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Introduction
To win war, you gotta become war.

(John J. Rambo)

One of the first questions in algebraic topology might be which data determine a
homology theory H∗ completely. One might conjecture that there exists a natural
equivalence of homology theories (restricted to CW-complexes)

ch∗ : H∗(?;H∗({•}))→ H∗(?),

where the left hand side is cellular homology. This turns out to be too ambitious, but
if H∗ has rational coefficients, it is a theorem of Dold [19]. A similar statement can
be made in the cohomological case.

For proper actions of discrete groups, Lück [29, 30] generalized this theorem to the
equivariant case. We give a brief survey of his work in Section 5.4. As input, we have
proper equivariant homology theories (1.5.8), and cellular homology is replaced by
Bredon homology (1.6.2). In this case, the coefficients are modules over the subgroup
category. This approach splits up into two parts. Lück constructed a natural map

c̃h
G

∗ : H∗(X?/CG?)⊗SubFIN (G) HG
∗ (G/?)→ H∗(X) (∗)

and then identified the left hand side with Bredon homology by showing the flatness
of HG

∗ (G/?) (provided a Mackey structure (1.5.10) exists). Similar considerations can
be made in the cohomological case.

The starting point of this thesis was the question if one can generalize this approach
to proper smooth actions of totally disconnected groups.

We can construct a similar map to (∗) using the orbit category

c̃h
G

∗ : H∗(X?)⊗OrCO(G) HG
∗ (G/?)→ H∗(X) (∗∗)

instead of the subgroup category even for topological groups. If G is unimodular
and the semigroups morOrCO(G)(G/H,G/H) are finite for any compact open subgroup
H ⊆ G and a Mackey structure exists, then the coefficient modules are flat (over
the orbit category) and we get the desired theorem. In special cases, e.g., the Borel
construction, we can weaken this assumption to locally finite. Note that passing to
the orbit category is a severe restriction and, consequently, this approach does not
apply to discrete groups in general. Indeed, even for p-adic Lie groups, there exist
examples (3.3.4, 4.3.2), where the coefficient module is flat viewed as a module over
the subgroup category but fails to be flat over the orbit category. It is even worse since
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Introduction

in Example 4.3.2 a Chern character does not exist at all. Therefore, we cannot use
the subgroup category but we must be satisfied with the orbit category. However, this
approach does work for semisimple p-adic groups. Hence the main theorem (4.1.7) of
this thesis is

Theorem. Let R be a semisimple commutative ring with Q ⊆ R. Let H?
∗ be an equi-

variant proper smooth homology theory with values in R-modules which has a Mackey
structure on coefficients. Let G be a semisimple p-adic group. Then there is an iso-
morphism of equivariant proper smooth homology theories

chG
∗ : BHG

∗ (X,A)→ HG
∗ (X,A)

which is natural in (X,A) and compatible with the boundary maps.

An analogous statement can be made for any topological group if we consider equi-
variant smooth coproper homology theories. As a corollary (4.1.8) we obtain

Theorem. Let G be a semisimple p-adic group. Then we get an isomorphism⊕
k∈Z

CHG
2k+n(βG) ∼= Kn(C∗rG)⊗ C,

where CHG
∗ denotes cosheaf homology and βG the affine Bruhat-Tits building.

In the cohomological case, the first part carries over directly. In the second part, we
have to prove injectivity instead of flatness, which turns out to be a more restrictive
condition. Basically, this means that a lim1-term comes into play, which has to vanish.
Unfortunately, this seems to happen very rarely. Even in very basic examples (3.3.8)
the derived limit does not vanish.

Meanwhile, Christian Voigt has constructed for l-groups a bivariant Chern character
for K-theory which we will discuss in Section 5.6.

The structure of this thesis is as follows. Chapter 1 introduces the basic terms. Along
the way, we discuss under which conditions the semigroup morOrCO(G)(G/H,G/H) is
a group, which turns out to be a necessary condition to apply the machinery in Chap-
ter 3. Furthermore, we establish some finiteness results for morOrCO(G)(G/H,G/K)
which are needed in Chapter 3, too. In Chapter 2, we introduce the Borel construc-
tion and equivariant K-theory. We prove that they yield equivariant (co)homology
theories and admit a Mackey structure on coefficients. In Chapter 3, we prove flatness
and injectivity results for modules over the orbit category and over the subgroup cat-
egory, respectively. This is denoted by the “second part” in the above discussion. In
Chapter 4, we construct the map (∗∗) and obtain the main results. In Chapter 5, we
compare our Chern character with several ones which were known before. It turns out
that all these constructions coincide if they exist.
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Conventions

Finally, we want to state some global conventions. Throughout this thesis we will
work in the category of compactly generated Hausdorff spaces (see [50] and [58, I.4]).
In particular, this implies that every topological group is Hausdorff and whenever we
consider a homogenous space G/H, the subgroup H ⊆ G is closed. Moreover, all rings
are assumed to be associative and to have a unit.
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1 The Basic Setup

In this chapter, we introduce the basic definitions and develop the basic tools which
will be needed in the sequel.

First, we introduce totally disconnected groups and discuss their basic properties.
Although they are not needed for our Chern character, they will appear in the last
chapter. Moreover, we will often deal with group actions which have compact open
isotropy groups. In many cases, totally disconnected groups provide such actions. In
the second section, we introduce the orbit category. This category appears naturally
in the study of G-CW-complexes for a group G. We develop some basic properties.
Furthermore, it will be important whether the endomorphism sets of the orbit category
are (locally) finite groups. This is discussed, too. In the third section, we introduce
modules over a category. In that section, the category might be arbitrary but the most
important example is given by the orbit category. In particular, modules over the orbit
category are the basic ingredient for the construction of a cellular homology theory
for G-CW-complexes, which is done in the sixth section. Before we come to the sixth
section, we introduce G-CW-complexes in Section 1.4. In the following section, we
introduce G-(co)homology theories and equivariant (co)homology theories. The latter
are the basic input for our Chern character. Finally, we construct cellular (co)homology
for G-CW-complexes, which is called Bredon (co)homology. As in the non-equivariant
case, Bredon (co)homology can be constructed for an arbitrary coefficient module M .
However, in this case the coefficient module is a module over the orbit category. If the
coefficient module provides some extra structure, we show that Bredon (co)homology
yields an equivariant (co)homology theory. In the last section, we introduce linear
algebraic p-adic groups, which are an important class of totally disconnected groups.
In particular, we show that the orbit category of a semisimple p-adic group has finite
morphism sets. Semisimple p-adic groups are important examples of linear algebraic
p-adic groups.

1.1 Totally Disconnected Groups

Definition 1.1.1. Let X be a topological space. Then X is totally disconnected if
each connected component consists only of a single point. An l-space is a locally com-
pact totally disconnected space. An l-group is a topological group whose underlying
topological space is an l-space.

Example 1.1.2. The following groups are l-groups:

(i) Discrete groups.
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1 The Basic Setup

(ii) Qp, Zp, GLn(Qp) and SLn(Qp), where p is a prime and n ∈ N.

(iii) Profinite groups, i.e., groups arising as limits limi∈I Gi with Gi finite. These
groups occur naturally as Galois groups Gal(L/K) for a Galois extension L/K
(see [27, p.51]).

Proposition 1.1.3. Let G be locally compact. Then the following are equivalent:

(i) G is totally disconnected (and hence an l-group);

(ii) G admits a basis of topology which consists of compact open subgroups.

Proof. The implication (i) ⇒ (ii) is done by Hewitt and Ross [21, Thm. 7.7].
Now we prove (ii)⇒ (i). Let x, y ∈ G be two distinct points and U ⊆ G be a subset

such that x, y ∈ U . By (ii) and the fact that G is Hausdorff, there exists an open
closed set x ∈ Ũx in G such that y ∈ Ũ c

x. Now we have a decomposition

U = (U ∩ Ũx)
∐

(U ∩ Ũ c
x)

into two disjoint open sets. Consequently, U cannot be connected.

Corollary 1.1.4. Let G be an l-group and H ⊆ G be a compact subgroup. Then there
exists a compact open subgroup H ⊆ K ⊆ G. In particular, every maximal compact
subgroup is open.

Proof. Let L be a compact open subgroup, which exists by the previous proposition.
Then there exist finitely many h1, . . . , hn such that

H ⊆
n⋃

i=1

hiL.

Now we define M :=
⋂n

i=1 hiLh
−1
i . We get hMh−1 = M for any h ∈ H, and M is a

compact open subgroup. Then K = MH is open. It is compact because M × H is
compact.

The subgroups of Proposition 1.1.3 need not be normal. In particular there exist
l-groups which do not have any compact open normal subgroup.

Example. Let F = (Z/2Z)2 o Z/2Z. We get the representation

F = 〈a, b, h|a2 = b2 = h2 = 1, ab = ba, ha = bh〉 .

Now let G be the group of all functions g : N→ F such that g(n) ∈ { 1, a } for all but
finitely many n. We equip G with the topology induced by the (compact) open sets

U(n, g) = { f ∈ G | f(m) = g(m) for m ≤ n, f(m) ∈ { 1, a } for m > n } .
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1.1 Totally Disconnected Groups

Then G is an l-group. Let H ⊆ G be an open normal subgroup. There exists an
integer n such that H contains U(n, 1). Since H is normal and hah−1 = b, it follows
that for each m > n there exists a gm ∈ H such that

gm(k) =

{
1, if k 6= m,
b, if k = m.

Hence H cannot be compact because gm /∈ U(m − 1, f) for any f ∈ F . Finally, G
contains no compact open normal subgroup.

Remark 1.1.5. Suppose we have an l-group G and an element g ∈ G which does
not normalize any compact open subgroup. Then Willis [59] showed that G contains
a closed subgroup which contains g and does not have any open compact normal
subgroup.

However, we have the following characterization [46, Lem. 1.3/5].

Proposition 1.1.6. Let G be locally compact. Then the following are equivalent:

(i) G is a limit of discrete groups, i.e., G = limi∈I Gi with Gi discrete;

(ii) G admits a basis of topology which consists of compact open normal subgroups.

These groups are called prodiscrete.

Proof. (i) ⇒ (ii): Let G = limi∈I Gi, pri : G → Gi the canonical projection and
ei ∈ Gi the unit element. Then {pr−1

i (ei) | i ∈ I } forms a basis of compact open
normal subgroups.

(ii) ⇒ (i): We set

N(G) = {N ⊆ G | N compact open normal }

and obtain a continuous map

pr∗ : G→ lim
N∈N(G)

G/N.

We have to show that pr∗ is open and bĳective. Since G is Hausdorff, pr∗ is injective.
To see that the map is surjective, pick an element (gNN)N ∈ limN∈N(G)G/N . Since⋂

N∈N(G) gNN can be interpreted as an inverse limit of non-empty compact Hausdorff
spaces, it is non-empty [44, Prop. 1.4]. Hence any element in the intersection can
serve as a preimage. Finally, any compact open normal subgroup H is mapped to the
intersection of limN∈N(G)G/N and the open set pr−1

G/H(1) ⊆
∏

N∈N(G)G/N . Hence H
is mapped to an open set, as required.

Remark 1.1.7. Any nilpotent compactly generated l-group is prodiscrete by a result
of Willis [60].
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1 The Basic Setup

Lemma 1.1.8. Let G be a compact l-group. Then G is profinite.

Proof. Let K ⊆ G be compact open. We set

H =
⋂

[g]∈K\G/K

gKg−1.

Since G is compact, the above index set is finite. Thus H ⊆ K is a compact open
normal subgroup. The compact open normal subgroups form a basis of the topology
of G, and we obtain, analogously to the previous proposition,

G = lim
N∈N(G)

G/N, where N(G) = {H ⊆ G | H compact open normal } ,

as required.

Prodiscrete groups need not be locally compact; there are easy counterexamples, e.g.,∏
Z Z. We have the following characterization of (second countable) locally compact

prodiscrete groups.

Lemma 1.1.9. Let G = limi∈I Gi be a second countable prodiscrete group. Then G
is locally compact if and only if the kernels of the structure maps are finite almost
everywhere.

Proof. Since G is second countable, we can consider I = N for simplicity (cf. Re-
mark 3.2.8). We denote the structure maps by d.

First, we assume that ker d is always finite. Then d−n(1) is finite, too. Therefore the
set (. . . , d−2(1), d−1(1), 1) is compact. However, the set is open by construction and
we get a compact open neighborhood of the unit element. Hence G is locally compact.

Now let ker d be infinite for infinitely many d. Since the sets

(. . . , d−2(1), d−1(1), 1, . . . , 1)

are a basis of topology and closed (open subgroups are closed), it suffices to show that
these sets are not compact. Let ker d be infinite and Fn ⊆ ker d be an exhaustive
properly increasing filtration of ker d. Then (. . . , d−2(Fn), d−1(Fn), Fn, 1, . . . , 1) is an
open cover of (. . . , d−3, d−2(1), d−1(1), 1, . . . , 1), which admits no finite subcover.

The great benefit of l-groups is the existence of Hecke algebras, which we will intro-
duce now.

Definition 1.1.10. Let G be an l-group and choose a Haar measure µ on G. Then
the Hecke algebra H(G,µ) is defined by

H(G,µ) = { f : G→ C | f locally constant and has compact support } ,

where the algebra structure is given by the convolution product:

(ϕ ∗ ψ)(γ) =
∫

G
ϕ(γg)ψ(g−1)dµ(g), γ ∈ G, ϕ, ψ ∈ H(G).

The choice of a different Haar measure ν leads to a Hecke algebra H(G, ν) which is
isomorphic to H(G,µ). This is why we will abbreviate H(G) := H(G,µ).
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1.2 The Orbit Category

The Hecke algebra H(G) shall be viewed as a generalization of the group ring in the
discrete case. In particular, we obtain [8, Thm. 2]:

Proposition 1.1.11. Let G be an l-group and let V be a (not necessarily finite dimen-
sional) C-vector space with a G-action. We call V a smooth G-module if the isotropy
groups

{ g ∈ G | gv = v }

are open in G for any v ∈ V . We get an isomorphism of categories

{ smooth G-modules } ←→ {M H(G)-module | H(G)M = M } .

1.2 The Orbit Category
We introduce and discuss the orbit category and the subgroup category, which will be
the basic objects of our theory. It will be important whether the endomorphism sets
of these categories are groups. This is discussed here, too.

In the following, let G be an arbitrary topological group.

Definition 1.2.1. A family of subgroups F is a set of closed subgroups of G which is
closed under conjugation and finite intersection. We do not demand that it be closed
under taking subgroups, which is often required in the literature. The family F is
called smooth if the subgroups are open in G.

Example 1.2.2. Let G be a topological group. Then the trivial family {1} and

CL = {H ⊆ G closed } COP = {H ⊆ G compact }
COC = {H ⊆ G | G/H compact } O = {H ⊆ G open }
CO = {H ⊆ G compact and open } I = {H ⊆ G open | G/H finite }

are families of subgroups, the last three ones beeing smooth.
In this section, let F be a smooth family of subgroups.

Remark 1.2.3. We restrict our interest to open subgroups because we want to avoid
topological issues concerning the orbit category. Furthermore, there are some issues
with K-theory, which will be discussed in the next chapter.

Let H ⊆ G be a subgroup of finite index. Then H is open if and only if it is closed.
This is quite clear because the complement of H can be described by

G \H =
⋃

[g]∈G/H
[g] 6=[1]

gH.

This is a finite union and hence the complement is open or closed, respectively, when-
ever H is. On the other hand, there exist examples of subgroups of finite index which
are not closed (and open). Even in the case of a profinite group G we can give an
example.

13



1 The Basic Setup

Before we do so, however, we must introduce ultrafilters. Let S be a non-empty set
and U ⊆ P(S) be a subset, where P(S) denotes the power set of S. We call U a filter
if

(i) ∅ /∈ U ,

(ii) A,B ∈ U implies A ∩B ∈ U ,

(iii) A ∈ U and A ⊆ B ⊆ S implies B ∈ U .

A filter U is called ultrafilter if for any A ⊆ S either A ∈ U or S \A ∈ U holds. Every
filter U is contained in an ultrafilter U ⊆ U ′ by Zorn’s lemma. Now we can present
the example mentioned above:

Example 1.2.4. Let K be a finite group and G =
∏

ZK. Let U be an ultrafilter of Z
containing the filter of all cofinite subsets of Z. We define H by

H = { (hn)n∈Z ∈ G | {n ∈ Z | hn = 1 } ∈ U } .

Clearly, H is a proper normal subgroup of G. Moreover, it is dense in G because
U contains all cofinite subsets of Z. Hence H is not open. It remains to show [G :
H] = |K|. To see that, it suffices to show that every g ∈ G is congruent to the
constant sequence (k)n∈Z modulo H for some k ∈ K. Fix a g ∈ G, a k ∈ K and define
Zk = {n ∈ Z | gn = k }. Then we get

Z =
⋃

k∈K

Zk.

Since U is an ultrafilter, Zk ∈ U for some k ∈ K. Therefore gk−1 ∈ H, i.e., g ∈ G is
congruent to (k)n∈Z, as desired.

We call G strongly complete if G has the property that every subgroup of finite
index is open. Nikolov and Segal [38] have recently shown that every finitely generated
profinite group is strongly complete.

Definition 1.2.5. Let H ∈ F . The normalizer of G is

NGH =
{
g ∈ G

∣∣ gHg−1 = H
}

and the Weyl group of G is defined by

WGH = NGH/H.

Furthermore, the centralizer of G is

CGH =
{
g ∈ G

∣∣ ghg−1 = h ∀h ∈ H
}

and the center is C(G) = CG(G).
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1.2 The Orbit Category

Definition 1.2.6. The orbit category OrF (G) associated to a group G and a family
F is defined by

Ob(OrF (G)) = {G/H | H ∈ F }
mor(G/H,G/K) = { f : G/H → G/K | f(gx) = f(x) ∀g ∈ G, x ∈ G/H } .

Let H ⊆ G be a subgroup. We denote by (H) the conjugation class of H in G. For
another subgroup K ⊆ G, we write (H) ≤ (K) if H is subconjugated to K, i.e., if
there exists a g ∈ G such that gHg−1 ⊆ K.

Proposition 1.2.7. Let H,K ∈ F . Then the following statements hold.

(i) There is an equivariant map G/H → G/K if and only if (H) ≤ (K).

(ii) If g ∈ G and g−1Hg ⊆ K, then we get a well-defined G-map

Rg : G/H → G/K, g′H 7→ g′gK.

(iii) Every G-map G/H → G/K is of the form Rg. We have Rg = Rg′ if and only if
g−1g′ ∈ K.

(iv) If and only if g−1Hg ⊆ H ⇒ g−1Hg = H holds for any g ∈ G, we get an
isomorphism of (discrete) groups

WGH → map(G/H,G/H)G, gH 7→ Rg−1 .

Proof. A proof of the first three assertions can be found in [53, Prop. 1.1.14]. The last
one is immediate.

Definition 1.2.8. The subgroup category SubF (G) of a group G and a family F is
given by

Ob(SubF (G)) = {H | H ∈ F }
mor(H,K) =

{
f : H → K

∣∣ ∃g ∈ G, f(h) = g−1hg for all h ∈ H
}
/ ∼,

where f1 ∼ f2 if and only if there exists a k ∈ K such that f1 = k−1f2k.

Remark 1.2.9. We have a canonical projection

pr: OrF (G)→ SubF (G), G/H 7→ H, Rg 7→ [c(g)],

where c(g) denotes conjugation by g. Note that c(g) = c(g′) if and only if g−1g′ ∈ CGH.
We can deduce the following identity

morOrF (G)(G/H,G/K)/CGH = morSubF (G)(H,K),

where g ∈ CGH acts by left composition with Rg−1 .

15



1 The Basic Setup

Sometimes the Weyl group is defined by WGH = NGH/(H ·CGH). The advantage
of this definition is that we obtain

NGH/(H · CGH) = morSubF (G)(H,H)

if H satisfies the assumption of Proposition 1.2.7 (iv). Since we are interested in both
cases, we define:

Definition 1.2.10. Let G be a group and H ∈ F . Then we define the reduced Weyl
group W̃GH by

W̃GH = NGH/(H · CGH).

Definition 1.2.11. Let Γ be a small category, i.e., Ob(Γ) is a set. Then Γ is an
EI-category if every endomorphism is an isomorphism.

The great benefit of an EI-category is that we can define an order on it.

Definition 1.2.12. Let Γ be an EI-category and denote by Is Γ the set of isomorphism
classes. For x ∈ Ob(Γ) we denote by (x) the corresponding isomorphism class in Is Γ.
Then Is Γ forms a partially ordered set by

(x) ≤ (y) :⇐⇒ mor(x, y) 6= ∅, x, y ∈ Ob(Γ).

Note that the EI-property guarantees (x) = (y) if (x) ≤ (y) and (y) ≤ (x).
We define the length of (y) ∈ Is(Γ) (relative (x)) and colength (relative (x)) by

lx(y) = sup {n | (x) < (x1) < · · · < (xn) = (y) } ,
colx(y) = sup {n | (x) > (x1) > · · · > (xn) = (y) } .

The length and colength are defined by

l(y) = sup
(x)∈Is(Γ)

lx(y) and col(y) = sup
(x)∈Is(Γ)

colx(y).

We call Γ of finite length if l(x) < ∞ for each (x) ∈ Is(Γ) and of finite colength if
col(x) <∞ for each (x) ∈ Is(Γ).

Lemma 1.2.13. The category OrF (G) is an EI-category if and only if SubF (G) is
an EI-category. Furthermore, this is equivalent to the condition

gHg−1 ⊆ H =⇒ gHg−1 = H ∀g ∈ G, H ∈ F .

In this case, we have

morOrF (G)(G/H,G/H) = WGH and morSubF (G)(H,H) = W̃GH.

Proof. Let [c(g)] ∈ morSubF (G)(H,H). By definition, we have that [c(g)] is an isomor-
phism if and only if c(g) : H → H is an isomorphism of groups. Now the assertion
follows from Proposition 1.2.7 (iv).
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1.2 The Orbit Category

Example 1.2.14. Let p be a prime and G = Zp. The compact open subgroups of Zp

are pkZp for k ∈ N0. Since Zp is abelian, we obtain

morSubCO(G)(p
kZp, p

lZp) =

{
{ inc : pkZp → plZp } , if k ≥ l,
∅, otherwise,

where inc denotes the canonical inclusion. We should imagine SubCO(G) to be the
following (directed) graph:

· · · → 2→ 1→ 0.

Definition 1.2.15. Let G be locally compact. Choose a left invariant Haar measure µ.
The modular function ∆ is defined by

∆: G→ R+, g 7→ µ(M)
µ(Mg)

,

where M ⊆ G is an arbitrary subset with finite positive measure. Note that ∆ depends
neither on M nor on µ. If ∆(g) = 1, we call g unimodular. If every g ∈ G is unimodular,
we call G unimodular.

Immediate examples of unimodular groups are abelian groups. The next lemma will
provide us with some more examples.

Lemma 1.2.16. Let G be locally compact. Then G is unimodular if there exists a
compact open normal subgroup.

Proof. Let H ⊆ G be a compact open normal subgroup and g ∈ G. Since H is compact
open, we get 0 < µ(H) <∞. Additionally, we have gHg−1 = H because H is normal.
Now we can deduce

∆(g−1) =
µ(H)

µ(Hg−1)
=

µ(H)
µ(gHg−1)

=
µ(H)
µ(H)

= 1,

and G is unimodular, as required.

Corollary 1.2.17. The following groups are unimodular:

(i) compact groups,

(ii) prodiscrete l-groups.

Proof. In the case of a compact group G, we can take the entire group G as a compact
open normal subgroup. Moreover, prodiscrete l-groups have compact open normal
subgroups by Proposition 1.1.6.

Lemma 1.2.18. Let G be locally compact. If g ∈ G is unimodular, then we obtain for
every compact open subgroup H ⊆ G

gHg−1 ⊆ H =⇒ gHg−1 = H.

Consequently, OrCO(G) and SubCO(G) are EI-categories if G is unimodular.

17



1 The Basic Setup

Proof. Let µ be a Haar measure and H ⊆ G be a compact open subgroup. Hence we
obtain 0 < µ(H) <∞. Suppose gHg−1 ⊆ H holds. Since G is unimodular, we deduce
µ(H) = µ(gHg−1). Finally, we get an open subset H \ gHg−1 with µ(H \ gHg−1) = 0.
Thus we can conclude H \ gHg−1 = ∅.

The converse is false, i.e., there exists a non-unimodular group G such that the
corresponding orbit category is an EI-category:
Example 1.2.19. Let p be a prime and

G =


a b c

0 a−1 d
0 0 1

 ∣∣∣∣∣∣ a, b, c, d ∈ Qp, a 6= 0

 .

The corresponding Lie algebra is

L(G) =


a b c

0 −a d
0 0 0

 ∣∣∣∣∣∣ a, b, c, d ∈ Qp

 ,

and if we take the standard basis, the adjoint representation is given by the matrix

Mg =


1 −2ab 2abd− c d
0 a2 −a3d 0
0 0 a 0
0 0 b a−1

 for g =

a b c
0 a−1 d
0 0 1

 .

Bourbaki [11, Chap. III, §3.16, Cor. to Prop. 55] showed that the modular function
∆ is given by

∆(g) = |det(Mg)|p = |a2|p = |a|2p.

Therefore G is not unimodular, and the non-unimodular elements are precisely
a b c

0 a−1 d
0 0 1

 ∣∣∣∣∣∣ a, b, c, d ∈ Qp, a 6= 0, |a|p 6= 1

 .

Let H ⊆ G be a compact open subgroup. Since H is open, we can find an element
h ∈ H such that

h =

1 e f
0 1 g
0 0 1

 with e 6= 0.

Conjugation by g̃n ∈ G leads toa b c
0 a−1 d
0 0 1

n1 e f
0 1 g
0 0 1

a b c
0 a−1 d
0 0 1

−n

=

1 a2ne f̃
0 1 a−ng
0 0 1

 .
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1.2 The Orbit Category

Assume g̃ is non-unimodular and hence, without loss of generality, |a|p > 1. Since H
is compact and |a2ne|p →∞, we deduce, on the one hand, g̃Hg̃−1 * H. On the other
hand, since H is compact, we can pick an element

h0 =

1 ã b̃

0 1 d̃
0 0 1

 ∈ H with |d̃| maximal.

We have |a−1d̃|p < |d̃|p and, consequently, h0 /∈ g̃Hg̃−1. So we have neither g̃Hg̃−1 ⊆
H nor g̃Hg̃−1 ⊇ H for a non-unimodular g̃ ∈ G. If g̃ is unimodular, it satisfies the
condition g̃Hg̃−1 ⊆ H ⇒ g̃Hg̃−1 = H by the previous lemma. Therefore we have
constructed a non-unimodular group which satisfies

g̃Hg̃−1 ⊆ H =⇒ g̃Hg̃−1 = H.

Note that, by a result of Raja [43], for each unimodular element g̃ ∈ G there exists a
compact open subgroup H ⊆ G with g̃Hg̃−1 = H.

We want to give an example of an l-group G whose orbit category OrCO(G) fails to
be an EI-category.
Example 1.2.20. Let p be a prime and G be the following group

G =
{(

a b
0 a−1

) ∣∣∣∣ a, b ∈ Qp a 6= 0
}
.

In addition, define the compact open subgroup H ⊆ G by

H =
{(

c d
0 c−1

)
∈ G

∣∣∣∣ |c|p = 1, |d|p ≤ 1
}

and let
g =

(
a b
0 a−1

)
∈ G with |a−1|p, |b|p < 1.

Then we obtain

g−1Hg =
(
a−1 −b
0 a

)(
c d
0 c−1

)(
a b
0 a−1

)
=
(
c a−1(bc+ a−1d− bc−1)
0 c−1

)
.

Since

|a−1(bc+ a−1d− bc−1)|p = |a−1| · |bc+ a−1d− bc−1|p
≤ |a−1| ·max { |bc|p, |a−1d|p, |bc−1)|p }
≤ |a−1|p < 1,

we get g−1Hg ⊆ H and g−1Hg 6= H. Therefore, OrCO(G) is not an EI-category.
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Proposition 1.2.21. Let G be a topological group.

(i) SubI(G) is an EI-category, and for all (closed) subgroups H ⊆ K ⊆ G of finite
index we obtain lH(K) <∞.

(ii) Additionally, let G be unimodular. Then SubCO(G) is an EI-category, and for
all compact open subgroups H ⊆ K ⊆ G we obtain lH(K) <∞.

Proof. Let us prove the first assertion. Let H ⊆ G be a closed subgroup of finite index
and g ∈ G such that gHg−1 ⊆ H. Since conjugation with g is a G-isomorphism, we
obtain

[G : H] = [G : gHg−1] = [G : H][H : gHg−1]

and thus [H : gHg−1] = 1. Hence H = gHg−1 and SubI(G) is an EI-category. Now
let H ⊆ K ⊆ G be closed subgroups of finite index. Then we get

lH(K) < sup { [K : gHg−1] | gHg−1 ⊆ K, g ∈ G } < sup
g∈G

[G : gHg−1] = [G : H].

Now we prove the second assertion. Let G be unimodular and choose a Haar mea-
sure µ. Then SubCO(G) is an EI-category by Lemma 1.2.18. Let H ⊆ K ⊆ G be two
compact open subgroups. We obtain

lH(K) ≤ sup { [K : gHg−1] | gHg−1 ⊆ K, g ∈ G }

= sup { µ(K)
µ(gHg−1)

| gHg−1 ⊆ K, g ∈ G }

= sup { µ(K)
µ(H)

| gHg−1 ⊆ K, g ∈ G } =
µ(K)
µ(H)

<∞.

The author does not know of an example, where lH(K) = ∞ in the case of an
EI-category SubCO(G). However, the index [K : gHg−1] can vary for different g ∈ G.
We want to give an example.
Example 1.2.22. Let G be the group of Example 1.2.19, namely we get

G =


a b c

0 a−1 d
0 0 1

 ∣∣∣∣∣∣ a, b, c, d ∈ Qp, a 6= 0

 .

Then SubCO(G) is an EI-category. Let H ⊆ K ⊆ G be the following compact open
subgroups

K =


a b c

0 a−1 d
0 0 1

 ∈ G
∣∣∣∣∣∣ |a|p = 1, |b|p, |c|p, |d|p ≤ 1

 ,

H =


a b c

0 a−1 d
0 0 1

 ∈ K
∣∣∣∣∣∣ |b|p, |c|p, |d|p ≤ 1

4

 .
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1.2 The Orbit Category

Let a′, b′, c′, d′ ∈ Qp with |a′|p = 1
2 and |b′|p, |c′|p, |d′|p ≤ 1. We define

g =

a′ b′ c′

0 (a′)−1 d′

0 0 1


and obtain gHg−1 ⊆ K because of |a+ b|p ≤ max { |a|p, |b|p } and |ab|p = |a|p · |b|p for
any a, b ∈ Qp. Note that, in our case, the absolute value of a matrix entry can increase
by a factor of 4 because we multiply twice. Let µ be a Haar measure on G. We obtain
∆(g) = 1

4 by Example 1.2.19 and, consequently,

[K : H] =
µ(K)
µ(H)

< 4
µ(K)
µ(H)

=
µ(K)

∆(g)µ(H)
=

µ(K)
µ(gHg−1)

= [K : gHg−1].

Therefore, the index may vary. However, in this example, it cannot tend to infinity
for the following reason. Conjugation by g increases the absolute value of at least one
matrix entry by a factor of |a′|p or |a′|−1

p , respectively (cf. Example 1.2.19). But K is
compact, which means that the absolute value of that matrix entry is bounded.

Let Γ be a category. The endomorphism sets of Γ have a canonical semigroup
structure. If Γ happens to be an EI-category, the endomorphism sets are even groups.
Since we have seen in Example 1.2.20 that the orbit category is not an EI-category in
general, we must take semigroups into account. So let G be a semigroup. We call an
element g ∈ G torsionfree if gn 6= gm holds for n 6= m with n,m ∈ N.

Lemma 1.2.23. Let G be a group, F a family and H ∈ F a subgroup. If the semigroup
morSubF (G)(H,H) is not a group, it contains a torsionfree element. The same holds
for morOrF (G)(G/H,G/H).

Proof. By Remark 1.2.9, it suffices to prove the assertion for SubF (G). Suppose that
morSubF (G)(H,H) is not a group. Hence there exists a morphism

[c(g)] ∈ morSubF (G)(H,H)

which is not an isomorphism. Since c(g) is injective, it cannot be surjective. Therefore,
we get

gnHg−n ( gkHg−k for n > k

for the corresponding images and obtain c(g)n 6= c(g)k for n 6= k. Thus [c(g)] is the
desired torsionfree element.

A locally finite semigroup is a semigroup such that every finitely generated subgroup
is finite (cf. Definition A.3 for the notion of locally finite for groups).

Corollary 1.2.24. If the semigroup morSubF (G)(H,H) is locally finite, then it is al-
ready a group. The same holds for morOrF (G)(G/H,G/H). In this case, we obtain

W̃GH = morSubF (G)(H,H) and WGH = morOrF (G)(G/H,G/H).
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It will be of interest to know whether the endomorphism sets (or even the morphism
sets) of SubF (G) or OrF (G) are finite. If G is a prodiscrete l-group and F = CO, this
is the case by the following proposition.

Proposition 1.2.25. Let G be a prodiscrete l-group. Then OrCO(G) is an EI-category,
and for every compact open subgroup H ⊆ G the sets morSubCO(G)(H,K) are finite.

Proof. Since G is unimodular by Corollary 1.2.17, the category OrCO(G) is an EI-
category by Lemma 1.2.18. It remains to show that

morSubCO(G)(H,K) = { g ∈ G | gHg−1 ⊆ K } /(H · CGH)

is finite for compact open subgroups H,K ⊆ G. We set

M ′
G(H,K) = { g ∈ G | gHg−1 ⊆ K } /CGH.

We fix the notation UL = U/(U ∩ L) for a subgroup U ⊆ G and a normal subgroup
L ⊆ G. Since G is a prodiscrete l-group, it can be written as a limit (see proof of
Proposition 1.1.6)

G = lim
L∈N(G)

GL, where N(G) = {L ⊆ G compact open normal } .

In particular, GL is a discrete group and the structure maps are surjective. Now
we obtain (finite) subgroups HL,KL ⊆ GL such that H = limL∈N(G)HL and K =
limL∈N(G)KL (with the corresponding restrictions as structure maps). The structure
maps ϕL1L2 : GL1 → GL2 induce maps

ϕ′L1L2
: M ′

GL1
(HL1 ,KL1)→M ′

GL2
(HL2 ,KL2).

Here, we have to check, on the one hand, that ϕ′L1L2
(CGL1

HL1) ⊆ CGL2
HL2 and, on

the other hand, that the destination space is right. We only show the first assertion,
the second one can be proven analogously. Let g ∈ CGL1

HL1 and h ∈ HL2 . Since the
structure maps are surjective, there exists a preimage h′ ∈ HL1 , and we can conclude

ϕ′L1L2
(g)hϕ′L1L2

(g)−1 = ϕ′L1L2
(g)ϕ′L1L2

(h′)ϕ′L1L2
(g−1)

= ϕ′L1L2
(gh′g−1) = ϕ′L1L2

(h′) = h.

In the same way, the projections prL : G→ GL induce a map

pr∗ : M ′
G(H,K)→ lim

L∈N(G)
M ′

GL
(HL,KL),

which is injective because G is Hausdorff. Note that the right hand side is compact
because each M ′

GL
(HL,KL) is finite. Since H ⊆ G is compact open and G admits a

basis of topology consisting of compact open normal subgroups by Proposition 1.1.6,
H has an open subgroup H ′ ⊆ H which is normal in G. We can assume H ⊆ K and
obtain that

pr∗(H
′) = pr−1

H′ (iH′) ∩ im pr∗
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and
pr−1

H′ (iH′) ⊆ lim
L∈N(G)

M ′
GL

(HL,KL)

is open, where prH′ denotes the canonical projection prH′ : limL∈N(G)M
′
G(HL,KL)→

M ′
G(HH′ ,KH′) and iH′ : HH′ → KH′ is the canonical injection. Thus we get an

injective map

p̃r∗ : M ′
G(H,K)/H ′ →

(
lim

L∈N(G)
M ′

GL
(HL,KL)

)
/pr−1

H′ (iH′),

where the right hand side is finite. Hence the left hand side is finite. Now we can
deduce that M ′

G(H,K)/H is finite since it is a quotient of a finite set, as required.

1.3 Modules over a Category

We introduce modules over a category and collect their main properties. These mod-
ules appear naturally if we want to study cellular homology in an equivariant setting
(see Section 1.6).

In the following, let Γ be a small category and let R be a ring.

Definition 1.3.1. A covariant (contravariant)RΓ-module M is a covariant (contravari-
ant) functor

M : Γ→ R-mod.

A morphism of RΓ-modules is a natural transformation.

Convention 1.3.2. Let M be a set. We write RM or R(M) for the freely generated
R-module with basis M .

Remark 1.3.3. We can define im, ker, ⊕,
∏

, lim, colim objectwise and RΓ-mod be-
comes an abelian category in this way. However, RΓ-mod is even more, it is a module
category. The underlying (not necessarily unital) ring is

R̃ =
⊕

x,y∈Ob(Γ)

Rmor(x, y), f · g =

{
f ◦ g, if f : y → z and g : x→ y,
0, otherwise,

and the natural equivalence is given by

F : RΓ-mod→ R̃-mod, M 7→
⊕

x∈Ob(Γ)

M(x).

This is shown in [23, Sec. 3]. Unfortunately, the ring R̃ has a unit if and only if Ob(Γ)
is finite, which is very rare. In particular, Ob(Γ) is infinite in our main example which
is OrCO(G) for a non-discrete l-group G.
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Definition 1.3.4. A Γ-set I is a functor

I : Γ→ sets

and a morphism of Γ-sets is a natural transformation. Let B be a Γ-set and M be
an RΓ-module such that B ⊆ M . Then M is called free with basis B if for every
RΓ-module N and every Γ-map ϕ : B → N there exists a lift

B

inc
��

ϕ
// N

M

ϕ̃

>>

Remark 1.3.5. Let x ∈ Ob(Γ) and define

RΓ(?, x) : Γ→ R-mod, y 7→ Rmor(x, y).

Then RΓ(?, x) is a free RΓ-module with basis

Bx : Γ→ sets, y 7→

{
{ id : x→ x } , y = x,

∅, y 6= x.

Furthermore, let F be a free RΓ-module with basis B. Then there exists an isomor-
phism

f : F →
⊕

x∈Ob(Γ)

⊕
|B(x)|

RΓ(?, x).

In particular, we have a free RΓ-module with basis B for any Γ-set B. Every RΓ-
module M is a quotient of a free module by

pr:
⊕

x∈Ob(Γ)

⊕
|M(x)|

RΓ(?, x)→M, (id : x→ x,mx) 7→ mx ∈M(x).

Example 1.3.6. Let Γ = SubCO(Zp) (see Example 1.2.14). Then we obtain

RSubCO(G)(pkZp, ?) = · · · → 0→ Rk → · · · → R2
id−→ R1

id−→ R0 and

RSubCO(G)(?, pkZp) = 0→ · · · → 0→ Rk
id−→ Rk+1 → · · · ,

where Rk = R and the lower index just indicates the position.

Definition 1.3.7. Let M be a contravariant RΓ-module and N a covariant RΓ-
module. Then we define the R-module M ⊗RΓ N , which we call the tensor product of
M and N , by

M ⊗RΓ N =
( ⊕

x∈Ob(Γ)

M(x)⊗R N(x)
)
/Q,

where the R-module Q is given by

Q = 〈{mf ⊗ n−m⊗ fn | m ∈M(y), n ∈ N(x), f ∈ morΓ(x, y), x, y ∈ Ob(Γ) }〉 .

Here we set mf := M(f)(m) and fn := N(f)(n).
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As in the classical case of R-modules, this tensor product fulfills a universal property
which can be expressed by the following isomorphisms:

Lemma 1.3.8. Let M be a contravariant RΓ-module and N a covariant RΓ-module.
Then, for any R-module L, there are natural isomorphisms

homR(M ⊗RΓ N,L)
∼=−−→ homRΓ(M,homR(N,L)),

homR(M ⊗RΓ N,L)
∼=−−→ homRΓ(N,homR(M,L)).

As in the case of ordinary R-modules, we also have induction, coinduction and
restriction functors for RΓ-modules:

Definition 1.3.9. Let F : Γ1 → Γ2 be a contravariant functor and M a contravariant
RΓ2-module. The restriction by F is the following RΓ1-module:

resF (M) = M ◦ F.

Let M be a contravariant RΓ1-module. The induction by F and coinduction by F are
given by

indF (M)(??) = M(?)⊗RΓ1 Rmor(??, F (?)) and
coindF (M)(??) = homRΓ1

(
Rmor

(
F (?), ??

)
,M
)
.

In the same way, we can define restriction, induction and coinduction for covariant
modules.

Definition 1.3.10. Let F : Γ1 → Γ2 and G : Γ2 → Γ1 be two functors. We say (F,G)
is a tensor adjoint pair of functors if we can construct a natural isomorphism

F (M)⊗Γ2 N
∼=−−→M ⊗Γ1 G(N)

for every M ∈ Ob(Γ1) and N ∈ Ob(Γ2). We say (F,G) is an adjoint pair of functors
if there exists a natural isomorphism

morΓ2(F (M), N)
∼=−−→ morΓ1(M,G(N))

for every M ∈ Ob(Γ1) and N ∈ Ob(Γ2).

Proposition 1.3.11. Let F : Γ1 → Γ2 be a functor. Then (indF , resF ) is a tensor
adjoint pair of functors. Furthermore, (indF , resF ) and (resF , coindF ) are adjoint
pairs of functors.

Proof. The isomorphisms are given by

homΓ2(indF (M), N)
∼=−→ homΓ1(M, resF N)

G 7→ (m 7→ G(m⊗ id))(
(m⊗

k∑
i=1

λihi) 7→
k∑

i=1

λihig(m)

)
←[ g
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and

homΓ2(resF (M), N)
∼=−→ homΓ1(M, coindF N)

G 7→
(
my 7→

( n∑
i=1

λi(fi : xi → y) 7→
n∑

i=1

λi

(
G ◦M(fi)

)
(my)

))
(
mx 7→ g(mx)(idx)

)
← [ g

and

indF (M)⊗RΓ2 N
∼=−→M ⊗RΓ2 resF N(

m⊗
k∑

i=1

λiGi

)
⊗ n 7→ m⊗

( k∑
i=1

λiN(Gi)(m)
)
,

(m⊗ id)⊗ n←[ m⊗ n.

Lemma 1.3.12. The following statements hold:

(i) Let (F,G) be a pair of tensor adjoint functors. Then F respects the property flat
if G is exact.

(ii) Let (F,G) be a pair of adjoint functors. Then F respects the property projective
if G is exact. Furthermore, G respects the property injective if F is exact.

Proof. We just prove the first assertion, the others can be proven analogously. So let

F : Γ1 → Γ2 and G : Γ2 → Γ1

be the functors from above. Let L be a flat module in Γ1 and 0→ M → N an exact
sequence in Γ2. Then we get the following commutative diagram:

indF L⊗Γ2 M //

∼=
��

indF L⊗Γ2 N

∼=
��

0 // L⊗Γ1 resF M // L⊗Γ1 resF N

Consequently, indF L is flat.

Corollary 1.3.13. Let F be a functor. Then the following statements hold:

(i) The functor indF respects the properties flat and projective.

(ii) The functor coindF respects the property injective.

(iii) The functor resF respects the properties flat and injective if indF is exact.

(iv) The functor resF respects the property projective if coindF is exact.
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At the end of this section we introduce Mackey functors which are modules over
a category with some extra structure. They shall be viewed as a generalization of
representation theory.

Let TGFI be the following category. The objects are topological groups and the
morphisms are open embeddings f : H → G whose images have finite index, i.e.,
f : H → im(f) is an isomorphism of topological groups and im(f) is an open sub-
group of G. Let Γ ⊆ TGFI be a small subcategory. Let M : Γ → R-mod be a
bifunctor to the category of R-modules, i.e., a pair (M∗,M

∗) consisting of a covariant
functor M∗ and a contravariant functor M∗ from Γ to R-mod which agree on objects.
For f ∈ morΓ(H,G) we will often denote M∗(f) : M(H) → M(G) by indf and the
map M∗(f) : M(G) → M(H) by resf and write indG

H = indf and resH
G = resf if f is

an inclusion of groups. We call such a bifunctor M a Mackey functor with values in
R-modules if the following conditions are satisfied:

(i) Let G ∈ Ob(Γ) and c(g) : G → G be an inner automorphism. Then c(g) ∈
morΓ(G,G) and M∗(c(g)) = id: M(G)→M(G).

(ii) Let H,K ∈ Ob(Γ) and f : H
∼=−→ K be an isomorphism of topological groups such

that f ∈ morΓ(H,K). Then the compositions resf ◦ indf and indf ◦ resf are the
identities.

(iii) Double coset formula
Let H,K ⊆ G be two open subgroups of finite index such that H,K,G ∈ Ob(Γ).
Then we obtain the identity

resK
G ◦ indG

H =
∑

KgH∈K\G/H

indc(g) : H∩g−1Kg→K ◦ resH∩g−1Kg
H ,

where c(g) is conjugation with g, i.e., c(g)(h) = ghg−1. In particular, each item
on the right hand side is defined.

The classical example is
Example 1.3.14. Let Γ ⊆ TGFI be the full subcategory of finite groups. This category
is not small but Is Γ is small and that is what we really need. For a finite group G, we
denote by Rk(G) the representation ring corresponding to a field k. Then

Rk : Γ→ Z-mod, H 7→ Rk(H)

induces a Mackey functor, the covariant structure being given by the usual induction
and the contravariant structure being given by the usual restriction.

1.4 G-CW-Complexes
In this section, we introduce G-CW-complexes for topological groups and collect some
basic properties. At the end, we introduce classifying spaces, which are an important
class of examples of G-CW-complexes.
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In the following, let G be a topological group and F a family of subgroups. We
remark that in the following, F need not be smooth.

Definition 1.4.1. A (left) (G,F)-CW-pair is a pair of (left) G-spaces (X,A) together
with a filtration

A = X−1 ⊆ X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X

such that colimn→∞Xn = X and for every n ∈ N there exists a family

{Hi | Hi ∈ F , i ∈ In }

together with the following pushout (in the category of (left) G-spaces)∐
i∈In

G/Hi × Sn−1 //

��

Xn−1

��∐
i∈In

G/Hi ×Dn // Xn

We call (X,A) finite relative A (or briefly finite) if there exist pushouts such that only
finitely many In are not empty and these In are finite. Furthermore, we call (X,A)

(i) proper if F ⊆ COP holds,

(ii) coproper if F ⊆ COC holds,

(iii) cofinite if F ⊆ I holds,

(iv) smooth if F ⊆ O holds.

If A = ∅ we call X a (G,F)-CW-complex.

Remark 1.4.2. If (X,A) is smooth, then (X,A) is coproper if and only if (X,A) is
cofinite.

Remark 1.4.3. Let X be a (G,F)-CW-complex. If F is smooth, then X is also an
ordinary CW-complex. If F is not smooth, X might not be a CW-complex. An
immediate example is X = G. This is a (G, {1})-CW-complex but G might not be a
CW-complex (e.g., G is a non-discrete l-group).

Definition 1.4.4. A homomorphism of topological groups or sometimes briefly group
homomorphism α : H → G is a continuous map that is compatible with the group
structures, im(α) ⊆ G is a closed subgroup and α induces an identification H → im(α).
The latter condition implies that H → im(α) is open. If α is injective, it is called
closed embedding. Moreover, an embedding α : H → G is called compact, open, etc. if
α(H) ⊆ G has the corresponding property.
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Definition 1.4.5. Let α : H → G be a homomorphism of topological groups. Then
we obtain an induction functor

indα : G-pairs→ G-pairs, (X,A) 7→ (G×α X,G×α A),

where a G-pair (X,A) is a G-space X together with a G-subspace A.

Lemma 1.4.6. Let α : H → G be a homomorphism of topological groups. Let X be an
H-CW-complex. Suppose that for every isotropy group K of X the subgroup ker(α) ·
K = {h · k | h ∈ ker(α), k ∈ K } ⊆ H is closed. (This assumption is for instance
satisfied if ker(α) is compact, if ker(α) is open, if ker(α) is trivial, if X is smooth or
if X is proper.)

Then the G-space indαX = G×α X obtained by induction with α inherits a G-CW-
complex structure. If X is free or smooth or proper, indαX has the same property.

Proof. If Xn denotes the n-skeleton of X, the desired G-CW-complex structure on
indαX has as n-th skeleton indαXn. Since we are working in the category of compactly
generated spaces, indαX carries the colimit topology with respect to the filtration
{indαXn | n ≥ −1} as the analogous statement is true for X and the filtration
{Xn | n ≥ −1}. Moreover, indα sends an H-pushout to a G-pushout. It remains to
check for a homogeneous space H/K for which ker(α) acts freely on H/K that α(K) is
a closed subgroup ofG and that there is aG-homeomorphism f : G×αH/K → G/α(K).
Recall that, by assumption, the map α induces an identification H → im(α) and
im(α) ⊆ G is closed. Since α−1(α(K)) = ker(α)·K ⊆ H is closed for an isotropy group
K ⊆ H, the subgroup α(K) ⊆ im(α) is closed and hence the subgroup α(K) ⊆ G is
closed. The desired G-homeomorphism f sends the class of (g, hK) to gα(h)α(K). It
is a homeomorphism, because of the following commutative diagram, in which the top
horizontal arrow is an identification sending (g, h) to g ·α(h) and in which the vertical
arrows are identifications as well:

G×H //

��

G

��

G×α H/K // G/α(K)

Remark 1.4.7 (Homomorphisms of topological groups). The assumptions, we impose
on homomorphisms of topological groups rule out for the map i : Gd → G given by the
identity map for topological groups G and Gd, where the latter one is G endowed with
the discrete topology, unless G itself is discrete. This is because i does not in general
send closed subgroups to closed subgroups.

Consider the projection pr: R× S1 → S1, which is a homomorphism of topological
groups. Let K ⊆ R×S1 be the subgroup {(n, exp(2πiθn)) | n ∈ Z} for some irrational
number θ ∈ R. Although K ⊆ R × S1 is closed, its image in S1 is the non-closed
subgroup {exp(2πiθn) | n ∈ Z}. Lemma 1.4.6 does not apply to the R × S1-CW-
complex R× S1/K since K does not satisfy the required assumption.
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At the end of this section, we want to introduce some (G,F)-CW-complexes of
special interest.

A classifying space for (G,F) is a (G,F)-CW-complex EFG such that for any other
(G,F)-CW-complex X there exists a G-map f : X → EFG which is unique up to G-
homotopy. Equivalently, we can describe EFG by demanding that for each H ∈ F the
set of H-fixed points (EFG)H is weakly contractible. If F is smooth, (EFG)H is a CW-
complex and the property weakly contractible is equivalent to the property contractible.
Recall that the set of H-fixed points is defined by XH = {x ∈ X | hx = x, ∀h ∈ H }
for a G-CW-complex X and a subgroup H ⊆ G.

A survey on classifying spaces is given by Lück [32]. In particular, we have the
following result [32, Thm. 1.9]:

Theorem 1.4.8. There exists a classifying space EFG for any (G,F).

Example 1.4.9. We have the following examples:

• Let F be a family of subgroups with G ∈ F , e.g., F = CL, O, I. Then we can
take EFG = {•}.

• Let {1} be the family which consists only of the trivial group. Then we briefly
write EG = E{1}G and call it the classifying space of G.

Let G be discrete. Then EG = B̃G, where B̃G denotes the universal covering
space of the Eilenberg-MacLane space BG of G.

• If F = COP, we define EG = ECOPG and call it the classifying space of proper
actions. If G happens to be a reductive p-adic group, we have the identity
EG = ECOG by Lück [32, Thm. 4.13].

1.5 Equivariant Homology Theories

In order to study G-CW-complexes, we must introduce homology theories which take
the G-action into account. This leads to G-homology theories, which are introduced in
this section. Usually, constructions for G-homology theories do not yield a G-homology
theory only for a fixed group G but for a large class of groups (e.g., see Chapter 2).
Therefore it will be convenient to compare G-homology theories for different groups G.
This leads to equivariant homology theories, which are also introduced in this section
and will play an important role in the sequel.

Let R be a commutative ring. We point out that in the following, F need not be
smooth.

Definition 1.5.1. A (G,F)-homology theory HG
∗ with values in R-modules is a family

of covariant functors

HG
n : (G,F)-CW-pairs→ R-mod, n ∈ Z,
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1.5 Equivariant Homology Theories

together with natural transformations

δn(X,A) : HG
n (X,A)→ HG

n−1(A)(= HG
n−1(A, ∅))

such that the following hold for every n ∈ Z:

(i) G-homotopy invariance
Let f, g : (X,A) → (Y,B) be two G-homotopic maps of (G,F)-CW-pairs, then
HG

n (f) = HG
n (g).

(ii) Long exact sequence
For every (G,F)-CW-pair (X,A) there exists a long exact sequence

· · ·
HG

n+1(j)
−−−−−→ HG

n+1(X,A)
δG
n+1−−−→ HG

n (A)
HG

n (i)
−−−−→ HG

n (X)
HG

n (j)
−−−−→ HG

n (X,A)
δG
n−−→ · · · ,

where i : A ↪→ X and j : X ↪→ (X,A) are the canonical inclusions.

(iii) Excision
Let

X0
i1 //

i2
��

X1

j1
��

X2
j2

// X

be a G-pushout such that i1 : X0 → X1 is an inclusion of (G,F)-CW-pairs and
i2 : X0 → X2 is cellular and the (G,F)-CW-structure of X is induced by the
(G,F)-CW-structures of X0, X1, X2 in the obvious way. Then we obtain an
isomorphism

HG
n (j1) : HG

n (X1, X0)
∼=−→ HG

n (X,X2).

(iv) Disjoint union axiom
Let {Xi | i ∈ I } be a family of (G,F)-CW-complexes and let ji : Xi ↪→

∐
i∈I Xi

be the canonical inclusion. Then we get an isomorphism⊕
i∈I

HG
n (ji) :

⊕
i∈I

HG
n (Xi)

∼=−→ HG
n

(∐
i∈I

Xi

)
.

As above, we call HG
∗ proper, coproper, or smooth if the corresponding families are the

ones as above.

Definition 1.5.2. A (G,F)-cohomology theory H∗G with values in R-modules is a
family of contravariant functors

Hn
G : (G,F)-CW-pairs→ R-mod, n ∈ Z,

together with natural transformations

δn(X,A) : Hn
G(X,A)→ Hn+1

G (A) := Hn+1
G (A, ∅)

such that the properties (except the disjoint union axiom) of the above definition hold
(invert arrows where appropriate).
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Remark 1.5.3. Even if H∗G satisfies the disjoint union axiom, the G-cohomology theory
H∗G⊗ZQ fails to satisfy this axiom in general. This is the reason why we do not require
the disjoint union axiom to hold.

Theorem 1.5.4. (i) Let T : HG
∗ → KG

∗ be a natural transformation of two (G,F)-
homology theories. If we have isomorphisms

T (G/H) : HG
∗ (G/H)

∼=−−→ KG
∗ (G/H)

for every H ∈ F , then T (X,A) is an isomorphism for every (G,F)-CW-pair
(X,A).

(ii) Let T : H∗G → K∗G be a natural transformation of two (G,F)-cohomology theories.
If we have isomorphisms

T (G/H) : H∗G(G/H)
∼=−−→ K∗G(G/H)

for every H ∈ F , then T (X,A) is an isomorphism for every finite (G,F)-CW-
pair (X,A). In addition, we obtain isomorphisms for every (G,F)-CW-pair
(X,A) if H∗G and K∗G satisfy the disjoint union axiom.

Proof. Although this statement is called theorem, the proof is very simple. For simplic-
ity let A = ∅. Then the assertion follows by induction on n, the long exact sequence
for (Xn, Xn−1) and the 5-Lemma. Note that the disjoint union axiom forces HG

∗ to
be compatible with colimits. In the cohomological case, the non-finite case follows
from [51, Prop. 7.66].

In the sequel, we have to compare families of subgroups for different groups. Thus
we must introduce some compatibility conditions for those families. Before we can
make this precise, let Γ be a subcategory of the category of topological groups which
is closed under isomorphisms and taking finite intersections.

Definition 1.5.5. A Γ-collection of families of subgroups F? is a collection of families
of subgroups (FG)G∈Ob(Γ) such that for every injective homomorphism of topological
groups α : H → G with H,G ∈ Ob(Γ) the following properties are satisfied:

(i) indα(X,A) is a (G,FG)-CW-pair for every (H,FH)-CW-pair (X,A).

(ii) α(H) ∈ Fα(H) holds.

We call a Γ-collection of families of subgroups F? smooth if for every G ∈ Ob(Γ) the
family FG is smooth.

Remark 1.5.6. The second property is required for the construction of our Chern
character (cf. (4.1.0.2)). Note that an immediate consequence of the first property is
that α(FH) ⊆ FG, where we set α(FH) = {α(H ′) | H ′ ∈ FH }.
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Example 1.5.7. Let Γ be the category of topological groups. Then the family {1} and
the families

CL = {H ⊆ G closed } COP = {H ⊆ G compact }
COC = {H ⊆ G | G/H compact } O = {H ⊆ G open }
CO = {H ⊆ G compact and open } I = {H ⊆ G open | G/H finite }

of Example 1.2.2 induce Γ-collections of families of subgroups.

Definition 1.5.8. Let F? be a Γ-collection of families of subgroups. A (Γ,F?)-
equivariant homology theory with values in R-modules assigns to every topological
group G ∈ Ob(Γ) a (G,FG)-homology theory HG

∗ and comes with a so-called induc-
tion structure: For every injective homomorphism α : H → G of topological groups,
every (H,FH)-CW-pair (X,A) and n ∈ Z there exists an isomorphism

indα : HH
n (X,A)

∼=−−→ HG
n (indf (X,A))

such that the following axioms are satisfied:

(i) Compatibility with the boundary homomorphisms
∂G

n ◦ indα = indα ◦∂H
n ;

(ii) Functoriality
Let β : G→ K be another injective homomorphism of topological groups. Then
we have for n ∈ Z

indβ◦α = HK
n (f1) ◦ indβ ◦ indα : HH

n (X,A)→ HK
n (indβ◦α(X,A)),

where f1 : indβ indα(X,A)
∼=−→ indβ◦α(X,A), (k, g, x) 7→ (kβ(g), x) is the natural

K-homeomorphism;

(iii) Compatibility with conjugation
For n ∈ Z, g ∈ G and a (G,FG)-CW-pair (X,A) we have the identity

HG
n (f2) = indc(g) : G→G : HG

n (X,A)→ HG
n (indc(g) : G→G(X,A)),

where f2 : (X,A)→ indc(g) : G→G(X,A) is the G-homeomorphism which sends x
to (1, g−1x) in G×c(g) (X,A).

As above, we call H?
∗ proper, coproper or smooth if the corresponding families are the

ones as above.

We will usually omit Γ in the notation because it will usually be clear from the
context which Γ to take.
Remark 1.5.9. For the construction of the equivariant Chern characters appearing in
Chapter 4, we do not need the more general setting which appears in the literature [29,
Sec. 1], where one requires that such an induction structure exists for (not necessarily
injective) homomorphism of topological groups α : H → G.
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Definition 1.5.10. Let H?
∗ be an equivariant F?-homology theory and let G be a

group. Then HG
∗ admits a Mackey functor on coefficients if for all q ∈ Z the covariant

functor
H?

q : FG → R-mod, H 7→ HH
q ({•})

is a Mackey functor. Here, we consider FG ⊆ TGFI as a category in the obvious way.
Furthermore, the covariant functor H?

q is required to send a morphism α : H → K to
the composition

HH
q ({•})

indf−−−→ HK
q (indα{•})

HK
q (pr)
−−−−−→ HK

q ({•}),

where pr: indf{•} → {•} is the obvious K-map.
Analogously, we define the notion of a Mackey functor in the cohomological case.

Lemma 1.5.11. Let H?
∗ be an equivariant (Γ,F?)-homology theory and G ∈ Ob(Γ).

We consider subgroups H,K ∈ FG and an element g ∈ G with gHg−1 ⊆ K. Let
Rg−1 : G/H → G/K be the G-map sending g′H to g′g−1K and c(g) : H → K be the
homomorphism of topological groups sending h to ghg−1. Let pr: (indc(g) : H→K{•})→
{•} be the projection. Then the following diagram commutes

HH
n ({•})

HK
n (pr)◦indc(g)

//

indG
H

∼=
��

HK
n ({•})

indG
K

∼=
��

HG
n (G/H)

HG
n (Rg−1 )

// HG
n (G/K)

An analogous statement is true in the cohomological case.

Proof. We define a bĳective G-map

f1 : indc(g) : G→G indG
H{•} → indG

K indc(g) : H→K{•}

by sending (g1, g2, ∗) ∈ G ×c(g) G ×H {•} to (g1gg2g−1, 1, ∗) ∈ G ×K K ×c(g) {•}.
The condition that induction is compatible with composition of homomorphisms of
topological groups implies that the composition

HH
n ({•})

indG
H−−−→ HG

n (indG
H{•})

indc(g) : G→G−−−−−−−−→ HG
n (indc(g) : G→G indG

H{•})
HG

n (f1)−−−−→ HG
n (indG

K indc(g) : H→K{•})

agrees with the composition

HH
n ({•})

indc(g) : H→K−−−−−−−−→ HK
n (indc(g) : H→K{•})

indG
K−−−→ HG

n (indG
K indc(g) : H→K{•}).
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Naturality of induction implies HG
n (indG

K pr) ◦ indG
K = indG

K ◦HK
n (pr). Hence the fol-

lowing diagram commutes

HH
n ({•})

HK
n (pr)◦indc(g) : H→K

//

indG
H

��

HK
n ({•})

indG
K

��

HG
n (G/H))

HG
n (indG

K pr)◦HG
n (f1)◦indc(g) : G→G

// HG
n (G/K)

By the axioms, the map indc(g) : G→G : HG
n (G/H) → HG

n (indc(g) : G→GG/H) agrees
withHG

n (f2) for the map f2 : G/H → indc(g) : G→GG/H which sends g′H to (g′g−1, 1H)
in G ×c(g) G/H. Since the composition (indG

K pr) ◦ f1 ◦ f2 is just Rg−1 , the assertion
follows.

1.6 The Associated Bredon Homology Theory
In this section, we want to find an appropriate substitute for the ordinary cellular
homology theory.

In the following, a family of subgroups F is always supposed to be smooth.

Definition 1.6.1. Let (X,A) be a (G,F)-CW-pair. We obtain a contravariant functor

map(?, X)G : OrF (G)→ G-CW-pairs, G/H 7→ map(G/H, (X,A))G = (XH , AH),

which is called the associated OrF (G)-space. Note that (XH , AH) is a CW-pair because
(X,A) is smooth.

Definition 1.6.2. Let (X,A) be a (G,F)-CW-pair. We can define the following
functors

C
OrF (G)
n (X,A) : OrF (G) // CW-pairs // R-chain complexes

G/H � // (XH , AH) � // Ccell
n ((XH , AH);R)

where Ccell
n denotes the ordinary cellular chain complex. The functor COrF (G)

∗ (X,A)
is a contravariant ROrF (G)-chain complex. Let M be a covariant ROrF (G)-module.
Then the tensor product COrF (G)

∗ (X,A)⊗M is an R-chain complex and we can define
the equivariant Bredon homology by

HOrF (G)
n (X,A;M) := Hn(COrF (G)

∗ (X,A)⊗M).

Let HG
∗ be a (G,F)-homology theory. Then the coefficient system

HG
∗ (G/H), H ∈ F ,

yields a covariant ROrF (G)-module. Hence we can define the associated Bredon ho-
mology by

BHG
n (X,A) := Hn(COrF (G)

∗ (X,A)⊗HG
∗ (G/?)).

35



1 The Basic Setup

The cohomological case is analogous. For a contravariant ROrF (G)-module M , we
define

Hn
OrF (G)(X,A;M) := Hn

(
homOrF (G)(C

OrF (G)
∗ (X,A),M)

)
and

BHn
G(X,A) := Hn

(
homOrF (G)(C

OrF (G)
∗ (X,A),H∗G(G/?))

)
.

Remark 1.6.3. Let (X,A) be a (G,F)-CW-pair and M be an ROrCO(G)-module. Then
we obtain

COrF (G)
n (X,A) =

⊕
σ G/H-n-cell

ROrF (G)(G/?, G/H).

Consequently, for a graded OrF (G)-module M∗, we can compute Bredon homology
from the chain complex whose n-term is given by

BHG
n (Xn, Xn−1;M∗) =

⊕
σ G/H-k-cell

l+k=n

BHG
l (G/H,M∗).

One of the main advantages of cellular homology is the existence of an Atiyah-
Hirzebruch spectral sequence. The next theorem states the existence of an equivariant
Atiyah-Hirzeburch spectral sequence for Bredon homology. This consolidates the view
of Bredon homology as an equivariant generalization of cellular homology.

Theorem 1.6.4. (i) Let HG
∗ be a (G,F)-homology theory. Then there exists a con-

verging Atiyah-Hirzebruch spectral sequence of the following form:

E2
p,q = HOrF (G)

p (X,A;HG
q (G/?))⇒ HG

p+q(X,A).

(ii) Let H∗G be a (G,F?)-cohomology theory, then there exists a converging Atiyah-
Hirzebruch spectral sequence of the following form:

Ep,q
2 = Hp

OrF (G)(X,A;Hq
G(G/?))⇒ Hp+q

G (X,A).

However, in this case, we have to restrict to (G,F)-CW-pairs (X,A) which are
finite relative A.

Proof. The non-equivariant proof (see e.g., [58, Thm XIII.3.2 and Thm XIII.3.6])
carries over directly to G-(co)homology theories.

At the end of this section, we want to prove that Bredon homology associated to an
equivariant homology theory is itself an equivariant homology theory.

Let H?
∗ be an equivariant F?-homology theory and consider the map

i : OrFH
(H)→ OrFG

(G), H/K 7→ G/K.

Here we need FH ⊆ FG, which is guaranteed by Remark 1.5.6. We have a natural
isomorphism

indG
H

(
C

OrFH
(G)

∗ (X,A)
) ∼=−−→ C

OrFG
(G)

∗
(
indG

H(X,A)
)
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of ROrFG
(G)-chain complexes. Since (indG

H , res
H
G ) is a tensor adjoint pair, there exists

a natural isomorphism

(
indG

H C
OrFH

(H)
∗ (X,A)

)
⊗ROrFG

(G) HG
q (G/?)

∼=−−→ C
OrFH

(H)
∗ (X,A)⊗ROrFH

(H) resH
G HG

q (G/?).

The induction structure on HG
∗ induces an isomorphism of ROrFH

(H)-modules

HG
q (H/?)

∼=−−→ resH
G HG

q (G/?).

By assembling together the last three maps, we obtain a chain isomorphism

C
OrFH

(H)
∗ (X,A)⊗ROrFH

(H)HH
q (H/?)

∼=−−→ C
OrFG

(G)
∗

(
indG

H(X,A)
)
⊗ROrFG

(G)HG
q (G/?),

which induces the required isomorphism

indG
H : BHH

∗ (X,A)
∼=−−→ BHG

∗
(
indG

H(X,A)
)
.

In the same way, we can conclude that

indG
H : BH∗G

(
indG

H(X,A)
) ∼=−−→ BH∗H(X,A).

1.7 Linear Algebraic Groups
First, we recall the definition of a linear algebraic group; the reader who is interested
in details is advised to consult [10] and [49]. Then we prove for a semisimple p-adic
group G that morOrCO(G)(G/H,G/K) is a finite set. This is one of the ingredients for
the construction of our Chern character.

Let k be a field and I ⊆ k[X1, . . . , Xn] be a finitely generated ideal. It defines a
functor

G : k-algebras→ sets, R 7→ { (x1, . . . xn) ∈ Rn | P (x1, . . . , xn) = 0 ∀P ∈ I } .

Furthermore, suppose that we have algebraic maps

µ(k) : G(k)×G(k)→ G(k), (x, y) 7→ xy

i(k) : G(k)→ G(k), x 7→ x−1

such that G(k) becomes a group. By algebraic, we mean that there exist polynomials

f1, . . . , fn ∈ k[X1, . . . , Xn, X
′
1, . . . , X

′
n]

such that µ(k) is given by

µ(k)(p) =
(
f1(p), . . . , fn(p)

)
for p ∈ G(k)×G(k) ⊆ k2n
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and i(k) can be described analogously. This construction defines a functor

G : k-algebras→ groups, R 7→ { (x1, . . . xn) ∈ Rn | P (x1, . . . , xn) = 0 ∀P ∈ I } ,

which is called an algebraic group. In particular, we get the group G(k̄) for an algebraic
closure k ⊆ k̄ and obtain G(k̄) ⊆ k̄n for some n by construction. We say G is connected
if the group G(k̄) endowed with the Zariski topology is connected. The reason why we
pass to the algebraic closure is that the Zariski topology for a non-algebraically closed
field is a bit odd. For instance, for any field F the group GLn(F̄ ) is connected but for
a finite field F the group GLn(F ) ⊆ Fm is not connected. We remark that G(k̄) is
not in general a topological group because G(k̄) is T0 but may fail to be T2.

An example of an algebraic group is the general linear group which is defined by

GLn : k-algebras→ groups, R 7→ GLn(R).

An algebraic subgroup G of GLn is called linear algebraic. Let R be a k-algebra and
H ⊆ GLn(R) be a subgroup. We call H unipotent if h−1 ∈ GLn(R) is nilpotent for all
h ∈ H. Further, we call a connected linear algebraic group G a reductive group if G(k̄)
does not contain any non-trivial connected normal unipotent subgroup. Moreover, we
call G a semisimple group if G(k̄) does not contain any non-trivial connected normal
solvable subgroup. We remark that a semisimple group is reductive because unipotent
matrix groups are solvable (and even nilpotent) [22, 17.5 Cor.].

In the following, let k be a local field of characteristic 0, i.e., a finite extension of
Qp for a prime p. We denote by | · |p the absolute value of k.

We call G a linear algebraic p-adic group if G is linear algebraic over k. Since we
are mainly interested in G(k), we will identify G and G(k) in the sequel and endow
G = G(k) with the topology induced by k. In this way, G becomes a topological group.
If G is even connected as a linear algebraic group, then G is completely determined
by G(k), which is proven in [10, Cor. 18.3]. This motivates our identification.
Example 1.7.1. The groups GLn(k) and SLn(k) are reductive p-adic. Furthermore,
SLn(k) is semisimple p-adic. However, GLn(k) fails to be semisimple p-adic because
the center C(GLn(k̄)) = k̄× · 1n is a non-trivial connected normal solvable subgroup.
Here k̄× ⊆ k̄ denotes the group of units.
Proposition 1.7.2. Let G be a reductive p-adic group. Then G is unimodular.

Proof. Let k̄ be an algebraic closure of k. By [49, Sec. 8.1] there exists an algebraic
subgroup H ⊆ G with H(k̄) = [H(k̄),H(k̄)] such that

G(k̄) = H(k̄) · C(G(k̄)),

where C(G(k̄)) denotes the center of G(k̄). Consider the map

ϕ(k̄) : G(k̄) Ad−−→ aut(L(G(k̄))) det−−→ k̄×,

where Ad denotes the adjoint representation and L(G(k̄)) the Lie algebra of G(k̄).
Then ϕ(k̄) is trivial by the last equation as is ϕ(k), the restriction to k. We have the
identity ∆ = | · |p ◦ϕ(k) for the modular function ∆ by Bourbaki [11, Chap. III, §3.16,
Cor. to Prop. 55]. Hence ∆ is trivial and G is unimodular.
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Before we can state the next lemma, we need to make some definitions.

Definition 1.7.3. (i) Let G be a group and p a prime. Then G is called a pro-p
group if there exist finite p-groups Gi such that G = limi∈I Gi.

(ii) Let G be a group and n ∈ N. We set Gn = 〈{ gn | g ∈ G }〉.

(iii) Let H ⊆ K ⊆ G be subgroups. Then K is called H-characteristic if ϕ(H) ⊆
K holds for any given group homomorphism ϕ : H → G. We call K strongly
characteristic if K is H-characteristic for any subgroup H ⊆ K.

Lemma 1.7.4. Let G be a finitely generated pro-p-group. We define the lower p-series
by P1(G) = G and

Pi+1(G) = Pi(G)p[Pi(G), G] for i > 1.

Then {Pi(G) | i ≥ 1 } forms a basis of topology consisting of strongly characteristic
subgroups.

Proof. It is an immediate consequence of the definition that the groups Pi(G) are
strongly characteristic. The groups Pi(G) form a basis of topology by [18, Prop. 1.16].

Proposition 1.7.5. Let G be a linear algebraic p-adic group and H ⊆ G a closed
subgroup. Then H contains an open finitely generated pro-p group K such that for
any n ∈ N the group Kpn ⊆ K is open if p is odd, whereas K4n ⊆ K is open if p = 2.

Proof. Since GLn(k) is a Lie group over Qp, we can deduce by [18, Sec. 9.3, Thm. 8.32,
Thm. 3.6] that there exists an open finitely generated pro-p group K ⊆ H such that
Pn+1(K) = Kpn . Thus the assertion follows from the previous lemma.

Definition 1.7.6. Let G be a group and H,K ⊆ G be subgroups. Then we set

MG(H,K) =
{
g ∈ G

∣∣ gHg−1 ⊆ K
}
.

Proposition 1.7.7. Let G be a unimodular linear algebraic p-adic group. Let H ⊆
K ⊆ G be compact open subgroups and denote by C(G) ⊆ G the center of G. Then
the set MG(H,K)/C(G) is compact.

Proof. For simplicity we assume p is odd. Let H ⊆ K ⊆ G be compact open subgroups
and let N ⊆ K be an open finitely generated pro-p group as in the previous proposition.
Since [K : N ] <∞, there exists an open subgroup N ′ ⊆ N which is normal in K. We
obtain a short exact sequence

1→ N ′ → K
ϕ−→ K/N ′ → 1.

We consider the strongly characteristic subgroupKn, where [K : N ′] = n. We conclude
ϕ(Kn) = {1} and, consequently, Kn ⊆ N ′ ⊆ N . Let n = d · pk with p - d. Since N
is a pro-p group, we obtain N = Nd and, therefore, Npk ⊆ Kn. Thus Kn ⊆ N
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is open because Npk ⊆ N is open by the previous proposition. Therefore, we have
constructed a strongly characteristic open pro-p subgroup Kn in K. Moreover, Kn ⊆
N is finitely generated as an open subgroup of a finitely generated pro-p group by
[44, Prop. 2.5.5]. From the lower p-series we obtain arbitrarily small open strongly
characteristic subgroups Pi(Kn) ⊆ K. Since these groups are strongly characteristic,
we obtain an embedding MG(H,K) ⊆MG(Pi(Hn), Pi(Kn)). It is a closed embedding
because MG(H,K) ⊆ G and MG(Pi(Hn), Pi(Kn)) ⊆ G are closed. We get Pi(Kn) =
exp(U) for a sufficiently large i, where

exp: L(G) 99K G

is the exponential map, which is defined only on an open neighborhood of 0. Since
Pi(Kn) is compact, we can assume that U ⊆ L(G) is an o-subalgebra of the Lie
algebra L(G), where o = {x ∈ k | ‖x‖ ≤ 1 } is the ring of integers. We have the
adjoint representation

Ad : G→ aut(L(G)) ⊆ {A ∈ GLj(k) | |detA|p = 1 } .

Here, we can restrict to matrices with determinant 1 because G is unimodular and

1 = ∆(g) = |det(Ad(g))|p

by Bourbaki [11, Chap. III, §3.16, Cor. to Prop. 55]. Zariski closed sets can be de-
scribed as intersections of preimages p−1

i (0) for polynomials pi ∈ k[X1, . . . , Xl]. Since
polynomials define continuous maps in the p-adic topology, Zariski closed sets are
closed in p-adic topology. Hence the Zariski topology is a coarser topology than the
p-adic topology. Since Ad is an algebraic map, it has a closed image in the Zariski
topology [10, Chap. I, Cor. 1.4] and, therefore, also in p-adic topology. The kernel of
Ad is ker(Ad) = C(G) by [10, Chap. I, 3.15], thus C(G(?)) is a linear algebraic group.
Now we can divide out the kernel (in the category of linear algebraic groups (see [10,
Sec. 6])) and get the quotient group Q(?). We remark that G(R)/C(G(R)) ⊆ Q(R)
and equality does not hold in general, but it does for an algebraic closure R = k̄.
Moreover, the p-adic topology of G(k̄)/C(G(k̄)) is just the quotient topology. Now Ad
induces a bĳective map of linear algebraic groups

Ad′ : G(k̄)/C(G(k̄))→ imAd(k̄).

Since bĳective maps of linear algebraic groups are isomorphisms [49, Sec. 5.3], the
inverse map essentially is a polynomial and thus continuous in the p-adic topology.
Consequently, Ad′ is a homeomorphism with respect to the p-adic topology. Since
G/C(G) = G(k)/C(G(k)) ⊆ Q(k) ⊆ Q(k̄) = G(k̄)/C(G(k̄)), the restriction to
G/C(G) yields a homeomorphism. Thus, the map

Ãd : G/C(G)→ GLj(k)

is a closed embedding. Hence, preimages of compact sets are compact. We obtain

Ãd
(
MG(Pi(Hn), Pi(Kn))/C(G)

)
⊆
{
f ∈ aut(L(G))

∣∣ |det(f)|p = 1 and f(U ′) ⊆ U
}
,

40



1.7 Linear Algebraic Groups

where we set U ′ = exp(Pi(Hn)). We can consider L(G) = kj′ as a k-vector space and,
consequently, as a (finite dimensional) Qp-vector space L(G) = Qj

p because k/Qp is
a finite extension. Using this identification, we can assume L(U) = Zj

p and L(U ′) =
⊕j

i=1p
kj Zp. We set pm = max

{
pk1 , . . . , pkj

}
and conclude{

f ∈ aut(L(G))
∣∣ |det(f)|p = 1 and f(U ′) ⊆ U

}
⊆

{
A ∈ GLj(Qp)

∣∣∣∣∣ |det(A)|p = 1 and A
( j⊕

i=1

pkj Zp

)
⊆ Zj

p

}

⊆

A =

a11 · · · a1j
...

...
aj1 · · · ajj


∣∣∣∣∣∣∣ |det(A)|p = 1 and |amn|p ≤ pm, 1 ≤ m,n ≤ j

 .

Since the latter term is a closed subset of the (j×j)-matrices Mj( 1
pm

Zp), it is compact.
Thus the image Ãd(MG(Pi(Hn), Pi(Kn)/C(G)) is compact, which implies that the
preimage MG(Pi(Hn), Pi(Kn)/C(G) is compact. This means that MG(H,K)/C(G) is
also compact, as required.

Corollary 1.7.8. Let G be a unimodular linear algebraic p-adic group. Let H,K ⊆ G
be compact open subgroups. If the center C(G) is compact, then MG(H,K) is also
compact. In particular, the morphism sets

morOrCO(G)(G/H,G/K) = M(H,K)/K

are finite.

If G is not unimodular, the corresponding statement from above does not hold:
Example 1.7.9. We consider the group

G =
{(

a b
0 a−1

) ∣∣∣∣ a, b ∈ Qp, a 6= 0
}

of Example 1.2.20. Its center is C(G) = {±1 } and G is a linear algebraic p-adic group.
However, G is not unimodular and OrCO(G) is not an EI-category. By Lemma 1.2.23,
the morphism sets cannot be finite.

However, there exist non-unimodular groups with finite morphism sets:
Example 1.7.10. The group of Example 1.2.19 is not unimodular but it is a linear
algebraic p-adic group, has trivial center, and OrCO(G) is an EI-category. We can
deduce by the discussion at the end of Example 1.2.22 that for compact open subgroups
H ⊆ K ⊆ G the set

{ |detAd(g)|p | c(g) : H → K, g ∈ G } ⊆ Qp

is closed. Therefore, the proof of Proposition 1.7.7 carries over directly and the mor-
phism sets are finite.
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Since reductive p-adic groups are unimodular, we can deduce by Lemma 1.2.18:

Corollary 1.7.11. Let G be a reductive p-adic group. Then SubCO(G) is an EI-
category with finite morphism sets. If the center of G is compact, the orbit category
OrCO(G) also has finite morphism sets.

Corollary 1.7.12. Let G be a semisimple p-adic group. Then OrCO(G) is an EI-
category and the morphism sets morOrCO(G)(G/H,G/K) are finite for compact open
subgroups H,K ⊆ G.

Proof. Since semisimple p-adic groups are reductive p-adic groups, it suffices to show
that the center of G is finite.

The center C(G) is again an algebraic group. Let k̄ be an algebraic closure of k.
Obviously, we obtain C(G) ⊆ C(G(k̄)). Thus it suffices to show that C(G(k̄)) is finite.
The connected components of C(G(k̄)) are trivial because G is semisimple. Therefore,
C(G(k̄)) is a 0-dimensional variety and hence finite. Now we can apply the previous
corollary which implies that the morphism sets are finite.

The great benefit of reductive p-adic groups is the following celebrated result by
Bruhat and Tits [12]

Theorem 1.7.13. Let G be a reductive p-adic group. Then there exists a simplicial
complex βG which is a model for EG. Furthermore, G acts simplicially on βG.

The complex βG is called the affine Bruhat-Tits building of G.

Example 1.7.14. Let G = SL2(Qp). Up to conjugacy, there are the following maximal
compact subgroups

K0 = SL2(Zp) and K0 =
{(

a pb
p−1c d

)
∈ G

∣∣∣∣ a, b, c, d ∈ Zp

}
.

We set I = K0∩K1. Then βG is the tree of Figure 1.1 whose vertices correspond to sub-
groups conjugated to K0 or K1 and whose edges correspond to subgroups conjugated
to I. The action of G on βG is given by conjugation.

Figure 1.1: The affine Bruhat-Tits building of SL2(Qp)
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In the previous chapter, we defined equivariant (co)homology theory. However, we have
not given any examples yet. This is the purpose of this chapter. In the first section, we
introduce the Borel construction and prove that this is an equivariant (co)homology
theory with a Mackey structure on coefficients. In the second section, we introduce
equivariant bivariant K-theory, collect its basic properties and we show that it can
be used to define an equivariant (co)homology theory with a Mackey structure on
coefficients. At the end of the second section, we define cosheaf homology, which has
the same coefficients as K-theory. We identify it with an appropriate Bredon homology.
Cosheaf homology is a kind of simplicial version of Bredon homology and thus more
accessible if we are dealing with simplicial complexes.

In the following, we will only consider (G,F)-CW-complexes instead of (G,F)-CW-
pairs for simplicity. We can do that by the following argument. Let (X,A) be a
(G,F)-CW-pair. Then the canonical inclusion A ↪→ X is a G-cofibration and we
obtain HG

∗ (X,A) = HG
∗ (X/A) for any (G,F)-homology theory HG

∗ . This is just like
in the classical case.

2.1 Borel Construction
We obtain a G-homology theory with values in Z-modules

HG
∗ (X) := Hn(EG×G X),

where Hn(EG ×G X) is the singular homology with rational coefficients of the Borel
construction EG×G X.

Note that EG×GX does not necessarily have the homotopy type of a CW-complex.
If we take X = G, then EG×G G is EG. After forgetting the group action, EG does
not in general have the homotopy type of a CW-complex. For instance, if G is an
l-group, then EG has the homotopy type of a CW-complex if and only if G is discrete
(see [33, Sec. 1]). However, if X → Y is an inclusion of G-CW-complexes and hence a
G-cofibration, then EG×G X → EG×G Y is a cofibration and excision for HG

∗ holds.
Let F? be a collection of families of subgroups. Note that HG

∗ is the evaluation of
an equivariant F?-homology theory at G because the necessary induction structure
exists by the following argument. Let α : H → G be an injective homomorphism of
topological groups. Let X be an (H,FH)-CW-complex. Then the G-space G ×α X
obtained by induction with α is a (G,FG)-CW-complex. There is a G-map G ×α

EH → EG which is unique up to G-homotopy. Composing it with the obvious map
EH → G ×α EH, e 7→ (1, e) yields an α-equivariant map fα : EH → EG. It induces
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a map
fα : EH ×H X → EG×G G×α X, (e, x) 7→ (fα(e), 1, x).

We define the induction homomorphism

indα : HH
n (X)→ HG

n (G×α X)

to be the map Hn(fα).
The map fα is a weak homotopy equivalence. It suffices to prove this in the special

case X = H/K, in which the claim follows from the fact that α induces an isomorphism
of topological groups K → α(K) because α is injective. It is still an isomorphism if
ker(α) acts freely on H/K. This is the more general notion of induction structure
we mentioned in Remark 1.5.9. Although we do not need this general setting for the
upcoming Chern character, we do need this general setting in Example 4.3.2. In this
case, we must generalize the definition of a collection of families of subgroups (Defin-
ition 1.5.5) and also take homomorphisms like α into account (see also Lemma 1.4.6
and Remark 1.4.7).

The previous considerations carry over directly to the cohomological version of the
Borel construction, i.e., to

H∗G(X) := H∗(EG×G X).

Thus, H∗G is an equivariant F?-cohomology theory.
Proposition 2.1.1. Let F be a smooth family such that [H : K] < ∞ for every
H,K ∈ F . Then the Borel construction has a Mackey structure on coefficients.

Proof. Let H,K ∈ F and let α : H → K be an open embedding such that [K :
α(H)] <∞. Then indα : BH → BK is a finite covering space. We want to construct
a transfer map trα : H∗(BK)→ H∗(BH) as in the case of discrete groups. We remind
the reader that there exists an isomorphism HU

∗ (X) → H∗(X). Here, U = (Ui)i∈I is
an open cover and HU

∗ (X) denotes the homology groups of the singular chain complex
in which we only consider those simplices which are contained in Ui for some i ∈ I.
Since indα : BH → BK is a finite covering space, we can choose an open cover U =
(U1, . . . , Un) such that indα |Ul

is a homeomorphism for i = 1, . . . , n. Let f : ∆k → BK
be a simplex such that im f ⊆ Ul for some l. Then we can lift f to a map f̃ : ∆k → BH.
This lift is not unique but depends on the chosen base point. If we sum up the distinct
lifts, this defines a map on homology

trα : H∗(BK)→ H∗(BH).

Obviously, we obtain indα trα = n · id for [K : α(H)] = n, and the proof of the double
coset formula is pretty much the same as in the well known case of discrete groups.
Nevertheless, I want to carry it out. Recall the double coset formula:

trK
G indG

H x =
∑

KgH∈K\G/H

indc(g) : H∩g−1Kg→K ◦ trH∩g−1Kg
H x

=
∑

KgH∈K\G/H

indK
K∩gHg−1 trK∩gHg−1

gHg−1 gx
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for x ∈ H∗(BH). Let U = (U1, . . . , Un) be an open cover of BH such that indG
H |Uk

and
indK

K∩gHg−1 |Uk
are homeomorphisms for all k. Then we can restrict to those simplices

which lie entirely in some Uk and “forget” the induction maps. Consequently, we get

trK
G indG

H x =
∑

[g]∈G/K

gx

for the left hand side and ∑
KgH∈K\G/H

∑
[h]∈(gHg−1)/(K∩gHg−1)

ghx

for the right hand side. We deduce that both sides coincide and get the double coset
formula.

Furthermore, conjugation induces the identity on H∗(BG) by the following argu-
ment. By the slice theorem [28, Thm. 1.37] there exists for every x ∈ EG an open
neighborhood x ∈ U such that G× (U/G) and U are G-homeomorphic. Let U be an
open cover of EG which consists of such open subsets and denote by U ′ the correspond-
ing open cover of BG. Let CU∗ (EG) be the singular chain complex in which we only
consider those simplices which are contained in some U ∈ U . Analogously, we define
CU

′
∗ (BG). Let C∗(G) and C∗(EG) be the singular chain complexes of G and EG.

Then CUn (EG) and Cn(EG) are free Cn(G)-modules, where the multiplication is given
by pointwise multiplication. The non-unital ring C(G) = ⊕n∈NCn(G) is obviously
projective in C(G)-mod. Consequently, CUn (EG) and Cn(EG) are projective C(G)-
modules, multiplication with f ∈ Ck(G) for k 6= n being trivial. Since EG is weakly
contractible, CU∗ (EG) and C∗(EG) are projective C(G)-resolutions of Z. An immedi-
ate consequence is that H∗(CU∗ (EG)⊗C(G) Z) ∼= H∗(C∗(EG)⊗C(G) Z). The canonical
projection pr: EG → BG induces an isomorphism pr: CUn (EG) ⊗C(G) Z → CU

′
n (BG)

and hence an isomorphism

pr∗ : H∗(C∗(EG)⊗C(G) Z)
∼=−→ H∗(BG).

Now we consider the map fc(g) : EG → EG from above. Let i : resc(g)C∗(EG) →
C∗(EG) be the identity. Then (fc(g))∗i−1 : C∗(EG)→ resc(g)C∗(EG) and

mg : C∗(EG)→ resc(g)C∗(EG), x 7→ gx

are C(G)-homomorphisms. We obtain mg − (fc(g))∗i−1 = dh + hd for some C(G)-
homotopy h by the the fundamental lemma, where d denotes the boundary maps
in C∗(EG). Thus we get mgi − (fc(g))∗ = idh + ihd, which induces a trivial map
in H∗(C∗(EG) ⊗C(G) Z). Hence we can compute H∗(fc(g)) : H∗(BG) → H∗(BG) by
H∗(mgi) : H∗(BG)→ H∗(BG). Obviously, we obtain H∗(mgi) = id, whence it follows
that H∗(fc(g)) = id, as required.

The cohomological case is analogous.

Remark 2.1.2. Since indϕ trϕ = n·id, the transfer map is always injective and induction
is at least rationally surjective.
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Remark 2.1.3. Let G be an l-group and denote by Gd the corresponding discrete group.
Then we obtain EG = EGd oGd

G by a result of Lück and Meintrup [33, Cor. 3.5].
For a G-CW-complex X we get

EGoG X ' EGd oGd
GoG X ' EGd oGd

resGd
G X.

Thus the classifying space “cannot” distinguish between an l-group and the correspond-
ing discrete group. As an immediate consequence, we obtain

H1(BG) = G/[G,G]

for an l-group G.

2.2 Equivariant Bivariant K-theory
The Borel construction is a “classical” (co)homology theory, i.e., it has only one ar-
gument and G-CW-complexes as input. Equivariant bivariant K-theory KKG

∗ is of
a quite different nature. The origins of equivariant bivariant K-theory stem from
operator theory. For instance, it has G-C∗-algebras as input. Furthermore, equivar-
iant bivariant K-theory has two arguments. It is a functor contravariant in the first
and covariant in the second argument. The complex valued functions C0(X) on a
G-CW-complex X which vanish at infinity form a G-C∗-algebra. Therefore, we can
study KKG

∗ (C0(?), A) or KKG
∗ (A,C0(?)), respectively, for a G-C∗-algebra A. Unfor-

tunately, these functors fail to be equivariant (co)homology theories. After applying
some modifications, however, we obtain equivariant (co)homology theories.

First, we give a very brief survey of G-C∗-algebras and equivariant bivariant K-
theory; the reader who is interested in details is advised to consult [9] and [17].

In the following, G denotes a locally compact second countable topological group.

Definition 2.2.1. A C∗-algebra A is a Banach algebra together with a continuous
map ∗ : A → A called involution such that for all λ ∈ C and x, y ∈ A the following
holds:

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗, (λx)∗ = λ̄x∗, (x∗)∗ = x and ‖x∗x‖ = ‖x‖2.

A morphism of C∗-algebras, also called ∗-homomorphism, f : A → B is a linear map
such that f(a∗) = f(a)∗ holds for every a ∈ A. A G-C∗-algebra A is a C∗-algebra
together with a continuous homomorphism from G to aut(A), where we endow aut(A)
with the topology of pointwise norm-convergence.

Example 2.2.2. (i) Given a Hilbert space H, the algebra of bounded operators B(H)
is a C∗-algebra, as is every closed subalgebra of B(H). Here, we endow B(H)
with the topology which is induced by the operator norm. Finally, a (norm
continuous) representation of G on H turns every G-invariant closed subalgebra
A ⊆ B(H) into a G-C∗-algebra.
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(ii) The multiplication map

µ : G× L2(G)→ L2(G), (g, x) 7→ g · x

defines an embedding CG ⊆ B(L2(G)). The closure C∗r (G) of CG in B(L2(G))
is called the reduced group C∗-algebra of G.

(iii) Let X be a locally compact topological space and C0(X) the algebra of (complex
valued) continuous functions vanishing at infinity. Then C0(X) together with
the norm

‖f‖ = sup
p∈X
|f(p)|

is a commutative C∗-algebra. A continuous G-action on X induces a correspond-
ing action on C0(X) which turns C0(X) into a G-C∗-algebra. Conversely, for
every commutative G-C∗-algebra A there exists a locally compact G-space such
that A ∼= C0(X) as G-C∗-algebras.

Definition 2.2.3. A graded C∗-algebra is a C∗-algebra A together with a decomposi-
tion A = A(0) ⊕A(1) into closed ∗-invariant subspaces such that A(m) ·A(n) ⊆ A(m+n).
An element in A(n) is said to be homogeneous of degree n. A graded G-C∗-algebra is
a C∗-algebra together with an action of G by graded ∗-automorphisms.

Definition 2.2.4. Let B be a graded C∗-algebra. A graded pre-Hilbert B-module is a
graded right B-module E = E(0)⊕E(1) together with a graded B-valued inner product
〈·, ·〉 : E(m) × E(n) → B(m+n) which satisfies

(i) 〈·, ·〉 is sesquilinear,

(ii) 〈x, ya〉 = 〈x, y〉 a for all x, y ∈ E and a ∈ A,

(iii) 〈x, y〉 = 〈y, x〉∗ for all x, y ∈ E and

(iv) 〈x, x〉 ≥ 0, with equality if and only if x = 0.

For x ∈ E, we set ‖x‖ =
√
‖ 〈x, x〉 ‖; if E is complete with respect to this norm, it is

called a graded Hilbert B-module.

Remark 2.2.5. A Hilbert C-module is just a Hilbert space.

Definition 2.2.6. Let B be a (graded) G-C∗-algebra and E a (graded) Hilbert B-
module. A G-action on E consists of a representation of G on E by bounded (graded)
linear transformations such that

g · (xb) = (g · x)(g · b) and g · 〈x, y〉 = 〈g · x, g · y〉

for all g ∈ G, b ∈ B and x, y ∈ E. A (graded) Hilbert B-module with such an action
will be called a (graded) Hilbert (B,G)-module.
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Definition 2.2.7. Let E be a Hilbert B-module. We denote by L(E) the set of
all module homomorphisms T : E → E for which there exists an “adjoint” module
homomorphism T ∗ : E → E satisfying

〈Tx, y〉 = 〈x, T ∗y〉 ∀x, y ∈ E.

Remark 2.2.8. (i) Actually, the assumption that T and T ∗ are module homomor-
phisms is unnecessary since homomorphisms with adjoints are automatically
module homomorphisms.

(ii) As in the case of Hilbert spaces, the existence of an adjoint is enough to ensure
that T is a bounded operator on the Banach space E. The converse, however, is
no longer true.

Lemma 2.2.9. The set L(E) has a C∗-algebra structure. Moreover, the decomposition
L(E) = L(0)(E)⊕ L(1)(E) given by

L(E)(n) =
{
T ∈ L(E)

∣∣∣ T (E(m)) ⊆ E(m+n)
}

provides L(E) with a structure of a graded C∗-algebra. We call operators in L0(E)
even and operators in L1(E) odd.

Definition 2.2.10. Let K(E) be the closed linear span of

{ θx,y ∈ L(E) | θx,y(z) = x 〈y, z〉 } ⊆ L(E).

Remark 2.2.11. Let E be a Hilbert C-module. Then E is a Hilbert space by Re-
mark 2.2.5 and K(E) are the compact operators.

Lemma 2.2.12. The Banach space K(E) is a C∗-algebra.

Definition 2.2.13. Let A and B be graded G-C∗-algebras.

(i) An even Kasparov G-module for (A,B) is a triple (E, φ, F ) consisting of a (count-
ably generated) graded Hilbert (B,G)-module E, a graded ∗-homomorphism
φ : A→ L(E) and an operator F ∈ L1(E) such that

F ◦ φ(a)− φ(a) ◦ F, (F 2 − 1)φ(a), (F − F ∗)φ(a) and (gF − F )φ(a)

lie in K(E) for all a ∈ A and g ∈ G. The collection of all even Kasparov
G-modules will be denoted by EG

0 (A,B).

(ii) An odd Kasparov G-module for (A,B) is a triple (E, φ, F ) which satisfies the
above conditions but without grading. The collection of all odd Kasparov G-
modules will be denoted by EG

1 (A,B)
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Definition 2.2.14. Let (Ei, φi, Fi)i=0,1 ∈ EG
∗ (A,B).

(i) If there exists a (graded) unitary u : E0 → E1 which intertwines φi and Fi, we
call (Ei, φi.Fi)i=0,1 unitary equivalent and write

(E0, φ0, F0) ∼u (E1, φ1, F1).

(ii) Suppose there exists a Kasparov G-module (E, φ, F ) ∈ EG
∗ (A,B[0, 1]) such that

(evi)∗(E, φ, F ) ∼u (Ei, φi, Fi) for i = 0, 1, (2.2.14.1)

where evt denotes the canonical evaluation at t ∈ [0, 1]. Then we write

(E0, φ0, F0) ' (E1, φ1, F1)

and call (Ei, φi, Fi)i=0,1 G-homotopic.

The corresponding groups KKG
∗ (A,B) = EG

∗ (A,B)/' are called equivariant bivariant
K-theory. If G is trivial, we will often write KK∗(A,B) instead of KK{1}

∗ (A,B).

Theorem 2.2.15. Bivariant equivariant K-theory has the following properties:

(i) There is a composition product

KKG
i (A,B)⊗KKG

j (B,C)→ KKG
i+j(A,C).

(ii) Each homomorphism ϕ : A → B defines an element KKG(ϕ) in the group
KKG

0 (A,B). If ψ : B → C is another homomorphism, then KKG(ψ ◦ ϕ) =
KKG(ψ) ◦ KKG(ϕ). The functor KKG

∗ (A,B) is a contravariant functor in A
and a covariant functor in B. For given homomorphisms α : A1 → A2 and
β : B1 → B2, the induced maps are given by left multiplication by KKG(α) and
right multiplication by KKG(β).

(iii) The functor KKG
∗ is invariant under G-homotopies in both variables.

(iv) Stability
The canonical inclusion inc : A→ K⊗A defines an invertible element KKG(inc).
In particular, we get isomorphisms

KKG
∗ (A,B) ∼= KKG

∗ (K ⊗A,B) and KKG
∗ (A,B) ∼= KKG

∗ (A,K ⊗B)

(K denotes the compact operators on a separable infinite dimensional Hilbert
space here).

(v) Bott periodicity
There are canonical elements in KKG

1 (A,SA) and in KKG
1 (SA,A) which are

inverse to each other (recall that SA = C0(R) ⊗ A, where G acts trivially on
C0(R)).
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Theorem 2.2.16. Let D be a separable G-C∗-algebra. Every extension of G-C∗-
algebras admitting a completely positive linear (not necessarily equivariant) splitting

0→ I → A→ B → 0

induces exact sequences of the following form:

KKG
0 (D, I) // KKG

0 (D,A) // KKG
0 (D,B)

��

KKG
1 (D,B)

OO

KKG
1 (D,A)oo KKG

1 (D, I)oo

and
KKG

0 (B,D) // KKG
0 (A,D) // KKG

0 (I,D)

��

KKG
1 (I,D)

OO

KKG
1 (A,D)oo KKG

1 (B,D)oo

If B is commutative, a completely positive linear (non equivariant) splitting is given
by [9, Thm. 15.8.2/3].

Definition 2.2.17. A functor

FG : G-C∗-algebras×G-C∗-algebras→ Z-mod

with the previous property is called excisive or sometimes split exact.

Equivariant bivariant K-theory can be viewed as an additive category KKG with
separable G-C∗-algebras as objects and KKG

0 (A,B) as the set of morphisms between
two objects A and B. Composition of morphisms is given by the product. There is
a canonical functor P : G-C∗-algebras → KKG which is the identity on objects and
sends equivariant ∗-homomorphisms to the corresponding KK-elements. Equivariant
bivariant K-theory satisfies the following universal property [52]:

Theorem 2.2.18. An additive functor F from G-C∗-algebras into an additive cate-
gory A factorizes uniquely over KKG if and only if it is homotopy invariant, stable and
excisive. That is, given such a functor F, there exists a unique functor τ : KKG → A
such that F = τ ◦ P .

Now we have the machinery to define some (G,F)-(co)homology theories.

Theorem 2.2.19. Let A be a G-C∗-algebra and F be any family of subgroups. Then
the functors

K
(G,A)
∗ (?) : (G,F)-CW-complexes→ Z-mod, X 7→ colim

Y⊆X G-compact
KKG

∗ (C0(Y ), A)

K∗
(G,A)(?) : (G,F)-CW-complexes→ Z-mod, X 7→ KKG

∗ (A,C0(X))

define a (G,F)-(co)homology theory.
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2.2 Equivariant Bivariant K-theory

Proof. By Theorem 2.2.15, we get G-homotopy invariance and the existence of a sus-
pension isomorphism. We can deduce Mayer-Vietoris by Theorem 2.2.16. Moreover,
K

(G,A)
∗ satisfies the disjoint union axiom automatically by construction.
These conditions are equivalent to the Eilenberg-Steenrod axioms given in Defini-

tion 1.5.1.

Remark 2.2.20. We must do the colimit construction in order to ensure that K(G,A)
∗

satisfies the disjoint union axiom. The naive approach does not satisfy the disjoint
union axiom by [9, Thm. 19.7.1].

Definition 2.2.21. Let ϕ : H → G be an embedding and A be a G-C∗-algebra. The
restricted algebra resϕA is an H-C∗-algebra, where resϕA = A as C∗-algebras and the
H-action is given by

h · a = ϕ(h)a, h ∈ H, a ∈ A.

IfH ⊆ G is a subgroup, we write resH
G A = resincA for the canonical inclusion inc : H →

G. Let B be another G-C∗-algebra. As an immediate consequence of the previous
construction, we obtain the restriction homomorphism

resϕ : KK∗
G(A,B)→ KK∗

H(resϕA, resϕB),

which is natural and compatible with boundary maps.

Definition 2.2.22. Let ϕ : H → G be a closed embedding and A be an H-C∗-algebra.
Then we can define the induced algebra indϕA as{

f ∈ Cb(G,A)
∣∣∣ hf(s)=f(sϕ(h−1)) ∀s∈G, h∈H

and (sϕ(H) 7→‖f(s)‖∈C0(G/ϕ(H))

}
together with pointwise multiplication and the supremum norm. If H ⊆ G is a closed
subgroup, we write indG

H A = indincA for the canonical inclusion inc : H → G.

Remark 2.2.23. Let ϕ : H → G be a closed embedding and A an H-C∗-algebra. If A =
C0(X) holds for a locally compact H-space X, then we get indϕC0(X) = C0(G×ϕX).

Kasparov (see [24, Chap. 3] and [25, Chap. 5]) constructed the following induction
map:

Theorem 2.2.24. Let ϕ : H → G be a closed embedding and A,B be H-C∗-algebras.
There exists an induction homomorphism

indϕ : KKH
∗ (A,B)→ KKG

∗ (indϕA, indϕB)

which is natural and compatible with the boundary map.

Proof. We only sketch the construction.
Suppose that x ∈ KKH

∗ (A,B) is represented by a Kasparov triple (E, φ, T ). Similar
to the construction of the induced algebras, we can form the induced indϕ-Hilbert
module indϕE as the set{

ξ ∈ Cb(G,E)
∣∣∣ h(ξ(s))=ξ(sϕ(h−1)) for all s∈G, h∈H

and sϕH 7→‖ξ(s)‖∈C0(G/ϕ(H))

}
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2 Equivariant (Co)Homology Theories

equipped with the pointwise actions and inner products. Pointwise action on the left
provides an obvious induced representation indϕ : indϕA → L(indϕE). Using a cut-
off function c : G → [0,∞) for the right translation action of ϕ(H) on G, Kasparov
constructs an operator T̃ ∈ L(indϕE) by the formula

T̃ ξ(g) =
∫

H
c
(
gϕ(h)

)
h
(
T (ξ(gϕ(h)))

)
dh, ξ ∈ indϕE

to obtain a G-Kasparov module (indϕE, indϕ φ, T̃ ) which represents the element

indϕ x ∈ KKG
∗ (indϕA, indϕB).

Definition 2.2.25. Let ϕ : H → G be a cocompact embedding, i.e., G/ϕ(H) is com-
pact. Then we have a canonical inclusion

F : A = A⊗ 1 ⊆ A⊗ C0(G/ϕ(H)) ∼= indϕ resϕA.

Now we can define the induction by ϕ by

indϕ : KKH
∗ (resϕA,B)

indϕ−−−→ KKG
∗ (indϕ resϕA, indϕB) F ∗−−→ KKG

∗ (A; indϕB).

Let ϕ : H → G be an open embedding. We have a canonical inclusion

G : A→ resϕ indϕA, G(a)(g) =

{
g−1(a), if g ∈ ϕ(H),
0, if g /∈ ϕ(H).

The compression map with respect to ϕ is defined by

compϕ : KKG
∗ (indϕA,B)

resϕ−−→ KKH
∗ (resϕ indϕA, resϕB) G∗−−→ KKH

∗ (A, resϕB).

Theorem 2.2.26. Let ϕ : H → G be an open embedding. Then the map compϕ is
an isomorphism and the inverse (compϕ)−1 induces an induction structure on K

(?,C)
∗ .

Hence K(?,C)
∗ is an equivariant O-homology theory.

Let ϕ : H → G be cocompact. Then the map indϕ is an isomorphism and the inverse
defines an induction structure on K∗

(?,C), thus K∗
(?,C) is an equivariant COC-cohomology

theory.

Proof. The map compϕ is an isomorphism by a result of Chabert and Echterhoff [14,
Prop. 5.14]. Since H-compact subspaces of an H-space X correspond to G-compact
subspaces of indϕX, we can neglect the colimit which appears in the construction of
K

(?,C)
∗ . Consequently, compϕ induces an isomorphism K

(G,C)
∗ (indϕ?)→ K

(?,C)
∗ (?).

The other case is well-known but lacks a proper reference. Thus we want to sketch
the proof. For simplicity, we assume that H ⊆ G is cocompact. Our candidate for the
inverse map is

ϕH
G : KKG

∗ (A, indG
H B)

resH
G−−−→ KKH

∗ (resH
G A, resH

G indG
H B) F∗−→ KKH

∗ (resH
G A,B),
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2.2 Equivariant Bivariant K-theory

where F is the map
F : indG

H B → B, f 7→ f(e).

An immediate consequence is the identity ϕH
G ◦indG

H = id. In order to show indG
H ◦ϕH

G =
id, consider a Kasparov triple (Ẽ, ϕ̃, T̃ ) ∈ KKG(A, indG

H B). We just show the asser-
tion for Ẽ. It suffices to show the identity

indG
H(Ẽ ⊗indG

H B B) = Ẽ,

where B is considered as a (indG
H B,G)-module by f · b = f(e) · b. We get a map

α : Ẽ ⊗indG
H B indG

H B → indG
H

(
Ẽ ⊗indG

H B B
)
, e⊗ f 7→

(
g 7→ g−1e⊗ f(g)

)
.

It is easily checked that α respects the scalar product for elementary tensors. Thus α
respects the scalar product and is injective. Let φ ∈ C0(G/H), then we obtain

α
(
φ · (e⊗ f)

)
= α

(
e⊗ (φ · f)

)
=(

g 7→ g−1e⊗
(
φ(g)f(g)

))
=
(
g 7→ φ(g)

(
g−1e⊗ f(g)

))
= φ · α(e⊗ f).

Furthermore, the evaluation

αg : Ẽ ⊗indG
H B indG

H B → Ẽ ⊗indG
H B B, e⊗ f 7→ g−1e⊗ f(g)

is clearly surjective. Using a partition of unity argument, we can deduce that α is
surjective.

Besides being an isomorphism, there are three other properties an induction struc-
ture must satisfy. However, these properties are clearly satisfied in both cases.

Remark 2.2.27. Let ΓG ⊆ TGFI be the full subcategory with subgroups of G as objects.
Let A be a G-C∗-algebra, then

K
(H,A)
∗ (X) = K

(H,resH
G A)

∗ (X)

assembles to an equivariant (ΓG,O)-homology theory K(?,A)
∗ analogously to the above

considerations.
If F = I, then K

(?,C)
∗ and K∗

(?,C) are both equivariant I-(co)homology theories. In
our second main example F = CO, we get an equivariant proper smooth homology
theory K(?,C)

∗ but K∗
(?,C) fails to be an equivariant proper smooth cohomology theory.

Even in the simplest case, the corresponding groups are not isomorphic.
Example 2.2.28. Let H = { 0 }, G = Z and X = {•}. Then we get

K0
({0},C)({•}) = Z and K0

(Z,C)(C0(Z)) = 0.

Since the first identity is clear, it remains to show the second one. Let C0(R)f be the
Z-C∗-algebra with the Z-action being given by translation and C0(R)t be the Z-C∗-
algebra with trivial Z-action. Analogously to the classical case, we get Bott periodicity
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2 Equivariant (Co)Homology Theories

for C0(R)f (see [25, Chap. 5]). Thus C and C0(R)f ⊗C0(R)t are KKZ-equivalent and
we obtain

KKZ
∗ (C, C0(Z)) = KKZ

∗ (C0(R)f ⊗ C0(R)t, C0(Z)).

With the aid of Bott periodicity, we can conclude

KKZ
∗ (C0(R)f ⊗ C0(R)t, C0(Z)) = KKZ

∗ (C0(R)f , C0(R)t ⊗ C0(Z)).

However, R with the Z-action given by translation is just R = EZ, the classifying
space of Z. Therefore Baum-Connes and Bott periodicity leads to

KKZ
0 (C0(R)f , C0(R)t⊗C0(Z)) = KK0(C, C0(R)t⊗C0(Z)oZ) = KK1(C, C0(Z)oZ).

We obtain from the Pimsner-Voiculescu exact sequence [9, Thm. 10.2.1] an exact
sequence

KK1(C, C0(Z))→ KK1(C, C0(Z) o Z)→ KK0(C, C0(Z)) id−s∗−−−−→ KK0(C, C0(Z)),

where s : Z → Z sends n ∈ Z to n + 1. We have C0(Z) = ⊕n∈ZC, where ⊕ denotes
the direct sum of C∗-algebras. Since KKi(C, ?) is compatible with direct sums by [45,
Prop. 7.13], we obtain KKi(C, C0(Z)) = ⊕n∈ZKKi(C,C) and an exact sequence

0→ KK1(C, C0(Z) o Z)→
⊕
n∈Z

Z id−s∗−−−−→
⊕
n∈Z

Z,

where s∗ is a shift of factors. Hence id−s∗ is injective and we obtain

K0
(Z,C)(C0(Z)) = KK1(C, C0(Z) o Z) = 0.

In the case of K(?,C)
∗ , an induction structure is only given for open subgroups. There

need not be an induction structure for non-open subgroups:
Example 2.2.29. Let H = { 0 }, G = R and X = {•}. Then we obtain

K
({0},C)
0 ({•}) = Z and K

(R,C)
0 (R) = 0.

The first identity is clear. Moreover, we have

K
(R,C)
0 (R) = KKR

0 (C0(R),C) = KK0(C0(R),C) = 0,

where the middle identity is a result of Kasparov [24, Cor. 5.7].
It is very unsatisfactory that we do not have an adequate K-theory for F = CO yet.

So let us have another try.

Definition 2.2.30. Let EG = ECOPG be the classifying space of proper actions.
Then we define

K∗
G(X) = colim

Y⊆EG G-compact
KKG

∗ (C0(Y ), C0(X)).
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Let ϕ : H → G be a closed embedding. Then we get an induction structure by

indϕ : K∗
H(X) = colim

Y⊆EH H-compact
KKH

∗ (C0(Y ), C0(X))

indϕ−−−→ colim
Y⊆EH H-compact

KKH
∗ (C0(G×ϕ Y ), C0(G×ϕ X))

F−→ colim
Ỹ⊆EG G-compact

KKG
∗ (C0(EG), C0(G×ϕ X)).

We have to make F precise. Since EG is a classifying space we get a unique (up
to G-homotopy) G-map f : G ×ϕ Y → EG. However, G ×ϕ Y is G-compact and f
factorizes over a G-compact subset Ỹ ⊆ EG. Therefore the construction induces a
map on the colimits and further a map on KKG

∗ .

Theorem 2.2.31. Let F = CL be the full family of closed subgroups. Then K∗
G defines

an equivariant CL-cohomology theory.

Proof. The statement that K∗
G is a G-cohomology theory has already been proven

above. It remains to show that the induction map is an isomorphism. This was shown
by Chabert and Echterhoff in [14].

From the point of view of the previous discussion, we define K?
∗ by K?

∗ = K
(?,C)
∗ .

Remark 2.2.32. Baum and Connes [5] suggested to study K∗(C0(?) o G). This is an
equivariant proper smooth cohomology theory. Chabert and Echterhoff [14] showed
that the Baum-Connes assembly map defines a natural transformation

µ : K∗
G(X)→ K∗(C0(X) oG),

which is compatible with the induction structures. IfG is compact, µ is an isomorphism
by the Green-Julg theorem. Hence µ is an equivalence of proper smooth cohomology
theories.

Theorem 2.2.33. If G is compact, K∗
G coincides with the classical definition of Atiyah

and Segal [2], i.e., Grothendieck construction of G-vector bundles. If G is prodiscrete,
K∗

G also coincides on finite proper smooth G-CW-complexes with the “classical” defin-
ition.

Proof. If G is compact, this is the well known Swan isomorphism.
If G is locally compact, Phillips [40] described K∗(C0(X) o G) by (possible infi-

nite dimensional) G-vector bundles. In the case of a prodiscrete group G, Sauer [46]
showed that the “classical” definition, using finite dimensional G-vector bundles, in-
duces an equivariant proper smooth cohomology theory H∗?. Thus the inclusion of
finite dimensional G-vector bundles in arbitrary G-vector bundles induces a natural
transformation τ : H∗?(??)→ K∗(C0(??)o?) of equivariant proper smooth cohomology
theories. Since τ is an isomorphism for compact G, the natural transformation τ is
even an equivalence, as required.
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Remark 2.2.34. For an l-group G finite vector bundles do not in general yield a proper
smooth G-homology theory. An example is given by Sauer [46, p.435-437].

Corollary 2.2.35. Let G be compact. The coefficients of KG
∗ and K∗

G are given by

KG
∗ ({•}) = K∗

G({•}) =

{
R(G), if ∗ is even,
0, if ∗ is odd,

where R(G) denotes the ring of (finite dimensional) complex G-representations. Let
ϕ : H → G be a compact open embedding Then the maps

(indϕ)h : R(H) = KH
0 ({•})

compϕ−−−−→ KG
0 (G/ϕ(H))

pr−→ KG
0 ({•}) = R(G) and

(indϕ)c : R(H) = K0
H({•}) indϕ←−−−∼= K0

G(G/ϕ(H))
pr−→ K0

G({•}) = R(G)

coincide with the ordinary induction map indϕ : R(H) → R(G). Furthermore, the
restriction maps

resϕ({•}) : R(G)→ R(H)

of KG
∗ and K∗

G, respectively, coincide with the ordinary restriction map resϕ : R(G)→
R(H).

Definition 2.2.36. Let G be compact. We define

R(G) = { f : G→ C | f conjugation invariant and locally constant }

and call it the group of class functions.

Lemma 2.2.37. Let G be compact. The character map induces an inclusion

χ : R(G)⊗ C ↪→ C(G,C)G,

where C(G,C)G denotes the set of conjugation invariant continuous (complex valued)
functions on G. In this case, the restriction maps are given by restricting the source.
If ϕ : H → G is an open embedding, the induction map is given by

indϕ(f)(g) =
∑

[s]∈G/ϕ(H)
s−1gs∈ϕ(H)

f(s−1gs).

If G is an l-group, we get an isomorphism R(G)⊗ C ∼= R(G).

Proof. We only prove the last statement because this is the only one which might not
be well known.

Let G be a compact l-group. Then G is profinite and admits a basis of topology
which consists of normal open subgroups. Let

N(G) = {H ⊆ G | H open normal } .
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Then we obtain

G = lim
H∈N(G)

G/H and, consequently, R(G) ∼= colim
H∈N(G)

R(G/H).

The isomorphism is given in one direction by resG/H
G and, in the other direction, by

dividing out the kernel of the group homomorphism G → GLn(C) associated to the
representation. Note that the only compact totally disconnected subgroups of GLn(C)
are the finite ones. Thus the kernel is automatically open. Since we have an isomor-
phism R(K)⊗ C ∼= R(K) for any finite group K, we get

R(G)⊗ C ∼= colim
H∈N(G)

R(G/H) ∼= R(G).

Proposition 2.2.38. Let H,K ⊆ G be subgroups such that H is open and K is closed.
Let A be an H-C∗-algebra and M be an (A,G)-Hilbert module. Then we obtain an
isomorphism

resK
G indG

H M ∼=
⊕

KgH∈K\G/H

indc(g) : H∩g−1Kg→K ◦ resH∩g−1Kg
H M.

Hence, the coefficients of K(G,A)
∗ and K∗

G satisfy the double coset formula and have a
Mackey structure.

Proof. If K is open the well known proof of the discrete case carries over. Actually, in
what follows, we only need this case. A proof of the general statement is given in [14,
Lem. 6.3].

This is our license to write

Corollary 2.2.39. On the category of locally compact second countable groups K?
∗

and K∗
? define proper smooth equivariant (co)homology theories, which have a Mackey

functor on coefficients. More generally, K(?,A)
∗ is an equivariant (ΓG, CO)-homology

theory, which has a Mackey functor on coefficients for any G-C∗-algebra A.

At the end of this section, we want to prove that Bredon homology (for a certain
coefficient system) and cosheaf homology coincide. Before we can do that, we must
define cosheaf homology.

In the following, let G be an l-group.
Let X be a proper smooth G-simplicial complex, i.e., a simplicial complex X with

a simplicial operation of G such that the isotropy groups are compact open. For sim-
plicity, we will assume that X is oriented, which means the vertices of each simplex
are linearly ordered (two orderings are regarded as the same if they differ by an even
permutation). The ordering need not be done with any regard to the inclusion rela-
tions among simplices. But, for simplicity again, we will assume that G acts in an
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2 Equivariant (Co)Homology Theories

orientation-preserving manner on X. If σ is a simplex in X, then denote by Gσ its
isotropy group in G. It is a compact open subgroup of G. Now we can form the vector
space

CG
n (X) =

⊕
σ∈Xn

R(Gσ),

where the direct sum is taken over the set Xn of n-simplices in X. We will write
elements of CG

n (X) as finite formal sums∑
σ∈Xn

ϕσ[σ],

where ϕσ ∈ R(Gσ). The differentials are given by

dn(ϕσ[σ]) =
∑
η⊆σ

η∈Xn−1

(−1)〈η:σ〉 indGη

Gσ
(ϕσ)[η].

Here, 〈η : σ〉 denotes the incidence number, i.e., 〈η : σ〉 = 1 if the induced orientation
of η by σ and the given one on η coincide. Otherwise, we set 〈η : σ〉 = −1. Now
cosheaf homology, sometimes also called chamber homology is defined as

CHG
n (X) = Hn(CG

∗ (X)G, (d∗)G),

where C∗G(X)G = C∗G(X)⊗R(G) C denotes the complex of coinvariants.
Remark 2.2.40. Baum, Connes and Higson [6] developed a more general notion of
cosheaf homology. Let X be a simplicial complex. A cosheaf A on X consists of the
following data:

(i) For each simplex σ of X one has an abelian group Aσ.

(ii) For each inclusion of simplices η ⊆ σ a homomorphism of abelian groups

ϕσ
η : Aη → Aσ such that ϕσ

τ = ϕη
τϕ

σ
η ,

whenever τ ⊆ η ⊆ σ, and ϕσ
σ = id for each σ.

An example of a cosheaf is given by R(G?). This explains the name cosheaf homology.
Remark 2.2.41. Suppose ∆ ⊆ X is a subcomplex which is a fundamental domain
for the action of G on X in the sense that the G-orbit of any simplex in X contains
precisely one simplex from ∆. Then the complex of coinvariants can be identified with
the complex

C̃G
0 (∆) d1←− C̃G

1 (∆) d2←− C̃G
3 (∆) d3←− · · · ,

where C̃G
n (X) denotes the direct sum

C̃G
n (X) =

⊕
σ∈∆n

R(Gσ)

over the n-simplices in ∆ (not X). The differential dn is defined exactly as above. Note
that the latter complex does not involve coinvariants. The subcomplex ∆ is called a
chamber, which motivates the name chamber homology.
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The next proposition is taken from Voigt [55, Cor. 8.4].

Proposition 2.2.42. We define the COrCO(G)-module RG by RG(G/H) = R(H).
Then there exists a natural equivalence of proper smooth (simplicial) G-homology the-
ories

τ : CHG
∗ (X)

∼=−−→ H
OrCO(G)
∗ (X;RG).

Proof. We define

φn : CG
n (X)G → COrCO(G)

n (X)⊗RG, ϕσ[σ] 7→ σGσ ⊗ ϕσ,

where
σGσ ∈ Csimp

n (XGσ) =
⊕

η∈(XGσ )p

Zη

denotes the canonical generator of Zσ. Note that σ is oriented. Further, there is a
canonical identification of the simplicial chain complex Csimp

∗ with the cellular chain
complex Ccell

∗ . First of all, we have to check that φ is well-defined. However, this is
clear because the right hand side identifies conjugated elements. We obtain

φndn(ϕσ[σ]) = φ

∑
η⊆σ

η∈Xn

(−1)〈η:σ〉 indGη

Gσ
(ϕσ)[η]

 =
∑
η⊆σ

η∈Xn

ηGη ⊗ (−1)〈η:σ〉 indGη

Gσ
(ϕσ)

=
∑
η⊆σ

η∈Xn

(−1)〈η:σ〉ηGσ ⊗ ϕσ = dn(σGσ ⊗ ϕσ) = dnφn(ϕσ).

Thus ϕ is a map of chain complexes. We consider the map

ψ : COrCO(G)
n (X)⊗RG → CG

n (X)G, σH ⊗ φH 7→ indGσ
H (φH)[σ].

Obviously, on the one hand, ψ is well-defined and ψ ◦ φ = id. On the other hand, we
have

φ ◦ ψ(σH ⊗ φH) = σGσ ⊗ indGσ
H (φh) = σH ⊗ φH

and, consequently, φ ◦ ψ = id.

We will see that cosheaf homology is a very explicit tool to compute Bredon homol-
ogy (see the end of Section 4.1).
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3 Flat and Injective Modules over a
Category

As was pointed out in the introduction, the construction of the Chern character splits
up into two parts. One of them is to prove that the coefficient module of a given
equivariant (co)homology theory is flat (injective). This is done in this chapter. In the
last section, we discuss, in more detail, the case in which the equivariant (co)homology
theory is K-theory.

3.1 Flat Modules over a Category
In the first subsection, we introduce the basic notions to state the classification theorem
for projective modules over an EI-category (Theorem 3.1.7). In the second subsection,
we give criteria when a Mackey functor induces a flat ROrF (G)-module.

3.1.1 Classification of Projective Modules

In the following, let R be a commutative ring, Γ be a small EI-category and M be a
covariant RΓ-module.

For x ∈ Ob(Γ), we denote by R[x] = R aut(x) the group ring of the automorphism
group.

Definition 3.1.1. Let x ∈ Ob(Γ). We define the following functors:

(i) Extension: Ex : R[x]-mod→ RΓ-mod, M 7→M ⊗R[x] Rmor(x, ?).

(ii) Splitting: Sx : RΓ-mod→ R[x]-mod is defined by the following exact sequence⊕
f : y→x

f is not an isomorphism

M(y)
⊕f−−→M(x)→ SxM → 0.

Remark 3.1.2. Note that Ex is a special case of induction since we have Ex = indinc,
where inc : {x } → Γ denotes the canonical inclusion.

Definition 3.1.3. Let x ∈ Ob(Γ). We define the inclusion functor Ix by

Ix : R[x]-mod→ RΓ-mod, Ix(M)(y) =

{
M, if x ∼= y,
0, otherwise.
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3 Flat and Injective Modules over a Category

Lemma 3.1.4. For x ∈ Ob(Γ) the pairs (Ex, resx) and (Ix, Sx) are adjoint pairs and
tensor adjoint pairs.

Proof. Since Ex = indinc, the assertion for (Ex, resx) is proven in Proposition 1.3.11.
The case of (Ix, Sx) is obvious.

Proposition 3.1.5. The functors Sx and Ex respect direct sums and the properties
finitely generated, free, projective and flat.

Proof. Since the tensor product respects direct sums, Ex does. Furthermore, Sx re-
spects direct sums by definition. The identity Ex(R[x]) = RΓ(x, ?) is trivial and, by
an easy observation, we obtain

Sx(RΓ(y, ?)) =

{
R[x], x ∼= y,

0, x � y.

We deduce that Ex, Sx respect the property free and thus they respect the properties
projective and finitely generated.

By Lemma 1.3.12 and Lemma 3.1.4, the functor Sx respects the property flat and
Ex respects the property flat by Corollary 1.3.13.

Let M be an RΓ-module. Suppose that all SxM are projective. Then we can choose
splits σx : SxM →M(x) and can define the following map

T :
⊕

(x)∈Is(Γ)

ExSxM

⊕
(x)∈Is(Γ) Ex(σx)

−−−−−−−−−−−→
⊕

(x)∈Is(Γ)

ExM(x)
⊕

(x)∈Is(Γ) ix(M)
−−−−−−−−−−−→M. (3.1.5.1)

Here, ix(M) : Ex(M(x))→M is defined to be the adjoint map of id : resxM → resxM ,
recall that (Ex, resx) is an adjoint pair.

Definition 3.1.6. An RΓ-module M is of finite length if l(x) <∞ for each x ∈ Ob(Γ)
with M(x) 6= 0. We define finite colength for an RΓ-module M in the same way.

Theorem 3.1.7. Let M be a covariant RΓ-module of finite length and suppose that
for all objects x ∈ Ob(Γ) the R[x]-module SxM is projective. Then the map

T :
⊕

(x)∈Is(Γ)

ExSxM →M

is surjective. It is bĳective if and only if M is projective.

Proof. The proof of surjectivity is very similar to the surjectivity part of Lemma 3.1.11,
but an explicit proof is given in [29, Thm. 2.11].

Since Ex respects the property projective and SxM is projective by assumption, M
is projective if T is bĳective. The other implication is proven in [28, Cor. 9.40].

Remark 3.1.8. The above theorem remains true if we replace “covariant” by “con-
travariant” and “length” by “colength”.
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3.1 Flat Modules over a Category

Remark 3.1.9. Let F be a free module and choose a decomposition F ∼=
⊕

i∈I RΓ(xi, ?).
Then we have⊕

(x)∈Is(Γ)

ExSx

(⊕
i∈I

RΓ(xi, ?)
)
∼=

⊕
(xi),i∈I

Exi

( ⊕
|{xj |xj∈(xi) }|

R[xi]
)

∼=
⊕

(xi),i∈I

( ⊕
|{xj |xj∈(xi) }|

RΓ(xi, ?)
)

∼=
⊕
i∈I

RΓ(xi, ?) ∼= F.

However, this tells us nothing about T . The chosen splits might not be compatible
with the chosen decomposition.

Suppose SxM is flat for an RΓ-module M and any x ∈ Ob(Γ). Since Ex respects
the property flat, the RΓ-module ⊕(x)∈Is ΓExSxM is flat. Thus, M is flat if T is an
isomorphism. However, the converse is false, hence the corresponding statement of
Theorem 3.1.7 is false. We want to give an example:

Example 3.1.10. We consider the category Γ

x
f2

66

f1
(( y g

ee

with the relations f2 = g ◦ f1 and g2 = id. Let Q be the constant QΓ-module, i.e.,
every object is Q and every morphism is id. For a QΓ-module M we obtain

M ⊗QΓ Q = M(y)⊗Q[Z/2Z] Q.

Since Q is a flat Q[Z/2Z]-module, Q is a flat QΓ-module. However, we have

ExSxQ(y) = ExQ(y) = Q2 6= Q = Q(y).

3.1.2 Mackey Functors

In the following, let G be a topological group and F a smooth family of subgroups
with [H : K] < ∞ for any H,K ∈ F . Let M : Γ → R be a Mackey functor such that
F ⊆ Ob(Γ). It defines a covariant RSubF (G)-module

MG : SubF (G)→ R- MOD, H →M(H)

by means of the covariant structure of the bifunctor M .
In the case of a discrete group G and F = CO, which simplifies to CO = FIN =
{H ⊆ G | H finite }, Lück [29, Thm. 5.2] showed that MG is projective if Q ⊆ R and
R is semisimple. We want to generalize this result to topological groups. Actually, we
are only interested in the question whether MG is flat or not.
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3 Flat and Injective Modules over a Category

Let N ∈ F and define

MG
N (H) =

{
MG(H), if (N) ≤ (H),
0, otherwise.

For convenience, we abbreviate IF = Is SubF (G), which is a partially ordered set.
We recall that the order is given by

(H) ≤ (K)⇐⇒ ∃H ′ ∈ F : (H ′) = (H) and H ′ ⊆ K.

Now we obtain
MG = colim

N∈IF
MG

N . (3.1.10.1)

We want to show

Lemma 3.1.11. Suppose Q ⊆ R, SubF (G) is an EI-category and lK(H), [H : K] <∞
for any H,K ∈ F with K ⊆ H. Then MG is a flat RSubF (G)-module if for any
H ∈ F the RW̃GH-module MG(H) is flat and the canonical projection pr: MG

N (H)→
SHM

G
N splits for any N ∈ F .

Proof. The functor colimN∈IF is an exact functor. It commutes with − ⊗RSubF (G) L
for every contravariant RSubF (G)-module L since −⊗RSubF (G) L has a right adjoint,
namely hom(L,−). Hence by (3.1.10.1), MG is a flat covariant RSubF (G)-module if
each RSubF (G)-module MG

N is flat.
Next, we want to show for a fixed subgroup N ∈ F that MG

N is flat. We set

FN = { (H) ∈ I | (N) ≤ (H) } .

Since we assume the existence of splits σH : SHM
G
N →MG

N (H), we can define a map
of RSubF (G)-modules (cf. (3.1.5.1))

TN :
⊕

(H)∈IFN

EH ◦ SHM
G
N −→MG

N . (3.1.11.1)

Namely, for an object K and (H) ∈ IFN the restriction of TN (K) to the summand
EHSHM

G
N = morSubF (G)(H,K) ⊗RWGH SHM

G
N sends f ⊗ x to M(f) ◦ σH(x) for

f : H → K and x ∈ SHMN .
Next we show that TN is surjective. Since lN (H) < ∞ for the relative length by

assumption, we can show by induction over lN (H) that TN (H) is surjective.
If lN (H) = 0, then MG

N (H) is zero and thus TN (H) is obviously surjective. The
induction step is done as follows. For any R[WGH]-module L, there is an R[WGH]-
automorphism L

∼=−→ SH ◦EHL which is natural in L. It sends x ∈ N to idH ⊗R[WGH]x.
IfK is another object in SubF (G) which is not isomorphic toH, then SKEH(L) = { 0 }.
This implies that SHTN is an isomorphism. Hence, the surjectivity of TN (H) will follow
if we can show that every element in the kernel of pH : MG

N (H) → SHM
G
N lies in the

image of TN (H). Such an element can be written as a finite sum of elements of the
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3.1 Flat Modules over a Category

form MG
N (fi)(xi) for morphisms fi : Hi → H which are not isomorphisms and elements

xi ∈ MG
N (Hi). Since (Hi) < (H) and thus lN (Hi) < lN (H), the induction hypothesis

applies to Hi. Hence xi is in the image of TN (Hi). Therefore MG
N (fi)(xi) is in the

image of TN (H). This finishes the induction step.
Next, we show that the map TN is injective. Fix an object K ∈ FN and an element

u in the kernel of TN (K). We have to show u = 0. Choose for any (H) ∈ IFN a
representative H ∈ (H). So in the sequel we get for these representatives that H = K
follows from (H) = (K). Put

J(H) = morSubF (G)(H,K)/W̃GH.

Then fix for any element f ∈ J(H) a homomorphism of topological groups f : H → K
such that there exists a g ∈ G with f = c(g), the morphism which f represents in
SubF (G). For simplicity, we identify f̄ and the fixed representative f in the sequel.
So for two such homomorphisms f1, f2 : H → K with f1 = f2 we already have f1 = f2.
We can find elements xH,f ∈ SHM

G
N for (H) ∈ IFN and f ∈ J(H) such that only

finitely many elements xH,f are different from zero and u can be written as

u =
∑

(H)∈IFN

∑
f∈J(H)

(f : H → K)⊗R[WGH] xH,f .

We want to show that all elements xH,f are zero. Suppose that this is not the case.
Let (H0) be maximal among those elements (H) ∈ IFN for which there is an f ∈ J(H)
with xH,f 6= 0, i.e., if for (H) ∈ I the element xH,f is different from zero for some
morphism f : H → K in SubF (G) and there is a morphism H0 → H in SubF (G),
then (H0) = (H). Fix f0 : H0 → K with xH0,f0 6= 0. We claim that the composition

A :
⊕

(H)∈IFN

EH ◦ SHM
G
N (K)

TN (K)−−−−→MG
N (K) = M(K)

res
im(f0)
K−−−−−→M(im(f0))

ind
f−1
0 : im(f0)→H0−−−−−−−−−−−−→M(H0) = MG

N (H0)
prH0−−−→ SH0M

G
N

maps u to m · xH0,f0 for some integer m > 0. This leads to a contradiction because
TN (K)(u) = 0 and xH0,f0 6= 0.

In order to proof the claim, we consider (H) ∈ IFN and f ∈ J(H). It suffices to
show

A
(
(f : H → K)⊗R[WGH] xH,f

)
=

{
[K ∩NG im(f0) : im(f0)] · xH,f , if (H) = (H0) and f = f0,

0, otherwise.
(3.1.11.2)

This is obviously true for xH,f = 0. Hence we only have to treat the case xH,f 6= 0.
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One easily checks that A((f : H → K)⊗R[WGH] xH,f ) is the image of xH,f under the
composition

a(H, f) : SHM
G
N

σH,l−−→MG
N (H) = M(H)

indf : H→im(f)−−−−−−−−−→M(im(f))
indK

im(f)−−−−−→M(K)

res
im(f0)
K−−−−−→M(im(f0))

ind
f−1
0 : im(f0)→H0−−−−−−−−−−−−→M(H0) = MG

N (H0)
prH0−−−→ SH0M

G
N .

The double coset formula implies

resim(f0)
K ◦ indK

im(f)

=
∑

k∈im(f0)\K/ im(f)

indc(k) : im(f)∩k−1 im(f0)k→im(f0) ◦ resim(f)∩k−1 im(f0)k
im(f) .

For k ∈ im(f0)\K/ im(f) we define the map a(H, f)k to be the composition

a(H, f)k : SHM
G
N

σH,l−−→MG
N (H) = M(H)

indf : H→im(f)−−−−−−−−−→M(im(f))

res
im(f)∩k−1 im(f0)k

im(f)−−−−−−−−−−−−→M(im(f) ∩ k−1 im(f0)k)
indc(k) : im(f)∩k−1 im(f0)k→im(f0)−−−−−−−−−−−−−−−−−−−−→M(im(f0))

ind
f−1
0 : im(f0)→H0−−−−−−−−−−−−→M(H0) = MG

N (H0)
prH0−−−→ SH0M

G
N .

Then we get
a(H, f) =

∑
k∈im(f0)\K/ im(f)

a(H, f)k.

The composition

prH0
◦ indf−1

0 : im(f0)→H0
◦ indc(k) : im(f)∩k−1 im(f0)k→im(f0)

is trivial if c(k) : im(f) ∩ k−1 im(f0)k → im(f0) is not an isomorphism. This implies

a(H, f) =
∑

k∈im(f0)\K/ im(f)
c(k) : im(f)∩k−1 im(f0)k→im(f0) isomorphism

a(H, f)k.

We consider k ∈ im(f0)\K/ im(f) such that c(k) : im(f)∩ k−1 im(f0)k → im(f0) is an
isomorphism. We get the following equality of integers

lim(f)∩k−1 im(f0)k(K) = lim(f0)(K) = lk−1 im(f0)k(K).

This implies k−1 im(f0)k ⊆ im(f). Since H0 has been chosen maximal among those
H for which xH,f 6= 0 for some morphism f : H → K and xH,f 6= 0, we conclude
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(H) = (H0). This implies H = H0. Since we have k−1 im(f0)k ∼= H0 = H ∼= im(f) in
SubF (G), there exists a g ∈ G such that

g−1 im(f)g = k−1 im(f0)k ⊆ im(f).

Because SubF (G) is an EI-category, we obtain k−1 im(f0)k = im(f). Hence f0 = f
in J(H). This already implies f = f0. We get k ∈ NG im(f0) ∩ K and can deduce
a(H, f)k = idSHM . We conclude

a(H, f) =

{
[K ∩NG im(f0) : im(f0)] · idSHMG

N
, if (H) = (H0) and f = f0,

0, otherwise.

Thus the assertion (3.1.11.2) is true. Hence the map TN is injective. This finishes the
proof that the map TN of (3.1.11.1) is an isomorphism of RSubF (G)-modules.

We conclude that MG
N is isomorphic to

⊕
(H)∈IFN

EH ◦SHM
G
N . The modules SHM

G
N

are flat because they are direct summands of the modules MG(H), which are flat by
assumption. Because EH sends flat modules to flat modules, we conclude the flatness
of MG

N , which was claimed.

Theorem 3.1.12. Suppose Q ⊆ R is von Neumann regular, lK(H), [H : K] < ∞
for any H,K ∈ F with K ⊆ H and the corresponding semigroup morSubF (G)(H,H)
is locally finite for every H ∈ F . Let M be a Mackey functor. Then MG is a flat
RSubF (G)-module if for any H,N ∈ F the canonical projection pr: MG(H)→ SHM

G
N

splits.

Proof. Since morSubF (G)(H,H) is locally finite, it is a group by Corollary 1.2.24. This
implies that W̃GH = morSubF (G)(H,H) is also locally finite. Thus by Theorem A.7
every RW̃GH-module L is flat and, in particular, so is MG(H). Now the assertion
follows from by Lemma 3.1.11.

Corollary 3.1.13. Suppose Q ⊆ R is semisimple, lK(H), [H : K] < ∞ for any
H,K ∈ F with K ⊆ H and the corresponding semigroup morSubF (G)(H,H) is finite
for every H ∈ F . Let M be a Mackey functor. Then MG is a flat RSubF (G)-module.

Proof. By Corollary 1.2.24, we obtain a finite group

W̃GH = morSubF (G)(H,H).

Thus RW̃GH is semisimple and the splits required in Theorem 3.1.12 exist. Hence
Theorem 3.1.12 is applicable.

Lemma 3.1.14. Let Q ⊆ R be von Neumann regular and SubF (G) be an EI-category.
Let M be a flat RSubF (G)-module and suppose that the group CGH/(H ∩ CGH)
is locally finite for every H ∈ F . Then resprM is a flat ROrF (G)-module, where
pr: OrF (G)→ SubF (G) denotes the canonical projection.
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Proof. We remind the reader that we have an identification (see Remark 1.2.9)

morSubI(G)(H,K) = morOrI(G)(G/H,G/K)/CGH

= morOrI(G)(G/H,G/K)/(CGH/H ∩ CGH).

Let N be an arbitrary ROrF (G)-module. Then we obtain

indprN(H) = N(H)⊗R[CGH/H∩CGH] R.

Since CGH/H ∩ CGH is locally finite, R is a flat R[CGH/H ∩ CGH]-module by The-
orem A.7. Hence indpr is exact. This implies that respr respects the property flat by
Corollary 1.3.13.

Remark 3.1.15. The previous proof carries over directly to the projective case if we re-
place “von Neumann regular” by “semisimple”, “locally finite” by “finite” and consider
coind instead of ind.

Finally, we get:

Theorem 3.1.16. Suppose Q ⊆ R is von Neumann regular, lH(K), [H : K] <∞ for
any H,K ∈ F with K ⊆ H and the semigroup morOrF (G)(G/H,G/H) is locally finite
for every H ∈ F . Let M be a Mackey functor. Then resprM

G is a flat ROrF (G)-
module if for any H,N ∈ F the canonical projection pr: MG(H)→ SHM

G
N splits.

Proof. Since morOrF (G)(G/H,G/H) is locally finite, it is a group by Corollary 1.2.24.
Further, W̃GH is locally finite as a quotient of the locally finite group WGH by
Proposition A.5. Thus MG is a flat RSubF (G)-module by Theorem 3.1.12. Fi-
nally, CGH/(H ∩ CGH) ⊆ WGH is locally finite and the assertion follows now from
Lemma 3.1.14.

Remark 3.1.17. Let us consider the case F = CO. The space H/K is finite for
compact open subgroups K ⊆ H ⊆ G. Therefore the condition [H : K] < ∞ is
satisfied. We have seen in Example 1.2.20 that OrCO(G) might fail to be an EI-
category. Furthermore, we can realize every discrete group H as an endomorphism
group H = morOrCO(G)(G/K,G/K), where

G = K oH and K =
∏
H

Z/2Z

and H acts in the obvious way. We remark that G is unimodular by Lemma 1.2.16.
Thus OrCO(G) is an EI-category with lK′(H ′) < ∞ for all compact open subgroups
K ′ ⊆ H ′ ⊆ G.

Corollary 3.1.18. Let G be a (topological) group such that the corresponding semi-
groups morOrF (G)(G/H,G/H) are finite and lK(H), [H : K] <∞ for every H,K ∈ F .
Let M be a Mackey functor and MG be the covariant RSubI(G)-module. If Q ⊆ R is
semisimple, then resprM

G is a flat ROrI(G)-module.
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Proof. Since morOrF (G)(G/H,G/H) is finite, it is a group by Corollary 1.2.24. This
implies that W̃GH is finite as a quotient of the finite group WGH. Therefore, RW̃GH
is semisimple and the projections pr: MG(H) → SHM

G
N split. Now the assertion

follows from the previous theorem.

Corollary 3.1.19. Let G be a prodiscrete l-group, M a Mackey functor and MG be
the covariant RSubCO(G)-module. If Q ⊆ R is semisimple, then MG is flat as an
RSubCO(G)-module. Moreover, resprM

G is a flat ROrCO(G)-module if the groups
CGH/(H ∩ CGH) are locally finite for any compact open subgroup H ⊆ G.

Proof. By Proposition 1.2.25 the groups W̃GH are finite. By Corollary 1.2.17 and
Lemma 1.2.21 we have lK(H) < ∞ for all compact open subgroups K ⊆ H ⊆ G.
Hence MG is flat by Theorem 3.1.12. If the groups CGH/(H ∩CGH) are locally finite,
resprM

G is flat by Lemma 3.1.14.

Corollary 3.1.20. Let G be a (topological) group. Let either be F = I or G be
a semisimple p-adic group and F = CO. Let M be a Mackey functor and MG be
the covariant RSubF (G)-module. If Q ⊆ R is semisimple, then resprM

G is a flat
ROrF (G)-module.

Proof. We want to apply Corollary 3.1.18. Hence we must show that the groups
morOrCO(G)(G/H,G/H) are finite and lK(H) < ∞ for all K ⊆ H with K,H ∈ F .
In the case of F = I, the first assertion is clear and the second follows from Propo-
sition 1.2.21. In the case of a semisimple p-adic group G and F = CO, the groups
morOrCO(G)(G/H,G/H) are finite and lK(H) <∞ by Corollary 1.7.12.

Remark 3.1.21. We have even more in the case of finite groups W̃GH. In fact, MG

is a colimit of projective modules. Since respr has a right adjoint, namely coinduction
with pr, it commutes with colim. Thus resprM

G is a colimit of projective modules by
Remark 3.1.15, too.

Note that we have not shown that MG or resprM are projective or that there is an
isomorphism of RSubF (G)-modules

M ∼=
⊕

(H)∈IF

EH ◦ SHM
G.

In order to prove such a stronger statement, we would need to choose the sections
σH,N : SHMN →MN (H) such that the following diagram commutes

SHMN

σH,N
//

SH iN
��

MN (H)

iN (H)
��

SHMN ′
σH,N′

// MN ′(H)

for all N,N ′ ∈ F , where iN : MN → MN ′ denotes the inclusion. This might be
impossible. For example, for N = H we have SHMN = MN (H) and σH,N must be
the identity but SHiN is not necessarily injective.
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3 Flat and Injective Modules over a Category

The next example shows that we cannot expect projectivity of MG in general.

Example 3.1.22 (Borel construction). Let G = Zp and F = CO = I (see Exam-
ple 1.2.14). The Borel construction (see Section 2.1) with rational coefficients yields a
Mackey functor

MG(H) = HG
0 (G/H)⊗Q = H0(BH)⊗Q = Q.

Thus MG is isomorphic to the constant QSubI(G)-module Q by Remark 2.1.2. How-
ever, Q cannot be projective. In order to show that, it suffices to prove that every
map

ϕ : Q→
⊕
i∈I

QSubI(G)(xi, ?)

is trivial. Since the structure maps in Q are isomorphisms, ϕ is completely determined
by ϕ(q0) for some q0 ∈ Q(p0Zp) = Q. We obtain

ϕ(q0) =
n∑

j=1

yij for some yij ∈ QSubI(G)(xij , p
0Zp).

Let k = max { col(xij ) | j = 1, . . . n }+1. Thus we can deduce QSubI(G)(xij , p
kZp) =

0 and get the commutative diagram:

q0 � ϕ
//
∑n

j=1 yij

qk
� ϕ

//
_

id

OO

0
_

OO

where qk ∈ Q(pkZp) is the obvious element. Hence ϕ(q0) = 0 meaning that ϕ is trivial.

We conclude this section by stating a lifting property for flatness. Here, we cut off
the module at the other end, which means we have to consider lim instead of colim.

Proposition 3.1.23. Let C be an EI-category. For x ∈ C we denote by Cx the full
subcategory of C which consists of all y ≤ x. Let M be a (covariant) RC-module such
that resCx M is flat for all x ∈ C. Then M is also flat.

Proof. Let x ∈ C and define Mx by

Mx(y) =

{
Mx(y), if y ≤ x,
0, otherwise.

We get M = limx∈IC Mx, where IC is the partially ordered set which is defined analo-
gously to IF (see the beginning of this section).

Furthermore, we have N ⊗Mx = resCx N ⊗ resCx M for an arbitrary (contravariant)
RC-module N . Therefore Mx is a flat RC-module. Let ϕ : A→ B be an injective map.
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3.2 Injective Modules over a Category

It suffices to prove that ϕ ⊗ id : A ⊗M → B ⊗M is injective. Since lim is left exact
and Mx is flat, we deduce the injectivity of the following map

lim
x∈IC

(ϕ⊗ id) : lim
x∈IC

(A⊗Mx)→ lim
x∈IC

(B ⊗Mx).

As the canonical map C⊗ limx∈IC Mx → limx∈IC(C⊗Mx) is an isomorphism for every
RC-module C, the assertion follows.

3.2 Injective Modules over a Category
This is the injective analogue of the previous section. In the first subsection, we
state the classification result for injective modules over an EI-category. In the second
subsection, we give criteria when a Mackey functor induces an injective ROrF (G)-
module. Unfortunately, the conditions are stricter than in the flat case because a
derived limit comes into play. Therefore, we discuss derived limits, too.

3.2.1 Classification of Injective Modules

Definition 3.2.1. Let x ∈ Ob(Γ). We define the following functors:

(i) Coextension: CEx : R[x]-mod→ RΓ-mod, M 7→ hom(Rmor(x, ?),M).

(ii) Cosplitting: CSx : RΓ-mod → R[x]-mod is defined by the following exact se-
quence

0→ CSxM →M(x)
∏

f−−→
∏

f : x→y
f is no isomorphism

M(y).

Remark 3.2.2. Note that CEx is a special case, we have CEx = coindinc, where
inc : {x } → Γ is the canonical inclusion.

Lemma 3.2.3. For x ∈ Ob(Γ), the pairs (resx, CEx) and (Ix, CSx) are adjoint pairs.

Proof. By Proposition 1.3.11, the first pair is an adjoint pair. The second assertion is
clear.

Corollary 3.2.4. For x ∈ Ob(Γ) the functors CEx and CSx respect products and the
property injective.

Proof. The two functors clearly respect products. They respect the property injective
by the previous lemma and Corollary 1.3.13.

Let M be an RΓ-module. Suppose that CSxM is injective for every x ∈ Ob(Γ).
Then we can choose splits σx : M(x)→ CSxM and define the following map

Tx : M idx−−→ CEx resxM
σx−→ CExCSxM,
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3 Flat and Injective Modules over a Category

where idx denotes the map adjoint to id : resxM → resxM . Further, we can define

T =
∏

x∈Is(Γ)

Tx : M →
∏

x∈Is(Γ)

CExCSxM. (3.2.4.1)

The next theorem is taken from [30, Thm. 2.14].

Theorem 3.2.5. Let M be a contravariant RΓ-module of finite length and suppose
that the R[x]-modules CSxM are injective for x ∈ Ob(Γ). Then the map

T : M →
∏

x∈Is(Γ)

CExCSxM

is injective. It is bĳective if and only if M is injective.

Remark 3.2.6. The previous theorem remains true if we replace “contravariant” by
“covariant” and “length” by “colength”.

Let I be a partially ordered set and (Mi)i∈I be an inverse system of R-modules. By
definition, this means that, for every i ∈ I, we have an R-module Mi and, for every
pair i, j ∈ I with i ≤ j, we have R-homomorphisms fji : Mj →Mi such that

(i) fii = idMi for every i ∈ I,

(ii) fki = fji ◦ fkj for every i ≤ j ≤ k.

In view of modules over a category, we can consider I as an EI-category by

Ob(I) = I and |morI(i, j)| =

{
1, if i ≤ j,
0, otherwise.

The inverse system (Mi)i∈I of R-modules can be seen as a contravariant RI-module.
Sometimes one defines an inverse system in a way that naturally yields a covariant RI-
module. The following statements remain true in the covariant setting if we replace
“length” by “colength”.

Before we can state the next lemma, we recall that a cofinal system J ⊆ I of a
partially ordered set is a subset such that for every i ∈ I there exists a j ∈ J such
that i ≤ j. An immediate consequence of this definition is

lim
i∈I

Mi = lim
j∈J

Mj

for an inverse system (Mi)i∈I and a cofinal system J ⊆ I.

Lemma 3.2.7. Let Mi∈I be an inverse system of R-modules and suppose I contains a
cofinal system J which has finite length considered as an EI-category. Then we obtain

lim
i∈I

Mi = ker(id−d), lim1

i∈I
Mi = coker(id−d) and limn

i∈I
Mi = 0 ∀n > 1,
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3.2 Injective Modules over a Category

where

id−d :
∏
j∈J

Mj →
∏
j∈J

Mj , (id−d)(mj)j1,j2 =


mj1 , if j1 = j2,

−dj1,j2(mj1), if j1 < j2,

0, otherwise

and dj1,j2 are the structure maps of J .

Proof. Let (Fn)n∈N : RI-mod→ R-mod be defined by Fn = 0 for all n > 1,

F 0Mj∈J = ker(id−d) and F 1Mj∈J = coker(id−d).

It is clear that F 0Mj∈J = limj∈J Mj . We have to prove that (Fn)n∈N is a universal
δ-functor because (limn)n∈N is one and a universal δ-functor (Gn)n∈N is uniquely de-
termined by G0. By the snake lemma, we get the desired long exact sequence from
a short exact sequence. Thus (Fn)n∈N is a δ-functor. It remains to show that F 1

vanishes on injective RI-modules. By Theorem 3.2.5, it suffices to check

F 1(CEjM) = 0

for all R-modules M . The structure map dj1,j2 of CEjM is an isomorphism for j2 ≤ j
and (CEj2M) = 0 otherwise. Since I is of finite length, it follows easily that id−d is
surjective and hence F 1(CEjM) = 0.

Remark 3.2.8. If I is countable, a cofinal system of finite (co)length exists anyway by
the following argument.

Since I is countable, we have a sequence (i0, i1, i2, . . . ) with I = { in | n ∈ N }. We
define the sets Jn inductively by

J0 = { i0 } , Jn+1 =

{
Jn, if there exists a j ∈ Jn with in+1 < j,
Jn ∪ { in+1 } , otherwise.

We set J =
⋃

n∈N Jn. The subsystem J ⊆ I is clearly cofinal. It remains to show that
J has finite length. Let · · · ≤ j1 ≤ j0 be an increasing sequence in J . Then j0 ∈ Jk

for some k ∈ N and hence jn ∈ Jk for every n ∈ N. Since Jk is finite, the sequence
· · · ≤ j1 ≤ j0 must become stationary and we obtain a cofinal system of finite length.
Analogously, we get a cofinal system of finite colength.

Lemma 3.2.9. Let Vi∈I be an inverse system of k-vector spaces and suppose I has a
cofinal system J of finite length. If the structure maps are injective and not surjective,
we get

lim1

i∈I
Vi 6= 0.

Proof. For simplicity let I = N be a tower. We define

Ṽi =
∞⊕

n=i

Vn/Vn+1
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3 Flat and Injective Modules over a Category

and the obvious inclusions as structure maps. We choose projections pri : Vi → Vi+1

for all i ∈ N and get (non-canonical) isomorphisms fi : Vi
∼=−→ Ṽi. However, (fi)i∈N is

an isomorphism of towers. Consequently, we can consider (Ṽi)i∈N instead of (Vi)i∈N.
We recall that lim1

i∈I Ṽi 6= 0 if the map

id−d :
∏
i∈N

Ṽi →
∏
i∈N

Ṽi, (. . . , x3, x2, x1) 7→ (. . . , x3 − d(x4), x2 − d(x3), x1 − d(x2))

is not surjective. For every i ∈ N choose a non-zero element in

vi ∈ Vi/Vi+1 ⊆ Ṽi.

Then (. . . , v2, v1) /∈ im(id−d) because the preimage has to be (. . . ,
∑∞

i=2 vi,
∑∞

i=1 vi),
but this does not lie in the direct sum.

3.2.2 Mackey Functors
In the following, let G be a topological group and F a smooth family of subgroups
with [H : K] < ∞ for any H,K ∈ F . Let M : Γ → R be a Mackey functor such that
F ⊆ Ob(Γ). It defines a contravariant RSubF (G)-module

MG : SubF (G)→ R- MOD, H →M(H)

by means of the contravariant structure of the bifunctor M .
This section is the contravariant analogue of Section 3.1.2. Instead of flatness results,

we want to prove injectivity results here. The case of a discrete group G and F = FIN
is fully understood, too. Lück [30, Thm. 5.2] showed that MG is injective for Q ⊆ R
and R semisimple.

For N ∈ F we define MG
N by

MG
N (H) =

{
MG(H), if (N) ≤ (H),
0, otherwise.

(3.2.9.1)

The canonical projections pr: M →MN induce an isomorphism

MG ∼= lim
N∈IF

MG
N .

Here, we denote by IF the partially ordered set which was introduced at the beginning
of Section 3.1.2.

Lemma 3.2.10. Suppose Q ⊆ R and SubF (G) is an EI-category. Moreover, suppose
that [H : K] <∞ and

{ (K) ∈ IF | (N) ≤ (K) ≤ (H) }

is finite for any N,H,K ∈ F . Then MG
N is an injective RSubF (G)-module if for any

H ∈ F the RW̃GH-module CSHM
G
N is injective.
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3.2 Injective Modules over a Category

Proof. Since CSHM
G
N is injective by assumption, we get a split s(H) : MG

N (H) →
CSHM

G
N of the canonical inclusion i(H) : CSHM

G
N → MG

N (H). We obtain a map
(cf. (3.2.4.1))

TN : MG
N →

∏
(H)∈IFN

CEHCSHM
G
N ,

where we set
FN = {H ∈ F | (N) ≤ (H) } .

The module
∏

(H)∈IFN
CEHCSHM

G
N is injective because CEH respects injective mod-

ules. Hence MG
N is injective if TN is an isomorphism.

First, let us show the injectivity of TN . This does not differ very much from the
surjectivity argument of TN in Lemma 3.1.11. We remark that the condition

{ (K) ∈ IF | (N) ≤ (K) ≤ (H) } <∞

clearly implies lN (H) <∞. Now we show by induction over the relative length lN (H)
that TN (H) is injective. If lN (H) = 0, then MG

N (H) is zero and hence TN (H) is
obviously injective. The induction step is done as follows: We have an isomorphism

TN (H)|CSHMG
N

: CSHM
G
N →

(
CEHCSHM

G
N

)
(H).

If 0 6= a ∈ CSHM
G
N , we can conclude TN (H)(a) 6= 0. If 0 6= a /∈ CSHM

G
N , then, by

definition, there exists a K ∈ FN and f : K → H such that (MG
N )∗(f)(a) 6= 0. In

particular, we have lN (K) < lN (H) and the induction hypothesis holds for K. We
obtain( ∏

(H)∈IFN

CEHCSHM
G
N

)∗
(f) ◦ TN (H)(a) = TN (K) ◦

(
(MG

N )∗(f)(a)
)
6= 0.

This finishes the induction step.
Next we want to show that TN is surjective. Choose for any (H) ∈ IFN a represen-

tative H ∈ (H). So in the sequel, we get for these representatives that H = K follows
from (H) = (K). Put

J(H) = morSubF (G)(H,K)/W̃GH.

Then we fix for any element f ∈ J(H) a homomorphism of topological groups f : H →
K such that there exists a g ∈ G with f = c(g) the morphism which f represents in
SubF (G). For simplicity, we identify f̄ and the fixed representative f in the sequel.
So for two such homomorphisms f1, f2 : H → K with f1 = f2 we already have f1 = f2.
Let H1,H2,K ∈ FN and (fi : Hi → K) ∈ morSub(G,F)(Hi → K) be arbitrary. We
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3 Flat and Injective Modules over a Category

consider the following diagram

M(H1)

indf1

$$indf1 // M(im f1)
indK

im f1 // M(K)

resf2

$$

=

��

res
im f2
K // M(im f2)

ind
f
−1
2 // M(H2)

=

��

MG
N (H1)

=

OO

MG
N (K)

TN (K)

��

MG
N (H2)

s(H2)

��

CSH1MG
N

OO

j

OO

B(H1,f1)
//

∏
H̄∈Is SubF (G)

CEHCSHMG
N (K)

A(f2)
// CSH2MG

N

where j is the canonical inclusion, s(H2) the chosen retraction and B(H1, f1) is the
composition TN (K) ◦ indf1 ◦j. Thus the left square commutes. The left arc commutes
because of functoriality of ind (in the sequel, we will identify f2 and f2 : H2 → im f2).
By definition, we get, on the one hand, indf−1

2
= (resf−1

2
)−1 and, on the other hand,

with functoriality resf2 = (resf−1
2

)−1 and finally indf−1
2

= resf2 . Hence the right arc
commutes, too. Let A(f2) be the evaluation against f2, namely

A(f2) :
∏

(H)∈IFN

CEHCSHM
G
N (K)

pr
// CEH2CSH2M

G
N (K) // CSH2M

G
N

ϕ � // ϕ(f2).

We define KH2 as the adjoint of id : MG
N (H2)→MG

N (H2). Explicitly we get

KH2(K) : MG
N (K)→ CEH2 ◦ResH2M

G
N (K), m 7→ (g 7→ resg(m)).

We remind the reader that TN =
∏

(H)∈IFN
(TN )H by definition (cf. (3.2.4.1)). We

obtain (TN )H2(K) = s(H2) ◦KH2(K). Consequently, the right square commutes and
so does the entire diagram. Let

a(H1, f1,H2, f2) : CSH1M
G
N → CSH2M

G
N , a(H1, f1,H2, f2) = A(f2) ◦B(H1, f1).

With the help of the double coset formula, we obtain

resim f2

K ◦ indK
im f1

=
∑

k ∈ im(f2)\K/ im(f1)

indc(k) : im(f1)∩k−1 im(f2)k→im(f2) ◦ resim(f1)∩k−1 im(f2)k
im(f1) .

By definition, the composition

CSH1M
G
N

j−→MG
N (H1)→M(H1)

indf1−−−→M(im(f1))
res

im(f1)∩k−1 im(f2)k

im(f1)−−−−−−−−−−−−−→M(im(f1) ∩ k−1 im(f2)k)
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is trivial if im(f1)∩ k−1 im(f2)k 6= im(f1). So let im(f1)∩ k−1 im(f2)k = im(f1). This
is only possible for (H1) ≤ (H2). Let (H1) = (H2) and thus H1 = H2 by our choice
of representatives. Furthermore, this implies im(f1) ⊆ k−1 im(f2)k. Since we have
k−1 im(f2)k ∼= H2 = H1

∼= im(f1) in SubF (G), there exists a g ∈ G such that

g−1(k−1 im(f2)k)g = im(f1) ⊆ k−1 im(f2)k.

As SubF (G) is an EI-category, we obtain k−1 im(f2)k = im(f1). Hence f2 = f1 in
J(H). This already implies f2 = f1. Hence we have k ∈ NG im(f2) ∩K and deduce
a(H1, f1,H2, f2) = |K ∩NG im(f2) : im(f2)| · id. Recapitulating the above, we get

a(H1, f1,H2, f2) =


|K ∩NG im(f2) : im(f2)| · id, if H1 = H2 and f1 = f2,
do not know, if (H1) < (H2),
0, otherwise.

(3.2.10.1)

We have∏
(H) ∈ IFN

CEHCSHM
G
N (K) =

∏
(H)∈IFN

(N)≤(H)≤(K)

CEHCSHM
G
N (K) =

⊕
(H) ∈ IFN

CEHCSHM
G
N (K),

since ∣∣{ (H) ∈ FN
}∣∣ = | { (H) ∈ IFN | (N) ≤ (H) ≤ (K) } | <∞

by assumption. Therefore we can define the map

a(K) :
⊕

(H)∈IFN ,H⊆K

(f : H→K)∈SubF (G)

CSHM
G
N

⊕H,f B(H,f)
−−−−−−−−→

⊕
(H) ∈ IFN

CEHCSHM
G
N (K)

⊕H,f A(f)
−−−−−−→

⊕
(H)∈IFN ,H⊆K

(f : H→K)∈SubF (G)

CSHM
G
N .

With (3.2.10.1) and induction it is easily seen that a(K) is surjective and hence
⊕H,fA(f). Obviously ⊕H,fA(f) is injective and hence ⊕H,fA(f) is an isomorphism.
Consequently, ⊕H,fB(H, f) is surjective. Since ⊕H,fB(H, f) factorizes over TN (K),
we obtain the surjectivity of TN (K).

Lemma 3.2.11. Let I be an RSubF (G)-module and define IN analogously to (3.2.9.1)
for N ∈ F . Suppose that every RSubF (G)-module IN is injective. Then I is an
injective RSubF (G)-module if and only if for each H ∈ F and every RSubFH

(G)-
submodule L ⊆ RSubFH

(H)(?,H), the term

lim1

N∈IFH

homRSubFH
(H)(RSubFH

(H)(?,H)/L, IH
N ) = 0

vanishes, where IH
N = resSubFH

(H) IN and FH denotes the subfamily of groups which
are contained in H.

Proof. We show both directions simultaneously. To prove injectivity we have to prove
exactness of the functor homRSubF (G)(−, I). By [20, Lem. 1, p. 136], it suffices to
consider short exact sequences

0→ L→ RSubF (G)(?,H)→ RSubF (G)(?,H)/L→ 0.
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Since IN is injective, we obtain a short exact sequence

0→ homRSubF (G)(RSubF (G)(?,H)/L, IN )

→ homRSubF (G)(RSubF (G)(?,H), IN )

→ homRSubF (G)(L, IN )→ 0.

By applying limN∈IF and using the isomorphism

homRSubF (G)(L
′, I) = homRSubF (G)(L

′, lim
N∈IF

IN )
pr∗−−→ lim

N∈IF
homRSubF (G)(L

′, IN ),

we get an exact sequence

0→ homRSubF (G)(RSubF (G)(?,H)/L, I)

→ homRSubF (G)(RSubF (G)(?,H), I)→ homRSubF (G)(L, I)

→ lim1

N∈IF
homRSubF (G)(RSubF (G)(?,H)/L, IN )

→ lim1

N∈IF
homRSubF (G)(RSubF (G)(?,H), IN ).

However, the inverse system of the last term is

homRSubF (G)(RSubF (G)(?,H), IN ) = IN (H),

hence constant; and the last term vanishes. Thus we get an exact sequence

0→ homRSubF (G)(RSubF (G)(?,H)/L, I)

→ homRSubF (G)(RSubF (G)(?,H), I)→ homRSubF (G)(L, I)

→ lim1

N∈IF
homRSubF (G)(RSubF (G)(?,H)/L, IN )→ 0

and
lim1

N∈IF
homRSubF (G)(RSubF (G)(?,H)/L, IN )

is the obstruction for exactness of homRSubF (G)(−, I).
In order to get the assertion, we have to simplify the derived limit a little bit. Since

we have
indSubF (G)

SubFH
(H)RSubFH

(H)(?,H) = RSubF (G)(?,H),

and (ind, res) is an adjoint pair of functors, we obtain

homRSubFH
(H)(RSubFH

(H)(?,H)/L, IH
N ) = homRSubF (G)(RSubF (H)(?,H)/L, IN )

and consequently

lim1

N∈IFH

homRSubFH
(H)(RSubFH

(H)(?,H)/L, IH
N )

= lim1

N∈IF
homRSubF (G)(RSubF (G)(?,H)/L, IN ).

Now the assertion follows.
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Remark 3.2.12. Let F? be a Γ-collection of families of subgroups for some Γ. Then we
have FH ⊆ (FG)H for any G ∈ Ob(Γ) and any H ∈ FG by Remark 1.5.6. Equality
does not hold in general but holds for the collections in Example 1.5.7.
Remark 3.2.13. Let (Ij)j∈J be an inverse system of injective R-modules which is of
finite length. Suppose that lim1

j∈J Ij = 0 holds. Then we get by Corollary B.2 that
limj∈J Ij is injective if and only if

lim1

j∈J
hom(M, Ij) = 0

for every R-module M . This result is not valid for RΓ-modules (see Example B.5). The
essence of the previous lemma is that in the case of RSubF (G)-modules the statement
remains true if we restrict to special RSubF (G)-modules M .
Remark 3.2.14. The structure maps in

homRSubFH
(H)(RSubF (G)(?,H)/L, IH

N )

are injective. Furthermore, these groups are Q-vector spaces, provided Q ⊆ R. Sup-
pose that IFH

has finite length. This is the case for F = I or G unimodular and
F = CO . Then we can deduce by Lemma 3.2.9 the existence of a cofinal subsys-
tem which has only isomorphisms as structure maps if the corresponding derived limit
vanishes.

Theorem 3.2.15. Let Q ⊆ R be semisimple. Suppose that [H : K] < ∞ and the
corresponding morphism set morSubF (G)(G/K,G/H) is finite for any H,K ∈ F . For
a Mackey functor M , the RSubF (G)-module MG is injective if and only if

lim1

N∈IFH

homRSubFH
(G)(RSubFH

(H)(?,H)/L,MH
N ) = 0

for each H ∈ F and L ⊆ RSubFH
(H)(?,H).

Proof. The category SubF (G) is an EI-category by Corollary 1.2.24. Thus

WGH = morSubF (G)(G/H,G/H)

is a finite group. Since RW̃GH is semisimple, CSHM
G
N is an injective RWGH-module.

Moreover, we have

| { (K) ∈ IF | (N) ≤ (K) ≤ (H) } | =
∣∣{ (K)

∣∣ ∃g ∈ G : gNg−1 ⊆ K ⊆ H
}∣∣

≤ |morSubF (G)(N,H)|
·max

{
|
{
K
∣∣ gNg−1 ⊆ K ⊆ H

}
|
∣∣ [c(g)] ∈ morSubF (G)(N,H)

}
and

max
{
|
{
K
∣∣ gNg−1 ⊆ K ⊆ H

}
|
∣∣ [c(g)] ∈ morSubF (G)(N,H)

}
≤ max

{
2[H:gNg−1]

∣∣∣ [c(g)] ∈ morSubF (G)(N,H)
}
<∞.

Therefore MG
N is injective for every N ∈ F by Lemma 3.2.10. Thus we get the assertion

by Lemma 3.2.11.
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Lemma 3.2.16. Let Q ⊆ R be semisimple and SubF (G) be an EI-category. Let M
be an injective RSubF (G)-module and for every H ∈ F let the corresponding group
CGH(H∩CGH) be locally finite. Then resprM is an injective ROrF (G)-module, where
we denote by pr: OrF (G)→ SubCO(G) the canonical projection.

Proof. The functor indpr is exact as we have seen in the proof of Lemma 3.1.14. There-
fore respr respects the property injective by Corollary 1.3.13.

Assembling all together we obtain

Proposition 3.2.17. Let Q ⊆ R, OrF (G) be an EI-category and M be a Mackey
functor. Suppose that the following conditions hold.

(i) |{ (K) ∈ IF | (N) ≤ (K) ≤ (H) }| <∞ and [H : N ] <∞ for any N,H ∈ F .

(ii) CGH/(H ∩ CGH) is locally finite for any H ∈ F .

(iii) CSHM
G
N is an injective RW̃GH-module for any H ∈ F .

Then resprM
G is an injective ROrF (G)-module if and only if

lim1

N∈IFH

homRSubFH
(H)(RSubFH

(H)(?,H)/L,MH
N ) = 0

for each H ∈ F and L ⊆ RSubFH
(H)(?,H).

Proof. Because of (i) and (iii), we can deduce by Lemma 3.2.10 and Lemma 1.2.13 that
MG

N is an injective RSubF (G)-module for every N ∈ F . Now (ii) and Lemma 3.2.16
yield the injectivity of resprM

G
N . Thus the assertion follows from Lemma 3.2.11.

Proposition 3.2.18. Let Q ⊆ R and G be a prodiscrete l-group. Suppose CGH/(H ∩
CGH) is locally finite for any compact open subgroup H ⊆ G. Then resprM

G is an
injective ROrCO(G)-module if and only if

lim1

N∈ICO
homRSubCO(H)(RSubCO(H)(?,H)/L,MH

N ) = 0

for each compact open subgroup H ⊆ G and L ⊆ RSubCO(H)(?,H).

Proof. By Proposition 1.2.25 the subgroup category is an EI-category and the mor-
phism sets are finite. Now the assertion follows from Theorem 3.2.15 and Lemma 3.2.16.

Theorem 3.2.19. Let Q ⊆ R be semisimple. Suppose that [H : K] < ∞ and the
corresponding morphism set morOrF (G)(G/K,G/H) is finite for any H,K ∈ F . For
a Mackey functor M , the ROrF (G)-module resprM

G is injective if and only if

lim1

N∈IFH

homRSubFH
(G)(RSubF (H)(?,H)/L,MH

N ) = 0

for each H ∈ F and L ⊆ RSubF (H)(?,H).
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Proof. The category OrF (G) is an EI-category by Corollary 1.2.24. Thus

WGH = morOrF (G)(G/H,G/H)

is finite. Hence CGH/(H ∩ CGH) ⊆ WGH is finite. The assertion follows now from
Theorem 3.2.15 and Lemma 3.2.16.

Corollary 3.2.20. Let Q ⊆ R be semisimple. Suppose that either F = I or that G is a
semisimple p-adic group and F = CO. For a Mackey functor M , the ROrF (G)-module
resprM

G is injective if and only if

lim1

N∈IFH

homRSubFH
(G)(RSubF (H)(?,H)/L,MH

N ) = 0

for each H ∈ F and L ⊆ RSubF (H)(?,H).

Proof. We want to apply the theorem. In the first case, let F = I and let H ⊆ K ⊆ G
be closed subgroups of finite index. We obtain∣∣morOrI(G)(G/H,G/K)

∣∣ = ∣∣{ g ∈ G ∣∣ gHg−1 ⊆ K
}
/K
∣∣ ≤ [G : K] <∞.

Therefore, the theorem is applicable.
Now let G be a semisimple p-adic group and F = CO. The orbit category is an

EI-category with finite morphism sets by Corollary 1.7.12. Therefore we can apply the
theorem.

3.3 Applications to K-Theory
In this section, we discuss the case where the Mackey functor is given by the coefficients
of K-theory in more detail. We provide examples in which the coefficient modules are
not flat or injective, respectively. At the very end of this section, as a happy ending,
we give an example, where the coefficient module is injective.

Let G be a second countable locally compact group and F = CO. In this section,
we assume that OrCO(G) is an EI-category. For a ring R, we denote by KG

R the
covariant or contravariant OrCO(G)-moduleKG

0 (G/?)⊗R orK0
G(G/?)⊗R, respectively.

Sometimes we consider KG
R as a SubCO(G)-module but in those cases we will state it

explicitly. Furthermore, for an ROrCO(G)-module M and N ∈ CO, we denote by MN

the truncated module which was defined in Subsection 3.1.2.
We recall that we have KG

C (H) ⊆ C(H,C)H for a compact open subgroup H ⊆ G
by Lemma 2.2.37. Thus we can think of an element ϕ ∈ KG

C (H) as a continuous
complex valued conjugation invariant function ϕ : H → C. This identification will be
used throughout the entire section.

Lemma 3.3.1. Let H ⊆ G be a compact open subgroup. Suppose further that

M = H \
⋃

K(H
compact open

K
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3 Flat and Injective Modules over a Category

is non-empty and open. Then the constant CWGH-module C is a direct summand of
SHK

G
C and of CSHK

G
C .

Proof. Let N ⊆ G be a compact open subgroup and consider the following maps

ϕ1 : C i−→ (KG
C )N (H)

pr−→ SH(KG
C )N

ϕ2 : CSH(KG
C )N

inc−−→ (KG
C )N (H)

p−→ C,

where the maps i and p are induced by

i′ : { f : H → C | f constant } → C(H,C)H , f 7→ f

p′ : C(H,C)H → C, f 7→ 1
vol(M)

∫
M
f(h)dh

for a chosen Haar measure on H. Since M is assumed to be open and non-empty, we
get vol(M) > 0. Thus p is defined. Consequently, the maps i and p are splits of each
other. For a compact open subgroup Ñ ⊆ N , we obtain a diagram

SH(KG
C )N

pr

��

sN
++

CSH(KG
C )N

oo

ϕ2

%%JJJJJJJJJJ

C id //

ϕ1
::uuuuuuuuuu

ϕ1 $$III
III

III
I C

SH(KG
C )Ñ

sÑ
++

CSH(KG
C )Ñ

oo

inc

OO

ϕ2

99tttttttttt

Note that under the identification KG
C (H) ⊆ C(H,C)H , we have

CSH(KG
C )N =

{
(f : H → C) ∈ KG

C (H)
∣∣∣ f |K=0 for every compact open subgroup

K(H with (N)≤(K)

}
and sN sends [f : H → C] ∈ SH(KG

C )N to f ′ : H → C, where

f ′(h) =

{
0, if h ∈ K for some compact open subgroup K ( H with (N) ≤ (K),
f(h), otherwise.

We obtain maps

C→ colim
N∈ICO

SH(KG
C )N → C and C→ lim

N∈ICO
CSH(KG

C )N → C,

where the compositions are identities because the required parts of the diagram com-
mute. Since we have

colim
N∈ICO

SH(KG
C )N = SHK

G
C and lim

N∈ICO
CSH(KG

C )N = CSHK
G
C ,

our assertion follows.
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Corollary 3.3.2. If there exists a compact open subgroup H ⊆ G such that the corre-
sponding group is locally finite (torsion) and the assumption of Lemma 3.3.1 is satisfied,
then KG

Q is not flat (injective) as a QΓ-module for Γ = SubCO(G) or Γ = OrCO(G),
respectively.

Proof. This follows directly from the previous lemma and Theorem A.7 or Theo-
rem A.8, respectively.

Example 3.3.3. Let G = GL2(Qp) and K be the compact open subgroup

K =
{
A =

(
a b
c d

)
∈ GL2(Qp)

∣∣∣∣ |detA|p = 1 and a, b, c, d ∈ Zp

}
.

Then K has exactly three maximal compact subgroups (cf. Figure 1.1), namely

H1 =
{(

a b
c d

)
∈ K

∣∣∣∣ b ∈ pZp

}
,

H2 =
{(

a b
c d

)
∈ K

∣∣∣∣ c ∈ pZp

}
and

H3 =
{(

a b
c d

)
∈ K

∣∣∣∣ a, d ∈ pZp

}
∪
{(

a b
c d

)
∈ K

∣∣∣∣ b, c ∈ pZp

}
Obviously, H1 ∪H2 ∪H3 6= K and K \ (H1 ∪H2 ∪H3) is open. Hence the assumption
of Lemma 3.3.1 is satisfied. Moreover, we obtain

Z = Q×
p /Z×p = CG(K)/(K ∩ CG(K)) ⊆WGK.

Therefore KG
Q is neither flat nor injective as a QOrCO(G)-module. We remark that

KG
Q is flat as a QSubCO(G)-module by Corollary 1.7.11 and Corollary 3.1.13.
The Heisenberg group, which we will introduce in the next example, does not have

a Chern character for the Borel construction (Example 4.3.2). Although a Chern
character exists in the case of K-theory (see Section 5.6), we show in the next example
that our approach does not work in this case.
Example 3.3.4. Let Hei be the three-dimensional Heisenberg group which is the sub-
group of GL3(Z) consisting of upper triangular matrices with 1 on the diagonal. It
has the presentation

Hei = 〈u, v, z | [u, z] = 1, [v, z] = 1, [u, v] = z〉 .

There is the central extension

1→ Z i−→ Hei
pr−→ Z2 → 1,

where i maps the generator in Z to the element z and pr sends z to (0, 0), u to (1, 0)
and v to (0, 1). Let k : Z→ Zp be the obvious inclusion. The central extension yields
a central extension of topological groups

1→ Zp
j−→ G

p−→ Z2 → 1 (3.3.4.1)
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3 Flat and Injective Modules over a Category

described next. We equip Z2 and Hei with the discrete topology. The topological
group G is the quotient of Zp×Hei by the central closed subgroup given by the image
of j × i : Z→ K ×Hei. The homomorphism of topological groups j is induced by the
inclusion of groups Zp → Zp × Hei and p : G → Z2 is induced by the composition of
the projection Zp × Hei → Hei with pr: Hei → Z2. We denote by l : Hei → G the
map induced by the inclusion Hei → K × Hei. Note that G is an l-group since Zp is
an l-group.

Since (3.3.4.1) is central, we obtain SubCO(G) = SubCO(Zp) and KG
Q is flat as a

QSubCO(G)-module. Moreover, it is injective, which we will prove in Lemma 3.3.10.
Each proper compact open subgroup K ( Zp is contained in pZp and Zp \ pZp is open.
Since WGZp = Z2, the assumptions of Corollary 3.3.2 are fulfilled and KG

Q can be
neither flat nor injective as a QOrCO(G)-module.

Note that G is a p-adic Lie group [18, Thm 8.1] because Zp is an open subgroup.
In Example 4.3.2 we will see that the corresponding coefficient module for G of the

Borel construction cannot be flat, either.

Before we give an example of an injective KG
Q at the very end of this section, we

discuss the case, where KG
C is not injective.

Lemma 3.3.5. Let N =
∏

Z Z/2Z and G = N o Z, where Z acts on N in the obvious
way. Then KG

Q is not injective as a QOrCO(G)-module.

Proof. For N ⊆ H ⊆ G compact open, the maps

C // KG
C (H) // C

z � // (g 7→ z)

f � // f(1)

induce a split C→ KG
C , where C denotes the constant contravariant OrCO(G)-module.

Thus it suffices to prove that C is not injective. Since Z is a non-torsion group, the
constant CZ-module C is not injective by Theorem A.8. Hence there exist a CZ-
module M and an injective map i : C → M which does not split. Let H ⊆ G be a
compact open subgroup. Then we already have H ⊆ N because Z does not admit any
non-trivial finite subgroup. Since H ⊆ N is open, we can assume

∏
I Z/2Z ⊆ H for a

cofinite set I ⊆ Z. We obtain

WGH ⊆

{
Z, if H = N ,
(Z/2Z)k for some k ∈ N, otherwise.

We define a
∏

N Z/2Z-action on M by the trivial action. Then M canonically defines
a QOrCO(G)-module M̃ with M̃(H) = M for any compact open subgroup H ⊆ G.
We get an injective map i : C → M̃ , which does not split. Consequently, C is not
injective.
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Proposition 3.3.6. Let Γ = OrCO(G) or Γ = SubCO(G), respectively. Suppose
that the corresponding morphism sets morOrCO(G)(G/K,G/H) or morSubGCO(K,H),
respectively, are finite. Let H ⊆ G be a compact open subgroup. Suppose there exist
infinitely many compact open subgroups H1,H2, . . . such that the sequence

Mi =
i⋃

k=1

⋃
g∈G

gHkg
−1

is properly increasing. Then KG
Q is not injective as a QΓ-module.

Proof. By Corollary 2.2.39 and Theorem 3.2.19 or Theorem 3.2.15, respectively, it
suffices to find a compact open subgroup K ⊆ G and a QSubCO(G)-submodule L ⊆
QSubCO(G)(?,K) such that

lim1

N∈ICO
homQSubCO(G)(QSubCO(G)(?,K)/L, (KH

Q )N ) 6= 0.

Our candidates are K = H and

L(N) =


0, lN (Hi) < i for minimal i with (N) ≤ (Hi),
QSubCO(G)(N,H), lN (Hi) ≥ i for minimal i with (N) ≤ (Hi),
0, otherwise.

Consequently, we have(
QSubCO(G)(?,H)/L(?)

)
(N)

=


QSubCO(G)(N,H), lN (Hi) < i for minimal i with (N) ≤ (Hi),
0, lN (Hi) ≥ i for minimal i with (N) ≤ (Hi),
QSubCO(G)(N,H), otherwise.

We define χHi : H → C by

χHi(h) =

{
0, h ∈Mi−1,

1, otherwise.

Let N ⊆ G be a compact open subgroup. We obtain the inclusion

homCSubCO(G)(CSubCO(G)(?,H)/L, (KG
C )N )

⊆ homCSubCO(G)(CSubCO(G)(?,H), (KG
C )N ) = KG

C (H),

and under this identification we have

homCSubCO(G)(CSubCO(G)(?,H)/L, (KG
C )N )

= { f ∈ KG
C (H) | f |Ñ = 0 for (N) ≤ (Ñ) ≤ (Hi), lÑ (Hi) ≥ i } .
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For N1 ⊆ N0 ⊆ Hi compact open with lN0(Hi) = i− 1 and lN1(Hi) = i we deduce the
following:

χHi ∈ hom(CSubCO(G)(?,H)/L, (KG
C )N0) and

χHi /∈ hom(CSubCO(G)(?,H)/L, (KG
C )N1).

The structure maps cannot be surjective; however, they are always injective. Thus the
derived limit does not vanish by Lemma 3.2.9.

Remark 3.3.7. The sequence Mi of the previous proposition may become stationary
even if the corresponding subgroups are non-subconjugated. Let G = (Z/2)3 and let
H1, . . . ,Hn be the set of maximal subgroups, i.e., two-dimensional subvector spaces.
Let a ∈ Hn and suppose (a, b) is a basis of Hn. Pick a linearly independent c ∈ G.
Then we obtain Hk = 〈a, c〉 for some k < n and a ∈ Hk. Therefore the sequence Mi of
Proposition 3.3.6 is not properly increasing in this case, although H1, . . . ,Hn are not
conjugated.
Example 3.3.8. Let K be compact and G =

∏
ZK. Let Hi ⊆ G be the subgroup,

omitting the i-th factor. Then the corresponding sequence fulfills the assertion of
Proposition 3.3.6. Hence KG

Q is not injective.
Remark 3.3.9. Let G be an l-group. Suppose we have only finitely many maximal
subgroups for each H ⊆ G compact open up to conjugation. This is morally true in
light of Proposition 3.3.6. Then we can define a decreasing sequence

H0 = H, Hk =
k⋂

i=1

ni⋂
j=1

Hi,j

of compact open subgroups. Here {Hi,0, . . . ,Hi,ni } denotes a system of representatives
of conjugacy classes of maximal compact open subgroups. Since G admits, as an l-
group, a basis of topology of compact open subgroups and [N1 : N2] < ∞ for N1 ⊆
N2 ⊆ G compact open, we obtain that

{ gHng
−1 | g ∈ G, n ∈ N }

is a basis of topology and defines a cofinal subsystem in CO (of H). Our derived limit
simplifies to

lim1

N∈ICO
homQSubCO(G)

(
QSubCO(G)(?,H)/L, (KG

Q )N

)
= lim1

n→∞
homQSubCO(G)

(
QSubCO(G)(?,H)/L, (KG

Q )Hn

)
.

Finally, we want to give examples of l-groups which induce injective modules.

Lemma 3.3.10. Let G be an abelian compact group such that every compact open
subgroup has only finitely many maximal compact open subgroups (e.g., G = Zp).
Then KG

Q is injective.
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Proof. Since G is compact, OrCO(G) = OrI(G) and it suffices to prove that the derived
limit vanishes by Corollary 3.2.20.

We get dimQ QSubCO(G)(H,K) ∈ { 0, 1 } for the free module because the morphism
sets have only one element or are empty for an abelian group.

Let L ⊆ QSubCO(G)(?,H) be a submodule for H ⊆ G compact open. Further,
we choose a basis of topology H1,H2, . . . as in the previous remark. Assume we
have a minimal n such that L(Hn) = Q. Otherwise we would get the trivial case
L = QSubCO(G). Now we can conclude

lim1

l→∞
hom((QSubCO(G)(?,H)/L), (KG

Q )l)

= lim1

l→∞
hom((QSubCO(G)(?,H)/L), (KG

Q )n+1) = 0.

Note that the previous lemma does not use any special properties of KG
Q but works

for any QOrCO(G)-module M which has a Mackey functor structure. However, the
author wanted to place it after Proposition 3.3.6 and its remarks.
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4 The Construction of the Equivariant
Chern Character

The goal of the first section of this chapter is to construct a natural map

c̃h
G

∗ : H∗(X?)⊗OrCO(G) HG
∗ (G/?)→ H∗(X).

Together with the flatness results of the previous chapter this yields the desired Chern
character. As a consequence, we get Theorem 4.1.8, which provides a tool to compute
K∗(C∗r (G))⊗ C for a semisimple p-adic group G. In the special case of G = SL2(Qp),
we computeK∗(C∗r (G))⊗C explicitly. In the second section, we discuss the cohomology
case, where we get a Chern character, too. However, there is no nice application as it
is in the homological case. In the third section, we give examples of groups, where a
Chern character cannot exist.

In this chapter, R denotes a commutative ring with Q ⊆ R.

4.1 The Homological Equivariant Chern Character

Let H?
∗ be an equivariant (Γ,F?)-homology theory with values in R-modules such that

FH is a smooth family for every H ∈ Ob(Γ). Let G ∈ Ob(Γ) and (X,A) be a (G,FG)-
CW-pair. We consider a subgroup H ∈ FG. We recall that every subgroup H ∈ FG

is open by definition. Consequently, our G-CW-complex (X,A) is smooth.

We want to construct an R-homomorphism

chG
p,q(X,A)(H) : Hp(XH , AH ;R)⊗R HG

q (G/H) −→ HG
p+q(X,A), (4.1.0.1)

where Hp(XH , AH ;R) is the cellular homology of the CW-pair (XH , AH) with R-
coefficients. Note that XH is a CW-complex since X is smooth. For (notational)
simplicity we give the details only for A = ∅. The map is defined by the following
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composition

Hp(XH ;R)⊗R HG
q (G/H)

πs
p((X

H)+)⊗Z R⊗R HH
q ({•})

hur(XH)⊗RindG
H

∼=

OO

DH
p,q(XH)

��

HH
p+q(X

H)

indG
H

∼=
��

HG
p+q(G×H XH)

HG
p+q(vH)

��

HG
p+q(X)

Some explanations are in order.
For every CW-complex Y let hur(Y ) : πs

p(Y+)⊗ZR→ Hp(Y ;R) be the Hurewicz ho-
momorphism. It is bĳective since Q ⊆ R and therefore hur is a natural transformation
of (non-equivariant) homology theories, which induces for the one-point space Y = {•}
an isomorphism πs

p({•}+)⊗Z R ∼= Hp({•};R) for p ∈ Z by a result of Serre [48].
Given a space Z and a topological group H, consider Z as a smooth H-space by the

trivial action and define a map

DH
p,q(Z) : πs

p(Z+)⊗Z HH
q ({•}) = πs

p(Z+)⊗Z R⊗R HH
q ({•})→ HH

p+q(Z)

as follows. For an element a ⊗ b ∈ πs
p(Z+) ⊗Z HH

q ({•}) choose a representative
f : Sp+k → Sk ∧ Z+ of a. We define DH

p,q(Z)(a ⊗ b) to be the image of b under
the composition

HH
q ({•})

∼=−→ H̃H
q (S0) σp+k

−−−→ H̃H
p+q+k(S

p+k, {•})
H̃H

p+q+k(f)
−−−−−−−→ H̃H

p+q+k(S
k ∧ Z+, {•})

σ−k

−−→ H̃H
p+q(Z+)

∼=←− HH
p+q(Z), (4.1.0.2)

where σ denotes the suspension isomorphism. We remark that {•} is an (H,FH)-CW-
complex because H ∈ FH by definition (cf. Definition 1.5.5).

The G-map vh : G×H XH → X sends (g, x) to gx.

Lemma 4.1.1. Let G be a group and X be a smooth (G,F)-CW-complex. We consider
H,K ∈ F and g ∈ G with gHg−1 ⊆ K. Let Lg−1 : XH → XK be the map induced by
left multiplication with g−1. Let Rg−1 : G/H → G/K be given by right multiplication
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4.1 The Homological Equivariant Chern Character

with g−1. Then the following diagram commutes:

Hp(XK)⊗HG
q (G/H)

id⊗Rg−1

��

(Lg−1 )∗⊗id
// Hp(XH)⊗HG

q (G/H)

chG
p,q(X)(H)

��

Hp(XK)⊗HG
q (G/K)

chG
p,q(X)(K)

// HG
p+q(X)

Proof. We examine the following diagram:

πs
p(XK)⊗ R⊗HK

q ({•})

DK
p,q

��

πs
p(XK)⊗ R⊗HH

q ({•})
id⊗(pr∗ ◦ indc(g))
oo

(L
g−1 )∗⊗id

//

DH
p,q

��

πs
p(XH )⊗ R⊗HH

q ({•})

DH
p,q

��

HK
p+q(XK)

indG
K

��

HH
p+q(XK)

pr∗ ◦ indc(g)
oo

(L
g−1 )∗

//

indG
K

��

HH
p+q(XH )

indG
H

��

HG
p+q(G×K XK)

m

++VVVVVVVVVVVVVVVVVVVV
HG

p+q(G×c(g) XK)

(R
g−1×id)∗

oo
(id×L

g−1 )∗
// HG

p+q(G×H XH )

m

sshhhhhhhhhhhhhhhhhhhh

HG
p+q(X)

We consider XK as a trivial H-space in HH
p+q(X

K). The upper left square commutes
as an immediate consequence of the definition of DH

p,q and the naturality of ind. The
upper right square commutes because DH

p,q is functorial. By Lemma 1.5.11, we have a
commutative diagram

HH
n ({•})

pr∗ ◦ indc(g)
//

indG
H

��

HK
n ({•})

indG
K

��

HG
n (G/H)

(Rg−1 )∗
// HG

n (G/K)

Hence the lower left square commutes. Because of indLg−1 = id×Lg−1 , the lower right
square commutes. Finally, it is obvious that the lower triangle commutes and so does
the entire diagram commutes. From this and the definition of chG

p,q the assertion easily
follows.

Theorem 4.1.2. Let H?
∗ be an equivariant smooth (Γ,F?)-homology theory with values

in R-modules. Let G ∈ Ob(Γ) be a (topological) group and suppose the OrFG
(G)-

module HG
n (G/?) is flat for all n ∈ Z. Then there is an isomorphism, called equivariant

Chern character, of (G,FG)-homology theories

chG
∗ : BHG

∗ (X,A)→ HG
∗ (X,A)

which is natural in (X,A) and compatible with the boundary maps. If H ∈ FG is
another group with a corresponding flat coefficient module HH

n (H/?), then chG
∗ and

chH
∗ are compatible with induction indG

H .
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4 The Construction of the Equivariant Chern Character

Proof. By Lemma 4.1.1, the maps chG
p,q(X,A) define a map

c̃h
G

∗ :
⊕

p+q=n

Hp

(
C

OrFG
(G)

∗ (X,A)
)
⊗ROrFG

(G) HG
q (G/−)→ HG

p+q(X,A).

By assumption, HG
∗ (G/?) is flat and we obtain an isomorphism⊕

p+q=n

Hp

(
C

OrFG
(G)

∗ (X,A)
)
⊗ROrFG

(G) HG
q (H/−)

∼=−−→ BHG
∗ (X,A).

The composition of these two maps yields a map

chG
∗ : BHG

∗ (X,A)→ HG
∗ (X,A).

It is not difficult to verify that chG
n is natural in (X,A), compatible with the boundary

maps and the induction structure. In order to show that chG
n is an isomorphism, it

suffices to check this only for G/H for all H ∈ FG. Since chG
n is compatible with

induction, chG
n (G/H) is an isomorphism if chH

n ({•}) is one. However, this is obvious.

Corollary 4.1.3. Let R be semisimple and let H?
∗ be an equivariant smooth (Γ,F?)-

homology theory with values in R-modules which has a Mackey structure on coeffi-
cients. Let G ∈ Ob(Γ) be a (topological) group such that the corresponding semigroups
morOrFG

(G)(G/H,G/H) are finite and lK(H), [H : K] < ∞ for every H,K ∈ FG.
Then there is an isomorphism of (G,FG)-homology theories

chG
∗ : BHG

∗ (X,A)→ HG
∗ (X,A)

which is natural in (X,A) and compatible with the boundary maps. If H ∈ FG, the
maps chG

∗ and chH
∗ are compatible with indG

H .

Proof. Combining the previous theorem with Corollary 3.1.18 yields the desired asser-
tion.

Corollary 4.1.4. Let R be semisimple and let H?
∗ be an equivariant proper smooth

homology theory which has a Mackey structure on coefficients. Moreover, let G be a
prodiscrete l-group such that CGH/(H ∩CGH) is locally finite for every compact open
subgroup H ⊆ G. Then there is an isomorphism of proper smooth G-homology theories

chG
∗ : BHG

∗ (X,A)→ HG
∗ (X,A)

which is natural in (X,A) and compatible with the boundary maps. If H ∈ FG, the
maps chG

∗ and chH
∗ are compatible with indG

H .

Proof. By Corollary 3.1.19, the coefficient module is flat as an ROrCO(G)-module.
Now the assertions follow by Theorem 4.1.2.
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4.1 The Homological Equivariant Chern Character

Corollary 4.1.5. Let G be a unimodular group with locally finite semigroup
morOrCO(G)(G/H,G/H) for every H ⊆ G compact open. Denote by H?

∗ the Borel
construction. Then there is an isomorphism of proper smooth G-homology theories

chG
∗ : BHG

∗ (X,A)⊗Q→ HG
∗ (X,A)⊗Q

which is natural in (X,A) and compatible with the boundary maps. If H ⊆ G is a
compact open subgroup, the maps chG

∗ and chH
∗ are compatible with indG

H .

Proof. We want to apply Theorem 3.1.16. By Proposition 1.2.21, the orbit category
is an EI-category and lK(H) < ∞ for all compact open subgroups K ⊆ H ⊆ G. It
remains to construct splits for the projections

pr: HG(G/H)N ⊗Q→ SH(HG(G/?)N ⊗Q),

where N ( H ⊆ G are compact open subgroups. However, the structure maps are ra-
tionally surjective by Remark 2.1.2. Hence the right term vanishes, and the projections
split. Thus HG(G/?)H ⊗Q is flat, and we can apply Theorem 4.1.2.

We want to give an example of a group G which has infinite but locally finite
semigroups morOrCO(G)(G/H,G/H) and does induce a Chern character.

Proposition 4.1.6. Let L be a locally finite discrete group and F be a finite group.
Furthermore, let N =

∏
F L and G be the group

G = N o L,

where L acts on N in the obvious way. Then

morOrCO(G)(G/N,G/N) = WGN = L,

and there is an isomorphism of proper smooth G-homology theories

chG
∗ : BHG

∗ (X,A)⊗Q→ HG
∗ (X,A)⊗Q,

where H?
∗ denotes the Borel construction.

Proof. We want to apply the previous corollary. Since N ⊆ G is a compact open
normal subgroup, G is unimodular by Lemma 1.2.16. This implies

morOrCO(G)(G/N,G/N) = WGN

by Lemma 1.2.18. Moreover, WGN = L is obvious. It remains to show that the Weyl
group WGH is locally finite for every compact open subgroup H ⊆ G. So let H ⊆ G
be a compact open subgroup. We define

H1 = prN (H) ⊆ N and H2 = prL(H) ⊆ L,
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4 The Construction of the Equivariant Chern Character

where prL and prN are the canonical projections. We remark that prN is not a group
homomorphism and H1 is not a group. Since H is open, H1 is open and, by defini-
tion, there exists a cofinite set L̃ ⊆ L such that

∏
L̃ F ⊆ H1. The Weyl group is a

subquotient of (∏
L\L̃

F
)
×WLH2.

The first factor is finite. Hence WGH is locally finite by Proposition A.5. Now a Chern
character exists by the previous corollary.

Corollary 4.1.7. Let R be semisimple and let H?
∗ be an equivariant smooth (Γ,F?)-

homology theory which has a Mackey structure on coefficients. Moreover, let G ∈
Ob(Γ) and suppose that either F? = I or that G is a semisimple p-adic group and
F? = CO. Then there is an isomorphism of (G,FG)-homology theories

chG
∗ : BHG

∗ (X,A)→ HG
∗ (X,A)

which is natural in (X,A) and compatible with the boundary maps. If H ∈ FG, the
maps chG

∗ and chH
∗ are compatible with indG

H .

Proof. The assertion follows from Theorem 4.1.2 and Corollary 3.1.20.

Now we can tackle the main theorem of this thesis.

Theorem 4.1.8. Let G be a semisimple p-adic group. Then we get an isomorphism⊕
k∈Z

CHG
2k+n(βG) ∼= Kn(C∗rG)⊗ C.

Proof. In Proposition 2.2.42, we have already shown

CHG
∗ (βG) = H

OrCO(G)
∗ (βG;RG).

Thus we obtain
BKG

n (βG)⊗ C =
⊕
k∈Z

CHG
2k+n(βG).

Further, we have the Baum-Connes assembly map

µ : KG
n (βG)→ K(C∗rG),

which is known to be an isomorphism by a celebrated result of Lafforgue [26]. Finally,
there exists an isomorphism

chG
∗ (βG) : BKG

∗ (βG)⊗ C
∼=−→ KG

∗ (βG)⊗ C

by Corollary 2.2.39 and Corollary 4.1.7. Composing the three isomorphisms yields the
desired isomorphism.
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4.2 The Cohomological Equivariant Chern Character

The K-theory of the reduced C∗-algebra of a semisimple p-adic group is a very
interesting object. For a survey of implications of the latter isomorphism see [6, Sec. 6].

At the end of this section, we want to calculate K∗(C∗rG) for G = SL2(Qp). This
is taken from Higson and Plymen [7]. Note that the latter isomorphism was already
known in this case [41] because SL2(G) operates on a tree, its Bruhat-Tits building
(Example 1.7.14). We remark that for arbitrary p-adic groups computations were
made in [39].

We recall that G up to conjugation has two maximal compact subgroups:

K0 = SL2(Zp) and K0 =
{(

a pb
p−1c d

)
∈ G

∣∣∣∣ a, b, c, d ∈ Zp

}
.

The intersection I = K0 ∩ K1 defines a fundamental domain for βG and the corre-
sponding chain complex reduces to

0← R(K0)⊕R(K1)
ind

K0
I − ind

K1
I←−−−−−−−−− R(I)← 0.

Although this does not look very difficult to compute, this filled almost a complete
paper [7]. We just want to report the results. In the case of CHG

1 (βG), we get

CHG
1 (βG) = { f : Z×p → C | f(a−1) = −f(a), f locally constant } .

Let T̃ be a system of representatives of conjugacy classes of maximal tori. For a
maximal torus T ⊆ G, we set

T reg
c = { t ∈ T | t 6= ± id compact } ,

where an element is called compact if it lies in a compact subgroup. We obtain the
following exact sequence

0→
⊕

[T ]∈T̃

C∞c (T reg
c )WGT → CHG

0 (βG)→
⊕
w

C→ 0,

where the second direct sum is taken over conjugacy classes of elements w ∈ G such
that (w± id) is nilpotent. Moreover, we denote by C∞c (T reg

c )WGT the complex valued
locally constant functions with compact support which are invariant with respect to
the action of the Weyl group WGT .

4.2 The Cohomological Equivariant Chern Character
Now we want to dualize the previous construction in order to get a map

chp,q
G (X,A)(H) : HG

p+q(X,A)→ homR(Hp(XH , AH ;R),Hq
G(G/H)). (4.2.0.1)

Fortunately, in this case, the construction is completely analogous to the previous
one. Namely, we obtain a map
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4 The Construction of the Equivariant Chern Character

Hp+q
G (X)

Hp+q
G (vH)

��

Hp+q
G (G×H XH)

indG
H

∼=
��

Hp+q
G (XH)

DH
p,q

∼=
��

homR(πs
p((X

H)+)⊗R,Hq
H{•})

homR(Hp((XH)+;R),Hq
H{•})

(hur(XH),id) ∼=

OO

homR(Hp((XH)+;R),Hq
G(G/H))

∼=(id,indG
H)

OO

The only point which might be unclear is the dual Dp,q
H of DH

p,q.
Given a space Z and a topological group H, we consider Z as a smooth H-space by

the trivial action and define a map

DH
p,q(Z) : Hp+q

H (Z)→ homR(πs
p(Z+)⊗Z R,HH

q ({•}))

as follows. Given an element a ∈ Hp+q(Z) and an element in πs
p(Z+, {•}) represented

by a map f : Sp+q → Sk ∧ Z+, we define Dp,q(a)([f ]) ∈ Hp+q({•}) as the image of a
under the composition

Hp+q(Z)
∼=←− H̃p+q(Z+) σk

−→ H̃p+q+k(Sk ∧ Z+)
H̃p+q(f)−−−−−→ H̃p+q(Sp+k)

(σp+k)−1

−−−−−−→ H̃q(S0)
∼=−→ Hq({•}),

where σ denotes the suspension isomorphism.

Lemma 4.2.1. Let G be a group and X be a smooth G-CW-complex. Then consider
open subgroups H,K ⊆ G and g ∈ G with gHg−1 ⊆ K. Let Lg−1 : XH → XK be the
map induced by left multiplication with g−1. Let Rg−1 : G/H → G/K be given by right
multiplication with g−1. Then the following diagram commutes

homR(Hp(XK ;R),Hq
G(G/H)) homR(Hp(XH ;R),HG

q (G/H))
((Lg−1 )∗,id)

oo

homR(Hp(XK ;R),Hq
G(G/K)

(id,Rg−1 )

OO

HG
p+q(X)

chG
p,q(X)(K)

oo

chG
p,q(X)(H)

OO
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4.2 The Cohomological Equivariant Chern Character

Proof. The proof is essentially the same as in the homological case, which is proven in
Lemma 4.1.1.

Finally, we obtain

Theorem 4.2.2. Let H∗? be an equivariant smooth (Γ,F?)-cohomology theory with
values in R-modules. Let G ∈ Ob(Γ) be a (topological) group and suppose the OrFG

(G)-
module Hn

G(G/?) is injective for all n ∈ Z. Then, for (X,A) finite, there is an
isomorphism, called equivariant Chern character, of (G,FG)-cohomology theories

ch∗G : H∗G(X,A)→ BH∗G(X,A).

Furthermore, ch∗G is natural in (X,A) and compatible with the boundary maps. If
H ∈ FG is another group with a corresponding injective coefficient module H∗H(H/?),
then ch∗G and ch∗H are compatible with indG

H .

Proof. This can be proven analogously to Theorem 4.1.2.

Corollary 4.2.3. Let R be semisimple and let H∗? be an equivariant smooth (Γ,F?)-
cohomology theory with values in R-modules which has a Mackey structure on coeffi-
cients. Let G ∈ Ob(Γ) be a (topological) group such that the corresponding morphism
set morOrCO(G)(G/K,G/H) is finite and [H : K] <∞ for every H,K ∈ FG. Further-
more, suppose

lim1

N∈I(FG)H

homRSub(FG)H
(H)(RSub(FG)H

(H)(?,H)/L,H∗H(H/?)) = 0

for every H ∈ FG and L ⊆ RSub(FG)H
(H)(?,H).

Then, for (X,A) finite, there is an isomorphism, called equivariant Chern character,
of (G,FG)-cohomology theories

ch∗G : H∗G(X,A)→ BH∗G(X,A).

Furthermore, ch∗G is natural in (X,A) and compatible with the boundary maps. If
H ∈ FG is another group, then ch∗G and ch∗H are compatible with indG

H .

Proof. This follows from Theorem 3.2.19 and the previous theorem.

Corollary 4.2.4. Let R be semisimple and let H∗? be an equivariant smooth (Γ,F?)-
cohomology theory with values in R-modules which has a Mackey structure on coeffi-
cients. Let G ∈ Ob(Γ) be a (topological) group and suppose either F = I or that G is
a semisimple p-adic group and F = CO. Furthermore, suppose

lim1

N∈IFH

homRSubFH
(H)(RSubFH

(H)(?,H)/L,H∗H(H/?)) = 0

for every H ∈ FG and L ⊆ RSubFH
(H)(?,H).
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4 The Construction of the Equivariant Chern Character

Then, for (X,A) finite, there is an isomorphism, called equivariant Chern character,
of (G,FG)-cohomology theories

ch∗G : H∗G(X,A)→ BH∗G(X,A).

Furthermore, ch∗G is natural in (X,A) and compatible with the boundary maps. If
H ∈ FG is another group, then ch∗G and ch∗H are compatible with indG

H .

Proof. This follows from Corollary 3.2.20.

Corollary 4.2.5. Let R be semisimple and let H∗? be an equivariant proper smooth
cohomology theory with values in R-modules which has a Mackey structure on coeffi-
cients. Let G be a prodiscrete l-group such that the groups CGH/(H∩CGH) are locally
finite for every compact open subgroup H ⊆ G. Furthermore, suppose

lim1

N∈ICO
homRSubCO(H)(RSubCO(H)(?,H)/L,H∗H(H/?)) = 0

for every H ∈ FG and L ⊆ RSubCO(H)(?,H).
Then, for (X,A) finite, there is an isomorphism, called equivariant Chern character,

of proper smooth G-cohomology theories

ch∗G : H∗G(X,A)→ BH∗G(X,A).

Furthermore, ch∗G is natural in (X,A) and compatible with the boundary maps. If
H ⊆ G is a compact open subgroup, then ch∗G and ch∗H are compatible with indG

H .

Proof. This follows from Corollary 3.2.18.

4.3 About the Non-Existence of Equivariant Chern
Characters

We give examples of groups G and G-homology theories for which a Chern character
cannot exist. Note that the existence of a Chern character implies that the correspond-
ing equivariant Atiyah-Hirzebruch spectral sequence (see Theorem 1.6.4) collapses.

The following example shows that for a discrete group G and a given G-homology
theory there need not be a Chern character, some further conditions such as an induc-
tion structure or a Mackey structure are needed.
Example 4.3.1 (Counterexample for discrete groups). Let Hei be the three-dimensional
Heisenberg group, which we have already seen in Example 3.3.4. We recall that this is
the subgroup of GL3(Z) consisting of upper triangular matrices with 1 on the diagonal.
It has the presentation

Hei = 〈u, v, z | [u, z] = 1, [v, z] = 1, [u, v] = z〉 . (4.3.1.1)

There is the central extension

1→ Z i−→ Hei
pr−→ Z2 → 1, (4.3.1.2)
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4.3 About the Non-Existence of Equivariant Chern Characters

where i maps the generator in Z to the element z and pr sends z to (0, 0), u to (1, 0) and
v to (0, 1). Put G = Z2 and F = Z\EHei, where Z ⊆ Hei is the central infinite cyclic
subgroup generated by z. Then the Hei-action on EHei induces via pr: Hei → Z2 a
G = Z2-action on F = Z\EHei. We claim that there cannot be a Chern character for
the G-homology theory with values in Q-modules given by

HG
∗ (X) := H∗(F ×G X; Q).

Suppose a G-equivariant Chern character would exist. For X = EG, it would yield
an isomorphism ⊕

p+q=n

HG
p (EG;Hq(F ; Q))

∼=−−→ Hn(F ×G EG; Q), (4.3.1.3)

where the left hand side is computed by the chain complex Ccell
∗ (EG) ⊗ZG H∗(F ; Q).

Since G acts freely on F , the projection F ×G EG → G\F = BHei is a homotopy
equivalence. Hence we get

Hn(F ×G EG; Q) ∼= Hn(BHei; Q).

The integral homology of BHei is computed in [31, Lem. 5.3] using the Lyndon-Serre
spectral sequence associated to the central extension (4.3.1.2) from above. This spec-
tral sequence converges to Hp+q(BHei) and has as E2-term Hp(BZ2;Hq(Z)). It does
not collapse, not even after rationalization. The main point is that the group homo-
morphism i : Z → Hei induces the zero map H1(BZ) → H1(BHei) because z is the
commutator [u, v]. Hence the second differential

d2
2,0 : H2(BZ2;H0(Z))→ H0(BZ2;H1(Z)) = H1(Z)

is surjective and in particular is rationally non-trivial. This implies that pr induces an
isomorphism

H1(Bpr) : H1(BHei)
∼=−−→ H1(BZ2).

Hence the target of the hypothetical Chern character (4.3.1.3) would be given by
H1(BHei; Q) ∼= Q2 for n = 1. Its source is

HG
0 (EG;H1(F ; Q))⊕HG

1 (EG;H0(F ; Q)) ∼= H1(Z; Q)⊕H1(Z2; Q) ∼= Q3

since F ' BZ is homotopy equivalent to S1 and G acts trivially on H∗(F ; Q). Hence
there cannot be an isomorphism as described in (4.3.1.3). The Lyndon-Serre spectral
sequence mentioned above can be identified with the equivariant Atiyah-Hirzebruch
spectral sequence, which converges to HG

p+q(EG) and whose E2-term is

H
Or{1}(G)
p (EG;HG

q (G/?)) = HG
1 (EG;Hq(F ; Q)).

Thus we see why the equivariant Atiyah-Hirzebruch spectral sequence does not collapse
after rationalization as there is a non-trivial second differential.
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4 The Construction of the Equivariant Chern Character

We do not know an equivariant homology theory H?
∗ whose evaluation at G is the

G-homology theory HG
∗ considered above. The problem is that the G-space F is not

given in a universal way depending only on G as it would be the case if we chose F to
be EG.

In the case of discrete groups, a Chern character exists for proper equivariant homol-
ogy theories which have a Mackey functor structure (cf. Section 5.4). In the topological
case, the machinery, we have developed, is much more restrictive. The next example
shows that a Chern character does not in general exist for proper smooth equivariant
homology theories which have a Mackey functor structure.
Example 4.3.2 (Counterexample for l-groups). Let K be any compact abelian l-group
together with an injective group homomorphism k : Z → K. We do not require that
k is a homomorphism of topological groups, we just demand that it is compatible
with the group structure. An example is given by the p-adic integers K = Zp and the
obvious inclusion k : Z→ Zp. The central extension (4.3.1.2) yields a central extension
of topological groups

1→ K
j−→ G

p−→ Z2 → 1 (4.3.2.1)

described next. We equip Z2 and Hei with the discrete topology. The topological
group G is the quotient of K ×Hei by the central closed subgroup given by the image
of j × k : Z→ K ×Hei. The homomorphism of topological groups j is induced by the
inclusion of groups K → K × Hei and p : G → Z2 is induced by the composition of
the projection K ×Hei→ Hei with pr: Hei→ Z2. We denote by l : Hei→ G the map
induced by the inclusion Hei → K × Hei. Note that G is an l-group since K is an
l-group. We recall that in the case of K = Zp the group G even is a p-adic Lie group
by [18, Thm. 8.1]. Finally, note that this is a slight generalization of the setting in
Example 3.3.4.

Next we consider the G-homology theory given by the Borel construction and sin-
gular homology with rational coefficients

HG
∗ (X) = H∗(EG×G X; Q).

Suppose that there exists a G-equivariant Chern character for HG
∗ . We consider the

proper smooth G-CW-complex X = EZ2 obtained from the free Z2-CW-complex EZ2

by restriction with p : G → Z2. The hypothetical Chern character would give an
isomorphism ⊕

p+q=n

HOrCO(G)
p (EZ2;Hq(EG×G G/?; Q))

∼=−−→ HG
n (EZ2).

The right hand side simplifies to

HG
n (EZ2) = Hn(EZ2 ×G EG; Q) = Hn(EZ2 ×Z2 (EG)/K; Q)

= HZ2

n (EG/K)
indpr : Z2→{1}−−−−−−−−→∼=

H{1}n ((EG/K)/Z2) = Hn(BG; Q).
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We remark that pr: Z2 → {1} is not injective but in Section 2.1 we constructed an
induction structure in a more general setting, which is now applicable. Since every
isotropy group of EZ2 is equal to K, EZ2 is contractible and the extension (4.3.2.1)
is central, the hypothetical Chern character can be identified with an isomorphism⊕

p+q=n

Hp(T 2;Hq(BK))
∼=−−→ Hn(BG; Q). (4.3.2.2)

This would imply that the inclusion j : K → G induces a group homomorphism

H1(Bj) : H1(BK)→ H1(BG),

which is rationally injective. Since G is an l-group, we get H1(BG) = G/[G,G]
and analogously H1(BK) = K/[K,K] by Remark 2.1.3. Under these identifications
H1(BK)→ H1(BG) becomes the group homomorphism j : K → G/[G,G] induced by
j : K → G. Since the following diagram commutes:

Z i //

k

��

Hei /[Hei,Hei]

l
��

K
j

// G/[G,G]

we obtain that i : Z → Hei /[Hei,Hei] is injective. However, this map is zero since
z ∈ Hei is the commutator [u, v]. Hence the Chern character (4.3.2.2) cannot exist for
G and the G-homology theory HG

∗ .
Note that, in this case, SubCO(G) = SubCO(K) because the extension is central.

The corresponding coefficient module admits a Mackey structure and is flat as a
QSubCO(G)-module since K is compact. Hence it is impossible to construct a Chern
character starting from SubCO(G) for l-groups as it is done in Section 5.4 for discrete
groups. Besides, the coefficient module cannot be flat as a QOrCO(G)-module.
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5 Comparison of Different Chern
Characters

In the first section, we show that two natural equivalences from Bredon (co)homology
to another equivariant (co)homology coincide if they coincide on coefficients. In the
remaining sections, we introduce Chern characters which were known before and show
that all these constructions coincide by applying the theorem of the first section.

5.1 The Comparison Theorem
In the following, we only consider the homological case. If we restrict to finite G-CW-
complexes, the cohomological case carries over verbatim.

Theorem 5.1.1. Let G be a group and F be a smooth family of subgroups. Let

τ1, τ2 : BHG
∗ (−;M∗)→ BHG(−;M∗)

be two natural transformations of Bredon homology over (G,F)-CW-pairs for some
(graded) coefficient module M∗. Suppose further τ1(G/H) = τ2(G/H) for all H ∈ F .
Then we obtain τ1 = τ2.

Proof. Let X be a (G,F)-CW-complex and ∅ ⊆ X0 ⊆ X1 ⊆ · · · be a corresponding
filtration. By Remark 1.6.3, we obtain

BHG
n (Xn, Xn−1;M∗) =

⊕
σ G/H-k-cell

l+k=n

BHG
l (G/H,M∗).

Since this decomposition is natural, the natural transformations τ1 and τ2 respect it.
Consequently, they coincide on BHG

∗ (Xn, Xn−1;M∗) and hence on chain complex level.
As an immediate consequence, they must coincide on BHG

∗ (X;M∗).

Corollary 5.1.2. Let ch1, ch2 : BHG
∗

∼=−→ HG
∗ be two natural equivalences of (G,F)-

homology theories such that chG
1 (G/H) = chG

2 (G/H) for all H ∈ F . Then we obtain
ch1 = ch2.

Proof. We apply the previous theorem to (ch1)−1 ◦ ch2.

Corollary 5.1.3. Let ch?
1, ch

?
2 : BH?

∗
∼=−→ H?

∗ be two natural equivalences of equivariant
(Γ,F?)-homology theories and G ∈ Ob(Γ). Suppose that chH

1 ({•}) = chH
2 ({•}) for any

H ∈ FG and chG
1 , ch

G
2 are compatible with the induction structure. Then we obtain

chG
1 = chG

2 .
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5 Comparison of Different Chern Characters

Remark 5.1.4. There is another direct approach involving the Atiyah-Hirzebruch spec-
tral sequence. However, this does not lead to a more general result. In order to see
this, let τ1, τ2 : HG

∗ → KG
∗ be two natural transformations of (G,F)-homology theories

which coincide on coefficients. We get a commutative diagram

BHG
p (X;HG

q (G/?)) +3

(τ1)∗=(τ2)∗
��

HG
n (X)

τ2





τ1

��

BHG
p (X,KG

q (G/?)) +3 KG
n (X).

If the spectral sequences do not collapse, we have only the following commutative
diagram

0 // Fp−1,q+1HG
p+q(X) //

τ1=τ2
��

Fp,qHG
q+q(X) //

τ2




τ1
��

(E∞
p,q)H

τ∞1 =τ∞2
��

// 0

0 // Fp−1,q+1KG
p+q(X) // Fp,qKG

p+q(X) // (E∞
p,q)K // 0

Unfortunately, the outer maps do not determine the middle one in general. For exam-
ple we have the following commutative diagram

0 // C
inc1 //

id
��

C⊕ C
pr2 //

ϕ

��

C //

id
��

0

0 // C
inc1 // C⊕ C

pr2 // C // 0

where ϕ can be

ϕ =
(

1 z
0 1

)
for an arbitrary z ∈ C.

Furthermore, if τ1, τ2 are not isomorphisms, the E∞
p,q-terms can be concentrated on

different p, q for HG
∗ and KG

∗ . Then we obtain τ∞1 = τ∞2 = 0 and we cannot recover
any information. Thus we cannot conclude anything for τ1, τ2.

5.2 A Chern Character for Discrete Groups (Lück/Oliver)
Let G be a discrete group. Lück and Oliver [34] constructed a Chern character for
topological K-theory and (finite) proper G-CW-complexes. We want to recall the
construction briefly. We obtain a map τ̃∗G(X)(H) by

K∗
G(X)

res
NGH

G−−−−−→ K∗
NGH(XH) Ψ−→ K∗

CGH(XH)⊗R(H)
pr∗−−→ K∗

CGH(EG×XH)⊗R(H)

ind
{1}
CGH−−−−−→∼=

K∗(EG×CGH XH)⊗R(H) ch⊗ id−−−−→ H∗(EG×CGH XH ; Q)⊗R(H)

pr∗←−−∼= H∗(XH/CGH; Q)⊗R(H) ∼= hom(H∗(XH/CGH),Q⊗R(H)).
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5.2 A Chern Character for Discrete Groups (Lück/Oliver)

Some explanations should be made. The map ch denotes the ordinary Chern char-
acter. We want to define the maps Ψ and ind{1}CGH now.

Let E → X be a G-vector bundle over a free G-CW-complex X. Then the induction
map is given by

ind{1}G (E → X) = E/G→ X/G.

Let N C G be normal and finite. Denote by Irr(N) the set of isomorphism classes
of irreducible (complex) N -representations. Let X be any finite proper G/N -CW-
complex. For any V ∈ Irr(N) and any G-vector bundle E → X, let homN (V,E)
denote the vector bundle over X whose fiber over x ∈ X is homN (V,Ex). If H ⊆ G
is a subgroup which centralizes N , we can regard homN (V,E) as an H-vector bundle
by (hf)(x) = h · f(x) for any h ∈ H and f ∈ homN (V,E). This induces a map

Ψ: K∗
G(X)→ K∗

H(X)⊗R(N), [E] 7→
∑

V ∈Irr(N)

[homN (V,E)]⊗ [V ].

Since R(?) ⊗ Q is an injective QSubFIN (G)-module by Lemma 3.2.10, the maps
τ̃∗G(X)(?) assemble to a natural transformation

τ∗? : K∗
? (X)→ B(K∗

? ⊗Q)(X)

for finite proper G-CW-complexes, which is rationally an equivalence.
Let G be a finite group and X = {•}. Furthermore, let V be a G-representation

and
V =

∑
W∈Irr(G)

WnW

the decomposition into irreducible G-representations. For a subgroup H ⊆ G and a
G-representation W , the corresponding restricted H-representation is denoted by WH .
Then the Chern character τ∗G({•}) = τ∗G({•})(G) for a finite group G is given by

[V ] 7→ [V ] 7→
∑

W∈Irr(G)

[WnW
CGG]⊗ [W ] 7→

∑
W∈Irr(G)

[WnW
CGG × EG]⊗ [W ]

7→
∑

W∈Irr(G)

[WnW

{1} × (EG/CGG)]⊗ [W ] 7→
∑

W∈Irr(G)

[dimC[WnW

{1} ]EG/CGG ⊗ [W ]

7→
∑

W∈Irr(G)

[dimCW
nW

{1} ]⊗ [W ] 7→
(
Z→ R(G), 1 7→

∑
W∈Irr(G)

[dimCW
nW

{1} ⊗W ]
)
.

Therefore, τ0
G{•} is the canonical inclusion

τ0
G : R(G) ↪→ Q⊗R(G).

We remind the reader that K1
G({•}) = 0.

Since τ∗? is compatible with the induction structure, we obtain by Corollary 5.1.3:
Proposition 5.2.1. Let G be a discrete group. If ch∗G exists, we have the equality

τ∗G(X)⊗Q = ch∗G(X)

for any finite proper G-CW-complex X.
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5 Comparison of Different Chern Characters

5.3 A Cohomological Chern Character for Prodiscrete Groups
(Sauer)

Sauer [46] generalized the construction of the previous section to prodiscrete groups.
We want to recall the construction.

In the following, let G be a prodiscrete l-group. We set

N(G) = {H ⊆ G | H compact open normal subgroup }

and IG(X) = N(G) ∩

{
L ⊆

⋂
x∈X

Gx

}

for a finite proper smooth G-CW-complex X.

Lemma 5.3.1. We get an isomorphism

R(G) = colim
L∈N(G)

R(G/L).

Proof. The isomorphism is given in one direction by resG/L
G and in the other direction

by dividing out the kernel of the group homomorphism G→ GLn(C) associated to the
representation. Note that the only totally disconnected compact subgroups of GLn(C)
are the finite ones. Therefore the kernel is open.

Proposition 5.3.2. Let K̃∗
G(X,A) = colimL∈IG(X)K

∗
G/L(X,A). Then there exists

a natural equivalence Φ: K̃∗
G → K∗

G of equivariant proper smooth homology theories
which is induced by resG/L

G : K∗
G/L → K∗

G.

Proof. Because of functoriality of res the map Φ is well-defined. It is a natural trans-
formation of proper smooth G-cohomology theories because resG/L

G is one. In order to
prove that Φ is an equivalence, it suffices to show that Φ(G/H) is an isomorphism for
any compact open normal subgroup H ⊆ G. For any L ∈ IG(X) ∩ {L ⊆ H } we get

K∗
G/L(G/H) = K∗

G/L

(
(G/L)/(H/L)

)
=

{
R(H/L), if ∗ is even,
0, if ∗ is odd,

and

K∗
G(G/H) =

{
R(H), if ∗ is even,
0, if ∗ is odd.

Now the assertion follows from the previous lemma.

Remark 5.3.3. Obviously we can perform the same construction for Bredon homology.
There we get a natural equivalence of proper smooth cohomology theories

Ψ: B̃K
∗
G

∼=−−→ BK∗
G.
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5.3 A Cohomological Chern Character for Prodiscrete Groups (Sauer)

Lemma 5.3.4. Let H,H ′ be discrete groups and π : H → H ′ surjective with finite
kernel. Furthermore, let τ∗H and τ∗H′ be the Chern characters of Section 5.2. Then we
have the following identity

resπ : H→H′ ◦ ch∗H′ = τ∗H ◦ resπ : H→H′ .

Proof. This is the main step in the construction of this Chern character and is proven
in [46, p.445-447]

Theorem 5.3.5. There exists a natural transformation of equivariant proper smooth
cohomology theories

τ∗G : KG
∼=−−→ B(K∗

G ⊗Q)

which is rational an equivalence.

Proof. The natural transformation is defined by the following diagram

colim
L∈IG(X)

K∗
G/L(X,A)

colim τ∗
G/L

//

Φ(X,A)
��

colim
L∈IG(X)

B(K ⊗Q)∗G/L(X,A)

Ψ(X,A)
��

K∗
G(X,A)

τ∗G // B(K ⊗Q)∗G(X,A)

We recall that Φ and Ψ are isomorphisms and colim τ∗G/L exists by the previous lemma.

Remark 5.3.6. The only thing we really need is that the Chern character used is
compatible with the given restriction structure. Hence we can generalize any Chern
character of discrete groups (with source K∗

? ) to a Chern character of prodiscrete
groups. We can even change the source H∗? if it satisfies

colim
L∈N(G)

H∗G/L(G/H) ∼= H∗G(G/H) for any compact open subgroup H ⊆ G.

Proposition 5.3.7. If ch∗G exists, we obtain the equality ch∗G = τ∗G ⊗Q.

Proof. For a compact open subgroup H ⊆ G, the map

τ∗H({•}) : R(H)→ R(H)⊗Q

is just the canonical inclusion. Hence the assertion follows from Corollary 5.1.3.
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5 Comparison of Different Chern Characters

5.4 A Chern Character for Discrete Groups (Lück)
Our Chern character is very much inspired by the one of Lück [29]. The main difference
is that our Chern character is defined on the orbit category and the other one is defined
on the subgroup category.

Let G be a discrete group and H?
∗ an equivariant proper homology theory (for

discrete groups) over R. We obtain a map

Hp(CGH\XH ;R)⊗R HG
q (G/H)

Hp(EG×CGH XH ;R)⊗R HG
q (G/H)

Hp(pr1;R)⊗id

OO

πs
p(EG×CGH XH ;R)⊗Z R⊗HH

q ({•})

hur(EG×CGHXH)⊗indG
H

OO

DH
p,q(EG×CGHXH)

��

HH
p+q(EG×CGH XH)

HCGH×H
p+q (EG×XH)

indpr : CGH×H→H ∼=

OO

indmH

��

HG
p+q(indmH EG×XH)

HG
p+q(indmH

pr2)

��

HG
p+q(indmH X

H)

HG
p+q(νH)

��

HG
p+q(X).

Some explanations should be made. The map mH : CGH ×H → H is just the multi-
plication map. The other maps were already defined in Section 4.1. Note that we use
a more general notion of induction map here. In this setting, an induction map indϕ

for a group homomorphism ϕ : H → G exists if kerϕ acts freely on X.
If H?

∗ has a Mackey structure, the corresponding coefficient module is flat by Corol-
lary 3.1.19 for Q ⊆ R semisimple. Consequently, the source is isomorphic to BH?

∗.
Actually, the tensor product is taken in the subgroup category, but by an adjointness
argument this turns out to be Bredon homology. Lück showed [29] that this map is
a natural transformation of proper homology theories. Since it is an isomorphism on
coefficients, we get a natural equivalence of equivariant proper homology theories

τ ?
∗ : BH?

∗ → H?
∗.
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5.5 A Bivariant Chern Character for Profinite Groups (Baum/Schneider)

In the cohomological case, one gets by a similar construction [30] a natural equiva-
lence

τ∗? : H∗? → BH∗?.

Proposition 5.4.1. Let R be a semisimple commutative ring with Q ⊆ R. Let H?
∗

be an equivariant proper homology theory (for discrete groups) over R. Suppose that
H?
∗ has a Mackey structure and the Chern character ch?

G of Section 4.1 exists for a
discrete group G. Then we obtain

ch?
∗ = τ ?

∗ .

If H∗? is an equivariant cohomology theory with the same properties as above and ch∗G
exists, we get

ch∗? = τ∗? .

Furthermore, in the case of H∗? = K∗
? the construction of τ in this section and the

construction of Section 5.2 coincide.

Proof. The only thing we must check is

chK
∗ ({•}) = τK

∗ ({•})

for any finite group K. But this is clear.
In the cohomological case, the corresponding equation is immediate, too.

5.5 A Bivariant Chern Character for Profinite Groups
(Baum/Schneider)

We give a brief survey of [4] and compare this Chern character with the ones which
were introduced.

In the following, let G be a profinite group. Moreover, let X be a locally finite
G-simplicial complex.

Definition 5.5.1. The Brylinski space X̂ is defined as follows

X̂ = { (g, x) | g ∈ G and gx = x } .

It is endowed with a G-action by

g(h, x) = (ghg−1, gx).

Let X̂ be the Brylinski space and H(G) be the Hecke algebra. We denote by
H∗

c (X̂; C) the singular cohomology groups with compact support. Then H∗
c (X̂; C)

has a canonical H(G)-action which is given by(
f · ϕ

)
(σ) =

∫
G
f(g)ϕ(gσ), f ∈ H(G), ϕ ∈ C∗c (X̂,C).
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5 Comparison of Different Chern Characters

Definition 5.5.2. LetG be a profinite group. Then we define the equivariant bivariant
homology by

H∗
G,c(Y,X) =

∏
n∈Z

homH(G)

(
Hn

c (Ŷ ; C),Hn+∗
c (X̂; C)

)
.

Remark 5.5.3. If Y = {•} and G is finite, this simplifies to

H∗
G,c({•}, X) = H∗

c (X̂/G; C).

If X = {•}, the Brylinski space is X̂ = G and the right hand side vanishes except
for ∗ = 0. In this case, we obtain the group of class functions R(G) as an immediate
consequence of the construction.

The last remark motivates:

Proposition 5.5.4. Let CHG
∗ be cosheaf homology. Then we have an isomorphism

CHG
∗ (Y ) ∼= H∗

G,c(Y, {•}).

Proof. Baum and Schneider [4, p.318] proved this assertion in the special case of
discrete groups. However, this argument also works for profinite groups.

Proposition 5.5.5. Let X be a finite G-simplicial complex. Then we obtain an iso-
morphism

BK∗
G(X) ∼= H∗

G,c({•}, X).

Proof. Baum and Schneider [4, p.319] showed this for finite groups. Voigt [56] showed
that the right hand side is compatible with limits. Therefore, the isomorphism carries
over to the profinite case.

We want to indicate the construction of the Chern character. Let E → X be a
G-vector bundle over X and let prX : X̂ → X be the canonical projection. Then the
pullback prX E is a G-vector bundle over X̂. A point is a triple (e, g, x), where e ∈ Ex,
g ∈ G and x ∈ X such that gx = x. We obtain an automorphism of G-vector bundles

α : prX E → prX E, (e, g, x) 7→ (ge, g, x).

This automorphism α has finite order. In order to see this, we may assume E = X×V
by a result of Segal [47, Prop. 2.4]. Here V is a finite dimensional C-vector space with
smooth G-action and the G-action on X × V is diagonal. Since totally disconnected
compact subgroups of GL(V ) are finite, there exists an open normal subgroup H ⊆
G such that the G-action of V factorizes over G/H. Thus we obtain α[G:H] = id.
This allows us to view prX E as a vector bundle over the profinite completion Ẑ, i.e.,
limn∈Z Z/nZ. Here we consider X̂ as a trivial Ẑ-space. Furthermore, prX E is G-
equivariant and hence the class in K0

Ẑ(X̂) is fixed by the natural action of G. Finally,
we have constructed a map

K0
G(X)→ K0

Ẑ(X̂)G, [E] 7→ [prX E].
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5.6 A Bivariant Chern Character for l-Groups (C. Voigt)

Since Ẑ acts trivially on X̂, we obtain K0
Ẑ(X̂) = K0(X̂)⊗ZR(Ẑ), where R(Ẑ) denotes

the representation ring. For a Z-module M we set MC = M ⊗Z C. We get a natural
transformation

τ : K0
G(X)→ (K0

Ẑ(X̂)C)G = (K0(X̂)⊗Z R(Ẑ)C)G

id⊗ res
{ 0 }
Ẑ−−−−−−−→ (K0(X̂)C)G ch−→

⊕
j∈Z

H2j(X̂; C)G =
⊕
j∈Z

H2j
G,c({•}, X),

where ch denotes the ordinary Chern character. In the bivariant case, a general-
ization of the above considerations [4, Prop. 4] leads to KKG

∗ (C0(X), C(Y ))C =
homH(G)(K∗(Ŷ )C,K

∗(X̂)C). Then the ordinary Chern character induces a natural
transformation

τG
∗ (X,Y ) : KKG

∗ (C0(X), C0(Y ))→
⊕
j∈Z

H∗+2j
G,c (Y,X).

Proposition 5.5.6. Let G be profinite. Then we obtain the identities

τG
∗ ({•}, ?)−1 = chG

∗ and τ∗G(?, {•}) = ch∗G .

Proof. Let H ⊆ G be compact open. Then τG
∗ ({•}, G/H) is just the identification

τG
∗ ({•}, G/H) : R(H)⊗ C

∼=−−→ R(H).

By Corollary 5.1.2 we obtain the desired identity τG
∗ ({•}, ?)−1 = chG

∗ . Analogously,
we get the second identity.

5.6 A Bivariant Chern Character for l-Groups (C. Voigt)
We want to give a rough survey of the work by Voigt ([54],[55],[57],[56]).

This Chern character is of a quite different nature. The previous homology theories
have, as input, CW-complexes. This one has bornological algebras as input.

In the following, we will deal with bornologies (instead of topologies). An intro-
duction can be found in [37, Chap. 2]. Roughly speaking, a bornology specifies the
bounded sets (also called small sets) in a space. A map f is called bounded if f maps
bounded sets to bounded sets. A bornological algebra is a bornological vector space A
with an associative multiplication given as a bounded linear map A⊗̂A→ A, where ⊗̂
denotes the completed bornological tensor product. We remark that we do not require
the existence of a unit in a bornological algebra. A basic example of a bornological
algebra is the Hecke algebra H(G) of an l-group G, where H(G) is equipped with the
fine bornology, i.e., the smallest possible bornology. A module M over a bornological
algebra A is called non-degenerate if the module action A⊗̂M →M is a bornological
quotient map. We remark that the category of smooth representations of G is iso-
morphic to the category of non-degenerate H(G)-modules. Here a representation ρ is
called smooth if the isotropy group of any bounded set is open.
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5 Comparison of Different Chern Characters

A G-algebra is a bornological algebra A which is at the same time a G-module such
that the multiplication A⊗̂A → A is equivariant. Here the tensor product A⊗̂A is
equipped with the diagonal action, as usual. A particular example of a G-algebra is
the algebra KG which is defined as follows. As a bornological vector space we have
KG = H(G)⊗̂H(G) = H(G×G). The multiplication in KG is given by

(k · l)(s, t) =
∫

G
k(s, r)l(r, t)dr

and the G-action is defined by

(r · k)(s, t) = k(r−1s, r−1t).

This algebra can be viewed as a dense subalgebra of the algebra of compact operators
K(L2(G)) on the Hilbert space L2(G). Here L2(G) is equipped with the precompact
bornology, i.e., a set is bounded if its closure is compact.

Next we define covariant modules. Let OG be the space H(G) equipped with point-
wise multiplication and the action of G by conjugation. A covariant module M is a
smooth representation of G which is at the same time a non-degenerate OG-module.
The G-module structure and the OG-module structure are required to be compatible
in the sense that

s · (f ·m) = (s · f) · (f ·m)

for all s ∈ G, f ∈ OG and m ∈ M . A bounded linear map f : M → N of covariant
modules is called covariant if it is OG-linear and equivariant.

Now we can introduce non-commutative equivariant differential forms. Let A be
a G-algebra. The equivariant n-forms of A are defined by Ωn

G(A) = OG⊗̂Ωn(A),
where Ωn(A) = A+⊗̂A⊗̂n and A+ denotes the unitarization of A. The group G acts
diagonally on Ωn

G(A) and we have an obvious OG-module structure. In this way Ωn
G(A)

becomes a covariant module.
The equivariant Hochschild boundary b : Ωn

G(A)→ Ωn−1
G (A) is defined by

b(f(t)⊗x0dx1 · · · dxn) = f(t)⊗ x0x1dx2 · · · dxn

+
n−1∑
j=1

(−1)jf(t)⊗ x0dx1 · · · d(xjxj+1) · · · dxn

+ (−1)nf(t)⊗ (t−1 · xn)x0dx1 · · · dxn−1.

Moreover, we have the equivariant Connes operator B : Ωn
G(A) → Ωn+1

G (A) which is
given by

B(f(t)⊗ x0dx1 · · · dxn) =
n∑

i=0

(−1)nif(t)⊗ t−1 · (dxn+1−i · · · dxn)dx0 · · · dxn−i.

It is straightforward to check that b and B are covariant maps. The natural symmetry
operator T for covariant modules is of the form

T (f(t)⊗ ω) = f(t)⊗ t−1 · ω
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5.6 A Bivariant Chern Character for l-Groups (C. Voigt)

on Ωn
G(A). One easily obtains the relations b2 = 0, B2 = 0 and Bb + bB = id−T

for these operators. This shows that ΩG(A) is a paramixed complex in the following
sense.

Definition 5.6.1. A paramixed complex M of covariant modules is a sequence of
covariant modules Mn together with differentials b of degree −1 and B of degree +1
satisfying b2 = 0, B2 = 0 and

[b, B] = bB +Bb = id−T.

The most important examples of paramixed complexes are bounded below in the
sense that Mn = 0 if n < N for some fixed N ∈ Z. In particular, the equivariant
differential forms ΩG(A) of a G-algebra A satisfy this condition for N = 0.

The Hodge filtration of a paramixed complex M of covariant modules is defined by

FnM = bMn+1 ⊕
⊕
j>n

Mj .

Clearly, FnM is closed under the operators b and B. We write

LnM = Fn−1M/FnM

for the n-th layer of the Hodge filtration. If M is bounded below such that Mn = 0
for n < 0, we define the n-th level θnM of the Hodge tower of M by

θnM =
n−1⊕
j=0

Mj ⊕Mn/bMn+1.

By definition, the Hodge tower of M is the projective system θM = (θnM)n∈N.
The spaces θnM are equipped with the grading into even and odd forms and the

differential ∂ = B + b. In this way the Hodge tower becomes a projective system of
paracomplexes in the following sense.

Definition 5.6.2. A paracomplex of covariant modules is a Z2-graded covariant mod-
ule C with a boundary operator ∂ : C → C of degree one such that ∂2 = id−T .

Chain maps of paracomplexes and homotopy equivalences are defined by the usual
formulas.

Definition 5.6.3. LetG be an l-group and letA andB beG-algebras. The equivariant
bivariant periodic cyclic homology of A and B is

HPG
∗ (A,B) = H∗(HomG(θΩG(A⊗̂KG), θΩG(B⊗̂KG))).

The definition involves covariant maps between projective systems of covariant mod-
ules. Maps between projective systems are always understood in the sense

hom((Mi)i∈I , (Nj)j∈J) = colim
j∈J

lim
i∈I

hom(Mi, Nj)
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5 Comparison of Different Chern Characters

of pro-categories. Finally, we consider the usual differential for a hom-complex given
by

∂(φ) = φ∂A − (−1)|φ|∂Bφ

for a homogeneous element φ in order to define homology. This makes sense since
the failure of the individual differentials in θΩG(A⊗̂KG) and θΩG(B⊗̂KG) to satisfy
∂2 = 0 is cancelled out by naturality of the operator T .

Let A,B,C be G-algebras. A bounded morphism f : A → B defines an element
[f ] ∈ HPG

0 (A,B). Further, two elements [g], [h] ∈ HPG
∗ (A,B) are represented by

appropriate morphisms g, h. Composition of these morphisms defines a graded product
on HPG

∗ (A,B). The induced maps

f∗ : HPG
∗ (B,C)→ HPG

∗ (A,C) and f∗ : HPG
∗ (C,A)→ HPG

∗ (C,B)

are given by left and right multiplication by [f ]. Moreover, we have the following
properties:

Theorem 5.6.4. Let A,B be G-algebras. Then the following hold:

(i) Diffeotopy Invariance
The functor HPG

∗ is invariant under G-diffeotopies, i.e., smooth G-homotopies,
in both variables.

(ii) Stability
There are natural isomorphisms

HPG
∗ (A,B) ∼= HPG

∗ (A⊗̂KG, B) ∼= HPG
∗ (A,B⊗̂KG).

(iii) Excision
Let 0→ C → D → E → 0 be an extension of bornological G-algebras with a (not
necessarily equivariant) splitting. Then we obtain exact sequences

HPG
0 (A,C) // HPG

0 (A,D) // HPG
0 (A,E)

��

HPG
1 (A,E)

OO

HPG
1 (A,D)oo HPG

1 (A,C)oo

and
HPG

0 (E,B) // HPG
0 (D,B) // HPG

0 (C,B)

��

HPG
1 (C,B)

OO

HPG
1 (D,B)oo HPG

1 (E,B)oo

A G-C∗-algebra can be seen as a G-algebra by considering the precompact bornology,
i.e., a subset is bounded if its closure is compact. Unfortunately, on the one hand,
equivariant periodic homology is not homotopy invariant in general. On the other hand,
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5.6 A Bivariant Chern Character for l-Groups (C. Voigt)

the tensor product in the stability statement is the bornological tensor product, which
does not coincide with the one of C∗-algebras. Thus we cannot apply Theorem 2.2.18.

Hence Voigt studies a variant of HPG
∗ , which is called equivariant local cyclic homol-

ogy HLG
∗ . It is an equivariant generalization of bivariant local cyclic homology which

was developed by Puschnigg [42]. It is still a bit more complicated since a smoothing
functor comes into play, too. Thus I want to skip the explicit definition, but state the
following theorem

Theorem 5.6.5. (i) Equivariant bivariant local cyclic homology (together with the
smoothing functor) fulfills homotopy invariance, stability and excision for C∗-
algebras.

(ii) HLG
∗ provides a product structure. In particular, a ∗-homomorphism of G-C∗-

algebras f : A → B defines an element [f ] ∈ HLG
∗ (A,B) and the induced maps

f∗ : HLG
∗ (B,C) → HLG

∗ (A,C) and f∗ : HLG
∗ (C,A) → HLG

∗ (C,B) are given by
left and right multiplication by [f ], respectively.

(iii) Let X,Y be two finite proper smooth G-CW-complexes. Then we get natural
isomorphisms

HPG
∗ (C(X), C(Y )) ∼= HLG

∗ (C(X), C(Y )) ∼= HLG
∗
(
S(C(X)), S(C(Y ))

)
,

where S denotes the smoothing functor.

Proof. The first statement is the main result of [57]. The second assertion can be
found in [57, p.16], too. The third statement is proven in [56, Sec. 6].

Analogously to equivariant bivariant K-theory, we can consider equivariant bivari-
ant local cyclic homology as a category HLG, where the objects are separable G-C∗-
algebras and the morphisms are given by HLG

∗ (A,B). We get by Theorem 2.2.18:

Corollary 5.6.6. There exists a natural transformation of bivariant proper smooth
G-homology theories

τ : KKG
∗ (C(X), C(Y ))→ HPG

∗ (C(X), C(Y )),

which is compatible with the product structures.

Proof. The even case is a direct consequence of Theorem 2.2.18. The odd case can be
derived from the even case [57, Sec. 13].

In addition, we get for the coefficients [57, Prop. 13.5]:

Proposition 5.6.7. Let X = Y = {•} and G be profinite. We obtain HPG(C,C) =
R(G) and τ of the previous corollary simplifies to

τ : R(G)→ R(G)

which is the map given by taking the characters.
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5 Comparison of Different Chern Characters

Theorem 5.6.8. There exists a natural equivalence of bivariant proper smooth G-
homology theories

τ ⊗ C : KKG
∗ (C(X), C(Y ))⊗ C −→ HPG

∗ (C(X), C(Y )),

which is compatible with the product structures.

Proof. It suffices to show that HP ?
∗ (C(??), B) is an equivariant homology theory for

any G-algebra B and that τ is compatible with the induction structures. This is proven
by Voigt [56].

Theorem 5.6.9. Let G be a profinite group. Then there is an equivalence of bivariant
proper smooth G-homology theories (defined on finite G-simplicial complexes)

HPG
∗ (C(X), C(Y )) ∼= H∗

G,c(X,Y ),

where the latter homology theory is the one defined in Section 5.5. Further, the two
Chern characters coincide under this identification.

Proof. The first assertion is proven in [55] and the second one in [56].

Theorem 5.6.10. There exists an equivalence of proper smooth G-homology theories

HPG
∗ (C(X),C) ∼= BKG

∗ (X)⊗ C.

If chG
∗ exists, we obtain chG

∗ = τ−1 ⊗ C. If G is discrete, τ−1 ⊗ C coincide with the
Chern character of Section 5.4.

Proof. If we assume the first assertion, the second and last one directly follow from
Proposition 5.6.7 and Corollary 5.1.3. The first assertion was proven in [56, Sec. 8].
I just want to sketch the proof. There is a more general notion of equivariant bi-
variant homology which was introduced in Section 5.5. The general one admits ar-
bitrary l-groups and proper smooth G-simplicial complexes. Further, Theorem 5.6.9
and Proposition 5.5.4 generalize to l-groups, too. Finally, we composite these two
identifications with the one of Proposition 2.2.42 and get the desired one for proper
smooth G-simplicial complexes. However, this can be lifted to proper smooth G-CW-
complexes.

Remark 5.6.11. Let A be a G-C∗-algebra. Analogously to Section 2.2, we obtain an
equivariant (ΓG, CO)-homology theory HP ?

∗ (C(??), A) with a Mackey functor struc-
ture on coefficients. Then we have a commutative diagram

B(K(G,A) ⊗Z C)∗(X)
∼= //

chG
∗

��

BHPG
∗ (C(X), A)

chG
∗

��

K(G,A)(X)⊗Z C
τ⊗C

// HPG
∗ (C(X), A)

whenever the left and right chG
∗ are defined.
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A The Group Ring

Let G be a discrete group, Q ⊆ R be a commutative ring and RG be the corresponding
group ring.

Definition A.1. Let M be a left R-module. We define the left weak dimension by

l.w.dimRM = sup {n | TorR
n+1(N,M) = 0 for every right R-Module N } .

Analogously, we can define the right weak dimension r.w.dimRM for a right R-module
M . The global weak dimension is

w.dimR = sup { l.w.dimRM |M left R-module }
= sup { r.w.dimRM |M right R-module } .

Proposition A.2. Let R denote the RG-module which is endowed with the trivial
G-action. Then the following holds:

w.dimRG = l.w.dimRGR = r.w.dimRGR.

Proof. In [13, Thm. X,6.2] this is shown for the projective dimension. However, a
trivial modification may be used to prove our assertion.

Definition A.3. A group is locally finite if every finitely generated subgroup is finite.

Remark A.4. A locally finite group is a torsion group. However, the converse, known
as the Burnside problem, does not hold. In particular, there exist infinite finitely
generated torsion groups. For an overview of the Burnside Problem see for example [1].

Proposition A.5. The following statements hold:

(i) If G is locally finite and H ⊆ G is a subgroup. Then H is locally finite.

(ii) Let N ⊆ G be a normal subgroup. Then G is locally finite if and only if N and
G/N are locally finite.

(iii) Let G = colimi∈I Gi. Then G is locally finite if each Gi is locally finite.

Proof. (i): Let G be locally finite. Obviously any subgroup H ⊆ G is locally finite.
(ii): Let N ⊆ G be a normal subgroup of a locally finite group G. Let H ⊆ G/N be

finitely generated, say by representative classes [h1], . . . , [hn]. Then the group H ′ ⊆ G
generated by h1, . . . , hn is finite because G is locally finite. However, this forces H to
be finite, too. Therefore G/N is locally finite. Moreover, N is locally finite by (i).
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Let N ⊆ G be normal. Suppose further that N and G/N are locally finite. Let
H ⊆ G be finitely generated. Then H/(H ∩N) ⊆ G/N is finitely generated and thus
finite. We obtain a short exact sequence

1→ N ∩H → H → H/(H ∩N)→ 1.

Since H is finitely generated and H/(H ∩ N) is finite, the group H ∩ N is finitely
generated. This can be proven by a trivial modification of [44, Prop. 2.5.5]. Hence
H ∩N is finite and H must be finite.

(iii): By definition, G is a quotient of
⊕

i∈Gi
Gi, however, this is locally finite.

Definition A.6. We call R von Neumann regular if every R-module M is flat.

Theorem A.7. Suppose that R is von Neumann regular. Then the following are
equivalent:

(i) RG is von Neumann regular.

(ii) Every RG-module is flat.

(iii) The RG-module R endowed with the trivial G-action is flat.

(iv) G is locally finite.

Proof. (i) ⇔ (ii): Trivial since (ii) is the definition of (i).
(ii) ⇔ (iii): This is Proposition A.2.
(ii) ⇒ (iv): This is done by Connell [16].
(iv) ⇒ (ii): This is proven by Auslander [3] and McLaughlin [36].

Theorem A.8. Let R be semisimple. The following hold:

(i) If G is finite, then every RG-module is injective and projective.

(ii) If the RG-module R endowed with the trivial G-action is injective, then G is a
torsion group.

Proof. The first assertion is the well known Maschke theorem.
Suppose there exists a torsionfree element g ∈ G. Hence (1− g) is not a zero divisor

in RG and we can define

ϕ : (1− g)RG→ RG, (1− g)r 7→ r.

Let ε : RG→ R be the augmentation. Since

homRG(RG,R) = R,

each homomorphism ψ : RG → R is just a scalar multiple of the augmentation ε.
Therefore we cannot lift ε ◦ ϕ to RG ⊇ (1 − g)RG because (1 − g)RG ⊆ ker ε and
ε ◦ ϕ 6= 0. This implies that R is cannot be injective and we get a contradiction.
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B Limit Behavior of Flat, Projective and
Injective Modules

We remind the reader:

• A partially ordered set is of finite length if every decreasing sequence becomes
stationary.

• A partially ordered set is of finite colength if every increasing sequence becomes
stationary.

• Every countable directed system admits a cofinal system of finite (co)length (see
Remark 3.2.13).

Moreover, in Subsection 3.2.1, we have seen that we can consider an inverse system of
R-modules (Mi)i∈I as a contravariant RI-module. Analogously, a directed system can
be considered as a covariant RI-module. This identification will be used throughout
this section. Therefore, we call a directed system (Mi)i∈I projective if it is projective
as an RI-module and an inverse system (Mi)i∈I injective if it is injective as an RI-
module. Furthermore, we call (Mi)i∈I a directed system of projective modules if each
Mi is a projective R-module. In the same way we define an inverse system of injective
modules.

Proposition B.1. Let N be an R-module.

(i) Let (Mi)i∈I be a directed system of R-modules which is of finite length. Then
there is a converging spectral sequence of the following form:

Ep,q
2 = limp

i∈I
Extq

R(Mi, N)⇒ Extp+q
R (colim

i∈I
Mi, N).

(ii) Let (Mi)i∈I be an inverse system of R-modules which is of finite length. Then
there are two spectral sequences

Ep,q
2 = limp

i∈I
Extq

R(N,Mi) and Ep,q
2 = Extq

R(N, limp

i∈I
Mi),

which converge to the same limit.

Proof. We only prove the first statement, the second one is analogous and a bit easier.
Without loss of generality, we can assume that I itself is of finite length and not just

(Mi)i∈I . Otherwise, lim and colim vanish and the assertion is trivial. In Theorem 3.1.7
the projective directed systems were classified. Let (Qi)i∈I be projective. We get
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B Limit Behavior of Flat, Projective and Injective Modules

Qi = ⊕j∈JiPj for some projective R-modules Pj and index sets Ji. If i < j then
Ji ⊆ Jj and the structure map is given by the canonical inclusion. Let J = colimi∈I Ji,
then we get colimi∈I Qi = ⊕j∈JPj . Consequently, colim sends projective directed
systems to projective R-modules. Thus we get the Grothendieck spectral sequence

Ep,q
2 = Extq

R( colimp

i∈I
Mi, N)⇒ Lp+q(hom(−, N) ◦ colim

i∈I
)(Mi),

where Ln(F ) denotes the n-th left derivation of the functor F . The functor colim is
exact, so we get, on the one hand,

Lp+q(hom(−, N) ◦ colim
i∈I

)(Mi) ∼= Extp+q
R (colim

i∈I
Mi, N). (B.1.1)

On the other hand, we have hom(colimi∈I Mi, N) ∼= limi∈I hom(Mi, N) for arbitrary
(Mi)i∈I and hence

Lp+q(hom(−, N) ◦ colim
i∈I

)(Mi) ∼= Lp+q(lim
i∈I
◦hom(−, N))(Mi). (B.1.2)

Now we will consider the functor limi∈I ◦hom(−, N). If we want to establish the
Grothendieck spectral sequence, hom(−, N) has to send projective directed systems
to lim-acyclic (concerning the right derivations) directed systems. Let (Qi)i∈I be
projective and thus of the form which was described at the beginning of the proof. Then
hom(Qi, N) =

∏
j∈Ji

hom(Pj , N) and the structure maps are the canonical projections.
Choose injective resolutions

0→ hom(Pj , N)→ I0
j → I1

j → · · ·

for every j ∈ J . We define the directed systems (Ik
i )i∈I by Ik

i =
∏

j∈Ji
Ik
j and the

projections as structure maps. Because of Theorem 3.2.5, the directed systems (Ik
i )i∈I

are injective and form an injective resolution

0→ (hom(Qi, N))i∈I → (I0
i )i∈I → (I1

i )i∈I → · · · .

Since
lim
i∈I

hom(Qi, N) =
∏
j∈J

hom(Pj , N) and lim
i∈I

Ik
i =

∏
j∈J

Ik
j ,

the sequence
0→ lim

i∈I
hom(Qi, N)→ lim

i∈I
I0
i → lim

i∈I
I1
i → · · ·

is exact. Hence (hom(Qi, N))i∈I is lim-acyclic and we obtain the Grothendieck spectral
sequence

Ep,q
2 = limp

i∈I
Extq

R(Mi, N)⇒ Lp+q(lim
i∈I
◦hom(−, N))(Mi).

Combining this with (B.1.2) and (B.1.1) yields the assertion.
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Corollary B.2. Let M be an R-module.

(i) Let (Pi)i∈I be a directed system of projective R-modules which is of finite length.
Then we obtain

Ext1R(colim
i∈I

Pi,M) ∼= lim1

i∈I
hom(Pi,M).

(ii) Let (Ii)i∈I be an inverse system of injective R-modules such that (Ii)i∈I is of
finite length and lim1

i∈I Ii = 0. Then we obtain

Ext1R(M, lim
i∈I

Ii) ∼= lim1

i∈I
hom(M, Ii).

Thus the limit is projective or injective if and only if the concerning lim1-term vanishes
for every R-module M .

Proof. Since Extn
R(P,M) = 0 for every projective R-module P and n > 0, the first

assertion follows from the previous proposition. Suppose I is injective. Then we have
Extn

R(M, I) = 0 for every n > 0. As the higher derived limits vanish by Lemma 3.2.7,
the second assertion follows from the previous proposition, too.

The next two examples show that the lim1-term does not in general vanish.
Example B.3 (Limits of projective modules). Let F ⊆ Q be a finitely generated sub-
group. Then F is a finitely generated abelian group and hence free, in particular, a
projective Z-module. Note that Q is not projective and

Q = colim
F⊆Q

F finitely generated

F.

Example B.4 (Limits of injective modules). We remind the reader that M is called a
divisible Z-module if

∀a ∈ Z,∀n ∈M∃m ∈M : n = am

and M is divisible if and only if M is injective.
Let M = ⊕∞i=0Qei and Ni = spanZ { ej − ej+1 | j ≥ i }. Then each M/Ni is, as a

quotient of a divisible module, divisible. However, the limit of the inverse system

· · · →M/N2 →M/N1 →M/N0

is not divisible. In order to show that, consider the element e = (. . . , ē2, ē1, ē0) in the
inverse limit and an arbitrary n ∈ N. Assume we have an a = (. . . , ā2, ā1, ā0) such
that na = e. Let ai =

∑∞
k=0 a

k
i ∈

⊕∞
k=0 Qek be a representative of āi in M . We have

M/Ni = ⊕i−1
l=0Q⊕ L for some L and hence ak

i = 0 for all k < i. We define

i0 = min { k | ak
i /∈ Z } (B.4.1)

and obtain i0 < ∞. Otherwise we would get āi = λiēi for some λi ∈ Z because
µēi = µēj for µ ∈ Z. This is a contradiction because of

0 = nλiei − ei = (nλi − 1)ei /∈ Ni.
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B Limit Behavior of Flat, Projective and Injective Modules

We conclude i ≤ i0 <∞. Let b, c ∈M , then we obtain

ib0 6= ic0 =⇒ b 6= c (in M/Ni), i ∈ N,

where ib0, ic0 are defined by (B.4.1). Putting this all together, we have ∞ > i0 > j for
each i ∈ N and every j ∈ N and thus a contradiction.

Corollary B.2 is a nice application of the classification of RΓ-modules. However,
Corollary B.2 is false for directed systems of RΓ-modules.
Example B.5. We consider the subgroup category SubCO(Zp) (cf. Example 1.2.14).
Here we have

lim1

n→∞
hom

(⊕
k∈N

QSub(Zp)(k, ?)n,
⊕
k∈N

RSub(Zp)(k, ?)
)
6= 0

lim1

n→∞
hom

(∏
k∈N

CEk(Q),
∏
k∈N

CEk(Q)n

)
6= 0,

where we denote by QSub(Zp)(k,−)n = QSub(Zp)(k,−)pnZp the truncated module as
in Subsection 3.1.2 and define CEk(Q)n analogously.

Proof. We have

hom
(⊕
k∈N

QSub(Zp)(k, ?)n,
⊕
k∈N

RSub(Zp)(k, ?)
)

= hom
(⊕
k∈N

QSub(Zp)(k, ?)n,
⊕
k∈N

RSub(Zp)(k, ?)n

)
.

Since (⊕
k∈N

QSub(Zp)(k, l)
)

l∈N
=
(
· · · ↪→ V2 ↪→ V1 ↪→ V0

)
is a properly increasing sequence of vector spaces, the above hom-sequence is the
sequence

· · · ↪→ {ϕ ∈ End(V0) | ϕ|Vn ⊆ Vn, n = 0, 1, 2 }
↪→ {ϕ ∈ End(V0) | ϕ|Vn ⊆ Vn, n = 0, 1 } ↪→ End(V0)

with injective but non-surjective maps. Hence the corresponding lim1-term does not
vanish by Lemma 3.2.9.

The second assertion can be proven analogously.

Since products of injective modules are injective, one might think that injectivity
behaves better under limits than under colimits. Analogously, projectivity ought to
behave better under colimits than under limits. Oddly, this is not the case. We give
a short survey here, which is taken from Chase [15] and Hernández [35]. In order to
justify the title, we discuss the behavior of flat modules under limits, too.
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Theorem B.6. Let R be a ring. Then the following conditions are equivalent:

(i) R is left Noetherian.

(ii) The colim of injective left R-modules is injective.

(iii) The direct sum of injective left R-modules is injective.

Proof. Let R be Noetherian and I = colimj∈J Ij be a colimit of injective R-modules.
Let M be a finitely generated R-module. Since R is Noetherian, there exists a resolu-
tion of projective finitely generated R-modules

· · · → P2 → P1 → P0 →M.

Because Ij is injective and colim is exact, we obtain an exact sequence

· · · → colim
j∈J

homR(P2, Ij)→ colim
j∈J

homR(P1, Ij)→ colim
j∈J

homR(P0, Ij).

Since Pn are finitely generated, the functors hom and colim commute. Finally, we get
an exact sequence

· · · → homR(P2, I)→ homR(P1, I)→ homR(P0, I)→ 0

and Extn
R(M, I) = 0. This proves the injectivity of I.

The implication (ii)⇒ (iii) is immediate. Suppose now (iii) holds. Let I1 ⊆ I2 ⊆ · · ·
be an ascending chain of (left) ideals in R. Let Qn be an injective R-module which
contains R/In for every n ∈ N. We set

I =
∞⋃

n=1

In and Q =
∞⊕

n=1

Qn.

We define a homomorphism f : I → Q by f(a) =
∑∞

n=1 fn(a), where fn : I → Qn is the
canonical homomorphism induced by the canonical projection I → I/In. Note that
for any a ∈ I there exists an n with a ∈ In. Hence we obtain fk(a) = 0 for any k ≥ n
and f is well-defined. By hypothesis, Q is injective; thus there exists a homomorphism
g : R→ Q such that g/I = f . But then

f(I) ⊆ g(R) ⊆ Q1 ⊕ · · · ⊕Qn for some n ∈ N,

from which it follows easily that I = In+1. Therefore R is Noetherian.

Unfortunately, the projective and flat cases are a little more complicated.

Definition B.7. A ring R is called left coherent if any finitely generated left ideal in
R is finitely related.

Theorem B.8. Let R be a ring. Then the following statements are equivalent:

(i) R is left coherent.
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B Limit Behavior of Flat, Projective and Injective Modules

(ii) The product of flat right R-modules is flat.

(iii) The product of any number of copies of R is flat as a right R-module.

Proof. [15, Thm. 2.1]

In the general case of inverse limits, the following is known:

Theorem B.9. Let R be an integral domain. Then the following are equivalent:

(i) R is left coherent and w.dim(R) ≤ 2.

(ii) The inverse limit of flat modules is flat.

Proof. [35, Thm. 2.12]

We remind the reader that w.dim(R) is the weak dimension which was defined in
Definition A.1.

Theorem B.10. Let R be a ring. Then the following are equivalent.

(i) Every descending chain of principal left ideals in R becomes stationary.

(ii) Every flat right R-module is projective.

If R satisfies these conditions, R is called right perfect.

Proof. [15, Thm. 3.2]

Theorem B.11. Let R be a ring. Then the following statements are equivalent:

(i) R is left coherent and right perfect.

(ii) The product of projective right R-modules is projective.

(iii) The product of any number of copies of R is projective as a right R-module.

Proof. [15, Thm. 3.3]

Proposition B.12. Let R be a commutative ring. Then the following are equivalent:

(i) R is Artinian.

(ii) R is coherent and perfect.

Proof. [15, Thm. 3.4]

Corollary B.13. Let R be an integral domain. Then the following statements are
equivalent:

(i) R is Artinian and w.dim(R) ≤ 2.

(ii) Every inverse limit of projective modules is projective.
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