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Abstract

In the recent past, Cuntz and Vershik introduced a notion of independence for pairs of

commuting group endomorphisms of a discrete abelian group with finite cokernel. Here

we generalize their concept to the case of arbitrary commuting group endomorphisms of a

discrete group. We show that the characterizations of independence established by Cuntz

and Vershik do not carry over in general. Therefore we will differentiate between indepen-

dence and strong independence. In addition, we establish a close connection between the

latter notion and the concept of ∗-commutativity introduced by Arzumanian and Renault.

We then define irreversible algebraic dynamical systems and irreversible ∗-commutative

dynamical systems to mirror both algebraic and topological aspects of dynamical systems

like ×2,×3 : T −→ T.
To both kinds of dynamical systems, we associate C*-algebras by means of generators

and relations. In the case of irreversible algebraic dynamical systems, this C*-algebra is a

natural generalization of the one that has been studied by Hirshberg, Cuntz and Vershik,

and Vieira. We prove that, under mild assumptions, this C*-algebra is a UCT Kirchberg

algebra. Moreover, we analyse its diagonal subalgebra, relate its core subalgebra to gen-

eralized Bunce-Deddens algebras in the sense of Orfanos and establish crossed product

pictures. For irreversible ∗-commutative dynamical systems, the C*-algebra takes into ac-

count a reconstruction formula reminiscent of Parseval frames. Given that an irreversible

algebraic dynamical system corresponds to an irreversible ∗-commutative dynamical sys-

tem via Pontryagin duality, we prove that the two C*-algebras we obtain are canonically

isomorphic.

In a different direction, we associate a discrete product system of Hilbert bimodules

to either of the two types of dynamical systems. For irreversible algebraic dynamical sys-

tems, these product systems turn out to have coherent systems of orthonormal bases on

the fibres. In the case of irreversible ∗-commutative dynamical systems, we only obtain

coherent systems of finite Parseval frames. Nevertheless, this enables us to show that, for

both kinds of dynamical systems, the C*-algebra we constructed via an explicit presenta-

tion coincides with the Cuntz-Nica-Pimsner algebra associated to the product systems of

Hilbert bimodules obtained from the dynamical system.

For irreversible ∗-commutative dynamical systems, we use this identification to char-

acterize topological freeness of the dynamical system by properties of the associated C*-

algebra. This extends the corresponding result of Meier Carlsen and Silvestrov for a

single surjective local homeomorphism of a compact Hausdorff space. An almost immedi-

ate consequence is a necessary and sufficient simplicity criterion for C*-algebras associated

to irreversible ∗-commutative dynamical systems. As an application, we show that the

conditions imposed on irreversible algebraic dynamical systems to obtain UCT Kirchberg

algebras are in fact necessary in the case where the involved group is abelian and the

group endomorphisms have finite cokernel.
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Introduction

Let G be a countable discrete group and (ξg)g∈G denote the standard orthonormal basis

of the Hilbert space `2(G). Suppose ϕ is an injective group endomorphism of G. Then

Sϕξg = ξϕ(g) defines an isometry on `2(G). For g ∈ G, let Ug denote the canonical unitary

on `2(G) given by left translation. Then SϕUg = Uϕ(g)Sϕ holds for all g ∈ G. This leads to

the C*-algebra Or[ϕ] generated by the isometry Sϕ and the unitaries (Ug)g∈G. A natural

object to study within this context is a universal model for Or[ϕ], which is a C*-algebra

O[ϕ] = C∗({sϕ, (ug)g∈G | R}) generated by an isometry sϕ and unitaries ug satisfying a

suitable set of relations R.

In the case where ϕ is a group automorphism of G, the C*-algebra C∗(Sϕ, (Ug)g∈G)

is related to the crossed product C∗
r (G)oα Z, where α(ug) = uϕ(g). It is well-known that

this crossed product is canonically isomorphic to the reduced group C*-algebra of the

semidirect product Goϕ Z. Hence, the full group C*-algebra of Goϕ Z can be regarded

as a universal model for Or[ϕ], even though the latter tends to be a proper quotient of

the former. The structure of these C*-algebras has already been studied extensively, see

[Wil07]. In contrast, the situation for an injective, but non-surjective group endomorphism

ϕ has started to receive more attention in the recent past. Let us remark that G has

to be infinite in this case. The most elementary examples of such endomorphisms are

×2 : Z −→ Z and the one-sided shift on
⊕

k∈N Z/nZ for n ≥ 2.

Restricting to the case where G is amenable and G/ϕ(G) is finite, Ilan Hirshberg in-

troduced a universal C*-algebraic model O[ϕ] for Or[ϕ] in 2002, see [Hir02]. He showed

that the core F ⊂ O[ϕ], which is the fixed point algebra under the canonical gauge action,

is simple if (ϕn(G))n∈N separates the points in G, that is,
⋂
n∈N ϕ

n(G) = {1G}. Using

simplicity of F , he concluded that F is the crossed product of a natural commutative sub-

algebra D, called the diagonal, by G. Assuming that the family of subgroups (ϕn(G))n∈N
separates the points in G and consists of normal subgroups of G, Hirshberg established

that O[ϕ] is simple and therefore isomorphic to Or[ϕ]. Additionally, he computed the

K-theory of O[ϕ] based on the K-theory of F and the Pimsner-Voiculescu six-term exact

sequence for ×n : Z −→ Z, n ≥ 2, the shift on
⊕

NH, where H is a finite group, and

ϕ : Z/2Z ∗ Z/2Z −→ Z/2Z ∗ Z/2Z, a 7→ bab, b 7→ aba, where a, b denote the standard

generators of Z/2Z ∗ Z/2Z.
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A decade later, Felipe Vieira extended Hirshberg’s results to the case where G is

amenable and (ϕn(G))n∈N separates the points in G, see [Vie13]. His approach used tech-

niques for semigroup crossed products as well as partial group crossed products. One

remarkable outcome of his work is the connection to semigroup C*-algebras for left can-

cellative semigroups as introduced by Xin Li in [Li12,Li13]: If G is amenable, (ϕn(G))n∈N
separates the points in G, and G/ϕ(G) is infinite, then O[ϕ] is canonically isomorphic

to the full semigroup C*-algebra of Goϕ N. Furthermore, Vieira showed that this is the

same as the reduced semigroup C*-algebra for this semidirect product.

At about the same time, Joachim Cuntz and Anatoly Vershik examined the case where

G is abelian, G/ϕ(G) is finite, and (ϕn(G))n∈N separates the points in G, see [CV13]. They

proved that O[ϕ] is a UCT Kirchberg algebra and provided a general method to compute

the K-theory of O[ϕ]. In addition, they found that the spectrum of the diagonal D is a

compact abelian group Gϕ, which can be interpreted as a completion of G with respect

to ϕ. Another interesting outcome of [CV13] is the fact that F ∼= C(Gϕ) o G is also

isomorphic to C(Ĝ)o Ĝϕ.

Summarizing the current status, it is fair to say that a lot is known about the C*-

algebras O[ϕ], F and D associated to a single injective, non-surjective group endomor-

phism ϕ of a countably infinite, discrete group G. Indeed, in many cases we are able,

at least in principle, to compute the K-theory for O[ϕ], which is known to be a com-

plete invariant due to the celebrated classification theorem by Eberhard Kirchberg and

Christopher N. Phillips, see [Kir, Phi00]. Thus, by computing the K-theory of O[ϕ], we

can recover the information on the dynamical system (G,ϕ) that is encoded in O[ϕ]. It

is therefore natural to ask whether analogous results hold for similar dynamical systems

involving more than one transformation.

To motivate this question, let us mention an important example which showcases some

interesting phenomena for such dynamical systems. In 1967, Hillel Furstenberg proved the

following result, which applies for instance to ×2,×3 : T −→ T, the Pontryagin dual of

×2,×3 : Z −→ Z, see [Fur67, Part IV]: Every closed subset of T, which is invariant

under the action of a non-lacunary subsemigroup of Z×, is either finite or equals T.
This led him to conjecture that a stronger form of rigidity might be true: Any invariant

ergodic Borel probability measure on T is either atomic or the Lebesgue measure on T.
In its general form, this conjecture is still open. An important reduction step has been

achieved by Daniel J. Rudolph, see [Rud90] and also [Par96] for a concise presentation.

The conjecture has been verified by Manfred Einsiedler and Alexander Fish in 2010 for

the case where the acting semigroup is sufficiently large in the sense that it has positive

lower logarithmic density, see [EF10]. This form of measure rigidity has also been studied

for certain reversible dynamical systems, see [EK05] and the references therein. In a

different direction, Daniel J. Berend and Roman Muchnik generalised the rigidity result

from [Fur67] stated above to compact abelian groups, see [Ber83,Ber84,Muc05].

Coming back to ×2,×3 : T −→ T, it is natural to ask: What are the essential features
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Introduction

of similar dynamical systems? By Pontryagin duality, ×2,×3 : T −→ T corresponds to

×2,×3 : Z −→ Z. In other words, the monoid N2 acts on the group Z by multiplication

using two relatively prime integers. In an abstract way, we can think of this as a triple

(G,P, θ), where

• G is a countably infinite discrete group,

• P is a countably generated, free abelian monoid, and

• P
θ
y G is an action by injective group endomorphisms subject to the independence

condition: θp(G) ∩ θq(G) = θpq(G) if and only if p and q are relatively prime in P ,

i.e. pP ∩ qP = pqP .

We will refer to triples (G,P, θ) satisfying the three requirements stated above as irre-

versible algebraic dynamical systems. The term irreversible is used because θp ∈ Aut(G)

implies p = 1P , and algebraic is used to emphasize the contrast to topological dynamical

systems, since the imposed conditions are purely algebraic.

We note that it suffices to check the independence condition for irreversible algebraic

dynamical systems for the generators of P . An equivalent characterisation of independence

can be given in terms of the isometries Sθp , Sθq ∈ `
2(G):

θp(G) ∩ θq(G) = θpq(G) if and only if S∗
θpSθq = SθqS

∗
θp .

The inspiration for the independence condition stems from [CV13, Section 5], where

two commuting injective group endomorphisms ϕ, ψ of a discrete abelian group G with

finite cokernel are considered. The maps ϕ and ψ are said to be independent if ϕ(G) ∩

ψ(G) = ϕψ(G). It is then shown that independence is equivalent to ϕ(G) + ψ(G) = G.

This equation is in turn equivalent to the statement that the inclusion ϕ(G) ↪→ G induces

an isomorphism ϕ(G)/(ϕ(G) ∩ ψ(G)) ∼= G/ψ(G).

For the general case, where G need not be abelian, and G/ϕ(G), G/ψ(G) need not

be finite, we show that this last equivalence still holds if we only ask for a bijection

ϕ(G)/(ϕ(G)∩ψ(G)) −→ G/ψ(G), see Proposition 1.1.1. This slight modification is natural

since there need not be a group structure on the quotients. But ϕ(G) ∩ ψ(G) = ϕψ(G)

turns out to be weaker than ϕ(G)ψ(G) = G, where ϕ(G)ψ(G) = {ϕ(g)ψ(g′) | g, g′ ∈ G},

see Example 1.1.12. We will therefore differentiate between independence and what we

call strong independence, see Definition 1.1.3.

For abelian G, we examine the dual triple (Ĝ, P, θ̂), see Section 1.2. In this case, Ĝ is

a compact abelian group and θ̂p is a surjective group endomorphism of Ĝ for every p ∈ P .

The (strong) independence condition for θ is stated in terms of θ̂. This is related to the

notion of ∗-commutativity introduced in [AR97] and studied for instance in [ER07,Wil10].

Recall that given a set X, two commuting maps ϕ, ψ : X −→ X are said to ∗-commute

if ϕ : ψ−1(x) −→ ψ−1(ϕ(x)) is a bijection for all x ∈ X. For the situation of a pair of

commuting surjective group endomorphisms, we find that strong independence is weaker

than ∗-commutativity, see Proposition 1.3.2. But we prove in many cases, for example

when G/θp(G) is finite for all p ∈ P , that ∗-commutativity is equivalent to independence.
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Let us recall that, for abelian G, the quotient G/θp(G) is finite if and only if ker θ̂p
is finite. If this is the case for all p ∈ P , then P acts by surjective, local homeomor-

phisms θ̂p on the compact Hausdorff space Ĝ. Due to the equivalence of independence

and ∗-commutativity, this action satisfies a ∗-commutativity relation, analogous to the

independence condition for irreversible algebraic dynamical systems. This motivates the

study of irreversible ∗-commutative dynamical systems of finite type (X,P, θ), where P is

again a countably generated, free abelian monoid, but X is a compact Hausdorff space on

which P acts by regular surjective local homeomorphisms θp satisfying:

θp and θq ∗-commute if and only if p and q are relatively prime in P .

Analogous to the case of irreversible algebraic dynamical systems, irreversible refers to

the fact that θp is not a homeomorphism of X unless p = 1P . A surjective local home-

omorphism is called regular if the number of preimages of a singleton is constant on X.

Since we only consider compact spaces X, this value is always finite. Such maps are also

referred to as covering maps.

Conceptionally, the notion of an irreversible ∗-commutative dynamical system of finite

type represents the model type extracted from ×2,×3 : T −→ T from the perspective of

topological dynamical systems. It is therefore not surprising that, given an irreversible

algebraic dynamical system of finite type (G,P, θ) with abelian G, the dual triple (Ĝ, P, θ̂)

is an irreversible ∗-commutative dynamical system of finite type, see Corollary 1.3.17.

For irreversible algebraic dynamical systems (G,P, θ) as well as for irreversible ∗-

commutative dynamical systems of finite type (X,P, θ), we construct and study universal

C*-algebras O[G,P, θ] and O[X,P, θ], by means of generators and relations, in the course

of Chapter 2. The main focus is set on O[G,P, θ], which is a direct generalization of the

C*-algebra O[ϕ] that appeared in [CV13, Hir02, Vie13]. The C*-algebra O[X,P, θ] is a

generalization of a certain Exel crossed product C(X)oα,L N, see [EV06, Section 9]. We

show that the structures of O[G,P, θ] and O[X,P, θ] are consistent with the ones that

have been found for O[ϕ] and C(X)oα,LN, respectively. Since we focus on O[G,P, θ] and
the results on O[X,P, θ] are mostly used as tools for Chapter 4, let us be more precise

concerning the structural properties of O[G,P, θ].

Extending [CV13, Lemma 2.4], it is proven that the spectrum Gθ of the (commutative)

diagonal subalgebra D of O[G,P, θ] can be interpreted as a completion of G with respect

to θ if (G,P, θ) is minimal in the sense that
⋂
p∈P θp(G) = {1G}, see Lemma 2.2.9. The

C*-algebra O[G,P, θ] is identified with the semigroup crossed product D o (G oθ P ),

where (g, p).d = ugspd(ugsp)
∗, see Proposition 2.2.18. Using a decomposition theorem for

crossed products by semidirect products of monoids, which is established in Section 2.1,

the isomorphism between O[G,P, θ] and D o (G oθ P ) gives rise to an isomorphism of

F and C(Gθ) oτ G, where g.d = ugdu
∗
g, see Corollary 2.2.19. If G is amenable and

(G,P, θ) is minimal, then F is a generalized Bunce-Deddens algebra in the sense of [Orf10],

see Proposition 2.3.2 and [Orf10]. In this case, F is classified by its Elliott invariant
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Introduction

due to a combination of results from [Lin01, MS,Win05], see Corollary 2.3.3. Finally,

Corollary 2.2.28 asserts that minimality of (G,P, θ) and amenability of the action G
τ̂
y Gθ

imply that O[G,P, θ] is a UCT Kirchberg algebra, hence classifiable by K-theory due to

[Kir, Phi00]. Unfortunately, the computation of the K-theory of O[G,P, θ] beyond the

case of a single group endomorphism, for which this has been accomplished in [CV13], is

a hard problem, at least with the techniques currently available.

Chapter 3 provides an alternative approach to the C*-algebrasO[G,P, θ] andO[X,P, θ]

as the Cuntz-Nica-Pimsner algebras of discrete product systems of Hilbert bimodules over

the semigroup P with coefficients in C∗(G) and C(X), respectively, see Theorem 3.3.4 for

(G,P, θ) and Theorem 3.3.7 for (X,P, θ). Discrete product systems form a generalization

of the original construction introduced by Mihai Pimsner in [Pim97] for a single Hilbert

bimodule. Within the first two sections of Chapter 3, we provide a short introduction to

product systems, their representation theory, and the C*-algebras associated to them. We

refer to [Fow99, Fow02, Sol06,Yee07, SY10,CLSV11,HLS12] for more information on the

subject.

In the last section of Chapter 3, we show how to construct product systems for both

irreversible algebraic dynamical systems (G,P, θ) and irreversible ∗-commutative dynam-

ical systems of finite type (X,P, θ). For (G,P, θ), the product system X associated to

it comes with a canonical system of orthonormal bases on its fibres Xp, p ∈ P , given by

(ug)gθp(G)∈G/θp(G). Similarly, the product system X associated to (X,P, θ) admits a finite

Parseval frame on each fibre Xp, which is constructed by choosing a partition of unity

(fi) ⊂ C(X) such that θp is injective on supp fi for all i.

One advantage of realizing O[G,P, θ] as the Cuntz-Nica-Pimsner algebras of a product

system is that it has a natural Toeplitz extension, called the Nica-Toeplitz algebra. Al-

though this will not be part of this thesis, we want to mention that, jointly with Nathan

Brownlowe and Nadia S. Larsen, we proved that the Nica-Toeplitz algebra associated to

(G,P, θ) is isomorphic to the (full) semigroup C*-algebra C∗(Goθ P ) in the sense of Xin

Li, see [Li12, Li13]. Moreover, it coincides with O[G,P, θ] for irreversible algebraic dy-

namical systems (G,P, θ), given that G/θp(G) is infinite for all p 6= 1P . This sheds new

light on the result from [Vie13] mentioned in the beginning.

With regards to (X,P, θ), Theorem 3.3.7 grants us access to a gauge-invariant unique-

ness theorem from [CLSV11], see Remark 4.1.2. This is an essential tool to characterise

topological freeness of (X,P, θ) in terms of O[X,P, θ], see Theorem 4.1.9. For an irre-

versible ∗-commutative dynamical system of finite type (X,P, θ), the following statements

are equivalent:

(1) (X,P, θ) is topologically free.

(2) Every non-zero ideal I C O[X,P, θ] satisfies I ∩ C(X) 6= 0.

(3) The natural representation of O[X,P, θ] on `2(X) is faithful.

(4) C(X) is a maximal abelian subalgebra (masa) in O[X,P, θ].

vi



Thus we achieve a direct generalization of [CS09, Theorem 6], where this result was proven

only for singly generated P . The proof we present in this thesis combines the strategy of

[CS09] with the gauge-invariant uniqueness theorem from [CLSV11] and techniques from

[Exe03b,EV06].

As a useful consequence of Theorem 4.1.9, simplicity of the C*-algebra O[X,P, θ]

is characterized by minimality of the topological dynamical system (X,P, θ), see Theo-

rem 4.2.11. We also show that minimal irreversible ∗-commutative dynamical systems of

finite type are necessarily topologically free, see Proposition 4.2.10. This was observed

already in [EV06, Proposition 11.1] in the case where P is singly generated.

Finally, we apply Theorem 4.2.11 to the dual triple (Ĝ, P, θ̂) of an irreversible algebraic

dynamical system of finite type (G,P, θ) with abelian G in order to deduce that simplicity

of O[G,P, θ] is equivalent to minimality of (G,P, θ), see Corollary 4.2.12. This shows that

the conditions required in Theorem 2.2.26 are necessary in the case where G is abelian,

and G/θp(G) is finite for all p ∈ P .
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Chapter 1

Irreversible semigroup dynamical

systems

In this opening chapter, we will specify the dynamical systems that we are going to anal-

yse and highlight their characteristic features, as well as connections between the different

versions. We start off in the first section with a closer examination of the independence

condition from [CV13, Section 5] for pairs of commuting injective endomorphisms of an ar-

bitrary groupG, see Proposition 1.1.1. This setting is more general than the one considered

in [CV13] and leads to a subdivision of the notion of independence into independence and

strong independence, see Definition 1.1.3. The two properties are shown to be equivalent

in the case where one of the involved endomorphisms has finite index in G, see Proposi-

tion 1.1.1. But Example 1.1.12 shows that there are many situations where independence

holds, but strong independence does not. We then formulate the concept of irreversible

algebraic dynamical systems (G,P, θ) based upon independence, see Definition 1.1.5, and

provide a diverse pool of examples.

Section 1.2 is dedicated to the discussion of the dual model (Ĝ, P, θ̂) for irreversible

algebraic dynamical systems in the case where G is commutative. This leads to an comple-

mentary notion of (strong) independence for pairs of commuting surjective endomorphisms

of an arbitrary group K, see Definition 1.2.7. The fact that there is a close connection

between (strong) independence of injective endomorphisms of a discrete abelian group G

and (strong) independence of their dualized counterparts, which are surjective endomor-

phisms of the compact abelian group Ĝ, has already been observed in [CV13, Section

5]. We extend this observation to the general setup in Proposition 1.2.6. This allows us

to characterize when a triple (G,P, θ) is a (minimal) commutative irreversible algebraic

dynamical system (of finite type), entirely in terms of its dual model (Ĝ, P, θ̂), see Propo-

sition 1.2.8. We close this section with a brief presentation of the dual models for the

commutative examples from Section 1.1.
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1. Irreversible semigroup dynamical systems

The beginning of Section 1.3 provides an introduction to ∗-commutativity, see also

[ER07,Wil10,MW], and some elementary aspects of regular surjective local homeomor-

phisms of a compact Hausdorff space X. Here regular means that the map assigning to

x ∈ X the number of preimages under the surjective local homeomorphism is constant, see

Definition 1.3.4. Then we define a topological analogue for irreversible algebraic dynamical

systems, for which, roughly speaking, independence is replaced by ∗-commutativity, see

Definition 1.3.13 for details. By comparing ∗-commutativity with strong independence in

the sense of Definition 1.2.7, see Proposition 1.3.16, we are able to conclude that the dual

model for commutative irreversible algebraic dynamical systems of finite type falls into the

class of irreversible ∗-commutative dynamical systems of finite type, see Corollary 1.3.17.

Towards the end of this first chapter we discuss a method from symbolic dynamics to

construct examples of irreversible ∗-commutative dynamical systems of finite type. This

part builds on the material presented in [ER07, Section 10–14] and, in fact, leads to new

examples for commutative irreversible algebraic dynamical systems of finite type.

1.1 Irreversible algebraic dynamical systems

The purpose of this section is to familiarize with the primary object of interest called

irreversible algebraic dynamical system in its most general form. Vaguely speaking, such a

dynamical system is given by a countably infinite, discrete group G and at most countably

many commuting injective, non-surjective group endomorphisms (θi)i∈I of G that are

independent in the sense that the intersection of their images is as small as possible.

Additionally, we will introduce a minimality condition stating that the intersection of the

images of the group endomorphisms from the semigroup generated by (θi)i∈I is trivial.

In other words, the group endomorphisms (θi)i∈I (more precisely finite products of these)

separate the points in G. At a later stage, namely in Theorem 2.2.26, this condition is

shown to be intimately connected to simplicity of the C*-algebra associated to such a

dynamical system in Definition 2.2.1.

The following observation is an extension of the concept introduced in [CV13, Section

5]. In contrast to the situation in [CV13], we will require neither the group G to be abelian

nor the cokernels of the injective group endomorphisms of G to be finite.

Proposition 1.1.1. Suppose G is a group. Consider the following statements for two

commuting injective group endomorphisms θ1 and θ2 of G:

(i) θ1(G)θ2(G) = G.

(ii) The inclusion θ1(G) ↪→ G induces a bijection θ1(G)/(θ1(G) ∩ θ2(G)) −→ G/θ2(G).

(ii’) The inclusion θ2(G) ↪→ G induces a bijection θ2(G)/(θ1(G) ∩ θ2(G)) −→ G/θ1(G).

(iii) θ1(G) ∩ θ2(G) = θ1θ2(G).
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1.1. Irreversible algebraic dynamical systems

Then (i),(ii), and (ii’) are equivalent and imply (iii). If one of the subgroups θ1(G) and

θ2(G) is of finite index in G, then all these conditions are equivalent.

Proof. Note that we always have θ1(G)θ2(G) ⊂ G and θ1(G) ∩ θ2(G) ⊃ θ1θ2(G). More-

over, in condition (ii), the inclusion θ1(G) ↪→ G induces an injective map θ1(G)/(θ1(G) ∩

θ2(G)) −→ G/θ2(G). The corresponding statement holds for (ii’).

If (i) holds true, then G 3 g = θ1(g1)θ2(g2) for suitable gi ∈ G. Hence, the left-coset of

θ1(g1) maps to the left-coset of g and (ii) follows.

Conversely, suppose (ii) is valid and pick g ∈ G. Then there is g1 ∈ G such that

θ1(g1) (θ1(G) ∩ θ2(G)) 7→ gθ2(G) via the map from (ii). But since this map comes from

the inclusion θ1(G) ↪−→ G, we have gθ2(G) = θ1(g1)θ2(G). Thus, there is g2 ∈ G such

that g = θ1(g1)θ2(g2) showing (i). The equivalence of (i) and (ii’) is obtained from the

previous argument by swapping θ1 and θ2. Given (ii), that is,

θ1(G)/(θ1(G) ∩ θ2(G))
f1
−→ G/θ2(G)

is a bijection (induced by the inclusion θ2(G) ↪→ G), composing f−1
1 with the bijection

θ1(G)/(θ1θ2(G))
f2
−→ G/θ2(G)

obtained from applying the injective group endomorphism θ1 yields a bijection

θ1(G)/(θ1θ2(G))
f−1
1 f2
−→ θ1(G)/(θ1(G) ∩ θ2(G)).

Let us assume θ1θ2(G) $ θ1(G) ∩ θ2(G). This means, that there is g ∈ θ1(G) such that

gθ1θ2(G) 6= θ1θ2(G) but gθ1(G) ∩ θ2(G) = θ1(G) ∩ θ2(G). Noting that f−1
1 f2 maps a

left-coset g′θ1θ2(G) to g′θ1(G) ∩ θ2(G), this contradicts injectivity of f−1
1 f2. Hence, we

must have θ1(G) ∩ θ2(G) = θ1θ2(G). Similarly, (iii) follows from (ii’).

Finally, suppose (iii) holds. By injectivity of θ1, we have

θ1(G)/(θ1(G) ∩ θ2(G)) = θ1(G)/θ1θ2(G) ∼= G/θ2(G).

So if [G : θ2(G)] is finite, then the injective map from (ii) is necessarily a bijection.

Similarly, if [G : θ1(G)] is finite, we can run the same argument using (ii’).

Remark 1.1.2. If the subgroups θ1(G) and θ2(G) are both normal in G, then θ1(G)θ2(G)

is a normal subgroup of θi(G), i = 1, 2, and the bijections in Proposition 1.1.1 (ii) and (ii’)

are isomorphisms of groups.

Definition 1.1.3. Let G be a group and θ1, θ2 commuting, injective group endomorphisms

of G. Then θ1 and θ2 are said to be independent, if they satisfy condition (iii) from

Proposition 1.1.1. θ1 and θ2 are said to be strongly independent, if they satisfy the

equivalent conditions (i),(ii’) and (ii’) from Proposition 1.1.1.
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1. Irreversible semigroup dynamical systems

Note that (strong) independence is automatic if θ1 or θ2 is a group automorphism.

Lemma 1.1.4. Let G be a group and suppose θ1, θ2, θ3 are commuting, injective group

endomorphisms of G. θ1 is (strongly) independent of θ2θ2 if and only if θ1 is (strongly)

independent of both θ2 and θ3.

Proof. If θ1 and θ2θ3 are strongly independent, then

θ1(G)θ2(G) ⊃ θ1(G)θ2(θ3(G)) = G

shows that θ1 and θ2 are strongly independent. As θ2 and θ3 commute, θ1 is also strongly

independent of θ3. Conversely, if θ1 is strongly independent of both θ2 and θ3, then

G = θ1(G)θ2(G) = θ1(G)θ2(θ1(G)θ3(G))

= θ1(Gθ2(G))θ2(θ3(G)) ⊂ θ1(G)θ2θ3(G),

so θ1 and θ2θ3 are strongly independent since the reverse inclusion is trivial.

If θ1 and θ2θ3 are independent, then commutativity of θ1, θ2 and θ3 in combination with

injectivity of θ3 yield

θ1(G) ∩ θ2(G) = θ−1
3 (θ1θ3(G) ∩ θ2θ3(G)) ⊂ θ−1

3 (θ1(G) ∩ θ2θ3(G))

= θ−1
3 (θ1θ2θ3(G)) = θ1θ2(G).

Since the reverse inclusion is always true, we conclude that θ1 and θ2 are independent.

Exchanging the role of θ2 and θ3 shows independence of θ1 and θ3. Finally, if θ1 is

independent of both θ2 and θ3, we get

θ1(G) ∩ θ2θ3(G) = θ1(G) ∩ θ2(G) ∩ θ2θ3(G) = θ1θ2(G) ∩ θ2θ3(G)

= θ2(θ1(G) ∩ θ3(G)) = θ1θ2θ3(G)

by injectivity of θ2. Thus θ1 and θ2θ3 are independent.

If (P,≤) is a lattice-ordered monoid with unit 1P , we shall denote the least common

multiple and the greatest common divisor of two elements p, q ∈ P by p ∨ q and p ∧ q,

respectively. p and q are said to be relatively prime (in P ) if p ∧ q = 1P or, equivalently,

p∨q = pq. Simple examples of such monoids are countably generated free abelian monoids

since such monoids are either isomorphic to Nk for some k ∈ N or
⊕

NN.

Definition 1.1.5. An irreversible algebraic dynamical system (G,P, θ) consists of

(A) a countably infinite discrete group G with unit 1G,

(B) a countably generated free abelian monoid P with unit 1P , and

4



1.1. Irreversible algebraic dynamical systems

(C) an action P
θ
y G by injective group endomorphisms with the property that θp and

θq are independent if and only if p and q are relatively prime in P .

(G,P, θ) is said to be

· minimal, if
⋂
p∈P θp(G) = {1G},

· commutative, if G is commutative,

· of finite type, if [G : θp(G)] is finite for all p ∈ P , and

· of infinite type, if [G : θp(G)] is infinite for all p 6= 1P .

Remark 1.1.6. The following observations are immediate:

a) Condition (B) means that P is either isomorphic to
⊕

NN or to Nk for some k ∈ N.

b) Let us point out that θ1P = idG is the only automorphism of G occuring for this

setting. Indeed, if θp is an automorphism of G, then it is independent of itself. But

p = 1P is the only element in P that is relatively prime to itself. So unless P = {1P },

there is p ∈ P such that [G : θp(G)] > 1. Therefore, θp(G) is a proper subgroup of

G. Since θp is injective, G needs to be of infinite cardinality.

c) Lemma 1.1.4 shows that the notions of independence and strong independence for

injective group endomorphisms are well-behaved with respect to composition. As a

consequence, it suffices to check the independence condition from (C) on the gener-

ators of P . Moreover, injectivity of the group endomorphisms puts us in position to

rephrase this condition by stating that θp(G)∩θq(G) = θp∨q(G) holds for all p, q ∈ P.

d) If (G,P, θ) is an irreversible algebraic dynamical system of finite type, the indepen-

dence condition from (C) is equivalent to the requirement that θp and θq be strongly

independent if and only if p and q are relatively prime, see Proposition 1.1.1.

e) Note that [G : θpq(G)] = [G : θp(G)] · [θp(G) : θpq(G)] = [G : θp(G)] · [G : θq(G)] holds

since θp is injective. In particular, [G : θpq(G)] is finite if and only if both [G : θp(G)]

and [G : θq(G)] are finite.

Remark 1.1.7. The minimality condition has been used under the name exactness in the

case of a commutative G with a single endomorphism with finite cokernel in [CV13]. As

explained in [CV13, Remark 2.1], the notion of exactness for a single endomorphism stems

from ergodic theory and is a well-studied property for irreversible, measure-preserving

transformations. However, for the specific setup that we use, this property was already

considered by Ilan Hirshberg in [Hir02], where he called such endomorphisms pure. Despite

these two available options, we decided to name this property minimality for two reasons:
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1. Irreversible semigroup dynamical systems

1. For commutative irreversible algebraic dynamical systems, the corresponding condi-

tion for the dualized model (Ĝ, P, θ̂) really is minimality of the (irreversible) topo-

logical dynamical system, see Proposition 1.2.8.

2. Condition (D) is intimately linked to simplicity of the C*-algebras we will construct

from the data, see Corollary 2.2.14, Corollary 2.2.19, and Theorem 2.2.26.

Examples 1.1.8. There are various examples for commutative irreversible algebraic dy-

namical systems and most of them are of finite type. Let us recall that it suffices to check

independence of the endomorphisms on the generators of P according to Lemma 1.1.4.

(a) Choose a family (pi)i∈I ⊂ Z×\Z∗ = Z\{0,±1} and let P = |(pi)i∈I〉 ⊂ Z× act on

G = Z by θpi(g) = pig. Since Z is an integral domain, each θpi is an injective

group endomorphism of G with [G : θpi(G)] = pi. For i 6= j, θpi and θpj are

independent if and only if pi and pj are relatively prime in Z. Thus, we get a

commutative irreversible algebraic dynamical system of finite type if and only if

(pi)i∈I consists of relatively prime integers. Since the number of factors in its prime

factorization is finite for every integer, such irreversible algebraic dynamical systems

are automatically minimal.

(b) Let I ⊂ N, choose relatively prime integers {q} ∪ (pi)i∈I ⊂ Z \ {0,±1} and let G =

Z
[
1
q

]
. As Z

[
1
q

]
= lim−→Z with connecting maps given by multiplication with q, and

q is relatively prime to each pi, the arguments from (a) carry over almost verbatim.

Thus we get minimal commutative irreversible algebraic dynamical systems of finite

type (G,P, θ) which generalize [CV13, Example 2.1.5].

(c) Let K be a countable field and let G = K[T ] denote the polynomial ring in a single

variable T over K. Choose non-constant polynomials pi ∈ K[T ], i ∈ I for some index

set I. Multiplying by pi defines an endomorphism θpi of G with [G : θpi(G)] =

|K|deg(pi), where deg(pi) denotes the degree of pi ∈ K[T ]. Thus, if we let P :=

|(pi)i∈I〉, then the index of θp(G) in G is finite for all p ∈ P if and only if K is finite.

It is clear that θpi and θpj are independent if and only if (pi)∩ (pj) = (pipj) holds for

the principal ideals (whenever i 6= j). Since every g ∈ K[T ] has finite degree, (G,P, θ)

is automatically minimal. Thus, provided (pi)i∈I has been chosen accordingly, we

obtain a minimal commutative irreversible algebraic dynamical system which is of

finite type if and only if K is finite, compare [CV13, Example 2.1.4].

Example 1.1.9. For G = Zd with d ≥ 1, the monoid of injective group endomorphisms

of G is isomorphic to the monoid of invertible integral matrices Md(Z) ∩ Gld(Q). For

each such endomorphism, the index of its image in G is given by the absolute value of

the determinant of the corresponding matrix. In particular, their images always have

finite index in G and an endomorphism of G is not surjective precisely if the absolute
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1.1. Irreversible algebraic dynamical systems

value of the determinant of the matrix exceeds 1. So let (Ti)i∈I ⊂ Md(Z) ∩ Gld(Q) be

a family of matrices satisfying | detTi| > 1 for all i ∈ I and set P = |(Ti)i∈I〉 as well as

θi(g) = Tig. Commutativity of θi and θj is equivalent to TiTj = TjTi. For i 6= j, it is

easier to check strong independence of θi and θj instead of independence. Indeed, since we

are dealing with a finite type case, the conditions are equivalent and strong independence

takes the form Ti(Zd) + Tj(Zd) = Zd, see Proposition 1.1.1. This condition can readily be

checked by solving d linear equations. To reduce efforts, these computations can easily be

handled by a standard linear algebra program. Thus, if the aforementioned conditions are

fulfilled, (G,P, θ) is a commutative irreversible algebraic dynamical system of finite type.

If we interpret the integer matrices (θp)p∈P as endomorphisms of the vector space Cd,
they have the same generalized eigenspaces for possibly different generalized eigenvalues

because they commute. Minimality of (Zd, P, θ) is then equivalent to the property that,

for each generalized eigenspace, there is p ∈ P such that the corresponding generalized

eigenvalue for θp is strictly larger than one in absolute value.

Example 1.1.8 (a) can be generalized to the case of rings of integers in the following way:

Example 1.1.10. Let R be the ring of integers in a number field and denote by R× =

R\{0R} the multiplicative subsemigroup as well as by R∗ ⊂ R× the group of units in R.

Take G = R and choose a (countable) family (pi)i∈I ⊂ R
× \ R∗. If we set P = |(pi)i∈I〉,

then this monoid acts on G in a natural way by multiplication, i.e. θp(g) = pg for

g ∈ G, p ∈ P . For i 6= j, θpi and θpj are independent if and only if the principal ideals

(pi) and (pj) in R share no common prime ideal. If this is the case, (G,P, θ) constitutes

a commutative irreversible algebraic dynamical system of finite type. Since the number

of factors in the (unique) prime ideal factorization of (g) in R is finite for every g ∈ G,

minimality is once again automatically satisfied. The argument actually shows that such

a construction works whenever R is a Dedekind domain.

Let us also mention the following example even though, having singly generated P , it

has nothing to do with independence. The reason is that Joachim Cuntz and Anatoly

Vershik observed in [CV13, Example 2.1.1], that the C*-algebra O[G,P, θ] associated to

this irreversible algebraic dynamical system is isomorphic to On.

Example 1.1.11. For n ≥ 2, consider the unilateral shift θ1 acting on G =
⊕

N Z/nZ
by (g0, g1, . . . ) 7→ (0, g0, g1, . . . ). Since θ1 is an injective group endomorphism with [G :

θ1(G)] = n, (G,P, θ) with P = |θ1〉 is a minimal commutative irreversible algebraic

dynamical system of finite type.

Example 1.1.12. Generalizing Example 1.1.11, suppose P is as required in condition

(B) of Definition 1.1.5 and let G0 be a countable group. Let us assume that G0 has at

least two distinct elements. Then P admits a shift action θ on G :=
⊕

P G0 given by

(θp((gq)q∈P ))r = χpP (r) gp−1r for all p, r ∈ P.
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1. Irreversible semigroup dynamical systems

It is apparent that θpθq = θqθp holds for all p, q ∈ P and that θp is an injective group

endomorphism for all p ∈ P . The index [G : θp(G)] is finite for p ∈ P \ {1P } if and

only if G0 is finite and P is singly generated. Indeed, if p 6= 1P , then each element

of
⊕

q∈P\pP G0 yields a distinct left-coset in G/θp(G). Clearly, this group is finite if

and only if G0 is finite and P is singly generated. Given relatively prime p and q in

P \ {1P }, θp(G)θq(G) 6= G since g1P = 1G0 for all (gr)r∈P ∈ θp(G)θq(G) as 1P /∈ pP ∪ qP .

Thus, unless P is singly generated, θ does not satisfy the strong independence condition.

However, the independence condition is satisfied because g = (gr)r∈P ∈ θp(G) ∩ θq(G)

implies that gr 6= 1G0 only if r ∈ pP ∩ qP = pqP and thus g ∈ θpq(G).

We have seen in Example 1.1.12 that one cannot expect strong independence for irre-

versible algebraic dynamical systems of infinite type in general. On the other hand, there

are some examples where the subgroups in question have infinite index and the endomor-

phisms are strongly independent:

Example 1.1.13. Given a family (G(i), P, θ(i))i∈N of irreversible algebraic dynamical sys-

tems, we can consider G :=
⊕

i∈NG
(i). If P acts on G component-wise, i.e. θp(gi)i∈N :=

(θ
(i)
p (gi))i∈N, then (G,P, θ) is an irreversible algebraic dynamical system and [G : θp(G)] is

infinite unless p = 1P , see Remark 1.1.6 b). G is commutative if and only if each G(i) is,

and (G,P, θ) is minimal if and only if each (G(i), P, θ(i)) is minimal. If each (G(i), P, θ(i))

satisfies the strong independence condition, then θ inherits this property as well.

As a final example, we provide more general forms of [Vie13, Example 2.3.9]. These

examples are neither commutative irreversible algebraic dynamical systems nor of finite

type.

Example 1.1.14. For 2 ≤ n ≤ ∞, let Fn be the free group in n generators (ak)1≤k≤n.

Fix 1 ≤ d ≤ n and choose for each 1 ≤ i ≤ d an n-tuple (mi,k)1≤k≤n ⊂ N× such that

1) for each 1 ≤ i ≤ d, there exists k such that mi,k > 1, and

2) for all 1 ≤ i, j ≤ d, i 6= j and 1 ≤ k ≤ n, mi,k and mj,k are relatively prime.

Then θi(ak) = a
mi,k

k defines a group endomorphism of Fn for each 1 ≤ i ≤ d. Noting that

the length of an element of Fn in terms of the generators (ak)1≤k≤n and their inverses is

non-decreasing under θi, we deduce that θi is injective. It is clear that θiθj = θjθi holds

for all i and j. For every 1 ≤ i ≤ d, the index [Fn : θi(Fn)] is infinite. Indeed, take

1 ≤ k ≤ n such that mi,k > 1 according to 1) and pick 1 ≤ ` ≤ n with ` 6= k. Then the

family ((aka`)
j)j≥1 yields pairwise distinct left-cosets in Fn/θi(Fn) since reduced words of

the form aka`b . . . with b 6= a−1
` are not contained in θi(Fn). A similar argument shows

that θi and θj are not strongly independent for i 6= j: By 1), there are 1 ≤ k, ` ≤ n such

that mi,k > 1 and mj,` > 1. This forces aka` /∈ θi(Fn)θj(Fn). Nonetheless, θi and θj are

independent due to 2). Thus, G = Fn and P = |(θi)1≤i≤d〉 acting on G in the obvious way

constitutes an irreversible algebraic dynamical system which is neither commutative nor
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1.1. Irreversible algebraic dynamical systems

of finite type. Minimality of such irreversible algebraic dynamical systems can easily be

characterized by:

3) For each 1 ≤ k ≤ n, there exists 1 ≤ i ≤ d satisfying mi,k > 1.

There are also examples of irreversible algebraic dynamical systems arising from a refine-

ment of a construction related to symbolic dynamics, see [ER07] for the original expo-

sition. But it is more natural to treat these examples in the framework of irreversible

∗-commutative dynamical systems, which is why we postpone their exposition to Sec-

tion 1.3, see Example 1.3.23 and Example 1.3.21.

We close this section with two preparatory lemmas which are relevant for the C*-

algebraic considerations in Section 2.1 and Section 2.2. The first lemma reflects a crucial

feature of the independence assumption.

Lemma 1.1.15. If (G,P, θ) is an irreversible algebraic dynamical system, then

gθp(G) ∩ hθq(G) =

{
gθp(h

′)θp∨q(G) , if g−1h ∈ θp(G)θq(G),

∅ , else

holds for all g, h ∈ G and p, q ∈ P , where h′ is uniquely determined by gθp(h
′) ∈ hθq(G)

up to right multiplication by elements from θp−1(p∨q)(G).

Proof. If there exist g1, g2 ∈ G such that gθp(g1) = hθq(g2), then g
−1h = θp(g1)θq(g

−1
2 ) ∈

θp(G)θq(G) follows because G is group. Now suppose that g3, g4 ∈ G satisfy gθp(g3) =

hθq(g4) as well. Since this implies θp(g
−1
1 g3) = θq(g

−1
2 g4), we appeal to Remark 1.1.6 c)

to deduce θp(g
−1
1 g3) ∈ θp∨q(G). Using injectivity of θp, this is equivalent to g−1

1 g3 ∈

θp−1(p∨q)(G). Therefore, h′ = g1 is unique up to right multiplication by elements from

θp−1(p∨q)(G).

For the proof of Theorem 2.2.26, we will need the following auxiliary result, which relies

on irreversibility of the dynamical system:

Lemma 1.1.16. Suppose (G,P, θ) is an irreversible algebraic dynamical system and we

have n ∈ N, gi ∈ G, pi ∈ P \ {1P } for 0 ≤ i ≤ n. Then, there exist g ∈ g0θp0(G), p ∈ p0P

satisfying

gθp(G) ⊂ G \
⋃

1≤i≤n

(
gi
⋂

m∈N

θpmi (G)

)
.

Proof. We proceed by induction. Let n = 1. As p1 6= e, we can find m ∈ N such that

p0 /∈ p
m
1 P . In other words, we have p0 ∨ p

m
1 	 p0. By Lemma 1.1.15,

(g0θp0(G)) ∩ (g1θpm1 (G)) =

{
g0θp0(g̃1)θp0∨pm1 (G) if g−1

0 g1 ∈ θp0(G)θpm1 (G),

∅ else,
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1. Irreversible semigroup dynamical systems

where g̃1 is uniquely determined up to θp−1
0 (p0∨pm1 )(G). While we simply take g := g0 in

the second case, we need to pick g ∈ (g0θp0(G))\g0θp0(g̃1)θp0∨pm1 (G) in the first case. Note

that such a g exists as p0 ∨ p
m
1 	 p0 by the choice of m. Finally, let p := p0 ∨ p

m
1 .

The induction step from n to n+ 1 is just a verbatim repetition of the first step:

Assume that the statement holds for fixed n. This means that there exist h ∈ g0θp0(G)

and q ∈ p0P such that

hθq(G) ⊂ G \
⋃

1≤i≤n

(
gi
⋂

m∈N

θpmi (G)

)
.

As pn+1 6= e, we can findm ∈ N such that q /∈ pmn+1P . In other words, we have q∨pmn+1 	 q.

Recall that

(hθq(G)) ∩ (gn+1θpmn+1
(G)) =

{
hθq(g̃n+1)θq∨pmn+1

(G) if h−1gn+1 /∈ θq(G)θpmn+1
(G),

∅ else,

where g̃n+1 is uniquely determined up to θq−1(q∨pmn+1)
(G). In the second case, take g := h.

For the first case, we choose g ∈ (hθq(G))\hθq(g̃n+1)θq∨pmn+1
(G). Note that such a g exists

as q ∨ pmn+1 	 q by the choice of m. Finally, let p := q ∨ pmn+1. Then, it is clear from the

construction that we indeed have

gθp(G) ⊂ G \
⋃

1≤i≤n+1

(
gi
⋂

m∈N

θpmi (G)

)
.

1.2 The dual picture for commutative systems

In this section, we restrict our focus to commutative irreversible algebraic dynamical

systems (G,P, θ). Injective group endomorphisms θp of a discrete abelian group G corre-

spond to surjective group endomorphisms θ̂p of its Pontryagin dual Ĝ, which is a compact

abelian group and the index [G : θp(G)] equals the cardinality of ker θ̂p. This motivates

the definition of (strong) independence for commuting surjective group endomorphisms,

see Definition 1.2.7, which is consistent with the observations from [CV13, Lemma 5.4].

One striking feature of this particular class of irreversible algebraic dynamical systems

is that Definition 1.1.5 can be recast using Ĝ and θ̂, see Proposition 1.2.8. In particular,

commutative irreversible algebraic dynamical systems correspond to certain continuous

surjective transformations θ̂ of the compact Hausdorff space Ĝ. In Lemma 1.2.13, we

show that θ̂p is a local homeomorphism if and only if ker θ̂p is finite.

We start with a short review of basic facts about characters on groups, see [DE09] for

details and further information.
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1.2. The dual picture for commutative systems

Remark 1.2.1. Recall that a character χ on a locally compact abelian group G is a

continuous group homomorphism G
χ
−→ T. The set of characters on G forms a locally

compact abelian group Ĝ when equipped with the topology of uniform convergence on

compact subsets of G. Pontryagin duality states that
ˆ̂
G ∼= G. For this result, we interpret

g ∈ G as a character on Ĝ via g(χ) := χ(g). If G is discrete, then Ĝ is compact and vice

versa. Standard examples for this duality phenomenon are

• R̂ ∼= R,

• Ẑd ∼= Td for every d ∈ N and

• Ẑ/nZ ∼= Z/nZ for every n ∈ N.

In the following, we will use some well-known facts connected to annihilators.

Definition 1.2.2. Let G be a locally compact abelian group. For a subset H ⊂ G, the

annihilator of H is given by H⊥ := { χ ∈ Ĝ | χ|H = 1 }.

Remark 1.2.3. The annihilator is always a closed subgroup of Ĝ. A useful fact about

annihilators of subgroups H is that we have Ĥ ∼= Ĝ/H⊥. Additionally, one can show

that (H⊥)⊥ is the smallest closed subgroup of G containing H. So if H ⊂ G is a closed

subgroup, then (H⊥)⊥ = H.

Lemma 1.2.4. Let G be a locally compact abelian group and G
η
−→ G a group endo-

morphism. Then η̂(χ)(g) := χ◦η(g) defines a group endomorphism Ĝ
η̂
−→ Ĝ which is

continuous if and only if η is. This process has the following properties:

i) ˆ̂η = η.

ii) η(G)⊥ = ker η̂.

iii) η̂(Ĝ) ⊂ Ĝ is dense if and only if η is injective.

iv) k̂er η̂ ∼= coker η if η(G) is closed.

Proof. η̂ is a continuous endomorphism of Ĝ if and only if η is continuous since the

elements of Ĝ are continuous group homomorphisms by definition. Using Pontryagin

duality to identify
ˆ̂
G with G, the endomorphism G

ˆ̂η
−→ G is given by

ˆ̂η(g)(χ) = g(η̂(χ)) = χ◦η(g) = η(g)(χ) for all g ∈ G,χ ∈ Ĝ.

Since Ĝ separates the points in G, ˆ̂η = η follows. ii) is obvious and readily implies iii) if

we use i) to swap η and η̂, i.e. η̂(Ĝ)⊥ = ker η. For iv), Remark 1.2.3 implies

k̂er η̂ ∼= G/(ker η̂)⊥ = G/(η(G)⊥)⊥.

So if η(G) is closed, then k̂er η̂ ∼= coker η.

11



1. Irreversible semigroup dynamical systems

In particular, if G is discrete abelian, then ii) says that η̂ : Ĝ −→ Ĝ is surjective if and

only if η : G −→ G is injective. Moreover, η(G) is always closed. If, in addition, coker η

is finite, then ker η̂ ∼= k̂er η̂ ∼= coker η follows from Remark 1.2.1 and iv).

Lemma 1.2.5. If G is a locally compact abelian group and H1, H2 ⊂ G are subgroups,

then:

i) (H1 ·H2)
⊥ = H⊥

1 ∩H
⊥
2 .

ii) (H1 ∩H2)
⊥ = H⊥

1 ·H
⊥
2 holds if H1 and H2 are closed.

Proof. i) is straightforward. If both H1 and H2 are closed, then H1 ∩ H2 is a closed

subgroup of G. Thus Remark 1.2.3 shows that ii) is equivalent to

H1 ∩H2 = ((H1 ∩H2)
⊥)⊥ = (H⊥

1 ·H
⊥
2 )⊥

i)
= (H⊥

1 )⊥ ∩ (H⊥
2 )⊥ = H1 ∩H2.

Proposition 1.2.6. Let G be a discrete abelian group and θ1, θ2 be commuting, injective

endomorphisms of G. Then the following statements hold:

i) θ1 and θ2 are strongly independent if and only if ker θ̂1 ∩ ker θ̂2 = {1Ĝ}.

ii) θ1 and θ2 are independent if and only if ker θ̂1 · ker θ̂2 = ker θ̂1θ2.

Proof. For strong independence, we compute

(θ1(G)θ2(G))
⊥ 1.2.5 i)

= θ1(G)
⊥ ∩ θ2(G)

⊥ 1.2.4 ii)
= ker θ̂1 ∩ ker θ̂2.

Therefore, θ1(G)θ2(G) = G is equivalent to ker θ̂1 ∩ ker θ̂2 = {1Ĝ}. Similarly, we get

(θ1(G) ∩ θ2(G))
⊥ 1.2.5 ii)

= θ1(G)
⊥ · θ2(G)

⊥ 1.2.4 ii)
= ker θ̂1 · ker θ̂2.

Now Lemma 1.2.4 ii) gives ker θ̂1θ2 = θ1θ2(G)
⊥, so the two conditions are equivalent.

This motivates the following definition in analogy to Definition 1.1.3:

Definition 1.2.7. Two commuting, surjective group endomorphisms η1 and η2 of a group

K are said to be strongly independent, if they satisfy ker η1 ∩ ker η2 = {1K}. η1 and

η2 are called independent, if ker η1 · ker η2 = ker η1η2 holds true.

It is clear that we have an equivalence between the statements:

(i) η1 and η2 are strongly independent.

(ii) η1 is an injective group endomorphism of ker η2.

12



1.2. The dual picture for commutative systems

(ii’) η2 is an injective group endomorphism of ker η1.

If both ker η1 and ker η2 are finite, then strong independence and independence coincide.

Therefore, this definition is consistent with [CV13, Definition 5.5], where the case of

endomorphisms (of a compact abelian group K) with finite kernels is treated. Note that

there is no conflict with (strong) independence for injective group endomorphisms, see

Definition 1.1.3, as all these conditions are trivially satisfied by group automorphisms.

With the observations from Remark 1.2.1, Lemma 1.2.4 and Lemma 1.2.5 at hand, we

can now translate the setup from Definition 1.1.5 for commutative irreversible algebraic

dynamical systems:

Proposition 1.2.8. For a discrete abelian group G, a triple (G,P, θ) is a commutative

irreversible algebraic dynamical system if and only if

(A) Ĝ is a compact abelian group,

(B) P is a countably generated, free, abelian monoid (with unit 1P ), and

(C) P
θ̂
y Ĝ is an action by surjective group endomorphisms with the property that θ̂p

and θ̂q are independent if and only if p and q are relatively prime in P .

(G,P, θ) is minimal if and only if
⋃
p∈P ker θ̂p ⊂ Ĝ is dense. It is of finite (infinite) type

if and only if ker θ̂p is (infinite) finite for all p ∈ P (p ∈ P \ {1P }).

Proof. Conditions (A) and (B) of this characterization follow readily from Remark 1.2.1

together with Lemma 1.2.4. Moreover, for any p ∈ P , the equation (ker θ̂p)
⊥ = im θp

implies k̂er θ̂p ∼= coker θp. Combining Lemma 1.2.4 iii) and Proposition 1.2.6 yields (C).

Note that we have θq(G) ⊂ θp(G) and, correspondingly, ker θ̂p ⊂ ker θ̂q whenever q ∈ pP .

Since P is directed, Lemma 1.2.5 i) and Lemma 1.2.4 ii) imply (D). For the last claim, we

recall that a locally compact abelian group is finite if and only if its dual group is finite.

Thus ker θ̂p is finite if and only if coker θp is finite.

Let us now revisit some commutative irreversible algebraic dynamical systems from Sec-

tion 1.1:

Examples 1.2.9. The following list corresponds to the one in Example 1.1.8.

(a) For G = Z, a family of relatively prime numbers (pi)i∈I ⊂ Z×\Z∗ = Z\{0,±1}
generates a monoid P = |(pi)i∈I〉 ⊂ Z× which acts on G by θpi(g) = pig. In this

case, Ĝ = T and θ̂p(t) = tp for all t ∈ T and p ∈ P .

(b) Let I ⊂ N, 0 ∈ I, (pi)i∈I ⊂ Z \ {0,±1} a family of pairwise relatively prime integers

and set P = |(pi)i≥1〉 as well as G = Z
[

1
p0

]
= lim−→Z with connecting maps given by

multiplication with p0. Then this constitutes a minimal commutative irreversible

13



1. Irreversible semigroup dynamical systems

algebraic dynamical system of finite type, see Example 1.1.8 (b). The dual group of

G is the solenoid Ĝ = Zp0 = lim←−Z/pk0Z, on which θ̂p is given by multiplication with

p.

(c) For a finite field K, let pi ∈ K[T ], i ∈ I (for an index set I) be polynomials in

G = K[T ] with the property that (pi) ∩ (pj) = (pipj) holds for all i 6= j. Then

the action θ of P := |(pi)i∈I〉 given by multiplication with the polynomial itself

yields a commutative irreversible algebraic dynamical system of finite type, see Ex-

ample 1.1.8 (c). Then Ĝ is the ring of formal power series K[[T ]] over K, compare

[CV13, Example 2.1.4], and θ̂p is given by multiplication with p in K[[T ]].

Example 1.2.10. Recall that, in Example 1.1.9, we considered G = Zd for some d ≥ 1,

a family of pairwise commuting matrices (Ti)i∈I ⊂Md(Z)∩Gld(Q) satisfying | detTi| > 1

for all i ∈ I and set P = |(Ti)i∈I〉 with θTi(g) = Tig. In this case, we have Ĝ = Td

and the endomorphism θ̂p is given by the matrix corresponding to θp interpreted as an

endomorphism of Rd/Zd ∼= Td.

Example 1.2.11. The dual model for the unilateral shift on G =
⊕

N Z/nZ for n ≥ 2

from Example 1.1.11 is given by the shift (xk)k∈N 7→ (xk+1)k∈N on Ĝ = (Z/nZ)N. The

discussion for Example 1.1.12 with the restriction that G0 be abelian is analogous to this

case, where one replaces N by P and Z/nZ by G0.

Example 1.2.12. In the situation of Example 1.1.13, where we will now require that

(Gn, P, θ
(i))i∈N be a family of commutative irreversible algebraic dynamical systems, G =⊕

i∈NGi turns into Ĝ =
∏
i∈N Ĝi. For each p ∈ P , the group endomorphism θ̂p is given

by applying θ
(i)
p to the i-th component of Ĝ. ker θ̂p is infinite for all p ∈ P \ {1P }. If each

θ(i) satisfies the strong independence condition from Definition 1.1.3, θ̂ satisfies the strong

independence condition from Definition 1.2.7 due to Proposition 1.2.6.

In view of Proposition 1.2.8, it seems that the class of commutative irreversible algebraic

dynamical systems can be studied from the perspective of topological dynamical systems.

But the next lemma displays a severe difficulty for this strategy in the non-finite case:

Lemma 1.2.13. Suppose G is a discrete abelian group and η is a group endomorphism

of G. Then η̂ is a local homeomorphism of Ĝ if and only if coker η is finite.

Proof. Recall that | coker η| = | ker η̂| according to Lemma 1.2.4 ii) and Remark 1.2.3. If η̂

is a local homeomorphism, then, given k ∈ Ĝ, there is an open neighborhood U of k such

that η̂|U is injective. By compactness of Ĝ, finitely many of these cover Ĝ and this sets a

finite bound for | ker η̂|. Conversely, suppose ker η̂ is finite. Using the Hausdorff property

of Ĝ finitely many times, we get an open neighborhood V of 1Ĝ such that V ∩ker η̂ = {1Ĝ}.

It follows that η̂|kV is injective for all k ∈ Ĝ. Indeed, if there are k1, k2 ∈ kV satisfying

η̂(k1) = η̂(k2), then η̂(k
−1
1 k2) ∈ V ∩ ker η̂ = {1Ĝ}, so k1 = k2.
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1.3. Irreversible ∗-commutative dynamical systems

1.3 Irreversible ∗-commutative dynamical systems

This section is intended to familiarize the reader with the concept of ∗-commutativity so

that we can present dynamical systems built from ∗-commuting surjective local homeo-

morphisms of a compact Hausdorff space that have a similar flavor as irreversible algebraic

dynamical systems. A close connection between strong independence and ∗-commutativity

for commuting surjective group endomorphisms is established in Proposition 1.3.2. In

particular, this shows that the notion of ∗-commutativity coincides with independence

for abelian irreversible algebraic dynamical systems of finite type. However, already the

canonical shift action of N2 on (Z/2Z)N
2
provides an example where the two generators

of the action do not ∗-commute but satisfy the independence condition.

The notion of ∗-commutativity was introduced by Victor Arzumanian and Jean Re-

nault in 1996 for a pair of maps η1, η2 : X −→ X on an arbitrary set X, see [AR97]. For

convenience, we will stick to the following equivalent formulation, see [ER07, Section 10]:

Definition 1.3.1. Suppose X is a set and η1, η2 : X −→ X are commuting maps. η1 and

η2 are said to ∗-commute, if for every x1, x2 ∈ X satisfying η1(x1) = η2(x2), there exists

a unique y ∈ X such that x1 = η2(y) and x2 = η1(y).

The visualization of this property goes as follows: The maps η1 and η2 ∗-commute if

and only if every diagram of the form

η1(x1) η1(x1)

can be completed

x1

η1

DD

x2

η2

ZZ

uniquely x1

η1

DD

x2

η2

ZZ

by some y ∈ X toη2

[[

η1

CC

y

η2

[[

η1

CC

Proposition 1.3.2. Let X be a set and η1, η2 : X −→ X commuting maps. Then the

following conditions are equivalent:

(i) The maps η1 and η2 ∗-commute.

(ii) For all x ∈ X, y1, y2 ∈ η
−1
1 (x), η2(y1) = η2(y2) implies y1 = y2.

(iii) For all x ∈ X, the map η1 : η
−1
2 (x) −→ η−1

2 (η1(x)) is a bijection.

(iii’) For all x ∈ X, the map η2 : η
−1
1 (x) −→ η−1

1 (η2(x)) is a bijection.
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1. Irreversible semigroup dynamical systems

Proof. Observe that (ii) is basically a reformulation of (i), so their equivalence is straight-

forward. In order to see that (i) is equivalent to (iii), a diagram of the form

η1(x1)

x1

η1

CC

x2

η2

[[

η2

[[

η1

CC

clearly gives x2 ∈ η
−1
2 (η1(x1)). Thus, if we assume (iii), there is a unique y ∈ η−1

2 (x1) such

that η1(y) = x2. In other words, the diagram can be completed uniquely. Conversely, if

we assume (i), then, for every x2 ∈ η
−1
2 (η1(x1)), we get a unique yx2 ∈ η

−1
2 (x1) satisfying

η1(yx2) = x2. Note that since η1 and η2 commute, we have η1(η
−1
2 (x1)) ⊂ η−1

2 (η1(x1)).

Hence, x2 7→ yx2 is a bijection and, in fact, it is just the inverse map of η1. The equivalence

of (i) and (iii’) follows by exchanging the role of x1, x2 and η1, η2.

The following result is certainly well-known, but hard to track in the available literature,

so we include a short proof based on Proposition 1.3.2.

Lemma 1.3.3. Let X be a set and suppose η1, η2, η3 : X −→ X commute. η1 ∗-commutes

with η2η3 if and only if η1 ∗-commutes with both η2 and η3.

Proof. Suppose η1 ∗-commutes with η2η3. We will use the equivalent characterization of

∗-commutativity (ii) from Proposition 1.3.2. If we have x ∈ X, y1, y2 ∈ η
−1
1 (x) such that

η2(y1) = η2(y2), then η2η3(y1) = η2η3(y2) forces y1 = y2. Thus η1 and η2 ∗-commute. For

η1 and η3, we note that the situation is symmetric in η2 and η3. If η1 ∗-commutes with

both η2 and η3, then η1 ∗-commutes with η2η3 by the equivalence of ∗-commutativity and

condition (iii’) in Proposition 1.3.2.

Given a compact Hausdorff space X, a first step away from reversibility is to consider local

homeomorphisms instead of homeomorphisms. Let us recall that if η : X −→ X is a local

homeomorphism, then |η−1(x)| is finite for all x ∈ X. Indeed, the collection of all open

subsets U of X on which η is injective constitutes an open cover of X. By compactness

of X, this can be reduced to a finite number which bounds |η−1(x)|.

We will be interested in surjective local homeomorphisms η : X −→ X for which the

cardinality of the preimage of a point is constant on X. Such transformations will be

called regular. They also appear in [CS09] under the name covering map.

Definition 1.3.4. Let X be a compact Hausdorff space. A surjective local homeomor-

phism η : X −→ X is said to be regular, if |η−1(x)| = |η−1(y)| holds for all x, y ∈ X.
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1.3. Irreversible ∗-commutative dynamical systems

Via f 7→ f ◦ η, such a transformation yields an injective ∗-homomorphism α of C(X)

which has a left-inverse in the monoid formed by the positive linear maps X −→ X with

composition. This map can be defined abstractly on the C*-algebraic level:

Definition 1.3.5. Given a C*-algebra A and a ∗-endomorphism α of A, a positive linear

map L : A −→ A is called a transfer operator for α, if it satisfies L(α(a)b) = aL(b) for

all a, b ∈ A. If A is unital, L is said to be normalized provided that L(1) = 1.

Example 1.3.6. IfX is a compact Hausdorff space and η : X −→ X is a regular surjective

local homeomorphism with Nη := |η
−1(x)|, where x ∈ X is arbitrary, then

L(f)(x) :=
1

Nη

∑

y∈η−1(x)

f(y)

defines a transfer operator for the injective ∗-homomorphism α of C(X) given by f 7→ f ◦η.

Indeed, L is a positive linear map and, for f, g ∈ C(X) and x ∈ X, we have

L(α(f)g)(x) =
1

Nη

∑

y∈η−1(x)

f(η(y))g(y) = (fL(g))(x).

Example 1.3.7. Let G be a discrete abelian group and η an injective group endomor-

phism of G with [G : η(G)] <∞. Then η̂ is a local homeomorphism of Ĝ by Lemma 1.2.13.

It is clear that η̂ is surjective and every k ∈ Ĝ has precisely | ker η̂| = [G : η(G)] preimages

under η̂. Thus, η̂ is regular. If L is the transfer operator for η̂ as in Example 1.3.6 and

(ug)g∈G denote the standard generators of C∗(G) (which we identify with C(Ĝ)), then

L(ug) = χη(G)(g)uη−1(g)

holds for all g ∈ G. Indeed, if g ∈ η(G), then

L(ug) = L ◦ α(uη−1(g)) = uη−1(g),

where α denotes the endomorphism ug 7→ uη(g) (which is the same as f 7→ f ◦ η̂ for

f ∈ C(Ĝ)). For the case g /∈ η(G), let k ∈ Ĝ and note that η̂−1(k) = `0 ker η̂ holds for

every `0 ∈ η̂
−1(k). Hence, we get

L(ug)(k) =
1

| ker η̂|

∑

`∈η̂−1(k)

ug(`) =
1

| ker η̂|
ug(`0)

∑

`∈ker η̂

ug(`) = 0,

since the sum over a finite, nontrivial subgroup of T vanishes.

The following lemma is a standard fact on how to obtain a conditional expectation from

a normalized transfer operator.
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Lemma 1.3.8. Suppose A is a unital C*-algebra, α is a unital ∗-endomorphism of A and

L is a normalized transfer operator for α. Then E := α ◦ L is a conditional expectation

from A onto α(A).

Proof. By [BO08, Theorem 5.9], it suffices to show that E is a contractive projection from

A onto α(A), i.e. a linear map satisfying E(a) = a for all a ∈ α(A) and ‖E‖ ≤ 1. The first

part follows immediately from L(α(a)) = a, see Definition 1.3.5. For ‖E‖ ≤ 1, note that

E is a positive linear map. So if a ∈ A+, then ‖E(a)‖ ≤ ‖E(‖a‖1)‖ = ‖a‖ since E(1) = 1.

For arbitrary a ∈ A, we have E(a)E(a∗) ≤ E(aa∗) (use E(bb∗) ≥ 0 for b := a−E(a)) and

thus

‖E(a)‖2 = ‖E(a)E(a∗)‖ ≤ ‖E(aa∗)‖ ≤ ‖aa∗‖ = ‖a‖2.

The next lemma is a reformulation of [EV06, Proposition 8.6]:

Lemma 1.3.9. Let η : X −→ X be a regular surjective local homeomorphism of a compact

Hausdorff space X with Nη := |η
−1(x)|, where x ∈ X is arbitrary. Denote by L the natural

transfer operator for the induced injective endomorphism α of C(X). Then there exists a

finite, open cover U = (Ui)1≤i≤n of X such that the restriction of η to each Ui is injective.

If (vi)1≤i≤n is a partition of unity for X subordinate to U , then νi := (Nηvi)
1
2 satisfies

∑

1≤i≤n

νiα ◦ L(νif) = f for all f ∈ C(X).

Proof. Since η is a local homeomorphism, the open subsets on which η is injective form

a cover of X which can be reduced to a finite, open cover U by compactness of X. It is

well-known that, for every such cover, there exists a partition of unity (vi)1≤i≤n for X

subordinate to U . Given f ∈ C(X), we get

∑
1≤i≤n

νiα ◦ L(νif)(x) =
∑

1≤i≤n

∑
y∈η−1(η(x))

v
1
2
i (x)v

1
2
i (y)︸ ︷︷ ︸

=δxy

f(y)

=
∑

1≤i≤n
vi(x)f(x)

= f(x)

for all x ∈ X, where we used injectivity of η|supp vi .

The equation proved in Lemma 1.3.9 can be interpreted as a reconstruction formula. The

conclusion of this result will be relevant for Section 2.4. Before we return to ∗-commuting

maps, we add another small observation which is of independent interest.
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1.3. Irreversible ∗-commutative dynamical systems

Lemma 1.3.10. Let η1, η2 : X −→ X be commuting continuous maps of a compact

Hausdorff space X. Assume that there are two finite open covers U1 = (U1,i)i∈I1 and

U2 = (U2,i)i∈I2 of X such that η1|U1,i is injective for all i ∈ I1 and η2|U2,i is injective for

all i ∈ I2. Then

U1 ∨η1 U2 :=
{
U1,i1 ∩ η

−1
1 (U2,i2) | i1 ∈ I1, i2 ∈ I2

}

is a finite open cover of X such that the restriction of η1η2 to every element of U1 ∨η1 U2
is injective. Furthermore, suppose (v1,i)i∈I1 and (v2,i)i∈I2 are partitions of unity for X

subordinate to U1 and U2, respectively. If α1 denotes the endomorphism of C(X) given by

f 7→ f ◦ η1, then (vi1,i2)i1∈I1,i2∈I2, where vi1,i2 := v1,i1α1(v2,i2) defines a partition of unity

subordinate to U1 ∨η1 U2.

Proof. First of all, U1 ∨η1 U2 consists of open sets by continuity of η1 and it is clear that

these sets cover X. If we let U ′ := U1,i1 ∩ η
−1
1 (U2,i2), we get a commutative diagram:

U ′ η1η2
//

η1
!!

X

U2,i2

η2

==

As η1 is injective on U1,i1 and η2 is injective on U2,i2 , it follows that η1η2 is injective on

U1,i1 ∩ η
−1
1 (U2,i2) for all i1, i2. For the second part, we observe that

∑

i1∈I1
i2∈I2

vi1,i2(x) =
∑

i1∈I1

v1,i1(x)

︸ ︷︷ ︸
=1

∑

i2∈I2

v2,i2(η1(x))

︸ ︷︷ ︸
=1

= 1

holds for all x ∈ X and

supp vi1,i2 = supp v1,i1 ∩ η
−1
1 (supp v2,i2) ⊂ U1,i1 ∩ η

−1
1 (U2,i2).

Remark 1.3.11. In particular, Lemma 1.3.10 applies to commuting regular surjective

local homeomorphisms by Lemma 1.3.9. The idea is to think of U1 ∨η1 U2 as a common

refinement of U1 and U2 with respect to η1. But note that this construction is clearly not

symmetric in η1 and η2.

The next proposition shows that, for two ∗-commuting regular transformations η1 and η2,

the transfer operator L1 for the endomorphism α1 of C(X) induced by η1 commutes with

α2 (which is induced by η2). This will be useful in Theorem 3.3.7.

Proposition 1.3.12. Suppose X is a compact Hausdorff space and η1, η2 : X −→ X are

regular surjective local homeomorphisms. Let αi denote the endomorphism of C(X) in-

duced by ηi and be L1 the natural transfer operator for α1 as constructed in Example 1.3.6.

Then η1 and η2 ∗-commute if and only if L1 and α2 commute.
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Proof. Assume that η1 and η2 ∗-commute. Using (iii’) from Proposition 1.3.2, this is a

straightforward computation. For f ∈ C(X) and x ∈ X, we get

L1(α2(f))(x) =
1

N1

∑

z∈η2(η
−1
1 (x))

f(z) =
1

N1

∑

z∈η−1
1 (η2(x))

f(z) = α2(L1(f))(x).

If η1 and η2 do not ∗-commute, there is x ∈ X such that η2(η
−1
1 (x)) is a proper subset

of η−1
1 (η2(x)) because η1 is regular. This forces α2(L1(f))(x) 6= L1(α2(f))(x) for every

constant function f ∈ C(X), e.g. f = 1.

Next, we will define the analogue of an irreversible algebraic dynamical system of finite

type based on ∗-commuting regular transformations of a compact Hausdorff space X,

compare Definition 1.1.5. As X is compact, we cannot get anything beyond the finite

type case here. We note that more general dynamical systems of this nature have been

considered in [FPW13], where X is allowed to be locally compact. In their approach,

regularity is relaxed to the requirement that there is a uniform finite bound on the number

of preimages of a single point, see [FPW13, Definition 3.2].

Definition 1.3.13. An irreversible ∗-commutative dynamical system of finite

type is a triple (X,P, η) consisting of

(A) a compact Hausdorff space X,

(B) a countably generated free abelian monoid P with unit 1P and

(C) an action P
η
y X by regular surjective local homeomorphisms with the following

property: ηp and ηq ∗-commute if and only if p and q are relatively prime in P .

Before considering examples, let us relate the notion of ∗-commutativity to the notion

of strong independence introduced in Definition 1.2.7. This will provide examples for

irreversible ∗-commutative dynamical systems of finite type coming from commutative

irreversible algebraic dynamical systems of finite type.

In addition, we will see that independence is directly connected to ∗-commutativity

in the case of surjective group endomorphisms. In fact, independence turns out to be

weaker in principle, but the two conditions are equivalent if the kernel of one of the

surjective group endomorphisms is a co-Hopfian group. Co-Hopfian groups have first been

studied under the name ”S-groups” in [Bae44] and we refer to [GG12, ER05] as well as

[dlH00, Section 22 of Chapter III] for more information on the subject.

Definition 1.3.14. A group K is said to be co-Hopfian if every injective group endomor-

phism η : K ↪−→ K is already an automorphism of K.
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Remark 1.3.15. One can rephrase the condition by saying that a group is co-Hopfian if

it does not admit nontrivial group embeddings into itself. Likewise, there is a notion of

Hopfian groups, called Q-groups in [Bae44], which describes the class of groups with the

property that every surjective group endomorphism is automatically an automorphism

of the group. In other words, a group is Hopfian if it is not isomorphic to any of its

proper subquotients. Both concepts stem from a rigidity property of finite groups. It is

important to point out that both classes are much larger than the class of finite groups.

For instance, Q,Q/Z, SL(n,Z) for n ≥ 3 and the fundamental group of any closed surface

of genus at least 2 are co-Hopfian, see [Bae44] and [dlH00, Chapter III, Section 22] for

more information.

Proposition 1.3.16. Suppose K is a group and η1, η2 are commuting surjective endo-

morphisms of K. If η1 and η2 ∗-commute, then η1 and η2 are strongly independent. If

η2 : ker η1 −→ ker η1 or η1 : ker η2 −→ ker η2 is surjective, then the converse holds as well.

In particular, this is the case if ker η1 or ker η2 is co-Hopfian.

Proof. Note that we have η−1
i (k) = k′ ker ηi for all k ∈ K where k′ ∈ η−1

i (k) is chosen ar-

bitrarily. According to Proposition 1.3.2, η1 and η2 ∗-commute precisely if η1 : η
−1
2 (k) −→

η1(η
−1
2 (k)) is bijective for all k ∈ K. Since η1 and η2 are group endomorphisms, this is

equivalent to the requirement that η1 is an automorphism of the subgroup ker η2. Indeed,

this is clearly necessary and if it is true, then η1 : η−1
2 (k) −→ η1(η

−1
2 (k)) is a bijection

because η−1
2 (η1(k)) = η1(k

′) ker η2 and η1(η
−1
2 (k)) = η1(k

′)η1(ker η2). In particular, we

have ker η1 ∩ ker η2 = {1K}, so η1 and η2 are strongly independent in the sense of Defi-

nition 1.2.7. Moreover, we see that strong independence corresponds to injectivity of η1
and η2 on ker η2 and ker η1, respectively. Hence, if one of these maps is surjective, we get

∗-commutativity of η1 and η2. By definition, this is for granted if one knows that one of

the kernels is a co-Hopfian group.

There are interesting examples of dynamical systems built from ∗-commuting transfor-

mations, see for instance [ER07, Sections 10–14] and [Wil10,MW]. On the other hand,

∗-commutativity is also considered to be a severe restriction. While ∗-commutativity

implies strong independence in the case of surjective group endomorphisms, there are ex-

amples for commutative irreversible algebraic dynamical systems that do not satisfy the

strong independence condition, see for instance Example 1.1.12. Thus we conclude that,

in principle, the notion of independence is less restrictive than ∗-commutativity.

Comparing Definition 1.3.13 with Definition 1.1.5, we make the following observation

based on Proposition 1.2.8, Lemma 1.2.13 and Proposition 1.3.16:

Corollary 1.3.17. Let G be a discrete abelian group, P a monoid and P
θ
y G an action by

group endomorphisms. (G,P, θ) is a commutative irreversible algebraic dynamical system

of finite type if and only if (Ĝ, P, θ̂) is an irreversible ∗-commutative dynamical system of

finite type.
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For the remainder of this section, we would like to direct the reader’s attention to another

intriguing class of examples for irreversible algebraic dynamical systems, namely to dy-

namical systems arising from cellular automata. This part builds on [ER07, Section 14]

and can be considered as a natural extension of the observations presented there. In the

following, let X = (Z
/
2Z)N and σ denote the unilateral shift, i.e. σ(x)k = xk+1 for all

k ∈ N and x ∈ X. Moreover, let Xn = (Z
/
2Z)n for n ∈ N and suppose we are given

D ⊂ Xn. Then we can define a transformation ηD of X by the sliding window method

(ηD(x))k = χD(xk, xk+1, . . . , xk+n−1).

In other words, the entry at place k becomes 1 if the word of length n starting at place

k belongs to the so-called dictionary D. It is interesting to analyze the extent to which

properties of ηD can be expressed in terms of its dictionary. One outcome of such consid-

erations are the following two definitions:

Definition 1.3.18. For n ∈ N, a subset D ⊂ Xn is called a dictionary. D is called

progressive, if for any x ∈ Xn−1, there is a unique xn ∈ X1 such that (x1, . . . , xn) ∈ D.

D is called admissible, if it is progressive and has the property that, for x, y, z ∈ Xn,

x+ y = z ∈ D implies that either x ∈ D or y ∈ D holds.

Let us observe that Xn\D is a group of order 2n−1 for every admissible dictionary D.

It is clear that ηD is continuous on X and commutes with σ for every dictionary D.

Morton L. Curtis, Gustav A. Hedlund and Roger Lyndon have shown in [Hed69] that

any continuous self-map of X which commutes with the shift σ corresponds to a cellular

automaton (Even though the article is authored by Hedlund only, he credits Curtis and

Lyndon as co-discoverers in the introduction.). Thus (X, ηD) can be identified as a cellular

automaton. It is shown in [ER07, Theorem 14.3] that for progressiveD, the transformation

ηD is a surjective local homeomorphism of X. This allows us to deduce:

Proposition 1.3.19. If D ⊂ Xn is an admissible dictionary, then ηD is a continuous

surjective group endomorphism of X that commutes with σ. ker ηD is isomorphic to the

group Xn\D and thus consists of 2n−1 elements.

Proof. The only thing that remains to be proven is that ηD is a group endomorphism of

X with finite kernel. The first part follows readily from the additional requirement that

whenever we have x + y = z for some x, y, z ∈ Xn, z ∈ D implies that either x ∈ D or

y ∈ D holds. For the assertion concerning the kernel of ηD, note that x ∈ ker ηD means

that we have (xk, xk+1, . . . , xk+n−1) /∈ D for all k ∈ N. But if the first n entries form a

word that is not contained in D, sliding the window forward once we see that there is

precisely one option for the entry at place n+1 to arrange for a word that is contained in

D as D is progressive. Conversely, since our alphabet is just {0, 1}, the previous entries

determine the last entry uniquely if we assume that the word they form is not contained
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1.3. Irreversible ∗-commutative dynamical systems

in D. Therefore, an element in ker ηD is given by its first n components which yield an

element of Xn\D.

Remark 1.3.20. In view of Proposition 1.3.2, we are now in position to provide new

examples for commutative irreversible algebraic dynamical systems of finite type in terms

of their dual pictures. We note that it is easier to check strong independence of σ and

ηD than examining ∗-commutativity of these for an admissible D. Indeed, kerσ is easily

determined and Proposition 1.3.19 provides us with an explicit description of ker ηD.

Concerning the quest for further examples where the transformations are independent

but do not ∗-commute, Proposition 1.3.19 shows that this is impossible within the current

setting since the kernels are finite. The first example we consider is the so-called Ledrappier

shift, see [ER07, Section 11]:

Example 1.3.21. Let Y be the subshift of (Z
/
2Z)N

2
given by all sequences y = (yn)n∈N2

s.t. yn + yn+e1 + yn+e2 = 0 ∈ Z
/
2Z for all n ∈ N2. N2 η

y Y is given by the coordinate

shifts ηei(yn)n = (yn+ei)n, i = 1, 2. The four basic blocks in Y are:

0 1 0 1

0 0 0 1 1 1 1 0

Observe that, for any given y ∈ Y and every path (nm)m∈N with nm+1 ∈ {nm+e1, nm+e2},

the sequence (ynm)m∈N determines y completely. Conversely, one can show inductively,

that for every path (nm)m∈N and sequence (ym)m∈N with ym ∈ Z
/
2Z, there is an y ∈ Y

with ynm = ym for all m. One consequence of this is that there is a homeomorphism

Y −→ X = (Z
/
2Z)N given by restricting to the base row, i.e. (ym,n)m,n∈N 7→ (yn,0)n∈N.

Under this homeomorphism to the Bernoulli space, ηe1 corresponds to the shift σ on X

and ηe2 corresponds to x 7→ x + σ(x) = (xn + xn+1)n∈N for x ∈ X. In view of the

example from cellular automata, it is quite intriguing to notice that the Ledrappier shift

fits into the picture quite nicely: The conjugate map to the vertical shift is nothing but

ηD for the admissible dictionary D = {(0, 1), (1, 0)}. In fact, (X, ηD) is the most basic

non-trivial example of a cellular automaton coming from an admissible dictionary. By

Proposition 1.3.19, θD ∗-commutes with the shift, so ηe1 and ηe2 ∗-commute. Hence the

Ledrappier shift gives rise to a commutative irreversible algebraic dynamical system of

finite type.

Remark 1.3.22. We have seen that the Ledrappier shift can be obtained from an ad-

missible dictionary. In fact, there is only one admissible dictionary D for words of length

2 such that the induced transformation ηD ∗-commutes with shift σ. So the Ledrappier

shift constitutes a minimal non-trivial example of a commutative irreversible algebraic

dynamical system of finite type arising from a cellular automaton.
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Reversing the perspective, the Ledrappier shift is formed out of the cellular automaton

(X, ηD) by stacking the orbit. This is to say that for x ∈ (Z
/
2Z)N the k-th row of the

corresponding element in (Z
/
2Z)N

2
is given by ηkD(x). Building on this observation, we

may always construct a subshift of (Z
/
2Z)N

2
out of a progressive dictionary. This may

turn out to be a source of potentially interesting subshifts of (Z
/
2Z)N

2
. Let us now look

at what happens for dictionaries using longer words:

Example 1.3.23. Let D1, D2 ⊂ X3 be the dictionaries

D1 = {(0, 0, 1), (1, 0, 0), (0, 1, 1), (1, 1, 0)}

and

D2 = {(0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.

Then D1 and D2 are admissible dictionaries. Hence, ηD1 and ηD2 are surjective group

endomorphisms of X = (Z
/
2Z)N that commute with the shift σ and

ker ηD1 = {0, 1, (0, 1, . . . ), (1, 0, . . . )},

ker ηD2 = {0, (1, 0, 1, . . . ), (0, 1, 1, . . . ), (1, 1, 0, . . . )},

where we write (a, b, c, . . . ) for the periodic word (a, b, c, a, b, c, . . . ). Apparently, we have

kerσ = {0, (1, 0, . . . )}, so σ and ηDi
are strongly independent for i = 1, 2. By Proposi-

tion 1.3.2, they also ∗-commute. Hence, eachDi gives rise to a commutative irreversible al-

gebraic dynamical system of finite type (G,P, θ) with G = X̂ and P = |σ, ηDi
〉 ∼= N2 acting

by their dual endomorphisms. Noting that ker ηD1 ∩ ker ηD2 is trivial, we also get a com-

mutative irreversible algebraic dynamical system of finite type for P = |σ, ηD1 , ηD2〉
∼= N3.

Remark 1.3.24. In fact, D1 and D2 are the only admissible dictionaries for words of

length 3 for which the induced transformation ∗-commutes with σ. Indeed, every such

admissible dictionary D needs to contain (0, 0, 1) and (1, 0, 0). If (0, 0, 0) ∈ D, then D

cannot induce a group homomorphism. Likewise, if we had (1, 0, 0) /∈ D, then ker ηD would

contain kerσ. In particular, their intersection would be non-trivial. Now, if (0, 1, 1) ∈ D,

then this forces (1, 1, 0) ∈ D since (0, 1, 1)+(1, 1, 1) = (1, 0, 0) ∈ D. Similarly, (0, 1, 0) ∈ D,

then this forces (1, 1, 1) ∈ D since (0, 1, 0) + (1, 1, 0) = (1, 0, 0) ∈ D. One can check that

there are precisely two additional admissible dictionaries D3, D4 ⊂ X3 given by

D3 = {(0, 0, 1), (1, 0, 1), (0, 1, 0), (1, 1, 0)}

and

D4 = {(0, 0, 1), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Thus, there are four admissible dictionaries for word length 3, two of which induce sur-

jective group endomorphisms of X that ∗-commute with the shift σ. The corresponding

group endomorphisms of X are

η1(x) = x+ σ2(x)
and

η3(x) = σ(x) + σ2(x)

η2(x) = x+ σ(x) + σ2(x) η4(x) = σ2(x).
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1.3. Irreversible ∗-commutative dynamical systems

This simple description raises the question whether it might be possible to characterize

admissibility of a dictionary D ⊂ Xn for general n ≥ 2 and ∗-commutativity of ηD with σ

in a more accessible way.

Remark 1.3.25. In [ER07, Example 14.4], Ruy Exel and Jean Renault provided an ex-

ample of a progressive dictionary which does not induce a transformation that ∗-commutes

with the shift, namely

D = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}.

This is stated implicitly in [ER07, Corollary 14.5] and follows from [ER07, Theorem 10.4

and Proposition 14.1]. However, this dictionary does not give a group homomorphism of

X because it contains the neutral element of X and hence θD(0) 6= 0. The dictionary D2

from Example 1.3.23 is a slight variation of [ER07, Example 14.4] designed to produce a

group homomorphism.
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Chapter 2

C*-algebras for irreversible

semigroup dynamical systems

Within this chapter, we will associate a C*-algebra O[G,P, θ] to each irreversible algebraic

dynamical system (G,P, θ) and study its internal structure, see Section 2.2. Once again,

the finite type case deserves special attention, see Section 2.3. Analogously, we construct

a C*-algebra O[X,P, θ] for irreversible ∗-commutative dynamical systems of finite type,

see Section 2.4.

We start in Section 2.1 with a general observation concerning the decomposability of

crossed products by semidirect products of semigroups: Let S and T be discrete monoids

and T
θ
y S be an action by monoidal endomorphisms. Then we can form the semidirect

product S oθ T given by S × T with composition (s, t)(s′, t′) = (sθt(s
′), tt′). Now if A

is unital C*-algebra and α is an action of S oθ T on A by endomorphisms, then we can

consider the semigroup crossed products A oα|S S and A oα (S oθ T ). We prove that,

in case {1A − α(s,1T )(1A) | s ∈ S} ⊂
⋂
t∈T kerα(1S ,t) holds true, there is a T -action α̃ on

A oα|S S (naturally induced by α and θ) so that A oα (S oθ T ) ∼=
(
Aoα|S S

)
oα̃ T , see

Theorem 2.1.5. This will be useful for the analysis of O[G,P, θ], see Corollary 2.2.19.

The C*-algebraic modelO[G,P, θ] introduced in Section 2.2 is based on an examination

of the natural representation of (G,P, θ) by unitary and isometric linear operators on

`2(G), and is inspired by [CV13, Vie13, Li12]. The properties of O[G,P, θ] are closely

linked to the structures of its core subalgebra F , which can be described as the fixed-

point algebra under the natural gauge action of the dual group L of H = P−1P , and its

(commutative) diagonal subalgebra D. In Lemma 2.2.9, we show that the spectrum Gθ
of D can be interpreted as a completion of G with respect to θ if (G,P, θ) is minimal.

This extends [CV13, Lemma 2.4] to minimal irreversible algebraic dynamical systems. As

the next step, we prove that O[G,P, θ] is canonically isomorphic to D o (G oθ P ), see

Proposition 2.2.18. Combining this with Theorem 2.1.5 yields an isomorphism between
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2. C*-algebras for irreversible semigroup dynamical systems

F and C(Gθ) oτ G, see Corollary 2.2.19, where the action τ is given by left translation.

It is apparent from the construction that O[G,P, θ] shares some flavour with On, where

1 ≤ n ≤ ∞. Therefore, it is natural to ask whether O[G,P, θ] is purely infinite and simple

under certain conditions. In Theorem 2.2.26, a positive answer is provided that invokes

minimality of (G,P, θ) and amenability of the action G
τ̂
y Gθ as sufficient conditions.

Next, we show that these two conditions force O[G,P, θ] to be a UCT Kirchberg algebra,

see Corollary 2.2.28.

Section 2.2 constitutes a short interlude, where we specialize to the structure of the core

F for irreversible algebraic dynamical systems of finite type. If G is amenable and (G,P, θ)

is minimal, then F is a generalized Bunce-Deddens algebra in the sense of [Orf10], see

Proposition 2.3.2. In this situation, we briefly discuss how classification of F by its Elliott

invariant is achieved based on [Lin01,MS,Win05], see Corollary 2.3.3. Partly, this has been

achieved earlier through [Car11]. In addition to that, we extend the observation mentioned

after [CV13, Lemma 2.5] to minimal commutative irreversible algebraic dynamical systems

of finite type, see Corollary 2.3.4.

Finally, we turn to the construction of the C*-algebra O[X,P, θ] for irreversible ∗-

commutative dynamical systems of finite type (X,P, θ). The choice of relations for

O[X,P, θ] essentially builds on the insights gained from O[G,P, θ] and the approaches

in [Exe03a,CS09]. Therefore, it is not surprising that Proposition 2.4.3 establishes a con-

sistency result for the two C*-algebraic construction in the case of commutative irreversible

algebraic dynamical systems of finite type. Next, we provide an explicit representation

of O[X,P, θ] on `2(X), see Proposition 2.4.4. From there on, the core subalgebra F for

O[X,P, θ] is analysed in search for results that partly mimic crucial parts of the findings

from Section 2.2, see Proposition 2.4.9, Corollary 2.4.13, and Lemma 2.4.14. Many of

these observations will play a role in the course of Chapter 4.

2.1 Crossed products by semidirect products of

semigroups

Within this section, we will establish a result about viewing a crossed product of a C*-

algebra by a semidirect product of discrete monoids as an iterated crossed product, see

Theorem 2.1.5. This extends the well-known result for semidirect products of locally

compact groups in the discrete case, see [Wil07, Proposition 3.11], and is essential for the

proof of Corollary 2.2.19.

For convenience, we will restrict our attention to the case of unital coefficient algebras

and include the basic definitions for semigroup crossed products based on covariant pairs

of representations. We refer to [Lar10] for a more extensive treatment of the subject.

All semigroups will be left cancellative and discrete. In the following, let Isom(B)

denote the semigroup of isometries in a unital C*-algebra B.
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Definition 2.1.1. Let S be a semigroup and A a unital C*-algebra with an action S
α
y A

by endomorphisms. A covariant pair (πA, πS) for (A,S, α) is given by a unital C*-algebra

B together with a unital ∗-homomorphism πA : A −→ B and a semigroup homomorphism

πS : S −→ Isom(B) subject to the covariance condition:

πS(s)πA(a)πS(s)
∗ = πA(αs(a)) for all a ∈ A, s ∈ S.

Definition 2.1.2. Let S be a semigroup and A a unital C*-algebra with an action S
α
y A

by endomorphisms. The crossed product for (A,S, α), denoted by A oα S, is the C*-

algebra generated by a covariant pair (ιA, ιS) which is universal in the sense that whenever

(πA, πS) is a covariant pair for (A,S, α), it factors through (ιA, ιS). That is to say, there

is a surjective ∗-homomorphism π : Aoα S −→ C∗(πA(A), πS(S)) satisfying πA = π ◦ ιA
and πS = π ◦ ιS . A oα S is uniquely determined up to canonical isomorphism by this

universal property.

This crossed product may be 0, as for instance for A = C0(N) = {(an)n∈N | an ∈

C, lim
n→∞

|an| = 0} and S = N acting by the unilateral shift α1((an)n∈N) = (an+1)n∈N, see

[Sta93, Example 2.1(a)]. But it is known that the coefficient algebra A embeds into AoαS

provided that S acts by injective endomorphisms and is right-reversible, i.e. Ss ∩ St 6= ∅

for all s, t ∈ S, see [DFK, Lemma 5.2.1].

Suppose that S and T are semigroups with an action T
θ
y S by semigroup homomor-

phisms of S. Then we can form the semidirect product SoθT , which is the semigroup

given by S×T with ax+ b-composition rule:

(s, t)(s′, t′) = (sθt(s
′), tt′)

Now suppose further that S and T are monoids and that α is an action of SoθT on a

unital C*-algebra A. Then the semigroup crossed product A oα (SoθT ) is given by a

unital ∗-homomorphism

ιA,SoθT : A −→ Aoα (SoθT )

and a semigroup homomorphism

ιSoθT : SoθT −→ Isom(Aoα (SoθT )).

On the other hand, we can consider Aoα|S S given by a unital ∗-homomorphism

ιA,S : A −→ Aoα|S S

and a semigroup homomorphism

ιS : S −→ Isom(Aoα|S S).
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A natural question in this situation is whether α and θ give rise to an action T
α̃
y Aoα|S S.

The next lemma provides a positive answer for the case where α satisfies

{1A − α(s,1T )(1A) | s ∈ S} ⊂
⋂

t∈T

kerα(1S ,t).

For the sake of readability, let p(s,t) := ιA,S(α(s,t)(1A)) for s ∈ S, t ∈ T and we will simply

write pt for p(1S ,t). We observe that the aforementioned condition is equivalent to

p(θt(s),t) = pt for all s ∈ S, t ∈ T.

Lemma 2.1.3. Suppose that S and T are monoids with an action T
θ
y S by semigroup

homomorphisms of S. Let α be an action of S oθ T on a unital C*-algebra A by endo-

morphisms. For t ∈ T , let

α̃t(ιA,S(a)ιS(s)) := ιA,S(α(1S ,t)(a))ιS(θt(s)) for a ∈ A, s ∈ S.

α̃t is an endomorphism from Aoα|S S −→ pt(Aoα|S S)pt provided that

1A − α(s,1T )(1A) ∈ kerα(1S ,t) for all s ∈ S.

In particular, if this holds for all t ∈ T , i.e.

1A − α(s,1T )(1A) ∈
⋂

t∈T

kerα(1S ,t) for all s ∈ S,

then α̃ defines an action of T on Aoα|S S.

Proof. Note that

α̃t(ιS(s)) = α̃t(ιA,S(1A)ιS(s)) = ptιS(θt(s))

is valid for all s ∈ S, t ∈ T since ιA,S is unital. Suppose t ∈ T satisfies

1A − α(s,1T )(1A) ∈ kerα(1S ,t) for all s ∈ S.

This is equivalent to p(θt(s),t) = pt for all s ∈ S. Hence, pt commutes with ιS(θt(s)) since

ιS(θt(s))pt = ιS(θt(s))ptιS(θt(s))
∗ιS(θt(s)) = p(θt(s),t)ιS(θt(s)) = ptιS(θt(s)).

To prove that α̃t is an endomorphism of Aoα|S S, we show that

(
ιA,S ◦ α(1S ,t), pt(ιS ◦ θt(·))

)

is a covariant pair for (A,S, α|S). It is then easy to see that the induced map coming from

the universal property of the crossed product is precisely α̃t and maps Aoα|S S onto the

corner pt
(
Aoα|S S

)
pt.
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Firstly, ιA,S ◦ α(1S ,t) is a unital ∗-homomorphism from A to pt
(
Aoα|S S

)
pt. In addi-

tion, pt(ιS ◦ θt(·)) maps S to the isometries in pt
(
Aoα|S S

)
pt because

(ptιS(θt(s)))
∗ptιS(θt(s)) = ιS(θt(s))

∗ptιS(θt(s)) = ιS(θt(s))
∗ιS(θt(s))pt = pt.

This map turns out to be a semigroup homomorphism as

ptιS(θt(s1))ptιS(θt(s2)) = p2t ιS(θt(s1))ιS(θt(s2)) = ptιS(θt(s1s2)).

Finally, for a ∈ A and s ∈ S, we compute

ptιS(θt(s))ιA,S(α(1S ,t)(a))(ptιS(θt(s)))
∗ = ptιA,S(α(θt(s),t)(a))pt

= ιA,S(α(1S ,t)(α(s,1T )(a)).

Thus,
(
ιA,S ◦ α(1S ,t), pt(ιS ◦ θt(·))

)
forms a covariant pair for (A,S, α|S). In particular, the

induced map α̃t is an endomorphism of Aoα|S S.

Conversely, assume that α̃t defines an endomorphism of Aoα|SS. Then (α̃t◦ιA,S , α̃t◦ιS)

forms a covariant pair for (A,α|S , S) mapping A and S to the C*-algebra B := α̃t(Aoα|S

S). Note that the unit inside this C*-algebra is pt. In particular, we have a semigroup

homomorphism α̃t ◦ ιS : S −→ Isom(B). This forces

pt = α̃t(ιS(s))
∗α̃t(ιS(s)) = ιS(θt(s))

∗ptιS(θt(s)) = p(θt(s),t)

for all s ∈ S, which is equivalent to

{1A − α(s,1T )(1A) | s ∈ S} ⊂ kerα(1S ,t).

Since α|T and θ are semigroup homomorphisms, it is clear that α̃ defines an action of T

on Aoα|S S provided that the imposed condition holds for every t ∈ T .

Remark 2.1.4. It would be interesting to know whether the condition from Lemma 2.1.3

is actually necessary. This would be the case if pt ≤ p(θt(s),1T ) was true for s, t ∈ S. Note

that we do have p(θt(s),t) ≤ pt and p(θt(s),t) ≤ p(θt(s),1T ).

Now, given the hypotheses of Lemma 2.1.3 are satisfied, T
α̃
y A oα|S S gives rise to an

iterated semigroup crossed product
(
Aoα|S S

)
oα̃ T and it is a natural task to relate this

crossed product to Aoα (SoθT ). The next result shows that indeed, this decomposition

procedure recovers the original crossed product.

Theorem 2.1.5. Suppose S and T are monoids together with an action T
θ
y S by semi-

group homomorphisms of S as well as an action α of SoθT on a unital C*-algebra A by

endomorphisms. If

{1A − α(s,1T )(1A) | s ∈ S} ⊂
⋂

t∈T

kerα(1S ,t)
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2. C*-algebras for irreversible semigroup dynamical systems

holds true, then there is a canonical isomorphism

Aoα (SoθT )
π
−→

(
Aoα|S S

)
oα̃ T,

ιA,SoθT (a) 7→ ιAoS ◦ ιA,S(a)

ιSoθT (s, t) 7→ (ιAoS ◦ ιS)(s)ιT (t)

where α̃ is given by α̃t(ιA,S(a)ιS(s)) = ιA(α(1S ,t)(a))ιS(θt(s)).

Proof. Recall that (ιA,SoθT , ιSoθT ), (ιA,S , ιS) and (ιAoS , ιT ) denote the universal pairs for

covariant pairs for (A,SoθT, α), (A,S, α|S) and (A oα|S S, T, α̃), respectively. In other

words, their images generate the corresponding crossed products. The strategy is governed

by the following claims:

1) (ιAoS ◦ ιA,S , (ιAoS ◦ ιS)× ιT ) forms a covariant pair for (A,SoθT, α).

2) (ιA,SoθT × ιSoθT |S , ιSoθT |T ) forms a covariant pair for (Aoα|S S, T, α̃).

If we assume 1) and 2), then 1) and the universal property of A oα (SoθT ) give a ∗-

homomorphism

Aoα (SoθT )
π
−� (Aoα|S S)oα̃ T

ιA,SoθT (a) 7→ ιAoS ◦ ιA,S(a)

ιSoθT (s, t) 7→ (ιAoS ◦ ιS)(s)ιT (t)

Since S and T both have an identity, the induced map equals π. Note that the pair from

2) is the natural candidate to provide an inverse for π. Indeed, if 2) is valid, then the

two induced ∗-homomorphisms are mutually inverse on the standard generators of the

C*-algebras on both sides. Thus it remains to establish 1) and 2).

For step 1), note that ιAoS ◦ ιA,S is a unital ∗-homomorphism and ιAoS ◦ ιS defines a

semigroup homomorphism from S to the isometries in (A oα|S S) oα̃ T . The covariance

condition for (T, α̃) yields

ιT (t)ιAoS ◦ ιS(s) = α̃(ιAoS ◦ ιS(s))ιT (t) = ιAoS ◦ ιS(θt(s))ιT (t).

Therefore, (ιAoS ◦ιS)×ιT is well-behaved with respect to the semidirect product structure

on S × T coming from θ, so we get a semigroup homomorphism

(ιAoS ◦ ιS)× ιT : SoθT −→ Isom((Aoα|S S)oα̃ T ).

Now let a ∈ A, s ∈ S and t ∈ T . Then we compute

((ιAoS ◦ ιS)× ιT )(s, t)ιAoS ◦ ιA,S(a)((ιAoS ◦ ιS)× ιT )(s, t)
∗

= ιAoS ◦ ιS(s)ιT (t)ιAoS ◦ ιA,S(a)ιT (t)
∗ιAoS ◦ ιS(s)

∗

= ιAoS ◦ ιS(s)ιAoS ◦ ιA,S(α(1S ,t)(a))ιAoS ◦ ιS(s)
∗

= ιAoS ◦ ιA,S(α(s,1T )(1S ,t)(a))

= ιAoS ◦ ιA,S(α(s,t)(a)),
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2.2. Fundamental results for irreversible algebraic dynamical systems

which completes 1). For part 2), we remark that (ιA,SoθT , ιSoθT |S) is a covariant pair for

(A,S, α|S). Since ιA,SoθT and ιA,S are unital, the induced map is unital as well. Moreover,

ιSoθT |T is a semigroup homomorphism mapping T to the isometries in Aoα(SoθT ). Thus,

we are left with the covariance condition. Note that it suffices to check the covariance

condition on the standard generators of Aoα|S S. For a ∈ A, s ∈ S and t ∈ T , we get

ιSoθT (1S , t)ιA,SoθT (a)ιSoθT (s, 1T )ιSoθT (1S , t)
∗

= ιSoθT (1S , t)ιA,SoθT (a)ιSoθT (1S , t)
∗ιSoθT (1S , t)ιSoθT (s, 1T )ιSoθT (1S , t)

∗

= ιA,SoθT (α(1S ,t)(a))ιSoθT (θt(s), 1T )pt

= ιA,SoθT (α(1S ,t)(a))ιSoθT (θt(s), 1T )

α̃t(ιA,SoθT (a)ιSoθT (s, 1T )).

Hence 1) and 2) are both valid, so the proof is complete.

We close this preparatory section with a remark on the condition p(θt(s),t) = pt.

Remark 2.1.6.

a) The previous observations should carry over to the setting where A is non-unital,

representations are non-degenerate and α is required to be extendible, see [Lar10]

for more information on the conditions.

b) The condition p(θt(s),t) = pt for all s ∈ S and t ∈ T is satisfied if α|S is unital. This

follows from

α(θt(s),t)(1A) = α(1S ,t)(α(s,1T )(1A)) = α(1S ,t)(1A).

In particular, this is the case whenever S is a group. If α|T consists of injective

endomorphisms, then p(θt(s),t) = pt holds if and only if α|S is unital.

2.2 Fundamental results for irreversible algebraic

dynamical systems

In this section, we associate a universal C*-algebraO[G,P, θ] to every irreversible algebraic

dynamical system (G,P, θ). The general approach is inspired by the methods of [CV13]

for the case of a single group endomorphism with finite cokernel of a discrete abelian

group. Partly, these ideas can even be traced back to [Cun77]. Note however, that we are

going to use a different spanning family than the one used in [CV13].

We will examine structural properties of O[G,P, θ] as well as of two nested subalgebras:

the core F and the diagonal D. In Lemma 2.2.9, a description of the spectrum Gθ of the

diagonal D is provided, which allows us to regard Gθ as a completion of G with respect

to θ in the case where (G,P, θ) is minimal, compare [CV13, Lemma 2.4].
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2. C*-algebras for irreversible semigroup dynamical systems

Based on the description of Gθ, the action τ̂ of G on Gθ coming from τg(eh,p) = egh,p
is shown to be always minimal. Moreover, we prove that topological freeness of τ̂ corre-

sponds to minimality of (G,P, θ), see Proposition 2.2.13. As an immediate consequence

we deduce that Doτ G is simple if and only if (G,P, θ) is minimal and τ̂ is amenable, see

Corollary 2.2.14. This crossed product is actually isomorphic to F , see Corollary 2.2.19.

We remark that our strategy of proof differs from the one of [CV13] because we start

by establishing an isomorphism between O[G,P, θ] and D o (Goθ P ), compare Proposi-

tion 2.2.18 and [CV13, Lemma 2.5 and Theorem 2.6]. By Theorem 2.1.5, we deduce that

O[G,P, θ] is isomorphic to the semigroup crossed product F o P . So we get

O[G,P, θ] ∼= D o (Goθ P ) ∼= F o P.

One advantage of this strategy is that we are able to establish these isomorphisms in

greater generality, i.e. without minimality of (G,P, θ) and amenability of τ̂ which would

give simplicity of both F and O[G,P, θ].

Similar to [CV13], we then conclude that, whenever (G,P, θ) is minimal and the action

G
τ̂
y Gθ is amenable, the C*-algebra O[G,P, θ] is a unital UCT Kirchberg algebra, see

Theorem 2.2.26 and Corollary 2.2.28. Thus O[G,P, θ] is classified by its K-theory in

this case due to the important classification results of Christopher Phillips and Eberhard

Kirchberg, see [Kir].

There is more to be said about the structure of F and D in the case of (commutative)

irreversible algebraic dynamical systems of finite type, which forms the major part of

Section 2.3.

Throughout this section, (G,P, θ) will represent an irreversible algebraic dynamical system

unless specified otherwise. Let (ξg)g∈G denote the canonical orthonormal basis of `2(G).

For g ∈ G and p ∈ P , define operators Ug and Sp on `2(G) by Ug(ξg′) := ξgg′ and

Sp(ξg′) := ξθp(g′) for g
′ ∈ G. Then (Ug)g∈G is a unitary representation of the group G and

S∗
p(ξg′) = χθp(G)(g

′)ξθ−1
p (g′) for g

′ ∈ G, so (Sp)p∈P is a representation of the semigroup P

by isometries. Furthermore, these operators satisfy

(CNP 1) SpUg(ξg′) = ξθp(gg′) = Uθp(g)Sp(ξg′),

and

(CNP 3)
∑

[g]∈G/θp(G)

Eg,p(ξg′) = ξg′ if [G : θp(G)] <∞,

where Eg,p = UgSpS
∗
pU

∗
g . In fact, (CNP 3) holds also in the case of an infinite index

[G : θp(G)], as (
∑

[g]∈F Eg,p)F⊂G/θp(G) converges to the identity on `2(G) as F ↗ G/θp(G)

with respect to the strong operator topology. But this convergence does not hold in

norm because each Eg,p is a non-zero projection. In view of our motivation to construct a

universal C*-algebra based on this model, it is therefore reasonable to restrict this relation

to the case where [G : θp(G)] is finite.
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As the numbering indicates, we are interested in an additional relation (CNP 2) which

will increase the accessibility of the universal model: If G was trivial, this would simply

be the condition that Sp and Sq doubly commute for all relatively prime p and q in P ,

i.e. S∗
pSq = SqS

∗
p . This condition has been employed successfully for quasi-lattice ordered

groups, see [Nic92, Section 3] and also [LR96] for more information. But as G is an infinite

group, this will not be sufficient.

Moreover, we want to ensure that, within the universal model to be built, an expression

corresponding to S∗
pUgSp belongs to C

∗(G). This property has been used extensively in the

context of semigroup crossed products involving transfer operators, see [Exe03a,Lar10].

An entirely different way to put it is that we aim for a better understanding of the

structure of the commutative subalgebra C∗({ Eg,p | g ∈ G, p ∈ P }) inside L(`
2(G)). In a

much more general framework, this has been considered by Xin Li, see [Li12] and resulted

in a new definition of semigroup C*-algebras for discrete left cancellative semigroups with

identity. One particular strength of his notion is the close connection between amenability

of semigroups and nuclearity of their C*-algebras, see [Li13].

All of these three instances suggest that a closer examination of the terms S∗
pUgSq is

in order. For g = θp(g1)θq(g2) with g1, g2 ∈ G, we get S
∗
pUgSq = Ug1S(p∧q)−1qS

∗
(p∧q)−1pUg2 .

On the other hand, g /∈ θp(G)θq(G) is equivalent to gθq(G) ∩ θp(G) = ∅, which forces

S∗
pUgSq = 0. Thus we get

(CNP 2) S∗
pUgSq =

{
Ug1S(p∧q)−1qS

∗
(p∧q)−1pUg2 if g = θp(g1)θq(g2),

0 else.

for all g ∈ G, p, q ∈ P . These observations motivate the following definition:

Definition 2.2.1. O[G,P, θ] is the universal C*-algebra generated by a unitary repre-

sentation (ug)g∈G of the group G and a representation (sp)p∈P of the semigroup P by

isometries subject to the relations:

(CNP 1) spug = uθp(g)sp

(CNP 2) s∗pugsq =

{
ug1s(p∧q)−1qs

∗
(p∧q)−1pug2 if g = θp(g1)θq(g2),

0, else.

(CNP 3) 1 =
∑

[g]∈G/θp(G)

eg,p if [G : θp(G)] <∞,

where eg,p = ugsps
∗
pu

∗
g.

Proposition 2.2.2. Then O[G,P, θ] has a canonical non-trivial representation on `2(G)

given by ug 7→ Ug, sp 7→ Sp. In particular, O[G,P, θ] is non-zero.
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Remark 2.2.3.

a) The presence of (CNP 1) guarantees that the expression in (CNP 2) is independent

of the choice of g1 and g2 satisfying g = θp(g1)θq(g2). To see this, suppose g3 and g4
satisfy g = θp(g3)θq(g4) as well. Since G is a group, θp(g

−1
1 g3) = θq(g2g

−1
4 ) follows.

This is equivalent to θ(p∧q)−1p(g
−1
1 g3) = θ(p∧q)−1q(g2g

−1
4 ) by injectivity of θp∧q.

As (p∧q)−1p and (p∧q)−1q are relatively prime, condition (C) from Definition 1.1.5

implies g−1
1 g3 ∈ θ(p∧q)−1q(G) and g2g

−1
4 ∈ θ(p∧q)−1p(G). Applying injectivity of θp∨q

to θ(p∧q)−1p(g
−1
1 g3)θ(p∧q)−1q(g4g

−1
2 ) = 1G yields

θ−1
(p∧q)−1q

(g−1
1 g3)θ

−1
(p∧q)−1p

(g2g
−1
4 ) = 1G.

Therefore we conclude

ug3s(p∧q)−1qs
∗
(p∧q)−1pug4 = ug1ug−1

1 g3
s(p∧q)−1qs

∗
(p∧q)−1pug4g−1

2
ug2

= ug1s(p∧q)−1quθ−1
q (g−1

1 g3)θ
−1
p (g4g

−1
2 )s

∗
(p∧q)−1pug2

= ug1s(p∧q)−1qs
∗
(p∧q)−1pug2 .

b) For p ∈ P and g1, g2 ∈ G such that g1θp(G) = g2θp(G), (CNP 1) implies

eg2,p = ug1ug−1
1 g2

sps
∗
pu

∗
g2 = ug1sps

∗
pug−1

1 g2
u∗g2 = eg1,p

Thus the summation in (CNP 3) makes sense.

c) Condition (CNP 2) includes the following two relations as special cases:

s∗psq = sqs
∗
p for all relatively prime p, q ∈ P.

s∗pugsp = χθp(G)(g)uθ−1
p (g) for all g ∈ G, p ∈ P.

Lemma 2.2.4. The linear span of (ugsps
∗
quh)g,h∈G,p,q∈P is dense in O[G,P, θ].

Proof. The family (ugsps
∗
quh)g,h∈G,p,q∈P includes the generators (ug)g∈G, (sp)p∈P and is

closed under involution. We claim that the family is also multiplicatively closed (unless

the product is zero). Due to (CNP 2), an expression s∗quhsp either vanishes or takes the

form uh1sp1s
∗
p2uh2 for some hi ∈ G, pi ∈ P . In view of (CNP 1), this yields the claim.

Lemma 2.2.5. The projections (eg,p)g∈G,p∈P commute. More precisely, for g, h ∈ G and

p, q ∈ P , we have

eg,peh,q =

{
egθp(h′),p∨q if g−1h ∈ θp(G)θq(G),

0 else,

where h′ ∈ G is determined uniquely up to multiplication from the right by elements of

θp−1(p∨q)(G) by the condition that gθp(h
′) ∈ hθq(G).
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Proof. For g, h ∈ G and p, q ∈ P , the product eg,peh,q is non-zero only if g−1h ∈

θp(G)θq(G) by (CNP 2). So let us assume that g−1h ∈ θp(G)θq(G) holds. Then there

are g′, h′ ∈ G such that g−1h = θp(h
′)θq(g

′). As G is a group, this is equivalent to

hθq(g
′)−1 = gθp(h

′). Thus we get

eg,peh,q = ugθp(h′)sps(p∧q)−1qs
∗
(p∧q)−1ps

∗
qu

∗
hθq(g′)−1 = egθp(h′),p∨q.

Clearly, this also proves that the two projections commute. The uniqueness assertion

follows from (CNP 2).

Definition 2.2.6. The C*-subalgebra D of O[G,P, θ] generated by the commuting pro-

jections (eg,p)g∈G,p∈P is called the diagonal. In addition, let Dp := C∗({eg,q | [g] ∈

G/θp(G), p ∈ qP}) denote the C*-subalgebra of D corresponding to p ∈ P .

Lemma 2.2.7. For all p, q ∈ P , p ∈ qP implies Dq ⊂ Dp. D is the closure of
⋃
p∈P Dp.

If [G : θp(G)] is finite, then

Dp = span{eg,p | [g] ∈ G/θp(G)} ∼= C[G:θp(G)].

Proof. The first assertion follows from the definition of Dp. Lemma 2.2.5 implies that D

is the closure of the span of (eg,q)g∈G,q∈P . Likewise, Dp is the closure of the span of the

projections (eg,q)g∈G,p∈qP . This establishes the second claim. Finally, suppose [G : θp(G)]

is finite and let g ∈ G, q ∈ P such that there is r ∈ P satisfying p = qr. Note that

[G : θr(G)] is finite since [G : θp(G)] is finite. Then (CNP 3) gives

eg,q = ugsq


 ∑

[g′]∈G/θr(G)

eg′,r


 squ

∗
g =

∑

[g′]∈G/θr(G)

egθq(g′),p.

Let us make the following non-trivial observation:

Lemma 2.2.8. Suppose (g, p) ∈ G×P and a finite subset F of G×P are chosen in such

a way that eg,p
∏

(h,q)∈F (1− eh,q) is non-zero. Then there exists (g′, p′) ∈ G×P satisfying

eg′,p′ ≤ eg,p
∏

(h,q)∈F (1− eh,q).

Proof. If F is empty, then
∏

(h,q)∈F (1−eh,q) = 1 by convention, so there is nothing to show.

Now let F be non-empty. For (h, q) ∈ F , let us decompose q uniquely as q = q(fin)q(inf),

where [G : θq(fin)(G)] is finite and we require that, for each r ∈ P with q ∈ rP , finiteness

of [G : θr(G)] implies q(fin) ∈ rP . In other words, [G : θr(G)] is infinite for every r 6= 1P
with q(inf) ∈ rP . Using (CNP 3) for q(fin) and Lemma 2.2.5, we compute

1− eh,q = (1− eh,q(fin)eh,q(inf))
∑

[k]∈G/θ
q(fin) (G)

ek,p(fin)

= eh,q(fin)(1− eh,q(inf)) +
∑

[k]∈G/θ
q(fin) (G)

[k] 6=[h]

ek,q(fin) .
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Therefore, we can rewrite the initial product as

eg,p
∏

(h,q)∈F

(1− ehi,qi) =
∑

(g̃,p̃)∈F̃

eg̃,p̃
∏

(h,q)∈F(g̃,p̃)

(1− eh,q),

where

• F̃ is a finite subset of G×P ,

• eg̃,p̃ ≤ eg,p for all (g̃, p̃) ∈ F̃ ,

• the projections (eg̃,p̃)(g̃,p̃)∈F̃ are mutually orthogonal,

• for each (g̃, p̃) ∈ F̃ , F(g̃,p̃) is a finite subset of G×P , and

• each (h, q) ∈ F(g̃,p̃) satisfies q = q(inf) and p̃ /∈ qP .

Since the product eg,p
∏

(h,q)∈F (1−ehi,qi) on the left hand side is non-zero, there is (g0, p0) ∈

F̃ such that eg0,p0
∏

(h,q)∈F(g0,p0)
(1− eh,q) is non-zero. Without loss of generality, we may

assume that eg0,p0eh,q is non-zero for all (h, q) ∈ F(g0,p0). Consider FP := {p0 ∨ q | (h, q) ∈

F(g0,p0) for some h ∈ G}. Pick p1 ∈ FP which is minimal in the sense that for any other

r ∈ FP , p1 ∈ rP implies r = p1. Let (h1, q1), . . . , (hn, qn) ∈ F(g0,p0) denote the elements

satisfying p0 ∨ qi = p1. According to Lemma 2.2.5, we have

eg0,p0ehi,qi = eg0θp0 (g
′
i),p1

for a suitable g′i ∈ G (for i = 1, . . . , n).

Note that p−1
0 p1 6= 1P and q1 = q

(inf)
1 ∈ p−1

0 p1P , so [G : θp−1
0 p1

(G)] is infinite. Hence there

exists g1 ∈ g0θp0(G) with

eg1,p1 ≤ eg0,p0 and eg1,p1ehi,qi = 0 for i = 1, . . . , n.

Setting

F(g1,p1) := {(h, q) ∈ F(g0,p0) | eh,qeg1,p1 6= 0} $ F(g0,p0),

we observe that

eg1,p1
∏

(h,q)∈F(g1,p1)

(1− eh,q) 6= 0

follows from the initial statement for (g0, p0) and F(g0,p0) since we have chosen p1 in a

minimal way. Indeed, if the product was trivial, then there would be (h, q) ∈ F(g1,p1) with

eh,q ≥ eg1,p1 . By Lemma 2.2.5, this would force p1 ∈ qP and therefore p1 ∈ (p1 ∨ q)P ⊂

(p0 ∨ q)P , which cannot be true since p1 was chosen in a minimal way.

Thus, we can iterate the process used to obtain (g1, p1) and F(g1,p1) for (g0, p0) and

F(g0,p0). After finitely many steps, we arrive at an element (gn, pn) =: (g′, p′) with the

property that eg′,p′ ≤ eg0,p0 is orthogonal to eh,q for all (h, q) ∈ F(g0,p0). This establishes

the claim.
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The opportunity to pass to smaller subprojections provided through Lemma 2.2.8 will be

crucial for the proof of pure infiniteness and simplicity of O[G,P, θ], see Theorem 2.2.26

and in particular Lemma 2.2.25. A first application of this observation lies in the deter-

mination of the spectrum of D:

Lemma 2.2.9. The spectrum of D, denoted by Gθ, is a totally disconnected, compact

Hausdorff space. A basis for the topology on Gθ is given by the cylinder sets

Z(g,p),(h1,q1),...,(hn,qn) = {χ ∈ Gθ | χ(eg,p) = 1, χ(ehi,qi) = 0 for all i},

where n ∈ N, g, h1, . . . , hn ∈ G and p, q1, . . . , qn ∈ P . Moreover,

ι(g) ∈ Z(g′,p),(h1,q1),...,(hn,qn) ⇐⇒ g ∈ g′θp(G) and g /∈ hiθqi(G) for all i

defines a map ι : G −→ Gθ with dense image. ι is injective if and only if (G,P, θ) is

minimal.

Proof. Gθ is a totally disconnected, compact Hausdorff space since D is a unital C*-

algebra generated by commuting projections. The statement concerning the basis for the

topology on Gθ follows from Lemma 2.2.7. To see that ι has dense image, let χ ∈ Gθ.

As the cylinder sets form a basis for the topology of Gθ, every open neighbourhood of χ

contains a cylinder set Z(g,p),(h1,q1),...,(hn,qn) with χ ∈ Z(g,p),(h1,q1),...,(hn,qn). This means that

eg,p
∏n
i=1(1−ehi,qi) is non-zero. Hence we can apply Lemma 2.2.8 to obtain (g′, p′) ∈ G×P

satisfying eg′,p′ ≤ eg,p
∏n
i=1(1−ehi,qi). In other words, ι(g′) ∈ Z(g,p),(h1,q1),...,(hn,qn), so ι(G)

is a dense subset of Gθ.

Now given g, h ∈ G, we observe that ι(g) = ι(h) is equivalent to g−1h ∈
⋂
p∈P θp(G)

because the cylinder sets form a basis of the topology on the Hausdorff space Gθ. Therefore

ι is injective precisely if (G,P, θ) is minimal.

Remark 2.2.10. By the preceding lemma, Gθ is a completion of G with respect to θ

whenever (G,P, θ) is minimal.

There is a canonical action τ of G on D given by τg(eh,p) = egh,p for g, h ∈ G and p ∈ P .

Known results, as for instance [CV13, Lemma 2.5], indicate that D oτ G ought to be

simple provided that the irreversible algebraic dynamical system (G,P, θ) is minimal. Of

course, this can only be true if G
τ
y D is regular, that is, D oτ G ∼= D oτ,r G via the

canonical map. Building on the results of [AD87], this can be rephrased as amenability

of the action G
τ̂
y Gθ, see also [BO08, Theorem 4.4.3] for a concise exposition. Moreover,

the map ι from Lemma 2.2.9 satisfies τ̂g(ι(h)) = ι(gh) for all g, h ∈ G.

If τ̂ is amenable, the celebrated result of [AS94] states that the crossed product

C(Gθ) oτ G is simple if and only if the action G
τ̂
y Gθ is minimal and topologically

free. As it turns out, minimality of (G,P, θ) corresponds precisely to these two proper-

ties. For convenience, let us recall the standard definitions of topological freeness and

minimality for group actions.
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Definition 2.2.11. Let X be a topological space and G a group. A group action GyX

is said to be topologically free, if the set Xg = {x ∈ X | g.x = x} has empty interior

for g ∈ G \ {1G}.

Definition 2.2.12. Let X be a topological space and G a group. A group action GyX

is said to be minimal, if the orbit O(x) = {g.x | g ∈ G} is dense in X for every x ∈ X.

Equivalently, an action is minimal if the only invariant open (closed) subsets of X are ∅

and X.

Proposition 2.2.13. The action G
τ̂
y Gθ is minimal. It is topologically free if and only

if (G,P, θ) is minimal.

Proof. On ι(G), which is dense in Gθ by Lemma 2.2.9, τ̂ is simply given by translation

from the left. Hence τ̂ is minimal. For the second part, we note that τg = idD holds

for every g ∈
⋂
p∈P θp(G). Thus, if (G,P, θ) is not minimal, there is g 6= 1G such that

Ggθ = Gθ, so τ̂ is not topologically free. If (G,P, θ) is minimal, then τ̂ acts freely on ι(G)

because ι is injective and G is left-cancellative. Since ι(G) is dense in Gθ, we conclude

that τ̂ is topologically free.

Corollary 2.2.14. The crossed product DoτG is simple if and only if (G,P, θ) is minimal

and G
τ̂
y Gθ is amenable.

Proof. Due to a central result from [AD87], amenability of the action is equivalent to

regularity of the crossed product. Hence Proposition 2.2.13 and [AS94, Corollary following

Theorem 2] establish the claim.

Definition 2.2.15. The core F is the C*-subalgebra of O[G,P, θ] generated by D and

(ug)g∈G.

Lemma 2.2.16. The linear span of (ugsps
∗
pu

∗
h)g,h∈G,p∈P is dense in F .

Proof. This follows immediately from the calculations for Lemma 2.2.4.

Remark 2.2.17. For every irreversible algebraic dynamical system (G,P, θ), P is a dis-

crete abelian Ore semigroup. Therefore its enveloping group P−1P is discrete abelian. Let

us denote the dual group of P−1P by L, which is a compact abelian group by Pontryagin

duality. Furthermore, L acts on O[G,P, θ] via the so-called gauge-action γ given by

γ`(ug) = ug and γ`(sp) = `(p)sp, for g ∈ G, p ∈ P and ` ∈ L.

a) The fixed-point algebra of γ coincides with F .
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b) If µ denotes the normalized Haar measure on L, then

E1(ugsps
∗
qu

∗
h) :=

∫

`∈L

γ`(ugsps
∗
qu

∗
h)dµ(`) = δpqugsps

∗
pu

∗
h

defines a faithful conditional expectation O[G,P, θ]
E1−→ F as γ is strongly continu-

ous.

The similarity between F and Doτ G is apparent. If one assumes that Doτ G is simple,

which by Corollary 2.2.14 means that the irreversible algebraic dynamical system (G,P, θ)

is minimal, it is easy to show that these two algebras are isomorphic. This strategy has

been pursued in [CV13, Lemma 2.5].

However, we will show in Corollary 2.2.19 that this identification holds in full gener-

ality. To do so, we will first derive a semigroup crossed product description O[G,P, θ] ∼=

D o (G oθ P ), which is of independent interest, compare [CV13, Theorem 2.6]. Also, if

(G,P, θ) is of infinite type, that is, [G : θp(G)] is infinite for all p 6= 1P , then this re-

sult reproduces the standard picture C∗(S) ∼= DS o S for C*-algebras of left cancellative

semigroups S in the case where S = Goθ P , compare [Li12, Lemma 2.14].

In order to get down to F and Doτ G, respectively, we observe that a crossed product

coming from a semidirect product of discrete semigroups can be displayed as an iterated

semigroup crossed product under a certain condition, see Theorem 2.1.5. This condition

will be satisfied as G is a group, see Remark 2.1.6 b).

Proposition 2.2.18. Let the semidirect product GoθP act on D by (g, p).eh,q = egθp(h),pq
and suppose (v(g,p))(g,p)∈GoθP is the family of isometries in Do(GoθP ) implementing the

action of the semigroup, that is, v(g,p)eh,qv
∗
(g,p) = egθp(h),pq. Then the map

O[G,P, θ]
ϕ
−→ Do(GoθP )

ugsp 7→ v(g,p)

is an isomorphism.

Proof. Recall from Definition 2.2.1 that O[G,P, θ] is the universal C*-algebra generated

by a unitary representation (ug)g∈G of the group G and a semigroup of isometries (sp)p∈P
subject to the relations (CNP 1)–(CNP 3). Hence, in order to show that ϕ defines a

surjective ∗-homomorphism, it suffices to show that for every g ∈ G, the isometry v(g,1P )
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2. C*-algebras for irreversible semigroup dynamical systems

is a unitary, and that the families (v(g,1P ))g∈G, (v(1G,p))p∈P satisfy (CNP 1)–(CNP 3):

v(g,1P )v(g−1,1P ) = v(g,1P )(g−1,1P ) = v(1G,1P ) = 1

(CNP 1) v(1G,p)v(g,1P ) = v(1G,p)(g,1P ) = v(θp(g),p) = v(θp(g),1P )v(1G,p)

(CNP 2) v∗(1G,p)v(g,1P )v(1G,q)
!
= χθp(G)θq(G)(g) v(g1,(p∧q)−1q)v

∗
(g−1

2 ,(p∧q)−1p)

where g = θp(g1)θq(g2).

⇐⇒ v(1G,p)v
∗
(1G,p)

v(g,q)v
∗
(g,q)

!
= χθp(G)θq(G)(g) v(θp(g1),p∨q)v

∗
(gθq(g

−1
2 ),p∨q)

⇐⇒ e1G,peg,q
!
= χθp(G)θq(G)(g) e(gθq(g−1

2 ),p∨q)

as g = θp(g1)θq(g2) gives θp(g1) = gθq(g
−1
2 ). This last equation holds by Lemma 2.2.5,

so (CNP 2) is satisfied as well. (CNP 3) is a relation that is encoded inside D, so it

is satisfied as the range projection of the isometry v(g,p) coincides with eg,p. To show

that ϕ is injective, we note that the isometries ugsp satisfy the covariance relation for the

dynamical system Goθ P y D:

ugspeh,q(ugsp)
∗ = egθp(h),pq = (g, p).eh,q.

Hence, there is a surjective ∗-homomorphism from Do(GoθP ) to O[G,P, θ] sending v(g,p)
to ugsp. Apparently, the two ∗-homomorphisms are mutually inverse, so ϕ is an isomor-

phism.

This description allows us to deduce several relevant properties of O[G,P, θ] and its core

subalgebra F .

Corollary 2.2.19. The isomorphism ϕ from Proposition 2.2.18 restricts to an isomor-

phism F
ϕ
−→ DoG. In particular, we have a canonical isomorphism O[G,P, θ] ∼= FoP .

Proof. The first claim follows immediately from Proposition 2.2.18 together with Theo-

rem 2.1.5 and Remark 2.1.6. The second assertion is implied by Lemma 2.2.16.

Proposition 2.2.20. If G
τ̂
y Gθ is amenable, then both F and O[G,P, θ] are nuclear and

satisfy the universal coefficient theorem (UCT).

Proof. As F ∼= D o G by Corollary 2.2.19 and G
τ̂
y Gθ is amenable, F is nuclear by

results of Claire Anatharaman-Delaroche, see [AD87] or [BO08, Theorem 4.3.4]. Similarly,

amenability of G
τ̂
y Gθ passes to the corresponding transformation groupoid G. Thus, we

can rely on results of Jean-Louis Tu, see [Tu99], to deduce that F ∼= D oτ G ∼= C∗(G)

satisfies the UCT. The class of separable nuclear C*-algebras that satisfy the UCT is

closed under crossed products by N and inductive limits. Recall that either P ∼= Nk for

some k ∈ N or P ∼=
⊕

NN according to condition (B) of Definition 1.1.5. Hence the claims

concerning O[G,P, θ] follow from O[G,P, θ] ∼= F o P , see Corollary 2.2.19.
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Corollary 2.2.21. The map E2(ugsps
∗
pu

∗
h) := δgh eg,p defines a conditional expectation

F
E2−→ D which is faithful if and only if G

τ̂
y Gθ is amenable.

Proof. Due to Corollary 2.2.19, F is canonically isomorphic to DoτG. Since G is discrete,

the reduced crossed product D oτ,r G has a faithful conditional expectation given by

evaluation at 1G. The map E2 is nothing but the composition of

F ∼= D oτ G−� D oτ,r G
ev1G−→ D.

By [AD87], the canonical surjection D oτ G−� D or,τ G is an isomorphism if and only

if G
τ̂
y Gθ is amenable. Thus the conditional expectation E2 is faithful if and only if the

action τ̂ is amenable.

Corollary 2.2.22. The map E(ugsps
∗
qu

∗
h) := δpqδgheg,p defines a conditional expectation

O[G,P, θ]
E
−→ D which is faithful if and only if G

τ̂
y Gθ is amenable.

Proof. Clearly, E = E2◦E1, so the result follows from Remark 2.2.17 and Corollary 2.2.21.

Note that if G happens to be amenable, the faithful conditional expectation E can be

obtained directly by showing that the left Ore semigroup GoθP has an amenable en-

veloping group. Before we can turn to simplicity of O[G,P, θ], we need the following

general observations:

Definition 2.2.23. Given a family of commuting projections (Ei)i∈I in a unital C*-

algebra B and finite subsets A ⊂ F of I, let

QEF,A :=
∏

i∈A

Ei
∏

j∈F\A

(1− Ej).

Products indexed by ∅ are treated as 1 by convention.

Lemma 2.2.24. Suppose (Ei)i∈I is a family of commuting projections in a unital C*-

algebra B, A ⊂ F are finite subsets of I. Then each QEF,A is a projection,
∑
A⊂F

QEF,A = 1

and, for given coefficients λi ∈ C, i ∈ F , we have

∑

i∈F

λiEi =
∑

A⊂F

(∑

i∈A

λi

)
QEF,A,

as well as ∥∥∥
∑

i∈F

λiEi

∥∥∥ = max
A⊂F

QE
F,A 6=0

∣∣∑

i∈A

λi
∣∣.
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Proof. Since the projections Ei commute, QEF,A is a projection. The second assertion is

obtained via

1 =
∏

i∈F

(Ei + 1− Ei) =
∑

A⊂F

QEF,A.

The two equations from the claim follow immediately from this.

Lemma 2.2.25. For d =
∑

1≤i≤n
λiegi,pi ∈ D+ with λi ∈ C and (gi, pi) ∈ G×P , there exist

(g, p) ∈ G× P satisfying deg,p = ‖d‖eg,p.

Proof. The element d belongs to C∗
({
QeF,A | A ⊂ F = {(gi, pi) | 1 ≤ i ≤ n}

})
, which is

commutative by Lemma 2.2.5. Then Lemma 2.2.24 says that there exists A ⊂ F such

that QeF,A is non-zero and dQeF,A = ‖d‖QeF,A. In particular,
∏

(g,p)∈A eg,p is non-zero, so

Lemma 2.2.5 implies that there is (gA, pA) ∈ G × P such that
∏

(g,p)∈A eg,p = egA,pA .

Thus, we can apply Lemma 2.2.8 to egA,pA
∏

(h,q)∈F\A(1− eh,q) = QeF,A 6= 0 and the proof

is complete.

We point out that the hard part of the proof for Lemma 2.2.25 is hidden in Lemma 2.2.8.

Theorem 2.2.26. If (G,P, θ) is minimal and the action G
τ̂
y D is amenable, then

O[G,P, θ] is purely infinite and simple.

Proof. Recall that the linear span of (ugsps
∗
qu

∗
h)g,h∈G,p,q∈P is dense in O[G,P, θ] according

to Lemma 2.2.4. Every element z from this linear span can be displayed as

z =

m1∑

i=1

ciegi,pi +

m2∑

i=m1+1

ciugispis
∗
piu

∗
hi

+

m3∑

i=m2+1

ciugispis
∗
qiu

∗
hi
,

where ci ∈ C,

a) gi 6= hi for m1 + 1 ≤ i ≤ m2, and

b) pi 6= qi for m2 + 1 ≤ i ≤ m3.

By Corollary 2.2.22, we have E(z) =
m1∑
i=1

ciegi,pi ∈ D. If we assume z to be non-zero and

positive, which we will do from now on, then E(z) > 0 as E is a faithful conditional

expectation. Applying Lemma 2.2.25 to E(z) yields (g, p) ∈ G× P such that

c) E(z)eg,p = ‖E(z)‖eg,p.

In order to prove simplicity and pure infiniteness of O[G,P, θ], it suffices to establish the

following claim: There exist (g̃, p̃) ∈ G× P satisfying

(a) eg̃,p̃ ≤ eg,p,
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(b) eg̃,p̃ugispis
∗
piu

∗
hi
eg̃,p̃ = 0 for m1 + 1 ≤ i ≤ m2 and

(c) eg̃,p̃ugispis
∗
qiu

∗
hi
eg̃,p̃ = 0 for m2 + 1 ≤ i ≤ m3.

Indeed, if this can be done, then we get

eg̃,p̃zeg̃,p̃
(b),(c)
= eg̃,p̃E(z)eg̃,p̃

c),(a)
= ‖E(z)‖eg̃,p̃.

Now for x ∈ O[G,P, θ] positive and non-zero, let ε > 0 and choose a positive, non-zero

element z, which is a finite linear combination of elements ug′sp′s
∗
q′u

∗
h′ , to approximate

x up to ε. Then ‖E(z)‖ is a non-zero positive element of D. Thus, choosing eg̃,p̃ as

above, we see that eg̃,p̃zeg̃,p̃ = ‖E(z)‖eg̃,p̃ is invertible in eg̃,p̃O[G,P, θ]eg̃,p̃. If ‖x − z‖ is

sufficiently small, this implies that eg̃,p̃xeg̃,p̃ is positive and invertible in eg̃,p̃O[G,P, θ]eg̃,p̃

as well because ‖E(z)‖
ε→0
−→ ‖E(x)‖ > 0. Hence, if we denote its inverse by y, then

(
y

1
2ug̃sp̃

)∗
eg̃,p̃xeg̃,p̃

(
y

1
2ug̃sp̃

)
= 1.

We claim that there is a pair (g̃, p̃) ∈ G× P satisfying (a)–(c). Let (g′, p′) ∈ gθp(G)× pP

and m1 + 1 ≤ i ≤ m2. Noting that ugispis
∗
piu

∗
hi

= ugih−1
i
ehi,pi , Lemma 2.2.5 implies

eg′,p′ugih−1
i
ehi,pieg′,p′ = eg′,p′ugih−1

i
eg′,p′ehi,pi

= χθp′ (G)((g
′)−1gih

−1
i g′) ugih−1

i
eg′,p′ehi,pi .

According to a), we have (g′)−1gih
−1
i g′ 6= 1G. Thus, minimality of (G,P, θ) provides

p′i ∈ pP with the property that (g′)−1gih
−1
i g′ /∈ θp′i(G). So if we take p(b) :=

m2∨
i=m1+1

p′i,

then (a) and (b) of the claim hold for all (g′, p′) ∈ gθp(G) × p
(b)P . Let us assume that

p′ ≥ p(b) ∨
∨m3
i=m2+1 pi ∨ qi and g

′ ∈ g ◦ θp′(G). Then condition (c) holds for (g′, p′) if and

only if

0 = s∗p′u(g′)−1gispis
∗
qiuh−1

i g′sp′

= χθpi (G)((g
′)−1gi)χθqi (G)(h

−1
i g′)s∗

p−1
i p′

uθ−1
pi

((g′)−1gi)θ
−1
qi

(h−1
i g′)sq−1

i p′

is valid for all m2 +1 ≤ i ≤ m3. This is precisely the case if at least one of the conditions

• (g′)−1gi ∈ θpi(G),

• (g′)−1hi ∈ θqi(G), or

• θ−1
pi ((g

′)−1gi)θ
−1
qi (h−1

i g′) ∈ θ(pi∨qi)−1p′(G)
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fails for each i. Suppose, we have an index i for which the first two conditions are satisfied.

Using injectivity of θpi∨qi , the third condition can be transformed into

θrq((g
′)−1gi)θrp(h

−1
i g′) ∈ θp′(G),

where rp := (pi ∧ qi)
−1pi and rq := (pi ∧ qi)

−1qi. Condition b) implies rp ∧ rq = 1P 6= rprq.

Furthermore, we have

θrq((g
′)−1gi)θrp(h

−1
i g′) = 1G ⇐⇒ θrq(g

′)θrp(g
′)−1 = θrq(gi)θrp(h

−1
i ).

Let us examine the range of the map G
fi−→ G given by g 7→ θrq(g)θrp(g)

−1. Note that

fi need not be a group homomorphism unless G is abelian, in which case the following

part can be shortened. If k1, k2 ∈ G have the same image under fi, then θrp(k
−1
2 k1) =

θrq(k
−1
2 k1). By (C1) from Definition 1.1.5, this gives

k−1
2 k1 ∈ θrp(G) ∩ θrq(G) = θrprq(G).

But if k−1
2 k1 = θrprq(k3) holds true for some k3 ∈ G, then θrp(k

−1
2 k1) = θrq(k

−1
2 k1) implies

that θrp(k3) = θrq(k3) holds as well because P is commutative and θqi,1qi,2 is injective. By

means of induction, we deduce k−1
2 k1 ∈

⋂
n∈N θ(rprq)n(G).

Hence f−1
i (θrp(hi)θrq(g

−1
i )) is either empty, in which case there is nothing to do, or it

is of the form g̃i
⋂
n∈N θ(rprq)n(G) for a suitable g̃i ∈ G. But for the collection of those i

for which the preimage in question is non-empty, we can apply Lemma 1.1.16 to obtain

g̃ ∈ gθp′(G) such that fi(g̃) 6= θrp(hi)θrq(g
−1
i ) for all relevant i.

By condition (C2) from Definition 1.1.5, we can choose p̃ ≥ p′ large enough so that

these elements are still different modulo θ(pi∨qi)−1p̃(G) for all i. In this case, we get

θ−1
pi (g̃

−1gi)θqi(h
−1
i g̃) /∈ θ(pi∨qi)−1p̃(G) for all m2 + 1 ≤ i ≤ m3,

so (g̃, p̃) satisfies (c). In other words, we have proven that the pair (g̃, p̃) satisfies (a)–(c).

Thus, O[G,P, θ] is purely infinite and simple.

From this result, we easily get the following corollaries:

Corollary 2.2.27. If (G,P, θ) is minimal and the action G
τ̂
y Gθ is amenable, then the

canonical representation λ : O[G,P, θ] −→ L(`2(G)) from Proposition 2.2.2 is faithful.

Proof. This follows readily from Proposition 2.2.2 and simplicity of O[G,P, θ].

Combining Lemma 2.2.4, Theorem 2.2.26 and Proposition 2.2.20, we get:

Corollary 2.2.28. If (G,P, θ) is minimal and the action G
τ̂
y Gθ is amenable, then

O[G,P, θ] is a unital UCT Kirchberg algebra.
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Thus, minimal irreversible algebraic dynamical systems (G,P, θ) with amenable action τ̂

yield C*-algebras O[G,P, θ] that are classified by their K-theory, see [Kir,Phi00]. Let us

come back to some of the examples from Section 1.1 and briefly describe the structure of

the C*-algebras obtained in the various cases:

Examples 2.2.29.

(a) Let G = Z, (pi)i∈I ⊂ Z\{0,±1} be a family of relatively prime integers, and set P =

|(pi)i∈I〉 ⊂ Z×, which acts on G by θi(g) = pig. We know from the considerations in

Example 1.1.8 (a) that (G,P, θ) is minimal, so O[G,P, θ] is a unital UCT Kirchberg

algebra. If we denote p :=
∏
i∈I |pi| ∈ N ∪ {∞}, then Gθ can be identified with the

p-adic completion Zp = lim←−(Z/qZ, θq)q∈P of Z. Moreover, F is the Bunce-Deddens

algebra of type p∞, compare [Orf10] and see [BD75] for the classification of Bunce-

Deddens algebras by supernatural numbers.

(b) Let I ⊂ N, choose {q} ∪ (pi)i∈I ⊂ Z \ {0,±1} relatively prime, P = |(pi)i∈I〉, set

G = Z
[
1
q

]
, and let θp(g) = pg for all g ∈ G, p ∈ P . As for (a), O[G,P, θ] is a

unital UCT Kirchberg algebra by Example 1.1.8 (b) and Corollary 2.2.28. If we let

p :=
∏
i∈I |pi| ∈ N∪{∞}, then Gθ can be thought of as a p-adic completion of Z

[
1
q

]

and F ∼= D oτ Z
[
1
q

]
.

Example 2.2.30. We have seen in Example 1.1.11 that for n ≥ 2, the dynamical system

given by the unilateral shift on G =
⊕

N Z/nZ is a minimal commutative irreversible

algebraic dynamical system of finite type. It has been observed in [CV13] that O[G,P, θ]

is isomorphic to On in a canonical way: If e1 = (1, 0, 0, . . . , ) ∈ G, s ∈ O[G,P, θ] denotes

the generating isometry for P and s1, . . . , sn are the generating isometries of On, then this

isomorphism is given by uke1s 7→ sk for k = 1, . . . , n. In particular, F is the UHF algebra

of type n∞ and Gθ is homeomorphic to the space of infinite words using the alphabet

{1, . . . , n}.

Example 2.2.31. Given a family (G(i), P, θ(i))i∈N, where each (G(i), P, θ(i)) is an irre-

versible algebraic dynamical system, we can consider G :=
⊕

i∈NG
(i), on which P acts

component-wise. Assume that each (G(i), P, θ(i)) and hence (G,P, θ) is minimal, compare

Example 1.1.13. We have Gθ ∼=
∏
i∈I G

(i)

θ(i)
. Thus the action G

τ̂
y Gθ is amenable if and

only if Gi
τ̂iy G

(i)

θ(i)
is amenable for each i ∈ I. As G is commutative (amenable) if and

only if each G(i) is, there are various cases where amenability of τ̂ is for granted. In such

situations, O[G,P, θ] is a unital UCT Kirchberg algebra.

Example 2.2.32. For the examples arising from free group Fn with 2 ≤ n ≤ ∞, see

Example 1.1.14, we are able to provide criteria (1)–(3) to ensure that we obtain mini-

mal irreversible algebraic dynamical systems. Hence Gθ can be interpreted as a certain

completion of Fn with respect to θ. Now Fn is far from being amenable, but the action
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2. C*-algebras for irreversible semigroup dynamical systems

Fn
τ̂
y Gθ could still be amenable: The free groups are known to be exact. By a fa-

mous result of Narutaka Ozawa, exactness of a discrete group is equivalent to amenability

of the left translation action on its Stone-Čech compactification, see [Oza00]. Recently,

Mehrdad Kalantar and Matthew Kennedy have shown that exactness of a discrete group

is also determined completely by amenability of the natural action on its Furstenberg

boundary, see [KK] for details. The latter space is usually substantially smaller than the

Stone-Čech compactification and their methods may give some insights into the question

of amenability in the context of the examples presented here.

2.3 A closer look at dynamical systems of finite type

This section provides a more detailed presentation of the case where (G,P, θ) is of finite

type. In particular, we exhibit additional structural properties of the spectrum Gθ of

the diagonal D in O[G,P, θ]. For instance, the assumption that θp(G) ⊂ G is normal

for every p ∈ P causes Gθ to inherit the group structure from G. This turns Gθ into a

profinite group. If, in addition, (G,P, θ) is minimal and G is amenable, then F falls into

the class of generalized Bunce-Deddens algebras, see [Orf10, Car11] for details. Due to

[Lin01,MS,Win05], they belong to a large class of C*-algebras that can be classified by

K-theory.

We are particularly interested in the case where G is abelian, or at least amenable.

For such dynamical systems, the situation is significantly easier as θp(G) ⊂ G is normal

for all p ∈ P and the action τ̂ is always amenable. In fact, the structure of D and F is

quite similar to the one discovered in the singly generated case, compare [CV13, Section

2]. More explicitly, Gθ is a compact abelian group and we have a chain of isomorphisms:

F ∼= C(Gθ)oτ G ∼= C(Ĝ)oτ̄ Ĝθ

Throughout this section, we will assume that (G,P, θ) is an irreversible algebraic dynam-

ical system of finite type.

Remark 2.3.1. Recall from Remark 2.2.10 that Gθ can be thought of as a completion

of G with respect to θ provided that (G,P, θ) is minimal. The map ι from Lemma 2.2.9

transports more structure under additional hypotheses:

a) If θp(G) is normal in G for all p ∈ P , then Gθ = lim←−
p∈P

coker θp is a profinite group.

b) If (G,P, θ) is minimal and θp(G) is normal in G for all p ∈ P , then ι is a dense

embedding of groups. In particular, G
τ̂
y Gθ is the left translation action of a dense

subgroup in Gθ.
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c) Gθ is an abelian group if and only if G is an abelian group. So if (G,P, θ) is a minimal

commutative irreversible algebraic dynamical system, then Gθ is a compact abelian

group and F has a unique tracial state by b). This follows from a straightforward

adaptation of the corresponding part of the proof for [CV13, Lemma 2.5]

Proposition 2.3.2. Suppose (G,P, θ) is minimal and G is amenable. Then F is a gen-

eralized Bunce-Deddens algebra.

Proof. This follows directly from the construction of the generalized Bunce-Deddens al-

gebras presented in [Orf10, Section 2]: Choose an arbitrary, increasing, cofinal sequence

(pn)n∈N ⊂ P , where cofinal means that, for every q ∈ P , there exists an n ∈ N such that

pn ∈ qP . Then (θpn(G))n∈N is a family of nested, normal subgroups of finite index in G.

This family is separating for G by minimality of (G,P, θ).

In particular, these assumptions force F to be unital, nuclear, separable, simple, qua-

sidiagonal, and to have real rank zero, stable rank one, strict comparison for projections

as well as a unique tracical state, see [Orf10]. As the combination of real rank zero and

strict comparison for projections yields strict comparison (for positive elements), the pre-

requisites for [MS, Theorem 1.1] are met, so F also has finite decomposition rank. This

establishes the remaining step to achieve classification of the core F by means of its El-

liott invariant (K0(F),K0(F)+, [1F ],K1(F)) thanks to results of Huaxin Lin and Wilhelm

Winter, see [Win05, Corollary 6.5(i)] and [Lin01]:

Corollary 2.3.3. Let (Gi, Pi, θi) be minimal and Gi be amenable for i = 1, 2. If F1 and

F2 denote the respective cores, then F1
∼= F2 holds if and only if

(K0(F1),K0(F1)+, [1F1 ],K1(F1)) ∼= (K0(F2),K0(F2)+, [1F2 ],K1(F2)) .

We close this section by presenting an intriguing isomorphism of group crossed products

on the level of F , compare [CV13, Lemma 2.5]:

Corollary 2.3.4. Suppose (G,P, θ) is minimal and G is abelian. Then Gθ is a compact

abelian group and there is an action τ̄ of its dual group Ĝθ on C(Ĝ) such that we have

canonical isomorphisms

F ∼= C(Gθ)oτ G ∼= C(Ĝ)oτ̄ Ĝθ.

Proof. The first isomorphism has been achieved in Corollary 2.2.19. For the second part,

let τ̄χθ
(χ)(g) := χθ(ι(g))χ(g) for χθ ∈ Ĝθ, χ ∈ Ĝ and g ∈ G. Since G

ι
−→ Gθ is a

group homomorphism, τ̄χθ
(χ) defines a character of G. Clearly, τ̂ is compatible with

the group structure on Ĝθ. According to Remark 2.3.1 b) the group homomorphism

ι identifies G with a dense subgroup of Gθ. In this case the characters on Gθ are in

one-to-one correspondence with the characters on G. Note that this correspondence is
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precisely given by regarding characters on Gθ as characters on G using ι. Therefore, τ̄

defines an action of Ĝθ by homeomorphisms of the compact space Ĝ. Once we know that

τ̄ defines an action, we readily see that there is a canonical surjective ∗-homomorphism

C(Gθ)oτ G−� C(Ĝ)oτ̄ Ĝθ. As C(Gθ)oτ G is simple, this map is an isomorphism.

2.4 Fundamental results for irreversible ∗-commutative

dynamical systems

This section is devoted to the construction of universal C*-algebras for irreversible ∗-

commutative dynamical systems of finite type (X,P, θ). We show that this construction

is consistent with the natural realization of (X,P, θ) as operators on `2(X), see Propo-

sition 2.4.4. Moreover, we show that, for commutative irreversible algebraic dynamical

systems of finite type (G,P, θ), there is a natural isomorphism between O[G,P, θ] and

O[Ĝ, P, θ̂], see Proposition 2.4.3. In analogy to the case of irreversible algebraic dynam-

ical systems, we establish a few elementary properties of this C*-algebra and its core

subalgebra F . A fair amount of the results from this section is relevant for Chapter 4.

Throughout this section, let (X,P, θ) denote an irreversible ∗-commutative dynamical

system, unless specified otherwise. Recall that, for p ∈ P , the endomorphism αp of C(X)

and its transfer operator Lp are given by

αp(f)(x) = f(θp(x)) and Lp(f)(x) =
1

Np

∑

y∈θ−1
p (x)

f(y) for all x ∈ X, f ∈ C(X),

where Np = |θ−1
p (x)|. Moreover, we let Ep := αp ◦ Lp : C(X) −→ αp(C(X)) denote the

associated conditional expectation.

Definition 2.4.1. O[X,P, θ] is the universal C*-algebra generated by C(X) and a repre-

sentation of the monoid P by isometries (sp)p∈P subject to the relations:

(I) spf = αp(f)sp for all f ∈ C(X), p ∈ P.

(II) s∗pfsp = Lp(f) for all f ∈ C(X), p ∈ P.

(III) s∗psq = sqs
∗
p if p and q are relatively prime in P .

(IV ) If p ∈ P and fi,1, fi,2 ∈ C(X), 1 ≤ i ≤ n, satisfy the reconstruction formula
∑

1≤i≤n
fi,1Ep(f̄i,2f) = f for all f ∈ C(X),

then
∑

1≤i≤n
fi,1sps

∗
pf̄i,2 = 1.

The next lemma explains the motivation behind relation (IV).
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Lemma 2.4.2. For every p ∈ P , the validity of relation (IV) from Definition 2.4.1 is

independent of the choice of the family (fi,j)1≤i≤m,j=1,2 satisfying the reconstruction for-

mula. In particular, if U = (Ui)1≤i≤n is a finite open cover of X such that the restriction

of θp to each Ui is injective and (vi)1≤i≤n is a partition of unity for X subordinate to U ,

then ∑

1≤i≤n

νisps
∗
pνi = 1

holds for νi = (Npvi)
1
2 .

Proof. For the first part, let (fi,j)1≤i≤m,j=1,2 and (gk,`)1≤k≤n,`=1,2 be two families in C(X)

that both satisfy the reconstruction formula for all f ∈ C(X). Now if relation (IV) from

Definition 2.4.1 holds for (fi,j)1≤i≤m,j=1,2, then

∑
1≤k≤n

gk,1sps
∗
pḡk,2 =

∑
1≤k≤n

gk,1sps
∗
pḡk,2

∑
1≤i≤m

fi,1sps
∗
pf̄i,2

=
∑

1≤i≤m

∑
1≤k≤n

gk,1Ep(ḡk,2fi,1)sps
∗
pf̄i,2

=
∑

1≤i≤m
fi,1sps

∗
pf̄i,2 = 1.

The second claim follows from Lemma 1.3.9.

Since finite open covers of the form appearing in Lemma 2.4.2 always exist for surjective

local homeomorphisms of compact Hausdorff spaces, see Lemma 1.3.9, there are in fact

functions fi,j satisfying the reconstruction formula for each p ∈ P . Thus, relation (IV) is

non-void.

There is a close connection to the defining relations (CNP 1)–(CNP 3) for the C*-

algebras associated to irreversible algebraic dynamical systems (G,P, θ), compare Defi-

nition 2.2.1. We will now show that the two constructions yield the same C*-algebra if

both methods are applicable, that is, if (G,P, θ) of finite type and G is commutative, see

Corollary 1.3.17. Recall that the dual model (Ĝ, P, θ̂) is an irreversible ∗-commutative

dynamical system of finite type in this case.

Proposition 2.4.3. Let (G,P, θ) be a commutative irreversible algebraic dynamical sys-

tem of finite type. If (ug)g∈G and (sp)p∈P denote the canonical generators of O[G,P, θ]

and (wg)g∈G and (vp)p∈P denote the canonical generators of O[Ĝ, P, θ̂], then

O[G,P, θ]
ϕ
−→ O[Ĝ, P, θ̂]

ugsp 7→ wgvp

is an isomorphism.
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Proof. It is clear that (wg)g∈G and (vp)p∈P satisfy (CNP 1). (CNP 3) follows from (IV)

since we can easily check the reconstruction formula required in (IV) on each wg and note

that C(Ĝ) can be identified with the closed linear span of (wg)g∈G. It remains to prove

(CNP 2), that is,

v∗pwgvq = χθp(G)θq(G)(g) wg1v(p∧q)−1qv
∗
(p∧q)−1pwg2 for all g ∈ G and p, q ∈ P,

for g = θp(g1)θq(g2), and v∗pwgvq = 0 otherwise. The case g ∈ θp(G)θq(G) follows in a

straightforward manner from (I) and (III), so suppose g /∈ θp(G)θq(G). Since (G,P, θ) is

of finite type, Proposition 1.1.1 yields θ(p∧q)−1p(G)θ(p∧q)−1q(G) = G. Hence we get

g /∈ θp∧q(θ(p∧q)−1p(G)θ(p∧q)−1q(G)) = θp∧q(G)

and with the help of Example 1.3.7 we conclude that

v∗pwgvq = v∗(p∧q)−1pv
∗
p∧qwgvp∧qv(p∧q)−1q

(II)
= v∗(p∧q)−1pLp∧q(wg)v(p∧q)−1q = 0.

Thus we have shown that ϕ is a surjective ∗-homomorphism. In order to see that ϕ is an

isomorphism, it suffices to check that C∗((ug)g∈G) ∼= C(Ĝ) and (sp)p∈P satisfy (I)–(IV).

Condition (I) is nothing but (CNP 1). Conditions (II) and (III) follow from (CNP 2) using

Remark 2.2.3 c) and Example 1.3.7. Finally, (IV) can be deduced from (CNP 3) with the

help of Lemma 2.4.2.

We have seen in Lemma 2.4.2 that we can always choose elements fi,j satisfying the

reconstruction formula for (IV) in such a way that we get a C*-algebraic partition of

unity in O[X,P, θ], that is, the corresponding elements are positive and sum up to one.

Unless X is totally disconnected, this may produce a number of genuine positive elements

exceeding the actual number of preimages a single point has. For example, the minimal

number of elements appearing in a partition of unity as in Lemma 2.4.2 for the map

×2 : T −→ T is three.

One particular feature of commutative irreversible algebraic dynamical systems of

finite type compared to arbitrary irreversible ∗-commutative dynamical systems of finite

type is that we can choose the elements satisfying the reconstruction formula for (IV) in

a different manner using the algebraic structure. This allows us to reduce the number of

positive elements needed to the optimal value, that is, the size of the kernel of the group

endomorphism on Ĝ. Moreover, the elements forming the C*-algebraic partition of unity

are projections in this case.

Now that we have already established some connections to Section 2.2, let us start

with an analysis of basic properties of the C*-algebra O[X,P, θ]. First of all, there is a

natural representation of O[X,P, θ] on `2(X), whose standard orthonormal basis will be

denoted by (ξx)x∈X :
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Proposition 2.4.4. Let Mfξx := f(x)ξx and Spξx = N
− 1

2
p

∑
y∈θ−1

p (x)

ξy for x ∈ X, f ∈

C(X) and p ∈ P . Then the map

O[X,P, θ]
ϕ
−→ L

(
`2(X)

)

fsp 7→ MfSp

is a representation of O[X,P, θ], which is faithful on C(X).

Proof. Firstly, S∗
p(ξx) = N

− 1
2

p ξθp(x) for all p ∈ P and x ∈ X since

〈S∗
p(ξx), ξy〉 = 〈ξx, Sp(ξy)〉 = χθ−1

p (y)(x) N
− 1

2
p .

Thus, Sp is an isometry. (Sp)p∈P is a representation of P because

SpSq(ξx) = N
− 1

2
q

∑
y∈θ−1

q (x)

Sp(ξy)

= (NpNq)
− 1

2
∑

y∈θ−1
q (x)

z∈θ−1
p (y)

ξz

= (Npq)
− 1

2
∑

z∈θ−1
pq (x)

ξz

= Spq(ξx).

(I) If p and q are relatively prime in P , then θp and θq ∗-commute according to Def-

inition 1.3.13 (C). Using the equivalent condition (iii) from Proposition 1.3.2, we

obtain

S∗
pSq(ξx) = N

− 1
2

pq

∑

y∈θp(θ
−1
q (x))

ξy = N
− 1

2
pq

∑

y∈θ−1
q (θp(x))

ξy = SqS
∗
p(ξx),

so Sp and Sq doubly commute.

(II) SpMf =Mαp(f)Sp is readily verified for all f ∈ C(X) and p ∈ P .

(III) S∗
pMfSp =MLp(f) is also straightforward.

(IV) For νi = (Npvi)
1
2 , where (vi)1≤i≤n is a partition of unity such that θp|supp vi is

injective for all i (as in Lemma 2.4.2), we compute

∑
1≤i≤n

MνiSpS
∗
pMνi(ξx) =

∑
1≤i≤n

∑
y∈θ−1

p (θp(x))

(vi(y)vi(x))
1
2︸ ︷︷ ︸

δx y

ξy

=
∑

1≤i≤n
vi(x)ξx

= ξx.

We infer from Lemma 2.4.2 that this yields (IV) since the proof provided there only

uses the additional property (II), which we have already established for Sp and Mf .

53



2. C*-algebras for irreversible semigroup dynamical systems

Thus, ϕ is a ∗-homomorphism by the universal property of O[X,P, θ] and it is clear that

ϕ is faithful on C(X).

Lemma 2.4.5. The linear span of (fsps
∗
qg)f,g∈C(X),p,q∈P is dense in O[X,P, θ].

Proof. The set is closed under taking adjoints and contains the generators, so we only have

to show that it is multiplicatively closed. Let pi, qi ∈ P, fi, gi ∈ C(X) and ai := fispis
∗
qigi

for i = 1, 2. Additionally, choose a partition of unity (vj)1≤j≤n subordinate to a finite

open cover (Uj)1≤j≤n of X such that θq1∨p2 |Uj
is injective and νj := (Nq1∨p2 vj)

1
2 for all

j. Then, we get

a1a2
(IV)
= a1

∑
1≤j≤n

νjsq1∨p2s
∗
q1∨p2νja2

(II)
=

∑
1≤j≤n

f1sp1Lq1(g1νj)sq−1
1 (q1∨p2)

s∗
p−1
2 (q1∨p2)

Lp2(νjf2)s
∗
q2g2

(I)
=

∑
1≤j≤n

f1 αp1 ◦ Lq1(g1νj)sp1q−1
1 (q1∨p2)

s∗
q2p

−1
2 (q1∨p2)

αq2 ◦ Lp2(νjf2)g2.

The remainder of this section will deal with faithfulness of conditional expectations related

to a core subalgebra of O[X,P, θ] similar to the one introduced in Definition 2.2.15 for

O[G,P, θ]. Recall that the enveloping group H = P−1P of P is discrete abelian. If we

denote its Pontryagin dual by L, which is then a compact abelian group, we get a so-called

gauge action γ of L on O[X,P, θ] by

γ`(f) = f and γ`(sp) = `(p)sp for f ∈ C(X), p ∈ P and ` ∈ L.

It is well-known that actions of this form are strongly continuous.

Definition 2.4.6. The fixed point algebra O[X,P, θ]γ for the gauge action γ, denoted by

F , is called the core of O[X,P, θ]. In addition, let

Fp := C∗
(
{fsps

∗
pg | f, g ∈ C(X)}

)

denote the subalgebra of F corresponding to p ∈ P .

Lemma 2.4.7. Let µ denote the normalized Haar measure of the compact abelian group L.

Then E1(a) :=
∫
`∈L

γ`(a) dµ(`) defines a faithful conditional expectation O[X,P, θ]
E1−→ F .

Proof. If a ∈ O[X,P, θ] is positive and non-zero, then there is a state ψ on O[X,P, θ] such

that ψ(a) = ‖a‖. Since γ`(a) ≥ 0 in O[X,P, θ], we have ψ(γ`(a)) ≥ 0 for all ` ∈ L. Thus,

ψ(a) = ‖a‖ > 0 together with strong continuity of γ implies

ψ(E1(a)) =

∫

`∈L

ψ(γ`(x)) dµ(`) > 0.
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Proposition 2.4.8. F is the closed linear span of (fsps
∗
pg)f,g∈C(X),p∈P . Fp ⊂ Fq holds

whenever q ∈ pP and hence F =
⋃
p∈P Fp.

Proof. Clearly, every element fsps
∗
pg is fixed by γ. Conversely, if a ∈ F , we can approx-

imate a by finite linear combinations of elements fispis
∗
qigi according to Lemma 2.4.5.

Relying on the conditional expectation E1 from Lemma 2.4.7, we know that it suffices to

take those fispis
∗
qigi satisfying pi = qi.

If q ∈ pP holds true, then we can employ (IV) for p−1q to deduce Fp ⊂ Fq. The last

claim is an immediate consequence of this.

The next observation and its proof are based on [EV06, Proposition 7.9].

Proposition 2.4.9. For p ∈ P , the subalgebra Fp of F satisfies

Fp = span{fsps
∗
pg | f, g ∈ C(X)}

and

(Fp)+ = span{fsps
∗
pf̄ | f ∈ C(X)}.

Proof. The right hand side of the first equation is multiplicatively closed as

f1sps
∗
pg1 f2sps

∗
pg2

(II),(I)
= f1Ep(g1f2)sps

∗
pg2.

Let a ∈ Fp, ε > 0 and choose m ∈ N and fk, gk ∈ C(X), 1 ≤ k ≤ m such that

‖
m∑

k=1

fksps
∗
pgk − a‖ < ε.

Pick (νi)1≤i≤n coming from a suitable partition of unity of X for θp as in Lemma 1.3.9.

In other words, the family (νi)1≤i≤n satisfies (IV) from Definition 2.4.1. Then we obtain

m∑
k=1

fksps
∗
pgk =

n∑
i=1

νisps
∗
pνi

m∑
k=1

fksps
∗
pgk

n∑
j=1

νjsps
∗
pνj

=
n∑

i,j=1
hi,j νisps

∗
pνj ,

where hi,j =
∑

1≤k≤mEp(νifk)Ep(gkνj), so n
2 summands suffice to approximate a up to

ε.

For the second part, let a ∈ (Fp)+. Then a = b∗b holds for some b ∈ Fp. From the

first part, we know that b =
∑m

i=1 fisps
∗
pgi for some m ∈ N and suitable fi, gi ∈ C(X).

Therefore,

a =

m∑

i,j=1

ḡisps
∗
pf̄ifjsps

∗
pgj =

m∑

i,j=1

ḡiEp(f̄ifj)sps
∗
pgj .

Recall that Ep : C(X) −→ αp(C(X)) is a conditional expectation and hence completely

positive, see [BO08, Theorem 5.9]. Thus (f̄ifj)i,j ∈ Mm(C(X))+ implies that there is
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c = (cij)1≤i,j≤m ∈ Mm(Ep(C(X))) satisfying
(
Ep(f̄ifj))

)
1≤i,j≤m

= c∗c. Setting hk =
∑m

i=1 αp(cki)gi for 1 ≤ k ≤ m, we obtain

a =
m∑

i,j=1
ḡi

(
m∑
k=1

c̄kickj

)
sps

∗
pgj

=
m∑
k=1

(
m∑
i=1

gicki

)
sps

∗
p

(
m∑
j=1

ckjgj

)

=
m∑
k=1

hksps
∗
ph̄k.

We need some results related to finite index endomorphisms. Since we do not assume

that the reader is familiar with this notion, we shall recall it briefly and state the required

results without proofs from [Exe03b]:

Definition 2.4.10 ([Wat90, 1.2.2,2.1.6], [Exe03b, 8.1]). Let A be a C*-algebra. A pair

(α,E) consisting of a ∗-endomorphism α of A and a conditional expectation A
E
−→ α(A)

is said to be a finite-index endomorphism, if there are ν1, . . . , νn ∈ A such that

∑

1≤i≤n

νiE(ν∗i a) = a for all a ∈ A.

Remark 2.4.11. Concrete examples of this situation are provided by regular surjective

local homeomorphisms η of compact Hausdorff spaces X, see Section 1.4. In this case,

we have A = C(X), α(f)(x) = f(η(x)) and E = α ◦ L, where L is the natural transfer

operator constructed in Example 1.3.6. To see this, observe that the requirement in

Definition 2.4.10 is nothing but the reconstruction formula established in Lemma 1.3.9.

From this perspective, finite-index endomorphisms can be thought of as irreversible C*-

dynamical systems (A,α,E) that admit a finite Parseval frame.

The following proposition is a reformulation of some results from [Exe03b] in terms of the

terminology used within this exposition.

Proposition 2.4.12 ([Exe03b, 8.6,8.8]). The map E2 : F −→ C(X) given by fsps
∗
pg 7→

N−1
p fg is a conditional expectation. Moreover, it is the only conditional expectation from

F to C(X) as the latter is commutative.

As a straightforward consequence of Proposition 2.4.12 and Proposition 2.4.9 we get:

Corollary 2.4.13. The map G := E2 ◦E1 is a conditional expectation from O[X,P, θ] to

C(X), whose restriction to Fp is faithful for all p ∈ P .
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Proof. By Proposition 2.4.9, every element a ∈ (Fp)+ is of the form a =
∑n

i=1 fisps
∗
pf̄i for

suitable n ∈ N and fi ∈ C(X). Then

0 = G(a) = N−1
p

n∑

i=1

|fi|
2

implies fi = 0 for all i, so a = 0. Thus G is faithful on Fp.

Although the conditional expectation G from Corollary 2.4.13 may fail to be faithful, it

satisfies the following weaker condition, which turns out to be useful in the proof of the

main result Theorem 4.1.9.

Lemma 2.4.14. If a ∈ O[X,P, θ]+ satisfies G(bab∗) = 0 for all b ∈ F , then a = 0.

Proof. Let us assume a ∈ F at first and suppose G(bab∗) = 0 holds for all b ∈ F . This

implies G(bac) = 0 for all b, c ∈ F as

|G(bac)| ≤ G(bacc∗ab∗)
1
2 ≤ ‖a

1
2 c‖G(bab∗)

1
2 = 0.

For a 6= 0, I := {d ∈ F | G(bdc) = 0 for all b, c ∈ F} is a non-trivial ideal in F . By F =⋃
p∈P Fp, see Proposition 2.4.8, it follows that I ∩Fp 6= 0 for some p ∈ P , so there is some

d ∈ (Fp)+ \ {0} such that G(d) = 0. But Proposition 2.4.9 shows that d =
∑n

i=1 fisps
∗
pf̄i

for some n ∈ N and suitable fi ∈ C(X), so 0 = G(b) = N−1
p

∑n
i=1 |fi|

2 6= 0 yields a

contradiction. Thus, we conclude that, for a ∈ F+, G(bab
∗) = 0 for all b ∈ F implies

a = 0. Now let a ∈ O[X,P, θ]+ be arbitrary. Then

0 = G(bab∗) = G ◦ E1(bab
∗) = G(bE1(a)b

∗) for all b ∈ F ,

so E1(a) = 0 by what we have just shown. But this forces a = 0 since E1 is faithful

according to Lemma 2.4.7.
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Chapter 3

Product systems of Hilbert

bimodules over discrete semigroups

In this chapter we will present an alternative construction of the C*-algebras O[G,P, θ]

and O[X,P, θ] as the Cuntz-Nica-Pimsner algebras of discrete product systems of Hilbert

bimodules over P which arise in a natural way from (G,P, θ) and (X,P, θ), respectively.

Discrete product systems of Hilbert bimodules have been used extensively to construct

and study more general C*-algebras in the spirit of [Pim97], see [Fow99, Fow02, Yee07,

SY10,HLS12,FPW13]. But there are also connections to von Neumann algebras, see for

instance [Sol06].

The product systems we will construct for irreversible algebraic dynamical systems

(G,P, θ) admit a coherent system of orthonormal bases in which the orthonormal basis

of the p-th fiber corresponds to G/θp(G). Hence this orthonormal basis is finite if and

only if θp(G) has finite index in G. Using this feature, we show in Theorem 3.3.4 that the

Cuntz-Nica-Pimsner algebra of the product system associated to (G,P, θ) coincides with

the algebra O[G,P, θ] from Definition 2.2.1.

Interestingly, the framework of product systems allows us to treat irreversible ∗-

commutative dynamical systems of finite type in a similar manner. However, we are

forced to work with Parseval frames instead of orthonormal bases (on the fibers of the

product systems) because the use of partitions of unity subordinate to suitable open covers

of X does not produce orthogonal elements, unless we can choose the covers to consist

of clopen (disjoint) sets. Nevertheless, there is sufficient structure to show that, also in

this case, O[X,P, θ] is canonically isomorphic to the Cuntz-Nica-Pimsner algebra of the

product system of Hilbert bimodules associated to (X,P, θ). This is established through

Theorem 3.3.7.

For convenience, we start with a short summary of the relevant ideas and facts con-

cerning product systems of Hilbert bimodules over discrete semigroups. Most of these
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3. Product systems of Hilbert bimodules over discrete semigroups

results are true in greater generality, but we will reduce our exposition to a minimal

level for the sake of brevity. The interested reader may find a profound introduction to

Hilbert bimodules in [Lan95]. For more details about discrete product systems of Hilbert

bimodules, we refer to [Fow02,SY10,HLS12].

3.1 Product systems with orthonormal bases

Unless specified otherwise, let A be a unital C*-algebra and P a discrete, left cancellative,

commutative monoid with unit 1P . There is a natural partial order on P defined by p ≤ q

if q ∈ pP and we will assume P to be lattice-ordered with respect to this partial order.

That is to say, for p, q ∈ P there exists a unique least common upper bound p ∨ q ∈ P .

Hence, there is also a unique greatest common lower bound p∧q = (p∨q)−1pq for p and q.

In particular, this condition forces P ∗ = {1P }. We point out that all these requirements

are satisfied for countably generated, free abelian monoids.

Definition 3.1.1. A right pre-Hilbert A-module is a C-vector space H equipped with

a right A-module structure and a bilinear map 〈·, ·〉 : H × H −→ A, which is linear in

the second component, such that the following relations are satisfied for all ξ, η ∈ H and

a ∈ A:
(1) 〈ξ, η.a〉 = 〈ξ, η〉 a (2) 〈ξ, η〉∗ = 〈η, ξ〉

(3) 〈ξ, ξ〉 ≥ 0 (4) 〈ξ, ξ〉 = 0⇐⇒ ξ = 0

A right pre-Hilbert A-module H is said to be a right Hilbert A-module if it is complete

with respect to the norm ‖ξ‖ = ‖ 〈ξ, ξ〉 ‖
1
2
A. H is called a Hilbert bimodule over A if, in

addition, there is a left action of A given by a ∗-homomorphism φH : A −→ L(H), where

L(H) denotes the C*-algebra of all adjointable linear operators from H to H.

Examples 3.1.2.

(a) Every Hilbert space H is a Hilbert bimodule over C.

(b) If A is a C*-algebra, we can form the trivial Hilbert bimodule H = idAid over A with

inner product given by 〈a, b〉 = a∗b. Here A acts from both sides by multiplication.

(c) If A is a C*-algebra and α ∈ Aut(A), then replacing the left action of (b) by

φ(a)(b) = α(a)b yields a Hilbert bimodule H = αAid. Pimsner showed in [Pim97]

that this Hilbert bimodule serves as a model to construct the crossed product AoαZ.

(d) Let X be a compact Hausdorff space, η : X −→ X a regular surjective local home-

omorphism for which the induced injective ∗-endomorphism of C(X) is denoted by

α. Then we can construct a Hilbert bimodule H = idC(X)α over C(X) as follows:

Starting with C(X), we define an inner product 〈f, g〉 := L(f̄ g) for all f, g ∈ C(X),

where L denotes the transfer operator for α, see Example 1.3.6. It is clear that
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3.1. Product systems with orthonormal bases

f 7→ ‖L(|f |2)‖
1
2 is actually a norm on C(X). Due to [LR07, Lemma 3.3], this norm

is equivalent to the standard norm ‖ · ‖∞. Hence, C(X) is already complete with

respect to this norm. The left action is given by multiplication whereas the right

action is defined as f.g = fα(g) for f, g ∈ C(X).

Definition 3.1.3. Let H be a right Hilbert module over A. For ξ, η ∈ H, Θξ,η ∈ L(H),

given by Θξ,η(ζ) = ξ. 〈η, ζ〉 for ζ ∈ H, is said to be a generalized rank one operator.

The closed linear span of (Θξ,η)ξ,η∈H inside L(H) is called theC*-algebra of generalized

compact operators K(H).

Lemma 3.1.4. Let H be a right Hilbert module over A. K(H) is an ideal in L(H).

Proof. Given T ∈ L(H) and ξ, η ∈ H, one readily verifies

TΘξ,η = ΘT (ξ),η and Θξ,ηT = Θξ,T ∗(η),

where we use the inner product 〈·, ·〉 to observe that T (ξ.a) = T (ξ).a holds for all a ∈ A.

Since K(H) is the closed linear span of its generalized rank one operators, this concludes

the proof.

The next lemma is a standard fact whose proof can be found in [Lan95, Proposition 4.5].

Lemma 3.1.5. Suppose H1 and H2 are Hilbert bimodules over A whose left and right

actions are denoted by φ1, φ2 and ρ1, ρ2, respectively. Then

〈[ξ1 ⊗ ξ2], [η1 ⊗ η2]〉H1⊗AH2 = 〈ξ2, φ2(〈ξ1, η1〉1)η2〉2

defines an inner product on (H1 �H2)/ ∼, where ξ1 ⊗ ξ2 ∼ η1 ⊗ η2 if there exists a ∈ A

such that ξ2 = φ2(a)η2 and η1 = ξ1ρ1(a). The completion of (H1�H2)/ ∼ with respect to

the norm induced by this inner product can be equipped with left and right actions induced

from φ1 and ρ2, respectively, yielding a Hilbert bimodule H1 ⊗A H2.

This Hilbert bimodule is called the balanced tensor product of H1 and H2 over A.

Definition 3.1.6. Let A be a unital C*-algebra. A product system of Hilbert bimod-

ules over P with coefficients in A is a monoid X together with a monoidal homomorphism

ρ : X −→ P such that:

(1) Xp := ρ−1(p) is a Hilbert bimodule over A for each p ∈ P ,

(2) X1P
∼= idAid as Hilbert bimodules and

(3) for all p, q ∈ P , we have Xp ⊗A Xq ∼= Xpq if p 6= 1P , and X1P ⊗A Xq
∼= φq(A)Xq.
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3. Product systems of Hilbert bimodules over discrete semigroups

Remark 3.1.7.

a) Alternatively, one can describe a product system over P as a family of Hilbert

bimodules (Xp)p∈P such that X1P
∼= idAid together with multiplication maps Mp,q :

Xp × Xq −→ Xpq for p, q ∈ P satisfying several conditions forcing it to implement

the isomorphism from Definition 3.1.6 (3). In the definition, these maps are given

implicitly by the monoid structure of X . Associativity of X can therefore also be

expressed as

Mpq,r ◦ (Mp,q ⊗ Idr) =Mp,qr ◦ (Idp ⊗Mq,r) for all p, q, r ∈ P.

b) Note that the maps Mp,1P from a) are always isomorphisms of Hilbert bimodules

whereas M1P ,p need not be one since its image equals φp(A)Xp. But if φp(A)Xp is

all of Xp, M1P ,p is an isomorphism and Xp is said to be essential, see [Fow02]. This

is for example the case, if Xp = idA∗ since AA = A. More precisely, as we only deal

with unital coefficient algebras, this is the case if and only if φp(1A) = 1L(Xp) holds.

c) The multiplicative structure of X yields ∗-homomorphisms

L(Xp)
ιpqp
−→ L(Xpq)

T 7→ T ⊗ idXq

for all p, q ∈ P , where we have identified Xp ⊗A Xq with Xpq. According to b), ιpp is

an isomorphism whereas ιp1P is an isomorphism if and only if Xp is essential.

Example 3.1.8. For every Hilbert bimodule H over A, there is a product system X of

Hilbert bimodules over N given by X0 = A and Xn = Xn−1 ⊗A H for n ≥ 1.

Example 3.1.9. The maps ιpqp introduced in 3.1.7 c) need not map generalized compact

operators to generalized compact operators. Consider for example the trivial case of

A = C acting by multiplication on the fibers Xp = H, where H is a separable, infinite-

dimensional Hilbert space (equipped with a suitable product structure obtained from

bijections N2 −→ N): ιp1P is determined by the projection ιp1P (1) = 1L(Xp) which is infinite

and hence non-compact.

There is a less restrictive requirement called compactly alignedness, which has been intro-

duced for product systems over quasi-lattice ordered groups to avoid a certain pathology

for the representation theory of product systems, see [Fow99, Example 1.3]. Recall that

whenever two elements of the indexing semigroup have a (least) common upper bound,

one can make sense of products of compact operators living on the two respective fibers

using the maps ι∗∗ from Remark 3.1.7. Compactly alignedness asks for these products to

be compact again. This regularity property is commonly used as a standing hypothesis

that can be transferred to requirements on the initial data in most situations studied so

far, see for instance [Fow02,FPW13,HLS12,SY10].
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3.1. Product systems with orthonormal bases

Additionally, we would like to mention that there is a notion of compactly alignedness

for topological k-graphs, see [Yee07]. It is shown in [CLSV11, Proposition 5.15] that the

product systems naturally associated to topological k-graphs are compactly aligned if and

only if the topological k-graphs are compactly aligned.

Definition 3.1.10. A product system of Hilbert bimodules X over P is called compactly

aligned, if: For all p, q ∈ P and kp ∈ K(Xp), kq ∈ K(Xq), we have

ιp∨qp (kp)ι
p∨q
q (kq) = (kp⊗1L(X(p∧q)−1q)

)(kq⊗1L(X(p∧q)−1p)
) ∈ K(Xp∨q).

We will now proceed with stronger notions of regularity, namely the existence of a coherent

system of finite Parseval frames or even a coherent system of orthonormal bases for product

systems of Hilbert bimodules. This concept has been studied to some extent in [HLS12].

Definition 3.1.11. Let H be a Hilbert bimodule over A and (ξi)i∈I ⊂ H. Consider the

following properties:

(1) 〈ξi, ξj〉 = δij1A for all i, j ∈ I.

(2) η =
∑
i∈I

ξi 〈ξi, η〉 for all η ∈ H.

If the family (ξi)i∈I satisfies (2), it is called a Parseval frame for H. It is said to be an

orthonormal basis for H, if (1) holds in addition to (2).

Remark 3.1.12.

a) Equation 3.1.11 (2) is known as the reconstruction formula. Parseval frames play

an important role in the theory of wavelet analysis, see for instance [LR07] and

the references therein. As noted in [LR07, Section 4], many Hilbert modules admit

Parseval frames without allowing for an orthonormal basis. In fact, this will be

the generic case for the Hilbert bimodules arising from the dynamical systems of

Section 1.3, as we will see in Section 3.3.

b) Every Hilbert bimodule which has a finite (countable) orthonormal basis is a finitely

(countably) generated Hilbert bimodule.

Example 3.1.13. In contrast to the case of orthonormal bases of a Hilbert space, the car-

dinality of an orthonormal basis of a Hilbert bimodule is not an invariant of the bimodule.

As a toy example, take A = C ([−2,−1] ∪ [1, 2]) and letH = idAid as in Example 3.1.2 (b).

Then {1} and {χ[−2,−1], χ[1,2]} are both orthonormal bases for H.

Lemma 3.1.14. Let H be a Hilbert bimodule. If (ξi)i∈I ⊂ H satisfies 3.1.11 (1), then(
Θξi,ξj

)
i,j∈I

is a system of matrix units in K(H). If (ξi)i∈I ⊂ H satisfies 3.1.11 (2) and I

is finite, then
∑n

i=1Θξi,ξi = 1L(H) holds and hence K(H) = L(H).
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3. Product systems of Hilbert bimodules over discrete semigroups

Proof. 3.1.11 (1) directly implies that
(
Θξi,ξj

)
i,j∈I

is a system of matrix units. The recon-

struction formula 3.1.11 (2) shows that
(∑

i∈F Θξi,ξi

)
F⊂I finite

converges strongly to 1L(H).

Thus, if I is finite, we have
∑n

i=1Θξi,ξi = 1L(H) and the last claim follows since K(H) is

an ideal in L(H) by Lemma 3.1.4.

Remark 3.1.15. A useful aspect of Parseval frames of Hilbert bimodules is that they are

well-behaved with respect to the balanced tensor product: IfH1 andH2 are Hilbert bimod-

ules over A with Parseval frames (ξi)i∈I and (ηj)j∈J , respectively, then (ξi ⊗ ηj)(i,j)∈I×J
is a Parseval frame for H1 ⊗A H2, where we refer to [LR07, Lemma 4.3] for a detailed

proof. Therefore, a product system X of Hilbert bimodules over P is a product system

with Parseval frames if and only if Xp admits a Parseval frame for each irreducible p ∈ P .

Here p ∈ P is said to be irreducible if p = qr for q, r ∈ P implies q = 1P or r = 1P . The

same statements hold for orthonormal bases instead of Parseval frames.

Remark 3.1.16. Suppose X is a compact Hausdorff space and θ1, θ2 : X −→ X are

commuting regular surjective local homeomorphisms with |θ−1
1 (x)| = N1 and |θ−1

2 (x)| =

N2 (where x ∈ X is arbitrary). For i = 1, 2, denote by αi the endomorphism of C(X) given

by f 7→ f ◦ θi. As in Lemma 1.3.9, let us choose partitions of unity (v1,i)i∈I1 and (v2,i)i∈I2
subordinate to finite open covers U1 = (U1,i)i∈I1 and U2 = (U2,i)i∈I2 of X for θ1 and θ2,

respectively. By Lemma 1.3.9, we know that each of these partitions of unity gives rise to

a Parseval frame (νj,ij )ij∈Ij with νj,ij := (Njvj,ij )
1
2 of the Hilbert bimodule C(X)αj

, which

is equipped with the inner product coming from the transfer operator Lj as constructed

in Example 1.3.6. Taking into account [LR07, Lemma 4.3], it is no surprise that (ν1,i)i∈I1
and (ν2,i)i∈I2 yield a Parseval frame on the balanced tensor product of the two modules,

i.e. on C(X)α1α2 . Interestingly, Lemma 1.3.10 indicates that this Parseval frame is again

of the same form: We can construct a partition of unity (v1,i1α1(v2,i2))i1∈I1,i2∈I2 for X

from (v1,i)i∈I1 and (v2,i)i∈I2 which fits into the picture of Lemma 1.3.9 for θ1θ2.

For product systems of Hilbert bimodules, it may seem reasonable to ask for a system

of (bilateral) orthonormal bases for the fibers that respect the semigroup structure on X

inherited from P . This point of view is behind the definition of finite type systems given

in [HLS12, Definition 3.5]. However, there is a problem arising from the commutativity

of P : If we take p, q ∈ P , then Xp ⊗A Xq ∼= Xpq ∼= Xq ⊗A Xp implies the existence of an

isomorphism of Hilbert bimodules τp,q : Xp ⊗A Xq −→ Xq ⊗A Xp. If we fix orthonormal

bases (ξi)i∈Ip and (ηj)j∈Iq of Xp and Xq, respectively, we can either take the orthonormal

basis (ξiηj)i∈Ip,j∈Iq for Xpq coming from Mp,q : Xp⊗A Xq
∼=
−→ Xpq or (ηjξi)i∈Ip,j∈Iq coming

from Mq,p : Xq ⊗A Xp
∼=
−→ Xpq. But these two families need not match in general, as the

following easy example shows.

Example 3.1.17. Let A = C∗(Z) = C∗((ug)g∈Z), P = |2, 3〉 ⊂ N× and P
α
y A be given

by αp(ug) = upg. Then Xp := Aαp with inner product 〈ug, uh〉p = χpZ(h − g)up−1(h−g)

defines a product system of Hilbert bimodules X over P . For fixed p ∈ P , an orthonormal
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basis of Xp is easily obtained by taking the unitaries corresponding to a transversal for

Z/pZ, i.e. (ug)[g]∈Z/pZ. Let us consider p = 2 and q = 3. If we pick {0, 1} and {0, 1, 2} as

transversals for Z/2Z and Z/3Z, respectively, both M2,3 and M3,2 yield {0, . . . , 5} as the

output transversal for Xpq. However, if we choose {1, 2, 3} instead of {0, 1, 2} for q, we get

{2, . . . , 7} and {1, . . . , 6}. Thus, the two induced orthonormal bases of Xpq do not match.

In view of this example, the original definition for product systems of finite type proposed

in [HLS12, Definition 3.5] seems to be too restrictive. Product systems arising from irre-

versible algebraic dynamical systems (G,P, θ), defined in Definition 1.1.5, will be tractable

using this stronger notion if G contains a positive cone that is invariant under the action

θ. This is the case in the previous example (N ⊂ Z) and we have seen that we do get a

system of finite type in the sense of [HLS12, Definition 3.5] if we choose the representatives

in a minimal way within the positive cone of G. But this rules out cases with mixed signs,

e.g. P = | − 2, 3〉, and indicates that the choice of orthonormal bases on the fibers with

irreducible index, if possible at all, has to be performed with care. That is why we will

use a weaker notion of product systems of finite type:

Definition 3.1.18. A product system of Hilbert bimodules X over P with coefficients in

a unital C*-algebra A is called a product system of finite type if there exists a finite

Parseval frame for Xp for each irreducible p ∈ P .

Remark 3.1.19. If X is a product system of finite type, then each fiber Xp has a finite

Parseval frame by applying Remark 3.1.15 to a decomposition of p into irreducible elements

(with multiplicities). Thus there exists a monoidal homomorphism N : P −→ N× which

sends p to the cardinality Np of the specified orthonormal basis for Xp.

Obviously, Lemma 3.1.14 implies that X is compactly aligned. Fowler pointed out in

[Fow99] that X is compactly aligned whenever all the fibers Xp are finite-dimensional.

3.2 Representations and C*-algebras for product systems

In this section, we recall some elementary facts about the representation theory for product

systems of Hilbert bimodules in order to present the construction of the Cuntz-Nica-

Pimsner algebra for compactly aligned product systems of Hilbert bimodules.

Definition 3.2.1. Let X be a product system over P and suppose B is a C*-algebra.

A map X
ϕ
−→ B, whose fiber maps Xp −→ B are denoted by ϕp, is called a Toeplitz

representation of X , if:

(1) ϕ1P is a ∗-homomorphism.

(2) ϕp is linear for all p ∈ P .

(3) ϕp(ξ)
∗ϕp(η) = ϕ1P (〈ξ, η〉) for all p ∈ P and ξ, η ∈ Xp.
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3. Product systems of Hilbert bimodules over discrete semigroups

(4) ϕp(ξ)ϕq(η) = ϕpq(ξη) for all p, q ∈ P and ξ ∈ Xp, η ∈ Xq.

A Toeplitz representation will be called a representation whenever there is no ambiguity.

Remark 3.2.2. Let ϕ be a representation of X in B. For each p ∈ P , ϕ induces a

∗-homomorphism K(Xp)
ψϕ,p
−→ B given by Θξ,η 7→ ϕp(ξ)ϕp(η)

∗ for ξ, η ∈ Xp.

Lemma 3.2.3. A representation ϕ of X in B is contractive, i.e. ‖ϕp(ξ)‖B ≤ ‖ξ‖Xp for

all p and ξ ∈ Xp. Moreover, ϕ is isometric if and only if ϕ1P is injective.

Proof. Given p ∈ P, ξ ∈ Xp, we get

‖ϕp(ξ)‖
2
B = ‖ϕp(ξ)

∗ϕ(ξ)‖B
(3)
= ‖ϕ1P (〈ξ, ξ〉)‖B

(1)

≤ ‖ 〈ξ, ξ〉 ‖A = ‖ξ‖2Xp
.

Since ϕ1P is a ∗-homomorphism, it is injective if and only if it is isometric. If this is the

case, then the computation from above actually gives ‖ϕp(ξ)‖B = ‖ξ‖Xp .

Definition 3.2.4. A representation ϕ of a compactly aligned product system X in B is

Nica covariant, if

ψϕ,p(kp)ψϕ,q(kq) = ψϕ,p∨q
(
ιp∨qp (kp)ι

p∨q
q (kq)

)

holds for all p, q ∈ P and kp ∈ K(Xp), kq ∈ K(Xq).

This is one particular instance where the property of being compactly aligned is needed

to ensure that ιp∨qp (kp)ι
p∨q
q (kq) is actually contained in the domain of ψϕ,p∨q. Before

we proceed with additional covariance conditions that resemble the covariance condition

originally used in [Pim97], let us look at the representation of a product system on its

Fock space, compare [Fow02, Section 2].

Example 3.2.5. Suppose X is a product system of Hilbert bimodules over P with coef-

ficients in A. Let

F(X )=
⊕

p∈P

Xp=
{
(ηp)p∈P |

∑

p∈F

〈ηp, ηp〉 converges in A as F ↗ P, F finite
}
.

One can check that F(X ) inherits the structure of a right Hilbert A-module from X so

that the adjointable linear operators L(F(X )) form a C*-algebra. For p ∈ P and η ∈ Xp,

let ep denote the element (δpr)r∈P ∈ F(X ) and ηep := (ηδpr)r∈P . For q ∈ P and ξ ∈ Xq,

define ϕFock,q(ξ) to be the operator induced by multiplication in X , i. e.

ϕFock,q(ξ)(ηep) = (ξ · η)eqp.

This defines a map ϕFock : X −→ L(F(X )) and one readily verifies that ϕFock is in-

deed a representation of the product system X . Moreover, ϕFock is isometric due to

‖ϕFock,1P (a)(a
∗e1P ‖F(X ) = ‖aa

∗‖A = ‖a‖2A and Lemma 3.2.3.
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The following fact is taken from [HLS12, Subsection 2.3].

Proposition 3.2.6. The Fock representation ϕFock of every compactly aligned product

system X over P is Nica covariant.

Proof. Let p, q, r ∈ P and ξp, ηp ∈ Xp, ξq, ηq ∈ Xq and ζ ∈ Xr. We have to show that

ψϕFock,p(Θξp,ηp)ψϕFock,q(Θξq ,ηq)(ζer) = ψϕ,p∨q(ι
p∨q
p (Θξp,ηp)ι

p∨q
q (Θξq ,ηq))(ζer).

If r /∈ (p ∨ q)P = pP ∩ qP , then both sides are 0 according to the definition of the

representation ϕFock in Example 3.2.5. So suppose we have r ∈ (p ∨ q)P . Decom-

posing ζ = ζqζq−1(p∨q)ζ(p∨q)−1r via Xr ∼= Xq ⊗A Xq−1(p∨q) ⊗A X(p∨q)−1r and, similarly,

Θξq ,ηq(ζq)ζq−1(p∨q) = ζ ′pζ
′
p−1(p∨q) yields

ψϕFock,p(Θξp,ηp)ψϕFock,q(Θξq ,ηq)(ζer) = ξp
〈
ηp, ζ

′
p

〉
Xp
ζ ′p−1(p∨q)ζ(p∨q)−1rer

= ψϕ,p∨q(ι
p∨q
p (Θξp,ηp)ι

p∨q
q (Θξq ,ηq))(ζer)

This extends to all pairs of compact operators from K(Xp) and K(Xq).

While Nica covariance is an outcome of having a product system instead of a single

Hilbert bimodule and its form is rather straightforward, there have been different attempts

to generalize the notion of Cuntz-Pimsner covariance from the case of a single Hilbert

bimodule to general product systems. Let us recall the covariance condition introduced

in [Pim97] using the product system picture provided in Example 3.1.8: Suppose H is

a Hilbert bimodule over a C*-algebra A and (ϕ0, ϕ1) is a representation of H. Then we

can equally well study the induced representation ϕ of the product system X over N with

fibers Xn = H⊗n, where H⊗0 = A. (ϕ0, ϕ1) is said to be (Cuntz-Pimsner) covariant, if

ϕ0(a) = ψϕ,n(φn(a)) holds for all a ∈ φ
−1
n (K(Xn)).

The intuitive approach to define a notion of Cuntz-Pimsner covariance for product

systems by requiring Cuntz-Pimsner covariance on each fiber has been set up in [Fow02].

In [Kat04, Definition 3.4], Takeshi Katsura introduced a weaker version: Instead of

φ−1
p (K(Xp)), only φ−1

p (K(Xp)) ∩ (kerφp)
⊥ is taken into account. Since the left actions

in our examples will always be injective, we will not discuss this aspect any further.

Several years later, a more involved approach of Aidan Sims and Trent Yeend led to

a potentially different notion of Cuntz-Nica-Pimsner covariance, see [SY10, Section 3].

According to [SY10], their definition is motivated by the study of graph C*-algebras and

was expected to be more suitable in the case of product systems where the left action φ

need not be injective.

We will now present both covariance conditions for product systems and indicate what

is currently known about their connections as well as their relation to Nica covariance.

In order to avoid technicalities, we restrict ourselves to the case where the left action φs
on each fiber Xs is injective. Therefore, we can neglect the inflation process from X to X̃
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3. Product systems of Hilbert bimodules over discrete semigroups

taking place in [SY10, Section 3]. At this point, one may expect that the two notions ought

to coincide. This is true at least to some extent, but non-trivial, see [SY10, Proposition

5.1 and Corollary 5.2].

Definition 3.2.7. Let B be a C*-algebra and suppose X is a compactly aligned product

system of Hilbert bimodules over P with coefficients in A.

(CPF ) A representation X
ϕ
−→ B is called Cuntz-Pimsner covariant

in the sense of [Fow02, Section 1], if it satisfies

ψϕ,p(φp(a)) = ϕ1P (a) for all p ∈ P and a ∈ φ−1
p (K(Xp)) ⊂ A.

(CP) A representation X
ϕ
−→ B is called Cuntz-Pimsner covariant

in the sense of [SY10, Definition 3.9], if the following holds:

Suppose F ⊂ P is finite and we fix kp ∈ K(Xp) for each p ∈ F .

If, for every r ∈ P , there is s ≥ r such that
∑
p∈F

ιtp(kp) = 0 holds for all t ≥ s,

then
∑
p∈F

ψϕ,p(kp) = 0 holds true.

(CNP) A representation X
ϕ
−→ B is said to be Cuntz-Nica-Pimsner

covariant, if it is Nica covariant and (CP)-covariant.

Example 3.2.8. Although we have proven the Fock representation to be Nica covariant

for compactly aligned product systems, there are lots of examples where it is far from being

(CPF )- or (CP )-covariant. Indeed, take Xp = A and φp(1A) = 1L(Xp) ∈ K(Xp). Then

Ep := ψϕFock,p(φp(1A)) defines a family of projections in L(F(X )) with the following

properties: q ∈ pP implies Eq ≤ Ep and if, in addition, p /∈ qP , then Ep−Eq is a non-zero

projection. Note that

E1P = ϕFock,1P (1A) = 1L(F(X )).

If we assume that φp(A) ⊂ K(Xp) = L(Xp) holds for all p ∈ P , which is the case if we

require φp(1A) = 1L(Xp) for all p ∈ P , we can obtain a (CPF )-covariant representation from

the Fock representation by modding out the ideal generated by the family (1 − Ep)p∈P .

Indeed, if we denote the corresponding quotient map by π and pick a ∈ A, then

π ◦ ϕFock,1P (a) = π(ϕFock,1P (a))π(1L(F(X )))

= π(ϕFock,1P (a))π(Ep)

= ψπ◦ϕFock,p(φp(a)).

When Aidan Sims and Trent Yeend introduced their notion of Cuntz-Pimsner covariance,

they observed that their version is closely connected to the one proposed by Neal J. Fowler,

compare [SY10, Proposition 5.1]:
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Proposition 3.2.9. Suppose X is a product system over P with coefficients in a unital C*-

algebra A such that the left action φp on Xp is injective for all p ∈ P . If a representation ϕ

of X is (CPF )-covariant, then it is (CP )-covariant. If the left action φp(A) is by compacts

for all p ∈ P , then the converse holds as well.

In some instances, (CPF )-covariance is known to imply Nica covariance. The result we

are going to use is due to Fowler and we refer to [Fow02, Proposition 5.4] for a proof.

Proposition 3.2.10. If X is a product system over P with coefficients in a unital C*-

algebra A such that φp(1A) = 1L(Xp) ∈ K(Xp) for all p ∈ P , then X every (CPF )-covariant

representation is also Nica covariant.

Corollary 3.2.11. If X is a product system of finite type, then a representation ϕ of X

is (CNP )-covariant if and only if it is (CPF )-covariant.

Proof. The result follows from Lemma 3.1.14 together with Proposition 3.2.9 and Propo-

sition 3.2.10.

We are now ready to associate three C*-algebras to X as universal objects corresponding

to the different classes of representations.

Definition 3.2.12. For a compactly aligned product system X over P define TX to be

the C*-algebra given by a Toeplitz representation ιTX of X that is universal for Toeplitz

representations. In other words, if X
ϕ
−→ B is a Toeplitz representation, there is a ∗-

homomorphism ϕ : TX −→ C∗(ϕ) yielding a commutative diagram

X

ιTX

��

ϕ
// B

TX

ϕ

EE

Similarly, define NT X and OX to be the C*-algebras obtained from a universal Nica-

covariant representation ιNT X
and a universal Cuntz-Nica-Pimsner covariant representa-

tion ιOX
, respectively. TX , NT X and OX are called the Toeplitz algebra, the Nica-

Toeplitz algebra, and the Cuntz-Nica-Pimsner algebra associated to X .

Remark 3.2.13.

a) NT X is always non-trivial because Example 3.2.5 shows that the Fock representation

is an isometric, Nica covariant representation. Additionally, following [HLS12, Re-

mark 4.8], the homomorphism ϕFock : NT X −→ L(F (X )) arising from the universal

property of NT X is faithful if the left action on each fiber is by compacts. Hence,

NT X is isomorphic to a C*-subalgebra of L(F (X )) in this case.
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3. Product systems of Hilbert bimodules over discrete semigroups

b) By their universal properties, OX is a quotient of NT X , which in turn is a quotient

of TX .

c) This construction is a generalization of the original construction of Mihai Pimsner

in [Pim97] as we can see by appealing to Example 3.1.8. It is not hard to show that

we have TH ∼= TX ∼= NT X and OH
∼= OX . Conversely, given a product system X

over N, we have TX ∼= NT X
∼= TX1 and if the left action on each fiber is isometric

or by compacts, then OX
∼= OX1 holds as well, see [Fow02, Proposition 2.11] for

details. We note that all these isomorphisms are canonical.

d) In addition to c), the class of Cuntz-Nica-Pimsner algebras also includes crossed

products of unital C*-algebras by more general groups than Z. Moreover, given

an action of an abelian monoid P on a non-unital C*-algebra A by endomorphisms

that are extendible to its multiplier algebraM(A), there is a suitable mean to obtain

analogous objects, see [Lar10] for details.

The following lemma is a well-known fact resulting from [Fow02, Proposition 5.10]:

Lemma 3.2.14. Suppose X is a compactly aligned product system over P . Then

TX = span {ιTX ,p(ξ)ιTX ,q(η)
∗ | p, q ∈ P, ξ ∈ Xp, η ∈ Xq} ,

NT X = span {ιNT X ,p(ξ)ιNT X ,q(η)
∗ | p, q ∈ P, ξ ∈ Xp, η ∈ Xq} ,

and

OX = span {ιOX ,p(ξ)ιOX ,q(η)
∗ | p, q ∈ P, ξ ∈ Xp, η ∈ Xq}

hold.

Proof. It suffices to prove the lemma for the Toeplitz algebra. In fact, we only have to show

that the right hand side is multiplicatively closed since it is a self-adjoint, closed linear

subspace and its elements generate TX as a C*-algebra. But this last part is provided by

[Fow02, Proposition 5.10].

3.3 Applications for irreversible semigroup dynamical

systems

This section is designed to build the bridge to the first two chapters by providing a

product system of Hilbert bimodules for both irreversible algebraic dynamical systems

(G,P, θ) and irreversible ∗-commutative dynamical systems (X,P, θ). The features of the

dynamical systems (G,P, θ) and (X,P, θ) from Section 1.1 and Section 1.3, respectively,

result in particularly well-behaved product systems X . Therefore, it is possible to obtain

a concrete presentation of OX in a natural way from the data of the dynamical system.
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In the case of irreversible algebraic dynamical systems of finite type, this algebra is shown

to be isomorphic to O[G,P, θ] as introduced in Definition 2.2.1.

The corresponding result in the general case, that is, allowing for the presence of group

endomorphisms θp of G with infinite index, requires a more involved argument. The reason

is that the prerequisites for Corollary 3.2.11 are not met, so one has to deal with Nica

covariance of representations. Here, we will only outline the strategy of the proof since

this is more closely related to the Nica-Toeplitz algebra NTX . Moreover, we will only

need the results for finite type systems for the application in Chapter 4. In the case of

irreversible ∗-commutative dynamical systems of finite type, we recover the C*-algebra

O[X,P, θ] from Section 2.4.

Proposition 3.3.1. Suppose (G,P, θ) is an irreversible algebraic dynamical system. Let

(ug)g∈G denote the standard unitaries generating C∗(G) and P
α
y C∗(G) be the action in-

duced by θ, i.e. αp(ug) = uθp(g) for p ∈ P and g ∈ G. Then Xp := C∗(G)αp, with left action

φp given by multiplication in C∗(G) and inner product 〈ug, uh〉p = χθp(G)(g
−1h)uθ−1

p (g−1h)

is an essential Hilbert bimodule. The union of all Xp forms a product system X over P

with coefficients in C∗(G). X is a product system with orthonormal bases. It is of finite

type if (G,P, θ) is of finite type.

Proof. It is straightforward to show that X defines a product system of essential Hilbert

bimodules and we omit the details. For p ∈ P , we claim that every complete set of

representatives (gi)i∈I for G/θp(G) gives rise to an orthonormal basis of Xp. Indeed, if

we fix such a transversal (gi)i∈I and pick g ∈ G, then 〈ugi , ug〉p = χθp(G)(g
−1
i g)uθ−1

p (g−1
i g)

equals 0 for all but one j ∈ I, namely the one representing the left-coset [g] in G/θp(G).

Thus, the family (ugi)i∈I ⊂ Xp consists of orthonormal elements with respect to 〈·, ·〉p,

and

ugiαp (〈ugi , ug〉) = δijug,

so (ugi)i∈I satisfies the right reconstruction formula from 3.1.11 (2).

Remark 3.3.2. If (G,P, θ) is an irreversible algebraic dynamical system and X denotes

the associated product system from Proposition 3.3.1, then we have already seen in the

proof of Proposition 3.3.1 that Xp has a finite orthonormal basis if [G : θp(G)] is finite.

Since the left action is given by left multiplication, in other words, the elements of C∗(G)

act as diagonal operators, we have

φ−1
p (K(Xp)) =

{
C∗(G), if [G : θp(G)] is finite,

0, else.

Lemma 3.3.3. Suppose (G,P, θ) is an irreversible algebraic dynamical system and X de-

notes the associated product system from Proposition 3.3.1. Then the rank-one projection
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3. Product systems of Hilbert bimodules over discrete semigroups

Θug ,ug ∈ K(Xp) depends only on the equivalence class of g in G/θp(G). Moreover, if ϕ is

a Nica covariant representation of X , then

ψϕ,p(Θug1 ,ug1
)ψϕ,q(Θug2 ,ug2

)

=

{
ψϕ,p∨q(Θug3 ,ug3

) if g−1
1 g2 = θp(g3)θq(g4) for some g3, g4 ∈ G,

0 else.

holds for all g1, g2 ∈ G and p, q ∈ P .

Proof. If g1 = gθp(g2) for some g2 ∈ G, then

Θug1 ,ug1
(uh) = χθp(G)(θp(g

−1
2 )g−1h)uh = χθp(G)(g

−1h)uh = Θug ,ug(uh)

for all h ∈ G and hence Θug1 ,ug1
= Θug ,ug . For the second claim, Nica covariance of ιOX

implies

ψϕ,p(Θug1 ,ug1
)ψϕ,q(Θug2 ,ug2

) = ψϕ,p(ι
p∨q
p (Θug1 ,ug1

)ιp∨qq (Θug2 ,ug2
)).

If we denote p′ := (p ∧ q)−1p and q′ := (p ∧ q)−1q, then

ιp∨qp (Θug1 ,ug1
) =

∑

[g3]∈G/θq′ (G)

Θug1θp(g3),ug1θp(g3)
∈ L(Xp∨q)

and

ιp∨qq (Θug2 ,ug2
) =

∑

[g4]∈G/θp′ (G)

Θug2θq(g4),ug2θq(g4)
∈ L(Xp∨q)

hold. We observe that

Θug1θp(g3),ug1θp(g3)
Θug2θq(g4),ug2θq(g4)

is non-zero if and only if [g1θp(g3)] = [g2θq(g4)] ∈ G/θp∨q(G). In particular, this is always

zero if g−1
1 g2 /∈ θp(G)θq(G). Let us assume that there are g3, . . . , g8 ∈ G such that

θp(g
−1
3 )g−1

1 g2θq(g4) = θp∨q(g7)

and

θp(g
−1
5 )g−1

1 g2θq(g6) = θp∨q(g8).

Rearranging the first equation to insert it into the second, we get

θp(g
−1
5 g3)θp∨q(g7)θq(g

−1
4 g6) = θp∨q(g8).

By injectivity of θp∧q this is equivalent to

θp′(g
−1
5 g3)θ(p∧q)−1(p∨q)(g7)θq′(g

−1
4 g6) = θ(p∧q)−1(p∨q)(g8).

From this equation we can easily deduce g−1
5 g3 ∈ θq′(G) and g−1

4 g6 ∈ θp′(G) from inde-

pendence of θp′ and θq′ , see Definition 1.1.5 (C). Thus, if there are g3, g4 ∈ G such that

θp(g
−1
3 )g−1

1 g2θq(g4) ∈ θp∨q(G), then they are unique up to θq′(G) and θp′(G), respectively.

This completes the proof.
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Theorem 3.3.4. For an irreversible algebraic dynamical system of finite type (G,P, θ),

let X be the product system of Hilbert bimodules over P with coefficients in C∗(G) from

Proposition 3.3.1. Then the map

O[G,P, θ]
ϕ
−→ OX

ugsp 7→ ιOX ,p(ug)

is an isomorphism.

Proof. The idea is to exploit the respective universal property on both sides. We begin

by showing that (ιOX ,1P (ug))g∈G is a unitary representation of G and (ιOX ,p(1C∗(G)))p∈P
is a representation of the monoid P by isometries satisfying (CNP 1)–(CNP 3), compare

Definition 2.2.1. ιOX ,1P is a ∗-homomorphism, so we get a unitary representation of G.

In addition,

ιOX ,p(1C∗(G))
∗ιOX ,p(1C∗(G)) = ιOX ,1P (〈1C∗(G), 1C∗(G)〉p)

= ιOX ,1P (1C∗(G)) = 1OX

and

ιOX ,p(1C∗(G))ιOX ,q(1C∗(G)) = ιOX ,pq(1C∗(G)αp(1C∗(G))) = ιOX ,pq(1C∗(G))

show that we have a representation of P by isometries. (CNP 1) follows from

ιOX ,p(1C∗(G))ιOX ,1P (ug) = ιOX ,p(uθp(g)) = ιOX ,1P (uθp(g))ιOX ,p(1C∗(G)).

Let p, q ∈ P and g ∈ G. Then (CNP 2) follows easily from applying Lemma 3.3.3 to

ιOX ,p(1C∗(G))
∗ιOX ,1P (ug)ιOX ,q(1C∗(G))

= ιOX ,p(1C∗(G))
∗ψιOX

,p(Θ1,1)ψιOX
,q(Θug ,ug)ιOX ,q(ug).

Finally we observe that

ιOX ,1P (ug)ιOX ,p(1C∗(G))ιOX ,p(1C∗(G))
∗ιOX ,1P (ug)

∗ = ψιOX
,p(Θug ,ug)

and the computation

∑
[g]∈G/θp(G)

ψιOX
,p(Θug ,ug) = ψιOX

,p(1L(X )) = ψιOX
,p(φp(1C∗(G)))

= ιOX ,1P (1C∗(G)) = 1OX

yield (CNP 3). Thus, ϕ : O[G,P, θ] −→ OX defines a surjective ∗-homomorphism. For

the reverse direction, we want to show that

X
ϕCNP−→ O[G,P, θ]

ξp,g 7→ ugsp
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defines a (CNP)-covariant representation of X , where ξp,g denotes the representative for ug
in Xp. To do so, we have to verify (1)–(4) from Definition 3.2.1 and the (CNP)-covariance

condition. (1) and (2) are obvious. Using (CNP 2) to compute

ϕCNP,p(ξp,g1)
∗ϕCNP,p(ξp,g2) = s∗pug−1

1 g2
sp

= χθp(G)(g
−1
1 g2)uθ−1

p (g−1
1 g2)

= ϕCNP,1P (〈ξp,g1 , ξp,g2〉),

we get (3). (4) follows from (CNP 1) as

ϕCNP,p(ξp,g1)ϕCNP,q(ξq,g2) = ug1spug2sq

= ug1θp(g2)spq

= ϕCNP,pq(ξp,g1αp(ξq,g2)).

Thus, we are left with the (CNP)-covariance condition. But since X is a product system

of finite type, see Proposition 3.3.1, we only have to show that ϕCNP is (CPF )-covariant

due to Corollary 3.2.11. Noting that ϕ−1
p (K(Xp)) = C∗(G) for all p ∈ P , we obtain

ψϕCNP ,p(φp(ug)) = ψϕCNP ,p

(
∑

[h]∈G/θp(G)

Θugh,uh

)

= ug
∑

[h]∈G/θp(G)

eh,p

= ug = ϕCNP,1P (ξ1P ,g).

Thus, ϕCNP is a (CNP)-covariant representation of X . By the universal property of OX ,

there exists a ∗-homomorphism ϕCNP : OX −→ O[G,P, θ] such that ϕCNP ◦ ιOX
= ϕCNP .

It is apparent that ϕCNP and ϕ are inverse to each other, so ϕ is an isomorphism.

Remark 3.3.5. For irreversible algebraic dynamical systems (G,P, θ) that are not of finite

type, that is, there is some p ∈ P such that θp(G) has infinite index in G, it is still true that

OX and O[G,P, θ] are canonically isomorphic. However, the proof requires more work.

The reason is that Corollary 3.2.11 is not available in this situation. There is a proof

which reveals a close connection between Nica covariance, (CNP 2), and independence

built into (G,P, θ) by showing that Nica covariance boils down to its original form, see

[Nic92]: A representation ϕ of the product system X for (G,P, θ) is Nica covariant if and

only if ϕp(1C∗(G)) and ϕq(1C∗(G)) are doubly commuting isometries whenever p and q are

relatively prime in P . As this is more closely related to NTX and will be addressed in

a forthcoming project of the author in collaboration with Nathan Brownlowe and Nadia

S.Larsen, we will not carry out the details here. Still, the interested reader may find

further hints for a proof along these lines within the proof of Theorem 3.3.7.
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In a similar fashion as in Proposition 3.3.1, we can construct a product system for a system

of ∗-commuting transformations as presented in Section 1.3:

Proposition 3.3.6. Suppose (X,P, θ) is an irreversible ∗-commutative dynamical system

of finite type and P
α
y C(X) is the action induced by θ, i.e. αp(f) = f ◦ θp for p ∈ P and

f ∈ C(X). Then Xp := C(X)αp, with left action φp given by multiplication in C(X) and

inner product 〈f, g〉p = Lp(fg) is an essential Hilbert bimodule, where Lp is the natural

transfer operator associated to αp, see Example 1.3.6. The union of all Xp, p ∈ P forms a

product system X of finite type over P with coefficients in C(X).

Proof. To see that Xp is an essential Hilbert bimodule, we recall that the transfer operator

Lp, which is given by

Lp(f)(x) =
1

Np

∑

y∈θ−1
p (x)

f(y)

is a positive, linear map such that Lp(fαp(g)) = Lp(f)g holds for all f, g ∈ C(X). Thus,

we can use [LR07, Lemma 3.3] to conclude that the seminorm ‖f‖p := 〈f, f〉
1
2
p on C(X) is

equivalent to ‖ · ‖∞. Thus, 〈·, ·〉 is positive definite on C(X) and C(X) is complete with

respect to ‖ · ‖p. The Xp form a product system since

Xp ⊗C(X) Xq
Mp,q
−→ Xpq

f ⊗ g 7→ fαp(g)

defines an isomorphism of Hilbert bimodules. Indeed, the left action is the same on both

sides and

Mp,q((f ⊗ g).h) =Mp,q(f ⊗ gαq(h)) = fαp(g)αpq(h) =Mp,q(f ⊗ g).h

shows that the right actions match. Finally, the inner products coincide as

〈Mp,q(f ⊗ g),Mp,q(f
′ ⊗ g′)〉pq = 〈fαp(g), f

′αp(g
′)〉pq

= Lpq
(
αp(g)ff

′αp(g
′)
)

= Lq
(
gLp(ff

′)g′
)

= 〈g, φq (〈f, f
′〉p) g

′〉q

= 〈f ⊗ g, f ′ ⊗ g′〉Xp⊗C(X)Xq .

This shows that we have an injective morphism of Hilbert bimodules. Due to the structure

of the balanced tensor product, f ⊗ g = fαp(g)⊗1C(X) and αp(1C(X)) = 1C(X), so Mp,q is

surjective as well. Thus, X is a product system over P with coefficients in C(X). Lastly,

X is seen to be of finite type by appealing to Lemma 1.3.9.
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3. Product systems of Hilbert bimodules over discrete semigroups

Theorem 3.3.7. Suppose (X,P, θ) is an irreversible ∗-commutative dynamical system of

finite type, let X denote the product system constructed in Proposition 3.3.6. Then the

map

O[X,P, θ]
ϕ
−→ OX

fsp 7→ ιOX ,p(f)

is an isomorphism.

Proof. The strategy is similar to the one for Theroem 3.3.4. We begin by showing that

(ιOX ,p(1))p∈P and ιOX ,1P (C(X)) induce ϕ. First of all, note that

ιOX ,p(1)
∗ιOX ,p(1) = ιOX ,1P (〈1, 1〉p) = ιOX ,1P (Lp(1)) = 1OX

and ιOX ,1P is a unital ∗-homomorphism. Conditions (I),(II) and (IV) are immediate:

(I) ιOX ,1P (αp(f))ιOX ,p(1) = ιOX ,p(αp(f)) = ιOX ,p(1)ιOX ,1P (f)

(II) ιOX ,p(1)
∗ιOX ,1P (f)ιOX ,p(1) = ιOX ,1P (〈1, f〉p) = ιOX ,1P (Lp(f))

(IV) Whenever fi,j ∈ C(X), where i = 1, . . . , n and j = 1, 2,

satisfy the reconstruction formula for p ∈ P , then∑
1≤i≤n

ιOX ,1P (fi,1)ιOX ,p(1)ιOX ,p(1)
∗ιOX ,1P (fi,2)

∗

= ψιOX
,p(

∑
1≤i≤n

Θfi,1,fi,2) = ψιOX
,p(φp(1)) = ιOX ,1P (1) = 1OX

by (CPF )-covariance of ιOX
, see Definition 3.2.7 and Corollary 3.2.11. Proving (III) is

substantially harder. We need to show that the isometries corresponding to relatively

prime p, q ∈ P are doubly commuting. Since ιOX ,p(1) and ιOX ,q(1) are isometries, (III) is

equivalent to

ψιOX
,p(Θ1,1)ψιOX

,q(Θ1,1) = ψιOX
,pq(Θ1,1).

Nica covariance of ιOX
implies that this is in turn the same as

ψιOX
,pq

(
ιpqp (Θ1,1)ι

pq
q (Θ1,1)

)
= ψιOX

,pq(Θ1,1),

which is reminiscent of the situation in Lemma 3.3.3. But this time we are only allowed

to use Parseval frames instead of orthonormal bases for Xp and Xq. So let us fix (νi)i∈I
with I finite for θp as in Lemma 1.3.9. In the same way, we choose (µj)j∈J for θq. Then

Lemma 1.3.9 says that these two families satisfy the reconstruction formula for p and q,

respectively. Therefore, they fulfill
∑

i∈I Θνi,νi = 1L(Xp) and
∑

j∈J Θµj ,µj = 1L(Xq). Next,
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3.3. Applications for irreversible semigroup dynamical systems

we compute

ψιOX
,pq (ι

pq
p (Θ1,1)ι

pq
q (Θ1,1)) =

∑
i∈I
j∈J

ψιOX
,pq

(
Θαp(µj),αp(µj)Θαq(νi),αq(νi)

)

=
∑
i∈I
j∈J

ψιOX
,pq

(
Θαp(µjαq(Lpq(αp(µj)αq(νi)))),αq(νi)

)

=
∑
i∈I
j∈J

ψιOX
,pq

(
Θαp(µjEq(µjLp(αq(νi)))),αq(νi)

)

=
∑
i∈I

ψιOX
,pq

(
ΘEp(αq(νi)),αq(νi)

)
,

where we used the (internal) reconstruction formula for (µj)j∈J in the last step, compare

Lemma 1.3.9. Since p and q are relatively prime, θp and θq ∗-commute by Definition 2.4.1.

So Proposition 1.3.12 implies that Ep(αq(f)) = αq(Ep(f)) holds for all f ∈ C(X). There-

fore, we have shown that

ψιOX
,p(Θ1,1)ψιOX

,q(Θ1,1) = ψιOX
,pq

(∑

i∈I

Θαq(Ep(νi)),αq(νi)

)
.

Applying
∑
i∈I

Θαq(Ep(νi)),αq(νi) to an element f ∈ Xpq takes the form

∑

i∈I

αq(Ep(νi))αq(Ep(νiLq(f))) =
∑

i∈I

αpq(Lp(νi)Lp(νiLq(f))).

In view of Lemma 1.3.9 and Lp(gEp(h)) = Lp(g)Lp(h) for arbitrary g, h ∈ C(X), see

Definition 1.3.5, we deduce

∑

i∈I

Θαq(Ep(νi)),αq(νi)(f) = Epq(f) = Θ1,1(f) in Xpq.

Since f was arbitrary, we get

∑

i∈I

Θαq(Ep(νi)),αq(νi) = Θ1,1 in L(Xpq)

and hence (III) holds. This shows that the map ϕ is a ∗-homomorphism from O[X,P, θ]

onto OX . For the reverse direction, we show that

X
ϕCNP−→ O[X,P, θ]

Xp 3 f 7→ fsp

defines a (CNP )-covariant representation of X . Clearly, ϕCNP satisfies (1) and (2) from

Definition 3.2.1. For (3), note that

ϕCNP,p(f)
∗ϕCNP,p(g) = s∗pfgsp

(III)
= Lp(fg) = ϕCNP,1P (〈f, g〉p)
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3. Product systems of Hilbert bimodules over discrete semigroups

holds for all p ∈ P and f, g ∈ C(X). (4) follows from

ϕCNP,p(f)ϕCNP,q(g) = fspgsq
(II)
= fαp(g)spq = ϕCNP,pq(fαp(g)).

As in Theorem 3.3.4, we only have to show (CPF )-covariance in order to get that ϕ̃ is

(CNP )-covariant. To verify this, we fix (νi)I∈I ⊂ C(X) with I finite for p ∈ P as in

Lemma 1.3.9 and obtain

ψϕCNP ,p(φp(f)) = ψϕCNP ,p

(∑
i∈I

Θfνi,νi

)
= f

∑
i∈I

νisps
∗
pνi

(IV )
= f = ϕCNP,1P (f)

for all f ∈ C(X). Thus, ϕCNP is a (CNP )-covariant representation of X . It is apparent

that the induced ∗-homomorphism ϕCNP : OX −→ O[X,P, θ] is the inverse of ϕ.
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Chapter 4

Topological freeness for irreversible

∗-commutative dynamical systems

For this chapter, we will restrict our focus to irreversible ∗-commutative dynamical systems

of finite type (X,P, θ). We examine in how far O[X,P, θ] witnesses topological freeness

and minimality of (X,P, θ). From the point of view of the interplay between topological

dynamical systems and their associated C*-algebras, this is a fundamental question.

Classically, the first object to study in topological dynamical systems is a single home-

omorphism σ of a compact Hausdorff space X, which induces an automorphism α of C(X)

via α(f) := f ◦ σ. The C*-algebra naturally associated to (X,σ) is the crossed product

C(X)oα Z generated by a copy of C(X) and a unitary u that implements α in the sense

that ufu∗ = α(f) holds for all f ∈ C(X). We would like to mention that the crossed

product is sometimes referred to as the transformation group C*-algebra for (X,σ).

It is well known that the crossed product is simple if and only if the topological

dynamical system is minimal in the sense that the only closed, σ-invariant subsets of X are

∅ and X. Looking for a generalization of this result to the case of Zd-actions, minimality

of (X,Zd, σ) alone turned out to be insufficient for simplicity of C(X) oα Zd, unless the

action is free. This is automatic in the case of a single, minimal homeomorphism on an

infinite space X and means that σn has no fixed points for all n 6= 0. Soon it turned out

that simplicity of the transformation group C*-algebra does not detect the combination

of minimality and freeness on the nose. Instead, one has to weaken freeness to topological

freeness, where the set of fixed points of σn is required to have empty interior for each

n 6= 0, see [KT90,AS94].

Interestingly, the proof of this correspondence exhibits the less prominent intermediate

result that topological freeness of (X,Zd, σ) is characterized by the property that every

non-zero ideal inside the transformation group C*-algebra intersects C(X) non-trivially.

This property is sometimes referred to as the ideal intersection property (of C(X) in
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4. Topological freeness for isds

C(X) oα Zd) and is actively studied for group crossed products, see for instance [Sie10,

ST09,dJST12].

Additionally, building on [ZM68], it has been observed that the ideal intersection

property is equivalent to C(X) being a maximal abelian subalgebra in the transformation

group C*-algebra for amenable discrete groups, see [KT90, Theorem 4.1 and Remark 4.2].

Doubtlessly, there is much more to say about the structure of group crossed products

and we refer to [BO08] for an extensive and well-structured exposition. Instead, let us

return to the case of a single transformation, which we now denote by θ, and drop the

reversibility of the system. One way of doing this in a moderate fashion is to demand that

θ : X −→ X be a surjective local homeomorphism. This has the convenient consequence

that the induced map α : C(X) −→ C(X), given by α(f) = f ◦ θ is a unital, injective

endomorphism. Moreover, θ is finite-to-one and the number of preimages |θ−1(x)| of a

singleton x ∈ X is constant on the path-connected components of X. For simplicity, let us

also assume that this number is the same for all path-connected components of X. Such

transformations are called regular in Definition 1.3.4. Under these assumptions, there is

a natural transfer operator L for α, see Example 1.3.6. In place of the group crossed

product of C(X) by Z, it is reasonable to use the construction of a crossed product by an

endomorphism C(X)oα,L N as introduced by Ruy Exel in [Exe03a].

For this setup, Ruy Exel and Anatoly Vershik showed that C(X) oα,L N is simple

if and only if (X, θ) is minimal, see [EV06, Theorem 11.3]. Their argument shows that

topological freeness implies that C(X) intersects every non-zero ideal in C(X) oα,L N
non-trivially. But to the best of the author’s knowledge, it was not until the work of

Toke Meier Carlsen and Sergei Silvestrov that the equivalence of these two conditions was

established in the irreversible setting described in the preceding paragraph, see [CS09]. In

fact, their approach partially used results from [EV06] and incorporated two additional

equivalent formulations.

Briefly speaking, we will show that the results and most ideas from [CS09] are ex-

tendible to the realm of irreversible ∗-commutative dynamical systems of finite type:

Theorem 4.1.9. Suppose (X,P, θ) is an irreversible ∗-commutative dynamical system of

finite type. Then the following statements are equivalent:

(1) The dynamical system (X,P, θ) is topologically free.

(2) Every non-zero ideal I in O[X,P, θ] satisfies I ∩ C(X) 6= 0.

(3) The representation ϕ of O[X,P, θ] on `2(X) from Proposition 2.4.4 is faithful.

(4) C(X) is a masa in O[X,P, θ].

For this purpose we will employ several auxiliary results from Section 2.4. In addition,

Theorem 3.3.7 will grant us access to the gauge-invariant uniqueness theorem for Cuntz-

Nica-Pimsner algebras of product systems that was established in [CLSV11].
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Once this is completed, it takes relatively little effort to characterize simplicity of

O[X,P, θ] by minimality of (X,P, θ), see Theorem 4.2.11. In view of the group case,

this may seem a bit odd at first since topological freeness is not part of the character-

ization. But a modification of [EV06, Proposition 11.1] shows that minimal irreversible

∗-commutative dynamical systems of finite type are automatically topological free, see

Proposition 4.2.10. As a corollary we deduce that commutative irreversible algebraic dy-

namical systems of finite type (G,P, θ) are minimal in the sense of Definition 1.1.5 if and

only if their corresponding C*-algebra O[G,P, θ] is simple.

Let us also mention that it is possible to derive a characterization of simplicity of

O[X,P, θ] by considering the transformation groupoid associated to (X,P, θ). This has

been accomplished in greater generality by Jonathan H. Brown, Lisa Orloff Clark, Cynthia

Farthing and Aidan Sims, see [BOCFS14, Theorem 5.1 and Corollary 7.8]. Moreover,

one can deduce the equivalence of (1) and (2) out of [BOCFS14, Proposition 5.5 and

Proposition 7.5]. Nevertheless, the methods used here differ substantially from the ones

in [BOCFS14] and provide an account that is formulated entirely in the language of

topological dynamical systems. Furthermore, the part involving conditions (3) and (4) is

not covered by [BOCFS14].

For convenience, we recall the definition of an irreversible ∗-commutative dynamical

system of finite type (X,P, θ) and its C*-algebra O[X,P, θ]:

Definition 1.3.13. An irreversible ∗-commutative dynamical system of finite

type is a triple (X,P, η) consisting of

(A) a compact Hausdorff space X,

(B) a countably generated free abelian monoid P with unit 1P and

(C) an action P
η
y X by regular surjective local homeomorphisms with the following

property: ηp and ηq ∗-commute if and only if p and q are relatively prime in P .

Definition 2.4.1. O[X,P, θ] is the universal C*-algebra generated by C(X) and a repre-

sentation of the monoid P by isometries (sp)p∈P subject to the relations:

(I) spf = αp(f)sp for all f ∈ C(X), p ∈ P.

(II) s∗pfsp = Lp(f) for all f ∈ C(X), p ∈ P.

(III) s∗psq = sqs
∗
p if p and q are relatively prime in P .

(IV ) If p ∈ P and fi,1, fi,2 ∈ C(X), 1 ≤ i ≤ n, satisfy the reconstruction formula
∑

1≤i≤n
fi,1Ep(f̄i,2f) = f for all f ∈ C(X),

then
∑

1≤i≤n
fi,1sps

∗
pf̄i,2 = 1.

Throughout this chapter, let (X,P, θ) be an irreversible ∗-commutative dynamical system

of finite type, unless specified otherwise.
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4. Topological freeness for isds

4.1 C*-algebraic characterizations of topological freeness

In this section we establish an equivalence between topological freeness for irreversible

∗-commutative dynamical systems of finite type (X,P, θ) and three different C*-algebraic

properties of O[X,P, θ], see Theorem 4.1.9. The proof of this result essentially relies on

Proposition 4.1.8, where we prove that topological freeness of (X,P, θ) gives the ideal

intersection property for C(X) in O[X,P, θ], and the technical Lemma 4.1.4, which uses

a faithful version ϕ̃ of the representation ϕ from Proposition 2.4.4, see Proposition 4.1.1

and Proposition 4.1.3. In fact, Lemma 4.1.4 is a straightforward generalization of [CS09,

Lemma 5] to the setting of irreversible ∗-commutative dynamical systems of finite type.

Recall that P is an Ore semigroup with enveloping group P−1P denoted by H. In the

following, (ξx,h)(x,h)∈X×H denotes the standard orthonormal basis of `2(X×H).

Proposition 4.1.1. Let M̃fξx,h := f(x)ξx,h and S̃pξx,h = N
− 1

2
p

∑
y∈θ−1

p (x)

ey,ph for f ∈ C(X)

and (x, h) ∈ X ×H. Then

O[X,P, θ]
ϕ̃
−→ L

(
`2(X ×H)

)

fsp 7→ M̃f S̃p

defines a ∗-homomorphism, which is faithful on C(X).

Proof. As S̃∗
pξx,h = N

− 1
2

p ξθp(x),p−1h, the proof of Proposition 2.4.4 carries over verbatim.

Remark 4.1.2. As in [CS09, Proposition 4], we would like to show that ϕ̃ is faithful

by using a gauge-invariant uniqueness theorem. For this purpose, let us recall that Theo-

rem 3.3.7 asserts that O[X,P, θ] is the Cuntz-Nica-Pimsner algebra for the product system

of Hilbert bimodules associated to (X,P, θ) in Proposition 3.3.6. We intend to make use

of [CLSV11, Corollary 4.12 (iv)] and remark that the terminology related to coactions can

be phrased in terms of actions of the dual group of the discrete, abelian group H = P−1P ,

which we denote by L. Under this transformation, the coaction δ in [CLSV11, Proposition

3.5] corresponds to the natural gauge action γ of L on O[X,P, θ] given by

γ`(f) = f and γ`(sp) = `(p)sp

for f ∈ C(X), p ∈ P and ` ∈ L. Thus [CLSV11, Definition 4.10] and [CLSV11, Corollary

4.12 (iv)] imply that O[X,P, θ] has the following gauge-invariant uniqueness property:

A surjective ∗-homomorphism φ : O[X,P, θ] −→ B onto a C*-algebra B is injective if and

only if the following two conditions hold:

a) There is an L-action β on B for which φ is (γ, β)-equivariant (β` ◦ φ = φ ◦ γ`).

b) φ is faithful on C(X).
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This enables us to prove the analogue of [CS09, Proposition 4]:

Proposition 4.1.3. The representation ϕ̃ is faithful.

Proof. Faithfulness of ϕ̃ on C(X) has already been established. For ` ∈ L define U` ∈

L
(
`2(X ×H)

)
by U`ξx,h = `(h)ξx,h. This gives a unitary representation of L and enables

us to define an action β of L on L
(
`2(X ×H)

)
via β` (T ) = U`TU

∗
` . We observe that, on

ϕ̃ (O[X,P, θ]), β is given by

β`

(
M̃f

)
= M̃f and β`

(
S̃p

)
= `(p)S̃p

for all f ∈ C(X) and p ∈ P . Thus ϕ̃ is (γ, β)-equivariant. According to the conclusion of

Remark 4.1.2, ϕ̃ is faithful on all of O[X,P, θ].

Recall from Corollary 2.4.13, that the conditional expectation G : O[X,P, θ] −→ C(X) is

given by G(fsps
∗
qg) = δpq N

−1
p fg.

Lemma 4.1.4. Let ϕ̃ be the representation from Proposition 4.1.1 and a ∈ O[X,P, θ].

Then the following statements hold:

i) 〈ϕ̃(a)ξx,h, ξx,h〉 = G(a)(x) for all (x, h) ∈ X ×H.

ii) a ∈ C(X) if and only if 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 = 0 for all (x1, h1) 6= (x2, h2).

iii) If (x1, h1), (x2, h2) ∈ X × H satisfy 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 6= 0, there are p, q ∈ P and

open neighbourhoods U1 of x1, U2 of x2 with the following properties:

(a) ph1 = qh2.

(b) θq(x1) = θp(x2).

(c) If x3 ∈ U1 and x4 ∈ U2 satisfy θq(x3) = θp(x4), then 〈ϕ̃(a)ξx3,h1 , ξx4,h2〉 6= 0.

Proof. Recall that the linear span of {fsps
∗
qg | f, g ∈ C(X), p, q ∈ P} is dense inO[X,P, θ]

according to Lemma 2.4.5. As both sides of the equation in i) are linear and continuous

in a, it suffices to prove the equation for a = fsps
∗
qg. This is achieved by

〈
ξx,h, ϕ̃(fsps

∗
qg)ξx,h

〉
=

〈
ϕ̃(s∗pf)ξx,h, ϕ̃(s

∗
qg)ξx,h

〉

= δpq N
−1
p f(x)g(x)

= G(fsps
∗
qg)(x)

For ii), we note that a ∈ C(X) certainly implies 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 = 0 for all

(x1, h1) 6= (x2, h2). Conversely, if a ∈ O[X,P, θ] satisfies 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 = 0 whenever

(x1, h1) 6= (x2, h2), part i) implies ϕ̃(a) = ϕ̃(G(a)). As ϕ̃ is faithful, see Proposition 4.1.3,

this shows a = G(a) ∈ C(X).
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In order to prove iii), suppose we have (x1, h1), (x2, h2) ∈ X × H such that ε :=

| 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 | > 0. Using Lemma 2.4.5, we can choose p1, q1, . . . , pm, qm ∈ P and

f1, g1, . . . , fm, gm ∈ C(X) such that

am :=

m∑

i=1

fispis
∗
qigi satisfies ‖a− am‖ <

ε

3
.

As

ϕ̃
(
fispis

∗
qigi
)
ξx1,h1 = N

− 1
2

piqi

∑

y∈θ−1
pi (θqi (x1))

fi(y)gi(x1)ξy,piq−1
i h1

,

we either get
〈
ϕ̃
(
fispis

∗
qigi
)
ξx1,h1 , ξx2,h2

〉
= 0 or x2 ∈ θ−1

pi (θqi(x1)) and piq
−1
i h1 = h2.

The latter conditions are equivalent to θpi(x2) = θqi(x1) and pih1 = qih2 since P is

commutative. Note that there is at least one i such that

〈
ϕ̃
(
fispis

∗
qigi
)
ξx1,h1 , ξx2,h2

〉
6= 0

because ϕ̃ is contractive and ‖a−am‖ <
ε
3 . Therefore, possibly changing the enumeration,

we can assume that there is 1 ≤ n ≤ m such that

〈
ϕ̃
(
fispis

∗
qigi
)
ξx1,h1 , ξx2,h2

〉
6= 0 if and only if 1 ≤ i ≤ n.

Let an :=
∑n

i=1 fi,1spi,1s
∗
pi,2fi,2. Since P is lattice ordered there is a unique element

p0 := p1 ∨ · · · ∨ pn. Additionally, set q0 := h−1
2 ph1 ∈ H and note that q0 ∈ P since

h−1
2 pih1 = qi ∈ P for all 1 ≤ i ≤ n. For each 1 ≤ i ≤ n, there are open neighbourhoods

U
′

i,1 of x1 and U
′

i,2 of x2 such that

• θpi is injective on U
′

i,1,

• θqi is injective on U
′

i,2, and

• N
− 1

2
piqi |fi(y1)gi(y2)− fi(x1)gi(x2)| <

ε
3n for all y1 ∈ U

′

i,1, y2 ∈ U
′

i,2.

This is always possible because the transformations θpi , θqi are local homeomorphisms and

the function X2 −→ C given by (y1, y2) 7→ fi,1(y1)fi,2(y2) is continuous since. Then

Ui,1 := θ−1
pi

(
θpi(U

′

i,1) ∩ θqi(U
′

i,2)
)

defines an open neighbourhood of x1 such that for each y1 ∈ Ui,1 there is a unique y2 ∈ Ui,2
with θpi(y2) = θqi(y1). Accordingly, set

Ui,2 := θ−1
qi

(
θpi(U

′

i,1) ∩ θqi(U
′

i,2)
)
.
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4.1. C*-algebraic characterizations of topological freeness

and take Uj :=
⋂n
i=1 Ui,j for j = 1, 2. Now suppose x3 ∈ U1, x4 ∈ U2 satisfy θq(x3) =

θp(x4). Using the triangle inequality for the first two steps, we get

| 〈ϕ̃(a)ξx3,h1 , ξx4,h2〉 | ≥ ε − | 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 − 〈ϕ̃(a)ξx3,h1 , ξx4,h2〉 |

≥ ε − | 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 − 〈ϕ̃(am)ξx1,h1 , ξx2,h2〉 |

− | 〈ϕ̃(am)ξx1,h1 , ξx2,h2〉 − 〈ϕ̃(am)ξx3,h1 , ξx4,h2〉 |

− | 〈ϕ̃(am)ξx3,h1 , ξx4,h2〉 − 〈ϕ̃(a)ξx3,h1 , ξx4,h2〉 |

= ε − | 〈ϕ̃(a− am)ξx1,h1 , ξx2,h2〉 |

− | 〈ϕ̃(an)ξx1,h1 , ξx2,h2〉 − 〈ϕ̃(an)ξx3,h1 , ξx4,h2〉 |

− | 〈ϕ̃(am − a)ξx3,h1 , ξx4,h2〉 |

> ε − ε
3 − n

ε
3n −

ε
3 = 0.

This marks the end of the first half of the preparations for Theorem 4.1.9. The second part

will show that topological freeness of (X,P, θ) results in the ideal intersection property

for C(X) inside O[X,P, θ], see Proposition 4.1.8.

Lemma 4.1.5. If x ∈ X, p, q ∈ P satisfy θp(x) 6= θq(x), then there exists a positive

contraction h ∈ C(X) such that h(x) = 1 and hsps
∗
qh = 0.

Proof. The steps leading to a proof are:

a) There is an open neighbourhood U of x satisfying U ∩ θ−1
q (θp(U)) = ∅.

b) suppLr(f) ⊂ θp(supp f) holds for all f ∈ C(X) and r ∈ P .

c) There exists a positive contraction h ∈ C(X) with h(x) = 1 and supph ⊂ U for the

U obtained in a). Every h of this form satisfies hαq(Lp(h
2)) = 0.

As X is Hausdorff, there are disjoint, open neighbourhoods V and W of θp(x) and θq(x),

respectively. Hence U := θ−1
p (V ) ∩ θ−1

q (W ) is an open neighbourhood of x and θp(U) ∩

θq(U) ⊂ V ∩W = ∅, so

U ∩ θ−1
q (θp(U)) ⊂ θ−1

q (θq(U)) ∩ θ−1
q (θp(U)) = θ−1

q (θp(U) ∩ θq(U)) = ∅

establishes a). Claim b) is straightforward. For the first claim from c), we note that such

an h exists because U is an open neighbourhood of x and X is a normal space. Therefore

we get

supphαq(Lp(h
2)) ⊂ U ∩ θ−1

q (suppLp(h
2))

b)
⊂ U ∩ θ−1

q (θp(supph
2

︸ ︷︷ ︸
⊂U

))
a)
= ∅
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4. Topological freeness for isds

which proves hαq(Lp(h
2)) = 0. Combining these ingredients, we deduce

‖hsps
∗
qh‖

2 = ‖hsqs
∗
ph

2sps
∗
qh‖ = ‖h αq(Lp(h

2))sqs
∗
qh‖

c)
= 0.

Remark 4.1.6. Observe that we can deduce from the proof of Lemma 4.1.5 that condition

ii) is equivalent to hαp1(Lp2(h)) = 0 as well as to hαp2(Lp1(h)) = 0.

Before we reach the central result of this section, let us recall the notion of topological

freeness for dynamical systems, where the transformations need not be reversible.

Definition 4.1.7. A topological dynamical system consisting of a topological space Y

and a semigroup S together with an action S
η
y Y by continuous transformations is said

to be topologically free if the set {y ∈ Y | ηs(y) = ηt(y)} has empty interior for all

s, t ∈ S, s 6= t.

Proposition 4.1.8. If (X,P, θ) is topologically free, every non-zero ideal I in O[X,P, θ]

satisfies I ∩ C(X) 6= 0.

Proof. We will follow the strategy from [EV06, Theorem 10.3]. Suppose I is an ideal

in O[X,P, θ] satisfying I ∩ C(X) = 0 and denote by π the corresponding quotient map.

Then π is isometric on C(X). We claim that ‖π(a)‖ ≥ ‖G(a)‖ holds for all positive a ∈

O[X,P, θ]. By continuity (of the norms, of π, and of G), it suffices to prove the above

equation for

a =
n∑

j=1

fjspjsqjgj , with n ∈ N, fj , gj ∈ C(X) and pj , qj ∈ P.

Without loss of generality, we can assume that there is 1 ≤ n0 ≤ n such that pj = qj holds

if and only if j ≤ n0. In fact, possibly inflating the elements fjspjs
∗
qjgj by 1 =

∑
i
νisps

∗
pνi

for p ≥ p1 ∨ · · · ∨ pn0 , see Lemma 2.4.2, we can assume that pj = qj = p holds for all

1 ≤ j ≤ n0.

If n0 = n, then we have a ∈ (Fp)+. In this case, set h = 1. For the case n0 < n, note

that since (X,P, θ) is topologically free,
⋂n
j=n0+1 {x ∈ X | θpj (x) 6= θqj (x)} is dense in X.

Thus, for each ε ∈ (0, 1), there exists x ∈ X satisfying

a) G(a)(x) > (1− ε) ‖G(a)‖, and

b) θpj (x) 6= θqj (x) for all n0 < j ≤ n.

Applying Lemma 4.1.5 to each n0 < j ≤ n yields functions hn0+1, . . . , hn ∈ C(X), which

we use to build h :=
∏n
j=n0+1 hj . Then h satisfies

(a) 0 ≤ h ≤ 1,
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4.1. C*-algebraic characterizations of topological freeness

(b) h(x) = 1, and

(c) hspjs
∗
qjh = 0 for all n0 < j ≤ n.

This results in

hah =
n∑

j=1

fjhspjs
∗
qjhgj

(c)
=

n0∑

j=1

fjhsps
∗
phgj = hE1(a)h,

where E1 : O[X,P, θ] −→ F is the faithful conditional expectation from Lemma 2.4.7.

Note that we have E1(a) =
∑n0

j=1 fjsps
∗
pgj ∈ (Fp)+. Next, choose a partition of unity

(vk)1≤k≤m for X and θp as in Lemma 1.3.9 and, as before, let νk := (Npvk)
1
2 . Then we

obtain

G(a) = G(E1(a)) = N−1
p

n0∑
j=1

fjgj

= N−1
p

n0∑
j=1

fj

(
m∑
k=1

νksps
∗
pνk

)
gj

=
m∑
k=1

v
1
2
k E1(a)v

1
2
k .

Combining this with the fact that π(a) 7→
m∑
k=1

π(v
1
2
k ) π(a) π(v

1
2
k ) is a unital completely

positive map, hence contractive, we get

‖π(a)‖ ≥ ‖π

(
m∑
k=1

v
1
2
k av

1
2
k

)
‖

≥ ‖π

(
m∑
k=1

v
1
2
k hahv

1
2
k

)
‖

= ‖π

(
h

m∑
k=1

v
1
2
k E1(a)v

1
2
k h

)
‖

= ‖π(hG(a)h)‖

= ‖hG(a)h‖

since π is isometric on C(X). On the other hand,

‖hG(a)h‖ ≥ (hG(a)h)(x) = G(a)(x) > (1− ε)‖G(a)‖,

so ‖π(a)‖ > (1− ε)‖G(a)‖ for all ε > 0. This forces ‖π(a)‖ ≥ ‖G(a)‖.

So given a ∈ O[X,P, θ]+∩I, we have 0 = ‖π(bab∗)‖ ≥ ‖G(bab∗)‖ for all b ∈ O[X,P, θ].

In particular, G(bab∗) = 0 holds for all b ∈ F . But according to Lemma 2.4.14, this

implies a = 0 and hence I = 0.

We are now ready for the main result of this section:
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Theorem 4.1.9. Suppose (X,P, θ) is an irreversible ∗-commutative dynamical system of

finite type. Then the following statements are equivalent:

(1) The dynamical system (X,P, θ) is topologically free.

(2) Every non-zero ideal I in O[X,P, θ] satisfies I ∩ C(X) 6= 0.

(3) The representation ϕ of O[X,P, θ] on `2(X) from Proposition 2.4.4 is faithful.

(4) C(X) is a masa in O[X,P, θ].

Proof. The plan is as follows:

(1) +3
KS

��

(2)

��
(4) (3)

\d

The implication from (1) to (2) is precisely covered by Proposition 4.1.8 and (2) gives

(3) because we have kerϕ ∩ C(X) = 0, see Proposition 2.4.4. Next, we show that (3) or

(4) implies (1), where we proceed by contraposition. If the system is not topologically

free, there are p, q ∈ P with p 6= q such that {x ∈ X | θp(x) = θq(x)} has non-empty

interior. Since the maps θp and θq are local homeomorphisms, there exists a non-empty

open U ⊂ {x ∈ X | θp(x) = θq(x)} such that θp|U = θq|U is injective. We fix x0 ∈ U and

choose a positive f ∈ C(X) satisfying f(x0) 6= 0 and supp f ⊂ U . By appealing to the

existence of partitions of unity for open covers of compact Hausdorff spaces, we know that

such a function f always exists. Let us point out that fsps
∗
qf does not belong to C(X),

which can formally be deduced from Lemma 4.1.4 ii), p 6= q, and

〈
ϕ̃(fsps

∗
qf)ξx0,q, ξx0,p

〉
= N

− 1
2

pq f(x0)
2 6= 0.

Then 〈
ϕ(fsps

∗
qf)ξx, ξy

〉
=

〈
ϕ(s∗qf)ξx, ϕ(s

∗
pf)ξy

〉

= δθq(x)θp(y) N
− 1

2
pq f(x)f(y)

= δxy N
− 1

2
pq f(x)2

holds for all x, y ∈ U , where we used injectivity of θp|U = θq|U . Note that the expression

vanishes whenever x or y is not contained in U due to supp f ⊂ U . Hence we get 0 6=

fsps
∗
qf −N

− 1
2

pq f2 ∈ kerϕ, which shows that (3) implies (1).

In order to prove that (4) forces (1), it suffices to show that the function f from the last

part satisfies fsps
∗
qf ∈ C(X)

′

∩ O[X,P, θ]. Let us pick (νi)i∈I for θq as in Lemma 1.3.9.

We claim that

αp(Lq(fgνi)) = N−1
q gfνi = gαp(Lq(fνi))
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4.1. C*-algebraic characterizations of topological freeness

holds for all g ∈ C(X) and i ∈ I. Using the property that θq|supp νi is injective, it is

straightforward to check that the functions match on X \ supp f , so let x ∈ supp f ⊂ U.

Then
αp(Lq(fgνi))(x) = N−1

q

∑
y∈θ−1

q (θp(x))

g(y)f(y)νi(y)

= N−1
q

∑
y∈θ−1

q (θq(x))

g(y)f(y)νi(y)

= N−1
q g(x)f(x)νi(x)

holds, where we used θp|U = θq|U and injectivity of θq|U . Similarly we get

gαp(Lq(fνi))(x) = g(x)N−1
q

∑
y∈θ−1

q (θp(x))

f(y)νi(y)

= N−1
q g(x)f(x)νi(x).

Thus

αp(Lq(fgνi)) = N−1
q gfνi = gαp(Lq(fνi))

is valid for all g ∈ C(X) and i ∈ I. Using this equation, we deduce

fsps
∗
qfg = fsps

∗
qfg

∑
i∈I

νisqs
∗
qνi

=
∑
i∈I

fαp(Lq(fgνi))sps
∗
qνi

= gfsp
∑
i∈I

Lq(fνi)s
∗
qνi

= gfsps
∗
q

∑
i∈I

νiEq(νif)

= gfsps
∗
qf.

for arbitrary g ∈ C(X). Thus, fsps
∗
qf ∈

(
C(X)

′

∩ O[X,P, θ]
)
\ C(X), so C(X) is not a

masa in O[X,P, θ].

In order to deduce (4) from (1), let a ∈ C(X)
′

∩ O[X,P, θ]. By Lemma 4.1.4 ii),

a ∈ C(X) follows provided that 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 = 0 holds for all (x1, h1) 6= (x2, h2). In

case x1 6= x2, there is f ∈ C(X) satisfying f(x1) 6= 0 and f(x2) = 0. Thus

f(x1) 〈ϕ̃(a)ξx1,h1 , ξx1,h2〉 = 〈ϕ̃(af)ξx1,h1 , ξx2,h2〉

= 〈ϕ̃(fa)ξx1,h1 , ξx2,h2〉

= f(x2) 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉

= 0

implies that 〈ϕ̃(a)ξx1,h1 , ξx1,h2〉 = 0. Now let x1 = x2 and h1 6= h2 and we assume

〈ϕ̃(a)ξx1,h1 , ξx1,h2〉 6= 0 in order to derive a contradiction: Part iii) from Lemma 4.1.4
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states that there are p, q ∈ P and open neighbourhoods U1, U2 of x1 = x2 with the

properties (a)-(c). Note that p 6= q due to (a) and h1 6= h2. By passing to smaller

neighbourhoods of x1, if necessary, we may assume that for each x3 ∈ U1 there is a

unique x4 ∈ U2 satisfying θq(x3) = θp(x4) (and vice versa). In other words, the (a priori

multivalued) maps θ−1
q θp : U1 −→ U2 and θ−1

p θq : U2 −→ U1 are homeomorphisms. This

uses the standing assumption that θp and θq are local homeomorphisms. As (X,P, θ) is

topologically free, the set {x ∈ U1 | θp(x) = θq(x)} has empty interior, so it cannot be all

of U1. Hence there are x3 ∈ U1 and x4 ∈ U2 such that x3 6= x4 and θq(x3) = θp(x4).

Now Lemma 4.1.4 iii) implies 〈ϕ̃(a)ξx3,h1 , ξx4,h2〉 6= 0. On the other hand, we observe that

〈ϕ̃(a)ξx3,h1 , ξx4,h2〉 = 0 follows from the consideration of the case x1 6= x2 from before

because x3 6= x4. This reveals a contradiction and thus, 〈ϕ̃(a)ξx1,h1 , ξx2,h2〉 = 0 whenever

(x1, h1) 6= (x2, h2). According to Lemma 4.1.4 ii), this forces a ∈ C(X), so C(X) is a

masa in O[X,P, θ].

Remark 4.1.10. The representation ϕ is an analogue of the reduced representation for

ordinary group crossed products, for if θp was a homeomorphism ofX, then Spξx = ξθ−1
p (x),

see Proposition 2.4.4. Therefore condition (3) of Theorem 4.1.9 can be interpreted as

an amenability property of the dynamical system (X,P, θ), compare [BO08, Theorem

4.3.4]. Interestingly, this property coincides with topological freeness for irreversible ∗-

commutative dynamical systems of finite type as defined in Definition 1.3.13.

4.2 Simplicity of the C*-algebra

Let X be a compact Hausdorff space, G a discrete group, and α an action of G on

C(X). Then simplicity of the transformation group C*-algebra C(X) oα G corresponds

to minimality and topological freeness of the underlying topological dynamical system,

given that the action α is amenable, see [AS94, Corollary following Theorem 2] or [BO08,

Theorem 4.3.4 (1)]. An intermediate step for this result is to prove that every non-zero

ideal I in the C*-algebra C(X) oα G satisfies I ∩ C(X) 6= 0 if the dynamical system

is topologically free, see [AS94, Theorem 2]. In view of Proposition 4.1.8, the analogous

statement for O[X,P, θ] and (X,P, θ) has already been established. In fact, Theorem 4.1.9

revealed that these conditions are equivalent.

In contrast to the case of group actions, topological freeness is proven to be automatic

for minimal irreversible ∗-commutative dynamical systems of finite type, see Proposi-

tion 4.2.10. The proof of this implication is an adaptation of [EV06, Proposition 11.1].

Once this is accomplished, we show that O[X,P, θ] is simple if and only if (X,P, θ) is min-

imal, see Theorem 4.2.11. Hence we achieve a direct generalization of [EV06, Theorem

11.2], if we suppress the additional requirement that each θp is assumed to be regular,

see Definition 1.3.13. We note that this extra condition is assumed in [EV06, Section 9]

as well, but not in [EV06, Sections 8,10 and 11]. As an application of Theorem 4.2.11,
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4.2. Simplicity of the C*-algebra

we characterize simplicity of O[G,P, θ] for commutative irreversible algebraic dynamical

systems of finite type by minimality of (G,P, θ), see Corollary 4.2.12.

Unlike the case of group actions, there are different options available for the notion of

an orbit of a point x ∈ X under the action θ of P . For example, we can consider

O+(x) = {θp(x) | p ∈ P} or
⋃

p∈P

θ−1
p (θp(x)).

Although both versions have some striking features an orbit ought to have, they lack other

serious features at the same time. In a sense, the two candidates are complementary. The

first one does not necessarily yield an equivalence relation because there may be a lack of

opportunities to get back to x via θ once we arrive at some y ∈ O+(x). The second object

need not contain any elements of the former object other than x itself. Moreover, both

versions lack the feature of being invariant with respect to taking preimages. Nevertheless,

these versions appear in the existing literature. The conclusion we want to draw from this

is that one has to be cautious about which notion of an orbit is used in an exposition. We

will take the following one, which seems best suited for working with structures resembling

crossed products:

Definition 4.2.1. Let Z be a topological space, S a commutative semigroup and S
η
y Z

a semigroup action by continuous maps. For x ∈ Z,

O(x) := {η−1
t (ηs(x)) | s, t ∈ S} ⊂ Z

is called the orbit of x under η. Two elements x, y ∈ Z are called orbit-equivalent,

denoted by x ∼ y, if O(x) = O(y).

Remark 4.2.2. Note that x and y are orbit-equivalent if and only if there are s, t ∈ S such

that ηs(x) = ηt(y). This definition is the natural generalization of trajectory-equivalence

as defined in [EV06, Section 11]. ∼ is an equivalence relation because S is commutative.

Indeed, reflexivity and symmetry are obvious. For transitivity, suppose ηs1(x) = ηt1(y)

and ηs2(y) = ηt2(z) hold for x, y, z ∈ Z and si, ti ∈ S. Then ηs2s1(x) = ηs2t1(y) =

ηt1s2(y) = ηt1t2(z) shows x ∼ z.

Definition 4.2.3. Y ⊂ Z is called invariant, if η−1
s (Y ) = Y for all s ∈ S.

Lemma 4.2.4. Let Z be a topological space, S a commutative semigroup and S
η
y Z a

semigroup action by continuous, surjective maps. Then Y ⊂ Z is invariant if and only if

x ∼ y ∈ Y implies x ∈ Y for all x ∈ Z.

Proof. Since each ηs is surjective, we have ηs(η
−1
s (Y )) = Y . So if Y is invariant, then

ηs(Y ) = Y holds for all s ∈ S. Hence, if x ∼ y ∈ Y , say ηs(x) = ηt(y), then

x ∈ η−1
s (ηt(Y )) = θ−1

s (Y ) = Y
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follows. Conversely, suppose x ∼ y ∈ Y implies x ∈ Y for all x ∈ Z. Then η−1
s (Y ) ⊂ Y

holds for all s ∈ S as x ∼ y for all y ∈ Y and x ∈ η−1
s (y). On the other hand, ηs(y) ∼ y

for all y ∈ Y forces ηs(Y ) ⊂ Y , which in turn implies Y ⊂ η−1
s (ηs(Y )) ⊂ η−1

s (Y ). Thus,

Y is invariant.

In the case of actions by homeomorphisms, it is well-known that invariance of a subset

passes to its closure. This is not clear for general irreversible transformations, but it is

true for actions by local homeomorphisms. This is certainly well-known, but not easy to

find in the literature, so we include a proof for convenience.

Lemma 4.2.5. Let Z be a topological space, S a commutative semigroup and S
η
y Z

a semigroup action by local homeomorphisms. For every Y ⊂ Z and s ∈ S, we have

η−1
s (Y ) = η−1

s (Y ).

Proof. The map ηs is continuous, so η
−1
s (Y ) is a closed subset of Z containing η−1

s (Y ) and

hence η−1
s (Y ) ⊂ η−1

s (Y ). To prove the reverse inclusion, let x ∈ η−1
s (Y ). Since ηs is a local

homeomorphism, there is an open neighbourhood U of x such that ηs|U : U −→ ηs(U) is

a homeomorphism. Due to ηs(x) ∈ Y , there is a net (yλ)λ∈Λ ⊂ Y such that yλ
λ→∞
−→ ηs(x).

Note that ηs(U) is open and contains ηs(x). Hence, we can assume (yλ)λ∈Λ ⊂ Y ∩ ηs(U)

without loss of generality. Now, xλ := ηs|
−1
U (yλ) defines a net (xλ)λ∈Λ ⊂ η

−1
s (Y ) ∩ U and

continuity of ηs|
−1
U gives xλ −→ x. Therefore, we have shown that x ∈ η−1

s (Y ).

Corollary 4.2.6. Let Z be a topological space, S a commutative semigroup and S
η
y Z

a semigroup action by local homeomorphisms. If Y ⊂ Z is invariant, then so is Y . In

particular, the closure of the orbit O(x) is invariant for every x ∈ Z.

Proof. For every s ∈ S, we get η−1
s (Y ) = η−1

s (Y ) = Y from Lemma 4.2.5 and the invari-

ance of Y .

Definition 4.2.7. Let Z be a topological space, S a commutative semigroup and S
η
y Z

a semigroup action by surjective local homeomorphisms. The dynamical system (Z, S, η)

is said to be minimal, if ∅ and Z are the only open invariant subsets of Z.

Remark 4.2.8. In the above definition, one can replace open by closed. In [EV06], this

property is called irreducibility, possibly to avoid confusion with a notion of minimality

apparently used for the groupoid picture.

Corollary 4.2.9. A dynamical system (Z, S, η) as in Definition 4.2.7 is minimal if and

only if O(x) ⊂ Z is dense for all x ∈ Z.

Proof. This follows immediately from Corollary 4.2.6.
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With these preparations at hand, let us return to the study of irreversible ∗-commutative

dynamical systems of finite type (X,P, θ). The next proposition is based on [EV06,

Proposition 11.1].

Proposition 4.2.10. If (X,P, θ) is minimal, then it is topologically free.

Proof. Let us assume that (X,P, θ) is minimal, but not topologically free and derive a

contradiction. Assume that there exist p, q ∈ P with p 6= q such that θp|U = θq|U on

some non-empty, open subset U of X. Clearly,
⋃
s,t∈P θ

−1
s (θt(U)) ⊂ X is invariant, non-

empty and open. Since the dynamical system is minimal, this set is all of X. Since each

θ−1
s (θt(U)) is open and X is compact, we can shrink the open cover (θ−1

s (θt(U)))s,t∈P to

a finite, open cover of X given by s1, . . . , sn, t1, . . . , tn. Next, fix an arbitrary x ∈ X and

let i satisfy x ∈ θ−1
si (θti(U)), i.e. there is y ∈ U such that θsi(x) = θti(y). Then

θpsi(x) = θpti(y) = θtip(y)
y∈U
= θtiq(y) = θqti(y) = θqsi(x)

and if we take s :=
n∨
j=1

sj , we get

θps(x) = θs−1
i sθpsi(x) = θs−1

i sθqsi(x) = θqs(x)

for all x inX. Hence, we have θps = θqs. As θ(p∧q)s is surjective and P is commutative, this

implies θ(p∧q)−1p = θ(p∧q)−1q. Without loss of generality, we can assume (p ∧ q)−1p 6= 1P ,

since p 6= q forces (p∧ q)−1p 6= 1P or (p∧ q)−1q 6= 1P . Using ∗-commutativity for θ(p∧q)−1p

and θ(p∧q)−1q in the form of Proposition 1.3.2 (iii) yields

θ−1
(p∧q)−1p

(θ(p∧q)−1q(x)) = θ(p∧q)−1q(θ
−1
(p∧q)−1p

(x)) = {x}.

However, (p ∧ q)−1p 6= 1P implies that the cardinality of the set on the left hand side is

strictly larger than one, see Definition 1.3.13 (C). Thus, we obtain a contradiction.

Theorem 4.2.11. Let (X,P, θ) be an irreversible ∗-commutative dynamical system of

finite type. Then the C*-algebra O[X,P, θ] is simple if and only if (X,P, θ) is minimal.

Proof. If we assume O[X,P, θ] to be simple, then C(X) intersects every non-zero ideal in

O[X,P, θ] non-trivially, so (X,P, θ) is topologically free by Theorem 4.1.9. Now suppose

∅ 6= U ⊂ X is invariant and open. Then

suppαp(f) = θ−1
p (supp f) ⊂ θ−1

p (U) = U

suppLp(f) ⊂ θp(supp f) ⊂ θp(U) = U

holds for every p ∈ P and f ∈ C0(U) because U is invariant. We infer from this that the

ideal I in O[X,P, θ] generated by C0(U) satisfies I ∩C(X) ⊂ C0(U). But as O[X,P, θ] is

simple and U 6= ∅, we have I = O[X,P, θ] and hence U = X.
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4. Topological freeness for isds

Conversely, if (X,P, θ) is minimal and 0 6= I is an ideal in O[X,P, θ], we have I ∩

C(X) = C0(U) for some open U ⊂ X. Due to Proposition 4.2.10, (X,P, θ) is topologically

free. Hence U is non-empty according to Proposition 4.1.8. We claim that U is invariant.

To see why, let x ∼ y ∈ U , i.e. there exist p, q ∈ P such that θp(x) = θq(y). Pick a

non-negative function f ∈ C0(U) satisfying f(y) > 0 (such an f always exists as U is open

and X is a normal space). Additionally, choose (νi)1≤i≤n for θp as in Lemma 1.3.9. Using

the relations (I),(II) and (IV) for O[X,P, θ], we get

αp(Lq(f)) =
∑

1≤i≤n

νisps
∗
qfsqs

∗
pνi ∈ I,

which shows αp(Lq(f)) ∈ C0(U). Moreover, we have

αp(Lq(f))(x) = Lq(f)(θp(x)) ≥ N
−1
q f(y) > 0

because f is non-negative and y ∈ θ−1
q (θp(x)). Thus x ∈ suppαp(Lq(f)) ⊂ U , so U is

invariant by Lemma 4.2.4. Since U is a non-empty, invariant open subset of X, minimality

forces U = X and hence I = O[X,P, θ]. Hence O[X,P, θ] is simple.

Coming back to irreversible algebraic dynamical systems, we recall that we can only treat

commutative irreversible algebraic dynamical systems of finite type within the framework

of irreversible ∗-commutative dynamical systems of finite type, see Corollary 1.3.17:

Corollary 4.2.12. A commutative irreversible algebraic dynamical system of finite type

(G,P, θ) is minimal if and only if the C*-algebra O[G,P, θ] is simple.

Proof. By Corollary 1.3.17, we know that (Ĝ, P, θ̂) is an irreversible ∗-commutative dy-

namical system of finite type. According to Proposition 2.4.3, O[G,P, θ] is isomorphic to

O[Ĝ, P, θ̂]. By Proposition 1.2.8, (G,P, θ) is minimal precisely if the union of the kernels

(ker θp)p∈P is dense in Ĝ. In other words, the orbit of 1Ĝ in the sense of Definition 4.2.1

is dense in Ĝ. Since Ĝ is a group and we are dealing with group endomorphisms, this is

equivalent to minimality of the topological dynamical system by Corollary 4.2.9. Now the

claim follows directly from Theorem 4.2.11.

In particular, this characterization applies to the commutative irreversible algebraic dy-

namical systems of finite type presented in Section 1.1. Note that Example 1.3.21 and

Example 1.3.23 also belong to this class of examples. Hence the corresponding C*-algebras

are simple. In fact, they are always UCT Kirchberg algebras by Corollary 2.2.28.
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