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A combinatorial model for

tame frieze patterns
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(Communicated by Linus Kramer)

Abstract. Let R be an arbitrary subset of a commutative ring. We introduce a combi-
natorial model for the set of tame frieze patterns with entries in R based on a notion of
irreducibility of frieze patterns. When R is a ring, then a frieze pattern is reducible if and
only if it contains an entry (not on the border) which is 1 or −1. To my knowledge, this
model generalizes simultaneously all previously presented models for tame frieze patterns
bounded by 0s and 1s.

1. Introduction

Conway and Coxeter [1] introduced a combinatorial model for the so-called
‘frieze patterns’, which are bounded arrays of numbers in which any adjacent
2× 2 matrix has determinant 1. Their patterns, consisting entirely of positive
numbers within the frieze, are in one-to-one correspondence to triangulations
of a convex polygon by non-intersecting diagonals, for example (the numbers
of triangles at each vertex are the entries in the third diagonal):

0 1 1 3 2 1 1 0
0 1 4 3 2 3 1 0

0 1 1 1 2 1 1 0
0 1 2 5 3 4 1 0

0 1 3 2 3 1 1 0
0 1 1 2 1 2 1 0

0 1 3 2 5 3 1 0

4

1

3

1

32

1

This gives a connection between specializations of the variables of cluster
algebras of type A to positive integers on one side (see, for example, [3]), and
Catalan combinatorics on the other side.
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Since then, many generalizations of these concepts were considered (see [7]
for a survey). In the present note, for each set R of numbers, we present a
combinatorial model which is associated to the set of tame frieze patterns with
entries in this set R. Hence, we generalize the above connection to arbitrary
specializations of the variables in the cluster algebras of type A.
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Figure 1. (a, 0,−a, 0)⊕ (−1,−1,−1) = (a− 1, 0,−a,−1,−1).

To this end, we introduce a notion of irreducibility of frieze patterns, Defi-
nition 2.9. Every frieze pattern has a (not necessarily unique) decomposition
into irreducible frieze patterns. In the combinatorial model, irreducible pat-
terns become polygons that may be glued together to produce arbitrary frieze
patterns (see, for example, Figure 1). This gluing of friezes was presented first
in [4, Lem. 3.2] using a different terminology.

The problem of understanding this type of combinatorics for a given set R
thus reduces to the problem of classifying the irreducible patterns. It turns
out that a frieze pattern is reducible over a ring R if and only if it contains an
entry (not on the border) which is 1 or −1 (see Lemma 2.13).

2. Quiddity cycles

Definition 2.1. For c in a commutative ring, let

η(c) :=

(
c −1
1 0

)

.

Definition 2.2. Let R be a subset of a commutative ring and λ ∈ {±1}. A
λ-quiddity cycle1 over R is a sequence (c1, . . . , cm) ∈ Rm satisfying

(1)
m∏

k=1

η(ck) =

(
λ 0
0 λ

)

= λ id.

A (−1)-quiddity cycle is called a quiddity cycle for short.

1Notice that the case R = N>0 was also recently considered in [8].
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Remark 2.3. We agree that m > 0 in Definition 2.2. In fact, m > 1 by
Definition 2.1.

Example 2.4. Consider the commutative ring C and R = C.

(1) (0, 0) is the only λ-quiddity cycle of length 2.
(2) (1, 1, 1) and (−1,−1,−1) are the only λ-quiddity cycles of length 3.
(3) (t, 2/t, t, 2/t), t a unit, and (a, 0,−a, 0), a arbitrary, are the only λ-

quiddity cycles of length 4.

Definition 2.5. Let Dn be the dihedral group with 2n elements acting on
{1, . . . , n}. If c = (c1, . . . , cn) is a λ-quiddity cycle, then we write

cσ := (c1, . . . , cn)
σ := (cσ(1), . . . , cσ(n))

for σ ∈ Dn.

Proposition 2.6. Let c = (c1, . . . , cm) be a λ-quiddity cycle. Then for any

σ ∈ Dn, the cycle cσ is a λ-quiddity cycle as well.

Proof. Since the matrix λ id commutes with every matrix, rotating this cycle
is again a λ-quiddity cycle. Reversing a λ-quiddity cycle is also a λ-quiddity
cycle, see, for example, [2, Prop. 5.3 (3)]. �

When thinking about a λ-quiddity cycle c, in general, we do not care which
element in Dn · c we consider. In the following lemma however, we have to be
careful. We introduce a sum of λ-quiddity cycles which is not invariant under
the action of the dihedral group. Note that this “gluing” of frieze patterns was
already described in [4, Lem. 3.2] for real entries and that other variants were
proposed, for instance, in [5, Section 3] for 2-friezes.

Lemma 2.7. Let (a1, . . . , ak) be a λ′-quiddity cycle and (b1, . . . , bℓ) be a λ′′-

quiddity cycle. Then

(a1 + bℓ, a2, . . . , ak−1, ak + b1, b2, . . . , bℓ−1)

is a (−λ′λ′′)-quiddity cycle of length k + ℓ− 2 which we call the sum:

(a1, . . . , ak)⊕ (b1, . . . , bℓ) := (a1 + bℓ, a2, . . . , ak−1, ak + b1, b2, . . . , bℓ−1).

Proof. We use the identities η(a+ b) = −η(a)η(0)η(b) and η(0)2 = −id (which
are easy to check, see also [3, Lem. 4.1]):

η(a1 + bℓ)η(a2) · · · η(ak−1)η(ak + b1)η(b2) · · · η(bℓ−1)

= η(bℓ)η(0)η(a1)η(a2) · · · η(ak−1)η(ak)η(0)η(b1)η(b2) · · · η(bℓ−1)

= λ′η(bℓ)η(0)η(0)η(b1)η(b2) · · · η(bℓ−1)

= −λ′η(bℓ)η(b1)η(b2) · · · η(bℓ−1) = −λ′λ′′ id. �

Example 2.8. (1) If (a1, . . . , am) is a quiddity cycle, then

(a1, . . . , am)⊕ (0, 0) = (a1, . . . , am).

(2) For a ∈ C, (a, 0,−a, 0) and (−1,−1,−1) are 1-quiddity cycles, their
sum is (a−1, 0,−a,−1,−1) and it is a quiddity cycle (see also Figure 1).
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The following are the central notions of reducibility and irreducibility of
quiddity cycles mentioned in the introduction.

Definition 2.9. Let R be a subset of a commutative ring. A λ-quiddity cycle
(c1, . . . , cm) ∈ Rm, m > 2, is called reducible over R if there exist a λ′-quiddity
cycle (a1, . . . , ak) ∈ Rk, a λ′′-quiddity cycle (b1, . . . , bℓ) ∈ Rℓ, and σ ∈ Dm

such that λ = −λ′λ′′, k, ℓ > 2 and

(c1, . . . , cm)σ = (a1 + bℓ, a2, . . . , ak−1, ak + b1, b2, . . . , bℓ−1)

= (a1, . . . , ak)⊕ (b1, . . . , bℓ).

A λ-quiddity cycle of length m > 2 is called irreducible over R if it is not
reducible.

Remark 2.10. There is no need to consider the cycle of length m < 3 (which
is (0, 0)) in Definition 2.9.

Definition 2.11. Consider a λ-quiddity cycle c = (c1, . . . , cm) and define ck
for all k ∈ Z by repeating c periodically. For i, j ∈ Z, let

xi,j :=

( j−2
∏

k=i

η(ck)

)

1,1

if i ≤ j − 2,

xi,i+1 := 1, and xi,i := 0. Notice that xi,i+2 = ci. Then we call the array
F = (xi,j)i≤j≤i+m the frieze pattern of c. The entries of the frieze pattern
of c are the numbers xi,j with i + 2 ≤ j ≤ i +m − 2. We say that the frieze
pattern of c is reducible (resp. irreducible) if c is reducible (resp. irreducible).

Remark 2.12. (a) If c is a quiddity cycle, then we obtain what we usually
call the frieze pattern. In fact, in this way we exactly obtain all tame frieze
patterns, i.e., those for which every adjacent 3× 3 determinant is zero (see for
example [3, Prop. 2.4]). In the original definition, Coxeter assumes that all
entries in the frieze are positive in which case the frieze is automatically tame.
Starting with a 1-quiddity cycle, one obtains a frieze pattern with 1s on one
border and −1s on the other border, i.e., xi,i+m−1 = −1 for all i.

(b) The entries xi,j of a frieze pattern are specialized cluster variables of a
cluster algebra of Dynkin type A (see, for example, [3, Section 5]).

(c) Notice that if c is a λ-quiddity cycle over R, then its frieze pattern may
have entries which are not in R. It is an interesting question to determine
the set of entries of frieze patterns of λ-quiddity cycles for a fixed set R. For
example, if R is a ring then all entries in the frieze patterns are in R.

The following lemma explains the appearance of 1s and −1s in friezes. Some
similar statement is contained implicitly for the case R = N>0 in [6, Cor. 1.11]
for Coxeter friezes.

Lemma 2.13. Let R be a commutative ring. A λ-quiddity cycle is reducible

over R if and only if the corresponding tame frieze pattern contains an entry

1 or −1.
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Proof. Reducibility requires that the length m of the cycle is at least 4; since
there are no entries in a frieze pattern with λ-quiddity cycle of length less
than 4, we may assume m ≥ 4.

Assume first the existence of an entry ε = ±1, i.e., without loss of generality
(rotating the cycle if necessary), there are i, j ∈ {1, . . . ,m}, with i < j − 1,
j − i < m − 1, and M1,1 = ε for M =

∏j−2
k=i η(ck). Since det(M) = 1, with

a := εM2,1, b := −εM1,2, we have

M =

(
ε −εb
εa −εab+ ε

)

= −ε

(
−1 b
−a ab− 1

)

= −εη(a)−1η(b)−1.

We obtain

η(a)

( j−2
∏

k=i

η(ck)

)

η(b) = −ε id,

so (a, ci, . . . , cj−2, b) is a (−ε)-quiddity cycle. Because the cycle is a λ-quiddity
cycle we also get (

∏m

k=j−1 η(ck))(
∏i−1

k=1 η(ck)) = −λεη(b)η(a), which implies

η(cj−1 − b)

( m∏

k=j

η(ck)

)( i−2∏

k=1

η(ck)

)

η(ci−1 − a)

= (−1)2η(−b)η(0)

( m∏

k=j−1

η(ck)

)( i−1∏

k=1

η(ck)

)

η(0)η(−a)

= −λεη(−b)η(0)η(b)η(a)η(0)η(−a) = −λεη(0)2 = λε id,

and thus (cj−1 − b, cj, . . . , cm, c1, . . . , ci−2, ci−1 − a) is a (λε)-quiddity cycle of
length m− j + i+ 1 ≥ 3, since j − i < m− 1; thus, the cycle is reducible:

(ci−1, . . . , cm, c1, . . . , ci−2)(2)

= (a, ci, . . . , cj−2, b)⊕ (cj−1 − b, cj, . . . , cm, c1, . . . , ci−2, ci−1 − a).

For the converse, assume that we have a decomposition into a sum as in Equa-
tion 2 for some i, j with i < j − 2. Then the same argument as above shows
(
∏j−2

k=i η(ck))1,1 ∈ {±1}, which gives an entry ±1 in the pattern. �

3. Examples of subsets

Some classifications of irreducible λ-quiddity cycles are already known. For
example, every quiddity cycle over N>0 contains a 1. Thus, any quiddity cycle
over N>0 of length greater than 3 has a summand (1, 1, 1) (cf. [1]), although
the other summand only has positive entries if the original frieze pattern has
no entry zero. In general, the following theorem holds.

Theorem 3.1. The only irreducible λ-quiddity cycles over Z≥0 are (0, 0, 0, 0)
and (1, 1, 1).

Proof. Let c = (c1, . . . , cm) ∈ Zm
≥0, m > 2, be a λ-quiddity cycle.
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If ci > 0 for all i, then, by [3, Cor. 3.3], there exists a j ∈ {1, . . . ,m} with
cj = 1; without loss of generality, j = 2. But then c = (1, 1, 1) ⊕ c′, where
c′ = (c3 − 1, c4, . . . , cm, c1 − 1) ∈ Z

m−1
≥0 .

Otherwise, there are zeros in c. If c contains two adjacent zeros, say c2 =
c3 = 0, then c = (0, 0, 0, 0)⊕ c′, where c′ = (c4, . . . , cm, c1) ∈ Z

m−2
≥0 .

The last case is when there are zeros, but none of them has an adjacent zero.
Notice first that since η(a)η(0)η(b) = −η(a+ b) for all a, b (cf. [3, Lem. 4.1]),
if (c1, 0, c3, . . . , cm) is a λ-quiddity cycle, then (c1 + c3, . . . , cm) is a (−λ)-
quiddity cycle. Applying this transformation to all zeros simultaneously yields
a λ-quiddity cycle c′′ in which only the entries coming from c which were
not adjacent to a zero may be ≤ 1. But, by [3, Cor. 3.3], there exists an
entry ≤ 1 in c′′, so we find a 1 in c which has nonzero adjacent entries, hence
cσ = (1, 1, 1)⊕ c′ for some c′ ∈ Z

m−1
≥0 and σ ∈ Dm as in the first case. �

If we allow entries in the set of all integers, the situation is slightly more
complicated.

Theorem 3.2 ([3, Thm. 6.2]). The set of irreducible λ-quiddity cycles over Z

is
{
(1, 1, 1), (−1,−1,−1), (a, 0,−a, 0), (0, a, 0,−a) | a ∈ Z \ {±1}

}
.

Proposition 3.3. Let k ∈ N>0 and i =
√
−1. Then

c =
(
2i,−i + 1, 2, . . . , 2

︸ ︷︷ ︸

2k-times

, i + 1,−2i, i− 1,−2, . . . ,−2
︸ ︷︷ ︸

2k-times

,−i− 1
)

is an irreducible quiddity cycle over Z[i].

Proof. Notice first that

η(2)ℓ =

(
ℓ+ 1 −ℓ
ℓ 1− ℓ

)

, η(−2)ℓ = (−1)ℓ
(
ℓ+ 1 ℓ
−ℓ 1− ℓ

)

for ℓ ∈ N>0. It is then easy to check that c is a quiddity cycle. Further, using
the same identities, we can compute each type of entry in the frieze pattern.
We compute x1,2k+5 as an example:

2k+3∏

i=1

η(ci) = η(2i)η(−i + 1)η(2)2kη(i + 1) =

(
2ik + i− 1 −2k − 2i− 1
2k + 1 2ik + i− 1

)

,

and thus x1,2k+5 = 2ik+ i− 1. It turns out that none of them is ±1 and hence
it is irreducible by Lemma 2.13. �

This immediately yields the following corollary.

Corollary 3.4. There are infinitely many irreducible λ-quiddity cycles over

the Gaussian numbers Z[i].
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4. Combinatorial model

Let (a1, . . . , ak) be a λ′-quiddity cycle and (b1, . . . , bℓ) be a λ′′-quiddity
cycle. If we represent these two cycles as polygons, then gluing them together
yields a larger polygon representing their sum, see Figure 2.

a1

a2

a3

ak

bℓ

b1

ak−1 b2
b3

bℓ−1

Figure 2. (a1, . . . , ak)⊕ (b1, . . . , bℓ).

We see the sum

(a1, . . . , ak)⊕ (b1, . . . , bℓ) =
(
a1 + bℓ, a2, . . . , ak−1, ak + b1, b2, . . . , bℓ−1

)

in the new polygon when adding the entries at the vertices which are glued
together.

Hence, the decomposition of a λ-quiddity cycle into a sum of irreducible
ones translates in a natural way into a polygon decomposed into building
blocks which correspond to some irreducible summands.

Since the only irreducible λ-quiddity cycles for R = N≥0 are (0, 0, 0, 0) and
(1, 1, 1), in this special case we recover the Catalan combinatorics originally
proposed by Conway and Coxeter. It is easy to prove that if the frieze pattern
of a λ-quiddity cycle c for R = N>0 has only positive entries, then c is a
sum of quiddity cycles (1, 1, 1). The (0, 0, 0, 0)-polygons are the parts that
glue classical Conway–Coxeter friezes together; they produce zeros within the
corresponding frieze pattern.

We close this note with a somewhat vague task.

Open Problem 4.1. Classify irreducible quiddity cycles for some of the most
interesting sets R ⊆ C.
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