositions 9.1 and 3.14. �

Now, consider the particular case where ψu(x) = e−ux2

, and the correspond-
ing operators Pu (u > 0), defined on H∞(M ; ΛF). Let also

P∞ =

ˆ

R

φt∗At dtΠF

on H∞(M ; ΛF), where ΠF is the orthogonal projection to ker∆F .

Corollary 9.3. P∞ is a smoothing operator.

Proof. This follows from Theorem 7.5 and Proposition 9.1, since we have P∞ =
PuΠF . �
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Proposition 9.4. Pu → P∞ in L(H−∞(M ; ΛF), H∞(M ; ΛF)) as u ↑ ∞.

Proof. By Theorem 7.3, e−u∆F − ΠF → 0 in End(H∞(M ; ΛF)) as u ↑ ∞.
Therefore this convergence also holds in End(H−∞(M ; ΛF)), by taking dual
spaces and dual operators. Hence

Pu − P∞ = P1(e
−(u−1)∆F −ΠF ) → 0

in L(H−∞(M ; ΛF), H∞(M ; ΛF)) as u ↑ ∞. �

Corollary 9.5. KPu
→ KP∞

in C∞
ub(M

2; ΛF ⊠ (ΛF∗ ⊗ ΩM)) as u ↑ ∞.

Proof. This follows from Propositions 3.14 and 9.4. �

From now on, consider only the case where A = f ∈ C∞
c (R), obtaining the

smoothing operator

(66) P =

ˆ

R

φt∗ f(t) dt ψ(DF ),

as well as its versions, Pu if ψu is used, and P∞ if ΠF is used. The proof
of [4, Proposition 6.1] clearly extends to the open manifold case, showing the
following improvement of (65).

Proposition 9.6. For any compact I ⊂ R containing supp f , and for all
m,m′ ∈ N0, there are some C,C′ > 0 and N ∈ N0, depending on m, m′ and I,
such that

‖P‖m,m′ ≤ C′ ‖f‖CN ,I‖ψ‖A,C,N .

Here, ‖ · ‖CN ,I is the semi-norm on CN (R) defined by

‖f‖CN ,I = max{|f (m)(x)| | x ∈ I, m = 0, . . . , N}.

10. Description of some Schwartz kernels

Here, we will keep the setting of Section 9. The transverse vector field
Z defines the structure of a transversely complete R-Lie foliation on F (Sec-
tion 4.10). The corresponding Fedida’s description of F is given by a regular
covering map π : M̃ → M , a holonomy homomorphism h : Γ := Aut(π) → R,
and the developing map D : M̃ → R (Section 4.10). The lift of the bundle-like

metric g to M̃ is a bundle-like metric g̃ of F̃ = π∗F , and let φ̃ : M̃ × R → M̃
and Z̃ ∈ Xub(M̃, F̃) be the lifts of φ and Z. Then g̃ and Z̃ are Γ-invariant,

and φ̃ is Γ-equivariant. Moreover, Z̃ is D-projectable, and we can assume that
D∗Z̃ = ∂x ∈ X(R), where x denotes the standard global coordinate of R. Thus
φ induces via D the flow φ̄ on R defined by φ̄t(x) = t + x. Considering the
equivalence between the holonomy pseudogroup and the pseudogroup gener-
ated by the action of HolF on R by translations, this φ̄ corresponds to the
equivariant local flow φ̄ induced by φ on the holonomy pseudogroup. Since φ̄t

preserves every HolF -orbit in R if and only if t ∈ HolF , it follows that φt

preserves every leaf of F if and only if t ∈ HolF .
For any ψ ∈ A and f ∈ C∞

c (R), we have the smoothing operator P given

by (66), and a similar smoothing operator P̃ defined with φ̃ and F̃ instead
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of φ and F . We are going to describe their smoothing kernels under some
assumptions.

Let G = Hol(M,F) and G̃ = Hol(M̃, F̃), whose source and range maps are

denoted by s, r : G → M and s̃, r̃ : G̃ → M̃ (Section 4.4). Since the leaves of

F and F̃ have trivial holonomy groups, the smooth immersions (r, s) : G →

M2 and (r̃, s̃) : G̃ → M̃2 are injective, with images RF and RF̃ . Via these
injections, the restriction π × π : RF̃ → RF corresponds to the Lie groupoid
homomorphism πG := Hol(π) : G̃ → G (Section 4.8), which is a covering map

with Aut(πG) ≡ Γ. In fact, since F̃ is defined by the fiber bundleD, we get that

RF̃ is a regular submanifold of M̃2, and (r̃, s̃) : G̃ → RF̃ is a diffeomorphism.
We may write G ≡ RF and G̃ ≡ RF̃ .

Consider the C∞ vector bundles, S = r∗ΛF ⊗ s∗(ΛF ⊗ ΩF) over G and

S̃ = r̃∗ΛF̃ ⊗ s̃∗(ΛF̃ ⊗ ΩF̃) over G̃. Note that S̃ ≡ π∗
G
S, and any k ∈ C∞(G;S)

lifts via πG to a section k̃ ∈ C∞(G̃; S̃). Since π restricts to diffeomorphisms of

the leaves of F̃ to the leaves of F , it follows that k̃ ∈ C∞
p (G̃; S̃) if and only if

k ∈ C∞
p (G;S).

For any ψ ∈ R, the collection of Schwartz kernels kL := Kψ(DL), for all
leaves L of F , defines a section k = kψ of S called leafwise Schwartz kernel ,
which a priori may not be continuous. This also applies to the operators

ψ(DL̃) on the leaves L̃ of F̃ , obtaining the leafwise Schwartz kernel k̃ = k̃ψ ,
which is a possibly discontinuous section of S̃.

Proposition 10.1. If ψ̂ ∈ C∞
c (R), then kψ ∈ C∞

p (G;S), and the global action
of kψ on C∞

c (M ; ΛF) (Section 4.5) agrees with the restriction of the operator
ψ(DF ) on H∞(M ; ΛF), defined by Proposition 7.2 and (29).

Proof. This follows with the arguments of [41, Theorem 2.1], using C∞
p (G;S)

instead of C∞
c (G;S) when M is not compact. �

Remark 10.2. In Proposition 10.1, more precisely, if supp ψ̂ ⊂ [−R,R] for
some R > 0, then supp kψ ⊂ PenF(G

(0), R) by (18). Hence suppψ(DF )α ⊂

PenF(suppα,R) for all α ∈ H−∞(M ; ΛF) by Remark 3.15.

Suppose for a while that ψ̂ ∈ C∞
c (R). Then Proposition 10.1 also applies

to F̃ , obtaining that k̃ ∈ C∞
p (G̃; S̃), and the global action of k̃ on C∞

c (M̃ ; ΛF̃)

is the restriction of the operator ψ(DF̃ ) on H∞(M̃ ; ΛF̃) defined by Proposi-
tion 7.2 and (29). Indeed, since π restricts to a diffeomorphism between the

leaves of F̃ and the leaves of F , we get that k̃ is the lift of k, and therefore the
diagram

(67)

C∞
c (M̃ ; ΛF̃)

ψ(D
F̃
)

−−−−→ C∞
c (M̃ ; ΛF̃)

π∗

y
yπ∗

C∞
c (M ; ΛF)

ψ(DF )
−−−−→ C∞

c (M ; ΛF)
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is commutative, where

(68) π∗α̃ ≡
∑

γ∈Γ

T ∗
γ α̃

for all α̃ ∈ C∞
c (M̃ ; ΛF̃), using the notation Tγ for the action of every γ ∈ Γ

on M̃ . Locally, the series of (68) only has a finite number of nonzero terms.

The same expression also defines π∗ : C
−∞
c (M̃ ; ΛF̃) → C−∞

c (M ; ΛF).

Take some R > 0 such that supp ψ̂ ⊂ [−R,R]. By Remark 10.2 and
since φ is of R-local bounded geometry, there is some R′ > 0 such that
suppPα ⊂ Pen(suppα,R′) for all α ∈ H−∞(M ; ΛF). Thus P defines a con-

tinuous homomorphism C−∞
c (M ; ΛF) → C∞

c (M ; ΛF). Similarly, P̃ defines

a continuous homomorphism C−∞
c (M̃ ; ΛF̃) → C∞

c (M̃ ; ΛF̃). Moreover, the
commutativity of (67) yields the commutativity of the diagram

(69)

C−∞
c (M̃ ; ΛF̃)

P̃
−−−−→ C∞

c (M̃ ; ΛF̃)

π∗

y
yπ∗

C−∞
c (M ; ΛF)

P
−−−−→ C∞

c (M ; ΛF).

Let Λ̃ = D∗dx ≡ dx, which is a transverse invariant volume form of F̃

defining the same transverse orientation as Z̃. Since Λ̃ is Γ-invariant by the h-
equivariance of D, it defines a transverse volume form Λ of F , which defines the
same transverse orientation as Z. These Λ̃ and Λ define transverse invariant
densities |Λ̃| and |Λ| of F̃ and F .

Proposition 10.3. Let ψ ∈ A and p̃, q̃ ∈ M̃ over p, q ∈ M . Then, writing

tp̃,q̃ = D(q̃)−D(p̃) and using the identity S̃(p̃,q̃) ≡ S(p,q), we have16

KP (p, q) ≡
∑

γ∈Γ

T ∗
γ φ̃tp̃,q̃−h(γ)∗k̃(Tγφ̃

tp̃,q̃−h(γ)(p̃), q̃) f(tp̃,q̃) |Λ|(q),

defining a convergent series in C∞
ub(M

2;S).

Proof. We can assume that ψ̂ ∈ C∞
c (R) by Propositions 9.6 and 3.14, and be-

cause C∞
c (R) is dense inA. Then, by Proposition 10.1, for all α̃ ∈ C∞

c (M̃ ; ΛF̃),

(P̃ α̃)(p̃) =

ˆ

R

(
φ̃t∗ ψ(DF̃)α̃

)
(p̃) f(t) dt

=

ˆ

R

φ̃t∗
(
ψ(DF̃)α̃

)(
φ̃t(p̃)

)
f(t) dt

=

ˆ

t∈R

ˆ

q̃∈D−1(t)

φ̃t∗k̃(φ̃t(p̃), q̃)α̃(q̃) f(t) dt

=

ˆ

q̃∈M̃

φ̃tp̃,q̃∗k̃(φ̃tp̃,q̃ (p̃), q̃)α̃(q̃) f(tp̃,q̃)
∣∣Λ̃

∣∣(q̃),

16The leafwise part of the density of KP ( · , q) is given by the density of k̃( · , q̃).
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because Dφ̃t(p̃) = D(q̃) if and only if t = tp̃,q̃. Therefore

KP̃ (p̃, q̃) = φ̃tp̃,q̃∗k̃(φ̃tp̃,q̃ (p̃), q̃) f(tp̃,q̃)
∣∣Λ̃

∣∣(q̃).
On the other hand, by (68) and the commutativity of (69),

KP (p, q) ≡
∑

γ∈Γ

T ∗
γKP̃ (γ · p̃, q̃).

Locally, this series only has a finite number of nonzero terms. This is the
series of the statement because D(q̃) −D(γ · p̃) = D(q̃)−D(p̃) − h(γ) by the
h-equivariance of D. �

11. Extension to the leafwise Novikov differential complex

Consider the notation of Section 2.6 and Section 4.11, and assume that
θ ∈ C∞

ub(M ; Λ0,1) ≡ C∞
ub(M ; Λ1F). Then, like in (31) and (43), we get the

decompositions into bi-homogeneous components,

dz = dz,0,1 + d1,0 + d2,−1, δz = δz,0,−1 + δ−1,0 + δ−2,1,

where dz,0,1 = d0,1 + z θ∧ and δz,0,−1 = δ0,−1 − z̄ θy, which are of bounded
geometry by Corollary 6.2 and because θ ∈ C∞

ub(M ; Λ0,1). Since θ is closed, we
get di,jθ = 0 for all i, j. So, by (34) and (44),

d2z,0,1 = dz,0,1d1,0 + d1,0dz,0,1 = 0,(70)

δ2z,0,−1 = δz,0,−1δ−1,0 + δ−1,0δz,0,−1 = 0.(71)

Let

D0,z = dz,0,1 + δz,0,−1, ∆0,z = D2
0,z = dz,0,1δz,0,−1 + dz,0,1δz,0,−1.

On the other hand, we can also consider the leafwise version of the Novikov
differential complex, dF ,z = dF + z θ∧ on C∞(M ; ΛF), or on C∞(M ; ΛF ⊗
ΛNF), as well as its formal adjoint δF ,z = δF − z̄ θy. They satisfy the obvious
versions of (32) and Lemma 4.12, yielding obvious versions of (41) and (45).
Furthermore, for any choice of an orientation of F on a distinguished open
set U , we have

δF ,z = (−1)n
′′v+n′′+1 ⋆F dF ,−z̄ ⋆F

on C∞(U ; ΛvF) by (13). So, using also (70) and (71), we get the following
version of (55):

D⊥D0,z +D0,zD⊥ = KD0,z +D0,zK.

This yields straight-forward generalizations of all results and proofs of Section 7
for the leafwise Novikov operators , dz,0,1, D0,z, ∆0,z , dF ,z, DF ,z and ∆F ,z.
Let Π0,z and ΠF ,z denote the corresponding versions of Π0 and ΠF . The term
leafwise Witten operators should be used if θ is leafwise exact.

Let φ : (M,F) → (M,F) be a smooth foliated map, let M̃ be a regular cov-

ering of M so that the lift θ̃ of θ is exact, and let F̃ be the lift of F to M̃ . Like
in the case of the Novikov differential complex (Section 2.6), using (27), any

lift φ̃ : (M̃, F̃) → (M̃, F̃) of φ determines an endomorphism φt∗
z of the leafwise

Novikov differential complex dF ,z on C∞(M ; ΛF), or on C∞(M ; ΛF ⊗ΛNF),
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which can be called a leafwise Novikov perturbation of φ∗. With this definition,
there is an obvious generalization of (36), using the bi-homogeneous component
φ∗
z,0,0 of φ∗

z on C∞(M ; Λ). For every foliated flow φ = {φt} on (M,F), using
its unique lift to a foliated flow φ̃ = {φ̃t} on (M̃, F̃), we get a unique determi-
nation of φt∗

z on C∞(M ; ΛF), or on C∞(M ; ΛF ⊗ ΛNF), called the Novikov
perturbation of φt∗. Then, in Sections 9 and 10, the definitions of P , Pu, P∞,
k, k̃, ku and k̃u can be extended by using φt∗

z and DF ,z instead of φt∗ and DF .
The subindex “z” may be added to their notation if needed. Moreover, the
results, proofs and observations of Sections 9 and 10 have straight-forward
generalizations to this setting, using the indicated extensions of the tools.
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[5] J. A. Álvarez López, Y. A. Kordyukov, and E. Leichtnam, Riemannian foliations of
bounded geometry, Math. Nachr. 287 (2014), no. 14-15, 1589–1608. MR3266125
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