The pro-p-Iwahori-Hecke algebra of a reductive p-adic group, II

Marie-France Vignéras

(Communicated by Christopher Deninger)

This paper is dedicated to Peter Schneider on the occasion of its 60-th birthday, in appreciation for his insights, precision and generosity in mathematics.

Abstract. For any commutative ring R and any reductive p-adic group G, we describe the center of the pro-p-Iwahori–Hecke R-algebra of G. We show that the pro-p-Iwahori–Hecke algebra is a finitely generated module over its center and is a finitely generated R-algebra. When the ring R is noetherian, the center is a finitely generated R-algebra and the pro-p-Iwahori–Hecke R-algebra is noetherian. This generalizes results known only for split groups.

1. Results

Let R be a commutative ring, let F be a local nonarchimedean field, of finite residue field k with q elements and of characteristic p, let G, T, Z, N be the groups of F-points of a connected reductive F-group G of maximal F-split torus T of G-centralizer Z and G-normalizer N. The group Z admits a unique parahoric subgroup Z_0 , and Z_0 admits a unique pro-p-Sylow $Z_0(1)$. The unicity of these groups imply that they are normalized by N. The group $Z_k = Z_0/Z_0(1)$ is the group of k-points of a k-torus.

Let $W_0 = N/Z$, $W = N/Z_0$ and $W(1) = N/Z_0(1)$. Then W_0 is the relative finite Weyl group of G, the quotient map $W \to W_0$ of kernel $\Lambda = Z/Z_0$ splits, the group W(1) is an extension of W by Z_k .

We will denote by X(1) the inverse image in W(1) of a subset X of W, and we write \tilde{w} for an arbitrary element of W(1) of image $w \in W$.

The group Λ is commutative but the group $\Lambda(1) = Z/Z_0(1)$ may be not commutative. A conjugacy class C of W is contained in Λ or disjoint from Λ . The same is true for W(1) and $\Lambda(1)$.

The Iwahori–Hecke R-algebra \mathcal{H}_R of G is a deformation of the group R-algebra R[W] and the pro-p-Iwahori–Hecke R-algebra $\mathcal{H}_R(1)$ of G is a deformation of the group R-algebra R[W(1)], cp. [7].

The center of the R-algebra of the group W or of W(1) can be easily determined using the following following property:

Lemma 1.1. A conjugacy class C of W is finite if and only if C is contained in Λ . The same is true for W(1) and $\Lambda(1)$.

As a corollary, the center of the R-algebra R[W] is equal to $R[\Lambda]^{W_0}$ and is R-free of basis

$$z_C = \sum_{\lambda \in C} \lambda,$$

for all finite conjugacy classes C of W. The group algebra R[W] is a finitely generated module over its center. If the ring R is noetherian, the center is a finitely generated algebra and R[W] is a noetherian algebra. The same is true for R[W(1)]. We will prove that these properties remain true for the Iwahori and pro-p-Iwahori R-algebras.

For each (spherical) orientation o, we denote by $(E_o(w))_{w\in W}$, resp. $(E_o(w))_{w\in W(1)}$, the (alcove walk or Bernstein) basis of \mathcal{H}_R , resp. $\mathcal{H}_R(1)$ (cp. [7, Cor. 5.26, Cor. 5.28]).

Theorem 1.2. The center \mathcal{Z}_R of the Iwahori–Hecke R-algebra \mathcal{H}_R is R-free of basis

$$E(C) = \sum_{\lambda \in C} E_o(\lambda)$$

for all finite conjugacy classes C of W. The basis elements E(C) do not depend on the choice of the orientation o.

The Iwahori-Hecke R-algebra is finitely generated and is a finitely generated module over its center. If the ring R is noetherian, the center is a finitely generated algebra, and the Iwahori-Hecke R-algebra is noetherian.

The center $\mathcal{Z}_R(1)$ of the pro-p Iwahori-Hecke R-algebra $\mathcal{H}_R(1)$ satisfies the same properties.

This theorem was proved by Bernstein for affine Hecke complex algebras [3], or when the group G is F-split [5], [6]. In his unpublished and nice diplomarbeit [4], Schmidt gave this theorem for certain pro-p-Iwahori–Hecke algebras, although his proof contains some gaps but the pattern of his proof is correct and we follow it. The Iwahori–Hecke or pro-p-Iwahori–Hecke algebras attached to reductive p-adic groups are more general than the affine Hecke algebras of Lusztig and than the pro-p-Iwahori–Hecke algebras of Schmidt.

We will prove the theorem for the R-algebras $\mathcal{H}_R(q_s, c_s)$ defined in the part I of our work [7] generalizing the pro-p-Iwahori-Hecke algebra. This allows to reduce some proofs to the simpler case $q_s = 1$.

We recall the definition of $\mathcal{H}_R(q_s, c_s)$, cp. [7]. There exists an affine Weyl Coxeter system $(W^{\mathrm{aff}}, S^{\mathrm{aff}})$ and a finitely generated commutative subgroup Ω normalizing S^{aff} , such that

$$W = W^{\mathrm{aff}} \rtimes \Omega.$$

We write $s \sim s'$ for two elements $s, s' \in S^{\text{aff}}$ which are W-conjugate. Let $(q_s)_{s \in S^{\text{aff}}/\sim}$ in R, and $(c_s)_{s \in S^{\text{aff}}(1)}$ in $R[Z_k]$ satisfying

$$c_{\tilde{s}t} = c_s t, \ c_{s'} = w c_s w^{-1}, \ (t \in Z_k, \ s' = w s w^{-1}, \ s, s' \in S^{\text{aff}}(1), \ w \in W(1)).$$

We set $q_{\tilde{s}} = q_s$. The *R*-algebra $\mathcal{H}_R(q_s, c_s)$ is the free *R*-module of basis $(T_w)_{w \in W(1)}$ endowed with the product satisfying

• The braid relations:

(1)
$$T_w T_{w'} = T_{ww'} \quad (w, w' \in W(1), \ell(w) + \ell(w') = \ell(ww')),$$

where $\ell(w) = \ell(w^{\text{aff}})$ if the image of w in W is $w^{\text{aff}} u$, $w^{\text{aff}} \in W^{\text{aff}}, u \in \Omega$ and ℓ the length of $(W^{\text{aff}}, S^{\text{aff}})$. Therefore the linear map sending t to T_t identifies $R[Z_k]$ to a subalgebra of $\mathcal{H}_R(q_s, c_s)$, and $s^2 \in Z_k$ and $c_s \in R[Z_k]$ identify to elements of $\mathcal{H}_R(q_s, c_s)$.

• The quadratic relations:

(2)
$$T_s^2 = q_s s^2 + c_s T_s \ (s \in S^{\text{aff}}(1)).$$

In our basic example, the pro-p-Iwahori-Hecke algebra, $q_s = [IsI : I] = [I(1)sI(1) : I(1)]$ where I is an Iwahori group of pro-p-Sylow I(1); when s belongs to a certain coset $sZ_{k,s} = Z_{k,s}s$ in W(1) of a subgroup $Z_{k,s}$ of Z_k defined in [7],

$$c_s = (q_s - 1)|Z_{k,s}|^{-1} \sum_{t \in Z_{k,s}} t.$$

The R-algebra $\mathcal{H}_R(q_s)$ generalizing the Iwahori-Hecke algebra is simpler. It admits the same definition with $c_s = q_s - 1$ and W instead of W(1). We have

$$\mathcal{H}_R(q_s) = R \otimes_{R[Z_k]} \mathcal{H}_R(q_s, q_s - 1)$$

for the homomorphism sending $t \in Z_k$ to 1.

The affine Weyl group $W^{\rm aff}$ is generated by the orthogonal reflections with respect to a set of affine hyperplanes in an Euclidean real vector space V. The finite Weyl group W_0 identifies with the subgroup of $W^{\rm aff}$ generated by the the reflections with respect to the hyperplanes containing 0. The group W acts by conjugation on Λ and

$$W = \Lambda \rtimes W_0.$$

The simply transitive action of the group W_0 on the Weyl chambers inflates to an action of W trivial on Λ and to an action of W(1) trivial on $\Lambda(1)$. The orientations are in bijection with the Weyl chambers, and inherit this action. For an orientation o and for w in W_0 or W or W(1), we denote by $o \bullet w$ the image of o by w^{-1} . We denote by S_o the set of reflections with respect to the walls of the Weyl chamber defining o. The R-basis $(E_o(w))_{w \in W(1)}$ of $\mathcal{H}_R(q_s,c_s)$ associated to o satisfies:

• the product formula [7, Thm. 5.25]:

(3)
$$E_o(w)E_{o\bullet w}(w') = q_{w,w'}E_o(ww') \quad (w,w' \in W(1)),$$
 where $q_{w,w'} = (q_wq_{w'}q_{ww'}^{-1})^{1/2}$ and $q_w = q_{s_1} \dots q_{s_r}$ if $w = \tilde{s}_1 \dots \tilde{s}_r \tilde{u}$ with $s_i \in S^{\text{aff}}, u \in \Omega$ is a reduced decomposition $(r \text{ minimal})$.

• the Bernstein relations [7, Thm. 5.45]:

(4)
$$E_o(s)E_o(\lambda) - E_o(s\lambda s^{-1})E_o(s) = \sum_{\mu \in \Lambda(1)} a_{o,s,\lambda}(\mu)E_o(\mu)$$

for $\lambda \in \Lambda(1)$, $s \in S_o(1)$, with explicit coefficients $a_{o,s,\lambda}(\mu) \in R$.

We have the subalgebra $\mathcal{A}_o(1)$ of basis $(E_o(\lambda))_{\lambda \in \Lambda(1)}$ with the natural action of W(1) coming from the conjugation on $\Lambda(1)$, (cp. [7, Cor. 5.26, Cor. 5.28]). Theorem 1.2 is a corollary of:

Theorem 1.3. The center $\mathcal{Z}_R(q_s, c_s)$ of $\mathcal{H}_R(q_s, c_s)$ is the ring $\mathcal{A}_o(1)^{W(1)}$ of W(1)-invariant elements of $\mathcal{A}_o(1)$. It is a free R-module of basis

$$E(C) = \sum_{\lambda \in C} E_o(\lambda)$$

for all finite conjugacy classes C of W(1). The basis elements E(C) do not depend on the choice of the orientation o.

The R-algebra $\mathcal{H}_R(q_s, c_s)$ is finitely generated and is a finitely generated module over its center $\mathcal{Z}_R(q_s, c_s)$. If the ring R is noetherian, the center $\mathcal{Z}_R(q_s, c_s)$ is a finitely generated R-algebra, and the R-algebra $\mathcal{H}_R(q_s, c_s)$ is noetherian.

Remark 1.4. The action of W on Λ factorizes through W_0 . The center of $\mathcal{H}_R(q_s)$ is $\mathcal{A}_o^{W_0}$ where \mathcal{A}_o is the commutative subring of basis $E_o(\lambda)$ for $\lambda \in \Lambda$.

This theorem generalizes our results on the center for G split [5]. In a sequel of this paper, when C is an algebraically closed field of characteristic p, this theorem will be used to generalize to any reductive connected group G, some results of Ollivier on pro-p-Iwahori–Hecke C-algebra when G is split: the embedding of the weighted spherical algebras in the pro-p Iwahori–Hecke R-algebra $\mathcal{H}_C(1)$, the inverse of the Satake isomorphism considered in [2] and the classification of the supersingular $\mathcal{H}_C(1)$ -modules.

2. Proofs

We denote by T the maximal split torus of G, and by $X^*(T)$ and $X_*(T)$ the lattices of characters and of cocharacters of T. Let ω be the valuation of F such that $\omega(F^\times) = \mathbb{Z}$. The kernel of the canonical map $t \mapsto (\chi \mapsto (\omega \circ \chi)(t)) : T \to \operatorname{Hom}(X^*(T), \mathbb{Z}) \simeq X_*(T)$ is the maximal compact subgroup T_0 of T. The choice of an uniformizer p_F defines a splitting of the exact sequence

$$1 \to T_0 \to T \to X_*(T) \to 1$$

sending $\mu \in X_*(T)$ to $\mu(p_F)$. We have $Z_0 \cap T = T_0$ and $Z_0(1) \cap T = T_0(1)$ is the unique pro-p-Sylow of T. The quotient $T_k = T_0/T_0(1)$ is the group of k-points of a split k-torus. The splitting induces isomorphisms

$$T \simeq T_0 \times X_*(T), \ T/T_0(1) \simeq T_k \times X_*(T).$$

The commutative finitely generated group $T/T_0(1)$ is central of finite index in $\Lambda(1)$. We recall the homomorphism

(5)
$$\nu: Z \to V = \mathbb{R} \otimes_{\mathbb{Z}} Q(\Phi^{\vee}) \mid \alpha \circ \nu(t) = -\omega \circ \alpha(t) \text{ for } \alpha \in \Phi, \ t \in T,$$

where $\Phi \subset X^*(T)$ is the set of roots of T in G. The homomorphism ν factorizes through $\Lambda = Z/Z_0$ and $\Lambda(1) = Z/Z_0(1)$.

Lemma 2.1. A conjugacy class of Λ is finite.

A conjugacy class of W is finite and contained in Λ , or infinite and disjoint from Λ .

The same is true for W(1) and $\Lambda(1)$.

Proof. A conjugacy class of W is contained in Λ or disjoint from Λ because Λ is normal in W. The same is true for W(1) and $\Lambda(1)$.

The group Λ is commutative and the conjugacy classes of W contained in Λ are the orbits of the finite Weyl group W_0 acting on Λ . They are of course finite.

The group $\Lambda(1)$ is not commutative but the conjugacy classes of $\Lambda(1)$ are finite, as the center of $\Lambda(1)$ contains $T/T_0(1)$ hence has a finite index. For $\lambda \in \Lambda(1)$ we denote by $c(\lambda)$ the conjugacy class of $\lambda \in \Lambda(1)$. We have $W(1) = \Lambda(1)W_0(1)$. Obviously $tc(\lambda)t^{-1} = c(\lambda)$ for $t \in Z_k$, and $W_0 = W_0(1)/Z_k$ acts on the conjugacy classes of $\Lambda(1)$, with orbits the conjugacy classes of W(1) contained in $\Lambda(1)$. They are of course finite.

The image in W of a conjugacy class of W(1) not contained in $\Lambda(1)$ is a conjugacy class of W not contained in Λ .

We show that a conjugacy class of W not contained in Λ is infinite. Let $\lambda \in \Lambda$, $w \in W_0$, $w \neq 1$. The conjugacy class of λw in W is infinite because, for $x \in T/T_0$, $x\lambda wx^{-1} = x\lambda wx^{-1}w^{-1}w$ and $\nu(x\lambda wx^{-1}w^{-1}) = \nu(x) - w(\nu(x)) + \nu(\lambda)$, and the set of $\nu(x) - w(\nu(x))$ for $x \in T/T_0$ contains the set of y - w(y) for y in the subgroup $Q(\Phi^{\vee})$ of $X_*(T)$ generated by the set Φ^{\vee} of coroots of T in G. This latter set is infinite.

It is now easy to see that the center of the group R-algebra R[W(1)] is $R[\Lambda(1)]^{W(1)}$:

Lemma 2.2. The center of R[W(1)] is the free R-module of basis

$$z_C = \sum_{\lambda \in C} \lambda,$$

for all finite conjugacy classes C of W(1).

Proof. Let $z = \sum_{u \in W(1)} z(u)u \in R[W(1)]$ where the function $z : W(1) \to R$ has finite support. The following properties are equivalent:

- 1. zw = wz for all $w \in W(1)$,
- 2. $z(w^{-1}u) = z(uw^{-1})$ for all $u, w \in W(1)$,
- 3. z(.) is constant on C for all conjugacy classes C of W(1).

Münster Journal of Mathematics Vol. 7 (2014), 363-379

We want now to determine the center of the R-algebra $\mathcal{H}_R(q_s, c_s)$, described in the first part of Theorem 1.3. The proof is long and we formulate the different steps as propositions, lemmas, and corollaries. We fix an orientation o and we determine first the center of $\mathcal{A}_o(1)$.

Proposition 2.3. The center of $A_o(1)$ is a R-free module of basis

$$E_o(c) = \sum_{\lambda \in c} E_o(\lambda),$$

for all conjugacy classes c of $\Lambda(1)$.

Proof. Let $z = \sum_{x \in \Lambda(1)} z(x) E_o(x)$ be an element in $\mathcal{A}_o(1)$ where $z : \Lambda(1) \to R$ is a function of finite support, and let $\lambda \in \Lambda(1)$. Let ([7, Def. 4.14]):

(6)
$$q_{w,w'} = (q_w q_{w'} q_{ww'}^{-1})^{1/2} \quad (w, w' \in W(1)).$$

By [7, Cor. 5.28],

$$E_o(x)E_o(\lambda) = q_{x,\lambda}E_o(x\lambda)$$

and $q_{\lambda x \lambda^{-1}, \lambda} = q_{x,\lambda} = q_{\lambda,x}$ because q_{λ} depends only on the image of λ in Λ , and Λ is commutative. Then z commutes with $E_o(\lambda)$ if and only if

$$\sum_{x \in \Lambda(1)} z(x) q_{x,\lambda} E_o(x\lambda) = \sum_{x \in \Lambda(1)} z(x) q_{\lambda,x} E_o(\lambda x).$$

Replacing x by $\lambda x \lambda^{-1}$, the left hand side is equal to

$$\sum_{x \in \Lambda(1)} z(\lambda x \lambda^{-1}) q_{\lambda,x} E_o(\lambda x).$$

Hence z belongs to the center of $A_o(1)$ if and only if

$$z(\lambda x \lambda^{-1})q_{x,\lambda} = z(x)q_{x,\lambda}$$
 for all $x, \lambda \in \Lambda(1)$.

If z(.) is constant on the conjugacy classes of $\Lambda(1)$, then z central in $\mathcal{A}_o(1)$. For the converse, there is a problem when $q_{x,\lambda}$ is not invertible in R, but it can be raised. We have $q_{x,\lambda} = 1$ if and only if $\ell(\lambda x) = \ell(\lambda) + \ell(x)$. If z central in \mathcal{A}_o , the next lemma implies that z(.) is constant on the conjugacy classes of $\Lambda(1)$. Admitting the next lemma, the proposition is proved.

Lemma 2.4. Let x, x' be two conjugate elements of $\Lambda(1)$. There exists $\lambda \in \Lambda(1)$ such that $\ell(\lambda x) = \ell(\lambda) + \ell(x)$ and $x' = \lambda x \lambda^{-1}$.

Proof. We choose an arbitrary element $\lambda \in \Lambda(1)$ such that $x' = \lambda x \lambda^{-1}$. We choose $\lambda' \in T/T_o(1)$ such that $\nu(\lambda \lambda')$ and $\nu(x)$ belong to the same closed Weyl chamber. We have $\ell(\lambda \lambda' x) = \ell(\lambda \lambda') + \ell(x)$ (cp. [7, Ex. 5.12]) and $x' = (\lambda \lambda') x (\lambda \lambda')^{-1}$ because λ' belongs to the center of $\Lambda(1)$.

The orientation o is associated to a Weyl chamber \mathfrak{D}_o of V. We denote by Δ_o the set of reduced roots $\alpha \in \Phi$ positive on \mathfrak{D}_o such that Ker α is a wall of \mathfrak{D}_o , by $S_o \subset W_0$ the set of reflections s_α for $\alpha \in \Delta_o$. The opposite orientation associated to the opposite Weyl chamber $-\mathfrak{D}_o$ gives the same set S_o . The set $S = S^{\mathrm{aff}} \cap W_0$ is associated to the dominant and antidominant Weyl chambers

 \mathfrak{D}^+ and $-\mathfrak{D}^+$. For $s \in S_o(1)$, there exists a unique root $\alpha \in \Delta_o \cup -\Delta_o$ taking positive values on \mathfrak{D}^+ such that the image of s in S_o is s_α . We say that the root α of Φ is associated to (o, s).

For $\gamma \in \Phi$ let $e_{\gamma} \in \mathbb{N}_{>}0$ be the positive integer such that the image of Φ by the map $\gamma \mapsto e_{\gamma} \gamma$ is a reduced root system Σ of affine Weyl group W^{aff} . If α is the root of Φ is associated to (o,s), the root $\beta = e_{\alpha} \alpha$ of Σ is called associated to (o,s).

Let z_o be a central element of $\mathcal{A}_o(1)$. By Proposition 2.3:

(7)
$$z_o = \sum_{c} z_o(c) E_o(c) \quad (z_o(c) \in R).$$

Let $s \in S_o(1)$. In the R-basis $(E_o(w))_{w \in W(1)}$ of $\mathcal{H}_R(q_s, c_s)$, we write

$$-z_o E_o(s) + E_o(s) z_o = z'_o + z''_o$$

where $z_o'' \in \mathcal{A}_o(1)$ and the component of z_o' in $\mathcal{A}_o(1)$ is 0. The elements z_o and $E_o(s)$ commute if and only if $z_o' = z_o'' = 0$. We denote by scs^{-1} the set of $s\lambda s^{-1}$ for $\lambda \in c$.

Lemma 2.5. We have

$$z''_{o} = E_{o}(s) \sum_{c} z_{o}(c) (E_{o}(c) - E_{o \bullet s}(c)),$$

$$z'_{o} = E_{o}(s) \sum_{c} (z_{o}(c) - z_{o}(scs^{-1})) E_{o \bullet s}(c) = \sum_{c} z'_{o}(sc) E_{o}(sc),$$

with
$$z'_o(sc) = q_{s,c}(z_o(c) - z_o(scs^{-1})).$$

Proof. The equality $q_{scs^{-1},s} = q_{s,c}$ deduced from (6), implies by the product formula (3)

$$E_o(scs^{-1})E_o(s) = E_o(s)E_{o\bullet s}(c).$$

Writing $z_o E_o(s) = E_o(s) \sum_c z_o(c) E_{o \bullet s}(s^{-1} c s) = E_o(s) \sum_c z_o(s c s^{-1}) E_{o \bullet s}(c)$ we obtain

$$-z_o E_o(s) + E_o(s) z_o = E_o(s) \sum_c z_o(c) E_o(c) - z_o(scs^{-1}) E_{o \bullet s}(c),$$

from which we deduce $-z_o E_o(s) + E_o(s) z_o = z_o' + z_o''$ with z_o', z_o'' as in the lemma. The element z_o'' belong to $\mathcal{A}_o(1)$ by the Bernstein relations (4) and the component of

$$z'_{o} = \sum_{c} z'_{o}(sc)E_{o}(sc), \ z'_{o}(sc) = q_{s,c}(z_{o}(c) - z_{o}(scs^{-1}))$$

in $\mathcal{A}_o(1)$ is 0 because $s\Lambda(1) \cap \Lambda(1) = \emptyset$.

Proposition 2.6. Let $s \in S_o(1)$ and let c be a conjugacy class in $\Lambda(1)$. Then $E_o(s)$ and $E_o(c) + E_o(scs^{-1})$ commute. $E_o(s)$ and $E_o(c)$ commute if and only if $c = scs^{-1}$.

Proof. a) Let β be the root of Σ associated to (o, s). We note that ν is constant on a conjugacy class of $\Lambda(1)$, scs^{-1} is a conjugacy class of $\Lambda(1)$, $\nu(s_{\beta}\lambda s_{\beta}^{-1}) = s_{\beta}(\nu(\lambda))$ for $\lambda \in \Lambda$ and $s_{\beta}(x) = x - \beta(x)\beta^{\vee}$ for $x \in V$ where β^{\vee} is the coroot of β . Therefore we have

$$\nu(scs^{-1}) = \nu(c) - \beta \circ \nu(c)\beta^{\vee}.$$

If $c = scs^{-1}$ then $\beta \circ \nu(c) = 0$.

If $\beta \circ \nu(c) = 0$ then $q_{s,c} = q_{c,s} = 1$ and $E_{o \bullet s}(c) = E_o(c)$. This implies

$$E_o(s)E_o(c) - E_o(c)E_o(s) = E_o(s)E_{o \bullet s}(c) - E_o(c)E_o(s) = E_o(sc) - E_o(cs).$$

We deduce that $E_o(s)$ and $E_o(c)$ commute when $c = scs^{-1}$, and that $E_o(s)$ and $E_o(c)$ do not commute when $c \neq scs^{-1}$ and $\beta \circ \nu(c) = 0$.

b) We suppose $\beta \circ \nu(c) \neq 0$. We prove that either $E_o(c)$ or $E_o(scs^{-1})$ does not commutes with $E_o(s)$.

When $\ell(sc) = 1 + \ell(c)$, take $z_o = E_o(c)$ in Lemma 2.5. The coefficient of z'_o on $E_o(sc)$ is $q_{s,c} = (q_s q_c q_{sc}^{-1})^{1/2} = 1$. We have $z'_o \neq 0$ hence $E_o(c)$ does not commute with $E_o(s)$.

When $\ell(sc) = -1 + \ell(c)$ we have $\ell(cs) = 1 + \ell(c)$. Take $z_o = E_o(scs^{-1})$. We have $E_o(scs^{-1}) = E_o(s^{-1}cs)$ because $s^2 \in Z_k$. We have $\beta \circ \nu(c) = -\beta \circ \nu(scs^{-1}) \neq 0$. The coefficient of z_o' on $E_o(cs)$ is $q_{s,s^{-1}cs} = (q_sq_{s^{-1}cs}q_{cs}^{-1})^{1/2} = 1$. We have $z_o' \neq 0$ hence $E_o(scs^{-1})$ does not commute with $E_o(s)$.

c) We show that $E_o(c) + E_o(scs^{-1})$ commutes with $E_o(s)$. In Lemma 2.5 we take $z_o = E_o(c) + E_o(scs^{-1})$. We have obviously $z'_o = 0$.

When the $q_s = 1$ we show that $z_o'' = 0$. By symetry, we can suppose $\beta \circ \nu(c) < 0$ and $\beta \circ \nu(scs^{-1}) > 0$. The Bernstein relations (4) give an explicit element $B_{o,n} \in \mathcal{A}_o(1)$ and different signs $\epsilon_{o\bullet s}(1,s) \neq \epsilon_o(1,s)$ such that

$$E_o(s)(E_{o\bullet s}(c) - E_o(c)) = \epsilon_{o\bullet s}(1, s)B_{o,n}E_o(c),$$

$$E_o(s)(E_{o\bullet s}(scs^{-1}) - E_o(scs^{-1})) = \epsilon_o(1, s)E_o(c)B_{o,n}.$$

As $E_o(c)$ is central in \mathcal{A}_o ,

$$-z_o'' = E_o(s)(E_{o \bullet s}(c) - E_o(c) + E_{o \bullet s}(scs^{-1}) - E_o(scs^{-1})) = 0.$$

We proved that $E_o(s)$ commutes with $E_o(c) + E_o(scs^{-1})$ when the q_s are 1.

We choose indeterminates \mathfrak{q}_s for $s \in S^{\mathrm{aff}}/\sim$ of square $\mathfrak{q}_s^2 = \mathbf{q}_s$. By Lemma 5.43 in [7], we deduce that $\mathfrak{q}_s^{-1}E_o(s)$ commutes with $\mathfrak{q}_c^{-1}E_o(c)+\mathfrak{q}_{scs^{-1}}^{-1}E_o(scs^{-1})$ in the algebra $\mathcal{H}_{R[(\mathfrak{q}_s,\mathfrak{q}_s^{-1})]}(\mathbf{q}_s,c_s)]$. We have $\mathfrak{q}_c = \mathfrak{q}_{scs^{-1}}$ (cp. [7, Prop. 5.13]). Hence $E_o(s)$ commutes with $E_o(c) + E_o(scs^{-1})$ in the generic subalgebra $\mathcal{H}_{R[(\mathfrak{q}_s)]}(\mathbf{q}_s,c_s)$]. We specialize $\mathbf{q}_s \mapsto q_s$ hence $E_o(s)$ commutes with $E_o(c) + E_o(scs^{-1})$ in $\mathcal{H}_R(q_s,c_s)$.

d) We deduce from b) and c) that both $E_o(c)$ and $E_o(scs^{-1})$ do not commutes with $E_o(s)$ when $\beta \circ \nu(c) \neq 0$.

Proposition 2.7. For any conjugacy class C of W(1) contained in $\Lambda(1)$, the element

$$E(C) = E_o(C) = \sum_{\lambda \in C} E_o(\lambda),$$

does not depend on the choice of the orientation o.

The R-algebra $\mathcal{A}_o(1)^{W(1)}$ does not depend on the choice of o, is R-free of basis (E(C)) for the conjugacy classes C of W(1) contained in $\Lambda(1)$, and is contained in the center $\mathcal{Z}_R(q_s, c_s)$.

Proof. Let $s \in S_o(1)$. By Proposition 2.6 and its proof, $z_o = E_o(C)$ commutes with $E_o(s)$ and $z_o'' = E_o(s)(E_{o \bullet s}(C) - E_o(C)) = 0$. When $q_s = 1$ for all s, $E_o(s)$ is invertible and $z_o'' = 0$ implies $E_{o \bullet s}(C) = E_o(C)$. As $\mathfrak{q}_{\mathbf{C}} = \mathfrak{q}_{\mathbf{w}}$ is constant on C we have $E_{o \bullet s}(C) = E_o(C)$ in the generic algebra $\mathcal{H}_{R[(\mathfrak{q}_s,\mathfrak{q}_s^{-1})]}(\mathfrak{q}_s,c_s)]$, hence in the generic subalgebra $\mathcal{H}_{R[(\mathfrak{q}_s)]}(\mathfrak{q}_s,c_s)]$. This is valid for any $s \in S_o(1)$, and the set $S_o(1)$ generates the group $W_0(1)$. The spherical orientations are $o \bullet w$ for $w \in W_0(1)$. Hence $E_{o \bullet w}(C) = E_o(C)$ for any $w \in W_0(1)$. We denote this element by E(C).

We show that E(C) belongs to the center of $\mathcal{H}_{R[(\mathfrak{q}_s)]}(\mathbf{q}_s, c_s)$. Indeed, for the orientation o associated to the antidominant Weyl chamber $-\mathfrak{D}^+$, we have: $S_o = S^{\mathrm{aff}} \cap W_0$, $E_o(s) = T_s$ for $s \in S_o(1)$, and E(C) commutes with $\mathcal{A}_o(1)$ and T_s for $s \in S_o(1)$. By the braid relations (1), E(C) commutes with T_w for $w \in W_0(1)$. We have $W(1) = \Lambda(1)W_0(1)$ with $Z_k = \Lambda(1) \cap W_0(1)$. The product formula (3) implies that $\mathcal{H}_{R[(\mathfrak{q}_s)]}(\mathbf{q}_s, c_s)$] is generated by $\mathcal{A}_o(1)$ and T_w for $w \in W_0(1)$.

The proposition is proved in $\mathcal{H}_{R[(\mathfrak{q}_s)]}(\mathbf{q}_s, c_s)$. By specialization $\mathbf{q}_s \mapsto q_s$ the proposition is true in $\mathcal{H}_R(q_s, c_s)$.

The following proposition implies that the intersection of $\mathcal{A}_o(1)$ with $\mathcal{Z}_R(q_s, c_s)$ is contained in $\mathcal{A}_o(1)^{W(1)}$. We recall the reduced root system $\Sigma = \{e_\alpha \alpha \mid \alpha \in \Phi\}$ attached to W^{aff} [7].

Proposition 2.8. Let $s \in S_o(1)$, let $\beta \in \Sigma$ be the root associated to (o, s) and let z_o be a central element of $\mathcal{A}_o(1)$ as in (7). Then $E_o(s)$ commutes with z_o if and only if $z_o(c) = z_o(scs^{-1})$ for all c such that $\beta \circ \nu(c) \neq 0$.

Proof. We suppose that $z_0 \neq 0$, and thanks to Proposition 2.6, that $z_o(c) \neq 0$ implies $z_o(scs^{-1}) = 0$. We will prove that z'_o or z''_o does not vanish. This implies that z_o does not commute with $E_o(s)$ by Lemma 2.5.

If there exists c with $z_o(c) \neq 0$ and $\beta \circ \nu(c) = 0$, then $\ell(sc) = \ell(c) + 1$, $q_{s,c} = 1$ and $z_o'(sc) = z_o(c)$. Hence $z_o' \neq 0$.

We suppose, as we may, that $z_o(c) \neq 0$ implies $\beta \circ \nu(c) \neq 0$ and $z_o(scs^{-1}) = 0$. We prove this time that $z_o'' \neq 0$.

We analyze $z_o'' = -\sum_c z_o(c) \sum_{\lambda \in c} E_o(s) (E_{o \bullet s}(\lambda) - E_o(\lambda))$ using the Bernstein relations (4) (cp. [7, Thm. 5.45 and Rem. 5.46]) for $\lambda \in c$:

$$E_o(s)(E_{o\bullet s}(\lambda) - E_o(\lambda)) = \epsilon_o(1, s)\epsilon_{\beta}(c) \sum_{k=0}^{n(c)-1} q(k, \lambda)c(k, \lambda)E_o(\mu(k, \lambda))$$

where $\beta \circ \nu(c) = \epsilon_{\beta}(c)n(c)$ with $\epsilon_{\beta}(c) \in \{\pm 1\}$ and n(c) > 0, and $\beta \circ \nu(\mu(k, \lambda)) = 2k - n(c)$.

Let $m = \max\{n(c) \mid z_o(c) \neq 0\}$. To prove the proposition it suffices to show that the component $z''_{o,m}$ of z''_o in $\bigoplus_{|\beta \circ \nu(\lambda)| = m} RE_o(\lambda)$ is not 0.

Only the terms with k=0 in the expansion of $E_o(s)(E_{o \bullet s}(\lambda) - E_{o \bullet s}(\lambda))$ for $\lambda \in c$ with n(c)=m and $z_o(c) \neq 0$ contribute to $z''_{o,m}$. Up to multiplication by a sign, $z''_{o,m}$ is equal to

$$\sum_{c,n(c)=m} z_o(c)\epsilon_{\beta}(c) \sum_{\lambda \in c} q(0,\lambda)c(0,\lambda)E_o(\mu(0,\lambda)).$$

By [7, Rem. 5.46], $q(0,\lambda)c(0,\lambda)E_o(\mu(0,\lambda))$ is equal to

$$c_s E_o(\lambda)$$
 if $\epsilon_{\beta}(c) = -1$, $E_o(s\lambda s^{-1})c_s$ if $\epsilon_{\beta}(c) = 1$.

We deduce

$$\pm z_{o,m}'' = \sum_{c,\beta \circ \nu(c) = -m} z_o(c) \epsilon_\beta(c) c_s E_o(c) + \sum_{c,\beta \circ \nu(c) = m} z_o(c) \epsilon_\beta(c) E_o(scs^{-1}) c_s.$$

As $\beta \circ \nu(c) = -\beta \circ \nu(scs^{-1})$, and $z_o(c) \neq 0$ implies $z_o(scs^{-1}) = 0$, we obtain $z''_{o,m} \neq 0$.

Corollary 2.9. The intersection of $A_o(1)$ with $\mathcal{Z}_R(q_s, c_s)$ is $A_o(1)^{W(1)}$.

The last step of the proof of the equality $\mathcal{Z}_R(q_s, c_s) = \mathcal{A}_o(1)^{W(1)}$ is given by:

Proposition 2.10. When o is the orientation associated to the anti-dominant Weyl chamber $-\mathfrak{D}^+$, an element of $\mathcal{H}_R(q_s, c_s)$ which commutes with each element of $\mathcal{A}_o(1)$ is contained in $\mathcal{A}_o(1)$.

Proof. We pick a nonzero element in $\mathcal{H}_R(q_s, c_s) - \mathcal{A}_o(1)$,

$$z = \sum_{x \in W(1)} z(x) E_o(x),$$

which commute with $E_o(\lambda)$ for all $\lambda \in \Lambda(1)$. We pick an element $w \in W(1)$ of maximal length in the nonempty set of $x \in W(1) - \Lambda(1)$ with $z(x) \neq 0$. We will show that there exists $\lambda \in \Lambda(1)$ such that

(8)
$$\ell(w) < \ell(\lambda w \lambda^{-1}), \ \ell(\lambda w) = \ell(\lambda) + \ell(w).$$

We have $q_{\lambda,w} = 1$ (cp. [7, Lemma 4.13]) and $E_o(\lambda w) = E_o(\lambda)E_o(w)$. We have $E_o(\lambda)z = zE_o(\lambda)$ and the coefficient of $E_o(\lambda)z$ on $E_o(\lambda w)$ is $z(w) \neq 0$.

We will show that the coefficient of $E_o(\lambda w)$ in $zE_o(\lambda)$ is $z(\lambda w\lambda^{-1})q_{\lambda w\lambda^{-1},\lambda}$. We have $z(\lambda w\lambda^{-1})=0$ because $\lambda w\lambda^{-1}$ does not belong to $\Lambda(1)$ and $\ell(w)<\ell(\lambda w\lambda^{-1})$. Our hypothesis was absurd and the proposition is proved if we admit the existence of λ and the value of the coefficient of $E_o(\lambda w)$ in $zE_o(\lambda)$, given by the next two lemmas.

Lemma 2.11. Let $w \in W$ not in Λ . There exists $\lambda \in \Lambda$ such that

(9)
$$\ell(w^{-1}\lambda w\lambda^{-1}) > 2\ell(w), \ \ell(\lambda w) = \ell(\lambda) + \ell(w) > \ell(w).$$

The lemma is stronger than the claim in the proof of Proposition 2.10 because (9) implies $2\ell(w) < \ell(w^{-1}\lambda w\lambda^{-1}) < \ell(w) + \ell(\lambda w\lambda^{-1})$ hence $\ell(w) < \ell(w) < \ell(w)$ $\ell(\lambda w \lambda^{-1}).$

Proof. Replacing λ by $w^{-1}\lambda w$ which has the same length, (9) is replaced by

(10)
$$\ell(\lambda w \lambda^{-1} w^{-1}) > 2\ell(w), \ \ell(w\lambda) = \ell(\lambda) + \ell(w) > \ell(w).$$

We show first that there exists $\lambda \in \Lambda$ satisfying the weaker property

(11)
$$\ell(\lambda w \lambda^{-1} w^{-1}) > 0, \ \ell(w\lambda) = \ell(\lambda) + \ell(w) > \ell(w).$$

We write $w = w_0 \lambda_0 \in W_0 \ltimes \Lambda$ with $w_0 \neq 1$. The length formula [7, Cor. 5.10] shows that $\ell(w\lambda) = \ell(w) + \ell(\lambda)$ is equivalent to

- 1) $(\gamma \circ \nu)(\lambda)$, $(\gamma \circ \nu)(\lambda_0)$ have the same sign when $\gamma \in \Sigma^+$, $w_0(\gamma) > 0$,
- 2) $(\gamma \circ \nu)(\lambda)$, $1 + (\gamma \circ \nu)(\lambda_0)$ have the same sign when $\gamma \in \Sigma^+$, $w_0(\gamma) < 0$.

We have:

$$\ell(\lambda w \lambda^{-1} w^{-1}) = \ell(\lambda w_0 \lambda^{-1} w_0^{-1})$$
 because Λ is commutative,

 $\ell(\lambda w \lambda^{-1} w^{-1}) = \ell(\lambda w_0 \lambda^{-1} w_0^{-1})$ because Λ is commutative, $\ell(\lambda w_0 \lambda^{-1} w_0^{-1}) > 0 \Leftrightarrow (\gamma \circ \nu)(\lambda w_0 \lambda^{-1} w_0^{-1}) \neq 0$ for some $\gamma \in \Sigma$, by the length formula [7, Cor. 5.10],

$$\Leftrightarrow \nu(\lambda w_0 \lambda^{-1} w_0^{-1}) \neq 0 \Leftrightarrow \nu(\lambda) \neq w_0(\nu(\lambda)).$$

The existence of $\lambda \in \Lambda$ satisfying (11) is equivalent to the existence of $\lambda \in \Lambda$ satisfying

(12)
$$0 \neq \nu(\lambda) \neq w_0(\nu(\lambda)), \ \ell(\lambda w) = \ell(\lambda) + \ell(w).$$

It is obvious that there are infinitely many $\lambda \in \Lambda$ satisfying these conditions.

In fact, the existence of $\lambda \in \Lambda$ satisfying (11) is not a weaker property than the existence of $\lambda \in \Lambda$ satisfying (10). Indeed, let $\lambda \in \Lambda$ satisfying (11), we show that, for a large odd integer n, λ^n satisfies (10).

We have $(\lambda w \lambda^{-1} w^{-1})^n = \lambda^n w \lambda^{-n} w^{-1}$ because Λ is commutative. If n is large and $\ell(\lambda w \lambda w^{-1}) > 0$ then $\ell(\lambda^n w \lambda^{-n} w^{-1}) = n\ell(\lambda w \lambda w^{-1}) > 2\ell(w)$. In particular, $\ell(w\lambda) = \ell(\lambda) + \ell(w)$ implies $\ell(w\lambda^n) = \ell(\lambda^n) + \ell(w)$ for odd n > 0. Obviously $\ell(\lambda) + \ell(w) > \ell(w)$ implies $\ell(\lambda^n) + \ell(w) > \ell(w)$. П

Lemma 2.12. The coefficient of $E_o(\lambda w)$ in $zE_o(\lambda)$ is $z(\lambda w\lambda^{-1})q_{\lambda w\lambda^{-1}\lambda}$, for z, λ, w in the proof of Proposition 2.10.

Proof. We write $E_o(x)E_o(\lambda)$ for $x \in W(1)$, as

$$E_o(x)E_{o\bullet x}(\lambda) + E_o(x)(E_o(\lambda) - E_{o\bullet x}(\lambda)) = q_{x,\lambda}E_o(x\lambda) + E_o(x)(E_o(\lambda) - E_{o\bullet x}(\lambda)),$$

and $zE_o(\lambda) = z_1 + z_2$ where

$$z_1 = \sum_{x \in W(1)} z(x) q_{x,\lambda} E_o(x\lambda), \ z_2 = \sum_{x \in W(1)} z(x) E_o(x) (E_o(\lambda) - E_{o \bullet x}(\lambda)).$$

The coefficient of z_1 on $E_o(\lambda w)$ is $z(\lambda w \lambda^{-1}) q_{\lambda w \lambda^{-1}, \lambda}$ as $x\lambda = \lambda w \Leftrightarrow x = \lambda w$ $\lambda w \lambda^{-1}$. The coefficient of z_2 on $E_o(\lambda w)$ is 0 because

a) if $x \in \Lambda(1)$ we have $o \bullet x = o$.

b) if
$$x \in W(1) - \Lambda(1)$$
, we have (cp. [7, Thm. 4.5, Cor. 5.26])

$$E_o(x) \in T_x + \sum_{y < x} RT_y,$$

$$E_o(\lambda) - E_{o \bullet x}(\lambda) \in \sum_{u < \lambda} RT_u,$$

$$T_y T_u \in \sum_{v \le yu} RT_v,$$

$$E_o(x)(E_o(\lambda) - E_{o \bullet x}(\lambda)) \in \sum_{v \le yu, u < \lambda, y < x} RT_v,$$

and from $v \leq yu, u < \lambda, y < x$, we have $\ell(v) < \ell(\lambda) + \ell(x) \leq \ell(w) + \ell(\lambda) = \ell(\lambda w)$.

This ends the proof of the first part of Theorem 1.3 describing the center $\mathfrak{Z}_R(q_s,c_s)$. The second part generalizes the following finiteness properties:

Proposition 2.13. The group algebra R[W] is a finitely generated module over its center. If the ring R is noetherian, the center is a finitely generated algebra, and R[W] is a noetherian algebra.

The group algebra R[W(1)] satisfies the same properties.

- *Proof.* i) $T/T_0(1)$ is a free, finitely generated commutative group which is normalized by W(1). The action of W(1) by conjugation on $T/T_0(1)$ factorizes by W_0 . By a general theorem ([1, AC V.1.9 Thm. 2 p. 29]) for any finitely generated commutative R-algebra with an action of a group with finite orbits, $R[T/T_0(1)]$ is a finitely generated $R[T/T_0(1)]^{W_0}$ -module; moreover, if R is noetherian, $R[T/T_0(1)]^{W_0}$ is a finitely generated R-algebra.
- ii) The center $R[\Lambda(1)]^{W(1)}$ of R[W(1)] contains $R[T/T_0(1)]^{W_0}$, R[W(1)] is a finitely generated $R[\Lambda(1)]$ -module and $R[\Lambda(1)]$ is a finitely generated $R[T/T_0(1)]$ -module, because the index of $T/T_0(1)$ in $\Lambda(1)$ and the index of $\Lambda(1)$ in W(1) are finite.
- iii) R[W(1)] is finitely generated over $R[\Lambda(1)]^{W(1)}$ and over $R[T/T_0(1)]^{W_0}$. If the ring R is noetherian, then R[W(1)] is noetherian, $R[\Lambda(1)]^{W(1)}$ is a finitely generated $R[T/T_0(1)]^{W_0}$ -module hence a finitely generated R-algebra.

The proof of these finiteness properties for the R-algebra $\mathcal{H}_R(q_s, c_s)$ (the second part of Theorem 1.3) follows the same pattern. We pick a spherical orientation o. The R-module $\mathcal{A}_o(T/T_0(1))$ generated by $E_o(\lambda)$ for $\lambda \in T/T_0(1)$ is a commutative algebra with an action of W(1) factorizing through W_0 . We claim:

a) The R-algebra $\mathcal{A}_o(T/T_0(1))$ is finitely generated.

Therefore, $\mathcal{A}_o(T/T_0(1))$ is a finitely generated $\mathcal{A}_o(T/T_0(1))^{W_0}$ -module; moreover, if R is noetherian, $\mathcal{A}_o(T/T_0(1))^{W_0}$ is a finitely generated R-algebra (cp. [1, AC V.1.9 Thm. 2 p. 29]). The center $\mathcal{A}_o^{W(1)} = \mathcal{Z}_R(q_s, c_s)$ contains $\mathcal{A}_o(T/T_0(1))^{W_0}$. Theorem 1.3 follows from:

- b) The left $\mathcal{A}_o(1)$ -module $\mathcal{H}_R(q_s, c_s)$ is finitely generated,
- c) The left $A_o(T/T_0(1))$ -module $A_o(1)$ is finitely generated.

It remains to prove the claims a), b) and c). When the homomorphism $\nu: \Lambda(1) \to V$ defined by (5) sends $\lambda, \lambda' \in \Lambda(1)$ to the same closed Weyl chamber, we have $\ell(\lambda) + \ell(\lambda') = \ell(\lambda \lambda')$ and the product formula (3) is simply

$$E_o(\lambda)E_o(\lambda') = E_o(\lambda\lambda').$$

We denote by $\Lambda(1)_{\mathfrak{D}}$ the inverse image by ν of the closure of a Weyl chamber \mathfrak{D} of V. The maximal subgroup of the monoid $\Lambda(1)_{\mathfrak{D}}$ is the kernel $\Omega(1) \cap \Lambda(1)$ of ν .

We denote $L = T/T_0(1)$ and $L_{\mathfrak{D}} = L \cap \Lambda(1)_{\mathfrak{D}}$. The R-module of basis $E_o(\lambda)$ for $\lambda \in \Lambda(1)_{\mathfrak{D}}$ is a subalgebra $\mathcal{A}_{o,\mathfrak{D}}$ and the R-algebra $\mathcal{A}_o(L_{\mathfrak{D}})$ of basis $E_o(\lambda)$ for $\lambda \in L_{\mathfrak{D}}$ satisfy

(13)
$$\mathcal{A}_{o,\mathfrak{D}} \simeq R[\Lambda(1)_{\mathfrak{D}}], \ \mathcal{A}_{o}(L_{\mathfrak{D}}) \simeq R[L_{\mathfrak{D}}],$$

(14)
$$\mathcal{A}_o(1) = \cup_{\mathfrak{D}} \mathcal{A}_{o,\mathfrak{D}}, \ \mathcal{A}_o(L) = \cup_{\mathfrak{D}} \mathcal{A}_o(L_{\mathfrak{D}}),$$

where \mathfrak{D} runs over all the Weyl chambers of V.

Lemma 2.14. $L_{\mathfrak{D}}$ is a finitely generated monoid of finite index in $\Lambda(1)_{\mathfrak{D}}$.

Proof. We have exact sequences

$$1 \to L \cap \Omega(1) \to L_{\mathfrak{D}} \to \nu(L) \cap \mathfrak{D} \to 1,$$

$$1 \to \Lambda(1) \cap \Omega(1) \to \Lambda(1)_{\mathfrak{D}} \to \nu(\Lambda(1)) \cap \mathfrak{D} \to 1.$$

The monoid $\nu(L)\cap\mathfrak{D}$ is finitely generated of finite index in the monoid $\nu(\Lambda(1))\cap\mathfrak{D}$. The commutative group $L\cap\Omega(1)$ is finitely generated because any subgroup of L is free and finitely generated. The index of $L\cap\Omega(1)$ in $\Lambda(1)\cap\Omega(1)$ is finite because $\Lambda(1)/L$ is finite.

We deduce the claims a) and c):

Lemma 2.15. The R-algebra $\mathcal{A}_o(T/T_0(1))$ is finitely generated and $\mathcal{A}_o(1)$ is a finitely generated left and right $\mathcal{A}_o(T/T_0(1))$ -module. In particular, the R-algebra $\mathcal{A}_o(1)$ is finitely generated.

Proof. By the Lemma 2.14, $\mathcal{A}_o(L_{\mathfrak{D}})$ is a finitely generated R-algebra and $\mathcal{A}_{o,\mathfrak{D}}$ is a finitely generated $\mathcal{A}_o(L_{\mathfrak{D}})$ -module.

Lemma 2.16. Λ contains a finite set X such that, for any $(\lambda, w) \in \Lambda \times W_0$, there exists $\mu \in X$ such that

$$\ell(\lambda w) = \ell(\lambda \mu^{-1}) + \ell(\mu w).$$

Proof. It suffices to prove the lemma for an arbitrary fixed element of the finite group W_0 . Let $w \in W_0$ and let $\lambda, \mu \in \Lambda$. By the length formula [7, Cor. 5.10] $\ell(\lambda w)$ is equal to the sum of $|\alpha \circ \nu(\lambda)|$ over the positive roots α such that $w^{-1}(\alpha)$ is positive, plus the sum of $|\beta \circ \nu(\lambda) - 1|$ over the positive roots β such that $w^{-1}(\beta)$ is negative. We deduce that $\ell(\lambda w) = \ell(\lambda \mu^{-1}) + \ell(\mu w)$ if and only if

 $\alpha \circ \nu(\mu) > 0 \text{ implies } \alpha \circ \nu(\lambda) \ge \alpha \circ \nu(\mu),$ $\alpha \circ \nu(\mu) < 0 \text{ implies } \alpha \circ \nu(\lambda) \le \alpha \circ \nu(\mu),$ $\beta \circ \nu(\mu) > 1 \text{ implies } \beta \circ \nu(\lambda) \ge \beta \circ \nu(\mu),$ $\beta \circ \nu(\mu) < 1 \text{ implies } \beta \circ \nu(\lambda) \le \beta \circ \nu(\mu).$

for all α, β as above. It is clear that, for any $\lambda \in \Lambda$, there exists a positive integer N such that $\ell(\lambda w) = \ell(\lambda \mu^{-1}) + \ell(\mu w)$ for some μ with $|\gamma \circ \nu(\mu)| \leq N$, for all positive roots γ . There are finitely many choices of $x(\mu) = (\gamma \circ \nu(\mu))_{\gamma > 0}$ with $|\gamma \circ \nu(\mu)| \leq N$ for all positive roots γ , and $\mu \in \Lambda$. We deduce that there are finitely many elements μ_1, \ldots, μ_r such that, for any $\lambda \in \Lambda$, there exists μ_i such that $\ell(\lambda w) = \ell(\lambda \mu_i^{-1}) + \ell(\mu_i w)$.

We choose a finite set $X \subset \Lambda$ as in Lemma 2.16, and we denote by X(1) and $XW_0(1)$ the inverse image in W(1) of the finite sets X and $\{\mu w \mid \mu \in X, w \in W_0\}$.

Lemma 2.17. The left $A_o(1)$ -module $\mathcal{H}_R(q_s, c_s)$ is generated by the elements $E_o(w)$ for w in the finite set $XW_0(1)$, and the R-algebra $\mathcal{H}_R(q_s, c_s)$ is finitely generated.

Proof. $W(1) = \Lambda(1)W_0(1)$ and for $w = \lambda w_0 \in W(1)$ with $\lambda \in \Lambda(1), w_0 \in W_0(1)$, there exists $\mu \in X(1)$ such that $\ell(\lambda w_0) = \ell(\lambda \mu^{-1}) + \ell(\mu w_0)$. Hence $q_{\lambda \mu^{-1}, \mu w_0} = 1$ and

$$E_o(w) = E_o(\lambda w_0) = E_o(\lambda \mu^{-1}) E_o(\mu w_0).$$

We deduce the first part of the lemma. As the R-algebra $\mathcal{A}_o(1)$ is finitely generated by Lemma 2.15, the same is true for the R-algebra $\mathcal{H}_R(q_s, c_s)$. \square

We deduce the claim b). The proof of Theorem 1.3 is complete.

3. Remarks

3.1. When the order of the finite commutative group Z_k is invertible in R, and when R contains a root of unity of order the least common multiple of the orders of the elements of Z_k (we say that R splits Z_k), the idempotents of $R[Z_k]$

(15)
$$e_{\chi} = |Z_k|^{-1} \sum_{t \in Z_k} \chi^{-1}(t)t$$

for all R-characters χ of Z_k , are orthogonal of sum 1. When X is a W_0 -orbit of characters of Z_k , the idempotent $e_X = \sum_{\chi \in X} e_{\chi}$ is central in $\mathcal{H}_R(q_s, c_s)$.

Lemma 3.2. When R splits Z_k , the R-algebra $\mathcal{H}_R(q_s, c_s)$ is the direct sum of the subalgebras $e_X\mathcal{H}_R(q_s, c_s)$ when X runs over the W_0 -orbits of characters of Z_k . As a R-module,

$$e_X \mathcal{H}_R(q_s, c_s) = \bigoplus_{\chi \in X} e_\chi \mathcal{H}_R(q_s, c_s), \quad e_\chi \mathcal{H}_R(q_s, c_s) \simeq \chi \otimes_{R[Z_k]} \mathcal{H}_R(q_s, c_s).$$

3.3. When $q_s = 1$ for $s \in S^{\text{aff}}$,

$$E_o(\lambda)E_o(w)=E_o(\lambda w)$$
 for $\lambda\in\Lambda(1)$ and $w\in W(1)$.

The linear map $\lambda \mapsto E_o(\lambda)$ from $R[T/T_o(1)] \subset R[\Lambda(1)]$ to $\mathcal{A}_o(T/T_o(1)) \subset \mathcal{A}_o(1)$ are algebra isomorphisms and

$$\mathcal{H}_R(1, c_s) = \sum_{w \in W_0(1)} \mathcal{A}_o(1) E_o(w).$$

3.4. Set $\mathcal{J}_o(1) = \sum_{s \in S^{\text{aff}}/\sim} q_s \mathcal{A}_o(1)$. In the generic algebra $\mathcal{H}_{R[(\mathbf{q}_s)]}(\mathbf{q}_s, c_s)$, for any orientation o, we have the product formula (3)

$$E_o(\lambda)E_o(\lambda') = \mathbf{q}_{\lambda,\lambda'}E_o(\lambda\lambda'),$$

and $\mathbf{q}_{\lambda,\lambda'} = 1$ if and only if $\lambda,\lambda' \in \Lambda(1)_{\mathfrak{D}}$ for some Weyl chamber \mathfrak{D} . By specialization of the indeterminates \mathbf{q}_s to q_s , we obtain in $\mathcal{H}_R(q_s,c_s)$,

$$E_o(\lambda)E_o(\lambda') = E_o(\lambda\lambda')$$
 if $\lambda, \lambda' \in \Lambda(1)_{\mathfrak{D}}$ for some \mathfrak{D} , $E_o(\lambda)E_o(\lambda') \in \mathcal{J}_o(1)$ otherwise.

We denote by $W_0(\mu)$ the W_0 -orbit of μ in $X_*(T)$ and by $X_{*,\mathfrak{D}}(T)$ the monoid of $\mu \in X_*(T)$ such that $\nu(\mu(p_F))$ belongs to the closure of \mathfrak{D} . We denote by $C(\mu)$ the conjugacy class in W(1) of the image λ of $\mu(p_F)$ in $\Lambda(1)$, and we set $E_o(\mu) = E_o(\lambda)$. We have

$$E(C(\mu)) = \sum_{\mu' \in W_0(\mu)} E_o(\mu').$$

Proposition 3.5. Let $\mu_1, \mu_2 \in X_{*,\mathfrak{D}}(T)$. In $\mathcal{H}_R(q_s, c_s)$ we have

$$E(C(\mu_1))E(C(\mu_2)) \in E(C(\mu_1 + \mu_2)) + \mathcal{J}_o(1).$$

Proof. We fix the Weyl chamber \mathfrak{D} . For another Weyl chamber \mathfrak{D}' we denote by $w_{\mathfrak{D}'}$ the unique element of W_0 such that $w_{\mathfrak{D}'}(\mathfrak{D}) = \mathfrak{D}'$. For $\mu \in X_{*,\mathfrak{D}}(T)$, $\mu_{\mathfrak{D}'} = w_{\mathfrak{D}'}(\mu)$ belongs to $X_{*,\mathfrak{D}'}(T)$. We have $\mu_{1,\mathfrak{D}'} + \mu_{2,\mathfrak{D}'} = (\mu_1 + \mu_2)_{\mathfrak{D}'}$ and

$$E(C(\mu)) = \sum_{\mu_{\mathfrak{D}'}} E_o(\mu_{\mathfrak{D}'})$$

(the sum is not over the Weyl chambers \mathfrak{D}' , but over the distinct elements $\mu_{\mathfrak{D}'}$).

 $E(C(\mu_1))E(C(\mu_2))$ is equal modulo $\mathcal{J}_o(1)$ to the sum of $E_o(\mu'_1 + \mu'_2)$ over the pairs $(\mu'_1, \mu'_2) \in W_0(\mu_1) \times W_0(\mu_2)$ which belong to $X_{*,\mathfrak{D}'}(T)$ for the same Weyl chamber \mathfrak{D}' .

3.6. We recall the involutive R automorphism of $\mathcal{H}_R(q_s, c_s)$ defined by

$$\iota(T_w) = (-1)^{\ell(w)} T_w^* \text{ for } w \in W(1),$$

where $T_w^* = (T_{s_1} - c_{s_1}) \dots (T_{s_r} - c_{s_r}) T_u$ if $w = s_1 \dots s_r u$ is a reduced decomposition of w, $s_i \in S^{\mathrm{aff}}(1)$, $u \in \Omega(1)$, $\ell(w) = r$ (cp. [7, Prop. 4.23]). Let o be a spherical orientation attached to a Weyl chamber \mathfrak{D} , and \overline{o} the spherical orientation attached to the opposite Weyl chamber $-\mathfrak{D}$. We recall (cp. [7, Lemma 5.31])

$$\iota(E_o(w)) = (-1)^{\ell(w)} E_{\overline{o}}(w) \text{ for } w \in W(1).$$

Proposition 3.7. If C is a finite conjugacy class of W(1), we have

$$\iota(E(C)) = (-1)^{\ell(C)} E(C).$$

Proof. The length is constant on C hence

$$\iota(E(C)) = \sum_{\mu \in C} \iota(E_o(\mu)) = (-1)^{\ell(C)} \sum_{\mu \in C} E_{\overline{o}}(\mu) = (-1)^{\ell(C)} E(C),$$

as $E(C) = E_o(C)$ does not depend on the choice of the orientation o.

Remark 3.8. When $\mu \in X_*(T)$, $\ell(C(\mu))$ is an even number (cp. [6]), hence $E(C(\mu))$ is fixed by ι .

ADDED IN PROOF ON AUGUST 14, 2014

1) The Bernstein relations (4), therefore also Lemma 2.5, Proposition 2.6, and Proposition 2.8, are valid only for $s \in (S \cap S_o)(1)$ where $S = W_0 \cap S^{\text{aff}}$ and not for $s \in S_o(1)$ [7, Thm. 5.45], hence the arguments for $E_o(C)$ being independent of the orientation o in Proposition 2.7 are not valid.

Proof that $E_o(C)$ is independent of o. We reduce to $q_s = 1$ for $s \in S^{\text{aff}}$. Then, this results from the formula

(16)
$$E_o(w)^{-1}E_o(\lambda)E_o(w) = E_{o\bullet w}(w^{-1}\lambda w) \quad (w \in W_0(1), \lambda \in \Lambda(1)),$$

for the anti-dominant orientation o, because $E_o(C)$ is central and $W_0(1)$ acts transitively on the (spherical) orientations.

2) The proof of Lemma 2.16 must be replaced by:

Proof of Lemma 2.16. Let $L = \{\vec{\ell}(w) : \gamma \mapsto \ell_{\gamma}(w) : \Sigma^{+} \to \mathbb{Z} \mid w \in W\}$ where for $(\lambda, w_{0}) \in \Lambda \times W_{0}$, $\ell_{\gamma}(\lambda w_{0})$ is equal to ([7, Cor. 5.9])

$$\alpha \circ \nu(\lambda)$$
 if $\gamma \in w_0(\Sigma^+)$, $\gamma \circ \nu(\lambda) - 1$ if $\gamma \in w_0(\Sigma^-)$.

For $w, w' \in W$, we write $\vec{\ell}(w) \leq \vec{\ell}(w')$ if $|\ell_{\gamma}(w)| = |\ell_{\gamma}(w')| + |\ell_{\gamma}(w) - \ell_{\gamma}(w')|$ for all $\gamma \in \Sigma^+$. We say that $\vec{\ell}(w)$ is minimal if $\Lambda w = \Lambda w'$ and $\vec{\ell}(w') \leq \vec{\ell}(w)$ implies $\vec{\ell}(w') = \vec{\ell}(w)$. As in [4, Lem. 4.2] one shows that the set L_{min} of minimal elements of L is finite. The finite subset $X = \bigcup_{w_0 \in W_0} X(w_0)$ of Λ where $L_{min} = \bigcup_{w_0 \in W_0} X(w_0)w_0$ satisfies Lemma 2.16 because

(17)
$$\Lambda w = \Lambda w' \text{ and } \vec{\ell}(w') \le \vec{\ell}(w) \Rightarrow \ell(w) = \ell(w') + \ell(ww'^{-1}).$$

In the left hand side of (17), $ww'^{-1} \in \Lambda$ implies $\ell_{\gamma}(ww'^{-1}) = \ell_{\gamma}(w) - \ell_{\gamma}(w')$ for all $\gamma \in \Sigma^{+}$; with $\vec{\ell}(w') \leq \vec{\ell}(w)$ we have $|\ell_{\gamma}(w)| = |\ell_{\gamma}(w')| + |\ell_{\gamma}(w) - \ell_{\gamma}(w')| = |\ell_{\gamma}(w')| + |\ell_{\gamma}(ww'^{-1})|$. Apply the length formula [7, Prop. 5.7]

$$\ell(w) = \sum_{\gamma \in \Sigma^+} |\ell_{\gamma}(w)|$$

to obtain (17).

References

- N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chapitres 5-7, reprint of the 1983 original, Actualités Scientifiques et Industrielles, No. 1308/1314, Hermann, Paris 1964/1965. Springer, Berlin 2006.
- [2] G. Henniart and M.-F. Vignéras, A Satake isomorphism for representations modulo p of reductive groups over local fields. J. Reine Angew. Math. Published Online: 05/22/2013.
- [3] G. Lusztig, Affine Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), no. 3, 599–635. MR0991016 (90e:16049)
- [4] Nicolas Alexander Schmidt, Generische pro-p-algebren. Diplomarbeit Berlin 2009.
- [5] M.-F. Vignéras, Erratum: "Pro-p-Iwahori Hecke ring and supersingular $\overline{\mathbf{F}}_p$ -representations" [Math. Ann. **331** (2005), no. 3, 523–556; 2122539], Math. Ann. **333** (2005), no. 3, 699–701. MR2198804 (2007i:22024)
- [6] M.-F. Vignéras, Algèbres de Hecke affines génériques, Represent. Theory 10 (2006), 1–20 (electronic). MR2192484 (2006i:20005)
- [7] M.-F. Vignéras, The pro-p-Iwahori-Hecke algebra of a reductive p-adic group I. Preprint 2013.

Received January 10, 2014; accepted January 13, 2014; Errata added April 27, 2014

Marie-France Vignéras

Université de Paris 7, UMR 7586, Institut de mathématiques de Jussieu

4, place Jussieu, Case 247, 75005 Paris, France

E-mail: vigneras@math.jussieu.fr

URL: http://www.math.jussieu.fr/~vigneras/