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Nuclear dimension and n-comparison
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(Communicated by Joachim Cuntz)

Abstract. It is shown that if a C∗-algebra has nuclear dimension n then its Cuntz semigroup
has the property of n-comparison. It then follows from results by Ortega, Perera and Rørdam
that σ-unital C∗-algebras of finite nuclear dimension (and even of nuclear dimension at most
ω) are stable if and only if they have no nonzero unital quotients and no nonzero bounded
traces.

1. Introduction

In [8], Winter and Zacharias define nuclear dimension for C∗-algebras. This
is a form of noncommutative dimension which directly generalizes the covering
dimension of topological spaces. Finite nuclear dimension is especially relevant
to the classification of C∗-algebras. The simple C∗-algebras of finite nuclear
dimension have been proposed as a likely class of C∗-algebras for which Elliott’s
classification in terms of K-theory and traces holds true.

In the main result of this paper it is shown that the Cuntz semigroup of a
C∗-algebra of finite nuclear dimension n satisfies the n-comparison property.
For n = 0, this property is the same as almost unperforation in the Cuntz
semigroup. For arbitrary n, it is reminiscent of the comparability between
vector bundles whose fibrewise dimensions differ sufficiently relative to the
dimension of the base space.

The n-comparison property for the Cuntz semigroup was first considered by
Toms and Winter (see [7, Lemma 6.1]). They showed that n-comparison holds
under the more restrictive assumption that the C∗-algebra is simple unital of
decomposition rank n (the decomposition rank bounds the nuclear dimension,
and, unlike nuclear dimension, is infinite for UCT Kirchberg algebras). The n-
comparison property was subsequently studied, and more precisely defined, by
Ortega, Perera and Rørdam in [6]. These authors obtained a simple criterion of
stability for σ-unital C∗-algebras with n-comparison in their Cuntz semigroup:
the C∗-algebra is stable if and only if it has no nonzero unital quotients and no
nonzero bounded 2-quasitraces. By Theorem 1.3 below, this stability criterion
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applies to all C∗-algebras of finite nuclear dimension. It then follows that σ-
unital C∗-algebras of finite nuclear dimension have the corona factorization
property.

Let us recall the definition of nuclear dimension given in [8].

Definition 1.1. The C∗-algebra A has nuclear dimension n if n is the smallest
natural number for which there exist nets of completely positive contractive
(henceforth abbreviated as c.p.c.) maps

ψi
λ : A→ F i

λ and φiλ : F
i
λ → A,

with i = 0, 1, . . . , n, λ ∈ Λ, and F i
λ finite dimensional C∗-algebras for all i and

λ, such that
(i) φiλ is an order 0 map (i.e., preserves orthogonality) for all i and λ,
(ii) limλ

∑n
i=1 φ

i
λψ

i
λ(a) = a for all a ∈ A.

If no such n exists then A has infinite nuclear dimension.

Let us recall the definition given in [6] of the n-comparison property of an
ordered semigroup. For x, y elements of an ordered semigroup S, let us write
x 6s y if (k + 1)x 6 ky for some k ∈ N.

Definition 1.2. The ordered semigroup S has the n-comparison property if
x 6s yi for x, yi ∈ S and i = 0, 1, . . . , n implies x 6

∑n

i=0
yi.

Let Cu(A) denote the stabilized Cuntz semigroup of the C∗-algebra A (i.e.,
the semigroup W(A⊗K); see [2]).

It is shown in Lemma 2.1 below that for Cu(A) the n-comparison property
can be reformulated as follows: if [a], [bi] ∈ Cu(A), with i = 0, 1, . . . , n, sat-
isfy that for each i there is εi > 0 such that dτ (a) 6 (1 − εi)dτ (bi) for all
dimension functions dτ induced by lower semicontinuous 2-quasitraces, then
[a] 6

∑n

i=0
[bi]. It is this formulation of the n-comparison property that is

used by Toms and Winter in [7], and that may potentially have the most
applications.

Theorem 1.3. If A has nuclear dimension n then Cu(A) has the n-comparison
property.

The following section is dedicated to the proof of Theorem 1.3. The last
section discusses the application of Theorem 1.3, and of a variation on it that
relates to ω-comparison, to establish the stability of C∗-algebras of finite (or
at most ω) nuclear dimension.

2. Proof of Theorem 1.3

Let us start by proving that the property of n-comparisonmay be formulated
using comparison by lower semicontinuous 2-quasitraces in place of the relation
6s. This result, however, will not be needed in the proof of Theorem 1.3.

For [a], [b] ∈ Cu(A), elements of the Cuntz semigroup of A, let us write
[a] <τ [b] if there is ε > 0 such that dτ (a) 6 (1 − ε)dτ (b) for all dimension
functions dτ induced by lower semicontinuous 2-quasitraces τ : A+ → [0,∞]
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(see [3, Sec. 4]). We do not assume that the 2-quasitraces are necessarily finite
on a dense subset of A+.

Lemma 2.1. The ordered semigroup Cu(A) has the n-comparison property if
and only if for [a], [bi] ∈ Cu(A), with i = 0, 1, . . . , n, [a] <τ [bi] for all i implies
that [a] 6

∑n

i=0
[bi].

Proof. It is clear that if [a] 6s [b] then [a] <τ [b]. Thus, n-comparison is implied
by the property stated in the lemma. Suppose that we have n-comparison in
Cu(A). Let [a], [bi] ∈ Cu(A), with i = 0, 1, . . . , n, be such that [a] <τ [bi] for
all i. That is, there exist εi > 0 such that

dτ (a) 6 (1− εi)dτ (bi)(1)

for all i. Let us show that [(a− ε)+] 6s [bi] for all ε > 0 and all i.
Let Ii ⊆ A ⊗ K denote the closed two-sided ideal generated by bi and τIi

the trace that is 0 on I+i and ∞ elsewhere. Setting τ = τIi in (1) we get

that a ∈ Ii. This implies that (a − ε)+ =
∑ki

j=1
c∗jbicj , which in turn yields

[(a− ε)+] 6 ki[bi].
Let λ : Cu(A) → [0,∞] be additive and order preserving. Let us define

λ̃ : Cu(A) → [0,∞] by

λ̃([c]) := sup
δ>0

λ([(c − δ)+]).

It is clear from the definition of λ̃ that λ([(c − δ)+]) 6 λ̃([c]) 6 λ([c]) for all
[c] ∈ Cu(A) and δ > 0. By [3, Prop. 4.2 and Lemma 4.7], there exists a lower

semicontinuous 2-quasitrace τ such that λ̃([c]) = dτ (c) for all c ∈ (A ⊗ K)+.
Thus,

λ([(a− ε)+]) 6 λ̃([a]) 6 (1 − εi)λ̃([bi]) 6 (1 − εi)λ([bi])

for all i. That is, λ([(a− ε)+]) 6 (1− εi)λ([bi]) for any λ that is additive and
order preserving. We conclude by [6, Prop. 2.1] that [(a− ε)+] 6s [bi] for all i.
Since Cu(A) has n-comparison, [(a − ε)+] 6

∑n

i=0
[bi]. Passing on the left to

the supremum with respect to ε > 0 we get that [a] 6
∑n

i=0[bi]. �

Given an upward directed set Λ and a family of C∗-algebras (Aλ)λ∈Λ, let
⊕

λAλ denote the C∗-algebra of nets (xλ) such that ‖xλ‖ → 0 and
∏

λAλ the
C∗-algebra of nets of uniformly bounded norm. For A a C∗-algebra, let AΛ

denote the C∗-algebra
∏

λA/
⊕

λA and ι : A → AΛ the diagonal embedding
of A into AΛ.

Notation convention. Given a homomorphism or c.p.c. order 0 map φ : A→
B, we shall also denote by φ the map φ⊗ id from A⊗K to B ⊗K.

In [8, Prop. 3.2] Winter and Zacharias show that if A has nuclear dimension
n then the maps ψi

λ in the definition of nuclear dimension may be chosen
to be asymptotically of order 0, i.e., such that the induced maps ψi : A →
∏

λ F
i
λ/

⊕

λ F
i
λ have order 0 for i = 0, 1, . . . , n. We get the following proposition

as a result of this.
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Proposition 2.2. If A has nuclear dimension n then for i = 0, 1, . . . , n there
are c.p.c. order 0 maps ψi : A→

∏

λ F
i
λ/

⊕

λ F
i
λ and φi :

∏

λ F
i
λ/

⊕

λ F
i
λ → AΛ

such that

ι =

n
∑

i=0

φiψi,(2)

where ι : A→ AΛ is the diagonal embedding of A into AΛ.

Proof. As pointed out in the previous paragraph, by [8, Prop. 3.2] the maps
ψi
λ in the definition of nuclear dimension may be chosen so that the induced

maps ψi are of order 0.
The equation (2) is a consequence of Definition 1.1 (ii).
Let us show that the maps φi :

∏

λ F
i
λ/

⊕

λ F
i
λ → AΛ, induced by the order

0 maps φiλ, also have order 0. It is clear that (φiλ) :
∏

λ F
i
λ →

∏

λA has order
0. Hence, α◦(φiλ) :

∏

λ F
i
λ → AΛ, where α is the quotient onto AΛ, has order 0.

We will be done once we show that if φ : C → D is a c.p.c. map of order 0 and
φ|I = 0 for some closed two-sided ideal I, then the induced map φ̃ : C/I → D
has order 0. By [9, Cor. 4.1], there is a *-homomorphism π : C ⊗C0(0, 1] → D
such that φ(c) = π(c ⊗ t) for all c ∈ C. From π(I ⊗ t) = 0 we get that
π(I⊗C0(0, 1]) = 0. Thus, π induces a *-homomorphism π̃ : C/I⊗C0(0, 1] → D.

Since φ̃(c) = π̃(c⊗ t) for all c ∈ C/I, φ̃ has order 0. �

An ordered semigroup S is called unperforated if kx 6 ky for x, y ∈ S and
k ∈ N implies x 6 y.

In the following two lemmas the index λ ranges through an upward directed
set Λ.

Lemma 2.3. (i) If Cu(A) is unperforated then so is Cu(A/I) for any closed
two-sided ideal I.

(ii) If Aλ are C∗-algebras such that Cu(Aλ) is unperforated for all λ then
so are Cu(

∏

λAλ) and Cu(
∏

λAλ/
⊕

λAλ).

Proof. (i) Let [ã], [b̃] ∈ Cu(A/I) be such that k[ã] 6 k[b̃] for some k ∈ N. Then

for [a], [b] ∈ Cu(A) lifts of [ã] and [b̃] we have

k[a] 6 k[b] + [i] 6 k([b] + [i])

for some i ∈ (I ⊗K)+ (by [1, Prop. 1]). Since Cu(A) is unperforated, we have

[a] 6 [b] + [i], and passing to Cu(A/I) we get that [ã] 6 [b̃].
(ii) Let (aλ)λ, (bλ)λ ∈ (

∏

λAλ) ⊗K ⊆
∏

λ(Aλ ⊗ K) be positive elements of
norm at most 1 such that k[(aλ)λ] 6 k[(bλ)λ] for some k. Let ε > 0. Then
there is δ > 0 such that

k[((aλ − ε)+)λ] 6 k[((bλ − δ)+)λ].

Hence, k[(aλ − ε)+] 6 k[(bλ − δ)+] for all λ. Since Cu(Aλ) is unperforated,
[(aλ − ε)+] 6 [(bλ − δ)+]. Let xλ ∈ Aλ ⊗K be such that

(aλ − 2ε)+ = x∗λxλ and xλx
∗

λ ∈ her((bλ − δ)+).
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Since ‖xλ‖
2 6 ‖aλ‖ 6 1, we have (xλ)λ ∈

∏

λ(Aλ ⊗K). We also have xλx
∗

λ 6
1

δ
bλ, whence

((aλ − 2ε)+)λ = (xλ)
∗

λ(xλ)λ and (xλ)λ(xλ)
∗

λ ∈ her((bλ)λ).

But (
∏

λAλ)⊗K sits as a closed hereditary subalgebra of
∏

λ(Aλ⊗K). There-
fore, (xλ)λ ∈ (

∏

λAλ) ⊗ K and so [((aλ − 2ε)+)λ] 6 [(bλ)λ]. Since ε may be
arbitrarily small, we have [(aλ)λ] 6 [(bλ)λ] as desired. �

Lemma 2.4. Let a, b ∈ (A⊗K)+. If Cu(ι)([a]) 6 Cu(ι)([b]) in Cu(AΛ), then
[a] 6 [b].

Proof. Let ε > 0. Since [ι(a)] 6 [ι(b)], there is d ∈ AΛ⊗K such that d∗ι(b)d =
ι(a− ε)+. That is, there are dλ ∈ Aλ ⊗K such that d∗λbdλ → (a− ε)+. Thus,
[(a− ε)+] 6 [b]. Since ε > 0 may be arbitrarily small, we have [a] 6 [b]. �

Remark 2.5. In proving Theorem 1.3, a stronger property than n-comparison
will be shown to hold for C∗-algebras of nuclear dimension n: if x, yi ∈ Cu(A)
with i = 0, 1, . . . , n satisfy that kix 6 kiyi for some ki ∈ N and all i, then
x 6

∑n

i=0
yi. This property, unlike n-comparison, does not seem to have a

formulation in terms of comparison by lower semicontinuous 2-quasitraces.

Proof of Theorem 1.3. Suppose that there are ki ∈ N such that ki[a] 6 ki[bi]
for i = 0, 1, . . . , n. Since c.p.c. order 0 maps preserve Cuntz comparison (by
[9, Cor. 4.5]), we have that ki[ψ

i(a)] 6 ki[ψ
i(bi)] for all i. Since the Cuntz

semigroup of finite dimensional algebras is unperforated, we have by Lemma 2.3
that the Cuntz semigroup of

∏

λ F
i
λ/

⊕

λ F
i
λ is unperforated. Thus, [ψi(a)] 6

[ψi(bi)]. The maps φi preserve Cuntz equivalence (since they are c.p.c. of order
0), whence

[φiψi(a)] 6 [φiψi(bi)] 6

[ n
∑

j=0

φjψj(bi)

]

= [ι(bi)].

So,

[ι(a)] =

[ n
∑

i=0

φiψi(a)

]

6

n
∑

i=0

[φiψi(a)] 6

n
∑

i=0

[ι(bi)].

By Lemma 2.4, this implies that [a] 6
∑n

i=0
[bi]. �

3. Stability of C∗-algebras

A stable C∗-algebra has no nonzero unital quotients and no nonzero bounded
2-quasitraces (see (i)⇒(ii) of [6, Prop. 4.7]). In [6, Prop. 4.7] Ortega, Per-
era and Rørdam show that the converse is true provided that the C∗-algebra
is σ-unital and its Cuntz semigroup has the n-comparison property. This,
combined with Theorem 1.3 and the fact that for exact C∗-algebras bounded
2-quasitraces are traces, implies that a σ-unital C∗-algebra of finite nuclear di-
mension is stable if and only if it has no nonzero unital quotients and no nonzero
bounded traces. Ortega, Perera, and Rørdam also show that ω-comparison, a
weakening of n-comparison, suffices to obtain the same stability criterion.
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Definition 3.1. (c.f. [6, Def. 2.11]) Let S be an ordered semigroup closed un-
der passage to suprema of increasing sequences. Then S has the ω-comparison
property if x 6s yi for x, yi ∈ S and i = 0, 1, . . . implies x 6

∑

∞

i=0
yi.

Remark 3.2. The definition of ω-comparison given above differs slightly from
the definition given in [6]. Nevertheless, both definitions agree for ordered
semigroups in the categoryCu introduced in [2], and therefore, also for ordered
semigroups arising as Cuntz semigroups of C∗-algebras.

A notion of nuclear dimension at most ω may be modelled after the state-
ment of Proposition 2.2.

Definition 3.3. Let us say that a C∗-algebra A has nuclear dimension at
most ω if for i = 0, 1, 2 . . . there are nets of c.p.c. maps ψi

λ : A → F i
λ and

φiλ : F
i
λ → A, with F i

λ finite dimensional C∗-algebras and λ ∈ Λ, such that
(ii) the induced maps ψi : A →

∏

λ F
i
λ/

⊕

λ F
i
λ and φi :

∏

λ F
i
λ/

⊕

λ F
i
λ →

AΛ are c.p.c. order 0,
(iii) ι(a) =

∑

∞

i=0
φiψi(a) for all a ∈ A (where the series on the right side is

understood to be convergent in the norm topology).

For example, if the C∗-algebras (Ai)
∞

i=0 all have finite nuclear dimension,
then

⊕

∞

i=0
Ai has nuclear dimension at most ω. It is not clear whether the

assumption that the maps ψi
λ be asymptotically order 0 may be dropped in

Definition 3.3 (and then proved), or if the other results on finite nuclear di-
mension proved in [8] also hold for nuclear dimension at most ω. In particular,
is it true that the property of nuclear dimension at most ω passes to closed
hereditary subalgebras?

The proof of Theorem 1.3 goes through, mutatis mutandis, for nuclear di-
mension at most ω. We thus have

Theorem 3.4. If A has nuclear dimension at most ω then Cu(A) has the
ω-comparison property.

Combined with the results of [6], Theorem 3.4 yields the following corollary,
which improves on [5, Thm. 0.1], [6, Cor. 4.9] and [6, Cor. 5.12].

Corollary 3.5. Let A be a C∗-algebra of nuclear dimension at most ω and let
B ⊆ A ⊗ K be hereditary and σ-unital. Then B is stable if and only if it has
no nonzero unital quotients and no nonzero bounded traces. B has the corona
factorization property.

Proof. By Theorem 3.4, Cu(A) has the ω-comparison property. Since Cu(B)
is an ordered subsemigroup of Cu(A) (i.e., the order and addition operation on
Cu(B) agree with the ones induced by its inclusion in Cu(A)) the ω-comparison
property holds in Cu(B), too. Hence, by [6, Prop. 4.7], B is stable if and only
if it has no nonzero unital quotients and no nonzero bounded traces. (In the
hypotheses of [6, Prop. 4.7] the C∗-algebra A is assumed to be separable. A
closer look into the proof of this result reveals that it suffices to assume that
the hereditary subalgebra B ⊆ A⊗K be σ-unital. This justifies the application
of [6, Prop.4.7] made here.)
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Let C ⊆ B ⊗ K be full and hereditary, and suppose that Mn(C) is stable.
Then Mn(C), and consequently C, cannot have nonzero unital quotients or
bounded traces. Thus C is stable. This shows that B has the corona factor-
ization property (see [4, Thm. 4.2]). �
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