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Abstract. This is the first in a sequence of two articles investigating moduli stacks of global
G-shtukas, which are function field analogs for Shimura varieties. Here G is a flat affine group
scheme of finite type over a smooth projective curve, and global G-shtukas are generalizations
of Drinfeld shtukas and analogs of abelian varieties with additional structure. Our moduli
stacks generalize various moduli spaces used by different authors to prove instances of the
Langlands program over function fields.

In the present article we explain the relation between global G-shtukas and local P-
shtukas, which are the function field analogs of p-divisible groups with additional structure.
We prove the analog of a theorem of Serre and Tate stating the equivalence between the
deformations of a global G-shtuka and its associated local P-shtukas. We also investigate
local P-shtukas alone and explain their relation with Galois representations through their
Tate modules. And if P is a smooth affine group scheme with connected reductive generic
fiber we prove the existence of Rapoport–Zink spaces for bounded local P-shtukas as formal
schemes locally formally of finite type. In the sequel to this article we use these Rapoport–
Zink spaces to uniformize the moduli stacks of global G-shtukas.
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1. Introduction

Let Fq be a finite field with q elements, let C be a smooth projective geo-
metrically irreducible curve over Fq, and let G be a flat affine group scheme
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of finite type over C. A global G-shtuka G over an Fq-scheme S is a tu-
ple (G, s1, . . . , sn, τ) consisting of a G-torsor G over CS := C ×Fq

S, an n-
tuple of (characteristic) sections (s1, . . . , sn) ∈ Cn(S) and a Frobenius connec-
tion τ defined outside the graphs of the sections si, that is, an isomorphism
τ : σ∗G|CSr∪iΓsi

∼−−→ G|CSr∪iΓsi
where σ∗ = ( idC ×Frobq,S)

∗.

In [2] we will show that the moduli stack ∇nH 1(C,G) of global G-shtukas,
after imposing suitable boundedness conditions and level structures, is an al-
gebraic Deligne–Mumford stack over Cn. One can hope that ∇nH 1(C,G)
may play the same role that Shimura varieties play for number fields. More
specifically one can hope that the Langlands correspondence for function fields
is realized on its cohomology. Note that in particular our moduli stack gen-
eralizes the space FShD,r of F -sheaves (also called “Drinfeld-shtukas”) which
was considered by Drinfeld [13] and Laurent Lafforgue [29] in their proof of
the Langlands correspondence for G = GL2 (resp. G = GLr), and which in
turn was generalized by Varshavsky’s [50] moduli stacks FBun to the case
where G is a constant split reductive group. Varshavsky’s moduli stack and
our generalization are used by Vincent Lafforgue [30] to prove Langlands pa-
rameterization over function fields. Strictly speaking Drinfeld and L. Lafforgue
did not use the language of GLr-torsors but rather the equivalent one of locally
free sheaves. Our space ∇nH 1(C,G) likewise generalizes the moduli stacks
Chtλ of Ngô and Ngô Dac [37] who explain a simple method to countG-shtukas
over finite fields, the stacks EℓℓC,D,I of Laumon, Rapoport and Stuhler [34]
who used them to prove the local Langlands correspondence for GLr, and the

stacks Ab-Shr,d
H of the second author [20]; see [2, Rem. 3.19] for a detailed

comparison between these moduli stacks.
In [2] we also prove that ∇nH 1(C,G) has a Rapoport–Zink uniformization

by Rapoport–Zink spaces for local P-shtukas. More precisely, let Aν
∼= Fν [[ζ]]

be the completion of the local ring OC,ν at a closed point ν ∈ C, let Qν be
its fraction field, and consider the group schemes P = Pν := G ×C SpecAν

and Pν = G ×C SpecQν . Let NilpAν
denote the category of Aν-schemes on

which the uniformizer ζ of Aν is locally nilpotent. A local Pν-shtuka over a
scheme S ∈ NilpAν

is a pair L = (L+, τ̂ ) consisting of an L+Pν-torsor L+ on

S and an isomorphism of the LPν-torsors τ̂ : σ̂∗L ∼−−→ L. Here LPν (resp.
L+Pν) denotes the group of loops (resp. positive loops) of Pν (see Chapter 2), L
denotes the LPν-torsor associated with L+ and σ̂∗L the pullback of L under the
absolute Fν-Frobenius endomorphism Frob(#Fν),S : S → S. Building on earlier
work of Anderson [1], Drinfeld [12], Genestier [16], Laumon [33], Rosen [47]
and Taguchi [49], local GLr-shtukas were studied by the second author in [22]
as function field analogs of p-divisible groups and F -crystals. Local Pν-shtukas,
which can be viewed as function field analogs of p-divisible groups with extra
structure by the group scheme Pν , were introduced by Viehmann and the
second author in [23, 24] in the case where Pν is a constant split reductive
group. Our definition is a generalization to flat affine group schemes Pν of
finite type.
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As a preparation to [2] we show in this article that for Pν smooth over Aν

and for a fixed local Pν-shtuka L0 over a field k, the unbounded Rapoport–Zink
functor

ML0
: (Nilpk[[ζ]])

o −→ Sets

S 7−→
{
Isomorphism classes of (L, δ̄) | where L is a local Pν-shtuka

over S and δ̄ : LS̄ → L0,S̄ is a quasi-isogeny over S̄
}
,

where S̄ = V(ζ) ⊂ S, is representable by an ind-scheme, ind-quasi-projective
over Spf k[[ζ]]; see Theorem 4.4. More precisely, if the L+Pν-torsor underlying
L0 is trivial then ML0

∼= FℓPν
×̂Fν

Spf Fν [[ζ]], where FℓPν
is the affine flag

variety of Pν ; see Remark 4.3. To obtain a formal scheme locally formally
of finite type, as in the analog for p-divisible groups, one has to assume that
Pν has connected reductive generic fiber, and one has to bound the Hodge
polygon, that is the relative position of σ̂∗L+ and L+ under τ̂ . We give an
axiomatic treatment of bounds on page 640ff. and prove the representability
of the bounded Rapoport–Zink functor by a formal scheme locally formally of
finite type over Spf k[[ζ]] in Theorem 4.18. Our proof, which generalizes [23,
Thm. 6.3], is inspired by Rapoport’s and Zink’s original result [42, Thm. 2.16]
for p-divisible groups.

In addition, in Chapter 3 we discuss the relation between local P-shtukas
and Galois representations which is given by the associated Tate module. This
chapter is largely independent of the rest of this article and is only used in
Remark 5.6. In Chapter 5 we consider the formal stack ∇nH 1(C,G)ν , which
is obtained by taking the formal completion of the stack ∇nH 1(C,G) at a
fixed n-tuple of pairwise different characteristic places ν = (ν1, . . . , νn). This
means we let Aν be the completion of the local ring OCn,ν , and we consider
global G-shtukas only over schemes S whose characteristic morphism S → Cn

factors through NilpAν
. Recall that with an abelian variety over a scheme in

NilpZp
one can associate its p-divisible group. In the analogous situation for

global G-shtukas one can associate a tuple (Γ̂νi(G))i of local Pνi-shtukas Γ̂νi(G)
with a global G-shtuka G in ∇nH 1(C,G)ν (S). We construct this global-local
functor in Chapter 5 by first generalizing the glueing lemma of Beauville and
Laszlo [4] in Lemma 5.1. In analogy with a theorem of Serre and Tate relating
the deformation theory of abelian varieties over schemes in NilpZp

and their
associated p-divisible groups, we prove in Theorem 5.10 the equivalence be-
tween the infinitesimal deformations of a global G-shtuka and the infinitesimal
deformations of its associated n-tuple of local Pνi -shtukas. Note that unlike
abelian varieties, G-shtukas posses more than one characteristic and we must
keep track of the deformations of the local Pνi-shtukas at each of these char-
acteristic places νi. This theorem for abelian τ -sheaves (corresponding to the
case G = GLr) and their associated z-divisible groups was first stated and
proved by the second author in [20].
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1.1. Notation and conventions. Throughout this article we denote by

Fq a finite field with q elements and characteristic p,

C a smooth projective geometrically irreducible curve over
Fq,

Q := Fq(C) the function field of C,

ν a closed point of C, also called a place of C,

Fν the residue field at the place ν on C,

Aν the completion of the stalk OC,ν at ν,

Qν := Frac(Aν) its fraction field,

F a finite field containing Fq,

DR := SpecR[[z]] the spectrum of the ring of formal power series in z with
coefficients in an F-algebra R,

D̂R := Spf R[[z]] the formal spectrum of R[[z]] with respect to the z-adic
topology.

When R = F we drop the subscript R from the notation of DR and D̂R.

For a formal scheme Ŝ we denote by Nilp Ŝ the category of schemes over Ŝ on

which an ideal of definition of Ŝ is locally nilpotent. We equip NilpŜ with the
fppf -topology. We also denote by

n ∈ N>0 a positive integer,

ν := (νi)i=1...n an n-tuple of closed points of C,

Aν the completion of the local ring OCn,ν of Cn at the
closed point ν = (νi),

NilpAν
:= NilpSpfAν

the category of schemes over Cn on which the ideal
defining the closed point ν ∈ Cn is locally nilpotent,

NilpF[[ζ]] := Nilp
D̂

the category of D-schemes S for which the image of z in
OS is locally nilpotent. We denote the image of z by ζ
since we need to distinguish it from z ∈ OD.

G a flat affine group scheme of finite type over C,

Pν := G×C SpecAν the base change of G to SpecAν ,

Pν := G×C SpecQν the generic fiber of Pν over SpecQν ,

P a flat affine group scheme of finite type over D =
SpecF[[z]],

P := P×D SpecF((z)) the generic fiber of P over SpecF((z)).

Let S be an Fq-scheme. We denote by σS : S → S its Fq-Frobenius endo-
morphism which acts as the identity on the points of S and as the q-power
map on the structure sheaf. Likewise we let σ̂S : S → S be the F-Frobenius
endomorphism of an F-scheme S. We set

CS := C ×SpecFq
S and σ := idC ×σS .

Münster Journal of Mathematics Vol. 7 (2014), 623–670
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Let H be a sheaf of groups (for the fppf -topology) on a scheme X . In this
article a (right) H-torsor (also called an H-bundle) on X is a sheaf G for the
fppf -topology on X together with a (right) action of the sheaf H such that G
is isomorphic to H on an fppf -covering of X . Here H is viewed as an H-torsor
by right multiplication.

2. Local P-shtukas and global G-shtukas

Global G-shtukas are function field analogs of abelian varieties. They were
introduced by Drinfeld [13] in the case where G = GLr and used by him and by
L. Lafforgue [29] to establish the Langlands correspondence for GLr over global
function fields. As we mentioned in the introduction, they were generalized by
Laumon, Rapoport and Stuhler [34], Varshavsky [50], Ngô and Ngô Dac [37],
and in [20]. We further generalize all these variants in Definition 2.12. Var-
shavsky’s and our generalization are used by Vincent Lafforgue [30] to prove
Langlands parameterization over function fields. The local p-adic properties
of abelian varieties are largely captured by their associated p-divisible groups.
In the theory of global G-shtukas the latter correspond to local shtukas; see
[21, Chap. 3].

Loop groups and local P-shtukas. Since we want to develop the theory of
local P-shtukas partly independently of global G-shtukas we let F be a finite
field and F[[z]] be the power series ring over F in the variable z. We let P

be a flat affine group scheme of finite type over D := SpecF[[z]], and we let

P := P ×D Ḋ be the generic fiber of P over Ḋ := SpecF((z)). We are mainly
interested in the situation where we have an isomorphism D ∼= SpecAν for a
place ν of C and where P = Pν := G×C SpecAν . We recall the following

Definition 2.1. The group of positive loops associated with P is the infinite
dimensional affine group scheme L+P over F whose R-valued points for an
F-algebra R are

L+P(R) := P(R[[z]]) := P(DR) := HomD(DR,P).

The group of loops associated with P is the fpqc-sheaf of groups LP over F

whose R-valued points for an F-algebra R are

LP (R) := P (R((z))) := P (ḊR) := Hom
Ḋ
(ḊR, P ),

where we write R((z)) := R[[z]][ 1z ] and ḊR := SpecR((z)). It is representable
by an ind-scheme of ind-finite type over F; see [39, §1.a], or [5, §4.5], [38],
[15] when P is constant. Let H 1(SpecF, L+P) := [SpecF/L+P] (respectively
H 1(SpecF, LP ) := [SpecF/LP ]) denote the classifying space of L+P-torsors
(respectively LP -torsors). It is a stack fibered in groupoids over the category of
F-schemes S whose category H 1(SpecF, L+P)(S) consists of all L+P-torsors
(resp. LP -torsors) on S. The inclusion of sheaves L+P ⊂ LP gives rise to the
natural 1-morphism

(2.1) L : H
1(SpecF, L+P) −→ H

1(SpecF, LP ), L+ 7→ L.

Münster Journal of Mathematics Vol. 7 (2014), 623–670
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Definition 2.2. Let P̂ be the formal group scheme over D̂ := Spf F[[z]], ob-

tained by the formal completion of P along V (z). A formal P̂-torsor over an

F-scheme S is a z-adic formal scheme P̂ over D̂S := D̂ ×̂F S together with an

action P̂ ×̂
D̂
P̂ → P̂ of P̂ on P̂ such that there is a covering D̂S′ → D̂S where

S′ → S is an fpqc-covering and a P̂-equivariant isomorphism

P̂ ×̂
D̂S

D̂S′

∼−−→ P̂ ×̂
D̂
D̂S′ .

Here P̂ acts on itself by right multiplication. Let H 1(D̂, P̂) be the category
fibered in groupoids that assigns to each F-scheme S the groupoid consisting
of all formal P̂-torsors over D̂S .

Remark 2.3. If P is smooth over D then for any P̂ in H 1(D̂, P̂)(SpecR) one

can find an étale covering R → R′ such that P̂ ×̂
D̂R

D̂R′ is isomorphic to P̂R′

in H 1(D̂, P̂)(R′). Indeed, since P̂ → D̂R is smooth, the restriction P̂0 of P̂ to

V (z) ⊆ D̂R is likewise smooth over R. Therefore P̂0 has a section over an étale

covering R→ R′. Then by smoothness this section extends over D̂R.

In [23, Prop. 2.2.(a)] Viehmann and the second author proved that for a
split reductive group G, there is a bijection of (pointed) sets between the

Čech cohomology Ȟ
1
(Sfpqc, L

+G) and the set of isomorphism classes of z-adic

formal schemes over D̂S . By the same arguments one can even see that there
is a canonical equivalence between the corresponding categories.

Proposition 2.4. There is a natural isomorphism

H
1(D̂, P̂)

∼−−→ H
1(SpecF, L+P)

of groupoids. In particular, if P is smooth over D then all L+P-torsors for the
fpqc-topology on S are already trivial étale locally on S.

Proof. With a given element P̂ of H 1(D̂, P̂)(S) one can associate the following
sheaf

K : Sfpqc −→ Sets
T 7−→ Hom

D̂S
(D̂T , P̂),

where Sfpqc denotes the big fpqc-site on S. This sheaf is a torsor under the

action of L+P(T ) = Hom
D̂
(D̂T , P̂).

Conversely let K be an L+P-torsor. Let S′ → S be an fpqc-covering that
trivializes K and fix a trivialization KS′

∼−−→ (L+P)S′ . This gives a 1-cocycle
g ∈ L+P(S′′), where S′′ = S′ ×S S

′. Now ḡ = g(mod zn) can be viewed as a

descent data on P̂ ×̂D Dn,S′ = P×DDn,S′ where Dn,S′ := SpecF[[z]]/(zn)×F S
′.

Since Dn,S′ → Dn,S is an fpqc-covering and P is affine, the descent data is

effective by [8, §6.1, Thm. 6] and gives an affine finitely presented scheme Ĝn

over Dn,S by [17, IV2, Prop. 2.7.1], which is moreover smooth by [17, IV4,
Corollaire 17.7.3] if P is smooth over D. These schemes form an inductive

system {Ĝn}n∈N. Now set Ĝ := lim
−→

Ĝn, the existence of this limit (in the

Münster Journal of Mathematics Vol. 7 (2014), 623–670
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category of z-adic formal schemes over D̂S) follows from [17, Inew, Cor. 10.6.4].
This shows that the functor is essentially surjective. By the above construction
we see that the functor is also fully faithful.

The last statement now follows from Remark 2.3. �

Definition 2.5. Assume that we have two morphisms f, g : X → Y of schemes
or stacks. We denote by equi(f, g : X ⇒ Y ) the pull back of the diagonal under
the morphism (f, g) : X → Y ×Z Y , that is, we let

equi(f, g : X ⇒ Y ) := X ×(f,g),Y×Y,∆ Y

where ∆ = ∆Y/Z : Y → Y ×Z Y is the diagonal morphism.

Generalizing [23, Def. 3.1] we define the space of local P-shtukas as follows.

Definition 2.6. Let X be the fiber product

H
1(SpecF, L+P)×H 1(SpecF,LP ) H

1(SpecF, L+P)

of groupoids. Let pri denote the projection onto the i-th factor. We define the
groupoid of local P-shtukas ShtDP to be

ShtDP := equi
(
σ̂ ◦ pr1, pr2 : X ⇒ H

1(SpecF, L+P)
)
×̂SpecF Spf F[[ζ]].

(see Definition 2.5) where σ̂ := σ̂H 1(SpecF,L+P) is the absolute F-Frobenius of

H 1(SpecF, L+P). The category ShtDP is fibered in groupoids over the category
NilpF[[ζ]] of F[[ζ]]-schemes on which ζ is locally nilpotent. We call an object of

the category ShtDP(S) a local P-shtuka over S.
More explicitly a local P-shtuka over S ∈ NilpF[[ζ]] is a pair L = (L+, τ̂)

consisting of an L+P-torsor L+ on S and an isomorphism of the associated
loop group torsors τ̂ : σ̂∗L → L from (2.1).

Definition 2.7. A local P-shtuka (L+, τ̂) is called étale if τ̂ comes from an

isomorphism of L+P-torsors σ̂∗L+
∼−−→ L+. We denote by ÉtShtDP(S) the

category of étale local P-shtukas over S.

Lemma 2.8. Let k be a separably closed field extension of F. If P is smooth
over D with connected special fiber, then for any b ∈ L+P(k) there exists some
c ∈ L+P(k) such that bσ̂∗(c) = c.

Proof. Let P̂ be as in Definition 2.2. Then L+P(k) = P̂(k[[z]]). We view P̂ as
the inductive limit lim

−→
Pn, where Pn = P ×D Dn with Dn := SpecF[[z]]/(zn).

Let G̃n denote the linear algebraic group over F given by the Weil restric-
tion ResDn/ SpecF(Pn). The reduction of b mod zn gives an element bn ∈
G̃n(k). Since P is smooth with connected special fiber, G̃n is connected by
[10, Prop. A.5.9]. Thus by Lang’s theorem [32, Cor. on p. 557] there exists a

cn ∈ G̃n(k) such that bnσ̂
∗(cn) = cn. Here σ̂ is the F-Frobenius on G̃n which

coincides with the Frobenius σ̂ induced from P. Now consider the reduction
map αn : G̃n+1(k) → G̃n(k) and the element d̄n := αn(cn+1)

−1cn which sat-

isfies σ̂∗(d̄n) = d̄n and hence lies in G̃n(F) = P(Dn+1). Since P is smooth d̄n

Münster Journal of Mathematics Vol. 7 (2014), 623–670
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lifts to an element dn ∈ P(Dn+1) = G̃n+1(F). Replacing cn+1 by cn+1dn we
may assume that αn(cn+1) = cn and then take c := lim

←−
cn. �

Corollary 2.9. If P is smooth over D with connected special fiber, every étale
local P-shtuka over a separably closed field k is isomorphic to

(
(L+P)k, 1·σ̂∗

)
.

Proof. Let L = (L+, τ̂ ) be an étale local P-shtuka over k. By Proposition 2.4
there is a trivialization of the L+P-torsor L+ giving rise to an isomorphism
L ∼=

(
(L+P)k, b·σ̂∗

)
for some b ∈ L+P(k). By Lemma 2.8 there is an element

c ∈ L+P(k) with bσ̂∗(c) = c and multiplication with c is an isomorphism(
(L+P)k, 1·σ̂∗

) ∼−−→
(
(L+P)k, b·σ̂∗

)
. �

Local P-shtukas can be viewed as function field analogs of p-divisible groups.
This inspires the following notions of quasi-isogenies; compare [23, Def. 3.8].

Definition 2.10. A quasi-isogeny f : L → L′ between two local P-shtukas
L := (L+, τ̂ ) and L′ := (L′+, τ̂ ′) over S is an isomorphism of the associated

LP -torsors f : L → L′ satisfying f ◦ τ̂ = τ̂ ′ ◦ σ̂∗f . We denote by QIsogS(L,L′)
the set of quasi-isogenies between L and L′ over S, and we write QIsogS(L) :=
QIsogS(L,L) for the quasi-isogeny group of L.

As in the theory of p-divisible groups, also our quasi-isogenies are rigid.
Here we prove the case of local P-shtukas which is analogous to p-divisible
groups. Like for abelian varieties, the case of global G-shtukas only holds
in fixed finite characteristics. We will define quasi-isogenies between global
G-shtukas in Definition 2.13 and prove rigidity for them in Proposition 5.9.

Proposition 2.11 (Rigidity of quasi-isogenies for local P-shtukas). Let S be a
scheme in NilpF[[ζ]] and let j : S̄ → S be a closed immersion defined by a sheaf

of ideals I which is locally nilpotent. Let L and L′ be two local P-shtukas over
S. Then

QIsogS(L,L′) −→ QIsogS̄(j
∗L, j∗L′), f 7→ j∗f

is a bijection of sets.

Proof. This was proved in [23, Prop. 3.9] when P = G ×F D for a constant
split reductive group G over F. The proof carries over literally. Compare also
Proposition 5.9. �

Global G-shtukas. Let Fq be a finite field with q elements, let C be a smooth
projective geometrically irreducible curve over Fq, and let G be a flat affine
group scheme of finite type over C. The relation to the situation above is as
follows. We are mainly interested in the case where F[[z]] ∼= Aν and P = Pν .

Definition 2.12. A global G-shtuka G = (G, s1, . . . , sn, τ) over an Fq-scheme
S is a tuple where

• G is a G-torsor over CS ,
• s1, . . . , sn ∈ C(S) are Fq-morphisms called the characteristic sections of G,

and

Münster Journal of Mathematics Vol. 7 (2014), 623–670
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• τ : σ∗G|CSrΓs1∪...∪Γsn

∼−−→ G|CSrΓs1∪...∪Γsn
is an isomorphism of G-torsors.

Here Γsi ⊂ CS denotes the graph of the morphism si.

We write σ = idC ×σS for the Fq-Frobenius endomorphism σS : S → S which
acts as the identity on the points of S and as the q-power map on the structure
sheaf. We denote the moduli stack of global G-shtukas by ∇nH 1(C,G). It is
a stack fibered in groupoids over the category of Fq-schemes. Sometimes we
will fix the sections (s1, . . . , sn) ∈ Cn(S) and simply call G = (G, τ) a global
G-shtuka over S.

In [2, Thm. 3.15] we prove that ∇nH 1(C,G) is an ind-algebraic stack over
Cn (in the sense of [2, Def. 3.14]) which is ind-separated and locally of ind-
finite type. However, we will not use this result in the present article, as we
will mainly focus on local P-shtukas, and the relation between individual global
G-shtukas and local P-shtukas. For a thorough discussion how our global G-
shtukas and their moduli spaces generalize similar concepts in the literature,
we refer to the introduction and to [2, Rem. 3.19].

There is also a notion of quasi-isogenies for global G-shtukas.

Definition 2.13. Consider a scheme S together with characteristic morphisms
si : S → C for i = 1, . . . , n and let G = (G, τ) and G′ = (G′, τ ′) be two global
G-shtukas over S with the same characteristics si. A quasi-isogeny from G
to G′ is an isomorphism f : G|CSrDS

∼−−→ G′|CSrDS
satisfying τ ′σ∗(f) = fτ ,

where D is some effective divisor on C. We denote the group of quasi-isogenies
of G to itself by QIsogS(G).

Like for abelian varieties, rigidity of global G-shtukas only holds in fixed
finite characteristics; see Proposition 5.9.

3. Tate modules for local P-shtukas

In this chapter we assume that P is a flat affine group scheme of finite type
over D. For a scheme S ∈ NilpF[[ζ]] let OS [[z]] be the sheaf of OS-algebras on
S for the fpqc-topology whose ring of sections on an S-scheme Y is the ring
of power series OS [[z]](Y ) := Γ(Y,OY )[[z]]. Let OS((z)) be the fpqc-sheaf of
OS-algebras on S associated with the presheaf Y 7→ Γ(Y,OY )[[z]][

1
z ]. A sheaf

M of OS [[z]]-modules on S which is finite free fpqc-locally on S is already finite
free Zariski-locally on S by [23, Prop. 2.3]. We call those modules finite locally
free sheaves of OS [[z]]-modules. We denote by σ̂∗ the endomorphism of OS [[z]]
and OS((z)) that acts as the identity on the variable z, and is the F-Frobenius
b 7→ (b)#F on local sections b ∈ OS . For a sheaf M of OS [[z]]-modules on S we
set σ̂∗M := M ⊗OS[[z]],σ̂∗ OS [[z]]. We recall the definition of local shtukas and
their quasi-isogenies from [23, Def. 4.1] and [22, Def. 2.1.1].

Definition 3.1.

(a) A local shtuka over S is a pair (M, τ̂ ) consisting of a locally free sheaf M
of OS [[z]]-modules of finite rank on S and an isomorphism τ̂ : σ̂∗M ⊗OS[[z]]

OS((z))
∼−−→M ⊗OS[[z]] OS((z)).
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(b) A local shtukaM := (M, τ̂ ) is called étale if τ̂ comes from an isomorphism

of OS [[z]]-modules σ̂∗M
∼−−→M .

(c) A morphism f : (M, τ̂ ) → (M ′, τ̂ ′) of local shtukas over S is a morphism
f :M →M ′ of OS [[z]]-modules which satisfies τ̂ ′ ◦ σ̂∗f = f ◦ τ̂ . We do not
require that f is an isomorphism. We denote by ShtD(S) the category of

local shtukas over S and by ÉtShtD(S) the category of étale local shtukas
over S.

Remark 3.2. There is an equivalence of categories between the category
H 1(SpecF, L+GLr)(S) and the category of locally free sheaves of OS [[z]]-
modules of rank r; see [23, §4]. It induces an equivalence between the category
of local GLr-shtukas over S and the category consisting of local shtukas over
S of rank r with isomorphisms as the only morphisms; see [23, Lemma 4.2].

Definition 3.3. A quasi-isogeny between two local shtukas (M, τ̂ ) → (M ′, τ̂ ′)
is an isomorphism of OS((z))-modules

f :M ⊗OS[[z]] OS((z))
∼−−→M ′ ⊗OS[[z]] OS((z))

with τ̂ ′ ◦ σ̂∗f = f ◦ τ̂ .
In analogy with p-divisible groups and abelian varieties, one can also assign

a Galois representation to a given étale local shtuka as follows. Assume that
S is connected. Let s̄ be a geometric point of S and let πét

1 (S, s̄) denote the
algebraic fundamental group of S at s̄. We define the (dual) Tate functor

from the category of étale local shtukas ÉtShtD(S) over S to the category
FModF[[z]][πét

1 (S,s̄)] of finite free F[[z]]-modules equipped with a continuous action

of πét
1 (S, s̄) as follows

Ť− : ÉtShtD(S) −→ FModF[[z]][πét
1 (S,s̄)],

M := (M, τ̂ ) 7−→ ŤM := (M ⊗OS[[z]] κ(s̄)[[z]])
τ̂ .

Here the superscript τ̂ denotes τ̂ -invariants. Sometimes also the notation
H1

ét(M,F[[z]]) := ŤM is used. Inverting z we also consider the rational (dual)
Tate functor

V̌− : ÉtShtD(S) −→ FModF((z))[πét
1 (S,s̄)],

M := (M, τ̂ ) 7−→ V̌M := (M ⊗OS[[z]] κ(s̄)[[z]])
τ̂ ⊗F[[z]] F((z)).

where FModF((z))[πét
1 (S,s̄)] denotes the category of finite F((z))-vector spaces

equipped with a continuous action of πét
1 (S, s̄). The functor V̌− transforms

quasi-isogenies into isomorphisms.

Proposition 3.4. Let S ∈ NilpF[[ζ]] be connected. Then the functor Ť− is

an equivalence between the categories ÉtShtD(S) and FModF[[z]][πét
1 (S,s̄)]. The

functor V̌− is an equivalence between the category of étale local shtukas over
S with quasi-isogenies as morphisms and the category FModF((z))[πét

1 (S,s̄)] with

isomorphisms as the only morphisms. There is a canonical isomorphism of
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κ(s̄)[[z]]-modules ŤM ⊗F[[z]] κ(s̄)[[z]]
∼−−→M ⊗OS[[z]] κ(s̄)[[z]] which is equivariant

for the action of πét
1 (S, s̄) and τ̂ , where πét

1 (S, s̄) acts trivially on M and τ̂ acts
trivially on ŤM .

Proof. The statement for Ť− follows by the same arguments as [22, Prop. 1.3.7].
It is analogous to [26, Prop. 4.1.1] and can be thought of as a positive char-
acteristic analog of the Riemann–Hilbert correspondence. We describe the
quasi-inverse functor. Consider an F[[z]][πét

1 (S, s̄)]-module of rank r and the
corresponding representation π : πét

1 (S, s̄) → GLr(F[[z]]). For each m ∈ N let
Sm → S be the finite Galois covering corresponding to the kernel of

πét
1 (S, s̄)

π−→ GLr(F[[z]])
mod zm

−−−−−−→ GLr

(
F[[z]]/(zm)

)
.

Let M̃m be the free module of rank r over OSm
[[z]]/(zm) = OSm

⊗F F[[z]]/(z
m)

and equip it with the Frobenius τ̂ := σ̂ ⊗ id and the action of γ ∈ Gal(Sm/S)

by γ(b⊗ f) = γ∗(b)⊗ π(γ−1)(f) for b ∈ OSm
and f ∈ F[[z]]/(zm)⊕r. Then M̃m

descends to a locally free OS [[z]]/(z
m)-module Mm of rank r and τ̂ descends to

an isomorphism τ̂ : σ̂∗Mm
∼−−→ Mm. This makes M := lim

←−
Mm into an étale

local shtuka over S and yields the quasi-inverse to Ť−.
That V̌− is essentially surjective follows from the fact that πét

1 (S, s̄) is com-
pact which implies that every F((z))[πét

1 (S, s̄)]-module arises by inverting z from
an F[[z]][πét

1 (S, s̄)]-module. To see that V̌− is fully faithful consider two local

shtukas M and M ′ over S and an isomorphism f : V̌M
∼−−→ V̌M ′ . There are

powers zN and zN
′

of z such that zNf and zN
′

f−1 come from morphisms
ŤM → ŤM ′ respectively ŤM ′ → ŤM . Under the equivalence Ť− these in turn

come from morphisms g : M → M ′ and g′ : M ′ → M . Then gg′ = zN+N ′

and this implies that g and g′ are quasi-isogenies. Clearly V̌z−Ng = f and

V̌z−N′g′ = f−1. This proves that V̌− is an equivalence of categories. �

Let VectD be the groupoid over NilpF[[ζ]] whose S-valued points is the cat-

egory of locally free sheaves of OS [[z]]-modules with isomorphisms as the only
morphisms. Let RepF[[z]] P be the category of representations ρ : P → GL(V )

of P in finite free F[[z]]-modules V , that is, ρ is a morphism of algebraic groups
over F[[z]]. Any such representation ρ gives a functor

ρ∗ : H
1(SpecF, L+P) → VectD

which sends an L+P-torsor L+ ∈ H 1(SpecF, L+P)(S) to the sheaf of OS [[z]]-
modules associated with the following presheaf

(3.1) Y 7−→
(
L+(Y )×

(
V ⊗F[[z]] OS [[z]](Y )

))/
L+P

(
Y ).

The functor ρ∗ : H 1(SpecF, L+P) → VectD induces a functor from the cat-
egory of local P-shtukas to the category of local shtukas which we likewise
denote ρ∗. This functor is also compatible with quasi-isogenies.
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Definition 3.5. We define Funct⊗(RepF[[z]] P,FModF[[z]][πét
1 (S,s̄)]), respectively

Funct⊗(RepF[[z]] P,FModF((z))[πét
1 (S,s̄)]), as the category whose objects are ten-

sor functors from RepF[[z]] P to FModF[[z]][πét
1 (S,s̄)], resp. to FModF((z))[πét

1 (S,s̄)],

and whose morphisms are isomorphisms of functors. We define the (dual) Tate
functor Ť−, respectively the rational (dual) Tate functor V̌− as the functors

Ť− : ÉtShtDP (S) −→ Funct⊗(RepF[[z]] P,FModF[[z]][πét
1 (S,s̄)])

L 7−→ ŤL : ρ 7→ Ťρ∗L,

V̌− : ÉtShtDP (S) −→ Funct⊗(RepF[[z]] P,FModF((z))[πét
1 (S,s̄)])

L 7−→ V̌L : ρ 7→ V̌ρ∗L.

That Ť− and V̌− are indeed tensor functors, follows from the fact that
L 7→ ρ∗L is a tensor functor and from the equivariant isomorphism from
Proposition 3.4, Ťρ∗L ⊗F[[z]] κ(s̄)[[z]]

∼−−→ ρ∗L ⊗OS[[z]] κ(s̄)[[z]]. If P is smooth
with connected special fiber and L is an étale local P-shtuka, then by Corol-
lary 2.9 the composition of the tensor functor ŤL followed by the forgetful
functor F : FModF[[z]][πét

1 (S,s̄)] → FModF[[z]] is isomorphic to the forgetful

fiber functor ω◦ : RepF[[z]] P → FModF[[z]]. Indeed, the base change Ls̄ of

L to s̄ = Specκ(s̄) is isomorphic to L0 :=
(
(L+P)s̄, 1 · σ̂∗

)
and the functor

F ◦ ŤL0
is isomorphic to ω◦. This yields a conjugacy class of isomorphisms

Aut⊗(F ◦ ŤL) ∼= Aut⊗(ω◦) = P. Since every γ ∈ πét
1 (S, s̄) acts as a tensor

automorphism of ŤL, the tensor functor ŤL corresponds to a conjugacy class

of Galois representations π : πét
1 (S, s̄) → P(F[[z]]). Now Proposition 3.4 gener-

alizes as follows.

Proposition 3.6. Let P be smooth over D with connected special fiber and let
S ∈ NilpF[[ζ]] be a connected scheme. Then the functor Ť− is an equivalence

between the categories ÉtShtDP (S) and Funct⊗(RepF[[z]] P,FModF[[z]][πét
1 (S,s̄)]).

The functor V̌− from the category of étale local P-shtukas over S with quasi-
isogenies as morphisms to the category Funct⊗(RepF[[z]] P,FModF((z))[πét

1 (S,s̄)])

is fully faithful.

Proof. To construct the quasi-inverse functor to Ť− we fix a tensor functor F in
Funct⊗(RepF[[z]] P,FModF[[z]][πét

1 (S,s̄)]). The difference of the two F[[z]]-rational

fiber functors ω◦ and F ◦F on RepF[[z]] P is given by the torsor Isom⊗(ω◦, F ◦F)

over P = Aut⊗(ω◦); use [51, Corollary 5.20]. Since the special fiber of P is
connected, this torsor has an F-valued point by Lang’s theorem [32, Theo-
rem 2]. Since P and hence Isom⊗(ω◦, F ◦ F) is smooth over D this point lifts
to an F[[z]]-valued point of Isom⊗(ω◦, F ◦ F), that is to a tensor isomorphism

α : ω◦
∼−−→ F ◦F over F[[z]] inducing an isomorphism α∗ : P

∼−−→ Aut⊗(F ◦F).
Since πét

1 (S, s̄) acts as automorphisms of the fiber functor F ◦ F , the functor
F corresponds to a representation π : πét

1 (S, s̄) → P(F[[z]]) which depends on
α up to conjugation in P. For each m ∈ N we let Sm → S be the finite étale
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Galois covering corresponding to the kernel of

πét
1 (S, s̄)

π−→ P(F[[z]])
mod zm

−−−−−→ Pm

(
F[[z]]/(zm)

)

where Pm := P ×D SpecF[[z]]/(zm). Let G̃m be the trivial Pm-torsor over

Sm×FSpecF[[z]]/(z
m) and equip it with τ̂ := id : σ̂∗G̃m

∼−−→ G̃m. Via the action

of Gal(Sm/S) through π on G̃m the latter descends to a Pm-torsor Gm over
S ×F SpecF[[z]]/(z

m) and τ̂ descends to an isomorphism τ̂ : σ̂∗Gm → Gm. This

makes Ĝ := lim
←−

Gm into a formal P̂-torsor over S together with an isomorphism

τ̂ : σ̂∗Ĝ ∼−−→ Ĝ; see Definition 2.2. By Proposition 2.4 it corresponds to an
L+P-torsor L+ together with an isomorphism τ̂ : σ̂∗L+

∼−−→ L+, that is, to the
étale local P-shtuka L = (L+, τ̂). It satisfies ŤL ∼= F . A different isomorphism
α gives a different local P-shtuka which is canonically isomorphic to L. This
yields the quasi-inverse to Ť−.

To prove that V̌− is fully faithful let L = (L+, τ̂ ) and L′ = (L′+, τ̂ ′) be two

étale local P-shtukas over S and let δ : V̌L ∼−−→ V̌L′ be an isomorphism of
tensor functors. We consider the following functor

M̂− : H
1(SpecF, L+P)(S) → Funct⊗(RepF[[z]] P,ModOS [[z]]),

which sends an L+P-torsor L+ to the tensor functor mapping the represen-
tation ρ to the OS [[z]]-module ρ∗L+ from (3.1). By Proposition 3.4 the iso-
morphism δ|ρ between V̌L(ρ) = V̌ρ∗L and V̌L′(ρ) = V̌ρ∗L′ comes from a quasi-

isogeny between ρ∗L =
(
M̂L+(ρ), ρ∗τ̂

)
and ρ∗L′ =

(
M̂L′

+
(ρ), ρ∗τ̂

′
)
. There-

fore the isomorphism δ induces an isomorphism M̂L+ ⊗OS[[z]] OS((z))
∼−−→

M̂L′

+
⊗OS[[z]] OS((z)). Take an fppf -cover S′ → S trivializing L+ and L′+ and

fix trivializations L+
∼= (L+P)S′

∼= L′+. Then we have

Isom⊗
(
M̂(L+)S′

⊗OS′ [[z]] OS′((z)),M̂(L+)S′
⊗OS′ [[z]] OS′((z))

)

∼= Aut⊗(ω◦)
(
OS′((z))

)
= LP (S′),

because M̂(L+P)S′
= ω◦ ⊗F[[z]] OS′((z)) and P = Aut⊗(ω◦) by [51, Cor. 5.20].

Therefore δ gives an isomorphism hS′ : (LP )S′ → (LP )S′ . The morphism
hS′ inherits the descent datum coming from the fact that δ is defined over S,
and hence it defines an isomorphism h : L ∼−−→ L′, where L and L′ denote
the LP -torsors associated with L+ and L′+. One easily checks that h satisfies

τ̂ ′ ◦ σ̂∗h = h ◦ τ̂ and gives a quasi-isogeny h : L → L′. �

Remark 3.7. In general the functor V̌− does not need to be an equiva-
lence, not even onto the category of those tensor functors F : RepF[[z]] P →
FModF((z))[πét

1 (S,s̄)] for which F ◦ F ∼= ω◦⊗F[[z]] F((z)). For example let P be the

Iwahori subgroup of GL2, that is,

P(F[[z]]) = {A ∈ GL2(F[[z]]) | A ≡
(
∗ ∗
0 ∗

)
mod z}.
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Let x be transcendental over F and let S = SpecF(x). Set G := πét
1 (S, s̄) =

Gal
(
F(x)sep/F(x)

)
and consider a representation π : G→ GL2(F[[z]]) such that

the residual representation π : G → GL2(F) is irreducible. This implies that
π(G) 6⊂ P(F[[z]]) and hence the tensor functor F : RepF[[z]] P → FModF((z))[G]

given by

ρ 7−→
[
G

π−→ GL2(F[[z]]) →֒ P
(
F((z))

) ρ−→ GL
(
ω◦(ρ)

)(
F((z))

)]

cannot come from a local P-shtuka over F(x).
Note that such a representation π exists. If ϕ : Fq[t] → EndGa,F(x) for ex-

ample is a Drinfeld-Fq[t]-module of rank 2 over F(x) without potential complex
multiplication, then for almost all primes ν of Fq[t] the Galois representation
πϕ,ν : G→ GL2(Aν) on the ν-adic Tate module of ϕ has this property by [41,
Thm. A] or [40, Thm. 0.1]. For a concrete example let ϕt = 1 − xτ + τ2 and

ν = (t). Then ϕ[t] = {y ∈ F(x)sep | yq2 − xyq + y = 0}. If q = 2 it is easy to
see that y3 − xy+ 1 is irreducible in F(x)[y] and has splitting field of degree 6
over F(x). This implies that πϕ,(t)(G) = GL2(F2). The reason for the failure

of V̌− to be an equivalence of course lies in the fact that the Drinfeld-module
ϕ does not carry a level structure over F(x) whereas any étale local P-shtuka
for the above Iwahori group P carries a Γ0(ν)-level structure.

Even if we assume that P is a maximal parahoric subgroup of P as in
Remark 4.3, we expect that it depends on the group P whether V̌− is an
equivalence. Namely, in the proof of Proposition 3.6, when we try to extend
the construction of the quasi-inverse of Ť− to V̌− we obtain a representation
πét
1 (S, s̄) → P (F((z))). For V̌− to be an equivalence we need that up to conju-

gation this representation factors through P(F[[z]]). We know that πét
1 (S, s̄) is a

profinite group and hence compact. Therefore the image of the representation
is contained in a maximal compact subgroup. So the question arises whether
every maximal compact subgroup of P (F((z))) is conjugate to P(F[[z]]). This is
true when P = GLr or SLr and in this case V̌− is an equivalence.

But in general the answer may be negative for two reasons. First of all, al-
though every maximal parahoric subgroup is maximally compact, the converse
may fail. For example for P = PGL2 the subgroup generated by the Iwahori
subgroup {A ∈ PGL2(F[[z]]) | A ≡

(
∗ ∗
0 ∗

)
mod z} and by

(
0 1
z 0

)
is maximally com-

pact but not parahoric, because it is the stabilizer of the midpoint of an edge in
the Bruhat–Tits tree of PGL2. This group contains the Iwahori subgroup with
index 2. Secondly, not all maximal parahoric subgroups need to be conjugate,
because they are the stabilizers of 0-simplices in the Bruhat–Tits building, but
not all 0-simplices are conjugate in general. This occurs for example when
P = Sp2r.

4. The Rapoport–Zink spaces for local P-shtukas

In this chapter we assume that P is a smooth affine group scheme over D.
Rapoport and Zink constructed a moduli space for p-divisible groups to-

gether with a quasi-isogeny to a fixed one (and with some extra structure such
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as a polarization, endomorphisms, or a level structure). They proved that this
moduli space is ind-representable by a formal scheme locally formally of finite
type over Zp.

We already mentioned that local P-shtukas behave analogously to p-divisible
groups. However, this analogy is not perfect, unless we restrict to “bounded”
local P-shtukas as the analogous objects corresponding to p-divisible groups.
More precisely we bound the Hodge polygon of a local P-shtuka (L+, τ̂), that
is, the relative position of σ̂∗L+ and L+ under the isomorphism τ̂ ; see Def-
inition 4.8(b) below. This is motivated by the fact that F -isocrystals and
Dieudonné-modules also have bounded Hodge slopes. We will show that Rapo-
port–Zink spaces for bounded local P-shtukas are formal schemes locally for-
mally of finite type over Spf F[[ζ]]. When P := G0 ×F D for a connected split
reductive groupG0 over F this was proved in [23, Thm. 6.3]. In the nonconstant
case for a smooth affine group P over D we will give an axiomatic definition
of the boundedness condition on page 640ff. We start with the unbounded
situation.

Unbounded Rapoport–Zink spaces. For a scheme S in NilpF[[ζ]] let S̄ de-

note the closed subscheme VS(ζ) ⊆ S. On the other hand for a scheme T̄

over F we set T̂ := T̄ ×̂SpecF Spf F[[ζ]]. Then T̂ is a ζ-adic formal scheme with

T̄ = VT̂ (ζ). So the underlying topological spaces of T̄ and T̂ coincide. We let

Nilp T̂ be the category of T̂ -schemes on which ζ is locally nilpotent.

Definition 4.1. With a given local P-shtuka L0 over an F-scheme T̄ we asso-
ciate the functor

ML0
: (Nilp T̂ )

o −→ Sets
S 7−→

{
Isomorphism classes of (L, δ̄) | where L is a local P-shtuka

over S and δ̄ : LS̄ → L0,S̄ is a quasi-isogeny over S̄
}
.

Here we say that (L, δ̄) and (L′, δ̄′) are isomorphic if δ̄−1 ◦ δ̄′ lifts via Propo-

sition 2.11 to an isomorphism L′ ∼−−→ L. The group QIsogT̄ (L0) of quasi-
isogenies of L0 acts on the functor ML0

via g : (L, δ̄) 7→ (L, g ◦ δ̄) for

g ∈ QIsogT̄ (L0). We will show that ML0
is representable by an ind-scheme

which we call an unbounded Rapoport–Zink space for local P-shtukas.

Remark 4.2. Note that by rigidity of quasi-isogenies (Proposition 2.11) the
functor ML0

is naturally isomorphic to the functor

S 7−→
{
Isomorphism classes of (L, δ) | where L is a local P-shtuka

over S and δ : LS → L0,S is a quasi-isogeny over S
}
.

This also shows that idL is the only automorphism of (L, δ), and for this reason
we do not need to consider ML0

as a stack.
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Remark 4.3. In order to show that ML0
is representable by an ind-scheme

we recall the definition of the affine flag variety FℓP. It is defined to be the
fpqc-sheaf associated with the presheaf

R 7−→ LP (R)/L+P(R) = P (R((z))) /P (R[[z]])

on the category of F-algebras; compare Definition 2.1. Pappas and Rapoport
[39, Thm. 1.4] show that FℓP is represented by an ind-scheme which is ind-
quasi-projective over F, and hence ind-separated and of ind-finite type over F.
Moreover, they show that the quotient morphism LP → FℓP admits sections
locally for the étale topology. They proceed as follows. When P = SLr,D, the
fpqc-sheaf FℓP is called the affine Grassmanian. It is an inductive limit of
projective schemes over F, that is, ind-projective over F; see [5, Thm. 4.5.1]
or [15, 38]. By [39, Proposition 1.3] and [2, Proposition 2.1] there is a faithful
representation P →֒ SLr with quasi-affine quotient. Pappas and Rapoport
show in the proof of [39, Thm. 1.4] that FℓP → FℓSLr

is a locally closed
embedding, and moreover, if SLr /P is affine, then FℓP → FℓSLr

is even a
closed embedding and FℓP is ind-projective. More generally, if the fibers of P
over D are geometrically connected, it was proved by Richarz [46, Theorem A]
that FℓP is ind-projective if and only if P is a parahoric group scheme in
the sense of Bruhat and Tits [9, Définition 5.2.6]; see also [19]. Note that,
in particular, a parahoric group scheme is smooth with connected fibers and
reductive generic fiber.

Let us view T̂ = T̄ ×̂F Spf F[[ζ]] as the ind-scheme lim
−→

T̄ ×F SpecF[ζ]/(ζ
m).

We may form the fiber product F̂ℓ
P,T̂ := FℓP ×̂F T̂ in the category of ind-

schemes (see [5, 7.11.1]). Note that this fiber product can be either viewed as
the restriction of the sheaf FℓP to the fpqc-site of schemes in Nilp T̂ or also as

the formal completion of FℓP×FT̄ ×F SpecF[[ζ]] along the special fiber V(ζ).

Theorem 4.4. If P is a smooth affine group scheme over D the functor ML0

from Definition 4.1 is represented by an ind-scheme, ind-quasi-projective over

T̂ = T̄ ×̂F Spf F[[ζ]], hence ind-separated and of ind-finite type over T̂ . If the
fibers of P over D are connected then ML0

is ind-projective if and only if P is

parahoric in the sense of Bruhat and Tits [9, Définition 5.2.6] and [19].

If L0 is trivialized by an isomorphism α : L0
∼−−→

(
(L+P)T̄ , bσ̂

∗
)
over T̄ with

b ∈ LP (T̄ ) then ML0
is represented by the ind-scheme F̂ℓ

P,T̂ := FℓP ×̂F T̂ .

Proof. We first assume that L0 is trivialized by an isomorphism α. We regard
ML0

in the equivalent form mentioned in Remark 4.2. Consider a pair (L, δ) =
((L+, τ̂ ), δ) ∈ ML0

(S). Choose an fppf -covering S′ → S which trivializes

L, then the quasi-isogeny αS′ ◦ δ is given by an element g′ ∈ LP (S′). The

image of the element g′ ∈ LP (S′) in F̂ℓ
P,T̂ (S

′) is independent of the choice

of the trivialization, and since (L, δ) is defined over S, it descends to a point

x ∈ F̂ℓ
P,T̂ (S). Note in particular that τ̂S′ is determined by b and g′ through
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the diagram

σ̂∗(LP )S′ (LP )S′

σ̂∗(LP )S′ (LP )S′ .

τ̂S′

σ̂∗(g′) g′

b

Conversely let x ∈ F̂ℓ
P,T̂ (S) for a scheme S in Nilp T̂ . The projection

morphism LP → FℓP admits local sections for the étale topology by [39,
Thm. 1.4]. Consequently there is an étale covering S′ → S such that x is
represented by an element g′ ∈ LP (S′). We set S′′ := S′ ×S S

′ and define
(L′+, τ̂ ′, δ′) over S′ as follows. We let L′+ := (L+P)S′ , let the quasi-isogeny

δ′ : (L′+, τ̂ ′) →
(
(L+P)S′ , bσ̂∗

)
be given by y 7→ g′y, and the Frobenius by

τ̂ ′ := (g′)−1bσ̂∗(g′)σ̂∗. We descend (L′+, τ̂ ′, δ′) to S. For an S-scheme Y let
Y ′ = Y ×S S

′ and Y ′′ = Y ′ ×Y Y ′ = Y ×S S
′′, and let pi : Y

′′ → Y ′ be the

projection onto the i-th factor. Since g′ comes from an element x ∈ F̂ℓ
P,T̂ (S)

there is an h ∈ L+P(S′′) with p∗1(g
′) = p∗2(g

′) · h. Consider the fpqc-sheaf L+

on S whose sections over an S-scheme Y are given by

L+(Y ) :=
{
y′ ∈ L+P(Y ′) | p∗1(y′) = h−1 · p∗2(y′) in L+P(Y ′′)

}

on which L+P(Y ) acts by right multiplication. Then L is an L+P-torsor on S
because over Y = S′ there is a trivialization

(L+P)S′

∼−−→ (L+)S′ , f 7→ h · p∗1(f) ∈ (L+P)(S′′)

due to the cocycle condition for h. Moreover, τ̂ ′ descends to an isomorphism

τ̂ : σ̂∗L(Y )
∼−−→ L(Y ), σ̂∗(y′) 7→ (g′)−1bσ̂∗(g′)σ̂∗(y′)

making (L+, τ̂) into a local P-shtuka over S. Also δ
′ descends to a quasi-isogeny

of local P-shtukas

δ : L(Y )
∼−−→ LP (Y ) =

{
f ′ ∈ LP (Y ′) | p∗1(f ′) = p∗2(f

′) in LP (Y ′′)
}
,

y′ 7−→ g′y′.

Note that this is well defined. Namely, if g′ is replaced by g̃′ with u′ =
(g̃′)−1g′ ∈ L+P(S′) then left multiplication with u′ defines an isomorphism

(
(L+P)S′ , (g′)−1bσ̂∗(g′)σ̂∗, g′

) ∼−−→
(
(L+P)S′ , (g̃′)−1bσ̂∗(g̃′)σ̂∗, g̃′

)
.

Also h̃ = p∗2(u
′) · h · p∗1(u′)−1 and hence left multiplication with u′ descends to

an isomorphism L ∼−−→ L̃ over S. This establishes the last statement of the
theorem.

To prove the first assertion we may choose an fppf -covering T̄ ′ → T̄ and a

trivialization α : L0,T̄ ′

∼−−→
(
(L+P)T̄ ′ , bσ̂∗

)
over T̄ ′. Set T̂ ′ := T̄ ′ ×̂F Spf F[[ζ]]

and T̂ ′′ := T̂ ′ ×̂T̂ T̂
′, and let pri : T̂ ′′ → T̂ ′ be the projection onto the i-th

factor. By what we have proved above, we obtain an isomorphism

ML0
×̂T̂ T̂

′ ∼−−→ F̂ℓ
P,T̂ ′ , δ 7→ αS′ ◦ δ = g′ · L+P(S′).
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Note that F̂ℓ
P,T̂ ′ is an ind-scheme which is ind-quasi-projective over T̂ ′ by

Remark 4.3 and, when P has connected fibers, even ind-projective if and only

if P is parahoric. Over T̂ ′′ there is an isomorphism

(4.1) pr∗1(F̂ℓP,T̂ ′)
∼= // ML0

×̂T̂ T̂
′′

∼= // pr∗2(F̂ℓP,T̂ ′)

g′ · L+P(S′)
✤ // pr∗1α

−1
S′ ◦ g′ ✤ // pr∗2αS′ ◦ pr∗1α−1S′ ◦ g′ · L+P(S′).

It is given by left multiplication on pr∗1(F̂ℓP,T̂ ′) = F̂ℓ
P,T̂ ′′ = pr∗2(F̂ℓP,T̂ ′) with

the element pr∗2αS′ ◦ pr∗1α−1S′ ∈ L+P(T̂ ′′).

We write FℓP = lim
−→

Fℓ(N)
P for quasi-projective F-schemes Fℓ(N)

P . There

is a line bundle F on FℓP which is “ample” in the sense that its restric-

tion to any Fℓ(N)
P is ample, and which is equivariant for the L+P-action by

left multiplication, i.e. “L+P-linearized” in the sense of [36, Def. 1.6]. For
example one can take a faithful representation P →֒ SLr,D with quasi-affine
quotient (Remark 4.3), take the fundamental line bundles Li on FℓSLr

from
[15, p. 46], take F as the pullback of a tensor product of strictly positive

powers of the Li, see [15, p. 54], and take the Fℓ(N)
P as the preimages in

FℓP of the Schubert varieties in FℓSLr
. Then (4.1) defines a descent da-

tum on the pair (Fℓ(N)
P ×FT̄

′ ×F F[[ζ]]/(ζm),F) for all N and m. This de-
scent datum is effective by [18, VIII, Prop. 7.8], see also [8, §6.1, Thm. 7].

Therefore there is a quasi-projective scheme M(N,m)
L0

over T̄ ×F F[[ζ]]/(ζm)

with M(N,m)
L0

×T̄ T̄ ′ ∼= Fℓ(N)
P ×FT̄

′ ×F F[[ζ]]/(ζm). Moreover, if the fibers of

P are connected then M(N,m)
L0

is projective if and only if P is parahoric by

Remark 4.3. It follows that ML0
= lim
−→
N,m

M(N,m)
L0

is an ind-(quasi-)projective

ind-scheme over T̂ . �

Bounded local P-shtukas. We want to introduce boundedness conditions
for local P-shtukas where P is again a smooth affine group scheme over D. Due
to the problem discussed in Example 4.14 below we will base our boundedness
conditions on an axiomatic definition of “bounds”. For this purpose we fix an

algebraic closure F((ζ))
alg

of F((ζ)). Since its ring of integers is not complete we
prefer to work with finite extensions of discrete valuation rings R/F[[ζ]] such

that R ⊂ F((ζ))
alg

. For such a ring R we denote by κR its residue field, and
we let NilpR be the category of R-schemes on which ζ is locally nilpotent. We

also set F̂ℓP,R := FℓP ×̂F Spf R and F̂ℓP := F̂ℓP,F[[ζ]]. Before we can define
“bounds” we need to make the following observations.

Definition 4.5. (a) For a finite extension F[[ζ]] ⊂ R ⊂ F((ζ))
alg

of discrete

valuation rings we consider closed ind-subschemes ẐR ⊂ F̂ℓP,R. We call two

closed ind-subschemes ẐR ⊂ F̂ℓP,R and Ẑ ′R′ ⊂ F̂ℓP,R′ equivalent if there is a

finite extension of discrete valuation rings F[[ζ]] ⊂ R̃ ⊂ F((ζ))alg containing R
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and R′ such that ẐR ×̂Spf R Spf R̃ = Ẑ ′R′ ×̂Spf R′ Spf R̃ as closed ind-subschemes

of F̂ℓ
P,R̃.

(b) Let Ẑ = [ẐR] be an equivalence class of closed ind-subschemes ẐR ⊂ F̂ℓP,R
and consider the group GẐ := {γ ∈ AutF[[ζ]](F((ζ))

alg) | γ(Ẑ) = Ẑ}. We define

the ring of definition RẐ of Ẑ as the intersection of the fixed field of GẐ

in F((ζ))
alg

with all the finite extensions R ⊂ F((ζ))
alg

of F[[ζ]] over which a

representative ẐR of Ẑ exists.

Let us give some explanations for this definition.

Remark 4.6 (about Definition 4.5(a)). Consider an ind-scheme structure on

FℓP given as an inductive limit FℓP = lim
−→

Fℓ(m)
P of quasi-compact F-schemes

Fℓ(m)
P indexed by m ∈ N. Then F̂ℓP,R = lim

−→

(
Fℓ(m)

P ×F SpecR/(ζ
m)
)
is

an ind-scheme structure on F̂ℓP,R. A closed ind-subscheme ẐR ⊂ F̂ℓP,R is

of the form ẐR = lim
−→

ẐR,m for an inductive system of closed subschemes

ẐR,m ⊂ Fℓ(m)
P ×F SpecR/(ζ

m). The latter correspond to sheaves of ideals
Im ⊂ O

Fℓ
(m)
P

⊗F R/(ζ
m) for all m.

If R ⊂ R̃ and ẐR ⊂ F̂ℓP,R is a closed ind-subscheme then the closed ind-

subscheme ẐR̃ := ẐR ×̂Spf R Spf R̃ ⊂ F̂ℓ
P,R̃ has the property that ẐR is the

ind-scheme theoretic image of ẐR̃ in F̂ℓP,R. Indeed, in terms of the ideal

sheaves Im ⊂ O
Fℓ

(m)
P

⊗FR/(ζ
m) of ẐR and Ĩm ⊂ O

Fℓ
(m)
P

⊗F R̃/(ζ
m) of ẐR̃ this

means Ĩm = Im ⊗R R̃ and Im = Ĩm ∩O
Fℓ

(m)
P

⊗F R/(ζ
m). The latter equality

follows from the commutative diagram

0 // Im //
� _

��

Im ⊗R R̃ //
� _

��

Im ⊗R R̃/R //
� _

��

0

0 // O
Fℓ

(m)
P

⊗
F
R/(ζm) // O

Fℓ
(m)
P

⊗
F
R̃/(ζm) // O

Fℓ
(m)
P

⊗
F
R/(ζm)⊗

R
R̃/R // 0,

in which the rows are exact and the vertical morphisms are injective because

R̃/R and R̃ are finite free R-modules.

It follows that two closed ind-subschemes ẐR ⊂ F̂ℓP,R and Ẑ ′R′ ⊂ F̂ℓP,R′ are

equivalent if and only if ẐR ×̂SpfR Spf R̃ = Ẑ ′R′ ×̂Spf R′ Spf R̃ for every finite

extension of discrete valuation rings F[[ζ]] ⊂ R̃ ⊂ F((ζ))alg containing R and R′.

Another consequence is, that a morphism f : S → F̂ℓP,R for S ∈ NilpR

factors through ẐR if and only if the morphism f × idR̃ : S ×̂R Spf R̃ → F̂ℓ
P,R̃

factors through ẐR̃. Indeed, this can be checked by the vanishing of the ideals

f∗Im, respectively (f × idR̃)
∗Ĩm, using the injectivity OS →֒ OS ⊗R R̃.
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Remark 4.7 (about Definition 4.5(b)). Let R ⊂ F((ζ))
alg

be a finite extension

of F[[ζ]] over which a representative ẐR of Ẑ exists.

(a) γ(Ẑ) = Ẑ then means that γ(ẐR) ⊂ F̂ℓP,γ(R) is equivalent to ẐR. In

particular, if γ(R) = R then, by our previous remark, γ(Ẑ) = Ẑ means

that γ(ẐR) = ẐR. For example if Frac(R) is a normal field extension of
F((ζ)) then γ(R) = R.

(b) It follows that AutR(F((ζ))
alg

) ⊂ GẐ because all R-automorphisms fix ẐR.

(c) We let RG
Ẑ := {x ∈ R | γ(x) = x for all γ ∈ GẐ}. It equals the intersec-

tion of R with the fixed field of GẐ in F((ζ))
alg

.
(d) Let i(R) := [Frac(R) : F((ζ))]insep be the inseparability degree. Then

F[[ i(R)
√
ζ]] ⊂ RG

Ẑ and RG
Ẑ equals the ring of integers OK in the fixed

field K of GẐ inside the separable closure F(( i(R)
√
ζ))sep of F(( i(R)

√
ζ)). To

prove this we use the fact from field theory, that F(( i(R)
√
ζ)) is contained in

Frac(R) and that this is a separable extension. In particular Frac(R) ⊂
F(( i(R)

√
ζ))

sep
and RG

Ẑ ⊂ OK . From b it follows that K ⊂ Frac(R), and

hence OK ⊂ RG
Ẑ . Finally, since AutF[[ζ]](F((ζ))

alg
) fixes all elements of

F(( i(R)
√
ζ)) we find F[[ i(R)

√
ζ]] ⊂ RG

Ẑ .

(e) If R′ is another finite extension of F[[ζ]] over which a representative ẐR′ of

Ẑ exists, such that i(R) ≤ i(R′), then RG
Ẑ ⊂ (R′)GẐ by d. If i(R) = i(R′)

then RG
Ẑ = (R′)GẐ .

(f) We conclude from e that the ring of definition of Ẑ may be computed as

follows. We choose a finite extension R ⊂ F((ζ))alg of F[[ζ]] over which

a representative ẐR of Ẑ exists, and for which i(R) is minimal. Then

RẐ = RG
Ẑ . Moreover, let R̃ be the ring of integers in the normal closure

of Frac(R) over F((ζ)). Then i(R̃) = i(R) and therefore Frac(R̃) is Galois

over Frac(RẐ) with AutR
Ẑ
(R̃) = {γ ∈ AutF[[ζ]](R̃) with γ(ẐR̃) = ẐR̃} ⊂

AutF[[ζ]](R̃) as Galois group. We conclude that

RẐ =
{
x ∈ R̃ | γ(x) = x for all γ ∈ AutF[[ζ]](R̃) with γ(ẐR̃) = ẐR̃

}
.

(g) We do not know whether in general Ẑ has a representative ẐR
Ẑ
over the

ring of definition RẐ , although this is true in many cases; see our Exam-
ples 4.12 to 4.14.

(h) Note that our Definition 4.5(b) is a direct translation of the analogous sit-
uation over number fields, taking the inseparability problem into account.
Namely in the number field case one considers cocharacters µ : Gm,Qalg

p
→

G
Q

alg
p

for a reductive group G over Qp, and one considers a conjugacy class

C(µ) = {Intg ◦µ | g ∈ G(Qalg
p )}; see [11, 3.7] or [42, 1.31]. (Our Exam-

ple 4.13 corresponds to this.) One defines the field of definition Eµ of C(µ)
as the fixed field inside Qalg

p of {γ ∈ Gal(Qalg
p /Qp) | γ(C(µ)) := C(γ(µ)) =

C(µ)}. The field of definition Eµ is automatically contained in every field
over which a representative of C(µ) exists. Our above discussion applies
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mutatis mutandis. If the group G is quasi-split over Eµ, Kottwitz [27,
Lemma 1.1.3] proved that C(µ) has a representative over Eµ.

After these preparatory observations we finally come to the announced

Definition 4.8.

(a) We define a bound to be an equivalence class Ẑ := [ẐR] of closed ind-

subschemes ẐR ⊂ F̂ℓP,R, such that all the ind-subschemes ẐR are stable

under the left L+P-action on FℓP, and the special fibers ZR := ẐR ×̂Spf R

SpecκR are quasi-compact subschemes of FℓP ×̂F SpecκR. The ring of
definition RẐ of Ẑ is called the reflex ring of Ẑ. Since the Galois descent for
closed ind-subschemes of FℓP is effective, the ZR arise by base change from
a unique closed subscheme Z ⊂ FℓP ×̂F κR

Ẑ
. We call Z the special fiber

of the bound Ẑ. It is a quasi-projective scheme over κR
Ẑ
by Remark 4.3

and [23, Lemma 5.4] which implies that every morphism from a quasi-
compact scheme to an ind-quasi-projective ind-scheme factors through a
quasi-projective subscheme. If P is parahoric in the sense of Bruhat and
Tits [9, Définition 5.2.6] and [19] then Z is projective.

(b) Let Ẑ be a bound with reflex ring RẐ . Let L+ and L′+ be L+P-torsors

over a scheme S in NilpR
Ẑ

and let δ : L ∼−−→ L′ be an isomorphism of

the associated LP -torsors. We consider an fppf -covering S′ → S over
which trivializations α : L+

∼−−→ (L+P)S′ and α′ : L′+
∼−−→ (L+P)S′

exist. Then the automorphism α′ ◦ δ ◦ α−1 of (LP )S′ corresponds to a

morphism S′ → LP ×̂F Spf RẐ . We say that δ is bounded by Ẑ if for every
such trivialization and for every finite extension R of F[[ζ]] over which a

representative ẐR of Ẑ exists the induced morphism

S′ ×̂R
Ẑ
Spf R→ LP ×̂F Spf R → F̂ℓP,R

factors through ẐR. Furthermore we say that a local P-shtuka (L+, τ̂ ) is

bounded by Ẑ if the isomorphism τ̂ is bounded by Ẑ.

Remark 4.9. The condition of Definition 4.8(b) is satisfied for all trivializa-
tions and for all such finite extensions R of F[[ζ]] if and only if it is satisfied
for one trivialization and for one such finite extension. Indeed, by the L+P-
invariance of Ẑ the definition is independent of the trivializations. That one
finite extension suffices follows from Remark 4.6.

In Examples 4.12 to 4.14 below we discuss the motivation for this definition
and the relation to other boundedness conditions like in [23]. Note that the
definition of “bounds” given above suffices for our purposes in this article and
in [2]. For other purposes one may need more restrictive hypotheses on bounds;
see for example [25, Sec. 2].

Remark 4.10. Let the ind-scheme structure on FℓP be given as the limit

FℓP = lim
−→

Fℓ(m)
P and the one on F̂ℓP,R as F̂ℓP,R = lim

−→
Fℓ(m)

P ×F SpecR/(ζ
m).
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Let Ẑ
(m)
R := ẐR ×̂

F̂ℓP,R
(Fℓ(m)

P ×F SpecR/(ζ
m)). Then ẐR = lim

−→
Ẑ

(m)
R and

ẐR,red := lim
−→

(Ẑ
(m)
R )red = lim

−→
(ẐR ×̂Spf R SpecκR ×FℓP Fℓ

(m)
P )red = (ZR)red is a

scheme. This means that ẐR is a “reasonable formal scheme” over Spf R in
the sense of [5, 7.11.1 and 7.12.17], and hence a formal scheme in the sense of
[17, Inew].

Proposition 4.11. Let Ẑ be a bound with reflex ring RẐ . Let L+ and L′+ be

L+P-torsors over a scheme S ∈ NilpR
Ẑ

and let δ : L ∼−−→ L′ be an isomor-

phism of the associated LP -torsors. Then the condition that δ is bounded by
Ẑ is represented by a closed subscheme of S.

Proof. We consider a representative ẐR of the bound Ẑ over a finite exten-

sion RẐ ⊂ R ⊂ F((ζ))
alg

. As in Definition 4.8 we consider trivializations
of L+ and L′+ over an fppf -covering S′ → S and the induced morphism

S′ ×̂R
Ẑ
Spf R → LP ×̂F Spf R→ F̂ℓP,R. Due to the L+P-invariance of ẐR the

closed subscheme S′ ×̂
F̂ℓP,R

ẐR of S′ descends to a closed subscheme of S. By

Remark 4.9 this closed subscheme represents the boundedness by Ẑ. �

Example 4.12. Assume that P is parahoric in the sense of Bruhat and Tits
[9, Définition 5.2.6] and [19]; see Remark 4.3. Consider the base change PL

of P to L = Falg((z)). Let A be a maximal split torus in PL and let T be its
centralizer. Since Falg is algebraically closed, PL is quasi-split by [48, § II.2.3,
Théorème 1′ and Remarque 1, p. 140] and so T is a maximal torus in PL. Let
N = N(T ) be the normalizer of T and let T 0 be the identity component of
the Néron model of T over OL = Falg[[z]].

The Iwahori–Weyl group associated with A is the quotient group W̃ =
N(L)/T 0(OL). It is an extension of the finite Weyl group W0 = N(L)/T (L)
by the coinvariants X∗(T )I under I = Gal(Lsep/L):

0 → X∗(T )I → W̃ →W0 → 1.

By [19, Prop. 8] there is a bijection

(4.2) L+P(Falg)\LP (Falg)/L+P(Falg)
∼−−→ W̃ P\W̃/W̃ P

where W̃ P := (N(L) ∩ P(OL))/T 0(OL).

Let ω ∈ W̃ P\W̃/W̃ P be an element and let Fω be the fixed field in Falg of
{γ ∈ Gal(Falg/F) | γ(ω) = ω}. We demonstrate that ω has a representative
gω ∈ LP (Fω). Indeed, let g ∈ LP (Falg) be any representative of ω and let
γ be the Fω-Frobenius which generates Gal(Falg/Fω). Since γ(ω) = ω there
are elements b1, b2 ∈ L+P(Falg) with γ(g) = b−11 gb2. By Lemma 2.8 we find
elements c1, c2 ∈ L+P(Falg) with biγ(ci) = ci for i = 1, 2. Then gω := c−11 gc2 =

γ(c−11 gc2) ∈ LP (Fω) is the desired representative of ω over Fω. Clearly, by
definition of Fω there are no representatives of ω over proper subfields of Fω.

We define the Schubert variety S(ω) associated with ω as the ind-scheme
theoretic closure of the L+P-orbit of gω in FℓP ×̂F Fω. It is a reduced projective
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variety over Fω. For further details see [39] and [45]. The equivalence class of

ẐFω[[ζ]] := S(ω) ×̂Fω
Spf Fω[[ζ]] defines a bound with reflex ring Fω[[ζ]]. Instead

of “bounded by [ẐFω[[ζ]]]” we also say “bounded by ω” in this case.

Example 4.13. In [23], Viehmann and the second author considered the case
where P = G ×F D for a split connected reductive group G over F. In this

case W̃ P = W0 and W̃ P\W̃/W̃ P = X∗(T ), and any element µ ∈ X∗(T ) has
a representative over Fµ = F. If µ ∈ X∗(T ) one could consider the bound

Ẑ :=
[
S(µ) ×̂F Spf F[[ζ]]

]
as in Example 4.12 above.

However, in [23] we proceeded differently and instead fixed a Borel subgroup
B of G and its opposite Borel B. We considered a finite generating system
Λ of the monoid of dominant weights X∗(T )dom, and for all λ ∈ Λ the Weyl

module Vλ :=
(
IndG

B
(−λ)dom

)
∨

. For the representation ρλ : G → GL(Vλ) we
considered the sheaves of OS [[z]]-modules ρλ∗L+ and ρλ∗L′+ associated in (3.1)
with the L+P-torsors L+ and L′+ over S. (For the definition of OS [[z]] see
Chapter 3.) The isomorphism δ of the associated LP -torsors corresponds to

an isomorphism ρλ∗δ : ρλ∗L+ ⊗OS[[z]] OS((z))
∼−−→ ρλ∗L′+ ⊗OS[[z]] OS((z)). We

said in [23, Def. 3.5] that “δ is bounded by (µ, z̃)”, where z̃ = z or z̃ = z − ζ,
if for all λ ∈ Λ

(4.3) ρλ∗δ(ρλ∗L+) ⊂ z̃−〈(−λ)dom,µ〉(ρλ∗L′+),

and if for all geometric points s̄ of S the image of the isomorphism δs̄ at s̄ under
the isomorphism (4.2) has the same image in π1(G) than µ. Note that the more
important case z̃ = z − ζ is useful to define bounds on local P-shtukas, while
the case z̃ = z is only useful to define bounds on quasi-isogenies between local
P-shtukas. In that sense the bound

[
S(µ) ×̂F Spf F[[ζ]]

]
from Example 4.12,

which corresponds to z̃ = z, is not the right one to define bounds on local
P-shtukas. Further note that in case z̃ = z − ζ the term z̃−〈(−λ)dom,µ〉 in (4.3)
can be viewed as the image under (−λ)dom : LG(S) → LGm(S) of the element
µ(z − ζ)−1 ∈ LG(S), which itself is the image of µ(z − ζ)−1 ∈ G

(
F[[ζ, z]][ 1

z−ζ ]
)

in LG(S) = G
(
OS [[z]][

1
z−ζ ]

)
using that ζ is locally nilpotent on S.

In terms of Definition 4.8 the boundedness condition (4.3) can be described
as follows. Consider the universal matrix M ∈ LGL(Vλ)(Sλ) over the ind-
scheme Sλ := LGL(Vλ) ×̂F Spf F[[ζ]]. Let Sλ be the closed ind-subscheme of Sλ

defined by the condition that the matrix z̃〈(−λ)dom,µ〉M has entries in OSλ
[[z]],

and let

Ẑλ := Sλ/(L
+GL(Vλ) ×̂F Spf F[[ζ]]) ⊂ F̂ℓGL(Vλ).

We let µ# ∈ π1(G) be the image of µ in the fundamental group π1(G), and we

let (F̂ℓP)µ# be the connected component of F̂ℓP corresponding to µ# under

the isomorphism π0(F̂ℓP) ∼= π1(G); see [5, Prop. 4.5.4] or [39, Thm. 0.1]. We
write Λ = {λ1, . . . , λm} and for each generator λi we consider the morphism

ρλi∗ : (F̂ℓP)µ# → F̂ℓGL(Vλi
) induced from ρλi

. Then the base change Ẑ of the
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closed ind-subscheme Ẑλ1 ×̂Spf F[[ζ]] . . . ×̂Spf F[[ζ]] Ẑλm
under the morphism

∏

i

ρλi∗ : (F̂ℓP)µ# → F̂ℓGL(Vλ1
) ×̂F[[ζ]] . . . ×̂F[[ζ]] F̂ℓGL(Vλm )

is the bound representing the “boundedness by (µ, z̃)” from [23, Def. 3.5]. It

has reflex ring F[[ζ]] and Ẑ is a representative of this bound over the reflex ring.
Instead of the Weyl modules Vλ one could of course also work with other rep-

resentations of G. If for example one takes the induced modules IndG
B
(−λ)dom,

or tilting modules, one obtains different ind-subschemes Ẑ, but the underly-

ing reduced ind-subschemes of these Ẑ still coincide. If z̃ = z, this reduced
ind-subscheme equals the Schubert variety S(µ) ×̂F SpecF[[ζ]]. This already
indicates that it is reasonable to consider boundedness in terms of closed ind-
subschemes of F̂ℓP. Note that here also for z̃ = z − ζ the bound Ẑ only
depends on µ and the class of modules considered (Weyl modules, etc.). This
is no longer true for general P as one sees from the next example.

Example 4.14. We discuss a special case of Example 4.12. Assume that
charFq 6= 2 and set K := Fq((z)). Let E := K[y]/(y2 − z) be the ramified
quadratic field extension with y2 = z. Let T be the one dimensional torus
ker(NE/K : ResE/K Gm → Gm). Explicitly T = SpecK[a, b]/(a2 − b2z − 1),

with the multiplication (a, b)∗(c, d) = (ac+bdz, ad+bc). Sending a 7→ 1
2 (t+t

−1)

and b 7→ 1
2y (t

−1−t) defines an isomorphism Gm,E = SpecE[t, t−1] ∼= TE which

we will use in the sequel to identify X∗(T ) := X∗(TE) with Z. Here the finite
Weyl group W0 = (1) is trivial and the inertia group I = Gal(E/K) = {1, γ}
acts on X∗(T ) = Z via γ(µ) = −µ. Therefore W̃ = X∗(T )I = Z/2Z.

Consider the Néron-model T = ker(NOE/OK
: ResOE/OK

Gm → Gm). As a

scheme it is isomorphic to SpecFq[[z]][a, b]/(a
2 − b2z − 1). Its special fiber has

two connected components distinguished by a ≡ 1 or −1mod z. Therefore the
connected component of identity of T is

T 0 := SpecFq[[z]][a
′, b]/(2a′ + z(a′)2 − b2),

where a = 1+ za′. In particular (−1, 0) /∈ T 0
(
Fq((z))

)
. We let P be the group

scheme T 0 over D = SpecFq[[z]]. Here F = Fq and σ̂ = σ is the q-Frobenius.
By [19, Lemma 5 and its proof] the group T 0 is the unique parahoric group
scheme with generic fiber T .

In this example the isomorphism (4.2) is given by the Kottwitz map
κT : LT (Falg

q ) → X∗(T )I , see [28, 2.5]. Its inverse associates with each el-

ement of X∗(T )I a σ̂-conjugacy class in LT (Falg
q ). For example if we take

µ̄ = 1 ∈ X∗(T )I = Z/2Z one has to choose a lift µ ∈ X∗(TE). If we choose
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µ = 1 then with µ̄ = 1 it associates

NE/K(µ(y))

= µ(y) · γ(µ(y))

=
(1
2
(y + y−1),

1

2y
(y−1 − y)

)
·
(1
2
(−y − y−1),

1

−2y
(−y−1 − (−y))

)

= (−1, 0) ∈ T (Falg
q ((z))).

The σ̂-conjugacy class given by (−1, 0) is independent of the choice of µ and
of the uniformizer y (and of E) by [28, 2.5]. The Schubert variety S(µ̄) for
µ̄ = 1 from Example 4.12 therefore equals

L+T 0(Fq) · (−1, 0) · L+T 0(Fq)/L
+T 0(Fq).

However, as we have mentioned in the discussion after equation (4.3), the
bound

[
S(µ̄) ×̂Fq

Spf Fq[[ζ]]
]
is only useful to bound quasi-isogenies between

local P-shtukas.
Instead we want to define a bound [ẐR] which is useful to bound local P-

shtukas, and whose fiber ZR := ẐR ×̂Spf R Spec κR over κR equals the Schubert
variety S(µ̄)×Fq

SpecκR ⊂ Fℓ×Fq
SpecκR. In Example 4.13 we were able to

achieve this by lifting µ(z) ∈ LG(Fq) to an element µ(z−ζ) ∈ G
(
Fq[[z, ζ]][

1
z−ζ ]

)
;

see the discussion after (4.3). This is not possible here. We can only lift
(−1, 0) over the ramified extension Fq[[ζ]][ξ]/(ξ

2 − ζ) of Fq[[ζ]]. Namely, con-
sider the isomorphism K = Fq((z)) → Fq((ζ)), z 7→ ζ and fix an extension

i : E →֒ Fq((ζ))
alg

of this isomorphism. Set ξ := i(y) and lift NE/K(µ(y)) to

g(E, µ, i) := NE/K

(
µ
(
y − i(y)

))
. For example if µ = 1 ∈ Z = X∗(TE) we

compute

(α, β) : = g(E, 1, i) = µ(y − ξ) · γ(µ(y − ξ)) =
(
(y − ξ) + (y − ξ)−1

2
,
(y − ξ)−1 − (y − ξ)

2y

)

· γ
(
(y − ξ) + (y − ξ)−1

2
,
(y − ξ)−1 − (y − ξ)

2y

)
,

with γ(y) = −y and γ|Fq((ξ)) = id. Then

α = 1
4

(
(y − ξ) + (y − ξ)−1

) (
(−y − ξ) + (−y − ξ)−1

)

− 1
4

(
(y − ξ)−1 − (y − ξ)

) (
(−y − ξ)−1 − (−y − ξ)

)

=
1

2

(
(y − ξ)2 + (−y − ξ)2

(−y − ξ)(y − ξ)

)
=
ζ + z

ζ − z
,

and

β = −1
4y

(
(y − ξ) + (y − ξ)−1

) (
(−y − ξ)−1 − (−y − ξ)

)

+ 1
4y

(
(y − ξ)−1 − (y − ξ)

) (
(−y − ξ) + (−y − ξ)−1

)
=

2ξ

ζ − z
.
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Thus, as a lift of (−1, 0) we get

g(E, 1, i) = NE/K(µ(y − ξ)) =

(
ζ + z

ζ − z
,

2ξ

ζ − z

)
.

This shows that we can define the desired bound by

Ẑµ,i,Fq[[ξ]] := L+T 0 · g(E, µ, i) · L+T 0/L+T 0 ⊂ FℓT 0,Fq[[ξ]] .

However, this bound depends on the choice of µ and of the embedding i. We
first compute how g(E, µ, i) depends on the chosen embedding i. For this

purpose we compute
NE/K(µ(y − i(y)))

NE/K(µ(y − i ◦ γ(y)) . Changing i to i ◦ γ replaces ξ by

−ξ and we have

g(E, 1, i ◦ γ) = NE/K(µ(y + ξ)) =

(
ζ + z

ζ − z
,
−2ξ

ζ − z

)
.

Note that g(E, 1, i) = g(E, 1, i ◦ γ)−1. Therefore
g(E, 1, i)

g(E, 1, i ◦ γ) = g(E, 1, i)2 =

(
(z + ζ)2 + 4ζz

(ζ − z)2
,
4ξ(z + ζ)

(ζ − z)2

)
.

This also shows what happens if we replace µ ∈ X∗(TE) = Z by another lift of
µ̄ ∈ Z/2Z, i.e.

g(E, µ+ 2, i)

g(E, µ, i)
= g(E, 2, i) = g(E, 1, i)2.

Observe that
g(E, 1, i)

g(E, 1, i ◦ γ) ∈ T 0(Fq[[z,
ξ
z ]]) r T 0(Fq[[ξ, z]]). So the element

g(E, 1, γ ◦ i) does not lie in the closure of the subscheme

L+T 0 · g(E, 1, i) · L+T 0 ⊂ LT 0 ×̂SpecFq
Spf Fq[[ξ]].

In particular the bounds Ẑµ,i := [Ẑµ,i,Fq [[ξ]]] depend on the chosen embedding

i : E →֒ Fq((ζ))
alg and on the lift µ ∈ X∗(T ) of µ̄ ∈ X∗(T )I . For this reason

we decided to treat bounds axiomatically in Definition 4.8. Our discussion
also shows that the reflex ring of the bound Ẑµ,i is Fq[[ξ]], because γ̃(Ẑµ,i) =

Ẑµ,i◦γ 6= Ẑµ,i for the nontrivial element γ̃ ∈ AutFq[[ζ]](Fq[[ξ]]).

Representability of the bounded Rapoport–Zink functor. In the rest
of this chapter we assume that P is a smooth affine group scheme over D with
connected reductive generic fiber P . Let b ∈ LP (k) for some field k ∈ NilpF[[ζ]].
With b Kottwitz associates a slope homomorphism

νb : Dk((z)) → Pk((z)),

called Newton polygon of b; see [28, 4.2]. Here D is the diagonalizable pro-
algebraic group over k((z)) with character group Q. The slope homomorphism
is characterized by assigning the slope filtration of (V ⊗F((z))k((z)), ρ(b)·( id⊗σ̂))
to any F((z))-rational representation (V, ρ) of P ; see [28, Sec. 3]. We assume
that b ∈ LP (k) satisfies a decency equation for a positive integer s, that is,

(4.4) (bσ̂)s = sνb(z)σ̂
s in LP (k)⋊ 〈σ̂〉.
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Remark 4.15. Assume that b ∈ LP (k) is decent with the integer s and let
ℓ ⊂ kalg be the finite field extension of F of degree s. Then b ∈ LP (ℓ) because
by (4.4) the element b has values in the fixed field of σ̂s which is ℓ. Note that if
k is algebraically closed and the generic fiber P of P is connected reductive, any
σ̂-conjugacy class in LP (k) contains an element satisfying a decency equation;
see [28, 4.3] and use [48, § II.2.3, Théorème 1′ and Remarque 1, p. 140] instead
of Steinberg’s theorem.

Remark 4.16. With the element b ∈ LP (k) one can associate a connected
algebraic group Jb over F((z)) which is defined by its functor of points that
assigns to an F((z))-algebra R the group

Jb(R) :=
{
g ∈ P (R⊗F((z)) k((z))) | g−1bσ̂(g) = b

}
.

Let b satisfy a decency equation for the integer s and let Fs be the fixed field
of σ̂s in Falg((z)). Then νb is defined over Fs and Jb ×F((z)) Fs is the centralizer
of the 1-parameter subgroup sνb of P and hence a Levi subgroup of PFs

; see
[42, Cor. 1.14]. In particular Jb(F((z))) ⊂ P (Fs) ⊂ LP (ℓ) where ℓ is the finite
field extension of F of degree s.

In the remaining part of the chapter we consider the bounded Rapoport–
Zink functor and prove that it is ind-representable by a formal scheme in
the following important special situation. Let Ẑ be a bound with reflex ring
RẐ = κ[[ξ]] and special fiber Z ⊂ FℓP ×̂F Specκ ; see Definition 4.8. Let
L0 = (L+P, bσ̂∗) be a trivialized local P-shtuka over a field k in NilpF[[ζ]].

Assume that b is decent with integer s and let ℓ ⊂ kalg be the compositum of
the residue field κ of RẐ and the finite field extension of F of degree s. Then
b ∈ LP (ℓ) by Remark 4.15. So L0 is defined over ℓ and we may replace k by
ℓ. Note that ℓ[[ξ]] is the unramified extension of RẐ with residue field ℓ.

Definition 4.17. Keep the notation from above and set T̄ := Spec ℓ and
L0 := L0.
(a) Consider the base change ML0

×̂ℓ[[ζ]] Spf ℓ[[ξ]] of the functor ML0
from Def-

inition 4.1 and its subfunctor

MẐ
L0

: (Nilpℓ[[ξ]])
o −→ Sets

S 7−→
{
(L, δ̄) ∈ ML0

(S) | L is bounded by Ẑ
}

Note that the functor ML0
×̂ℓ[[ζ]] Spf ℓ[[ξ]] is represented by the ind-scheme

F̂ℓP,ℓ[[ξ]] := FℓP ×̂F Spf ℓ[[ξ]] by Theorem 4.4, andMẐ
L0

is a closed ind-subscheme

by Proposition 4.11.

(b) We define the associated affine Deligne–Lusztig variety over ℓ as the re-
duced closed ind-subscheme XZ(b) ⊂ FℓP ×̂F Spec ℓ whose K-valued points
(for any field extension K of ℓ) are given by

XZ(b)(K) :=
{
g ∈ FℓP(K) | g−1bσ̂∗(g) ∈ Z(K)

}
.

If ω ∈ W̃ and Z = S(ω) is the Schubert variety from Example 4.12, we set
X�ω(b) := XS(ω)(b).
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Theorem 4.18. If P is a smooth affine group scheme over D with connected re-

ductive generic fiber, the functor MẐ
L0

: (Nilpℓ[[ξ]])
o → Sets is ind-representable

by a formal scheme over Spf ℓ[[ξ]] which is locally formally of finite type and
separated. Its underlying reduced subscheme equals XZ(b). In particular XZ(b)
is a scheme locally of finite type and separated over ℓ. The formal scheme rep-

resenting MẐ
L0

is called a bounded Rapoport–Zink space for local P-shtukas.

Recall that a formal scheme over ℓ[[ξ]] in the sense of [17, Inew, 10] is called
locally formally of finite type if it is locally noetherian and adic and its reduced
subscheme is locally of finite type over ℓ. It is called formally of finite type if
in addition it is quasi-compact.

Remark 4.19. By our assumptions QIsogℓ(L0) equals the group Jb(F((z)))

from Remark 4.16. This group acts on the functor MẐ
L0

via g : (L, δ̄) 7→
(L, g ◦ δ̄) for g ∈ QIsogℓ(L0).

Proof of Theorem 4.18. The proof will use a sequence of lemmas and will even-
tually be complete after Lemma 4.25. Consider the universal local P-shtuka

Luniv over F̂ℓP,ℓ[[ξ]] (see Theorem 4.4). Let MẐ
L0

be the closed ind-subscheme

of F̂ℓP,ℓ[[ξ]] over which Luniv is bounded by Ẑ; see Proposition 4.11. By con-

struction MẐ
L0

ind-represents the functor MẐ
L0
. It is clear that the reduced

ind-subscheme equals XZ(b). We have to show that MẐ
L0

is a formal scheme

locally formally of finite type and separated. Note that the separatedness over

Spf ℓ[[ξ]] follows from the ind-separatedness of F̂ℓP,ℓ[[ξ]]; see Theorem 4.4. By

rigidity of quasi-isogenies the functorMẐ
L0

is equivalent to the following functor

(Nilpℓ[[ξ]])
o −→ Sets

S 7−→
{
(L, δ) | L is a local P-shtuka over S bounded by Ẑ

and δ : L → L0,S is a quasi-isogeny
}/

∼ .

We take a representation ι : P → SLr,D =: H with quasi-affine quotient H/P;
see [39, Prop. 1.3] and [2, Prop. 2.1]. It induces a 1-morphism

ι∗ := H
1(ι) : H

1(SpecF, L+P)(S) → H
1(SpecF, L+H)(S).

For an L+P-torsorL+ over S we denote by V(ι∗L+) the sheaf ofOS [[z]]-modules
associated with the image of L+ in H 1(SpecF, L+GLr)(S) by Remark 3.2.

In particular V(ι∗(L+P)S) = OS [[z]]
⊕r

. Let ρ∨ be the half-sum of all positive
coroots of H with respect to the Borel subgroup of upper triangular matrices
in H = SLr.
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For each nonnegative integer n ∈ N0 let Mn be the closed ind-subscheme

of MẐ
L0

defined by the following sub functor of MẐ
L0

Mn : (Nilpℓ[[ξ]])
o −→ Sets

S 7−→
{
(L, δ) ∈ MẐ

L0
(S) | H

1(ι)(δ) is bounded by 2nρ∨

}
,

where L = (L+, τ̂ ) and where we say that H 1(ι)(δ) is bounded by 2nρ∨ if for
all j = 1, . . . , r

(4.5)
∧j
OS[[z]]

H 1(ι)(δ)
(
V(ι∗L+)

)
⊂ zn(j

2−jr) ·∧j
OS[[z]]

V(ι∗(L+P)S).

By [23, Lemma 4.3] the latter is equivalent to the boundedness condition con-
sidered in [23, Def. 3.5], see Example 4.13, because ρ∨ = (r − 1, . . . , 1− r) and
(4.5) is automatically an equality for j = r as ι factors through H .

Lemma 4.20. The ind-scheme Mn representing the functor Mn is a ξ-
adic noetherian formal scheme over ℓ[[ξ]], whose underlying topological space
(Mn)red is a quasi-projective scheme over Spec ℓ and even projective if P is
parahoric in the sense of Bruhat and Tits [9, Définition 5.2.6] and [19].

Proof. SinceH/P is quasi-affine, the induced morphism ι∗ : F̂ℓP,ℓ[[ξ]] → F̂ℓH,ℓ[[ξ]]

is a locally closed embedding by Remark 4.3. The representation ι induces a
functor ι∗ from local P-shtukas to local H-shtukas. Consider the local H-

shtuka H0 := ι∗L0 = ((L+H)ℓ, ι(b)σ̂
∗) over ℓ and view F̂ℓH,ℓ[[ξ]] as a moduli

space representing the functor MH0
, parametrizing local H-shtukas together

with a quasi-isogeny δH to H0; see Theorem 4.4. Let F̂ℓ(n)H,ℓ[[ξ]] be the closed

ind-subscheme of F̂ℓH,ℓ[[ξ]] defined by condition (4.5), that is, by bounding δH
by 2nρ∨. It is a ξ-adic noetherian formal scheme over Spf ℓ[[ξ]] by [23, Prop. 5.5]
whose underlying topological space is a projective scheme over Spec ℓ. Thus
for all i

Mn(i) := Mn ×̂Spf ℓ[[ξ]] Spec ℓ[[ξ]]/(ξ
i)

= MẐ
L0

×̂
F̂ℓH,ℓ[[ξ]]

F̂ℓ(n)H,ℓ[[ξ]] ×̂Spf ℓ[[ξ]] Spec ℓ[[ξ]]/(ξ
i)

is a locally closed subscheme of F̂ℓ(n)H,ℓ[[ξ]] ×̂Spf ℓ[[ξ]] Spec ℓ[[ξ]]/(ξ
i), and hence a

scheme of finite type over Spec ℓ[[ξ]]/(ξi) with underlying topological space
Mn(1) independent of i. Moreover, Mn(1) is (quasi-)projective, because it
is closed in the ind-quasi-projective ind-scheme FℓP ×̂F Spec ℓ which is even
projective if P is parahoric. Now our claim follows from [17, Inew, Cor. 10.6.4].

�
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For each nonnegative integer n we define the following sub functor of MẐ
L0

Mn : (Nilpℓ[[ξ]])
o −→ Sets

S 7−→
{
(L, δ) ∈ MẐ

L0
(S) | for any point s in S,

H (ι)(δs) is bounded by 2nρ∨

}
.

This functor is represented by an ind-scheme Mn which is the formal comple-

tion of MẐ
L0

along the quasi-compact closed subscheme (Mn)red.

Lemma 4.21. Mn is a formal scheme formally of finite type over Spf ℓ[[ξ]].

To prove the lemma we need to start with the following definition. Recall
that RẐ = κ[[ξ]].

Definition 4.22. Let R = lim
←−

Rm ∈ Nilpκ[[ξ]] where (Rm, um,m′) is a projec-

tive system of discrete rings indexed by N0. Suppose that all homomorphisms
R → Rm are surjective, and that all kernels Im := ker(um,0 : Rm → R0) ⊂ Rm

are nilpotent. A local P-shtuka over Spf R is a projective system (Lm)m∈N0 of
local P-shtukas Lm over Rm with Lm−1

∼= Lm ⊗Rm
Rm−1.

Lemma 4.23. Let R in Nilpκ[[ξ]] be as in the above definition. The pull back
functor defines an equivalence between the category of local P-shtukas over
SpecR bounded by Ẑ and the category of local P-shtukas over Spf R bounded
by Ẑ.

Proof. Since R is in Nilpκ[[ξ]] there is an integer e ∈ N such that ξe = 0 on R.

Let L := (Lm)m∈N0 be a local P-shtuka over Spf R. By Proposition 2.4 there is
an étale covering R′0 → R0 which trivializes L0. By [18, Théorème I.8.3] there
is a unique étale R-algebra R′ with R′⊗RR0

∼= R′0. As in [23, Prop. 2.2(c)] this
gives rise to compatible trivializations Lm ⊗Rm

R′m
∼= ((L+P)R′

m
, bmσ̂

∗) over
R′m := R′ ⊗R Rm for all m. Here bm ∈ LP (R′m) and bm ⊗R′

m
R′m−1 = bm−1.

Take a faithful representation ι : P →֒ SLr,D and consider the induced
closed immersion LP →֒ L SLr,D. The ind-scheme structure on FℓSLr,D

is

given by FℓSLr,D
= lim
−→

Fℓ(n)SLr,D
where Fℓ(n)SLr,D

is defined by condition (4.5). Let

L SL
(n)
r,D = L SLr,D ×FℓSLr,D

Fℓ(n)SLr,D
. Then

L SL
(n)
r,D(S) =

{
g ∈ L SLr,D(S) | all j × j-minors of g

lie in zn(j
2−jr)OS(S)[[z]]for all j

}
.

This implies that L SL
(n)
r,D, and hence also LP (n) := LP ×LSLr,D

L SL
(n)
r,D is an

infinite dimensional affine scheme over F. By Remark 4.7(f) we may choose

a representative ẐR̃ ⊂ F̂ℓ
P,R̃ of the bound Ẑ over a finite extension R̃ of

RẐ = κ[[ξ]] with Frac(R̃) Galois over Frac(RẐ). By Remark 4.9 the bounded-

ness by Ẑ can be checked using ẐR̃. Since ZR̃,e := ẐR̃ ×̂Spf R̃ Spec R̃/(ξe) has
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the same underlying topological space as ZR̃ := ẐR̃ ×̂R̃ SpecκR̃, it is quasi-

compact. So there is an n ∈ N such that ZR̃,e ⊆ Fℓ(n)SLr,D
×̂F Spec R̃/(ξ

e) by

[23, Lemma 5.4]. As one sees from the following diagram

Spec(R′m ⊗κ[[ξ]] R̃)

��

bm
//❴❴❴ L SL

(n)
r,D ×̂F Spec R̃/(ξ

e)

��

// L SLr,D ×̂F Spec R̃/(ξ
e)

��

ZR̃,e
// Fℓ(n)SLr,D

×̂F Spec R̃/(ξ
e) // FℓSLr,D

×̂F Spec R̃/(ξ
e),

the morphism bm : SpecR′m ⊗κ[[ξ]] R̃ → LP factors through the closed sub-

scheme LP (n) = LP ×L SLr,D
L SL

(n)
r,D for all m. Since LP (n) is affine, the

compatible collection of morphisms bm : SpecR′m ⊗κ[[ξ]] R̃ → LP (n) is given by

a compatible collection of homomorphisms O(LP (n)) → R′m ⊗κ[[ξ]] R̃. It corre-

sponds to a homomorphism b̃∗∞ : O(LP (n)) → R′⊗κ[[ξ]] R̃, because R
′ = lim

←−
R′m

and R̃ is a finite free κ[[ξ]]-module. By Remark 4.7(f), γ(ẐR̃) = ẐR̃ for all

γ ∈ Autκ[[ξ]](R̃) and thus by construction the homomorphism b̃∗∞ is invari-

ant under Autκ[[ξ]](R̃). It follows that b̃∗∞ factors through a homomorphism

b∗∞ : O(LP (n)) → R′, which corresponds to a morphism b∞ : SpecR′ → LP (n).

This gives the local P-shtuka ((L+P)R′ , b∞σ̂
∗) over SpecR′ bounded by Ẑ,

which carries a descent datum from the Lm and hence induces a local P-shtuka
over SpecR. �

Let us come back to the

Proof of Lemma 4.21. For each m ≥ n let Mm
n be the formal completion of

Mm along (Mn)red. It is a noetherian adic formal scheme over ℓ[[ξ]]. Let U
be an affine open subscheme of (Mn)red. By [17, Inew, Proposition 2.3.5] this
defines an affine open formal subscheme Spf Rm of Mm

n with underlying set
U . Let R be the inverse limit of the projective system Rm+1 → Rm and let
am ⊂ R denote the ideal such that Rm = R/am. Let J be the inverse image in
R of the largest ideal of definition in Rn. We want to show that R is J-adic.
We make the following

Claim. For any integer c > 0 there is an integer m0 such that for any m ≥ m0

the natural map Rm/J
cRm → Rm0/J

cRm0 is an isomorphism.

To prove the claim let Lm be the universal bounded local P-shtuka over
Spf Rm. Consider the local P-shtuka (Lm)m over Spf R and its pullback
over Spf R/Jc. The latter comes from a local P-shtuka L over SpecR/Jc ∈
Nilpℓ[[ξ]] by Lemma 4.23. By rigidity of quasi-isogenies the quasi-isogeny δn
over R/J = Rn/J lifts to a quasi-isogeny δ over R/Jc. Since SpecR/Jc is
quasi-compact, the quasi-isogeny H 1(ι)(δ) satisfies condition (4.5) for some
m0, that is, it is bounded by 2m0ρ

∨. By the universal property of Mm0
n the

tuple (L, δ) induces a morphism Rm0 → R/Jc making the following diagram
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commutative, from which the claim follows

R

��
��

// // Rm

��
��

// // Rm0

rr❡ ❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡
❡

��
��

R/Jc // // Rm/J
cRm

// // Rm0/J
cRm0 .

The claim implies that the chain an + Jc ⊇ an+1 + Jc ⊇ . . . ⊇ ai + Jc ⊇ . . .
stabilizes. Set Jc :=

⋂
i ai + Jc = am + Jc for m ≫ 0 and consider the

descending chain J1 ⊇ J2 ⊇ . . .. Note that J1 = J and Jc+1 + J c
1 = Jc.

Since J1/J2
∼= JRm/J

2Rm for m ≫ 0, it is a finitely generated R-module.
Therefore Mn is a locally noetherian adic formal scheme over Spf ℓ[[ξ]] by [42,
Prop. 2.5]. It is formally of finite type because (Mn)red = (Mn)red is quasi-
projective over ℓ by Lemma 4.20. �

From now on we use that L0 is decent with the integer s. In the sequel

we consider points x ∈ MẐ
L0
(K) for varying field extensions K of ℓ. For two

points x := (L, δ) and x′ := (L′, δ′) in MẐ
L0
(K) we define

(4.6) d̃(x, x′) := min
{
n ∈ N0 | H

1(ι)(δ−1δ′) is bounded by 2nρ∨
}
.

By the definition of “being bounded by 2nρ∨” in (4.5) we conclude that if

x′′ ∈ MẐ
L0
(K) is a third point then d̃(x, x′′) ≤ d̃(x, x′) + d̃(x′, x′′). More-

over, in the situation where δ = g and δ′ = g′ for g, g′ ∈ LP (K), as well
as x = ((L+P)K , g

−1bσ̂∗(g), g) and x′ = ((L+P)K , (g
′)−1bσ̂∗(g′), g′), we also

write d̃(g, g′) := d̃(x, x′). Note that a point x ∈ MẐ
L0
(K) belongs to Mn if and

only if d̃((L0, id), x) ≤ n.

Although we will not use this, note that d̃ is a metric on MẐ
L0
. This follows

from the fact that (4.5) for n = 0 together with Cramer’s rule implies that

H 1(ι)(δ−11 δ2) is an isomorphism V(ι∗L2)
∼−−→ V(ι∗L1); compare the discussion

around [2, eq. (3.2) and (3.3)].

Lemma 4.24. For every integer c > 0 there is an integer d0 > 0 with the
following property. For every g ∈ LP (K) with d̃(g, bσ̂∗(g)) < c there is a

g′ ∈ LP (ℓ) with d̃(g, g′) ≤ d0.

Proof. This is just a reformulation of [43, Thm. 1.4 and Subsec. 2.1] taking into
account that by functorial properties of Bruhat–Tits buildings (see [31]) the
representation ι induces an injective isometric map of Bruhat–Tits buildings
B(P ) → B(H). �

Lemma 4.25. There is an integer d0 ∈ N0 such that

sup
{
d̃(x,MẐ

L0
(ℓ)) | x ∈ MẐ

L0

}
≤ d0.

Proof. Let x := (L+, δ) be a point in MẐ
L0
(K). After replacing K by a sepa-

rable field extension, we take a trivialization (L+, δ) ∼= ((L+P)K , hσ̂
∗, g) with
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δ = g ∈ LP (K) and h = g−1bσ̂∗(g). Since the local P-shtuka ((L+P)K , hσ̂
∗) is

bounded by Ẑ and Z is quasi-compact by definition of the boundedness condi-
tion (see Definition 4.8), there is a natural number c which is independent of

x such that d̃(g, bσ̂∗(g)) = min{n ∈ N0 | H 1(ι)(h) is bounded by 2nρ∨} < c.
Let d0 = d0(c) be the integer from Lemma 4.24. Then there is a g′ ∈ LP (ℓ)

with d̃(g, g′) ≤ d0. Now the associated point x′ := ((L+P)ℓ, g
′−1bσ̂∗g′, g′) of

MẐ
L0
(ℓ) satisfies d̃(x, x′) ≤ d0 and the lemma follows. �

For a point y ∈ MẐ
L0
(ℓ) set B(y, d0) :=

{
x ∈ MẐ

L0
| d̃(x, y) ≤ d0

}
. Here

x ∈ MẐ
L0
(K) for a field extension K of ℓ. We set Bn(y, d0) = B(y, d0) ∩Mn.

Note that these are closed subsets. For each integer r let

Zr
n =

⋃

y∈MẐ
L0

(ℓ),d̃((L0, id),y)≥r

Bn(y, d0).

Then Zr
n = Zr

n+1 ∩Mn. If y /∈ Mn+d0 , that is d̃((L0, id), y) > n+ d0, and if

x ∈ Mn, that is d̃((L0, id), x) ≤ n, then

d̃(x, y) ≥ d̃((L0, id), x)− n+ d̃(x, y) ≥ d̃((L0, id), y)− n > d0

and thus Bn(y, d0) = ∅. We get

Zr
n =

⋃

y∈Mn+d0
(ℓ),d̃((L0, id),y)≥r

Bn(y, d0).

Since
(
Mn+d0

)
red

=
(
Mn+d0

)
red

is quasi-projective over ℓ by Lemma 4.20,
this union is finite.

Let Ur
n be the open formal sub-scheme of Mn whose underlying reduced set

is Mn r Zr
n. We claim that the chain Ur

n →֒ Ur
n+1 →֒ . . . of open formal sub-

schemes ofMn stabilizes. By the definition ofMn it is enough to verify this on
the underlying set of points. Suppose that there is some element x ∈ Ur

n+1rUr
n.

By Lemma 4.25 there exists a y ∈ MẐ
L0
(ℓ) such that d̃(x, y) ≤ d0. Since

x ∈ Mn+1 r Zr
n+1 we must have d̃((L0, id), y) < r. Then

(4.7) d̃((L0, id), x) ≤ d̃((L0, id), y) + d̃(x, y) < r + d0.

Therefore, if n ≥ r + d0 then d̃((L0, id), x) ≤ n and x ∈ Mn which is a
contradiction. Consequently there is no such x.

Let Ur =
⋃

n Ur
n (which equals Ur

n for n ≥ r + d0). Note that every point x

of MẐ
L0

lies in the union of the Urs. Indeed, if d̃
(
(L0, id), x

)
< r− d0 for some

r, then x is contained in Ur, because otherwise there is a y ∈ MẐ
L0
(ℓ) with

d̃(x, y) ≤ d0 and d̃
(
(L0, id), y

)
≥ r, a contradiction. Now consider the chain

Ur →֒ Ur+1 . . . →֒ MẐ
L0

of open immersions of formal schemes formally of finite type, note that Ur is

open in MẐ
L0
. Indeed the underlying topological space of Ur is open in Mn for

Münster Journal of Mathematics Vol. 7 (2014), 623–670



656 Esmail Arasteh Rad and Urs Hartl

every n and the ind-scheme MẐ
L0

carries the limit topology of the limit over
the Mn. This shows that the formal scheme Ur equals the formal completion

of the open ind-scheme MẐ
L0
||Ur| of MẐ

L0
supported on |Ur| along the whole

set |Ur| and thus MẐ
L0
||Ur| = Ur. Since Ur is locally formally of finite type

this implies that MẐ
L0

=
⋃

r Ur is locally formally of finite type as well. This

completes the proof of Theorem 4.18 �

Corollary 4.26. The irreducible components of the topological space MẐ
L0

are

quasi-projective schemes over ℓ. In particular they are quasi-compact. They are
projective if P is parahoric in the sense of Bruhat and Tits [9, Définition 5.2.6]
and [19].

Proof. Let T be an irreducible component and let x be its generic point. As
in the proof of the theorem there is an r such that x ∈ Ur = Ur

r+d0
⊂ Mr+d0 .

Since the underlying topological spaces of Mr+d0 and Mr+d0 coincide, are

closed in MẐ
L0
, and (quasi-)projective over ℓ by Lemma 4.20, we see that

T ⊂ Mr+d0 is a closed subscheme and the corollary follows. �

In the rest of this section we fix an integer n and consider complete discrete
valuation rings Fi[[zi]] for i = 1, . . . , n with finite residue fields Fi, and frac-
tion fields Qi = Fi((zi)). We consider a smooth affine group scheme Pi over
SpecFi[[zi]] with connected reductive generic fiber Pi := Pi×Fi[[zi]] SpecFi((zi)).

We let Ẑi = [Ẑi,R′

i
] with Ẑi,R′

i
⊂ F̂ℓPi,R′

i
:= FℓPi

×̂Fi
Spf R′i be a bound in the

sense of Definition 4.8 with reflex ring RẐi
=: Ri = κi[[ξi]], and we let k be

a field containing all κi. For all i let Li be a local Pi-shtuka over k which

is trivialized and decent. By Theorem 4.18 the Rapoport–Zink space MẐi

Li

is a formal scheme locally formally of finite type over Spf k[[ξi]]. Therefore

the product
∏

iMẐi

L
i
:= MẐ1

L1
×̂k . . . ×̂k MẐn

L
n

is a formal scheme locally for-

mally of finite type over Spf k[[ξ]] := Spf k[[ξ1, . . . , ξn]]. Recall that the group

JL
i
(Qi) = QIsogk(Li) of quasi-isogenies of Li over k acts naturally on MẐi

Li
;

see Remark 4.19.
Let Γ ⊆ ∏i JLi

(Qi) be a subgroup which is discrete for the product of the
zi-adic topologies. We say that Γ is separated if it is separated in the profinite
topology, that is, if for every 1 6= g ∈ Γ there is a normal subgroup of finite
index that does not contain g.

Proposition 4.27. Let Γ ⊆∏i JLi
(Qi) be a separated discrete subgroup. Then

the quotient Γ\∏iMẐi

Li
is a locally noetherian, adic formal algebraic Spf k[[ξ]]-

stack locally formally of finite type. The 1-morphism
∏

i MẐi

Li
→ Γ\∏iMẐi

Li

is adic and étale.

Here we say that a formal algebraic Spf k[[ξ]]-stack X (see [20, Def. A.5]) is
J -adic for a sheaf of ideals J ⊂ OX , if for some (any) presentation X → X
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the formal scheme X is JOX -adic, that is, J rOX is an ideal of definition of X
for all r. We then call J an ideal of definition of X . We say that X is locally
formally of finite type if X is locally noetherian, adic, and if the closed substack
defined by the largest ideal of definition (see [20, A.7]) is an algebraic stack
locally of finite type over Spec k. Before proving the above proposition let us
state the following lemma. Recall that (also an infinite dimensional) scheme is
quasi-compact if and only if it is a finite union of affine schemes. Further recall
that every morphism from a quasi-compact scheme to an ind-quasi-projective
ind-scheme factors through a quasi-projective subscheme by [23, Lemma 5.4].

Lemma 4.28. Let Γ ⊆∏i JLi
(Qi) be a separated discrete subgroup. Consider

quasi-compact subschemes Ui ⊂ FℓPi
×̂Fi

Spec k and set U = U1 ×k . . .×k Un.
Then the set

{γ ∈ Γ | γU ∩ U 6= ∅}
is finite.

Proof. Note that JLi
(Qi) is contained in LPi(k

alg). By Theorem 4.4 any point

x ∈ U(kalg) can be represented by a tuple (Li, gi)i, where Li is a trivialized
local Pi-shtuka over kalg and the quasi-isogeny gi : Li → Li is given by an
element gi ∈ LPi(k

alg). By [39, Thm. 1.4] the projection LPi → FℓPi
admits

sections locally for the étale topology, and hence étale locally on FℓPi
the loop

group LPi is isomorphic to the product FℓPi
×Fi

L+Pi. In particular, by [17,
IV2, Prop. 2.7.1] the projection

∏
i LPi ×̂∏

i
FℓPi

U → U is an affine morphism

of schemes and therefore Ũ :=
∏

i LPi ×̂∏
i FℓPi

U ⊆∏i LPi is a quasi-compact
scheme. Consider the morphism

Ũ ×F Ũ −→∏
i FℓPi

(4.8)

(gi, g
′
i)i 7−→ (g′ig

−1
i L+Pi/L

+Pi)i.

Since the FℓPi
are ind-quasi-projective ind-schemes also

∏
i FℓPi

is. There-
fore (4.8) factors through some quasi-projective subscheme V ⊂ ∏

iFℓPi
by

[23, Lemma 5.4]. Since Li is decent the group of quasi-isogenies JLi
(Qi) ⊂

LPi(k
alg) is contained in LPi(ℓ) for some finite field ℓ; see Remark 4.16. Let

γ ∈ Γ be such that x = (Li, gi)i ∈ U and γx = (Li, γigi) ∈ U where γi ∈ LPi(ℓ)

is the projection of γ onto the i-th factor. Then (gi, γigi)i ∈ Ũ × Ũ and the
image of γ under the projection map π :

∏
i LPi →

∏
iFℓPi

lies in the finite
set V (ℓ). Thus γ lies in the compact set S = π−1(V (ℓ)) ∩∏i JLi

(Qi). On the
other hand Γ is discrete and thus has finite intersection with S. �

Proof of Proposition 4.27. By Lemma 4.25 there is a finite field ℓi and a con-

stant di such that any ball in MẐi

Li
with radius di contains a rational point in

MẐi

Li
(ℓi). Let d be the maximum of the integers di and let ℓ be the compositum

of the fields ℓi. Let x := (xi)i be a point of
∏

iMẐi

Li
(ℓ). We use the notation

of the proof of Theorem 4.18 and consider in particular the metric d̃i on MẐi

L
i
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defined as in (4.6) after choosing some representation ιi of Pi. For any positive

integer c we define the closed subscheme of (MẐi

L
i
)red given by

B(xi, c) := {z ∈ MẐi

Li
| d̃i(z, xi) ≤ c}.

Then every z ∈ B(xi, c) satisfies d̃i((Li, id), z) ≤ d̃i((Li, id), xi)+c =: m and so
B(xi, c) ⊂ (Mm)red = (Mm)red. Therefore Lemma 4.20 implies that B(xi, c)
is a quasi-projective scheme over Spec ℓ. In particular the set of ℓ-valued points
B(xi, c)(ℓ) is finite. Thus for all n ≥ 2d the subscheme

U2d
n (xi) := B(xi, n)r

⋃

y∈B(xi,n+d)(ℓ),d̃i(y,xi)>2d

B(y, d) ⊂ (MẐi

Li
)red

is open in B(xi, n+d) and quasi-compact. For n ≥ 3d all U2d
n (xi) coincide with

U2d
3d (xi) by an argument similar to (4.7). Since (MẐi

Li
)red = lim

−→
B(xi, n+ d)

carries the limit topology, the subscheme U2d(xi) := U2d
3d (xi) ⊂ (MẐi

Li
)red is

open and quasi-compact. By Lemma 4.25 the union of the U2d(xi) for all

xi ∈ MẐi

Li
(ℓ) equals (MẐi

Li
)red.

For x = (xi)i set Ux :=
∏

i U2d(xi). Then γ.Ux = Uγ.x and the open

subsets Ux cover
∏

iMẐi

Li
, for varying x ∈ ∏i MẐi

Li
(ℓ). Let I ⊂ ∏

iMẐi

Li
(ℓ)

be a set of representatives of the Γ-orbits in
∏

i MẐi

Li
(ℓ). Fix an x ∈ I. Since

Γ is separated, we may choose by Lemma 4.28 a normal subgroup Γ′x ⊂ Γ
of finite index in Γ such that Ux ∩ γ′Ux = ∅ for all γ′ 6= 1 in Γ′x. For

all γ ∈ Γ the natural morphism γUx → Γ′x\
∏

i MẐi

Li
is an open immersion.

Let Vx be the (finite) union of the images of these morphisms for all γ ∈ Γ.

Then (Γ′x\Γ)\Vx is an open substack of Γ\∏i MẐi

Li
. Moreover, (Γ′x\Γ)\Vx

is a finite étale quotient of Vx and the map
∐

γ∈Γ γUx → (Γ′x\Γ)\Vx is adic

and étale. Therefore the morphism
∏

i MẐi

Li
→ Γ\∏i MẐi

Li
is adic and étale

above (Γ′x\Γ)\Vx. Since (Vx)red is a scheme of finite type over k, its quotient(
(Γ′x\Γ)\Vx

)
red

= (Γ′x\Γ)\(Vx)red is an algebraic stack of finite type over k.

Since the open subsets Ux cover
∏

i MẐi

Li
also the (Γ′x\Γ)\Vx cover Γ\∏iMẐi

Li

and the proposition follows. �

Remark 4.29. For us it does not make sense to strengthen Proposition 4.27
like Rapoport and Zink [42, Prop. 2.37] do, who obtain that for Rapoport–
Zink spaces for p-divisible groups the quotient is a formal algebraic space if Γ
is torsion free. Namely in our case all unipotent subgroups of

∏
i JLi

(Qi) are

torsion. So they cannot act fixed point free on
∏

iMẐi

Li
and the corresponding

quotients cannot be formal algebraic spaces.
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5. The relation between global G-shtukas and local P-shtukas

Preliminaries on G-torsors. In Chapter 5 we assume that G is a flat affine
group scheme of finite type over C. Let ν ∈ C be a closed point of C and set
C′ := Cr{ν}. We let H 1

e (C′,G) denote the category fibered in groupoids over
the category of Fq-schemes, such that H 1

e (C′,G)(S) is the full subcategory of
[C′S/G](C′S) consisting of those G-torsors over C′S that can be extended to a

G-torsor over the whole relative curve CS . We denote by ˙( ) the restriction
morphism

˙( ) : H
1(C,G) −→ H

1
e (C′,G)

which assigns to a G-torsor G over CS the G-torsor Ġ := G×CS
C′S over C′S . Let

P̃ν := ResFν/Fq
Pν and P̃ν := ResFν/Fq

Pν be the Weil restrictions. Then P̃ν is a
flat affine group scheme of finite type over SpecFq[[z]]. We apply Definition 2.2

for F = Fq and let
ˆ̃
Pν := P̃ν ×̂SpecFq [[z]] Spf Fq[[z]] = ResFν/Fq

P̂ν be the ν-adic
completion. We write Aν

∼= Fν [[z]] for a uniformizer z ∈ Fq(C). Then for every
Fq-algebra R we have

Aν⊗̂Fq
R ∼= (R ⊗Fq

Fν)[[z]] = R[[z]]⊗Fq
Fν and

Qν⊗̂Fq
R ∼= (R⊗Fq

Fν)((z)) = R((z))⊗Fq
Fν .

This implies that

L+P̃ν(R) = P̃ν(R[[z]]) = Pν(Aν⊗̂Fq
R) and

LP̃ν(R) = P̃ν(R((z))) = Pν(Qν⊗̂Fq
R).

If G ∈ H 1(C,G)(S), its completion Ĝν := G ×̂CS
(Spf Aν ×̂Fq

S) is a formal

P̂ν-torsor (Definition 2.2) over Spf Aν ×̂Fq
S. The Weil restriction ResFν/Fq

Ĝν

is a formal
ˆ̃
Pν -torsor over Spf Fq[[z]] ×̂Fq

S and corresponds by Proposition 2.4

to an L+P̃ν-torsor over S which we denote L+
ν (G). We obtain the morphism

L+
ν : H

1(C,G) −→ H
1(SpecFq, L

+P̃ν), G 7→ L+
ν (G).

Finally there is a morphism

Lν : H
1
e (C′,G)(S) −→ H

1(SpecFq, LP̃ν)(S), Ġ 7→ Lν(Ġ)
which sends the G-torsor Ġ over C′S , having some extension G over CS , to the

LP̃ν-torsor L(L
+
ν (G)) associated with L+

ν G under (2.1). We shall show that

Lν(G) is independent of the extension G, and that we hence may write Lν(Ġ) :=
L(L+

ν (G)). Indeed, let G′ be a second extension of Ġ and let f : Ġ ∼−−→ Ġ′ be
an isomorphism of G-torsors over C′S . Without loss of generality S = SpecR is

affine. We may choose an fppf -covering Spec R̃ → CS over which trivializations

α : G ×CS
Spec R̃

∼−−→ G×C Spec R̃ and α′ : G′ ×CS
Spec R̃

∼−−→ G×C Spec R̃
exist. Then the composition α′ ◦ f ◦α−1 equals multiplication with an element

g ∈ G(Spec R̃×CC
′). The ring homomorphism Fν → Aν/ν

n = Fν [[z]]/(z
n) and

the short exact sequence 0 → Fν
zn·−−→ Aν/ν

n+1 → Aν/ν
n → 0 of A-modules
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yield by tensoring with the flat A-algebra R̃ the vertical maps and the bottom
row in the following commutative diagram of Aν-modules

0 // R̃/ν
zn·

// (R̃/ν)[[z]]/(zn+1) //

��

(R̃/ν)[[z]]/(zn) //

��

0

0 // R̃/ν
zn·

// R̃/νn+1 // R̃/νn // 0,

which by induction yields isomorphisms (R̃/ν)[[z]]/(zn)
∼−−→ R̃/νn, and hence

(R̃/ν)[[z]]
∼−−→ lim

←−
R̃/νn. The ν-adic completion α̂ of α is an isomorphism

between

Ĝν ×̂Spf(R⊗Fq Fν)[[z]] Spf(R̃/ν)[[z]] = G ×̂CS
Spf(R̃/ν)[[z]]

and the trivial formal P̂ν-torsor

(G×C Spec R̃) ×̂Spec R̃ Spf(R̃/ν)[[z]] = P̂ν ×̂Spf Aν
Spf(R̃/ν)[[z]]

over Spf(R̃/ν)[[z]]. For the base change (ResFν/Fq
Ĝν) ×̂R[[z]] Spf(R̃/ν)[[z]] =∏

Gal(Fν/Fq)
Ĝν ×̂Spf(R⊗Fq Fν)[[z]] Spf(R̃/ν)[[z]] we obtain an isomorphism

∏

Gal(Fν/Fq)

α̂ : (ResFν/Fq
Ĝν) ×̂R[[z]] Spf(R̃/ν)[[z]]

∼−−→
∏

Gal(Fν/Fq)

G×C Spf(R̃/ν)[[z]]

=
ˆ̃
Pν ×̂Fq[[z]] Spf(R̃/ν)[[z]]

which under Proposition 2.4 corresponds to an isomorphism

∏

Gal(Fν/Fq)

α̂ : L+
ν (G)×R Spec(R̃/ν)

∼−−→ (L+P̃ν)Spec(R̃/ν).

We also have the analogous isomorphism for Ĝ′ν := G′ ×̂CS
(Spf Aν ×̂Fq

S) and
L+
ν (G′). Under the ν-adic completion morphism, g is mapped to an ele-

ment ĝ ∈ G
(
(R̃/ν)((z))

)
= Pν

(
(R̃/ν)((z))

)
. It yields the element (ĝ, . . . , ĝ) ∈∏

Gal(Fν/Fq)
Pν

(
(R̃/ν)((z))

)
= (ResFν/Fq

Pν)
(
(R̃/ν)((z))

)
= LP̃ν(R̃/ν). The

composition (
∏

Gal(Fν/Fq)
α̂′)−1 ◦ (ĝ, . . . , ĝ) ◦∏Gal(Fν/Fq)

α̂ defines an isomor-

phism L(L+
ν (G)) ×R Spec(R̃/ν)

∼−−→ L(L+
ν (G′)) ×R Spec(R̃/ν) which inher-

its the descent datum from f . Therefore it defines the desired isomorphism
L(L+

ν (G))
∼−−→ L(L+

ν (G′)). This proves our claim that Lν(G) is independent

of the extension G. We write Lν(Ġ) := L(L+
ν (G)).

Lemma 5.1. The above maps assign to each G-torsor G over CS a triple
(Ġ, L+

ν (G), ϕ) where ϕ : Lν(Ġ) ∼−−→ L(L+
ν (G)) is the canonical isomorphism

of LP̃ν-torsors. H 1(C,G)(S) is equivalent to the category of such triples. In
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other words, the following diagram of groupoids is cartesian

H 1(C,G) H 1
e (C′,G)

H 1(SpecFq, L
+P̃ν) H 1(SpecFq, LP̃ν).

L+
ν

˙( )

Lν

L

Proof. This follows from the glueing result of Beauville and Laszlo [4]. Let us
give more details. We construct the inverse of the morphism

H
1(C,G) −→ H

1
e (C′,G)×

H 1(SpecFq,LP̃ν)
H

1(SpecFq, L
+P̃ν).

Over an Fq-scheme S we consider S-valued points Ġ ∈ H 1
e (C′,G)(S) and

L+
ν ∈ H 1(SpecFq, L

+P̃ν)(S), as well as an isomorphism ϕ : Lν(Ġ) ∼−−→ L(L+
ν )

in H 1(SpecFq, LP̃ν)(S). Let G be an extension of Ġ to CS . There exists

an fppf -covering S′ → S and trivializations α̂ : (L+
ν )S′

∼−−→ (L+P̃ν)S′ and

β̂ : L+
ν (G)S′

∼−−→ (L+P̃ν)S′ of the pullbacks to S′. We may assume that S′ is
the disjoint union of affine schemes of the form SpecR′.

We glue ĠS′ via the isomorphism α̂ ◦ϕ : Lν(Ġ)S′

∼−−→ (LP̃ν)S′ to (L+P̃ν)S′

as follows. Consider the algebraic torsor G ×CS
Spec(Aν⊗̂Fq

R′) for the group
scheme

G×C Spec(Aν⊗̂Fq
R′) = Pν ×SpecAν

Spec(Aν⊗̂Fq
R′)

over Spec(Aν⊗̂Fq
R′). By [17, Prop. 2.7.1] it is affine of the form SpecB.

Its ν-adic completion (Ĝν)R′ = G ×̂CS
Spf(Aν⊗̂Fq

R′) = Spf B̂ is affine with

B̂ = lim
←−

B/νmB. Recall that L+
ν (G)R′ is the L+P̃ν-torsor associated with

the Weil restriction ResFν/Fq
(Ĝν)R′ by Proposition 2.4. The trivialization β̂

induces a trivialization β̂ : ResFν/Fq
(Ĝν)R′

∼−−→ ˆ̃
Pν ×̂Spf Fq[[z]] Spf R

′[[z]] which is
determined by the section

β̂−1(1) ∈ HomSpf R′[[z]](Spf R
′[[z]],ResFν/Fq

(Ĝν)R′ )

= HomSpf(Aν⊗̂Fq
R′)(Spf(Aν⊗̂Fq

R′), Spf B̂)

= Homcont
Aν⊗̂Fq

R′(B̂, Aν⊗̂Fq
R′)

= HomAν⊗̂Fq
R′(B,Aν⊗̂Fq

R′)

= HomSpec(Aν⊗̂Fq
R′)(Spec(Aν⊗̂Fq

R′), SpecB).

The latter induces a trivialization

β : G ×CS
Spec(Aν⊗̂Fq

R′)
∼−−→ Pν ×SpecAν

Spec(Aν⊗̂Fq
R′).

Similarly the automorphism ψ̂ := α̂ϕβ̂−1 of (LP̃ν)R′ is determined by the
image

ψ̂(1) ∈ LP̃ν(R
′) = Pν(SpecQν⊗̂Fq

R′)

Münster Journal of Mathematics Vol. 7 (2014), 623–670



662 Esmail Arasteh Rad and Urs Hartl

and thus induces an automorphism ψ of Pν ×SpecQν
Spec(Qν⊗̂Fq

R′). By [4]

we may glue ĠR′ with Pν ×SpecAν
Spec(Aν⊗̂Fq

R′) via the isomorphism ψβ to
obtain a uniquely determined G-torsor G′ on CR′ .

We descend G′ to CS as follows. Let S′′ = S′ ×S S
′ and let pi : S

′′ → S′ be
the projection onto the i-th factor. Consider the element

h := (p∗1α̂ ◦ p∗2α̂−1)(1) ∈ L+P̃ν(S
′′) = Pν(Aν⊗̂Fq

Γ(S′′,OS′′)).

The isomorphism

( idĠS′′
, h·) :p∗2(ĠS′ ,Pν ×SpecAν

Spec(Aν⊗̂Fq
R′), ψβ)

∼−−→ p∗1(ĠS′ ,Pν ×SpecAν
Spec(Aν⊗̂Fq

R′), ψβ)

induces a descent datum on G′ which is effective by [8, §6.1, Thm. 7] because
G′ is affine over CS′ . Thus G′ descends to a G-torsor G ∈ H 1(C,G)(S). This
defines the inverse morphism and finishes the proof. �

The global-local functor. Analogously to the functor which assigns to an
abelian variety A over a Zp-scheme its p-divisible group A[p∞] we introduce a
global-local functor from global G-shtukas to local Pνi -shtukas. But whereas
abelian varieties only have one characteristic place, our global G-shtukas have
n characteristic places ν = (ν1, . . . , νn). So the global-local functor will assign
to each global G-shtuka of characteristic ν an n-tuple of local Pνi-shtukas. We
begin with a

Remark 5.2. Let ν be a place on C and let Dν := SpecAν and D̂ν := Spf Aν .
Let deg ν := [Fν : Fq] and fix an inclusion Fν ⊂ Aν . Assume that we have a
section s : S → C which factors through Spf Aν , that is, the image in OS of a
uniformizer of Aν is locally nilpotent. In this case we have

(5.1) D̂ν ×̂Fq
S ∼=

∐

ℓ∈Z/(deg ν)

V(aν,ℓ) ∼=
∐

ℓ∈Z/(deg ν)

D̂ν,S ,

where D̂ν,S := D̂ν ×̂Fν
S and where V(aν,ℓ) denotes the component identified by

the ideal aν,ℓ = 〈a⊗ 1− 1⊗ s∗(a)q
ℓ

: a ∈ Fν〉. Note that σ cyclically permutes
these components and thus the Fν-Frobenius σ

deg ν =: σ̂ leaves each of the
components V(aν,ℓ) stable. Also note that there are canonical isomorphisms

V(aν,ℓ) ∼= D̂ν,S for all ℓ.

Although we will not need it in the sequel, we note the following interpre-
tation of the component V(aν,0).

Lemma 5.3. The section s : S → C induces an isomorphism of the component

V(aν,0) with the formal completion ĈS

Γs

of CS along the graph Γs of s. In

particular ĈS

Γs

is canonically isomorphic to D̂ν,S .

Proof. We first consider the formal completion ĈAν

Γs̃ of CAν
along the graph

Γs̃ of the morphism s̃ : SpecAν → C. Let SpecA ⊂ C be a neighborhood
of ν such that a uniformizing parameter z of C at ν lies in A. Then Γs̃
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is defined by the ideal I = (a ⊗ 1 − 1 ⊗ a : a ∈ A) ⊂ A ⊗Fq
Aν , and we

obtain ĈAν

Γs̃ = Spf lim
←−

(A ⊗Fq
Aν)/I

n. The module I/I2 is free of rank one

over Aν = (A ⊗Fq
Aν)/I since C is a smooth curve over Fq. We claim that

I/I2 is generated by z ⊗ 1 − 1 ⊗ z. Let a ∈ A, let m ∈ Fq(z)[X ] be the
minimal polynomial of a over Fq(z), and multiply it with the least common
denominator to obtain the polynomial F (X, z) ∈ Fq[X, z]. Note that the least
common denominator lies in O×

C,ν because a is integral over Fq[z] near ν. In

A⊗Fq
Aν [X ] we use the abbreviations ζ := 1⊗z and α := 1⊗a and we consider

the two-variable Taylor expansion of F at (α, ζ)

F (X, z ⊗ 1) ≡ F (α, ζ) + ∂F
∂X (α, ζ) · (X − α) + ∂F

∂z (α, ζ) · (z ⊗ 1− ζ) mod I2.

Plugging in a⊗ 1 for X yields F (a⊗ 1, z ⊗ 1) = 0 in addition to F (α, ζ) = 0.
Since A is unramified over Fq[z] at ν we have ∂F

∂X (α, ζ) ∈ A×

ν . This shows that

z ⊗ 1− 1⊗ z generates the Aν-module I/I2.
By Nakayama’s Lemma [14, Cor. 4.7] there is an element f ∈ 1 + I that

annihilates the A⊗Fq
Aν -module I/(z⊗1−1⊗z). We may replace the scheme

Spec(A⊗Fq
Aν) by the principal open subset Spec(A⊗Fq

Aν)[
1
f ] which contains

the graph Γs̃ and on which I is generated by the nonzero divisor z⊗ 1− 1⊗ z.
This implies that In/In+1 is a free Aν -module with generator (z⊗ 1− 1⊗ z)n.
Therefore the morphism Aν [[t]] → lim

←−
(A⊗Fq

Aν)/I
n, t 7→ z⊗1−1⊗z induces an

isomorphism on the associated graded rings, and hence is itself an isomorphism
by [3, Lemma 10.23].

Now observe that V(aν,0) is the formal scheme on the topological space S
with structure sheaf OS [[z]], and that s identifies the topological spaces S and

Γs. Under base change to S this implies that the formal completion ĈS

Γs

has
structure sheaf OS [[t]] = OS [[z− ζ]], where we write t = z− ζ. Since ζ is locally
nilpotent in OS , the latter is isomorphic to OS [[z]] proving the lemma. �

Definition 5.4. Fix a tuple ν := (νi)i=1...n of places on C with νi 6= νj
for i 6= j. Let Aν be the completion of the local ring OCn,ν of Cn at the
closed point ν, and let Fν be the residue field of the point ν. Then Fν is the

compositum of the fields Fνi inside F
alg
q , and Aν

∼= Fν [[ζ1, . . . , ζn]] where ζi is a
uniformizing parameter of C at νi. Let the stack

∇nH
1(C,G)ν := ∇nH

1(C,G) ×̂Cn Spf Aν

be the formal completion of the stack∇nH 1(C,G) along ν ∈ Cn. Although we
will not need it in this article, the reader should note that ∇nH 1(C,G) is an
ind-algebraic stack over Spf Aν which is ind-separated and locally of ind-finite

type by [2, Thm. 3.15]. We set Pνi := G×C SpecAνi and P̂νi := G×C Spf Aνi .
Let (G, s1, . . . , sn, τ) ∈ ∇nH 1(C,G)ν (S), that is, si : S → C factors

through Spf Aνi . By Remark 5.2 we may decompose

G ×̂CS
(Spf Aνi ×̂Fq

S) ∼=
∐

ℓ∈Z/(deg νi)

G ×̂CS
V(aνi,ℓ)
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into a finite product with components G ×̂CS
V(aνi,ℓ) ∈ H 1(D̂νi , P̂νi). Using

Proposition 2.4 we view
(
G ×̂CS

V(aνi,0), τ
deg νi

)
as a local Pνi-shtuka over S,

where τdeg νi : (σdeg νi)∗Li
∼−−→ Li is the Fνi-Frobenius on the loop group

torsor Li associated with G ×̂CS
V(aνi,0). We define the global-local functor Γ̂

by

Γ̂νi : ∇nH
1(C,G)ν (S) −→ Sht

SpecAνi

Pνi
(S),

(G, τ) 7−→
(
G ×̂CS

V(aνi,0), τ
deg νi

)
,

Γ̂ :=
∏

i

Γ̂νi : ∇nH
1(C,G)ν (S) −→

∏

i

Sht
SpecAνi

Pνi
(S).(5.2)

Note that Γ̂νi and Γ̂ also transform quasi-isogenies into quasi-isogenies, as can
be seen by tracing through the proof of Lemma 5.1.

Remark 5.5. Consider the preimages in V(aνi,ℓ) of the graphs Γsj ⊂ CS of
sj . Since νi 6= νj for i 6= j the preimage of Γsj is empty for j 6= i. Also the
preimage of Γsi equals V(aνi,0) and does not meet V(aνi,ℓ) for ℓ 6= 0. Thus for
ℓ 6= 0 the restriction of τ to V(aνi,ℓ) is an isomorphism
(5.3)

τ × id : σ∗
(
G ×̂CS

V(aνi,ℓ−1)
)
= (σ∗G) ×̂CS

V(aνi,ℓ)
∼−−→ G ×̂CS

V(aνi,ℓ).

This allows to recover (G, τ) ×̂CS
(Spf Aνi ×̂Fq

S) from
(
G ×̂CS

V(aνi,0), τ
deg νi

)

via the isomorphism

(5.4)
∏

ℓ

(τ ℓ ×̂ id) :

(∏

ℓ

σℓ∗
(
G ×̂CS

V(aνi,0)
)
,




0 τdeg νi

1

1 0



)

∼−−→ (G, τ) ×̂CS
(Spf Aνi ×̂Fq

S).

Recall from the beginning of this chapter that the Weil restriction ResFνi
/Fq

Ĝνi

of the torsor Ĝνi := G ×̂CS
(Spf Aνi ×̂Fq

S) corresponds by Proposition 2.4 to an

L+P̃νi-torsor L
+
νi(G). Then (L+

νi(G), τ ×̂ id) is a local P̃νi-shtuka over S. We

call it the local P̃νi-shtuka associated with G at the place νi. By equation (5.4)
there is an equivalence between the category of local Pνi-shtukas over schemes

S ∈ NilpAνi
and the category of local P̃νi -shtukas over S for which the Frobe-

nius τ is an isomorphism outside V(aνi,0). (Compare also [7, Prop. 8.8].)

Remark 5.6. Note that in a similar way one can associate a local P̃ν-shtuka
L+
ν (G) with a global G-shtuka G = (G, τ) at a place ν outside the char-

acteristic places νi. Namely L+
ν (G) is the local P̃ν-shtuka associated with

ResFν/Fq

(
G ×̂CS

(Spf Aν ×̂Fq
S)
)
by Proposition 2.4. It is étale because τ is an

isomorphism at ν. We call L+
ν (G) the étale local P̃ν-shtuka associated with G

at the place ν /∈ ν. In [2, Chap. 6] it will become useful for considerations of
Tate-modules (Definition 3.5).
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For this purpose writeAν
∼= Fν [[z]]. For every representation ρ : Pν → GLr,Aν

in RepAν
Pν we consider the representation ρ̃ ∈ RepFq[[z]] P̃ν which is the com-

position of ResFν/Fq
(ρ) : P̃ν → ResFν/Fq

GLr,Aν
followed by the natural in-

clusion ResFν/Fq
GLr,Aν

⊂ GLr·[Fν:Fq],Fq[[z]]. We set L̃ = L+
ν (G) and define

ŤL̃(ρ) := ŤL̃(ρ̃) := Ťρ̃∗L̃
. Then there is a canonical isomorphism of Aν -modules

ŤL̃(ρ) ∼= lim
←−
n

ρ∗
(
G ×C SpecAν/(ν

n)
)τ
. This will be used in [2, Chap. 6].

If Fν ⊂ OS there also exists the decomposition (5.1) and we can associate a
local Pν-shtuka L with L+

ν (G). The main difference to Definition 5.4 and Re-
mark 5.5 is that there is no distinguished component of G ×̂CS

(Spf Aν ×̂Fq
S),

like the one given by the characteristic section at νi. But τ induces isomor-
phisms between all components as in (5.3). Therefore we may take any com-
ponent and the associated local Pν-shtuka L. Equation (5.4) shows that over

Fν-schemes S we obtain an equivalence between the category of étale local P̃ν-
shtukas and the category of étale local Pν-shtukas. If Pν = G×C Dν is smooth

with connected special fiber, the same is true for P̃ν by [10, Prop. A.5.9], and

Corollary 2.9 applies also to étale local P̃ν -shtukas. There is also a canonical
isomorphism of Tate functors ŤL = ŤL+

ν (G); compare [7, Prop. 8.5] for more

details.

Like abelian varieties also global G-shtukas can be pulled back along quasi-
isogenies of their associated local P-shtukas as follows.

Proposition 5.7. Let G ∈ ∇nH 1(C,G)ν(S) be a global G-shtuka over S and

let ν ∈ C be a place. Let L+
ν (G) be the local P̃ν-shtuka associated with G at

ν in the sense of Remark 5.5 (if ν ∈ ν), respectively Remark 5.6 (if ν /∈ ν).

Let f̃ : L̃′ν → L+
ν (G) be a quasi-isogeny of local P̃ν-shtukas over S. If ν ∈ ν

we assume that the Frobenius of L̃′ν is an isomorphism outside V(aν,0). If

ν /∈ ν we assume that L̃′ν is étale. Then there exists a unique global G-shtuka
G′ ∈ ∇nH 1(C,G)ν (S) and a unique quasi-isogeny g : G′ → G which is an

isomorphism outside ν, such that the local P̃ν-shtuka associated with G′ is L̃′ν
and the quasi-isogeny of local P̃ν-shtukas induced by g is f̃ . We denote G′ by
f̃∗G.

Remark 5.8. Note that if ν ∈ ν then by Remark 5.5 there is an equivalence

between the category of local P̃ν-shtukas over S for which the Frobenius τ is an
isomorphism outside V(aν,0) and the category of local Pν -shtukas over S. In

particular, if Γ̂ν(G) is the local Pν-shtuka associated with G in Definition 5.4,

then every isogeny f : L′ν → Γ̂ν(G) corresponds under this equivalence to

an isogeny f̃ : L̃′ν → L+
ν (G) as in the proposition. We obtain a global G-

shtuka f̃∗G which we also denote by f∗G. It satisfies Γ̂ν(f
∗G) = L′ν and

Γ̂ν(g : f∗G → G) = f .
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Proof of Proposition 5.7. Let us set G := (G, τ). Let (Ġ, L+
ν (G), ϕ) be the

triple for the place ν associated with the G-torsor G by Lemma 5.1. Thus

L+
ν (G) = (L+

ν (G), τ). We also set L̃′ν = (L̃′ν , τ ′). Now the triple (Ġ,L̃′ν , f̃−1ϕ)
defines a G-bundle G′ over CS which coincides with G over C′S and inherits
the Frobenius automorphism τ from G over C′S r

⋃
i Γsi . If ν /∈ ν then this τ

extends to an isomorphism over {ν} ×Fq
S because L̃′ν is étale. If ν ∈ ν then

τ extends to an isomorphism over CS r
⋃

i Γsi because τ ′ is an isomorphism
outside V(aν,0). This defines the global G-shtuka G′ ∈ ∇nH 1(C,G)ν(S). The

quasi-isogeny g is obtained from the identification Ġ′ = Ġ. It has the desired
properties. �

Finally we want to prove rigidity for quasi-isogenies of global G-shtukas.
This is the global counterpart of Proposition 2.11 and fits into the analogy
between abelian varieties and global G-shtukas. It only holds over schemes
S ∈ NilpAν

, similarly to rigidity for abelian varieties which only holds over

schemes S ∈ NilpZp
.

Proposition 5.9. (Rigidity of quasi-isogenies for global G-shtukas) Let S be
a scheme in NilpAν

and let j : S̄ → S be a closed immersion defined by a sheaf

of ideals I which is locally nilpotent. Let G = (G, τ) and G′ = (G′, τ ′) be two
global G-shtukas over S. Then

QIsogS(G,G′) −→ QIsogS̄(j
∗G, j∗G′), f 7→ j∗f

is a bijection of sets. f is an isomorphism at a place ν /∈ ν if and only if j∗f
is an isomorphism at ν.

Note that the last assertion need not be true for places ν ∈ ν. This is similar
to lifts of quasi-isogenies between abelian varieties over schemes S ∈ NilpZp

which can acquire additional “poles” at p.

Proof of Proposition 5.9. It suffices to treat the case where Iq = (0). In this
case the morphism σS factors through j : S̄ → S

σS = j ◦ σ′ : S σ′

−−→ S̄
j−−→ S.

Since CS r ∪iΓsi ⊃ CS r ν ×Fq
S, the morphism τ defines a quasi-isogeny

τ : σ′∗j∗G = σ∗SG → G which is an isomorphism outside ν ×Fq
S and similarly

for G′. We fix a finite closed subset D ⊂ C which contains all νi and consider
quasi-isogenies which are isomorphisms outside D. Then the following diagram

G|CSrDS
G′|CSrDS

σ∗SG|CSrDS
σ∗SG′|CSrDS

f

∼=

τ ∼=

σ′∗(j∗f)

∼=

τ ′ ∼=

allows to recover f from j∗f and this proves the bijectivity.
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If ν /∈ ν we take a subset D ⊂ C which does not contain ν. Chasing through
the diagram again shows that f is an isomorphism at ν if and only if j∗f is an
isomorphism at ν. �

The analog of the Serre–Tate theorem. The Serre–Tate theorem relates
the deformation theory of an abelian variety in characteristic p with the defor-
mation theory of the associated p-divisible group. In this section we introduce
the analogous situation over function fields and prove the analogous theorem
relating the deformation theory of a global G-shtuka to the deformation theory
of the associated n-tuple of local Pνi -shtukas via the global-local functor.

Let S ∈ NilpAν
and let j : S̄ → S be a closed subscheme defined by a locally

nilpotent sheaf of ideals I. Let Ḡ be a global G-shtuka in ∇nH 1(C,G)ν (S̄).

The categoryDefoS(Ḡ) of lifts of Ḡ to S consists of all pairs (G, α : j∗G ∼−−→ Ḡ)
where G belongs to ∇nH 1(C,G)ν(S), where α is an isomorphism of global G-
shtukas over S̄, and where morphisms are isomorphisms between the G’s that
are compatible with the α’s.

Similarly for a local P-shtuka L̄ in ShtDP (S̄) we define the category of lifts
DefoS(L̄) of L̄ to S. Notice that according to the rigidity of quasi-isogenies
(Propositions 5.9 and 2.11) all Hom-sets in these categories contain at most
one element.

Theorem 5.10. Let Ḡ := (Ḡ, τ̄ ) be a global G-shtuka in ∇nH 1(C,G)ν (S̄).

Let (L̄i)i = Γ̂(Ḡ). Then the functor

DefoS(Ḡ) −→
∏

i

DefoS(L̄i),
(
G, α) 7−→ (Γ̂(G), Γ̂(α)

)

induced by the global-local functor, is an equivalence of categories.

Proof. We proceed by constructing the inverse of the above functor. It suffices
to treat the case where Iq = (0). In this case the morphism σS factors through
j : S̄ → S

σS = j ◦ σ′ : S σ′

−−→ S̄
j−−→ S.

Let (Li, α̂i : j∗Li
∼−−→ L̄i)i be an object of

∏
iDefoS(L̄i). We consider the

global G-shtuka G̃ := (G̃, τ̃ ) := σ′∗Ḡ over S. Since CS r∪iΓsi ⊃ CS r ν ×Fq
S,

the morphism τ̄ defines a quasi-isogeny τ̄ : j∗G̃ → Ḡ which is an isomorphism
outside the graphs of the characteristic sections as one sees from the following
diagram

σ∗Sj
∗G̃

(
σ2
S

)∗Ḡ σ∗SḠ

j∗G̃ σ∗SḠ Ḡ.

j∗ τ̃

σ∗

S τ̄

σ∗

S τ̄ τ̄

τ̄

We write Γ̂(G̃) = (L̃i)i and L̄i = (L̄i, ˆ̄τi). We compose ˆ̄τi
−1

with α̂i to obtain

quasi-isogenies ˆ̄γi := ˆ̄τi
−1 ◦ α̂i : j∗Li → j∗L̃i. By rigidity of quasi-isogenies

(Proposition 2.11) they lift to quasi-isogenies γ̂i : Li → L̃i with j
∗γ̂i = ˆ̄γi. We
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put G := γ̂∗n ◦ . . .◦ γ̂∗1 G̃ (see Remark 5.8) and recall that there is a quasi-isogeny

γ : G → G̃ of global G-shtukas with Γ̂(γ) = (γ̂i)i which is an isomorphism
outside ν, see Proposition 5.7. We may now define the functor

∏

i

DefoS(L̄i) → Defo(Ḡ)

by sending (Li, α̂i : j
∗Li → L̄i)i to (G, τ̄◦j∗γ). The quasi-isogeny α := τ̄◦j∗γ is

an isomorphism outside the graphs of the si by construction, and also at these

graphs because Γ̂(α) = (α̂i)i. It can easily be seen by the above construction
that these functors are actually inverse to each other. �
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20, 24, 28, 32, Bures-Sur-Yvette, 1960–1967; see also Grundlehren 166, Springer-
Verlag, Berlin etc. 1971.

[18] A. Grothendieck: Revêtements étales et groupe fondamental, LNM 224, Springer-
Verlag, Berlin-Heidelberg 1971.

[19] T. Haines and M. Rapoport: On parahoric subgroups, appendix to [39].
[20] U. Hartl, Uniformizing the stacks of abelian sheaves, in Number fields and function

fields—two parallel worlds, 167–222, Progr. Math., 239, Birkhäuser, Boston, Boston,
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