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Abstract

In the recent past, Cuntz and Vershik introduced a notion of independence for pairs of
commuting group endomorphisms of a discrete abelian group with finite cokernel. Here
we generalize their concept to the case of arbitrary commuting group endomorphisms of a
discrete group. We show that the characterizations of independence established by Cuntz
and Vershik do not carry over in general. Therefore we will differentiate between indepen-
dence and strong independence. In addition, we establish a close connection between the
latter notion and the concept of x-commutativity introduced by Arzumanian and Renault.
We then define irreversible algebraic dynamical systems and irreversible x-commutative
dynamical systems to mirror both algebraic and topological aspects of dynamical systems
like x2,x3:T — T.

To both kinds of dynamical systems, we associate C*-algebras by means of generators
and relations. In the case of irreversible algebraic dynamical systems, this C*-algebra is a
natural generalization of the one that has been studied by Hirshberg, Cuntz and Vershik,
and Vieira. We prove that, under mild assumptions, this C*-algebra is a UCT Kirchberg
algebra. Moreover, we analyse its diagonal subalgebra, relate its core subalgebra to gen-
eralized Bunce-Deddens algebras in the sense of Orfanos and establish crossed product
pictures. For irreversible *-commutative dynamical systems, the C*-algebra takes into ac-
count a reconstruction formula reminiscent of Parseval frames. Given that an irreversible
algebraic dynamical system corresponds to an irreversible x-commutative dynamical sys-
tem via Pontryagin duality, we prove that the two C*-algebras we obtain are canonically
isomorphic.

In a different direction, we associate a discrete product system of Hilbert bimodules
to either of the two types of dynamical systems. For irreversible algebraic dynamical sys-
tems, these product systems turn out to have coherent systems of orthonormal bases on
the fibres. In the case of irreversible x-commutative dynamical systems, we only obtain
coherent systems of finite Parseval frames. Nevertheless, this enables us to show that, for
both kinds of dynamical systems, the C*-algebra we constructed via an explicit presenta-
tion coincides with the Cuntz-Nica-Pimsner algebra associated to the product systems of
Hilbert bimodules obtained from the dynamical system.

For irreversible x-commutative dynamical systems, we use this identification to char-
acterize topological freeness of the dynamical system by properties of the associated C*-
algebra. This extends the corresponding result of Meier Carlsen and Silvestrov for a
single surjective local homeomorphism of a compact Hausdorff space. An almost immedi-
ate consequence is a necessary and sufficient simplicity criterion for C*-algebras associated
to irreversible kx-commutative dynamical systems. As an application, we show that the
conditions imposed on irreversible algebraic dynamical systems to obtain UCT Kirchberg
algebras are in fact necessary in the case where the involved group is abelian and the
group endomorphisms have finite cokernel.
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Introduction

Let G be a countable discrete group and (§4)scc denote the standard orthonormal basis
of the Hilbert space £?(G). Suppose ¢ is an injective group endomorphism of G. Then
Sp€g = &p(g) defines an isometry on ?%(@). For g € G, let U, denote the canonical unitary
on (?(G) given by left translation. Then S,U, = Uy (g)S, holds for all g € G. This leads to
the C*-algebra O,[¢] generated by the isometry S, and the unitaries (Uy)4e. A natural
object to study within this context is a universal model for O,[g], which is a C*-algebra
Olgp] = C*({s¢, (ug)gec | R}) generated by an isometry s, and unitaries u, satisfying a
suitable set of relations R.

In the case where ¢ is a group automorphism of G, the C*-algebra C*(S,, (Uy)gec)

is related to the crossed product C;(G) x4 Z, where o(ug) = u It is well-known that

9)-
this crossed product is canonically isomorphic to the reducedsp(gzoup C*-algebra of the
semidirect product G x, Z. Hence, the full group C*-algebra of G' %, Z can be regarded
as a universal model for O,[p], even though the latter tends to be a proper quotient of
the former. The structure of these C*-algebras has already been studied extensively, see
[Wil07]. In contrast, the situation for an injective, but non-surjective group endomorphism
@ has started to receive more attention in the recent past. Let us remark that G has
to be infinite in this case. The most elementary examples of such endomorphisms are

x2:7Z — 7 and the one-sided shift on @, Z/nZ for n > 2.

Restricting to the case where G is amenable and G/¢(G) is finite, Ilan Hirshberg in-
troduced a universal C*-algebraic model O[p] for O,[p] in 2002, see [Hir02]. He showed
that the core F C O[p], which is the fixed point algebra under the canonical gauge action,
is simple if (¢"(G))nen separates the points in G, that is, (), ey ¢™(G) = {1g}. Using
simplicity of F, he concluded that F is the crossed product of a natural commutative sub-
algebra D, called the diagonal, by G. Assuming that the family of subgroups (¢"(G))nen
separates the points in G and consists of normal subgroups of G, Hirshberg established
that O[] is simple and therefore isomorphic to O,[p|. Additionally, he computed the
K-theory of O[y] based on the K-theory of F and the Pimsner-Voiculescu six-term exact
sequence for xn : Z — Z,n > 2, the shift on @y H, where H is a finite group, and
o L)27 x L)27 — ZL)27 x Z/27,a — bab,b — aba, where a,b denote the standard
generators of Z /27 x 7./ 27.
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A decade later, Felipe Vieira extended Hirshberg’s results to the case where G is
amenable and (¢"(G))nen separates the points in G, see [Viel3]. His approach used tech-
niques for semigroup crossed products as well as partial group crossed products. One
remarkable outcome of his work is the connection to semigroup C*-algebras for left can-
cellative semigroups as introduced by Xin Li in [Li12,Lil13]: If G is amenable, (¢"(G))nen
separates the points in G, and G/p(G) is infinite, then O[p] is canonically isomorphic
to the full semigroup C*-algebra of G x, N. Furthermore, Vieira showed that this is the
same as the reduced semigroup C*-algebra for this semidirect product.

At about the same time, Joachim Cuntz and Anatoly Vershik examined the case where
G is abelian, G/¢(G) is finite, and (¢"(G))nen separates the points in G, see [CV13]. They
proved that O[y] is a UCT Kirchberg algebra and provided a general method to compute
the K-theory of O[y]. In addition, they found that the spectrum of the diagonal D is a
compact abelian group G, which can be interpreted as a completion of G' with respect
to ¢. Another interesting outcome of [CV13] is the fact that 7 = C(G,) x G is also
isomorphic to C(G) x G.

Summarizing the current status, it is fair to say that a lot is known about the C*-
algebras O[p], F and D associated to a single injective, non-surjective group endomor-
phism ¢ of a countably infinite, discrete group G. Indeed, in many cases we are able,
at least in principle, to compute the K-theory for O[y], which is known to be a com-
plete invariant due to the celebrated classification theorem by Eberhard Kirchberg and
Christopher N. Phillips, see [Kir, Phi00]. Thus, by computing the K-theory of O[y], we
can recover the information on the dynamical system (G, ¢) that is encoded in Ofy]. It
is therefore natural to ask whether analogous results hold for similar dynamical systems
involving more than one transformation.

To motivate this question, let us mention an important example which showcases some
interesting phenomena for such dynamical systems. In 1967, Hillel Furstenberg proved the
following result, which applies for instance to x2, x3 : T — T, the Pontryagin dual of
x2,x3 : Z — Z, see [Fur67, Part IV]: Every closed subset of T, which is invariant
under the action of a non-lacunary subsemigroup of Z*, is either finite or equals T.
This led him to conjecture that a stronger form of rigidity might be true: Any invariant
ergodic Borel probability measure on T is either atomic or the Lebesgue measure on T.
In its general form, this conjecture is still open. An important reduction step has been
achieved by Daniel J. Rudolph, see [Rud90] and also [Par96] for a concise presentation.
The conjecture has been verified by Manfred Einsiedler and Alexander Fish in 2010 for
the case where the acting semigroup is sufficiently large in the sense that it has positive
lower logarithmic density, see [EF10]. This form of measure rigidity has also been studied
for certain reversible dynamical systems, see [EKO05] and the references therein. In a
different direction, Daniel J. Berend and Roman Muchnik generalised the rigidity result
from [Fur67] stated above to compact abelian groups, see [Ber83, Ber84, Muc05].

Coming back to x2, x3 : T — T, it is natural to ask: What are the essential features
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INTRODUCTION

of similar dynamical systems? By Pontryagin duality, x2, x3 : T — T corresponds to
x2,x3 : Z — 7. In other words, the monoid N? acts on the group Z by multiplication
using two relatively prime integers. In an abstract way, we can think of this as a triple
(G, P,0), where

e (G is a countably infinite discrete group,

e P is a countably generated, free abelian monoid, and

o P fe\v G is an action by injective group endomorphisms subject to the independence
condition: 0,(G) N 0y(G) = bpe(G) if and only if p and g are relatively prime in P,
ie. pPNgP = pqP.

We will refer to triples (G, P,0) satisfying the three requirements stated above as irre-
versible algebraic dynamical systems. The term irreversible is used because 6, € Aut(G)
implies p = 1p, and algebraic is used to emphasize the contrast to topological dynamical
systems, since the imposed conditions are purely algebraic.

We note that it suffices to check the independence condition for irreversible algebraic
dynamical systems for the generators of P. An equivalent characterisation of independence
can be given in terms of the isometries Sp,, Sy, € *(G):

0,(G) N0y(G) = 04(G) if and only if S;pqu = quS(};.

The inspiration for the independence condition stems from [CV13, Section 5], where
two commuting injective group endomorphisms ¢, of a discrete abelian group G with
finite cokernel are considered. The maps ¢ and 1 are said to be independent if p(G) N
»(G) = ey(G). Tt is then shown that independence is equivalent to ¢(G) + ¥(G) = G.
This equation is in turn equivalent to the statement that the inclusion ¢(G) < G induces
an isomorphism ¢(G)/(¢(G) NY(G)) = G/Y(G).

For the general case, where G' need not be abelian, and G/¢(G), G/¢(G) need not
be finite, we show that this last equivalence still holds if we only ask for a bijection
o(G)/(e(G)NMY(G)) — G /9(G), see Proposition 1.1.1. This slight modification is natural
since there need not be a group structure on the quotients. But ¢(G) NY(G) = pi(QG)
turns out to be weaker than p(G)Y(G) = G, where p(G)Y(G) = {p(9)¥(d") | 9,¢" € G},
see Example 1.1.12. We will therefore differentiate between independence and what we
call strong independence, see Definition 1.1.3.

For abelian G, we examine the dual triple (G, P, é), see Section 1.2. In this case, Gis
a compact abelian group and ép is a surjective group endomorphism of G for every p € P.
The (strong) independence condition for 6 is stated in terms of g. This is related to the
notion of *-commutativity introduced in [AR97] and studied for instance in [ER07, Wil10].
Recall that given a set X, two commuting maps ¢,% : X — X are said to *-commute
if o : ¢~ (x) — 1 (p(x)) is a bijection for all z € X. For the situation of a pair of
commuting surjective group endomorphisms, we find that strong independence is weaker
than x-commutativity, see Proposition 1.3.2. But we prove in many cases, for example
when G/6,(G) is finite for all p € P, that *-commutativity is equivalent to independence.
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Let us recall that, for abelian G, the quotient G/8,(G) is finite if and only if ker 6,
is finite. If this is the case for all p € P, then P acts by surjective, local homeomor-
phisms ép on the compact Hausdorff space G. Due to the equivalence of independence
and x-commutativity, this action satisfies a *-commutativity relation, analogous to the
independence condition for irreversible algebraic dynamical systems. This motivates the
study of irreversible x-commutative dynamical systems of finite type (X, P,0), where P is
again a countably generated, free abelian monoid, but X is a compact Hausdorff space on
which P acts by regular surjective local homeomorphisms 6, satisfying:

0, and 6, *-commute if and only if p and ¢ are relatively prime in P.

Analogous to the case of irreversible algebraic dynamical systems, irreversible refers to
the fact that ¢, is not a homeomorphism of X unless p = 1p. A surjective local home-
omorphism is called regular if the number of preimages of a singleton is constant on X.
Since we only consider compact spaces X, this value is always finite. Such maps are also
referred to as covering maps.

Conceptionally, the notion of an irreversible *-commutative dynamical system of finite
type represents the model type extracted from x2,x3 : T — T from the perspective of
topological dynamical systems. It is therefore not surprising that, given an irreversible
algebraic dynamical system of finite type (G, P, §) with abelian G, the dual triple (G, P, é)
is an irreversible x-commutative dynamical system of finite type, see Corollary 1.3.17.

For irreversible algebraic dynamical systems (G, P,6) as well as for irreversible -
commutative dynamical systems of finite type (X, P,0), we construct and study universal
C*-algebras O[G, P, 0] and O[X, P, 0], by means of generators and relations, in the course
of Chapter 2. The main focus is set on O[G, P, 6], which is a direct generalization of the
C*-algebra O[p] that appeared in [CV13, Hir02, Viel3]. The C*-algebra O[X, P, 0] is a
generalization of a certain Exel crossed product C(X) X4 1, N, see [EV06, Section 9]. We
show that the structures of O[G, P, 6] and O[X, P, 0] are consistent with the ones that
have been found for O[] and C'(X) x4 1 N, respectively. Since we focus on O[G, P, 6] and
the results on O[X, P, 0] are mostly used as tools for Chapter 4, let us be more precise
concerning the structural properties of O[G, P, 6)].

Extending [CV13, Lemma 2.4], it is proven that the spectrum Gy of the (commutative)
diagonal subalgebra D of O[G, P, 6] can be interpreted as a completion of G with respect
to ¢ if (G, P,0) is minimal in the sense that (), p 0p(G) = {1¢}, see Lemma 2.2.9. The
C*-algebra O[G, P, 0] is identified with the semigroup crossed product D x (G g P),
where (g,p).d = ugspd(ugsy)*, see Proposition 2.2.18. Using a decomposition theorem for
crossed products by semidirect products of monoids, which is established in Section 2.1,
the isomorphism between O[G, P, 6] and D x (G xy P) gives rise to an isomorphism of
F and C(Gg) x; G, where g.d = ugyduy, see Corollary 2.2.19. If G is amenable and
(G, P,0) is minimal, then F is a generalized Bunce-Deddens algebra in the sense of [Orf10],
see Proposition 2.3.2 and [Orfl0]. In this case, F is classified by its Elliott invariant



INTRODUCTION

due to a combination of results from [Lin01, MS, Win05], see Corollary 2.3.3. Finally,

Corollary 2.2.28 asserts that minimality of (G, P, ) and amenability of the action G A~ Gy
imply that O|G, P,0] is a UCT Kirchberg algebra, hence classifiable by K-theory due to
[Kir, Phi00]. Unfortunately, the computation of the K-theory of O[G, P, 6] beyond the
case of a single group endomorphism, for which this has been accomplished in [CV13], is
a hard problem, at least with the techniques currently available.

Chapter 3 provides an alternative approach to the C*-algebras O[G, P, 0] and O[X, P, 0]
as the Cuntz-Nica-Pimsner algebras of discrete product systems of Hilbert bimodules over
the semigroup P with coefficients in C*(G) and C(X), respectively, see Theorem 3.3.4 for
(G, P,0) and Theorem 3.3.7 for (X, P, 6). Discrete product systems form a generalization
of the original construction introduced by Mihai Pimsner in [Pim97] for a single Hilbert
bimodule. Within the first two sections of Chapter 3, we provide a short introduction to
product systems, their representation theory, and the C*-algebras associated to them. We
refer to [Fow99, Fow02, S0l06, Yee07,SY 10, CLSV11,HLS12] for more information on the
subject.

In the last section of Chapter 3, we show how to construct product systems for both
irreversible algebraic dynamical systems (G, P, #) and irreversible x-commutative dynam-
ical systems of finite type (X, P,6). For (G, P,0), the product system X associated to
it comes with a canonical system of orthonormal bases on its fibres X,,p € P, given by
(ug)g0,()ea/0,(c)- Similarly, the product system X associated to (X, P, ) admits a finite
Parseval frame on each fibre A),, which is constructed by choosing a partition of unity
(fi) € C(X) such that 6, is injective on supp f; for all 7.

One advantage of realizing O[G, P, 0] as the Cuntz-Nica-Pimsner algebras of a product
system is that it has a natural Toeplitz extension, called the Nica-Toeplitz algebra. Al-
though this will not be part of this thesis, we want to mention that, jointly with Nathan
Brownlowe and Nadia S. Larsen, we proved that the Nica-Toeplitz algebra associated to
(G, P,0) is isomorphic to the (full) semigroup C*-algebra C*(G x¢y P) in the sense of Xin
Li, see [Lil2,Lil3]. Moreover, it coincides with O[G, P, 0] for irreversible algebraic dy-
namical systems (G, P, #), given that G/6,(G) is infinite for all p # 1p. This sheds new
light on the result from [Viel3] mentioned in the beginning.

With regards to (X, P,6), Theorem 3.3.7 grants us access to a gauge-invariant unique-
ness theorem from [CLSV11], see Remark 4.1.2. This is an essential tool to characterise
topological freeness of (X, P,#) in terms of O[X, P, 0], see Theorem 4.1.9. For an irre-
versible *-commutative dynamical system of finite type (X, P, 0), the following statements
are equivalent:

(1) (X, P,0) is topologically free.

(2) Every non-zero ideal I < O[X, P, 0] satisfies I N C(X) # 0.
(3) The natural representation of O[X, P, 6] on ¢?(X) is faithful.
(4) C(X) is a maximal abelian subalgebra (masa) in O[X, P, 6].
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Thus we achieve a direct generalization of [CS09, Theorem 6], where this result was proven
only for singly generated P. The proof we present in this thesis combines the strategy of
[CS09] with the gauge-invariant uniqueness theorem from [CLSV11] and techniques from
[Exe03b, EV06].

As a useful consequence of Theorem 4.1.9, simplicity of the C*-algebra O[X, P, 0]
is characterized by minimality of the topological dynamical system (X, P, ), see Theo-
rem 4.2.11. We also show that minimal irreversible x-commutative dynamical systems of
finite type are necessarily topologically free, see Proposition 4.2.10. This was observed
already in [EV06, Proposition 11.1] in the case where P is singly generated.

Finally, we apply Theorem 4.2.11 to the dual triple (G , P, é) of an irreversible algebraic
dynamical system of finite type (G, P, ) with abelian G in order to deduce that simplicity
of O[G, P, 0] is equivalent to minimality of (G, P, ), see Corollary 4.2.12. This shows that
the conditions required in Theorem 2.2.26 are necessary in the case where G is abelian,
and G/6,(G) is finite for all p € P.
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Chapter 1

Irreversible semigroup dynamical
systems

In this opening chapter, we will specify the dynamical systems that we are going to anal-
yse and highlight their characteristic features, as well as connections between the different
versions. We start off in the first section with a closer examination of the independence
condition from [CV13, Section 5] for pairs of commuting injective endomorphisms of an ar-
bitrary group G, see Proposition 1.1.1. This setting is more general than the one considered
in [CV13] and leads to a subdivision of the notion of independence into independence and
strong independence, see Definition 1.1.3. The two properties are shown to be equivalent
in the case where one of the involved endomorphisms has finite index in G, see Proposi-
tion 1.1.1. But Example 1.1.12 shows that there are many situations where independence
holds, but strong independence does not. We then formulate the concept of irreversible
algebraic dynamical systems (G, P, ) based upon independence, see Definition 1.1.5, and
provide a diverse pool of examples.

Section 1.2 is dedicated to the discussion of the dual model (G‘, P, é) for irreversible
algebraic dynamical systems in the case where G is commutative. This leads to an comple-
mentary notion of (strong) independence for pairs of commuting surjective endomorphisms
of an arbitrary group K, see Definition 1.2.7. The fact that there is a close connection
between (strong) independence of injective endomorphisms of a discrete abelian group G
and (strong) independence of their dualized counterparts, which are surjective endomor-
phisms of the compact abelian group G, has already been observed in [CV13, Section
5]. We extend this observation to the general setup in Proposition 1.2.6. This allows us
to characterize when a triple (G, P,#) is a (minimal) commutative irreversible algebraic
dynamical system (of finite type), entirely in terms of its dual model (G, P, ), see Propo-
sition 1.2.8. We close this section with a brief presentation of the dual models for the
commutative examples from Section 1.1.



1. IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

The beginning of Section 1.3 provides an introduction to *-commutativity, see also
[ERO7, Will0, MW], and some elementary aspects of regular surjective local homeomor-
phisms of a compact Hausdorff space X. Here regular means that the map assigning to
x € X the number of preimages under the surjective local homeomorphism is constant, see
Definition 1.3.4. Then we define a topological analogue for irreversible algebraic dynamical
systems, for which, roughly speaking, independence is replaced by #-commutativity, see
Definition 1.3.13 for details. By comparing x-commutativity with strong independence in
the sense of Definition 1.2.7, see Proposition 1.3.16, we are able to conclude that the dual
model for commutative irreversible algebraic dynamical systems of finite type falls into the
class of irreversible x-commutative dynamical systems of finite type, see Corollary 1.3.17.
Towards the end of this first chapter we discuss a method from symbolic dynamics to
construct examples of irreversible *-commutative dynamical systems of finite type. This
part builds on the material presented in [ER07, Section 10-14] and, in fact, leads to new
examples for commutative irreversible algebraic dynamical systems of finite type.

1.1 Irreversible algebraic dynamical systems

The purpose of this section is to familiarize with the primary object of interest called
irreversible algebraic dynamical system in its most general form. Vaguely speaking, such a
dynamical system is given by a countably infinite, discrete group G and at most countably
many commuting injective, non-surjective group endomorphisms (6;);c; of G that are
independent in the sense that the intersection of their images is as small as possible.
Additionally, we will introduce a minimality condition stating that the intersection of the
images of the group endomorphisms from the semigroup generated by (6;);cs is trivial.
In other words, the group endomorphisms (6;);c; (more precisely finite products of these)
separate the points in G. At a later stage, namely in Theorem 2.2.26, this condition is
shown to be intimately connected to simplicity of the C*-algebra associated to such a
dynamical system in Definition 2.2.1.

The following observation is an extension of the concept introduced in [CV13, Section
5]. In contrast to the situation in [CV13], we will require neither the group G to be abelian
nor the cokernels of the injective group endomorphisms of G to be finite.

Proposition 1.1.1. Suppose G is a group. Consider the following statements for two
commuting injective group endomorphisms 01 and 0y of G:

(i) 61(G)82(G) = G.

(ii) The inclusion 0,(G) < G induces a bijection 01 (G)/(01(G) N 02(G)) — G/65(G).
(ii’) The inclusion 03(G) — G induces a bijection 05(G)/(01(G) N 62(G)) — G/61(G).
(iii) 61(G) N 02(G) = 0105(G).

2



1.1. Irreversible algebraic dynamical systems

Then (i),(i1), and (ii’) are equivalent and imply (iii). If one of the subgroups 61(G) and
02(QG) is of finite index in G, then all these conditions are equivalent.

Proof. Note that we always have 01(G)62(G) C G and 61(G) N O2(G) D 6102(G). More-
over, in condition (ii), the inclusion 6;(G) < G induces an injective map 61 (G)/(01(G) N
02(G)) — G/62(G). The corresponding statement holds for (ii’).

If (i) holds true, then G 3 g = 01(g1)02(g2) for suitable g; € G. Hence, the left-coset of
601(g1) maps to the left-coset of g and (ii) follows.

Conversely, suppose (ii) is valid and pick ¢ € G. Then there is g1 € G such that
01(g1) (61(G) N 62(G)) — gh2(G) via the map from (ii). But since this map comes from
the inclusion 0;(G) — G, we have ¢g02(G) = 01(g1)02(G). Thus, there is g2 € G such
that g = 601(g1)02(g2) showing (i). The equivalence of (i) and (ii’) is obtained from the
previous argument by swapping 61 and 2. Given (ii), that is,

01(G)/(6:(G) N 02(G)) L5 G/62()
is a bijection (induced by the inclusion 62(G) — G), composing f; 1 with the bijection
01(G)/(0:16:(G)) L G/02(G)

obtained from applying the injective group endomorphism 6, yields a bijection

0,(G)/(0:102(C)) "L 0,(G)/(02(@) 1 02(C)).

Let us assume 0102(G) G 01(G) NOa(G). This means, that there is g € 61(G) such that
g@leg(G) #* 9192(G) but gel(G) N QQ(G) = 91(G) N GQ(G) Noting that fl_lfg maps a
left-coset ¢'0102(G) to ¢'01(G) N O2(G), this contradicts injectivity of f; 'fe. Hence, we
must have 61(G) N 62(G) = 0102(G). Similarly, (iii) follows from (ii’).

Finally, suppose (iii) holds. By injectivity of 61, we have

01(G)/(01(G) N 02(GQ)) = 01(G)/0102(G) = G/0(G).

So if [G : 62(G)] is finite, then the injective map from (ii) is necessarily a bijection.
Similarly, if [G : 01(G)] is finite, we can run the same argument using (ii’). O

Remark 1.1.2. If the subgroups 6, (G) and 02(G) are both normal in G, then 6;(G)62(G)
is a normal subgroup of 6;(G),i = 1, 2, and the bijections in Proposition 1.1.1 (ii) and (ii’)

are isomorphisms of groups.

Definition 1.1.3. Let G be a group and 61, #> commuting, injective group endomorphisms
of G. Then #; and 65 are said to be independent, if they satisfy condition (iii) from
Proposition 1.1.1. 6; and f#y are said to be strongly independent, if they satisfy the
equivalent conditions (i),(ii’) and (ii’) from Proposition 1.1.1.
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Note that (strong) independence is automatic if 61 or s is a group automorphism.

Lemma 1.1.4. Let G be a group and suppose 01,60s,0s are commuting, injective group
endomorphisms of G. 61 is (strongly) independent of 0202 if and only if 61 is (strongly)
independent of both 02 and 0s.

Proof. If 0, and 6203 are strongly independent, then
01(G)02(G) D 61(G)0:2(05(G)) = G

shows that 61 and 65 are strongly independent. As 6> and 63 commute, 6; is also strongly
independent of 83. Conversely, if 81 is strongly independent of both 6 and 3, then

G = 61(G)0:(G) = 01(G)02(6(G)03(G))
= 01(G02(Q))02(05(G)) C 01(G)0203(G),

so 01 and 0,03 are strongly independent since the reverse inclusion is trivial.
If ; and 6203 are independent, then commutativity of 61,62 and 63 in combination with
injectivity of 03 yield
01(G)N0:(G) = 051(6103(G)N603(G)) C 05(0:(G) N 0205(G))
= 051(010:05(Q)) = 6:160:(G).
Since the reverse inclusion is always true, we conclude that #; and 6y are independent.

Exchanging the role of 65 and 63 shows independence of 8, and f3. Finally, if 6; is
independent of both A, and 63, we get

91(G) N 9293(G) = (91(G) N QQ(G) N 9293(G) = 01(92(G) N 9293(G)
= 02(61(G) N05(G)) 010205(G)

by injectivity of #2. Thus 6; and 62605 are independent. O

If (P,<) is a lattice-ordered monoid with unit 1p, we shall denote the least common
multiple and the greatest common divisor of two elements p,q € P by pV ¢ and p A q,
respectively. p and ¢ are said to be relatively prime (in P) if p A ¢ = 1p or, equivalently,
pVq = pq. Simple examples of such monoids are countably generated free abelian monoids
since such monoids are either isomorphic to N¥ for some k € N or @y N.

Definition 1.1.5. An irreversible algebraic dynamical system (G, P, ) consists of
(A) a countably infinite discrete group G with unit 14,

(B) a countably generated free abelian monoid P with unit 1p, and
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(©)

. 0 . . .
an action P ~ G by injective group endomorphisms with the property that 6, and
0, are independent if and only if p and ¢ are relatively prime in P.

(G, P, 6) is said to be

- minimal, if (. p 0,(G) = {1¢},

- commutative, if G is commutative,

- of finite type, if [G : 6,(G)] is finite for all p € P, and

- of infinite type, if [G : 6,(G)] is infinite for all p # 1p.

Remark 1.1.6. The following observations are immediate:

a)
b)

Condition (B) means that P is either isomorphic to @y N or to N¥ for some k € N.

Let us point out that 61, = idg is the only automorphism of G occuring for this
setting. Indeed, if 0, is an automorphism of G, then it is independent of itself. But
p = 1p is the only element in P that is relatively prime to itself. So unless P = {1p},
there is p € P such that [G : 6,(G)] > 1. Therefore, 6,(G) is a proper subgroup of
G. Since 0, is injective, G needs to be of infinite cardinality.

Lemma 1.1.4 shows that the notions of independence and strong independence for
injective group endomorphisms are well-behaved with respect to composition. As a
consequence, it suffices to check the independence condition from (C) on the gener-
ators of P. Moreover, injectivity of the group endomorphisms puts us in position to
rephrase this condition by stating that 6,(G)N0,(G) = 0,v4(G) holds for all p,q € P.

If (G, P,0) is an irreversible algebraic dynamical system of finite type, the indepen-
dence condition from (C) is equivalent to the requirement that 6, and 6, be strongly
independent if and only if p and ¢ are relatively prime, see Proposition 1.1.1.

Note that [G : 0,4(G)] = [G : 0,(G)]- [0p(G) : Ope(G)] =[G : 0,(G)]- |G : 64(G)] holds
since ), is injective. In particular, [G : 8,,(G)] is finite if and only if both [G : 6,(G)]
and [G : 0,(G)] are finite.

Remark 1.1.7. The minimality condition has been used under the name exactness in the

case of a commutative G with a single endomorphism with finite cokernel in [CV13]. As

explained in [CV13, Remark 2.1], the notion of exactness for a single endomorphism stems

from ergodic theory and is a well-studied property for irreversible, measure-preserving

transformations. However, for the specific setup that we use, this property was already

considered by Ilan Hirshberg in [Hir02], where he called such endomorphisms pure. Despite

these two available options, we decided to name this property minimality for two reasons:

5
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1.

2.

For commutative irreversible algebraic dynamical systems, the corresponding condi-
tion for the dualized model (G, P,#) really is minimality of the (irreversible) topo-
logical dynamical system, see Proposition 1.2.8.

Condition (D) is intimately linked to simplicity of the C*-algebras we will construct
from the data, see Corollary 2.2.14, Corollary 2.2.19, and Theorem 2.2.26.

Ezxamples 1.1.8. There are various examples for commutative irreversible algebraic dy-

namical systems and most of them are of finite type. Let us recall that it suffices to check

independence of the endomorphisms on the generators of P according to Lemma 1.1.4.

(a)

Choose a family (p;)icr € Z*\Z* = Z\{0,£1} and let P = |(p;)icr) C Z* act on
G = Z by 0,,(9) = pig. Since Z is an integral domain, each 6, is an injective
group endomorphism of G with [G : 0,,(G)] = p;. For i # j, 0, and 6, are
independent if and only if p; and p; are relatively prime in Z. Thus, we get a
commutative irreversible algebraic dynamical system of finite type if and only if
(pi)ier consists of relatively prime integers. Since the number of factors in its prime
factorization is finite for every integer, such irreversible algebraic dynamical systems
are automatically minimal.

Let I C N, choose relatively prime integers {¢} U (p;)ier C Z \ {0, £1} and let G =
Z [H As Z [ﬂ = li_n}Z with connecting maps given by multiplication with ¢, and
q is relatively prime to each p;, the arguments from (a) carry over almost verbatim.

Thus we get minimal commutative irreversible algebraic dynamical systems of finite
type (G, P,0) which generalize [CV13, Example 2.1.5].

Let K be a countable field and let G = K[T] denote the polynomial ring in a single
variable T" over K. Choose non-constant polynomials p; € K[T, € I for some index
set 1. Multiplying by p; defines an endomorphism 6, of G with [G : 6,,(G)] =
|K|de&(P:) | where deg(p;) denotes the degree of p; € K[T]. Thus, if we let P :=
|(pi)ier), then the index of 6,(G) in G is finite for all p € P if and only if K is finite.
It is clear that ), and ), are independent if and only if (p;) N (p;) = (pip;) holds for
the principal ideals (whenever i # j). Since every g € K[T'] has finite degree, (G, P, 0)
is automatically minimal. Thus, provided (p;);e; has been chosen accordingly, we
obtain a minimal commutative irreversible algebraic dynamical system which is of
finite type if and only if K is finite, compare [CV13, Example 2.1.4].

Exzample 1.1.9. For G = Z¢ with d > 1, the monoid of injective group endomorphisms

of G is isomorphic to the monoid of invertible integral matrices My(Z) N Gl;(Q). For

each such endomorphism, the index of its image in G is given by the absolute value of

the determinant of the corresponding matrix. In particular, their images always have

finite index in G and an endomorphism of G is not surjective precisely if the absolute

6
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value of the determinant of the matrix exceeds 1. So let (T;);er C My(Z) N Glg(Q) be
a family of matrices satisfying |det T;| > 1 for all i € I and set P = |(1})icr) as well as
0i(9) = Tig. Commutativity of §; and 6; is equivalent to T;T; = T;T;. For i # j, it is
easier to check strong independence of 0; and 6; instead of independence. Indeed, since we
are dealing with a finite type case, the conditions are equivalent and strong independence
takes the form T;(Z%) + T;(Z%) = Z4, see Proposition 1.1.1. This condition can readily be
checked by solving d linear equations. To reduce efforts, these computations can easily be
handled by a standard linear algebra program. Thus, if the aforementioned conditions are
fulfilled, (G, P, 0) is a commutative irreversible algebraic dynamical system of finite type.
If we interpret the integer matrices (0,),cp as endomorphisms of the vector space Ce,
they have the same generalized eigenspaces for possibly different generalized eigenvalues
because they commute. Minimality of (Z¢, P,6) is then equivalent to the property that,
for each generalized eigenspace, there is p € P such that the corresponding generalized
eigenvalue for 6, is strictly larger than one in absolute value.

Example 1.1.8 (a) can be generalized to the case of rings of integers in the following way:

Example 1.1.10. Let R be the ring of integers in a number field and denote by R* =
R\ {Or} the multiplicative subsemigroup as well as by R* C R* the group of units in R.
Take G = R and choose a (countable) family (p;)icr C R* \ R*. If we set P = |(pi)ier),
then this monoid acts on G in a natural way by multiplication, i.e. 6,(g) = pg for
g € G,p € P. Fori# j, 0 and 0, are independent if and only if the principal ideals
(ps) and (p;) in R share no common prime ideal. If this is the case, (G, P,0) constitutes
a commutative irreversible algebraic dynamical system of finite type. Since the number
of factors in the (unique) prime ideal factorization of (g) in R is finite for every g € G,
minimality is once again automatically satisfied. The argument actually shows that such
a construction works whenever R is a Dedekind domain.

Let us also mention the following example even though, having singly generated P, it
has nothing to do with independence. The reason is that Joachim Cuntz and Anatoly
Vershik observed in [CV13, Example 2.1.1], that the C*-algebra O[G, P, 6] associated to
this irreversible algebraic dynamical system is isomorphic to O,.

Example 1.1.11. For n > 2, consider the unilateral shift 6; acting on G = Py Z/nZ
by (90,91,---) — (0,90,91,...). Since 0 is an injective group endomorphism with [G :
01(G)] = n, (G,P,6) with P = |#;) is a minimal commutative irreversible algebraic
dynamical system of finite type.

Ezxample 1.1.12. Generalizing Example 1.1.11, suppose P is as required in condition
(B) of Definition 1.1.5 and let Gy be a countable group. Let us assume that Gy has at
least two distinct elements. Then P admits a shift action § on G := @ p Gy given by

(0p((9¢)qeP))r = XppP(T) gp-1, for all p,r € P.
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It is apparent that 6,0, = 6,0, holds for all p,q € P and that 6, is an injective group
endomorphism for all p € P. The index [G : 0,(G)] is finite for p € P\ {1p} if and
only if Gy is finite and P is singly generated. Indeed, if p # 1p, then each element
of Equ P\pP Gy yields a distinct left-coset in G/0,(G). Clearly, this group is finite if
and only if Gq is finite and P is singly generated. Given relatively prime p and ¢ in
P\ A{1p}, 0,(G)04(G) # G since g1, = 1g, for all (g;)rep € 0,(G)04(G) as 1p ¢ pP U qP.
Thus, unless P is singly generated, 6 does not satisfy the strong independence condition.
However, the independence condition is satisfied because g = (gr)rep € 0p(G) N 04(G)
implies that g, # 1g, only if r € pP N gP = pgP and thus g € 0,,(G).

We have seen in Example 1.1.12 that one cannot expect strong independence for irre-
versible algebraic dynamical systems of infinite type in general. On the other hand, there
are some examples where the subgroups in question have infinite index and the endomor-
phisms are strongly independent:

Exzample 1.1.13. Given a family (G, P,6()),;cy of irreversible algebraic dynamical sys-
tems, we can consider G := @,y GU). If P acts on G component-wise, i.e. 0,(g;)ien =
(Hj(gi) (9i))ien, then (G, P, 0) is an irreversible algebraic dynamical system and [G : 0,(G)] is
infinite unless p = 1p, see Remark 1.1.6 b). G is commutative if and only if each G is,
and (G, P,#) is minimal if and only if each (G®, P,#(")) is minimal. If each (G, P,§("))
satisfies the strong independence condition, then 6 inherits this property as well.

As a final example, we provide more general forms of [Viel3, Example 2.3.9]. These
examples are neither commutative irreversible algebraic dynamical systems nor of finite

type.

Exzample 1.1.14. For 2 < n < oo, let [F,, be the free group in n generators (ag)i<k<n-
Fix 1 < d < n and choose for each 1 <1i < d an n-tuple (m; ;)1<x<n C N* such that

1) for each 1 <1i < d, there exists k such that m; > 1, and
2) forall1 <i,j<d,ji#jand1<k<n, m; . and m; ;. are relatively prime.

Then 0;(ay) = a?i’k defines a group endomorphism of [, for each 1 <1 < d. Noting that
the length of an element of F,, in terms of the generators (aj)i<k<, and their inverses is
non-decreasing under ¢;, we deduce that 0; is injective. It is clear that 6;0; = 60,0; holds
for all ¢ and j. For every 1 < i < d, the index [F,, : 6;(F,,)] is infinite. Indeed, take
1 < k < n such that m; > 1 according to 1) and pick 1 < ¢ < n with ¢ # k. Then the
family ((agae)?);>1 yields pairwise distinct left-cosets in F,, /0;(F,,) since reduced words of
the form agagb... with b # a;l are not contained in 6;(F,). A similar argument shows
that 6; and 6; are not strongly independent for ¢ # j: By 1), there are 1 < k,¢ < n such
that m;, > 1 and m;, > 1. This forces ayas ¢ 0;(F,)0;(F,). Nonetheless, 6; and §; are
independent due to 2). Thus, G = F,, and P = |(6;)1<i<a) acting on G in the obvious way
constitutes an irreversible algebraic dynamical system which is neither commutative nor

8
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of finite type. Minimality of such irreversible algebraic dynamical systems can easily be
characterized by:

3) For each 1 < k < n, there exists 1 <14 < d satisfying m; > 1.

There are also examples of irreversible algebraic dynamical systems arising from a refine-
ment of a construction related to symbolic dynamics, see [ER07] for the original expo-
sition. But it is more natural to treat these examples in the framework of irreversible
x-commutative dynamical systems, which is why we postpone their exposition to Sec-
tion 1.3, see Example 1.3.23 and Example 1.3.21.

We close this section with two preparatory lemmas which are relevant for the C*-
algebraic considerations in Section 2.1 and Section 2.2. The first lemma reflects a crucial
feature of the independence assumption.

Lemma 1.1.15. If (G, P,0) is an irreversible algebraic dynamical system, then

40.(C) A 6, (C) = {gepw’)epma) L if g7 Mh € 0,(G)0,(G),
p q -

, else

holds for all g,h € G and p,q € P, where I/ is uniquely determined by g6,(h') € hl,(G)
up to right multiplication by elements from 6,-1(pyq) (G)-

Proof. If there exist g1, g2 € G such that g6,(g1) = hf,(g2), then g~ h = 0,(g1)0,(g5 ") €
0,(G)0,(G) follows because G is group. Now suppose that g3, g4 € G satisfy g0,(g3) =
h6,(g4) as well. Since this implies Hp(gl_lgg) = 9q(951g4), we appeal to Remark 1.1.6 ¢)
to deduce 6,(g; lgs) € Opvq(G). Using injectivity of 6, this is equivalent to g; lgs €
Op—1(pvq)(G). Therefore, i’ = g is unique up to right multiplication by elements from

p

Hp—l(pvq) (G). D

For the proof of Theorem 2.2.26, we will need the following auxiliary result, which relies
on irreversibility of the dynamical system:

Lemma 1.1.16. Suppose (G, P, ) is an irreversible algebraic dynamical system and we
have n € N,g; € G,p; € P\ {1p} for 0 < i < n. Then, there exist g € gobp,(G),p € poP
satisfying
96,(@) c G\ |J <gi N 9p?(0)> :
1<i<n meN

Proof. We proceed by induction. Let n = 1. As p; # e, we can find m € N such that
po ¢ pT'P. In other words, we have pg V p{* 2 po. By Lemma 1.1.15,

900po (G1)Opovpp (G)  if 90_191 € Oy (G)Opr (G),

0 else,

(90000 (G)) 1 (9103 () = {
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where ¢; is uniquely determined up to Gp_l (G). While we simply take g := go in

the second case, we need to pick g € (goﬂpOO(CgI;%v\péo)Gpo (91)0povpr (G) in the first case. Note
that such a g exists as pg V pJ* = po by the choice of m. Finally, let p := pg V pT".

The induction step from n to n + 1 is just a verbatim repetition of the first step:
Assume that the statement holds for fixed n. This means that there exist h € gobp,(G)

and q € poP such that

hy(G) c G\ (gi N 9pr(G)> -

1<i<n meN

As pn41 # e, we can find m € Nsuch that ¢ ¢ p)', ; P. In other words, we have gV | Z q.
Recall that

h0q(Gn+1)0qvppr,  (G)  if W™ gnan & 04(G)Opm,  (G),

0 else,

(hbg(G)) N (gn410pp, , (G)) = {

where gn41 is uniquely determined up to 0q—1(qvp:ln+1)(G). In the second case, take g := h.
For the first case, we choose g € (h4(G))\ hg(gn+1)0qvpr,, (G). Note that such a g exists
as q V pp' 1 = q by the choice of m. Finally, let p := ¢V pj', ;. Then, it is clear from the
construction that we indeed have

gbp(@ cc\ (gi N Qpr(G)> :

1<i<n+1 meN

1.2 The dual picture for commutative systems

In this section, we restrict our focus to commutative irreversible algebraic dynamical
systems (G, P, ). Injective group endomorphisms 6, of a discrete abelian group G corre-
spond to surjective group endomorphisms ép of its Pontryagin dual é, which is a compact
abelian group and the index [G : 6,(G)] equals the cardinality of kerf,. This motivates
the definition of (strong) independence for commuting surjective group endomorphisms,
see Definition 1.2.7, which is consistent with the observations from [CV13, Lemma 5.4].

One striking feature of this particular class of irreversible algebraic dynamical systems
is that Definition 1.1.5 can be recast using G and 0, see Proposition 1.2.8. In particular,
commutative irreversible algebraic dynamical systems correspond to certain continuous
surjective transformations 6 of the compact Hausdorff space G. In Lemma 1.2.13, we
show that 9p is a local homeomorphism if and only if ker ép is finite.

We start with a short review of basic facts about characters on groups, see [DE09] for
details and further information.

10
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Remark 1.2.1. Recall that a character x on a locally compact abelian group G is a
continuous group homomorphism G X5 T. The set of characters on G forms a locally
compact abelian group G when equipped with the tqpology of uniform convergence on
compact subsets of G. Pontryagin duality states that G = G. For this result, we interpret
g € G as a character on G via g(x) := x(g). If G is discrete, then G is compact and vice
versa. Standard examples for this duality phenomenon are

° R%R’
° iﬁg'ﬂ‘d for every d € N and
o WEZ/TLZ for every n € N.

In the following, we will use some well-known facts connected to annihilators.

Definition 1.2.2. Let G be a locally compact abelian group. For a subset H C G, the
annihilator of H is given by H-:={ x € G | xlp =1 }.

Remark 1.2.3. The annihilator is always a closed subgroup of G. A useful fact about
annihilators of subgroups H is that we have H~(G JH*. Additionally, one can show
that (H1)* is the smallest closed subgroup of G containing H. So if H C G is a closed
subgroup, then (HY)* = H.

Lemma 1.2.4. Let G be a locally compact abelian group and G 15 G a group endo-

morphism. Then 11(x)(g) := xon(g) defines a group endomorphism G - G which is
continuous if and only if n is. This process has the following properties:

i) 1=n.

i) n(G)*+ = ker 7).
i11) f](é) C G is dense if and only if 1 is injective.
i) kgr\ﬁ = cokern if n(G) is closed.

Proof. 7 is a continuous endomorphism of G if and only if n is continuous since the
elements of G are continuous group homomorphisms by definition. Using Pontryagin

duality to identify G with G, the endomorphism G G given by

1(9)(x) = 9(i(x)) = xon(g) = n(g)(x) for all g € G, x € G.

Since (3 separates the points in G, 7 = 7 follows. ii) is obvious and readily implies iii) if
we use i) to swap 7 and 7, i.e. H(G)L = kern. For iv), Remark 1.2.3 implies

ker7) 2 G/ (ker i)t = G/(n(G)1)*.

So if n(G) is closed, then @7 = coker . O

11
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In particular, if G is discrete abelian, then ii) says that 7 : G — Gis surjective if and
only if n : G — G is injective. Moreover, 1(G) is always closed. If, in addition, cokern
is finite, then ker 7} = ker ) = coker i) follows from Remark 1.2.1 and iv).

Lemma 1.2.5. If G is a locally compact abelian group and Hy, Hs C G are subgroups,
then:

i) (Hy - Hy)* = H{ N Hy.
i) (Hy N Ho)* = Hi- - H5- holds if Hy and Hs are closed.

Proof. 1) is straightforward. If both H; and Hy are closed, then H; N Hy is a closed
subgroup of G. Thus Remark 1.2.3 shows that ii) is equivalent to

Hy N Hy = (Hi 0 Ho) ) = (HE - BSOS 2 (Y 0 (B = Hy N Hs.
0

Proposition 1.2.6. Let G be a discrete abelian group and 01,02 be commuting, injective
endomorphisms of G. Then the following statements hold:

i) 01 and 0y are strongly independent if and only if ker 61 Nker 6y = {14}
ii) 01 and Oy are independent if and only if ker él - ker ég = ker0/1\92.
Proof. For strong independence, we compute

| 1.2.4 @)

L1250 0 (@) n0y(6) A ker ) N ker s,

(61(G)62(@))
Therefore, 6;(G)02(G) = G is equivalent to ker §; N ker 6y = {14} Similarly, we get

| 1.24 i)

n 1.2i 1) HI(G)J_ . 02(G) _ ker él . ker éQ.

(01(G) N 62(G))
Now Lemma 1.2.4 ii) gives ker 0/1\02 = 0102(G)L, so the two conditions are equivalent. [J
This motivates the following definition in analogy to Definition 1.1.3:

Definition 1.2.7. Two commuting, surjective group endomorphisms 7; and 72 of a group
K are said to be strongly independent, if they satisfy kern; Nkerns = {1x}. m and
1o are called independent, if ker n; - ker 7o = ker n172 holds true.

It is clear that we have an equivalence between the statements:
(i) m and 79 are strongly independent.

(ii) m1 is an injective group endomorphism of ker 7;.

12
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(ii’) m2 is an injective group endomorphism of ker n;.

If both kern; and ker 7y are finite, then strong independence and independence coincide.
Therefore, this definition is consistent with [CV13, Definition 5.5], where the case of
endomorphisms (of a compact abelian group K) with finite kernels is treated. Note that
there is no conflict with (strong) independence for injective group endomorphisms, see
Definition 1.1.3, as all these conditions are trivially satisfied by group automorphisms.

With the observations from Remark 1.2.1, Lemma 1.2.4 and Lemma 1.2.5 at hand, we
can now translate the setup from Definition 1.1.5 for commutative irreversible algebraic
dynamical systems:

Proposition 1.2.8. For a discrete abelian group G, a triple (G, P,0) is a commutative
irreversible algebraic dynamical system if and only if

(A) G is a compact abelian group,

(B) P is a countably generated, free, abelian monoid (with unit 1p), and

0 ~ . ) ) ) ) ) ~
(C) P mAG is an action by surjective group endomorphisms with the property that 0,
and 84 are independent if and only if p and q are relatively prime in P.

(G, P,0) is minimal if and only if |, p ker ép C G is dense. It is of finite (infinite) type
if and only if ker ép is (infinite) finite for allp € P (p € P\ {1p}).

Proof. Conditions (A) and (B) of this characterization follow readily from Remark 1.2.1
together with Lemma 1.2.4. Moreover, for any p € P, the equation (ker 0},)l = imd,

o —

implies ker ép = coker §,. Combining Lemma 1.2.4 iii) and Proposition 1.2.6 yields (C).
Note that we have 0,(G) C 0,(G) and, correspondingly, ker ép C ker éq whenever ¢ € pP.
Since P is directed, Lemma 1.2.5 i) and Lemma 1.2.4 ii) imply (D). For the last claim, we
recall that a locally compact abelian group is finite if and only if its dual group is finite.
Thus ker ép is finite if and only if coker 0, is finite. O

Let us now revisit some commutative irreversible algebraic dynamical systems from Sec-
tion 1.1:

Ezxamples 1.2.9. The following list corresponds to the one in Example 1.1.8.
(a) For G = Z, a family of relatively prime numbers (p;)ic;r C Z*\Z* = Z\{0,£1}

generates a monoid P = |(p;)icr) C Z* which acts on G by 6p,(9) = pi;g. In this
case, G =T and ép(t) =tPforallt e T and p € P.

(b) Let I C N,0 € I, (p;)ier C Z\ {0,%£1} a family of pairwise relatively prime integers
and set P = [(p;)i>1) as well as G = Z [p%} = lim Z with connecting maps given by
multiplication with pg. Then this constitutes a minimal commutative irreversible

13



1. IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

algebraic dynamical system of finite type, see Example 1.1.8 (b). The dual group of
G is the solenoid G = Lipy = l'&nZ / png, on which ép is given by multiplication with
p.

(c) For a finite field K, let p; € K[T],i € I (for an index set I) be polynomials in
G = K[T'| with the property that (p;) N (p;) = (pip;) holds for all i # j. Then
the action 6 of P := |(p;)icr) given by multiplication with the polynomial itself
yields a commutative irreversible algebraic dynamical system of finite type, see Ex-
ample 1.1.8 (c). Then G is the ring of formal power series K[[T]] over K, compare
[CV13, Example 2.1.4], and 6, is given by multiplication with p in K[[T7].

Example 1.2.10. Recall that, in Example 1.1.9, we considered G = Z¢ for some d > 1,
a family of pairwise commuting matrices (7;);er C Mq(Z) N Gl4(Q) satistying |det T;| > 1
for all i € I and set P = |(T})ics) with 67,(g) = Tig. In this case, we have G = T¢
and the endomorphism ép is given by the matrix corresponding to 6, interpreted as an
endomorphism of R?/Z% = T4,

Ezample 1.2.11. The dual model for the unilateral shift on G = @yZ/nZ for n > 2
from Example 1.1.11 is given by the shift (zj)ren — (Zrr1)reny on G = (Z/nZ)N. The
discussion for Example 1.1.12 with the restriction that Gg be abelian is analogous to this
case, where one replaces N by P and Z/nZ by Gj.

Ezxample 1.2.12. In the situation of Example 1.1.13, where we will now require that
(Gn, P,6);cny be a family of commutative irreversible algebraic dynamical systems, G =
@;cn Gi turns into G = [Licn G;. For each p € P, the group endomorphism ép is given
by applying Hz(f) to the i-th component of G. ker ép is infinite for all p € P\ {1p}. If each
() satisfies the strong independence condition from Definition 1.1.3, 6 satisfies the strong
independence condition from Definition 1.2.7 due to Proposition 1.2.6.

In view of Proposition 1.2.8, it seems that the class of commutative irreversible algebraic
dynamical systems can be studied from the perspective of topological dynamical systems.
But the next lemma displays a severe difficulty for this strategy in the non-finite case:

Lemma 1.2.13. Suppose G is a discrete abelian group and n is a group endomorphism
of G. Then 10 is a local homeomorphism ofé if and only if cokern is finite.

Proof. Recall that | coker | = | ker 7| according to Lemma 1.2.4 ii) and Remark 1.2.3. If 7
is a local homeomorphism, then, given k € G, there is an open neighborhood U of k£ such
that 7|y is injective. By compactness of G, finitely many of these cover G and this sets a
finite bound for | ker7)|. Conversely, suppose ker 7 is finite. Using the Hausdorff property
of G finitely many times, we get an open neighborhood V' of 14 such that VNker# = {14}.
It follows that 7|y is injective for all k& € G. Indeed, if there are k1, ke € kV satisfying
N(k1) = n(kz2), then ﬁ(kl_lkg) € Vnkern = {1a}, so k1 = k. O

14



1.3. Irreversible x-commutative dynamical systems

1.3 Irreversible *-commutative dynamical systems

This section is intended to familiarize the reader with the concept of *-commutativity so
that we can present dynamical systems built from x-commuting surjective local homeo-
morphisms of a compact Hausdorff space that have a similar flavor as irreversible algebraic
dynamical systems. A close connection between strong independence and *-commutativity
for commuting surjective group endomorphisms is established in Proposition 1.3.2. In
particular, this shows that the notion of *-commutativity coincides with independence
for abelian irreversible algebraic dynamical systems of finite type. However, already the
canonical shift action of N? on (Z/ QZ)N2 provides an example where the two generators
of the action do not x-commute but satisfy the independence condition.

The notion of *-commutativity was introduced by Victor Arzumanian and Jean Re-
nault in 1996 for a pair of maps 71,72 : X — X on an arbitrary set X, see [AR97]. For
convenience, we will stick to the following equivalent formulation, see [ER07, Section 10]:

Definition 1.3.1. Suppose X is a set and 71,79 : X — X are commuting maps. 7; and
72 are said to x-commute, if for every x1, o € X satisfying n;(z1) = n2(z2), there exists

a unique y € X such that 1 = n2(y) and z2 = 1 (y).

The visualization of this property goes as follows: The maps 7; and 72 *-commute if
and only if every diagram of the form

/ \ can be completed / \

uniquely

Proposition 1.3.2. Let X be a set and n1,n2 : X — X commuting maps. Then the
following conditions are equivalent:

(i) The maps m1 and ng *-commute.

(ii) For allx € X, y1,y2 € ny ' (x), n2(y1) = n2(y2) implies y1 = ya.
(iii) For all x € X, the map m1 : 1y ' (x) — 0y - (ni(x)) is a bijection.
(iii’) For all x € X, the map n2 : ny *(x) — ny *(n2(x)) is a bijection.

15



1. IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

Proof. Observe that (ii) is basically a reformulation of (i), so their equivalence is straight-
forward. In order to see that (i) is equivalent to (iii), a diagram of the form

m(z1)
VA
T xT9
" A

clearly gives 29 € 5 *(n1(21)). Thus, if we assume (iii), there is a unique y € 7, *(x1) such
that 71(y) = z2. In other words, the diagram can be completed uniquely. Conversely, if
we assume (i), then, for every o € 0y *(n1(x1)), we get a unique y,, € 1y ' (1) satisfying
7 (yzy) = x2. Note that since 1; and 72 commute, we have n1(ny ' (z1)) C 0y (1 (1))
Hence, z2 — vy, is a bijection and, in fact, it is just the inverse map of ;. The equivalence
of (i) and (iii’) follows by exchanging the role of z1,x2 and 1y, 9. O

The following result is certainly well-known, but hard to track in the available literature,
so we include a short proof based on Proposition 1.3.2.

Lemma 1.3.3. Let X be a set and suppose n1,n2,m3 : X —> X commute. 11 *x-commutes
with nans if and only if n1 *x-commutes with both ny and ns3.

Proof. Suppose 11 *-commutes with 7nom3. We will use the equivalent characterization of
-commutativity (i) from Proposition 1.3.2. If we have x € X, y1, 2 € 1 ' () such that
n2(y1) = n2(y2), then nans(y1) = ne2ns(y2) forces y1 = y2. Thus n; and 72 *-commute. For
1m1 and 73, we note that the situation is symmetric in 72 and n3. If ;1 *-commutes with
both ny and 73, then 77 *-commutes with 1om3 by the equivalence of x-commutativity and
condition (iii’) in Proposition 1.3.2. O

Given a compact Hausdorff space X, a first step away from reversibility is to consider local
homeomorphisms instead of homeomorphisms. Let us recall that if n : X — X is a local
homeomorphism, then [p~!(z)| is finite for all # € X. Indeed, the collection of all open
subsets U of X on which 7 is injective constitutes an open cover of X. By compactness
of X, this can be reduced to a finite number which bounds |~ (z)|.

We will be interested in surjective local homeomorphisms 7 : X — X for which the
cardinality of the preimage of a point is constant on X. Such transformations will be
called regular. They also appear in [CS09] under the name covering map.

Definition 1.3.4. Let X be a compact Hausdorff space. A surjective local homeomor-
phism 7 : X — X is said to be regular, if |n~1(z)| = |n~1(y)| holds for all z,y € X.
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1.3. Irreversible x-commutative dynamical systems

Via f — f on, such a transformation yields an injective *-homomorphism « of C'(X)
which has a left-inverse in the monoid formed by the positive linear maps X — X with
composition. This map can be defined abstractly on the C*-algebraic level:

Definition 1.3.5. Given a C*-algebra A and a *-endomorphism « of A, a positive linear
map L: A — A is called a transfer operator for «, if it satisfies L(a(a)b) = aL(b) for
all a,b € A. If A is unital, L is said to be normalized provided that L(1) = 1.

Ezxample 1.3.6. If X is a compact Hausdorff space and n : X — X is a regular surjective
local homeomorphism with N,, := |p~!(z)|, where z € X is arbitrary, then

L(f) () =]§ St

yen~t(z)

defines a transfer operator for the injective x-homomorphism « of C'(X) given by f — fon.
Indeed, L is a positive linear map and, for f,g € C(X) and z € X, we have

L(Ot(f)g)(fv)=]\1,17 > f@)aly) = (fL(9))(x).

yen~1(x)

Ezxample 1.3.7. Let G be a discrete abelian group and 7 an injective group endomor-
phism of G with [G : 7(G)] < co. Then # is a local homeomorphism of G by Lemma 1.2.13.
It is clear that 7 is surjective and every k € G has precisely | ker 7| = [G : n(G)] preimages
under 7). Thus, 7 is regular. If L is the transfer operator for 7 as in Example 1.3.6 and

~

(ug)gec denote the standard generators of C*(G) (which we identify with C(G)), then

L(ug) = xy(c)(9)un-1(g)

holds for all g € G. Indeed, if g € n(G), then

L(ug) =Lo a(unfl(g)) = unfl(g),

where « denotes the endomorphism ug — (g (which is the same as f — f o for
f € C(Q)). For the case g ¢ n(G), let k € G and note that 7~ (k) = £yker holds for
every ly € 7~ 1(k). Hence, we get

L)) = e 30 wplt) = Tarrta(fo) 3 uglt) =0,

I‘T]‘ lekern

since the sum over a finite, nontrivial subgroup of T vanishes.

The following lemma is a standard fact on how to obtain a conditional expectation from
a normalized transfer operator.

17



1. IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

Lemma 1.3.8. Suppose A is a unital C*-algebra, « is a unital x-endomorphism of A and
L is a normalized transfer operator for a. Then E := a o L is a conditional expectation

from A onto a(A).

Proof. By [BO08, Theorem 5.9], it suffices to show that FE is a contractive projection from
A onto a(A), i.e. a linear map satisfying F(a) = a for all a € a(A) and ||F|| < 1. The first
part follows immediately from L(a(a)) = a, see Definition 1.3.5. For ||E|| < 1, note that
E is a positive linear map. So if a € Ay, then ||E(a)| < ||E(]|a||1)|| = ||a|| since E(1) = 1.
For arbitrary a € A, we have E(a)E(a*) < E(aa*) (use E(bb*) > 0 for b :=a— E(a)) and
thus

1E(@)]? = [|1E(a)E(a”)]| < [|E(aa®)]| < laa’|| = [la]]*.

The next lemma is a reformulation of [EV06, Proposition 8.6]:

Lemma 1.3.9. Letn : X — X be a reqular surjective local homeomorphism of a compact
Hausdorff space X with Ny, := |n~1(z)|, where x € X is arbitrary. Denote by L the natural
transfer operator for the induced injective endomorphism o of C(X). Then there exists a
finite, open cover U = (U;)1<i<n of X such that the restriction of n to each U; is injective.
If (vi)i<i<n is @ partition of unity for X subordinate to U, then v; == (Nnv,-)% satisfies

> viao L(vif) = f for all f € C(X).

1<i<n

Proof. Since 7 is a local homeomorphism, the open subsets on which 7 is injective form
a cover of X which can be reduced to a finite, open cover U by compactness of X. It is
well-known that, for every such cover, there exists a partition of unity (v;)1<i<n for X
subordinate to U. Given f € C(X), we get

S vaolmf)@) = X% viawiw) o)
1<i<n 100 yen-1(n(2)) ——~—"

=62y

= 2 vilx)f(z)

1<i<n
= fl2)

for all x € X, where we used injectivity of 1|supp v;- O

The equation proved in Lemma 1.3.9 can be interpreted as a reconstruction formula. The
conclusion of this result will be relevant for Section 2.4. Before we return to *-commuting
maps, we add another small observation which is of independent interest.
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1.3. Irreversible x-commutative dynamical systems

Lemma 1.3.10. Let 91,12 : X — X be commuting continuous maps of a compact
Hausdorff space X. Assume that there are two finite open covers Uy = (Ui;)icr, and
Uy = (Uzji)ier, of X such that m|y, , is injective for all i € Iy and 2|y, , is injective for
alli € Iy. Then

Ur Vo Up i= { Uiy Ny H(Uny) | i1 € 1y iz € Iy )

is a finite open cover of X such that the restriction of nin2 to every element of Uy \Vy, Us
is injective. Furthermore, suppose (v1)ier, and (v2;)ier, are partitions of unity for X
subordinate to Uy and Ua, respectively. If ay denotes the endomorphism of C(X) given by
f= fom, then (Vi iy)ien iscly, wWhere vy, 4, = V14,01 (V2,) defines a partition of unity
subordinate to Uy Vy, Us.

Proof. First of all, Uy V,, Us consists of open sets by continuity of 1, and it is clear that
these sets cover X. If we let U’ := Uy 4, N T]l_l(U2712), we get a commutative diagram:

Usi,

As mp is injective on Uy, and 72 is injective on Us;,, it follows that 7172 is injective on
Uri, Ny H(Usy) for all 41, da. For the second part, we observe that

Z Vin in () = Z 1, (@) Z V24, (M () =1

1€l 1€l io€ls
iQGIQ '
=1 =1

holds for all x € X and

SUPP Vi iy = SUPP V15, N7y (SUPP v25,) € Urgy Ny (Ussy)-
0

Remark 1.3.11. In particular, Lemma 1.3.10 applies to commuting regular surjective
local homeomorphisms by Lemma 1.3.9. The idea is to think of U; V,, Us as a common
refinement of U; and Uy with respect to ;. But note that this construction is clearly not
symmetric in 71 and 7.

The next proposition shows that, for two *-commuting regular transformations 7; and 79,
the transfer operator L; for the endomorphism «; of C(X) induced by n; commutes with
ag (which is induced by 72). This will be useful in Theorem 3.3.7.

Proposition 1.3.12. Suppose X is a compact Hausdorff space and n1,n2 : X — X are
reqular surjective local homeomorphisms. Let «; denote the endomorphism of C(X) in-
duced by m; and be Ly the natural transfer operator for a as constructed in Example 1.5.6.
Then 1 and 1o x-commute if and only if L1 and as commute.
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Proof. Assume that n; and 7y *-commute. Using (iii’) from Proposition 1.3.2, this is a
straightforward computation. For f € C(X) and z € X, we get

L) =5 X f=3 X &) =aldw.

z€na(ny () z€n; * (n2(x))

If 771 and 72 do not *-commute, there is z € X such that no(n; ! (z)) is a proper subset
of 0y (n2(2)) because 1y is regular. This forces ag(Ly(f))(x) # Li(aa(f))(z) for every
constant function f € C(X), e.g. f = 1. O

Next, we will define the analogue of an irreversible algebraic dynamical system of finite
type based on *-commuting regular transformations of a compact Hausdorff space X,
compare Definition 1.1.5. As X is compact, we cannot get anything beyond the finite
type case here. We note that more general dynamical systems of this nature have been
considered in [FPW13], where X is allowed to be locally compact. In their approach,
regularity is relaxed to the requirement that there is a uniform finite bound on the number
of preimages of a single point, see [FPW13, Definition 3.2].

Definition 1.3.13. An irreversible x-commutative dynamical system of finite
type is a triple (X, P,n) consisting of

(A) a compact Hausdorff space X,
(B) a countably generated free abelian monoid P with unit 1p and

(C) an action P A X by regular surjective local homeomorphisms with the following
property: 7, and 7, *-commute if and only if p and ¢ are relatively prime in P.

Before considering examples, let us relate the notion of *-commutativity to the notion
of strong independence introduced in Definition 1.2.7. This will provide examples for
irreversible x-commutative dynamical systems of finite type coming from commutative
irreversible algebraic dynamical systems of finite type.

In addition, we will see that independence is directly connected to x-commutativity
in the case of surjective group endomorphisms. In fact, independence turns out to be
weaker in principle, but the two conditions are equivalent if the kernel of one of the
surjective group endomorphisms is a co-Hopfian group. Co-Hopfian groups have first been
studied under the name ”S-groups” in [Bae44] and we refer to [GG12, ER05] as well as
[dIHO00, Section 22 of Chapter III] for more information on the subject.

Definition 1.3.14. A group K is said to be co-Hopfian if every injective group endomor-
phism 7 : K — K is already an automorphism of K.
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Remark 1.3.15. One can rephrase the condition by saying that a group is co-Hopfian if
it does not admit nontrivial group embeddings into itself. Likewise, there is a notion of
Hopfian groups, called Q-groups in [Bae44], which describes the class of groups with the
property that every surjective group endomorphism is automatically an automorphism
of the group. In other words, a group is Hopfian if it is not isomorphic to any of its
proper subquotients. Both concepts stem from a rigidity property of finite groups. It is
important to point out that both classes are much larger than the class of finite groups.
For instance, Q,Q/Z, SL(n,Z) for n > 3 and the fundamental group of any closed surface
of genus at least 2 are co-Hopfian, see [Bae44]| and [dIH00, Chapter III, Section 22| for
more information.

Proposition 1.3.16. Suppose K is a group and m1,m2 are commuting surjective endo-
morphisms of K. If n1 and no x-commute, then n1 and 1o are strongly independent. If
19 : kerny — kerny or gy : kerng — kerny is surjective, then the converse holds as well.
In particular, this is the case if kerny or kerno is co-Hopfian.

Proof. Note that we have n; (k) = k' kern; for all k € K where k' € n; (k) is chosen ar-
bitrarily. According to Proposition 1.3.2, 11 and 72 *-commute precisely if 71 : 75 1(/{:) —
n(ny L(k)) is bijective for all k € K. Since n; and 7y are group endomorphisms, this is
equivalent to the requirement that 7; is an automorphism of the subgroup ker 7,. Indeed,
this is clearly necessary and if it is true, then n; : 7y '(k) — n1(n; *(k)) is a bijection
because 17, ' (n1(k)) = n1 (k') kernz and 01 (n; *(k)) = n1(k)ni(kernz). In particular, we
have kern; Nkerny = {1k}, so 1 and 7y are strongly independent in the sense of Defi-
nition 1.2.7. Moreover, we see that strong independence corresponds to injectivity of 7
and 72 on kerny and ker 1, respectively. Hence, if one of these maps is surjective, we get
x-commutativity of 11 and 7s. By definition, this is for granted if one knows that one of
the kernels is a co-Hopfian group. O

There are interesting examples of dynamical systems built from %-commuting transfor-
mations, see for instance [ERO07, Sections 10-14] and [Will0, MW]. On the other hand,
x-commutativity is also considered to be a severe restriction. While x-commutativity
implies strong independence in the case of surjective group endomorphisms, there are ex-
amples for commutative irreversible algebraic dynamical systems that do not satisfy the
strong independence condition, see for instance Example 1.1.12. Thus we conclude that,
in principle, the notion of independence is less restrictive than sx-commutativity.

Comparing Definition 1.3.13 with Definition 1.1.5, we make the following observation
based on Proposition 1.2.8, Lemma 1.2.13 and Proposition 1.3.16:

. . . [% .
Corollary 1.3.17. Let G be a discrete abelian group, P a monoid and P ~ G an action by
group endomorphisms. (G, P, ) is a commutative irreversible algebraic dynamical system
of finite type if and only if (G, P,0) is an irreversible x-commutative dynamical system of

finite type.
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For the remainder of this section, we would like to direct the reader’s attention to another
intriguing class of examples for irreversible algebraic dynamical systems, namely to dy-
namical systems arising from cellular automata. This part builds on [ER07, Section 14]
and can be considered as a natural extension of the observations presented there. In the
following, let X = (Z/2Z)N and o denote the unilateral shift, i.e. o(z); = aj41 for all
k € N and z € X. Moreover, let X,, = (Z/2Z)" for n € N and suppose we are given
D C X,,. Then we can define a transformation np of X by the sliding window method

(T]D(x))k - XD(xka xk+17 L 7$k+n71)-

In other words, the entry at place k becomes 1 if the word of length n starting at place
k belongs to the so-called dictionary D. It is interesting to analyze the extent to which
properties of np can be expressed in terms of its dictionary. One outcome of such consid-
erations are the following two definitions:

Definition 1.3.18. For n € N, a subset D C X, is called a dictionary. D is called
progressive, if for any = € X,,_4, there is a unique x,, € X7 such that (x1,...,z,) € D.
D is called admissible, if it is progressive and has the property that, for z,y,z € X,,
x +y =z € D implies that either z € D or y € D holds.

Let us observe that X, \D is a group of order 2"~! for every admissible dictionary D.
It is clear that np is continuous on X and commutes with o for every dictionary D.
Morton L. Curtis, Gustav A. Hedlund and Roger Lyndon have shown in [Hed69] that
any continuous self-map of X which commutes with the shift o corresponds to a cellular
automaton (Even though the article is authored by Hedlund only, he credits Curtis and
Lyndon as co-discoverers in the introduction.). Thus (X, np) can be identified as a cellular
automaton. It is shown in [ER07, Theorem 14.3] that for progressive D, the transformation
Np is a surjective local homeomorphism of X. This allows us to deduce:

Proposition 1.3.19. If D C X,, is an admissible dictionary, then np is a continuous
surjective group endomorphism of X that commutes with o. kernp is isomorphic to the
group X,\D and thus consists of 2"~ elements.

Proof. The only thing that remains to be proven is that np is a group endomorphism of
X with finite kernel. The first part follows readily from the additional requirement that
whenever we have x + y = z for some z,y,z € X, z € D implies that either x € D or
y € D holds. For the assertion concerning the kernel of np, note that = € ker np means
that we have (zk, Tkt1,...,Tkyn—1) ¢ D for all & € N. But if the first n entries form a
word that is not contained in D, sliding the window forward once we see that there is
precisely one option for the entry at place n+ 1 to arrange for a word that is contained in
D as D is progressive. Conversely, since our alphabet is just {0, 1}, the previous entries
determine the last entry uniquely if we assume that the word they form is not contained
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in D. Therefore, an element in kernp is given by its first n components which yield an
element of X,,\D. O

Remark 1.3.20. In view of Proposition 1.3.2, we are now in position to provide new
examples for commutative irreversible algebraic dynamical systems of finite type in terms
of their dual pictures. We note that it is easier to check strong independence of o and
7np than examining *-commutativity of these for an admissible D. Indeed, ker o is easily
determined and Proposition 1.3.19 provides us with an explicit description of ker np.

Concerning the quest for further examples where the transformations are independent
but do not *-commute, Proposition 1.3.19 shows that this is impossible within the current
setting since the kernels are finite. The first example we consider is the so-called Ledrappier
shift, see [ER07, Section 11]:

Example 1.3.21. Let Y be the subshift of (Z/QZ)N2 given by all sequences y = (yn)pen2

St Yn + Yntey + Ynte, = 0 € Z/QZ for allm € N2. N2 A Y is given by the coordinate
shifts ne, (Yn)n = (Ynte; )ns ¢ = 1,2. The four basic blocks in Y are:

0fo] 0]1] 1]1] 1]0]

Observe that, for any given y € Y and every path (n,,)men with n,11 € {nm,+e1, nm+eat,
the sequence (yn,,)men determines y completely. Conversely, one can show inductively,
that for every path (n,,)men and sequence (Y, )men With y, € Z/QZ, there is an y € Y
with yn,, = ym for all m. One consequence of this is that there is a homeomorphism
Y — X = (Z/QZ)N given by restricting to the base row, i.e. (Ym.n)mnen = (Yn,0)neN-
Under this homeomorphism to the Bernoulli space, 1., corresponds to the shift ¢ on X
and 7, corresponds to x — x + o(x) = (n + Tpt1)nen for x € X. In view of the
example from cellular automata, it is quite intriguing to notice that the Ledrappier shift
fits into the picture quite nicely: The conjugate map to the vertical shift is nothing but
np for the admissible dictionary D = {(0,1),(1,0)}. In fact, (X,np) is the most basic
non-trivial example of a cellular automaton coming from an admissible dictionary. By
Proposition 1.3.19, 0p *-commutes with the shift, so 1, and 7, *-commute. Hence the
Ledrappier shift gives rise to a commutative irreversible algebraic dynamical system of
finite type.

Remark 1.3.22. We have seen that the Ledrappier shift can be obtained from an ad-
missible dictionary. In fact, there is only one admissible dictionary D for words of length
2 such that the induced transformation np *-commutes with shift o. So the Ledrappier
shift constitutes a minimal non-trivial example of a commutative irreversible algebraic
dynamical system of finite type arising from a cellular automaton.
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1. IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

Reversing the perspective, the Ledrappier shift is formed out of the cellular automaton
(X,np) by stacking the orbit. This is to say that for « € (Z/2Z)" the k-th row of the
corresponding element in (Z/ QZ)N2 is given by 7% (). Building on this observation, we
may always construct a subshift of (Z / 2Z)N2 out of a progressive dictionary. This may
turn out to be a source of potentially interesting subshifts of (Z/ 2Z)N2. Let us now look
at what happens for dictionaries using longer words:

FExample 1.3.23. Let D1, Dy C X3 be the dictionaries

D, = {(0,0,1),(1,0,0),(0,1,1),(1,1,0)}

Dy, = {(0,0,1),(1,0,0),(0,1,0),(1,1,1)}.

Then D; and D9 are admissible dictionaries. Hence, np, and np, are surjective group
endomorphisms of X = (Z/2Z)" that commute with the shift o and

kernp, = {0,1,(0,1,...),(1,0,...)},
kernp, = {0,(1,0,1,...),(0,1,1,...),(1,1,0,...)},

where we write (a,b,c,...) for the periodic word (a,b,c,a,b,c,...). Apparently, we have
kero = {0,(1,0,...)}, so o and np, are strongly independent for i = 1,2. By Proposi-
tion 1.3.2, they also x-commute. Hence, each D; gives rise to a commutative irreversible al-
gebraic dynamical system of finite type (G, P, 0) with G = X and P = lo,np,) = N? acting
by their dual endomorphisms. Noting that kernp, Nkernp, is trivial, we also get a com-
mutative irreversible algebraic dynamical system of finite type for P = |o,np,, np,) = N3.

Remark 1.3.24. In fact, D and D5 are the only admissible dictionaries for words of
length 3 for which the induced transformation kx-commutes with o. Indeed, every such
admissible dictionary D needs to contain (0,0,1) and (1,0,0). If (0,0,0) € D, then D
cannot induce a group homomorphism. Likewise, if we had (1,0,0) ¢ D, then ker np would
contain ker o. In particular, their intersection would be non-trivial. Now, if (0,1,1) € D,
then this forces (1,1,0) € D since (0,1,1)+(1,1,1) = (1,0,0) € D. Similarly, (0,1,0) € D,
then this forces (1,1,1) € D since (0,1,0) + (1,1,0) = (1,0,0) € D. One can check that
there are precisely two additional admissible dictionaries D3, D4y C X3 given by

D; = {(0,0,1),(1,0,1),(0,1,0),(1,1,0)}

D, = {(0,0,1),(1,0,1),(0,1,1),(1,1,1)}.

Thus, there are four admissible dictionaries for word length 3, two of which induce sur-
jective group endomorphisms of X that *-commute with the shift o. The corresponding
group endomorphisms of X are

m(z) = x+o0%(x) and ns(xz) = o(x)+o?(x)
ne(z) = z+o(x)+o?(x) n(z) = o?(x).
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This simple description raises the question whether it might be possible to characterize
admissibility of a dictionary D C X, for general n > 2 and *-commutativity of np with o
in a more accessible way.

Remark 1.3.25. In [ER07, Example 14.4], Ruy Exel and Jean Renault provided an ex-
ample of a progressive dictionary which does not induce a transformation that x-commutes
with the shift, namely

D = {(0,0,0),(1,0,0),(0,1,0),(1,1,1)}.

This is stated implicitly in [ER07, Corollary 14.5] and follows from [ER07, Theorem 10.4
and Proposition 14.1]. However, this dictionary does not give a group homomorphism of
X because it contains the neutral element of X and hence 6p(0) # 0. The dictionary Do
from Example 1.3.23 is a slight variation of [ER07, Example 14.4] designed to produce a
group homomorphism.
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Chapter 2

C*-algebras for irreversible
semigroup dynamical systems

Within this chapter, we will associate a C*-algebra O[G, P, 6] to each irreversible algebraic
dynamical system (G, P,0) and study its internal structure, see Section 2.2. Once again,
the finite type case deserves special attention, see Section 2.3. Analogously, we construct
a C*-algebra O[X, P, ] for irreversible x-commutative dynamical systems of finite type,
see Section 2.4.

We start in Section 2.1 with a general observation concerning the decomposability of
crossed products by semidirect products of semigroups: Let S and T be discrete monoids
and T re\v S be an action by monoidal endomorphisms. Then we can form the semidirect
product S xg T given by S x T with composition (s,t)(s',t') = (s0,(s'),tt"). Now if A
is unital C*-algebra and « is an action of S x¢ T on A by endomorphisms, then we can
alg S and A x4 (S 39 T). We prove that,
in case {14 — a(s1,)(14) | s € S} C [Ver kera(ig ) holds true, there is a T-action & on
A X404 S (naturally induced by a and ) so that A X (S %9 T) = (A xq), S) x5 T, see
Theorem 2.1.5. This will be useful for the analysis of O[G, P, 6], see Corollary 2.2.19.

The C*-algebraic model O[G, P, 6] introduced in Section 2.2 is based on an examination

consider the semigroup crossed products A x

of the natural representation of (G, P,f) by unitary and isometric linear operators on
?%(G), and is inspired by [CV13, Viel3, Li12]. The properties of O[G, P, 6] are closely
linked to the structures of its core subalgebra F, which can be described as the fixed-
point algebra under the natural gauge action of the dual group L of H = P~!P, and its
(commutative) diagonal subalgebra D. In Lemma 2.2.9, we show that the spectrum Gy
of D can be interpreted as a completion of G with respect to 6 if (G, P,#) is minimal.
This extends [CV13, Lemma 2.4] to minimal irreversible algebraic dynamical systems. As
the next step, we prove that O[G, P, 0] is canonically isomorphic to D x (G xg P), see
Proposition 2.2.18. Combining this with Theorem 2.1.5 yields an isomorphism between
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2. C*-ALGEBRAS FOR IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

F and C(Gy) x; G, see Corollary 2.2.19, where the action 7 is given by left translation.
It is apparent from the construction that O[G, P, 6] shares some flavour with O,,, where
1 < n < co. Therefore, it is natural to ask whether O[G, P, 0] is purely infinite and simple
under certain conditions. In Theorem 2.2.26, a positive answer is provided that invokes
minimality of (G, P,#) and amenability of the action G A~ Gy as sufficient conditions.
Next, we show that these two conditions force O[G, P, 6] to be a UCT Kirchberg algebra,
see Corollary 2.2.28.

Section 2.2 constitutes a short interlude, where we specialize to the structure of the core
F for irreversible algebraic dynamical systems of finite type. If G is amenable and (G, P, 0)
is minimal, then F is a generalized Bunce-Deddens algebra in the sense of [Orfl0], see
Proposition 2.3.2. In this situation, we briefly discuss how classification of F by its Elliott
invariant is achieved based on [Lin01,MS, Win05], see Corollary 2.3.3. Partly, this has been
achieved earlier through [Carll]. In addition to that, we extend the observation mentioned
after [CV13, Lemma 2.5] to minimal commutative irreversible algebraic dynamical systems
of finite type, see Corollary 2.3.4.

Finally, we turn to the construction of the C*-algebra O[X, P,0] for irreversible x-
commutative dynamical systems of finite type (X, P,6). The choice of relations for
O[X, P, 0] essentially builds on the insights gained from O[G, P, 6] and the approaches
in [Exe03a,CS09]. Therefore, it is not surprising that Proposition 2.4.3 establishes a con-
sistency result for the two C*-algebraic construction in the case of commutative irreversible
algebraic dynamical systems of finite type. Next, we provide an explicit representation
of O[X, P,0] on (?(X), see Proposition 2.4.4. From there on, the core subalgebra F for
O[X, P, 0] is analysed in search for results that partly mimic crucial parts of the findings
from Section 2.2, see Proposition 2.4.9, Corollary 2.4.13, and Lemma 2.4.14. Many of
these observations will play a role in the course of Chapter 4.

2.1 Crossed products by semidirect products of
semigroups

Within this section, we will establish a result about viewing a crossed product of a C*-
algebra by a semidirect product of discrete monoids as an iterated crossed product, see
Theorem 2.1.5. This extends the well-known result for semidirect products of locally
compact groups in the discrete case, see [Wil07, Proposition 3.11], and is essential for the
proof of Corollary 2.2.19.

For convenience, we will restrict our attention to the case of unital coefficient algebras
and include the basic definitions for semigroup crossed products based on covariant pairs
of representations. We refer to [Lar10] for a more extensive treatment of the subject.

All semigroups will be left cancellative and discrete. In the following, let Isom(DB)
denote the semigroup of isometries in a unital C*-algebra B.
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2.1. Crossed products by semidirect products of semigroups

Definition 2.1.1. Let S be a semigroup and A a unital C*-algebra with an action S A A
by endomorphisms. A covariant pair (w4, mg) for (A, S, «) is given by a unital C*-algebra
B together with a unital *-homomorphism 74 : A — B and a semigroup homomorphism
mg : S — Isom(B) subject to the covariance condition:

ms(s)ma(a)ms(s)* = ma(as(a)) foralla € A, s € S.

Definition 2.1.2. Let S be a semigroup and A a unital C*-algebra with an action S A A
by endomorphisms. The crossed product for (A, S, «), denoted by A x, S, is the C*-
algebra generated by a covariant pair (¢4, ¢ts) which is universal in the sense that whenever
(ma,mg) is a covariant pair for (A4, .S, «), it factors through (t4,ts). That is to say, there
is a surjective *-homomorphism 7 : A x4 S — C*(wa(A), 75(S)) satisfying 74 =T o4
and mg = Totg. A Xa S is uniquely determined up to canonical isomorphism by this
universal property.

This crossed product may be 0, as for instance for A = Cp(N) = {(an)nen | an €
C, nh_}rglo lan| = 0} and S = N acting by the unilateral shift oy ((an)nen) = (an+1)nen, see
[Sta93, Example 2.1(a)]. But it is known that the coefficient algebra A embeds into A x4 S
provided that S acts by injective endomorphisms and is right-reversible, i.e. Ss NSt # ()
for all s,t € S, see [DFK, Lemma 5.2.1].

. . . 0 .
Suppose that S and T are semigroups with an action 7"~ S by semigroup homomor-
phisms of S. Then we can form the semidirect product ST, which is the semigroup
given by SXT with ax + b-composition rule:

(s,t)(s',t") = (s0,(8"), tt")

Now suppose further that S and T are monoids and that « is an action of SxpT on a
unital C*-algebra A. Then the semigroup crossed product A x, (SxpT) is given by a
unital *-homomorphism

LA SxT : A —> A Xq (Sx9T)

and a semigroup homomorphism
LSxeT - SN@T — ISOIH(A X (SXI@T)).

On the other hand, we can consider A x|, S given by a unital *-homomorphism

als

LA75:A—>A>4 S

als

and a semigroup homomorphism

ts S — Isom(A x4, S).

als
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2. C*-ALGEBRAS FOR IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

A natural question in this situation is whether « and @ give rise to an action T’ A Axy . S.

aols
The next lemma provides a positive answer for the case where « satisfies

{lA — a(s,lT)<1A> ’ S € S} C m kera(ls,t).
teT

For the sake of readability, let p(s ;) = ta,s((s)(14)) for s € S, € T and we will simply
write p; for p(i4,¢). We observe that the aforementioned condition is equivalent to

D(9,(s),t) = bt for all s € S;t € T.

. . . 0 .
Lemma 2.1.3. Suppose that S and T are monoids with an action T ~ S by semigroup
homomorphisms of S. Let a be an action of S x¢g T on a unital C*-algebra A by endo-
morphisms. Fort € T, let

ar(ta,s(a)is(s)) = tas(apgs(a))is(0(s)) forae A;s € S.

Ay is an endomorphism from A X, S — pi(A Xy S)pr provided that

als als

Lo — a1,)(1a) € keraqygyy for all s € S.
In particular, if this holds for allt € T, i.e.
Lo — ) (la) € ﬂ ker a4 4y for all s € S,
tel

then & defines an action of T on A x,. S.

als

Proof. Note that
ar(es(s)) = ar(ea,s(1a)es(s)) = pis(8(s))

is valid for all s € S,t € T since ¢4 g is unital. Suppose t € T' satisfies
Lo — ) (1a) €Ekerag gy for all s € S.

This is equivalent to pg,(s)+) = pt for all s € S. Hence, p; commutes with 15(6;(s)) since

L (01(8))pe = 1 (01())pees(0:(s)) ts(0:(5)) = P(oy(s).1)L5(0(8)) = pres(04(s)).

To prove that &; is an endomorphism of A %, S, we show that

als
(14,50 aqge)pe(ts 0 0:(:)))

is a covariant pair for (A4, S, a|g). It is then easy to see that the induced map coming from

the universal property of the crossed product is precisely &; and maps A x,,. S onto the

als

corner p; (A Malg S) D
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2.1. Crossed products by semidirect products of semigroups

Firstly, 14,5 0 a(14,) is a unital *-homomorphism from A to p; (A Malg S) pe. In addi-
tion, pi(ts 0 0(-)) maps S to the isometries in p; (A Maolg S) p¢ because

(Pees(0:(5))) pers(0:(s)) = vs(6:(5)) pres(0:(s)) = es(0:(s)) " 1s(6:(s))pe = pr-

This map turns out to be a semigroup homomorphism as

pres(0:(51))pees (0:(s2)) = pirs(0:(s1))es(0s(s2)) = pres(B(s152)).
Finally, for a € A and s € S, we compute

pres(0c(s))ea,s(agn (@) (pes(0e(s)) = preas(o,(s).(a))pe
= was(augn (e (@)

Thus, (LA’S 0 a(14.4),Pt(ts © Gt())) forms a covariant pair for (A, S, a|g). In particular, the
als S-
Conversely, assume that &; defines an endomorphism of A x

induced map &; is an endomorphism of A x
algS- Then (&ora,s, &roLs)
forms a covariant pair for (A, als, S) mapping A and S to the C*-algebra B := a;(A x4
S). Note that the unit inside this C*-algebra is p;. In particular, we have a semigroup

homomorphism &; o tg : S — Isom(B). This forces

pr = u(Ls(s)) a(es(s)) = ts(0:(s)) pees(0:(s)) = P(oy(s) 1)

for all s € S, which is equivalent to

{14 — ag1(La) | s € S} Ckeraqg .

Since a|r and 6 are semigroup homomorphisms, it is clear that & defines an action of T'

on A %, . S provided that the imposed condition holds for every ¢t € T. O

als

Remark 2.1.4. It would be interesting to know whether the condition from Lemma 2.1.3
is actually necessary. This would be the case if p: < p(g,(s)
that we do have p, ()1 < pr and P, (s),6) < P(9,(s),17)-

1p) Was true for s,t € S. Note

Now, given the hypotheses of Lemma 2.1.3 are satisfied, T A A x,,. S gives rise to an

als
als S) Xg T and it is a natural task to relate this

crossed product to A X, (SxpT"). The next result shows that indeed, this decomposition

iterated semigroup crossed product (A X

procedure recovers the original crossed product.

0
Theorem 2.1.5. Suppose S and T are monoids together with an action T~ S by semi-
group homomorphisms of S as well as an action « of SxgT on a unital C*-algebra A by
endomorphisms. If

{lA — a(s,lT)<1A) ’ S € S} C ﬂ kera(ls,t)
teT
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holds true, then there is a canonical isomorphism
Axg (SxgT) = (AxgS) x5 T,
tasxer(a) = taxsotas(a)

LSNQT(S,t) — (LAXIS o LS)(S)LT(t)

where & is given by aui(1a,s(a)ts(s)) = talangp(a))is(Oi(s)).

Proof. Recall that (v, gx,7tSx,T), (tA,S,ts) and (taxs, tr) denote the universal pairs for
covariant pairs for (A, SxgT, @), (A, S,als) and (A x4
words, their images generate the corresponding crossed products. The strategy is governed

S, T, &), respectively. In other

by the following claims:
1) (taxsota,s, (taxs ots) X ) forms a covariant pair for (A, SxpT, a).

2) (LA,S%,T X LSxyT|S, Lsx,T|T) forms a covariant pair for (A x4, S, T, &).

als
If we assume 1) and 2), then 1) and the universal property of A x, (SxpT") give a *-
homomorphism
A (Sx0T) —5 (Axgls S) %a T

LA, Sx,T(@) = taxsotag(a)

LSNGT(S,t) — (LANS o Ls)(S)LT(t)
Since S and T both have an identity, the induced map equals w. Note that the pair from
2) is the natural candidate to provide an inverse for 7. Indeed, if 2) is valid, then the
two induced *-homomorphisms are mutually inverse on the standard generators of the
C*-algebras on both sides. Thus it remains to establish 1) and 2).

For step 1), note that t4.g0ta 5 is a unital *-homomorphism and ¢t4.g o tg defines a
semigroup homomorphism from S to the isometries in (A4 3,4 S) x5 T. The covariance
condition for (7, &) yields

tr(t)taxs 0 ts(s) = a(taxs o ts(8))r(t) = taxs © ts(0e(s))er(t).
Therefore, (taxgotg) X vr is well-behaved with respect to the semidirect product structure
on S x T coming from 6, so we get a semigroup homomorphism
(LAxS o LS) Xt SNQT — ISOm((A >4a|S S) Aa T).
Now let a € A,s € S and t € T. Then we compute
((tans ots) X tr)(s,t)tans o ta,s(a)((taxs o ts) X vr)(s,t)*
= LAxS © LS(S)LT<t)//A><S (¢] LA7S(a)LT(t)*LA>43 o Ls(s)*
= 14x5 0 15(8)taxns 0 ta,s(ag)(a))taxs o ts(s)*

)
= 14x8 ©tA,8((s 17)(15,0) ()
(

= 1Axs 0 tas(ap(a)),
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2.2. Fundamental results for irreversible algebraic dynamical systems

which completes 1). For part 2), we remark that (¢4 ,5x,7,tSx,7|s) is a covariant pair for
(A, S,als). Since t4 54,7 and t4 g are unital, the induced map is unital as well. Moreover,
LSx,T|T 1S a semigroup homomorphism mapping 7" to the isometries in A x,(SxyT"). Thus,
we are left with the covariance condition. Note that it suffices to check the covariance

condition on the standard generators of A x,.,S. Fora € A,s € S and t € T, we get

als

155, T (15, 8)0A,957(@)tsxyT (8, 17)ts%yT (18, 1)*
= 15,T(15,8)04,5%y7(0) 5%, (15, 1) *t5%yT (18, 1) L5y (8, 17) L5017 (15, 1)*

= LA,SXIOT(O[(ls,t) (a))LangT(@t(S), 1T)Pt
= 14,5297 (Q(15,6) (@) L5307 (01 (5), 1)

v (La,5x,7(a)tsxo7 (8, 17)).
Hence 1) and 2) are both valid, so the proof is complete. O

We close this preparatory section with a remark on the condition p(g,(s)1) = pt-

Remark 2.1.6.
a) The previous observations should carry over to the setting where A is non-unital,
representations are non-degenerate and « is required to be extendible, see [Larl0]
for more information on the conditions.

b) The condition p(g,(s)) = pt for all s € S and ¢ € T' is satisfied if a|s is unital. This
follows from

,(s),)(1a) = aig (e 1,)(1a) = apgp(la).

In particular, this is the case whenever S is a group. If a|p consists of injective
endomorphisms, then pg, (s)+) = pt holds if and only if a|s is unital.

2.2 Fundamental results for irreversible algebraic
dynamical systems

In this section, we associate a universal C*-algebra O[G, P, 0] to every irreversible algebraic
dynamical system (G, P,6). The general approach is inspired by the methods of [CV13]
for the case of a single group endomorphism with finite cokernel of a discrete abelian
group. Partly, these ideas can even be traced back to [Cun77]. Note however, that we are
going to use a different spanning family than the one used in [CV13].

We will examine structural properties of O[G, P, 0] as well as of two nested subalgebras:
the core F and the diagonal D. In Lemma 2.2.9, a description of the spectrum Gy of the
diagonal D is provided, which allows us to regard Gy as a completion of G with respect
to 0 in the case where (G, P,0) is minimal, compare [CV13, Lemma 2.4].
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2. C*-ALGEBRAS FOR IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

Based on the description of Gy, the action 7 of G on Gy coming from 74(enp) = €gnp
is shown to be always minimal. Moreover, we prove that topological freeness of 7 corre-
sponds to minimality of (G, P,#), see Proposition 2.2.13. As an immediate consequence
we deduce that D . G is simple if and only if (G, P, ) is minimal and 7 is amenable, see
Corollary 2.2.14. This crossed product is actually isomorphic to F, see Corollary 2.2.19.

We remark that our strategy of proof differs from the one of [CV13] because we start
by establishing an isomorphism between O[G, P, 6] and D x (G xy P), compare Proposi-
tion 2.2.18 and [CV13, Lemma 2.5 and Theorem 2.6]. By Theorem 2.1.5, we deduce that
O[G, P, 6] is isomorphic to the semigroup crossed product F x P. So we get

O|G,P,0] 2D x (G xg P) = F x P.

One advantage of this strategy is that we are able to establish these isomorphisms in
greater generality, i.e. without minimality of (G, P,#) and amenability of 7 which would
give simplicity of both F and O[G, P, ).

Similar to [CV13], we then conclude that, whenever (G, P, ) is minimal and the action
G A Gy is amenable, the C*-algebra O[G, P, 6] is a unital UCT Kirchberg algebra, see
Theorem 2.2.26 and Corollary 2.2.28. Thus O[G, P, 0] is classified by its K-theory in
this case due to the important classification results of Christopher Phillips and Eberhard
Kirchberg, see [Kir].

There is more to be said about the structure of F and D in the case of (commutative)
irreversible algebraic dynamical systems of finite type, which forms the major part of
Section 2.3.

Throughout this section, (G, P, #) will represent an irreversible algebraic dynamical system
unless specified otherwise. Let (£,)4e denote the canonical orthonormal basis of £2(G).
For ¢ € G and p € P, define operators Uy and S, on (*(G) by Uy(&,) = &,y and
Sp(€y) = &g,(g) for ¢ € G. Then (Uy)geq is a unitary representation of the group G' and
Sp(&g) = Xo,(0) (g’)ﬁep_l(g,) for ¢’ € G, so (Sp)pep is a representation of the semigroup P
by isometries. Furthermore, these operators satisfy

(CNP 1) SpUg(fg/) = fap(gg’) = Uﬁp(g)Sp(gg’)7
and
(CNP 3) > Egp&y) = &y if [G 1 0,(G)] < o0,
[91€G/0p(G)

where Ej, = UySpS,Uy. In fact, (CNP 3) holds also in the case of an infinite index
(G = 0,(G)], as (Xojger Egp)Pcayo,(c) converges to the identity on 2(G) as F / G/0,(G)
with respect to the strong operator topology. But this convergence does not hold in
norm because each Ej, is a non-zero projection. In view of our motivation to construct a
universal C*-algebra based on this model, it is therefore reasonable to restrict this relation
to the case where [G : 0,(G)] is finite.
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As the numbering indicates, we are interested in an additional relation (CNP 2) which
will increase the accessibility of the universal model: If G was trivial, this would simply
be the condition that S, and S, doubly commute for all relatively prime p and ¢ in P,
Le. Sp8; =545, This condition has been employed successfully for quasi-lattice ordered
groups, see [Nic92, Section 3] and also [LR96] for more information. But as G is an infinite
group, this will not be sufficient.

Moreover, we want to ensure that, within the universal model to be built, an expression
corresponding to S;U, S, belongs to C*(G). This property has been used extensively in the
context of semigroup crossed products involving transfer operators, see [Exe03a, Lar10].

An entirely different way to put it is that we aim for a better understanding of the
structure of the commutative subalgebra C*({ E,, | g € G, p € P }) inside L(*(G)). In a
much more general framework, this has been considered by Xin Li, see [Lil2] and resulted
in a new definition of semigroup C*-algebras for discrete left cancellative semigroups with
identity. One particular strength of his notion is the close connection between amenability
of semigroups and nuclearity of their C*-algebras, see [Lil3].

All of these three instances suggest that a closer examination of the terms S;U,S; is
in order. For g = 0,(g1)0,(g2) with g1, 92 € G, we get S;U, S, = UgiSpag)=1q5(pag)-1pUs2-
On the other hand, g ¢ 0,(G)0,(G) is equivalent to g0,(G) N 6,(G) = 0, which forces
S,UgSq = 0. Thus we get

(CNP 2) S*UgSq — UQIS(pAq)*quEkp/\q)—lpng lf g = ep(gl)HQ(QQ)v
i 0 else.
for all g € G, p,q € P. These observations motivate the following definition:

Definition 2.2.1. O[G, P, 0] is the universal C*-algebra generated by a unitary repre-
sentation (ug)gec of the group G and a representation (sp),cp of the semigroup P by
isometries subject to the relations:

(CNP 1) Spllg = Up,(g)Sp

ugls(PAQ)ilqs?p/\q)—lpug2 lfg = Qp(gl)eq(g2)7

(CNP 2) spugsq = {
) else.

(CNP 3) 1= > egp If[G:0,(G)] < oo,
[9]€G/65(G)

_ *, K
where e, = UgSpSplg-

Proposition 2.2.2. Then O[G, P, 0] has a canonical non-trivial representation on £2(G)
gwen by ug — Uy, sp — Sy. In particular, O[G, P, 0] is non-zero.
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Remark 2.2.3.

a) The presence of (CNP 1) guarantees that the expression in (CNP 2) is independent
of the choice of g; and g satisfying g = 6,(91)04(g2). To see this, suppose g3 and g4
satisfy g = 0,(93)04(g4) as well. Since G is a group, Gp(gflgg) = Hq(gggil) follows.
This is equivalent to 9(pAq)71p(gflgg) = 9(pAq)71q(ggg471) by injectivity of Opnq.

As (pAqg)~'p and (pAq)~'q are relatively prime, condition (C) from Definition 1.1.5
implies g g3 € O(pnq)-14(G) and 9297 € O(prq)-1p(G)- Applying injectivity of Oy,
to 0(p,\q)71p(gflg3)9(pAq)f1q(9492_1) = 1¢ yields

(9(;7}\4)714(9;193)9(;}\@*1;;(929;1) = lg.

Therefore we conclude
ug3s(p/\q)_1qs’(kp/\q),1pug4 = uglug1_193s(p/\q)_1qsz‘mq),1pug4g2_1qu
= ugls(p/\q)_1qu6.q_1(gl_1g3)9;1(9492_1)32‘p/\q),1pu92
= ugls(P/\Q)_qu?p/\q)*lqu'

b) For p € P and g1, g2 € G such that ¢10,(G) = g20,(G), (CNP 1) implies

_ *, 0k * x
€gsp = Ugy Ug—1, SpSpllg, = Ugy SpSyly—1, Uy, = €g, p
Thus the summation in (CNP 3) makes sense.

c¢) Condition (CNP 2) includes the following two relations as special cases:

SpSq = 5¢Sp for all relatively prime p,q € P.

*

SplgSp = X6,(Q) (g)uegl(g) for allg € G,p € P.

Lemma 2.2.4. The linear span of (ugspsyun)gnec pqep s dense in O[G, P,0].

Proof. The family (ugs,syun)gnecpgep includes the generators (ug)geq, (sp)pep and is
closed under involution. We claim that the family is also multiplicatively closed (unless
the product is zero). Due to (CNP 2), an expression sjups, either vanishes or takes the
form up, sp, 53, up, for some h; € G,p; € P. In view of (CNP 1), this yields the claim. [

Lemma 2.2.5. The projections (egp)gecpep commute. More precisely, for g,h € G and
p,q € P, we have

_ ) eg,tnypvg g h € 0,(G)0,(G),
Corthg = 0 else

where W' € G is determined uniquely up to multiplication from the right by elements of

Op—1(pvq)(G) by the condition that gb,(h') € hly(G).
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Proof. For g,h € G and p,q € P, the product egpep, is non-zero only if g 'h €
0,(G)0,(G) by (CNP 2). So let us assume that g~'h € 0,(G)0,(G) holds. Then there
are ¢',h € G such that g~'h = 0,(h/)0,(¢'). As G is a group, this is equivalent to
hl,(g")~1 = gO,(h). Thus we get

€g,pCh,q = “gHP(h’)Sps(pAq)*lqS?pAq)*lpSZu;FLeq(g’)*l = egep(hl)vp\/Q'
Clearly, this also proves that the two projections commute. The uniqueness assertion
follows from (CNP 2). O

Definition 2.2.6. The C*-subalgebra D of O[G, P, 6] generated by the commuting pro-
jections (egp)gecpep is called the diagonal. In addition, let D, := C*({eg,q | 9] €
G/6,(G),p € ¢P}) denote the C*-subalgebra of D corresponding to p € P.

Lemma 2.2.7. For all p,q € P, p € qP implies Dy C D). D 1is the closure of UpeP D,.
If |G : 0,(G)] is finite, then

D, = span{ey ) | [9] € G/0,(G)} = ClG:0p(G)]

Proof. The first assertion follows from the definition of D). Lemma 2.2.5 implies that D
is the closure of the span of (e4,4)gec,qep. Likewise, D), is the closure of the span of the
projections (egq)geqpeqp- This establishes the second claim. Finally, suppose [G : 0,(G)]
is finite and let ¢ € G,q € P such that there is » € P satisfying p = ¢r. Note that
[G : 0,(G)] is finite since [G : §,(G)] is finite. Then (CNP 3) gives

€g,q = UgSq Z eq' r squ; = Z €g0,(g"),p*
l9']€eG/0:(G) l9']€G/0:(G)

Let us make the following non-trivial observation:

Lemma 2.2.8. Suppose (g,p) € G X P and a finite subset F' of G x P are chosen in such
a way that ey, H(h q)eF(l —epq) is non-zero. Then there exists (¢',p’) € G x P satisfying

g p <= €gp H(h,q)eF(l — €hyq)-

Proof. If I is empty, then H(hﬂ)eF(l—eh,q) = 1 by convention, so there is nothing to show.
Now let F' be non-empty. For (h,q) € F, let us decompose ¢ uniquely as g = gUfin) glinf)
where [G : 0 (rim) (GQ)] is finite and we require that, for each r € P with g € rP, finiteness
of [G : 6,(G)] implies ¢/ € rP. In other words, [G : 6,.(G)] is infinite for every r # 1p
with ¢(f) € rP. Using (CNP 3) for ¢ and Lemma 2.2.5, we compute

l—epqg = (1- €h7q(fin)€h7q(inf)) > )
[K]€G/O (fin) (G)
epqtrin) (1 — € gtinp)) + > €l qlFin) -
[K]€G/0 (fin) (G)
(k][]
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Therefore, we can rewrite the initial product as

€g.p H (1- ehi7¢]i) = Z €5.p H (1- €h7Q)7

(h,q)eF (G,p)eF (h)EF(5,5)
where

e F is a finite subset of Gx P,

o ¢;5 <egypforall (g,p) € F,

the projections (e@ﬁ)(g e are mutually orthogonal,

for each (g,p) € F, F5,5 is a finite subset of GX P, and

e cach (h,q) € Fj 5 satisfies ¢ = ¢ and p ¢ ¢P.

Since the product egp [[ (1, e (1—€n, q,) on the left hand side is non-zero, there is (go, po) €
F' such that egyp [111,0)e F(g()’po)(l — epq) is non-zero. Without loss of generality, we may
assume that eg, »,ep,q is non-zero for all (h, q) € Figq ). Consider Fp := {poV q| (h,q) €
Flgo,po) for some h € G}. Pick p; € Fp which is minimal in the sense that for any other
r € Fp, p1 € rP implies r = p1. Let (h1,q1), ..., (hn,qn) € Flg py) denote the elements
satisfying po V ¢; = p1. According to Lemma 2.2.5, we have

. / .
€g0.p0€hi,a; = €goby, (g))p1 10T @ suitable g; € G (fori=1,...,n).

Note that palpl #1pand q; = q%mf) € palplp, so [G : 0p0_1p1(G)] is infinite. Hence there
exists g1 € gobp, (G) with

€gipm < €gopo and €gy prep, g =0fori=1,...,n.

Setting
F(ghpl) ={(h.q) € F(goupo) | €h,qCg1,p1 7 0} ; F(go,po)7

we observe that

€91,p1 H (1 —eng) #0

(h‘7q)eF<gl,p1)

follows from the initial statement for (go,po) and F since we have chosen p; in a

90,P0)
minimal way. Indeed, if the product was trivial, then there would be (h, q) € F{g, p,,) With
€h,q > €g1,p- By Lemma 2.2.5, this would force p; € ¢P and therefore p; € (p1 V q)P C
(po V q) P, which cannot be true since p; was chosen in a minimal way.

Thus, we can iterate the process used to obtain (g1,p1) and F,, .,y for (go,po) and

Flgopo)- After finitely many steps, we arrive at an element (gn,pn) =: (¢',p’) with the
property that ey ,y < egyp, is orthogonal to ey, 4 for all (h,q) € Flgo.po)- This establishes
the claim. O
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The opportunity to pass to smaller subprojections provided through Lemma 2.2.8 will be
crucial for the proof of pure infiniteness and simplicity of O[G, P, 0], see Theorem 2.2.26
and in particular Lemma 2.2.25. A first application of this observation lies in the deter-
mination of the spectrum of D:

Lemma 2.2.9. The spectrum of D, denoted by Gy, is a totally disconnected, compact
Hausdorff space. A basis for the topology on Gy is given by the cylinder sets

Z(gvp)v(hl7q1)7"'»(hn7Qn) = {X € G9 ’ X(eg,p) = 17 X(ehi:(h’) = O fOT’ CL” 2}7

wheren € N, g, hy,...,h, € G and p,q1,...,q, € P. Moreover,

U9) € Z(g ) (h1,g1)ses(hmsgn) == 9 € §'0p(G) and g & hiby,(G) for all i

defines a map 1 : G — Gy with dense image. o is injective if and only if (G, P,0) is
minimal.

Proof. Gy is a totally disconnected, compact Hausdorff space since D is a unital C*-
algebra generated by commuting projections. The statement concerning the basis for the
topology on Gy follows from Lemma 2.2.7. To see that ¢ has dense image, let x € Gy.
As the cylinder sets form a basis for the topology of Gy, every open neighbourhood of x

contains a cylinder set Z( with X € Z(gp).(h1,q1),...,(hn,qn)- Lhis means that

9:p),(h1,q1);-+,(hnsqn)
egplli—1(1—ep, q,) is non-zero. Hence we can apply Lemma 2.2.8 to obtain (¢',p’) € GXP
satisfying ey < egp [Tin; (1 —en,q). In other words, (9") € Zigp), (h1,q1),.(hnsgn)> 50 L(G)
is a dense subset of Gy.

Now given g,h € G, we observe that ¢(g) = t(h) is equivalent to g~'h € MNpep 0p(G)
because the cylinder sets form a basis of the topology on the Hausdorff space Gy. Therefore

¢ is injective precisely if (G, P, 6) is minimal. O

Remark 2.2.10. By the preceding lemma, Gy is a completion of G with respect to 6
whenever (G, P, §) is minimal.

There is a canonical action 7 of G on D given by 74(ep ) = egnp for g,h € G and p € P.
Known results, as for instance [CV13, Lemma 2.5|, indicate that D x, G ought to be
simple provided that the irreversible algebraic dynamical system (G, P,#) is minimal. Of
course, this can only be true if G A D is regular, that is, D x; G = D x,, G via the
canonical map. Building on the results of [AD87], this can be rephrased as amenability
of the action G A~ Gy, see also [BO08, Theorem 4.4.3] for a concise exposition. Moreover,
the map ¢ from Lemma 2.2.9 satisfies 7,(c(h)) = ¢(gh) for all g,h € G.

If 7 is amenable, the celebrated result of [AS94] states that the crossed product
C(Gy) % G is simple if and only if the action G A~ Gy is minimal and topologically
free. As it turns out, minimality of (G, P, ) corresponds precisely to these two proper-
ties. For convenience, let us recall the standard definitions of topological freeness and
minimality for group actions.
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Definition 2.2.11. Let X be a topological space and G a group. A group action G X
is said to be topologically free, if the set X9 = {x € X | g.x = x} has empty interior
for g € G\ {1g}.

Definition 2.2.12. Let X be a topological space and G a group. A group action G X
is said to be minimal, if the orbit O(z) = {g9. | ¢ € G} is dense in X for every z € X.

Equivalently, an action is minimal if the only invariant open (closed) subsets of X are ()
and X.

Proposition 2.2.13. The action G A Gy is minimal. It is topologically free if and only
if (G, P,0) is minimal.

Proof. On «(G), which is dense in Gy by Lemma 2.2.9, 7 is simply given by translation
from the left. Hence 7 is minimal. For the second part, we note that 7, = idp holds
for every g € (\,cpOp(G). Thus, if (G, P,0) is not minimal, there is g # 1¢ such that
G} = Gy, so 7 is not topologically free. If (G, P, ) is minimal, then 7 acts freely on +(G)
because ¢ is injective and G is left-cancellative. Since ¢(G) is dense in Gy, we conclude
that 7 is topologically free. O

Corollary 2.2.14. The crossed product Dx .G is simple if and only if (G, P, 0) is minimal

and G rT\v Gy is amenable.

Proof. Due to a central result from [ADS87], amenability of the action is equivalent to
regularity of the crossed product. Hence Proposition 2.2.13 and [AS94, Corollary following
Theorem 2] establish the claim. O

Definition 2.2.15. The core F is the C*-subalgebra of O[G, P, 0] generated by D and

(ug)gea-
Lemma 2.2.16. The linear span of (ugspsyuy)gnecpep is dense in F.

Proof. This follows immediately from the calculations for Lemma 2.2.4. O

Remark 2.2.17. For every irreversible algebraic dynamical system (G, P, ), P is a dis-
crete abelian Ore semigroup. Therefore its enveloping group P! P is discrete abelian. Let
us denote the dual group of P~'P by L, which is a compact abelian group by Pontryagin
duality. Furthermore, L acts on O[G, P, 0] via the so-called gauge-action  given by

Ye(ug) = ug and y,(sp) = €(p)sp, for g€ G,p € P and £ € L.
a) The fixed-point algebra of « coincides with F.
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b) If u denotes the normalized Haar measure on L, then

Er(ugspsyuy,) = / Ye(ugspsyup)dp(l) = pgugspsyuy,
lel

defines a faithful conditional expectation O[G, P, )| P F oas v is strongly continu-
ous.

The similarity between F and D x, G is apparent. If one assumes that D X, G is simple,
which by Corollary 2.2.14 means that the irreversible algebraic dynamical system (G, P, 0)
is minimal, it is easy to show that these two algebras are isomorphic. This strategy has
been pursued in [CV13, Lemma 2.5].

However, we will show in Corollary 2.2.19 that this identification holds in full gener-
ality. To do so, we will first derive a semigroup crossed product description O[G, P, 6] =
D x (G Xy P), which is of independent interest, compare [CV13, Theorem 2.6]. Also, if
(G, P,0) is of infinite type, that is, [G' : 6,(G)] is infinite for all p # 1p, then this re-
sult reproduces the standard picture C*(S) = Dg x S for C*-algebras of left cancellative
semigroups S in the case where S = G xg P, compare [Lil2, Lemma 2.14].

In order to get down to F and D x, G, respectively, we observe that a crossed product
coming from a semidirect product of discrete semigroups can be displayed as an iterated
semigroup crossed product under a certain condition, see Theorem 2.1.5. This condition
will be satisfied as G is a group, see Remark 2.1.6 b).

Proposition 2.2.18. Let the semidirect product G xg P act on D by (g,p).epq = €40, (h).pq
and suppose (V(gp))(g.p)eGxop 5 the family of isometries in Dx(GxgP) implementing the

action of the semigroup, that is, v(g7p)eh7qv2‘g7p) = €40, (h),pq- Lhen the map

O[G,P,0] -2 Dx(GxgP)
UgSp = U(gp)

s an tsomorphism.

Proof. Recall from Definition 2.2.1 that O[G, P, 6] is the universal C*-algebra generated
by a unitary representation (ug)gec of the group G and a semigroup of isometries (sp)pep
subject to the relations (CNP 1)-(CNP 3). Hence, in order to show that ¢ defines a

surjective *-homomorphism, it suffices to show that for every g € G, the isometry v(g 1)
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is a unitary, and that the families (v(y1,))gec; (V14 p))pep satisfy (CNP 1)-(CNP 3):

g,lp

V(g,1p) Vg1 1p) = Uglp)(g=11p) = V(g 1p) = |

(CNP 1) U(1ap)%g1p) = Y(1ap)(9.1p) = V(0p(9)p) = V(0p(9),1p)V(1G:p)

(CNP 2) V(16,0 Y(9:19)V(16,0) = X6,(G)0,(c) (9) v(glv(p“?)*lq)v?gg_lv(P/\q)’lp)
where g = 6,,(91)04(g2)-

— VU(16.2) Y(1.p) Y(9:9) V(g0) = X0,(6)0,(6)(9) U(ep(gl)’pvqwég%(g;l),pvfl)

= €16.,pCg.q = X6,(G)6,(c) (9) €(904(95 ") :PVa)

as g = 0,(91)0,(g2) gives 0,(g1) = g0,(g;"). This last equation holds by Lemma 2.2.5,
so (CNP 2) is satisfied as well. (CNP 3) is a relation that is encoded inside D, so it

is satisfied as the range projection of the isometry v coincides with ey ;. To show

9,p)
that ¢ is injective, we note that the isometries uys, satisfy the covariance relation for the

dynamical system G xg P ~ D:

ugspeth(ugsp)* = €40, (h),pqg — (gap)'eh,q~

Hence, there is a surjective x-homomorphism from Dx (G xgP) to O[G, P, 0] sending v, )
to ugsp. Apparently, the two *-homomorphisms are mutually inverse, so ¢ is an isomor-
phism. ]

This description allows us to deduce several relevant properties of O[G, P, 6] and its core
subalgebra F.

Corollary 2.2.19. The isomorphism @ from Proposition 2.2.18 restricts to an isomor-
phism F -2 DxG. In particular, we have a canonical isomorphism O[G,P, 0] =2 FxP.

Proof. The first claim follows immediately from Proposition 2.2.18 together with Theo-
rem 2.1.5 and Remark 2.1.6. The second assertion is implied by Lemma 2.2.16. O

Proposition 2.2.20. IfG A Gy is amenable, then both F and O|G, P, 0] are nuclear and
satisfy the universal coefficient theorem (UCT).

Proof. As F =2 D x G by Corollary 2.2.19 and G A Gy is amenable, F is nuclear by
results of Claire Anatharaman-Delaroche, see [AD87] or [BO08, Theorem 4.3.4]. Similarly,

amenability of G A Gy passes to the corresponding transformation groupoid G. Thus, we
can rely on results of Jean-Louis Tu, see [Tu99], to deduce that F = D x, G = C*(G)
satisfies the UCT. The class of separable nuclear C*-algebras that satisfy the UCT is
closed under crossed products by N and inductive limits. Recall that either P = N* for
some k € N or P = @y N according to condition (B) of Definition 1.1.5. Hence the claims
concerning O[G, P, 0] follow from O[G, P,0] = F x P, see Corollary 2.2.19. O
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Corollary 2.2.21. The map Eg(ugsps uh) = g1 egp defines a conditional expectation
F 2D which is faithful if and only if G A~ Gy is amenable.

Proof. Due to Corollary 2.2.19, F is canonically isomorphic to D x,G. Since G is discrete,
the reduced crossed product D x,, G has a faithful conditional expectation given by
evaluation at 1. The map F» is nothing but the composition of

evy

F = DMTG—»'DNTTG4

By [AD87], the canonical surjection D x; G —» D X, G is an isomorphism if and only

if G A Gy is amenable. Thus the conditional expectation FE» is faithful if and only if the
action 7 is amenable. ]

Corollary 2.2.22. The map E(ugsps uy) = 6pq5ghegp defines a conditional expectation
O|G, P, 0] B\ D which is faithful if and only if G ~ Gy is amenable.

Proof. Clearly, E = FEs0 E1, so the result follows from Remark 2.2.17 and Corollary 2.2.21.
O

Note that if G happens to be amenable, the faithful conditional expectation E can be
obtained directly by showing that the left Ore semigroup GxgP has an amenable en-
veloping group. Before we can turn to simplicity of O[G, P, 6], we need the following
general observations:

Definition 2.2.23. Given a family of commuting projections (F;);c; in a unital C*-
algebra B and finite subsets A C F of I, let

Qba=[]5 [[ a-E).
i€EA  jeF\A

Products indexed by () are treated as 1 by convention.

Lemma 2.2.24. Suppose (E;)icr is a family of commuting projections in a unital C*-
algebra B, A C F are finite subsets of I. Then each QgA is a projection, . QI]?:A =1
b ACF K

and, for given coefficients \; € C,i € F', we have
SaE =Y (X)akn
iEF ACF i€A

as well as

1€F QE 0 €A
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Proof. Since the projections F; commute, Qg 4 is a projection. The second assertion is
obtained via

1=[[E+1-E)=3 Q&.

el ACF

The two equations from the claim follow immediately from this. O

Lemma 2.2.25. Ford= Y. ey, p;, € D4 with \; € C and (g;,pi) € G x P, there exist
1<i<n
(g,p) € G x P satisfying degp, = ||d|eg,p-

Proof. The element d belongs to C* ({Q%’A |AC F=A{(gi,pi) | 1<i< n}}), which is
commutative by Lemma 2.2.5. Then Lemma 2.2.24 says that there exists A C F such

that Q% 4 is non-zero and dQf 4 = ||dHQ%7A. In particular, H( €g,p 1S NON-ZETO, SO

9,p)EA
Lemma 2.2.5 implies that there is (ga,pa) € G x P such that [[, jca€p = €gapa-

Thus, we can apply Lemma 2.2.8 to eg, p, H(,w)eF\A(l —€hyq) = Q% 4 # 0 and the proof
is complete. ]

We point out that the hard part of the proof for Lemma 2.2.25 is hidden in Lemma 2.2.8.

Theorem 2.2.26. If (G, P,0) is minimal and the action G A D s amenable, then
O[G, P, 0] is purely infinite and simple.

Proof. Recall that the linear span of (uys,s;uf )gnea pgep is dense in O[G, P, 6] according
to Lemma 2.2.4. Every element z from this linear span can be displayed as

m1 mo ms
z = Ci€g; pi Cillg, Sp; Sp, Un, Cillg, Sp; Sq; Uh, »

i=1 i=mi+1 i=ma+1
where ¢; € C,
a) g; # h; for mp +1 < i < mg, and
b) pi # q; for my +1 <0 < mg.

mi
By Corollary 2.2.22, we have E(z) = ) cieq, p, € D. If we assume z to be non-zero and
i=1

positive, which we will do from now Sn, then E(z) > 0 as E is a faithful conditional
expectation. Applying Lemma 2.2.25 to E(z) yields (g,p) € G x P such that

c) E(2)egp = [E(2)llegp-

In order to prove simplicity and pure infiniteness of O[G, P, 0], it suffices to establish the
following claim: There exist (§,p) € G x P satisfying

(a) eg5 < egp,
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(b) eg,ptg; Sp;Sp,up. €55 = 0 for my +1 <i <mgy and
- * * e — -
() eg,ptg;Sp;Sq,up,. €55 = 0 for ma +1 <0 < mg.

Indeed, if this can be done, then we get

(b),(c) ¢),(a)
egpzegs = egpl(2)egp =" [|E(2)egp-

Now for z € O[G, P, 0] positive and non-zero, let ¢ > 0 and choose a positive, non-zero
element z, which is a finite linear combination of elements ug/sp/s;/u;;,, to approximate
x up to €. Then ||E(2)| is a non-zero positive element of D. Thus, choosing e; 5 as
above, we see that ejsze55 = ||E(2)|legps is invertible in eg50[G, P, 0leg 5. If || — z]| is
sufficiently small, this implies that eg sxe; 5 is positive and invertible in eg ;0[G, P, fleg 5

as well because ||E(z)|| =9 |E(x)|| > 0. Hence, if we denote its inverse by y, then
1 * 1
(y 2%813) €3,pT€p (y 2“5815) =1

We claim that there is a pair (g,p) € G x P satisfying (a)—(c). Let (¢',p") € g6,(G) x pP
and m1 + 1 < ¢ < msy. Noting that ugispisziu;i = Uy ,~1€h, p; Lemma 2.2.5 implies

€g' p'Ugn 1 ChipiCq' sy = Eg'p'Ugp1€g p' Chipi
— Nn—1 -1 7
= Xep,(G)((Q) gih; " g') Ugn 1 €g' . Chipi-
According to a), we have (¢')"'g;h; 'g’ # 1g. Thus, minimality of (G, P,6) provides

ma
p, € pP with the property that (¢')~'gih; ‘g’ ¢ 0,,(G). So if we take p® =V pl,

i=mi+1
then (a) and (b) of the claim hold for all (¢/,p') € g6,(G) x p®® P. Let us assume that
p > p® v Vit 1 Pi Vg and g’ € g o 0(G). Then condition (c) holds for (¢',p') if and
only if

_ o* *
0= 8pu(g)~1g,5p: Sq, Up 1 g Sp/

- X‘gpi(G)((g/)ilgﬁxeqi (G)<h;lg/)3;i_1p’u9zil((9’)‘191')9@1(hflg’)sqflp’
is valid for all mo 4+ 1 < i < mg. This is precisely the case if at least one of the conditions
° ()7 19i € 0,,(G),
° (g/)_lhi € 6,(G), or
o 0,1((9) 19005, (7' 9) € Oipvgy-1p (G)
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fails for each ¢. Suppose, we have an index ¢ for which the first two conditions are satisfied.
Using injectivity of 0,,vq,, the third condition can be transformed into

0,,((9") " 9:)0r, (hi ') € 0,(G),

where 7, := (p; A i) " 'p; and 14 := (p; Aq;) "'¢;. Condition b) implies r, Ary = 1p # rpry.
Furthermore, we have

qu((gl)ilgi)er;} (hz‘_lg/) =1lg <=0y, (9/)97’;) (gl)il = 0Or, (gi)erp (hi_l)'

Let us examine the range of the map G RLNYE given by g — 0,,(9)0, (9)~!. Note that
fi need not be a group homomorphism unless G is abelian, in which case the following
part can be shortened. If 1,k € G have the same image under f;, then 6, (ky 1k:1) =
Or, (k3 'k1). By (C1) from Definition 1.1.5, this gives

k;lkl €0,.,(G)N0, (G) = b (G).

But if k‘Q_lkl = 0r,r,(k3) holds true for some k3 € G, then GTp(kglk:l) = 9rq(k2_1k1) implies
that 6, (k3) = 0, (k3) holds as well because P is commutative and 6y, 4, , is injective. By
means of induction, we deduce k; k1 € ,,cn Otrprg)n (G)-

Hence fi_l(Grp(hi)QT (95 1)) is either empty, in which case there is nothing to do, or it
is of the form g; M,cxy O(r,r,)n(G) for a suitable g; € G. But for the collection of those i
for which the preimage in question is non-empty, we can apply Lemma 1.1.16 to obtain
g € 90y (G) such that fi(g) # 6,,(hi)0r, (g;71) for all relevant i.

By condition (C2) from Definition 1.1.5, we can choose p > p’ large enough so that
these elements are still different modulo 6, y4,)-15(G) for all i. In this case, we get

0,1 (7" 9i)0q (h; ') ¢ Opsva)-15(G) for all my + 1 < i < mg,

so (g, p) satisfies (c). In other words, we have proven that the pair (g, p) satisfies (a)—(c).
Thus, O[G, P, 0] is purely infinite and simple. O

From this result, we easily get the following corollaries:

Corollary 2.2.27. If (G, P, 6) is minimal and the action G A Gy is amenable, then the
canonical representation \ : O[G, P,0] — L({*(G)) from Proposition 2.2.2 is faithful.

Proof. This follows readily from Proposition 2.2.2 and simplicity of O[G, P, 6]. O

Combining Lemma 2.2.4, Theorem 2.2.26 and Proposition 2.2.20, we get:

Corollary 2.2.28. If (G, P,0) is minimal and the action G A Gy is amenable, then
O[G, P, 0] is a unital UCT Kirchberg algebra.
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2.2. Fundamental results for irreversible algebraic dynamical systems

Thus, minimal irreversible algebraic dynamical systems (G, P, ) with amenable action 7
yield C*-algebras O[G, P, 0] that are classified by their K-theory, see [Kir, Phi00]. Let us
come back to some of the examples from Section 1.1 and briefly describe the structure of
the C*-algebras obtained in the various cases:

Examples 2.2.29.

(a) Let G =7Z, (pi)icr C Z\{0,£1} be a family of relatively prime integers, and set P =
|(pi)ier) C Z*, which acts on G by 0;(g) = pig. We know from the considerations in
Example 1.1.8 (a) that (G, P, 6) is minimal, so O[G, P, 0] is a unital UCT Kirchberg
algebra. If we denote p := [[,c; [pil € NU {oo}, then Gy can be identified with the
p-adic completion Z, = @(Z/ qZ,0q)qep of Z. Moreover, F is the Bunce-Deddens
algebra of type p*>°, compare [Orfl0] and see [BD75] for the classification of Bunce-
Deddens algebras by supernatural numbers.

(b) Let I C N, choose {q} U (pi)ier C Z\ {0, £1} relatively prime, P = |(pi)icr), set
G=1 H and let 0,(g) = pg for all g € G,p € P. As for (a), O[G, P,0] is a
unital UCT Kirchberg algebra by Example 1.1.8 (b) and Corollary 2.2.28. If we let
p:=[I;cr Ipil € NU{oo}, then Gy can be thought of as a p-adic completion of Z B]

and F = D x, Z[1].

Ezxzample 2.2.30. We have seen in Example 1.1.11 that for n > 2, the dynamical system
given by the unilateral shift on G = @yZ/nZ is a minimal commutative irreversible
algebraic dynamical system of finite type. It has been observed in [CV13] that O[G, P, 0]
is isomorphic to O, in a canonical way: If e; = (1,0,0,...,) € G, s € O[G, P, 0] denotes
the generating isometry for P and sy, ..., s, are the generating isometries of O,,, then this
isomorphism is given by uge, s — s for £ =1,...,n. In particular, F is the UHF algebra
of type n* and Gy is homeomorphic to the space of infinite words using the alphabet
{1,...,n}.

Example 2.2.31. Given a family (G, P,6());cy, where each (G@, P,6()) is an irre-
ieN G@, on which P acts
component-wise. Assume that each (G, P,6®)) and hence (G, P,#) is minimal, compare
Example 1.1.13. We have Gy = [],; G((;()i). Thus the action G A Gy is amenable if and

versible algebraic dynamical system, we can consider G := @

only if G; A GS()Z.) is amenable for each i € I. As G is commutative (amenable) if and
only if each G is, there are various cases where amenability of 7 is for granted. In such

situations, O[G, P, 0] is a unital UCT Kirchberg algebra.

Example 2.2.32. For the examples arising from free group F, with 2 < n < oo, see
Example 1.1.14, we are able to provide criteria (1)—(3) to ensure that we obtain mini-
mal irreversible algebraic dynamical systems. Hence Gy can be interpreted as a certain
completion of IF,, with respect to . Now [F,, is far from being amenable, but the action
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F, ~ Gy could still be amenable: The free groups are known to be exact. By a fa-
mous result of Narutaka Ozawa, exactness of a discrete group is equivalent to amenability
of the left translation action on its Stone-Cech compactification, see [0za00]. Recently,
Mehrdad Kalantar and Matthew Kennedy have shown that exactness of a discrete group
is also determined completely by amenability of the natural action on its Furstenberg
boundary, see [KK] for details. The latter space is usually substantially smaller than the
Stone-Cech compactification and their methods may give some insights into the question
of amenability in the context of the examples presented here.

2.3 A closer look at dynamical systems of finite type

This section provides a more detailed presentation of the case where (G, P, ) is of finite
type. In particular, we exhibit additional structural properties of the spectrum Gy of
the diagonal D in O[G, P,§]. For instance, the assumption that 6,(G) C G is normal
for every p € P causes Gy to inherit the group structure from G. This turns Gy into a
profinite group. If, in addition, (G, P, #) is minimal and G is amenable, then F falls into
the class of generalized Bunce-Deddens algebras, see [Orfl0, Carll] for details. Due to
[Lin01, MS, Win05], they belong to a large class of C*-algebras that can be classified by
K-theory.

We are particularly interested in the case where G is abelian, or at least amenable.
For such dynamical systems, the situation is significantly easier as 6,(G) C G is normal
for all p € P and the action 7 is always amenable. In fact, the structure of D and F is
quite similar to the one discovered in the singly generated case, compare [CV13, Section
2]. More explicitly, Gy is a compact abelian group and we have a chain of isomorphisms:

F = C(Gy) »r G = C(G) %7 Gy
Throughout this section, we will assume that (G, P, 0) is an irreversible algebraic dynam-

ical system of finite type.

Remark 2.3.1. Recall from Remark 2.2.10 that Gy can be thought of as a completion
of G with respect to 6 provided that (G, P, ) is minimal. The map ¢ from Lemma 2.2.9
transports more structure under additional hypotheses:

a) If 6,(G) is normal in G for all p € P, then Gy = @ coker 6, is a profinite group.
peP

b) If (G, P,0) is minimal and 6,(G) is normal in G for all p € P, then ¢ is a dense

embedding of groups. In particular, G A~ Gy is the left translation action of a dense
subgroup in Gy.
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2.3. A closer look at dynamical systems of finite type

¢) Gy is an abelian group if and only if G is an abelian group. So if (G, P, ) is a minimal
commutative irreversible algebraic dynamical system, then Gy is a compact abelian
group and F has a unique tracial state by b). This follows from a straightforward
adaptation of the corresponding part of the proof for [CV13, Lemma 2.5]

Proposition 2.3.2. Suppose (G, P,0) is minimal and G is amenable. Then F is a gen-
eralized Bunce-Deddens algebra.

Proof. This follows directly from the construction of the generalized Bunce-Deddens al-
gebras presented in [Orfl0, Section 2|: Choose an arbitrary, increasing, cofinal sequence
(Pn)nen C P, where cofinal means that, for every ¢ € P, there exists an n € N such that
pn € qP. Then (0, (G))nen is a family of nested, normal subgroups of finite index in G.
This family is separating for G by minimality of (G, P, ). O

In particular, these assumptions force F to be unital, nuclear, separable, simple, qua-
sidiagonal, and to have real rank zero, stable rank one, strict comparison for projections
as well as a unique tracical state, see [Orfl0]. As the combination of real rank zero and
strict comparison for projections yields strict comparison (for positive elements), the pre-
requisites for [MS, Theorem 1.1] are met, so F also has finite decomposition rank. This
establishes the remaining step to achieve classification of the core F by means of its El-
liott invariant (Ko(F), Ko(F)+, [17], K1(F)) thanks to results of Huaxin Lin and Wilhelm
Winter, see [Win05, Corollary 6.5(i)] and [Lin01]:

Corollary 2.3.3. Let (G, P;,0;) be minimal and G; be amenable for i = 1,2. If F1 and
Fo denote the respective cores, then F1 = Fa holds if and only if

(Ko(F1), Ko(F1)+, 17 ], K1(F1)) = (Ko(F2), Ko(F2)+, [1x], K1(F2)) -

We close this section by presenting an intriguing isomorphism of group crossed products
on the level of F, compare [CV13, Lemma 2.5]:

Corollary 2.3.4. Suppose (G, P, 0) is minimal and G is abelian. Then Gy is a compact
abelian group and there is an action T of its dual group Gy on C(é) such that we have

canonical isomorphisms
F = C(Gy) xr G = C(G) x- Gy.

Proof. The first isomorphism has been achieved in Corollary 2.2.19. For the second part,
let 7, (x)(9) = x0(e(9))x(g) for xs € Gop,x € G and g € G. Since G - Gy is a
group homomorphism, 7,,(x) defines a character of G. Clearly, 7 is compatible with
the group structure on Go. According to Remark 2.3.1 b) the group homomorphism
¢ identifies G with a dense subgroup of Gy. In this case the characters on Gy are in
one-to-one correspondence with the characters on G. Note that this correspondence is
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precisely given by regarding characters on Gy as characters on G using ¢. Therefore, 7
defines an action of Gy by homeomorphisms of the compact space G. Once we know that
7 defines an action, we readily see that there is a canonical surjective *-homomorphism
C(Gy) xr G—> C’(é) x7 Gg. As C(Gy) %+ G is simple, this map is an isomorphism. [

2.4 Fundamental results for irreversible *-commutative
dynamical systems

This section is devoted to the construction of universal C*-algebras for irreversible *-
commutative dynamical systems of finite type (X, P, 6). We show that this construction
is consistent with the natural realization of (X, P,f) as operators on £?(X), see Propo-
sition 2.4.4. Moreover, we show that, for commutative irreversible algebraic dynamical
systems of finite type (G, P, ), there is a natural isomorphism between O[G, P,6]| and
O[é, P, é], see Proposition 2.4.3. In analogy to the case of irreversible algebraic dynam-
ical systems, we establish a few elementary properties of this C*-algebra and its core
subalgebra F. A fair amount of the results from this section is relevant for Chapter 4.

Throughout this section, let (X, P, ) denote an irreversible *-commutative dynamical
system, unless specified otherwise. Recall that, for p € P, the endomorphism «, of C(X)
and its transfer operator L, are given by

oy(f)(x) = f(B(x)) and Lp(f)(m)—]\l,p S f(y) forall z € X, f € C(X),

yeb, ' (z)

where N, = 0,1 (x)|. Moreover, we let E, := aj, 0 L, : C(X) — a,,(C(X)) denote the
associated conditional expectation.

Definition 2.4.1. O[X, P, 0] is the universal C*-algebra generated by C(X) and a repre-
sentation of the monoid P by isometries (sp)pcp subject to the relations:

(1) spf = ap(f)s, forall feC(X),peP.
P p\J)Sp
(I1) spfsp = Lp(f) for all f € C(X),p € P.
(II1) SpSq = S¢S if p and ¢ are relatively prime in P.
IV) Ifpe Pand f;1, fio € C(X),1 <i<n, satisfy the reconstruction formula
( 1 fi, y
Z fi,lEp(ﬁ,Qf) = f for all f S C(X),
1<i<n
then Z fijlsps;;ﬁ-’g = 1.
1<i<n

The next lemma explains the motivation behind relation (IV).
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2.4. Fundamental results for irreversible x-commutative dynamical systems

Lemma 2.4.2. For every p € P, the validity of relation (IV) from Definition 2.4.1 is
independent of the choice of the family (fi;j)i1<i<m, j=1,2 satisfying the reconstruction for-
mula. In particular, if U = (U;)1<i<n is a finite open cover of X such that the restriction
of 0, to each U; is injective and (v;)i1<i<n 1S a partition of unity for X subordinate to U,

then
E Vispspli = 1
1<i<n

holds for v; = (vaz-)%.

Proof. For the first part, let (f; j)i<i<m,j=1,2 and (gx.¢)1<k<n,¢=1,2 be two families in C'(X)
that both satisfy the reconstruction formula for all f € C(X). Now if relation (IV) from
Definition 2.4.1 holds for (fi7j)1§¢§m7j:172, then

o Gk1SpSpdk2 = Y. Gk1SpSpdk2 2. fiispspfiz
1<k<n 1<k<n 1<i<m

= ) > gk Bp(Gr2fin)spspfio

1<i<m  1<k<n

= fi,lsps;;fiQ =1.

1<i<m

The second claim follows from Lemma 1.3.9. O

Since finite open covers of the form appearing in Lemma 2.4.2 always exist for surjective
local homeomorphisms of compact Hausdorff spaces, see Lemma 1.3.9, there are in fact
functions f; ; satisfying the reconstruction formula for each p € P. Thus, relation (IV) is
non-void.

There is a close connection to the defining relations (CNP 1)—-(CNP 3) for the C*-
algebras associated to irreversible algebraic dynamical systems (G, P,6), compare Defi-
nition 2.2.1. We will now show that the two constructions yield the same C*-algebra if
both methods are applicable, that is, if (G, P, ) of finite type and G is commutative, see
Corollary 1.3.17. Recall that the dual model (G’, P, é) is an irreversible x-commutative
dynamical system of finite type in this case.

Proposition 2.4.3. Let (G, P,0) be a commutative irreversible algebraic dynamical sys-
tem of finite type. If (ug)geq and (sp)pep denote the canonical generators of O[G, P, 6]
and (wg)geq and (vp)pep denote the canonical generators of (’)[G,P, 0], then

O[G,P,0] 2 O[G,P,0]
UgSp = WeUp

18 an isomorphism.
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Proof. 1t is clear that (wg)geq and (vp)pep satisfy (CNP 1). (CNP 3) follows from (IV)
since we can easily check the reconstruction formula required in (IV) on each w, and note

that C(G) can be identified with the closed linear span of (wg)4ec. It remains to prove
(CNP 2), that is,

VpWalq = Xg,(G)8,(G)(9) wglv(pAq)_1qukpAq),1pwg2 for all g € G and p,q € P,

for g = 0,(91)04(92), and vywgv, = 0 otherwise. The case g € 0,(G)0,(G) follows in a
straightforward manner from (I) and (III), so suppose g ¢ 0,(G)0,(G). Since (G, P, 0) is
of finite type, Proposition 1.1.1 yields 0(yrg)-1,(G)0prg)-14(G) = G. Hence we get

g §‘é gp/\q(e(p/\q)—lp(G)e(p/\q)—lq(G)) = P/\Q(G)
and with the help of Example 1.3.7 we conclude that

(11)
UpWqUq = Vipn ) ~1pVpngWaUpAq¥(pag)—tq = Y(pag)—1plrna(Wg)Vpng-14 = 0.
Thus we have shown that ¢ is a surjective x-homomorphism. In order to see that ¢ is an
isomorphism, it suffices to check that C*((ug)geq) = C(G) and (sp)pep satisty (I)-(IV).
Condition (I) is nothing but (CNP 1). Conditions (II) and (III) follow from (CNP 2) using
Remark 2.2.3 ¢) and Example 1.3.7. Finally, (IV) can be deduced from (CNP 3) with the
help of Lemma 2.4.2. ]

We have seen in Lemma 2.4.2 that we can always choose elements f;; satisfying the
reconstruction formula for (IV) in such a way that we get a C*-algebraic partition of
unity in O[X, P, 0], that is, the corresponding elements are positive and sum up to one.
Unless X is totally disconnected, this may produce a number of genuine positive elements
exceeding the actual number of preimages a single point has. For example, the minimal
number of elements appearing in a partition of unity as in Lemma 2.4.2 for the map
x2: T — T is three.

One particular feature of commutative irreversible algebraic dynamical systems of
finite type compared to arbitrary irreversible x-commutative dynamical systems of finite
type is that we can choose the elements satisfying the reconstruction formula for (IV) in
a different manner using the algebraic structure. This allows us to reduce the number of
positive elements needed to the optimal value, that is, the size of the kernel of the group
endomorphism on G. Moreover, the elements forming the C*-algebraic partition of unity
are projections in this case.

Now that we have already established some connections to Section 2.2, let us start
with an analysis of basic properties of the C*-algebra O[X, P, 6]. First of all, there is a
natural representation of O[X, P, 6] on £2(X), whose standard orthonormal basis will be
denoted by (£;)zex:
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2.4. Fundamental results for irreversible x-commutative dynamical systems

Proposition 2.4.4. Let M;&, = f(x)& and Sp&s = Np

N

o & forx e X, f €

yeo, ' (x)
C(X) and p € P. Then the map
O[X,P.0] = L(3(X))
fsp — MfSp

is a representation of O[X, P, 0|, which is faithful on C(X).

_1
Proof. Firstly, Sp(£z) = Np *&p,(2) for all p € P and x € X since

(Sp(&e)s &y) = (€as Sp(&y)) = X@;l(y)(x) Np

Thus, S), is an isometry. (Sp)p,cp is a representation of P because

2. Sp(&y)

yeby ' (z)

1
= (NpNg)™2 > &
yely ' (x)
ze@;l(y)

= (Npq)_% Z &

Zeep_ql (x)
= Spq(gx)-

(I) If p and ¢ are relatively prime in P, then 6, and 6, *-commute according to Def-

[NIE

Squ(f:c) = Nq

[NIES

inition 1.3.13 (C). Using the equivalent condition (iii) from Proposition 1.3.2, we
obtain

_1 _1
S;Sq(fz) = Npg® Z &y = Npg® Z &y = SqS;(fm)a
y€bp (05 () yeby " (6p(x))
so Sp and S, doubly commute.
(IT) SpMy = My, (1)Sp is readily verified for all f € C(X) and p € P.
(III) SpMyS, = My, (s is also straightforward.

(IV) For v; = (vai)%, where (v;)i1<i<pn is a partition of unity such that Op|suppe, is
injective for all ¢ (as in Lemma 2.4.2), we compute
1
Z MViSpS;MVi(€$) = Z Z (vi(y)vi(x))?2 Sy

- - _ N——
1<i<n 1Sisnyeg, ! (0, () 5y

1<i<n
We infer from Lemma 2.4.2 that this yields (IV) since the proof provided there only
uses the additional property (II), which we have already established for S, and M.
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Thus, ¢ is a *-homomorphism by the universal property of O[X, P, 6] and it is clear that
¢ is faithful on C(X). O

Lemma 2.4.5. The linear span of (fsps;g) s gec(x)pqep 18 dense in O[X, P, 0)].

Proof. The set is closed under taking adjoints and contains the generators, so we only have
to show that it is multiplicatively closed. Let p;,q; € P, fi, g; € C(X) and a; := fisp,s;.gi
for i = 1,2. Additionally, choose a partition of unity (v;)i1<j<, subordinate to a finite
open cover (Uj)1<j<n of X such that 0y, vp,|u; is injective and v; := (Ngyvp, vj)% for all
j. Then, we get

v

(V)
araz ="ai Y, VjSqvps Sy vp,Via2
1<j<n
(IT)

= 1<]Z<n J1$piLg, (91Vj)Sqfl(ql\/pz)S;z_l(%Vm)Lm (v f2)84,92

—_— . * .
a 1<%:<n fropy o Lo, (glyj)Splql_l(quz)qup51(q1Vp2)aq2 © Ly (v32)92-

—~
=

O]

The remainder of this section will deal with faithfulness of conditional expectations related
to a core subalgebra of O[X, P, 6] similar to the one introduced in Definition 2.2.15 for
O|G, P,f]. Recall that the enveloping group H = P~'P of P is discrete abelian. If we
denote its Pontryagin dual by L, which is then a compact abelian group, we get a so-called
gauge action vy of L on O[X, P, 0] by

Ye(f) = f and v (sp) = l(p)sp for f € C(X),pe P and £ € L.

It is well-known that actions of this form are strongly continuous.

Definition 2.4.6. The fixed point algebra O[X, P, 6]” for the gauge action 7, denoted by
F, is called the core of O[X, P, 0]. In addition, let

Fp=C" ({fspspg | f9 € C(X)})
denote the subalgebra of F corresponding to p € P.

Lemma 2.4.7. Let u denote the normalized Haar measure of the compact abelian group L.

Then Ei(a) := [ ~e(a) du(l) defines a faithful conditional expectation O[X, P, 6] RNy
leL

Proof. 1f a € O[X, P, 0] is positive and non-zero, then there is a state ¢» on O[X, P, 0] such
that ¢ (a) = ||a||. Since y,(a) > 0 in O[X, P, 0], we have 1)(vy¢(a)) > 0 for all £ € L. Thus,
¥(a) = ||a|| > 0 together with strong continuity of v implies

B(Er(a) = / b(re(z)) dpu() > 0.

lel
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2.4. Fundamental results for irreversible x-commutative dynamical systems

Proposition 2.4.8. F is the closed linear span of (fspsyg)t.gec(x)pep- Fp C Fq holds

whenever ¢ € pP and hence F = UpeP

Proof. Clearly, every element fsps,g is fixed by 7. Conversely, if a € F, we can approx-
imate a by finite linear combinations of elements fis), sy g; according to Lemma 2.4.5.
Relying on the conditional expectation E; from Lemma 2.4.7, we know that it suffices to
take those fisp, sy gi satisfying p; = ¢;.

If ¢ € pP holds true, then we can employ (IV) for p~1q to deduce Fp C Fy. The last
claim is an immediate consequence of this. ]

The next observation and its proof are based on [EV06, Proposition 7.9].

Proposition 2.4.9. For p € P, the subalgebra F,, of F satisfies

Fp = span{fsysyg| f,g € C(X)}
and

(Fp)v = Span{f5p3;f| feCX)}
Proof. The right hand side of the first equation is multiplicatively closed as

(I1),(1)
Jispspg1 faspspge - = f1Ep(91f2)8ps,92-

Let a € Fp,e > 0 and choose m € N and fi, gr € C(X),1 <k < m such that

m
1Y frspsigr — all <e.
k=1
Pick (vi)1<i<n coming from a suitable partition of unity of X for 6, as in Lemma 1.3.9.
In other words, the family (;)1<i<y, satisfies (IV) from Definition 2.4.1. Then we obtain

n

m
kzl Tespspgr = Z:l iSpSpVi Z Tkspspgr Z VjSpSyV;
= = : ]_

n
= Z i,j ViSpSply,

2 summands suffice to approximate a up to

where hij = > cpem Ep(vifr) Ep(grvj), so n
E.

For the second part, let a € (F,)4+. Then a = b*b holds for some b € F,,. From the
first part, we know that b = > fispsyg; for some m € N and suitable f;,g; € C(X).

Therefore,

m
= " Gnsididisnsior = D G050
ij=1 b=l

Recall that E, : C(X) — op(C(X)) is a conditional expectation and hence completely
positive, see [BO08, Theorem 5.9]. Thus (fif;)ij € Mu(C(X))+ implies that there is

95



2. C*-ALGEBRAS FOR IRREVERSIBLE SEMIGROUP DYNAMICAL SYSTEMS

¢ = (Cij)i<ij<m € Mp(Ep(C(X))) satistying (Ep(ﬁfj)))lgi,jgm = c*c. Setting hy =

m

1 op(cki)gi for 1 < k < m, we obtain

QI

m
: Z%% SpSp3;

! ( 2 gﬁm) (jf)l ijgj)
e

kSpSy *Re.

|
I MS I MS kﬁ M3

O]

We need some results related to finite index endomorphisms. Since we do not assume
that the reader is familiar with this notion, we shall recall it briefly and state the required
results without proofs from [Exe03b]:

Definition 2.4.10 ([Wat90, 1.2.2,2.1.6], [Exe03b, 8.1]). Let A be a C*-algebra. A pair
(a, F) consisting of a #-endomorphism « of A and a conditional expectation A £, a(A)
is said to be a finite-index endomorphism, if there are v1,...,v, € A such that

Z viE(vja) = a for all a € A.

1<i<n

Remark 2.4.11. Concrete examples of this situation are provided by regular surjective
local homeomorphisms n of compact Hausdorff spaces X, see Section 1.4. In this case,
we have A = C(X), a(f)(x) = f(n(z)) and E = a o L, where L is the natural transfer
operator constructed in Example 1.3.6. To see this, observe that the requirement in
Definition 2.4.10 is nothing but the reconstruction formula established in Lemma 1.3.9.
From this perspective, finite-index endomorphisms can be thought of as irreversible C*-
dynamical systems (A, a, E') that admit a finite Parseval frame.

The following proposition is a reformulation of some results from [Exe03b] in terms of the
terminology used within this exposition.

Proposition 2.4.12 ([Exe03b, 8.6,8.8]). The map Es : F — C(X) given by fsps;g —
Np_l fg is a conditional expectation. Moreover, it is the only conditional expectation from
F to C(X) as the latter is commutative.

As a straightforward consequence of Proposition 2.4.12 and Proposition 2.4.9 we get:

Corollary 2.4.13. The map G := Es o0 E is a conditional expectation from O[X, P, 0] to
C(X), whose restriction to F, is faithful for all p € P.
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2.4. Fundamental results for irreversible x-commutative dynamical systems

Proof. By Proposition 2.4.9, every element a € (Fp,)+ is of the form a = Y | fisps,, fi for
suitable n € N and f; € C'(X). Then

0=G(a)=N," > |
=1

implies f; = 0 for all 4, so @ = 0. Thus G is faithful on F),. O

Although the conditional expectation G from Corollary 2.4.13 may fail to be faithful, it
satisfies the following weaker condition, which turns out to be useful in the proof of the
main result Theorem 4.1.9.

Lemma 2.4.14. Ifa € O[X, P, 0] satisfies G(bab*) =0 for allb € F, then a = 0.

Proof. Let us assume a € F at first and suppose G(bab*) = 0 holds for all b € F. This
implies G(bac) = 0 for all b,c € F as

G(bac)| < G(bacc*ab*)? < |lazc|G(bab*)2 = 0.

For a #0, I :={d € F| G(bdc) = 0 for all b,c € F} is a non-trivial ideal in F. By F =
UpeP Fp, see Proposition 2.4.8, it follows that I N JF, # 0 for some p € P, so there is some
d € (Fp)+ \ {0} such that G(d) = 0. But Proposition 2.4.9 shows that d = Y1 | fispsy f;
for some n € N and suitable f; € C(X), so 0 = G(b) = N, ' >, |fi|? # 0 yields a
contradiction. Thus, we conclude that, for a € Fy, G(bab*) = 0 for all b € F implies
a =0. Now let a € O[X, P, 0]+ be arbitrary. Then

0= G(bab*) = G o E1(bab*) = G(bE1(a)b") for all b € F,

so Ei(a) = 0 by what we have just shown. But this forces a = 0 since E; is faithful
according to Lemma 2.4.7. O
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Chapter 3

Product systems of Hilbert
bimodules over discrete semigroups

In this chapter we will present an alternative construction of the C*-algebras O|G, P, 0]
and O[X, P, 0] as the Cuntz-Nica-Pimsner algebras of discrete product systems of Hilbert
bimodules over P which arise in a natural way from (G, P,0) and (X, P, 0), respectively.
Discrete product systems of Hilbert bimodules have been used extensively to construct
and study more general C*-algebras in the spirit of [Pim97], see [Fow99, Fow02, Yee07,
SY10,HLS12,FPW13]. But there are also connections to von Neumann algebras, see for
instance [Sol06].

The product systems we will construct for irreversible algebraic dynamical systems
(G, P,6) admit a coherent system of orthonormal bases in which the orthonormal basis
of the p-th fiber corresponds to G/6,(G). Hence this orthonormal basis is finite if and
only if 0,(G) has finite index in G. Using this feature, we show in Theorem 3.3.4 that the
Cuntz-Nica-Pimsner algebra of the product system associated to (G, P, #) coincides with
the algebra O[G, P, 6] from Definition 2.2.1.

Interestingly, the framework of product systems allows us to treat irreversible -
commutative dynamical systems of finite type in a similar manner. However, we are
forced to work with Parseval frames instead of orthonormal bases (on the fibers of the
product systems) because the use of partitions of unity subordinate to suitable open covers
of X does not produce orthogonal elements, unless we can choose the covers to consist
of clopen (disjoint) sets. Nevertheless, there is sufficient structure to show that, also in
this case, O[X, P, 6] is canonically isomorphic to the Cuntz-Nica-Pimsner algebra of the
product system of Hilbert bimodules associated to (X, P, 6). This is established through
Theorem 3.3.7.

For convenience, we start with a short summary of the relevant ideas and facts con-
cerning product systems of Hilbert bimodules over discrete semigroups. Most of these
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3. PRODUCT SYSTEMS OF HILBERT BIMODULES OVER DISCRETE SEMIGROUPS

results are true in greater generality, but we will reduce our exposition to a minimal
level for the sake of brevity. The interested reader may find a profound introduction to
Hilbert bimodules in [Lan95]. For more details about discrete product systems of Hilbert
bimodules, we refer to [Fow02,SY10, HLS12].

3.1 Product systems with orthonormal bases

Unless specified otherwise, let A be a unital C*-algebra and P a discrete, left cancellative,
commutative monoid with unit 1p. There is a natural partial order on P defined by p < ¢
if ¢ € pP and we will assume P to be lattice-ordered with respect to this partial order.
That is to say, for p,q € P there exists a unique least common upper bound p V g € P.
Hence, there is also a unique greatest common lower bound pAq = (pV q) ~!pq for p and q.
In particular, this condition forces P* = {1p}. We point out that all these requirements
are satisfied for countably generated, free abelian monoids.

Definition 3.1.1. A right pre-Hilbert A-module is a C-vector space ‘H equipped with
a right A-module structure and a bilinear map (-,-) : H x H — A, which is linear in
the second component, such that the following relations are satisfied for all £, € ‘H and
a € A:

(1) &na) = Ena 2) &n)" = 09

(3) && =0 4) ¢ = 0=¢=0
A right pre-Hilbert A-module H is said to be a right Hilbert A-module if it is complete
with respect to the norm ||£|| = || (£, ) Hi H is called a Hilbert bimodule over A if, in

addition, there is a left action of A given by a *-homomorphism ¢4 : A — L(H), where
L(H) denotes the C*-algebra of all adjointable linear operators from H to H.

Examples 3.1.2.
(a) Every Hilbert space H is a Hilbert bimodule over C.

(b) If A is a C*-algebra, we can form the trivial Hilbert bimodule H = ;34;q over A with
inner product given by (a,b) = a*b. Here A acts from both sides by multiplication.

(c) If A is a C*-algebra and o € Aut(A), then replacing the left action of (b) by
¢(a)(b) = a(a)b yields a Hilbert bimodule H = ,4;q. Pimsner showed in [Pim97]
that this Hilbert bimodule serves as a model to construct the crossed product A x,Z.

(d) Let X be a compact Hausdorff space, n : X — X a regular surjective local home-
omorphism for which the induced injective x-endomorphism of C'(X) is denoted by
a. Then we can construct a Hilbert bimodule H = ;4C(X), over C(X) as follows:
Starting with C'(X), we define an inner product (f,g) := L(fg) for all f,g € C(X),
where L denotes the transfer operator for «, see Example 1.3.6. It is clear that
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3.1. Product systems with orthonormal bases

fe \|L(|f|2)H% is actually a norm on C'(X). Due to [LR07, Lemma 3.3|, this norm
is equivalent to the standard norm || - ||oc. Hence, C'(X) is already complete with
respect to this norm. The left action is given by multiplication whereas the right
action is defined as f.g = fa(g) for f,g € C(X).

Definition 3.1.3. Let H{ be a right Hilbert module over A. For &,n € H, O¢, € L(H),
given by O¢ ,(¢) = &. (n, () for ¢ € H, is said to be a generalized rank one operator.

The closed linear span of (O¢ ;) inside L(#H) is called the C*-algebra of generalized

EneH
compact operators C(H).

Lemma 3.1.4. Let H be a right Hilbert module over A. K(H) is an ideal in L(H).

Proof. Given T € L(H) and £, n € H, one readily verifies
TO¢y = Or(g),n and O¢yT' = O¢ 1+ (s,

where we use the inner product (-,-) to observe that T'(§.a) = T'(£).a holds for all a € A.
Since K(H) is the closed linear span of its generalized rank one operators, this concludes
the proof. O

The next lemma is a standard fact whose proof can be found in [Lan95, Proposition 4.5].

Lemma 3.1.5. Suppose Hi and Ho are Hilbert bimodules over A whose left and right
actions are denoted by ¢1, ¢ and p1, p2, respectively. Then

([61 ® &l [Im @ ml)ri@ars = (§2, 92((€1, m)1)m2)2

defines an inner product on (H1 ® Ha)/ ~, where & ® & ~ n1 @ 1o if there exists a € A
such that & = ¢a(a)ne and n1 = &1p1(a). The completion of (H1 ® Ha)/ ~ with respect to
the norm induced by this inner product can be equipped with left and right actions induced
from @1 and po, respectively, yielding a Hilbert bimodule Hq @4 Ho.

This Hilbert bimodule is called the balanced tensor product of H; and Hy over A.

Definition 3.1.6. Let A be a unital C*-algebra. A product system of Hilbert bimod-
ules over P with coefficients in A is a monoid X together with a monoidal homomorphism
p: X — P such that:

(1) &, := p~Y(p) is a Hilbert bimodule over A for each p € P,
(2) X1, = igAiq as Hilbert bimodules and

(3) for all p,q € P, we have X, ®4 X; = Xpq if p # 1p, and X1, ®a X, = ¢4(A) AL
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3. PRODUCT SYSTEMS OF HILBERT BIMODULES OVER DISCRETE SEMIGROUPS

Remark 3.1.7.
a) Alternatively, one can describe a product system over P as a family of Hilbert
bimodules (&X}),cp such that X, = jgdiq together with multiplication maps M, 4 :
Xy x Xy — &)y for p,q € P satisfying several conditions forcing it to implement
the isomorphism from Definition 3.1.6 (3). In the definition, these maps are given
implicitly by the monoid structure of X. Associativity of X can therefore also be
expressed as

Mpgr o (Mpg® 1d,) = My gr 0 (Id, @ Mg,) for all p,q,r € P.

b) Note that the maps M, 1, from a) are always isomorphisms of Hilbert bimodules
whereas M, , need not be one since its image equals ¢,(A)X,. But if ¢,(A)X, is
all of &}, M1, p is an isomorphism and X, is said to be essential, see [Fow02]. This
is for example the case, if X, = ;3A4 since AA = A. More precisely, as we only deal
with unital coefficient algebras, this is the case if and only if ¢,(14) = 1. x,) holds.

¢) The multiplicative structure of X yields x-homomorphisms

Pq

LX) T L(X)
T - T®id)(q

for all p, g € P, where we have identified X, ® 4 X, with X,,. According to b), ¢} is
an isomorphism whereas LlP is an isomorphism if and only if A}, is essential.

Example 3.1.8. For every Hilbert bimodule H over A, there is a product system X of
Hilbert bimodules over N given by Xy = A and X, = X,,_1 ® 4 H for n > 1.

Ezample 3.1.9. The maps (5 introduced in 3.1.7 ¢) need not map generalized compact
operators to generalized compact operators. Consider for example the trivial case of
A = C acting by multiplication on the fibers X, = H, where H is a separable, infinite-
dimensional Hilbert space (equipped with a suitable product structure obtained from
bijections N2 — N): L’{P is determined by the projection L’l'P(l) = 1(x,) Which is infinite
and hence non-compact.

There is a less restrictive requirement called compactly alignedness, which has been intro-
duced for product systems over quasi-lattice ordered groups to avoid a certain pathology
for the representation theory of product systems, see [Fow99, Example 1.3]. Recall that
whenever two elements of the indexing semigroup have a (least) common upper bound,
one can make sense of products of compact operators living on the two respective fibers
using the maps ¢} from Remark 3.1.7. Compactly alignedness asks for these products to
be compact again. This regularity property is commonly used as a standing hypothesis
that can be transferred to requirements on the initial data in most situations studied so
far, see for instance [Fow02, FPW13, HLS12,SY10].
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3.1. Product systems with orthonormal bases

Additionally, we would like to mention that there is a notion of compactly alignedness
for topological k-graphs, see [Yee07]. It is shown in [CLSV11, Proposition 5.15] that the
product systems naturally associated to topological k-graphs are compactly aligned if and
only if the topological k-graphs are compactly aligned.

Definition 3.1.10. A product system of Hilbert bimodules X over P is called compactly
aligned, if: For all p,q € P and k, € K(X}), kq € K(X;), we have

Lg\/‘I(kp)Lg\/q(k‘q) = (kp®1£(/¥(p/\q)*1q))(kq®1L(X(p/\q)*1p)) S ]C(Xp\/q).

We will now proceed with stronger notions of regularity, namely the existence of a coherent
system of finite Parseval frames or even a coherent system of orthonormal bases for product
systems of Hilbert bimodules. This concept has been studied to some extent in [HLS12].

Definition 3.1.11. Let H be a Hilbert bimodule over A and (§;);e; C H. Consider the
following properties:

(1) <§,,§]> = (Sile for all Z,j cl.

(2) n= ZI&- (&) for all n € H.
i€
If the family (&;);er satisfies (2), it is called a Parseval frame for H. It is said to be an
orthonormal basis for A, if (1) holds in addition to (2).

Remark 3.1.12.

a) Equation 3.1.11 (2) is known as the reconstruction formula. Parseval frames play
an important role in the theory of wavelet analysis, see for instance [LRO7] and
the references therein. As noted in [LR07, Section 4], many Hilbert modules admit
Parseval frames without allowing for an orthonormal basis. In fact, this will be
the generic case for the Hilbert bimodules arising from the dynamical systems of
Section 1.3, as we will see in Section 3.3.

b) Every Hilbert bimodule which has a finite (countable) orthonormal basis is a finitely
(countably) generated Hilbert bimodule.

Exzample 3.1.13. In contrast to the case of orthonormal bases of a Hilbert space, the car-
dinality of an orthonormal basis of a Hilbert bimodule is not an invariant of the bimodule.
As a toy example, take A = C ([-2, —1] U [1,2]) and let H = ;44,4 as in Example 3.1.2 (b).
Then {1} and {x[—2,—1], X[1,2]} are both orthonormal bases for H.

Lemma 3.1.14. Let H be a Hilbert bimodule. If (&;)icr C H satisfies 3.1.11 (1), then
(egiﬁﬁj)ijel is a system of matrix units in KK(H). If (&)ier C H satisfies 3.1.11 (2) and I
is finite, then Y 1" | O¢, ¢, = 1r(3) holds and hence K(H) = L(H).
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3. PRODUCT SYSTEMS OF HILBERT BIMODULES OVER DISCRETE SEMIGROUPS

Proof. 3.1.11 (1) directly implies that (GEivfj)z‘ ier is a system of matrix units. The recon-
struction formula 3.1.11 (2) shows that (3,cp @ghgi)FC[ finite
Thus, if I is finite, we have Y 1" | O¢, ¢, = 1) and the last claim follows since K(H) is

an ideal in £(H) by Lemma 3.1.4. O

converges strongly to 1 LH)-

Remark 3.1.15. A useful aspect of Parseval frames of Hilbert bimodules is that they are
well-behaved with respect to the balanced tensor product: If H; and Hs are Hilbert bimod-
ules over A with Parseval frames (&;)ier and (n;);es, respectively, then (& @ n;)q jyerxs
is a Parseval frame for H; ® 4 Ha, where we refer to [LRO7, Lemma 4.3] for a detailed
proof. Therefore, a product system X of Hilbert bimodules over P is a product system
with Parseval frames if and only if &}, admits a Parseval frame for each irreducible p € P.
Here p € P is said to be irreducible if p = gr for ¢, € P implies ¢ = 1p or r = 1p. The
same statements hold for orthonormal bases instead of Parseval frames.

Remark 3.1.16. Suppose X is a compact Hausdorff space and 61,05 : X — X are
commuting regular surjective local homeomorphisms with |07 (2)] = Ny and |65 *(x)| =
Ny (where x € X is arbitrary). For i = 1,2, denote by a; the endomorphism of C'(X) given
by f+ fo6;. Asin Lemma 1.3.9, let us choose partitions of unity (v1,)icr, and (v2;)icr,
subordinate to finite open covers Uy = (U1 )ier, and Us = (Uz;)icr, of X for 61 and 65,
respectively. By Lemma 1.3.9, we know that each of these partitions of unity gives rise to
a Parseval frame (v ;;)i;er; with v, := (vaj,ij)% of the Hilbert bimodule C(X),,, which
is equipped with the inner product coming from the transfer operator L; as constructed
in Example 1.3.6. Taking into account [LR07, Lemma 4.3], it is no surprise that (v1,)ier,
and (v2;)icr, yield a Parseval frame on the balanced tensor product of the two modules,
i.e. on C(X)aa,- Interestingly, Lemma 1.3.10 indicates that this Parseval frame is again
of the same form: We can construct a partition of unity (vi,,a1(v2,,))izer iser, for X
from (v1;)ier, and (ve,i)icr, which fits into the picture of Lemma 1.3.9 for 6;6,.

For product systems of Hilbert bimodules, it may seem reasonable to ask for a system
of (bilateral) orthonormal bases for the fibers that respect the semigroup structure on X
inherited from P. This point of view is behind the definition of finite type systems given
in [HLS12, Definition 3.5]. However, there is a problem arising from the commutativity
of P: If we take p,q € P, then X, ®4 X; = Ay = &, ®a &), implies the existence of an
isomorphism of Hilbert bimodules 7,4, : &, ®4 X; — &; ®4 A),. If we fix orthonormal
bases (&;)icr, and (1;)jer, of &, and Ay, respectively, we can either take the orthonormal

basis (&in;)icr,,je1, for Xpg coming from M, , : X, ®4 X, = Xpq or (nj&i)ier, jer, coming
from My ) : X, ®4 &), = Xpq. But these two families need not match in general, as the
following easy example shows.

Ezxample 3.1.17. Let A = C*(Z) = C*((ug)gez), P = |2,3) C N* and P A A be given
by ap(ug) = upg. Then &), := A,, with inner product (ug, up)p = Xpz(h — g)up-1(h—g)
defines a product system of Hilbert bimodules X over P. For fixed p € P, an orthonormal
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basis of X}, is easily obtained by taking the unitaries corresponding to a transversal for
Z|pZ, i.e. (ug)gez/pz- Let us consider p =2 and ¢ = 3. If we pick {0,1} and {0, 1,2} as
transversals for Z/27Z and Z/3Z, respectively, both Mj 3 and Mz o yield {0,...,5} as the
output transversal for A},,. However, if we choose {1, 2,3} instead of {0, 1,2} for ¢, we get
{2,...,7}and {1,...,6}. Thus, the two induced orthonormal bases of X, do not match.

In view of this example, the original definition for product systems of finite type proposed
in [HLS12, Definition 3.5] seems to be too restrictive. Product systems arising from irre-
versible algebraic dynamical systems (G, P, 6), defined in Definition 1.1.5, will be tractable
using this stronger notion if G contains a positive cone that is invariant under the action
6. This is the case in the previous example (N C Z) and we have seen that we do get a
system of finite type in the sense of [HLS12, Definition 3.5] if we choose the representatives
in a minimal way within the positive cone of G. But this rules out cases with mixed signs,
e.g. P =|—-2,3), and indicates that the choice of orthonormal bases on the fibers with
irreducible index, if possible at all, has to be performed with care. That is why we will
use a weaker notion of product systems of finite type:

Definition 3.1.18. A product system of Hilbert bimodules X over P with coefficients in
a unital C*-algebra A is called a product system of finite type if there exists a finite
Parseval frame for X, for each irreducible p € P.

Remark 3.1.19. If X is a product system of finite type, then each fiber A}, has a finite
Parseval frame by applying Remark 3.1.15 to a decomposition of p into irreducible elements
(with multiplicities). Thus there exists a monoidal homomorphism N : P — N* which
sends p to the cardinality N, of the specified orthonormal basis for Aj,.

Obviously, Lemma 3.1.14 implies that X is compactly aligned. Fowler pointed out in
[Fow99] that X" is compactly aligned whenever all the fibers X}, are finite-dimensional.

3.2 Representations and C*-algebras for product systems

In this section, we recall some elementary facts about the representation theory for product
systems of Hilbert bimodules in order to present the construction of the Cuntz-Nica-
Pimsner algebra for compactly aligned product systems of Hilbert bimodules.

Definition 3.2.1. Let X be a product system over P and suppose B is a C*-algebra.
A map X —%5 B, whose fiber maps A&, — B are denoted by ¢, is called a Toeplitz
representation of X, if:

(1) o1, is a x-homomorphism.

(2) pp is linear for all p € P.

(3) wp(&) wp(n) = @1, ((§,m)) for all p € P and §,n € &),.
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3. PRODUCT SYSTEMS OF HILBERT BIMODULES OVER DISCRETE SEMIGROUPS

(4) ©p(§)wq(n) = wpg(&n) for all p,q € P and § € &), n € A

A Toeplitz representation will be called a representation whenever there is no ambiguity.

Remark 3.2.2. Let ¢ be a representation of X in B. For each p € P, ¢ induces a
s-homomorphism (X)) Yex g given by O¢ ,, — ¢p(§)pp(n)* for £, € A,

Lemma 3.2.3. A representation ¢ of X in B is contractive, i.e. ||¢p(&)lls < ||€llx, for
all p and § € X,. Moreover, ¢ is isometric if and only if @1, is injective.

Proof. Given p € P,§ € X),, we get

(1)
len @13 = len(©) e©llz 2 o1, (€615 < 1€, €) la = lI€ll%,

Since 1, is a *-homomorphism, it is injective if and only if it is isometric. If this is the
case, then the computation from above actually gives ||, (£)(B = [|€]|x, - O

Definition 3.2.4. A representation ¢ of a compactly aligned product system X in B is
Nica covariant, if

Voop(kp) ¥, (Kg) = Vi pvg (Lqu(kp)bqu(kq))
holds for all p,q € P and k), € K(X)), k, € K(A,).

This is one particular instance where the property of being compactly aligned is needed
to ensure that i (k,)5"(k,) is actually contained in the domain of 1), ,v,. Before
we proceed with additional covariance conditions that resemble the covariance condition
originally used in [Pim97], let us look at the representation of a product system on its

Fock space, compare [Fow02, Section 2].

Ezxample 3.2.5. Suppose X is a product system of Hilbert bimodules over P with coef-
ficients in A. Let

F(X) :@ X, = { ("p)pep | Z (Np, Mp) converges in A as ' /' P, F ﬁnite}.
peP peF
One can check that F(&X') inherits the structure of a right Hilbert A-module from X" so
that the adjointable linear operators L(F (X)) form a C*-algebra. For p € P and n € &),
let e, denote the element (d,,),cp € F(X) and ne, := (ndp,)rep. For g € P and & € X,
define Yrock,q(§) to be the operator induced by multiplication in &X', i. e.

SOFock,q(f)(nep) = (§ : 77)61117'

This defines a map @poer : X — L(F(X)) and one readily verifies that @poex is in-
deed a representation of the product system X. Moreover, @po is isometric due to
[Fock,1p(a)(ae1p]| F(x) = laa*||a = |lal% and Lemma 3.2.3.
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3.2. Representations and C*-algebras for product systems

The following fact is taken from [HLS12, Subsection 2.3].

Proposition 3.2.6. The Fock representation @pocr of every compactly aligned product
system X over P is Nica covariant.

Proof. Let p,q,r € P and &,,m, € X, §;,nq € Xy and ¢ € X,.. We have to show that

17[}901705/9 :p(ggpvnp)wﬂoFock ,q (6561 sNq ) (Cer) = ¢907qu (Lqu (Gfp sMp ) L{])vq (@fq sNq )) (Ce'r) .

If r ¢ (pVqP = pPnNqP, then both sides are 0 according to the definition of the
representation @p,, in Example 3.2.5. So suppose we have r € (p V q)P. Decom-
posing ¢ = (gCa1(pvg)Sipvg)—1r Via X = Xy ®4 Xy-1(pvq) ®A Xpyg)-1, and, similarly,
®£q,nq (Cq)Cq—l(qu) = C;,)C]l,fl(pvq) yields

w‘PFockﬁD(@észﬂp)wSDFockaq(eéqmq)(geT) = ép <77p7 C;>Xp C;—l(p\/q)C(p\/q)*lreT
¢<p,p\/q(bqu(@£p,np)équ(qumq))(Cer)
This extends to all pairs of compact operators from K(&),) and IC(A). O

While Nica covariance is an outcome of having a product system instead of a single
Hilbert bimodule and its form is rather straightforward, there have been different attempts
to generalize the notion of Cuntz-Pimsner covariance from the case of a single Hilbert
bimodule to general product systems. Let us recall the covariance condition introduced
in [Pim97] using the product system picture provided in Example 3.1.8: Suppose H is
a Hilbert bimodule over a C*-algebra A and (o, 1) is a representation of H. Then we
can equally well study the induced representation ¢ of the product system X over N with
fibers X, = H®", where H®® = A. (yo, 1) is said to be (Cuntz-Pimsner) covariant, if
©o(a) = Yy n(pn(a)) holds for all a € ¢, 1 (K(X,)).

The intuitive approach to define a notion of Cuntz-Pimsner covariance for product
systems by requiring Cuntz-Pimsner covariance on each fiber has been set up in [Fow02].
In [Kat04, Definition 3.4], Takeshi Katsura introduced a weaker version: Instead of
¢y H(K(X,)), only ¢, (K(Ap)) N (ker ¢p)* is taken into account. Since the left actions
in our examples will always be injective, we will not discuss this aspect any further.

Several years later, a more involved approach of Aidan Sims and Trent Yeend led to
a potentially different notion of Cuntz-Nica-Pimsner covariance, see [SY10, Section 3.
According to [SY10], their definition is motivated by the study of graph C*-algebras and
was expected to be more suitable in the case of product systems where the left action ¢
need not be injective.

We will now present both covariance conditions for product systems and indicate what
is currently known about their connections as well as their relation to Nica covariance.
In order to avoid technicalities, we restrict ourselves to the case where the left action ¢
on each fiber X; is injective. Therefore, we can neglect the inflation process from X to X
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taking place in [SY10, Section 3]. At this point, one may expect that the two notions ought
to coincide. This is true at least to some extent, but non-trivial, see [SY10, Proposition
5.1 and Corollary 5.2].

Definition 3.2.7. Let B be a C*-algebra and suppose X is a compactly aligned product
system of Hilbert bimodules over P with coefficients in A.

(CPr) A representation X —— B is called Cuntz-Pimsner covariant
in the sense of [Fow02, Section 1], if it satisfies

Vop(dp(a)) = p1,(a) for all p € P and a € ¢, (K(X,)) C A.

(CP) A representation X —2 B is called Cuntz-Pimsner covariant
in the sense of [SY10, Definition 3.9], if the following holds:
Suppose F' C P is finite and we fix k, € K(AX},) for each p € F.
If, for every r € P, there is s > r such that

> ih(kp) =0 holds for all ¢ > s,
peF

then > ¢y,p(k,) = 0 holds true.
pEF

(CNP) A representation X —=+ B is said to be Cuntz-Nica-Pimsner
covariant, if it is Nica covariant and (CP)-covariant.

Example 3.2.8. Although we have proven the Fock representation to be Nica covariant
for compactly aligned product systems, there are lots of examples where it is far from being
(CPp)- or (CP)-covariant. Indeed, take X, = A and ¢p(14) = 1z, € K(&p). Then
E, == Yyp,np(@p(la)) defines a family of projections in L£(F (X)) with the following
properties: ¢ € pP implies E; < E,, and if, in addition, p ¢ ¢P, then E, — E, is a non-zero
projection. Note that
Eip = 0Fock1p(14) = 1(Fa))-

If we assume that ¢,(A) C K(&,) = L(A,) holds for all p € P, which is the case if we
require ¢,(14) = 1x,) for all p € P, we can obtain a (C Pp)-covariant representation from
the Fock representation by modding out the ideal generated by the family (1 — Ep)ycp.
Indeed, if we denote the corresponding quotient map by m and pick a € A, then

™o @Fock,lp(a) = 7I-(<70Fock,113(a))7-(-(15(.7:(9")))
= 7I'(SDFock,lp (a))ﬂ-(Ep)
- wWO<PFock7P(¢P(a))'

When Aidan Sims and Trent Yeend introduced their notion of Cuntz-Pimsner covariance,
they observed that their version is closely connected to the one proposed by Neal J. Fowler,
compare [SY10, Proposition 5.1]:
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Proposition 3.2.9. Suppose X is a product system over P with coefficients in a unital C'*-
algebra A such that the left action ¢, on X, is injective for all p € P. If a representation ¢
of X is (CPp)-covariant, then it is (C'P)-covariant. If the left action ¢,(A) is by compacts
for all p € P, then the converse holds as well.

In some instances, (C Pp)-covariance is known to imply Nica covariance. The result we
are going to use is due to Fowler and we refer to [Fow02, Proposition 5.4] for a proof.

Proposition 3.2.10. If X is a product system over P with coefficients in a unital C*-
algebra A such that ¢p(1a) = 1z(x,) € K(&p) for allp € P, then X every (CPr )-covariant
representation is also Nica covariant.

Corollary 3.2.11. If X is a product system of finite type, then a representation ¢ of X
is (CNP)-covariant if and only if it is (C Pr)-covariant.

Proof. The result follows from Lemma 3.1.14 together with Proposition 3.2.9 and Propo-
sition 3.2.10. I

We are now ready to associate three C*-algebras to X’ as universal objects corresponding

to the different classes of representations.

Definition 3.2.12. For a compactly aligned product system X over P define Ty to be
the C*-algebra given by a Toeplitz representation ¢y, of X’ that is universal for Toeplitz
representations. In other words, if X s Bisa Toeplitz representation, there is a *-
homomorphism @ : Ty — C*(y) yielding a commutative diagram

Te

Similarly, define N7y and Oy to be the C*-algebras obtained from a universal Nica-
covariant representation ¢pzr7, and a universal Cuntz-Nica-Pimsner covariant representa-
tion 1o, respectively. Ty, NTx and Oy are called the Toeplitz algebra, the Nica-
Toeplitz algebra, and the Cuntz-Nica-Pimsner algebra associated to X.

Remark 3.2.13.

a) NT y is always non-trivial because Example 3.2.5 shows that the Fock representation
is an isometric, Nica covariant representation. Additionally, following [HLS12, Re-
mark 4.8], the homomorphism @y, : NTx — L(F (X)) arising from the universal
property of N'T y is faithful if the left action on each fiber is by compacts. Hence,
NT x is isomorphic to a C*-subalgebra of L(F(X)) in this case.
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b) By their universal properties, Oy is a quotient of N'T x, which in turn is a quotient
of Ty.

c) This construction is a generalization of the original construction of Mihai Pimsner
in [Pim97] as we can see by appealing to Example 3.1.8. It is not hard to show that
we have Ty = Ty & N Ty and Oy = Oy. Conversely, given a product system X
over N, we have Ty 2 NT x = Tx, and if the left action on each fiber is isometric
or by compacts, then Oy = Ox, holds as well, see [Fow02, Proposition 2.11] for
details. We note that all these isomorphisms are canonical.

d) In addition to c), the class of Cuntz-Nica-Pimsner algebras also includes crossed
products of unital C*-algebras by more general groups than Z. Moreover, given
an action of an abelian monoid P on a non-unital C*-algebra A by endomorphisms
that are extendible to its multiplier algebra M (A), there is a suitable mean to obtain
analogous objects, see [Larl0] for details.

The following lemma is a well-known fact resulting from [Fow02, Proposition 5.10]:

Lemma 3.2.14. Suppose X is a compactly aligned product system over P. Then

TX = Span {LTX7P(§)LTXaQ(n)* ’p7q € P7€ € Xp7n € Xq}7
NTx = 3pan {LNTX,P(OLNTX,(](”)* |p,q € P§ € Xp,m € Xq}a
and
OX = span {L(’)X,p(€>[‘ox7q(n)* ’ p,q € P7§ € Xp777 € Xq}

hold.

Proof. It suffices to prove the lemma for the Toeplitz algebra. In fact, we only have to show
that the right hand side is multiplicatively closed since it is a self-adjoint, closed linear
subspace and its elements generate Ty as a C*-algebra. But this last part is provided by
[Fow02, Proposition 5.10]. O

3.3 Applications for irreversible semigroup dynamical
systems

This section is designed to build the bridge to the first two chapters by providing a
product system of Hilbert bimodules for both irreversible algebraic dynamical systems
(G, P,0) and irreversible x-commutative dynamical systems (X, P,6). The features of the
dynamical systems (G, P,0) and (X, P,#) from Section 1.1 and Section 1.3, respectively,
result in particularly well-behaved product systems X. Therefore, it is possible to obtain
a concrete presentation of Oy in a natural way from the data of the dynamical system.
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In the case of irreversible algebraic dynamical systems of finite type, this algebra is shown
to be isomorphic to O[G, P, 0] as introduced in Definition 2.2.1.

The corresponding result in the general case, that is, allowing for the presence of group
endomorphisms 6, of G with infinite index, requires a more involved argument. The reason
is that the prerequisites for Corollary 3.2.11 are not met, so one has to deal with Nica
covariance of representations. Here, we will only outline the strategy of the proof since
this is more closely related to the Nica-Toeplitz algebra NTy. Moreover, we will only
need the results for finite type systems for the application in Chapter 4. In the case of
irreversible *x-commutative dynamical systems of finite type, we recover the C*-algebra
O[X, P, 0] from Section 2.4.

Proposition 3.3.1. Suppose (G, P,0) is an irreversible algebraic dynamical system. Let
(ug)geq denote the standard unitaries generating C*(G) and P A C*(G) be the action in-
duced by 0, i.e. ay(ug) = ug,(g) forp € P andg € G. Then &), := C*(G)a,,, with left action
¢p given by multiplication in C*(G) and inner product (ug, un)p = Xg,(q) (g_lh)ue;l(g,lh)
is an essential Hilbert bimodule. The union of all X, forms a product system X over P
with coefficients in C*(G). X is a product system with orthonormal bases. It is of finite
type if (G, P,0) is of finite type.

Proof. 1t is straightforward to show that X defines a product system of essential Hilbert
bimodules and we omit the details. For p € P, we claim that every complete set of
representatives (g;)icr for G/6,(G) gives rise to an orthonormal basis of ). Indeed, if
we fix such a transversal (g;)ic; and pick g € G, then (ug,, ug)p = Xg,(c) (g{lg)u951(g;1g)
equals 0 for all but one j € I, namely the one representing the left-coset [g] in G/6,(G).
Thus, the family (ug,)ic;r C X, consists of orthonormal elements with respect to (-, -)p,

and
g, ((tg;, ug)) = dijug,

s0 (ug,)icr satisfies the right reconstruction formula from 3.1.11 (2). O

Remark 3.3.2. If (G, P,0) is an irreversible algebraic dynamical system and X denotes
the associated product system from Proposition 3.3.1, then we have already seen in the
proof of Proposition 3.3.1 that &, has a finite orthonormal basis if [G : ,(G)] is finite.
Since the left action is given by left multiplication, in other words, the elements of C*(G)
act as diagonal operators, we have

C*(G), if [G:0,(G)] is finite,

0, else.

¢ (K(X,)) = {

Lemma 3.3.3. Suppose (G, P, 0) is an irreversible algebraic dynamical system and X de-
notes the associated product system from Proposition 3.3.1. Then the rank-one projection
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Ouyu, € K(AXp) depends only on the equivalence class of g in G/0,(G). Moreover, if o is
a Nica covariant representation of X, then

wip,p(@ugl yUgq )¢¢7Q(@Ug2 yUgo )

_ {%pvq(@ugg,ugg) if 9192 = 0p(93)04(g4) for some g3, 91 € G,

0 else.
holds for all 1,92 € G and p,q € P.
Proof. If g1 = g8p(g2) for some go € G, then
@Ugl sUgq (uh) = Xep(G) (Qp(ggl)g_lh)uh = XGP(G) (g_lh)uh = ®Ugyug (uh)
for all A € G and hence ©

implies

Ugy g, = Ou,,u,- For the second claim, Nica covariance of (o,

w@»p((augl yUgq )¢@7q(®“92 7“92) = w@yp(Lqu(@ugl sUgq )Lqu(@ugg yUgo ))
If we denote p' := (p Aq)"'p and ¢’ := (p A q¢) g, then
v _
Lg q(®“91 7“91) - Z 9“91%(93)’“919;;(573) < ﬁ(Xp\/q)
l93]€G/0,(G)

and

pVq _
Lq (@“52’“92) - Z @“920(1(94)’%2%(94) € E(vaq)
l94]€G/0,/(G)

hold. We observe that

uglgp(g3)’u919p(93)@u926q(94)’u926q(94>
is non-zero if and only if [g10,(g3)] = [9204(94)] € G/Opve(G). In particular, this is always
zero if g7 ga & 0,(G)0,(G). Let us assume that there are gs, ..., gs € G such that

0p(95 )91 ' 9204(94) = Opvg(gr)
and

0p(95 )91 ' 9204(96) = Opvq(gs)-
Rearranging the first equation to insert it into the second, we get
—1 -1
Op(95 " 93)0pvq(97)04(91 " 96) = Opva(gs)-

By injectivity of 6,4 this is equivalent to

O (95 " 93)0png)-1 (pva) (97) 0 (97 96) = O(prg)—1 (pve) (98)-

From this equation we can easily deduce g5 lgs € 6, (G) and g;l g6 € 0 (G) from inde-
pendence of 6,y and 6y, see Definition 1.1.5 (C). Thus, if there are g3, g4 € G such that
0,(95 )97 1 9204(g4) € Opvqe(G), then they are unique up to 6, (G) and 6, (G), respectively.
This completes the proof. O
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Theorem 3.3.4. For an irreversible algebraic dynamical system of finite type (G, P,0),
let X be the product system of Hilbert bimodules over P with coefficients in C*(G) from
Proposition 3.3.1. Then the map

O[G,P,o) X O
UgSp Lo p(Uyg)
18 an isomorphism.

Proof. The idea is to exploit the respective universal property on both sides. We begin
by showing that (10,15 (ug))gec is a unitary representation of G and (10 p(lo+(a)))pep
is a representation of the monoid P by isometries satisfying (CNP 1)-(CNP 3), compare
Definition 2.2.1. 10, 1, is a *-homomorphism, so we get a unitary representation of G.
In addition,

oxp(lew@) toxp(lew@) = toxap({lew@) lew@))p)
= 1ox1p(lcx@) = lox
and
Lo p(lox(@))tora(lox @) = toxpa(lexa)ap(lox(@))) = Loxpe(lo+(@))
show that we have a representation of P by isometries. (CNP 1) follows from
Lox.p(1e(6))tox 10 (Ug) = 102 p(Us, () = tOx.1p(Ug,(g)) L0 p(1e+(c))-

Let p,q € P and g € G. Then (CNP 2) follows easily from applying Lemma 3.3.3 to

Loxp(Low(@)) 10w 15 (Ug)tor,q(1o+ ()
= Lox,p(lc*(G))*¢LoX 7:0(@1,1)1/’@)( ,q(@ug,ug)LOX,q(ug)-

Finally we observe that

LOx,1p (ug)boxvp(lC*(G))Loxvp(lC*(G))*[’OmlP (uy)* = wbox 710(9%771;;)
and the computation

wbox,p(@ug,ug) = @Z’Lox,p(lﬁ(;\’)) = @Z’Lox,p(gbp(lc*((})))
[91€G/0p(G)

ox1p(lev@) = loy

yield (CNP 3). Thus, ¢ : O[G, P,0] — Ox defines a surjective x-homomorphism. For
the reverse direction, we want to show that

x =X 0GP

§pg T UgSp
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defines a (CNP)-covariant representation of X', where , ; denotes the representative for ug
in &},. To do so, we have to verify (1)—(4) from Definition 3.2.1 and the (CNP)-covariance
condition. (1) and (2) are obvious. Using (CNP 2) to compute

ponpp(Ep.a) Ponpp(Epg) = Spug-1,Sp

-1
= Xoy(©) (91 92)ug; (g g,)
- (PCNP,IP(<£P,917£}7,Q2>)7

we get (3). (4) follows from (CNP 1) as

SOCNP,p(gp,gh)‘PCNP,q(gq,gz) = Ug, SplgySq

= Ugi16,(g2)5pa

= ponPpe(Ep.giap(€ag:))-

Thus, we are left with the (CNP)-covariance condition. But since & is a product system
of finite type, see Proposition 3.3.1, we only have to show that ¢conp is (CPg)-covariant
due to Corollary 3.2.11. Noting that ¢, 1 (K(A,)) = C*(G) for all p € P, we obtain

wSOCNP,p(QZ)p(ug)) = wsﬁcmap( > @ug}uuh>
[R] (@)

€G/0,

= Uy > €h,p

[Rl€G/0,(G)
= Ug = PCNP,1p (gleg)'

Thus, ponp is a (CNP)-covariant representation of X'. By the universal property of Oy,
there exists a x-homomorphism @oyp : Ox — O[G, P, 0] such that $oypoto, = ponp-
It is apparent that ¥ xp and ¢ are inverse to each other, so ¢ is an isomorphism. O

Remark 3.3.5. For irreversible algebraic dynamical systems (G, P, #) that are not of finite
type, that is, there is some p € P such that 6,(G) has infinite index in G, it is still true that
Ox and OIG, P,0] are canonically isomorphic. However, the proof requires more work.
The reason is that Corollary 3.2.11 is not available in this situation. There is a proof
which reveals a close connection between Nica covariance, (CNP 2), and independence
built into (G, P, 0) by showing that Nica covariance boils down to its original form, see
[Nic92]: A representation ¢ of the product system X" for (G, P, ) is Nica covariant if and
only if o, (1c+(e)) and ¢4(1o+()) are doubly commuting isometries whenever p and ¢ are
relatively prime in P. As this is more closely related to N7y and will be addressed in
a forthcoming project of the author in collaboration with Nathan Brownlowe and Nadia
S.Larsen, we will not carry out the details here. Still, the interested reader may find
further hints for a proof along these lines within the proof of Theorem 3.3.7.
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In a similar fashion as in Proposition 3.3.1, we can construct a product system for a system
of x-commuting transformations as presented in Section 1.3:

Proposition 3.3.6. Suppose (X, P,0) is an irreversible x-commutative dynamical system
of finite type and P A~ C(X) is the action induced by 0, i.e. ap(f) = fob), forp € P and
[ e€C(X). Then X, := C(X)a,, with left action ¢, given by multiplication in C(X) and
inner product (f,g), = Lp(fg) is an essential Hilbert bimodule, where L, is the natural
transfer operator associated to oy, see Example 1.3.6. The union of all X,,,p € P forms a
product system X of finite type over P with coefficients in C'(X).

Proof. To see that X), is an essential Hilbert bimodule, we recall that the transfer operator
L, which is given by

Ly(f)(z) N Zf

y69 (z)

is a positive, linear map such that L,(fa,(g)) = Lp(f)g holds for all f,g € C( ). Thus,

we can use [LRO7, Lemma 3.3] to conclude that the seminorm || f|,, := (f, f> on C(X) is
equivalent to || - [s. Thus, (-,-) is positive definite on C(X) and C(X) is complete with
respect to || - ||,. The &}, form a product system since

M.
X, ®cx) Xy — A
f®g = fap(g)

defines an isomorphism of Hilbert bimodules. Indeed, the left action is the same on both
sides and

My o((f ® g).h) = Mpo(f ® gag(h)) = fap(g)apg(h) = My e(f @ g).h

shows that the right actions match. Finally, the inner products coincide as

(M o(f©9), Mpg(f'®9))pg = (fap(9), f'ap(g))pg
= Lpg (ap(@)ff'ap(g"))
= Lq(9L,(ff")d')
= (9,04 (£, )p) ')q
= (f®9,['®9) 000X
This shows that we have an injective morphism of Hilbert bimodules. Due to the structure
of the balanced tensor product, f®g = fa,(g9) ® 1ox) and ap(lo(x)) = Lox), 80 Mp 4 is

surjective as well. Thus, X is a product system over P with coefficients in C'(X). Lastly,
X is seen to be of finite type by appealing to Lemma 1.3.9. O
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Theorem 3.3.7. Suppose (X, P,0) is an irreversible x-commutative dynamical system of
finite type, let X denote the product system constructed in Proposition 3.3.6. Then the
map
O[X,P,0] = Oy
[sp = Loy ,p(f)

is an isomorphism.

Proof. The strategy is similar to the one for Theroem 3.3.4. We begin by showing that
(torp(1))pep and to,1,(C(X)) induce ¢. First of all, note that

L(')X,p(l)*bomp(l) = LOleP(<17 1>p) = L(’)x,lp(Lp(l)) =loy

and 1o, 1, is a unital *-homomorphism. Conditions (I),(II) and (IV) are immediate:

(I) LOx,1p (ap(f))LOxap(l) = LOX,p(Oép(f)) = Lomp(l)boxalp (f)
(D) toxp(1)*t0x,1p()torp(1) = tor1p (1, flp) = tox1p(Lp(f))
(IV) Whenever f;; € C(X), wherei=1,...,nand j = 1,2,

satisfy the reconstruction formula for p € P, then

> LOx,1p (f’i71)LOX7P(]‘)LOXyp(l)*LOX:lP (fi,Q)*
1<i<n

- ¢LOX,P(1<X; @fi,lyfi,Q) - ¢LOX,P(¢P(1)) = LOXJP(I) = lox

by (CPp)-covariance of 10, see Definition 3.2.7 and Corollary 3.2.11. Proving (III) is
substantially harder. We need to show that the isometries corresponding to relatively
prime p, ¢ € P are doubly commuting. Since 10, »(1) and 1o, 4(1) are isometries, (III) is
equivalent to

V0o, p(01,1)%10,,4(O1,1) = Vo, pa(O1,1).

Nica covariance of 1o, implies that this is in turn the same as

Yio e (55 (O11)151(01,1)) = Yio, pa(O11),

which is reminiscent of the situation in Lemma 3.3.3. But this time we are only allowed
to use Parseval frames instead of orthonormal bases for A, and Aj. So let us fix (v;)ier
with I finite for 6, as in Lemma 1.3.9. In the same way, we choose (p;) e for 3. Then
Lemma 1.3.9 says that these two families satisfy the reconstruction formula for p and g,
respectively. Therefore, they fulfill 3 °,c; ©,, ., = 1r(x,) and 3 ey Op; ;= lr(x,)- Next,
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we compute

Yoy pa (15" (O11)1g7(O11)) = Z.Ezl%x,pq (G)ap(uj),ap(uj)eaqm),aq(w))
JjeJ
B ’LEZ[ wLoX Pa (60‘1!](#]'%(qu(ap(#j)aq(l/i)))),aq(w)>
JjeJ
= % Yo 0 (O s By Lofaav)aato)
i€l
JjeJ
N iezjlwboX Pq (@Ep(aq(”i))v@q('/i)) ’

where we used the (internal) reconstruction formula for (u;);jcs in the last step, compare
Lemma 1.3.9. Since p and g are relatively prime, 6, and 6, *-commute by Definition 2.4.1.
So Proposition 1.3.12 implies that E,(coq(f)) = aq(E,(f)) holds for all f € C(X). There-
fore, we have shown that

Q’Z)Lox ’p(gl’l)q’bbox’q(@l’l) - Q[)LOX Pa (Z @O‘q(Ep(Vi)):&q(Vi)) :

i€l

Applying > Oay(E,(11)),aq(v;) 10 an element f € Xy takes the form
i€l

Z aq(Ep(vi))og(Ep(vile(f))) = Z g (Lp(vi) Lp(viLq(f)))-
icl icl

In view of Lemma 1.3.9 and L,(gE,(h)) = Ly(g9)Ly(h) for arbitrary g,h € C(X), see
Definition 1.3.5, we deduce

Z Oy (B (vi)),aqi) (f) = Epg(f) = O11(f) in Ay
el
Since f was arbitrary, we get
D Oay(Eyvi))ag() = O11 I L(Xpg)
el
and hence (IIT) holds. This shows that the map ¢ is a *-homomorphism from O[X, P, 0]

onto Oy. For the reverse direction, we show that

x P O[X, P
X2 f = fsy

defines a (CN P)-covariant representation of X. Clearly, pconp satisfies (1) and (2) from
Definition 3.2.1. For (3), note that

ponpp(f) eonpp9) = 55Fasy = Ly(Fg) = eanpin((f 9)p)
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holds for all p € P and f,g € C(X). (4) follows from

eonpp(F)eenpa(9) = 59950 = Fon(9)spg = wonppq( fap(g)).

As in Theorem 3.3.4, we only have to show (CPp)-covariance in order to get that ¢ is
(CN P)-covariant. To verify this, we fix (v;)rer € C(X) with I finite for p € P as in
Lemma 1.3.9 and obtain

w‘ﬂczv%?(@)(f)) = ¢<PCNP7P <%:I®f1/i7’/i> = f Z Visps;’/i

it
v
) f = wcenpip(f)

for all f € C(X). Thus, ponp is a (C'N P)-covariant representation of X. It is apparent
that the induced *-homomorphism @oyp : Ox — O[X, P, 0] is the inverse of ¢. O
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Chapter 4

Topological freeness for irreversible
x-commutative dynamical systems

For this chapter, we will restrict our focus to irreversible x-commutative dynamical systems
of finite type (X, P,6). We examine in how far O[X, P, 6] witnesses topological freeness
and minimality of (X, P,6). From the point of view of the interplay between topological
dynamical systems and their associated C*-algebras, this is a fundamental question.
Classically, the first object to study in topological dynamical systems is a single home-
omorphism o of a compact Hausdorff space X, which induces an automorphism « of C'(X)
via a(f) := f oo. The C*-algebra naturally associated to (X, o) is the crossed product
C(X) Xy Z generated by a copy of C(X) and a unitary u that implements « in the sense
that ufu* = a(f) holds for all f € C(X). We would like to mention that the crossed
product is sometimes referred to as the transformation group C*-algebra for (X, o).

It is well known that the crossed product is simple if and only if the topological
dynamical system is minimal in the sense that the only closed, o-invariant subsets of X are
() and X. Looking for a generalization of this result to the case of Z%actions, minimality
of (X,Z% o) alone turned out to be insufficient for simplicity of C'(X) x4 Z¢, unless the
action is free. This is automatic in the case of a single, minimal homeomorphism on an
infinite space X and means that o, has no fixed points for all n # 0. Soon it turned out
that simplicity of the transformation group C*-algebra does not detect the combination
of minimality and freeness on the nose. Instead, one has to weaken freeness to topological
freeness, where the set of fixed points of o, is required to have empty interior for each
n # 0, see [KT90, AS94].

Interestingly, the proof of this correspondence exhibits the less prominent intermediate
result that topological freeness of (X,Z%, o) is characterized by the property that every
non-zero ideal inside the transformation group C*-algebra intersects C'(X) non-trivially.
This property is sometimes referred to as the ideal intersection property (of C(X) in
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4. TOPOLOGICAL FREENESS FOR ISDS

C(X) xq Z%) and is actively studied for group crossed products, see for instance [Siel0,
ST09,dJST12].

Additionally, building on [ZM68], it has been observed that the ideal intersection
property is equivalent to C(X) being a maximal abelian subalgebra in the transformation
group C*-algebra for amenable discrete groups, see [KT90, Theorem 4.1 and Remark 4.2].

Doubtlessly, there is much more to say about the structure of group crossed products
and we refer to [BOO0S8]| for an extensive and well-structured exposition. Instead, let us
return to the case of a single transformation, which we now denote by 6, and drop the
reversibility of the system. One way of doing this in a moderate fashion is to demand that
0 : X — X be a surjective local homeomorphism. This has the convenient consequence
that the induced map o« : C(X) — C(X), given by a(f) = f o6 is a unital, injective
endomorphism. Moreover, 6 is finite-to-one and the number of preimages |§~1(z)| of a
singleton = € X is constant on the path-connected components of X. For simplicity, let us
also assume that this number is the same for all path-connected components of X. Such
transformations are called regular in Definition 1.3.4. Under these assumptions, there is
a natural transfer operator L for a, see Example 1.3.6. In place of the group crossed
product of C'(X) by Z, it is reasonable to use the construction of a crossed product by an
endomorphism C(X) X4, 1, N as introduced by Ruy Exel in [Exe03a].

For this setup, Ruy Exel and Anatoly Vershik showed that C(X) x4, N is simple
if and only if (X, ) is minimal, see [EV06, Theorem 11.3]. Their argument shows that
topological freeness implies that C'(X) intersects every non-zero ideal in C(X) x4 N
non-trivially. But to the best of the author’s knowledge, it was not until the work of
Toke Meier Carlsen and Sergei Silvestrov that the equivalence of these two conditions was
established in the irreversible setting described in the preceding paragraph, see [CS09]. In
fact, their approach partially used results from [EV06] and incorporated two additional
equivalent formulations.

Briefly speaking, we will show that the results and most ideas from [CS09] are ex-
tendible to the realm of irreversible *-commutative dynamical systems of finite type:

Theorem 4.1.9. Suppose (X, P,0) is an irreversible x-commutative dynamical system of
finite type. Then the following statements are equivalent:

(1) The dynamical system (X, P, ) is topologically free.

(2) Every non-zero ideal I in O[X, P,0| satisfies I N C(X) # 0.

(3) The representation ¢ of O[X, P,0] on (*(X) from Proposition 2.4.4 is faithful.
(4) C(X) is a masa in O[X, P, 0)].

For this purpose we will employ several auxiliary results from Section 2.4. In addition,
Theorem 3.3.7 will grant us access to the gauge-invariant uniqueness theorem for Cuntz-
Nica-Pimsner algebras of product systems that was established in [CLSV11].
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Once this is completed, it takes relatively little effort to characterize simplicity of
O[X, P,0] by minimality of (X, P,#), see Theorem 4.2.11. In view of the group case,
this may seem a bit odd at first since topological freeness is not part of the character-
ization. But a modification of [EV06, Proposition 11.1] shows that minimal irreversible
x-commutative dynamical systems of finite type are automatically topological free, see
Proposition 4.2.10. As a corollary we deduce that commutative irreversible algebraic dy-
namical systems of finite type (G, P, ) are minimal in the sense of Definition 1.1.5 if and
only if their corresponding C*-algebra O[G, P, 0] is simple.

Let us also mention that it is possible to derive a characterization of simplicity of
O[X, P,0] by considering the transformation groupoid associated to (X, P,6). This has
been accomplished in greater generality by Jonathan H. Brown, Lisa Orloff Clark, Cynthia
Farthing and Aidan Sims, see [BOCFS14, Theorem 5.1 and Corollary 7.8]. Moreover,
one can deduce the equivalence of (1) and (2) out of [BOCFS14, Proposition 5.5 and
Proposition 7.5]. Nevertheless, the methods used here differ substantially from the ones
in [BOCFS14] and provide an account that is formulated entirely in the language of
topological dynamical systems. Furthermore, the part involving conditions (3) and (4) is
not covered by [BOCFS14].

For convenience, we recall the definition of an irreversible x-commutative dynamical
system of finite type (X, P,0) and its C*-algebra O[X, P, 6:

Definition 1.3.13. An irreversible x-commutative dynamical system of finite
type is a triple (X, P,n) consisting of

(A) a compact Hausdorff space X,
(B) a countably generated free abelian monoid P with unit 1p and

(C) an action P A X by regular surjective local homeomorphisms with the following
property: 7, and 7, *-commute if and only if p and ¢ are relatively prime in P.

Definition 2.4.1. O[X, P, 0] is the universal C*-algebra generated by C(X) and a repre-
sentation of the monoid P by isometries (s,)pep subject to the relations:

(I) spf = ap(f)s, forall feC(X),peP.
P p\J)Sp
(I1) spfsp = Lp(f) for all f € C(X),p € P.
(II1) Sp8q = 8¢5 if p and ¢ are relatively prime in P.
(IV) Ifpe P and fi1, fiz € C(X),1 < i <n, satisfy the reconstruction formula
Z leEp(ﬁgf) = f for all f S C(X),
1<i<n
then Z fi718p8;)ﬁ72 = 1.
1<i<n

Throughout this chapter, let (X, P,6) be an irreversible *-commutative dynamical system
of finite type, unless specified otherwise.
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4. TOPOLOGICAL FREENESS FOR ISDS

4.1 C#*-algebraic characterizations of topological freeness

In this section we establish an equivalence between topological freeness for irreversible
x-commutative dynamical systems of finite type (X, P, 6) and three different C*-algebraic
properties of O[X, P, 0], see Theorem 4.1.9. The proof of this result essentially relies on
Proposition 4.1.8, where we prove that topological freeness of (X, P,0) gives the ideal
intersection property for C(X) in O[X, P, 0], and the technical Lemma 4.1.4, which uses
a faithful version ¢ of the representation ¢ from Proposition 2.4.4, see Proposition 4.1.1
and Proposition 4.1.3. In fact, Lemma 4.1.4 is a straightforward generalization of [CS09,
Lemma 5] to the setting of irreversible s-commutative dynamical systems of finite type.
Recall that P is an Ore semigroup with enveloping group P~!'P denoted by H. In the
following, (§4,)(x,n)exxa denotes the standard orthonormal basis of P2(XxH).

N . _1

Proposition 4.1.1. Let M¢&, = f()&en and Spéan = Np ® Y. eypn for f € C(X)
yeo, ' ()

and (z,h) € X x H. Then

OIX,P,0] -5 L(F(X xH))
fSp — Mfgp

defines a x-homomorphism, which is faithful on C(X).

N _1
Proof. As S;&sn = Np *&p,(x) p—1n, the proof of Proposition 2.4.4 carries over verbatim.
O

Remark 4.1.2. As in [CS09, Proposition 4], we would like to show that ¢ is faithful
by using a gauge-invariant uniqueness theorem. For this purpose, let us recall that Theo-
rem 3.3.7 asserts that O[X, P, 6] is the Cuntz-Nica-Pimsner algebra for the product system
of Hilbert bimodules associated to (X, P,6) in Proposition 3.3.6. We intend to make use
of [CLSV11, Corollary 4.12 (iv)] and remark that the terminology related to coactions can
be phrased in terms of actions of the dual group of the discrete, abelian group H = P~ P,
which we denote by L. Under this transformation, the coaction ¢ in [CLSV11, Proposition
3.5] corresponds to the natural gauge action v of L on O[X, P, 0] given by

Ye(f) = f and ve(sp) = £(p)sp

for f € C(X),p € P and ¢ € L. Thus [CLSV11, Definition 4.10] and [CLSV11, Corollary
4.12 (iv)] imply that O[X, P, 6] has the following gauge-invariant uniqueness property:

A surjective *-homomorphism ¢ : O[X, P, 0] — B onto a C*-algebra B is injective if and
only if the following two conditions hold:

a) There is an L-action  on B for which ¢ is (v, 8)-equivariant (8¢ o ¢ = ¢ o 7).

b) ¢ is faithful on C(X).
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4.1. C*-algebraic characterizations of topological freeness

This enables us to prove the analogue of [CS09, Proposition 4]:
Proposition 4.1.3. The representation ¢ is faithful.

Proof. Faithfulness of ¢ on C(X) has already been established. For ¢ € L define Uy €
L (EQ(X X H)) by Uy n = €(h)&; . This gives a unitary representation of L and enables
us to define an action 8 of L on £ (¢3(X x H)) via B¢ (T) = U/ TU;. We observe that, on
¢ (O[X, P, 6]), B is given by

Be (Mf) — M and B, (s:p) = ((p)S,

for all f € C(X) and p € P. Thus ¢ is (v, #)-equivariant. According to the conclusion of
Remark 4.1.2, ¢ is faithful on all of O[X, P, 4)]. O

Recall from Corollary 2.4.13, that the conditional expectation G : O[X, P,0] — C(X) is
given by G(fsps(’;g) = Opgq Np_lfg.

Lemma 4.1.4. Let ¢ be the representation from Proposition 4.1.1 and a € O[X, P, 0)].
Then the following statements hold:

i) (P(a)ésh,Exn) = G(a)(x) for all (x,h) € X x H.
ii) a € C(X) if and only if (P(a)lz, hysExa,he) =0 for all (x1, h1) # (z2, ha).
iii) If (x1,h1), (2, ho) € X x H satisfy (@(a)€z, hys&aohe) # 0, there are p,q € P and
open neighbourhoods Uy of x1, Us of xo with the following properties:
(a) phi = qhs.
(b) Bq(z1) = Op(22).
(¢) If x5 € Uy and x4 € Uy satisfy 04(x3) = Op(x4), then (p(a)lus hy»Erahy) #F 0.

Proof. Recall that the linear span of { fspsyg | f,g € C(X), p,q € P} is dense in O[X, P, 0]
according to Lemma 2.4.5. As both sides of the equation in i) are linear and continuous
in a, it suffices to prove the equation for a = fs,s;g. This is achieved by

(o @(fspsig)ean) = (P(sif)an P(559)Exn)
= dpg N, ' fl2)g(2)
= G(fspszg)(x
For ii), we note that a € C(X) certainly implies (P(a)&sz, hy,E&rohy) = 0 for all
(21, h1) # (z2, ha). Conversely, if a € O[X, P, 0] satisfies (P(a)€z, hysExa,ho) = 0 Whenever

(x1,h1) # (z2, h2), part i) implies p(a) = ¢(G(a)). As ¢ is faithful, see Proposition 4.1.3,
this shows a = G(a) € C(X).
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4. TOPOLOGICAL FREENESS FOR ISDS

In order to prove iii), suppose we have (z1,h1),(z2,h2) € X x H such that ¢ :=
| (P(@)€z1 11> Era,he) | > 0. Using Lemma 2.4.5, we can choose pi,qi,...,Pm,q¢m € P and
f1,915 -y fm, gm € C(X) such that

€

m
= Zfispis;igi satisfies [|a — anm|| < 3

i=1

_1
85 (flspzszlgl) gzl,hl = szqu Z fl (y)gi(xl)§y7piq;1h1)
y€0;,,! (04, (1))

we either get (@ (fisp,55.9i) Earhn>Easha) = 0 or 22 € 0,1 (0g,(21)) and pig; 'hy = ho.
The latter conditions are equivalent to 6,,(x2) = 604 (z1) and p;h; = g¢;hg since P is
commutative. Note that there is at least one ¢ such that

(@ (fi8p:55,9i) v s Exnna) # 0

because ¢ is contractive and |la —a.|| < §. Therefore, possibly changing the enumeration,
we can assume that there is 1 < n < m such that

(2 (fisp;s5.9i) Earhr» Eanshy) # 0 if and only if 1 <4 < n.

Let a, = Z?:l fi,lSpmSZm fi2. Since P is lattice ordered there is a unique element
po = p1 V-V p,. Additionally, set gg := h;lphl € H and note that gy € P since
h;lpihl =gq; € Pforall 1 <i<n. For each 1 < i < n, there are open neighbourhoods
U

!
;1 of 1 and U, , of x2 such that
o e e . /
e Op, is injective on U, 4,

e e . . /
e 0y, is injective on U, 5, and

_1 ’ ’
o Np,g |fi(y1)gi(y2) — fi(z1)gi(z2)| < 5 for all yy € U; 1,92 € U 5.

This is always possible because the transformations 6,,, 8, are local homeomorphisms and
the function X? — C given by (y1,92) = fi1(y1)fi2(y2) is continuous since. Then

/

Uiy =0, (Opi(UZ,l) N Q(Ii(Uil,Z))

defines an open neighbourhood of 1 such that for each y; € U; 1 there is a unique y2 € U; 2
with 6, (y2) = 64, (y1). Accordingly, set

Uiz = 05" (0 (U1) 104, (U}2))

84



4.1. C*-algebraic characterizations of topological freeness

and take U; := (i, U;j for j = 1,2. Now suppose x3 € Uy, x4 € Uy satisfy 04(z3) =
0p(z4). Using the triangle inequality for the first two steps, we get
[(@(a)€es h1r Eaana) | 2 € = [{P(A)Ea1 hys Ewziha) — (P(A)Ews s Eaaha) |
> & = [{P(a)Sar,hrs Eazha) = (P(@m)Sar has Eanha) |

— [{@(am)&ey hns Eaoiha) — (B(am)Eas hrs Eaasha) |
— | {Blam)€as s Eoaha) — (P(@)&as,h1 s Enaha) |
— [(@(a = am)&ey b1 € he) |
— [(@(an)&er b1 s Saa,ha) = (Pan)Eashis Eaha) |
— [{Blam — a)&es,hy > Exaha) |

=0.

vV
™
|
colm

_nt _
n?m

wlm

O]

This marks the end of the first half of the preparations for Theorem 4.1.9. The second part
will show that topological freeness of (X, P, ) results in the ideal intersection property
for C(X) inside O[X, P, 6], see Proposition 4.1.8.

Lemma 4.1.5. If z € X, p,q € P satisfy 0,(x) # 0,(x), then there exists a positive
contraction h € C(X) such that h(z) =1 and hspszh =0

Proof. The steps leading to a proof are:
a) There is an open neighbourhood U of x satisfying U N6, (6,(U)) = 0.
b) supp L, (f) C 0,(supp f) holds for all f € C(X) and r € P.

c) There exists a positive contraction h € C(X) with h(x) = 1 and supp h C U for the
U obtained in a). Every h of this form satisfies hagy(L,(h?)) =0

As X is Hausdorff, there are disjoint, open neighbourhoods V' and W of 0,(x) and 04(z),
respectively. Hence U := 6,1(V) N6, (W) is an open neighbourhood of z and 6,(U) N
0,(U) cV NIV =10,so

U N6, (0p(U)) €0, (05(U)) N0, (0,(0)) = 05 (0(U) N 0y(U)) = 0

q

establishes a). Claim b) is straightforward. For the first claim from c), we note that such
an h exists because U is an open neighbourhood of  and X is a normal space. Therefore
we get,

b) a
supp hozq(Lp(hQ)) cUn Qq_l(supp Lp(hQ)) cUn 9;1(0p(supp h?)) 2) 0
——

cU
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4. TOPOLOGICAL FREENESS FOR ISDS

which proves hay(L,(h?)) = 0. Combining these ingredients, we deduce

* * * * <)
HhspsqhH2 = Hhsqsph23p3qh|| =||h O‘q(Lp(hz))SquhH =0.

O]

Remark 4.1.6. Observe that we can deduce from the proof of Lemma 4.1.5 that condition
ii) is equivalent to hay,, (Lp,(h)) = 0 as well as to hay, (Ly, (h)) = 0.

Before we reach the central result of this section, let us recall the notion of topological
freeness for dynamical systems, where the transformations need not be reversible.

Definition 4.1.7. A topological dynamical system consisting of a topological space Y
and a semigroup S together with an action S AY by continuous transformations is said
to be topologically free if the set {y € Y | ns(y) = n:(y)} has empty interior for all
s,t €5, s#t.

Proposition 4.1.8. If (X, P, 0) is topologically free, every non-zero ideal I in O[X, P, 0]
satisfies I N C(X) # 0.

Proof. We will follow the strategy from [EV06, Theorem 10.3]. Suppose I is an ideal
in O[X, P, 0] satisfying I N C(X) = 0 and denote by 7 the corresponding quotient map.
Then 7 is isometric on C(X). We claim that ||7(a)|| > ||G(a)|| holds for all positive a €
O[X, P,0]. By continuity (of the norms, of 7, and of G), it suffices to prove the above
equation for

n
a= ijspjsqjgj, with n € N, fj,g9; € C(X) and pj,q; € P.
j=1

Without loss of generality, we can assume that there is 1 < ng < n such that p; = ¢; holds
if and only if j < ng. In fact, possibly inflating the elements f;s), s;]_gj by 1= ZZ: ViSpSyVi
for p > p1 V -+ V ppgy, see Lemma 2.4.2, we can assume that p; = ¢; = p holds for all
1 <5 <nyg.

If ng = n, then we have a € (F,)+. In this case, set h = 1. For the case ng < n, note

that since (X, P,0) is topologically free, (\7_, ;{7 € X [ 0p,(x) # 04;(z)} is dense in X.

Thus, for each € € (0, 1), there exists x € X satisfying
a) G(a)(x) > (1 —¢) [|G(a)]], and
b) 0y, () # 04, (z) for all ng < j < n.

Applying Lemma 4.1.5 to each ng < j < n yields functions hp,41,...,h, € C(X), which
we use to build h:=[]7_, ., h;j. Then h satisfies

(a) 0<h <1,

86



4.1. C*-algebraic characterizations of topological freeness

(b) h(x) =1, and
(c) hsp;sg,h =0 forall ng <j <n.
This results in
. * (c) “ *
hah = ijhspjsqjhgj = Z fihspsyhg; = hE1(a)h,
j=1 j=1

where E; : O[X, P,§] — F is the faithful conditional expectation from Lemma 2.4.7.
Note that we have Ey(a) = >77% fjsps;g; € (Fp)+. Next, choose a partition of unity
(vk)1<k<m for X and 6, as in Lemma 1.3.9 and, as before, let v}, := (vak)%. Then we

obtain
no

G(a) = G(Ei(a) = N Zlfjgj

1 no m
= N, 1fj (Z VkS;»S}‘,Vk) gj

m 1 1
Combining this with the fact that 7(a) — > m(v7) m(a) 7(v2) is a unital completely

positive map, hence contractive, we get

[m(a)ll =

NE

S

T o=

Q

S

T o=
N———

E}
e
ﬂ‘

Sl
Il
MR

v
5
N N N
NE
[

T o=
>
s}
>
<
I
N———

e
Il
—

|
B
>
=
[
T o=
o
iy
—~
S
~
<
S
=
N———

|7 (hG
|hG(a

B
=

since 7 is isometric on C'(X). On the other hand,
[hG(a)h]| = (hG(a)h)(x) = G(a)(z) > (1 = )[|G(a)]l;

so [[m(a)|| > (1 —€)||G(a)|| for all € > 0. This forces ||7(a)| > [|G(a)]-

So given a € O[X, P,0] NI, we have 0 = ||7(bab*)|| > ||G(bab*)|| for all b € O[X, P, 0)].
In particular, G(bab*) = 0 holds for all b € F. But according to Lemma 2.4.14, this
implies a = 0 and hence I = 0. O

We are now ready for the main result of this section:
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4. TOPOLOGICAL FREENESS FOR ISDS

Theorem 4.1.9. Suppose (X, P,0) is an irreversible x-commutative dynamical system of
finite type. Then the following statements are equivalent:

(1) The dynamical system (X, P, ) is topologically free.

(2) Every non-zero ideal I in O[X, P, 0] satisfies I N C(X) # 0.

(3) The representation ¢ of O[X, P,0] on (*(X) from Proposition 2.4.4 is faithful.
(4) C(X) is a masa in O[X, P,0)].

Proof. The plan is as follows:

The implication from (1) to (2) is precisely covered by Proposition 4.1.8 and (2) gives
(3) because we have ker o N C(X) = 0, see Proposition 2.4.4. Next, we show that (3) or
(4) implies (1), where we proceed by contraposition. If the system is not topologically
free, there are p,q € P with p # ¢ such that {x € X | 6,(z) = 6,(x)} has non-empty
interior. Since the maps 6, and 6, are local homeomorphisms, there exists a non-empty
open U C {z € X | 0y(z) = 0,4(x)} such that 0,y = 04|y is injective. We fix z¢p € U and
choose a positive f € C(X) satisfying f(zp) # 0 and supp f C U. By appealing to the
existence of partitions of unity for open covers of compact Hausdorff spaces, we know that
such a function f always exists. Let us point out that fsps;f does not belong to C (X),
which can formally be deduced from Lemma 4.1.4 ii), p # ¢, and

(B(F3pSE ) EnqrEnop) = Nog® f(0)? £ 0.

Then
<‘P(f3p82f)§xv §y> = <90(32f)§a:7 @(SZf)§y>

_1
= O0,()0,(y) Npa® [(2)f(y)
_1
= Ouy Npg® f(2)?
holds for all z,y € U, where we used injectivity of 8,|y = 0,4|v. Note that the expression
vanishes whenever x or y is not contained in U due to supp f C U. Hence we get 0 #
_1
fspsif — Npg® f? € ker ¢, which shows that (3) implies (1).

In order to prove that (4) forces (1), it suffices to show that the function f from the last
part satisfies fs,s; f € C(X) NO[X,P,0). Let us pick (v;)ies for 6, as in Lemma 1.3.9.
We claim that

ap(Le(fovi)) = Nq_lgf’/i = gap(Le(fvi)
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4.1. C*-algebraic characterizations of topological freeness

holds for all ¢ € C(X) and ¢ € I. Using the property that 6,|suppy, is injective, it is
straightforward to check that the functions match on X \ supp f, so let = € supp f C U.
Then

ap(Lg(fgvi))(x) = Ngto 3 gfWuily)

yeby " (6p(x))

= N' X g f@vily)

y€6g " (6q(x))

= Ng'g(z)f(z)vi(x)

holds, where we used 6|y = 6,|u and injectivity of 6,|y. Similarly we get
gop(Le(fri))(@) = gla)Ng' X f(ywily)
yeby ! (0p(2))

= N;'g(@)f(z)vi(z).

Thus
ap(Lg(fovi)) = Nq_lngi = goyp(Le(fvi))
is valid for all g € C(X) and i € I. Using this equation, we deduce
fspsyfg = fsps;fa z:I ViSqSyVi
1€
= Z] fo‘p(Lq(ngi))SpSZVi
1€

= 9fsp > Le(fri)sqvi

el

= gfspsy > vily(vif)

el
= gfspsyf-
for arbitrary g € C(X). Thus, fs,s;f € (C(X)/ NOX, P, 0]) \ C(X), so C(X) is not a
masa in O[X, P, 0].
In order to deduce (4) from (1), let a € C(X) N O[X,P,6]. By Lemma 4.1.4 ii),
a € C(X) follows provided that (¢(a)&s, hysE&es,he) = 0 holds for all (x1, k1) # (22, ho). In
case x] # xg, there is f € C(X) satisfying f(x1) # 0 and f(z2) = 0. Thus
f(«Tl) <¢(a>€$1,h17§x1,h2> = <95(af)§x1,h1 ) £$2,h2>
= <¢(fa)£x1,h17€x2,h2>
= flz2) <95(a)§$17h175$2,h2>
=0
implies that (P(a)&z, hy,&x1,he) = 0. Now let 21 = x9 and hy # ho and we assume

(P(a)esy hy»Exrhe) # 0 in order to derive a contradiction: Part iii) from Lemma 4.1.4
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states that there are p,q € P and open neighbourhoods Uj,Us of x1 = xo with the
properties (a)-(c). Note that p # ¢ due to (a) and hy # hs. By passing to smaller
neighbourhoods of 71, if necessary, we may assume that for each xz3 € Uj there is a
unique x4 € Uy satisfying 0,(z3) = 6,(z4) (and vice versa). In other words, the (a priori
multivalued) maps 9;1«91, : U — Uy and 9; 10q : Uy — U7 are homeomorphisms. This
uses the standing assumption that 6, and 6, are local homeomorphisms. As (X, P,6) is
topologically free, the set {z € Uy | 0,(x) = 04(z)} has empty interior, so it cannot be all
of U;. Hence there are x3 € Uy and x4 € Uy such that x3 # x4 and 6,(x3) = 0,(x4).
Now Lemma 4.1.4 iii) implies (P(a)&zs b1 sz he) 7 0. On the other hand, we observe that
(P(a)zs,h1»Exahy) = O follows from the consideration of the case x1 # x from before
because x3 # x4. This reveals a contradiction and thus, (@(a)&s, b, E&xs.he) = 0 Whenever
(x1,h1) # (x9,h2). According to Lemma 4.1.4 ii), this forces a € C(X), so C(X) is a
masa in O[X, P, ). O

Remark 4.1.10. The representation ¢ is an analogue of the reduced representation for
ordinary group crossed products, for if 6, was a homeomorphism of X, then S,¢, = 5951 (@)’
see Proposition 2.4.4. Therefore condition (3) of Theorem 4.1.9 can be interpreted as
an amenability property of the dynamical system (X, P,6), compare [BO08, Theorem
4.3.4]. Interestingly, this property coincides with topological freeness for irreversible -
commutative dynamical systems of finite type as defined in Definition 1.3.13.

4.2 Simplicity of the C*-algebra

Let X be a compact Hausdorff space, G a discrete group, and « an action of G on
C(X). Then simplicity of the transformation group C*-algebra C(X) x, G corresponds
to minimality and topological freeness of the underlying topological dynamical system,
given that the action « is amenable, see [AS94, Corollary following Theorem 2] or [BOO0S,
Theorem 4.3.4 (1)]. An intermediate step for this result is to prove that every non-zero
ideal I in the C*-algebra C(X) x, G satisfies I N C(X) # 0 if the dynamical system
is topologically free, see [AS94, Theorem 2|. In view of Proposition 4.1.8, the analogous
statement for O[X, P, 0] and (X, P, ) has already been established. In fact, Theorem 4.1.9
revealed that these conditions are equivalent.

In contrast to the case of group actions, topological freeness is proven to be automatic
for minimal irreversible x-commutative dynamical systems of finite type, see Proposi-
tion 4.2.10. The proof of this implication is an adaptation of [EV06, Proposition 11.1].
Once this is accomplished, we show that O[X, P, 6] is simple if and only if (X, P, 6) is min-
imal, see Theorem 4.2.11. Hence we achieve a direct generalization of [EV06, Theorem
11.2], if we suppress the additional requirement that each 6, is assumed to be regular,
see Definition 1.3.13. We note that this extra condition is assumed in [EV06, Section 9]
as well, but not in [EV06, Sections 8,10 and 11]. As an application of Theorem 4.2.11,
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we characterize simplicity of O[G, P, 0] for commutative irreversible algebraic dynamical
systems of finite type by minimality of (G, P, ), see Corollary 4.2.12.

Unlike the case of group actions, there are different options available for the notion of
an orbit of a point x € X under the action 8 of P. For example, we can consider

Ot (z) ={0y(z) [pe P} or 6, ((2)).
pEP

Although both versions have some striking features an orbit ought to have, they lack other
serious features at the same time. In a sense, the two candidates are complementary. The
first one does not necessarily yield an equivalence relation because there may be a lack of
opportunities to get back to z via 6 once we arrive at some y € OF (). The second object
need not contain any elements of the former object other than x itself. Moreover, both
versions lack the feature of being invariant with respect to taking preimages. Nevertheless,
these versions appear in the existing literature. The conclusion we want to draw from this
is that one has to be cautious about which notion of an orbit is used in an exposition. We
will take the following one, which seems best suited for working with structures resembling
crossed products:

Definition 4.2.1. Let Z be a topological space, S a commutative semigroup and S A Z
a semigroup action by continuous maps. For z € Z,

O(x) = {n; ' (ns(2)) | s;t € S} c Z

is called the orbit of x under 7. Two elements x,y € Z are called orbit-equivalent,
denoted by x ~ y, if O(z) = O(y).

Remark 4.2.2. Note that x and y are orbit-equivalent if and only if there are s,t € S such
that ns(x) = m(y). This definition is the natural generalization of trajectory-equivalence
as defined in [EV06, Section 11]. ~ is an equivalence relation because S is commutative.
Indeed, reflexivity and symmetry are obvious. For transitivity, suppose ns, (x) = 1, (v)
and 7s,(y) = n,(2) hold for x,y,z € Z and s;,t; € S. Then 7,5, () = Nsory (y) =

Mt1s2 (y) = Nt1te (Z) shows z ~ z.

Definition 4.2.3. Y C Z is called invariant, if n;1(Y) =Y for all s € S.

Lemma 4.2.4. Let Z be a topological space, S a commutative semigroup and S AZa
semigroup action by continuous, surjective maps. Then'Y C Z is invariant if and only if
x~yeY impliesx €Y forallze Z.

Proof. Since each 7 is surjective, we have ns(n;1(Y)) = Y. So if Y is invariant, then
Ns(Y) =Y holds for all s € S. Hence, if z ~y € Y, say ns(x) = n:(y), then
zen (m(Y)) =67 (Y) =Y

S
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follows. Conversely, suppose # ~ y € Y implies 2 € Y for all z € Z. Then n;}(Y) C Y
holds for all s € S as z ~ y for all y € Y and = € ;!(y). On the other hand, n,(y) ~ ¥
for all y € Y forces ns(Y) C Y, which in turn implies Y C n;1(ns(Y)) € n71(Y). Thus,
Y is invariant. O

In the case of actions by homeomorphisms, it is well-known that invariance of a subset
passes to its closure. This is not clear for general irreversible transformations, but it is
true for actions by local homeomorphisms. This is certainly well-known, but not easy to
find in the literature, so we include a proof for convenience.

Lemma 4.2.5. Let Z be a topological space, S a commutative semigroup and S A Z
a semigroup action by local homeomorphisms. For every Y C Z and s € S, we have

ns {(Y) = (Y).

Proof. The map 7 is continuous, so 75 1(Y) is a closed subset of Z containing 7;(Y) and

hence 751 (Y) € n;1(Y). To prove the reverse inclusion, let 2 € n; 1(Y). Since 7, is a local
homeomorphism, there is an open neighbourhood U of z such that 7|y : U — n(U) is
a homeomorphism. Due to 7s(x) € Y, there is a net (yx)xea C Y such that gy A ns(x).
Note that 7s(U) is open and contains 7s(z). Hence, we can assume (yx)rea C Y Nns(U)
without loss of generality. Now, x) := nsll}l(yA) defines a net (z))aea C 75 H(Y)NU and
continuity of 775|[_]1 gives x5 — . Therefore, we have shown that = € n; }(Y). O

Corollary 4.2.6. Let Z be a topological space, S a commutative semigroup and S Az
a semigroup action by local homeomorphisms. If Y C Z is invariant, then so is Y. In
particular, the closure of the orbit O(x) is invariant for every x € Z.

Proof. For every s € S, we get n;1(Y) =15 /(YY) =Y from Lemma 4.2.5 and the invari-
ance of Y. ]

Definition 4.2.7. Let Z be a topological space, S a commutative semigroup and S AZ
a semigroup action by surjective local homeomorphisms. The dynamical system (Z, S, n)
is said to be minimal, if ) and Z are the only open invariant subsets of Z.

Remark 4.2.8. In the above definition, one can replace open by closed. In [EV06], this
property is called irreducibility, possibly to avoid confusion with a notion of minimality
apparently used for the groupoid picture.

Corollary 4.2.9. A dynamical system (Z,S,n) as in Definition 4.2.7 is minimal if and
only if O(x) C Z is dense for all x € Z.

Proof. This follows immediately from Corollary 4.2.6. O
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With these preparations at hand, let us return to the study of irreversible *-commutative
dynamical systems of finite type (X, P,0). The next proposition is based on [EV06,
Proposition 11.1].

Proposition 4.2.10. If (X, P, 0) is minimal, then it is topologically free.

Proof. Let us assume that (X, P, ) is minimal, but not topologically free and derive a
contradiction. Assume that there exist p,q € P with p # ¢ such that 0,y = 0, on
steP 0;1(0,(U)) C X is invariant, non-
empty and open. Since the dynamical system is minimal, this set is all of X. Since each

some non-empty, open subset U of X. Clearly,

0;1(0:(U)) is open and X is compact, we can shrink the open cover (85 1(0:(U)))step to
a finite, open cover of X given by s1,...,8,,t1,...,t,. Next, fix an arbitrary x € X and
let i satisfy @ € 6,1(0;,(U)), i.e. there is y € U such that 6;,(z) = 6, (y). Then

O () = Oyt (1) = O1p (1) 'S B1ig(y) = Ot () = Ogs ()

n
and if we take s := \/ s;, we get
j=1

9]75 (w) = 03‘71501752' (.'1:) = 03.71306151' (‘T) = 0‘15(:1:)

for all z in X. Hence, we have 05 = 0ys. As 6 is surjective and P is commutative, this

pAg)s
implies O(pnq)-1p = Oprg)-14- Without loss of generality, we can assume (p A q)"'p # 1p,
since p # q forces (pAq)"'p # 1p or (pAq)~'q # 1p. Using *-commutativity for 0

and 0(

pAg)~1p

prg)—1q in the form of Proposition 1.3.2 (iii) yields

-1 -1
e(p/\q)—lp(e(p/\q)*lq(m)) = H(p/\q)*lq<6(p/\q)—1p(‘r)) - {x}
However, (p A q)~'p # 1p implies that the cardinality of the set on the left hand side is
strictly larger than one, see Definition 1.3.13 (C). Thus, we obtain a contradiction. O

Theorem 4.2.11. Let (X, P,0) be an irreversible x-commutative dynamical system of
finite type. Then the C*-algebra O|X, P, 0] is simple if and only if (X, P,0) is minimal.

Proof. If we assume O[X, P, 0] to be simple, then C'(X) intersects every non-zero ideal in
O[X, P, 0] non-trivially, so (X, P,0) is topologically free by Theorem 4.1.9. Now suppose
() £ U C X is invariant and open. Then

suppay(f) = 6, '(suppf) < 60,'(U) = U
supp L,(f) C 6p(suppf) <C 6,(U) = U

holds for every p € P and f € Cy(U) because U is invariant. We infer from this that the
ideal I in O[X, P, 0] generated by Cy(U) satisfies I NC(X) C Cy(U). But as O[X, P, 0] is
simple and U # (), we have I = O[X, P,6] and hence U = X.
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Conversely, if (X, P,0) is minimal and 0 # [ is an ideal in O[X, P, 0], we have I N
C(X) = Cp(U) for some open U C X. Due to Proposition 4.2.10, (X, P, ) is topologically
free. Hence U is non-empty according to Proposition 4.1.8. We claim that U is invariant.
To see why, let z ~ y € U, i.e. there exist p,q € P such that 6,(z) = 6,(y). Pick a
non-negative function f € Cy(U) satistying f(y) > 0 (such an f always exists as U is open
and X is a normal space). Additionally, choose (v;)1<i<n for 6, as in Lemma 1.3.9. Using
the relations (I),(II) and (IV) for O[X, P, 0], we get

ap(Lq(f)) = Z VispSyfsqsyvi € 1,

1<i<n

which shows a,(Lg(f)) € Co(U). Moreover, we have

ap(Lq(f))(@) = Lo(£)(0p(x)) > Ny f(y) > 0

because f is non-negative and y € 6,1(0,(x)). Thus x € supp oy, (Le(f)) C U, so U is
invariant by Lemma 4.2.4. Since U is a non-empty, invariant open subset of X, minimality
forces U = X and hence I = O[X, P,0|. Hence O[X, P, §] is simple. O

Coming back to irreversible algebraic dynamical systems, we recall that we can only treat
commutative irreversible algebraic dynamical systems of finite type within the framework
of irreversible x-commutative dynamical systems of finite type, see Corollary 1.3.17:

Corollary 4.2.12. A commutative irreversible algebraic dynamical system of finite type
(G, P,0) is minimal if and only if the C*-algebra O[G, P, 0] is simple.

Proof. By Corollary 1.3.17, we know that (G, P, é) is an irreversible *-commutative dy-
namical system of finite type. According to Proposition 2.4.3, O[G, P, 0] is isomorphic to
O[G, P,0). By Proposition 1.2.8, (G, P,0) is minimal precisely if the union of the kernels
(ker 6,)pep is dense in G. In other words, the orbit of 1 in the sense of Definition 4.2.1
is dense in G. Since G is a group and we are dealing with group endomorphisms, this is
equivalent to minimality of the topological dynamical system by Corollary 4.2.9. Now the
claim follows directly from Theorem 4.2.11. O

In particular, this characterization applies to the commutative irreversible algebraic dy-
namical systems of finite type presented in Section 1.1. Note that Example 1.3.21 and
Example 1.3.23 also belong to this class of examples. Hence the corresponding C*-algebras
are simple. In fact, they are always UCT Kirchberg algebras by Corollary 2.2.28.
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