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Abstract. For any commutative ring R and any reductive p-adic group G, we describe the
center of the pro-p-Iwahori–Hecke R-algebra of G. We show that the pro-p-Iwahori–Hecke
algebra is a finitely generated module over its center and is a finitely generated R-algebra.
When the ring R is noetherian, the center is a finitely generated R-algebra and the pro-p-
Iwahori–Hecke R-algebra is noetherian. This generalizes results known only for split groups.

1. Results

Let R be a commutative ring, let F be a local nonarchimedean field, of
finite residue field k with q elements and of characteristic p, let G, T, Z,N be
the groups of F -points of a connected reductive F -group G of maximal F -
split torus T of G-centralizer Z and G-normalizer N. The group Z admits
a unique parahoric subgroup Z0, and Z0 admits a unique pro-p-Sylow Z0(1).
The unicity of these groups imply that they are normalized by N . The group
Zk = Z0/Z0(1) is the group of k-points of a k-torus.

Let W0 = N/Z, W = N/Z0 and W (1) = N/Z0(1). Then W0 is the relative
finite Weyl group of G, the quotient map W → W0 of kernel Λ = Z/Z0 splits,
the group W (1) is an extension of W by Zk.

We will denote by X(1) the inverse image in W (1) of a subset X of W , and

we write w̃ for an arbitrary element of W (1) of image w ∈ W .

The group Λ is commutative but the group Λ(1) = Z/Z0(1) may be not
commutative. A conjugacy class C of W is contained in Λ or disjoint from Λ.
The same is true for W (1) and Λ(1).

The Iwahori–Hecke R-algebra HR of G is a deformation of the group R-
algebra R[W ] and the pro-p-Iwahori–Hecke R-algebra HR(1) of G is a defor-
mation of the group R-algebra R[W (1)], cp. [7].
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The center of the R-algebra of the group W or of W (1) can be easily deter-
mined using the following following property:

Lemma 1.1. A conjugacy class C of W is finite if and only if C is contained

in Λ. The same is true for W (1) and Λ(1).

As a corollary, the center of the R-algebra R[W ] is equal to R[Λ]W0 and is
R-free of basis

zC =
∑

λ∈C

λ,

for all finite conjugacy classes C of W . The group algebra R[W ] is a finitely
generated module over its center. If the ring R is noetherian, the center is a
finitely generated algebra and R[W ] is a noetherian algebra. The same is true
for R[W (1)]. We will prove that these properties remain true for the Iwahori
and pro-p-Iwahori R-algebras.

For each (spherical) orientation o, we denote by (Eo(w))w∈W , resp.
(Eo(w))w∈W (1), the (alcove walk or Bernstein) basis ofHR, resp.HR(1) (cp. [7,
Cor. 5.26, Cor. 5.28]).

Theorem 1.2. The center ZR of the Iwahori–Hecke R-algebra HR is R-free

of basis

E(C) =
∑

λ∈C

Eo(λ)

for all finite conjugacy classes C of W . The basis elements E(C) do not depend

on the choice of the orientation o.
The Iwahori–Hecke R-algebra is finitely generated and is a finitely generated

module over its center. If the ring R is noetherian, the center is a finitely

generated algebra, and the Iwahori–Hecke R-algebra is noetherian.

The center ZR(1) of the pro-p Iwahori–Hecke R-algebra HR(1) satisfies the
same properties.

This theorem was proved by Bernstein for affine Hecke complex algebras [3],
or when the group G is F -split [5], [6]. In his unpublished and nice diplomar-
beit [4], Schmidt gave this theorem for certain pro-p-Iwahori–Hecke algebras,
although his proof contains some gaps but the pattern of his proof is correct
and we follow it. The Iwahori–Hecke or pro-p-Iwahori–Hecke algebras attached
to reductive p-adic groups are more general than the affine Hecke algebras of
Lusztig and than the pro-p-Iwahori–Hecke algebras of Schmidt.

We will prove the theorem for the R-algebrasHR(qs, cs) defined in the part I
of our work [7] generalizing the pro-p-Iwahori–Hecke algebra. This allows to
reduce some proofs to the simpler case qs = 1.

We recall the definition of HR(qs, cs), cp. [7]. There exists an affine Weyl
Coxeter system (W aff , Saff) and a finitely generated commutative subgroup Ω
normalizing Saff , such that

W = W aff
⋊ Ω.
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We write s ∼ s′ for two elements s, s′ ∈ Saff which are W -conjugate. Let
(qs)s∈Saff/∼ in R, and (cs)s∈Saff (1) in R[Zk] satisfying

cs̃t = cst, cs′ = wcsw
−1, (t ∈ Zk, s′ = wsw−1, s, s′ ∈ Saff(1), w ∈ W (1)).

We set qs̃ = qs. The R-algebra HR(qs, cs) is the free R-module of basis
(Tw)w∈W (1) endowed with the product satisfying

• The braid relations:

(1) TwTw′ = Tww′ (w,w′ ∈ W (1), ℓ(w) + ℓ(w′) = ℓ(ww′)),

where ℓ(w) = ℓ(waff) if the image of w in W is waffu, waff ∈ W aff , u ∈
Ω and ℓ the length of (W aff , Saff). Therefore the linear map sending t
to Tt identifies R[Zk] to a subalgebra of HR(qs, cs), and s2 ∈ Zk and
cs ∈ R[Zk] identify to elements of HR(qs, cs).

• The quadratic relations:

(2) T 2
s = qss

2 + csTs (s ∈ Saff(1)).

In our basic example, the pro-p-Iwahori–Hecke algebra, qs = [IsI : I] =
[I(1)sI(1) : I(1)] where I is an Iwahori group of pro-p-Sylow I(1); when s
belongs to a certain coset sZk,s = Zk,ss in W (1) of a subgroup Zk,s of Zk

defined in [7],

cs = (qs − 1)|Zk,s|
−1

∑

t∈Zk,s

t.

The R-algebra HR(qs) generalizing the Iwahori–Hecke algebra is simpler. It
admits the same definition with cs = qs − 1 and W instead of W (1). We have

HR(qs) = R⊗R[Zk] HR(qs, qs − 1)

for the homomorphism sending t ∈ Zk to 1.

The affine Weyl group W aff is generated by the orthogonal reflections with
respect to a set of affine hyperplanes in an Euclidean real vector space V . The
finite Weyl group W0 identifies with the subgroup of W aff generated by the the
reflections with respect to the hyperplanes containing 0. The group W acts by
conjugation on Λ and

W = Λ⋊W0.

The simply transitive action of the group W0 on the Weyl chambers inflates
to an action of W trivial on Λ and to an action of W (1) trivial on Λ(1). The
orientations are in bijection with the Weyl chambers, and inherit this action.
For an orientation o and for w in W0 or W or W (1), we denote by o • w
the image of o by w−1. We denote by So the set of reflections with respect
to the walls of the Weyl chamber defining o. The R-basis (Eo(w))w∈W (1) of
HR(qs, cs) associated to o satisfies:

• the product formula [7, Thm. 5.25]:

(3) Eo(w)Eo•w(w
′) = qw,w′Eo(ww

′) (w,w′ ∈ W (1)),

where qw,w′ = (qwqw′q−1
ww′)1/2 and qw = qs1 . . . qsr if w = s̃1 . . . s̃rũ

with si ∈ Saff , u ∈ Ω is a reduced decomposition (r minimal).
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• the Bernstein relations [7, Thm. 5.45]:

(4) Eo(s)Eo(λ)− Eo(sλs
−1)Eo(s) =

∑

µ∈Λ(1)

ao,s,λ(µ)Eo(µ)

for λ ∈ Λ(1), s ∈ So(1), with explicit coefficients ao,s,λ(µ) ∈ R.

We have the subalgebraAo(1) of basis (Eo(λ))λ∈Λ(1) with the natural action
of W (1) coming from the conjugation on Λ(1), (cp. [7, Cor. 5.26, Cor. 5.28]).
Theorem 1.2 is a corollary of:

Theorem 1.3. The center ZR(qs, cs) of HR(qs, cs) is the ring Ao(1)
W (1) of

W (1)-invariant elements of Ao(1). It is a free R-module of basis

E(C) =
∑

λ∈C

Eo(λ)

for all finite conjugacy classes C of W (1). The basis elements E(C) do not

depend on the choice of the orientation o.
The R-algebra HR(qs, cs) is finitely generated and is a finitely generated

module over its center ZR(qs, cs). If the ring R is noetherian, the center

ZR(qs, cs) is a finitely generated R-algebra, and the R-algebra HR(qs, cs) is

noetherian.

Remark 1.4. The action of W on Λ factorizes through W0. The center of
HR(qs) is A

W0
o where Ao is the commutative subring of basis Eo(λ) for λ ∈ Λ.

This theorem generalizes our results on the center for G split [5]. In a
sequel of this paper, when C is an algebraically closed field of characteristic
p, this theorem will be used to generalize to any reductive connected group
G, some results of Ollivier on pro-p-Iwahori–Hecke C-algebra when G is split:
the embedding of the weighted spherical algebras in the pro-p Iwahori–Hecke
R-algebra HC(1), the inverse of the Satake isomorphism considered in [2] and
the classification of the supersingular HC(1)-modules.

2. Proofs

We denote by T the maximal split torus of G, and by X∗(T ) and X∗(T )
the lattices of characters and of cocharacters of T . Let ω be the valuation of F
such that ω(F×) = Z. The kernel of the canonical map t 7→ (χ 7→ (ω ◦ χ)(t)) :
T → Hom(X∗(T ),Z) ≃ X∗(T ) is the maximal compact subgroup T0 of T . The
choice of an uniformizer pF defines a splitting of the exact sequence

1 → T0 → T → X∗(T ) → 1

sending µ ∈ X∗(T ) to µ(pF ). We have Z0 ∩ T = T0 and Z0(1) ∩ T = T0(1)
is the unique pro-p-Sylow of T . The quotient Tk = T0/T0(1) is the group of
k-points of a split k-torus. The splitting induces isomorphisms

T ≃ T0 ×X∗(T ), T/To(1) ≃ Tk ×X∗(T ).
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The commutative finitely generated group T/T0(1) is central of finite index in
Λ(1). We recall the homomorphism

(5) ν : Z → V = R⊗Z Q(Φ∨) | α ◦ ν(t) = −ω ◦ α(t) for α ∈ Φ, t ∈ T,

where Φ ⊂ X∗(T ) is the set of roots of T in G. The homomorphism ν factorizes
through Λ = Z/Z0 and Λ(1) = Z/Z0(1).

Lemma 2.1. A conjugacy class of Λ is finite.

A conjugacy class of W is finite and contained in Λ, or infinite and disjoint

from Λ.
The same is true for W (1) and Λ(1).

Proof. A conjugacy class of W is contained in Λ or disjoint from Λ because Λ
is normal in W . The same is true for W (1) and Λ(1).

The group Λ is commutative and the conjugacy classes of W contained in
Λ are the orbits of the finite Weyl group W0 acting on Λ. They are of course
finite.

The group Λ(1) is not commutative but the conjugacy classes of Λ(1) are
finite, as the center of Λ(1) contains T/T0(1) hence has a finite index. For
λ ∈ Λ(1) we denote by c(λ) the conjugacy class of λ ∈ Λ(1). We have W (1) =
Λ(1)W0(1). Obviously tc(λ)t−1 = c(λ) for t ∈ Zk, and W0 = W0(1)/Zk acts
on the conjugacy classes of Λ(1), with orbits the conjugacy classes of W (1)
contained in Λ(1). They are of course finite.

The image in W of a conjugacy class of W (1) not contained in Λ(1) is a
conjugacy class of W not contained in Λ.

We show that a conjugacy class of W not contained in Λ is infinite. Let
λ ∈ Λ, w ∈ W0, w 6= 1. The conjugacy class of λw in W is infinite because, for
x ∈ T/T0, xλwx

−1 = xλwx−1w−1w and ν(xλwx−1w−1) = ν(x) − w(ν(x)) +
ν(λ), and the set of ν(x) − w(ν(x)) for x ∈ T/T0 contains the set of y − w(y)
for y in the subgroup Q(Φ∨) of X∗(T ) generated by the set Φ∨ of coroots of
T in G. This latter set is infinite. �

It is now easy to see that the center of the group R-algebra R[W (1)] is
R[Λ(1)]W (1):

Lemma 2.2. The center of R[W (1)] is the free R-module of basis

zC =
∑

λ∈C

λ,

for all finite conjugacy classes C of W (1).

Proof. Let z =
∑

u∈W (1) z(u)u ∈ R[W (1)] where the function z : W (1) → R

has finite support. The following properties are equivalent:

1. zw = wz for all w ∈ W (1),
2. z(w−1u) = z(uw−1) for all u,w ∈ W (1),
3. z(.) is constant on C for all conjugacy classes C of W (1).

�
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We want now to determine the center of the R-algebraHR(qs, cs), described
in the first part of Theorem 1.3. The proof is long and we formulate the
different steps as propositions, lemmas, and corollaries. We fix an orientation
o and we determine first the center of Ao(1).

Proposition 2.3. The center of Ao(1) is a R-free module of basis

Eo(c) =
∑

λ∈c

Eo(λ),

for all conjugacy classes c of Λ(1).

Proof. Let z =
∑

x∈Λ(1) z(x)Eo(x) be an element in Ao(1) where z : Λ(1) → R

is a function of finite support, and let λ ∈ Λ(1). Let ([7, Def. 4.14]):

(6) qw,w′ = (qwqw′q−1
ww′)

1/2 (w,w′ ∈ W (1)).

By [7, Cor. 5.28],
Eo(x)Eo(λ) = qx,λEo(xλ)

and qλxλ−1,λ = qx,λ = qλ,x because qλ depends only on the image of λ in Λ,
and Λ is commutative. Then z commutes with Eo(λ) if and only if

∑

x∈Λ(1)

z(x)qx,λEo(xλ) =
∑

x∈Λ(1)

z(x)qλ,xEo(λx).

Replacing x by λxλ−1, the left hand side is equal to
∑

x∈Λ(1)

z(λxλ−1)qλ,xEo(λx).

Hence z belongs to the center of Ao(1) if and only if

z(λxλ−1)qx,λ = z(x)qx,λ for all x, λ ∈ Λ(1).

If z(.) is constant on the conjugacy classes of Λ(1), then z central in Ao(1).
For the converse, there is a problem when qx,λ is not invertible in R, but it
can be raised. We have qx,λ = 1 if and only if ℓ(λx) = ℓ(λ) + ℓ(x). If z central
in Ao, the next lemma implies that z(.) is constant on the conjugacy classes
of Λ(1). Admitting the next lemma, the proposition is proved. �

Lemma 2.4. Let x, x′ be two conjugate elements of Λ(1). There exists λ ∈
Λ(1) such that ℓ(λx) = ℓ(λ) + ℓ(x) and x′ = λxλ−1.

Proof. We choose an arbitrary element λ ∈ Λ(1) such that x′ = λxλ−1. We
choose λ′ ∈ T/To(1) such that ν(λλ′) and ν(x) belong to the same closed
Weyl chamber. We have ℓ(λλ′x) = ℓ(λλ′) + ℓ(x) (cp. [7, Ex. 5.12]) and x′ =
(λλ′)x(λλ′)−1 because λ′ belongs to the center of Λ(1). �

The orientation o is associated to a Weyl chamber Do of V . We denote by
∆o the set of reduced roots α ∈ Φ positive on Do such that Kerα is a wall of
Do, by So ⊂ W0 the set of reflections sα for α ∈ ∆o. The opposite orientation
associated to the opposite Weyl chamber −Do gives the same set So. The set
S = Saff ∩W0 is associated to the dominant and antidominant Weyl chambers
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D+ and −D+. For s ∈ So(1), there exists a unique root α ∈ ∆o ∪−∆o taking
positive values on D+ such that the image of s in So is sα. We say that the
root α of Φ is associated to (o, s).

For γ ∈ Φ let eγ ∈ N>0 be the positive integer such that the image of Φ by
the map γ 7→ eγγ is a reduced root system Σ of affine Weyl group W aff . If α is
the root of Φ is associated to (o, s), the root β = eαα of Σ is called associated
to (o, s).

Let zo be a central element of Ao(1). By Proposition 2.3:

(7) zo =
∑

c

zo(c)Eo(c) (zo(c) ∈ R).

Let s ∈ So(1). In the R-basis (Eo(w))w∈W (1) of HR(qs, cs), we write

−zoEo(s) + Eo(s)zo = z′o + z′′o

where z′′o ∈ Ao(1) and the component of z′o in Ao(1) is 0. The elements zo
and Eo(s) commute if and only if z′o = z′′o = 0. We denote by scs−1 the set of
sλs−1 for λ ∈ c.

Lemma 2.5. We have

z′′o = Eo(s)
∑

c

zo(c)(Eo(c)− Eo•s(c)),

z′o = Eo(s)
∑

c

(zo(c)− zo(scs
−1))Eo•s(c) =

∑

c

z′o(sc)Eo(sc),

with z′o(sc) = qs,c(zo(c)− zo(scs
−1)).

Proof. The equality qscs−1,s = qs,c deduced from (6), implies by the product
formula (3)

Eo(scs
−1)Eo(s) = Eo(s)Eo•s(c).

Writing zoEo(s) = Eo(s)
∑

c zo(c)Eo•s(s
−1cs) = Eo(s)

∑
c zo(scs

−1)Eo•s(c)
we obtain

−zoEo(s) + Eo(s)zo = Eo(s)
∑

c

zo(c)Eo(c)− zo(scs
−1)Eo•s(c),

from which we deduce −zoEo(s) + Eo(s)zo = z′o + z′′o with z′o, z
′′
o as in the

lemma. The element z′′o belong to Ao(1) by the Bernstein relations (4) and the
component of

z′o =
∑

c

z′o(sc)Eo(sc), z′o(sc) = qs,c(zo(c)− zo(scs
−1))

in Ao(1) is 0 because sΛ(1) ∩ Λ(1) = ∅. �

Proposition 2.6. Let s ∈ So(1) and let c be a conjugacy class in Λ(1). Then

Eo(s) and Eo(c) + Eo(scs
−1) commute.

Eo(s) and Eo(c) commute if and only if c = scs−1.
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Proof. a) Let β be the root of Σ associated to (o, s). We note that ν is constant
on a conjugacy class of Λ(1), scs−1 is a conjugacy class of Λ(1), ν(sβλs

−1
β ) =

sβ(ν(λ)) for λ ∈ Λ and sβ(x) = x− β(x)β∨ for x ∈ V where β∨ is the coroot
of β. Therefore we have

ν(scs−1) = ν(c)− β ◦ ν(c)β∨.

If c = scs−1 then β ◦ ν(c) = 0.
If β ◦ ν(c) = 0 then qs,c = qc,s = 1 and Eo•s(c) = Eo(c). This implies

Eo(s)Eo(c)− Eo(c)Eo(s) = Eo(s)Eo•s(c)− Eo(c)Eo(s) = Eo(sc)− Eo(cs).

We deduce that Eo(s) and Eo(c) commute when c = scs−1, and that Eo(s)
and Eo(c) do not commute when c 6= scs−1 and β ◦ ν(c) = 0.

b) We suppose β ◦ ν(c) 6= 0. We prove that either Eo(c) or Eo(scs
−1) does

not commutes with Eo(s).
When ℓ(sc) = 1 + ℓ(c), take zo = Eo(c) in Lemma 2.5. The coefficient of

z′o on Eo(sc) is qs,c = (qsqcq
−1
sc )1/2 = 1. We have z′o 6= 0 hence Eo(c) does not

commute with Eo(s).
When ℓ(sc) = −1 + ℓ(c) we have ℓ(cs) = 1 + ℓ(c). Take zo = Eo(scs

−1).
We have Eo(scs

−1) = Eo(s
−1cs) because s2 ∈ Zk. We have β ◦ ν(c) = −β ◦

ν(scs−1) 6= 0. The coefficient of z′o on Eo(cs) is qs,s−1cs = (qsqs−1csq
−1
cs )1/2 = 1.

We have z′o 6= 0 hence Eo(scs
−1) does not commute with Eo(s).

c) We show that Eo(c) + Eo(scs
−1) commutes with Eo(s). In Lemma 2.5

we take zo = Eo(c) + Eo(scs
−1). We have obviously z′o = 0.

When the qs = 1 we show that z′′o = 0. By symetry, we can suppose
β ◦ ν(c) < 0 and β ◦ ν(scs−1) > 0. The Bernstein relations (4) give an explicit
element Bo,n ∈ Ao(1) and different signs ǫo•s(1, s) 6= ǫo(1, s) such that

Eo(s)(Eo•s(c)− Eo(c)) = ǫo•s(1, s)Bo,nEo(c),
Eo(s)(Eo•s(scs

−1)− Eo(scs
−1)) = ǫo(1, s)Eo(c)Bo,n.

As Eo(c) is central in Ao,

−z′′o = Eo(s)(Eo•s(c)− Eo(c) + Eo•s(scs
−1)− Eo(scs

−1)) = 0.

We proved that Eo(s) commutes with Eo(c) + Eo(scs
−1) when the qs are 1.

We choose indeterminates qs for s ∈ Saff/ ∼ of square q2s = qs. By Lemma
5.43 in [7], we deduce that q−1

s Eo(s) commutes with q−1
c Eo(c)+q−1

scs−1Eo(scs
−1)

in the algebra HR[(qs,q
−1
s )](qs, cs)]. We have qc = qscs−1 (cp. [7, Prop. 5.13]).

Hence Eo(s) commutes with Eo(c) + Eo(scs
−1) in the generic subalgebra

HR[(qs)](qs, cs)]. We specialize qs 7→ qs hence Eo(s) commutes with Eo(c) +

Eo(scs
−1) in HR(qs, cs).

d) We deduce from b) and c) that both Eo(c) and Eo(scs
−1) do not com-

mutes with Eo(s) when β ◦ ν(c) 6= 0.
�

Proposition 2.7. For any conjugacy class C of W (1) contained in Λ(1), the
element

E(C) = Eo(C) =
∑

λ∈C

Eo(λ),
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does not depend on the choice of the orientation o.
The R-algebra Ao(1)

W (1) does not depend on the choice of o, is R-free of

basis (E(C)) for the conjugacy classes C of W (1) contained in Λ(1), and is

contained in the center ZR(qs, cs).

Proof. Let s ∈ So(1). By Proposition 2.6 and its proof, zo = Eo(C) commutes
with Eo(s) and z′′o = Eo(s)(Eo•s(C)−Eo(C)) = 0. When qs = 1 for all s, Eo(s)
is invertible and z′′o = 0 implies Eo•s(C) = Eo(C). As qC = qw is constant on
C we have Eo•s(C) = Eo(C) in the generic algebra HR[(qs,q

−1
s )](qs, cs)], hence

in the generic subalgebra HR[(qs)](qs, cs)]. This is valid for any s ∈ So(1), and
the set So(1) generates the group W0(1). The spherical orientations are o • w
for w ∈ W0(1). Hence Eo•w(C) = Eo(C) for any w ∈ W0(1). We denote this
element by E(C).

We show that E(C) belongs to the center of HR[(qs)](qs, cs). Indeed, for the

orientation o associated to the antidominant Weyl chamber −D+, we have:
So = Saff ∩ W0, Eo(s) = Ts for s ∈ So(1), and E(C) commutes with Ao(1)
and Ts for s ∈ So(1). By the braid relations (1), E(C) commutes with Tw

for w ∈ W0(1). We have W (1) = Λ(1)W0(1) with Zk = Λ(1) ∩ W0(1). The
product formula (3) implies that HR[(qs)](qs, cs)] is generated by Ao(1) and
Tw for w ∈ W0(1).

The proposition is proved in HR[(qs)](qs, cs). By specialization qs 7→ qs the
proposition is true in HR(qs, cs). �

The following proposition implies that the intersection of Ao(1) with
ZR(qs, cs) is contained in Ao(1)

W (1). We recall the reduced root system
Σ = {eαα | α ∈ Φ} attached to W aff [7].

Proposition 2.8. Let s ∈ So(1), let β ∈ Σ be the root associated to (o, s) and
let zo be a central element of Ao(1) as in (7). Then Eo(s) commutes with zo
if and only if zo(c) = zo(scs

−1) for all c such that β ◦ ν(c) 6= 0.

Proof. We suppose that z0 6= 0, and thanks to Proposition 2.6, that zo(c) 6= 0
implies zo(scs

−1) = 0. We will prove that z′o or z′′o does not vanish. This
implies that zo does not commute with Eo(s) by Lemma 2.5.

If there exists c with zo(c) 6= 0 and β ◦ ν(c) = 0, then ℓ(sc) = ℓ(c) + 1,
qs,c = 1 and z′o(sc) = zo(c). Hence z′o 6= 0.

We suppose, as we may, that zo(c) 6= 0 implies β ◦ ν(c) 6= 0 and zo(scs
−1) =

0. We prove this time that z′′o 6= 0.
We analyze z′′o = −

∑
c zo(c)

∑
λ∈c Eo(s)(Eo•s(λ) − Eo(λ)) using the Bern-

stein relations (4) (cp. [7, Thm. 5.45 and Rem. 5.46]) for λ ∈ c:

Eo(s)(Eo•s(λ) − Eo(λ)) = ǫo(1, s)ǫβ(c)

n(c)−1∑

k=0

q(k, λ)c(k, λ)Eo(µ(k, λ))

where β◦ν(c) = ǫβ(c)n(c) with ǫβ(c) ∈ {±1} and n(c) > 0, and β◦ν(µ(k, λ)) =
2k − n(c).

Münster Journal of Mathematics Vol. 7 (2014), 363–379



372 Marie-France Vignéras

Let m = max{n(c) | zo(c) 6= 0}. To prove the proposition it suffices to show
that the component z′′o,m of z′′o in ⊕|β◦ν(λ)|=mREo(λ) is not 0.

Only the terms with k = 0 in the expansion of Eo(s)(Eo•s(λ)−Eo•s(λ)) for
λ ∈ c with n(c) = m and zo(c) 6= 0 contribute to z′′o,m. Up to multiplication
by a sign, z′′o,m is equal to

∑

c,n(c)=m

zo(c)ǫβ(c)
∑

λ∈c

q(0, λ)c(0, λ)Eo(µ(0, λ)).

By [7, Rem. 5.46], q(0, λ)c(0, λ)Eo(µ(0, λ)) is equal to

csEo(λ) if ǫβ(c) = −1, Eo(sλs
−1)cs if ǫβ(c) = 1.

We deduce

±z′′o,m =
∑

c,β◦ν(c)=−m

zo(c)ǫβ(c)csEo(c) +
∑

c,β◦ν(c)=m

zo(c)ǫβ(c)Eo(scs
−1)cs.

As β ◦ ν(c) = −β ◦ ν(scs−1), and zo(c) 6= 0 implies zo(scs
−1) = 0, we obtain

z′′o,m 6= 0. �

Corollary 2.9. The intersection of Ao(1) with ZR(qs, cs) is Ao(1)
W (1).

Proof. Proposition 2.8 and 2.7. �

The last step of the proof of the equality ZR(qs, cs) = Ao(1)
W (1) is given

by:

Proposition 2.10. When o is the orientation associated to the anti-dominant

Weyl chamber −D+, an element of HR(qs, cs) which commutes with each ele-

ment of Ao(1) is contained in Ao(1).

Proof. We pick a nonzero element in HR(qs, cs)−Ao(1),

z =
∑

x∈W (1)

z(x)Eo(x),

which commute with Eo(λ) for all λ ∈ Λ(1). We pick an element w ∈ W (1) of
maximal length in the nonempty set of x ∈ W (1) − Λ(1) with z(x) 6= 0. We
will show that there exists λ ∈ Λ(1) such that

(8) ℓ(w) < ℓ(λwλ−1), ℓ(λw) = ℓ(λ) + ℓ(w).

We have qλ,w = 1 (cp. [7, Lemma 4.13]) and Eo(λw) = Eo(λ)Eo(w). We have
Eo(λ)z = zEo(λ) and the coefficient of Eo(λ)z on Eo(λw) is z(w) 6= 0.

We will show that the coefficient of Eo(λw) in zEo(λ) is z(λwλ
−1)qλwλ−1,λ.

We have z(λwλ−1) = 0 because λwλ−1 does not belong to Λ(1) and ℓ(w) <
ℓ(λwλ−1). Our hypothesis was absurd and the proposition is proved if we
admit the existence of λ and the value of the coefficient of Eo(λw) in zEo(λ),
given by the next two lemmas. �

Lemma 2.11. Let w ∈ W not in Λ. There exists λ ∈ Λ such that

(9) ℓ(w−1λwλ−1) > 2ℓ(w), ℓ(λw) = ℓ(λ) + ℓ(w) > ℓ(w).
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The lemma is stronger than the claim in the proof of Proposition 2.10 be-
cause (9) implies 2ℓ(w) < ℓ(w−1λwλ−1) ≤ ℓ(w) + ℓ(λwλ−1) hence ℓ(w) <
ℓ(λwλ−1).

Proof. Replacing λ by w−1λw which has the same length, (9) is replaced by

(10) ℓ(λwλ−1w−1) > 2ℓ(w), ℓ(wλ) = ℓ(λ) + ℓ(w) > ℓ(w).

We show first that there exists λ ∈ Λ satisfying the weaker property

(11) ℓ(λwλ−1w−1) > 0, ℓ(wλ) = ℓ(λ) + ℓ(w) > ℓ(w).

We write w = w0λ0 ∈ W0 ⋉ Λ with w0 6= 1. The length formula [7, Cor. 5.10]
shows that ℓ(wλ) = ℓ(w) + ℓ(λ) is equivalent to

1) (γ ◦ ν)(λ), (γ ◦ ν)(λ0) have the same sign when γ ∈ Σ+, w0(γ) > 0,
2) (γ ◦ ν)(λ), 1 + (γ ◦ ν)(λ0) have the same sign when γ ∈ Σ+, w0(γ) < 0.

We have:
ℓ(λwλ−1w−1) = ℓ(λw0λ

−1w−1
0 ) because Λ is commutative,

ℓ(λw0λ
−1w−1

0 ) > 0 ⇔ (γ ◦ ν)(λw0λ
−1w−1

0 ) 6= 0 for some γ ∈ Σ, by the
length formula [7, Cor. 5.10],

⇔ ν(λw0λ
−1w−1

0 ) 6= 0 ⇔ ν(λ) 6= w0(ν(λ)).
The existence of λ ∈ Λ satisfying (11) is equivalent to the existence of λ ∈ Λ

satisfying

(12) 0 6= ν(λ) 6= w0(ν(λ)), ℓ(λw) = ℓ(λ) + ℓ(w).

It is obvious that there are infinitely many λ ∈ Λ satisfying these conditions.
In fact, the existence of λ ∈ Λ satisfying (11) is not a weaker property than

the existence of λ ∈ Λ satisfying (10). Indeed, let λ ∈ Λ satisfying (11), we
show that, for a large odd integer n, λn satisfies (10).

We have (λwλ−1w−1)n = λnwλ−nw−1 because Λ is commutative. If n is
large and ℓ(λwλw−1) > 0 then ℓ(λnwλ−nw−1) = nℓ(λwλw−1) > 2ℓ(w). In
particular, ℓ(wλ) = ℓ(λ) + ℓ(w) implies ℓ(wλn) = ℓ(λn) + ℓ(w) for odd n > 0.
Obviously ℓ(λ) + ℓ(w) > ℓ(w) implies ℓ(λn) + ℓ(w) > ℓ(w). �

Lemma 2.12. The coefficient of Eo(λw) in zEo(λ) is z(λwλ−1)qλwλ−1,λ, for

z, λ, w in the proof of Proposition 2.10.

Proof. We write Eo(x)Eo(λ) for x ∈ W (1), as

Eo(x)Eo•x(λ)+Eo(x)(Eo(λ)−Eo•x(λ)) = qx,λEo(xλ)+Eo(x)(Eo(λ)−Eo•x(λ)),

and zEo(λ) = z1 + z2 where

z1 =
∑

x∈W (1)

z(x)qx,λEo(xλ), z2 =
∑

x∈W (1)

z(x)Eo(x)(Eo(λ) − Eo•x(λ)).

The coefficient of z1 on Eo(λw) is z(λwλ−1)qλwλ−1,λ as xλ = λw ⇔ x =
λwλ−1. The coefficient of z2 on Eo(λw) is 0 because

a) if x ∈ Λ(1) we have o • x = o.
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b) if x ∈ W (1)− Λ(1), we have (cp. [7, Thm. 4.5, Cor. 5.26])

Eo(x) ∈ Tx +
∑

y<x

RTy,

Eo(λ)− Eo•x(λ) ∈
∑

u<λ

RTu,

TyTu ∈
∑

v≤yu

RTv,

Eo(x)(Eo(λ) − Eo•x(λ)) ∈
∑

v≤yu,u<λ,y<x

RTv,

and from v ≤ yu, u < λ, y < x, we have ℓ(v) < ℓ(λ) + ℓ(x) ≤ ℓ(w) + ℓ(λ) =
ℓ(λw). �

This ends the proof of the first part of Theorem 1.3 describing the center
ZR(qs, cs). The second part generalizes the following finiteness properties:

Proposition 2.13. The group algebra R[W ] is a finitely generated module

over its center. If the ring R is noetherian, the center is a finitely generated

algebra, and R[W ] is a noetherian algebra.

The group algebra R[W (1)] satisfies the same properties.

Proof. i) T/T0(1) is a free, finitely generated commutative group which is
normalized by W (1). The action of W (1) by conjugation on T/T0(1) factorizes
by W0. By a general theorem ([1, AC V.1.9 Thm. 2 p. 29]) for any finitely
generated commutative R-algebra with an action of a group with finite orbits,
R[T/T0(1)] is a finitely generated R[T/T0(1)]

W0 -module; moreover, if R is
noetherian, R[T/T0(1)]

W0 is a finitely generated R-algebra.
ii) The center R[Λ(1)]W (1) of R[W (1)] contains R[T/T0(1)]

W0 , R[W (1)]
is a finitely generated R[Λ(1)]-module and R[Λ(1)] is a finitely generated
R[T/T0(1)]-module, because the index of T/T0(1) in Λ(1) and the index of
Λ(1) in W (1) are finite.

iii) R[W (1)] is finitely generated over R[Λ(1)]W (1) and over R[T/T0(1)]
W0 .

If the ring R is noetherian, then R[W (1)] is noetherian, R[Λ(1)]W (1) is a finitely
generated R[T/T0(1)]

W0 -module hence a finitely generated R-algebra. �

The proof of these finiteness properties for the R-algebra HR(qs, cs) (the
second part of Theorem 1.3) follows the same pattern. We pick a spherical
orientation o. The R-module Ao(T/T0(1)) generated by Eo(λ) for λ ∈ T/T0(1)
is a commutative algebra with an action of W (1) factorizing through W0. We
claim:

a) The R-algebra Ao(T/T0(1)) is finitely generated.

Therefore, Ao(T/T0(1)) is a finitely generated Ao(T/T0(1))
W0 -module; more-

over, if R is noetherian, Ao(T/T0(1))
W0 is a finitely generated R-algebra

(cp. [1, AC V.1.9 Thm. 2 p. 29]). The center A
W (1)
o = ZR(qs, cs) contains

Ao(T/T0(1))
W0 . Theorem 1.3 follows from:
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b) The left Ao(1)-module HR(qs, cs) is finitely generated,
c) The left Ao(T/T0(1))-module Ao(1) is finitely generated.

It remains to prove the claims a), b) and c). When the homomorphism
ν : Λ(1) → V defined by (5) sends λ, λ′ ∈ Λ(1) to the same closed Weyl
chamber, we have ℓ(λ) + ℓ(λ′) = ℓ(λλ′) and the product formula (3) is simply

Eo(λ)Eo(λ
′) = Eo(λλ

′).

We denote by Λ(1)D the inverse image by ν of the closure of a Weyl chamber
D of V . The maximal subgroup of the monoid Λ(1)D is the kernel Ω(1)∩Λ(1)
of ν.

We denote L = T/T0(1) and LD = L∩Λ(1)D. The R-module of basis Eo(λ)
for λ ∈ Λ(1)D is a subalgebra Ao,D and the R-algebra Ao(LD) of basis Eo(λ)
for λ ∈ LD satisfy

Ao,D ≃ R[Λ(1)D], Ao(LD) ≃ R[LD],(13)

Ao(1) = ∪DAo,D, Ao(L) = ∪DAo(LD),(14)

where D runs over all the Weyl chambers of V .

Lemma 2.14. LD is a finitely generated monoid of finite index in Λ(1)D.

Proof. We have exact sequences

1 → L ∩Ω(1) → LD → ν(L) ∩D → 1,

1 → Λ(1) ∩ Ω(1) → Λ(1)D → ν(Λ(1)) ∩D → 1.

The monoid ν(L)∩D is finitely generated of finite index in the monoid ν(Λ(1))∩
D. The commutative group L∩Ω(1) is finitely generated because any subgroup
of L is free and finitely generated. The index of L ∩ Ω(1) in Λ(1) ∩ Ω(1) is
finite because Λ(1)/L is finite. �

We deduce the claims a) and c):

Lemma 2.15. The R-algebra Ao(T/T0(1)) is finitely generated and Ao(1) is

a finitely generated left and right Ao(T/T0(1))-module. In particular, the R-

algebra Ao(1) is finitely generated.

Proof. By the Lemma 2.14, Ao(LD) is a finitely generated R-algebra and Ao,D

is a finitely generated Ao(LD)-module. �

Lemma 2.16. Λ contains a finite set X such that, for any (λ,w) ∈ Λ ×W0,

there exists µ ∈ X such that

ℓ(λw) = ℓ(λµ−1) + ℓ(µw).

Proof. It suffices to prove the lemma for an arbitrary fixed element of the finite
group W0. Let w ∈ W0 and let λ, µ ∈ Λ. By the length formula [7, Cor. 5.10]
ℓ(λw) is equal to the sum of |α ◦ ν(λ)| over the positive roots α such that
w−1(α) is positive, plus the sum of |β ◦ ν(λ)− 1| over the positive roots β such
that w−1(β) is negative. We deduce that ℓ(λw) = ℓ(λµ−1)+ ℓ(µw) if and only
if
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α ◦ ν(µ) > 0 implies α ◦ ν(λ) ≥ α ◦ ν(µ),
α ◦ ν(µ) < 0 implies α ◦ ν(λ) ≤ α ◦ ν(µ),
β ◦ ν(µ) > 1 implies β ◦ ν(λ) ≥ β ◦ ν(µ),
β ◦ ν(µ) < 1 implies β ◦ ν(λ) ≤ β ◦ ν(µ).

for all α, β as above. It is clear that, for any λ ∈ Λ, there exists a positive
integer N such that ℓ(λw) = ℓ(λµ−1) + ℓ(µw) for some µ with |γ ◦ ν(µ)| ≤ N,
for all positive roots γ. There are finitely many choices of x(µ) = (γ ◦ν(µ))γ>0

with |γ ◦ ν(µ)| ≤ N for all positive roots γ, and µ ∈ Λ. We deduce that there
are finitely many elements µ1, . . . , µr such that, for any λ ∈ Λ, there exists µi

such that ℓ(λw) = ℓ(λµ−1
i ) + ℓ(µiw). �

We choose a finite set X ⊂ Λ as in Lemma 2.16, and we denote by X(1) and
XW0(1) the inverse image in W (1) of the finite sets X and {µw | µ ∈ X, w ∈
W0}.

Lemma 2.17. The left Ao(1)-module HR(qs, cs) is generated by the elements

Eo(w) for w in the finite set XW0(1), and the R-algebra HR(qs, cs) is finitely

generated.

Proof. W (1) = Λ(1)W0(1) and for w = λw0 ∈ W (1) with λ ∈ Λ(1), w0 ∈
W0(1), there exists µ ∈ X(1) such that ℓ(λw0) = ℓ(λµ−1) + ℓ(µw0). Hence
qλµ−1,µw0

= 1 and

Eo(w) = Eo(λw0) = Eo(λµ
−1)Eo(µw0).

We deduce the first part of the lemma. As the R-algebra Ao(1) is finitely
generated by Lemma 2.15, the same is true for the R-algebra HR(qs, cs). �

We deduce the claim b). The proof of Theorem 1.3 is complete.

3. Remarks

3.1. When the order of the finite commutative group Zk is invertible in R,
and when R contains a root of unity of order the least common multiple of
the orders of the elements of Zk (we say that R splits Zk), the idempotents of
R[Zk]

(15) eχ = |Zk|
−1

∑

t∈Zk

χ−1(t)t

for all R-characters χ of Zk, are orthogonal of sum 1. When X is a W0-orbit
of characters of Zk, the idempotent eX =

∑
χ∈X eχ is central in HR(qs, cs).

Lemma 3.2. When R splits Zk, the R-algebra HR(qs, cs) is the direct sum of

the subalgebras eXHR(qs, cs) when X runs over the W0-orbits of characters of

Zk. As a R-module,

eXHR(qs, cs) = ⊕χ∈X eχHR(qs, cs), eχHR(qs, cs) ≃ χ⊗R[Zk] HR(qs, cs).
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3.3. When qs = 1 for s ∈ Saff ,

Eo(λ)Eo(w) = Eo(λw) for λ ∈ Λ(1) and w ∈ W (1).

The linear map λ 7→ Eo(λ) from R[T/To(1)] ⊂ R[Λ(1)] to Ao(T/To(1)) ⊂
Ao(1) are algebra isomorphisms and

HR(1, cs) =
∑

w∈W0(1)

Ao(1)Eo(w).

3.4. Set Jo(1) =
∑

s∈Saff/∼ qsAo(1). In the generic algebra HR[(qs](qs, cs),

for any orientation o, we have the product formula (3)

Eo(λ)Eo(λ
′) = qλ,λ′Eo(λλ

′),

and qλ,λ′ = 1 if and only if λ, λ′ ∈ Λ(1)D for some Weyl chamber D. By
specialization of the indeterminates qs to qs, we obtain in HR(qs, cs),

Eo(λ)Eo(λ
′) = Eo(λλ

′) if λ, λ′ ∈ Λ(1)D for some D,

Eo(λ)Eo(λ
′) ∈ Jo(1) otherwise.

We denote by W0(µ) the W0-orbit of µ in X∗(T ) and by X∗,D(T ) the monoid
of µ ∈ X∗(T ) such that ν(µ(pF )) belongs to the closure of D. We denote by
C(µ) the conjugacy class in W (1) of the image λ of µ(pF ) in Λ(1), and we set
Eo(µ) = Eo(λ). We have

E(C(µ)) =
∑

µ′∈W0(µ)

Eo(µ
′).

Proposition 3.5. Let µ1, µ2 ∈ X∗,D(T ). In HR(qs, cs) we have

E(C(µ1))E(C(µ2)) ∈ E(C(µ1 + µ2)) + Jo(1).

Proof. We fix the Weyl chamber D. For another Weyl chamber D′ we denote
by wD′ the unique element of W0 such that wD′(D) = D′. For µ ∈ X∗,D(T ),
µD′ = wD′(µ) belongs to X∗,D′(T ). We have µ1,D′ + µ2,D′ = (µ1 + µ2)D′ and

E(C(µ)) =
∑

µ
D′

Eo(µD′)

(the sum is not over the Weyl chambers D′, but over the distinct elements
µD′).

E(C(µ1))E(C(µ2)) is equal modulo Jo(1) to the sum of Eo(µ
′
1 + µ′

2) over
the pairs (µ′

1, µ
′
2) ∈ W0(µ1) ×W0(µ2) which belong to X∗,D′(T ) for the same

Weyl chamber D′.
�
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3.6. We recall the involutive R automorphism of HR(qs, cs) defined by

ι(Tw) = (−1)ℓ(w)T ∗
w for w ∈ W (1),

where T ∗
w = (Ts1 − cs1) . . . (Tsr − csr )Tu if w = s1 . . . sru is a reduced decom-

position of w, si ∈ Saff(1), u ∈ Ω(1), ℓ(w) = r (cp. [7, Prop. 4.23]). Let o
be a spherical orientation attached to a Weyl chamber D, and o the spherical
orientation attached to the opposite Weyl chamber −D. We recall (cp. [7,
Lemma 5.31])

ι(Eo(w)) = (−1)ℓ(w)Eo(w) for w ∈ W (1).

Proposition 3.7. If C is a finite conjugacy class of W (1), we have

ι(E(C)) = (−1)ℓ(C)E(C).

Proof. The length is constant on C hence

ι(E(C)) =
∑

µ∈C

ι(Eo(µ)) = (−1)ℓ(C)
∑

µ∈C

Eo(µ) = (−1)ℓ(C)E(C),

as E(C) = Eo(C) does not depend on the choice of the orientation o. �

Remark 3.8. When µ ∈ X∗(T ), ℓ(C(µ)) is an even number (cp. [6]), hence
E(C(µ)) is fixed by ι.

Added in proof on August 14, 2014

1) The Bernstein relations (4), therefore also Lemma 2.5, Proposition 2.6,
and Proposition 2.8, are valid only for s ∈ (S ∩ So)(1) where S = W0 ∩ Saff

and not for s ∈ So(1) [7, Thm. 5.45], hence the arguments for Eo(C) being
independent of the orientation o in Proposition 2.7 are not valid.

Proof that Eo(C) is independent of o. We reduce to qs = 1 for s ∈ Saff .
Then, this results from the formula

(16) Eo(w)
−1Eo(λ)Eo(w) = Eo•w(w

−1λw) (w ∈ W0(1), λ ∈ Λ(1)),

for the anti-dominant orientation o, because Eo(C) is central and W0(1) acts
transitively on the (spherical) orientations.

2) The proof of Lemma 2.16 must be replaced by:

Proof of Lemma 2.16. Let L = {~ℓ(w) : γ 7→ ℓγ(w) : Σ+ → Z | w ∈ W}
where for (λ,w0) ∈ Λ×W0, ℓγ(λw0) is equal to ([7, Cor. 5.9])

α ◦ ν(λ) if γ ∈ w0(Σ
+), γ ◦ ν(λ) − 1 if γ ∈ w0(Σ

−).

For w,w′ ∈ W , we write ~ℓ(w) ≤ ~ℓ(w′) if |ℓγ(w)| = |ℓγ(w
′)|+ |ℓγ(w) − ℓγ(w

′)|

for all γ ∈ Σ+. We say that ~ℓ(w) is minimal if Λw = Λw′ and ~ℓ(w′) ≤ ~ℓ(w)

implies ~ℓ(w′) = ~ℓ(w). As in [4, Lem. 4.2] one shows that the set Lmin of
minimal elements of L is finite. The finite subset X = ∪w0∈W0

X(w0) of Λ
where Lmin = ∪w0∈W0

X(w0)w0 satisfies Lemma 2.16 because

(17) Λw = Λw′ and ~ℓ(w′) ≤ ~ℓ(w) ⇒ ℓ(w) = ℓ(w′) + ℓ(ww′−1).
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In the left hand side of (17), ww′−1 ∈ Λ implies ℓγ(ww
′−1) = ℓγ(w)−ℓγ(w

′) for

all γ ∈ Σ+; with ~ℓ(w′) ≤ ~ℓ(w) we have |ℓγ(w)| = |ℓγ(w
′)|+ |ℓγ(w) − ℓγ(w

′)| =
|ℓγ(w

′)|+ |ℓγ(ww
′−1)|. Apply the length formula [7, Prop. 5.7]

ℓ(w) =
∑

γ∈Σ+

|ℓγ(w)|

to obtain (17).
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