
Mutual InformationbasedParameter
Extraction for SpreadingCellColonies

Doctoral Thesis

Ramona Sasse
- 2021 -









Fach: Mathematik

Mutual Information based Parameter
Extraction for Spreading Cell Colonies

Inauguraldissertation
zur Erlangung des Doktorgrades der Naturwissenscha�en

– Dr. rer. nat. –

im Fachbereich Mathematik und Informatik

der Mathematisch-Naturwissenscha�lichen Fakultät

der Westfälischen Wilhelms-Universität Münster

eingereicht von

Ramona Sasse
aus Coesfeld

– 2021 –



Dekan: Prof. Dr. Xiaoyi Jiang

Erster Gutachter: Prof. Dr. Benedikt Wirth

Westfälische Wilhelms-Universität Münster

Zweiter Gutachter: Prof. Dr. Martin Burger

Friedrich-Alexander-Universität Erlangen-Nürnberg

Tag der mündlichen Prüfung: 23.07.2021

Tag der Promotion: 23.07.2021







To Christin and Stephan, who always believed in me,

and to my parents for their love and support throughout my life!





Zusammenfassung

Bis heute ist die Entwicklung und das Wachstum von Tumorzellkolonien noch nicht in Gänze er-

forscht. Insbesondere wenn es zu speziellen Ausbreitungsphänomenen kommt, die sich dadurch aus-

zeichnen, dass innerhalb der Kolonie eine Zellmasse mit einem au�allend anderem Erscheinungsbild

entsteht, sind Wissenschaftler daran interessiert, dieses Auftreten und Anwachsen besser zu verste-

hen. Das Ableiten von Ausbreitungsmerkmalen für die gesamte Zellkolonie als auch Wachstumsei-

genschaften für diese innere Teilkolonie sind wichtige Forschungsfragen in der Grundlagenforschung

im biomedizinischen Umfeld. Von besonderem Interesse ist auch der Ein�uss von Medikamenten auf

dieses dynamische Zellverhalten. Basierend auf einer Kooperation mit Wissenschaftlern des Phar-

makonzerns AstraZeneca UK Ltd. erforschen wir das Ausbreitungsphänomen dieser Zellkolonien

von einem mathematischen Standpunkt aus und verwenden dazu Mikroskopiebilder, die eben diesen

Wachstumsprozess über die Zeit abbilden. In dem Kontext dieser Arbeit untersuchen wir das Ausbrei-

tungsverhalten von Zellpopulationen basierend auf einer initialen Krebszelle eines Lungentumors. In

den betrachteten Phasenkontrastbildern beobachten wir ebenfalls zwei Teilkolonien mit markanten

Texturunterschieden in den Mikroskopiebildern. Deswegen sind wir besonders interessiert an der

Untersuchung von Ausbreitungsverhalten dieser zwei Teilkolonien.

Mit Hilfe von Modellierung und mathematischer Optimierung zielen wir darauf ab, Ausbreitungs-

eigenschaften herauszu�ltern, die diesen Prozess beschreiben. Dazu bedienen wir uns des Konzep-

tes der Transinformation (engl.: mutual information), die den gegenseitigen Informationsgehalt von

zwei Zufallsgrößen beschreibt (frei übersetzt nach [20]). In unserem Fall konzentrieren wir uns auf

die Transinformation zwischen zwei Bildern. Dazu leiten wir einerseits sogenannte Merkmalsbilder
(engl.: feature images) basierend auf lokalen Textureigenschaften der Phasenkontrastbilder her. Zum

anderen generieren wir mit Hilfe eines mathematischen Ausbreitungsmodells Klassi�zierungsbilder
(engl.: classi�cation images). Mit diesen teilen wir ein Bild in unterschiedliche Teilbereiche, sogenann-

te “Klassen” ein. Das Modell basierend auf bestimmten Ausbreitungseigenschaften beschreibt zum

Beispiel, ob in einem Punkt Zellen zu erwarten sind oder nicht. Auf dieser Grundlage können wir

den Bildbereich in Hintergrundbereiche ohne Zellen und Vordergrundbereiche mit Zellen einteilen.

Indem wir die Transinformation zwischen den Merkmalsbildern und den Klassi�zierungsbildern

maximieren, können wir Ausbreitungseigenschaften ableiten, die direkt mit dem Klassi�zierungsbild

oder vielmehr mit dem Ausbreitungsmodell verknüpft sind. Im Optimum beschreibt die Ausbreitung

im Klassi�zierungsbild dann möglichst genau die Ausbreitung in den Mikroskopiedaten. Mit diesen

Ausbreitungseigenschaften möchten wir Mathematiker einen Beitrag leisten, um das Verständnis

für das Wachstum und die Ausbreitung von Tumorzellpopulationen zu schärfen, und so schließlich

weitere Grundlagen für die Krebsforschung und Arzneimittelentwicklung scha�en.

Für die Merkmalsbilder nutzen wir lokale Textureigenschaften, die wir direkt aus den Mikroskopiebil-

dern berechnen können. In diesem Zusammenhang befassen wir uns kurz mit der Segmentierung von

Zellkolonien, welche die weitere mathematische Beschreibung des Ausbreitungsprozesses motiviert.

Dazu führen wir anschließend ein Modell basierend auf Partiellen Di�erentialgleichungen (PDG) ein.

Mit diesem Modell können wir nicht nur die Ausbreitung einer Zellkolonie beschreiben, sondern

sind zusätzlich in der Lage, zwei Untergruppen innerhalb der Kolonie mit verschiedenen zellulären

Erscheinungsbildern zu identi�zieren und zu charakterisieren. Schließlich reduzieren wir das Modell
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zu einer vereinfachten Version. Dieses vereinfachte Modell erfüllt weiterhin wichtige Kerneigen-

schaften des PDG-Modells und beschreibt zwei sich konzentrisch, d.h. kreisförmig mit gemeinsamen

Mittelpunkt, ausbildende Koloniefronten, die hintereinander durch das Gebiet propagieren.

Mit dem Optimierungsproblem zur Maximierung der Transinformation berücksichtigen wir schließ-

lich zugleich die Texturinformationen aus den Mikroskopiebildern anhand der Merkmalsbilder ge-

meinsam mit den Modelleigenschaften inhärent in den Klassi�zierungsbildern. In diesem Sinne ist

ein Großteil der vorliegenden Arbeit auf eine genaue mathematische Analyse des zugrundeliegen-

den Optimierungsproblems ausgerichtet. Tatsächlich führen wir ein Minimierungsproblem ein, um

die negative Transinformation zu optimieren. Dazu beschäftigen wir uns mit Konvergenzaussagen

bezüglich verschiedener Diskretisierungen sowie der Konvergenz von Minimierern.

Ein weiteres zentrales Thema dieser Dissertation ist die numerische Lösung des Optimierungspro-

blems. Als Konzeptnachweis betrachten wir ein vereinfachtes Beispielproblem, in dem wir uns künst-

lich erzeugter, simulierter Klassi�zierungs- und Merkmalsbilder bedienen. Danach werden beispiel-

haft zwei Zeitreihen mit sich ausbreitenden Zellkolonien des AstraZeneca-Datensatzes verarbeitet.

Zum Abschluss der Arbeit diskutieren wir das Potential, spezielle Herausforderungen und mögliche

Erschwernisse im Zusammenhang mit dem gewählten Ansatz. Zudem wird ein kurzer Ausblick auf

Zukunftsstudien gegeben, die unter anderem mögliche Modellverbesserungen oder die Verwendung

von weiterem Vorwissen berücksichtigen.

Insgesamt sehen wir besonderes Potential in unserem Ansatz, der einerseits die Unterscheidung

zweier Teilkolonien erlaubt und andererseits mathematische Optimierung für die Modellierung von

Ausbreitungsprozessen einer Zellkolonie mit Hilfe von Bilddaten verknüpft und somit dedizierte

Aussagen zum Ausbreitungsverhalten ermöglicht. Dies ist ein besonderer Vorteil gegenüber Klas-

si�zierungsmethoden, die lediglich die Bestimmung von verschiedenen zellulären Strukturen und

Erscheinungen zum Beispiel unterstützen.
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Abstract

Until today, the development of a growing cell colony due to spatial cell spreading and cell division

based on a single initial cancer cell is not yet fully understood. Especially when it comes to cer-

tain spreading phenomena, where the colony not only grows but researchers also observe an inner

bulk developing within the colony with a signi�cantly di�erent appearance, we aim to improve the

understanding of colony growth. The in�uence of medical treatments and drug treatments on the

dynamic behavior of cells is of special interest in this context. The extraction of spreading char-

acteristics for the total colony as well as growth properties for this inner subcolony are important

tasks in biomedical basic research and of particular importance with respect to the development of

future cancer treatments. Based on a joint project with scientists from the pharmaceutical company

AstraZeneca UK Ltd., we tackle the spreading phenomenon of cell colonies from a mathematical

perspective in this thesis. We investigate the growth of cell colonies started from single cells which

were originally derived from lung tumor tissue. In the inspected phase contrast images, we observe

two subcolonies with strikingly di�erent texture appearances in the microscopy images. For this

reason, we are particularly interested in the investigation of the spreading of two subcolonies.

By means of model �tting via a mutual information (MI) based optimization approach, we aim for the

extraction of special spreading properties that correlate to the colony growth process observable in

microscopy data. The MI describes the mutual amount of information between two random variables

[20]. In our case, we are interested in the mutual information between two images. To be more

precise, we derive feature images based on extracted texture features from the phase contrast images

which facilitate the localization of a spreading cell colony. Next, we generate classi�cation images
based on a mathematical spreading model. With this we identify di�erent parts within an image

and classify them according to certain characteristics. For example, we identify empty background

regions without cells and foreground regions containing cells on the basis of a given model that

identi�es whether a speci�ed location contains cells or not. The model itself is directly connected

with certain spreading properties. By maximizing the mutual information between these features

and classi�cation images, we derive spreading properties that are closely linked to the classi�cation

images and, consequently, to the underlying growth model. With the derived spreading properties,

we facilitate the analysis of spreading cancer cells investigated in the drug development process.

For the feature images, we exploit basic local texture features directly extracted from the microscopy

images. We brie�y touch upon segmenting the cell colonies which motivates further the investigation

of the spreading cell colonies from a mathematical point of view. For this purpose, we introduce a

mathematical model based on partial di�erential equations (PDEs). We emphasize that instead of

merely identifying a colony’s area, we focus on a model that enables di�erentiating even between

two subpopulations of cellular appearances within a colony. Then, we present a simpli�ed spreading

approach which still preserves the fundamental properties of the previous PDE model and can capture

two consecutive concentric spreading colony fronts.

With the derived MI-based optimization problem, we consider the texture features from the original

imaging data and the mathematical spreading model jointly. One central topic of the present thesis

deals with a thorough analysis of this optimization problem. To this end, we introduce a minimization

problem to optimize the negative MI. This way, we focus on various related convergence statements
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including the convergence of discretizations and the convergence of minimizers.

A second major topic is the numerical solution of our optimization problem. As a proof of concept,

we �rst consider a simpli�ed toy problem consisting of simulated classi�cation and feature images.

Secondly, we test the optimization approach on two exemplary time series of the AstraZeneca data

set capturing the growth process of two colonies. We conclude this work with a discussion of the

applied approach by considering its potential, related challenges and possible obstacles. Finally, we

give an outlook on conceivable future studies including model improvements and using more prior

knowledge in the optimization approach.

We highlight that the power of our approach lies within the di�erentiation of two subcolonies on

the one hand. On the other hand, we see a particular potential in using mathematical optimization

techniques for �tting cell spreading models to imaging data to facilitate the extraction of novel colony

growth properties. This is a major advantage of our approach over classi�cation methods which are

solely used to distinguish di�erent cellular appearances for example.
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1
Introduction

The focus of this thesis is the investigation of spreading cell colonies from a mathematical perspec-

tive. We deal with a data set of microscopy images capturing the growth process of cancerous cell

colonies. The research project was initiated during a three month secondment to the industrial host

AstraZeneca in Cambridge in the summer of 2018. Cancer research is a highly relevant �eld in the

pharmaceutical industry and scientists not only at AstraZeneca are aiming for a better understanding

of developing cancer cell populations. For example, in [75] the authors observed a signi�cant increase

in research and publications related to pediatric cancer over a time span of 10 years from 2007 to

2016. In our setting, biologists at AstraZeneca investigate the growing and spreading process of cell

colonies descending from one initial cancer cell which originates from a lung tumor. In the “Global

cancer statistics 2020” by Sung et al., it is stated that “with an estimated 2.2 million new cancer cases

and 1.8 million deaths, lung cancer is the second most commonly diagnosed cancer and the leading

cause of cancer death in 2020” which stresses depressingly the high topicality of research for this type

of cancer [74]. To facilitate the understanding of the growth process for such a cancer cell population

and its interactions with potential drug treatments, we are tackling the research question from a

mathematical point of view.

The collaboration with AstraZeneca is supported by the international program on Nonlocal Methods

for Arbitrary Data Sources (NoMADS). International researchers from computer vision and applied

mathematics cooperate in this multidisciplinary project with companies fostering a better under-

standing of the current challenges in industrial applications and aiming for higher applicability of

nonlocal methods while building up a fundamental mathematical background of the new principles at

the same time [58]. In the joint project with AstraZeneca, we as applied mathematicians incorporate

computer-aided cell colony classi�cation based on non-local texture information of the microscopy

images, which highlights that this project �ts perfectly into the NoMADS context. The texture

characteristics extracted from the grayscale phase contrast images are essential to identify cells and

recognize the spreading colony in comparison to the domain’s background regions. In Figure 1.1, we

visualize such a spreading colony in sketches for three di�erent time points. In the �rst frame, we

observe only one initial cell. The colony starts to develop and spread in the following time frames

due to cell proliferation, i.e., cell division, and cell migration.

The idea to investigate spreading cell colonies from a mathematical perspective comes from current

tasks that researchers at AstraZeneca are facing when dealing with phase contrast images capturing

the development process. In their research for new medical treatments, they are interested in not

only �nding empty wells, i.e., identifying wells without a growing colony, but also in the e�ect of
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1 Introduction

Figure 1.1: The development of a growing cell population sketched for three example time points.

di�erent chemical perturbations on the colony growth process. It would be also interesting to detect

wells where a colony starts from not only one but even more than one initial cell. However, this

is an open challenge for future studies and we focus here on the colony growth process assuming

in general only one initial cell as the origin of a the colony. By combining mathematical modeling,

optimization techniques and image processing, we develop a novel approach to analyze the spreading

cell populations. Spreading properties based on a mathematical model are derived directly from the

phase contrast image data with a newly implemented software tool explicitly for this project. This

task-speci�c spreading information has the potential to facilitate the investigation process and reveal

new insights on cell population spreading in the future. By this, mathematicians and biologists in

the cooperation aim for improving the time-consuming and cumbersome task of analyzing the data

manually and, ultimately, accelerating the drug development process to �ght spreading cancer cells.

In the course of this doctoral thesis, we introduce the pharmaceutical background of investigations for

developing cell colonies, focus on image processing for the given microscopy data, present possible

mathematical models for spreading cell populations and �nally derive an optimization problem to

extract spreading information for the captured cell populations directly from the imaging data. We

start in Chapter 2 with an introduction to the application’s background in the pharmaceutical setting.

In this context, we give details on the image acquisition process and the experiment’s design.

In Chapter 3, we also further discuss the imaging data with respect to particular texture properties.

While describing the initial image analysis, we motivate the investigation of the spreading colonies

in the data from a mathematics-informatics viewpoint touching common tasks in computer vision. In

this chapter, we also highlight remarkable texture changes within cell populations that facilitate the

localization of a growing cell population. In Figure 1.2, we present one example microscopy image in

which we emphasize the di�erent texture regions with colored frames. In this well, i.e., in this tiny

shell-like experimental domain, we observe a growing cell population. For visualization aspects we

use here an enhanced contrast within the well’s domain to highlight the cell colony and facilitate its

detection by eye. While the patch framed blue shows the colony’s texture appearance close to the

leading edge where individual cells are distinguishable, the red one is located near the center of the

colony where single cell detection is rather challenging and complicated. As a reference patch, we

present the texture present in the well’s background in the green frame. For this sake, we introduce

in Section 3.3 feature images being based on certain texture characteristics. For this purpose, we apply

basic measures derived from the �eld of descriptive statistics: We extract the minimal and maximal

gray value and calculate the interquartile range (cf. [65]) in a local neighborhood. These feature

images are particularly important for the later optimization problem as we use them to couple the

real data with classi�cation images based on a given mathematical spreading model.

In Chapter 4, we introduce two possible modeling approaches that capture a growth process of a cell

2



Figure 1.2: An example of a growing colony with highlighted di�erent texture appearances for the

domain’s background (green), the colony near the leading front (blue) and a patch close to the heart

of the colony (red).

colony and correlate to certain spreading characteristics, which we refer to as spreading properties
in the following. On the one hand, we present in Section 4.1 a spreading model based on partial

di�erential equations (PDEs) which is motivated by the Fisher-Kolmogoro� equation, the Lotka-

Volterra system and the SIR
1
-model [55, 56] as well as relates in some sense to an interaction model

of two di�erent cell types presented in [34]. On the other hand, we introduce a simpli�ed model

based on concentric spreading colony fronts of constant spreading velocity for two subpopulations in

Section 4.2. We stress that we are aiming for a model that can distinguish between two di�erent sub-

colonies. The two subcolonies are supposed to capture the development of the two di�erent texture

regions, i.e., to identify populations consisting of cells near the colony’s front versus cells close to the

colony’s center part. Based on the mathematical model, we generate a classi�cation image to reveal

di�erent subregions within a cell population and to identify background areas in the image domain.

In Figure 1.3, we sketch classi�cation images that re�ect a concentric spreading colony consisting of

two subcolonies (light vs. dark brown) at two example time points.

Having the classi�cation images and the feature images at hand, we concentrate on optimization

based model �tting in Chapter 5 to extract spreading information linked to the applied model directly

from the texture features. We introduce the concept of mutual information (MI) in Section 5.1 which

describes “the amount of information about one random variable function contained in another ran-

dom function” [20]. In our context, our optimization problem is based on maximizing the mutual

information between the classi�cation images and the feature images. To be more precise, we aim

for spreading properties related to optimized classi�cation images for which the mutual information

1

S=susceptible, I=infective, R=recovered people
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1 Introduction

Figure 1.3: A sketch of classi�cation images for two time points revealing a concentric spreading

colony which consists of two subcolonies highlighted in light and dark brown regions.

between these and the feature images is maximal. For a more �gurative interpretation of this ap-

proach, we state that the “optimized” spreading phenomenon depicted in the classi�cation images

matches the observed colony spreading in the feature images best when the mutual information be-

tween classi�cation and feature images is maximal. Our optimization problem is inspired by mutual

information based image registration often applied in the context of images in the medical �eld [61].

In Section 5.2, we focus on our MI-maximization problem. As we consider a gradient-based numerical

solution, we focus on gradient terms of the mutual information. One important statement in this

section focuses on derivative terms for histogram measures which are required for the gradient of

mutual information (cf. Theorem 5.40). When considering the classi�cation image and the feature

image jointly, we calculate joint histograms which are essential to compute the mutual information

between both images.

For the numerical approach, we need to consider diverse discretization stages. In Section 5.3, various

intermediate convergence results are given that are of certain importance when relating the optimiza-

tion problem in a discretized setting to an originally continuous one. For example, we concentrate

on the convergence of images de�ned on discrete pixel grids when considering increasing resolu-

tions. As a second example, we mention discretized histogram measures that are based on discrete

histogram bins. For these histogram measures related to the classi�cation and feature images, we

prove convergence to the pushforward of the Lebesgue measure of the related spaces with respect

to the image mappings. The whole sections serves as a preparation for the profound analysis of

the optimization problem in Section 5.4. The main statements of this section are the existence and

convergence of minimizers (cf. Theorems 5.97 and 5.98).

In the �nal Section 5.5 of this main chapter, we perform numerical evaluations. As a proof of concept,

we test our approach of deriving spreading information based on MI-optimization for classi�cation

and feature images on an arti�cial toy example. In a second step, we apply the developed approach

to real data of AstraZeneca. For two example time series capturing spreading cell colonies, we nu-

merically solve the optimization problem and �t the concentric spreading model to the texture data

extracted from the original microscopy images. In both cases, the numerical solver converges to a

minimizer which validates our model.

In our work, we focus on a thorough analytical assessment of the considered optimization approach

and present a deeper numerical analysis of the given problem. To this end, we validate numerically

the convergence statements for decreasing discretization scales of pixel widths and binning sizes

by means of our toy example. Additionally, we evaluate matching texture regions based on their

optimized classi�cation values for the example colonies of the AstraZeneca data.
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The power of our MI-based model �tting approach lies in the expectation that we are able to de-

termine similar texture regions occurring in di�erent wells’ time series by assigning them to similar

classi�cation values through the optimization and, thereby, achieve a comparability across the di�er-

ent wells. For example, we aim for a numerical solution to identify background areas vs. a colony’s

region across all recorded time-lapse phase contrast images based on their nature of texture. We

stress that we are not only applying a texture classi�cation approach here. In our approach, we

incorporate prior knowledge on an expected spreading behavior of a developing cell colony. To be

more precise, we include a speci�c spreading model into our approach instead of only focusing on

a texture classi�cation. With this approach, we are indeed able to extract spreading properties for a

growing colony captured in the imaging data.

Moreover, we emphasize that our main objective is �tting a model that captures not only one spread-

ing colony but which even identi�es two di�erent subcolonies. We observe that in some parts of a

growing cell population single cell detection would be possible — either manually or with a sophis-

ticated segmentation approach. In other parts of a cell population, especially in the inner bulk of a

growing cell colony, a striking texture change impedes and even prevents single cell detection. In

the considered models, we include not only one colony but also the possibility of a second colony

emerging within the �rst one. The signi�cantly di�erent texture near the center part could correlate

to cell debris due to sick or dead cells. Another valid interpretation is that the cells are closely packed

in this region and already lie on top of each other. As they start moving out of focus, the imaging

device cannot capture their outline accurately enough anymore. A profound analysis of the biolog-

ical cause of this second strikingly di�erent texture appearances is beyond the scope of this thesis.

Therefore, we use �gurative names for the two subpopulations throughout this thesis dividing the

colony in regions of normal cellular appearances versus regions of abnormal cellular appearances.

As it turns out with the numerical tests on the real data, the identi�cation of this “second” colony is

more challenging than expected. For the two example wells, we observe that our approach rather

identi�es the transition area between background and cell populations as the “�rst” subcolony, and

the main population as the “second” subcolony. In this context, we see great potential in model

improvements or incorporating additional prior information on the inner bulk of cells we expected

as the “second” colony region. Hence, we discuss the �ndings of this thesis in the �nal Chapter 6

and give an outlook on future studies. In this sense, we re�ect on the applied approach and consider

further improvements on di�erent levels.
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2
Application background in the

pharmaceutical field

AstraZeneca UK Ltd. is a global pharmaceutical company developing medicines and drugs. Next to

cancer research the company is investigating treatments for patients su�ering from cardiovascular

and metabolic diseases or respiratory, in�ammations and autoimmune diseases [5].

In the BioPharmaceuticals R&D unit at AstraZeneca in Cambridge, scientists focus on early stage, pre-

clinical research. They identify and develop new drugs, build mechanistic data packages of existing

drugs and interrogate biological systems to help identify new drug targets. In this research unit,

the biologists investigate the reaction and behavior of cells when they undergo various treatments.

This basic research is essential in the pipeline of developing new or improving existing drugs. In

the oncology division, the scientists focus on treatments and drugs related to cancerous diseases.

They use microscopy and immunohistochemistry alongside a variety of other non-imaging based

destructive techniques to investigate in�uences on the cell development or the cells’ life cycle by

highlighting speci�c structures as for example certain proteins within the cells. In this context,

one can identify how a cell responds to a particular drug treatment, indicate if a speci�c gene was

activated or knocked out in an experiment with the help of biomarkers, using �uorescently labeled

antibodies to visualize them within the cell context. The biomarkers themselves are measureable

parameters used as meaningful indicators to compare di�erent experiments [37].

To account for company secrecy regulations and comply with con�dentiality rules, we do not give

any further details on the implemented biomarkers in the joint project we are dealing with in this

thesis. Still, we state some basic information on the biological experiment and introduce the resulting

imaging data in the following sections.

2.1 Image recording and experimental se�ing

The time-lapse phase contrast image data set we are focusing on in this project captures the develop-

ment of cell populations over time. We are dealing with a large data set consisting of �ve multi-well

plates with 16×24 wells, i.e., 384 wells, on each plate and imaged at eight discrete time points. One

well is a tiny experimental domain with an approximately square surface of width 3.7mm and height

11.7mm which is usually �lled with a total volume of 0.01−0.1ml. When setting the initial time point
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2 Application background in the pharmaceutical field

as 0 and referencing the next time points in relation to the �rst initial time point, the following seven

images are recorded approximately two hours, 17 hours, �ve days and 15 hours, seven days and 17

hours, 11 days and 15 hours, 14 days and 15 hours and 18 days and 15 hours after the initial time point.

In Table 2.1, the exact time stamps are given with the date in the format [yyyy-mm-dd] in the �rst

column and for each plate in the following columns the time of day in the format [hh:mm:ss]. While

the dates are non-equidistantly distributed over the whole time interval of almost 20 days, the time

steps between the recordings per day are more evenly distributed. Since the recording is happening

in a high-throughput microscopy system where the plates are selected and entered for imaging in an

automatic way, the time steps between the images of consecutive plates are approximately �ve to 10

minutes apart.

day plate 1 plate 2 plate 3 plate 4 plate 5

1: 2018-08-08 16:58:10 17:10:54 17:27:58 17:38:07 17:51:26

2: 2018-08-08 19:04:01 19:16:31 19:21:07 19:25:41 19:30:20

3: 2018-08-09 10:08:06 10:15:07 10:19:44 10:24:23 10:29:07

4: 2018-08-14 07:41:37 07:49:10 07:53:44 07:58:18 08:02:56

5: 2018-08-16 10:24:54 10:34:12 10:38:45 10:43:26 10:48:05

6: 2018-08-20 08:37:50 08:44:18 08:48:52 08:53:27 08:58:06

7: 2018-08-23 08:08:21 08:18:07 08:22:48 08:27:29 08:32:14

8: 2018-08-27 08:13:57 08:19:21 08:24:00 08:28:39 08:33:22

Table 2.1: Discrete time stamps of recordings per well plate in the format [yyyy-mm-dd] indicating

the date in the �rst column and the time of day in the format [hh:mm:ss] in the following columns

per plate represented.

The wells on a plate are numbered in an alpha-numerical way. Each row is identi�ed by a letter,

starting with A at the top row and ending with P in the 16
th

row, while the columns are numbered

from 1 to 24. In Figure 2.1, an example well plate is shown. With a close look, the column and row

identi�ers are observable. Moreover, the hand which holds the plate serves as a reference system

highlighting the total size of the well plate.

The biologists use for imaging “a high contrast imager designed for single cell imaging, identi�cation

and clonal outgrowth characterization”, the Cell Metric®, from Solentim [46]. It captures for each

well the whole well’s domain in high resolution and at pre-de�ned time points. For more technical

aspects on the machine, we refer to its datasheet [47]. For each well, an image of size 1548×1548

pixels is recorded on this high throughput machine using phase contrast imaging. No more than 15

of the 24 columns per well plate are used because of the experimental design. In each of the wells

only one initial cell is entered in liquid media. Here, Dulbecco’s Modi�ed Eagle’s Medium (Sigma)

supplemented with 10% Foetal Calf Serum (Gibco) and 1% GlutaMax (ThermoFisher) is used. For

more information on the components in the media, we refer to a website of an example supplier [78].

Loading single cells into the plate is a slow process, so the biologists load the cells in certain batches

to limit the amount of time for the cells being out of a temperature and CO2 controlled incubator. If

biologists use the full plate, it will be likely that the cells entered �rst are in�uenced or even su�ering

from being exposed for a longer preparation period. For this reason, only the �rst 15 columns will
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2.1 Image recording and experimental se�ing

Figure 2.1: An example of a well plate shown on a hand serving as a reference size [81].

be taken into consideration whereas the other columns are left blank.

The cells used in this experiment were originally extracted from a lung cancer tumor. They have

since then been in continuous in vitro cell culture for many years. Although all initial cells come

from the same tumor tissue, one cannot assume that they are all genetically identical. Tumour cells

themselves are always di�erent from each other [27, 73]. This so called cell heterogeneity makes the

development of treatments especially challenging with di�erent mutations present across di�erent

cells, and subtle alterations in expression pathways and activity.

In our data set, the experimental setup, e.g., the liquid media or the genetic treatment of the initial cell,

in three consecutive columns is prepared with the same biomarker. This is achieved by preparing the

cells �rstly on a transfection plate where a sample of cells is exposed and manipulated by one speci�c

strategy corresponding to a distinct biomarker. Next, single cells are selected and sorted column-wise

into the target well plates. This means that no more than 3×16 initial cells receive the same genetic

manipulations. As the cells are not counted before the preparation stage, it can happen that not all

three columns are completely �lled with an initial cell in every well. Moreover, it can happen that

no colony formation is observed because the initial cell does not survive the preparation stage or it

dies soon after it is put into the target well. Those empty wells will be neglected in the later analysis.

The replicates of one treatment are essential to get meaningful statistical output. Furthermore, those

replicates are important to account for statistical outliers because of the di�erences and unique nature

of tumor cells themselves. In other words, only a single particularly signi�cant occurrence of a cell

colony per three-column well group for one biomarker cannot be generalized to be true for all cells

expressing this biomarker. Taking this into consideration is important to account for the individuality

and diversity of cells within one tumor [27, 73].

During the time-lapse imaging, the initial cell either dies (apoptotic cell) or starts to replicate (mitotic
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2 Application background in the pharmaceutical field

cell). When the new cells perform mitosis recurrently, a whole colony starts to grow. This is the

starting point of our joint work between applied mathematicians and AstraZeneca biologists. In the

next subsection, we motivate further this interdisciplinary collaboration.

2.2 Motivation for cell colony investigation

Cancer research is indeed a highly relevant �eld of research since it “is a major public health problem

worldwide” [69]. For example “[it] is the second leading cause of death in the United States” as stated

in the Cancer statistics, 2020 by Siegel et al. [69]. This stresses the severeness of the disease with

potentially fatal consequences. Nevertheless, the behavior and the spreading of tumor cells is not

yet overall well understood until today which highlights the high topicality of this research. To

develop new drugs and better treatments, it is essential to analyze the e�ects on the cell level in an

early stage research. For this reason, we develop a novel approach to analyze the growth process

of a cell colony with a software solution to extract spreading properties. We emphasize that the

main interest is not single cell analysis but rather measuring e�ects on the colony level. With this

interdisciplinary project between AstraZeneca scientists and applied mathematicians, we want to

make our contribution to foster a better understanding of those cells’ spreading behavior and the

formation process of such a cell colony.

In the given experimental setting, it is crucial to estimate and compare the e�ect of the various

treatments and manipulations on the colony spreading behavior. As we are dealing with cancer

cells here, the aim is to identify biomarkers which correlate to wells in which we observe a slowing

down phenomenon in the colony spreading or ultimately stopping the spreading process. Even the

observation of an increasing spreading speed related to certain treatments can reveal new insights

on the mechanisms of the cell colony. Consequently, we are in general not interested in wells where

no colony forms at all but rather in those where we can extract new information from the growth

process of a cell population to gain more insights about the spreading of cancer cells by considering

their exposure to di�erent treatments.

At the beginning of this NoMADS cooperation on cell colony development, the standard proce-

dure was that AstraZeneca biologists investigated the phase contrast images manually and chose

relevant wells and their time series by visual inspections. This manual detection and investigation

of growing colonies is in�uenced by subjective assessments and di�cult to replicate. An automated

way to process the data set, �ltering out relevant wells with growing colonies, would already be

an improvement over the time-consuming and cumbersome manual assessments of growing cell

populations.

In our project, we aim for a software solution using image analysis, mathematical modeling and opti-

mization to support AstraZeneca biologists in the future in their evaluation process. Our main goal

is to extract new spreading properties related to the growing process of a cell population. We want to

capture the area covered by the cell population as well as temporal information on the development

of the cell colony. We stress that we are indeed interested in an approximation of the colony area

and do not focus on single cell detection or single cell tracking.
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2.2 Motivation for cell colony investigation

To gain a better understanding of the temporal development of a cell population, we use mathematical

modeling to explore properties like spreading speeds and spreading directions, cf. Chapter 4. At the

same time we measure the growth of the colony by detecting the area covered by cells. Moreover,

we want to separate di�erent parts within the colony based on varying texture appearances. One of

this subcolony regions represents cells with “normal” appearance for which we assume that they can

perform mitosis to contribute to even more colony growth. The second subcolony attracts attention

due to a remarkable change in texture in the images. For this colony area di�erent interpretations are

valid. The �rst interpretation is that this could reveal areas of apoptotic cells and cell debris where

no more colony growth is to be expected. On the other hand, the striking texture changes could

also re�ect regions of the colony where cells are very closely packed, lying on top of each other and,

thereby, bringing forward this distinct texture where no single cell segmentation is possible anymore

for the given image quality. As the exact biological background is not yet fully understood, we call

these regions with striking texture “abnormal” colony parts.

In Figure 2.2, we show an example patch for a colony region considered to be “normal” (cf. Figure 2.2a)

and another cropped image representing an area within an “abnormal” colony region (cf. Figure 2.2b).

While in the �rst image patch single cells are perceivable, the cryptic texture in the second image

conceals the present cell population signi�cantly. In Section 3.1, we introduce the given image data

more thoroughly and go into more details considering the appearing texture changes.

(a) A patch showing cells in a“normal” colony re-

gion.

(b) A patch representing an “abnormal” colony

area.

Figure 2.2: Example image patches for the two di�erent subcolonies.

In Figure 2.3 a sketch is used to visualize a growing cell population in a circular well domain over

time. This draft re�ects the initial cell at the beginning and a growing accumulation of cells over time.

In the last well, single cells are no longer distinguishable in the center part of the cell population;

representing a similar texture change we observe in the real data set.

Figure 2.3: A sketch of a growing cell colony.

A closer evaluation of this second subcolony with the signi�cant texture change requires additional

imaging. With a �uorescence tag or a stain, individual cellular compartments such as the nucleus or
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the cytoplasm could be labeled and made visible in a new color channel. Actually, the “color image” is

also a grayscale image which we consider to re�ect a certain color channel. For example, we visualize

a green �uorescent protein (abbreviation: GFP) [80] in a green color channel and a red �uorescent

protein (abbreviation: RFP) in a red color channel whereas a DAPI staining is usually shown in a blue

channel. The choice of a speci�c color channel is based on speci�c �lter and presentation settings.

The naming and the usual color channel representation are based on the emission intensity and

spectra depending on the emission and excitation wavelength. Without going deeper into the details

of �uorescence microscopy, we refer the interested reader to [30] for a more thorough introduction.

To stress the importance of �uorescent proteins in cell analysis, we point out that Osamu Shimomura,

Martin Chal�e and Roger Y. Tsien were awarded with the Nobel Prize in Chemistry “for the discovery

and development of the green �uorescent protein, GFP” in 2008 [57].

As the investigated cells already have a histone-red-�uorescent protein tag, the preferred way is to

record a time course consisting directly of phase contrast images and the red color channel. This

allows to observe the development of labeled nuclei over time. If the color data allows nuclei segmen-

tation, one can derive the exact number of cells within the colony for each time point. In contrast

to this, a DNA marker based on a DAPI staining, would support the estimation of total cells in the

culture only for one speci�c time point as the staining is applied to dead cells after �xing them and

permeabilising the cells’ membranes. Consequently, this staining impedes an estimation of the total

cell number over a certain time course. For more information on the DAPI staining, we refer to the

article by Kapuscinski [39]. Instead of the DAPI end point staining, one could also consider live-

cell-nuclei stains based on Hoechst �uorescent dyes [13]. This is an alternative for live cell staining.

However, the Hoechst staining requires a dye to intercalate with the cells’ DNA and is toxic to cells

in the long term, i.e., it makes the cells ultimately sick. In this respect, we do not suggest this staining

for time course analysis either.

In color channel images, one could aim for single cell counting by counting detected cell nuclei after

segmenting them. With a speci�c number of cells counted in one image, one could estimate the cell

density within the colony based on the previously segmented colony area. For now, it is unclear if

segmenting individual nuclei is achievable — especially in the second colony area where no single

cells are perceivable. Without having the color channel accessible, we cannot predict to get reliable

nuclei segmentation results. However, if the image quality allows nucleus counting after segmen-

tation, this will facilitate the investigation of the hypothesis of increasing cell densities in areas of

those remarkable texture changes.

The deeper analysis of what exactly is happening in the second subcolony with the striking texture

is out of the scope of this thesis. Here, we aim for a model capturing two di�erent colony subregions.

Further on, we will only di�erentiate between colony parts of the �rst subcolony and the second

subcolony. In the course of this thesis, we call the �rst one where single cells are still visible and

identi�able normal colony area. The second part of the colony where the new texture in the images

does not reveal single cell boundaries is described as the abnormal subcolony in the further course.

In the next chapter on preliminary image processing, we focus on the given data set by highlighting

the special texture observable in the images. Even more, we introduce texture features which we will

use in the later course to distinguish the di�erent colony regions.
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3
Preliminary image processing & feature

images

In this chapter, we investigate the present image data in more details and focus on texture properties.

Based on these, we generate feature images which capture the growth process of developing cell

colonies.

To get a �rst idea of the spreading process of the cell colonies, we apply classical image processing

approaches. With the help of segmentation and registration methods, we are able to calculate an esti-

mate for the colony area and to track the moving colony fronts over time (cf. Section 3.2). However,

before we delve into the details, we present in Section 3.1 an example of a growing colony to illustrate

the spreading process and also the image quality we are dealing with. We highlight the remarkable

texture within a cell population observable in the images and already introduce the relevant texture

features we use in the later course of this work when approaching the colony development from

a mathematical perspective. For this purpose, we already present the mathematical context of the

feature images and theoretical concepts related to noise e�ects in�uencing the feature data in Sec-

tion 3.3, more precisely in Section 3.3.1. In our setting, we exploit local texture properties to calculate

feature images. They are introduced in Section 3.3.2 in particular. In Section 3.3.3, we conclude with

alternative texture descriptors which could potentially be used to derive feature images as well.

3.1 Introduction to the image data set

In this section, we focus on the given image data and present an example of a growing colony ob-

served in well B4 on plate 1 at selected time frames. In the further course of this subsection, we

highlight texture changes when zooming in to small subdomains in the imaging �eld of view.

The growing colonies are captured in time-lapse phase contrast images and for visualization aspects,

we apply a limited color range in the preview of the selected time points in Figure 3.1. By this, we

achieve a contrast enhancement within the well’s domain and the colony spreading is better per-

ceivable by eye. In the �rst state in Figure 3.1a, it is very di�cult even for experienced biologists to

locate the initial cell. Due to the imaging quality, single cell detection is not straightforward and in

this example there are several spots in the left upper quadrant of the well which either could be the

initial cell or only mark some arti�cial structures. Anyway, there are even more spots visible which
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3 Preliminary image processing & feature images

(a) Initial state. (b) State six after approx. 11 days.

(c) State seven after approx. fourteen days. (d) State eight after approx. eighteen days.

Figure 3.1: Colony development in well B4 of plate 1 (limited color range for contrast enhancement).

are slightly out of focus and, consequently, appear a bit blurry (cf. right lower quadrant or middle

of lower half of the well). Since we are interested in the total colony domain and not in detecting

single cells, those drawbacks because of the image quality are no obstacles to detect global colony

estimates in the further course.

In the given images, we are facing even more artifact structures than only out of focus objects. We

can observe re�ections and wave-like structures close to the well’s boundary. Those might arise from

movements in the liquid media when positioning the well for imaging and the re�ections might occur

due to lightning e�ects on the well’s boundaries during the imaging process. In some images there

are also other re�ections present outside of the well, cf. Figure 3.1a and Figure 3.1c. The strategy

we are following to deal with those artefacts is to crop them out of the images by �rst segmenting

the well’s domain and then focusing only on the well’s domain itself. By using a slightly shrinked
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3.1 Introduction to the image data set

version of the well’s domain as a cropping frame, we also get rid of the brighter shining e�ects close

to the well’s boundaries.

To be more precise, we only determine for one reference well its domain by applying Chan Vese seg-

mentation [14]. This results in a reference well domain which we use to register all other wells’ time

frames �rst and then cropping them to a smaller �eld of view within the wells’ areas with a shrinked

version of this reference domain. The registration step is necessary when using one reference well

domain since the wells are not positioned completely identical during the imaging process so that

slight shifting e�ects are observable when comparing several images. We apply a rigid registration

approach, i.e., only allowing “rigid” transformations as rotations or translations, via the Matlab

function imregtform [53].

To conclude the short excursion on artefacts in the images, it is also important to mention that in

rare cases we observed bubbles in the media or out of focus structures revealing particles or small

hairs on top of the wells’ lids, which might in�uence the colony segmentation later on. Since we are

aiming for a global software solution for the colony detection task, we do not focus on removing

artefacts present in only a few images of the data set. We rather accept some mis-segmentations due

to rare artifact structures in the images.

(a) Colony sketch marking the initial state.

(b) Well B4 on plate 1 at the initial state.

(c) Zoom in to 120 × 120 pixels. (d) Zoom in to 50 × 50 pixels. (e) Zoom in to 20 × 20 pixels.

Figure 3.2: Small zoomed in square domains in initial time stamp of well B4 of plate 1.

In Figures 3.2 to 3.5, we focus on the growing colony at the selected time points individually. After a

sketch of the current development state, we repeat again the microscopy images with small arti�cial
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squares in pink and yellow added. We zoom into these small windows and add another close-up

within the yellow frame highlighted with a green frame. In contrast to the images shown in Figure 3.1,

we do not apply a limit color range here. Instead we use the original color scale which impedes the

manual colony detection. However, we use the small square domains to zoom in to those small

regions of interest. By this, we facilitate the inspection of texture changes based on the original color

scale in those subdomains over time while the colony is developing.

Coming back to the initial state when the image of well B4 in Figure 3.1a is recorded, we want to

stress that there is not yet a colony developed and the little squares in pink and yellow focus on a

background region of the well. In Figure 3.2, we zoom into these little squares for the �rst time point

of the time series. We observe that the grayscale values do not di�er a lot in this background patch

although it is not one constant grayscale value. But compared to the other time points presented in

Figures 3.3 to 3.5, this background region is a smooth gray tone without a huge range of grayscale

values.

(a) Colony sketch marking the sixth state.

(b) Well B4 on plate 1 at the sixth state.

(c) Zoom in to 120 × 120 pixels. (d) Zoom in to 50 × 50 pixels. (e) Zoom in to 20 × 20 pixels.

Figure 3.3: Small zoomed in square domains of well B4 of plate 1 after approx. 11 days (sixth state).

In the time frames 6, 7 and 8 depicted in Figures 3.1b to 3.1d, the small square windows focus on

regions where cells are located and where the cell colony emerges. We focus on small zoomed in

windows in Figures 3.3 to 3.5. While in Figure 3.3c single cell features are perceivable with brighter

structures marking cell boundaries or dark spots highlighting nuclei, still not every single cell is

distinctively identi�able. Moreover, we notice that cell shapes di�er. While some cells are more elon-

gated or stretched, cells that are about to perform mitosis are rounding up and showing the typical
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bright halo e�ect around them [32]. It is worth mentioning that in this early stage of an emerging

cell colony, single cells can be identi�ed and the colony region is not yet overcrowded.

In the closest zoomed in version in Figure 3.3d, we already observe a higher variance in the gray

values for this sixth time frame of the image series of well B4, compared to the previously described

initial state. Due to brighter pixels located close to cell boundaries and darker nuclei pixels this gray

value distribution is signi�cantly di�erent from the smooth gray tones in a background patch shown

in the previous Figure 3.2d.

For the following recorded time frame number 7, we observe a more crowded population in Figure 3.4.

In the pink zooming window in Figure 3.4c, it looks like the focused well area is densely occupied

by cells. Still the brighter pixels are hints for cell boundaries. Compared to the previous state in

Figure 3.3c, the single cells look more squeezed as there is not enough space for them to stretch out.

Even more, we want to highlight that we still observe darker spots pointing to cell nuclei. Still, we

already see more blurry grayish regions where cell boundaries are no longer detectable by visual

inspection. We point out that those areas resemble background regions on a very �ne scale and might

impede di�ering between background, i.e., empty regions, and colony regions where cell boundaries

are blurred.

(a) Colony sketch marking the seventh state.

(b) Well B4 on plate 1 at the seventh state.

(c) Zoom in to 120 × 120 pixels. (d) Zoom in to 50 × 50 pixels. (e) Zoom in to 20 × 20 pixels.

Figure 3.4: Small zoomed in square domains of well B4 of plate 1 after approx. fourteen days (seventh

state).

For the �nal state number 8 presented in Figure 3.5, we stress that the variance of gray values is even

larger than compared to the previous state in Figure 3.4. We observe more dark pixels and also more
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bright regions. It is not straightforward to detect individual cells here. Especially, the very dark and

very bright pixels are striking. The dark ones could either be related to apoptotic cells or cell debris

or they could reveal in combination with the very bright pixels cells lying on top of each other. If the

cell colony is very crowded such that cells start to lie on top of each other, some cells will move out

of focus. Consequently, dark and bright pixels could possibly reveal shadowing e�ects due to those

out of focus objects as well.

(a) Colony sketch marking the �nal eighth state.

(b) Well B4 on plate 1 at the eighth state.

(c) Zoom in to 120 × 120 pixels. (d) Zoom in to 50 × 50 pixels. (e) Zoom in to 20 × 20 pixels.

Figure 3.5: Small zoomed in square domains of well B4 of plate 1 after approx. eighteen days (�nal

state).

Once more, we want to stress that the biological interpretation of this texture is not intuitively

straightforward. To get an idea what exactly is happening in those dense regions, additional imaging

is required. For example, another color channel marking single cells to allow counting them after

segmentation of this new signal would reveal new information that helps to identify the biological

meaning of those areas. In the scope of this thesis we do not go deeper into details of this analy-

sis. We rather concentrate on two di�erent colony areas in the further course — one for the region

where single cells could be visible (“normal” cell colony) and the second one where we observe the

signi�cant texture change such that single cells are no longer distinguishable (“abnormal” cell colony).

In the presented small patches we can observe the increasing variance of grayscale values over

time. In Figure 3.6, we show histograms of the gray values present in the depicted 50×50 pixels

patches for the time points 1, 6, 7 and 8 again. Those small subpatches are extracted from similar
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colony regions as the ones given before. The histograms highlight the increasing variance of occur-

ring grayscale values in those small square subdomains.

Figure 3.6: Gray value distributions for small subpatches within well B4 at time frame 1, 6, 7 and 8

in one histogram.

Figure 3.7: Gray value distributions for small subpatches within well B4 at time frame 1, 6, 7 and 8

in separate histograms.

Instead of overlaying the histograms for the di�erent subpatches, we present in Figure 3.7 the his-

tograms separately. Here, the interquartile ranges of the histograms are marked with dashed lines.

We observe that the limits of the x-axis for the di�erent histograms are changing signi�cantly and

this is true for the interquartile ranges as well. In the background regions depicted in the �rst patch

with the red frame, we get an interquartile range of smaller than 0.01 whereas this property increases

when entering a colony region (green frame) up to a value around 0.07. In the more crowded patches

of cell colonies at frame 7 and 8, we get interquartile ranges of about 0.17 and even 0.34. This re-

19



3 Preliminary image processing & feature images

�ects the increasing presence of very dark and very bright pixels whereas in the �rst patches the

grayscale values are concentrated closely around a value of 0.41 which relates to the smooth grayish

background.

In the �nal Section 3.3 of this chapter those gray values play an even bigger role when we describe

the selected feature set that we use for the upcoming colony analysis. Before we focus more on those

features, we start with a short detour: With the help of segmentation results of the colony area, we

motivate in Section 3.2 the further spreading analysis.

3.2 Initial colony segmentation and moving fronts

One common task in image processing when dealing with microscopy data is segmentation. In the pro-

cess of image segmentation, the image gets split into several distinct parts — or segments — consisting

of neighbouring pixel groups which share a common property. When dealing with grayscale images

dividing the domain into foreground and background, for example, is one classical segmentation

task and can be accomplished by grayscale thresholding. Each pixel gets assigned to a certain pixel

group depending on its gray value and if it is below or above the selected threshold value. Another

well known approach is k-means clustering which is used to generate a segmentation based on the

gray or color values in an image. Based on the value of each pixel, the image is partitioned into k
di�erent segments which not necessary need to be connected. With the k-means approach, each

pixel is assigned to that segment with the nearest mean value of the occurring gray values in that

partition. In other words, we can say each pixel is labeled with one of k labels to identify the cluster it

belongs to. In this light, we stress that the segmentation task can also be interpreted as a classi�cation

task since every pixel is labeled — or classi�ed. All pixels with the same label are then considered to

belong to the same object or similar structures. Labeling can also be achieved based on a di�erent

property. A famous example is edge detection where lines separating di�erent objects are identi�ed

based on their gradient values.

Without going into further details on possible segmentation approaches, we refer the interested

reader to the work of Kristian Bredies and Dirk Lorenz. In their book on Mathematical Image Pro-

cessing, various techniques for image analysis are introduced [11]. Furthermore, we recommend

the book on Pattern Classi�cation of Duda et al. [19] for more information on segmentation and

clustering approaches as for example the k-means algorithm.

An intuitive way to get an idea of the spreading colony and its moving front is based on segmenting

the colony area. By applying a combination of spatio-temporal gradients, thresholding and smoothing

with morphological operations, an estimate for the colony area can be identi�ed. Without describ-

ing the implemented task-speci�c segmentation approach in full detail, we just brie�y motivate the

di�erent substeps. Although the grayscale images are of low contrast, cell boundaries are observable

in the initial states. As shown in Section 3.1, cell boundaries are prominent due to a brighter halo

e�ect or a darker shadow e�ect compared to the background or the cell’s body. Both e�ects result

in spatial gradient information. The same holds true for more occupied colony regions at later time
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3.2 Initial colony segmentation and moving fronts

stamps because of the signi�cant texture changes — although single cell boundaries are rarely visible

themselves.

Adding temporal gradient information based on frame di�erences, the growing colony region is

highlighted. By thresholding those gradients, we get a rough estimate of the colony area. With the

help of morphological operations (dilation and erosion, image opening and closing, cf. [17]), we �ll

gaps and smooth the colony area. As we are not interested in single cell tracking, it is only a slight

trade o� that we miss some single cells in this approach. In total we can assume that we detect about

90% of the colony area with this approach. In Figure 3.8 the segmented colony area for well B4 of

the �rst plate at the �nal state after approximately 18 days is shown exemplarily. We observe in

Figure 3.8a that indeed not all single cells are segmented, especially at the right lower colony border

we miss a few cells. We refer to Figure 3.1d for a contrast enhanced preview of this colony state. We

point out that the segmentation map in Figure 3.8a still serves well as an initial global estimate for

the colony region and its binary map is shown in Figure 3.8b.

(a) The boundary of a cell colony (red) on cropped

original data.

(b) A binary mask of the colony area with the

well’s border in purple.

Figure 3.8: Segmentation result for the cell colony in well B4 of plate 1 at the �nal state.

Based on those binary maps for the colony regions, we track the moving colony fronts. By applying

again morphological operations, we �ll up the front line and remove some detached objects (or ar-

tifacts) in the mask that are not linked to the main colony area and too small. With those smeared

front lines we generate a map displaying the growing colony region, cf. Figure 3.9. The colored front

regions show two main aspects. On the one hand they represent the gain of colony area between two

consecutive time stamps. On the other hand, the time stamp when the new front line is observed in

the microscopy data is depicted in the color of the region area. This map already reveals in a very

condensed way the colony growth over time for biological assessments. To facilitate the evaluation

process, those moving wave fronts are plotted in a grid structure resembling the original plate map (cf.

Figure 2.1) as shown in Figure 3.10. This representation helps to identify at a single glance in which

wells growing colonies are present. Moreover, it allows a comparison between di�erent biomarkers:

As always three neighboring columns relate to the same biomarker, one can observe that for the
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biomarker of columns seven to nine most colonies are present on the �rst plate. With the color-coded

time stamp information, the growing colonies are also comparable with respect to their initial growth

starting time point. We remark that the second and third columns are left blank in this experiment

due to too few initial cells for this biomarker. Those empty occurences were already described in

Section 2.1. Columns 13 to 15 are only �lled on the �nal plate to avoid starting a sixth plate for only

one biomarker group. For this reasons, the last three columns are empty as well. Finally, we highlight

that well B4 shown in a magni�ed version in Figure 3.9 is present in Figure 3.10 in the second row

and forth column according to the alpha-numerical numbering of the wells per plate.

Figure 3.9: Map of growing cell colony in well B4 of the �rst plate with color-coded observation

time stamps (in days) for the moving front lines.

The colony growth observable in those maps arouses our interest in the spreading process of cell

colonies. Even more, the question comes up if we can derive spreading properties from the data with-

out performing a colony segmentation �rst. In the following chapter, we use mathematical modeling

to describe the spreading process.

In the further course of this thesis, we aim for an approach considering a spreading model and

the given data at the same time to extract properties describing the colony growth directly from

the image data via numerical optimization techniques. Therefore, we derive feature images from

the microscopy data which will be of particular importance in the later optimization and which are

introduced in the next subsection in more detail.
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Figure 3.10: Plate map of moving colony front lines for the �rst plate.

3.3 Feature images for colony analysis

Based on the given microscopy data capturing the development of growing cell colonies, we introduce

feature images. The feature images are implemented in the optimization process later to automati-

cally derive spreading properties correlated with a mathematical model based on the original data.

In this way, we want to extract spreading information on the growing cell population observable in

the microscopy images.

The main goal of the �rst part of this section is deriving estimates for the probabilities when we

consider the feature images to be corrupted by Gaussian noise. After that we show concrete examples

for feature images based on local texture information and expand on alternative feature descriptors.

3.3.1 Theoretical background of feature images

In this section, we focus on the general setting and the theoretical background of the used feature

images. They are based on the given imaging data and, additionally, we consider them to be corrupted
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3 Preliminary image processing & feature images

by Gaussian noise. We give a series of de�nitions and propositions related to the applied concepts.

The main aim of this section is to develop probability measures related to the disturbed feature

images plus certain estimates that we make use of in the later course of this work when dealing with

existence and convergence results related to the optimization problem (cf. Section 5.4).

We start with a basic de�nition of a feature image I1 in an abstract setting after introducing the

spatio-temporal domain it is living on. We complement this de�nition with a uniform probability

distribution that we relate with this space in the further course.

De�nition 3.1 (Semi-discrete spatio-temporal domain ΩT with a uniform probability distribution)

Based on a rectangular domain Ω = [0, L] × [0,W ] in ℝ2 and a spatio-temporal cylinder Ω × [0, T ]
with T > 0, we de�ne the semi-discrete spatio-temporal domain by

ΩT = Ω × {t1,… , tnT }

where we consider discrete time points {t1,… , tnT } ⊂ [0, T ], i.e., we already assume a certain dis-

cretization in the temporal domain. By L and W , we denote the length and width of the rectangular

spatial domain while the end time point of the time interval is denoted by T . The total number of

discrete time points is denoted by nT .

We consider a uniform probability distribution related to the spatio-temporal domain ΩT de�ned

as

PΩT (A) =
nT
∑
i=1

∫

A∩(Ω×ti)

1
� (ΩT )

d� (x , ti) =
1

nT � (Ω)

nT
∑
i=1

� (A ∩ (Ω × ti))

for A ∈ B (ΩT ). The multi-dimensional Lebesgue measure related to Ω ⊂ ℝ2 is denoted by � here.

We remark that we use

� (ΩT ) = nT� (Ω) (3.1)

without specifying a separate measure for the semi-discrete spatio-temporal domain. In this sense,

we use

∫

ΩT

f (x , t) d (x , t) =
nT
∑
i=1
∫

Ω

f (x , ti) dx

for the integration of a function f ∶ ΩT → ℝ.

After de�ning our spatio-temporal domain ΩT , we introduce the feature image and the related prob-

ability measure.

De�nition 3.2 (Feature image I1)
The feature image I1 is given as a function living on the image domain and mapping to a feature

space F = ℝn

I1 ∶ ΩT → F . (3.2)
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3.3 Feature images for colony analysis

The probability that I1 maps values fromΩT to a measurable F ∈ B (F) is given as the pushforward

measure with

PF (F) ∶= I1#PΩT (F) = PΩT (I
−1
1 (F))

with PΩT being the probability measure related to the measurable space (ΩT ,B (ΩT )) (cf. De�ni-

tion 3.1).

This �rst de�nition of the feature image I1 lives in a very general setting. At this point, we only say

that the feature image maps into some space F = ℝn without specifying the n ∈ ℕ here while we

consider a three dimensional feature space later on. The general approach allows us to formulate

the optimization problem later based on an arbitrary feature image I1. Of course, although we grant

some �exibility here, we stress that the feature image still needs to correlate to the original data.

Before giving two examples for feature images, we expand brie�y on the nature of the original

microscopy image data. We assume that the original images consist of only one channel, consequently

mapping to ℝ, and are piecewise continuous in a perfect setting. Due to inaccuracies in the image

acquisition process, we observe random intensity oscillations in the microscopy images. These

disturbances of the original images are known as “noise”. There is a whole �eld in image processing

dealing with denoising approaches to approximate the underlying original images by smoothing out

noise e�ects while still preserving meaningful structures in the image as for example edges [11, 12].

Without analyzing those noise e�ects prominent in the original data in more detail, we assume that

the feature images will also be in�uenced by noise e�ects.

Moreover, we assume that the noise e�ect is independent of the location within the image domain

and the disturbances in one location of the feature image are independent to the disturbances in

another location. Additionally, we suppose that we are facing an additive noise model with zero

mean in every location on the image domain. Lastly, we also presume that the noise level is signal

independent, i.e., the corruption is independent from the underlying feature values. One commonly

used approach to model such noise e�ects is to apply additive Gaussian noise with zero mean [12].

We summarize this e�ect of Gaussian noise in an de�nition for our noise image.

De�nition 3.3 (Noise image IN )

Let (Ω0,E , P0) be a probability space. We denote the Gaussian noise disturbing the feature images

with the real-valued multi-dimensional random variable

IN ∶ Ω0 ×ΩT → F = ℝn.

We also call this random variable noise image and consider the observation space ℝn to be equipped

with the related Borel �−algebra B (ℝn). For every location (x , t) ∈ ΩT , we consider the features

of the noise image to be identically distributed such that

P0 (IN (⋅, (x , t)) ∈ A) =N (0, �21n×n) (A) ∀A ∈ B (ℝn)

holds for an arbitrary � > 0. We take into consideration that the features are independent of each

other with the multivariate Gauß distribution N (0, �21n×n) for which the covariance matrix is
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3 Preliminary image processing & feature images

concentrated along the main diagonal. Here, the identity matrix in ℝn×n is denoted with 1n×n.

Moreover, we assume that the family of random variables (IN (⋅, (x , t)))(x ,t)∈ΩT are stochastically

independent to take into account that the disturbances in one location do not correlate to another

location.

The pushforward of the probability measure P0 with respect to IN coincides with the Gaussian normal

distribution. In preparation of later proofs, we already express the e�ect of the additive Gaussian

noise with zero mean and standard deviation of �2 on the related image histograms or, more precisely,

on the related probability density functions.

De�nition 3.4 (Probabilities related to the noise image)

For the probabilities related to the noise image given by

IN (⋅, (x , t)) ∼N (0, �21n×n) ∀ (x , t) ∈ ΩT

we introduce an abbreviated form with

PN (F) =N (0, �21n×n) (F)

= IN (⋅, (x , t))# P
0
(F)

for all F ∈ B (F). The probability measure of the Gaussian normal distribution is absolutely

continuous with respect to the Lebesgue measure and we denote the corresponding probability

density function by pN with

pN ∶ F → ℝ+

PN (F) = ∫
F
pN (f ) df ∀F ∈ B (F)

PN (F) = ∫
F

pN (f ) df = 1.

Given this noise image, we formulate now our disturbed feature image I d

1 which consists basically of

the original feature image I1 with additive gaussian noise.

De�nition 3.5 (Disturbed feature image I d

1 )

With the above de�nitions, we consider I1 to be the feature image and IN to be the noise image.

The disturbed feature image is then de�ned as

I d

1 ∶ Ω0 ×ΩT → F , I d

1 (!, (x , t)) = I1 (x , t) + IN (!, (x , t)) . (3.3)

The disturbed feature image is a real-valued multi-dimensional random variable as well.

To prepare the derivation of probabilities related to the disturbed feature image I1, we show in the

next step that the feature image I1 and the noise image IN are stochastically independent.
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Proposition 3.6 (Stochastic independence of the feature image and the noise image)

We consider the probability space (Ω0 ×ΩT ,E ⊗B (ΩT ) , P∗) with P∗ ∶= P0 ⊗ PΩT . Let I1 be the

feature image de�ned in De�nition 3.2 and IN be the noise image introduced in De�nition 3.5.

For the extended feature image

Ī1 ∶ Ω0 ×ΩT → F , Ī1 (!, (x , t)) = I1 (x , t)

it holds that it is stochastically independent to the noise image IN .

Proof. We consider the distribution of the joined mapping (Ī1, IN ) ∶ Ω0 × ΩT → F × F . In this

context, we examine Ī1, IN and (Ī1, IN ) as random variables and use the Theorem 2.21 in [40]. To

show stochastic independence, we need to prove that

(Ī1, IN )# P
∗
(E) = (Ī1#P∗)⊗ (IN #P∗) (E)

for all measurable E ⊂ F ×F holds.

We show the statement for E ∶= F1 × F2 with arbitrary F1, F2 ∈ B (F) and split the proof in following

three separate statements.

1. (Ī1, IN )# P
∗ (F1 × F2) = PF (F1)PN (F2)

2. Ī1#P∗ (F1) = PF (F1)

3. IN #P∗ (F2) = PN (F2)

Statement 1:
To begin with, we state that for the set Z ∶= Ī−11 (F1) ∩ I−1N (F2) ⊂ Ω0 ×ΩT the following equivalence

(!, (x , t)) ∈ Z ⇔ Ī1 (!, (x , t)) = I1 (x , t) ∈ F1 ∧ IN (!, (x , t)) ∈ F2

holds and this implies

1Z (!, (x , t)) = 1F1 (I1 (x , t)) ⋅ 1F2 (IN (!, (x , t))) . (3.4)

With this at hand, we derive

(Ī1, IN )# P
∗
(F1 × F2) = P∗ (Ī−11 (F1) ∩ I

−1
N (F2))

= P∗ (Z)

= ∫
Ω0×ΩT

1Z (!, (x , t)) dP∗ (!, (x , t))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
d(P0⊗PΩT )(!,(x ,t))

Equation (3.4)

= ∫
Ω0
∫
ΩT

1F1 (I1 (x , t)) ⋅ 1F2 (N (!, (x , t))) dPΩT (x , t) dP
0
(!)

Fubini’s theorem

thm. 2.16 in [40]

= ∫
ΩT

1F1 (I1 (x , t))∫
Ω0

1F2 (N (!, (x , t))) dP
0
(!)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PN (F2)

dPΩT (x , t)

= ∫
ΩT

1F1 (I1 (x , t)) dPΩT (x , t)PN (F2)

= PF (F1)PN (F2) .
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✓

Statement 2:
We exploit the fact that Ī1 is de�ned to be “constant” for any ! ∈ Ω0 and derive

Ī1#P∗ (F1) = P∗ ({(!, (x , t)) ∈ Ω0 ×ΩT ∣I1 (x , t) ∈ F1})

= P∗ (Ω0 × I−11 (F1))

= P0 ⊗ PΩT (Ω0 × I
−1
1 (F1))

= P0 (Ω0)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=1

PΩT (I
−1
1 (F1))

De�nition 3.2

= PF (F1) .

✓

Statement 3:
Similarly, we derive

IN #P∗ (F2) = P∗ ({(!, (x , t)) ∈ Ω0 ×ΩT ∣IN (!, (x , t)) ∈ F2})
Fubini’s theorem

thm. 2.16 in [40]

= ∫
ΩT
∫
Ω0

1F2 (IN (!, (x , t))) dP
0
(!)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=IN #P0(F2)=PN (F2)

dPΩT (x , t)

= PN (F2)∫
ΩT
1 dPΩT (x , t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= PN (F2) .

✓

By making use of the three statements, the assertion

(Ī1, IN )# P
∗
(E) = (Ī1#P∗)⊗ (IN #P∗) (E)

follows directly for all E = F1 × F2 for arbitrary measurable F1, F2 ∈ F .

One could also derive the stochastic independence based on the fact that I1 is actually deterministic

and, consequently, stochastic independent to any other stochastic event. With the stochastic indepen-

dence of the feature image and the noise image at hand, we delve into a statement on the probability

measure and probability density function for the disturbed feature image.

Proposition 3.7 (Probability density functions of the disturbed feature image I d

1 )

Given a feature image I1 and a noise image IN as stated in the previous De�nitions 3.2 and 3.5, we

use PF and PN as the related probability measures living on F . Let Pd

F
be the probability measure
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related to the mapping of the disturbed feature image, i.e., we consider it as the pushforward

measure

Pd

F
(F) ∶= I d

1 #P
∗
(F) = P∗ ((I d

1 )
−1
(F))

with the product measure P∗ = P0 ⊗ PΩT related to the measurable space (Ω0 ×ΩT ,E ⊗B (ΩT ))

again and with F ∈ B (F) arbitrary.

Then it holds for the probability measure of the disturbed feature image

Pd

F
(F) = ∫

F

PN (F − y) dPF (y) .

The related probability density function of the disturbed feature image is given as the convolution

of the measure PF with the Gaussian kernel pN resulting in

pd

F
(f ) = ∫

F

pN (f − y) dPF (y)

for f ∈ F and by integration with respect to the measure PF .

Proof. The statement follows directly with the stochastic independence of the extended feature image

Ī1 and the noise image IN considered as mappings from Ω0 ×ΩT to F and with the probability space

(Ω0 ×ΩT ,E ⊗B (ΩT ) , P∗) where P∗ denotes again the product measure P0 ⊗ PΩT . According to the

De�nition 2.32 in [40], it holds that the probability measure for the sum of two independent random

variables is given as the convolution of their individual probability measures. Consequently, we

derive for I d

1 de�ned in Equation (3.3)

Pd

F
= PN ∗ PF (3.5)

by making use of the previous statement on the stochastic independence of Ī1 and IN in Proposition 3.6.

Let F ∈ B (F) be measurable and arbitrary. Then it holds with Equation (3.5) and the convolution of

measures (cf. De�nition 14.17 in [40])

Pd

F
(F) = (PN ∗ PF) (F) (PN ⊗ PF) ({(f1, f2) ∈ F ×F ∣ f1 + f2 ∈ F})

= ∫
F
∫
F

1F (f1 + f2) dPN (f1) dPF (f2)

= ∫
F
∫
F

1F−f2 (f1) dPN (f1) dPF (f2)

= ∫
F
∫
F−f2

1 dPN (f1) dPF (f2) = ∫
F

PN (F − f2) dPF (f2) .

By making use of PN being absolutely continuous to the Lebesgue measure on F and with applying

the corresponding probability density function pN , we can extend this to

Pd

F
(F) = ∫

F

PN (F − f2) dPF (f2)

= ∫
F
∫
F
pN (f − f2) df dPF (f2)

Fubini’s theorem

= ∫
F
∫
F

pN (f − f2) dPF (f2) df

29



3 Preliminary image processing & feature images

with df marking the integration with respect to the Lebesgue measure on F . Finally, we receive

with this transformation the probability density function with respect to the Lebesgue measure on

F and related to the disturbed feature image and living on F to be given by

pd

F
(f ) = ∫

F

pN (f − y) dPF (y) .

The used concept of absolute continuity of measures is introduced more thoroughly in a later section

and we refer the reader especially to De�nition 5.5.

Before we continue with concrete examples of feature images, we comment on the e�ect of the

Gaussian noise when it comes to joint probability density distributions. Therefore, we start by

introducing a joint probability measure when considering feature images together with a second

“image modality”, i.e., in this context we include classi�cation images as a second data source regarding

joint probabilities.

De�nition 3.8 (Probability measures on classi�cation and joint spaces)

We assume that we have a second function I2 for a classi�cation image, mapping from the spatio-

temporal domain ΩT to the classi�cation space C = ℝ. Let the corresponding probability measure

be PC describing the probability that I2 maps values from ΩT to a measurable C ∈ B (C), i.e.,

PC (C) = PΩT (I
−1
2 (C))

with PΩT being the probability measure related to the measurable space (ΩT ,B (ΩT )) (cf. De�-

nition 3.1) again. We assume that PC is absolutely continuous to the Lebesgue measure and the

related probability density function is given by pC ∶ C → ℝ+ for which it holds that

PC (C) = ∫
C
pC (c) dc ∀C ∈ B (C)

PC (C) = ∫
C

pC (c) dc = 1.

We introduce the joint probability measure PF×C living on F × C with

PF×C (E) ∶= (I1, I2)# PΩT (E) = PΩT ({(x , t) ∈ ΩT ∣ (I1 (x , t) , I2 (x , t)) ∈ E})

for arbitrary E ∈ B (F × C) and for E = F ×C with F ∈ B (F) and C ∈ B (C), we can further derive

PF×C (E) = PΩT ({I
−1
1 (F) ∩ I

−1
2 (C)}) .

The joint probability measure corresponds to the probability of di�erent feature and classi�cation

combinations when regarding the pushforward of PΩT with respect to the joint mapping of the

feature image and the classi�cation image (I1, I2) ∶ ΩT → F × C.

To establish a relation between the joint probability measure PF×C and the individual measure on

the classi�cation space C, we apply the disintegration of measures. Our next theorem is oriented

on the disintegration theorem from [4] stated in Theorem 5.3.1 or, more precisely, on the remark
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following this theorem dealing with the disintegration for product spaces. We adapt the statement to

our setting concerning the product space F × C and cite the concept without focusing on its proof.

As we will use the concept of disintegration in the further course when deriving derivative terms

of histograms in Section 5.2.4, cf. Theorem 5.29 especially, again but in a slightly di�erent form, we

label the following theorem as the �rst version.

Theorem 3.9 (Adapted Disintegration Theorem — Version 1)

We consider the probability space (F × C,B (F × C) , PF×C) and the measurable spaces (C,B (C)),
(F ,B (F)). Let the natural projection onto the classi�cation domain C be

�C ∶ F × C → C

and let

� ∶= �C#PF×C = PF×C ○ �−1C

be a probability measure for the measurable space (C,B (C)) . Then each �ber �−1
C
(c) = F × {c}

can canonically be identi�ed with F for any c ∈ C. Moreover, there exists a �-almost everywhere

uniquely determined Borel family of probability measures � = {�c}c∈C related to the measurable

space (F ,B (F)) such that

PF×C (A) = ∫
C

�c (A ∩ �−1C (c)) d� (c) = ∫
C

�c ({(f , c′) ∈ A ∣ c′ = c}) d� (c)

holds for any measurable set A ∈ B (F × C). Furthermore, it holds

∫

F×C

g (f , c) dPF×C (f , c) = ∫
C

∫

�−1
C
(c)=F

g (f , c) d�c (f ) d� (c)

for every Borel map g ∶ F × C → [0,+∞].
We use the notation PF×C = (�,�) for a disintegration along C of the probability measure.

For the remainder of this section, we consider one �xed family of probability measures � = {�c}c∈C
for the disintegration of the joint measure PF×C with respect to its projection on the classi�cation

space C, i.e., the measure � = �C#PF×C . With this disintegration of the probability measure on the

joint space, we can establish a direct relation between the joint measure PF×C and the measure PC
related to the individual space C.

Proposition 3.10
We consider the probability measure PC related to the classi�cation space C and its probability

density function pC as de�ned in De�nition 3.8. Let (�,�) be the disintegration along C of PF×C
related to the projection map �C as formulated in Theorem 3.9. Then it holds that

PC (C) = �C#PF×C (C) (3.6)
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for any C ∈ B (C) and pC is also the probability density function to � = �C#PF×C when integrating

with respect to the Lebesgue measure on C:

� (C) = ∫
C
pC (c) dc (3.7)

Proof. Let C ∈ B (C) be arbitrary. We derive with the joint measure PF×C in De�nition 3.8

�C#PF×C (C) = �C# ((I1, I2)# PΩT ) (C)

= (I1, I2)# PΩT (�
−1
C
(C))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=F×C

= PΩT (I
−1
1 (F) ∩ I

−1
2 (C))

= PΩT (ΩT ∩ I−12 (C))

= PΩT (I
−1
2 (C)) = PC (C)

to prove the equality of the projected joint measure with the previously de�ned probability measure

related to the classi�cation space C. With this equality the statement on the probability density

function pC in Equation (3.7) follows directly.

Building up on Proposition 3.7, we focus now on the joint probability when considering a disturbed

feature image I d

1 a�ected by Gaussian noise.

De�nition 3.11 (Joint probability measure for disturbed features)

We introduce the joint probability measure Pd

F×C on F × C related to feature images corrupted by

Gaussian noise and the classi�cation images to be given by

Pd

F×C (E) ∶= (I
d

1 , I2)# P
∗
(E) = P∗ ({(!, (x , t)) ∈ Ω0 ×ΩT ∣ (I d

1 (!, (x , t)) , I2 (x , t)) ∈ E})

for arbitrary E ∈ B (F × C) and with P∗ = P0 ⊗ PΩT .

Since the Gaussian noise is only a�ecting the probabilities of related disturbed features, it is an

intuitive assumption to consider the disturbed joint probability resulting from convolution of the

original probability measure PF×C with the probability measure of the related noise model along the

subspace F . In the next proposition, we focus on this hypothesis.

Proposition 3.12
Let Pd

F×C , PF×C and PN be the introduced probability measures in De�nitions 3.4, 3.8 and 3.11.

Considering the convolution of measures, we state that

Pd

F×C = PN ∗F PF×C

holds with ∗F denoting the convolution only along the subspaceF . This joint probability measure

considering the noise e�ects on the feature images Pd

F×C is absolutely continuous with respect

to the Lebesgue measure on F × C. Based on the disintegration of PF×C = (PC ,�) along the
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classi�cation space C (cf. Theorem 3.9 and proposition 3.10), we can derive the related probability

density function to be given by

pd

F×C (f , c) = (pN ∗ �c) (f ) pC (c) .

Proof. To show the equality

Pd

F×C = PN ∗F PF×C ,

we consider the convolution of measures (cf. e.g. De�nition 14.17 in [40]) which acts in this case only

on values related to the space F , i.e., it holds

(PN ∗F PF×C) (E) = P∗ ({(!, (x , t)) ∈ Ω0 ×ΩT ∣ (IN (!, (x , t)) + I1 (x , t) , I2 (x , t)) ∈ E})

for an arbitrary E ∈ B (F × C). With this follows the statement directly with the disturbed feature

image I d

1 in De�nition 3.5 and Pd

F×C in De�nition 3.11.

With the Gaussian noise disturbing the feature images, we get that Pd

F
is absolutely continuous with

respect to the Lebesgue measure on the feature space F . Moreover, the probability measure PC is

considered to be absolutely continuous with respect to the Lebesgue measure on the classi�cation

space C and the corresponding probability density function is given by pC . Based on this and by

applying the disintegration theorem (cf. Theorem 3.9), we derive the joint probability density function

related to the joint measure Pd

F×C and living on the joint space F × C. For the disintegration of the

joint measure, we use PF×C = (PC ,�). We consider A ⊂ F × C to be measurable and derive

Pd

F×C (A) = (PN ∗F PF×C) (A)

= ∫

F

∫

F×C

pN (f − y) 1A (f , c) dPF×C (y, c) df

= ∫

F

∫

C

∫

F

pN (f − y) 1A (f , c) d�c (y) dPC (c) df

= ∫

F

∫

C

∫

F

pN (f − y) d�c (y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(pN∗�c)(f )

1A (f , c) dPC (c) df

= ∫

F

∫

C

1A (f , c) (pN ∗ �c) (f ) dPC (c)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=pC(c) dc

df

= ∫

F

∫

C

1A (f , c) (pN ∗ �c) (f ) pC (c) dc df

= ∫

F×C

1A (f , c) pC (c) (pN ∗ �c) (f ) d (f , c)

= ∫

A

pC (c) (pN ∗ �c) (f ) d (f , c) .

This proves that pd

F×C ∶ F × C → ℝ+ de�ned by pd

F×C (f , c) ∶= (pN ∗ �c) (f ) pC (c) is indeed the

probability density function of the probability measure Pd

F×C when considering integration with

respect to the Lebesgue measure on F × C. Moreover, the existence of the probability density
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functions shows the absolute continuity of Pd

F×C with respect to the Lebesgue measure on the joint

space F × C.

We conclude the excursion on probability measures and related density functions when considering

noisy features with a �nal estimation, that will be crucial in later proofs.

Proposition 3.13
We consider the probability measure PC on the classi�cation space C and the probability measure

Pd

F×C on the joint space F × C when including the e�ect of noisy features. For the related density

functions with respect to the Lebesgue measures the following inequality holds:

pd

F×C (f , c) ≤ ∥pN ∥∞pC (c) for all (f , c) ∈ F × C.

Proof. For arbitrary (f , c) ∈ F × C we obtain

pd

F×C (f , c) = (pN ∗ �c) (f ) pC (c)

= ∫
F

pN (f − y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤∥pN ∥∞

d�c (y) pC (c)

≤ ∥pN ∥∞∫
F

d�c (y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

pC (c)

= ∥pN ∥∞pC (c) .

We exploit here in the �nal step that �c for all c ∈ C is a probability measure on F . Moreover, we

use the fact that for the noise image IN which is N (0, �21n×n)-randomly distributed for a standard

deviation � > 0, we know that its probability density function pN is bounded in the in�nity-norm

with

∥pN ∥∞ <∞.

Due to the Gaussian noise model, the values of the disturbed feature image I d

1 can be distributed over

the whole feature space such that

I d

1 (!0,ΩT ) = F

for arbitrary !0 ∈ Ω0 holds. We assume that the occurring features in the original feature image I1
are bounded, i.e., the related probability measure has a bounded support. This is a valid assumption

when considering that the features are extracted based on gray values that are themselves naturally

bounded.

When thinking about the related probability distributions, we see that the application of a Gaussian

�lter which is itself not compactly supported, results in a probability distribution living on the whole

feature space such that

supp (pd

F
) = F
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holds. Because of the convolution with the Gaussian function pN , it holds that pd

F
converges towards

zero without ever reaching 0 for features “converging to in�nity” themselves in the sense that for

example their Euclidean norm converges to in�nity. To facilitate the later analysis, we introduce the

following subset of the feature space to achieve a lower bound for the probability density distribution

related to the disturbed feature image I d

1 .

De�nition 3.14 (Reduced feature space F
′
)

Let � > 0, � ≪ 1, be arbitrary but �xed. Then we de�ne the reduced features space as

F
′
∶= {f ∈ F ∣ pd

F
(f ) > �} .

For simpli�cations in later context we assume that the n-dimensional reduced space is given as the

Cartesian product F
′ = F ′1 × ⋯ × F

′

n. Additionally, we point out an interesting and important

interpretation of the noisy feature images in the following remark for later applications.

Remark 3.15. When considering the noise e�ect on our feature images, it is always depending on an

!0 ∈ Ω0. Indeed we regard I d

1 ∶ Ω0×ΩT → F as a random variable considering the joint measure space

(Ω0 ×ΩT ,E × B (ΩT ) , P∗). As we are including here the whole domain Ω0 instead of just focusing

on one arbitrary but �xed !0 ∈ Ω0, we remark that this corresponds to the interpretation that our

feature image for a certain time point t is not only a�ected by one noisy image but rater by a in�nite

number of noise images (considering all !0 ∈ Ω0).

As a result of this subsection, we derived an upper bound for the joint probability density function

in Proposition 3.13 and introduced the reduced feature space in the last de�nition. Both concepts are

strongly related to probabilities a�ected by the noisy features and are crucial for the later analysis of

our main optimization problem in Section 5.4.

After introducing the feature image and its noisy counterpart in a general setting, we focus next

on di�erent feature extraction approaches. We start with features derived from local basic texture

information.

3.3.2 Features based on local texture information

We are aiming for an optimization approach which facilitates the model �tting based on features ex-

tracted from the microscopy images. In this section, we describe some simple texture features which

we will use in the later numerical tests to validate the optimization approach. With minimum and

maximum gray values of small subregions in the images and also with local interquartile ranges, we

use properties often used in descriptive statistics to extract basic texture characteristics. Furthermore,

those features describe texture properties which are also perceivable for the human eye and so it

is more straightforward to link them manually with speci�c texture regions which are expected to

reveal particular areas of a cell colony.
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The texture features we are focusing on are based on the given gray values in the pixels of the

microscopy image. Inspired by the appearance of a cell with signi�cant cell boundaries, we derive

the following properties. In Figure 3.11a there is an individual cell located in the subpatch of a mi-

croscopy image revealing the underlying pixel grid. Based on the grayscale values, we derive local

maxima and local minima of the gray values, cf. Figure 3.11b. We observe that the cell is surrounded

by a brighter halo e�ect while the inside of the cell is noticeable due to the darker pixels compared

to the background area. When considering the grayscale values to be in a range between 0 and 1,

we consider the brighter pixels to have a larger gray value while the darker ones have a smaller

gray value. In the extreme cases, a black pixel corresponds to 0 whereas white represents a pixel

of gray value 1. Based on this de�nition, we apply local dilation and erosion operations with disk

�lter kernels to extract local minima and local maxima. The radii of the disk kernels di�er slightly.

While we use a larger radius for the local maxima of 10 pixels, we apply a smaller one of 5 pixels for

the local minima. The idea here is to ensure that the �lter for local maxima is large enough to avoid

dark spots within a cell after applying the dilation kernel. Likewise, we allow a smaller kernel for the

erosion �lter to focus on local minima because we want to enforce that the �lter stresses the dark

pixel inside a cell without increasing the cell’s outline a lot.

(a) Image patch of the

single cell revealing the

pixel structure.

(b) Gray scale values of each pixel on the subpatch with the single cell.

Figure 3.11: A single cell in a subpatch of a microscopy image.

We illustrate the extraction of local minima in Figure 3.12 and Figure 3.13. In Figure 3.12, we mark

disk shaped regions with a red, yellow and light blue circle in which we focus on the local minima.
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The center pixel of each circle is marked with a small rectangle and the pixel with the smallest gray

value is marked by a small hexagon in the same color as the corresponding circle region. Figure 3.13

shows the resulting image after the erosion process. The local minimum of each circle is assigned to

the corresponding center pixel marked again with a small rectangle.

For the given example subpatch with a single cell, we illustrate the result of the erosion and dilation

Figure 3.12: Gray scale values of each pixel on a sub patch with a single cell with circular regions

identifying local neighborhoods for the erosion operation.

processes for the extraction of local minima and maxima in Figure 3.14. Here, we clearly observe

that the extraction of local maxima is based on a greater �lter kernel such that the total cell area is

stressed by a bright spot in the local maxima image without returning any darker holes inside, cf.

Figure 3.14c. This also results in a slightly larger “cell area” in the local maxima image compared to

the cell’s region in the local minima image. Next to the local maxima and local minima gray values,

we also focus on the distribution of grayscale values in a small neighborhood. Therefore, we use for

the third texture feature the interquartile range (cf. [65]) of occurring gray values in a small square

neighborhood (25×25 pixels). We already introduced the interquartile ranges for small image patches

in Section 3.1 and illustrated this measure in Figures 3.6 and 3.7.

Finally, we exemplify those basic texture features for small subpatches in Figure 3.15. For four ex-

ample image patches at signi�cant time points, we plot the extracted texture features into the three

dimensional feature space, i.e., each dot in the middle three-dimensional feature plot represents a

pixel of the subimage framed in the same color. The patch for the �rst time point with the red frame
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Figure 3.13: Resulting gray values after eroding the image with a disk shaped kernel.

represents an empty �eld of view only showing the background of a well. In green boundaries, we

display a patch with separated, individual cells at the sixth time stamp. For the last two time points

(time stamp 7 and 8) the patches in a blue and purple frame show signi�cant changes in the texture.

The range of grayscale values is particularly higher here and no single cells are observable anymore.

In the three dimensional graph the �rst axis represents

1 − local minima.

We use this inverted version of the local minima to enforce an increasing course of extracted features

when moving forward in time. While for the �rst background patch we have a smooth gray tone, we

get increasing values for the local maxima and, respectively, decreasing values for local minima for

patches of later time points. All in all, we observe that for the given time points we get an increasing

course in all three plotted dimensions when proceeding in time. The extracted features accumulate

accordingly approximately on the related diagonal plane in the three dimensional plot.

Based on the nature of the gray values normalized between 0 and 1
1
, we conclude that the extracted

features are certainly living in

[0, 1]3 ⊂ F = ℝ3. (3.8)

1

In other contexts a normalization between 0 and 255 is also commonly used.
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(a) Original gray values of sub-

patch with single cell.

(b) Extracted local minima after

erosion operation.

(c) Extracted local maxima after

dilation operation.

Figure 3.14: Local texture features after erosion and dilation in comparison to original gray values.

Figure 3.15: Extracted texture information in the 3d feature space for four example subpatches for

signi�cant occurrences in the microscopy data.

With those three texture features we aim for an optimization approach to �t a given spreading model

to our data. Given those basic texture features, we could already aim for a �rst classi�cation of the

colony area based on thresholding in the feature space. As an example, we present in Figure 3.16 the

third texture feature representing the interquartile ranges for an example well at the �nal time point.

Additionally, we show the thresholded version classifying the well area into three di�erent segments:

The background area, a region with “normal” cells and the area of “abnormal” cells. Certainly, this

needs a further validation with biologists and possibly additional imaging of the cell colony.

Considering segmentation results for the total colony area based on those thresholded features for

example or as given in Figure 3.8, we can observe the spreading process of the cell colony in the real

data by focusing on the moving colony fronts based on the segmented colony area. In Figure 3.9

we already presented such moving colony fronts of a cell population in an example well over time.

The time points are re�ected in the varying colors of the moving front domains such that the earlier

time stamps correspond to blue wave fronts while the later ones are shown in purple and even pink

with a legend of time points given in days. Again, we stress that the segmentation results depend on

manually selected threshold values there.
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(a) Smoothed interquartile ranges revealing di�er-

ent colony sections.

(b) Classi�cation of di�erent regions in �eld of

view based on thresholded interquartile ranges.

Figure 3.16: The third feature representing local interquartile ranges of gray values reveals di�erent

areas within a cell colony.

As we want to reduce the pre-processing steps and use feature data close to the original data, we

apply the model �tting approach in the further course on the basic texture features presented in

this section. With this we avoid the necessity of hand-crafted threshold values for the segmentation

approach, plus allow model �tting for two subcolonies. We remind that we are not only focusing

on the spreading of the total cell population which is also represented in the segmentation masks,

but rather aim to derive spreading properties for a subcolony of “normal” cells and another one for

the “abnormal” cells. With a mutual information based optimization approach, we intend to derive

spreading properties based on the texture information which also reveal the di�erent colony areas.

We focus more on possible spreading models and on the optimization approach in the next chapters.

Before, we brie�y comment on other extraction methods to derive feature images that could be used

in the optimization process.

3.3.3 Alternative feature images

In this section we want to elaborate on three other feature extraction approaches that could be used

to incorporate the data into the optimization model. Brie�y, we discuss their bene�ts and drawbacks

individually and conclude with some further literature reference to extract texture properties from

imaging data.

In our optimization problem the feature images are our tool to link the applied spreading model

with the given data. One straightforward approach to incorporate the data is to use the given mi-

croscopy images as the actual feature image. This would accelerate the pre-processing signi�cantly

as we do not need a speci�c method to extract the features from the data. Then again, it is important

to take into account that the microscopy images might be a�ected by noise. Therefore, it could be

bene�cial to apply some pre-processing steps to smooth noise e�ects. This pre-processing is still
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faster than extracting several di�erent texture features. In comparison with the introduced local

texture features in Section 3.3.2, this smoothing can be implemented more e�ciently by applying a

�ltering method via convolutional operations. A famous approach for noise reduction is for example

to apply a Gaussian �lter [11]. Convolutional �lters are in this context superior to the texture fea-

ture extraction in Section 3.3.2 because the implementation is computationally expensive for those

non-linear �lters determining local minima, local maxima and local interquartile ranges.

Improving the used texture features is also a step forward in another direction. The features ex-

tracted in Section 3.3.2 are simple texture features and easy to grasp. Still, they are also sensitive to

di�erences in the imaging process. For example, variances in the exposure or lighting of the imaging

set up can have a great impact on the local minima and local maxima features. So in general, it

would be better to rule out such sensitivities by focusing more on the variances of the gray values in

small neighborhoods. Indeed, the local interquartile ranges are already a step in the right direction.

Calculating the variance or standard deviation of local grayscale values can contribute to identify

di�erences in varying colony regions more signi�cantly. Even more or in addition to this feature, one

could also calculate local entropy values based on small neighborhood regions. Entropy measures the

dispersion of probabilities for particular events, here for grayscale values, in certain neighborhood

regions [61] and it can be used to describe texture characteristics of a total image or in small local

sub patches as in out context [31]. We will focus on the di�erent interpretations for entropy in the

further course of this thesis when we introduce the concept of mutual information in Section 5.1.

For now, we stress that local entropy values are well designed to grasp local variances of texture

information and, consequently, to di�erentiate varying texture regions within our imaging �eld of

view in the microscopy data.

In the past few years, neural networks are gaining in importance in the �eld of image process-

ing [68]. Especially, deep neural networks (abbreviation: DNN) have become increasingly important

in the last years. A deep neural network is a special case of a neural network which consists of

multiple hidden layers. The name of a neural network is derived from the similarity of its structure

with the constitution of the human brain: Neurons are connected with other neurons, receive input

information from preceding neurons and send output information to other neighboring neurons. In

the arti�cial network, this is incorporated by di�erent layers of neurons. Based on the received input

from preceding layers, neurons in the current layer can send output information to the neurons in

the next level. By this, we simulate an information �ow in which the neurons “contribute” to extract

speci�c insights of the given input data. The input information, here, e.g., an image, is passed through

to derive a particular output, such as a classi�cation of the image in the example case.

Neurons of neighboring layers are connected via weighting terms and contribute this way to an

information �ow to the neurons in the next layer. The information of a neuron depends on the

weighted sum of the pieces of information handed through by the connected neurons of the previous

layer. Following a certain sequence of operations by calculating this weighted sum and then applying

an activation function, the information for the neuron in the current layer is calculated. This layer

structure of connected neurons resembles the connection of biological neurons via synapses.

With increasing computational power this machine learning technique started outperforming classi-
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cal approaches for image processing tasks. A broad range of applications from image classi�cation

and pattern recognition to medical image analysis and the analysis of �nancial time series is sig-

ni�cant for this arti�cial intelligence approach. For a more detailed introduction to the underlying

concepts of deep learning and neural networks, we refer the interested reader to [70]. In [1], the

author additionally discusses a wide range of applications, e.g., “image captioning [and] image clas-

si�cation”. Without going deeper into the di�erent types or application systems, we focus now on

how this modern and powerful approach can facilitate our process of �tting a model to the imaging

data.

A convolutional neural network (abbreviation: CNN) as for example the U-Net in [64] can be used

to extract feature maps using multiple convolutional layers combined with downsampling. In a

CNN some layers are convolutional layers, i.e., instead of just calculating a weighted sum, the new

information is calculated by applying convolutional operations on the previous layers followed by

the activation function again. In the case of the U-Net structure, pooling operations are used to

reduce the current size of the current feature map in the �rst half of the net. The second one in-

cludes up-sampling strategies to accomplish the original image size again. This results in the famous

“shape” of the U-Net resembling the letter U when sketching the di�erent layers and moving down for

down-sampling layers and up in the second half for the up-sampling layers. This approach allows the

extraction of features at a more sophisticated level. Especially, the extracted features are not straight-

forwardly perceivable for the human eye when multiple convolutional layers are combined. This is

a major contrast to the simple texture features described in Section 3.3.2. We expect that the more

advanced features derived with a neural net contain much more information than the simple texture

features and, consequently, should have a greater impact on a good model �tting when applying the

optimization on the model and the features simultaneously. For this reason, we recommend to inves-

tigate the optimization based on neural net features in the future. In this context, we do not take a

deeper look into this approach. Instead of focusing on an appropriate network structure to extract fea-

tures, we will use the simple texture features described in the previous section for our numerical tests.

Before we proceed with the further course of this thesis, we complete this section on texture informa-

tion with some more references on properties referred to for texture analysis from the literature. In [9]

Bharati et al. investigate di�erent texture-based approaches for quality assessment of steel sheets as

a direct application in an industrial �eld. As a statistical measure they use gray level co-occurrence

matrices and also focus on multi-step approaches incorporating for example two dimensional Fourier

Transform. In any case, they suggest to use methods that incorporate “spatial information”. In 2004,

they recommended the wavelet texture analysis. We consider that more advanced features based on

wavelets can also improve our model �tting.

In the publication of Sharma et al. from 2001, the authors compared di�erent texture descriptors on

the basis of the publicly available database “Meastex” [67]. In their tests the co-occurrence matrices

and another approach called “Law’s method” performed best. However, it is important to state that

they did not include an approach based on wavelets in their analysis. Nevertheless, we want to

highlight one statement which we consider to be still important 20 years later: They pointed out

that the best performance was achieved when they combined “features from all �ve methods” [67].

With this in mind, we conclude that it is advisable to always consider more than one sole texture
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3.3 Feature images for colony analysis

descriptor to generate our feature images.

Next, we refer to a more recent “Study of statistical methods for texture analysis” [63]. The authors

compare among others gray level co-occurrence matrices, local binary patterns, autocorrelation func-

tions and histogram patterns for texture classi�cation tasks in di�erent contexts. As it is stated, for

di�erent tasks di�erent approaches are more frequently used and for “biomedical analysis” the gray

level co-occurence matrix is considered to be “a powerful descriptor of texture” [63]. Moreover, they

conclude it to be “the most e�cient method to extract texture features for classi�cation [with] a

discrimination purpose” [63] which indicates that it is well applicable in our context to di�erentiate

texture of two subcolonies of a cell population. The authors also include more modern approaches

which also consider concepts of machine learning as for example the “local spiking pattern” which

is based on “a 2-dimensional neural network” [18]. They also evaluate the “SRITCSD method” which

uses a support vector machine for classi�cation and “applies the [singular value decomposition] to

enhance image textures of an image [and then] extracts the texture features in the DWT domain of

the SVD version of the image” [15]. For more details on the compared approaches and the results for

some benchmark datasets, we refer the reader to the complete study of Ramola et al. [63].

In this short literature review, we presented di�erent methods used for texture classi�cation and

commented on their applicability based on the cited references. We stress that in our context, we

are not aiming at texture classi�cation as the main task since our overall objective is to �nd a model

�tting approach to extract spreading information from microscopy data. Still, we point out that

the mentioned methods might be superior to our basic texture descriptors used to derive feature

images for our upcoming analysis and, consequently, could contribute to �t a spreading model more

accurately.

After introducing the feature images that we use to incorporate the original data in the optimization

process, we present modeling approaches that capture the development of a cell colony next. Inspired

by the moving colony fronts observed in the data, cf. Figure 3.9, we focus on modeling approaches

that correspond to similar spreading behaviors. In the next chapter, we introduce a system of partial

di�erential equations that favors related moving wave fronts and also present a simpli�ed version

that supports similar circular spreading phenomena.
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4
Mathematical modeling for spreading cell

colonies

Mathematical modeling is used in a wide range of applications. In the automotive industry for ex-

ample, it is used for crash test simulations. Material models are implemented to simulate crash test

situations and, consequently, support the development of robust and save vehicles for the future.

In [76], Miranville and Teman introduce mathematical models for continuum mechanics, for example.

Also in �nancial mathematics and insurance calculations mathematical modeling is crucial to esti-

mate future price developments. For these applications, we refer the interested reader to for example

the textbooks dealing with �nancial models by Lamberton and Lapeyre or by Øksendal (cf. [42, 59]).

In [41], Kratka points out the necessity of modeling for risk assessment in the context of insurances.

She highlights that for newly arising risks which can a�ect the world globally a transition is needed

away from models “strictly based on historical data” to models that also work with few data. Such

global risks are for example “energetic risks”, or risks related with changing climate conditions and

even consequences of global pandemics as for example the on-going COVID-19 crisis. With this in

mind, we want to continue with various models related to spreading phenomena. Such model gained

recently huge interest again because of the currently spreading SARS-CoV-2 virus.

A famous spreading model is based on the Fisher-Kolmogoro� equation. This is a special version of a

partial di�erential equation that is often used to capture spatial spreading phenomena which exhibit

propagation wave structures [55, 56]. The original model was designed to capture the spreading of a

gene within a population while considering spatial interaction in a di�usion term and logistic growth

in a reaction term considering the reproduction rate [55].

In chapter 11 in [56], Murray introduces a growth model for brain tumors. The presented model

describes the spatial and time dependent tumor cell concentration based on a reaction-di�usion par-

tial di�erential equation (PDE). While the reaction term models a growth term, the di�usion term

captures the spatial mobility of cells. In this context, they apply �rst a spatially homogeneous brain

tissue modeled by a constant di�usion coe�cient. In a second step, they account for spatial hetero-

geneities within the tissue by considering a space-dependent di�usion function to di�erentiate for

example between gray and white matter in the brain.

As we are more interested in modeling two di�erent cell concentrations possibly occurring in a cancer

cell colony as observed in the given microscopy data, we orientate our model more on a compartment

model similar to the ones introduced for epidemic spreading in chapter 13 in [56]. Those spreading

models can capture the interaction of di�erent (human) population groups as for example during an
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4 Mathematical modeling for spreading cell colonies

epidemic. While this SIR-model
1

was used in the literature to understand the spread of the Black

Death, the same model was used recently to model global and local spreading of the COVID-19

epidemic [48, 56].

Furthermore, we mention the Lotka-Volterra system which is often used to mathematically model

interacting species. A popular example is the predator-prey interaction between foxes and rabbits

(cf. section 3.1 in [55]), where the population growth of both species is unconditionally linked to

the other’s. While the fox population can only grow when enough prey (rabbits) is present, their

dominance consequently results in a lower reproducibility of the rabbit population. Contrary, if

fewer rabbits are present, the foxes’ population will go down because of the missing prey, and then,

consequently, the rabbit population can grow again due to the absence of the dominant predator.

Considering di�erent aspects of the Fisher-Kolmogoro� equation, Lotka-Volterra systems and the

SIR model from above again, we focus in Section 4.1 on a model based on two di�erent “population”

groups to analyze the spreading of a cell colony. In our setting, we aim to capture the spreading of

“normal” cells and “abnormal” cells with similar traveling wavefront speeds. Those two groups are

related to the di�erent texture regions we observe in our microscopy data (cf. Section 3.3). While we

consider some basic spreading properties for the two di�erent subpopulations in our PDE model, we

want to refer to other models introduced in the literature and which focus explicitly on cell spreading.

Gerisch and Chaplain present in [29] for example a continuum model for cancer cell invasion of tissue

and consider an in vivo setting which is contrary to our in vitro experimental data of AstraZeneca.

Still, we see aspects which could be important to improve our basic PDE model. For example, they

consider cell-cell adhesion e�ects. Their terms for cell migration and cell proliferation could also be

helpful to de�ne di�usion and reaction terms. Nevertheless, we do not recommend to use their model

in our context. While they consider two more concentrations concerning the extracellular matrix and

one related to a speci�c enzyme next to the cancer cell concentration, we aim for a model capturing

two di�erent cell concentrations which both relate to the total cell concentration. Of course, we could

additionally consider another concentration representing the wells’ liquid media with its ingredients

and nutrients for the cells. However, this is not the main focus of our work and goes beyond the

scope of this thesis.

In [34], the authors use a system of PDEs to model the interaction and concurrent spreading of cancer

cells and other native cell types. They investigate the spreading of �broblast cells and melanoma

cells in a �rst experiment separately before evaluating the spreading phenomena in a co-culture.

Based on the individual experiments, they derive di�usivity coe�cients and proliferation rates for

each of the used cell tpyes with the help of cell density histograms, estimating the leading front

of a spreading culture with ImageJ’s Sobel �lter and the population’s area. Based on the spreading

parameters for the individual cultures, they numerically simulate the spreading in the co-culture and

compare it to the experiments. We stress that the main di�erence to our approach is that we aim for

numerically deriving the spreading parameters for our two cell types directly from the image data.

Moreover, we do not study the competition between two di�erent cell types but are interested in a

transition model that captures the change of normal to abnormal cell appearances. Still, we point

out another interesting consideration they implement in their approach. Based on the assumption of

radial symmetric spreading, they de�ne the cell densities depending on the time point and only the

1

S=susceptible, I=infective, R=recovered people
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4.1 A PDE model for colony spreading

radial position. If only one cell type is present, the system is simpli�ed to a single Fisher-Kolmogoro�

equation in radial coordinates.

In [79], Treloar et al. investiagte the sensitivity of spreading properties like the di�usivity and the

proliferation rates depending on special assay geometries. In the previously cited paper [34], the

authors used circular barrier assays and also the wells recorded in our experiments have a certain

shape. As Treloar et al. found out that the in vitro assay shapes indeed may in�uence the spreading

characteristics and our well geometry is not perfectly circular shaped anyway, we conclude our ap-

proach with a PDE system based on two dimensional spatial coordinates to be more appropriate for

our investigations than the system of PDEs introduced in [34] and depending on a radial coordinate.

In [35], the authors use simulations based on di�erent models for preliminary tumor growth and

metastatic spreading and compare it with the spreading observed in mice experiments. For the

spreading phenomenon they use a PDE model to test the di�erent approaches to model growth and

spreading e�ects. While they rather recommend three di�erent growth models, we use in our model

a logistic growth term for simpli�cation aspects. We refer the interested reader to the original liter-

ature for the three suggested models of Bertalan�y, Gomperts and West referenced by Hartung et

al. in [35]. The approach of Bertalan�y was initially described in [8]. The Gompertz model can be

checked out in the book of Wheldon on “Mathematical models in cancer research” [83]. For further

information on the model of West, we refer to [33] and [82].

After this review on spreading models for cancer cells in the literature, we establish a system of

partial di�erential equations to model and approximate the colony development in our imaging data

in the following Section 4.1. Based on this, we further introduce a reduced approach based on con-

centric circles in Section 4.2. In the �nal Section 4.3, we brie�y elaborate on di�erent ways to �t a

model to given data.

4.1 A PDE model for colony spreading

We are aiming for an optimization approach that we can use to derive spreading parameters describing

the colony growth of a tumor cell colony directly from the given imaging data. In this section we

develop a system of partial di�erential equations to model a spreading phenomenon that satis�es

certain assumptions. We start with elaborating on various conditions that we want to incorporate

into our model in the following list of assumptions.

Assumption 4.1
Considering the biological background of the given experiment focusing on the development of

a growing cell colony, we state certain assumptions and requirements that a model of partial

di�erential equations should meet.

1. We consider two di�erent cell groups for normal and abnormal cells. The associated cell

concentrations are denoted by cn and ca, respectively, and are living on the spatio-temporal
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domain denoted by ΩT = Ω × [0, T ]. We use [ 1
(space)2 ] as the associated unit of these cell

concentrations.

2. There exists a maximal number of cells that can be in one location. More precisely, we assume

an upper bound for the total cell concentration consisting of both cell groups. This maximal

cell concentration limit is the carrying capacity denoted by K in the unit of [ 1
(space)2 ].

3. Cells within the normal group are regarded as mobile cells, i.e., we assume that these cells

can migrate, which is re�ected in a di�usion term for the normal cell concentration cn. The

di�usion is assumed to be space and time independent and, consequently, it is re�ected in a

di�usion constant denoted by D here. Its unit is given as [
(space)2

time
].

4. The cell proliferation, i.e., the reproduction of cells is incorporated in a logistic growth term

for the normal cells which includes the relative total cell population. In this relative total

concentration, we consider normal and abnormal cells added together and compared to

the limiting carrying capacity. The reproductivity is re�ected in the reproduction rate or

proliferation rate denoted by r and of unit [ 1
time
].

5. Depending on the relative total cell concentration consisting of both the normal and the

abnormal cell populations, we implement a reaction term that captures the transition from

normal cells to abnormal cells. The rate for this transition is labeled with m and re�ects a

certain “mortality” of the normal cells. The unit of this rate is given as [ 1
time
] in line with the

previous proliferation rate.

6. The abnormal cells do not proliferate and the only growth term for this cell concentration

is derived from the state transition term of the normal cells. The abnormal cell population

develops from corrupted or “dying” normal cells.

7. We consider the abnormal cells to be a kind of immobile bulk of cells. They do not move

around by themselves. The only movement they could perform arises from displacements

of neighboring and migrating normal cells.

In this list we refer to certain characteristics that we relate to the cell spreading phenomena we are

facing in the microscopy images.. Moreover, some properties are typical for well-known population

models that were already mentioned in the introductory text of this chapter. Based on these arguments

we de�ne our PDE model as follows:
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4.1 A PDE model for colony spreading

De�nition 4.2 (System of PDEs for cell colony development)

By the following system of partial di�erential equations, we de�ne the growth phenomenon for a

cell colony ful�lling the requirements and assumptions in Assumption 4.1. It models the interaction

between two di�erent cell types for normal cells (cn) and abnormal cells ca:

cn,t = rcn (1 −
cn + ca
K
) −mcn

cn + ca
K
+Dcn,xx

ca,t = mcn (
cn + ca
K
) .

Both concentrations live on the spatio-temporal domain ΩT (cf. De�nition 3.1), are non-negative

and are bounded from above by the carrying capacity K such that

cn,t , ca,t ∶ ΩT → [0, K]

holds. The temporal derivative of the given concentration is denoted by c⋅,t and the second partial

derivatives in the spatial dimension are given as c⋅,xx .

The equation for the concentration of normal cells incorporates a logistic growth term (rcn (1 − cn+ca
K ))

and also a di�usion term (Dcn,xx ) to account for the migration process. When we skip the last missing

term, namely the reaction term modeling the state transition from normal to abnormal cells, the

equation for the normal cells resembles the famous Fisher-Kolmogoro� equation (cf. equation (11.17)

in [55]). It is a well known result that the Fisher-Kolmogoro� equation exhibits a traveling wave

solution in the one dimensional case with a constant wave speed.

In two dimensions, we assume a constant traveling wave speed in the limiting case for this system

as well if we consider an unbounded, in�nite domain. Without proving this rigorously, we present a

possible line of arguments to show this assumption. We point out that far away from the colony’s

origin the curvature of the contour lines decreases as sketched in Figure 4.1. If we focus on a very

small piece of the wave front at such a location very far away from the origin, e.g., in the red frame, the

traveling wave approaches a two dimensional wave front which is almost constant in one direction.

With green arrows, we indicate the spreading directions. In the red frame the wavefront moves locally

constantly, i.e., with a constant wave front pro�le in the vertical direction, which is highlighted with

the two parallel spreading arrows. If the wavefront converged to be locally constant in one direction,

we could derive from the one dimensional case that the wave speed converged locally to a constant

value in this limiting case, too.

Of course, our domain is far from being unbounded. Moreover, Markham et al. show that there

exists indeed a transient spreading velocity before it converges to a constant one [50]. In their case,

they even focus only on a one dimensional example. Although they do not use a system of PDEs

but di�erent strategies to approximate cell occupancies on a one dimensional grid, we still consider

that in our context the spreading velocity is transient as well before converging to constancy. Still,

we do not want to derive this transient velocities more thoroughly and, instead, assume a constant

spreading speed for simpli�cation aspects.

Coming back to our setting, we are facing two main di�erences compared to the simpler 1D Fisher-

Kolmogoro� model. Firstly, we are interested in concentrations living on a two dimensional spatial
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Figure 4.1: Sketch of a traveling wave front in two dimension in an unbounded domain.

domain instead of a one dimensional one. Despite the previous argumentation, this two dimensional

domain is considered to be bounded since it resembles the well domain in the experiments. Secondly,

we are not only concentrating on one cell concentration, but investigate an interaction model between

two di�erent cell species. While for the historic Fisher-Komogoro� model a traveling wave solution

exists which joins the two stable state solutions of no concentration and a totally occupied domain,

we consider in our context three stable state solutions. One stable state is assumed to match an empty

domain again, the second stable state considers the domain to be occupied by normal cells and the

last one re�ects the domain inhabited completely by abnormal cells.

Figure 4.2: Sketch of cell concentrations and moving colony fronts for a one dimensional cut in a

two-dimensional domain.

In Figure 4.2, we sketch such a traveling wavefront when considering a one dimensional cut. This

cut is marked in red in the upper right corner of the two dimensional colony preview and also below

the x-axis of the plot. Here, the light brown color corresponds to the normal cells whereas the dark

brown area marks the region with abnormal cells. The background and consequently empty area

is shown in beige. We present in the two dimensional preview a kind of “classi�cation image” that

divides the image domain into di�erent areas which are associated with the background region,

the normal cell population or abnormals cells. Instead of including transition zones between the

subcolonies or subclasses, we only mark the “dominant” groups, i.e., if the cell concentrations exceed

a certain threshold we classify the region to belong to the cell popular with maximum concentration

50



4.2 Concentric circles for colony spreading

in that location. This threshold is marked with a horizontal gray line in the cross-section plot. If

both cell concentrations are below this threshold value, we identify the corresponding region as

background area. In the cross-section plot, the corresponding part is on the right of the vertical gray

line and marked with the beige curve on the x-axis corresponding to no cells and, consequently, a

“concentration” value equaling 0.

In light brown we observe a traveling wave front symbolizing a ring area in two dimensions for the

normal cells. The traveling direction is marked with a green arrow parallel to the red cutting line in

both plots. The second wave front represents the moving front of the abnormal cell colony. Here, we

include the “interaction” phenomenon that a rising abnormal cell concentration corresponds directly

with the falling concentration of normal cells since they are changing their state. Lastly, we point

out that the plateau regions for both wave curves correspond to the carrying capacity and this value

cannot be exceeded.

Based on the literature, we stress that such wave-like patterns as shown in Figure 4.2 are possible also

in two dimensions and for interaction models (cf. chapter 1 in [56]). A thorough stability analysis of

the given model is complex and not the focus of this thesis. Instead of performing a deeper analysis

of solutions for the given model, we perform a model reduction next. The simpli�ed model should

capture the basic spreading properties we relate with the above system of PDEs, namely a constant

traveling wave speed and two wavefronts where the second one for abnormal cells follows the �rst

one for normal cells.

The main interest of this thesis is deriving properties for a spreading model based on maximizing

mutual information between model characteristics and the imaging data. Therefore, as a proof

of concept, it is ideal to focus on a simpli�ed model �rst. For more advanced future studies, we

suggest to look into integrating a PDE model into the optimization problem to extract properties like

reproduction rate, transition rate, di�usion coe�cient and a carrying capacity directly and foster the

understanding of the underlying biological phenomenon for the spreading cell colonies even more.

4.2 Concentric circles for colony spreading

Instead of applying the PDE spreading model introduced in the Section 4.1, we present a simpli�ed

model where we use an approximation by applying circular spreading. In Figure 4.3, a simpli�ed

Figure 4.3: Sketch of simpli�ed concentric spreading over time of a cell colony in a well domain.

concentric spreading phenomenon is sketched for a cell colony in a well domain. Consisting of two

di�erent cell groups marked in light and dark brown, two colony areas are observable. Both cell

groups start their spreading process initially at the same origin marked with an orange diamond. We

assume to have a constant spreading speed v. This is a valid assumption, remembering that the PDE
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model results in a constant traveling wave speed in the one dimensional case and is expected to show

a similar behavior in two dimensions when considering an in�nite domain. Of course, we are never

facing unbounded domains in the real world experimental settings. However, considering a constant

wave speed serves here as one important property for the reduced model.

We motivate this simpli�cation by stating that in mathematical modeling we often need to make

some simpli�cations to develop a model that both captures the real world scenario appropriately and

results in a solvable model we can approximate with numerical methods. While solving the PDE

model is also numerically possible, we prefer here the simpli�ed model as this is more straightforward

to implement in a numerical solution. Overall, we are focusing in this thesis mainly on the concept

of extracting spreading properties based on maximizing the mutual information between the original

data, or to be more precise the texture data, and an applicable spreading model. For a proof of

concept, the simpli�ed model serves well to check the convergence in a numerical solution of the

related optimization problem (cf. Section 5.5.1).

Based on the model for colony spreading, we want to generate a classi�cation image I2 consisting of

a labeling according to

I2 ≈

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 ∶ outside of the cell colony,

1 ∶ within the normal cell regions,

2 ∶ within the abnormal cell regions,

(4.1)

that lives in our spatio-temporal domain ΩT de�ned in De�nition 3.1. We note that similar to the

real data set we assume the time domain to be discretized resulting in nT discrete time points

TΔ = {t1,⋯, tnT } with t1 = 0, tnT = T (4.2)

and temporal time steps

Δti = ti+1 − ti , i = 1,⋯, nT − 1.

The superscript h in the set of time points TΔ is used to indicate the discretization and to distinguish

it from the end time point denoted with T . In the given data set, we are dealing with nT = 8 discrete

time points which are not equidistantly distributed in the time interval. Consequently, the temporal

time steps Δti are varying for i = 1,⋯, nT −1. In the upcoming de�nition, we collect the the spreading

properties and de�ne their underlying space.

De�nition 4.3 (Parameter space P )

We de�ne the parameter space

P = [0, L] × [0,W ] × {(t̂0,n, t̂0,a) ∈ [0, T ]2 ∣t̂0,n ≤ t̂0,a} × [0, vmax] . (4.3)

The spreading properties p = (x0, t0,n, t0,a, v) ∈ P capture the variables de�ning the spreading

process with x0 denoting the origin of the cell colony, t0,n and t0,a denoting the starting time points

for the two di�erent wave fronts for the population region consisting of normal cells (subscript n)

and the abnormal colony division(subscript a) and the constant traveling wave speed given by v.
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4.2 Concentric circles for colony spreading

We point out, that the parameter space is designed in such a way that the following assumptions

hold:

(i) The colony’s origin is within the spatial domain: x0 ∈ Ω;

(ii) The colony fronts can only start in the valid time interval: t̂0,n, t̂0,a ∈ [0, T ];

(iii) The colony front for the abnormal cells cannot start before the front for the normal cells starts

to propagate;

(iv) The traveling wavefront speed is limited by a maximal speed of vmax =
max{L,W}
maxi Δti ;

(v) For physical reasoning the wave speed cannot be negative.

All those assumptions ensure that a circular spreading colony is always observable within the given

spatio-temporal domain ΩT . Moreover, the restriction for the spreading speed guarantees that a

new colony cannot grow that fast that we cannot capture its development with the given temporal

discretization, i.e., we follow the assumption that if a colony starts to grow in one time frame, it

cannot grow so fast that in the consecutive time frame the total well area is covered by cells already.

In the given data set, the two initial time frames are recorded very close to each other — the second

one serving as a control imaging to make sure that the set up is correct. The biologists select the

di�erent time stamps for recording based on their knowledge that the cells in focus would not grow

populations that fast.

The classi�cation image I2 is calculated with the following circle equation based on a given parameter

setting p,

kj ∶ P ×ΩT → [0, 1] ,

kj (p,x , t) = v (t − t0,j) − ∥x − x0∥2 j = n, a.
(4.4)

combined with a smoothed Heaviside function. We remark that ∥ ⋅ ∥2 is used for the Euclidean norm.

Based on this circle equation, we de�ne that for both colony regions of normal and abnormal cells

the circle equations for j = n, a returns for a �xed p ∈ P

kj (p,x , t)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

> 0 ∶ if (x , t) is in the subcolony;

< 0 ∶ if (x , t) is outside of the subcolony;

= 0 ∶ if (x , t) is on the subcolony’s moving front.

The discontinuous Heaviside function

H ∶ ℝ→ {0, 1}

H (x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 ∶ x < 0

1 ∶ x ≥ 0
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is approximated by the continuous function

� ∶ ℝ→ [0, 1]

� (x) =
1

1 + exp (− x
"0 )

. (4.5)

If "0 → 0 holds, we achieve a better approximation of the jump function. In Figure 4.4, a plot of the

continuous function � for "0 = 1, 0.5, 0.25 visualizes this convergence to the Heaviside function for

"0 converging to 0.

Figure 4.4: Approximation of the Heaviside Function.

We de�ne the classi�cation image I2 as a continuous function for any t ∈ {t1,… , tnT } with the help

of the circle equations in Equation (4.4) and the smooth approximation of the Heaviside function in

Equation (4.5).

De�nition 4.4 (Classi�cation image I2)
For a �xed model parameter "0 > 0, the classi�cation image I2 is given as a continuous function in

p ∈ P and x ∈ Ω by

I2 ∶ P ×ΩT → C, (4.6)

I2 (p,x , t) =
1

1 + exp (− 1
"0 kn (p,x , t))

+
1

1 + exp (− 1
"0 ka (p,x , t))

(4.7)

by using the circle equation from Equation (4.4) and with the classi�cation space given as C = ℝ.

With this given model and the smooth approximation of the Heaviside function in the each summand,

we ensure that the classi�cation image I2 actually maps to the [0, 2] and, consequently, we can de�ne

a reduced classi�cation space as follows:
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De�nition 4.5 (Reduced classi�cation space C
′
)

We de�ne the reduced classi�cation space C
′ ⊂ [0, 2] as the image of the mapping I2 which depends

on the model parameter "0 > 0, i.e. the steepness of the approximated Heaviside functions.

Depending on the given parameter set p ∈ P the function I2 returns for each discrete time point

t ∈ {t1,… , tnT } a smooth labeling for the di�erent colony regions such that Equation (4.1) holds.

Smooth means here that the mapping is continuous and continuously di�erentiable on the space

P × Ω for all t ∈ {t1,… , tnT } which holds true due to the construction of I2. Moreover, we point out

that depending on "0 the widths of the transition regions between the di�erent subcolonies and the

background regions vary. For larger "0, the transition areas are more smeared out compared to small

"0. For "0 → 0, the continuous classi�cation image approaches discontinuous jumps between the

di�erent classi�cation areas as claimed in Equation (4.1) more closely.

Without going into detail on the choice of "0 here, we stress that we use it as a pre-set and inherent

model parameter. As a natural extension, we could include the selection of an appropriate parameter

"0 for scaling transition regions into our model. To allow transition areas of di�erent widths between

background and normal cell colony compared to normal cells versus abnormal cells, it could be bene-

�cial to use two di�erent "0 for the respective areas, i.e., in the di�erent summands for calculating I2
via Equation (4.6). This can be especially favorable as we cannot assume a priori that both regions

are of similar width for sure. However, we will restrict ourselves to a pre-selected "0 for our analysis

in Chapter 5 and leave improved and automatically selected transition parameters for future studies.

For later references in sections on optimization and discretization e�ects in Chapter 5, we elabo-

rate here on the partial derivatives for the classi�cation image with respect to the parameter set p.

As a composition of di�erent subfunctions we can denote the gradient of the classi�cation image by

using the gradients of the circle equations ∇pkn and ∇pka and derive

∇pI2 (p,x , t)

=
− exp (− 1

"0 kn (p,x , t)) (−
1
"0∇pkn (p,x , t))

(1 + exp (− 1
"0 kn (p,x , t)))

2 +
− exp (− 1

"0 ka (p,x , t)) (−
1
"0∇pka (p,x , t))

(1 + exp (− 1
"0 ka (p,x , t)))

2

=
1
"0

⎛
⎜
⎜
⎝

exp (− 1
"0 kn (p,x , t)) (∇pkn (p,x , t))

(1 + exp (− 1
"0 kn (p,x , t)))

2 +
exp (− 1

"0 ka (p,x , t)) (∇pka (p,x , t))

(1 + exp (− 1
"0 ka (p,x , t)))

2

⎞
⎟
⎟
⎠

.

(4.8)

The gradient of the classi�cation image is of importance later when focusing on optimization used

to �t our colony model to the given data. Based on partial derivatives, we derive the gradients for

the circle equation for the normal cells’ front kn as

∇pkn (p,x , t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

)kn(p,x ,t)
)x0,1

)kn(p,x ,t)
)x0,2

)kn(p,x ,t)
)t0,n

)kn(p,x ,t)
)t0,a

)kn(p,x ,t)
)v

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (∥x − x0∥2)−1 (x0,1 − x1)
− (∥x − x0∥2)−1 (x0,2 − x2)

−v
0

t − t0,n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.9)
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and for the abnormal colony’s front ka as

∇pka (p,x , t) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

)ka(p,x ,t)
)x0,1

)ka(p,x ,t)
)x0,2

)ka(p,x ,t)
)t0,n

)ka(p,x ,t)
)t0,a

)ka(p,x ,t)
)v

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− (∥x − x0∥2)−1 (x0,1 − x1)
− (∥x − x0∥2)−1 (x0,2 − x2)

0
−v

t − t0,a

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.10)

After having introduced two models for cell colony development — one based on a system of partial

di�erential equations and a reduced version of it preserving main properties of the PDE model, we

want to bring the model and the data into one context next. For this purpose, we use again the

extracted feature image I d

1 introduced in Section 3.3. Before we dive into our approach based on

model �tting via Mutual Information Maximization in Chapter 5, we �rst re�ect on other approaches

used to �t a mathematical model to given data in the next subsection.

4.3 Review of model fi�ing approaches

When we want to �t a mathematical model to real world data, one commonly used approach is to

apply manual estimations and iterative calibration steps. In [34], the authors estimate di�usion and

reaction coe�cients in the used PDE model to capture cell spreading by introducing certain assump-

tions for simpli�cations. In the end, the authors estimate the occurring di�usivity of the cells and

their proliferation rates by investigating subregions in which they consider the assumptions to be

true.

Xun et al. also deal with parameter estimation for PDEs in [84] “to model complex dynamic systems

in applied sciences such as biology” in their article from 2013. With “a parameter cascading method

and a Bayesian approach” they aim to reduce the numerically load which was due to multiple evalu-

ations of the PDE system under various “candidate parameter” estimates [84]. For a more detailed

introduction to parameter estimation, we refer the reader to chapter 6 in [65].

Instead of deriving parameters based on “empirical observations”, Long et al. suggest a “data-driven”

approach in [45]. Based on the recently emerging neural networks, they introduce their “PDE-Net”

which can learn the underlying PDEs of complex dynamic systems. Based on their approach, the

authors are able to predict the dynamics for a “relatively long time”.

With “PESTO”, Stapor et al. provide a “Parameter EStimation TOolbox” that is applicable for many

di�erent applications, e.g., for �tting models used in computational biology [71]. The Matlab toolbox

can be �exibly used for parameter estimation of PDEs and ordinary di�erential equations (abbrevi-

ations: ODEs). Moreover, the authors stress that they incorporated modern optimization concepts

such as multi-start techniques and “automated starting point selection” [71].

Instead of estimating the underlying (PDE) model with the aforementioned approaches, we sug-

gest another multi-step concept. Firstly, we consider to have the real data in form of feature images

at hand. The idea is now to simplify the multidimensional feature-data to some classi�cation images,

determining for example normal colony regions, abnormal regions and background regions. For this
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puprose, one could imagine a thresholding approach only acting on one of the features, e.g., on the

third feature based on local interquartile ranges which could reveal already di�erent occurrences

in the imaging domain. Based on the thresholded values one can consequently identify di�erent

“classes” to generate a classi�cation image. By considering that this image consists only of integer

values for the “main classes” encoding background area, normal cell colony area and abnormal cell

colony area we can also interpret it as a segmentation mask. We refer to Figure 3.16b) which depicts

an example of such a classi�cation image derived from the thresholded interquartile ranges.

Secondly, we consider a classi�cation image based on the contemplated model similar to the classi-

�cation image introduced in Section 4.2. Of course, this is depending on speci�c model parameters

which we want to optimize in the end again. Then, we aim for minimizing the distance between these

two versions of the classi�cation images by optimizing the underlying parameter settings. In this

sense, we of course need a distance measure.

In [38], Jiang et al. review various criteria for evaluating and comparing di�erent segmentation

results. In our case, our model-based classi�cation images can easily be transferred to segmentation

masks revealing the three main classes for no cells, normal cells and abnormal cells with values in

the classi�cation space close to 0, 1 or 2, respectively. This can be achieved by applying thresholding.

The investigated measures in [38] are derived from the context of comparing clustering results. The

idea originates from the interpretation of the segmentation task “as one of data clustering” [38]. In

this paper, the authors present di�erent distance measures of clusterings related to “counting pairs”,

“set matching” and “Information-theoretic distances of clusterings”. For the latter category, they deal

with the concept of mutual information and present a speci�c version to compare clusterings. They

also cite the normalized version of mutual information for clusterings from [72]. We point out this

MI-related measure explicitly since we investigate the concept of mutual information more closely for

our setting of model �tting in Chapter 5. Coming back to [38], the authors state in their conclusion

that the measures “may be biased in certain situations”. Therefore, they suggest to de�ne a combi-

nation of measures from the di�erent categories aiming for bias reduction. Instead of discussing the

various measures more thoroughly here, we refer the reader to the original paper. While we propose

above to use thresholding applied to the feature images based on the local interquartile ranges to

derive classi�cation images based on the feature data, we focus on another approach to generate

these classi�cation images next.

An alternative approach to derive such classi�cation images from the original data or from the fea-

ture images is based on graph theory. We consider the concept of “point cloud sparsi�cation via

Cut-Pursuit” (cf. chapter 8 in [25] or [77]). Via e�cient graph cut algorithms, the authors produce a

sparsi�cation of a given point cloud by following a “coarse-to-�ne optimization scheme”. For more

details on the implemented cutting strategy for graph edges, we refer to the introduction of “Cut

Pursuit” by Landrieu and Obozinski [43]. In this sense, we point out that the application of “Cut

Pursuit” is not limited to point clouds but can be used for any data for which we can �nd a graph

representation. As an example, we refer to images living on pixel grids for which can generate a

graph representation by introducing nodes for each pixel and edge connections between neighboring

pixels. In our context, we could generate a �nite weighted graph for the point cloud consisting of the

three-dimensional feature vectors of the pixels in our image domain. In this sense, we also interpret

each pixel as a node in the graph and connect these with other pixels by de�ning certain relational
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measures. In close cooperation with Fjedor Gaede, we tested this approach for one example time

frame of a growing colony by applying a software framework he developed for his contributions in

[25, 77]. The generated edge connections for the graph are based on local and non-local information

concerning the pixels in the image domain. The idea is to include information on neighboring pixels

in the image domain (local information) and also favor feature vectors which are close to each other in

the feature space but not necessarily in the image domain (non-local information). Based on this infor-

mation, we generate edges and their weighting terms. The �nal result of our test case for the feature

data of the �nal time point for well B4 on plate 1 is shown in Figure 4.5. In this case, we sparsi�ed a

point cloud consisting of 351 × 351 feature vectors for a downsampled image domain with cropped

out lower and right blank areas outside of the well. The returned state of the graph cut approach

reveals 288 �nal nodes in the sparsi�ed graph. In Figure 4.5, the pixels which are represented by the

same node in the reduced graph are colored identically. We observe that the classi�cation based on

the �nal node numbers indeed classi�es similar texture regions to the same color (cf. Figure 3.1d)

while also including spatial, local information. This results in a “smoothed” mask with very few

sparse points which seem to be “mis-classi�ed” (cf. darker blue spots within other colored regions).

This could be improved by adjusting certain regularization parameters in the optimization functional

or by changing the weighting functions used to incorporate the local and non-local information.

However, we do not want to go too deep into the applied concepts and techniques of this approach.

For further information, we refer the interested reader to the cited works [25, 43, 77]. Eventually, we

would assume to get appropriate classi�cation images consisting only of three di�erent classes if we

were sparsifying the point cloud further — and actually quite extremely to get only three �nal nodes

in the representative graph. Alternatively, one could use the graph based approach for data reduction

and apply a subsequent technique to generate the segmentation into three main classes. We refer

to [28] for further information on this graph reduction to a “super-pixel graph” for simplifying and

accelerating following partitioning tasks such as for our classi�cation problem.

As the result of our graph based feature point cloud sparsi�cation shown in the image domain in

Figure 4.5 resembles a result for a semantic segmentation problem, we want to refer additionally to

[44]. In this article, the authors propose a semantic segmentation approach based on deep neural

nets when considering point cloud data. In our context, we are facing a point cloud in the feature

space consisting of the feature vectors for the pixels of our (possibly downsampled) domain whereas

Landrieu and Simonovsky inspect LiDAR data [44]. We stress that approaches like this could also

help to get representative segmentation masks — or classi�cation images — for our feature data.

As we already stated above, determining good segmentation masks is not enough for model �tting.

We suggested to use two versions of the classi�cations images — one depending on the feature data

and one depending on the model and the inherent parameters — and then calculating the distance

between the images with a pre-set measure. Then, we could apply an optimization approach to

minimize this error, i.e., the distance, between the predicted classi�cation image based on the model

and the other one derived from the feature images. This approach consequently consists of several

di�erent substeps.

To improve this, we consider in the next chapter an optimization approach working directly with

the given feature data and the derived classi�cation images in the previous Section 4.2. Inspired by

mutual information based image registration approaches as presented in [61], we elaborate in the
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Figure 4.5: Final node numbers after point cloud sparsi�cation with the Cut Pursuit algorithm for

the �nal time point of well B4 on plate 1 with a growing cell colony.

up-coming Chapter 5 on how to implement and exploit this concept in our setting. In this sense, we

pursue our ultimate goal of �nding good model parameters for classi�cation images based on the re-

duced model to approximate the cell colony spreading observed in microscopy data and incorporated

in the feature images.
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The concept of mutual information is used here to “overlay” di�erent kinds of information and “align”

them in an optimal way such that the information gain considering both inputs jointly is maximal.

As this description of mutual information is a bit �gurative, we start with an illustration based on

the registration problem for medical images in Section 5.1. Hereafter, we will translate the concept

of mutual information back to our setting and derive the main optimization problem we are dealing

with in this thesis in Section 5.2. In our context, we want to match classi�cation images based on a

spreading model with information extracted from microscopy images capturing growing cell colonies.

For this purpose, we focus in subsections on histogram measures, derivative terms related to theses

histograms and the gradient for discretized mutual information.

As we are using recorded imaging data and aim for a numerical solution of this optimization approach,

we need to consider various discretization steps which are the main topic of Section 5.3 together

with related convergence results. Before we concentrate on the numerical analysis, we focus on a

convergence analysis for this discretized problem and the expected, continuous model in Section 5.4.

This is crucial to make sure that our numerical results truly relates to an optimum in the continuous

setting. For the numerical tests in Section 5.5, we introduce a toy example before applying the

optimization problem on data from AstraZeneca.

5.1 Mutual information - a brief introduction

We start with a brief motivation of image registration for medical images based on [11], before

de�ning mutual information (abbrev. MI) explicitly. After that we come back to the cell colony

development and transfer the application of mutual information into our setting.

Let us consider two di�erent kinds of medical imaging modalities, for example images recorded with

computed tomography (CT) and images based on magnetic resonance imaging (MRI). Without going

into detail, it is known that both imaging modalities have their advantages - and also their drawbacks.

With computed tomography, we can capture solid structures like bones within the human body. On

the contrary, soft tissues cannot be visualized adequately as x-rays pass through easily. On the other

hand magnetic resonance tomography cannot capture bones as well as a CT, whereas blood vessels

and soft tissues are distinctively shown in MRI data. For certain medical assessments, diagnosis or

surgery planning it is important to get as much information about the body parts in focus as possible.

For this purpose, image registration is one of the most important tasks in medical image analysis. As
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the positioning and orientation of the body is not necessarily completely identical when applying two

di�erent imaging techniques, it is important to get an adjusted view later on in which both images

are overlaid and deformed in such a way that the same body parts are depicted in the same image

area.

Another example when registration is essential is when tissues or structures are imaged repeatedly

with some time delay, e.g., before and after a surgery. In this case, we cannot assume that the body is

positioned identically either in the imaging device - and also the imaged part might appear slightly

di�erent due to healing processes or courses of disease. To account for those misalignments, a regis-

tered version of the given images can be computationally derived.

One approach for image registration is based on the concept of mutual information. Based on a

measure for information, we are aiming for reducing “the uncertainty [of a] possible outcome”, in-
creasing “the information gain” given the input data and a reduction of the “dispersion of [the present]

probability distribution” [61] when maximizing the mutual information. We add some more content

to this rather formal description for mutual information and start with a de�nition of the Shannon

entropy as a measure of information (cf. [61, 66]).

De�nition 5.1 (Shannon entropy)

Given the events e1,… , em occurring with probabilities p1,… , pm, we de�ne the Shannon entropy as

H =
m
∑
i=1

pi log(
1
pi
) = −

m
∑
i=1

pi log(pi).

This measure directly weights the information content by the probability for each event individually.

Moreover, this information measure accounts for the di�erent probabilities with the logarithmic term.

When an event has a very low probability, i.e., it is a very rare event, the information gain is high, in

particular it is higher than for an event with a very high probability. It is expected that an event with

a very high probability does not contribute to new information a lot since the negative logarithm

takes on higher values for probabilities closer to zero. Additionally, the logarithmic term accounts

for an event which is de�nitely occurring, i.e., its probability is 1, then this event does not contribute

to any new information gain. Consistently, its share in the Shannon entropy is 0. Of course, we only

consider probabilities smaller than or equal to 1 here.

Based on the Shannon entropy as a measure for information, we now de�ne the mutual information

for two di�erent “event series” A,B based on the de�nition given in [61].

De�nition 5.2 (Mutual information — discrete events)

Let A,B be two di�erent “event series” with probabilities p (a) and p (b) for a ∈ A and b ∈ B. Then

the mutual information MI is de�ned as

MI (A,B) =∑
a∈A
b∈B

p (a, b) log(
p (a, b)

p (a) p (b)
) .

Transferring this de�nition again to the imaging context, we can interpretA and B as two images with

gray values a and b, respectively. The probabilities p (a) and p (b) correspond to the probabilities of
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the given gray values, i.e., for image A living on a discrete pixel grid p (a) equals the ratio between

the number of pixels with gray value a and the total number of pixels in this image. In this context,

the joint probability p (a, b) corresponds to the probability of pixels in image A taking the gray

value a while the same pixels take the value b in image B. We remark that this de�nition of mutual

information is related to the Kullback-Leibler distance [61] which is de�ned as

m
∑
i=1

p (i) log(
p (i)
q (i)
)

for two probability distributions p, q. Applying the Kullback-Leibler distance between the joint

probability distribution p (a, b) and the joint distribution in case of independence, p (a) p (b), we

obtain again the de�nition of mutual information given in De�nition 5.2.

When maximizing the mutual information, we gain the most information and reduce the uncertainty.

Coming back to our example of the two di�erent imaging modalities, CT and MRI, we could apply

a deformation function on one of the images, e.g., on the MRI data. Maximizing then the mutual

information of the original CT image and the deformed MRI image, we can optimize the deformation

parameters to achieve a desirable alignment of prominent structures in both images.

This is one way of registering images. We refer the interested reader to the literature to read more

about di�erent registration techniques. A brief overview of registration approaches derived from

variational methods can be found in [11] for example.

In the next section, we focus on the de�nition of an optimization problem based on mutual information

for our investigation of cell colony spreading. By maximizing the mutual information between feature

and classi�cation images we aim for deriving spreading properties which both capture the colony

growth phenomenon in the feature image and can be used as model parameters to generate the

classi�cation images.

5.2 Optimization problem for cell colony spreading

In the previous section, we introduced the concept of maximizing the mutual information between

two images derived from di�erent medical imaging modalities to achieve an adequate alignment. We

now transfer this approach to our cell colony context.

Throughout this section, we consider the multi-channel feature image I d

1 ∶ Ω0 ×ΩT → F in�uenced

by Gaussian noise and introduced in Section 3.3 (cf. De�nition 3.5). To prepare the later analysis

we already limit the domain of the considered features to F
′

focusing only on features which are

occurring with a certain probability greater than a small limit bounded away from zero (cf. De�ni-

tion 3.14). Such a feature image mapping could for example consider resetting the occurring features

of very low probabilities by a default replacement value or by the mean value of expected feature

values in a small neighborhood around an inadequate feature. To avoid an overload of notations, we

do not introduce another feature image de�nition which indeed only maps toF
′
. We merely neglect

features occurring with too low probabilities and replace their probabilities by 0. In this sense, we

accept a certain inaccuracy here and proceed with the reduced space F
′

instead of F in the further

course.
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Besides from the feature data, we use the classi�cation image I2 ∶ P × ΩT → C from Section 4.2 (cf.

De�nition 4.4) for the further course. By de�nition the classi�cation image I2 depends continuously

on p ∈ P .

Based on both image types, we introduce our MI-based optimization problem in the following Sec-

tion 5.2.2. Before we introduce the mutual information concerning probabilities related to our feature

and classi�cation images, we start with an excursion on the Radon-Nikodym theorem in Section 5.2.1.

With this, we facilitate the further analysis and derivation of the mutual information not only based

on probability measures but also considering related probability density functions.
Since we want to solve the maximization of mutual information with a gradient based optimization

solver, we need to derive gradient terms. This is the main focus of Section 5.2.4. To prepare the

derivative terms and the histogram de�nitions in that section, we �rst concentrate on the measure-

theoretical setting (cf. Section 5.2.3). We conclude Section 5.2 with translating the histograms, the

mutual information and its gradient terms into a discrete setting (cf. Section 5.2.5).

5.2.1 The Radon-Nikodym theorem - a small excursion

We adapt the Radon-Nikodym theorem to our context, here. We skip its proof, but add some inter-

esting properties and results related to the Radon-Nikodym derivative. For the main proof and more

related concepts to the Radon-Nikodym theorem, we refer the interested reader to [54].

We start with the following de�nition of a density function for a measure (cf. De�nition 7.1 in [54]).

Although we choose here the measurable space (Ω0 ×ΩT ,E ⊗B (ΩT )) for our space-time domain, the

de�nition is not bound to this speci�c space and can be transferred to any measure space.

De�nition 5.3
Let (Ω0 ×ΩT ,E ⊗B (ΩT ) , �1) be a measure space and f ∶ Ω0 ×ΩT → [0,∞] a nonnegative measur-

able function. The following

�2 ∶ E ⊗B (ΩT )→ [0,∞) , A↦ ∫
A
f d�1

de�nes a measure with density f with respect to �1 and this is also abbreviated by

�2 = f �1.

It can be shown that �2 = f �1 is indeed a measure. We will skip this proof here and leave it to the

interested readers to prove it themselves or check out details in the referenced literature.

Additionally, we state the following theorem cited from 7.3 in [54] to use it later in the proof for the

histogram derivatives.
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Theorem 5.4
Let (Ω0 ×ΩT ,E ⊗B (ΩT ) , �1) be a measure space. Let f , g be two nonnegative, measurable func-

tions and �2 ∶= f �1. Then it holds that g is �2−integrable if and only if g ⋅ f is �1−integrable. In this

case the following identity holds:

∫ g d�2 = ∫ g ⋅ f d�1.

For further preparations of the famous Radon-Nikodym theorem, we clarify the notion of absolute
continuity in the context of measures (cf. De�nitions 7.9 and 7.24 in [54], De�nition 3.5 in [12],

De�nition 7.30 in [40]).

De�nition 5.5 (Absolute continuity of measures)

Let �1, �2 be measures on the measurable space (Ω0 ×ΩT ,E ⊗B (ΩT )). The measure �2 is absolutely
continuous with respect to �1, if �2 (A) = 0 holds for every A ∈ E ⊗B (ΩT ) with �1 (A) = 0. This is

written as �2 ≪ �1.

We now state the Radon-Nikodym theorem based on the formulations in theorems 7.13 in [54], 7.34

in [40] and Theorem 3.6 in [12].

Theorem 5.6 (Radon-Nikodym theorem for �nite measures)

Let �1, �2 be two �nite measures of the measurable space (Ω0 ×ΩT ,E ⊗B (ΩT )) with �2 ≪ �1.
Then there exists a measurable function f ∶ Ω0 ×ΩT → [0,∞) with

�2 (A) = ∫
A
f d�1

for every A ∈ E ⊗B (ΩT ), i.e., �2 has the density f with respect to �1.
The function f is also referred to as the Radon-Nikodym derivative of �2 with respect to �1, typically

denoted by f = d�2
d�1 .

Proof. We refer the interested reader to the proofs stated in [54] for Theorem 7.13 and in [40] for

Theorem 7.34.

We conclude with a remark on the used notation associated with the Radon-Nikodym derivative.

Remark 5.7. We want to draw the reader’s attention to the Radon-Nikodym derivative given as f = d�2
d�1 .

Depending on the literature source the Radon-Nikodym derivative is also sometimes denoted with

f = �2
�1 . We stress that both expressions are considered to describe the same concept and the “ d” is

only a notational di�erence.

To give a broader overview and to emphasize the bene�ts related to the theory around the Radon-

Nikodym derivative, we conclude with the following lemma connecting the Radon-Nikodym deriva-

tive with the Lebesgue measures.
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Lemma 5.8 (Radon-Nikodym derivative replacement by density functions)

Let �1, �2 be �nite (probability) measures on the measurable (probability) space (Ω0 ×ΩT ,E ⊗B (ΩT ))

and �3 be another measure on the measurable space (Ω0 ×ΩT ,E ⊗B (ΩT )). If �1 ≪ �3 and �2 ≪ �3
hold, then there exist (probability) density functions f1, f2 ∶ Ω0×ΩT → [0,∞) for �1, �2 with respect

to the measure �3, i.e.,

�1 (A) = ∫
A
f1 d�3

�2 (A) = ∫
A
f2 d�3

for any A ∈ E ⊗B (ΩT ).

Moreover, if �1 ≪ �2 holds, the function
f1
f2 is well-de�ned and equals the Radon-Nikodym derivative

d�1
d�2 .

Proof. The existence of the (probability) density functions f1, f2 in the �rst part of this lemma is a

direct consequence from Theorem 5.6. Considering the Radon-Nikodym derivatives f1 = d�1
d�3 and

f2 = d�2
d�3 from the �rst part of the lemma, we can derive the statement of the second part consequently

by the following transformations:

d�1
d�2
=

d�1
d�3
d�2
d�3

=
f1
f2
.

This is well-de�ned, i.e., we avoid dividing by 0 because of the absolute continuity of the related

measures.

We remark that the statement in the above lemma is true for any measure �3 on the measure space

(Ω0 ×ΩT ,E ⊗B (ΩT )) for which it holds that the other two measures are both absolutely continuous

with respect to the third measure. We use this lemma in the further course when considering the

third measure �3 to be the Lebesgue measure on the measure space.

Finally, we cite another interesting property related to the Radon-Nikodym derivatives which is also

known as the “�rst chain rule” (cf. the �rst rule in 7.20 in [54]).

Lemma 5.9 (Chain rule with Radon-Nikodym derivative)

Let �2, �1 be �nite measures on the measure space (Ω0 ×ΩT ,E ⊗B (ΩT )) and �1 ≪ �2. For an

integrable function f and any measurable set A ∈ E ⊗B (ΩT ), it holds that

∫
A
f d�1 = ∫

A
f
d�1
d�2

d�2.

Proof. We refer to the proof of the �rst statement in 7.20 in [54].

After this excursion on the theory related to Radon-Nikodym derivatives, we focus next on calculating

the mutual information based on probabilities related to our feature and classi�cation images.
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5.2 Optimization problem for cell colony spreading

5.2.2 Introduction to the MI optimization problem

In the preceding Section 5.1 of this chapter, we motivated the application of mutual information for

the registration of medical images and stated the de�nition of mutual information in De�nition 5.2

very roughly. In particular, the example was based on discrete images, i.e., images living on a pixel

grid. We now take a step back and consider non-discretized images living on the true time-space

domainΩT without considering the discretization ofΩ based on a pixel grid. This is the starting point

for our continuous de�nition of mutual information. We stress here that both the domainΩ0×ΩT and

the codomain F of I d

1 and C of I2, respectively, are considered to be continuous. To be more precise,

the spaces Ω0, Ω, F and C are not simpli�ed or discretized in any way so far whereas we consider

the temporal dimension of ΩT to be discretized by pre-selected time points {t1,… , tnT } ⊂ [0, T ] (cf.

De�nition 3.1). However, instead of focusing on the whole feature space F , we remind the reader

that we are focusing only on F
′

which contains only features occurring with a certain probability

greater than a small limit bounded away from zero (cf. De�nition 3.14). Furthermore, we remind the

reader that I d

1 is considered to be a random variable for which the Gaussian additive noise is related

to the subdomain Ω0 as introduced in De�nition 3.5.

We begin with recapitulating the probability density functions in the feature and classi�cation spaces

(cf. Proposition 3.7, De�nition 3.8 and Proposition 3.12).

De�nition 5.10 (Probability density functions and probability measures)

We de�ne the probability density functions

pd

F
∶ F
′
→ ℝ+ with Pd

F
(F
′) = ∫

F
′
pd

F
(f ) df ≤ 1

pC ∶ C → ℝ+ with PC (C) = ∫
C

pC (c) dc = 1

pd

F×C ∶ F
′
× C → ℝ+ with Pd

F×C (F
′
× C) = ∫

F
′×C

pd

F×C (f , c) d (f , c) ≤ 1

capturing the probability of occurring values f ∈ F ′, c ∈ C and (f , c) ∈ F ′ × C, respectively, given

the images I d

1 and I2 living onΩ0×ΩT and P×ΩT . The related probability measures can be calculated

by integration of the probability density functions with respect to the Lebesgue measures of the

related spaces. It holds

Pd

F
(A
F
′) = ∫

A
F′

pd

F
(f ) df

PC (AC) = ∫
AC
pC (c) dc

Pd

F×C (AF ′×C) = ∫A
F′×C

pd

F×C (f , c) d (f , c)

for arbitrary measurable subsets A
F
′ ⊂ F ′, AC ⊂ C and A

F
′×C ⊂ F

′ × C.

We stress here that the above inequalities in the integral terms are a direct consequence of cutting

o� certain features with very low probability in the de�nition of the reduced feature space F
′
, cf.

De�nition 3.14.
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5 Mutual information based model fi�ing

Remark 5.11. We remark that the individual probability distributions can be calculated via integration

over the other space of the joint probability as follows:

pd

F
(f ) = ∫

C

pd

F×C (f , c) dc

pC (c) = ∫
F

pd

F×C (f , c) df

Under the assumption that our classi�cation image is continuous and even continuously di�eren-

tiable on P ×Ω for any t ∈ {t1,… , tnT }, we can conclude that the probability density function pC of a

classi�cation image corresponding to a �xed p ∈ P and any time point t ∈ {t1,… , tnT } is continuous

on its range I2 (p,Ω, t), too. Even more, the joint probability pd

F×C is continuous in the direction of

C. Since the classi�cation image I2 depends on the parameter setting p, we remark that pC and pd

F×C
depend on p, too, because of their dependence on I2, respectively.

With those probabilities at hand, we de�ne now the mutual information in the continuous setting

oriented on Theorem 1 in [20] and Remark 4.3 in [60].

De�nition 5.12 (Mutual information — continuous setting)

Let the probability measures Pd

F
, PC and the joint probability measure Pd

F×C be given and describing

the probabilities related to images I d

1 and I2 living on Ω0 × ΩT and ΩT . We assume that Pd

F×C ≪

Pd

F
⊗ PC . The mutual information between I d

1 and I2 is then de�ned by

MI (Pd

F×C) ∶= ∫
F
′×C

log(
dPd

F×C
dPd

F
⊗ PC

) dPd

F×C . (5.1)

We stress that it is crucial that the joint probability measure Pd

F×C is absolutely continuous with

respect to the product measure Pd

F
⊗ PC to de�ne the above calculation of mutual information based

on probability measures.

We already derived the transition from probability measures to probability density functions in

the previous course of this thesis, especially in Section 3.3. With this at hand, we motivate the

following proposition on calculating the mutual information based on given probability density

functions.

Proposition 5.13 (Mutual information based on PDFs)

Let the probability measures Pd

F
, PC and the joint probability measure Pd

F×C be given and describing

the probabilities related to images I d

1 and I2 living onΩ0×ΩT andΩT . When considering the related

probability density functions pd

F
, pC and pd

F×C , the mutual information can be calculated by the

following integration with respect to the Lebesgue measure on the joint space:

MI (pd

F×C) ∶= ∫
F
′×C

pd

F×C (f , c) log(
pd

F×C (f , c)
pd

F
(f ) pC (c)

) d (f , c) . (5.2)

Before we focus on the proof of this statement, we remark that we denote the underlying probabilities

in the parenthesis on the left hand side for which we calculate the mutual information. The de�nitions
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5.2 Optimization problem for cell colony spreading

of the MI in De�nition 5.12 and Proposition 5.13 could be read as MI (“probabilities”). For notational

simplicity, we do not introduce two di�erent symbols for the MI based on probability measures and

the MI based on related probability density functions when considering integration with respect to

the Lebesgue measure.

Proof. In Equation (5.1) the quotient in the logarithmic term is a Radon-Nikodym derivative (cf. [20]).

Since, Pd

F×C and also PF ⊗PC are absolutely continuous with respect to the Lebesgue measure on the

joint spaceF×C (cf. Propositions 3.7 and 3.12 and De�nition 3.8), we can replace the Radon-Nikodym

derivative by the quotient of the related probability density functions (cf. Lemma 5.8)

dPd

F×C
dPd

F
⊗ PC

=
pd

F×C
pd

F
⋅ pC

.

Additionally, we exploit Theorem 5.6 and Lemma 5.9 to change the integration measure implementing

the relevant density function pd

F×C in the integrand term.

The Radon-Nikodym derivative, the cited statements and the concept of absolute continuity of

measures were already the main topic in Section 5.2.1.

To grasp the inherent dependencies hidden in the above de�nition of the mutual information, we

expand the dependencies as follows by stating that the probabilities depend on the corresponding

given images:

MI (pd

F×C) = MI (p
d

F×C (I
d

1 , I2)) = MI (p
d

F×C (I
d

1 , I2 (p))) . (5.3)

We clarify the well-de�nedness of the integral in the mutual information by approaching possible

di�culties next.

Lemma 5.14
Due to the given noisy feature data we can infer that the joint probability measure Pd

F×C is abso-

lutely continuous with respect to the product measure Pd

F
⊗ PC , i.e., for all measurable A ⊂ F ′ × C

with Pd

F
⊗ PC (A) = 0 it holds that Pd

F×C (A) = 0.
Equivalently, for all measurable A ⊂ F ′ × C with Pd

F×C (A) ≠ 0 it holds that Pd

F
⊗ PC (A) ≠ 0.

Proof. We prove the second statement of the lemma by applying the disintegration theorem stated

in Theorem 3.9. We consider A ⊂ F ′ × C measurable with Pd

F×C (A) ≠ 0. With

Pd

F×C (A) = ∫
A

pC (c) (pN ∗ �c) (f ) d (f , c)

and the non-negativity of the probability density function pd

F×C (f , c) = pC (c) (pN ∗ �c) (f ), it fol-

lows that a subset

A′ = {(f , c) ∈ A ⊂ F ′ × C ∣ pC (c) ≠ 0 ∧ (pN ∗ �c) (f ) ≠ 0}

with positive Lebesgue measure exists. With this it follows directly that

Pd

F
⊗ PC (A) ≥ Pd

F
⊗ PC (A′) = ∫

A′
pd

F
(f ) pC (c) d (f , c) > 0
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5 Mutual information based model fi�ing

because A′ is not a Lebesgue null set, pC (c) > 0 for all (f , c) ∈ A′ and pd

F
> 0 due to the considered

Gaussian noise. We recall that pd

F
is calculated by convolution with the Gaussian density which is

in turn positive everywhere (cf. Proposition 3.7). For the limited space F
′
, we even have that pd

F
is

bounded away from 0 (cf. De�nition 3.14). This proves the absolute continuity of Pd

F×C with respect

to the product measure Pd

F
⊗ PC .

In the following remark, we use this lemma to show the well-de�nedness of the integral term for the

mutual information.

Remark 5.15. We want to point out a few essential properties related to the integral de�nition for

mutual information. We recall that the integral for the MI is given by

∫

F
′×C

log(
dPd

F×C
dPd

F
⊗ PC

) dPd

F×C

when considering the probability measures (cf. Equation (5.1)).

• In the logarithmic term it is problematic if the numerator approaches zero as the logarithm is

not de�ned in zero. However, as this is only happening if Pd

F×C (A) approaches zero, too, it is

not a di�culty for the MI calculation based on probability measures as we are integrating with

respect to the measure Pd

F×C anyway and, consequently, we could also consider the integration

over the subset of F
′ × C where Pd

F×C is indeed positive.

• Another issue is when the denominator is zero in the logarithmic term. However, due to

the aforementioned Lemma 5.14, we can ensure that the denominator can only be zero if the

numerator is zero, too. With the previous remark it is clear that this is not problematic as we

could consider integrating over the subset of F
′ × C where Pd

F×C is indeed positive.

• Finally, we stress that this interpretation is also valid in our setting where we limit the feature

space to the space where the probabilities are greater than a small value bounded away from

zero (cf. De�nition 3.14).

In this sense, the calculation of MI based on the integration over the set S ⊂ F ′ × C where Pd

F×C > 0
holds remedies the issues:

∫
S
log(

dPd

F×C
dPd

F
⊗ PC

) dPd

F×C .

Analogously, we can consider the integrand to be well-de�ned

pd

F×C (f , c) log(
pd

F×C (f , c)
pd

F
(f ) pC (c)

)
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5.2 Optimization problem for cell colony spreading

when calculating the MI with the help of probability density functions (cf. Equation (5.2)). In this

setting, we either way consider the integration only over the support of pd

F×C or set

pd

F×C (f , c) log(
pd

F×C (f , c)
pd

F
(f ) pC (c)

) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

pd

F×C (f , c) log(
pd

F×C
(f ,c)

pd

F
(f )pC(c)

) for (f , c) ∈ F ′ × C

with pd

F×C (f , c) ≠ 0

0 else.

With the help of Pd

F×C ≪ Pd

F
⊗ PC , we pointed out that the mutual information is indeed well-

de�ned.

We aim for a best �tting parameter setting p ∈ P such that the corresponding classi�cation im-

age I2 based on the concentric spreading model captures well the spreading colony observable in the

microscopy data and highlighted even more in the feature images I d

1 . For this we de�ne the following

optimization problem bearing in mind the previously described MI calculation and also, importantly,

the dependence of the classi�cation image I2 on the parameter setting p.

De�nition 5.16 (MI optimization problem)

For a given multi-channel feature image I d

1 ∶ Ω0×ΩT → F
′
and a classi�cation image I2 ∶ P×ΩT → C

depending on a parameter setting p ∈ P , we have the related probability density functions

pd

F
= pd

F
(I d

1 ) , pC = pC (I2 (p)) , pd

F×C = p
d

F×C (I
d

1 , I2 (p)) .

Based on those probabilities we de�ne the maximization of mutual information as

argmax
p∈P

MI (pd

F×C) . (MAX MI)

Since the identity

argmax
p∈P

MI (pd

F×C) = argmin
p∈P

− MI (pd

F×C) .

holds, we can transfer the maximization of mutual information to the subsequent minimization

problem. This gives us the main optimization problem we focus on throughout the course of this

work.

De�nition 5.17 (Main minimization problem)

For a given multi-channel feature image I d

1 ∶ Ω0×ΩT → F
′
and a classi�cation image I2 ∶ P×ΩT → C

depending on a parameter setting p ∈ P , we have the related probability density functions

pd

F
= pd

F
(I d

1 ) , pC = pC (I2 (p)) , pd

F×C = p
d

F×C (I
d

1 , I2 (p)) .

With the functional

F ∶ P → ℝ, F (p) ∶= −MI (pd

F×C)
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where the joint probability depends on the given parameter set p, we introduce the main mini-
mization problem

argmin
p∈P

F (p) . (MIN -MI)

We translate it directly to a minimization problem. This is more convenient as most of the optimization

solvers are implemented for minimization problems by default and we will apply a minimization

solver in our numerical tests as well (cf. Section 5.5). Moreover, we are considering a gradient-based

optimization solver and, therefore, we advance with the derivation of the gradient term for mutual

information in the further course (Section 5.2.4) . To facilitate the understanding of our line of

arguments for the gradient derivation, we �rst introduce histogram de�nitions in the same chapter

after a short excursion on the measure-theoretical setting in the next Section 5.2.3.

5.2.3 Measure-theoretical se�ing

When approaching the histogram de�nition from a measure-theoretical viewpoint, we need to clarify

the basic setting we are using. We begin with a collection of some basic notations we are using

throughout the further course of Chapter 5.

Notation 5.18
We recapitulate the probability measures introduced in Section 3.3.1. Additionally, we introduce

some measure spaces which are essential for the later analysis as well.

1. Measures related to the Gaussian noise and the spatio-temporal domain ΩT :

• The measure space for our space-time domain ΩT is given by (ΩT ,B (ΩT ) , �). The

Lebesgue measure is denoted with � and B (ΩT ) is the Borel �−algebra containing all

measurable subsets of our semi-discrete spatio-temporal domain ΩT (cf. De�nition 3.1).

• The probability space to model the noise e�ects corrupting the feature image is denoted

with (Ω0,E , P0). The probability measure is denoted with P0 and the pushforward of

P0 with respect to the noise image IN coincides with a Gaussian normal distribution

(cf. De�nitions 3.3 and 3.4).

• We denote the measure space combining the spatio-temporal domainΩT with the noise

space Ω0 with (Ω0 ×ΩT ,E ⊗B (ΩT ) , �) where we use the product measure � = P0 ⊗ �.

• The probability space related to ΩT is given as (ΩT ,B (ΩT ) , PΩT ) with the uniform

probability measure PΩT and the Borel �−algebra of ΩT (cf. De�nition 3.1).

• The probability space combining the spatio-temporal domain ΩT with the noise space

Ω0 is denoted with (Ω0 ×ΩT ,E ⊗B (ΩT ) , P∗) where we use P∗ = P0 ⊗ PΩT and the

product �−algebra.
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5.2 Optimization problem for cell colony spreading

2. Measures related to the classi�cation image I2 and the feature image I1:

• The measure space for the classi�cation space C is given by (C,B (C) , �). The one

dimensional Lebesgue measure is denoted with � and B (C) is the Borel �−algebra

containing all measurable subsets of C.

• The measure space for the reduced classi�cation space C
′

(cf. De�nition 4.5) is given

by (C′,B (C′) , �). The one dimensional Lebesgue measure is denoted by � and B (C′)

is the Borel �−algebra containing all measurable subsets of C
′
.

• The probability space related to C is given as (C,B (C) , PC) with the probability mea-

sure PC = I2#PΩT as the pushforward of PΩT with respect to the classi�cation image

I2 and the Borel �−algebra of the classi�cation space C. While the measure PC was

already introduced in De�nition 3.8 for a general classi�cation image, we now consider

I2 as de�ned in De�nition 4.4.

• The measure space for the feature space F is given by (F ,B (F) , �). The Lebesgue

measure for the feature space is denoted by � and B (F) is the Borel �−algebra con-

taining all measurable subsets of F .

• The measure space for the reduced feature space F
′

(cf. De�nition 3.14) is given by

(F ′,B (F ′) , �). The Lebesgue measure for the reduced feature space is denoted with

� and B (F ′) is the Borel �−algebra containing all measurable subsets of F
′
.

• The probability space related to F is given as (F ,B (F) , PF) with the probability

measure PF = I1#PΩT as the pushforward of PΩT with respect to the feature image I1
and the Borel �−algebra of the classi�cation space F (cf. De�nition 3.2).

• The measure space for our joint feature-classi�cation space F × C is given by

(F × C,B (F × C) , �). The Lebesgue measure is here denoted with � and B (F × C)

is the Borel �−algebra containing all measurable subsets of F × C.

• The probability space related to F × C is given as (F × C,B (F × C) , PF×C) with the

probability measure PF×C = (I1, I2)#PΩT as the pushforward of PΩT with respect to the

joint image (I1, I2) and the Borel �−algebra of the joint spaceF ×C (cf. De�nition 3.8).

3. Measures related to the feature image corrupted by Gaussian noise I d

1 :

• We denote with Pd

F
= I d

1 #P
∗

the pushforward of P∗ with respect to the disturbed feature

image I d

1 which maps from Ω0 ×ΩT to F (cf. Proposition 3.7).

• We denote with Pd

F×C = (I
d

1 , I2)#P
∗

the pushforward of P∗ with respect to the joint

image (I d

1 , I2) which maps from Ω0 ×ΩT to F × C (cf. Proposition 3.12).

Remark 5.19. We remark that we denote the Lebesgue measure related to the di�erent spacesΩT , C, F
and F × C with the same symbol � to reduce the notational complexity. Instead of noting down
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the related dimension in the superscript or subscript of the measure, we recall that for ΩT we use

the two dimensional Lebesgue measure corresponding to the measurable space (Ω,B (Ω)) for any

discrete time point t ∈ {t1,… , tnT } (cf. De�nition 3.1 and Equation (3.1)). In case of the classi�cation

space C, we use the one dimensional Lebesgue measure. For the general feature space F , we use the

n-dimensional Lebesgue measure and for our speci�c setting of a three dimensional feature space,

we use the three dimensional Lebesgue measure. Consequently, for the joint spaceF ×C we use the

n + 1 dimensional or 3 + 1, respectively, dimensional Lebesgue measure.

Remark 5.20. Without proving it explicitly, we state that for the pushforward of PΩT with respect

to the classi�cation image I2 as de�ned in De�nition 4.4, i.e., PC = I2#PΩT it holds that PC ≪ �.

Consequently, there exists a probability density function pC such that the statements in De�nition 3.8

are still true and the subsequent statements in that Section 3.3.1 concerning the classi�cation space

C or the joint space F × C are also still valid.

Based on the mappings for the feature images (cf. De�nition 3.2) and the classi�cation images (cf.

De�nition 4.4), we de�ne the joint image mapping.

De�nition 5.21 (Joint mapping)

We de�ne the joint mapping for the feature image and the classi�cation image by

I ∶ P ×Ω0 ×ΩT → F × C,

I (p, !, (x , t)) = (I d

1 , I2) (p, !, (x , t)) = (I
d

1 (!, (x , t)) , I2 (p,x , t)) .

To approach the histogram de�nition from a measure-theoretical viewpoint, we start by recapitulating

explicitly the de�nition of the pushforward measure (cf. De�nition 2.16 in [54] and De�nition 1.98 in

[40]) with respect to the joint mapping I = (I d

1 , I2).

De�nition 5.22 (Pushforward measure)

For a �xed parameter setting p ∈ P , we focus on the (E ⊗B (ΩT ) ,B (F × C))-measurable mapping

of the product space Ω0 ×ΩT into the joint image spaces F × C:

I ∶ Ω0 ×ΩT → F × C,

I (p, !, (x , t)) = (I d

1 , I2) (p, !, (x , t)) = (I
d

1 (!, (x , t)) , I2 (p,x , t)) .

We de�ne the pushforward measure of � with respect to I

�I ∶B (F × C)→ [0,∞] , A′ ↦ � (I−1 (A′)) ∈ [0,∞]

for any A′ ∈ B (F × C). This is a measure on (F × C,B (F × C)).

Remark 5.23. ConsideringA′ ∈ B (F × C), we complement the de�nition of the pushforward measure

with the following equivalent notations which are also commonly used in the literature:

�I (A′) = (I#�) (A′) = (� ○ I−1) (A′) = � (I−1 (A′)) .
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We point out that this pushforward measure does not coincide with Pd

F×C = (I
d

1 , I2)#P
∗

since � = P0⊗�
holds while P∗ = P0 ⊗ PΩT holds. We stress that � is the the Lebesgue measure on ΩT whereas PΩT is

the uniform probability measure on ΩT . Consequently, it holds that

Pd

F×C = (I
d

1 , I2)#P
∗
=

1
� (ΩT )

(I d

1 , I2)#� =
1

nT � (Ω)
(I d

1 , I2)#�, (5.4)

i.e we can transform I#� to I#P∗ = Pd

F×C via a normalization step.

Next, we note down the transformation theorem related to the pushforward measure (cf. the trans-

formation formula 3.1 in [21], Theorem 3.20 in [54] or Theorem 4.10 in [40]).

Theorem 5.24
Let g ∶ F × C → ℝ̄ be a B (F × C)-measurable, non-negative function and � a measure on the

measurable space (Ω0 ×ΩT ,E ⊗B (ΩT )). The mapping I is given as previously de�ned in De�ni-

tion 5.22 for a �xed parameter setting p ∈ P . For a measurable subset A′ ⊂ F × C the identity

∫

I−1(A′)

g ○ I (!, (x , t)) d� (x) = ∫
A′

g d (� ○ I−1) (f , c)

holds. A measurable function g ∶ F × C → ℝ̄ is I#�-integrable if and only if g ○ I is �-integrable.

After having introduced the measure-theoretical setting, we can focus next on the de�nition of a

histogram based on the pushforward measure.

5.2.4 Histogram definition and partial derivatives

For the optimization problem, we need to evaluate and analyze the mutual information based on a

probability distribution. This probability distribution is related to a histogram. To be more precise, a

probability measure can be derived from a histogram measure by applying a normalization. For an

example for such a normalization step, we refer to Equation (5.4) because we de�ne the histogram

based on the pushforward measure next.

In addition to this histogram measure, we are also interested in partial derivatives for it (cf. Equa-

tion (5.17)). To ensure di�erentiability, we introduce a smoothing step via convolution with a

smooth molli�er. First, we de�ne the histogram with the previously introduced pushforward mea-

sure.

De�nition 5.25 (Histogram de�nition — part 1)

In general, we de�ne the histogram HF×C in the joint feature-classi�cation space F × C for a

parameter setting p ∈ P by

HF×C (A′) = � ({(!, (x , t)) ∈ Ω0 ×ΩT ∶ I (p, !, (x , t)) ∈ A′}) ∈ [0,∞]

for A′ ∈ B (F × C), the Borel �−algebra ofF ×C, and with the measure � of the measurable space

(Ω0 ×ΩT ,E ⊗B (ΩT )).

75



5 Mutual information based model fi�ing

Remark 5.26. We remark that the histogram for A′ ∈ B (F × C) can also be written as

HF×C (A′) = � (I−1 (A′)) = (� ○ I−1) (A′) = (I#�) (A′)

by making use of the pushforward measure de�ned in De�nition 5.22 and its equivalent notations as

given in Remark 5.23.

Similarly, we set the histograms on the individual spaces HF and HC .

De�nition 5.27 (Histogram de�nition — part 2)

The histograms on the separate spaces when considering a parameter setting p ∈ P can be de�ned

analogously via the pushforward measure as

HF (A′F) = (I
d

1 #�) (A
′
F) ,

HC (A′C) = (I2#�) (A
′
C)

for A′F ∈ B (F)
′

and A′C ∈ B (C)
′

and with the pushforward measures of � and � related to the

corresponding spaces, i.e., Ω0 ×ΩT for the pushforward of the disturbed feature image I d

1 and ΩT

for the pushforward of the classi�cation image I2.

In the previous de�nitions, we have de�ned the histogram measures for a parameter setting p ∈ P .

In the next remark, we focus on the dependence of the histogram measures on this parameter set p.

Remark 5.28 (Histograms as mappings). The histogram measures HF×C and HC de�ned in De�ni-

tions 5.25 and 5.27 depend on a parameter setting p ∈ P because of the dependence of the underlying

classi�cation image I2 on p (cf. De�nition 4.4). While we do not specify this dependence in the sym-

bols for the histogram measure, we emphasize that we can understand the histograms HF×C = I#�
and HC = I2#� as mappings in the sense that for any �xed A′ ∈ B (F × C) and any �xed C ∈ B (C)

HF×C ∶ P → [0,∞] , HF×C (p) = I (p, ⋅)# � (A
′) ,

HC ∶ P → [0,∞] , HC (p) = I2 (p, ⋅)# � (C) .

We can understand the histograms as mappings from the parameter space P to measures

on (F × C,B (F × C)) denoted by M (B (F × C)), or to measures on (C,B (C)) denoted by

M (B (C)), respectively. Without introducing a separate notation for these histogram considered as

mappings in the sense that

HF×C ∶ P →M (B (F × C)) , HC ∶ P →M (B (C)) ,

we stress that we need to keep the dependence of the histograms on the parameter setting in mind.

It is crucial to bear this dependence of the histograms on the parameter setting in mind when

thinking about derivatives of the histograms with respect to the parameter setting. We emphasize

that we are interested in these derivatives since we want to �nd the optimal parameter setting

to maximize the mutual information between the feature images and the classi�cation images by
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applying a gradient-based numerical solver.

To facilitate the derivation of gradient terms for the joint histogram, we introduce a smoothing step.

We smooth the measure by convolving the histogram with a smooth molli�er which is living only

in the classi�cation domain C because the parameter setting is also in�uencing the histograms only

through the classi�cation values. To achieve this, we �rst state a version of the disintegration theorem

adapted to this context. After that we are able to focus on the derivatives of the histogram, �nally.

The next theorem is based on the disintegration theorem given in [4] (cf. Theorem 5.3.1) and in

particular on the remark after Theorem 5.3.1 in [4] dealing with the special case of disintegration for

product spaces. We directly adapt the theorem’s statement to our notation and used spaces in this

section compared to the �rst version of this theorem stated in Theorem 3.9.

We are mainly interested in the disintegration of our histogram measure HF×C = I#�. As the cited

theorem is stated for probability measures, we �rst focus on the disintegration of the probability

measure Pd

F×C = I#P
∗

and then extend this in a second step to the disintegration of I#� by considering

the normalization stated in Equation (5.4).

Theorem 5.29 (Adapted Disintegration Theorem — Version 2)

We consider the probability space (F × C,B (F × C) , Pd

F×C) and the measurable spaces (C,B (C)),
(F ,B (F)). Let the natural projection onto the classi�cation domain F be

�F ∶ F × C → F

and we have with

Pd

F
= �F # (Pd

F×C) = (P
d

F×C) ○ �
−1
F
.

a probability measure for the measurable space (F ,B (F)). Then each �ber �−1
F
(f ) = {f }×C can

canonically be identi�ed with C for any f ∈ F . Moreover, there exists a Pd

F
-almost everywhere

uniquely determined Borel family of probability measures PC = {PC f }f ∈F on the measurable space

(C,B (C)) such that

Pd

F×C (A
′) = ∫

F

PC f (A′ ∩ �−1F (f )) dP
d

F
(f ) = ∫

F

PC f ({(f ′, c) ∈ A′ ∣ f ′ = f }) dPd

F
(f )

holds for any measurable set A′ ∈ B (F × C). Furthermore, it holds that

∫

F×C

g (f , c) dPd

F×C (f , c) = ∫
F

∫

�−1
F
(f )=C

g (f , c) dPC f (c) dPd

F
(f ) (5.5)

for every Borel map g ∶ F × C → [0,+∞].
We use the notation Pd

F×C = (PC , P
d

F
) for a disintegration along F of the probability measure.

Without proving this theorem, we introduce a direct consequence in the following remark in which

we focus on the disintegration of I#�.
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Remark 5.30. We consider the same setting as in Theorem 5.29 and Notation 5.18.

We recall that

Pd

F×C = I#P
∗
= P∗ ○ I−1 =

1
� (ΩT )

� ○ I−1

holds (cf. Equation (5.4)). In this spirit, the probability measure P∗ is the normalization of � by

considering a uniform probability distribution on ΩT . We specify that we can also disintegrate I#�
by reverting this normalization, i.e. we could scale Pd

F
or the family PC by � (ΩT ) = nT� (Ω) (cf.

Equation (3.1)). In the following, we use � = � (ΩT ) PC , i.e., � = { �f }f ∈F with �f = � (ΩT ) PC f and

use (�, Pd

F
) as the disintegration of the unnormalized measure I#�.

In the further course, we consider one �xed family of probability measures � = {�f }f ∈F for the

disintegration of the pushforward measure I#� with respect to its normalized projection on the feature

space F , i.e., the measure Pd

F
= 1

�(ΩT )�F # (I#�) = �F # (I#P
∗) = �F #Pd

F×C .

Remark 5.31. A direct consequence of the disintegration in Theorem 5.29 and the previous remark

on the disintegration (�, Pd

F
) of the measure I#� along F is that similar to Equation (5.5) it holds

∫

F×C

g (f , c) dI#� (f , c) = ∫
F

⎛
⎜
⎝
∫

C

g (f , c) d�f (c)
⎞
⎟
⎠
dPd

F
(f ) .

for any Borel map g ∶ F × C → [0,+∞].

We use this disintegration to smooth the histogram HF×C = I#�. To prepare the smoothing step,

we cite the convolution of measures �rst for the sake of completeness. The following lemma is based

on the Proposition 5.4.1 in [6].

Lemma 5.32
Let �1, �2 be two �nite measures on the measurable space (F × C,B (F × C)). For any measurable

set A ⊂ F × C, the convolution of the measures is de�ned as

(�1 ∗ �2) (A) = ∫
F×C

∫

F×C

1A ((f , c) + (f ′, c′)) d�1 (f , c) d�2 (f ′, c′) . (5.6)

Then holds that (�1 ∗ �2) is a measure as well on (F × C,B (F × C)).

Proof. We refer to the proof stated in [6] for Proposition 5.4.1.

An equivalent formulation of Equation (5.6) is given by

(�1 ∗ �2) (A) = ∫
F×C

�2 (A − (f , c)) d�1 (f , c) .

While we de�ned the convolution here for the joint feature classi�cation space, it is also well de�ned

for measures on other measurable spaces, e.g., for the measurable space (C,B (C)). To smooth our

histogram measure, we apply convolution along the classi�cation space C.
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5.2 Optimization problem for cell colony spreading

De�nition 5.33 (Smoothing histogram by convolution)

1. Let � ∈ C∞ (C) be a smooth, non-negative function with ∫C � dc = 1 and which is compactly

supported on B (0, 1). Moreover, we consider again the measure I#� on F × C with its

disintegration (�, Pd

F
) along F . We consider �̂ as the measure on C with the probability

density � with respect to the Lebesgue measure � on the one dimensional classi�cation space

C. Then we de�ne the convolution operation along the subspace C of F × C by considering

�̂ ∗C I#� ∶= �̂ ∗C (�, Pd

F
) = ({�̂ ∗ �f }f ∈F , P

d

F
)

with �̂ ∗ �f the convolution of measures on the measurable space (C,B (C)).

2. Let �"1 ∶=
1
"1 � (

⋅
"1 ) be a smooth molli�cation kernel with support B (0, "1), ∫C �"1 dc = 1 and

lim
"1→0

�"1 (0) = � (0), i.e. converging to the dirac delta function for vanishing "1. We de�ne the

smoothing operation along the C−axis for the histogram measure HF×C = I#� by

H "1
F×C ∶= �̂"1 ∗C HF×C .

when considering �̂"1 to be the measure with the density �"1 with respect to the Lebesgue

measure.

Remark 5.34. We stress that H "1
F×C is still a measure on the measurable space (F × C,B (F × C)).

The convolution with a smooth molli�er in the classi�cation domain C results in a smoothed version

of the histogram, i.e., in the classi�cation direction we achieve a di�erentiable representation in the

sense that the histogram has a di�erentiable density with respect to the Lebesgue measure in the

C-direction. The derivatives are important for the approximation of the derivative of our mutual

information term. In the following, we regardH "1
F×C as a smoothed measure living on the measurable

space (F × C,B (F × C)).

This smoothing step becomes crucial in the further course when we consider di�erent discretization

aspects to solve our optimization problem numerically. Underlying pixel grids of the feature images

and classi�cation images as well as binning e�ects in the feature and classi�cation spaces can impede

the calculation of gradient terms because of possibly occurring delta peaks or piecewise constant

histogram measures. To smooth out such discontinuities, we introduce the smoothing by convolution

with a molli�er.

Example 5.35. An example for a smooth molli�er as described in De�nition 5.33 is the bump function

� ∶ ℝ↦ ℝ, � (x) =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
Cnorm.

exp ( −11−x2 ) , ∣x ∣ < 1

0, ∣x ∣ ≥ 1.

We choose the normalization constant Cnorm. ≈ 0.4440 such that the mollifer’s property

∫

ℝ

� (x) dx = 1
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holds. Based on this bump function, we construct the molli�er in the classi�cation space with

�"1 ∶ C ↦ ℝ, �"1 (c) ∶=
1
"1
�(

c
"1
) .

Consequently, the compact support of �"1 is the interval [−"1, "1].

Notation 5.36
The molli�er � introduced in Example 5.35 is also called the standard molli�er (De�nitions in C.4.

in [22]). In the following we use �"1 =
1
"1 � (

⋅
"1 ) for the smoothing e�ect along the classi�cation

space.

Remark 5.37. We carry out explicitly the smoothing step for the histogram measure HF×C = I#�
using its disintegration (�, Pd

F
) as introduced in Remark 5.30. We focus on an arbitrary measurable

subset A′ ⊂ F ×C and make use of the convolution of measures. The transformation goes as follows:

H "1
F×C (A

′) = �̂"1 ∗C HF×C (A
′)

= ∫

C

H "1
F×C (A

′
− (0, c)) d�̂"1 (c)

= ∫

C

�"1 (c)H
"1
F×C (A

′
− (0, c)) dc

disintegration

= ∫

C

�"1 (c)∫
F

�f ({(f ′, c′) ∈ A′ − (0, c) ∣ f ′ = f }) dPd

F
(f ) dc

Fubini

= ∫

F

∫

C

�"1 (c) �f ({(f
′, c′) ∈ A′ − (0, c) ∣ f ′ = f }) dc dPd

F
(f )

= ∫

F

(�̂"1 ∗ �f ) ({(f
′, c′) ∈ A′ ∣ f ′ = f }) dPd

F
(f ) .

This highlights that ({�̂"1 ∗ �f }f ∈F , P
d

F
) disintegrates the smoothed histogram H "1

F×C along the fea-

ture space F .

Remark 5.38. As another remark we state the integral term after executing the smoothing convolution

and the disintegration for H "1
F×C when considering A′ = F × C:

H "1
F×C (F × C) = ∫

F×C

dH "1
F×C (f , c) = ∫

F

∫

C

∫

C

�"1 (ĉ − c
′) d�f (c′) dĉ dPd

F
(f ) .

We point out that this directly follows from the transformations in Remark 5.37 when including

A′ = F × C and the substitution of c by ĉ − c′.

In this sense, we remark that we can explicitly write down the density function of the convolution

measure.
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Remark 5.39. Considering the disintegration ({�̂"1 ∗ �f }f ∈F , P
d

F
) of the smoothed histogram H "1

F×C
along the space F , we can derive the density function of the convolved measure �̂"1 ∗ �f for an

arbitrary but �xed f ∈ F as follows. For a set C ∈ B (C) we derive

(�̂"1 ∗ �f ) (C) = ∫
C

∫

C

1C (c + c′) d�̂"1 (c) d�f (c
′)

= ∫

C

∫

C

�"1 (c) 1C (c + c
′) dc d�f (c′)

subst.:

c=ĉ−c′
= ∫

C

∫

C

�"1 (ĉ − c
′) 1C (ĉ) dĉ d�f (c′)

Fubini

= ∫

C

∫

C

�"1 (ĉ − c
′) 1C (ĉ) d�f (c′) dĉ = ∫

C
∫

C

�"1 (ĉ − c
′) d�f (c′) dĉ

which shows that indeed ∫C �"1 (⋅ − c
′) d�f (c′) can be considered as the density function with respect

to the Lebesgue measure of the convolved measure for an arbitrary but �xed f ∈ F . We stress that

the integration domain in the substitution step is not changing since we consider C = ℝ.

To solve the optimization problem of maximizing the mutual information of classi�cation images

and features images numerically, we are aiming for a gradient-based optimization technique. The

goal of maximizing the MI is to �nd an optimal parameter setting p ∈ P which corresponds to a

classi�cation result that captures best the colony’s spreading given in the data and represented in

the feature images. Before we derive the gradient of our MI term, we deal with derivatives for the

smoothed histogram measure.

The dependence of the histogram on the parameter set is given by the classi�cation image I2. We

refer to Remark 5.28 to recapitulate the dependence of the histogram measures on the parameter

setting p ∈ P . As discussed above, we introduced a smoothing step by convolution with a smooth

molli�er to ensure di�erentiability along the classi�cation axis. So now, we are interested in the

partial derivatives of this smoothed histogram,

)H "1
F×C

)pi for each parameter pi ∈ p. In Section 4.2 we

introduced the classi�cation image I2 in De�nition 4.4. The partial derivatives of I2 with respect

to the parameters pi ∈ p are also stated in that section as well, cf. Equation (4.8). We use ∇pI2,
exploit properties related to the Radon-Nikodym theorem (cf. Section 5.2.1) and make use of the

disintegration theorem (Theorem 5.40) to show the following statement on the directional derivative

of the smoothed histogram:

Theorem 5.40
Let H "1

F×C be the smoothed histogram from De�nition 5.33 and the derivative of the molli�cation

kernel be given by �′"1 . For any parameter pi ∈ p, the directional derivative is given by

)H "1
F×C
)pi

= −�̂′"1 ∗C I# (
)I2
)pi

�) (5.7)

with �̂′"1 = �
′
"1�, i.e., the measure �̂′"1 has the density �′"1 with respect to the Lebesgue measure � on

(C,B (C)).
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Proof. Let g ∈ C0 (F × C) be an arbitrary, continuous map and measurable. In the following we de-

note with the dual pair ⟨g, �⟩ the integration of g with respect to a measure � on (F × C,B (F × C)),
e.g., for the histogram measure HF×C = I#�, we get with its disintegration (�, Pd

F
) and � = {�f }f ∈F

⟨g, I#�⟩ = ∫
F×C

g (f , c) dI#� (f , c)
Remark 5.30

= ∫

F

∫

C

g (f , c) d�f (c) dPd

F
(f )

and, analogously, for the smoothed histogram measureH "1
F×C and its disintegration ({�̂"1 ∗ �f }f ∈F , P

d

F
)

⟨g,H "1
F×C⟩ = ∫

F×C

g (f , c) dH "1
F×C (f , c)

De�nition 5.33

= ∫

F

∫

C

g (f , c) d (�̂"1 ∗ �f ) (c) dP
d

F
(f )

Remark 5.39

= ∫

F

∫

C

g (f , c)∫
C

�"1 (c − ĉ) d�f (ĉ) dc dP
d

F
(f ) .

We consider this as the starting point for the following transformations. Let pi be an arbitrary

parameter in our parameter set p. Now, we focus on the partial derivative by using the dual pair:

⟨g,
)
)pi

H "1
F×C⟩ =

)
)pi
⟨g,H "1

F×C⟩

Remark 5.39

=
)
)pi
∫

F

∫

C

∫

C

g (f , c) �"1 (c − ĉ) d�f (ĉ) dc dP
d

F
(f )

Fubini

=
)
)pi
∫

C

∫

F

∫

C

g (f , c) �"1 (c − ĉ) d�f (ĉ) dP
d

F
(f ) dc

disintegration,

cf. Remark 5.31

=
)
)pi
∫

C

∫

F×C

g (f , c) �"1 (c − ĉ) dI#� (ĉ, f ) dc

Theorem 5.24

=
)
)pi
∫

C

∫

Ω0×ΩT

g (I d

1 (!, (x , t)) , c) �"1 (c − I2 (p,x , t)) d� (!, (x , t)) dc

re-order di�erentiation

and integration (*)

= −∫

C

∫

Ω0×ΩT

g (I d

1 (!, (x , t)) , c) �
′
"1 (c − I2 (p,x , t))

)I2 (p,x , t)
)pi

d� (!, (x , t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
with

f ∶= )I2(p,x ,t))pi
, d�1∶= d�(!,(x ,t))

d�2∶= d( )I2(p,⋅))pi
�)(!,(x ,t))

in Theorem 5.4

dc

Theorem 5.4

= −∫

C

∫

Ω0×ΩT

g (I d

1 (!, (x , t)) , c) �
′
"1 (c − I2 (p,x , t)) d(

)I2 (p, ⋅)
)pi

�)(!, (x , t)) dc

Theorem 5.24

= −∫

C

∫

F×C

g (f , c) �′"1 (c − ĉ) dI# (
)I2 (p, ⋅)
)pi

�)(ĉ, f ) dc

Fubini

= − ∫

F×C
∫

C

g (f , c) �′"1 (c − ĉ) dI# (
)I2 (p, ⋅)
)pi

�)(ĉ, f ) dc = ⟨g,K"1⟩

with

K
"1 ∶= −�̂′"1 ∗C I# (

)I2
)pi

�)
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by considering a disintegration (�̂, �̂) along the space F of the pushforward of the measure
)I2
)pi �

with respect to the joint mapping I . In this sense, �̂ denotes a probability measure on the measurable

space (F ,B (F)) and �̂ = {�̂f }f ∈F a family of appropriately scaled measures on (C,B (C)).
For the sake of completeness, we remark that it is indeed valid to change the order of integration and

di�erentiation in (*) as the integrand is a continuous function and the integration variables do not

depend on p.

The partial derivative of the histogram with respect to a parameter pi ∈ p is an essential ingredient,

as we will see in the next section. Since we are aiming for a gradient-based numerical solver for the

MI optimization problem, we will focus next on the gradient of MI.

5.2.5 Discretized histograms, discrete MI and its gradient

To solve the optimization problem numerically, an intuitive approach is applying gradient-based

optimization techniques as for example gradient descent. So, this section is mainly dedicated to

deriving the gradient of MI. Before we dive right into the details, we focus on di�erent aspects related

to discrete histogram de�nitions �rst to introduce a de�nition of mutual information in a discrete

context.

Discrete histograms and discrete MI

We begin with a discretized histogram that we will use to de�ne MI in a discretized setting. Firstly, it

is a valid assumption to use a discrete histogram because in numerics we are unconditionally bound to

use a �nite number of entries to approximate continuous values and also to perform calculations with

a discrete histogram. So it is an essential consideration when aiming for a computer aided solution.

Secondly, we are facing a limited amount of data to generate our histograms from as well, since both

the classi�cation and the features images are living on a discrete pixel grid in the actual application

setting anyway. This is already an outlook to the consequent Section 5.3 where we will motivate the

use of various discretization aspects more thoroughly. Still we want to clarify the discretization of

the feature and classifaction spaces now to prepare the de�nition of a discrete histogram.

We state that in this section, we focus on the reduced feature space F
′

again omitting features

of very low probabilities as de�ned in De�nition 3.14 and we use C
′

de�ned in De�nition 4.5 and,

equivalently, given as

C
′
∶= supp (pC) ⊂ C.

We stress here that it is a valid assumption that the support of the probability density function pC is

bounded since the classi�cation image I2 as de�ned in De�nition 4.4 is only mapping to a subset of

[0, 2].
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De�nition 5.41 (Discretization of F
′

and C
′
)

We consider a discrete setting in our joint feature-classi�cation spaceF
′×C′ with pairwise disjoint

discrete bins BF ,i inF
′

and BC,j in C
′
, respectively, with i = 1,… , NF and j = 1,… , NC resulting in

�nite discretizations for F
′

and C
′

with

NF
⋃
i=1
BF ,i = F

′,
NC
⋃
j=1
BC,j = C

′.

When using equidistant binning widths Δc and Δf , we can calculate the numbers of necessary bins

NC =
∣C′∣

Δc
, NF =

n
∏
i=1

∣F ′i ∣

Δf

when assuming the n-dimensional reduced feature space to be given as the Cartesian product

F
′ = F ′1 ×⋯ ×F

′

n.

In case of our three dimensional feature space based on the texture information introduced in Sec-

tion 3.3, we can calculate the number of feature bins as follows

NF =
∣F ′1∣

Δf
⋅
∣F ′2∣

Δf
⋅
∣F ′3∣

Δf
(5.8)

which we will use in the further course. In case of a classi�cation range between 0 and 2 we can

approximate the number of bins in the classi�cation domain with

NC =
∣C′∣

Δc
≤
2
Δc

. (5.9)

Without loss of generality, we consider only bin width Δc and Δf such that NC and NF are indeed

integer values.

The discrete histograms can be de�ned as follows when applying the just introduced binning strat-

egy.

De�nition 5.42 (Discrete histograms — three versions)

We begin with the discrete histograms de�ned as arrays and mark them with bars. Each entry is

given by

HF (i) = (I d

1 #�) (BF ,i) , i = 1,… , NF

HC (j) = (I2 (p, ⋅)# �) (BC,j) , j = 1,… , NC

HF×C (i, j) = (I (p, ⋅)# �) (BF ,i × BC,j) , i = 1,… , NF , j = 1,… , NC

In these arrays, we collect in each entry for the corresponding bin the pushforward of � with

respect to I d

1 and I and, respectively, the pushforward of � with respect to I2, i.e. the measure of

the preimages that get mapped into the bin corresponding to that entry. Based on these arrays, we

de�ne histogram measures ĤF , ĤC and ĤF×C that are non-zero on the F
′, C′ and F

′ × C′. For
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5.2 Optimization problem for cell colony spreading

each measurable C ⊂ C′ and F ⊂ F ′, we implement the following relation between the array-like

histograms and the new histogram measures:

ĤF (F) =
NF
∑
i=1

∣F ∩BF ,i ∣
∣BF ,i ∣

HF (i) =
1
Δf 3

NF
∑
i=1
∣F ∩BF ,i ∣HF (i) ,

ĤC (C) =
NC
∑
j=1

∣C ∩BC,j ∣
∣BC,j ∣

HC (j) =
1
Δc

NC
∑
j=1
∣C ∩BC,j ∣HC (j) ,

ĤF×C (F × C) =
NF ,NC
∑
i,j=1

∣F ∩BF ,i ∣
∣BF ,i ∣

∣C ∩BC,j ∣
∣BC,j ∣

HF×C (i, j) =
1

ΔcΔf 3
NF ,NC
∑
i,j=1
∣F ∩BF ,i ∣ ∣C ∩BC,j ∣HF×C (i, j) .

In this context ∣⋅∣ is used to indicate the Lebesgue measure. Additionally, we stress that they are

labeled with the hat symbol whereas the original, continuous histogram measures H are bare bold

letters lacking any symbol on top (cf. De�nition 5.25).

Finally, we introduce piecewise constant histogram density functions with

ℎ̂F ∶ F → ℝ+ ℎ̂F (f ) =
1
Δf 3

NF
∑
i=1

1BF ,i (f )HF (i)

ℎ̂C ∶ C → ℝ+ ℎ̂C (c) =
1
Δc

NC
∑
j=1

1BC,j (c)HC (j)

ℎ̂F×C ∶ F × C → ℝ+ ℎ̂F×C (f , c) =
1

ΔcΔf 3
NF ,NC
∑
i,j=1

1BF ,i (f ) 1BC,j (c)HF×C (i, j) .

On each bin BF ,i , BC,j or BF ,i × BC,j for i = 1,… , NF and j = 1,… , NC those density functions are

constant and outside of F
′,C′ or F

′ × C′, respectively, they are 0.

We remark that the discrete histogram measures are based on a normalization step by the bin sizes

Δf 3 and Δc to preserve the “total mass”. This motivates the following lemma.

Lemma 5.43 (Mass conservation in discrete histograms)

For the array-like discrete histogram and the derived discrete histogram measures, the total mass

in both histograms is identical. Consequently, the following identities hold:

NF
∑
i=1
HF (i) = ĤF (F ′) ,

NC
∑
j=1
HC (j) = ĤC (C′) ,

NF ,NC
∑
i,j=1

HF×C (i, j) = ĤF×C (F ′ × C′) .

Furthermore, for the histograms related to the reduced feature space it holds that they approximate

the total mass of the spatio-temporal domain ΩT , i.e. the following inequalities

ĤF (F ′) ≤ ∣ΩT ∣

ĤF×C (F ′ × C′) ≤ ∣ΩT ∣
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hold and for the histogram related to the classi�cation space the equality

ĤC (C′) = ∣ΩT ∣

holds with the Lebesgue measure � of the spatio-temporal domain given by ∣ΩT ∣ = nT� (Ω) =
nT ⋅ L ⋅W .

Proof. We show the arguments exemplarily in the feature space F
′
. In the classi�cation space C

′

and in the joint space F
′ × C′ the statements follow similarly. We start on the right hand side with

the discrete histogram measures and derive

ĤF (F ′)
De�nition 5.41

=

NF
∑
i=1
ĤF (BF ,i)

De�nition 5.42

=

NF
∑
i=1

NF
∑
i2=1

∣BF ,i ∩BF ,i2 ∣

∣BF ,i2 ∣
HF (i2)

bins pw. disjoint

=

NF
∑
i=1

∣BF ,i ∩BF ,i ∣

∣BF ,i ∣
HF (i) =

NF
∑
i=1
HF (i)

which shows the statement of mass conservation for the feature space histograms.

For the second statement in the setting of the feature space F
′
, we derive

ĤF (F ′) =
NF
∑
i=1
HF (i)

De�nition 5.42

=

NF
∑
i=1
(I d

1 #�) (BF ,i)
additivity

= (I d

1 #�) (F
′)

by exploiting that the bins are considered to be pairwise disjoint as well as that their union results in

the total space F
′

again. Similarly, one can derive

ĤF×C (F ′ × C′) = (I#�) (F ′ × C′) .

With this in mind, we continue with the following estimations

(I d

1 #�) (F
′) = (I d

1 # (P
0
⊗ �)) (F ′) ≤ (I d

1 # (P
0
⊗ �)) (F)

= ∫
Ω0×ΩT

1F (I d

1 (!, (x , t)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

d (P0 ⊗ �) (!, (x , t))

Fubini’s theorem

= ∫
Ω0
1 dP0 (!)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

∫
ΩT
1 d� = � (ΩT )

and, analogously, it holds that

(I#�) (F ′ × C′) = (I# (P0 ⊗ �)) (F ′ × C′)

≤ (I# (P0 ⊗ �)) (F × C)

= P0 (Ω0) ⋅ � (ΩT ) = � (ΩT ) .

Here, we exploit the fact that the pushforwards with respect to the mappings I d

1 and I considering

the total spaces F and F × C equal the total mass of the original spatio-temporal domain ΩT . For

the histogram related only to the classi�cation space C
′
, we even get the equality

ĤC (C′) = (I2#�) (C′) = � (ΩT )
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5.2 Optimization problem for cell colony spreading

because C
′

contains the support of I2. By recalling that � (ΩT ) = nT � (Ω) = nT ⋅ L ⋅W holds, we have

shown the complete statement.

Remark 5.44 (Missed mass due to neglected lower probability features). We only approximate the total

mass of the spatio-temporal domain ΩT with the histogram measures ĤF (F ′) and ĤF×C (F ′ × C′)
since we are neglecting features of very low probabilities in the reduced feature space F

′
. Conse-

quently, we miss certain areas in the spatio-temporal domain which are indeed mapped to these

features of very low probabilities. We avoid introducing a new, adjusted de�nition for the disturbed

feature image I d

1 to replace the feature values of very low probabilities by others which are lying

withinF
′
. Instead, we assume that due to the very low probabilities of the missed features inF/F ′,

we also miss only very few “mass” of the spatio-temporal domain ΩT and we infer that we approxi-

mate the total mass well. In this sense, we use the approximations

(I d

1 #�) (F
′) ≈ ∣ΩT ∣ , (I#�) (F ′ × C′) ≈ ∣ΩT ∣ (5.10)

in the further course.

Next, we introduce the following relation between the piecewise constant histogram density functions

and the discrete histogram measures in the next lemma.

Lemma 5.45
The density functions ℎ̂F , ℎ̂C and ℎ̂F×C de�ned in De�nition 5.42 are density functions with

respect to the Lebesgue measure for the discrete histogram measures ĤF , ĤC and ĤF×C such that

it holds

ĤF (F) = ∫
F

ℎ̂F (f ) df ,

ĤC (C) = ∫
C

ℎ̂C (c) dc,

ĤF×C (F × C) = ∫
F×C

ℎ̂F×C (f , c) d (f , c)

for arbitrary measurable subsets C ⊂ C′ and F ⊂ F ′.
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Proof. We show the identity for the statement corresponding to the feature space F
′
. Let F be an

arbitrary measurable subset ofF
′
. We start with the identity on the right hand side and perform the

following transformations:

∫

F

ℎ̂F (f ) df
cf. De�nition 5.42

= ∫

F

1
Δf 3

NF
∑
i=1

1BF ,i (f )HF (i) df

1
Δf 3

NF
∑
i=1
HF (i)∫

F

1BF ,i (f ) df

1
Δf 3

NF
∑
i=1
HF (i) ∫

F∩BF ,i

df

=
1
Δf 3

NF
∑
i=1
HF (i) ∣F ∩BF ,i ∣

cf. De�nition 5.42

= ĤF (F) .

The remaining two statements for the spaces C
′

and F
′ × C′ can be shown similarly.

In the later Section 5.3.4 on discretization aspects, we will add a convergence result for the discretized

histograms, more precisely for their histogram density functions when applying binning widths

Δf , Δc converging to 0. In the current section, we focus next on the relation between the histograms

for “one” space and the histogram on the joint space.

Lemma 5.46 (Relation between individual and joint histogram)

The relation between the individual histograms for the continuous histogram measures and for the

discretized array-valued histograms is given as follows:

1. Based on the joint histogram measure HF×C , it holds for the histograms HF and HC and for

arbitrary measurable subsets A′F ⊂ F
′

and A′C ⊂ C
′

that

HF (A′F) = ∫
A′F×C

′

1 dHF×C (f , c) ,

HC (A′C) = ∫
F
′×A′C

1 dHF×C (f , c) ,

i.e., the individual histograms are calculated by applying integration along the other space.

2. Based on the discretized joint histogram HF×C as an array, it holds for the individual, array-

valued histograms that

HF (i) =
NC
∑
j=1
HF×C (i, j) , i = 1,… , NF (5.11)

HC (j) =
NF
∑
i=1
HF×C (i, j) , j = 1,… , NC . (5.12)
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5.2 Optimization problem for cell colony spreading

Proof. We start with the proof of the �rst part. Let A′F be an arbitrary subset ofF
′
. When we perform

the following transformations

∫

A′F×C
′

1 dHF×C (f , c) = ∫
A′F×C

′

1 d (� ○ I−1) (f , c)

(∗)
= ∫

I−1(A′F×C
′)=(I d

1 )
−1(A′F )

1 d� (!, (x , t))

= ∫

A′F

1 d (� ○ I d

1 ) (f , c)
De�nition 5.27

= HF (A′F)

and use in (∗) the following identity for the integration domain

I−1 (A′F × C
′) = (I d

1 , I2)
−1
(A′F × C

′) = (I d

1 )
−1
(A′F) ∩ (Ω0 ×ΩT ) = (I d

1 )
−1
(A′F) ,

we �nally end up with the de�nition of one individual histogram.

To show the identity

HC (A′C) = ∫
F
′×A′C

1 dHF×C (f , c)

we can apply similar transformations related to I2 on C
′

to obtain the de�nition for HC stated in

De�nition 5.27.

✓

The second part can be derived in a similar way when considering summation over one-dimension

of the two dimensional joint histogram-array HF×C and thinking about one �xed index i or j as

a “subdomain” of the corresponding joint space similar to the integration along one subdomain F
′

or C
′

above. We show the statement again for the histogram for the feature space, HF while the

statement for the histogram HC can be derived analogously. For an arbitrary i ∈ {1,… , NF}, it holds

that

NC
∑
j=1
HF×C (i, j) =

NC
∑
j=1
(I (p, ⋅)# �) (BF ,i × BC,j)

=

NC
∑
j=1

∫

BF ,i×BC,j

1 d (I (p, ⋅)# �)

= ∫

BF ,i×C′
1 d (I (p, ⋅)# �)

= … = HF (i) .

We skipped in the end a few steps. However, the statement can be indeed proved like this by applying

disintegration of the joint measure (I (p, ⋅)# �) and by considering that the preimage of C
′

for I2 is

again the whole spatio-temporal domain ΩT which then allows to only focus on the preimage of BF ,i

under I d

1 .

✓
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In the initial de�nition of MI in De�nition 5.12, we used probability density functions related to the

occurring classi�cation values for a certain parameter settings p ∈ P in the classi�cation image I2 as

well as probability density function for the feature values occurring in the feature image I d

1 , which

incorporate the original microscopy data. Moreover, we used the corresponding joint probability

density function related to the joint mapping I = (I d

1 , I2). With these probability density functions

(PDFs), we can calculate the mutual information as stated in De�nition 5.12. Before we de�ne a

discretized version of mutual information, we establish the relation between the probability density

functions and the discretized histograms.

Lemma 5.47 (Relation between probability density functions and histogram density functions)

The (piecewise constant) probability density functions can be calculated based on the discretized

(piecewise constant) histogram density functions ℎ̂F , ℎ̂C and ℎ̂F×C via a normalization step such

that

p̂F ∶ F → ℝ+ p̂F (f ) =
1

nT ⋅ L ⋅W
ℎ̂F (f )

p̂C ∶ C → ℝ+ p̂C (c) =
1

nT ⋅ L ⋅W
ℎ̂C (c)

p̂F×C ∶ F × C → ℝ+ p̂F×C (f , c) =
1

nT ⋅ L ⋅W
ℎ̂F×C (f , c)

holds with the normalization constant equal to the total mass of the domain ΩT

∣ΩT ∣ = nT ⋅ L ⋅W.

Proof. The functions p̂F , p̂C and p̂F×C introduced with the histogram density functions are indeed

probability density functions, since it holds that

p̂F , p̂C , p̂F×C ≥ 0

because of the non-negativity of the di�erent histogram measures and the histogram density function

introduced in De�nition 5.42. Moreover, they are integrable similarly to the histogram density

functions and with

∫

F

p̂F (f ) df = ∫
F

1
nT ⋅ L ⋅W

ℎ̂F (f ) df

De�nition 5.42

=
1

nT ⋅ L ⋅W
∫

F

1
Δf 3

NF
∑
i=1

1BF ,i (f )HF (i) df

=
1

nT ⋅ L ⋅W
1
Δf 3

NF
∑
i=1
HF (i) ∫

BF ,i

df

=
1

nT ⋅ L ⋅W
1
Δf 3

HF (i)
NF
∑
i=1
∫

BF ,i2

df

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=Δf 3

=
1

nT ⋅ L ⋅W

NF
∑
i=1
HF (i)

cf. Lemma 5.43

≈ 1.
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we show that p̂F is also normalized. That p̂C and p̂F×C are normalized can equivalently be shown

with the cited statements. We remark that for p̂F and p̂F×C , we exploit the fact that the total mass

is approximated by the given histograms well enough when considering to cut o� only features of

very low probabilities to get the underlying feature space F
′

(cf. Remark 5.44).

Without going into the details of discretizing the spatio-temporal domain ΩT , we still introduce the

following relation. We focus on the discretization details of ΩT later on in Section 5.3, especially in

De�nition 5.55.

Remark 5.48. As our spatio-temporal domainΩT is already semi-discretized because we only consider

discrete time points t ∈ {t1,… , tnT } (cf. De�nition 3.1), we only need to discretize further the spatial

domain Ω. For this purpose, we apply an equidistant spatial width h. Consequently, the volume

of one discrete pixel equals h
2
. With this at hand, we add another relation for the normalization

constant given as the measure of the spatio-temporal domain ΩT

nT ⋅ L ⋅W = ∣ΩT ∣ =
nT
∑
ti=1
∫
Ω
1 dx = nT

np̃
∑
i=1

h
2
= nT ⋅ np̃ ⋅ h2 (5.13)

with nT denoting the number of discrete time points and, similarly, np̃ the number of spatial pixels

in Ω with area h
2
.

Since the discrete, array valued histograms HF , HC and HF×C accumulate the pushforward mea-

sures with respect to the mappings I d

1 , I2 and I , of one bin per array entry, we can approximate the

histogram entries for a discrete pixel grid of ΩT as follows: For each histogram entry, we count the

pixel that get mapped into the related bin and multiply this amount by the volume of one discrete

pixel h
2
. With this in mind, it is clear that when summing up all histogram entries, we end up with

the total volume of our domain again.

NF ,NC
∑
i,j=1

HF×C (i, j) = nT ⋅ np̃ ⋅ h2
Equation (5.13)

= nT ⋅ L ⋅W

For a discretization of ΩT , we add another discrete histogram de�nition that is based on “counting”

pixels of the discretized domain ΩT that get mapped by our mappings I d

1 , I2 and I into certain bins

of the spaces F
′, C′ and F

′ × C′. In this sense, we consider piecewise constant image mappings

Î d,h

1 , Î h

2 and (Î d,h

1 , Î h

2 ) living on the discretized pixel grid. We skip exact de�nitions for the discretized

variables here. However, we refer to De�nitions 5.55, 5.56 and 5.63 in Section 5.3.1 and Section 5.3.2

for a precise introduction of the pixel grid and the discretized image mappings. In the these upcoming

sections, we investigate the discretized feature and classi�cation images in more details with respect

to convergence properties.
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De�nition 5.49 (Discrete histogram — counting pixels of a discretized domain ΩT )

We de�ne discrete, array valued histograms when considering a discretized pixel grid for Ω for

each time point t ∈ {t1,… , tnT } and with pixel width h. Each entry is given by

○
HF (i) ∶= #{pixel v ∣ Î d,h

1 (v) ∈ BF ,i} , i = 1,… , NF
○
HC (j) ∶= #{pixel v ∣ Î h

2 ∈ BC,j} , j = 1,… , NC
○
HF×C (i, j) ∶= #{pixel v ∣ (Î d,h

1 , Î h

2 ) (v) ∈ (BF ,i ⊗BC,j)} , i = 1,… , NF , j = 1,… , NC .

We mark the new histogram version with a circle superscript. Given the discretization sizes of the

spatio-temporal domain ΩT , we can calculate the total number of histogram entries via

Nhist. entries =
nT ⋅ L ⋅W

h
2 . (5.14)

Without performing the calculations explicitly, we state that it

Nhist. entries =

NF
∑
i=1

○
HF (i) =

NC
∑
j=1

○
HC (j) =

NF ,NC
∑
i,j=1

○
HF×C (i, j) . (5.15)

holds. With the pixel counting histogram de�nition we can establish the following relation to the

previously de�ned discrete histograms introduced in De�nition 5.42.

Lemma 5.50 (Relation of array-valued histograms)

Let ΩT be discretized such that for each time point t ∈ {t1,… , tnT } the spatial domain Ω is given as

a pixel grid of pixel width h. Then the following identities hold

○
HF (i) =

1
h
2HF (i) , i = 1,… , NF ,

○
HC (j) =

1
h
2HC (j) , j = 1,… , NC ,

○
HF×C (i, j) =

1
h
2HF×C (i, j) , i = 1,… , NF , j = 1,… , NC .

Proof. The statement is a direct consequence of the corresponding de�nitions and considering the

explanations given in Remark 5.48.

With this relations in mind, we can now de�ne a discretized version of MI compared to De�nition 5.12

by making use of the discrete histograms.

De�nition 5.51 (Discretized mutual information)

Let ΩT be discretized such that for each time point t ∈ {t1,… , tnT } the spatial domain Ω is given

as a pixel grid of pixel width h. Given the discrete, array-valued histograms

○
HF ,

○
HC and

○
HF×C
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based on pixel counting and with a �nite number of entries Nhist. entries, we introduce the mutual

information via

MIΔf ,Δc (
○
HF×C) =

1
Nhist. entries

NF , NC
∑
i,j=1

○
HF×C (i, j) log

⎛
⎜
⎝

Nhist. entries ⋅
○
HF×C (i, j)

○
HF (i) ⋅

○
HC (j)

⎞
⎟
⎠
. (5.16)

This de�nition is based on the formulation of MI in [49] and is here adapted to our notations.

With the following proposition, we show that for discrete histogram arrays HF , HC and HF×C , the

discretized MI coincides with the continuous MI derived from the piecewise constant probability

distributions related to the corresponding histogram measures.

Proposition 5.52 (Matching of discrete and continuous MI)

For the discrete histogram measures ĤF , ĤC and ĤF×C and their corresponding piecewise constant

probability distributions p̂F , p̂C and p̂F×C it holds that

MI (p̂F×C) = MIΔf ,Δc (
○
HF×C) ,

when considering the related histograms based on pixel counting

○
HF ,

○
HC and

○
HF×C .

Proof. The main ingredients for the proof are stated in De�nition 5.42 and Lemma 5.47. We start on

the left hand side with the MI calculation based on the given probability density functions related
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to the discrete histograms and perform various transformations as stated below to achieve the MI

de�nition in a discrete setting when using the histograms based on pixel counting.

MI (p̂F×C) = ∫
F×C

p̂F×C (f , c) log(
p̂F×C (f , c)

p̂F (f ) ⋅ p̂C (c)
) d (f , c)

cf. De�nition 5.41

=

NF , NC
∑
i,j=1

∫

BF ,i

∫

BC,j

p̂F×C (f , c) log(
p̂F×C (f , c)

p̂F (f ) ⋅ p̂C (c)
) d (f , c)

cf. Lemma 5.47

=

NF , NC
∑
i,j=1

∫

BF ,i

∫

BC,j

1
nT ⋅ L ⋅W

ℎ̂F×C (f , c) log
⎛

⎝

1
nT ⋅L⋅W ℎ̂F×C (f , c)

1
nT ⋅L⋅W ℎ̂F (f ) ⋅ 1

nT ⋅L⋅W ℎ̂C (c)

⎞

⎠
d (f , c)

pcw. const. of ℎ̂′s,
cf. De�nition 5.42

=

NF , NC
∑
i,j=1

1
nT ⋅ L ⋅W

HF×C (i, j)
Δf 3Δc

log
⎛
⎜
⎝
nT ⋅ L ⋅W ⋅

HF×C(i,j)
Δf 3Δc

HF (i)
Δf 3 ⋅

HC(j)
Δc

⎞
⎟
⎠
∫

BF ,i

∫

BC,j

d (f , c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Δf 3Δc

=

NF , NC
∑
i,j=1

1
nT ⋅ L ⋅W

HF×C (i, j) log(nT ⋅ L ⋅W ⋅
HF×C (i, j)

HF (i) ⋅HC (j)
)

cf. Lemma 5.50

=

NF , NC
∑
i,j=1

h
2

nT ⋅ L ⋅W
○
HF×C (i, j) log

⎛
⎜
⎝
nT ⋅ L ⋅W ⋅

h
2 ○HF×C (i, j)

h
2 ○HF (i) ⋅ h2

○
HC (j)

⎞
⎟
⎠

=

NF , NC
∑
i,j=1

h
2

nT ⋅ L ⋅W
○
HF×C (i, j) log

⎛
⎜
⎝

nT ⋅ L ⋅W
h
2 ⋅

○
HF×C (i, j)
○
HF (i) ⋅

○
HC (j)

⎞
⎟
⎠

cf. Equation (5.14)

=
1

Nhist. entries

NF , NC
∑
i,j=1

○
HF×C (i, j) log

⎛
⎜
⎝

Nhist. entries ⋅
○
HF×C (i, j)

○
HF (i) ⋅

○
HC (j)

⎞
⎟
⎠

= MIΔf ,Δc (
○
HF×C) .

Having now a discrete version of the MI at hand, we derive in the next paragraph the gradient for

this discrete version. These derivative terms are of importance later when focusing on a numerical

solution of our main optimization problem given in De�nition 5.17.

Gradient for discrete MI

The discretized histograms and also a discretized de�nition of MI are the starting point for us to derive

the gradient term of the discretized MI to use this for the numerical analysis later on in Section 5.5. The

numerical solution is based on a gradient-based optimization approach. Consequently, the gradient

terms are indeed essential for the upcoming analysis. First, we cite the gradient of mutual information

from [49] in an adapted version to our setting and notation in the following theorem.
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Theorem 5.53 (Gradient of MI)

For the discrete formulation of mutual information introduced in De�nition 5.51 the gradient is

given as

∇MIΔf ,Δc (p) = {
)MIΔf ,Δc

)pk
}

for a parameter setting p ∈ P with the individual parameters pk and with

)MIΔf ,Δc

)pk
=

NF ,NC
∑
i,j=1

)MIΔf ,Δc

)
○
HF×C (i, j)

⋅
)
○
HF×C (i, j)

)pk
(5.17)

=

NF ,NC
∑
i,j=1

1
Nhist. entries

⎛
⎜
⎝
log
⎛
⎜
⎝

Nhist. entries ⋅
○
HF×C (i, j)

○
HC (j) ⋅

○
HF (i)

⎞
⎟
⎠
− MIΔf ,Δc

⎞
⎟
⎠
⋅
)
○
HF×C (i, j)

)pk
, (5.18)

if the partial derivatives of the joint histogram
)
○

HF×C(i,j)
)pk

for the parameter setting p ∈ P exist.

In this sense, we can understand that “each gradient component [k] is thus expressed as the sum over

all histogram entries of the change in each entry when changing [pk], weighted by the in�uence of

this change on [the MI]” as stated by Maes et al. in [49]. In the cited paper, the authors do not state

the proof for the gradient of mutual information explicitly. We add the proof here for the sake of

completeness.

Proof. To derive the given gradient term we focus on each individual partial derivative
)MIΔf ,Δc
)pk

for one

parameter pk in our parameter setting p ∈ P . Furthermore, we consider that the partial derivatives

)
○

HF×C(i,j)
)pk

exists for all histogram entries and every parameter pk ∈ p and that they measure the

change in the histogram entry

○
HF×C (i, j) when changing the parameter pk . This is a valid assump-

tion because of our smoothing steps introduced in De�nition 5.33 and the derived partial derivatives

(cf. Theorem 5.40).

Let pk be an arbitrary parameter in p. Considering the chain rule it follows directly that

)MIΔf ,Δc

)pk
=

NF ,NC
∑
i,j=1

)MIΔf ,Δc

)
○
HF×C (i, j)

⋅
)
○
HF×C (i, j)

)pk
.

Consequently, we need to derive now the derivative term

)MIΔf ,Δc

)
○
HF×C (i, j)

=
1

Nhist. entries

⎛
⎜
⎝
log
⎛
⎜
⎝

Nhist. entries ⋅
○
HF×C (i, j)

○
HC (j) ⋅

○
HF (i)

⎞
⎟
⎠
− MIΔf ,Δc

⎞
⎟
⎠
.
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To facilitate the proof, we introduce the following abbreviated notation:

N ∶= Nhist. entries

Hi,j ∶=
○
HF×C (i, j)

Hi ∶=
○
HF (i)

Hj ∶=
○
HC (j)

MI ∶= MIΔf ,Δc .

Based on the one hand on a similar statement for the pixel counting histograms

○
HF and

○
HC as the

second statement in Lemma 5.46 for the array valued histograms HF and HC and on the other hand

on Equation (5.15), we use the following relations with the abbreviated notation

Hi =∑
j
Hi,j

Hj =∑
i
Hi,j

N =∑
i,j
Hi,j .

(5.19)

Next, we denote the histogram entry with Hî,ĵ for which we are looking for its partial derivative of

the mutual information. Considering the sums in Equation (5.19), we start by stating the following

partial derivatives

)N
)Hî,ĵ

= 1

)Hi
)Hî,ĵ

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

, 1, i = î

0, i ≠ î
,

)Hj
)Hî,ĵ

=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1, j = ĵ

0, j ≠ ĵ

(5.20)

which we need for the partial derivative of the mutual information. With these prerequisites we

derive the partial derivative by using the product rule, the quotient rule and the chain rule for the

discrete MI (cf. De�nition 5.51):

)MI
)Hî,ĵ

= −
1
N 2∑

i,j
Hi,j log(

N ⋅Hi,j
Hi ⋅Hj

)

+
1
N
⎛

⎝
log
⎛

⎝

N ⋅Hî,ĵ
Hî ⋅Hĵ

⎞

⎠
+∑

i,j
Hi,j

Hi ⋅Hj
N ⋅Hi,j

)
)Hî,ĵ

(
N ⋅Hi,j
Hi ⋅Hj

)
⎞

⎠

=
1
N
⎛

⎝
log
⎛

⎝

N ⋅Hî,ĵ
Hî ⋅Hĵ

⎞

⎠
− MI

⎞

⎠
+
1
N ∑i,j

Hi ⋅Hj
N

)
)Hî,ĵ

(
N ⋅Hi,j
Hi ⋅Hj

) .

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=♠
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5.2 Optimization problem for cell colony spreading

We continue by transforming the term on the right hand side marked with a ♠ by exploiting Equa-

tions (5.19) and (5.20):

♠ =
1
N ∑i,j

Hi ⋅Hj
N

)
)Hî,ĵ

(
N ⋅Hi,j
Hi ⋅Hj

)

=
1
N 2

(Hî,ĵ +N) (Hî ⋅Hĵ) − (N ⋅Hî,ĵ) (Hĵ +Hî)

Hî ⋅Hĵ
(here: i = î, j = ĵ)

+
1
N 2 ∑

i=î,j≠ĵ

Hî,j (Hî ⋅Hj) − (N ⋅Hî,j)Hj
Hî ⋅Hj

(here: i = î, j ≠ ĵ)

+
1
N 2 ∑

i≠î,j=ĵ

Hi,ĵ (Hi ⋅Hĵ) − (N ⋅Hi,ĵ)Hi
Hi ⋅Hĵ

(here: i ≠ î, j = ĵ)

+
1
N 2 ∑

i≠î,j≠ĵ

Hi,j (Hi ⋅Hj)
Hi ⋅Hj

(here: i ≠ î, j ≠ ĵ)

=
1
N 2

⎛
⎜
⎝
(Hî,ĵ +N) −

(N ⋅Hî,ĵ) (Hĵ +Hî)

Hî ⋅Hĵ

⎞
⎟
⎠

(here: i = î, j = ĵ)

+
1
N 2 ∑

i=î,j≠ĵ
Hî,j −

N ⋅Hî,j
Hî

(here: i = î, j ≠ ĵ)

+
1
N 2 ∑

i≠î,j=ĵ
Hi,ĵ −

(N ⋅Hi,ĵ)

Hĵ
(here: i ≠ î, j = ĵ)

+
1
N 2 ∑

i≠î,j≠ĵ
Hi,j (here: i ≠ î, j ≠ ĵ)

=
Hî,ĵ +N
N 2 −

1
N
Hî,ĵ
Hĵ
−
1
N
Hî,ĵ
Hî

(previously: i = î, j = ĵ)

+
1
N 2 (Hî −Hî,ĵ) −

1
N
Hî −Hî,ĵ

Hî
(previously: i = î, j ≠ ĵ)

+
1
N 2 (Hĵ −Hî,ĵ) −

1
N
Hĵ −Hî,ĵ

Hĵ
(previously: i ≠ î, j = ĵ)

+
1
N 2 (N −Hĵ −Hî +Hî,ĵ) (previously: i ≠ î, j ≠ ĵ)

=
1
N 2 (Hî,ĵ +Hî −Hî,ĵ +Hĵ −Hî,ĵ −Hĵ −Hî +Hî,ĵ)

+
1
N
⎛

⎝
1 −

Hî,ĵ
Hĵ
−
Hî,ĵ
Hî
− 1 +

Hî,ĵ
Hî
− 1 +

Hî,ĵ
Hĵ
+ 1
⎞

⎠

= 0
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When we plug this in for ♠, we receive

)MI
)Hî,ĵ

=
1
N
⎛

⎝
log
⎛

⎝

N ⋅Hî,ĵ
Hî ⋅Hĵ

⎞

⎠
− MI

⎞

⎠

and this proves the statement.

After having derived the gradient terms for the Mutual Information that are to be used in numerical

optimization later on, we need to deal with various discretization aspects before we focus on the

actual numerical solution. When applying those discretizations, we need to essentially ensure that

the minimizers of the discretized optimization problem coincide with or more precisely converge

to minimizers of the true, continuous optimization problem. Therefore, the next two sections are

dedicated to the various discretization steps and the detailed convergence analysis.

5.3 Discretizations for numerical approach

In the previous section, we de�ned the optimization problem to determine an optimal parameter

setting p ∈ P in a continuous setting. For various reasons, we cannot solve the optimization problem

in a continuous setting. In this section, we focus on the di�erent discretization aspects and directly

elaborate on convergence results connecting the discretized setting to a continuous one. To be more

precise, we delve into the discretization of the image data based on discrete pixel grids and focus

on histogram discretized by binning strategies. In this context, we show the convergence of the

discretized histogram measure towards the pushforward measure or, more precisely, focus on the L1-
convergence of the associated histogram density functions. To complete this section on intermediate

convergence results that we use later on in the convergence analysis of the MI optimization problem,

we deal in the last subsection with the L1−convergence of a sequence of probability density functions

related to the various discretization steps as well as their pointwise convergence for a subsequence.

5.3.1 Feature images on a discrete pixel grid

In this �rst subsection, we inspect the feature images in a discretized setting. We introduced the multi-

channel feature image I1 in De�nition 3.2. In this context, we interpret the feature image to be living

on a semi-discrete spatio-temporal domain ΩT = Ω× {t1,… , tnT }. However, we cannot expect to have

a continuous spatial domain Ω. For once, the feature extraction is based on the given microscopy data

which in turn is given as discrete pixel images for each time point t ∈ {t1,… , tnT }. Additionally, we aim

for a numerical solution of the optimization problem. So it is essential to discretize the spatial domain

Ω to deal with it in numerical implementations. Due to limited computer memory and computation

power, we cannot apply arbitrarily �ne discretizations and, consequently, can approximate a problem

which is originally given in a continuous setting only up to a certain discretization error.

We start with a recapitulation of our semi-discrete spatio-temporal domain from De�nition 3.1. This
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de�nition takes into consideration the setting we are facing on the application side where we have

microscopy images for pre-selected time points at hand.

De�nition 5.54 (Semi-discrete spatio-temporal domain)

For a spatio-temporal cylinder Ω × [0, T ], we de�ne that a semi-discrete spatio-temporal domain

to be given by

ΩT = Ω × {t1,… , tnT }

where we consider concrete time frames for pre-selected discrete time points {t1,… , tnT } ⊂ [0, T ],
i.e., we already assume a certain discretization of the temporal axis. The corresponding time steps

are denoted by Δti = ti+1 − ti for i = 1,… , nT − 1 and the total number of time frames is denoted

with nT .

We supplement this with a norm for a function f living on ΩT = Ω × {t1,… , tnT } to be given by the

sum of norms for each time point, e.g., for the L1-norm we consider

∥f ∥L1(ΩT ) =
nT
∑
i=1
∥f (⋅, ti)∥L1(Ω) . (5.21)

In the same sense, we consider the integration of a function f ∶ ΩT → ℝ living on our semi-discrete

spatio-temporal domain to be given by

∫

ΩT

f (x , t) d (x , t) =
nT
∑
i=1
∫

Ω

f (x , ti) dx . (5.22)

Based on this semi-discrete spatio-temporal domain, we elaborate on a spatio-temporal domain

discretized spatially as well in the following de�nition.

De�nition 5.55 (Discretized spatio-temporal domain)

For a semi-discrete spatio-temporal domain ΩT = Ω×{t1,… , tnT }, we de�ne the discretized domain

based on the discrete pixel gridΩh
with pixel width h and the given discrete time points {t1,… , tnT }.

This leads to an approximation of the spatio-temporal domain with

ΩT ≈ Ωh

× {t1,… , tnT } .

We de�ne

Ωh

=

np̃
⋃
i=1
Ωp̃i

with Ωp̃i as the domain for pixel p̃i . Without loss of generality, we de�ne the pixel domains Ωp̃

to be open. The total number of pixels for our rectangular domain Ω = [0, L] × [0,W ] is given as

np̃ = L
ℎ
W
ℎ . Without loss of generality, we assume h to be such that np̃ is integer-valued.

For notational simplicity, we write p̃ ∈ Ωh
to refer to the domain Ωp̃ ⊂ Ωh

.

We use here the notation p̃ for a pixel to avoid confusion with probability density functions denoted

with p. We now focus on the convergence of a discretized image I h

1 to the original feature image I1
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for ℎ → 0, i.e., for increasing resolution of the discretized image. The statements and convergence

results work for multi-channel images analogously, but for notational reasons we deal here only with

a one-channel feature image.

We start with the following de�nition for the discretized feature image.

De�nition 5.56 (Discretized feature image I h

1 )

In the discretized setting, the “feature image” Î h

1 for a time point t ∈ {t1,… , tnT } is given as an array

consisting of the feature values for each pixel. For a pixel p̃ ∈ Ωh
, we de�ne the values per pixel to

be given by the mean value of I1 in this pixel at this time point t . We de�ne the discretized image

I h

1 as the piecewise constant continuation of Î h

1 living on ΩT again. For any t ∈ {t1,… , tnT } and a

pixel p̃ ∈ Ωh
, it holds that

Î h

1 (p̃, t) = ⨏Ωp̃
I1 (x , t) dx = I h

1 (x , t) ∀x ∈ Ωp̃ . (5.23)

We remark, that we use for notational simplicity a hat symbol ( ⋅̂ ) for discrete values accumulated

in a list or array structure. Before we delve into the convergence statement, we cite the de�nition of

the total variation from De�nition 4.81 in [12] and also refer to the De�ntion 3.4 in [3].

De�nition 5.57 (Total variation)

Let Ω ⊂ ℝN be a Lipschitz domain and let u ∈ L1 (Ω) be a locally integrable function on Ω. Then

we de�ne the total variation of u in Ω by

TVΩ (u) ∶= sup{∫
Ω
u (x) div (' (x)) dx ∶ ' ∈ C∞c (Ω,ℝ

N ) , ∥'∥∞ ≤ 1} ,

with C∞c (Ω,ℝN ) the space of test functions on Ω.

Additionally, we introduce the space of functions of bounded variation based on the same De�nition

4.81 in [12]. For an equivalent formulation for this space of functions of bounded variation, we refer

to Proposition 3.6 in [3].

De�nition 5.58 (Space of bounded variation)

The space of functions of bounded variation in Ω is de�ned by

BV (Ω) ∶= {u ∈ L1 (Ω) ∶ TVΩ (u) <∞} .

For an interpretation of the space of bounded variation, we state exemplarily that functions in this

space do not allow in�nitely many oscillations. In this case, the total variation would not be �nite.

In contrast, functions with �nite many discontinuous jumps are included in this space as their total

variation is indeed �nite. In our setting, we are dealing with microscopy images which we consider

to be of bounded variation. In this sense, the microscopy images may contain sharp edges, i.e.,
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discontinuous jumps. In line with this, we consider the feature image I1 to be of bounded variation.

It follows directly that for any t ∈ {t1,… , tnT }

I1 (⋅, t) ∈ BV (Ω)

and therewith

I1 (⋅, t) ∈ BV (Ωp̃) ∀p̃ ∈ Ωh.

By de�nition this means that for arbitrary t ∈ {t1,… , tnT } there exists a constant CBV,t > 0 such that

TVΩ (I1 (⋅, t)) < CBV,t . (5.24)

It follows that CBV ∶= max{CBV,t ∣ t ∈ {t1,… , tnT }} > 0 exists such that for any t ∈ {t1,… , tnT } holds

TVΩ (I1 (⋅, t)) < CBV. (5.25)

Focusing on a pixel domain p̃, there exists constants CBV,p̃ > 0 as well such that

TVΩp̃ (I1 (⋅, t)) < CBV,p̃

holds. It follows directly that CBV,p̃ ≤ CBV for all p̃ ∈ Ωh
holds.

To prepare the convergence proof, we cite the Poincaré-Wirtinger inequality in spaces of bounded

variation (cf. Theorem 3.2 in [7]).

Theorem 5.59 (Poincaré-Wirtinger in equality in BV (Ω))
Let Ω ⊂ ℝN be a Lipschitz open bounded set. Then there exists a constant CΩ such that

∥u − ⨏
Ω
u∥L1(Ω) ≤ CΩTVΩ (u) ∀u ∈ BV (Ω) .

Proof. We refer the interested reader to the proof of Theorem 3.2 in the article on “Poincaré-Wirtinger

inequalities in bounded variation function spaces” by Bergounioux [7].

For the later proof we need a scaled version of the Poincaré-Wirtinger inequality. For that we use

the following proposition.

Proposition 5.60 (Poincaré-Wirtinger inequality for scaled domains)

We consider the domain Ω1 = (0, 1)2 and an arbitrary function u ∈ BV (Ω1). Let CΩ1 be the related

constant for the Poincaré-Wirtinger inequality. For a scaled function uh ∈ BV (Ωh) with uh = u (x
h
)

living on the scaled domain Ωh ∶= (0,h)2, it holds

∥uh − ⨏
Ω

h

uh∥L1(Ω
h
) ≤ hCΩ1TVΩh

(uh) .

Before we delve into the proof of this statement, we stress that we use the notation Ωh with the

subscript h for the scaled domain whereas Ωh
with h in the superscript denotes the discretized pixel

grid domain.
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Proof. We start the proof with the transition from Ωh to Ω1 or vice versa which can be achieved via

f ∶ Ωh → Ω1, f (x) =
x
h

with ∣detDf ∣ =
1
h
2

g ∶ Ω1 → Ωh, g (x) = hx with ∣detDg∣ = h
2.

With Theorem 5.59 it follows that a constant CΩ1 > 0 exists such that for all u ∈ BV (Ω1) it holds

∥u − ⨏
Ω1
u∥L1(Ω1) ≤ CΩ1TVΩ1 (u) .

Considering now the scaled space Ωh, the scaled function uh = u ○ f and similarly u = uh ○ g, we can

show that

∥uh − ⨏
Ω

h

uh∥L1(Ω
h
) = ∫

Ω
h

∣uh (x) − ⨏
Ω

h

uh (y) dy∣ dx

integration

by subst.

= h
2
∫
Ω1
∣uh (hx)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
=u(x)

−⨏
Ω

h

uh (y) dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⨏Ω1 u(y) dy

∣ dx

= h
2
∫
Ω1
∣u (x) − ⨏

Ω1
u (y) dy∣ dx

Poincaré-Wirtinger

inequality,

cf. Theorem 5.59

≤ h
2CΩ1TVΩ1 (u)

(∗)
= h

2CΩ1
1
h

TVΩ
h
(uh)

= hCΩ1TVΩh
(uh)

holds. We apply in (∗) the following transformation

TVΩ1 (u)
De�nition 5.57

= sup{∫
Ω1
u (x) ('x1 (x) + 'x2 (x)) dx ∶ ' ∈ C

∞
c (Ω1,ℝ

N ) , ∥'∥∞ ≤ 1}

integration

by subst.

= sup{
1
h
2 ∫Ω

h

uh (x) h ⋅ ('h,x1 (x) + 'h,x2 (x)) dx ∶ 'h ∈ C∞c (Ωh,ℝN ) , ∥'h∥∞ ≤ 1}

=
1
h

sup{∫
Ω

h

uh (x) ('h,x1 (x) + 'h,x2 (x)) dx ∶ 'h ∈ C∞c (Ωh,ℝN ) , ∥'h∥∞ ≤ 1}

=
1
h

TVΩ
h
(uh) .

Here, it is important to consider not only the determinant when applying the substitution. It is also

necessary to account for the transformation within the derivative terms. When 'h (x) = ' (x
h
) holds,

then for a partial derivative we get

)
)xi

'h (x) = 'h,xi (x) =
1
h

'xi (
x
h

) .

We now prove our main result for the discretization in the spatial domain for the feature image.
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Theorem 5.61
Let I1 (⋅, t) ∈ BV(Ω) for every t ∈ {t1,… , tnT }. Then it holds that the piecewise constant feature

image I h

1 derived from the discretized features living on a pixel grid converges in L1 to the feature

image I1 if the pixel width h converges to 0. The following estimate holds

∥I1 − I h

1 ∥L1(ΩT ) ≤ nT CΩ1 hCBV

with nT the number of discrete time point sin our semi-discrete spatio-temporal domain ΩT and

the constants CΩ1 , CBV from Proposition 5.60 and Equation (5.25).

Proof. We start with the convergence in L1 (Ω) for any t ∈ {t1,… , tnT }.

∥I1 (⋅, t) − I h

1 (⋅, t) ∥L1(Ω) = ∫Ω
∣I1 (x , t) − I h

1 (x , t) ∣ dx

= ∑
p̃∈Ωh

∫
Ωp̃
∣I1 (x , t) − I h

1 (x , t) ∣ dx

Equation (5.23)

= ∑
p̃∈Ωh

∫
Ωp̃
∣I1 (x , t) − ⨏

Ωp̃
I1 (y, t) dy∣ dx

Proposition 5.60

≤ CΩ1h ∑
p̃∈Ωh

TVΩp̃ (I1)

(∗)
≤ CΩ1 hTVΩ (I1)

Equation (5.25)

≤ CΩ1 hCBV

with constants C1, CBV > 0 the L1 (Ωh)-convergence to 0 follows directly with h→ 0. We note down

that in (∗) we apply the following approximation where we use that the pixel domains are de�ned

to be open (cf. De�nition 5.55). This is important for the application of the Poincaré-Wirtinger

inequality. Moreover, they are disjoint

Ωp̃ ∩Ωq̃ = ∅

and with ' ∈ C∞c (Ω,ℝN ) de�ned as

' ∶= ∑
p̃∈Ωh

1Ωp̃'Ωp̃

with the characteristic functions 1Ωp̃ living on Ωh
combined with the test functions per pixel

'Ωp̃ ∈ C
∞
c (Ωp̃ ,ℝN ) we have a continuous continuation on Ω and also a valid test function on Ω.

With this construction in mind, it is possible to move the summation into the supremum for the total

variation in (∗) and, consequently, get the TV-estimation on the whole domain Ω. By considering

Equation (5.21), we conclude that

∥I1 − I h

1 ∥L1(ΩT ) =
nT
∑
i=1
∥I1 (⋅, ti) − I h

1 (⋅, ti) ∥L1(Ω) ≤ nT CΩ1 hCBV

holds which proves the L1-convergence for our discretized spatio-temporal domain as h→ 0.
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In the following lemma, we focus on the possibility of changing integration and limit as a direct

consequence from the L1-convergence.

Lemma 5.62
We consider a sequence of functions (fn)n∈ℕ that converges in L1 to f . Then the order of taking

the limit of the sequence and integrating it can be changed such that

lim
n→∞∫

fn = ∫ f

holds.

Proof. We divide the proof in two steps showing the lower inequality and greater inequality sepa-

rately.

“≤”

lim
n→∞∫

fn − ∫ f = lim
n→∞∫

fn − f

≤ lim
n→∞
∣∫ fn − f ∣

≤ lim
n→∞∫

∣fn − f ∣
L1conv.

= 0

⇒ lim
n→∞∫

fn ≤ ∫ f .

“≥”

∫ f − lim
n→∞∫

fn = limn→∞∫
f − fn

≤ lim
n→∞
∣∫ f − fn∣

≤ lim
n→∞∫

∣f − fn∣
L1conv.

= 0

⇒ lim
n→∞∫

fn ≥ ∫ f .

In later proofs, we exploit this property to change the order of integration and taking the limit when

dealing with the discrete feature images converging in L1.
Similar to the discretization of the feature images, we consider the classi�cation image on a dis-

cretized pixel grid. Next, we show that this discretized image converges uniformly with respect to

the spreading parameters p to the continuous classi�cation image based on the concentric spreading

model.

5.3.2 Classification images on a discrete pixel grid

We introduced the classi�cation image I2 in De�nition 4.4 on a spatio-temporal domain ΩT combined

with the parameter space P . As we aim for a numerical solution of the optimization problem, it is
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essential to discretize the spatio-temporal domain ΩT as shown in De�nition 5.55. Similar to the

previous section dealing with the L1−convergence of the feature image, we show in this section the

convergence of I ℎ2 against I2 in L1 for a pixel width h→ 0.
Again, we use the discretized domain de�ned in De�nition 5.55. For de�ne the discretized classi�ca-

tion image I h

2 as follows:

De�nition 5.63 (Discretized classi�cation image I h

2 )

In the discretized setting, the “classi�cation image” Î h

2 for a time point t ∈ {t1,… , tnT } and a param-

eter setting p ∈ P is given as an array consisting of the classi�cation values for each pixel p̃ ∈ Ωh
.

For each pixel, we de�ne the values per pixel to be given by the value of I2 in the center point of

this pixel. We de�ne the discretized image I h

2 as the piecewise constant continuation of Î h

2 living

on ΩT again. For any t ∈ {t1,… , tnT }, a �xed parameter setting p ∈ P and a pixel p̃ ∈ Ωh
, it holds

that

Î h

2 (p, p̃, t) = I2 (p, zp̃ , t) = I
h

2 (p,x , t) ∀x ∈ Ωp̃ . (5.26)

with zp̃ denoting the center point of pixel Ωp̃ .

As we are considering square pixel regions, we can substantiate for a pixel domain Ωp̃ and its center

point zp̃ ∈ Ωp̃ that

∥x − zp̃∥∞ < h ∀x ∈ Ωp̃ (5.27)

and the norm is even lower equal than
h

2 . Now, we prove the convergence of this discrete classi�cation

image living on a pixel grid to the continuous classi�cation image de�ned in De�nition 4.4.

Theorem 5.64 (L1-convergence of classi�cation images)

The piecewise constant classi�cation image I h

2 derived from the discretized classi�cation values

living on a pixel grid converges in L1 to the smooth classi�cation image I2 if the pixel width h

converges to 0.

Proof. By de�nition of the classi�cation image I2 in De�nition 4.4, it is continuous on ΩT . Let

t ∈ {t1,… , tnT } and p ∈ P be arbitrary but �xed. Then we can de�ne a constant C = C (p, t), i.e.,

depending on the considered time point t and the spreading parameter setting p, by setting

C ∶= max
x̂∈Ω
∥∇x I2 (p, x̂ , t)∥1 . (5.28)

The gradient with respect to the spatial variable is denoted with ∇x . This de�nition is valid since

I2 is continuously di�erentiable with respect to all variables (cf. De�nition 4.4). Since a digitized

classi�cation image, i.e., an image only consisting of integer values representing certain classes, is

here approximated smoothly with a Heaviside function to avoid jumps and create continuously dif-

ferentiable transition regions, it is a valid conclusion that C <∞ holds.

We remark that C depends on the scaling parameter "0 which determines the steepness of the Heav-

iside approximation, cf. De�nition 4.4. However, this parameter is considered as a �xed model
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parameter so that C can indeed be used as a �nite constant for a �xed "0.
Let � > 0 be arbitrary. Then there exists an h

′ > 0 with h
′ < �

C ⋅L⋅W , such that for all h ≤ h
′

holds

∥I h

2 (p, ⋅, t) − I2 (p, ⋅, t)∥L1(Ω) =∫Ω
∣I h

2 (p,x , t) − I2 (p,x , t)∣ dx

=∑
p̃∈Ωh

∫
Ωp̃
∣I h

2 (p,x , t) − I2 (p,x , t)∣ dx

Equation (5.26)

= ∑
p̃∈Ωh

∫
Ωp̃
∣I2 (p, zp̃ , t) − I2 (p,x , t)∣ dx

mean value

theorem

y∈zp̃x
= ∑

p̃∈Ωh

∫
Ωp̃
∣∇x I2 (p,y, t) ⋅ (zp̃ − x)∣ dx

Cauchy

inequality

≤ ∑
p̃∈Ωh

∫
Ωp̃
∥∇x I2 (p,y, t)∥1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤C,
cf. Equation (5.28)

∥zp̃ − x∥∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<h,
cf. Equation (5.27)

dx

<C ⋅ h ∑
p̃∈Ωh

∫
Ωp̃
1 dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=L⋅W

=C ⋅ L ⋅W ⋅ h ≤ C ⋅ L ⋅W ⋅ h′ < �.

(5.29)

For the sake of completeness, we state that we use zp̃x as the notation for the line segment between

zp̃ and x . This shows the convergence of the discretized image I h

2 to the continuous image I2 in L1 (Ω)
for a �xed time point t ∈ {t1,… , tnT }.
To show the convergence of the classi�cation images considering the whole semi-discrete spatio-

temporal domainΩT , i.e., not limiting the analysis to one �xed time point t ∈ {t1,… , tnT }, we start with

an estimate for the norm of the spatial gradient by de�ning the following constant C∗ = C∗ (p) > 0
by

C∗ = max
t∈{t1,…,tnT }

C (p, t) = max
t∈{t1,…,tnT },

x̂∈Ω

∥∇x I2 (p, x̂ , t)∥1 (5.30)

based on Equation (5.28). This constant C∗ only depends on the parameter set. By considering

Equation (5.21) and Equation (5.29) with C = C (p, t), we conclude that for arbitrary � > 0 there exists

an h
′ > 0 with h

′ < �
C∗⋅L⋅W , such that for all h ≤ h

′
holds

∥I h

2 − I2∥L1(ΩT ) =
nT
∑
i=1
∥I h

2 (⋅, ti) − I2 (⋅, ti) ∥L1(Ω)

≤
nT
∑
i=1

C (p, ti) ⋅ L ⋅W ⋅ h

≤ nT ⋅ C∗ ⋅ L ⋅W ⋅ h

≤ C∗ ⋅ L ⋅W ⋅ h′ < �

holds which proves the L1-convergence for the classi�cation images living on our discretized spatio-

temporal domain as h→ 0.
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With the previous theorem, we show the convergence of the discretized classi�cation images to the

continuous one when considering a vanishing grid size h. Since we choose an arbitrary but �xed

parameter setting p ∈ P in the beginning of the proof, the considered constants C and C∗ depend

on the parameter setting. In the next proposition, we go a step further and derive a constant that is

independent of our parameter setting to show that the discretized classi�cation image I h

2 converges

uniformly for (p, (x , t)) ∈ P ×ΩT .

Proposition 5.65
The piecewise constant classi�cation image I h

2 derived from the discretized classi�cation values

living on a pixel grid converges uniformly for parameter settings p ∈ P and (x , t) ∈ ΩT to the

smooth classi�cation image I2 if the pixel width h converges to 0.

Proof. To show this statement, we consider a similar starting position as in the proof of Theorem 5.64

and also follow a similar line of arguments. Based on the de�nition of I2 in De�nition 4.4 and its gradi-

ent terms de�ned in Equation (4.8), we derive a constantC which is independent of (p, (x , t)) ∈ P×ΩT

and that bounds the norm of the gradient. We recapitulate the spatial gradient from Equation (4.8)

∇x I2 (p,x , t) =
1
"0

⎛
⎜
⎜
⎝

exp (− 1
"0 kn (p,x , t)) (∇xkn (p,x , t))

(1 + exp (− 1
"0 kn (p,x , t)))

2 +
exp (− 1

"0 ka (p,x , t)) (∇xka (p,x , t))

(1 + exp (− 1
"0 ka (p,x , t)))

2

⎞
⎟
⎟
⎠

with Equations (4.9) and (4.10)

∇xkn (p,x , t) = ∇xka (p,x , t) =
1

∥x − x0∥2

⎛

⎝

(x1 − x0,1)
(x2 − x0,2)

⎞

⎠
.

We approximate the norm of this as follows

∥∇xkn (p,x , t)∥1 = ∥∇xka (p,x , t)∥1 =

√

(x1 − x0,1)2 +
√

(x2 − x0,2)2
√

(x1 − x0,1)2 + (x2 − x0,2)2
≤
√
2. (5.31)

This is true as we brie�y show by applying the substitution � ∶= x1 − x0,1 and � ∶= x2 − x0,2 and derive

√
�2 +
√
�2

√
�2 + �2

≤
√
2 ⇔ �2 + �2 + 2

√
�2
√
�2 ≤ 2 (�2 + �2) ⇔ 0 ≤ (

√
�2 −
√
�2)

2

which holds for arbitrary �, � ∈ ℝ and, consequently, also for our substituted coordinates.

For the next approximations, we exploit the structure of the parameter space P as given in Equa-

tion (4.3) and the de�nition of our spatio-temporal domain ΩT (cf. De�nition 3.1). Considering the

circle equations for the normal and abnormal colony fronts de�ned in Equation (4.4), we derive

exp(−
1
"0
kj (p,x , t)) = exp(−

1
"0
(v (t − t0,j) − ∥x − x0∥2))

≤ exp(−
1
"0
(−vmaxT −

√
L2 +W 2)) ∶= C†

(5.32)
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which holds for both fronts, i.e., for j = n, a, and the constant C†
is positive. We conclude with

the following approximation of the norm for the spatial gradient of the classi�cation image for

(p,x , t) ∈ P ×ΩT arbitrary:

∥∇x I2 (p,x , t)∥1 =

XXXXXXXXXXXXXXX

1
"0

⎛
⎜
⎜
⎝

exp (− 1
"0 kn (p,x , t))∇xkn (p,x , t)

(1 + exp (− 1
"0 kn (p,x , t)))

2 +
exp (− 1

"0 ka (p,x , t))∇xka (p,x , t)

(1 + exp (− 1
"0 ka (p,x , t)))

2

⎞
⎟
⎟
⎠

XXXXXXXXXXXXXXX1
triangle

inequality

≤
1
"0

⎛
⎜
⎝
exp(−

1
"0
kn (p,x , t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤C†

, cf.

Equation (5.32)

⎛
⎜
⎝

1

1 + exp (− 1
"0 kn (p,x , t))

⎞
⎟
⎠

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1 by def., cf. Equation (4.5)

∥∇xkn (p,x , t)∥1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<
√
2, cf.

Equation (5.31)

+ exp(−
1
"0
ka (p,x , t))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤C†

, cf.

Equation (5.32)

⎛
⎜
⎝

1

1 + exp (− 1
"0 ka (p,x , t))

⎞
⎟
⎠

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1 by def., cf. Equation (4.5)

∥∇xka (p,x , t)∥1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<
√
2, cf.

Equation (5.31)

⎞
⎟
⎠

≤
2
√
2

"0
C†

=∶ C∗

With the the newly de�ned constant C∗ > 0 at hand, we show the uniform convergence for I h

2 to I2
for vanishing h. Let (p, (x , t)) ∈ P ×ΩT be arbitrary and let � > 0 be arbitrary, too. Then there exists

an h
′ > 0 with h

′ < �
C∗ such that for all h ≤ h

′
holds

∣I h

2 (p, (x , t)) − I2 (p, (x , t))∣
Equation (5.26)

= ∣I2 (p, zp̃ , t) − I2 (p,x , t)∣
mean value

theorem

y∈zp̃x
= ∣∇x I2 (p,y, t) ⋅ (zp̃ − x)∣

Cauchy

inequality

≤ ∥∇x I2 (p,y, t)∥1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤C∗

∥zp̃ − x∥∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<ℎ,
cf. Equation (5.27)

< C∗ ⋅ ℎ ≤ C∗ ⋅ ℎ′ < �.

Since our constant C∗ does not depend on any of the parameter (p, (x , t)) ∈ P ×ΩT , this proves the

uniform convergence of the discretized classi�cation image to the continuous one when considering

vanishing grid sizes. For the sake of completeness, we point that the center pixel point zp̃ for the

pixel containing x depends naturally on the current grid size h. However, this does not impede our

statement of uniform convergence as we approximate the gradient term for the classi�cation image

in a more general case by using our independent constant C∗.

While we did not derive precise approximations for the constants C and C∗ in Equations (5.28)

and (5.30) in the proof of Theorem 5.64 when considering p ∈ P and t ∈ {t1,… , tnT } �xed, we remark

that we could also apply the global estimate

∥∇x I2 (p,x , t)∥1 ≤
2
√
2

"0
C†

as derived in the last proof for arbitrary (p, (x , t)) ∈ P ×ΩT (cf. Equation (5.32)).

In the next section, we focus on another statement for uniform convergence of the classi�cation

images with respect to the spreading parameter p ∈ P .
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5.3.3 Uniform convergence of classification images

After having shown the convergence of I h

2 to I2 for a pixel width h converging to 0, we add another

convergence result related to the classi�cation image. For later references, we show the uniform

convergence of the classi�cation image depending on the parameter setting p ∈ P . We recapitulate

two statements on uniform convergence and uniform continuity which we make use of in the later

proof of the main statement of this subsection.

Proposition 5.66 (Uniform convergence in compositions)

Let (fn)n∈ℕ be a uniformly convergent sequence of functions fn ∶ X → ℝ with f ∶ X → ℝ the

limiting function and F ∶ ℝ→ ℝ a uniformly continuous function. Then it holds that (F ○ fn)n∈ℕ is

uniformly convergent.

Proof. Let " > 0 be arbitrary. Because of the uniform continuity of F there exists a � > 0 such that for

all (y1, y2) ∈ ℝ2 with ∣y1 − y2∣ < � it holds

∣F (y1) − F (y2)∣ < ".

Moreover, with the uniform convergence of (fn)n∈ℕ it follows that an N0 ∈ℕ exists such that for all

x ∈ X and all N ≥ N0 it holds

∣fn (x) − f (x)∣ < �.

For " → 0, the statement follows directly via

∣(F ○ fn) (x) − (F ○ f ) (x)∣ = ∣F (fn (x)) − F (f (x))∣ < ".

Proposition 5.67 (Uniform convergence for addition)

Let (fn)n∈ℕ and (gn)n∈ℕ be uniformly convergent sequences of functions fn, gn ∶ X → ℝ with

f , g ∶ X → ℝ the limiting functions. Then it holds that (fn + gn)n∈ℕ is uniformly convergent with

the limiting function (f + g).

Proof. Let " > 0 be arbitrary. Because of the uniform convergence of (fn)n∈ℕ and (gn)n∈ℕ there exist

N1, N2 ∈ℕ such that

∣fn (x) − f (x)∣ <
"
2
, ∀N ≥ N1 ∣gn (x) − g (x)∣ <

"
2
, ∀N ≥ N2

hold. If we set N0 = max{N1, N2} then it follows directly with the triangle inequality that for all

N ≥ N0 it holds

∣(fn + gn) (x) − (f + g) (x)∣ ≤ ∣fn (x) − f (x)∣ + ∣gn (x) − g (x)∣ <
"
2
+
"
2
= ".

Since " was chosen arbitrarily, the statement follows for " → 0.
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To prepare the proof of I2 being uniformly convergent in (x , t) ∈ ΩT for a converging parameter

sequence, e.g., p"
"→0
Ð→ p, we elaborate on the following two additional prerequisites.

Proposition 5.68
The smoothed Heaviside function de�ned in Equation (4.5) is uniformly continuous on ℝ.

Proof. We have the smoothed Heaviside approximation from Equation (4.5)

f ∶ ℝ→ [0, 1] , f (x) =
1

1 + exp (− x
"0 )

and its derivative given as

f ′ ∶ ℝ→ [0, 1] , f ′ (x) =
exp (− x

"0 )

"0 (1 + exp (− x
"0 ))

2

which attains its maximum in x = 0 with f ′ (0) = 1
4"0 . Let " > 0 be arbitrary and "0 be again the

inherent and �xed model parameter controlling the transition width or, more precisely, the steepness

of the smoothed Heaviside approximation. Then it exists a � > 0 with � < 4""0 such that for all

x1, x2 ∈ ℝ with ∣x1 − x2∣ < � holds

∣f (x1) − f (x2)∣

mean value

theorem

x0∈x1x2
= ∣f ′ (x0) (x1 − x2)∣ =

exp (− x0"0 )

"0 (1 + exp (− x0"0 )
2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤f ′(0)

∣x1 − x2∣
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
<�

<
1
4"0

� < ".

Since " was chosen arbitrarily, this shows the uniform continuity of the smoothed Heaviside function

for " → 0.

Proposition 5.69
Let kj denote again the circle equation describing the normal colony front (j = n) and the abnormal

front (j = a) as de�ned in Equation (4.4). For j = n, a, we de�ne a sequence of functions ((kj)")">0
by

(kj)" ∶= kj (p" , ⋅) ∶ ΩT → [0, 1] .

for a sequence (p")">0 in the parameter space P . Let the sequence (p")">0 be converging to p ∈ P
for " → 0 in the sense that ∥p" − p∥2 < " for all " > 0 holds. Then it holds that the sequence of

functions ((kj)")">0 is uniformly convergent with the limiting function

kj ∶= kj (p, ⋅) ∶ ΩT → [0, 1] .

110



5.3 Discretizations for numerical approach

Proof. Let p" = (x0," , t0,n," , t0,a," , v") be converging to p = (x0, t0,n, t0,a, v) for " → 0 in the sense that

∥p" − p∥2 < " for all " > 0 holds. Consequently it also holds that

∣v" − v∣

∣t0,n," − t0,n∣

∣t0,a," − t0,a∣

∥x0," − x0∥2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ ∥p" − p∥2 < ".

Let � > 0 be arbitrary now. Because of the converging parameter set, we can choose "′ > 0 such that

for all " < "′ even

∣v" − v∣ <
�
3T

∣v" t0,j," − vt0,j ∣ <
�
3

∥x0," − x0∥2 <
�
3

holds. It follows now for arbitrary (x , t) ∈ ΩT and " < "′

∣kj (p" ,x , t) − kj (p,x , t)∣

= ∣v" (t − t0,j,") − ∥x0," − x∥2 − v (t − t0,j) + ∥x0 − x∥2∣
triangle

inequality

≤ t ∣v" − v∣
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
<T �

3T

+ ∣v" t0,j," − vt0,j ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

< �3

+ ∣∥x0," − x∥2 − ∥x0 − x∥2∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

reverse triangle inequality

≤∥x0,"−x−x0+x∥2
=∥x0,"−x0∥2< �3

< T
�
3T
+
�
3
+
�
3
= �.

Since we choose "′ independently from (x , t) ∈ ΩT , this proves the uniformly convergence of (kj)"
to kj for j = a, n for p"

"→0
Ð→ p and with � → 0.

With these prerequisites at hand, we can now show the uniform convergence of I2.

Theorem 5.70
We de�ne a sequence of functions ((I2)")">0 by

(I2)" ∶= I2 (p" , ⋅) ∶ ΩT → [0, 1] .

for a sequence (p")">0 in the parameter space P and with the classi�cation image I2 as de�ned

in De�nition 4.4. Let the sequence (p")">0 be converging to p ∈ P for " → 0 in the sense that

∥p" − p∥2 < " for all " > 0 holds. Then it holds that

(I2)" = I2 (p" , (⋅))→ I2 (p, (⋅)) for " → 0

with uniform convergence in the spatio-temporal domain ΩT .
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Proof. For a converging sequence (p")">0 to p ∈ P for " → 0 we get with Propositions 5.66, 5.68

and 5.69 that each summand in the de�nition of the classi�cation image in De�nition 4.4, i.e.,

1

1 + exp (− 1
"0 kj (p" ,x , t))

for j = n, a,

is uniformly convergent in the spatio-temporal domain ΩT for " → 0.
With Proposition 5.67, we conclude that then the classi�cation image combining both summands

converges uniformly for p"
"→0
Ð→ p. This proves the statement.

We conclude an equivalent statement when considering the discretized classi�cation images I h

2 .

Theorem 5.71
We de�ne a sequence of functions ((I h

2 )")">0 by

(I h

2 )" ∶= I
h

2 (p" , ⋅) ∶ ΩT → [0, 1] .

for a sequence (p")">0 in the parameter space P and with the discretized classi�cation image I h

2

living on a pixel grid as de�ned in De�nition 5.63. Let the sequence (p")">0 be converging to p ∈ P
for " → 0 in the sense that ∥p" − p∥2 < " for all " > 0 holds. Then it holds that

(I h

2 )" = I
h

2 (p" , (⋅))→ I h

2 (p, (⋅)) for " → 0,

with uniform convergence in the spatio-temporal domain ΩT .

Proof. The statement follows directly with Theorem 5.70. We consider (x , t) ∈ ΩT to be arbitrary. It

holds that

∣I h

2 (p" , (x , t)) − I
h

2 (p, (x , t))∣ = ∣I2 (p" , (zp̃ , t)) − I2 (p, (zp̃ , t))∣

with zp̃ the center point of the pixel containing x . With this equality, we can trace the statement back

to the one in Theorem 5.70 which states the uniform convergence in the spatio-temporal domain of

I2 (p" , ⋅) to I2 (p, ⋅) for the parameter p" converging to p for " → 0.

We conclude this section on the convergence of the classi�cation images with the following theo-

rem.

Theorem 5.72
We de�ne a sequence of discrete classi�cation images ((I h

2 )")">0 by

(I h

2 )" ∶= I
h

2 (p" , (⋅)) ∶ ΩT → [0, 1]

for a sequence (p")">0 in the parameter space P and a pixel width h based on De�nition 5.63. Let

the pixel width h be converging to 0 and let the sequence (p")">0 be converging to p ∈ P for " → 0
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in the sense that ∥p" − p∥2 < " for all " > 0 holds. Then it holds that the sequence of functions

((I h

2 )")">0 converges in L1 (ΩT ), i.e.,

I h

2 (p" , (⋅))
L1
Ð→ I2 (p, (⋅)) .

Proof. The statement is a direct consequence of Theorem 5.70 and proposition 5.65. We derive

∥I h

2 (p" , ⋅) − I2 (p, ⋅)∥L1(ΩT ) = ∫ΩT
∣I h

2 (p" , (x , t)) − I2 (p, (x , t))∣ d (x , t)

= ∫
ΩT
∣I h

2 (p" , (x , t)) − I2 (p" , (x , t)) + I2 (p" , (x , t)) − I2 (p, (x , t))∣ d (x , t)

triangle

inequality

≤ ∫
ΩT
∣I h

2 (p" , (x , t)) − I2 (p" , (x , t))∣ d (x , t)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→0 for h→0,
cf. Proposition 5.65

+∫
ΩT
∣I2 (p" , (x , t)) − I2 (p, (x , t))∣ d (x , t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R.S.

and apply the Hölder inequality on the second summand

R.S. ≤ ∫
ΩT
∣1∣ d (x , t)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L⋅W ⋅T<∞

∥I2 (p" , ⋅) − I2 (p, ⋅)∥∞
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ð→0 for "→0,
cf. Theorem 5.70

.

This proves the convergence of I h

2 (p" , ⋅)
L1
Ð→ I2 (p, ⋅) for h→ 0 and p" → p for " → 0.

The statement in Theorem 5.71 could be used for an alternative proof of the last theorem when con-

sidering a di�erent way of “adding 0”, i.e., by adding and subtracting I h

2 (p, ⋅) before the application

of the triangle inequality. However, we do not focus in more details on such an alternative approach.

With this we �nalize the �rst convergence results dealing with the convergence for discrete feature

and classi�cation images and the uniform continuity of the classi�cation image on the parameter set-

ting. In the next section, we focus on the convergence of discrete histograms and their corresponding

histogram density functions.

5.3.4 Convergence of histogram density functions

In this section, we deal with the convergence of the discretized histogram measure. More precisely,

we are interested in the L1-convergence of the corresponding histogram density functions. To this

end, we start with a brief recapitulation of the main histogram versions and recall or introduce corre-

sponding density functions. The histograms are related to our mappings for the feature images I d

1 (cf.

De�nition 3.5) and the classi�cation images I2 (cf. De�nition 4.4) as well as the joint mapping of fea-

ture images and classi�cation images I (cf. De�nition 5.21). The histogram measures of our mappings

indeed have densities with respect to the Lebesgue measures on the measurable spaces (F ,B (F)),
(C,B (C)) or (F × C,B (F × C)), respectively. In Section 3.3.1, we focused on corresponding proba-

bility density functions for probability measures which coincide with the histogram measures after a

normalization step. We point out that because of the noise e�ects on the feature images (cf. Proposi-

tions 3.7 and 3.12) and the way we generate our classi�cation images based on a smoothed Heaviside
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function (De�nition 4.4), we can indeed assume that the histogram measure HF×C has a density

function ℎF×C with respect to the Lebesgue measure on (F × C,B (F × C)).

De�nition 5.73 (Histograms part 1: recapitulation)

We di�erentiate between a continuous histogram and its smoothed version.

1. We have an ideal histogram (cf. De�nition 5.25) without any discretization given as the

pushforward measure HF×C = I#� and it holds

HF×C (A′) = ∫
A′

1 d (I#�) (f , c) = (I#�) (A′)

for an arbitrary A′ ∈ B (F × C).

2. With a smooth molli�cation kernel �"1 ∶=
1
"1 � (

⋅
"1 ), we use

H "1
F×C ∶= �"1 ∗C HF×C (5.33)

as a smoothed histogram along the C−axis for the original histogram measure HF×C (cf.

De�nition 5.33).

We continue with more de�nitions related to our histogram measures and which take the various

discretization e�ects into consideration.

Remark 5.74 (Histograms part 2: recapitulation & extension). We recapitulate the de�nition of a

discretized histogram and its density function when considering a binning of the feature and classi�-

cation spaces. Moreover, we introduce the histogram measures related to classi�cation and feature

images living on a discretized pixel grid. We state another notation for a discretized histogram con-

sidering both the binning e�ects and the discretized image mappings. Finally, we take the smoothing

e�ects into consideration which are based on the convolution with a smooth molli�er.

1. Considering discrete bins BF ,i ,BC,j for i ∈ {1,… , NF} , j ∈ {1,… , NC} of binning sizes Δc and

Δf for the feature spaceF
′

and the classi�cation space C
′

(cf. De�nition 5.41), we denote with

ĤF×C (A′) =
NF ,NC
∑
i,j=1

∣A′ ∩ (BF ,i × BC,j)∣
∣BF ,i ∣ ⋅ ∣BC,j ∣

(I (p, ⋅)# �) (BF ,i × BC,j)

=
1

ΔcΔf 3
NF ,NC
∑
i,j=1
∣A′ ∩ (BF ,i × BC,j)∣ (I (p, ⋅)# �) (BF ,i × BC,j)

the discrete histogram for all A′ ∈ B (F ′ × C′). We refer to De�nition 5.42 for more details on

the discrete histograms. We additionally recall from the same de�nition the histogram density

function to be given by

ℎ̂F×C (f , c) =
1

ΔcΔf 3
NF ,NC
∑
i,j=1

1BF ,i (f ) 1BC,j (c) (I (p, ⋅)# �) (BF ,i × BC,j)

for all (f , c) ∈ F ′ × C′ and ℎ̂F×C (f , c) = 0 for all (f , c) ∈ F × C/F ′ × C′.

114



5.3 Discretizations for numerical approach

2. We consider discretization e�ects in the image data and parameter settings, i.e., a parameter

set p" of the sequence (p")">0 in P converging to p and a small width h > 0 of an underlying

pixel grid for the discretized images. The histogram measure based on this discretized image

data is given as

Hh

F×C = I
h

(p" , ⋅)# �.

For notational issues, we do not add an " in the superscript marking the approximation of the

parameter settings. We rather consider the superscript h to represent both the pixel width and

the " parameter.

3. We denote a histogram measure that considers discrete binnings in the features and classi�ca-

tion space as well as discretization e�ects in the underlying image mappings by Ĥh

F×C . It is

de�ned as

Ĥh

F×C (A
′) =

1
ΔcΔf 3

NF ,NC
∑
i,j=1
∣A′ ∩ (BF ,i × BC,j)∣Hh

F×C (BF ,i × BC,j)

for all A′ ∈ B (F ′ × C′). We denote the histogram density function by

ℎ̂h

F×C (f , c) =
1

ΔcΔf 3
NF ,NC
∑
i,j=1

1BF ,i (f ) 1BC,j (c) (I
h

(p" , ⋅)# �) (BF ,i × BC,j) (5.34)

for all (f , c) ∈ F ′ × C′ and ℎ̂h

F×C (f , c) = 0 for all (f , c) ∈ F × C/F ′ × C′.

4. We denote histogram measures related to smoothed histograms obtained from convolution

along the classi�cation axis with the molli�er �"1 from Example 5.35 and Notation 5.36 with

an "1 in the superscript. For example, the smoothed discrete histogram measure in�uenced

by approximation e�ects due to images living on discrete pixel grids and an approximated

parameter setting p" is denoted by Ĥh,"1
F×C .

We remark that we only recapitulate the di�erent histogram de�nitions for the joint feature and

classi�cation space F × C. The histograms living on the individual spaces F and C are derived

similarly and can be recapitulated with the stated references.

In the de�nitions of the histogram measures living on the spacesF andF ×C, we consider the push-

forward measures of the random variables I d

1 and I with respect to the measure � (cf. Notation 5.18).

We refer additionally to Lemma 5.47 to remind the reader of the derived piecewise constant density

and probability density functions. The histogram density functions ℎ̂F×C and ℎ̂h

F×C are de�ned on

the space F × C. However, we stress that according to their de�nitions they are considered to be

equal to zero on F × C/F ′ × C′ (cf. De�nition 5.42).

Before we delve into the convergence statement, we want to specify the notion of the histogram

measures related to image mappings on discretized pixel grids more thoroughly when considering the

feature images to be a�ected by Gaussian noise. For this purpose, we recapitulate and conclude in the

following lemma the relations between the di�erent histograms and feature mappings corresponding

to the feature space F . Similar relations for the joint feature and classi�cation mappings can be

derived analogously.
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Lemma 5.75
We consider the feature image I1 (cf. De�nition 3.2), the disturbed feature image I d

1 (cf. De�ni-

tion 3.5) and the piecewise constant feature image I h

1 (cf. De�nition 5.56). Let I d,h

1 be the discretized

feature image a�ected by Gaussian noise, de�ned analogously to I d

1 by

I d,h

1 ∶ Ω0 ×ΩT → F , I d,h

1 (!, (x , t)) = I
h

1 (x , t) + IN (!, (x , t)) . (5.35)

We consider the pushforward measures of � with respect to the original feature image and dis-

cretized feature image to be given by given by I1#� and I h

1 #�. With the measure � = P0 ⊗ � on the

measurable space (Ω0 ×ΩT ,E ⊗B (ΩT )), it holds that

I d

1 #� = PN ∗ I1#�,

I d,h

1 #� = PN ∗ I
h

1 #�.
(5.36)

We skip the proof of this lemma because the statements can be proven similarly to Proposition 3.7

in Section 3.3.1. We stress that ∗ refers here to the convolution of measures of the measurable space

(F ,B (F)). In similar statements corresponding to the joint feature and classi�cation space F × C,

one would consider the convolution along the space F .

To focus now on the convergence statement for the histogram density functions, we use the fol-

lowing discretization aspects. We consider now the approximation of a parameter setting p ∈ P by

the sequence (p")">0 ⊂ P with p"
"→0
Ð→ p in the sense that ∥p" − p∥2 < " holds for all " > 0. Moreover,

we include discretizations e�ects due to image mappings living on pixel grids of width h and binning

width Δf and Δc for histogram measures. Finally, we take into consideration the smoothing of the

histogram along the classi�cation space C by a molli�er scaled by "1 > 0 and introduced for deriving

the histogram derivatives (cf. Section 5.2.4, especially De�nition 5.33 and Theorem 5.40). We show

that for a certain convergence order of the di�erent discretization parameters the histogram density

functions convergence. We state this in the upcoming theorem and based on various substeps dealing

with intermediate convergence results we prove the statement. Since we consider for the main theo-

rem and the lemmas focusing on intermediate results always the same setting, we start by de�ning

this general setting �rst.

De�nition 5.76 (Setting for L1-convergence of histogram density functions)

Based on the following assumptions and considerations, we de�ne the general setting for the

upcoming convergence results in this section. Let ℎ̂h,"1
F×C be the piecewise constant histogram

density function related to a discretized setting considering the smoothing molli�cation along C,

the binning of feature and classi�cation spaces, the image mappings I d,h

1 and I h

2 based on a discrete

pixel grid as well as the approximation of a parameter setting p ∈ P . We assume that the various

discretization parameters converge according to

ℎ→ 0, p"
"→0
Ð→ p, Δc → 0, Δf → 0, "1 → 0 (5.37)
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by preserving the convergence of the following relations

ℎ
Δc
→ 0,

∥p" − p∥2
Δc

→ 0,
Δc
"1
→ 0, (5.38)

i.e., we enforce that h and ∥p" − p∥2 converge faster to 0 than Δc and similarly Δc converges faster

to 0 than the parameter "1 scaling the molli�cation kernel’s width.

Based on this general setting, we state our main theorem for this section:

Theorem 5.77 (L1-convergence of histogram density functions)

We consider the setting and convergence orders introduced in De�nition 5.76. Then it holds that

ℎ̂h,"1
F×C

L1
Ð→ ℎF×C

with ℎF×C being the L1-function describing the density of the histogram measure when considering

the original setting without any discretization e�ects, i.e., the density function of the pushforward

measure I#�.

We postpone the proof of the main result. For its preparation, we begin with intermediate results

in the upcoming lemmas. To get an overview of the considered substeps, we list the intermediate

convergence statements �rst:

1. In Lemma 5.78, we show the convergence ℎ̂h,"1
F×C

L1
Ð→ ℎ̂h

F×C for "1 → 0.

2. In Lemma 5.79, we show the convergence ℎ̂F×C
L1
Ð→ ℎF×C for Δc,Δf → 0.

3. In Lemma 5.83, we show the convergence ℎ̂h

F×C
L1
Ð→ ℎ̂F×C for h → 0, ℎ

Δc → 0, p" → p and

∥p"−p∥2
Δc → 0 by considering the following convergences:

a) In Lemma 5.80, we show the convergence ∑
NF
m=1 ∣I

d,h

1 #� − I
d

1 #�∣ (BF ,m)→ 0 for h→ 0.

b) In Lemma 5.81, we show the convergence ∑
NC
n=1 ∣I

h

2 (p, ⋅)#� − I2 (p, ⋅)#�∣ (BC,n) → 0 for

h→ 0 and
ℎ
Δc → 0.

We refer to Figure 5.1 for a motivation that the convergence order of Δc → 0 and h → 0
given by

ℎ
Δc → 0 is indeed crucial.

c) In Lemma 5.82, we show the convergence ∑
NC
n=1 ∣I2 (p" , ⋅)#� − I2 (p, ⋅)#�∣ (BC,n) → 0 for

p"
"→0
Ð→ p and

∥p"−p∥2
Δc → 0.

The convergences in Items 1 to 3 are the main ingredients for the proof to show the convergence

ℎ̂h,"1
F×C

L1
Ð→ ℎF×C stated in our main Theorem 5.77.

Following now the substeps listed above, we start with the �rst intermediate convergence result in

Item 1.
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Lemma 5.78 (Molli�cation e�ect along C )

We consider the setting introduced in De�nition 5.76. Then it holds that ℎ̂h,"1
F×C

L1
Ð→ ℎ̂h

F×C for the

convergence of "1 → 0.

Proof. We know that ℎ̂F×C is a L1-function because it holds that

∫

F
′×C′
∣ℎ̂F×C (f , c)∣ d (f , c) = ∫

F
′×C′

ℎ̂F×C (f , c) d (f , c) ≤ � (ΩT ) <∞.

We refer to Remark 5.44, to recall why the discretized histograms on the reduced feature and classi�-

cation spaces only approximate the total mass � (ΩT ).

The statement follows then directly with Theorem 2.14 (2) in [2] which states that for any f ∈ Lp with

1 ≤ p <∞ and a Dirac sequence such as our (�"1)"1>0 it holds that

f ∗ �"1 → f in Lp for "1 → 0.

Consequently, the convergence holds in particular also for p = 1.

Next, we focus on the convergence stated in Item 2.

Lemma 5.79 (Binning of spaces F
′

and C
′
)

We consider the setting introduced in De�nition 5.76. Then it holds that ∥ℎ̂F×C − ℎF×C∥L1 → 0 for

the convergences of Δc,Δf → 0.

Proof. We know that ℎ̂F×C and ℎF×C are L1-functions because it holds that

∫

F
′×C′
∣ℎ̂F×C (f , c)∣ d (f , c) = ∫

F
′×C′

ℎ̂F×C (f , c) d (f , c) ≤ � (ΩT ) <∞,

∫

F
′×C′
∣ℎF×C (f , c)∣ d (f , c) = ∫

F
′×C′

ℎF×C (f , c) d (f , c) ≤ � (ΩT ) <∞.

We refer to Remark 5.44, to recall why the discretized histograms on the reduced feature and classi�-

cation spaces only approximate the total mass � (ΩT ).

Furthermore, we recall that the piecewise constant histogram density function ℎ̂F×C is constant

on each bin combination BF ,i × BC,j with i ∈ {1,… , NF} and j ∈ {1,… , NC} and coincides with the

averaged pushforward measure of this bin (cf. Remark 5.74), i.e., for (f , c) ∈ BF ,i × BC,j it holds that

ℎ̂F×C (f , c) =
1

ΔcΔf 3
(I (p, ⋅)# �) (BF ,i × BC,j) =

1
ΔcΔf 3 ∫

BF ,i×BC,j

ℎF×C (f , c) d (f , c) .

We consider now � > 0 to be arbitrary. Since C∞c (F × C) lies dense in L1 (F × C) (cf. Theorem 2.14

(3) in [2]), we can �nd a continuous function g ∈ C∞c (F × C) such that

∥ℎF×C − g∥L1 < � (5.39)
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holds. Since g is continuous, we can conclude that for the same � > 0 there exists a � ′ > 0 such that

∣g (f1, c1) − g (f2, c2)∣ < �

for all (f1, c1) , (f2, c2) ∈ F × C with ∥(f1, c1) − (f2, c2)∥2 < �
′
. Since we consider Δc,Δf → 0, we

can assume Δc and Δf to be small enough such that Δc + 3Δf < � ′ holds. Then it follows for

(f , c) , (f ′, c′) ∈ BF ,i × BC,j with i ∈ {1,… , NF} and j ∈ {1,… , NC} arbitrary that

∥(f , c) − (f ′, c′)∥2 < Δc + 3Δf < �
′

(5.40)

and, consequently,

∣g (f , c) − g (f ′, c′)∣ < � (5.41)

hold. Based on these binning widths Δc and Δf , we de�ne a piecewise constant approximation of g
by

ĝ (f , c) =
1

ΔcΔf 3
NF ,NC
∑
i,j=1

1BF ,i (f ) 1BC,j (c) ∫

BF ,i×BC,j

g (f , c) d (f , c) .

Consequently, for any (f , c) in an arbitrary bin combination BF ,i × BC,j with i ∈ {1,… , NF} and

j ∈ {1,… , NC} it holds that

ĝ (f , c) =
1

ΔcΔf 3 ∫

BF ,i×BC,j

g (f ′, c′) d (f ′, c′) .

Now, we can conclude that

∥g − ĝ∥L1 = ∫
F
′×C′
∣g (f , c) − ĝ (f , c)∣ d (f , c)

=

NF ,NC
∑
m,n=1

∫

BF ,m×BC,n

RRRRRRRRRRRRRR

g (f , c) −
1

ΔcΔf 3 ∫

BF ,m×BC,n

g (f ′, c′) d (f ′, c′)

RRRRRRRRRRRRRR

d (f , c)

≤

NF ,NC
∑
m,n=1

∫

BF ,m×BC,n

1
ΔcΔf 3 ∫

BF ,m×BC,n

∣g (f , c) − g (f ′, c′)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<�

d (f ′, c′) d (f , c)

< � ∣F ′∣ ∣C′∣
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
<∞

holds because of the continuity of g and Equations (5.40) and (5.41). We infer that there exists a �nite

constant C
F
′,C′ > 0 such that ∣F ′∣ ∣C′∣ < C

F
′,C′ <∞ and we conclude then that

∥g − ĝ∥L1 < CF ′,C′� (5.42)

119



5 Mutual information based model fi�ing

holds. Next, we approximate the L1-norm of the di�erence between both piecewise constant functions

ℎ̂F×C and ĝ:

∥ℎ̂F×C − ĝ∥L1 = ∫
F
′×C′
∣ℎ̂F×C (f , c) − ĝ (f , c)∣ d (f , c)

=

NF ,NC
∑
m,n=1

∫

BF ,m×BC,n

∣ ℎ̂F×C (f , c)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=const. on

BF ,m×BC,n

− ĝ (f , c)
´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=const. on

BF ,m×BC,n

∣ d (f , c)

=

NF ,NC
∑
m,n=1

1
ΔcΔf 3 ∫

BF ,m×BC,n

d (f , c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

∣ ∫

BF ,m×BC,n

ℎF×C (f ′, c′) d (f ′, c′) − ∫

BF ,m×BC,n

g (f ′, c′) d (f ′, c′) ∣

≤

NF ,NC
∑
m,n=1

∫

BF ,m×BC,n

∣ℎF×C (f ′, c′) − g (f ′, c′)∣ d (f ′, c′)

= ∫

F
′×C′
∣ℎF×C (f ′, c′) − g (f ′, c′)∣ d (f ′, c′) = ∥ℎF×C − g∥L1

holds and with Equation (5.39) it follows directly that

∥ℎ̂F×C − ĝ∥L1 ≤ ∥ℎF×C − g∥L1 < � (5.43)

holds. By applying the Minkowski inequality as well as exploiting Equation (5.39), Equation (5.42)

and Equation (5.43), we �nally derive that

∥ℎ̂F×C − ℎF×C∥L1 = ∥ℎ̂F×C − ĝ + ĝ − g + g − ℎF×C∥L1

≤ ∥ℎ̂F×C − ĝ∥L1 + ∥ĝ − g∥L1 + ∥g − ℎF×C∥L1

< (2 + C
F
′,C′) �

holds. As we choose for any � > 0 our binning widths Δf and Δc small enough to account for the

epsilon-delta de�nition of continuity for the function g (cf. Equations (5.40) and (5.41)), a vanishing

� implies directly Δc, Δf → 0. Since � > 0 is arbitrary, the L1-convergence result �nally follows with

� → 0.

With Figure 5.1 we motivate the next convergence statements which consider vanishing grid sizes Δf
and Δc as well as the pixel width converging to 0. Based on the �rst sketch on the left which depicts

a histogram measure of a piecewise constant image mapping (green) and its discretized version due

to binning e�ects of width Δ (red), we consider two di�erent scenarios. We focus on vanishing

discretization sizes for the binning by Δ→ 0 for, e.g., the classi�cation or feature space, and for the

pixel width with h → 0. For a piecewise constant image mapping the corresponding pushforward

measure consists of several Delta peaks (shown in green). When we consider then a binning of the

horizontal axis, e.g., of the feature or classi�cation space, we observe a histogram measure which

has a piecewise constant histogram density function (shown in red). We highlight that a decreasing

pixel width h corresponds to an increasing number of occurring feature and classi�cation values in

the images and, consequently, results in more Delta peaks in the histogram whereas a decreasing
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5.3 Discretizations for numerical approach

bin width Δ results in a higher number of discrete bins in the histogram. Focusing now on the

convergence order, we will expect the red histogram for the binned space to converge towards the

green histogram consisting of Delta peaks (upper sketch on the right) if the binning width converges

to 0 for a �xed pixel width h and even if the binning width converges faster to zero than the pixel

width, i.e.,
Δ
h
→ 0. The histogram measure consisting of Delta peaks is not absolutely continuous with

respect to the Lebesgue measure and, consequently, it does not have a density function with respect

to the Lebesgue measure. For this reason, we want to avoid that the binning width Δ converges faster

than the pixel width h. In the other case, we will expect the discretized histogram with a piecewise

constant density function to converge towards the original density function of the image mapping

without a pixel grid discretization (gray graph in lower right plot) if the pixel width converges faster

than the binning width, i.e.,
h

Δ → 0. With this in mind, we focus on the next convergence results.

Figure 5.1: Sketches of a histogram measure corresponding to a piecewise constant image mapping

living on a pixel grid of width h (green, Delta peaks) and a histogram measure based on a binning

of width Δ with a piecewise constant density function (red) are shown for discretization sizes h and

Δ converging to 0. Based on the left sketch, two di�erent scenarios for the convergence order are

presented. In the upper right sketch the binning width Δ converges faster than h, i.e.
Δ
h
→ 0 resulting

in Ĥ h → H h
, and in the lower right sketch the pixel width converges faster than Δ, i.e.

h

Δ → 0 allowing

Ĥ h → H with H being the original histogram measure without any discretization e�ects.

Lemma 5.80 (Discretized image mapping I d,h

1 on binned space F
′
)

We consider the setting introduced in De�nition 5.76. Then it holds for h→ 0 that

NF
∑
m=1
∣I d,h

1 #� − I
d

1 #�∣ (BF ,m)→ 0.

Proof. We focus �rst on an arbitrary bin BF ,m with m ∈ {1,… , NF} and derive the following approxi-

mations. For the pushforward measure of � = P0⊗� with respect to the feature image, we recapitulate
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5 Mutual information based model fi�ing

that I d,h

1 #� = PN ∗ I
h

1 #� and I d

1 #� = PN ∗ I1#� hold (cf. Equation (5.36)) and recall that pN denotes the

probability density function of the probability measure PN with respect to the Lebesgue measure

(cf. De�nition 3.4). We point out that pN is the probability density function related to the Gaussian

normal distribution for a �xed standard deviation �2 living on the feature space F . Moreover, pN
is continuous and also continuously di�erentiable. Since its �rst partial derivatives are bounded,

the probability density function pN is Lipschitz continuous. We denote the corresponding Lipschitz

constant with L and without calculating it explicitly, we state that naturally 0 < L <∞ holds. With

this in mind, we derive

∣I d,h

1 #� (BF ,m) − I
d

1 #� (BF ,m)∣

=

RRRRRRRRRRRRRR

∫

BF ,m

∫

F

pN (f − y) d (I h

1 #�) (y) df − ∫
BF ,m

∫

F

pN (f − y) d (I1#�) (y) df

RRRRRRRRRRRRRR

=

RRRRRRRRRRRRRR

∫

BF ,m

∫

ΩT

pN (f − I h

1 (x , t)) − pN (f − I1 (x , t)) d (x , t) df

RRRRRRRRRRRRRR

≤ ∫

BF ,m

∫

ΩT

∣pN (f − I h

1 (x , t)) − pN (f − I1 (x , t))∣ d (x , t) df

Equation (5.22)

= ∫

BF ,m

nT
∑
i=1
∫

Ω

∣pN (f − I h

1 (x , ti)) − pN (f − I1 (x , ti))∣ dx df

De�nition 5.55

= ∫

BF ,m

nT
∑
i=1
∑
p̃∈Ωh

∫

Ωp̃

∣pN (f − I h

1 (x , ti)) − pN (f − I1 (x , ti))∣ dx df

L−continuity

≤ ∫

BF ,m

nT
∑
i=1
∑
p̃∈Ωh

∫

Ωp̃

L ∣(f − I h

1 (x , ti)) − (f − I1 (x , ti))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∣I h

1 (x ,ti)−I1(x ,ti)∣

dx df

Proposition 5.60

Theorem 5.61

≤ ∫

BF ,m

nT ⋅ L ⋅ CΩ1 ⋅ ℎ ⋅ CBV df = Δf
3
⋅ nT ⋅ L ⋅ CΩ1 ⋅ CBV ⋅ ℎ.

Consequently, there exists a �nite constant C⋆ > 0 such that nT ⋅ L ⋅ CΩ1 ⋅ CBV < C⋆ <∞ holds and we

conclude that

∣I d,h

1 #� (BF ,m) − I
d

1 #� (BF ,m)∣ < C⋆ Δf
3 ℎ

holds for an arbitrary bin BF ,m with m ∈ {1,… , NF}. With this at hand, we derive

NF
∑
m=1
∣I d,h

1 #� (BF ,m) − I
d

1 #� (BF ,m)∣ < NF C⋆ Δf
3 ℎ

Equation (5.8)

=
∣F ′1∣

Δf
⋅
∣F ′2∣

Δf
⋅
∣F ′3∣

Δf
C⋆ Δf 3 ℎ = ∣F ′1∣ ⋅ ∣F

′

2∣ ⋅ ∣F
′

3∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

<∞

C⋆ ℎ,

i.e., the convergence follows for h→ 0 and in fact even independently from the binning width Δf .
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5.3 Discretizations for numerical approach

When recalling the sketches of discretization e�ects in�uencing histogram measures as shown in

Figure 5.1, we point out that in fact we proved the convergence

NF
∑
m=1
∣I d,h

1 #� − I
d

1 #�∣ (BF ,m)→ 0

independently from the binning width Δf and do not require a speci�c order of convergence for

h → 0 and Δf → 0. We stress that this e�ect derives from the smoothing e�ect by the convolution

with the Gaussian normal density function pN to take noise e�ects into consideration. To be more

precise, in our sketch we would not expect green Dirac Delta peaks for I d,h

1 #� but instead smoothed

Delta peaks which are in particular smoothed for any pixel width h.

When we focus on the pushforward of � with respect to the classi�cation image, we show with the

next statement that in this context we indeed need to apply the convergence order
ℎ
Δc → 0 in particular

to ensure the following convergence for I h

2 (p, ⋅)#� → I2 (p, ⋅)#� for any parameter p ∈ P :

Lemma 5.81 (Discretized classi�cation mapping I h

2 on binned space C
′
)

We consider the setting introduced in De�nition 5.76. Then it holds with p ∈ P arbitrary that

NC
∑
n=1
∣I h

2 (p, ⋅)#� − I2 (p, ⋅)#�∣ (BC,n)→ 0

for the convergences of h→ 0 and
ℎ
Δc → 0.

Proof. Let p ∈ P and t ∈ {t1,… , tnT } be arbitrary but �xed for now. We focus �rst on an arbitrary

bin BC,n with n ∈ {1,… , NC} and derive the following approximations. For the pushforward of �
with respect to the classi�cation image in its discretized and its original version, we want to �nd an

approximation for

∣I h

2 (p, ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) .

In Figure 5.2, we show a sketch of one time frame for the classi�cation image living on the discrete

pixel grid (red) compared to the original classi�cation image indicated by three smooth circular

contour lines in the two dimensional domain (left sketch) and a radial cut focusing on the course

of the classi�cation images I2 and I h

2 in radial direction (right plot). The cutting is illustrated in the

two dimensional plot on the left by a purple cutting edge. In the cross-section plot on the right, we

use horizontal green lines to mark the di�erent bins of width Δc which are numbered on the vertical

axis. Additionally, we indicate pixel borders on the horizontal axis by vertical red lines which are

one pixel width h apart from each other. In Figure 5.3, we sketch the course of the classi�cation

images I2 and I h

2 for a radial cut for two di�erent settings. On the left side, we consider bins related

to classi�cation regions corresponding to small slopes in radial direction of the original mapping I2
while in the right plot we also consider regions with a high slope in radial direction. Below the two

plots, we mark the preimages of the di�erent bins in brown under the original classi�cation image I2
and under the discretized classi�cation image I h

2 in blue, i.e., we present I−12 (BC,n) and I h

2
−1
(BC,n)

with n ∈ {1,… , 5}.
Since the piecewise constant discrete image I h

2 is de�ned based on I2 by assigning each pixel the value
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Figure 5.2: On the left, a sketch of three contour lines corresponding to three distinct classi�cation

values (brown circles) is presented in the image domain. The contour line of the middle circle is

overlaid by a discrete approximation in red, i.e., by the corresponding circle on the discrete pixel grid.

A cutting edge in radial direction is shown in purple and the related cross-section plot is shown on

the right. The original, continuous classi�cation values are shown in brown and in blue they are

approximated by the discrete classi�cation values on the pixel grid according to De�nition 5.63. The

grid width h is marked on the horizontal axis and the binning width Δc is depicted in green on the

vertical axis.

of I2 in its center point, it cannot happen that the preimage of a bin in C
′

is only empty under I2 but

not under I h

2 . With this in mind, it is su�cient to only consider bins in C
′

for which the preimage

under I2 is not empty because in the other case the preimage under I h

2 would be empty as well and,

consequently, it would hold that

∣I h

2 (p, ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) = 0.

We di�er now between two cases. First, we considerBC,n such that its preimages under both mappings

I2 and I h

2 are not empty. Depending on the slope of I2 in radial direction and depending on the bin

width, it can happen that the preimage of I h

2 is empty (cf. bin 3 and bin 4 in the right plot in Figure 5.3).

We focus on this setting in the second case.

For the �rst case, we investigate the regions on the horizontal cut in the image domain which

correspond to the preimage of bin 2 in the left plot and to the preimage of bins 1, 2 and 5 in the right

plot in Figure 5.3. We observe that the preimages under I2 and I h

2 overlap, i.e., they are not disjoint.

However, they are not necessarily identical either. In fact, we can observe for each bin slight shifting

e�ects when comparing the preimage under I2 and I h

2 . Nevertheless, this mismatch is smaller than

the pixel width h for both boundary regions in radial direction, i.e., the left and right boundaries of

the preimages under I2 and I h

2 for each of the bins focused on for this �rst case. Considering now

again the two dimensional setting, we are facing ring-shaped preimages for the classi�cation image I2
and discretized ring-shapes for I h

2 with staircasing e�ects based on the underlying pixel grid. Before

we dive into the approximation of the error between the preimages of I2 and I h

2 for bin BC,n, we use

the following estimate for the perimeter corresponding to the maximal possible radius for a circle to

�t into our domain Ω = [0, L] × [0,W ]:

2� R ≤ Per (Ω) = 2 (L +W ) (5.44)
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Figure 5.3: Based on the cross-section plot of a horizontal cut in the radial direction introduced in

Figure 5.2, we present the regions related to the preimage of the classi�cation mapping I2 (brown)

and its discrete approximation I h

2 (blue). On the left, we focus on a bin in the classi�cation space for

which the classi�cation image rises only very slightly in the radial direction whereas on the right,

we present also bins which correspond to high radial gradients of the classi�cation mapping.

i.e., we use the perimeter of our domain as an upper bound for the circle’s perimeter with a radius

for which holds R ≤ 1
2 min{L,W }. The perimeter is here denoted by Per (⋅). Based on the length of

the perimeter of this maximal circle and by considering the width of the mismatched regions to be

smaller than h on the inner and on the outer ring shapes of the perimeter of the preimages, we derive

the following approximation:

∣I h

2 (p, ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) ≤ h ⋅ Per (I h

2 (p, ⋅, t)
−1
(BC,n) ∪ I2 (p, ⋅, t)−1 (BC,n))

≤ 2 ⋅ h ⋅ 2� R ≤ 4 (L +W )h.

Here, we apply an approximation of the perimeter of the union of the preimages of I2 and I h

2 by

twice the perimeter of a circle corresponding to the maximal possible radius R which we then in turn

approximate by the upper bound given by the perimeter of the domain Ω (cf. Equation (5.44)). We

use a quite rough approximation for the considered perimeter of the union of the preimages of I2 and

I h

2 . However, we stress that it is important for us to �nd an upper bound which is independent of the

binning width Δc. Eventually, there exists a constant C† > 0 such that 4 (L +W ) < C†
holds, i.e. C†

only depends on our spatial domain Ω. For later reference we conclude that

∣I h

2 (p, ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) ≤ C
†

h (5.45)

holds.

Next, we focus on the second case dealing with regions where the classi�cation image rises signif-

icantly in radial direction such that the discretized classi�cation images skips certain bins in the

classi�cation space C
′
, i.e., we consider bins for which the preimage under I h

2 is empty while it is not
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under I2. Exemplarily, we refer to the bins 3 and 4 in the right plot of Figure 5.3 for which the preim-

age of I h

2 is empty. Here, the brown graph representing the classi�cation image I2 rises distinctively

so that the discretized image I h

2 (piecewise constant blue graph) only maps to the neighboring bins 2
and 5 when considering the pixel width h and that I h

2 maps to the classi�cation value of the center

point in each pixel (cf. De�nition 5.63).

We consider now BC,n to be a bin for which the preimage of I h

2 is indeed empty. For the preimage of

I2 of this bin it holds consequently that the widths in radial direction is smaller than one pixel width

h. With this in mind, we can derive the following approximation

∣I h

2 (p, ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) = I2 (p, ⋅, t)#� (BC,n)

= � (I2 (p, ⋅, t)−1 (BC,n)) ≤ h 2� R ≤ 2 (L +W )h

by using the maximal possible radius to estimate the perimeter of the circular domain of the preimage

and further using its upper bound given in Equation (5.44). Since 2 (L +W ) < C†
holds, the following

approximation is also valid for this second case:

∣I h

2 (p, ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) ≤ C
†

h. (5.46)

As t ∈ {t1,… , tnT } was chosen arbitrarily, we can deduce from Equations (5.45) and (5.46)

∣I h

2 (p, ⋅)#� − I2 (p, ⋅)#�∣ (BC,n) =
nT
∑
i=1
∣I h

2 (p, ⋅, ti)#� − I2 (p, ⋅, ti)#�∣ (BC,n) ≤ nT C
†

h.

Since the bin BC,n was chosen arbitrarily as well we can derive further that

NC
∑
n=1
∣I h

2 (p, ⋅)#� − I2 (p, ⋅)#�∣ (BC,n) ≤ NC nT C
†

h

Equation (5.9)

≤ 2nT C†
h

Δc

holds. With the convergence of
h

Δc → 0 as stated in the assumptions of this lemma, we conclude that

∑
NC
n=1 ∣I

h

2 (p, ⋅)#� − I2 (p, ⋅)#�∣ (BC,n)→ 0 holds.

Lemma 5.82 (Approximated parameter setting for classi�cation image I2)
We consider the setting introduced in De�nition 5.76. Then it holds that

NC
∑
n=1
∣I2 (p" , ⋅)#� − I2 (p, ⋅)#�∣ (BC,n)→ 0 for p"

"→0
Ð→ p and

∥p" − p∥2
Δc

→ 0.

Proof. Let t ∈ {t1,… , tnT } be arbitrary but �xed for now. We focus �rst again on an arbitrary bin BC,n

with n ∈ {1,… , NC} and derive an approximation for ∣I2 (p" , ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n). Let the bin

be given by BC,n = [c1, c2] with c1 < c2 and c1, c2 ∈ C′ ⊂ (0, 2). We set C
∗ ∶= (0, 2).

Let (p")">0 be a sequence of parameter settings converging to p ∈ P for " → 0 in the sense that

∥p" − p∥2 < " holds for all " > 0. We recapitulate the individual parameter in the sets to be given by

p" = (x0," , t0,n," , t0,a," , v") ,

p = (x0, t0,n, t0,a, v) .
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For both parameter sets we consider a radial cut through their origins x0," and x0. To �nd the radius

of the contour line corresponding to the preimage of I2 for a certain classi�cation value, we make

use of the implicit function theorem (cf. Theorem 2 in §8 of [23]). With this we aim for an implicit

representation of the radius depending on the parameter setting p" or p and on the classi�cation

values c1 and c2.
We de�ne the reduced parameter space

P∗ = {(t̂0,n, t̂0,a) ∈ (0, T)2 ∣t̂0,n < t̂0,a} × (0, vmax)

for the starting time points and the velocities given in the reduced parameter sets p∗ = (t0,n, t0,a, v)
and p∗" = (t0,n," , t0,a," , v"). It follows directly that

∥p∗" − p
∗
∥2 ≤ ∥p" − p∥2 . (5.47)

We ensure here that P∗ is open in comparison to the original parameter space as de�ned in De�-

nition 4.3 and we point out that we neglect the spatial origins x0 and x0," in the reduced settings.

Additionally, we de�ne R∗ ∶= (0, R) with R denoting a maximal possible radius similar to the one

used for the previous Lemma 5.81 (cf. Equation (5.44)). Here, we use an upper bound for the radii to

be given by the diameter of the domain Ω, i.e., R = diam (Ω) =
√
L2 +W 2

. Oriented on the notation

of the cited theorem in the book of Forster on Analysis 2 (cf. Theorem 2 in §8 of [23]), we de�ne

F ∶ P∗ × C∗ ×R∗ → ℝ F (p∗, c, r) = I∗2 (p
∗, r) − c

based on adjusted de�nitions for the classi�cation image I∗2 and circular fronts k∗j with j = n, a which

depend on the reduced parameter sets and the radius instead of a location x and its distance to the

origin x0. To be more precise, we apply

k∗j ∶ P
∗
×R

∗
→ ℝ, k∗j (p

∗, r) = v (t − t0,j) − r , j = n, a

I∗2 ∶ P
∗
×R

∗
→ C

∗, I∗2 (p
∗, r) =

1

1 + exp (− 1
"0 k
∗
n (p∗, r))

+
1

1 + exp (− 1
"0 k
∗
a (p∗, r))

. (5.48)

which are closely related to the original de�nitions given in Equation (4.4) and in De�nition 4.4.

While those de�nitions introduced in Section 4.2 were depending on spatial coordinates and the

current time point and also included the spatial colony’s origin, we here focus on radial dependence

and assume the �xed time point t ∈ {t1,… , tnT }. To be more precise, it is rather a reparameterization

since originally the classi�cation values were calculated based on the distance between a location x
and the origin x0 which is now replaced by the radius.

Analogously to I2 it holds that I∗2 is continuously di�erentiable with the gradient given by

∇(p∗,r)I∗2 (p
∗, r) =

1
"0

⎛
⎜
⎜
⎝

exp (− 1
"0 k
∗
n (p∗, r)) (∇(p∗,r)k∗n (p∗, r))

(1 + exp (− 1
"0 k
∗
n (p∗, r)))

2 +

exp (− 1
"0 k
∗
a (p∗, r)) (∇(p∗,r)k∗a (p∗, r))

(1 + exp (− 1
"0 k
∗
a (p∗, r)))

2

⎞
⎟
⎟
⎠

.
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with the gradient of the adjusted circular fronts given by

∇(p∗,r)k∗n (p
∗, r) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

)k∗n (p∗,r)
)t0,n

)k∗n (p∗,r)
)t0,a

)k∗n (p∗,r)
)v

)k∗n (p∗,r)
)r

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−v
0

t − t0,n
−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, ∇(p∗,r)k∗a (p
∗, r) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

)k∗a (p∗,r)
)t0,n

)k∗a (p∗,r)
)t0,a

)k∗a (p∗,r)
)v

)k∗a (p∗,r)
)r

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0
−v

t − t0,a
−1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (5.49)

We refer to Equations (4.8) to (4.10) for the derivative terms of the original classi�cation image

formulations and the corresponding circular fronts. As I∗2 is continuously di�erentiable for the

inherent parameter, we conclude that F is also continuously di�erentiable. Based on the above

derivative terms, we proceed with the partial derivatives of the function F which are given by

∇(p∗,r)F (p∗, c, r) = ∇(p∗,r)I∗2 (p
∗, r)

)F
)c
(p∗, c, r) = −1.

In particular, it holds that

)F (p∗, c, r)
)r

=
)I∗2 (p∗, r)

)r

=
1
"0

⎛
⎜
⎜
⎝

exp (− 1
"0 k
∗
n (p∗, r)) (

)k∗a
)r (p

∗, r))

(1 + exp (− 1
"0 k
∗
n (p∗, r)))

2 +
exp (− 1

"0 k
∗
a (p∗, r)) (

)k∗a
)r (p

∗, r))

(1 + exp (− 1
"0 k
∗
a (p∗, r)))

2

⎞
⎟
⎟
⎠

= −
1
"0

⎛
⎜
⎜
⎝

exp (− 1
"0 k
∗
n (p∗, r))

(1 + exp (− 1
"0 k
∗
n (p∗, r)))

2 +
exp (− 1

"0 k
∗
a (p∗, r))

(1 + exp (− 1
"0 k
∗
a (p∗, r)))

2

⎞
⎟
⎟
⎠

< 0

since the numerator for both fraction is strictly positive and the fractions cannot equal 0. Conse-

quently,
)F(p∗,c,r)

)r is invertible or all (p∗, c, r) ∈ P∗ × C∗ ×R∗. We can even show that ∣
)F(p∗,c,r)

)r ∣ is

bounded away from zero such that the absolute value of its inverse is actually �nite and does not

converge to in�nity. This can be seen in the following way. Similar to Equation (5.32), we can derive

that

exp(−
1
"0
k∗j (p

∗, r)) = exp(−
1
"0
(v (t − t0,j) − r))

≥ exp(−
1
"0
(vmax (T − 0) − 0))

= exp(−
1
"0
vmaxT) ∶= C♢,

exp(−
1
"0
k∗j (p

∗, r)) = exp(−
1
"0
(v (t − t0,j) − r))

≤ exp(−
1
"0
(vmax (0 − T) − R))

= exp(−
1
"0
(−vmaxT − R)) ∶= C♣

(5.50)
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for j = n, a hold. Consequently, we can derive the following lower bound for the absolute value of

the partial derivative with respect to r

∣
)F (p∗, c, r)

)r
∣ ≥

1
"0
C♢
⎛
⎜
⎜
⎝

1

(1 + exp (− 1
"0 k
∗
n (p∗, r)))

2 +
1

(1 + exp (− 1
"0 k
∗
a (p∗, r)))

2

⎞
⎟
⎟
⎠

≥
1
"0
C♢ (

1
(1 + C♣)2

+
1

(1 + C♣)2
) =∶ C†

> 0

and in same way an upper bound for its reciprocal is given by

RRRRRRRRRRRR

1
)F(p∗,c,r)

)r

RRRRRRRRRRRR

≤
1
C†

. (5.51)

Before we dive into the application of the implicit function theorem, we �nish our preparations by

deriving further upper bounds for the absolute values of the following partial derivatives:

)F
)t0,n

,
)F
)t0,a

,
)F
)v

,
)F
)c
.

For this purpose, we derive with the same estimates introduced in Equation (5.50) and with approxi-

mations for the absolute values of the partial derivatives for the circle equations (cf. Equation (5.49))

the following upper bounds

∣
)F (p∗, c, r)

)t0,n
∣ =

)I∗2 (p∗, r)
)t0,n

≤
1
"0

vmaxC♣

(1 + C♢)2
,

∣
)F (p∗, c, r)

)t0,a
∣ =

)I∗2 (p∗, r)
)t0,a

≤
1
"0

vmaxC♣

(1 + C♢)2
,

∣
)F (p∗, c, r)

)v
∣ =

)I∗2 (p∗, r)
)v

≤
1
"0

2TC♣

(1 + C♢)2
,

∣
)F (p∗, c, r)

)c
∣ = 1.

(5.52)

Let (p̃∗, c̃, r̃) ∈ P∗ × C∗ × R∗ be given such that F (p̃∗, c̃, r̃) = 0 holds, i.e., that the value of I∗2
for the radius r̃ and the reduced parameter set p̃∗ equals the classi�cation value c̃. It holds that

)F
)r

is also invertible in (p̃∗, c̃, r̃). By applying the implicit function theorem, it follows that there exist

open sets P∗1 ⊂ P∗ containing p̃∗, C∗1 ⊂ C
∗

containing c̃ andR∗1 ⊂R
∗

containing r̃ , respectively, and

a continuously di�erentiable function

r ∶ P∗1 × C
∗
1 →R

∗
1 with r (p̃∗, c̃) = r̃ (5.53)

such that for all p∗ ∈ P∗1 , c ∈ C∗1 and r ∈R∗1

F (p∗, c, r) = 0 ⇔ r = r (p∗, c)
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holds. Moreover, the partial derivatives of r are given by

)r
)t0,n

= −(
)F
)r
)
−1 )F
)t0,n

,

)r
)t0,a

= −(
)F
)r
)
−1 )F
)t0,a

,

)r
)v
= −(

)F
)r
)
−1 )F
)v

,

)r
)c
= −(

)F
)r
)
−1 )F

)c

(5.54)

(cf. remark 4 after theorem 2 in [23]). When considering the upper bounds for the absolute values

of the partial derivatives as stated in Equations (5.51) and (5.52), we easily derive bounds for the

absolute values of the partial derivatives of r given in Equation (5.54).

Since the partial derivatives of r are bounded, we conclude that r is Lipschitz continuous in p∗ and c.
We denote a corresponding Lipschitz constant with L and without calculating it explicitly, we state

that naturally 0 < L <∞ holds.

With this we have �nally all prerequisites at hand to focus on the main statement of this lemma.

More precisely, we focus now on an approximation of ∣I2 (p" , ⋅, t)#� − I2 (p, ⋅, t)#�∣ (BC,n) with t and

BC,n = [c1, c2] still arbitrary but �xed as stated in the introduction of this proof. When considering the

classi�cation value for a �xed parameter setting, we know that it is decreasing for increasing radius

(cf. Equation (5.48)). Similarly, it also holds that r is also decreasing for increasing classi�cation

values for a �xed parameter setting. With Equation (5.54), we easily see that

)r
)c
= −(

)F
)r
)
−1 )F

)c
= (

)I∗2
)r
)

−1

holds. Consequently, both partial derivatives have the same sign and therewith the same monotonicity.

For illustration e�ects, we refer to the sketches in Figure 5.4. With this monotonicity in mind, it holds

Figure 5.4: Sketches for the classi�cation value depending on the radius r (left sketch) and, vice versa,

the radius depending on the classi�cation value c (right sketch). For two example parameter sets p∗1
(blue) and p∗2 (red), one can observe monotonously decreasing classi�cation values for increasing

radii (left plot) and monotonously decreasing radii for increasing classi�cation values (right plot).
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that

r (p∗" , c1) > r (p
∗
" , c2) , r (p∗, c1) > r (p∗, c2)

and, consequently, we can calculate the measure of the preimages for BC,n by calculating the area of

the corresponding rings in the image domain (cf. Figure 5.5). This leads to the following approxima-

Figure 5.5: Sketches of ring-shaped preimages for two parameter sets p∗" (blue) and p∗ (red) which

are contained in our image domain Ω. The outer perimeters of the preimages of BC,n = [c1, c2]
under I∗2 correspond to the lower classi�cation value c1 and the inner ones correspond to the larger

classi�cation value c2.

tion

∣I∗2 (p
∗
" , ⋅)#� (BC,n) − I

∗
2 (p

∗, ⋅)#� (BC,n)∣

= � ∣r (p∗" , c1)
2
− r (p∗" , c2)

2
− (r (p∗, c1)

2
− r (p∗, c2)

2
)∣

triangle ineq.

≤ � ∣r (p∗" , c1)
2
− r (p∗, c1)

2
∣ + � ∣r (p∗" , c2)

2
− r (p∗, c2)

2
∣

3rd
binomial

formula

= � ∣ (r (p∗" , c1) − r (p
∗, c1)) (r (p∗" , c1) + r (p

∗, c1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2R

∣

+ � ∣ (r (p∗" , c2) − r (p
∗, c2)) (r (p∗" , c2) + r (p

∗, c2))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤2R

∣

≤2�R (∣r (p∗" , c1) − r (p
∗, c1)∣ + ∣r (p∗" , c2) − r (p

∗, c2)∣)
L-continuity

≤ 4� R L ∥p∗" − p
∗
∥2 .

(5.55)

If the preimages of BC,n under I2 (p" , ⋅, t) and I2 (p, ⋅, t), i.e., under our original classi�cation mappings

considering p" and p, are lying completely within our spatial domain Ω, it holds that

I2 (p" , ⋅, t)#� (BC,n) = I
∗
2 (p

∗
" , ⋅)#� (BC,n) ,

I2 (p, ⋅, t)#� (BC,n) = I
∗
2 (p

∗, ⋅)#� (BC,n)

with � denoting in each case the Lebesgue measure. In this case, the approximation

∣I2 (p" , ⋅, t)#� (BC,n) − I2 (p, ⋅, t)#� (BC,n)∣ = ∣I
∗
2 (p

∗
" , ⋅)#� (BC,n) − I

∗
2 (p

∗, ⋅)#� (BC,n)∣

≤ 4� R L ∥p∗" − p
∗
∥2

≤ 4� R L ∥p" − p∥2 .

(5.56)
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follows directly with Equations (5.47) and (5.55).

Since BC,n with n ∈ {1,… , NC} and t ∈ {t1,… , tnT } were chosen arbitrarily, this �nally leads to the

following approximation:

NC
∑
n=1
∣I2 (p" , ⋅)#� − I2 (p, ⋅)#�∣ (BC,n) =

NC
∑
n=1

nT
∑
i=1
∣I2 (p" , ⋅, ti)#� − I2 (p, ⋅, ti)#�∣ (BC,n)

Equation (5.56)

≤ NC nT 4� R L ∥p" − p∥2
Equation (5.9)

≤
2
Δc

nT 4� R L ∥p" − p∥2

= 8nT � R L
∥p" − p∥2

Δc

The convergence is a direct consequence now when considering the stated convergence of the dis-

cretization parameter to ful�ll
∥p"−p∥2
Δc → 0 and recalling that all other occurring parameter in the

approximation, i.e., nT , R and L, do not depend on our discretization parameter.

Having shown the convergence of the measures of the preimages for bins BC,n, n ∈ {1,… , NC},
given as complete ring-shaped domains in Ω, we infer that the convergence holds as well when only

having subsets of the ring-shaped areas lying within our domain without deriving explicit approxima-

tions of the error. To see this, we assume that the preimages for an arbitrary bin BC,n are only given as

ring segments in Ω and apply then a domain continuation of Ω to Ω′ such that the total ring-shaped

preimages are lying within Ω′. For theses ring-shaped preimages on Ω′, it holds again Equation (5.55).

We conclude from the convergence of the measures of the preimages in Ω′ for ∥p" − p∥2 → 0 that also

the measures of their subsets are converging when focusing again only on Ω.

Figure 5.6: Sketches of ring-shaped preimages for two parameter sets p" and p which are only

partially lying within the image domain Ω. The convergence of the measures for the preimages in

the continuation of the domain Ω′ follows for ∥p" − p∥2 → 0 with Equation (5.56).

We illustrate this e�ect in Figure 5.6 with the preimage shown with blue boundaries for p" and with

red boundaries for p. The corresponding segments lying within the image domain Ω are marked in
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dark purple and orange while the segments lying outside of Ω are shown in lighter colors (purple and

yellow). With the approximation in Equation (5.55), it follows that the area of the total ring-shaped

preimages converges. Moreover, we know that with ∥p" − p∥2 → 0 the convergences p",i → pi follows

for all parameters in p" and p. In this sense, the origin x0," converges to x0 and also the starting time

points and the velocity converge, i.e., (t0,n," , t0,a," , v") → (t0,n, t0,a, v), for " → 0. This results in the

blue ring converging towards the red one in the sketch, i.e., its center point converges to the one of

the red one because of the convergence of x0," and its width approaches the width of the red domain

because of the convergences of t0,n," , t0,a," , v" . Consequently, also their areas of the segments lying

within the image domain converge, �nally.

Lemma 5.83 (Discretized image mappings and approximated parameter settings in binned spaces)

We consider the setting introduced in De�nition 5.76. Then it holds that

∥ℎ̂h

F×C − ℎ̂F×C∥L1 → 0

for the convergences h→ 0, ℎ
Δc → 0, p" → p and

∥p"−p∥2
Δc → 0.

Proof. We show ∥ℎ̂h

F×C − ℎ̂F×C∥L1 → 0 for convergence of the discretization and approximation

e�ects as stated in De�nition 5.76. We consider now the discretization e�ects due to a discrete pixel

grid as well as the binning widths for the piecewise constant histogram density functions. Recalling
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the measures on F × C, we remind the reader that � = P0 ⊗ � holds (cf. Notation 5.18). With the

following transformation, we split statement into intermediate substeps:

∥ℎ̂h

F×C − ℎ̂F×C∥L1 = ∫
F
′×C′
∣ℎ̂h

F×C (f , c) − ℎ̂F×C (f , c)∣ d (f , c)

=

NF ,NC
∑
m,n=1

∫

BF ,m×BC,n

1
ΔcΔf 3

∣[I h

(p" , ⋅)#� − I (p" , ⋅)#�] (BF ,m × BC,n)∣ d (f , c)

=

NF ,NC
∑
m,n=1

∣[I h

(p" , ⋅)#� − I (p" , ⋅)#�] (BF ,m × BC,n)∣

=

NF ,NC
∑
m,n=1

∣ ∫

Ω0×ΩT

(1BF ,m ○ I
d,h

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I
h

2 (p" , ⋅)) (x , t)

− (1BF ,m ○ I
d

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I2 (p, ⋅)) (x , t) d� (!0, (x , t)) ∣

≤

NF ,NC
∑
m,n=1

∫

Ω0×ΩT

∣ (1BF ,m ○ I
d,h

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I
h

2 (p" , ⋅)) (x , t)

− (1BF ,m ○ I
d

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I2 (p, ⋅)) (x , t) ∣ d� (!0, (x , t))

adding 0
=

NF ,NC
∑
m,n=1

∫

Ω0×ΩT

∣ (1BF ,m ○ I
d,h

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I
h

2 (p" , ⋅)) (x , t)

− (1BF ,m ○ I
d

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I
h

2 (p" , ⋅)) (x , t)

+ (1BF ,m ○ I
d

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I
h

2 (p" , ⋅)) (x , t)

− (1BF ,m ○ I
d

1 ) (!0, (x , t)) ⋅ (1BC,n ○ I2 (p, ⋅)) (x , t) ∣ d� (!0, (x , t))

triangle ineq.

≤

NF ,NC
∑
m,n=1

∫

Ω0×ΩT

∣(1BC,n ○ I
h

2 (p" , ⋅)) (x , t)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

⋅ ∣(1BF ,m ○ I
d,h

1 ) (!0, (x , t)) − (1BF ,m ○ I
d

1 ) (!0, (x , t))∣

+ ∣(1BF ,m ○ I
d

1 ) (!0, (x , t))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤1

⋅ ∣(1BC,n ○ I
h

2 (p" , ⋅)) (x , t) − (1BC,n ○ I2 (p, ⋅)) (x , t)∣ d� (!0, (x , t))

≤

NF ,NC
∑
m,n=1

∫

Ω0×ΩT

∣(1BF ,m ○ I
d,h

1 ) (!0, (x , t)) − (1BF ,m ○ I
d

1 ) (!0, (x , t))∣ d� (!0, (x , t))

+ ∫

Ω0

dP0 (!0)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

∫

ΩT

∣(1BC,n ○ I
h

2 (p" , ⋅)) (x , t) − (1BC,n ○ I2 (p, ⋅)) (x , t)∣ d� (x , t)

=

NF
∑
m=1
∣I d,h

1 #� − I
d

1 #�∣ (BF ,m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0, cf. Lemma 5.80

+

NC
∑
n=1
∣I h

2 (p" , ⋅)#� − I2 (p" , ⋅)#�∣ (BC,n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0, cf. Lemma 5.81

+

NC
∑
n=1
∣I2 (p" , ⋅)#� − I2 (p, ⋅)#�∣ (BC,n)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0, cf. Lemma 5.82
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5.3 Discretizations for numerical approach

where we used the convergence for the �rst summand because of Lemma 5.80 for h → 0. The

convergence of the second summand follows with Lemma 5.81 and h→ 0 and
ℎ
Δc → 0. The statement

was shown for p ∈ P arbitrary and, consequently, also holds for p" ∈ P . Last but not least the third

summand converges with p" → p and
∥p"−p∥2
Δc → 0 as shown in Lemma 5.82.

After having shown results for intermediate steps, we proceed with the convergence proof of our

main Theorem 5.77.

Proof of Theorem 5.77. To show the convergence ∥ℎ̂h,"1
F×C − ℎF×C∥L1 → 0 with the considered con-

vergence orders of the di�erent discretization quantities as stated in De�nition 5.76, we split the

statement into three main subconvergence results which in turn were already proven in the lem-

mas on intermediate convergence results above. With the Minkowski inequality (i.e. the triangle

inequality for the L1-norm), it holds that

∥ℎ̂h,"1
F×C − ℎF×C∥L1 = ∥ℎ̂

h,"1
F×C − ℎ̂

h

F×C + ℎ̂
h

F×C − ℎ̂F×C + ℎ̂F×C − ℎF×C∥L1

≤ ∥ℎ̂h,"1
F×C − ℎ̂

h

F×C∥L1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(1)

+ ∥ℎ̂h

F×C − ℎ̂F×C∥L1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(3)

+ ∥ℎ̂F×C − ℎF×C∥L1 .
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(2)

(5.57)

We focus on the three summands individually:

(1) In Lemma 5.78, we proved that ∥ℎ̂h,"1
F×C − ℎ̂

h

F×C∥L1
→ 0 for "1 → 0.

✓

(2) In Lemma 5.79, we focused on the convergence depending solely on the binning widths and

proved that ∥ℎ̂F×C − ℎF×C∥L1 → 0 for Δc,Δf → 0.

✓

(3) In Lemma 5.83, we proved ∥ℎ̂h

F×C − ℎ̂F×C∥L1 → 0 for h→ 0, ℎ
Δc → 0, p" → p and

∥p"−p∥2
Δc → 0.

✓

Finally, this proves the convergence ℎ̂h,"1
F×C

L1
Ð→ ℎF×C .

Remark 5.84. We point out that for convergence reasons, we do not necessarily need that the scaling

parameter of the molli�er "1 converges slower than the parameter Δc for the binning width in

the classi�cation space. Indeed, we have shown for the �rst substep in the previous proof the L1-
convergence of the smoothed histogram for the molli�cation parameter "1 → 0 (cf. Lemma 5.78).

We stress that we still assume that the molli�er’s support converges slower than the binning widths

to ensure that the histogram binning does not cancel out the smoothing e�ect. By enforcing the

stated convergence order in the Theorem 5.77, we make sure that this cannot happen which is crucial
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for deriving gradient terms based on the smoothed histograms (cf. Section 5.2.4). Precisely, the

requirement that Δc converges faster than the molli�er’s support is a preparation for our numerical

implementations where we will consider a discrete molli�er for which we need to ensure that its

support is not smaller than the binning width Δc.
Moreover, we will consider for the numerical tests that the pixel width converges �rst, followed by

the bin widths for the discrete histograms and that last but not least the molli�cation kernel converges.

It is essential that we have far less discrete bins in the histograms compared to the number of total

pixels and with the above argumentation, it is important that the support of the molli�cation kernel

is greater than the binning width Δc.

Following a a similar line of arguments and intermediate convergence results, we can show the

L1-convergence of the histogram density functions for the separate spacesF and C stated in the next

proposition. To recall the used measures, we refer to Notation 5.18.

Proposition 5.85 (L1-convergence of histogram density functions)

Let ℎ̂h

F
and ℎ̂h,"1

C
be the piecewise constant histogram density functions related to a discretized

setting considering the smoothing molli�cation along C, the binning of feature and classi�cation

spaces, the image mappings I d,h

1 and I h

2 based on a discrete pixel grid as well as the approximation

of a parameter setting p ∈ P . We consider the setting and convergence orders introduced in

De�nition 5.76 again. Then it holds that

ℎ̂h

F

L1
Ð→ ℎF and ℎ̂h,"1

C

L1
Ð→ ℎC

with ℎF and ℎC being the L1-functions describing the densities of the histogram measures with re-

spect to the Lebesgue measure and when considering the original setting without any discretization

e�ects, i.e., the histogram measures are given by the pushforward measures I d

1 #� and I2#�.

Proof. Following the same substeps as performed for the proof of Theorem 5.77 and with similar trans-

formations, one can show the L1-convergence for the histogram density functions for the separate

spaces C and F .

With the L1-convergence for the histogram density functions, we have paved the way for similar state-

ments related to probability density functions. In the next section, we focus on their L1-convergence

and focus on possible pointwise convergence.

5.3.5 Convergence of probability density functions

In this section we investigate the probability density functions more thoroughly. Based on the

classi�cation and feature image data, we introduced them as normalized histogram density functions.

These in turn are related to the pushforward of the measures � and � with respect to the corresponding

image mappings I d

1 , I2 and I (cf. Notation 5.18). Now, we focus on certain properties which are

particularly important for the convergence proofs in Section 5.4.
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5.3 Discretizations for numerical approach

To begin with, we recapitulate that the discretized probability density functions are step functions. In

Lemma 5.47 we introduced the relation between the piecewise constant probability functions, namely

p̂F , p̂C and p̂F×C , and the histogram density functions ℎ̂F , ℎ̂C and ℎ̂F×C related to the binning of

the feature and classi�cation spaces. While in that context, we considered the original mappings I d

1

for the noisy feature images and I2 for the classi�cation images, we can expand this to the image

mappings I d,h

1 and I h

2 based on a discrete pixel grid. In this context, we can derive piecewise constant

histogram density functions as well and receive via a normalization step similarly to Lemma 5.47

probability density functions that are also piecewise constant.

Based on the L1-convergence of the histogram density functions shown in the previous section

Section 5.3.4, we infer the L1-convergence of the probability density functions.

Proposition 5.86 (L1-convergence of PDFs)

Let pd,"
F
, p"
C

and pd,"
F×C be the piecewise constant probability density functions related to a discretized

setting with respect to smoothing molli�cation along C, the binning of feature and classi�cation

spaces, the image mappings I d,h

1 and I h

2 based on a discrete pixel grid as well as the approximation of

a parameter setting p ∈ P . We consider the convergence orders of the discretization parameters as

introduced in De�nition 5.76. For the various discretization parameters, we introduce a condensed

notation by representing all discretization parameters, precisely Δc, Δf , h, p" and "1, by a small "
in the superscript of the probability density functions. Then it holds that

pd,"
F

L1
Ð→ pd

F
, p"

C

L1
Ð→ pC , pd,"

F×C
L1
Ð→ pd

F×C

converge in L1 for “" → 0”, i.e., for ful�lling Equations (5.37) and (5.38) in De�nition 5.76, and

with pd

F
, pC and pd

F×C the L1-functions describing the densities related to probability measures

when considering the original setting with no smoothing e�ects along the C-axis and neither

discretizations in the image domain nor in classi�cation and feature spaces.

Proof. The statement follows directly from the L1-convergences of the histogram density functions

shown in Theorem 5.77 and in Proposition 5.85 when considering a normalization step. By dividing

by the Lebesgue measure of the spatio-temporal domain ΩT , we can derive the probability density

functions from the histogram density functions by (cf. Equation (5.4) and Lemma 5.47).

With the L1-convergence, we can deduce that the piecewise constant probability density functions

converge almost everywhere pointwise, too. We state this in the following theorem.

Theorem 5.87 (Pointwise convergence of PDFs)

Let (pd,"
F
)">0, (p

"
C
)">0 and (pd,"

F×C)">0 be our sequences of step functions related to a discretized

setting with respect to smoothing molli�cation along C, the binning of feature and classi�cation

spaces, the image mappings I d,h

1 and I h

2 based on a discrete pixel grid as well as the approximation

of a parameter setting p ∈ P . We consider the convergence orders of the discretization parameters

as introduced in De�nition 5.76. The various discretization parameters Δc, Δf , h, p" and "1 are

again represented by the small " in the superscript of the probability density functions. Then it
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holds that for each sequence of step functions there exists a converging subsequence denoted with

"̃ and representing subsequences for the various discretization parameters such that

pd,"̃
F
→ pd

F
for almost all f ∈ F

p"̃
C
→ pC for almost all c ∈ C

pd,"̃
F×C → pd

F×C for almost all (f , c) ∈ F × C

holds for “"̃ → 0”, i.e., for ful�lling the convergences in Equations (5.37) and (5.38) in De�nition 5.76

for the according subsequences.

Proof. The statement follows directly with the L1-convergence of the step functions proved in Propo-

sition 5.86 and with lemma A1.11 in [2]. The cited lemma states that for a sequence converging in L1,
a subsequence exists which converges almost everywhere pointwise.

With these statements, we can infer not only L1-convergence but also pointwise convergence for a

sequence of probability density functions after a transition to an adequate subsequence. Theorem 5.87

ensures that such subsequences exist for our discretized probability density functions when ensuring

a certain convergence order of the discretized quantities.

In the following section we focus on the existence of a minimizer for our main optimization problem

and on the convergence of minimizers for vanishing discretization scales. In this context, we will

exploit the stated convergence results for the probability density functions. Without marking the

extracted subsequences explicitly, we infer that we are already focusing on an adequate subsequence

for which both the L1 and the pointwise convergences hold.

5.4 Analysis of MI-based optimization

After introducing the concept of mutual information and deriving the optimization problem, we

focus in this section on a thorough analysis of the given minimization problem. To solve the opti-

mization numerically, we need to consider various discretization steps for which we prepared some

intermediate convergence results in the previous section. In this context, it is important to ensure

the convergence of minima of the discretized optimization problem to the true minimum of the cor-

responding problem in the continuous setting when considering vanishing discretization scales. Yet,

it is essential to tackle the question of the existence of a possible minimizer for the optimization

problem �rst.

We introduce the direct method, Γ-convergence and equi-coercivity serving as a toolkit to prove the

existence and convergence statements that we focus on in this section. While these concepts are

given in a general case, we transfer them to our setting and notation to facilitate a smooth transition

to our speci�c context for maximizing the mutual information between the multi-channel feature

image I d

1 in�uenced by Gaussian noise and the classi�cation image I2. The analytical statements

proven in this section are the baseline for the numerical analysis of the optimization problem in the

subsequent sections.
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5.4.1 Prerequisites for existence and convergence proofs

The existence of a minimizer and also the convergence of minima are fundamental results in the cal-

culus of variations. Based on the de�nitions and theorems given in Braides’ book on “Γ-convergence

for beginners” [10], we recapitulate the main statements we use in the progress of our analysis in

this section. We adapt the statements to our notation to facilitate the later analysis of the main

minimization problem given in De�nition 5.17.

We start with two de�nitions on coercivity and lower semi-continuity which are essential for the

direct method. The lower-continuity is introduced as given in De�nition 1.2 in [10].

De�nition 5.88 (Lower semi-continuity)

A functional F ∶ P → ℝ ∪ {−∞,∞} is lower semi-continuous (l.s.c) in p ∈ P , if for every sequence

(p")">0 converging to p it holds that

F (p) ≤ lim inf
"→0

F (p") .

If this holds for all p ∈ P , F is lower semi-continuous on P .

The coercivity of a functional is cited from Braides’ de�nition next (cf. de�ntion 1.19 in [10]).

De�nition 5.89 (Coercivity condition)

A sequence of functions (F")">0 with F" ∶ P → ℝ ∪ {−∞,∞} is called equi-mildly coercive if there

exists a compact set K ⊂ P with K ≠ ∅ such that

inf
p∈P

F" (p) = inf
p∈K

F" (p) for all " > 0.

Both concepts are crucial when proving existence of a minimizer for an optimization problem via the

direct method. Following Braides course in the paragraph on “A maieutic approach to Γ−convergence.

Direct methods” in the preface of [10], we describe the main steps of the famous approach to justify

the existence of a minimum for a given functional.

De�nition 5.90 (Direct method)

Given a functional F ∶ P → ℝ living on the metric space P , it takes three main steps to derive the

existence of a minimizer for the optimization problem

min
p∈P

F (p) .

1. The existence of a minimizing sequence (p")">0 ensures that the condition

lim
"→0

F (p") = inf
p∈P

F (p)

is met.
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2. The extraction of a converging subsequence (p")">0 such that p" → p̂ (" → 0) holds.

3. The lower semi-continuity of the minimization functional F (cf. De�nition 5.88) results in

F (p̂) ≤ lim inf
"→0

F (p")

and, consequently, that the in�mum is actually reached in p̂.

We remark that we denote the original minimization sequence and the extracted converging subse-

quence both with (p")">0. Following all three steps, we see that

F (p̂) ≤ lim inf
"→0

F (p") = inf
p∈P

F (p) ≤ F (p̂)

and, consequently, equality holds. In this sense, one can show that minimizers for F exist and p̂ is

indeed one candidate for a minimizer. We stress here that the direct method only proves the existence

of minimizers and does not focus on the uniqueness of a possible minimizer.

To complement the three steps, we enumerate conditions and circumstances that facilitate the direct

method following the argumentation of Braides in [10].

Remark 5.91. For the direct method certain assumptions on the problem setting contribute to perform

the three main steps stated above e�ciently.

• The existence of a minimizing sequence in step 1 follows directly if the given minimization

functional is bounded from below such that F (p) > −∞ for all p ∈ P since the existence of the

in�mum results in the existence of a related minimization sequence.

• If the minimizing sequence lies in a compact set, the existence of a converging subsequence

for step 2 follows directly with the property of compactness.

• If the functional F is coercive, the existence of a converging subsequence for step 2 is a direct

consequence of the de�nition of coercivity, cf. De�nition 5.89

In the proof of lower-semicontinuity for our minimization functional F, we apply the Lemma of

Fatou in the next section. Based on the Theorem 4.6 in [54] and the lemma A1.20 in [2], we state

Fatou’s Lemma as a tool of choice to prove the later statements.

Theorem 5.92 (Fatou’s Lemma)

Let (F × C,B (F × C) , �) be a measure space. For a sequence (f")">0 of nonnegative, measurable

and integrable functions f" ∶ F × C → ℝ, it holds

∫

F×C

lim inf
"→0

f" d� ≤ lim inf"→0 ∫

F×C

f" d�.

We state propositions which follow directly with Fatou’s Lemma and which facilitate the proceeding

analysis of existence and convergence of minimizers.

140



5.4 Analysis of MI-based optimization

Proposition 5.93 (Consequences of Fatou’s Lemma)

Let (F × C,B (F × C) , �) be a measure space and (f")">0 be a sequence of measurable and inte-

grable functions f" ∶ F × C → ℝ.

1. If f" ≥ C for all " > 0, it holds

∫

F×C

lim inf
"→0

f" d� ≤ lim inf"→0 ∫

F×C

f" d�.

2. If f" ≥ g" for all " > 0with (g")">0 a sequence of L1-functions g" ∶ F ×C → ℝ which converges

in L1 as well as pointwise to a another L1-function g ∶ F × C → ℝ, it holds

∫

F×C

lim inf
"→0

f" d� ≤ lim inf"→0 ∫

F×C

f" d�.

3. If f" ≤ g" for all " > 0with (g")">0 a sequence of L1-functions g" ∶ F ×C → ℝ which converges

in L1 and pointwise to a another L1-function g ∶ F × C → ℝ, it holds

∫

F×C

lim sup
"→0

f" d� ≥ lim sup
"→0

∫

F×C

f" d�.

Proof. We prove the statements separately by applying Fatou’s Lemma given in Theorem 5.92 on

newly de�ned functions ℎ" :

1. We de�ne ℎ" ∶= f" − C for all " > 0. With ℎ" ≥ 0 for all " > 0 and Fatou’s Lemma, we get the

following equivalent statements:

∫

F×C

lim inf
"→0

ℎ" d� ≤ lim inf"→0 ∫

F×C

ℎ" d�

⇔ ∫

F×C

lim inf
"→0

(f" − C) d� ≤ lim inf"→0 ∫

F×C

(f" − C) d�

⇔ ∫

F×C

lim inf
"→0

f" d� − ∫
F×C

C d� ≤ lim inf
"→0 ∫

F×C

f" d� − ∫
F×C

C d�

⇔ ∫

F×C

lim inf
"→0

f" d� ≤ lim inf"→0 ∫

F×C

f" d�

This shows the �rst statement.

✓
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2. For the second statement we de�ne ℎ" ∶= f" − g" for all " > 0. With ℎ" ≥ 0 for all " > 0, we get

with Fatou’s Lemma

∫

F×C

lim inf
"→0

ℎ" d� ≤ lim inf"→0 ∫

F×C

ℎ" d�

⇔ ∫

F×C

lim inf
"→0

(f" − g")

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶♠

d� ≤ lim inf
"→0 ∫

F×C

(f" − g") d�.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶♢

For the terms denoted with ♠ and ♢, we exploit the pointwise convergence of (g")">0 for the

former one and the L1-convergence for the latter one:

♠ ≥ lim inf
"→0

f" + lim inf"→0
(−g") = lim inf"→0

f" − lim sup
"→0

g" = lim inf"→0
f" − lim"→0g" = lim inf"→0

f" − g,

♢ = lim inf
"→0

(∫ f" d� + ∫ −g" d�)

≤ lim inf
"→0

(∫ f" d�) + lim sup
"→0

(∫ −g" d�)

= lim inf
"→0

(∫ f" d�) − lim inf"→0
(∫ g" d�)

= lim inf
"→0

(∫ f" d�) − lim"→0 (∫ g" d�) = lim inf"→0
(∫ f" d�) − ∫ g

Plugging these in the initial inequality, we derive

∫

F×C

lim inf
"→0

f" d� − ∫
F×C

g d� ≤ lim inf
"→0 ∫

F×C

f" d� − ∫
F×C

g d�

⇔ ∫

F×C

lim inf
"→0

f" d� ≤ lim inf"→0 ∫

F×C

f" d�.

which leads �nally to the claimed statement.

We point out that it is also possible to prove the �rst statement with the help of the second one

by considering g" ≡ C , i.e. the constant function of value C .

✓

3. The third statement follows with the second one applied to −f" ≥ −g" for all " > 0:

∫

F×C

lim inf
"→0

− f" d�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=− ∫ lim sup

"→0
f" d�

≤ lim inf
"→0 ∫

F×C

−f" d�

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=−lim sup

"→0
∫ f" d�

⇔ ∫

F×C

lim sup
"→0

f" d� ≥ lim sup
"→0

∫

F×C

f" d�

✓
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Not only the existence of a minimizer is of interest for us. As we are dealing with a sequence of

functionals approximating the original optimization problem given in De�nition 5.17 due to various

discretization aspects introduced in Section 5.3, we also need to prove another convergence statement.

We need to show that minimizers of the approximating functionals converge to a minimizer of

the original functional if the functionals converge themselves to the original optimization problem.

Therefore, we need again the coercivity of the minimization functional, cf. De�nition 5.89, as it

is a necessary condition for the convergence of minima. For the second criterion for convergence

of minima, we cite the De�nition 1.5 in [10] to introduce the concept of Γ-convergence. The Γ-

convergence is a well-known concept in the context of convergence for functionals.

De�nition 5.94 (Γ-convergence)

A sequence of functions (F")">0 with F" ∶ P → ℝ ∪ {−∞,∞} for all " > 0 Γ-converges in P to

F ∶ P → ℝ ∪ {−∞,∞}, if for all p ∈ P we have

(i) (lim inf inequality) for every sequence (p")">0 with p"
"→0
Ð→ p, it holds

F (p) ≤ lim inf
"→0

F" (p") ;

(ii) (lim sup inequality) there exists a sequence (p")">0 with p"
"→0
Ð→ p such that

F (p) ≥ lim sup
"→0

F" (p") ;

or alternatively

(ii)’ (existence of a recovery sequence) there exists a sequence (p")">0 with p"
"→0
Ð→ p such that

F (p) = lim
"→0

F" (p") .

F is called the Γ-limit of (F")">0 and also denoted with F = Γ − lim
"→0

F" .

We already introduced for the second condition for Γ-convergence, i.e., for the lim sup inequality, an

alternative condition with the recovery sequence to prepare our proofs in the later course.

Finally, we have the ingredients at hand to introduce the theorem on the convergence of minima

stated in Theorem 1.21 in [10].

Theorem 5.95 (Convergence of minima)

Let (P , d) be a metric space with a distance measure d and let (F")">0 be a sequence of functions

with F" ∶ P → ℝ ∪ {−∞,∞} for all " > 0. If for this sequence it holds that

(i) F" is mildly-coercive for every " > 0,

(ii) (F")">0 Γ-converges to F ∶ P → ℝ ∪ {−∞,∞},
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then it holds

min
p∈P

F (p) = lim
"→0

inf
p∈P

F" (p) .

Moreover, if (p") is a pre-compact sequence (p") such that

lim
"→0

F" (p") = lim"→0 infP F" (p) ,

i.e., (p") is a minimizing sequence of (F")">0, then (p") converges (up to subsequences) to a mini-

mizer of F.

Proof. Without going into details of the proof here, we refer the interested reader to the proof of

Theorem 1.21 in [10].

For the sake of completeness, we recapitulate brie�y a de�nition of a pre-compact sequence given in

De�nition 1.16 in [10].

De�nition 5.96 (Pre-compactness)

A set K ⊂ P is called pre-compact if its closure is compact. This means that all sequences (xj)j
admit a converging subsequence. The limit of the subsequence may lay outside of K but on the

closure of K .

According to our main optimization problem introduced in De�nition 5.17, we want to optimize the

parameter setting p to minimize our optimization functional F or, equivalently, maximize the mutual

information as stated in De�nition 5.16. To incorporate the parameter setting p within the relevant

terms, we remind the reader of the dependencies stated in Equation (5.3). As the classi�cation values

for I2 depend continuously on p, we will denote this dependency within the probability density

functions including classi�cation information by the notation “c (p)”.
In the following course, we use the introduced concepts to show the existence of minimizers and the

convergence of minimizers.

5.4.2 Existence of minimizers

In this section we focus on the proof of the existence of a minimizer for the given optimization

problem introduced in De�nition 5.17. The probabilities used in the statements depend on the feature

and classi�cation images and the classi�cation images depend continuously on the parameter setting

p. Following the steps of the direct method presented in De�nition 5.90, we want to prove the

following statement.
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Theorem 5.97 (Existence of a minimizer)

There exists at least one minimizing parameter set p̂ ∈ P for the minimization problem

min
p∈P

F (p) = min
p∈P
− MI (p)

introduced in De�nition 5.17 and with the mutual information calculated with the probability

density functions as stated in Proposition 5.13.

Proof. To show the existence of a minimizing parameter set p̂ ∈ P , we follow the approach of the

direct method in De�nition 5.90 and, accordingly, start with the existence of a minimizing sequence.

1. Existence of a minimizing sequence
As stated in Remark 5.91, we �rst show that the minimization functional is bounded from below. For

this purpose, we choose an arbitrary parameter set p ∈ P and conclude the existence of a lower bound

with the following chain of inequalities:

F (p) = − ∫
F
′×C

log(
pd

F×C (f , c (p))
pd

F
(f ) pC (c (p))

) dPd

F×C(f , c)

Jensen’s inequality,

cf. Theorem 6.29 in [54]

≥ − log
⎛
⎜
⎝
∫

F
′×C

pd

F×C (f , c (p))
pd

F
(f ) pC (c (p))

dPd

F×C(f , c)
⎞
⎟
⎠

= − log
⎛
⎜
⎝
∫

F
′×C

pd

F×C (f , c (p))
pd

F×C (f , c (p))
pd

F
(f ) pC (c (p))

d (f , c)
⎞
⎟
⎠

− log(x)≥1−x
≥ 1 − ∫

F
′×C

pd

F×C (f , c (p))
pd

F×C (f , c (p))
pd

F
(f ) pC (c (p))

d (f , c)

Proposition 3.13

≥ 1 − ∥pN ∥∞ ∫
F
′×C

pd

F×C (f , c (p))
pd

F
(f )

d (f , c)

De�nition 3.14

> 1 −
∥pN ∥∞
� ∫

F
′×C

pd

F×C (f , c (p)) d (f , c)

De�nition 5.10

≥ 1 −
∥pN ∥∞
�

> −∞.

In this context, we remind the reader of pN being the probability density function related to the noise

image (cf. De�nition 3.4). This results in

F (p) ≥ inf
p′∈P

F (p′) > −∞ ∀p ∈ P .

Consequently, the in�mum of the optimization function exists and we set

M ∶= inf
p∈P

F (p)

with M > −∞. The existence of a minimizing sequence (p")">0 in P with

M ≤ F (p") ≤ M + " ∀" > 0
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follows directly. It holds that lim
"→0

F (p") = inf
p∈P

F (p) = M .

✓

Still, we have not shown yet that the in�mum is actually attained. Proving this is the underlying

objective of the following steps.

2. Extraction of a converging subsequence
With the given model of concentric spreading wave fronts, we introduced the parameter space P
as a compact set in Equation (4.3). From the compactness property of the parameter space P , it fol-

lows directly that for any sequence (p")">0 in P , we can extract a convergent subsequence. Without

changing notations the convergent subsequence is now (p")">0 with

p"
"→0
Ð→ p̂ ∈ P .

This subsequence is still a minimizing sequence such that

M ≤ F (p") ≤ M + " ∀" > 0,

lim
"→0

F (p") = inf
p∈P

F (p) = M

is still true.

✓

3. Lower semi-continuity of the minimization functional
In this step we need to prove that for a converging sequence (p")">0 with p"

"→0
Ð→ p̂ ∈ P , it holds that

lim inf
"→0

F (p") ≥ F (p̂) .

We start with setting the integrand term as a function ℎ ∶ F × C → ℝ and approximate it as follows

ℎ" (f , c (p")) ∶= − log(
pd

F×C (f , c (p"))
pd

F
(f ) pC (c (p"))

)

− log(x)≥1−x
≥ 1 −

pd

F×C (f , c (p"))
pd

F
(f ) pC (c (p"))

Proposition 3.13

≥ 1 − ∥pN ∥∞
1

pd

F
(f )

De�nition 3.14

> 1 −
∥pN ∥∞
�

> −∞.

So there exists a constant C ∈ ℝ such that ℎ" (f , c) ≥ C for all (f , c) ∈ F × C. We apply a version of

the Lemma of Fatou, i.e, the �rst statement in Proposition 5.93 on ℎ" and receive

∫

F
′×C

lim inf
"→0

ℎ" (f , c (p")) dPd

F×C (f , c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L.S.

≤ lim inf
"→0 ∫

F
′×C

ℎ" (f , c (p")) dPd

F×C (f , c)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R.S.

.
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For the right hand side, it holds per de�nition that

R.S. = lim inf
"→0 ∫

F
′×C

− log(
pd

F×C (f , c (p"))
pd

F
(f ) pC (c (p"))

) dPd

F×C (f , c) = lim inf"→0
F (p") .

For the left hand side, we exploit the fact that the classi�cation depends continuously on the given

parameter setting and additionally that sthe probability density functions are pointwise convergent

almost everywhere (cf. Theorem 5.87). Together with the continuity of the logarithm, this results in

L.S. = ∫
F
′×C

lim inf
"→0

− log(
pd

F×C (f , c (p"))
pd

F
(f ) pC (c (p"))

) dPd

F×C (f , c)

= ∫

F
′×C

lim inf
"→0

− pd

F×C (f , c (p")) log(
pd

F×C (f , c (p"))
pd

F
(f ) pC (c (p"))

) d (f , c)

= ∫

F
′×C

−pd

F×C (f , c (p̂)) log(
pd

F×C (f , c (p̂))
pd

F
(f ) pC (c (p̂))

) d (f , c)

= F (p̂) .

Plugging in the estimates for the left and right hand side terms, we see that F (p̂) ≤ lim inf
"→0

F (p")
holds, i.e., the optimization functional F is lower semi-continuous.

✓

In conclusion of all three steps for the direct method, we get that there exists a convergent minimizing

sequence (p")">0 with p"
"→0
Ð→ p̂ such that the following holds:

M ≤ F (p̂) ≤ lim inf
"→0

F (p") ≤ lim inf"→0
M + " = lim

"→0
M + " = M.

This results in equality for " → 0 and it follows that the in�mum is attained. This proves the existence

of a minimizer for the given minimization functional F.

After having shown that there exists at least one minimizer for the optimization functional, we focus

in the next section on the convergence of minimizers when estimating the optimization functional

with approximative functionals.

5.4.3 Convergence of minimizers

This section is devoted to a convergence result when considering a sequence of functionals ap-

proximating the main optimization functional (cf. De�nition 5.17) and their minimizers. Based on

Theorem 5.95, we show that this sequence of minimizers converges to a minimizer for our main

problem.

Theorem 5.98 (Convergence of minimizers)

We approximate our minimization problem

min
p∈P

F (p) = min
p∈P
− MI (p)
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due to discretizations described in section Section 5.3 with

min
p∈P

F" (p) = min
p∈P
− MI" (p) , " > 0.

More precisely, we include the binning widths for discrete histograms Δc in the classi�cation space

C and Δf in the feature space F , the discretization based on discrete pixel grids for imaging data

with the pixel width given as h, and eventually the parameter "1 > 0 scaling the molli�cation

kernel to smooth the discretized histograms along the C-axis. We postulate that a sequence of

minimizers p̂" ∈ P of the discretized optimizations functionals F" converges (up to subsequences)

to a minimizer p̂ ∈ P of the original optimization functional F for

ℎ→ 0, Δc → 0, Δf → 0, "1 → 0 (5.58)

by preserving the convergence of the following relations

ℎ
Δc
→ 0,

∥p̂" − p̂∥2
Δc

→ 0,
Δc
"1
→ 0, (5.59)

i.e., we enforce that h and ∥p̂" − p̂∥2 converge faster to 0 than Δc and similarly Δc converges faster

to 0 than the parameter "1 scaling the molli�cation kernel’s width.

Proof. We use Theorem 5.95 to show the convergence of minima for the approximated functionals

F" to a minimizer of the true optimization functional F for " → 0. For this, we need to prove the

required properties of this theorem.

1. Coercivity of the functionals F" for every " > 0
With the given model of concentric spreading wave fronts, we introduced the parameter space P as a

compact set in Equation (4.3). From the compactness property of the parameter space P the coercivity

follows directly (cf. De�nition 5.89).

✓

2. Γ−convergence: F"
Γ
→ F for " → 0

Based on De�nition 5.94, we prove the Γ−convergence of our minimization functional. To facilitate

the notation in the following, we use

pd,"
F
, p"

C
, pd,"

F×C

to incorporate the discretization parameter " in the notation of the probability density functions

in a discretized setting including a pixel width h, bin widths Δf and Δc for F and C, respectively,

and also "1 as the scaling parameter of a molli�cation kernel for the discretized histograms. In this

sense, " represents again the di�erent discretization quantities. This notation is in line with the

L1−convergence of the probability density functions stated in Proposition 5.86 and their pointwise

convergence stated in Theorem 5.87. With this abbreviation in the labelling of the di�erent probability
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density functions, we replace the original densities pd

F
, pC and pd

F×C in the discretized setting and

in the corresponding discretized MI functional as follows

F" (p) = −MI" (p) = − ∫
F
′×C

pd,"
F×C (f , c (p)) log

⎛

⎝

pd,"
F×C (f , c (p))

pd,"
F
(f ) p"

C
(c (p))

⎞

⎠
d (f , c) .

We start with the �rst condition to prove Γ−convergence:

(i) lim inf inequality
Let p ∈ P be an arbitrary parameter setting and (p")">0 ⊂ P a sequence converging to p for " → 0 in

the sense that ∥p" − p∥2 < " for all " > 0.
Moreover, we state that also in the discretized setting we consider the feature images to be a�ected

by Gaussian noise and infer

pd,"
F
> �

to be true for all f ∈ F ′ (cf. De�nition 3.14). In this respect, we point out that we consider pd,"
F

to be

equal to 0 similarly to pd

F
in F/F ′. Additionally, we use the following estimation

pd,"
F×C (f , c) ≤ ∥pN ∥∞p

"
C
(c)

which holds true for all (f , c) ∈ F ′ × C. This inequality for the probability density functions in the

discretized case can be derived similarly to Proposition 3.13.

With these two estimations at hand, we can derive a lower bound for the integrand in the same way

as done in the third part of the proof for Theorem 5.97 dealing with the existence of a minimizer. By

applying again the Lemma of Fatou (cf. Proposition 5.93), we can derive

lim inf
"→0

F" (p") = lim inf"→0
− ∫

F
′×C

pd,"
F×C (f , c (p")) log

⎛

⎝

pd,"
F×C (f , c (p"))

pd,"
F
(f ) p"

C
(c (p"))

⎞

⎠
d (f , c)

Fatou’s Lemma

≥ − ∫

F
′×C

lim inf
"→0

pd,"
F×C (f , c (p")) log

⎛

⎝

pd,"
F×C (f , c (p"))

pd,"
F
(f ) p"

C
(c (p"))

⎞

⎠
d (f , c)

cf. Theorem 5.87

= − ∫

F
′×C

pd

F×C (f , c (p)) log(
pd

F×C (f , c (p))
pd

F
(f ) pC (c (p))

) d (f , c) = F (p)

by respecting the required convergence orders in Equations (5.58) and (5.59) which are necessary for

the application of Theorem 5.87. We refer the reader to Equation (5.3) to recapitulate the inherent

dependencies of the probability density functions on the joint image mapping I and on the separate

image mappings I d

1 , I2, respectively. Analogously to the proof of lower semi-continuity for Theo-

rem 5.97, we apply here again in the �nal steps that the classi�cation depends continuously on the

parameter setting (cf. Theorem 5.70) and exploit the pointwise convergence of probability density

functions (cf. Theorem 5.87). Eventually, this shows the lim inf condition.

✓

(ii) lim sup inequality
We show the second condition for Γ−convergence with the help of of the following parameter se-

quence. Let p ∈ P be arbitrary and p" = p for all " > 0, i.e., a constant sequence which naturally
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converges to p for " → 0.
We move the minus into the integral in our optimization functional and denote the integrand of the

MI"−term then with f" ∶ F ′ × C → ℝ. For f" we perform the following transformations

f" (f , c (p")) = −pd,"
F×C (f , c (p")) log

⎛

⎝

pd,"
F×C (f , c (p"))

pd,"
F
(f ) p"

C
(c (p"))

⎞

⎠

minus into

logarithm

= pd,"
F×C (f , c (p")) log

⎛

⎝

pd,"
F
(f ) p"

C
(c (p"))

pd,"
F×C (f , c (p"))

⎞

⎠

log(x)≤x−1
≤ pd,"

F×C (f , c (p"))
⎛

⎝

pd,"
F
(f ) p"

C
(c (p"))

pd,"
F×C (f , c (p"))

− 1
⎞

⎠

= pd,"
F
(f ) p"

C
(c (p")) − pd,"

F×C (f , c (p"))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

≤ pd,"
F
(f ) p"

C
(c (p")) =∶ g" (f , c (p")) .

For this upper bound function g" ∶ F ′ × C → ℝ+, we derive

g" (f , c (p"))→ g ∶= pd

F
(f ) pC (c (p))

for " → 0 and for almost all (f , c) ∈ F ×C with c depending on p" and p, respectively, by applying the

pointwise convergence almost everywhere for the probability density function (cf. Theorem 5.87).

Moreover, we can conclude that g" → g in L1 (F × C) for " → 0 since

∫

F
′×C

∣g" (f , c (p")) − g (f , c (p))∣ d (f , c)

= ∫

F
′×C

∣pd,"
F
(f ) p"

C
(c (p")) − pd

F
(f ) pC (c (p))∣ d (f , c)

= ∫

F
′×C

∣pd,"
F
(f ) p"

C
(c (p")) − pd

F
(f ) p"

C
(c (p")) + pd

F
(f ) p"

C
(c (p")) − pd

F
(f ) pC (c (p))∣ d (f , c)

≤ ∫

F
′×C

∣pd,"
F
(f ) p"

C
(c (p")) − pd

F
(f ) p"

C
(c (p"))∣ d (f , c)

+ ∫

F
′×C

∣pd

F
(f ) p"

C
(c (p")) − pd

F
(f ) pC (c (p))∣ d (f , c)

=∫

C

p"
C
(c (p")) dc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

∫

F

∣pd,"
F
(f ) − pd

F
(f )∣ df

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 for "→0

+∫

F

pd

F
(f ) df

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤1

∫

C

∣p"
C
(c (p")) − pC (c (p))∣ dc

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
→0 for "→0

→0 for " → 0
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where we make use of the L1−convergence of pd,"
F
→ pd

F
and p"

C
→ pC for " → 0.

Now, we can apply the Lemma of Fatou’s consequence for an integrand bounded from above by an

L1−converging sequence of functions (cf. third statement in Proposition 5.93).

lim sup
"→0

F" (p") = lim sup
"→0

∫

F
′×C

f" (f , c (p")) d (f , c)

cf. Proposition 5.93

≤ ∫

F
′×C

lim sup
"→0

f" (f , c (p")) d (f , c)

cf. Theorem 5.87

= ∫

F
′×C

−pd

F×C (f , c (p)) log(
pd

F×C (f , c (p))
pd

F
(f ) pC (c (p))

) d (f , c) = F (p)

where we made use of the pointwise convergence of the probability density functions almost every-

where and the continuity of the logarithm. With this the lim sup condition is proven.

✓

This shows with Theorem 5.95 the convergence of minima p̂" ∈ P for the discretized functionals F"
to a minimizer p̂ ∈ P for the original functional F for " → 0.

We enforced a certain order of convergences for the various discretization steps to achieve an overall

convergence result. This ordering was especially important to make use of the shown convergence

results for the probability density functions in Section 5.3.5. In this context, we refer to Remark 5.84

for a comment on the speci�c convergence orders. In our numerical tests, the convergence orders are

of particular importance in the further course. With the convergence statement at hand, we proceed

in the next section to a numerical solution of our optimization problem.

5.5 Numerics of MI-based optimization

The main focus of this section is solving the optimization problem introduced in De�nition 5.17

numerically. Therefore, it is crucial to consider the various discretization aspects focused on in

Section 5.3 and resulting in a discretized optimization problem. As shown in Theorem 5.98, this

discretized minimization problem Γ−converges to our initial problem.

In this section, we apply a software solution developed explicitly for this project. For our implemen-

tations, we used Matlab R2018a. On the one hand, the software code performs pre-processing for

the given microscopy data to extract the described features (cf. Section 3.3) from the microscopy data.

We point out that we consider in this section the feature image not to be a random variable anymore

but rather one speci�c realization which already contains some noise e�ects. On the other hand,

we apply a gradient-based Matlab solver for the numerical optimization approach. We describe

this procedure in more detail in the upcoming Section 5.5.1. Before we elaborate on the numerics in

particular, we introduce a toy example at the beginning of the next section. This arti�cial problem is

the baseline for the following proof of concept.

In the second part of this section, we focus on the real data set provided by the pharmaceutical com-

pany AstraZeneca. In Section 5.5.2, we extract spreading information from two example wells’ time
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series with the help of the developed software solution. For a second proof of concept, we process

both time series which capture growing cell populations simultaneously. With this we evaluate the

power of the implemented MI-based optimization to map similar texture appearances from di�erent

wells and at varying time points to the same subcolonies by identifying regions consisting of similar

and di�ering texture appearances.

5.5.1 Proof of Concept by means of a Toy Problem

In this section, we introduce an arti�cial example based on a simpli�ed feature image. In combination

with a set of classi�cation images, we start by highlighting the e�ect of manipulations of the spreading

parameters on the joint histogram which is a key element when calculating the MI. This the main

focus of the �rst Section 5.5.1.1. In the following Section 5.5.1.2, we derive continuous representations

of the corresponding probability density functions and compare them to discrete histograms for the

given toy problem. Finally, we present histograms based on di�erent discretization scales for the

pixel widths, binning widths and mollifcation kernels. This and the solution of the minimization

problem for the di�erent discretization scales is the central theme of the last Section 5.5.1.3.

5.5.1.1 Introduction to the Toy Problem

In this section, we introduce our toy problem for which we calculate feature and classi�cation im-

ages. We focus on the e�ect of di�erent parameter disturbances in the image domain as well as on

related joint histograms. These joint histograms are especially important when aiming for MI-based

parameter estimations which we focus on in the later Section 5.5.1.3.

The toy problem is based on one-channel feature images generated in the same way as we model the

classi�cation images (cf. Section 4.2 and De�nition 4.4 in particular). Those features are considered

to be given data in the further course of this section whereas the classi�cation images are based

on model parameters that correspond to certain spreading properties. In the end, those spreading

parameters are to be optimized in the numerical minimization approach.

We consider the unit square as the spatial domain Ω and the time interval [0, 1]. Similar to the setting

for the real data given by AstraZeneca, we focus on discrete time stamps. In this case, we consider

t1 = 0.5 and t2 = 1 to be the discrete time points. To facilitate the analysis of the toy example, we only

focus on one developing colony front. A straightforward interpretation is, for example, the di�eren-

tiation between colony area and background region when thinking about the application background

when working on real microscopy data. We summarize the given information on the toy example in

the next de�nition and directly introduce the known spreading parameters.
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De�nition 5.99 (Toy problem)

The toy problem consists of feature images living on the semi-discrete spatio-temporal domain

ΩT ∶= [0, 1]2 × {t1, t2} with t1 = 0.5 and t2 = 1. They are modeled via

I1 ∶ ΩT → F , I1 (p,x , t) =
1

1 + exp (− 1
"0 (v (t − t0) − ∥x − x0∥2))

with the model parameter "0 = 0.1 and the �xed parameter set

p = (x0, t0, v) = (( 0.50.5 ), 0, 0.5) .

The classi�cation image is de�ned as

I2 ∶ ΩT → C, I2 (p̂,x , t) =
1

1 + exp (− 1
"0 (v̂ (t − t̂0) − ∥x − x̂0∥2))

.

While we assume the same smoothing parameter "0 = 0.1 for the Heaviside molli�cation, we intro-

duce a second set of spreading properties p̂ = (x̂0, t̂0, v̂). These parameters are to be approximated

by solving

argmin
p̂∈P

F" (p̂) = argmin
p̂∈P

− MI" (p̂) , " > 0.

In this context, the optimization functional describes the minimization of the negative mutual

information concerning the given classi�cation and feature images. Furthermore, the parameter

" > 0 represents the discretization e�ects which in�uence the pixel widths, binning widths and

widths of the molli�cation kernel’s support (cf. Theorem 5.98).

The values of the feature images as well as the classi�cation images are getting mapped to the open

interval (0, 1) because of the smooth approximation of the Heaviside function. We remark that we

neglect the features to be a�ected by noise e�ects. Instead, we consider the above de�ned feature

image for which we know the optimal spreading properties to be equal to p. Still, in our optimization

functional we include a smoothed version of the probabilities related to the classi�cation image. We

introduce this in Section 5.2.4 to derive derivative terms for the optimization functional. Instead

of approximating the given original parameter p exactly, we expect the spreading properties p̂ to

maximize the MI between the given feature image and the smoothed classi�cation image related to

p̂ and which corresponds to the smoothed probabilities in the classi�cation space.

Before we delve into the analysis of our toy problem and include the molli�cation in the classi�-

cation space, we start �rst by presenting the e�ect of various parameter combination in the image

domain and on the corresponding joint histograms. We use manipulations of absolute value 0.15
for the di�erent dimension to modify the classi�cation parameters compared to the ground truth

spreading parameters used to model the feature images (cf. Table 5.1). In Figure 5.7, the spreading

phenomena for di�erent parameter settings are shown with the �rst time stamp at t = t1 = 0.5 in the

�rst column and the second one at t = t2 = 1 in the second column. We stress that in all subplots, the

same color scaling holds such that the same color in all twelve plots represents the exact same value
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in the interval [0, 1]. In the �rst row marked with “no disturbance”, the image values are presented

when assuming the exact parameters de�ned in the �rst row of Table 5.1 and also used to model

I1 as de�ned in De�nition 5.99. These images serve as a kind of ground truth classi�cation images

capturing the exact same spreading phenomenon as given in the feature images for time points t1
and t2.
In the next two rows, spreading behaviors for varying initial spreading time points t0 are presented.

When assuming a later initial time point t0 marking the kick o� time point for colony growths, we

observe that the spreading front is behind the colony front compared to the �rst row. This is re�ected

in smaller circles matching the color of larger circles in the �rst row for the ground truth spreading.

In the third row, we observe the contrary behavior: For an earlier initial time point t0 compared to

the ground truth time point, we get larger circular contour lines of the same color compared to the

�rst row.

A similar appearance is revealed when dealing with a larger spreading speed v. The circles of the

same color are here larger than those in the �rst row. However, while we observe for the �rst time

point at t = t1 = 0.5 a similar spreading appearance as for the earlier t0 in the third row, we do have a

signi�cant di�erence in the last time point at t = t2 = 1. Here, we observe that the colony front indeed

moves faster in comparison to the �rst three rows when comparing the corresponding diameter of

the circular contour lines of the same classi�cation value, i.e., the same color.

Row number �ve illustrates the direct contrary behavior visualizing a slower spreading speed v. We

observe that the contour lines, i.e., the colony front moves slower.

In the last row, the spreading speed and the initial time point are matching the ground truth values

whereas the colony’s origin is slightly shifted in both spatial dimensions. Comparing �rst and last

row, we highlight that the circular contour lines of the same color are of the same size, i.e., they have

identical radii. However, they are shifted slightly towards the lower right corner in the last row. For

all the previous parameter settings the origin was set to the mid point of our domain.

In Figure 5.8, one dimensional cuts in the image domain are used to plot the feature or classi�-

cation values along this cutting line. While we only recapitulate the reference images for the �rst

time point for the di�erent parameter settings in the �rst two rows, we plot the image values along

classi�cation parameters p̂ interpretation

x̂0 t̂0 v̂
( 0.50.5 ) 0 0.5 no disturbance, equal to p̂

( 0.50.5 ) 0.15 0.5 later t0
( 0.50.5 ) −0.15 0.5 earlier t0
( 0.50.5 ) 0 0.65 larger v

( 0.50.5 ) 0 0.45 smaller v

( 0.650.65 ) 0 0.5 shifted x0

Table 5.1: Used property settings for di�erent parameter disturbances of magnitude 0.15 per dimen-

sion compared to the ground truth parameters applied to generate the feature images.
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Figure 5.7: Spreading observations in the image domain at two time points for di�erent spreading

properties.

the one dimensional cuts for both time points in the last two rows of subplots in that �gure. The

one dimensional cut is a horizontal line in the middle of the domain and is marked for the example

images in the �rst two rows. The colors of the cutting lines for the di�erent parameter settings match

the colors of the corresponding cross-section plots in the lower part.

One e�ect that becomes more prominent with these illustrations is that for our given parameter

disturbances the classi�cation images are identical for the �rst time point when comparing the e�ect

of a later t0 with a smaller v and an earlier t0 with a larger v. We observe that the values on the

cutting edge match which is depicted in the matching red and pink curves or the green and cyan

curves, respectively.
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Figure 5.8: Spreading observations in the image domain at the �rst time point for di�erent spreading

properties with one dimensional cuts through the image domain indicating where we extract the one

dimensional front. The one dimensional fronts are plotted for both time points.

By including both time stamps again, the development of the classi�cation values along the one

dimensional cuts highlight that the front lines for a larger spreading speed v (red) and an earlier

initial time point t0 (pink) correspond to moving fronts in front of the baseline in orange for the

ground truth parameter settings. This is in line with the interpretations for the previous Figure 5.7.

Again in Figure 5.8, we observe that for a smaller spreading speed v (green) and a later t0 (cyan) the

values are lower than for the orange ground truth data resulting in fronts moving behind the base

front related to the undisturbed parameter settings.

The shifted origin x0 (blue) results in a shifted center position for the front lines. This e�ect is stressed

by the fact that the maximum value for the blue one dimensional curve is shifted compared to the

maximum values of all other curves for which the origin matches the ground truth origin.

After having shown the in�uence of the spreading parameters in the image domain, we move on

to histogram visualizations. We investigate the e�ect of the parameter disturbances on the joint

histogram and on its support in particular. In Figure 5.9, we show the joint histograms in the joint

feature-classi�cation spaces. The feature image I1 is de�ned in De�nition 5.99 and corresponds to
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Figure 5.9: Joint histograms for variations of spreading parameters for the classi�cation image. The

di�erent parameter disturbances a�ect the support of the joint histograms substantially.

the spreading behavior shown in the �rst row of Figure 5.7. For the classi�cation images we con-

sider the applied parameter disturbances used in the same �gure. We stress that we also include the

classi�cation image to be matching exactly the feature image. This results in a histogram which is

concentrated along the main diagonal in the joint space, cf. the �rst plot in Figure 5.9.

Based on variations in the initial time point t0, the next two histograms in the �rst row of this �g-

ure are generated. Here, we observe the curvature of the histogram’s support which re�ects the

slight mis-match of feature-classi�cation combinations. For a later t0 used to model the spreading

initiated a bit later in the classi�cation image compared to the spreading in the feature image, the

overlaying contour lines of classi�cation image and feature images reveal that the feature values

are slightly larger than the classi�cation values. This is re�ected in the curve of the second subplot

bended slightly towards the lower right corner. Since in both images a jump function between 0
and 1 is approximated, the support of the histogram converges again towards (0, 0) and (1, 1) in the

joint space. A bending of the support towards the upper left corner as shown in the third subplot is

revealed for the spreading phenomena related to an earlier t0.
A similar bending e�ect is present for parameter disturbances related to variations of the spreading

speed v. Additionally to this, we observe that we do not necessarily get an exact matching of one

classi�cation value with a feature value. Depending on the magnitude of the di�erence between the

spreading speeds, we get some values which cannot be mapped uniquely. This appearance is present

because contour lines of a speci�c value in the classi�cation images can be related to contour lines

of varying feature values in the various time frames. This is due to the di�ering spreading speed and

prevents the histogram support to be related to a curve which could be parametrized by an injective

mapping from the classi�cation to the feature space or vice versa.

In the last subplot, we observe that the histogram is not concentrated along a curve in the joint space

anymore but rather maps to whole “domain”. This happens because of the shifted origin x0 resulting
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in a classi�cation value being mapped to a sequence or interval of feature values and vice versa. This

e�ect occurs because contour lines for the classi�cation and feature values do not match in their

location in the image domain any more. We still observe a higher accumulation towards the limiting

values in the corners (0, 0) and (1, 1).
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Figure 5.10: Joint histogram for “optimal” spreading parameters for the classi�cation images.

In all of the previously described histograms, the probability of certain feature-classi�cation combi-

nations was resembled in the height of the related bars. As we presented all those histograms in a

top view perspective, the actual height was encoded in the color scale, i.e., according to the colorbars

next to the histograms one can derive the probability of certain combinations. To illustrate this, we

show in Figure 5.10 the histogram again for the “optimal” spreading parameter settings and compare

the three dimensional bar plot with the tile plot from a top view perspective. Here the color and,

respectively, the values match in both plots and the distribution from higher accumulations near the

corner (0, 0) (yellow) over to smaller values (greenish, bluish) in the middle part of the diagonal to

higher accumulations again (orange, yellow) near the corner (1, 1) is visualized. As for the optimal

parameter settings the joint histogram is concentrated around the main diagonal in the joint feature-

classi�cation space, the thin bars in the three dimensional plot are also located on this diagonal.

There are two more e�ects that we want to point out. First of all, we observe that the maximum

value is attained not exactly at the corner (0, 0) but near the corner and the accumulation drops again

towards the corner. This particular e�ect results from the design of our toy problem. We concentrate

on the unit square and a circular spreading phenomenon with its origin in the center of our domain.

This leads to highest accumulations for contour lines of maximal radius that are still lying within
our domain. As contour lines with larger radius, i.e., with radius larger than 0.5, start moving out

of our domain, the mass of the preimage for the related feature or classi�cation values drops again.

Consequently, we observe decreasing probabilities for those small feature and classi�cation values

which are only appearing in the corner regions.

The second e�ect is the particular kink near the mid point (0.5, 0.5). This is due to our discontinuous

representation of the temporal axis for our domain. Actually, we only focus on two discrete time

points t1 = 0.5 and t2 = 1. For both of them, we archive continuous probability distributions as focused

on next in Figure 5.11 depicting probability functions for the feature images. If we had included an
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in�nite number of time frames to discretize the temporal axis, i.e. considered a continuous represen-

tation of the temporal axis, we would have received a continuous probability distribution.

Figure 5.11: Continuous probability density function (pF ) in the feature space compared to the

discrete histogram and separated for two �nite time stamps (ts = t1 = 0.5 and ts = t2 = 1).

With Figure 5.11, we focus on a continuous representation of the probability density function pF
compared to a discrete histogram. Furthermore, we present the individual probability density func-

tions when focusing only on one time point in the second row of subplots. We delve into the exact

derivation of the continuous representation for the probability density functions in the further course.

Here, we use it to highlight that a discrete histogram approximates the smooth function shown in

blue in the �rst subplot of Figure 5.11. In the second row, we plot the individual contributions of

each time point to the general probability density function based on two time frames shown in the

�rst row’s plot. The aforementioned kink prominent in the probability density function including

both time stamps is due to the fact that for the second time frame at t = 1 the feature values’ range is

approximately [0.5, 1)while for the �rst one it is approximately (0, 1). However, not only the varying

range results in the kink structure. It is also in�uenced signi�cantly by the steep increase for the

smallest feature values per time point and especially for the second time point’s values near 0.5.

In Figure 5.12, we stress the e�ect of parameter disturbances on the locations of the occurring kink in
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Figure 5.12: E�ect of varying parameter settings on the continuous probability density function in

the classi�cation space pC .

the probability density function and also on accumulations towards the boundaries. As for a smaller

spreading speed v or a later initial time point t0, we observe smaller classi�cation values in total

when considering both time points. Particularly, the occurring values in the second time frame at

t = t2 = 1 are signi�cantly smaller towards the boundary regions (cf. Figure 5.7). As larger circular

contour lines result in higher probabilities, we observe that the kink structure is moving towards

smaller values, i.e., towards the left on the classi�cation axis. The contrary e�ect is observable for a

larger spreading speed v or an earlier initial time point t0. This results in a shifted kink towards the

right on the classi�cation axis and also in signi�cantly higher accumulations for large classi�cation

values.

In the next section, we derive exact expressions for the probability density functions in the clas-

si�cation or feature space. We used those functions for the previous comparisons and illustration

related to continuous probability density functions, i.e., in Figures 5.11 and 5.12. Next, we also de-

rive the joint probability density function when considering the optimal, and consequently identical,

parameter setting for feature and classi�cation images.

5.5.1.2 Derivation of continuous probability density functions

Based on the previous section and the therein introduced toy problem (cf. De�nition 5.99), we focus

now on continuous representations for the probability density functions related to an adjusted ver-

sion of our toy problem. For this purpose, we derive explicit formulations of the probability density

functions in the separate spaces C and F as well as in the joint space F × C.

We start with some simpli�cations for our toy problem and focus only on one parameter that might
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be disturbed. To be more precise, instead of the unit square in ℝ2 we use a circular domain with

radius 0.5 and the origin at (0.5, 0.5) as the spatial domain Ω. The center point matches exactly the

origin x0 of the spreading phenomenon described with I1. Moreover, we assume that the classi�cation

image is already modeled with correct x0 and v. So, we expect that only the initial time point di�ers

compared to the t0 in the parameter set used to model the captured feature images. We call this pos-

sibly disturbed initial time point for the classi�cation images t̂0 again. Furthermore, we reduce the

complexity further by considering only one temporal time point, e.g., t = t1 = 0.5. This is summarized

in the following de�nition for the adjusted toy problem.

De�nition 5.100 (Adjusted toy problem)

We consider the toy problem introduced in De�nition 5.99 adjusted such that it is living on a

spherical domain Ω = B (x0, rmax) in ℝ2 with the maximal radius rmax ∶= 0.5, evaluated at one

temporal time point, e.g., t = t1 = 0.5, and based on the parameter settings

p = (x0, t0, v) = (( 0.50.5 ), 0, 0.5)

for the feature image and

p̂ = (x̂0, t̂0, v̂) = (( 0.50.5 ), t̂0, 0.5)

for the classi�cation image where already x̂0 = x0 and v̂ = v hold.

Before we focus on the related probability density functions, we �rst derive functions describing the

radius associated with certain feature or classi�cation values and their derivatives.

Proposition 5.101 (Radius functions in the classifaction and feature spaces)

Based on De�nition 5.100, we can derive the radius functions

rF ∶ [fmin, fmax]→ [0, rmax] , rF (f ) = "0 log(
1
c
− 1) + v (t − t0)

rC ∶ [cmin, cmax]→ [0, rmax] , rC (c) = "0 log(
1
c
− 1) + v (t − t̂0)

that determine for every occurring feature or classi�cation value the radius of the corresponding

contour circle on which the value is attained in the feature or, respectively, classi�cation image.

The limits cmin, cmax, fmin and fmax can be derived from the designed toy problem as well.

Proof. We use the functions introduced in De�nition 5.99 for the feature and classi�cation image

I1 (p,x , t) =
1

1 + exp (− 1
"0 (v (t − t0) − ∥x − x0∥2))

I2 (p̂,x , t) =
1

1 + exp (− 1
"0 (v̂ (t − t̂0) − ∥x − x̂0∥2))

.

We de�ne the radius to be r ∶= ∥x−x0∥2 and re-de�ne the feature and classi�cation images depending

on the radius instead of a concrete position x by asserting that the calculated image value for the
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speci�c radius is attained on the contour line matching this radius or respectively in all x ∈ Ω for

which holds ∥x − x0∥2 = r :

I1 (r , t) ∶=
1

1 + exp (− 1
"0 (v (t − t0) − r))

,

I2 (r , t) ∶=
1

1 + exp (− 1
"0 (v̂ (t − t̂0) − r))

.

Since t is a �xed time point in the reduced toy problem, we can simplify this further by introducing

the function f and c

f ∶ [0, rmax]→ F , f (r) ∶= I1 (r , t) ,

c ∶ [0, rmax]→ C, c (r) ∶= I2 (r , t)

and derive �rstly the interval limits by exploiting that the minimal values are attained at the do-

main boundary and the maximal values are attained at the domain center, or rather the spreading

phenomena’s origins:

fmin ∶= f (rmax) = I1 (rmax, t)

fmax ∶= f (0) = I1 (0, t)

cmin ∶= c (rmax) = I2 (rmax, t)

cmax ∶= c (0) = I2 (0, t) .

Now, we use the functions f and c to derive the radii functions. We set f (r) = f and perform the

following equivalence transformations.

f =
1

1 + exp (− 1
"0 (v (t − t0) − r))

⇔ 1/f − 1 = exp(−
1
"0
(v (t − t0) − r))

⇔ r = "0 log (1/f − 1) + v (t − t0) =∶ rF (f ) .

Equivalently, we derive

rC (c) ∶= "0 log (1/c − 1) + v (t − t̂0)

which proves the statement.

Next, we derive derivative forms for the newly introduced radius functions. They are of importance

later on when focusing on the probability density functions.
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Lemma 5.102 (Derivatives of the radius functions rC and rF )

For the radius functions rF and rC from the previous Proposition 5.101, the derivatives are given

as

r ′
F
(f ) =

"0
f 2 − f

, r ′
C
(c) =

"0
c2 − c

.

Proof. Based on the given de�nitions of the radius functions rF and rC , we derive

r ′
F
(f ) =

1
1
f − 1

(−1)
1
f 2
=

1
f 2 − f

and, equivalently,

r ′
C
(c) =

1
c2 − c

.

With this at hand, we prove the following statement on probability density functions in the classi�-

cation space and in the feature space.

Proposition 5.103 (Probability density functions pF and pC)

For the probability measures PF and PC related to the given feature and classi�cation images

de�ned in De�nitions 5.99 and 5.100, it holds that they are absolutely continuous with respect to

the Lebesgue measures on the corresponding spaceF or, respectively, C and there exist probability

density functions such that

PF (F) = ∫
F
pF (f ) df ∀F ⊂ F ,

PC (C) = ∫
C
pF (c) dc ∀C ⊂ C

with the probability density functions given by

pF (f ) = −8rF (f ) r ′C (f ) ,

pC (c) = −8rC (c) r ′C (c) .

Proof. We recall that the Lebesgue measures for the measurable spaces (F ,B (F)) and (C,B (C))
is denoted by � as introduced in Notation 5.18. We assume that probability density functions pF ∶
F → ℝ and pC ∶ C → ℝ exist such that

PF (F) = ∫
F
pF (f ) d� (f )

PC (C) = ∫
C
pF (c) d� (c)

for arbitrary F ⊂ F and C ⊂ C hold. We identify the Lebesgue measures’ notations with d� (f ) = df
and d� (c) = dc to match the used notation in the proposition.
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To derive the exact terms for the probability density functions, we focus on small example subset

intervals F = [f1, f2] and C = [c1, c2] and state that

pF (f2) =
d
df2

PF ([f1, f2])

pC (c2) =
d
dc2

PC ([c1, c2])
(5.60)

hold. Without loss of generality, we infer that f1 < f2 and c1 < c2 hold.

For the given toy problem modeled with the above de�ned radius function, we denote that rC and

rF are strictly monotone decreasing for increasing values c or f , respectively. Equivalently, it holds

that c and f are strictly monotone decreasing for increasing radius values r . With this in mind, we

determine the probability measures of the subsets to be given by

PC ([c1, c2]) =
1
∣Ω∣

� (rC (c1)2 − rC (c2)2)

PF ([f1, f2]) =
1
∣Ω∣

� (rF (f1)2 − rF (f2)2)

as the probability measure equals the “ring area” de�ned by the two corresponding radii for the given

values c1, c2 and f1, f2 compared to the area of the total domain. For the spherical domain Ω with

radius rmax = 0.5, it holds that

∣Ω∣ = �r2max =
�
4
.

Plugging these information into Equation (5.60), we receive

pC (c2) =
−2�
∣Ω∣

rC (c2) ⋅ r ′C (c2) = −8rC (c2) ⋅ r
′
C
(c2)

and, equivalently,

pF (f2) = −8rF (f2) ⋅ r ′F (f2) .

With this we have derived for the probability measures PF and PC probability density functions with

respect to the Lebesgue measures on the related measurable spaces (F ,B (F)) and (C,B (C)). The

absolute continuity, i.e., PF ≪ � and PC ≪ � follows directly since for any Lebesgue null sets F ⊂ F
and C ⊂ C, it holds that

PF (F) = ∫
F
pF (f ) d� (f ) = 0,

PC (C) = ∫
C
pF (c) d� (c) = 0.

This proves the statement of the proposition.

To derive the probability density function in the joint space, we apply the concept of line integrals.

We point out that by design of our example problem, we can assume that every classi�cation value is

matched to a unique feature value and vice versa. Therefore, it is a valid assumption that the support

of the joint probability measure PF×C is a curve in the joint space F × C and also the considered

probability density function is living on that curve. For the proof of the joint probability density

function, we �rst cite the concept of integration along a curve from [24].
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De�nition 5.104 (Integration along a curve)

Let  ∶ [a, b]→ ℝn be a piecewise continuous curve. It holds that  ([a, b]) is a compact subset of

ℝn. We consider f ∶  ([a, b])→ ℝ to be a continuous function.

Then the integration of f along the curve  is described by

∫

f ds ∶= ∫

b

a
f ( (t)) ∥ ′ (t) ∥2 dt.

Since the joint probability measure is concentrated on a curve with Lebesgue measure zero in the

joint space, it follows directly that the joint probability measure is not absolutely continuous to the

Lebesue measure, i.e.,

PF×C��≪�

holds with the Lebesgue measure � on the measurable space (F × C,B (F × C)) according to No-

tation 5.18. Still, it is possible to derive a closed form expression for the joint probability density

function pF×C when considering the integration along the H1
curve that the probability measure

PF×C is living on. To prepare the corresponding proof, we �rst derive a parameterization of the

curve.

Proposition 5.105 (Parameterization along a curve)

Let theH1
curve on which the probability measure PF×C lives be S ∶= supp (PF×C). The function

s ∶ F → F × C de�ned as

s (f ) = (f , c̃ (f ))

with

c̃ ∶ [fmin, fmax]→ C, c̃ (f ) =
1

( 1f − 1) exp (
v
"0 (t̂0 − t0)) + 1

is a valid parameterization of S with ∥s′ (f ) ∥2 =
√

1 + c̃′ (f )2. Here, fmin and fmax are considered

to be the interval limits introduced in Proposition 5.101 again.

Proof. The probability measure PF×C is concentrated on the curve S inF ×C that is de�ned by (f , c)
combinations for which the contour lines match in the image domain on Ω. If the contour lines of a

certain (f , c) ∈ F ×C match, it follows directly that the corresponding radii depending on the feature
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value f and classi�cation value c are identical. Based on the radius functions rF and rC introduced

in Proposition 5.101, we derive the following:

rF (f ) = rC (c)

⇔ "0 log (1/c − 1) + v (t − t0) = "0 log (1/c − 1) + v (t − t̂0)

⇔ log
⎛

⎝

1
f − 1
1
c − 1

⎞

⎠
=
v
"0
(t0 − t̂0)

⇔
⎛

⎝

1
f − 1
1
c − 1

⎞

⎠
= exp(

v
"0
(t0 − t̂0))

⇔
1
c
= (

1
f
− 1) exp(

v
"0
(t̂0 − t0)) + 1

⇔ c = [(
1
f
− 1) exp(

v
"0
(t̂0 − t0)) + 1]

−1
=∶ c̃ (f ) .

This de�nes the classi�cation function c̃ ∶ F → C. Furthermore, we derive

s′ (f ) = (1, c̃′ (f ))

which naturally leads to ∥s′ (f ) ∥2 =
√

1 + c̃′ (f )2 with

c̃′ (f ) = (−1) [(
1
f
− 1) exp(

v
"0
(t̂0 − t0)) + 1]

−2
(−1)

1
f 2
exp(

v
"0
(t̂0 − t0))

=
exp ( v"0 (t̂0 − t0))

f 2 [( 1f − 1) exp (
v
"0 (t̂0 − t0)) + 1]

2

This completes the proof.

Remark 5.106. For the sake of completeness, we state that it is also possible to equivalently derive a

parameterization of the curve S based on classi�cation values by matching the corresponding contour

lines for unique (f , c) combinations again. More precisely, with the help of t ∶ C → F × C de�ned as

t (c) = (f̃ (c) , c) and with

f̃ ∶ [cmin, cmax]→ F , f̃ (c) =
1

( 1c − 1) exp (
v
"0 (t0 − t̂0)) + 1

,

we can parameterize the support of the probability measure by setting

S = {t (c) ∣ c ∈ [cmin, cmax]} .

Here, we implement the classi�cation limits cmin and cmax introduced in Proposition 5.101. Lastly, we

state the corresponding derivative term for the used parameterization function t by t ′ (c) = (1, f̃ ′ (c))
and with

f̃ ′ (c) ∶=
exp ( v"0 (t0 − t̂0))

c2 [( 1c − 1) exp (
v
"0 (t0 − t̂0)) + 1]

2 .
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Such parameterizations for the support of the probability measure PF×C can be used to derive an

expression for a probability density function pF×C when considering the integration along the curve

with respect to theH1⌞S measure.

Theorem 5.107 (Joint probability density function pF×C)

A joint probability density function pF×C living on the one dimensional curve S ∶= supp (PF×C)
can be derived such that

∫
S1
pF×C (f , c) dH1

⌞S(f , c) = PF×C (S1)

holds for any S1 ⊂ S.

If the curve S is parameterized by a function t ∶ C → F × C, i.e., S = {t (c) ∣ c ∈ [cmin, cmax]} (cf.

Remark 5.106) the probability density function is given as

pF×C (t (c)) = pC (c)
1

∥t ′ (c) ∥2
(5.61)

whereas a parameterization by a function s ∶ F → F × C, i.e., S = {s (f ) ∣, f ∈ [fmin, fmax]} (cf.

Proposition 5.105) leads to

pF×C (s (f )) = pF (f )
1

∥s′ (f ) ∥2
. (5.62)

Proof. We carry out the proof exemplarily for S being parametrized by a function depending on

feature values as introduced in Proposition 5.105.

Let S1 be an arbitrary subset of S = {s (f ) ∣, f ∈ [fmin, fmax]}. Then exist f1, f2 ∈ F with fmin ≤ f1 < f2 ≤
fmax such that S1 = {s (f ) ∣, f ∈ [f1, f2]} holds. We stress here the strict inequality of f1 and f2 to infer

that S1 is not aH1
null set.

We assume that pF×C ∶ S → ℝ exists such that

∫
S
pF×C (f , c) dH1

⌞S(f , c) = PF×C (S) = 1,

i.e. pF×C is the probability density function when considering the integration with respect toH1⌞S .

We apply the line integration formula stated in De�nition 5.104 and integrate only over the subset S1
now. Then, we receive

∫
S1
pF×C (f , c) dH1

⌞S(f , c) = ∫
f2

f1
pF×C (f , c̃ (f )) ∥s′ (f ) ∥2 df

projection

onF
= ∫

f2

f1
pF (f ) df .

Since S1 = {s (f ) ∣, f ∈ [f1, f2]} is an arbitrary subset of S, it follows that the previous equation holds

for all subsets of S. This implies that the integrands need to be identical to evaluate to the same values
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when integrating over any subset S1 = {s (f ) ∣, f ∈ [f1, f2]} of S with arbitrary f1 and f2. Consequently,

it holds for all (f , c̃ (f )) ∈ S that

pF×C (f , c̃ (f )) = pF (f )
1

∥s′ (f ) ∥2
Propositions 5.103 and 5.105

= −8rF (f ) r ′F (f )
1

√

1 + c̃′ (f )2
.
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Figure 5.13: Continuous probability density function in the joint space F × C.

We illustrate the joint probability density function in Figure 5.13. We plot the individual probability

density functions pF and pC compared to pF×C and its projections onto F and C in the �rst row of

subplots. Here, we consider again parameter settings for the classi�cation space for “no disturbance”
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and for a “later t0”. The shown functions are evaluated at the time point t = t1 = 0.5, but we consid-

ered a normalization by the domain related to two time frames. This is to keep consistency when

comparing the probability density function pF from this �gure with the one on the left hand side of

the second row in Figure 5.11 for the �rst time stamp t = 0.5. We point out that pF and the projection

of pF×C to F are not identical and, similarly, pC does not coincide with the projection of pF×C to C

either. We refer to Equations (5.61) and (5.62) to stress the di�erences lying in the scaling e�ects by

1
∥t′(c)∥2 or

1
∥s′(f )∥2 , respectively.

To stress the fact of pF×C lying on a curve in the joint space, we plotted in the second row the

corresponding probability density function in a top view perspective for both chosen parameter

settings. The probability density measure has indeed a curve as a support which is here presented

in an enlarged widths for illustration aspects. Furthermore, we can again see in the color scaling

the transition from higher accumulations near small feature and classi�cation values to less com-

binations towards the upper right corner at (1, 1)which relate to smaller circles in the spatial domain.

After highlighting that the derived probability density function pF×C is leaving on the H1
curve

S and already stating earlier that the joint probability measure PF×C is not absolutely continuous

with respect to the Lebesgue measure on the joint space and even not to the product measure PF ⊗PC ,

we highlight that we cannot calculate the MI based on the given de�nitions. For once, we want to

infer that the mutual information equals in�nity when the joint probability measure is concentrated

on a lower dimensional curve. This can be derived by approximation arguments and by using a

support of the joint probability measure converging to such a lower dimensional curve. In formulas

this means that the joint measure is living in a n dimensional space, but is concentrated on a Hn−1

curve which has the measure zero when considering the Lebesgue measure of the related higher

dimensional space.

We do not delve into this issue further or perform exact proofs for the stated arguments. When

coming back to our numerical toy problem, we can assume the joint probability measure not to

be concentrated on a lower dimensional curve. Since we are facing discretization issues when per-

forming calculations on a computer, we are anyway dealing with a joint probability measure with a

support that is not concentrated on a thin curve. Depending on the binning width to calculate the

histograms, of course, we can approximate such a lower dimensional curve, but will never reach it

up to a certain error.

In the next section, we focus on such example discretizations and perform the optimization for our toy

problem considering parameter initializations for the classi�cation image that match the parameters

considered for the example case of “a later t0”.

5.5.1.3 Numerical convergence tests

In the �nal section on our toy problem described in De�nition 5.99, we focus on the numerical solu-

tion of the related optimization problem. Therefore, we �rst introduce di�erent discretization stages

that our numerical test is based on and present some implementation details. Secondly, we showcase

the numerical results for our toy example to complete the proof of concept section.
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According to the convergence results in the previous Sections 5.3 and 5.4, especially in Theorem 5.98,

we design our discretization stages for our toy problem. For the spatial domain of the unit square,

we apply a certain pixel width ℎ to simulate pixel width occurring in real data. On the coarsest

scale, we consider a pixel width of ℎ = 0.1 resulting in 100 pixels per time stamp. For the temporal

discretization, we use again the time points t1 = 0.5 and t2 = 1 as two discrete time stamps.

Furthermore, we consider a binning width for the histograms based on the feature and classi�cation

images. As we model both images in the same manner and it holds that C = F = ℝ, we apply identi-

cal binning widths in the feature space F and in the classi�cation space C. More precisely, we set

Δb ∶= Δf = Δc. On the coarsest scale, we use Δb = 0.2. Since C = F ⊂ [0, 2] holds, we only consider

this interval for the binning of the feature and classi�cation spaces which results in �ve bins on both

axis. In the joint space, we get 25 bins for this binning widths and this is in line with the requirement

to have much less bins compared to the pixels which are 200 in total on the coarsest scale.

For the molli�cation e�ect in the classi�cation domain, we apply convolution with a cubic B-spline.

The B-spline is normalized to �t the molli�cation property that its integral over the whole space ℝ
equals to 1. As the scaling factor, we consider here the support of the B-spline and denote it with "1
again. We already indicated in the previous sections, that it is important to avoid the molli�cation

to converge faster than the binning width (cf. Remark 5.84). Otherwise, the molli�cation would get

lost in the histogram discretization, if the support of the molli�cation function got smaller then the

discretization width Δb in the classi�cation space. We set the initial kernel’s support widths to four

times the initial binning width to ensure that there are enough discrete evaluation points available

when considering a discrete convolution.

To calculate the discretization parameters for several stages and to comply with the stated con-

vergence requirements for the binning sizes in Theorem 5.98, we consider " to scale the di�erent

parameters according to

ℎ = "ℎ0, Δb = "�Δb0, "1 = "�"10 (5.63)

We consider " to converge to zero, more precisely we use " ∈ {1, 116 ,
1
81 ,

1
256} to scale the discretization

widths. In this sense, the parameters with zero in the subscript are equal to the corresponding

coarsest sizes. Furthermore, we use � = 1
2 and � = 1

4 to ensure the wanted convergence order for the

discretization parameters. Consequently, it holds that

ℎ
Δb
=

"ℎ0
"�Δb0

=
ℎ0
Δb0

"
1
2 ,

Δc
"1
=
"�Δb0
"�"10

=
Δb0
"10

"
1
2

which converge to 0 for " → 0. This is in line with Equation (5.59) in Theorem 5.98. In Table 5.2, we

state the used discretization parameter in our numerical test. We calculate for four stages the pixel

width, binning width and the size of the molli�cation kernel’s support based on the approach given

in Equation (5.63). Before we continue, we remark that we used the discretizations on the �nest scale

for the visualizations in the previous sections.

For each discretization stage, we calculate the feature and classi�cation images on a discrete pixel

grid, perform a histogram binning and convolve the joint histogram along the classi�cation axis.
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" "� "� pixel width ℎ binning width Δb width of molli�cation

kernel’s support "1
ℎ0 = 0.1 Δb0 = 0.2 "10 = 0.8 (= 4 ⋅ Δb0)

1 1 1 1
10 = 0.1

1
5 = 0.2

4
5 = 0.8

1
16

1
4

1
2

1
160 ≈ 0.0063

1
20 = 0.05

2
5 = 0.4

1
81

1
9

1
3

1
810 ≈ 0.0012

1
45 ≈ 0.0222

4
15 ≈ 0.2667

1
256

1
16

1
4

1
2560 ≈ 0.0004

1
80 = 0.0125

1
5 = 0.2

Table 5.2: Discretization stages for the pixel widths, binning widths and widths of the molli�cation

kernel’s support in relation to the convergence parameter " and with � = 1
4 , � =

1
2 .

In Figures 5.14 and 5.15, we show the joint histograms for the four discretization stages row-wise.

We compare the joint histograms before and after molli�cation in the classi�cation domain (left vs.

right column). In Figure 5.14, we use the joint histograms based on optimal classi�cation parameters

whereas in Figure 5.15, we present the results based on the histograms related to the disturbed classi-

�cation parameters with later t0.
We want to point out three important observations. To begin with, we note that the bending e�ect due

to the disturbed parameters is present in the second �gure (Figure 5.15) for all discretization stages. In

comparison to this, we get a joint histogram concentrated only on the (discretized) main diagonal for

all discretizations in the left column of the �rst �gure (Figure 5.14) presenting the optimal parameter

case.

Comparing the left and right column, the vertical smoothing e�ect due to the molli�cation in the clas-

si�cation space is signi�cantly perceivable on the right hand side. We stress that this is observable in

both �gures or, respectively, for both parameter combination. Of course, this smoothing e�ect will

still be present if the classi�cation image is generated with another parameter combination.

Finally, we highlight the converging support of the histograms. In a top-down perspective, it is ob-

vious that the support of the joint histograms is converging towards a thin curve, especially in the

�rst column without any smoothing e�ects. Also in the right columns of both �gures, the support of

the molli�ed joint histogram is strikingly shrinking. It is also worth mentioning that with the above

chosen discretization stages in Table 5.2, we indeed ensure that the molli�cation kernel’s support is

always larger than the binning width in the classi�cation space and, consequently, the molli�cation

will always have an e�ect and cannot be hidden in the classi�cation discretizations.

After having spent some words on the di�erent discretization stages and also presented the molli�-

cation e�ect visually, we delve next into some more implementation details. Based on the smoothed

joint histogram, we compute the negative mutual information as our target optimization functional.

Furthermore, we provide an approximation of the gradient of mutual information when considering

the di�erent spreading parameters in�uencing the classi�cation image. Both terms are required for

our gradient-based optimization approach. We apply the Matlab optimization function fmincon.

This solver is used to “�nd [the] minimum of [a] constrained nonlinear multivariable function” [52].

The constraints we are using for our optimization problem are lower and upper bounds for our pa-
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Figure 5.14: Smoothing e�ect in the classi�cation domain on the joint probability density function

pF×C considering optimal parameter settings.

rameter settings to ensure that the origin x̂0 lies within our domain, t̂0 is in the interval [0, 1], the

spreading speed is positive and such that for the smallest time step (here: 0.5) the moving front does

not move further than the length of our square domain. We use the parameters related to “a later t0”
(cf. Table 5.1) for the initialization of our spreading properties for the classi�cation image. For the

optimization algorithm we use the default method “interior-point”. The performance on our optimiza-

172



5.5 Numerics of MI-based optimization

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Joint hist. (  x=0.1,  b=0.2)

0

2

4

6

8

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Mollified hist. (kernel size = 0.8)

0

2

4

6

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Joint hist. (  x=0.00625,  b=0.05)

0

10

20

30

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Mollified hist. (kernel size = 0.4)

0

5

10

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Joint hist. (  x=0.0012346,  b=0.022222)

0

20

40

60

80

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Mollified hist. (kernel size = 0.26667)

0

5

10

15

20

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Joint hist. (  x=0.00039063,  b=0.0125)

0

50

100

150

0 0.5 1

features

0

0.5

1

c
la

s
s
if
ic

a
ti
o
n
s

Mollified hist. (kernel size = 0.2)

0

10

20

Figure 5.15: Smoothing e�ect in the classi�cation domain on the joint probability density function

pF×C considering disturbed parameter settings.

tion problem was appropriate as it solved our optimization problem well in a reasonable computation

time. Of course, for the �ner discretization scales, the optimization process takes longer. Still, all four

discretization stages were processed in less than half an hour on a local machine without a GPU or

parallel computing. For every discretization level the optimization approach stopped because a limit

for the step tolerance was reached while a tolerance on the constraints was satis�ed. We apply the
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default tolerance values for the step size of 10−10 and for the constraint tolerance of 10−6.

p̂ initial parameters optimized parameters optimal parameters

" = 1 " = 1
16 " = 1

81 " = 1
256

x̂0,1 0.5 0.5 0.50009 0.5 0.49992 0.5
x̂0,2 0.5 0.5 0.50009 0.5 0.50009 0.5
t̂0 0.15 0.20247 0.012612 0.02103 0.022289 0
v̂ 0.5 0.64686 0.50579 0.50264 0.50146 0.5

Table 5.3: Spreading parameter p̂ = (x̂0, t̂0, v̂).

MI for initial parameters optimized parameters optimal parameters

" = 1 " = 1
16 " = 1

81 " = 1
256

" = 1 −0.7559 −0.8103 −0.9421
" = 1

16 −1.4267 −1.5262 −1.5465
" = 1

81 −1.8013 −1.8683 −1.8968
" = 1

256 −2.0609 −2.1356 −2.1539

Table 5.4: Resulting negative MI for the di�erent parameter settings on the four discretization stages.

In Table 5.3, we collect the optimization results stating the optimized parameter settings for the

di�erent discretization stages. For the sake of completeness and to facilitate comparisons, we include

the initial parameter settings (left column) and the optimal parameter settings (right column), too.

We stress that we the optimal parameters correspond to the ground truth parameters used to generate

the feature images while the optimized parameters are the parameters calculated by the numerical

optimization solver.

In Table 5.4, we complete our optimization results by stating the related negative value of the mutual

information for the di�erent discretization stages and for the initial, optimized and optimal param-

eter settings. Here, we observe that for each discretization stage, the value related to the optimal

parameter setting is the smallest and the one for the parameter initialization is the largest. The value

for the negative MI approaches the corresponding value for the optimal settings on the same stage

and also the optimized parameter setting converges to the optimal parameters for the decreasing

discretization quantities (rightest column for optimized parameters in Table 5.3).

In Figure 5.16, we illustrate this convergence statements. We plot the values of the negative MI for the

di�erent parameter settings when considering " to scale the discretization stages as described above,

cf. Equation (5.63). The trend for the function value for decreasing discretization scales is obvious:

For discretization scales converging to zero the negative MI value drops faster which is in line with

the expectation of the MI being in�nite when concentrated on a thin line. Moreover, the negative

MI is on every discretization stage larger for the initial parameter settings (blue curve) compared to

the other two parameter settings. In addition, the curve for the optimized settings (orange curve)

converges towards the curve related to the optimal parameter choice (red curve).
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Figure 5.16: Converging values for the negative MI calculated with the optimization approach and

compared to the negative MI calculated with the initial and optimal parameter settings.

In Figure 5.17, we plot the joint histogram for the di�erent parameter settings in our optimization

approach. Column-wise we present the histograms for the initial parameters, the optimized parame-

ters and the optimal parameters. From top to bottum, the discretization scales decreases row-wise.

We present again the four di�erent discretization scales.

In the �rst column, we observe the largest distortion of the support of the histogram whereas in

the last column for the optimal parameters the histogram entries are accumulated close to the main

diagonal. Again, for smaller discretization scales the support approaches a lower dimensional curve

located near the main diagonal and which is molli�ed in the direction of the classi�cation axis. We

observe row-wise that for the optimized parameter settings the histogram appearance converges

towards the appearance for the optimal parameters and gets more and more condensed near the main

diagonal. The curvature prominent in the �rst column which is due to the parameter disturbance of

t0, is in the middle column reduced.

To conclude, the optimization applied to the toy example serves as a proof of concept. It shows

that based on feature images combined with classi�cation images, we are able to extract spread-

ing properties, i.e., the parameter setting to model an optimized classi�cation image, by applying

a gradient-based optimizer on the mutual information term depending on the related histograms.

The resulting spreading parameters approximate spreading properties which relate to a spreading

phenomenon present in the feature images.

In the next section, we focus on a real data set again. As a second proof of concept, we present

the optimization approach applied to feature images extracted from the microscopy data provided by

AstraZeneca and aim for spreading properties with which we can map the occurring spreading phe-

nomena present in the microscopy images to classi�cation images. Indeed, this spreading information

is of main interest here to facilitate a high-throughput analysis of microscopy images capturing cell

colony development.
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Figure 5.17: Joint histograms and MI for di�erent discretizations based on the initial parameter

setting, the optimized parameter setting and the expected, optimal parameter setting.
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5.5.2 Numerical optimization for AstraZeneca’s data

In this section, we apply the model �tting via the mutual information based optimization approach

to microscopy data of AstraZeneca. We choose two example wells with developing cell colonies and

extract spreading properties from the related texture data with the implemented software tool. We

refer to Figure 3.1 to recapitulate the spreading phenomenon in the �rst example well B4 of the �rst

plate. In Figures 5.18 and 5.19, we present two example time points showing the colony growth for

the second example well I11 from the �rst plate. We apply a limited color range to these microscopy

images for contrast enhancements within the well highlighting the spreading cell colonies.

Figure 5.18: Colony development state �ve after approx. seven days for well I11 of plate 1 from the

AstraZeneca data set (limited color range for contrast enhancement).

For extracting spreading properties for the growing cell colonies in well B4 and I11, we �rst process

the time series of both wells individually. The analysis of the separate runs for extracting independent

spreading information is the subject of Section 5.5.2.2. In this context, we present a preview of the

classi�cation images for each time point next to the related feature images based on basic texture

descriptors.

In Section 5.5.2.3, we discuss the results of processing both wells jointly. The idea of the mutual

information based model �tting is to apply an approach which allows to match similar texture regions
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Figure 5.19: Colony development state seven after approx. fourteen days for well I11 of plate 1 from

the AstraZeneca data set (limited color range for contrast enhancement).

of di�erent wells’ time series into the same classes. Consequently, we intuitively expect that the joint
processing of the wells is crucial to allow comparisons between cell colonies of di�erent wells. Hence,

we use the multi-dimensional feature point clouds of matched texture regions in the two example

wells to compare the approaches of the separate and the joint optimization. However, it turns out

that both approaches do not di�er signi�cantly in the end. We achieve similar spreading results

and comparable MI values for the joint and the separate optimizations. Moreover, the identi�cation

of two di�erent subpopulations within a growing cell colony proves to be challenging. With the

implemented optimization considering feature images based on simple texture properties, we rather

get a di�erentiation between the inner cell colony and the moving front, i.e., the transition between

the cell colony and background regions rather than normal versus abnormal cellular appearances.

We summarize our �ndings and discuss the results on the optimization for the AstraZeneca data in

Section 5.5.2.4.

Before we delve into the numerical results, we start in Section 5.5.2.1 by giving some introductory

information on the settings used in the optimization. For consistency reasons, these settings are used

in both approaches, i.e., in the separate and joint runs.

178
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5.5.2.1 Se�ings used in numerical experiments

In this introductory section, we present the basic information on the settings we use for our nu-

merical experiments on two example wells of the AstraZeneca microscopy data set. We choose the

time series of well B4 and I11 on the �rst plate for which we observe developing cell colonies in the

phase contrast images. Even by manual investigation the colony growth is observable (cf. Figures 3.1,

5.18 and 5.19) and the time series are serving for our proof of concept test for real data. Instead

of using the raw microscopy images, we include the extracted feature images in the optimization

approach. We recapitulate that we focus on three basic texture properties, namely the local minima,

local maxima and the interquartile ranges of the gray values in small neighborhoods. We refer the

reader to Section 3.3.2 in which we introduced the used texture descriptors in more detail.

We use down-sampled versions of the feature images for computational aspects. Rather than using

the full image size of 1548 × 1548 pixels, we reduce the size to 387 × 387 pixels by applying bilinear

down-sampling on the extracted feature images. Instead of aiming for more accuracy, we accept

the lower resolution images to speed up the numerical optimization. For the numerical solution, we

concentrate on the pixels which lie within a down-sampled cropping frame. As a cropping frame we

use again the segmentation mask of a reference well (cf. Section 3.1).

For the further discretizations related to the histogram generation, we apply binning widths of

Δc = 0.25 for a total classi�cation range of [0, 2] and Δf = 0.05 for each feature dimension with

maximal range of [0, 1] each (cf. Equation (3.8)). The smoothing step of the joint histograms in the

classi�cation direction is based on convolution with a discrete B-spline kernel stretching over seven

bins in the discretized classi�cation domain, i.e., the kernel’s width is 7 ⋅ Δc = 1.75.
The classi�cation image itself is generated based on the circular spreading model combined with

the approximation of the Heaviside step function (cf. Section 4.2). We use "0 = 10 as the inherent

model parameter to achieve smoothed approximations between the main classi�cations of 0 related

to background regions, 1 to areas of normal cells and 2 related to abnormal cell regions.
Finally, we comment on constraints and solver settings applied for the numerical solution. We use

again the Matlab solver fmincon [52] with the algorithm interior-point. The interior-point method

is the recommended algorithm [51] and resulted in adequate numerical results with respect to com-

putation time and convergence. For the stopping criteria, we reduced the default step size tolerance

and apply 10−14 as the minimal relative step size tolerance which is close to machine accuracy. In

Section 5.5.2.3, we comment on the stopping criteria in more detail.

For the minimization problem, we include lower and upper bounds for our spreading properties. For

the colony’s origin x0, we enforce that it lies within our spatial domain Ω. In this context, when

calculating with pixels, we make sure that the origin’s coordinates take values between 0 and 387.
For the starting time points t0,n and t0,a when the “normal” front and the “abnormal” front start to

emerge, we apply bounds as well. We claim that the time point for the normal front t0,n takes values

between 0 and the �nal time point. For the second temporal property t0,a, we set the upper bound to

in�nity. With this, we make sure that a normal front is always emerging and an abnormal one might

be emerging within the applied time window. Furthermore, we use a linear constraint to incorporate

that the time point for the normal front must be smaller than the one for the abnormal front. With

this, we ensure that an abnormal front can only emerge after a normal one and, consequently, can
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only take nonnegative values as well. We stress that we consider the time points to be given in days.
Last but not least, we add a constraint for the spreading velocity. For physical consistency, we require

the velocity to be nonnegative. A maximal velocity is derived from the domain width divided by the

maximal time step. The interpretation is that we expect the colony to move slower than this because

we suppose that the colony cannot spread from one border of the domain to the opposite one between

two consecutive time frames. As the imaging does not take place at equidistantly distributed time

points, we use the largest time step to enforce this constraint to hold for all discrete consecutively

recorded time frames. For the sake of completeness, we recapitulate in Table 5.5 the approximate

time stamps which are introduced in Section 2.1, more precisely in Table 2.1. In the last column of

the table we add an approximation of the time step widths between consecutive frames. The table

serves as a reference for mentioned time points and time step widths in the following Sections 5.5.2.2

and 5.5.2.3.

time stamp number approx. time after initial time point approx. time step

1 0 -

2 2 hours 2 hours

3 17 hours 15 hours

4 5 days and 15 hours 4 days and 22 hours

5 7 days and 17 hours 2 days and 2 hours

6 11 days and 15 hours 3 days and 22 hours

7 14 days and 15 hours 3 days

8 18 days and 15 hours 4 days

Table 5.5: Approximate time stamps relative to initial time point and the related approximate time

steps between consecutive time frames.

After having introduced the numerical setting for solving the MI-based optimization problem, we

have now all prerequisites at hand. In the following sections, we deal with the results when process-

ing the two example wells B4 and I11. We start in the next Section 5.5.2.2 by applying the optimization

approach to the wells separately and focus on the joint processing in Section 5.5.2.3 afterwards.

5.5.2.2 Extraction of spreading properties for individual wells

In this section, we solve the optimization problem for the two example wells individually. By maxi-

mizing the mutual information between the extracted texture features, i.e., the feature images, and

the class�cation images modeling the circular spreading phenomenon, we aim for new insights on

the present growth process. To be more precise, with the individual optimization we derive spreading

properties with which we can simulate a circular spreading for each well independently.

In Table 5.6, we state the parameter initializations we use for the optimization. The initializations are

based on manual estimates for the spreading parameters derived from visual inspection. For well B4,

we use a colony origin x0 horizontally centered in the upper �rst third of the domain while we guess

that the spreading in I11 starts o� in an origin vertically centered but closer to the right boundary
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well property unit parameter initializations optimized parameters

B4 x0,1 pixels 129 68.939
x0,2 pixels 193.5 194.89
t0,n days 7.7083 5.5563
t0,a days 14.625 8.5106
v pixels

days
18.651 17.973

−MI −0.2974 −0.4245

I11 x0,1 pixels 193.5 195.56
x0,2 pixels 290.25 263.05
t0,n days 0.70833 2.749
t0,a days 7.7083 5.8975
v pixels

days
18.429 22.455

−MI −0.5889 −0.6571

Table 5.6: Comparison of parameter initializations, optimized parameters and resulting negative MI

values.

of the domain. Based on the fractions
1
2 ,

1
3 and

3
4 of the total number of pixels 387 per dimension,

we estimate the related initial center coordinates. For the spreading time points, we apply estimates

based on the time frames when we manually observe a spreading colony for the �rst front and also

the change of texture in the colony for the second front. For well B4, the �rst front’s time point is

approximated with the �fth time frame whereas we apply the third one for well I11. We estimate the

second front to be emerging two frames later than the initial front for both wells. Moreover, we stress

that the values for the spreading time points t0,n and t0,a are given in days. The rational numbers are

due to approximating the time span between the initial recording and the given time frame in days.

The initial spreading velocity is based on the ratio between the approximated traveled distance of

the �rst front (≈ 1
3 of domain width in pixels) between the two given time points t0,n and t0,a.

We apply these initializations to get a faster convergence of our numerical solver for the optimiza-

tion problem. We include here a priori information on the spreading properties which we derived

manually by visual inspection. When thinking about processing a larger data set, we suggest to use

the same initializations for all wells, e.g. one could use initial parameter settings located in the center

of our parameter space. Alternatively, one could implement a more sophisticated approach based on

image segmentation for example to derive estimates of the di�erent parameters for each well indi-

vidually. As this increases the implementation and computation e�orts for image pre-processing, we

could also imagine to run the optimization for each well repeatedly by considering several di�erent

pre-selected initializations. The optimum is then based on the numerical solution corresponding to

the smallest negative MI value. Since we are interested in this section in a proof of concept test of our

optimization problem used to extract spreading properties for real data, we use the aforementioned

hand-crafted initializations in the further course and do not include a deeper qualitative comparison

of di�erent initialization strategies.
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Coming back to Table 5.6, we stress that we directly include the optimized parameters returned

from the numerical experiment next to the parameter initializations for better comparability. We

point out that we can observe the function value of the negative MI to drop signi�cantly when com-

paring it for the initial parameter settings and the one for the optimized parameters for both wells.

We emphasize that some of the initial guesses for the spreading properties are already matching quite

well. For example, for both wells one of the spatial coordinates is already a good estimate. While

the time points signi�cantly improved during the optimization process, the spreading velocity seems

to be already well initialized. Focusing on the improved time points for the emerging colonies, we

observe that they are smaller than the initial guesses. Plus, the di�erence between both time points

is smaller than in the initialization which corresponds to the second front moving closer behind the

�rst one and, consequently, results in a thinner ring shaped area related to normal cell regions.

We point out that both optimization procedures stopped because the relative change in each spread-

ing property is less than the step size tolerance of 10−14. Our MI function and also the gradient term

are only approximating the true, continuous functions. For this reason, we consider the optimized

parameters to be also approximating the local optima of our continuous problem. Due to the dis-

cretization e�ects we may encounter small oscillations on a very �ne scale of the function values and

cannot assume a smooth function. In line with those discretizations, we state that the gradient term

is only approximated with the given discrete convolution. Without assessing the small imperfections

of our optimization function more closely, we state that the small oscillations only correspond to

inter-pixel changes for the spatial parameters and also to di�erences of very small scale for the time

dependent spreading parameters.

In Figures 5.20 and 5.21, we present the feature images compared to the resulting classi�cation images

based on the optimized spreading parameters for each well. In the �rst three columns, the di�erent

texture features are presented, i.e., one minus the local minima, local maxima and local interquartile

ranges (cf. Section 3.3.2). In the fourth column, the classi�cation images are calculated for the di�er-

ent time points based on the optimized parameters (cf. Table 5.6) and the circular spreading model

introduced in Section 4.2. We stress here that we only include pixels within the cropping frame of a

reference well and pixels outside this frame are assigned to 0 in the classi�cation images matching

areas without any present cell colony. The temporal development is observable comparing the images

vertically as we present the images row-wise for the eight discrete time points (cf. Table 5.5).

For well B4 shown in Figure 5.20, the model captures a growing cell colony emerging close to the

upper boundary of the well and spreading circularly through the domain. Similarly, the circular

spreading is prominent for the cell population in well I11 depicted in Figure 5.21 where the colony

emerges closer to the center position of the well. For the �rst well B4 the colony’s border is captured

well. For the second well I11, it seems like the colony area is estimated too large and as though the

algorithm could not detect the border of the colony accurately enough. Here, the whole domain is

covered with classi�cation values near 2, i.e., is classi�ed as abnormal cell regions in the �nal frame

and even already in the previous frame almost the total area is covered with cell regions classi�ed

as abnormal. By manual investigation, we would expect the abnormal colony to not touch the left

boundary of the well I11 for the last frames (cf. Figure 5.19). However, we can actually observe cells

moving towards the left border when it comes to normal cell appearances already in the last two
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Figure 5.20: Features highlighting spreading in experimental data with estimated circular spreading

for well B4. Each row corresponds to one time point. In the �rst three columns the features based

on local texture information, i.e., (1 - local maxima), local minima and local interquartile ranges of

occurring grayscale values in small neighborhoods, are presented while the optimized classi�cation

images are presented in the last column.
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Figure 5.21: Features highlighting spreading in experimental data with estimated circular spreading

for well I11. Each row corresponds to one time point. In the �rst three columns the features based

on local texture information, i.e., (1 - local maxima), local minima and local interquartile ranges of

occurring grayscale values in small neighborhoods, are presented while the optimized classi�cation

images are presented in the last column.
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frames. We point out that, we observe changes in the texture features in the �rst three columns

of the last two rows when comparing them to features related to background regions as present in

the �rst three rows. Additionally, we refer to Figure 5.19 where we observe cells close to the left

boundary in the original microscopy image for the seventh time frame. We stress that for both wells

B4 and I11, it looks like the colony area for the second subcolony classi�ed close to 2 is estimated

too large. Actually, it seems as though the optimization approach fails to detect the inner bulk of the

cell colony accurately which we consider to be related to the remarkable texture change. It seems

like the algorithm approximates the inner closed part of the colony with classi�cations near 2 and

the transition regions where only few cells rather than a dense colony are present is assigned with

classi�cations near the subclass close to 1.
However, we do not focus on this shortcoming here further, since we are primarily interested in

achieving a comparability between di�erent wells rather than capturing the spreading process of

each well individually. More precisely, we are interested in an approach for model �tting applied

to the whole data set of time series for di�erent wells and thus want to exemplarily apply the opti-

mization approach to both wells simultaneously. Accordingly, we deal with the joint optimization of

both example wells in the next section and introduce measures to compare the di�erent classi�cation

results with respect to matching texture features.

5.5.2.3 Joint extraction of spreading properties for two example wells

In this section, we focus on the MI optimization when processing the two example wells B4 and

I11 jointly. This is to highlight the approach of model �tting via MI-based optimization to gain a

certain comparability between spreading colonies captured in time-lapse imaging of di�erent wells.

Considering the mutual information between feature data and classi�cation images, we aim for a

method to match texture characteristics of the di�erent wells’ time series.

We use again the intuitive parameter initializations based on manual assessments for the spread-

ing properties related to well B4 and well I11 (cf. Table 5.6) for a �rst run. When applying the

optimization to both wells simultaneously, we solve the problem directly for two sets of spreading

properties. In a more general case when we are processing n wells, for example, we would solve the

minimization problem for the �ve spreading characteristics x0,1, x0,2, t0,n, t0,a and v as vectors of length

n. This means that we are also including directly the feature data of both wells and the classi�cation

images corresponding to the current parameter settings of each well in the optimization. Again, we

solve the corresponding optimization problem with the Matlab solver fmincon [52] and apply the

upper and lower bounds as well as the linear constraint introduced in Section 5.5.2.1.

In Table 5.7, we present the initial and the optimized parameter settings for the two example wells

B4 and I11. We present in the upper part the results for the �rst test run when considering the naive,

hand-crafted initializations. For comparison e�ects, we include a second run which is based on some

prior knowledge. We recycle here the optimized parameter settings from the individual optimizations

in the previous Section 5.5.2.2 (cf. Table 5.6). Concentrating on the lower part of the table for the

second test run, we observe that the optimized parameters from the previous section are already good
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test run property parameter initializations optimized parameters

1 well B4 well I11 well B4 well I11
x0,1 129 193.5 68.998 195.09
x0,2 193.5 290.25 192.94 263.28
t0,n 7.7083 0.70833 5.6658 2.5709
t0,a 14.625 7.7083 8.4333 5.7129
v 18.651 18.429 17.825 22.258
−MI −0.4653 −0.5687

2 well B4 well I11 well B4 well I11
x0,1 68.939 195.56 68.933 195.56
x0,2 194.89 263.05 194.89 263.05
t0,n 5.5563 2.749 5.6687 2.6364
t0,a 8.5106 5.8975 8.5656 5.8366
v 17.973 22.455 17.898 22.499
−MI −0.5681 −0.5686

Table 5.7: Comparison of parameter initializations, optimized parameters and resulting negative

MI values. The �rst test run is related to hand-crafted parameter initializations whereas the sec-

ond run considers the optimized parameter settings returned from the individual optimizations in

Section 5.5.2.2.

guesses for the optimized parameters when considering the time series of well B4 and I11 jointly. We

only observed very few iterations for the solver to terminate and the di�erent spreading properties

vary only slightly when we compare the optimized settings for the two runs. As the �rst run with

the intuitive parameter initializations results in a better negative MI value, i.e., its function value is

smaller than the one of the second run, it is an open question why the second run does not converge

further. However, the optimized parameter settings di�er only very slightly when comparing the

results for the two test runs in the right part of Table 5.7. We consider that this is due to many local

extrema due to oscillation e�ects on a very �ne scale.

In this context, we want to point out that we checked the course of the values of the minimization

functional by zooming in and out near to the solution of the �rst run when moving in the positive

and negative direction of the corresponding gradient. We observed oscillations on the smaller scales.

To be more precise, we saw kinks or discontinuous jumps in the course of the function value of

magnitudes between 10−5 and 10−6 when zooming in so that we could observe only one bin entry

changing in the related joint histograms of the corresponding parameter settings. For the sake of

completeness, we state that we scaled the gradient for this by 0.1 and the components of the gradient

are by themselves already quite small for this possible local minimum with absolute values smaller

than 10−4. We do not present the oscillations of the functions visually or illustrate the changing bin

entries for the corresponding joint histograms in more detail as this is not the main focus of our

study.

In [62], the authors also present oscillation e�ects in the course of the optimization functional when
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optimizing mutual information. While in their context the oscillations correspond to grid alignment

structures when registering two medical images, we consider the oscillations in the course of our

function to relate to approximations based on certain discretization aspects. As an example we

state that this jumping e�ect of the MI function value occurs when we observe only one changing

histogram entry. Since we use a discrete molli�cation kernel to smooth the joint histogram in the

classi�cation direction, we cannot expect a continuous approximation e�ect here. We are rather

applying a discrete approximation which is naturally bound to certain approximation errors.

Without diving further into this analysis, we want to concentrate on the main theme of this section

again, namely the comparison between the classi�ed features for the texture point clouds of well B4

and well I11 when considering the separate optimization approach and the joint processing. To keep

this analysis simple, we include from the joint processing only the results of the �rst test run based

on the intuitive manual estimated parameter initialization as this run yielded the smaller negative

MI value. In line with this, we start with the functional value as a �rst measure to compare the joint

and the separate processing.

We consider the value of our optimization functional when processing both wells jointly. We take the

optimized parameters from the separate processing in the previous Section 5.5.2.2. We then calculate

the negative MI based on the features of both wells together with their classi�cation images related

to these spreading parameters. Actually, this value can be found in Table 5.7 as it is the function value

corresponding to the initialization of the second run. We compare it with the negative MI value for

the optimized spreading properties of the �rst run for the joint processing approach. Both values are

highlighted in Table 5.7 with bold font. We observe that the function value based on the parameters

corresponding to the separate run is slightly larger with −0.5681 than the function value correspond-

ing to the optimized settings of the �rst run with −0.5687. This is already a small hint that the joint

processing is the better approach to get matching classi�cations for the texture features in both wells

as this is also re�ected in the MI value based on the joint histograms of feature and classi�cation data.

Comparing solely the function values in this context is not enough to get a profound idea if the

texture features corresponding to the main classi�cation values 0 (background regions), 1 (normal

cell regions) and 2 (abnormal cell regions) are indeed matching better when applying the joint op-

timization. To motivate the comparison of the di�erent texture regions when concentrating on a

certain classi�cation value in both wells, we present example images of well B4 and I11 at two discrete

time points and show-case a small patch which is classi�ed to be in an abnormal region, i.e., with

classi�cation value near 2. We use the classi�cation images based on the optimized parameters of

the �rst test run when processing both wells jointly as these parameters correspond to the smallest

negative MI value.

In Figure 5.22, we present in the �rst row data related to well B4 at the seventh time point. In

the second row, similar data is depicted for well I11 at the sixth time point. We choose these time

points because here evolving colonies can be observed in the feature and classi�cation images easily.

Column-wise, we start with the classi�cation images at the selected time points for both wells. The

three feature images at the given time frames are presented in the next three columns. The images are

only used for motivational aspects to present the idea of matching (texture) features across di�erent

wells and time points for regions of the same classi�cation values. Later on, we include of course all
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(a) B4: Classif. image. (b) B4: Feature number 1. (c) B4: Feature number 2. (d) B4: Feature number 3.

(e) I11: Classif. image. (f) I11: Feature number 1. (g) I11, feature number 2.

(h) I11: Feature number

3.

Figure 5.22: Close-up of an example frame corresponding to classi�cation values near 2 for well B4

at time point 7 and for well I11 at time point 6. The classi�cation values are shown in scaled colors

for the interval [0, 2], the �rst two features in scaled colors for the interval [0, 1] and the third feature

in scaled colors for the interval [0, 0.5].

time frames in the comparison analysis. We point out that the images for well B4 are already shown

in Figure 5.20 in row 7 and the ones for well I11 in Figure 5.21 in row 6 with a slightly di�erent order

with the classi�cation images in the last column. We refer to the former �gures for the related color

scaling and color bars.

We highlight in Figure 5.22 a small subpatch within the colony where the classi�cation image reveals

an abnormal region. This small window is arbitrarily chosen near the center part of the colony and

serves as a motivation for the upcoming comparison analysis of similarly classi�ed texture regions.

The patch is marked with a red-frame and we present an enlarged view in the top right corner of

each image. The point of our texture analysis is to ensure that similar texture features are classi�ed

similarly for both wells. For this example, this means that the point clouds corresponding to the

selected features in the red frames of both wells need to be “close” to each other in the three dimen-

sional feature space. Based on such point clouds in the feature space, we introduce in the further

course distance measures to get a precise notion of this “closeness”. To illustrate this, we start with

the corresponding point clouds for the small red frames in Figure 5.23. In the �rst subplot, we plot

exactly those features in the red-frames which are classi�ed as abnormal colony area. For well B4,

we draw the cloud with orange points whereas the point cloud for well I11 is shown in green. In the

second subplot, we show the point clouds for all features classi�ed close to 1 for the two example

time frames for well B4 and I11.

In Figure 5.24, we visualize the feature images of well B4 (�rst row) and well I11 (second row) for

the selected time points when focusing on a small classi�cation range near 1. We observe that the
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Figure 5.23: Comparison of point clouds corresponding to selected features for the example time

points of well B4 and I11. On the left, features related to the red-framed windows in Figure 5.22 are

presented and on the right, much denser point clouds of all features classi�ed near 1 are shown (cf.

Figure 5.24).

related point clouds in the right subplot of Figure 5.23 naturally contain many more sample points

than the clouds of the �rst subplot which impedes visual inspection and manual comparisons. The

related point clouds to features classi�ed close to 2 in the selected frames are even more dense when

we do not apply the restriction to the red frame.

In Figure 5.25, we present the feature images of well B4 and I11 for the selected time points. Here, we

concentrate only on the features classi�ed close to 2. The subpatches framed in red and introduced

in Figure 5.22 are within the presented circular areas related to abnormal cell regions. As the pixel

area of the selected subdomains for well B4 and I11 are greater than the subregions to normal cell

classi�cation close to 1 presented in Figure 5.24, it is a valid conclusion to expect many more sample

points in the related point clouds.

Comparing Figure 5.24 and Figure 5.25, we observe that also for the joint processing, it seems like our

approach does not accurately enough detect two di�erent subpopulations. It rather distinguishes an

inner colony part and a transition region where cells are located more separated from each other. This

e�ect is very prominently observable in Figure 5.24, where subdomains related to features classi�ed

near 1 are shown. We recall that the width of this detected transition area — or area classi�ed near

1 — is expected to be constant due to the constant spreading velocities we consider in our model

assumptions.
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B4: feature no. 1 B4: feature no. 2 B4: feature no. 3

I11: feature no. 1 I11: feature no. 2 I11: feature no. 3

Figure 5.24: Features of well B4 and I11 which are classi�ed close to 1, i.e., which are less than
Δc
4

apart from 1, for two selected example time points as in Figure 5.22. The �rst two features are shown

in scaled colors for the interval [0, 1] and the third feature in scaled colors for the interval [0, 0.5].

B4: feature no. 1 B4: feature no. 2 B4: feature no. 3

I11: feature no. 1 I11: feature no. 2 I11: feature no. 3

Figure 5.25: Features of well B4 and I11 which are classi�ed close to 2, i.e., which are less than
Δc
4

apart from 2, for two selected example time points as in Figure 5.22. The �rst two features are shown

in scaled colors for the interval [0, 1] and the third feature in scaled colors for the interval [0, 0.5].
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Coming back to the feature point clouds, we point out that it is hard to measure the density of such

clouds or even compare the clouds for the di�erent wells by visual inspections. When we include

all time frames, we naturally expect even more sample points in the clouds and also a changing

density which further impedes manual assessments. This emphasizes the need for special metrics to

compare the point clouds. We aim for distance metrics measuring the di�erence between the point

clouds of well B4 and I11 when applying on the one hand the separately optimized parameter settings

and on the other hand the jointly optimized spreading properties. For this purpose, we start with

the Hausdor� measure to compare the feature point clouds that correspond to classi�cations near

the main classes. Before we introduce this distance measure, we �rst de�ne our notion of features

classi�ed “close” to a certain value of our main classes.

De�nition 5.108 (Feature point clouds classi�ed near main classes)

We de�ne feature point clouds based on the related classi�cation values as follows: We introduce

the main classes in the classi�cation space C as

Cmain ∶= {0, 1, 2}

which correspond originally to the interpretations of background areas, normal cell regions and

abnormal cell regions. Based on theses, we de�ne classi�cation ranges on three scales and close to

the main classes by setting

Ccm ,s ∶= [cm − s ⋅ Δc, cm + s ⋅ Δc] centered at cm ∈ Cmain

with scale values s = 1, 12 ,
1
4 and Δc being the classi�cation bin width again. For each main class

cm ∈ Cmain , this results in three intervals centered at the main class and of width 2sΔc with

s = 1, 12 ,
1
4 .

Moreover, we introduce point clouds in the feature space by

P(cm ,s), well
∶= {I1 (x , t) ∈ F ∣ I2 (p,x , t) ∈ Ccm ,s}

with (x , t) in the spatio-temporal domain ΩT , I1 being the feature image in the feature space F , I2
the classi�cation image living in the classi�cation space C and p denoting the spreading properties

for the current well.

For a brief recapitulation of the feature and classi�cation images, we refer the reader to De�nitions 3.2

and 4.4. With the de�nition for a point cloud at hand, we get nine feature point clouds in total for

well B4 and well I11 each. More precisely, we get for each main class of 0, 1 and 2 three clouds

corresponding to the di�erent scale ranges. We are mostly interested in features that are classi�ed

identically to the main classes. However, as we are using the approximation of the classi�cation

function based on a smoothed Heaviside function, we include small ranges around these main classes.

To account for e�ects based on the choice of the interval widths, we include three di�erent scale

ranges: a larger widths of twice the classi�cation tolerance size Δc for the interval, a medium width of

exactly the bin width Δc and a small width of only one half the classi�cation tolerance Δc. Depending

on this width, we neglect certain features in the point cloud comparisons which are located in

transition regions between the main classes and the selected classi�cation ranges.
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In preparation of the point cloud comparisons, we introduce the Mahalanobis distance. Our de�nition

is inspired by equation (10) in [16].

De�nition 5.109 (Mahalanobis distance)

For a feature f ∈ F and a point cloud P in the feature space, we de�ne the Mahalanobis distance

between the feature and the point cloud by

dM (f , P) ∶=
√

(f − ḡ) S−1 (f − ḡ)T

where S denotes the covariance matrix and ḡ = 1
∣P ∣ ∑f ∈P f is the mean value of the point cloud P

with cardinality ∣P ∣.

In our context, we measure the distance between a feature f ∈ F and a point cloud de�ned as in De�-

nition 5.108. To compare clouds near the main classes for the separate and joint processing approach,

we start with the Hausdor� distance as a �rst distance criterion. We introduce this measure oriented

on De�nition 2 in [36] and use the Mahalanobis distance as the inner distance measure.

De�nition 5.110 (Hausdor� distance for point clouds)

We introduce the Hausdor� distance for two point clouds P1, P2 in the feature space F as

DH (P1, P2) ∶= max{max{dM (f , P2) ∣ f ∈ P1} ,max{dM (g, P1) ∣ g ∈ P2}}

with dM denoting the Mahalanobis distance of the feature f ∈ P1 to the point cloud P2 and between

g ∈ P2 and the point cloud P1, respectively.

classi�cation range width of range optimization for wells DH (P(cm ,s), B4
, P(cm ,s), I11

)

cm = 0 cm = 1 cm = 2

Ccm ,s=1 Δc = 1
4 separate 50.2107 11.4709 6.4483

(large) joint 51.3464 11.8405 6.4702

Ccm ,s= 12
1
2Δc =

1
8 separate 52.8624 10.7763 6.3944

(medium) joint 53.2339 10.6472 6.4138

Ccm ,s= 14
1
4Δc =

1
16 separate 53.4131 8.4489 6.3499

(small) joint 53.8514 8.5840 6.3657

Table 5.8: Hausdor� distances comparing joint feature point clouds of well B4 and well I11 of the

separate wells’ optimization and the joint optimization run. Point clouds are generated for three

di�erent classi�cation ranges centered at the main classi�cation values 0, 1 and 2.

We show the Hausdor� distances between the feature clouds of well B4 and well I11 for the separate

and the joint processing approach in Table 5.8. We concentrate on features corresponding to the

previously introduced classi�cation ranges near the main classes (cf. De�nition 5.108). We observe

that the distances for the classi�cation ranges related to the background area (main class 0) are

signi�cantly higher than for the other two classes with values larger than 50while for the normal cell
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regions the distances are approximately 10 and for the abnormal cells are about 6. This is due to more

outlier features for the background regions. This measure supports the fact that the inner bulk of a

cell colony is detected with highest accuracy because the measure is here smallest. We stress that in

this interpretation, we consider classi�cation 2 to relate to the inner bulk and classi�cation 1 to mark

transition regions where only few cells are present but are more detached from each other rather

than identifying normal and abnormal cell regions with the classi�cation values 1 and 2. Recalling

Figures 5.20 and 5.21, we observe that this interpretation might be more appropriate as interpreting

the second class as abnormal cells. We point out that if we had performed the classi�cation manually,

we would have drawn a circle for texture features corresponding to abnormal regions much smaller

than the one present in the previews based on the optimization results. Instead of focusing on this

re�ection on accurate classi�cations and model validation here, we return to the comparison of the

distances between the point clouds when considering the two processing approaches.
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Figure 5.26: Comparison of feature point clouds corresponding to speci�c classi�cation ranges using

the Hausdor� distance. Bar plots for the di�erent classi�cation ranges highlight the small di�erences

comparing the separate and joint processing approach.

For a better visual inspection of the distance measures comparing the two processing approaches, we

present in Figure 5.26 bar plots re�ecting the stated Hausdor� measures from Table 5.8. The three

subplots correspond to the three di�erent classi�cation ranges. In each subplot, we compare the bars

corresponding to the Hausdor� distance for the separate optimization approach (blue bars) with those

for the joint processing (red bars). On the horizontal axis we show three subgroups to compare the

distances for the three main classi�cations. The plots and also the corresponding values in Table 5.8
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show that the di�erences for the main class 2 are marginal for all three classi�cation ranges. Thus,

we decide to neglect them in the evaluation of the di�erent approaches. For the classi�cation value

1, the di�erences are still small. However, what is more striking is that the bars for the largest and

the smallest classi�cation range for the joint processing (red) are exceeding the bars for the separate

optimization (red). This trend is more prominent for the bars corresponding to the background class

0. Here, the red bar is for all three classi�cation ranges exceeding the blue one. This is contrary to

our expectation that the distance between the point clouds of well B4 and well I11 should be smaller

for the joint processing compared to the separate processing. However, the di�erences turn out to

be marginal in general in this comparison.

The Hausdor� measure was an initial distance measure to compare the feature point clouds. When

dealing with real data, we can expect in each classi�cation region outlier features as the present colony

is not spreading accurately in a circular way. Since the concentric spreading model is merely an

approximation of the growth process observable in the microscopy images, it is a natural conclusion

that in this sense extracted texture features might get “misclassi�ed” as the transition areas between

di�erent subclasses are not always particularly well pronounced. If we then consider the maximal

values of the Mahalanobis distances as it is the case in the de�nition of the Hausdor� measure (cf.

De�nition 5.110), it follows directly that this measure preferably captures the distances of outlier

features of one cloud compared to the other cloud.

As a remedy of this e�ect, we consider to use averaged Mahalanobis distances instead of the maximal

Mahalanobis distances as implemented in the Hausdor� distance. Thus, we now introduce another

distance measure based on the averaged Mahalanobis distance of one feature to the other point

cloud to compare the point clouds again. The Chamfer distance includes exactly this e�ect when

considering again the Mahalanobis distance as the inner distance measure. Our de�nition is inspired

by the distance measure de�ned in equation (1) in [26]. In the referenced paper, the measure is used

to compare features of one image with features of a template image. When adapting the measure to

our context of feature point clouds, it reads

DC (P1, P2) =
1
∣P2∣
∑
f ∈P1

dM (f , P2)

with ∣P1∣ and ∣P2∣ denoting the cardinality of the point clouds P1 and P2. Compared to this original

Chamfer distance, we introduce two modi�cations. Firstly, we use the median Mahalanobis distance

instead of the averaged one to account even more for outlier features described above. Secondly,

we introduce a certain symmetry in the distance measure by calculating this median Mahalanobis

distance for features of point clouds for well B4 compared to the clouds corresponding to well I11 and

vice versa. We apply this as a balancing e�ect for point clouds which may vary in their cardinality.

This results �nally in the following modi�ed Chamfer measure:

De�nition 5.111 (Modi�ed Chamfer measure for point clouds)

We introduce a symmetric version of the Chamfer distance for two point clouds P1, P2 in the feature

space F by using the median Mahalanobis distances as follows

DC (P1, P2) ∶=
1
2
median{dM (f , P2) ∣ f ∈ P1} +

1
2
median{dM (g, P1) ∣ g ∈ P2}
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considering all features f ∈ P1 in relation to point cloud P2 and vice versa all features g ∈ P2 in

relation to point cloud P1.

With this de�nition at hand, we once more calculate distance measures between the feature point

clouds of well B4 and well I11 corresponding to speci�c classi�cation ranges centered at the main

classes. In Table 5.9, the distance measures are given for the di�erent processing approaches (separate

vs. joint processing). At �rst glance, we see that the distances are now of magnitude around 1 and are

thus much smaller than the Hausdor� distances before. In particular, we observe that the value for

the background region (main class cm = 0) is now for each row the smallest. This is inline with our

assumption that the background region corresponds to smooth texture regions without signi�cant

changes in the local maxima, minima or interquartile ranges. This highlights that this measure is

more appropriate to compare our feature point clouds.

classi�cation range width of range optimization for wells DC (P(cm ,s), B4
, P(cm ,s), I11

)

cm = 0 cm = 1 cm = 2

Ccm ,1 Δc = 1
4 separate 0.9182 1.3713 1.5596

(large) joint 0.9254 1.2949 1.5604

Ccm , 12
1
2Δc =

1
8 separate 0.9329 1.4371 1.5764

(medium) joint 0.9389 1.3212 1.5764

Ccm , 14
1
4Δc =

1
16 separate 0.9425 1.4665 1.5965

(small) joint 0.9501 1.3656 1.5953

Table 5.9: Modi�ed Chamfer distances comparing joint feature point clouds of well B4 and well I11

of the separate wells’ optimization and the joint optimization run. Point clouds are generated for

three di�erent classi�cation ranges centered at the main classi�cation values 0, 1 and 2.

Based on the listed distance values in Table 5.9 and the plots in Figure 5.27, we observe that for all

three classi�cation ranges the distance measures do not vary much for the background class 0 and

for the abnormal classi�cations near 2. Only for the classi�cations close to 1, we observe bigger

di�erences in the bars when comparing the separate approach (blue bars) with the joint processing

(red bars). Even more, we see that indeed the distances between the point clouds of well B4 and well

I11 di�er less for the joint processing approach. This is in line with our expectation that it is better

to process the wells jointly when aiming for similar texture regions of both wells to be classi�ed alike.

Finally, we point out that even with this modi�ed Chamfer distance the di�erence between the

two processing approaches when considering both wells individually or jointly is not very large. To

support this, we draw the reader’s attention again to the optimized parameter settings. We reca-

pitulate the optimized spreading properties for the separate and joint approach used in the above

comparisons in Table 5.10. For each well’s spreading properties, we observe only small di�erences

when comparing the separate and the joint processing approach. The largest di�erence is observable

for the second spatial coordinate of well B4 for which we observe a shifting e�ect of about two pixels.

All other spatial coordinates are di�ering less than half a pixel. Also the starting time points t0,n and
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Figure 5.27: Comparison of feature point clouds corresponding to speci�c classi�cation ranges using

the Chamfer distance. Bar plots for the di�erent classi�cation ranges highlight that the di�erences

between point clouds are most prominent for the classi�cation ranges close to 1 when comparing

the separate and the joint processing approach.

t0,a are di�ering less than 0.2 days which is indeed small as well when considering the spreading

velocities of about 18 pixels per day for well B4 and approximately 22 pixels per day for well I11.

The spreading velocities themselves di�er less than 0.2 pixels per day when comparing the di�erent

optimization approaches. All in all, this shows that the extraction of spreading properties is working

already quite robustly when considering only one well’s time series. We justify this based on the fact

property separate processing joint processing

well B4 well I11 well B4 well I11
x0,1 68.939 195.56 68.998 195.09
x0,2 194.89 263.05 192.94 263.28
t0,n 5.5563 2.749 5.6658 2.5709
t0,a 8.5106 5.8975 8.4333 5.7129
v 17.973 22.455 17.825 22.258

Table 5.10: Optimized parameter settings when considering the separate processing and the joint

processing of the two example wells B4 and I11.

196



5.5 Numerics of MI-based optimization

that we have already for each individual well a huge amount of feature vectors available to estimate

the spreading properties. In fact, we have for each time frame a pixel grid of 387 × 387 pixels where

we extract 88, 076 pixels which are located within the cropping frame of a reference well domain

(cf. Figure 5.28). Considering then eight time frames for each well, we have 704, 608 feature vectors

at hand for the MI-based optimization per well’s time series. Because this results already in a huge

data set for optimizing the spreading parameters for each well, we guess that the di�erence between

matching feature point clouds would be more pronounced if we had far less features at hand, e.g.,

only two time frames per well, for the optimization process.
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Figure 5.28: Visualization of downsampled cropping frame with the white region corresponding to

the area within the well’s frame and the background area shown in gray. Instead of highlighting each

pixel individually, only intermediate grid lines are presented.

In the end, we comment on the fact that the di�erences of the measured Chamfer distances for the

point cloud comparison are most prominently observable for the classi�cation ranges close to 1 (cf.

Figure 5.27). In Figures 5.24 and 5.25, we observe that the moving colony front of classi�cations close

to 1 is rather thin compared to the inner colony bulk classi�ed close to 2. In these �gures, we of

course only show one example time point for each well. However, as we use a constant spreading

velocity in our model, we infer that in total we expect less features to be classi�ed closed to 1 than

to the other two main classes 0 and 2 for the example wells B4 and I11. Exemplarily, we state the

number of features for the point clouds of the di�erent classi�cation ranges for the spreading based

on the optimal parameter settings for the joint processing of the wells in Table 5.11. For each scale

of the classi�cation ranges, the number of feature vectors considered to be classi�ed close to 1 is

signi�cantly smaller than for the other two classes. When now considering only small changes of the

spreading parameters as for example by applying the spreading based on the optimized properties

from the individual runs, this results in changes of the point clouds as well. These small changes in

the point clouds result in more signi�cant changes of the distance measure based on the median Ma-

halanobis distances for the class 1 related to the signi�cantly smaller feature clouds. This is because

the greater point clouds for the other two classes are considered to be more robust for small shifting
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e�ects in the underlying spreading parameters and possible outlier features. Eventually, when only

few pixels are changing the classi�cation ranges, the variance of smaller point clouds would be more

a�ected than the one for larger point clouds.

classi�cation range width of range well main classes

0 1 2

Ccm ,1 Δc = 1
4 B4 535, 540 18, 696 66, 902

(large) I11 370011 39, 885 197, 718

Ccm , 12
1
2Δc =

1
8 B4 52, 4139 9, 740 60, 028

(medium) I11 359, 541 23, 679 189, 657

Ccm , 14
1
4Δc =

1
16 B4 513, 118 4, 918 53, 703

(small) I11 350, 739 12, 761 182, 260

Table 5.11: Number of feature vectors in point clouds for wells B4 and I11 when considering the

di�erent classi�cation ranges.

To summarize our �ndings from the comparison of the joint and separate processing approaches,

we point out that in the end the results do not di�er a lot. It turns out that the extracted spreading

properties for both example wells are quite robust when comparing both approaches with respect

to the extracted spreading parameters, their MI values and when considering the point cloud anal-

ysis. We traced this back to having several time frames available which leads to a high number of

classi�cation and feature value combinations to generate the joint histograms from. This results in

our recommendation to prefer the separate processing approach over the joint one.

Our analysis for the real AstraZeneca data revealed a shortcoming of our applied optimization prob-

lem. The maximization of the mutual information between our classi�cation images based on a

concentric spreading model and the generated feature images based on simpli�ed texture charac-

teristics failed to detect reliably the second subcolony considered to represent signi�cant cellular

texture changes within the colony. It is an open research question to improve for example the feature

images to facilitate the di�erentiation between di�erent subcolonies. Still, we emphasize that we can

already derive spreading properties capturing the total cell colony’s growth process per well with

respect to estimates for its spreading velocity and its spatial and temporal origin when assuming a

concentric spreading phenomenon. This highlights the major bene�t of our approach for biologists

in the pharmaceutical �eld.

For a �nal re�ection on the given model in combination with the AstraZeneca data, we conclude the

main insights of this Section 5.5.2 in the next subsection.

5.5.2.4 Conclusion of model fi�ing for AstraZeneca data

For a conclusion on the whole Section 5.5.2 on MI-based optimization for AstraZeneca data to deter-

mine spreading properties for a concentric growth model based on texture information, we highlight
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5.5 Numerics of MI-based optimization

the most important aspects again.

In the previous experiments on extracting spreading information for two example wells, the opti-

mization for each well individually already resulted in robust properties di�ering only slightly from

spreading information when processing both wells jointly. This is why we suggest to handle each

well individually which allows to include parallel well processing for improving computation times.

In addition, we applied the joint approach only on two example wells. To process the whole data set,

considerably more memory capacity would be required and the resulting optimization problem would

grow signi�cantly. For clari�cation, we recall that on each plate we could monitor 24×16, i.e., in total

384, wells to capture spreading colonies. With the concentric spreading model, we are optimizing

for �ve spreading parameters per well. Consequently, if each well is occupied by a cell colony, the

joint optimization approach for a whole well plate results in an optimization for 5 × 384 = 1920 pa-

rameters. Considering then again almost 90, 000 pixels for each time point within the down-sampled

wells domain, the data to be processed indeed needs a lot of memory space and we suggest to test

an optimization on this scale on a high performance cluster. In the end, we recommend for future

studies to apply the individual approach as long as we have several time frames in which the growing

colony is visible.

Moreover, we underline that we originally introduced the simpli�ed concentric spreading model

for two di�erent subcolonies aiming for detecting an inner bulk of cells with signi�cantly di�ering

texture properties. As it turns out, our optimization does not capture accurately enough this region.

Rather than determining a normal cell population and another one with di�ering texture features, it

looks like our model succeeds to capture a circular colony region which is classi�ed with 2 and the

other cell classi�cation close to 1 corresponds to a transition region between the cell colony and the

background area. Of course, one could consider now a model extension or think about strategies to

include prior knowledge to ensure that the optimization indeed detects the prominent texture regions

occurring near the heart of some colonies and classi�es them close to 2 and also preserves another

subcolony classi�ed with approximately 1 which captures cells with “normal” appearance. However,

this lies beyond the scope of this thesis and might rather serve as a starting point for future work.

Furthermore, the concentric spreading model might not well enough capture the original spreading

of the investigated cancer cell populations. We stress that we applied a simpli�ed spreading model

to test the MI-based model �tting approach in our studies. In our simple model, we enforce that both

subcolonies spread with the same and constant spreading velocity and also have the same origin.

Of course, it is possible that the origins di�er. In an improved concentric model, one could ask for

the origin of the second colony to be within the �rst subcolony and also time-dependent spreading

velocities might be possible or at least the consideration of two di�ering constant velocities might

be bene�cial. When considering two �xed but not necessarily identical spreading velocities of the

two di�erent colony fronts, one could ask for the second colony to be spreading slower than the �rst

one to prevent the second front from overtaking the �rst one.

Of course, many di�erent adjustments are possible to extend the simple concentric spreading model.

Instead of arguing for more improvements, we remind the reader on the originally introduced PDE

model capturing two di�erent subcolonies by including di�usion and reaction terms (cf. Section 4.1).

So �nally, we recommend to test model �tting based on the given texture data by considering a

more advanced model like this PDE model. Similar to the classi�cation images based on adding two
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concentric spreading areas via an approximated Heaviside function, we suggest to generate similar

classi�cation images by combining the concentrations of the di�erent subcolonies. The MI-based

optimization should then lead to more sophisticated spreading information on di�usivity of “normal”

cells as well as reproduction and mortality rates to capture the transition between “background“ vs.

“normal cells” and “normal cells” vs. “abnormal cells”. Without diving deeper into this topic, we state

that for a numerical solution of the system of PDEs one would need to discretize the occurring tem-

poral and spatial derivatives of the di�erent cell concentrations �rst, before aiming for a solution of

the more advanced spreading properties like the di�usivity as well as the mortality and reproduction

rates.

With this we end the chapter on MI-based model �tting. In the upcoming �nal chapter of this

thesis, we summarize the �ndings of this work. Additionally, we brie�y comment on remaining

challenges and give an outlook on possible future studies.
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Conclusion & Outlook

In the �nal chapter of this dissertation, we re�ect on the applied optimization approach for extract-

ing spreading properties of developing cell colonies from microscopy data. Before we discuss some

di�culties and challenges related to our MI-based model �tting, we highlight particular bene�ts and

the potential we see in the developed concept.

We introduced a novel approach for model �tting by using texture information extracted from phase

contrast images together with classi�cation images based on an underlying model de�nition. By max-

imizing the mutual information between the feature images and classi�cation images, we were able to

extract the related spreading parameters numerically. In Section 5.5, we showcased the applicability

of our approach for a toy example and also for real world data provided by AstraZeneca. For the

second case, we also observed that our approach proved to be robust enough to match similar texture

regions when comparing di�erent wells without requiring joint processing and optimization. We link

this e�ect to the fact that we already have eight discrete time points for each well which results in a

great deal of feature vectors and related classi�cation values when considering almost 90, 000 pixels

in the down-sampled well domains per time stamp (cf. Section 5.5.2.4). As long as we can assume that

the colony is present in several time points, we consider the MI-based approach to already work well

for an individual well without considering joint processing of several wells’ time series. We stress

that this comparability was given at least for the two selected example wells B4 and I11. As tumor

cells by themselves are already quite di�erent to each other, we do not claim that this comparability

is true for all wells in the data set. If the spreading phenomenon di�ers a lot from the example wells,

or more precisely, if the extracted texture features are quite di�erent, this inter-well comparability

is not necessarily given. However, in these cases the joint model �tting could be more bene�cial

to ensure that similar texture regions are classi�ed alike. Again, we point out that we chose two

arbitrary wells for which colony growth was manually observed and which also reveal a pronounced

change in texture towards the later time points and in the center part of the colony. As a �rst proof

of concept for the introduced model �tting approach for real data, we consider this as a valid baseline.

As already pointed out in the conclusion of the previous chapter, our approach does not reliably

identify the expected second subcolony with the striking texture changes. In this context, we want

to elaborate on possible improvements.

Firstly, we suggest to incorporate the model parameter "0 determining the steepness of the approxi-

mated Heaviside function (cf. Section 4.2) into the optimization. We think that it could be bene�cial
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to optimize this model parameter simultaneously with the other spreading parameters because with

changing steepness we get wider transition areas between the main classi�cation values which in

turn facilitate the identi�cation of transition areas in changing texture regions. Of course, in this

setting it might also be important to allow two di�erently “steep” transition areas: One between

background regions and the �rst cell colony’s region (“normal” cells) versus another one between the

normal cell colony and the second subcolony (“abnormal” cells). In this sense, we suggest for more

�exibility to also allow varying spreading velocities for the two estimated colony fronts, plus even

di�erent colony origins. We already elaborated on this in the conclusion of the previous chapter. We

recapitulate that it is questionable that both colony fronts indeed have the same spreading velocity

and also the same origin. Consequently, we suggested to allow di�erent spreading velocities and

origins while still ensuring that the second front starts o� within the �rst colony’s area and also that

its front travels behind the �rst one. In the same context, we mention the possibility of another model

adaption by allowing more than two subcolonies — or even only one colony at all. The latter one

could accelerate the numerical solution as long as our approach fails to detect reliably the inner bulk

of cells with the remarkable texture properties. Even more, we stress that with a �exible steepness

parameter "0, it would still be possible to track the transition areas as it is currently the case with the

colony areas classi�ed close to 1.

Instead of diving deeper into possible model extensions for the simpli�ed model, we remind the

reader that we initially introduced a system of partial di�erential equations to model the colony

spreading based on two di�erent cell concentrations. For the two cell groups related to the two

concentrations, we considered speci�c spreading properties, e.g., that only the “normal” cells migrate

through the spatial domain and could perform mitosis, i.e., divide into daughter cells. In contrast to

this cell group, the other one for the “abnormal” cells was considered to be immobile and could not

perform mitosis. The only reaction term considered for this subgroup was based on the idea that they

only develop due to a kind of mortality term for the �rst subcolony. So this reaction term modeled

the transition between the two subgroups. From a biological perspective, it would be even better to

solve an optimization problem revealing the related di�usion coe�cient, mortality and proliferation

rates in comparison to our simpli�ed, naive concentric spreading model. This is why we suggest to

concentrate on model �tting for such a PDE model in a further step to allow the extraction of more

sophisticated spreading properties.

Before we elaborate on future studies following a di�erent path, we emphasize that we performed

a thorough and profound analysis of the considered optimization problem. We proved various con-

vergence statements when considering di�erent discretization stages we were facing when aiming

for a numerical solution. Moreover, we proved statements dealing with the existence and the conver-

gence of minimizers (cf. Theorems 5.97 and 5.98). Without these statements, we would not attach

such importance to the numerical results and their signi�cance would be questionable. Anyway, we

want to point out the relevance of a thorough mathematical analysis. We highlight that a profound

analysis would be required again if the optimization problem for extracting spreading information

was changed fundamentally, e.g., by applying a di�erent approach than the MI-based one.

In Section 3.3, we introduced the feature images used in our optimization approach and which are
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based on local texture information. Here, we used quite basic texture features with the local minimal

and maximal gray values as well as local interquartile ranges. In future studies, one could incorpo-

rate more advanced texture descriptors like for example local entropy values or even test features

extracted by a convolutional neural network. Anyway, we suggest to include more biological input to

validate interpretations related to di�erent texture features. In the scope of this thesis, we only used

a basic di�erentiation into “normal” and “abnormal” colony areas. However, we already indicated in

Section 3.1 that additional imaging could facilitate a more profound analysis of the di�erent colony

areas. For this reason, we suggest to incorporate staining of cell nuclei to test cell counting based

on the prominent nuclei in the new color channel. By this, we could validate the interpretation of

signi�cant changes in cell densities when we observe the changing texture in the microscopy images.

If a second color channel was accessible, we could imagine a staining which is only expressed in

living cells. With this further color channel, we could even di�erentiate between living cells and

apoptotic cells and test the hypothesis of a bulk of cell debris in the center part of some colonies in

which we encounter the distinct texture changes.

If we were to analyze the spreading phenomena of the cancer cells further and had another color

channel available, we would suggest an enhanced two-step approach. First, we propose to generate

a di�erent version of a feature image by including the new insights based on the color channel. For

example, we can imagine to generate a feature image based on nuclei counting and thresholding in

the color channel images to incorporate information on cell densities in our optimization approach. In

a second step, we would apply the MI-based model �tting again to optimize spreading characteristics

related to a classi�cation image again which is based on a mathematical model.

Since this approach, or more precisely, the �rst step in this approach would fundamentally change the

experiment’s design and lead to extensively more imaging as well as more pre-processing to segment

and count cell nuclei in the new color channel, we recommend another improvement which only

requires a new color channel to allow nuclei counting for some example colonies which contain the

di�erent texture regions. For these color channel images, we would perform again nuclei counting

to estimate cell densities �rst. Then, we could use this information to train a neural network on

estimating cell densities based on local texture regions. By using small image patches with local

texture information in combination with the information on cell densities in the related patch from

the color channel, we could provide our own training data and thereby overcome the current lack of

appropriate, labeled training data. As a conclusion, we consider that having time-lapse color channel

images for only a few wells at hand could already be enough to train the network for good cell density

estimates as we are breaking down the images into very small patches anyway and, consequently, in-

creasing the training data by this signi�cantly. In the end, we could generate with the neural network

new feature images which estimate local cell densities. We suggest to derive spreading properties

with the help our our implemented MI-based model �tting approach in a next step by including these

feature images.

Nowadays, machine learning and especially neural networks are getting more popular in many dif-

ferent research �elds connected to imaging data. Testing a neural network-based approach for the

given cell investigation problem is clearly out of the scope of this thesis. Still, we recommend to

consider a joint approach of including a neural network and the MI-based model �tting as described

in the last paragraph, eventually. With this we could incorporate the power of neural networks to
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translate texture information to cell density estimates, plus include the mathematically profoundly

analyzed MI-based optimization problem for the extraction of spreading characteristics of growing

cell populations. As this seems as a quite promising approach, we suggest to de�nitely consider this

in upcoming future studies.

All results of this thesis considered, we state that the MI-based model �tting proves to be a powerful

approach to derive spreading information directly from imaging data. While we focused in our work

on basic texture descriptors and a simpli�ed spreading model to evaluate the novel approach, we

see for both concepts potential future enhancements. We emphasize that we are already able to

reveal new insights on the cell colony spreading with our framework as shown in the numerical test

scenarios.
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List of Symbols

Model and data parameters

C = ℝ classi�cation space

F = ℝn feature space which is in our setting F = ℝ3

F × C joint feature-classi�cation space

F
′

reduced feature space neglecting features related to very low

probabilities when considering the feature image mapping

in�uenced by noise I d

1

C
′

reduced classi�cation space which is a subset of [0, 2] and

which refers to supp (pC) or, equivalently, to the image of

the classi�cation mapping I2
Ω spatial domain

L length of spatial domain

W width of spatial domain

[0, T ] temporal domain

{t1,… , tnT } discrete time points

ΩT spatio-temporal domain

Δt temporal step width

h pixel width and height

Ωh
discretized spatial domain

p̃, Ωp̃ pixel in discretized spatial domain

Ω1 unit domain (0, 1)
Ωh scaled domain, h ⋅ (0, 1)
nT number of discrete time points in time interval

np̃ number of pixels in discretized spatial domain

I1 feature image

I h

1 discretized feature image living on pixel grid

Ī1 feature image constantly extended for probability space

I d

1 disturbed feature image

(I d

1 )
−1

inverted disturbed feature image

Î d,h

1 discretized disturbed feature image (condensed in an array)

I2 classi�cation image

I h

2 discretized classi�cation image living on pixel grid

Î h

2 discretized classi�cation image (condensed in an array)

I image mapping based on feature and classi�cation images

I h
discretized image mapping with feature and classi�cation

images based on a pixel grid of width h

v speed of traveling wave front, spreading velocity
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Model and data parameters

t0,n starting time point of spreading normal cells

t0,a starting time point of spreading abnormal cells

x0 colony center, starting location of spreading cells

p condensed model parameters (x0, t0,n, t0,a, v)
p" approximation of model parameters, e.g., used to denote

a sequence converging to a parameter set p with p" =
(x0," , t0,n," , t0,a," , v")

P parameter space

pN probability density function for Gaussian noise

PN probability measure for Gaussian normal distribution

PΩT uniform probability distribution related to spatio-temporal

domain ΩT

pF probability density function for features

PF probability measure in feature space F

Pd

F
probability measure in feature space F considering cor-

rupted feature images due to additive Gaussian noise

pd

F
probability density function for occurring features corrupted

by additive Gaussian noise

pd,"
F

probability density function for occurring features corrupted

by additive Gaussian noise when considering discretized set-

ting

pd,"̃
F

pointwise converging probability density function for occur-

ring features corrupted by additive Gaussian noise when con-

sidering discretized setting

pC probability density function for occurring classi�cations

p"
C

probability density function for occurring classi�cations

when considering discretized setting

p"̃
C

pointwise converging probability density function for occur-

ring classi�cations when considering discretized setting

PC probability measure in classi�cation space C

pF×C probability density function for occurring feature-

classi�cation combinations

PF×C probability measure in joint space F × C

Pd

F×C probability measure in joint space F × C considering cor-

rupted feature images due to additive Gaussian noise

pd

F×C probability density function for occurring feature-

classi�cation combinations considering corrupted feature

images due to additive Gaussian noise

pd,"
F×C probability density function for occurring feature-

classi�cation combinations considering corrupted feature

images due to additive Gaussian noise when considering

discretized setting
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pd,"̃
F×C pointwise converging probability density function for oc-

curring feature-classi�cation combinations considering cor-

rupted feature images due to additive Gaussian noise when

considering discretized setting

HF histogram in the feature space F

HC histogram in the classi�cation space C

HF×C histogram in the joint space F × C

Hh

F
histogram in the feature space F for discretized feature im-

ages I d,h

1

Hh

C
histogram in the classi�cation space C for discretized classi-

�cation images I h

2

Hh

F×C histogram in the joint spaceF ×C for discretized feature and

classi�cation images I d,h

1 and I h

2

H "1
F×C smoothed histogram in the joint space F × C

HF discrete histogram for features F as an array when consid-

ering binned space

HC discrete histogram for classi�cations C as an array when

considering binned space

HF×C discrete histogram for feature-classi�cation combinations

F × C as an array when considering binned space

ĤF discrete histogram measure in the feature space F when

considering binned space

ĤC discrete histogram measure in the classi�cation space C

when considering binned space

ĤF×C discrete histogram measure in the joint space F × C when

considering binned space

Ĥ "1
F×C discrete histogram measure in the joint space F × C when

considering binned space and with smoothing molli�cation

along C

Ĥh

F×C discrete histogram measure in the joint space F × C for dis-

cretized feature and classi�cation images I d,h

1 and I h

2

Ĥh

C
discrete histogram measure in the classi�cation space C for

discretized classi�cation images I h

2

Ĥh

F
discrete histogram measure in the feature space F for dis-

cretized feature images I d,h

1

Ĥh,"1
F×C smoothed discrete histogram measure in the joint spaceF×C

for discretized feature and classi�cation images I d,h

1 and I h

2

Ĥh,"1
C

smoothed discrete histogram measure in the classi�cation

space C for discretized classi�cation images I h

2

ℎF histogram density function in the feature space F

ℎC histogram density function in the classi�cation space C

ℎF×C histogram density function in the joint space F × C
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ℎ̂F piecewise constant discrete histogram density function in

the feature space F

p̂F piecewise constant probability density function in the feature

space F

ℎ̂C piecewise constant discrete histogram density function in

the classi�cation space C

p̂C piecewise constant probability histogram density function in

the classi�cation space C

ℎ̂F×C piecewise constant discrete histogram density function in

the joint space F × C

p̂F×C piecewise constant probability density function in the joint

space F × C

ℎ̂h

F
piecewise constant discrete histogram density function in

the feature space F for discretized feature images I d,h

1

ℎ̂h

C
piecewise constant discrete histogram density function in the

classi�cation space C for discretized classi�cation images I h

2

ℎ̂h

F×C piecewise constant discrete histogram density function in the

joint space F × C for discretized feature and classi�cation

images I d,h

1 and I h

2

ℎh

F
histogram density function in the feature space F for dis-

cretized feature images I d,h

1

ℎh

C
histogram density function in the classi�cation space C for

discretized classi�cation images I h

2

ℎh

F×C histogram density function in the joint space F × C for dis-

cretized feature and classi�cation images I d,h

1 and I h

2

ℎ̂"1
F×C smoothed piecewise constant discrete histogram density

function in the joint space F × C

ℎ̂h,"1
F×C smoothed piecewise constant discrete histogram density

function in the joint space F × C for discretized feature and

classi�cation images I d,h

1 and I h

2
○
HF discrete histogram for features F as an array based on pixel

counting

○
HC discrete histogram for features C as an array based on pixel

counting

○
HF×C discrete histogram for features F × C as an array based on

pixel counting

Δc binning width for the classi�cation space C

Δf binning width for the feature space F

rC radius function living in the classi�cation space C

rF radius function living in the feature space F

c function determining the classi�cation value in C based on

a radius
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Abbreviations

f function determining the feature value in F based on a ra-

dius

c̃ function determining the classi�cation value in C based on

a feature value

f̃ function determining the feature value in F based on a clas-

si�cation value

Other symbols

⋅" subscript " indicating a sequence or a disturbance of original

parameter

⋅h superscript h indicating a discretization based on a discrete

step width h

1n×n identity matrix of dimenions n × n
1set indicator function of a set which is denoted in the subscript

ℝ>0 positive reel numbers

ℝ+ non-negative reel numbers

Abbreviations

MI mutual information

PDF(s) probability density function(s)

NoMADS Program on “Nonlocal Methods for Arbitrary Data Sources”

funded by the European Union

A1,A2,...,P15 Alpha-numeric column- and row-wise labelling for di�erent

wells on a well plate

DNN deep neural network

CNN convolutional neural network

ODE(s) ordinary di�erential equation(s)

PDE(s) partial di�erential equation(s)

PDG Partielle Di�erentialgleichung(en)

SIR-model an epidemic model to describe subpopulations consisting of

susceptible (S), infective (I) and recovered (R) people
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