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Abstract

In this thesis, we develop stable and efficient Petrov-Galerkin discretizations for two
different transport-dominated problems: first order linear transport equations and a
kinetic Fokker-Planck equation. Based on well-posed weak formulations on the contin-
uous level, the core of our numerical schemes is the choice of the discrete spaces for the
Petrov-Galerkin projection. By first defining a discrete test space and then computing
a problem-dependent discrete trial space such that the spaces consist of matching sta-
ble pairs of trial and test functions, we obtain efficiently computable uniformly stable
discrete schemes.

For first order linear transport equations, we use an optimally conditioned ultraweak
variational formulation. Then, the optimally stable discrete trial space results from the
chosen discrete test space by an easy-to-compute application of the adjoint (differential)
operator. For the kinetic Fokker-Planck equation, we derive a favorable lower bound for
the inf-sup constant on the continuous level with methods inspired by well-posedness
results for parabolic equations. Here, the stable discrete trial space is constructed from
the test space by the application of the kinetic transport operator and the inverse
velocity Laplace-Beltrami operator, so that the specific basis functions can be efficiently
computed by low-dimensional elliptic problems. In both cases we thereby guarantee the
discrete inf-sup stability with the same inf-sup constant as on the infinite-dimensional
level independently of the chosen test spaces.

This guaranteed stability is especially beneficial when considering model reduction
by the reduced basis method for parametrized first-order transport equations. Using
our discretization strategy, we build a reduced model consisting of a fixed reduced test
space generated by a greedy algorithm and parameter-dependent reduced trial spaces
depending on the test space. Since the stability is inherently built into the method, we
can avoid additional stabilization loops within the greedy algorithm, so that we obtain
efficient reduced models by an easily implemented procedure.

Zusammenfassung

In dieser Arbeit entwickeln wir stabile und effiziente Petrov-Galerkin-Diskretisierun-
gen fiir zwei verschiedene transportdominierte Probleme: lineare Transportgleichungen
erster Ordnung und kinetische Fokker-Planck-Gleichungen. Aufbauend auf wohlgestell-
ten schwachen Formulierungen liegt der Kern unserer numerischen Methoden in der
Wahl der diskreten Raume fiir die Petrov-Galerkin-Projektion. Indem wir zundchst den
diskreten Testraum definieren und dann einen problemangepassten diskreten Ansatz-
raum so berechnen, dass die Rdume aus passenden stabilen Paaren von Ansatz- und
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Testfunktionen bestehen, erhalten wir effizient berechenbare und uniform stabile diskrete
Methoden.

Fiir lineare Transportgleichungen erster Ordnung benutzen wir optimal konditionier-
te “ultraschwache” Variationsformulierungen. Der optimal stabile diskrete Ansatzraum
entsteht dann aus dem gewéahlten diskreten Testraum durch eine einfach zu berech-
nende Anwendung des adjungierten (Differential-)Operators. Fiir die kinetische Fokker-
Planck-Gleichung leiten wir mit Methoden inspiriert von Wohlgestelltheitsresultaten fiir
parabolische Gleichungen eine vorteilhafte untere Schranke fiir die Inf-Sup-Konstante
auf der stetigen Ebene her. Hier wird der stabile diskrete Ansatzraum dann aus dem
Testraum durch die Anwendung des kinetischen Transportoperators und des inversen
Geschwindigkeits-Laplace-Beltrami-Operators konstruiert, sodass die speziellen Basis-
funktionen durch niedrigdimensionale elliptische Probleme effizient berechnet werden
kénnen. In beiden Féllen garantieren wir dadurch diskrete Inf-Sup-Stabilitdt mit der-
selben Inf-Sup-Konstante wie auf der unendlichdimensionalen Ebene unabhéngig von
den gewahlten Testraumen.

Diese garantierte Stabilitat ist insbesondere auch fiir Modellreduktion durch die Re-
duzierte-Basis-Methode fiir parametrisierte Transportgleichungen erster Ordnung von
Vorteil. Indem wir unsere Diskretisierungsstrategie nutzen, konstruieren wir ein redu-
ziertes Modell bestehend aus einem festen, durch einen Greedy-Algorithmus generierten
reduzierten Testraum und parameterabhéngigen reduzierten Ansatzraumen, die aus dem
Testraum hervorgehen. Da die Stabilitdt grundsétzlich in die Methode eingebaut ist,
kénnen wir zusétzliche Stabilisierungen im Greedy-Algorithmus vermeiden, sodass wir
effiziente und leicht zu implementierende reduzierte Modelle erhalten.
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1 Introduction

1.1 Motivation

Transport phenomena arise in all major areas of science and technology and their nu-
merical simulation is often crucial for the understanding of natural processes. One
particular example of an application where complex transport equations arise lies in
mathematical models describing the spreading of gliomas in the human brain. Gliomas
are rarely curable brain tumors that are highly infiltrative and possess specific “finger-
like” invasion patterns, which are believed to result from anisotropic cell movement
aligned to white matter tracts of the brain, see [61,62]. As a full resection of the tumor
in surgery is in general not possible, chemotherapy and radiotherapy play an important
part in the treatment of patients. The planning of radiotherapy treatment involves the
assessment of the tumor margins, which is exacerbated by the fact that parts of the
tumor may not be visible in medical imaging and the anisotropic invasion pattern is
highly patient-specific.

Therefore, mathematical models of the tumor invasion that allow for a patient-specific
simulation of the anisotropic cell movement might be useful to enhance the treatment
planning. Multiscale models that aim at describing the different complex processes
involved in glioma invasion have been developed, for instance, in [61,62,90,95]. In these
models, mesoscopic descriptions in form of kinetic equations for the density of the tumor
cells are derived. The models include biological processes on the microscopic cell level
as well as macroscopic data of the patient-specific brain structure leading to anisotropy
in the cell movements. Simulations of the tumor invasion are then mostly based on
macroscopic partial differential equations (PDEs) that result from a limiting procedure
of the mesoscopic model [41,61,64]. However, additional insights might also be gained
from simulations of the kinetic mesoscopic equations.

These kinetic equations are high-dimensional, contain several purely advective vari-
ables, and may also depend on additional biological parameters. These characteristics
all pose significant challenges for the numerical solution. Since transport-dominated
PDEs may often involve discontinuous solutions, standard numerical methods may lead
to accuracy and stability problems when not taking the specific structure of the equation
into account. While, for instance, projection-based methods like the finite element (FE)
method are automatically well-posed for elliptic problems, simple Galerkin projections
fail for transport-dominated problems, and additional stabilization is necessary. When
we encounter complex settings including high-dimensional or parametrized equations,
e.g., by biological parameters in the model, this stabilization problem also occurs when
we employ model reduction methods to reduce the complexity of numerical simulations:
Many standard approaches like the reduced basis (RB) method are also based on lin-
ear projections of weak solutions or detailed approximations onto reduced subspaces.
Therefore, in the transport-dominated setting, a stabilization is also necessary in the
generation of reduced models.
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1.2 Goal and contribution of this work

In this thesis, we aim at building a framework for the efficient and stable simulation
of (possibly kinetic) transport equations that may also involve parameters. To that
end, we develop stable Petrov-Galerkin discretizations based on well-posed variational
formulations for two different model problems:

e Parametrized first-order linear transport equations serve as an example for a hy-
perbolic problem, where the parameter dependence of the equation poses an ad-
ditional difficulty and we can test an application of the RB method.

e The kinetic Fokker-Planck equation as a prototype of a mesoscopic glioma equa-
tion then contains both a multidimensional kinetic transport term on the purely
advective space and time variables and a diffusion term in the velocity.

To obtain well-posed and stable Petrov-Galerkin discretizations, it is crucial to choose
discrete trial and test spaces such that a discrete inf-sup condition with a favorable
estimate for the discrete inf-sup constant can be shown. To achieve this, the main idea of
our discrete schemes is to build the spaces for the Petrov-Galerkin projection completely
from stable trial/test function pairs determined by the variational formulation. Since
in these pairs the trial function can be easily computed from the test function (but not
vice versa), we first choose a fized discrete test space and then compute the problem-
dependent discrete trial space consisting of the respective trial function counterparts in
the stable pairs. With this strategy, we obtain discretizations that are inherently stable
and efficiently computable. We show in the course of the thesis that this strategy leads
to favorable solutions and is especially useful also in model reduction contexts.

The parametrized first-order linear transport equation considered in chapter 3 is of
the form
8tuu(ta ZL‘) =+ b,u(ta $) ' vmu,u(ta SL’) + C,u(ta ZL‘) Uu(t, :‘C) = f,u(ta :E)v (11)

for all parameter values p in a compact set P C RP, for all times ¢t € (0,7) and all
z € D C R? accompanied with appropriate initial and boundary conditions.

We consider weak solutions to (1.1) in an ultraweak space-time variational formulation
that was already proposed, for instance, in [29,43,51,52]. The ultraweak setting uses an
L? trial space, while the test space is chosen with a problem-dependent norm containing
the full adjoint transport operator. With this choice, well-posedness of the scheme with
optimal inf-sup and continuity constants can be shown.

To obtain discrete solutions by a stable Petrov-Galerkin projection, related approaches
usually choose a discrete trial space and then seek a discrete test space that ensures
discrete inf-sup stability. However, the optimally stable test space results from applying
the inverse adjoint transport operator to the trial space — which means, solving the PDE
for every basis function, which is in general infeasible. Therefore, stable test spaces can
only be approximated by different strategies [29,43,51,52].

As mentioned above, we use the reverse approach and propose to first choose an
appropriate test space. The trial space that results in optimal inf-sup stability is then
given by an application of the adjoint transport operator. Since this application of
a differential operator (instead of solving PDEs) can be easily and exactly computed
for standard discrete spaces as e.g. an FE space, we obtain a numerical scheme which



1.2 Goal and contribution of this work

is optimally stable (with an inf-sup constant of one also for variable coefficients and
independently of the mesh size) and easy to implement. We prove convergence for our
scheme as § — 0 but do not derive convergence rates in §. Instead, we investigate the
achieved rates numerically, obtaining convergence rates similar to the ansatz proposed
in [43].

Our proposed scheme is especially advantageous when looking at the parametrized
setting with the aim to solve (1.1) for a large quantity of parameter values or for individ-
ual parameter values in a real-time context with computational and /or time constraints.
In such a setting, the RB method (see for instance [76,83,112] and references therein) has
become a well-known and successful model reduction scheme applied to many different
types of parametrized PDEs. The main idea of the RB method is to first build reduced
spaces from precomputed snapshots, i.e., solutions to the PDE for appropriately cho-
sen parameter values, in a so-called offline phase. Then, reduced solutions are defined
as (Petrov-)Galerkin projections onto the reduced spaces, which can then be evaluated
significantly cheaper and faster than the original discrete solutions in the online phase,
making many-query or real-time requirements possible. However, for the parametrized
transport problems like (1.1) in a Petrov-Galerkin framework and with function spaces
dependent on the transport direction, the application of the RB method is not directly
straightforward: On the one hand, the variational framework highly depends on the pa-
rameter, on the other hand, a Petrov-Galerkin projection onto reduced spaces is again
not automatically stable.

We apply our numerical scheme to the parameter-dependent case by generating fixed
basis functions for the reduced test space by a greedy algorithm and then applying
the (parameter-dependent) transport operator to construct the then also parameter-
dependent reduced trial space. Thereby, we automatically obtain an optimally stable
reduced scheme without any additional stabilization procedures that are necessary, for
instance, when basing the reduced scheme on fixed trial space functions, as in [45,139].
Therefore, our scheme is easy to implement and our numerical examples show that we
obtain very efficient reduced models.

In chapter 4, we consider a kinetic Fokker-Planck equation of the form

Bu((t,x),v) + v - Vau((t,z),v) = A, (M) in Q=1 xQ x Q, (1.2)

q(z,v)

with suitable inflow boundary conditions. The equation describes a particle density u
dependent on time ¢ € I, position z € Q, C R%, d € {2,3}, and velocity v € 2, = S9!

While for the transport equation suitable variational formulations have already been
proposed in the literature, for the kinetic Fokker-Planck equation variational formu-
lations were mainly considered in approaches focusing on the properties of the weak
solution without an orientation towards a subsequent discretization. We therefore es-
tablish a variational framework for (1.2) focusing especially on estimates for the inf-sup
constant. We introduce a variational formulation in all dimensions based on Bochner-
type function spaces as similarly used in [3,34]. We then analyze the well-posedness
by combining ideas developed for space-time variational formulations of parabolic equa-
tions [65,119,129] with our formulation for the transport equation. To show the dual
inf-sup condition, we construct specific function pairs in the trial and test spaces, where
the trial space function is derived from the test space function by the application of the
kinetic transport operator and the inverse Laplace-Beltrami operator.
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The construction of the discrete spaces for the Petrov-Galerkin projection is then
based on exactly these function pairs: We first choose an arbitrary discrete test space
and then define the discrete trial space by the same application of kinetic transport and
inverse Laplace-Beltrami operator, such that the spaces consist of the stable function
pairs from the continuous inf-sup proof.

This approach automatically yields a well-posed discrete problem with the same sta-
bility constant as for the continuous problem independently of the choice of the test
space and thus of the mesh size. Our choice ensures that the spaces can be efficiently
computed in the course of the numerical scheme: As for the transport equation, we apply
the transport operator to the test space functions. Here, we additionally have to solve
elliptic problems in the velocity domain due to the inverse Laplace-Beltrami operator.
However, as these problems are low-dimensional and can be carried out in parallel, the
computation of the trial space functions is not dominant in the computational costs of
the solution process of the full high-dimensional equation.

1.3 Overview of the literature

There is a large variety of approaches that are concerned with the numerical solution
of transport-dominated and kinetic equations and the development of suitable model
reduction methods for the parametrized case. We here give an overview of methods
most closely related to our work.

Finite Element Methods for transport-dominated problems Elliptic equations can
be easily and successfully discretized by FE methods, where the discrete solution is usu-
ally defined as Galerkin projection of a variational formulation with a coercive bilinear
form. This simple framework is however not suited for transport-dominated problems
as convection-dominated convection-diffusion equations, or, especially, hyperbolic prob-
lems as, for instance, first-order transport equations: Here, simple Galerkin projections
lead to strong instabilities or cannot even be used from a theoretical point of view, since
standard bilinear forms for first-order hyperbolic equations are not coercive.

Therefore, many different methods have been developed to overcome especially the
stability problems that arise when discretizing transport-dominated problems.

One class of stabilized (continuous) FE methods is the streamline upwind Petrov-
Galerkin method (SUPG), also called streamline diffusion FE method (SDFEM). Intro-
duced by Hughes and Brooks [23,88], the idea of the SUPG/SDFEM method is to add
artificial diffusion only in the transport direction to the equation as a stabilization. A
modified framework is the Galerkin least-squares method (GLS), introduced by Hughes
et al. e.g. for advection-diffusion equations in [89].

The Least-squares Finite Element method (LSFEM) is based on the formulation of
weak solutions as minimizers of suitable energy functionals, most often the norm of the
residual in a Hilbert space. See [20] for an extensive overview and [18] for an introduction
to LSFEM for hyperbolic problems. For linear transport, LSFEM methods have been
proposed and analyzed e.g. in [19,48,101,110], see subsection 3.2.4 for a short description
of the used variational framework. LSFEM for the neutron transport equation is covered
in [102].



1.3 Overview of the literature

Instead of using conforming continuous discrete spaces, discontinuous Galerkin meth-
ods (DG) are based on nonconforming discrete spaces that may be discontinuous across
element interfaces. The DG method was majorly developed by Cockburn, Shu, et al.,
and is widely used for various problem classes. Just to mention a few works, hp-adaptive
versions of the DG method were applied to first-order transport equations, for instance,
in [16,84,86]. In [55], a DG approximation in space and a conforming Petrov-Galerkin
approximation in time was proposed. We refer to [122] for an extensive review of the
DG method and further references.

The Discontinuous Petrov-Galerkin (DPG) method was introduced more recently by
Demkowicz and Gopalakrishnan in [51,52,140] and has become very popular for many
different problems in the recent years. The method is both a specific DG method and
a residual minimization, i.e., least-squares, method. The methodology builds on the
observation that “optimal” test spaces for a Petrov-Galerkin method can be derived
from trial spaces by inverting the Riesz operator of the test space. To efficiently com-
pute approximate optimal test functions, a mesh-dependent variational formulation is
introduced, which allows for “inter-element discontinuities” of the test space. Then, the
optimal test functions can be approximated by localized “element-by-element” compu-
tations [52]. There is a large variety of works developing DPG methods on the one
hand for different equations and on the other hand with different approaches concerning
the choice of the respective norms, variational formulations, and exact approximation
of the respective test functions. For linear first-order transport equations, different
discretizations have already been introduced in the original works [51,52]. With the
focus of using problem-specific energy norms, an optimally stable framework has been
developed in [29]. A DPG scheme focusing on uniform inf-sup stability in view of mesh-
dependent variational formulations is proposed in [22], in [46] the method is enhanced
by a posteriori error estimators and an adaptive strategy. In [94], the method of [22] is
combined with an approximation of the flux and a discretization of a transport equation
along the characteristics, while in [42] the ideas from [22,46] are used as a basis for a
model order reduction scheme for the radiative transfer equation.

Using a similar optimally conditioned variational framework as the DPG method,
Dahmen, Welper, et al. introduced Petrov-Galerkin discretizations using conforming
trial and test spaces for advection-diffusion [37] and first-order transport equations [43].
Instead of using non-conforming stable discrete test spaces, so-called J-proximal near-
optimal test spaces are defined. For a feasible solution process, the problem is reformu-
lated as a saddle point problem, see also subsection 3.2.4. RB methods in this framework
are proposed for parametrized transport-dominated problems in [45]. In [44], the setting
from [43] is enhanced by an adaptive scheme with anisotropic meshes using shearlets.

Another method related to DPG formulations and the setting in [43] is the Discrete-
Dual Minimal-Residual (DDMRes) method. In [103], the first-order transport equation
is considered in an LP-setting, and discrete solutions are defined by a residual minimiza-
tion problem for special discrete dual norms.

In [9], the saddle point least squares (SPLS) method was proposed for abstract inf-
sup stable problems and applied to a div-curl-system. There, the weak problem is
reformulated as a saddle point problem (similar to [43]). Different types of trial and
test spaces for this saddle point problem are explored, where, different to [43] and more
similar to our method in chapter 3, first a test space and then a dependent trial space
are chosen, see also subsection 3.2.4.
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Model order reduction methods for parametrized transport-dominated problems
Projection-based model reduction methods provide a valuable tool for the efficient solu-
tion of parametrized problems, see [15,38] for general overviews and [14] for a literature
review. Among the different methodologies, the RB method has become widely used to
tackle parametrized PDEs in a multi-query or real-time context, see [83,112] and [76]
(part of [15]) for specific introductions to the RB method.

After the RB method was first formulated for the easiest case of elliptic and (semi-
discretized) parabolic equations in a coercive variational framework, much work has
been done to develop RB approximations also for problems described by inf-sup stable
mixed variational formulations.

The inf-sup stability of reduced models was first considered for saddle-point problems
such as the Stokes and Navier-Stokes systems. Stable RB methods can be derived by
including the computation of so-called supremizers which enrich the test spaces to obtain
stability, see [11,70,114,115].

In [128,129], an RB method for parabolic PDEs based on a space-time variational
formulation is proposed. Due to favorable lower bounds for the inf-sup constant that
were first developed in [119], error estimators for the space-time formulation lead to
much sharper bounds than respective results based on semidiscretizations of parabolic
equations [75]. The time-dependence of the discrete spaces can be chosen such that the
space-time Petrov-Galerkin projection is equivalent to a Crank-Nicholson time-stepping
scheme. Then, fixed reduced spaces only in the spatial variable can be built without
the need of a further stabilization. This approach was also generalized to nonlinear
equations as the Burgers equation and the Boussinesq equation [137,138]. In [82],
space-time RB methods for the heat and wave equation have been considered from a
matrix-based perspective.

Based on the stabilized Petrov-Galerkin framework for convection-dominated convec-
tion diffusion equations [37] and first-order transport equations [43], in [45] a reduced
model based on the double greedy algorithm is developed: The main idea of the algorithm
is to combine a greedy algorithm for the reduced trial space with iterative extensions of
the test space by supremizer functions that are also determined in a greedy-like fashion.
With this strategy, one obtains stable reduced models, where the test space is of larger
dimension than the trial space and the solutions are determined by an associated saddle
point problem. For details, see also subsection 3.3.6. A different perspective on the sta-
bilization in Petrov-Galerkin RB frameworks is given in [139], where a preconditioner
for parametrized matrices is developed which is based on the interpolation of the matrix
inverse. This preconditioner can be used in to generate a stable test space for a given
reduced trial space or enhance the computation of residual-based error estimators.

Apart from these works focusing on Petrov-Galerkin projections of inf-sup stable for-
mulations, RB methods for transport-dominated problems have also been developed in
other frameworks. In [77,78], RB methods are used for finite volume discretizations
of linear and nonlinear parabolic or hyperbolic evolution equations. In [109], an RB
method for a convection-dominated convection-diffusion equation with SUPG stabiliza-
tion is proposed. A nonlinear model reduction scheme based on least squares formu-
lations for discrete parametrized problems (Gauss-Newton with approximated tensors
(GNAT) method) has been developed in [32,33]. An RB method with a posteriori error
estimator for the wave equation is proposed in [73]. The model reduction method for
nonlinear hyperbolic equations presented in [1] is based on the collection of snapshots
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in a “dictionary” combined with an L'-minimization scheme in the online phase.

The aforementioned works propose various ways to handle model reduction methods
based on the projection on linear spaces built from solution snapshots. However, for
transport-dominated problems such as a linear transport equation with a moving jump
discontinuity linear approximations do not perform well: Since for these problems the
Kolmogorov-n-width (a measure for the approximability of the solution manifold by
linear spaces) decays only very slowly, linear approximations generally need a large
model order to obtain satisfying accuracy, see [107]. Therefore, in the recent years there
has been an increasing interest in developing nonlinear model reduction methods that
try to incorporate the movement of shocks or fronts into the method e.g. by spatial
transforms. Examples include the method of freezing [106], approximate Lax pairs [68],
a characteristics-based method for nonlinear conservation laws [126], a method based
on optimal transport [93], methods using shifts like [113] and the transformed snapshot
interpolation method [131-133], a method using a spatial splitting of snapshots [31],
and methods using a registration of snapshots to generate a spatial transform [125,127].

Discretizations for kinetic (Fokker-Planck) equations Kinetic equations that describe
particle densities in phase space consisting of all possible physical states arise in various
contexts and forms. Hence, many different numerical methods for the simulation of
kinetic phenomena have evolved, see [50,54] for general overviews.

In this work, we are especially interested in numerical methods for the kinetic Fokker-
Planck equation, which is characterized by a kinetic transport operator in space and
a diffusive term (only) in the velocity variable!. On the one hand, weak solutions
and variational formulations for different types of kinetic Fokker-Planck equations have
been defined and analyzed in various works, see e.g. [3,10,34,49,92,121]. However, these
approaches focus on the properties of the weak solution without an orientation towards
a subsequent discretization. On the other hand, discretizations of kinetic Fokker-Planck
equations are often not based on the direct connection to a weak solution or do not
specifically consider stability estimates.

In [99], an FE discretization of a kinetic Fokker-Planck equation is described, where
the well-posedness of the discrete problem is however not analyzed. In [96], an ap-
proximation of a kinetic Fokker-Planck equation in one space dimension by plane wave
expansions and finite differences is proposed. In the context of neuronal networks, a
Fokker-Planck equation is discretized with finite differences in [30].

Another well-established approach to discretize kinetic equations is the method of
moments, applied to Fokker-Planck equations, for instance, in [67,97,117,118]. A re-
lated approach applying hierarchical model reduction methods such as [108] to a ki-
netic Fokker-Planck equation was developed in the author’s master thesis and published
in [26].

A link between moment methods and stable discretizations based on variational
formulations has been made for different variants of the radiative transfer equation
in [57,58]: A mixed variational formulations based on a parity splitting of functions is
developed and a subsequent stable discretization based on a Galerkin projection onto

!Note that the general “Fokker-Planck equation” which describes the time evolution of a probability
density function commonly amounts to a (non-kinetic) “standard” convection-diffusion equation
(with diffusion in all “non-time variables”). By the “kinetic Fokker-Planck equation” we here denote
equations with diffusion only in the velocity variable.
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suitable combined FE-Py spaces is proposed. It can be shown that the standard FE- Py
moment discretization is stable in the case of strictly positive absorption [57] but may
be unstable for vanishing absorption [58]. This framework is applied to a generalized
Fokker-Planck equation with a velocity operator of the form (Id — aA,)~! in [80].

The kinetic Fokker-Planck equation fits into the general class of PDEs with nonneg-
ative characteristic form. For these, discontinuous Galerkin methods [85,87,124] and
also sparse tensor approximations [120] have been developed.

We close by highlighting some interesting approaches for related kinetic equations be-
yond Fokker-Planck which use discretizations related to our discussion: For the neutron
transport /radiative transfer equation, stabilized FE approaches have been proposed us-
ing an LSFEM discretization in [102] and using the DPG method combined with an
iterative scheme in [42]. For the related Vlasov-Fokker-Planck system there are, for
instance, works based on finite differences [116, 135] and also stabilized FE in form of
streamline-diffusion DG approximations [4,5]. To reduce the complexity of the dis-
cretization for these high-dimensional equations, a sparse FE method based on the
stabilized setting from [102] has been introduced in [134] and enhanced in [74]. Other
tensor-based methods have, for instance, been proposed for the Vlasov-Poisson system:
In [98], an approximation in tensor train format is developed. A tensor decomposition
using the proper generalized decomposition (PGD) method is developed in [59], while
in [60] a low-rank decomposition in hierarchical Tucker format using a projector-splitting
approach is developed.

1.4 OQutline of this thesis

This thesis is organized as follows. In the following chapter 2 we introduce the motivating
glioma tumor model, give a short overview on the inf-sup theory characterizing well-
posed variational formulations and Petrov-Galerkin projections, and introduce some
nonstandard function spaces that we use in this thesis.

Chapter 3 is devoted to the parametrized transport equation (1.1). In section 3.1 we
present an optimally stable ultraweak variational formulation of first order linear trans-
port equations. Section 3.2 is devoted to the finite-dimensional, discrete case where we
introduce an optimally stable Petrov-Galerkin method. Parametrized transport prob-
lems are considered in section 3.3 within the framework of the RB method. We describe
the fairly easy computational realization of the new approach in section 3.4 and report
on several numerical experiments in section 3.5.

In chapter 4 we consider the kinetic Fokker-Planck equation (1.2). After a more
detailed description of the setting in section 4.1, we introduce suitable Bochner-type
function spaces and establish density and trace properties in section 4.2. We then
derive the variational formulation and prove the existence and uniqueness results in
section 4.3. In section 4.4, we introduce the discrete scheme, show well-posedness and
describe an efficient computation. These properties of the proposed method are finally
confirmed for a numerical example in section 4.5.

We close this thesis with concluding remarks and a short outlook in chapter 5.



2 Background

In this chapter, we discuss different concepts that build the background of this thesis.
First, in section 2.1 we introduce the glioma tumor model that motivated our work on
transport equations and especially on the kinetic Fokker-Planck equation. We then give
an overview of the well-posedness theory of weak solutions to PDEs and their approxi-
mations by Petrov-Galerkin projections on abstract functions spaces in section 2.2. This
theory will be the basis of the developed variational formulations and discretizations in
chapters 3 and 4. In section 2.3, we introduce different nonstandard Sobolev-type func-
tion spaces that are important for or closely related to the appropriate function spaces
for our frameworks in chapters 3 and 4.

2.1 Modeling of glioma tumor spreading

To understand and simulate the complex behavior of glioma brain tumors as, for in-
stance, the most aggressive form glioblastoma multiforme, various mathematical models
have been developed. Special models to describe the spreading of glioma tumor cells
in the brain are multiscale models. These aim at describing the tumor cells on differ-
ent levels to incorporate the relevant biological processes and then arrive at a model
for the whole tumor. First, subcellular dynamics between a glioma tumor cell and the
surrounding tissue are taken into account on the microscale. Then, the tumor cells are
viewed as particles in a kinetic model, i.e., the density of tumor cells in phase space (the
high-dimensional space of all possible particle states) is described by a kinetic equation
on the mesoscale. By suitable limiting and scaling procedures, a macroscale model for
the whole tumor in terms of a PDE in space and time is derived. Here, we briefly give
an overview of one such multiscale model that was developed in [61,62,90,95]; we use
the notation of [90].

On the subcellular microscale level, the cell movement as well as the proliferation is
governed by the bindings of cell receptors especially to the extracellular matriz (ECM).
In a simplified model, the fraction of bound receptors is represented by a state variable
y € [0,1]. The complex structure of the ECM is approximated by the macroscopic
volume fraction of tissue fibers Q(z). Then, the reaction of receptor bindings can be
described by the ODE

y=k"(1-yQ+ky, (2.1)

where kT, k= > 0 denote the (constant) reaction rates for binding and unbinding of
the receptors. These bindings and unbindings happen at a much faster rate than the
cell movement, so that we can assume that y equilibrates rapidly at a steady-state,
which then may change only slowly dependent on the cell movement (see e.g. [40]).
This steady state of (2.1) is y* = kTQ/(kTQ + k™), and we define the new variable
z=y—y" €[—y*1—y*| =: Q, as the deviation of y from the steady state.
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We write f(s) := (kTs)/(kTs + k™), which means that y* = f(Q(x)). We consider

cells in position x moving with velocity v, i.e., % = v, therefore the steady state y*

changes in time (in the time scale of moving cells) with
dy* N d o E L ‘
2= S IQ@) = FQE@)VaQ(@) T = F(Q)v - V.Q(x).

Therefore, we have for z

%
- U= Q@)+~ Q) VO,
where we use that y* is the steady state of (2.1). The change of the velocity v is modeled
in [90] in two different ways. On the one hand, one can use a velocity-jump process — a
Poisson process modeling cells with constant speed changing their direction according
to a turning kernel K and with a turning rate A\. Such a velocity-jump process is also
used e.g. in [61,62,95]. With the assumption that the cells align with the tissue fibers,
the kernel is chosen as
K(l’, U, 1)’) = Q(xv ’U),

where ¢ is the tissue fiber orientation distribution. The turning rate is dependent on
the fraction of bound receptors and is chosen as \(z) = Ao + A1z > 0.

With this, the whole equation on the mesoscale for the cell density in phase space
Q=10,T] x Q x Q, x Q, can be established. Incorporating the velocity jump process
for the changes in direction the mesoscale equation reads (see [90, p. 22, (2.10)], [61]):
Find p(t, x, v, z) such that

Op+v - Vap = 0: (((KFQ+57)z+ f(Qv- V.Q) p)

= o+ u2) (ale0) [ o) a0 = o))

v

(2.2)

As an alternative to the velocity-jump process, a Wiener process on the velocity
domain is proposed in [90]. Such a Gaussian process may take into account very fast
reorientations of the cell, for instance, due to irregular shape changes, better than a
jump process (see [90, pp. 19-20]). The turning rate and equilibrium distribution are
supposed to be the same as for the jump process case, leading to a stochastic process
for the velocity change
2()\0 + A1 Z)

q(x,v)

with (W:)¢>0 being an appropriate Wiener process on the velocity domain (for details
see [90, pp. 20-21]). On the mesoscale, we then alternatively obtain the Fokker-Planck
equation ([90, p. 23, (2.11))):

dv = aw;,

Op+v-Vep—0. (K Q+k7)z+ F(Qv-VaQ) p) = Mo+A12)A, ( £ ) ,(23)

q(z,v)

where A, is the Laplace-Beltrami operator on the velocity domain 2,,.
These basic models on the mesoscale can be enhanced by many other effects. In
[62,63], proliferation is modeled, while in [41,53] also the influence of acidity levels of
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the tissue on the cell motility is included. A model taking the therapy into account is
developed in [91].

After developing the mesoscale model describing the density of tumor cells in the high-
dimensional phase space, macroscale equations for the tumor evolution depending only
on space and time can be derived by suitable limiting procedures, mostly a parabolic
scaling. Thereby, the mesoscale equation (2.2) can be scaled to a macroscale reaction-
diffusion equation with a tumor diffusion tensor and a tumor drift velocity dependent
on the tissue fiber orientation ¢, and an additional haptotactic-like drift term including
the gradient of the fiber volume fraction @, see [61,90]. A scaling of (2.3) leads to a
comparable reaction-diffusion equation with slightly different coefficients, see [90]. For
the more elaborate models, the macroscopic equations contain, for instance, additional
(logistic) growth terms for the proliferation (see [62,63]), and drift terms accounting for
the influence of acidity (see [41,53]). In the detailed models of the last two works, the
acidity, necrosis (in [41]), vascularization (in [53]), and possibly also ¢ and @ can all
be considered to be changing in time, as well. Hence, the macroscale models contain
systems of equations for the different quantities.

In the mentioned works, numerical simulations of the different variants of the macro-
scale equations are performed. To that end, the tissue volume fraction ) and the fiber
orientation distribution ¢ are computed from diffusion tensor imaging (DTI) scans of
the human brain, making patient-specific simulations possible (see [61] and [90, Chap.
3] for details). The PDE or system of PDEs is then discretized by the discontinuous
Galerkin method (e.g. in [61]) or finite volume method (e.g. in [41,53,62]). Numerical
experiments show that the models can reproduce many observed phenomena such as
the finger-like invasion patterns of glioma [61].

While such simulations of the macroscopic limit equations have been performed and
compared in many different varieties, there are less results for a different approach
to simulate the tumor spread: In the described settings the mesoscopic equations are
the most detailed models for the tumors, while the macroscopic limits are analytical
approximations relying on the choice of the limiting procedure, for instance, parabolic
or hyperbolic scaling. To assess the validity of these limits, one could also opt for
directly discretizing the mesoscopic equations themselves. The major challenge here
lies in the large dimension of the phase space — for the mesoscopic equations (2.2) and
(2.3) the phase space = [0,T] x Q; x Q, x €, is seven-dimensional when considering
a full model in 3D space. In [40], a discretization of (2.2) by the method of moments
is developed and compared to the macroscopic limit by a parabolic scaling from [61].
Dependent on the model parameters, a convergence of the moment approximation to
the macroscopic diffusion limit can be observed, while in other regimes indeed a low
order moment approximation can be more accurate than the diffusion limit.

These results show that it can be valuable to concentrate on the simulation of the
mesoscopic kinetic equations. While the jump process version of the mesoscopic model
(2.2) has been simulated in [39,40], in chapter 4 we will be concerned with the dis-
cretization of kinetic Fokker-Planck equations inspired by (2.3).

11
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2.2 Abstract well-posedness theory

All discretizations considered in this thesis will be based on Petrov-Galerkin projections
of weak solutions defined by suitable variational formulations. Therefore, we here briefly
recall the well-posedness theory on the infinite dimensional as well as on the discrete
level using abstract function spaces.

2.2.1 Inf-sup theory

In this section, we introduce an abstract problem on (possibly) infinite-dimensional func-
tion spaces. The well-posedness of this problem is analyzed with functional analytical
tools in the so-called inf-sup theory. In its center lies the Banach-Necas-Babuska theo-
rem (also called inf-sup or generalized Lax-Milgram theorem, see e.g. [65, Thm. 2.6]),
that goes back to works of Necas [104] and Babuska [8]. We here collect the respective
results needed in the following chapters. For more extensive overviews we refer, for
instance, to [65, sect. 2.1, A.2] and [105, sect. 2.3].

Let (X, |- |lx and ()] - ||y) be two reflexive Banach spaces with dual spaces X’ and
Y'. We denote the dual pairings by (-,-)x x and (-, )y y.

Let b: X x ) — R be a continuous bilinear form with continuity constant'

b
sup sup _bw,p) 7. (2.4)

wex pey [wllxllplly
We consider the associated operator B : X — )’ and adjoint operator B* : J — X’
defined by (Bw,p)y y = b(w,p) = (w, B*p)xs x for all w € X, p € Y. Then, from
(2.4) it directly follows that B and B* are bounded linear operators with || B||zx,y) =

1B* |l cp,ary =7
Let f € ). Then, the variational problem is defined as follows: Seek v € X such that

b(u,p) = f(p) Vpe. (2.5)

We want to find conditions that ascertain the well-posedness of the variational problem
in the sense of Hadamard, i.e., that (2.5) admits a unique solution which depends
continuously on f. From the definition of B, we see that (2.5) is equivalent to the
operator equation

Bu=f in)Y.

Therefore, existence and uniqueness of u in (2.5) for arbitrary right-hand sides f € )’
is equivalent to the bijectivity of B.

There are many different equivalent conditions for injectivity and surjectivity of Ba-
nach operators. A useful characterization is given in the following proposition:

Proposition 2.2.1. For B € L(X,)’) as above, the following statements are equivalent:
(i) B:X — Y is surjective, i.e., im(B) = Y'.
(i) B*: Y — X' is injective, i.e., ker(B*) = {0}, and im(B*) is closed in X’.

(t31) There exists f > 0 such that

1B"pllar = Bliplly VP e

"'We slightly abuse notation: Here and throughout the thesis all inf and sup are taken over nonzero
vectors.

12
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(iv) There exists B > 0 such that

. (w, B*p) x x
inf sup ————
peVwex |lwllxllplly

Proof. (iii) and (iv) are clearly reformulations of the same condition using the definition
of ||-]|yr, hence they are equivalent. The equivalence of (i), (i), and (7i7) is proved in [21,
Thm 2.20, p. 47]: For (i) = (i), it is shown that the set M :={p € Y : | B*p|lar < 1}
is bounded in ). To that end, dual pairings of f € )’ and p € M are estimated by
writing any f as Bu for some u € X. For (iii) = (ii), injectivity can be seen by setting
p = 0in (7ii) by linearity of B* and closedness of X’. To show closedness of im(B*), one
sees from (7i7) that the preimage of a Cauchy sequence in im(B*) is a Cauchy sequence
in Y. (it) = (i) follows from Banach’s closed range theorem (see [21, Thm. 2.19, p.
46)). O

The same result also holds when interchanging the roles of B and B*:

Proposition 2.2.2. For B € L(X,)’) as above, the following statements are equivalent:
(i) B*: Y — X' is surjective.
(i1) B: X — Y is injective and im(B) is closed in ).
(tit) There exists 5 > 0 such that
|Buly > fluly Vwe .
(iv) There exists B > 0 such that

B '
inf sup BUPYY
WEX pey HwHX”pHy

Proof. Since X and ) are reflexive, it holds (B*)* = B. Therefore, the claim directly
follows from Proposition 2.2.1. O

In the last two propositions, the inf-sup constant and the dual inf-sup constant were
defined independently of each other, which raises the question whether these constants
are related. In fact, it turns out that the inf-sup and dual inf-sup constants are equal,
if the corresponding operators are bijective.

Proposition 2.2.3. Let B € L(X,)') be bijective. Then, B* € L(Y,X') is bijective,
the inf-sup condition and dual inf-sup condition hold with equal constants

inf sup b(w, p) = inf sup b(w, p)

Mw,p) WD)
weX pey lwllxlplly  peYwex [lwllxlplly ’

and the inverse operator and inverse adjoint operator are continuous with

1B o2 = 1B * ||y = 5

Proof. As B is bijective, consider the inverse operator B~ : )’ — X and its adjoint
(B~hH* : X' — Y. Tt then holds for all v’ € X’ and w € X

(B*(B™")*u,w)xrx = (B, Bw)y yr = (u/, BT Bw)xr x = (v, w)xr x,

13
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and it holds for all ¢ € )’ and p € Y
(BT B*p.d )y = (B*'p, B" ' )arx = (0. BB™ )y 3 = (p,d)y.y-

Hence, B* is bijective with inverse operator (B*)~! = (B~Y)* : X’ — Y, which we will
call from now on B™*. As B is bijective, due to Proposition 2.2.2 there holds an inf-sup
condition with constant Sp. We obtain

b ) B R / . B ,
/BB - lnf sup M = lnf sup M = lnf w
weX pey lwllxlplly  wexpey lwllxlplly — wex |w|x

—1
e el 1B~z % L -1
= inf Y = (sup =) = (B )
2y B zllx  \oeyr 2l ( o)

Similarly, for B* there holds an inf-sup condition with constant S« due to Proposi-
tion 2.2.1 and we obtain

b B* /
B+ = inf sup (w, p) = inf sup 7@]’ p)x.x

-1
e = (1B lleery) -
peY wex wllxllplly ~ peVwer wllxllplly ( ")

As B~ and B~* are adjoint operators, they have the same norm, which means that in
fact Bp = Bp+ =: B, and the claim follows. O

With these results we can now state the most commonly used result to characterize
a well-posed variational formulation:

Theorem 2.2.4 (Well-posedness). Let B € L(X,)') and f € V' as above. If either
the inf-sup and surjectivity conditions for B

b
(Bl inf sup 2P
weX pey wllxlplly

(B2) sup b(w,p) >0 VpeY,p#0
weEX

=0£>0

or the inf-sup and surjectivity conditions for the adjoint operator B* (called dual inf-sup
condition and dual surjectivity condition)

b
(B*1) inf sup M
reYwex |l x|lplly
(B*2) supb(w,p) >0 Yw e X, w#0
peY

=6>0

hold, then the variational problem (2.5) has a unique solution w € X which satisfies the
a priori estimate

1
[ulle < S flly-

Proof. By Proposition 2.2.2, (B1) leads to injectivity of B with im(B) closed. From
(B2) we see that for all 0 # p € ), we have B*p # 0 in X', i.e., B* is injective. By
Banach’s closed range theorem (see e.g. [21, Thm. 2.19, p. 46]), im(B™*) is closed since
im(B) is closed. Therefore, by Proposition 2.2.1, B is surjective, and thus bijective.
Analogously, one can show that (B*1) and (B*2) imply bijectivity of B*.

14
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In both cases, by Proposition 2.2.3 both B and B* are bijective, and we obtain from
the primal or dual inf-sup condition with constant § that [|B™|zx ) = % Hence,
there exists a unique solution v € X to (2.5) satisfying the a priori estimate

- _ 1
lulle = I1B™ fla < 1B Iz fllyr < BHfHa% L

Remark 2.2.5. Theorem 2.2.4 is an extended version of the Banach-Necas-Babuska the-
orem (going back to Necas [104] and Babuska [8], see also e.g. [65, Thm. 2.6]). We
reformulated the theorem to make it possible to show the dual inf-sup and surjectivity
conditions instead of the “standard” primal conditions.

Remark 2.2.6. It can be seen from the definition of the conditions that both inf-sup
conditions imply the respective other surjectivity condition, i.e., (Bl) = (B*2) and
(B2) = (B*1). Therefore, well-posedness also follows if both inf-sup conditions (B1)
and (B*1) can be shown. However, as this is usually more elaborate, the most commonly
used conditions are the ones given in Theorem 2.2.4.

2.2.2 Petrov-Galerkin projections

We now develop the well-posedness theory for discrete problems. We build approxima-
tions to the solution of (2.5) by a Petrov-Galerkin projection. To that end, let X% C X
and )% C Y be two discrete spaces with the same dimension dim(X s ) = dim(y‘S) =
N?% < co. Then, the Petrov-Galerkin approximation u® € X is defined by

b(u’,p’) = f(p*) Wp° €. (2.6)

Well-posedness of the Petrov-Galerkin approximation follows similarly to the infinite-
dimensional case:

Proposition 2.2.7 (Well-posedness). Let X% C X and Y° C Y with dim(X%) =
dim()?) = N° < co. Then, the discrete inf-sup condition

b(w? . v?
inf sup M =5 >0 (2.7)
woexd pseys [|w|lxllpfly

and the discrete dual inf-sup condition

b (5’ 1
inf sup AP) 5o (2.8)
P eyt yoexs ([0 xllp°lly

are equivalent. If the conditions hold, then there exists a unique solution u® € X? to
(2.6) that satisfies the stability estimate

1 1

1)

u X S e f YA S - f /.

[[u”]] Ba” ls) ﬁéll ly

Proof. We can use the results from subsection 2.2.1 for b|ys,.ys with the associated

operators B® : X9 — (V%) and B*° : J° — (X%)’. If (2.7) holds, from Proposition 2.2.2
we see that B? : X% — ()°) is injective and B*? : Y0 — (X%) is surjective. As
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dim(&%) = dim()?) = N° < oo, B? and B*? are therefore already bijective. Anal-
ogously, (2.8) implies by Proposition 2.2.1 that B is surjective and B*9 is injective.
Hence, again both operators are bijective. Since in both cases the operators are bijec-
tive, Proposition 2.2.3 shows that both (2.7) and (2.8) hold with the same constant (s,
ie., (2.7) and (2.8) are equivalent.

If the conditions hold and thus B’ is bijective, (2.6) has a unique solution u® € A?.
Proposition 2.2.3 shows that || B~! 2xs,(vy) = é, and we obtain the stability estimate
from Theorem 2.2.4

_ 1 1
[u® [l < [1(B°) Ml gqwsy oo | fll sy = %Hf”(yé)/ < @Hf“y’- O

Remark 2.2.8. Note that the discrete inf-sup condition (or dual inf-sup condition) gen-
erally does not follow from the respective conditions for the infinite-dimensional spaces
even in this conforming setting, i.e., X C X and }° € ). Therefore, in the construction
of a numerical scheme, the discrete inf-sup condition has to be taken into account. This
is different from Galerkin approximations of variational formulations based on a coercive
bilinear form with the same trial and test space, where well-posedness for any conform-
ing discrete space follows from the well-posedness of the infinite-dimensional problem
by the Lax-Milgram theorem. On the other hand, while we need two conditions for the
well-posedness of the weak solution in Theorem 2.2.4 (inf-sup and surjectivity, or, al-
ternatively, inf-sup and dual inf-sup), for the Petrov-Galerkin projection, one condition
(e.g., inf-sup or dual inf-sup) already ensures well-posedness due to the finite dimension
of the spaces.

The setting also gives rise to an a priori error estimate similar to Céa’s lemma:

Proposition 2.2.9 (Quasi-best approximation). Let the variational problem (2.5) be
well-posed and let the discrete inf-sup condition (2.7) hold. Let uw € X be the solution
to (2.5) and u® € X9 be the Petrov-Galerkin approzimation defined in (2.6). Then, we
have the quasi-best approrimation property ~

i .
fu=ula < (1) ot Ju—u’l. (29)

If X and Y are Hilbert spaces we further have

lu— udllx < - lu— || 2. (2.10)

inf
B5 wiexs

Proof. The first estimate is from Babuska [8], the enhancement was proved by Xu and
Zikatanov [136]. From the definitions of u and u® we obtain the Galerkin orthogonality

b(u—u®,p°) = b(u,p’) — b(u’,p°) = f(p°) — f(p°) =0 Vp® €I’ (2.11)

Let w® € X%. Using the inf-sup condition (2.7) and the Galerkin orthogonality (2.11)
yields
b(u(s — w57p6) b(u — w67p6)

BtgHu‘;—w‘SHXS sup = sup

<ylu— . (212)
peyvs 1Py ey PNy
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2.3 Sobolev spaces for transport and kinetic equations

Hence, it holds
i
Ju=wl < Ju =i+ o’ =l < (14 7 ) Ju—u'l,

and thus, since w® € ° was arbitrary, (2.9).

For the sharper estimate, Xu and Zikatanov [136] consider the (Petrov-Galerkin)
projection operator P° : X — X9 defined for each w € X by b(P’w,p’) = b(w, p°) for
all p® € Y9, ie., Pou = u’. It is shown that

1P| ceaeney = 1T — POllceae )
(see [136, Lemma 5]). Then, we obtain for any w® € x?°
lu =’ = 1( = P°)(u—w’)llx < I = P°ll g allu—w’llx = 1P|l g ) lu—w’ | 2

Setting w® = 0 in (2.12) we have ||Poullx = ||u®]|x < 7 llullx, ie., 1P e,y < 7

which yields (2.10). O

Remark 2.2.10. Through this estimate we see that the discrete inf-sup constant of the
chosen discrete spaces is crucial for the quality of the Petrov-Galerkin approximation:
For a small approximation error, it is desirable to choose discrete spaces with a good
approximation property as well as with a discrete inf-sup constant 3° as large as possible.

2.3 Sobolev spaces for transport and kinetic equations

Sobolev spaces are Banach spaces of functions possessing weak derivatives and are thus
the suitable spaces to build variational formulations for PDEs with the framework given
in section 2.2. For the basic concepts and properties of the standard Sobolev spaces
WHP(Q) we refer to the literature, e.g., [2,66]. Here we briefly introduce some specific
Sobolev-type spaces used for different transport and kinetic equations that will be im-
portant when introducing and discussing the appropriate function spaces used for the
variational formulations of the linear transport equation in chapter 3 and the kinetic
Fokker-Planck equation in chapter 4.

2.3.1 Spaces for first-order transport equations

For elliptic equations, one usually defines weak solutions in the standard isotropic
Sobolev space H'(Q2) for some domain 2 C R?. Here, a function u € H'(£2) possesses a
weak gradient, i.e., a weak derivative d;u € L?(Q2) fori =1,...,n.

While this is the right choice for equations with diffusion (in all dimensions), transport
equations without diffusion only contain directional derivatives of the solution in the
(possibly space-dependent) transport direction. Therefore, special anisotropic Sobolev
spaces of functions that possess exactly these directional derivatives are the appropriate
choice for the weak formulation. The major well-posedness theory for weak solutions
to first-order transport equations in an L2-setting was developed by C. Bardos in [12].
We here briefly collect definitions and properties of standard spaces used to describe
first-order transport equations, following [71], where some of the results from [12] are
slightly generalized to less regular data functions.
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2 Background

Let Q C R be a bounded domain with Lipschitz boundary 9, and let n be the unit
outer normal to 02, which is defined for almost all x € 02 and is measurable on 0f).
Let b : Q — R? be a Lipschitz vector field, which will denote the transport direction.
We define the inflow and outflow boundaries I'_ and 'y by

I ={z€dQ\Z:b-n<0}C N,
Iy ={z€dQ\Z:b-n>0}C 09,

where = denotes the set where n is not defined. The characteristic or no-flow boundary
T’y is likewise defined by

Iy={x€0Q\=Z:b-n=0} C 0.
We assume the following hypothesis for the boundary parts:

(H1) The sets I'y and (T'+)° (where the closure and interior are taken with respect to
0R2) have the same surface Lebesgue measure.

If 0Q is piecewise C!, then (H1) is automaticidly satisfied. From now on, we redefine
the inflow and outflow boundaries as I'y := (I'y)°.
We define the space

H(Q,b) :={we L*(Q) :b-Vw € L*(Q)}, (2.13)

and, given K C 92 we define the boundary space L?(K, |b - n|) with norm

1
2
lwllz2(x jbnp) == </K lw[?/b - n| ds) .

It then holds the following proposition from [71]:

Proposition 2.3.1 ([71, Proposition I.1]). (i) H(Q,b) is a Hilbert space under the
graph norm || - || g(ap) given by

[l = Wz + b - Vwll72)-

(ii) C>(Q), and hence C¥Y(Q), is dense in H(Q,b).

(iii) The trace mapping xaq : w — (b-n)w on C*°(§2) admits an extension as a bounded
linear operator from H (), b) to H_%(ﬁQ)g. B
(iv) The integration by parts or Green’s formula for w € C*°(Q), p € HY(Q2)

/Q(b'Vw)pdﬂC:/aQ(b'n)wpds—/QwV-(bp)da:

admits an extension for allw € H(2,b), p € HY(Q), where the surface integral is

replaced by the duality pairing (-, '>H_%(89)’H%(am.

(v) Under hypotheses (H1), the trace mappings u — u|p, are linear and continuous

from H(2,b) to L (T'+,|b-nl)

loc

2H_%(('BQ) is the dual space of H%(OQ). Note that H'(Q) functions have a trace in H%((ﬂQ), see
e.g. [2, Thm. 7.39].
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2.3 Sobolev spaces for transport and kinetic equations

With this result, we see that it makes sense to assign trace values to a function
w € H(Q,b). However, in general the trace is indeed only locally in L? as the following
example from [12] shows:

Example 2.3.2. Consider Q = (—1,1) x (0,1) C R? and b(x1,22) = (—1,21)7. Then,
2

for € (—3,—3) the function w(z1,z2) = (w2 + 5)* lies in H(, b), but wlr, ¢

L*(T,|b-nl).

We now define spaces with trace zero on the inflow or outflow domain:

Hr_(Q,b) = {w € L*(Q) : b-Vw € L*(Q),w|r_ =0},

(2.14)
Hr, (92,b) = {w e L*(Q) : b-Vw € L*(Q), w|r, = 0}.

In [71] (and, similarly, also in [12]) it is shown that functions in Hr, (£2,b) can be ap-
proximated by smooth functions. To that end, intermediate approximations are defined.
In the following, we replicate the statements from [71] with short sketches of the given
proofs:

Lemma 2.3.3. L>*(Q) N Hr, (Q,b) is dense in Hr, (2, b).

Proof. (Sketch, see [71, Prop. 1.1, Lemma 1.7] for details). Define a “value cutoff func-
tion” gy € COY(R), gp(t) =t for [t| < M, gp(t) = sign(t)M for |t| > M. Then, for
w € Hr, (2, b) show that gps(u) converges weakly to u as M — oco. Use Mazur’s lemma
to show the claim. O

In a second step, functions in L*°(Q2) N Hr, (€2, b) are approximated by smooth func-
tions that vanish near the possible singularities at the boundary of I'_ or I'y: To that
end, define

I—E(Q,b) ={w e L>®(Q)N Hr_(Q2,b) : w(z) =0 in a neighborhood of 9(I'+)},

where 9(I'y) is the boundary of I'y in 9Q. We require an additional assumption for
these boundaries:

(H2) The boundary 0(I'y) of I'y in 02 has a finite (d — 2)-dimensional Hausdorff mea-
sure.

Lemma 2.3.4. If (H2) holds, then Hr, (Q,b) is dense in Hr, (€, b).

Proof. (Sketch, see [71, Lemma 1.9] and [12, p. 202-203] for details). Define a specific
cutoff function ¢. € C%1() that satisfies 0 < ¢ < 1 and

¢ =0 in {z € Q:dist(z,0(T1))
¢ =1 in {z € Q:dist(z,0(T1))
Vo <€ in Q.

I3
1 (2.15)

AV VAN
[LEENTTOY

Using (H2) one can show that [|[Véc||2(q) is bounded uniformly in €, since the gradient

is bounded by g and is nonzero only on a set with measure Ce? due to (H2).
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Taking w € L>(Q2) N Hr, (2, b), it then holds that ¢.w € fIEE(Q, b), that ¢p.w — w
in L?(2) as ¢ — oo, and that

[b - V(gew) —b - Vwlp2q) < [[(¢e — 1)b - Vw|[r2(0) + lwb - Ve| 120,

—0 <Cllwl|lpoe ()

using again (H2). Thus, ¢.w — w in Hp, (2, b) weakly as ¢ — oo, and the claim follows
again by Mazur’s lemma. O

Finally, the approximation by smooth functions is shown:

Proposition 2.3.5. C>(Q) N Hr, (2, b) is dense in Hr, (2, b).

Proof. (Sketch, see [71, Lemma I1.10, Corollary I.11] and [12, Lemma 2.2] for details). Let
w € Hp_(Q,b) which vanishes in an e-neighborhood of (I'_). By a suitable partition
of unity, we separate w into a sum of functions with support on 02 strictly contained in
'y UTy, and in I'_, respectively. By separate mollifications of these functions, we can
then define a mollification w, € C*() of w such that w, vanishes in an S-neighborhood
of 9(I'_) (since w vanishes in an e-neighborhood of 9(I'_)), and such that w, vanishes on
'y UT (since w vanishes on I'y UT'y, one can define an approximation also satisfying the
boundary condition, see [12] and [66, Sect. 5.5, Thm. 2]|). Therefore, w, € Hr_(9,b)
and w, — w as n — 0, and the claim follows for Hr_(€2,b). The proof for Hr (£, b)

follows analogously. O

Remark 2.3.6. In chapter 3, we will define the spaces used for our variational formu-
lation slightly differently than the “standard” transport spaces defined in this section.
However, it turns out that under suitable conditions on the data functions, the test
space ), is the same space as Hr, (€2, b) with an equivalent norm, see Remark 3.1.8.

Finally, using the density result from Proposition 2.3.5, one can show that, while
functions in H(2,b) generally only have local traces in L?, functions in Hr, (Q,b) do
have global L?-traces:

Proposition 2.3.7. Under conditions (H1) and (H2), the trace mappings v — u|r, are
linear and continuous from Hr, (Q,b) to L*(09, |b-n|), and the integration by parts or
Green’s formula

/(b Vw)wdz =3 | w?(b-n)ds
Q 29}

holds for all w € Hr, (2, b).

Proof. By approximation with a function w € C*°(Q2) N Hr_ (€2, b), one can use integra-
tion by parts and exploit that (b-n) does not change sign on supp(w|gq). For details see
Proposition 3.1.6, where the same statement is shown for a slightly different transport
operator and norm. ]

2.3.2 Spaces for kinetic equations without velocity derivatives

Kinetic equations are usually defined on a phase space domain consisting of space,
possibly time, and velocity domains. The basis of a kinetic equation is the kinetic
transport operator v - V, with a velocity-dependent directional derivative in space and
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2.3 Sobolev spaces for transport and kinetic equations

possibly a time derivative 0;. For the standard kinetic equations of neutron transport
and radiative transfer, no velocity derivatives appear, since the velocity dynamics are
described by an integral operator.

Let Q = Q;, x Q,, where O, C Rt is the space-time domain consisting of the
time interval I; = (0,T) and the spatial domain Q, C R, and ©, C R? (often, we have
Q, = S C RY for particles with constant speed) is the velocity domain. We assume
that €, and thus €, has a piecewise C' boundary.

An extensive overview of suitable spaces for kinetic transport equations in a general
LP-framework is given in [47, chapt. XXI], using results from Cessenat [35,36]. Similar
results to [35,36] were also obtained by Germogenova [69]. We define the space

WE(Q) ={w € LP(Qp X Q) : (L) Vigw € LP(Q 5 x Q) }, (2.16)

where (1) Vizw = 0w + v - Vyw is the space-time kinetic transport operator. We
here describe the time-dependent case with integrated space-time kinetic operator, all
results are equally valid for the time-independent space on €2, x 2, and with the kinetic
operator v - V.

The in- and outflow domains are defined analogously to subsection 2.3.1 3:

Lyi={((t,2),v) €0y xQy = (1) -n(t,xz) 20} C 0N,

where 0€); , denotes the space-time boundary consisting of the spatial boundary I; x 0§12,
and the initial and final time {0} x €, and {1} x Q.

For an L?-based setting, the appropriate function spaces can be described as special
cases of the spaces introduced in the last section. In fact, by setting by, (¢, z,v) =
(1,v,0), we obtain

Hyt(2) = Wi (Q) = H(Q, bygy) = {w € LA(Q) : (;) Viaow € L)}

Therefore, all results from subsection 2.3.1 hold for Hy(Q) := W2 ().
The results, however, largely extend to the general LP-case. One can show that
C™(Q e x ) is dense in W2 (Q) (cf. [47, p. 221]), and we have a local trace result:

Proposition 2.3.8. The functions of Wk (Q) have a trace in LY (Ty,|(})-n|) and in
LY (T4).

Proof. See [47, Chap. XXI, sect. 2.2, Theorem 1 and Corollary 1]. O

Again, generally functions in W2 () do not have global traces in LP(9€, |(})-n[). An
L?-counterexample specifically for the time-independent kinetic space is given in [102]:

Example 2.3.9. (Taken from [102, pp. 562-563].) Let Q, = B'(0) C R? be the unit
ball in R? and Q, = S? be the unit sphere. Let vy = (0,0, —1)T, so that T'_(vg) (the
spatial outflow boundary for fixed v = vg) is the upper hemisphere. Using cylindrical

coordinates for 2, define r = /2% + 22 and let wy(x,v9) = (1 — r)~%, which is defined

3Here we abuse the notation by ignoring the points in which n is not defined. We use the same handling
as in subsection 2.3.1 and note that (H1) is fulfilled since 9 . is assumed to be piecewise C*.
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such that vy - Vo,w = 0. For each v € S2, we define wq(+,v) as the respective rotation of
wqy(+,vp). Then?,
427

lwgZ <5

)

which is finite only if ¢ < %. On the other hand,

24/2
/ wg\vo-n|ds§ﬁ,
I'_ (vo) 1—2q

which is finite only if ¢ < % Therefore, for % <q< % we have w, € Hy(Q2), but

wg & L2(09,[(}) - nl).

Functions in WP (Q) which do have a global trace in LP(9Q, |(}) - n|) can be charac-
terized in the following way:

Proposition 2.3.10. Let

Wit (Q) == {w € W (Q) s wlr_ € LP(T—,[(}) - n[) and wir, € LP(T+,|(}) -n|)}.
Then,
Wit () = {w € W (Q) s wlr_ € LP(T—, |(}) - n|)}
= {w e Wi () s wir, € LP(T4,[(}
Proof. See [36]. O
From this we immediately see that the spaces with zero in- or outflow trace
Whr () ={weWi(Q):w=0onTi}

have finite global traces, analogously to the result shown for Hp, (£2,b) in subsec-
tion 2.3.1.

Remark 2.3.11. In chapter 4 we will build a variational formulation for the kinetic
Fokker-Planck equation, which has a diffusion-term in the velocity variable instead of
an integral operator. To that end, we will introduce the function space Hflp (Q), which
is related to Hy(2) = W2(Q), but differs in the regularity in the velocity dimension.
While many concepts work similarly for both spaces, the question of existence of global
traces is more problematic for Hflp(Q), see Appendix A.

2.3.3 Sobolev spaces on manifolds and the Laplace-Beltrami operator

Since the velocity domain for the Fokker-Planck equation covered in chapter 4 is the unit
sphere ©, = S% 1 for the spatial dimension d, we here recall some results for Sobolev
spaces and the Laplace-Beltrami operator on surfaces. We follow the concise overview
of the definitions of surfaces, tangential gradients, and the Laplace-Beltrami operator
given in [56]. For an extensive overview on the theory of Sobolev spaces on general
manifolds we refer to [81].

Surfaces can be described either as parametrized surfaces, cf. [56, Sect. 2.1] or as
hypersurfaces, cf. [56, Sect. 2.2]. Both definitions may be useful dependent on the
application. Here, we recall the definition of hypersurfaces:

“see [102] for the detailed computation
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2.3 Sobolev spaces for transport and kinetic equations

Definition 2.3.12 ([56, Def. 2.1]). Let k € NU {c0}. T' ¢ R¥! is called a C*-
hypersurface if, for each point o € T, there exists an open set U C R%*! containing zg
and a function F € C*(U) with the property that VF # 0 on I' N U and such that

UNT ={zeU|F(z)=0}. (2.17)
The linear space

T, ={r ¢ RA+1 |3y :(—¢,8) = R differentiable,

, (2.18)
Y((—¢,€)) € I',7(0) = 2 and +'(0) = 7}

is called the tangent space to I at x € T'.
Since for all v as in (2.18) and the function F' from (2.17) it holds

0= LP( (1) = (VF(1(1),' (1)) = (VE((1)), 7,

T
we have that T,,I" L VF(z). Since VF # 0, the implicit function theorem yields that
T,T is an n-dimensional subspace of R**1. Therefore, we have T,I' = VF(z)*.
A vector n(z) € R is called a unit normal vector at z € T if n(z) L T,I' and
[n(xz)| = 1. We thus have

VF(x) VF(x)

nr) = ——=— or — ———

[VE(x)| [VE(z)|

Definition 2.3.13 (Tangential gradient, [56, Def. 2.3]). Let I' ¢ R be a C'-
hypersurface and let f : ' — R be differentiable at x € I'. We define the tangential
gradient of f at x € " by

Vrf(z) = Vf(z) - Vf(z) n(z)n(z) = P()Vf(z),

where P(x);; = 8;; — ni(z)n;(x), 4,5 = 1,...,d + 1. Here f is a smooth extension of
f:T = R to a (d + 1)-dimensional neighborhood U of the surface T, so that f|r = f.
V denotes the gradient in R%*! and n(z) is a unit normal at z.
The Laplace-Beltrami operator applied to a twice differentiable function f € C?(I') is
given by
d+1

Arf=Vr-Vof=> D,D;f,

i=1
with the notation Vrf(z) = (Dyf(x),...,D,.1f(x)).

Example 2.3.14. We are mainly interested in I' = Q, = S2 C R3 When using
spherical coordinates (7,6, ¢) € [0,00) x [0, 7] x [0,27) with

x rsin 6 cos ¢
y| =|rsinfsing |,
z

7 cos 6

we expect the tangential gradient of the sphere to be the angular part of the full gradient.
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This can indeed be computed in detail using the above definitions: In spherical coor-
dinates, the full gradient on R? is
of 10f 1 of

VI 0. 0) = eyt e oG T g 06

with the orthonormal basis vectors

sin 6 cos ¢ cos 6 cos ¢ —sing
e, = [sinfising [, eg=[cosfsing |, ey,=| cos¢o
cos —sinf 0

The surface €, = S? is simply given as
{(r,0,9) € [0,00) x [0,7] x [0,27) : F(r,0,) :=r—1=0}.

Hence, we have VF = e, and thus n = e,. Then, the tangential gradient is given as

of 1 of
o0 +e¢rsin9%’

Vo, (r,0,6) = V(r,0,0) ~ (Vf(r,0,6) - e:)e, = e

as e, ey, and ey are orthonormal. For the Laplace-Beltrami operator, we obtain by
using the definitions of ey and ey

1o ool 1 o
r2002  r2sinf 00  r2sin?6 0¢?

AQvf(rv 97 ¢) = quf(r7 95 ¢) : vaf(rv 07 ¢) =

From the theory of tangential gradients it is also possible to derive an integration
by parts formula for surfaces, which can be proven by an appropriate extension of the
function to a neighborhood of T' (see [56] for details on this extension):

Theorem 2.3.15 ([56, Thm. 2.10]). Assume that I' is a hypersurface in R+ with
smooth boundary OT and that f € CY(T). Then

/Ffods:/Fands—F/arfuds

Here, H(x) denotes the mean curvature of I' at the point x and p denotes the co-normal
vector which is normal to OU' and tangent to I'. ds denotes either the d-dimensional
surface measure on I' or the (d — 1)-dimensional surface measure on OI'. A compact
hypersurface T' does mnot have a boundary, OI' = 0, and the last term on the right-hand
side vanishes.

For Q, = S? the mean curvature is constant, with the definition given in [56] we have
H(x) = 2. Furthermore, we have 952 = ().

With this, we can define weak derivatives and Sobolev spaces. LP(T") is simply defined
through the surface measure ds, i.e., || f||zery = (Jp [f]7 ds)'/,

Definition 2.3.16 ([56, Def. 2.11]). A function f € LY(I') has the weak derivative

v;i = D,;f € LX) for i € {1,...,d + 1} if, for every function ¢ € C!(I') with compact
support {z € I'| ¢(z) # 0} C I, we have the relation

[ 1piods = [ guds+ [ fotnias.
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2.3 Sobolev spaces for transport and kinetic equations

The Sobolev space H"P(T") is defined by
HY"Y(T) ={f e LP()|D,f € L’(T),i=1,...,d +1}
with norm )
1 lreey = (L) + IV f By ) -
Define H*? analogously as usual and denote H*(I') = H*2(T").
We also have the Poincaré’s inequality and Green’s formula:

Theorem 2.3.17 (Poincaré’s inequality on surfaces, [56, Thm. 2.12]). Assume that
I' e C3 and 1 < p < co. Then there is a constant ¢ > 0 such that, for every function
f € HY(T) with [ fdA =0, we have the inequality

[fllze @y < el Ve flloe - (2.19)
Theorem 2.3.18 ([56, Thm. 2.14]). Assume that T' is a hypersurface in R with
smooth boundary OT and that f,g € H'P(T). Then

/Vrf~Vpgd8:—/prgds—l—/ fVrg-pds.
r r ar

In [81], many other properties for Sobolev spaces on general Riemannian manifolds,
e.g., a chain rule formula and different Sobolev embedding theorems are proven. We
close this section with the following density result that we will need in chapter 4.

Theorem 2.3.19 ([81, Thm. 2.4, p. 25]). Given (M, g) a smooth, complete Riemannian
manifold, the set C3°(M) of smooth functions with compact support in M is dense in
HYP(M) for any p > 1.
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3 The transport equation

In this chapter, we are concerned with the numerical solution of the (parametrized)
time-dependent linear first-order transport equation

Opup(t,x) +bu(t, ) - Vouu(t, ) + cu(t, ) uu(t, x) = fult, x), (3.1)

for all parameter values p in a compact set P C RP, for all times ¢t € (0,7) (T > 0
being some final time) and all € D C R? accompanied with appropriate initial and
boundary conditions.

We first introduce a suitable variational formulation for (3.1) in section 3.1: Orienting
on similar settings in [29,43,51,52], we use an ultraweak formulation requiring only L?2-
regularity of the weak solution. We choose the corresponding test space such that the
variational problem is well-posed and optimally conditioned, meaning that the inf-sup
and continuity constants are both unity.

In section 3.2, we then propose an optimally stable Petrov-Galerkin discretization
of the variational problem. To that end, we first choose an appropriate discrete test
space yf and subsequently compute the corresponding trial space Xf . Doing so, the
optimal trial space Xta arises from the application of the differential operator on the
basis functions of yf . This is different from the related approaches, where stable test
spaces are computed from chosen trial space functions by approximately solving PDEs
locally [29,51,52] or in a saddle point formulation [43]. With our strategy, we obtain
efficiently computable discrete spaces with a discrete inf-sup constant equal to one inde-
pendently of the mesh size. We include a comparison of our scheme with other methods
in subsection 3.2.4.

The optimally stable discretization scheme is applied to parametrized transport prob-
lems in the context of the RB method in section 3.3. The ultraweak optimally stable
variational formulation here leads to parameter-dependent test spaces )} ,. Using the
discretization from section 3.2, we obtain a Petrov-Galerkin discretization based on dis-
crete test spaces with fixed basis functions and parameter-dependent norm and discrete
trial spaces with parameter-dependent basis functions, but fixed L?-norm. Thereby,
the scheme automatically leads to discrete inf-sup constants of one simultaneously for
all parameter values. We then apply the RB method: We introduce a reduced scheme
with possible offline-/online decomposition and propose a suitable greedy algorithm for
the basis generation. Here again, the optimally stable setting ensures that no additional
stabilization is necessary for the reduced spaces, different from related approaches as the
double greedy algorithm in [45]. However, due to the parameter-dependent test space
norms the standard RB error estimators cannot be computed efficiently. We therefore
introduce a hierarchical error estimator as an alternative.

In section 3.4, we describe the fairly easy computational realization of the new ap-
proach. In the solution process, we first solve a coercive least-squares problem in the
test space. Afterwards, the solution of the Petrov-Galerkin problem can be computed
by applying the transport operator to the least-squares test space solution.
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3 The transport equation

Finally, we report on several numerical experiments in section 3.5. In subsection 3.5.1,
we examine the approach for the non-parametric case. We assess the convergence rates
for problems with different smoothness, investigate limitations of the chosen spaces and
possible post-processing strategies, and compare our approach with the discretization
from [43], where problem-dependent stable test spaces (instead of trial spaces) are com-
puted. In subsection 3.5.2, we describe the experiments for the RB method in the
parametric case. We assess the convergence rates of the greedy algorithm for different
test cases, compare our approach to the double greedy algorithm introduced in [45], and
test the proposed hierarchical error estimator.

The results presented in this chapter have been published in [28].

3.1 An optimally stable ultraweak (space-time) formulation

In this section we present an ideally conditioned variational framework for linear first
order transport equations using results from [43] and [6,7]. To that end, let  C R™,
n > 1, be a bounded polyhedral domain with Lipschitz boundary, where we note that
may also be a space-time domain, as will be shown in Example 3.1.9 at the end of this
section. Moreover, n shall denote the outward normal of I' := 9{2. Next, we introduce
the advection field b(-) € C*(Q)" and the reaction coefficient ¢(-) € C°(), noting that
for some statements the regularity assumption on b(-) may be relaxed. We assume
throughout this chapter that

c(z) =3V -b(z) >0 for z € Q almost everywhere.

Then, we consider the first order transport equation

Biou(z) :==b(z) - Vu(z) + c(z)u(z) = fo(2), z€Q,

u(z) = g(z), 2z € I'_ = Tinflows (3:2)

where f, € C%(Q), g € C’O([‘T), and I'y := {2z € 00 : b(z) -n(z) = 0}.
For functions v,w € C%(Q) N C*(Q) we obtain

(Btov, w)r2(0) = (v, By ow) r2(q) +/ vw(b-n) ds + vw(b - n) ds,
r_ r,

where Bf ;w = —b-Vw+w(c—V-b) denotes the formal adjoint of Bto.' To account for
the nonhomogeneous boundary conditions, we introduce as in [43] the spaces C{ L(Q) =

{ve %) NCYHQ) : v|p, =0} and obtain
(Btov,w)r2(q) = (v, B ow) 2y, v € Ct_(Q),w e C%+(Q)-

Thus, we may define the domain of B, as dom(By ) = C’h(Q). For the derivation of
a stable variational formulation we require as in [43] the following two assumptions.

Assumption 3.1.1. We assume that the following conditions hold:
(B1) There exists a dense subspace dom(B;,) € L*(Q2) on which B{,, is injective.

! Considering (3.2) with g(z) = 0 and thus homogeneous Dirichlet boundary conditions we define the
formal adjoint By, of Bi,o by (Bi,ov,w)r2(q) = (v, B ow)r2(q) for all v,w € C5°(Q).
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3.1 An optimally stable ultraweak (space-time) formulation

Figure 3.1: Domains Q (left) and Q. with characteristic curves and suppu in red.

(B2) The range ran(Bf,) = {B{,v : v € dom(B{,)} of Bf, is densely embedded in
L3(9).

These essential assumptions on the well-posedness of the problem are however not
fulfilled for arbitrary coefficient functions and domains. One commonly used condition
where well-posedness can be shown rather easily (see e.g. [65, Prop. 5.9], [43, Remark
2.2(ii)], [72]) is that ¢ — £V - b > & in € for some £ > 0.

For a vanishing reaction term, however, we can construct basic counterexamples where
Assumption 3.1.1 is not fulfilled: We consider Q C R? with advection field b(z,y) =
(—y,x) and no reaction ¢ = 0. It holds V - b = 0, thus, the adjoint operator is simply
B{ ;v = —b - Vu. For the annular domain

Q1 = {(z,9) e R?:0.25 < 2® + % < 1}

(see Figure 3.1, left), it holds b # 0 on Q. The boundary has the form of two circles:
I =00 = {(v,y) € R? : 22 + y?> = 0.25} U {(x,y) € R? : 22 + ¢? = 1}, outward
normal is n = (z,y) on {2? + y? = 1} and n = —2(z,y) on {2? + y? = 0.25}. Since
b-n=(—y,z) C(z,y) = C(—xy + xy) = 0 for a constant C' € R, C' # 0, the whole
boundary belongs to I'g. Therefore, v =1 € C’%+ (1) but b- Vv = 0, i.e. Bf, is not
injective on C%Jr ().

Even with a polyhedral domain with polygonal boundary and I'g C 0f2 the problem
may not be well-posed: Consider to that end

Qy = (—1,1)%\ (-0.25,0.25)*

(see Figure 3.1, right) with b and ¢ as before. We thus have again b # 0 on Q. Then,
let 0 # + € C1([0,1]) with supp C [0.5,0.9] and consider

u(z,y) = (/22 +y?).

With this definition, u|sq, = 0, i.e., u € C%+(Qg). The characteristic curves of b are
circle-shaped of the form v(t) = r(cos(¢ + t),sin(¢ + t)) for a starting point (z,y) =
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3 The transport equation

r(cos ¢, sin ¢). The rotational invariant function u is thus constant on the characteristic
curves, therefore it holds b - Vu = 0, and B{, is again not injective?.

These examples show that closed characteristic curves of the advection field that do
not reach the boundary may lead to ill-posed problems. To give sufficient conditions
for the well-posedness of pure advection equations, we reuse the notion of Q-filling flows
developed in [6,7].

Definition 3.1.2 (Q-filling flow, [6]). Let b € C1(Q)™, and let the flow associated with
b be described by the integral curves & : (s,x) € [05, 2] X Q — &(s,2) € Q that solve

d§
2 _p
ds

Then the flow associated with b is called Q-filling, if there exists 7' > 0 such that for
almost every x € Q there exist xg € I'_ and 0 <t < T such that

(), €00,2) =

x = &(t, xo).

In other words, the trajectories of the flow associated with the vector field b starting
from the inflow boundary do fill €2 except perhaps for a set of measure zero in a finite
bounded time T

Similar to [6, Lem. 7], we show the following lemma.

Lemma 3.1.3. If the flow associated with b € CY(Q)" is Q-filling, then there exists
p € L>®(Q) such that
b-Vp=2 in{,

3.3
p=0 onl_. (3:3)

Moreover, we have ||p||pe ) < 2T and p > 0 almost everywhere in .

Proof. The function p can be found by the method of characteristics: Since the flow
associated with b is Q-filling, for almost every = € €, there exist o € [_ and 0 <t < T
with 2 = &£(t,20). Define p(z) = 2t. Since 0 <t < T, we get® p € L>(Q), [|pllL=(0) <
2T, and p > 0 almost everywhere in Q. By definition, for g € I'_ we have £(0, z¢) = xo,
i.e. p(xp) = 0, which means p|r_ = 0. Furthermore, it holds for almost every x € Q that

d
= le(tm) = 2t =2,

ie., p fulfills (3.3). 0

The following proposition gives a sufficient condition for b to have an Q-filling flow:

2This second case is a counterexample to the claim in [43, Remark 2.2(i)], that the assumption 0 #
b € C'(Q)" is already sufficient for Assumption 3.1.1 on a bounded, polyhedral domain Q C R",
n > 1 with Lipschitz boundary that consists of finitely many polyhedral faces again having Lipschitz
boundaries

3p is in general not continuous: Consider, e.g., a nonconvex domain € where a characteristic curve is
tangential to the boundary at some (isolated) z € I'g, but not in a neighborhood of z. Then p is
discontinuous along the characteristic curve starting from z.

30



3.1 An optimally stable ultraweak (space-time) formulation

Proposition 3.1.4 ([6, Prop. 7]). Ifb € CH(Q)" is bounded as well as its gradient in
a neighborhood V' of ), if there are a unit vector k, a number o > 0 such that

b(z) - k>a VreQ, (3.4)
and if Q is bounded in the k direction then the flow is Q-filling.

With these preliminaries, we can now show in a modified version of [43, Remark
2.2]* that Assumption 3.1.1 holds for two different conditions on the data functions and
domain:

Proposition 3.1.5. Let one of the following two conditions hold:

(i) The flow associated with b is Q-filling

(ii) There exists k> 0 with c — 3V -b > £ in Q.
Then, the operator Bf, satisfies Assumption 3.1.1. Moreover, we have the curved
Poincaré inequality ,

lvllz2) < el Biovllz), v € Cr (). (3.5)

In case of condition (i) the constant can be bounded by ¢, = 2T'; in case (ii) ¢, = L.

Proof. We first show (3.5), i.e., [[v]|r2(q) < ¢l Bfovllr2(). Let thus v € CIL+ (Q). If
condition (i) holds, we can slightly adapt the proof of [7, Thm. 1]: Let p be given as in
Lemma 3.1.3. Then,

(Biov, pv)r2(q) = (=b- Vo +v(c =V -b), pv)r2(q)
= —/ b-vavd$—|—/ v?p(c—V -b)dz
= /Qpb Vo? dx—l—/vp(c—v b)dz

:/V pbvdx—i—/vpc— b)dz,

where we have no boundary integral from the partial integration since the traces of v
on 'y and of p on I'_ vanish. Further, we obtain

(Blovup)raey = [ 023 Vot p (e= 3V -b)do> Julag.  (36)
“ =2 \>/O/ >0

Using [lpvllz2(@) < 1ol 0]l z2(@) < 2Tollz2(q) we have

1
[0l 2o (3.7)

1Bz ovlla@) = vl oy (Biov o) ey 2 5

4As shown in the counterexample above, Remark 2.2(i) in [43] is in general not sufficient for well-
posedness. Therefore, we reuse only Remark 2.2(ii) and give a second condition based on Q-filling
flows.
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3 The transport equation

For condition (ii), i.e., ¢ — fV b > k > 0, we obtain by integration by parts (see
e.g. [130, Lem. 3.1.1])

(B;;k,ov7 U)LZ(Q) = /

Q
:—%/vb-Vde—i—%/vb-Vv—i—vQV-bdx—%/ v?b - nds
Q T

—I-/ (c—V-b)dx

:/Q 2(c— 1V - b)dx — */p v?b -1 ds > llo) 20 (3.8)
- <0

—vb-Vvd:U+/ v?(c — V-b)dx
)

and thus
Bt ovllpz) = sllvllz2)

i.e., (3.5) holds for both cases.

Since (3.5) implies injectivity of Bf , on Cla (€2), which is dense in L?(2), assumption
(B1) is fulfilled.

To prove assumption (B2), we slightly modify the proof of [6, Thm. 16]. To prove
density of ran(B{,) in L*(Q), we take w € L*(Q2) that is orthogonal to ran(B;,) and
show w = 0. We thus have

(Bfov,w)r2) =0 Vv e C’ﬂ(Q).
Let at first v € C}(2). We then have
O:/Q—b-va—F(c—V‘b)vw dx:/Q—V-(bv)w—i—cvw dz (3.9)
By partial integration we see that b - Vw + cw is a distribution of order 1 with
(b-Vw + cw,v) =0,

which already means b - Vw + cw = 0, ie., b- Vw = —cw € L*(Q). Therefore,
w € H(Q,b) and by Proposition 2.3.1, w has a local trace w|r_ € L (I'_,|b-n|) and a
global trace w|gn € H~'/2(99), admitting a Green’s formula/integration by parts with
a test function in H'(Q). Let now v € Ch (€2). We then obtain from partial integration
of (3.9), using b- Vw 4 cw = 0 and v|r, = 0 that

/ vwb - n ds = 0.

Since v is arbitrary on I'_ and b-n < 0 on I'_ we thus have w|p_ = 0, i.e., w € Hr_(Q,b).
We now consider the curved Poincaré inequality (3.5) for the (nonadjoint) operator
Bioz =b-Vz+cz: By setting b= —b and ¢ =c— V - b, (3.5) reads

|=b-Vat (6= V-b)zllr2() = [b-Vatez| o) 2 (G) Hlzll2) ¥z € Cr_(Q), (3.10)

as T'_ is the outflow boundary for b = —b. Since C} (Q) is dense in Hr_(Q,b) by
Proposition 2.3.5 we obtain 0 = ||b - Vw + cwl| 2(q) > (&) H|w|l12(), and thus w = 0.
Hence, (B2) is also fulfilled. O
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3.1 An optimally stable ultraweak (space-time) formulation

We may now define as in [43]

[oll« := [ By ovll L2 ()
and note that due to (B1) |- ||« is @ norm on dom(By,). With this framework at hand,
we can define as in [43] the test space by

Yy = clos), {dom(Béo)},

which is a Hilbert space with inner product (v,w)y, = (B{v, Bfw)r2(q) and induced
norm |[v]|y, := ||v]|«, v,w € W. Here, Bf : ), — L*(Q) denotes the continuous extension
of Bf, from dom(B{,) to Ji. Then, we can define B; : L?(Q) — V! again by duality,
ie., By := (Bf)*. The variational formulation of (3.2) may then be based upon the
bilinear form

by : L*(Q) x Y, = R, b(v,w) == (v, Biw) 2(q) = /Qv(—b -Vw +w(c—V-b)) dz.

(3.11)
To incorporate the boundary conditions, we use the weighted L2-spaces L?(K,|b - n|)
for K C 09) defined in subsection 2.3.1. We then show that functions in ); have a trace
in L*(T_,|b-nl)."

Proposition 3.1.6. Assume that one of the two conditions of Proposition 3.1.5 holds.
Then, there exists a linear continuous mapping

v- V= L*(T-,|b-nl),

such that
7= )22 o)) < Crrllvllye, v € N (3.12)

The constant is Cy. = VAT, or Cy. = V2k~1, respectively.
Proof. Integration by parts yields for v € C1() (see also (3.8))

(Bt ov,v)r2(0) :/ ’UQ(C—%V'b)dx—%/ v?b - nds.
’ Q

By using the general assumption ¢ — %V -b >0and b-n < 0 on I'_, we have for
v E C’h(ﬂ)

/F v b n|ds < 2/(Bf,v,v)| < 2||vl 20 lolly < 20003, (3.13)

where we have used (3.5) in the last estimate. The assertion for v € )} follows by
density. O

Next, we define for any f, € L?(Q2) and g € L?(I'_, |b - n|) a linear form f € )} as
1) = (fos )iz + [ 97-(@)[b -] ds. (314)

Then, we obtain the well-posedness of the variational formulation:

®Note that, due to a wrong estimate, the constant given in the corresponding result [43, Prop. 2.3] is
generally not true. We therefore give a modified proof using (3.5) for the estimate in question.
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3 The transport equation

Theorem 3.1.7 ([43, Thm. 2.4]). Assume that one of the two conditions in Proposi-
tion 3.1.5 is valid and by and f are defined as in (3.11) and (3.14), respectively. Then,
there exists a unique u € L?(SY) such that

be(u,v) = f(v) Yve, (3.15)

and the stability estimate

lullp2) < [Iflly; holds. Moreover,

bt(wvv)
Y = sup sup m——————— = 1
wer2(@)ve [wllrz@ vl
bt(wav)

By := inf sup —————— =1,
weL2(9) vey, |wllL2yllvlin

1.e., inf-sup and continuity constants are unity and, equivalently,
IBill ez on) = I1Billcon 2@y = 1B Hleor ey = 1B ez @ = 1
where By * = (Bf)~! = (B;Y)* : L*(Q) — ).

Proof. The proof follows the lines of the proof of [43, Thm. 2.4] invoking Proposi-
tion 3.1.6 instead of [43, Prop. 2.3]. O

Remark 3.1.8. As the last theorem shows, the specific choice of the test space norm
|- llye = 1B - | 12(q) results in an optimally stable variational formulation. However, as
already noted in [43, Prop. 2.6], our test space is the same space as the more “standard”
space Hr, (€,b) (see subsection 2.3.1) with equivalent norms: One the one hand, we
have

w3, = [I1BfwlFeiq) = | = b Vw +w(c =V -b)|[f2
<2 = b Vi) +2l(c = V- b) 7oy lwlZz ()
< 2max{L, [|(c = V- b)|[Fo (0 Hlwl Fr o) -

On the other hand, it holds due to (3.5)

lwllFp) = lwlZziq) + b - Vw7
< wlZei) +2l(e = V- Dlw|2(g) + 2[b - Vi — w(e = V- b)|[72(q
< (1 +2[[(c =V -b)[[F(q)) + 2)[w]]3,-

Hence, the norms are equivalent, and thus ) = clos| (C%Jr (€2)). Due to Proposi-

tion 2.3.5, C%+(Q) is dense in Hr, (2, b) (for which the boundary values were defined
in the trace sense). Thus, we indeed have ); = Hr, (2, b) with equivalent norms.

Example 3.1.9 (Time-dependent linear transport equations). The setting described
in the beginning of this section includes both time-independent and time-dependent
linear first order transport problems: As remarked in [43], we can consider time as
an additional transport direction in the space-time domain, i.e., z = (t,z) € Q =
(0,T)xD = IxD, n = 14d, where D C R? denotes the spatial domain. Next, we define
the space-time transport direction b := (1,b,)” € C*(I x D)'*¢, where b, denotes the
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3.2 An optimally stable Petrov-Galerkin method

spatial advective field. Moreover, we introduce the space-time gradient operator as
V := (0, V)T, where V, is the gradient on the spatial domain D. Accordingly, we set
I'y :=={(t,z) € I': b(t,z) - n(t,x) = 0}, where n(¢,x) is again the outward normal of
I'. Then, we obtain exactly the form (3.1), namely

Biou:=b-Vu+cu=f in (),

u=g¢g onl_.

For the space-time boundary, we have I' = T'y, Ul UT'p, where Iy, := {0} x D,
Cout :={T} x D, I'p := I x 0D, along with its corresponding outward normals nj, :=
(—1,0)", noy := (1,0)7 and np := (0,n,)7, where n, denotes the spatial outward
normal (of D). Hence, b-njy, = —1, b-ngy = 1, and b-np = b, - n,, so that
I'' =TUl'p_, where I'p, =1 x 0Dy and 0D+ :={x € 0D : by(x) -ny(x) = 0}. We
emphasize that also nonhomogeneous initial values are thus prescribed in an essential
manner. Note that for the time-dependent case condition (i) of Proposition 3.1.5 is
always fulfilled, which can be seen by taking k = (1,0,...,0)” in Proposition 3.1.4,
since k-b =1 (cf. [6]). As an alternative to this realization of a space-time formulation,
one could also treat spatial and temporal variables separately. Such a strong in time
variational formulation, however, results in a suboptimal inf-sup constant that may be
positive only for short time intervals. For details see [28, SM2].

3.2 An optimally stable Petrov-Galerkin method

In this section we introduce computationally feasible and optimally stable (conforming)
finite-dimensional trial and test spaces X0 C &, = L%(Q) and ) C ) for the approxi-
mation of the solution of (3.15). Here, we denote by 0 a discretization parameter, where
d equals the mesh size h for spatial problems and 6 = (At, h) for time-dependent prob-
lems in space and time with a time step At%. Then, the Petrov-Galerkin approximation
of (3.15) reads

uw e X2 bi(u’,0%) = f(0°) Yo° € ). (3.16)
From Proposition 2.2.7, we know that (3.16) has a unique solution u® € X? if

b 5’ 0
B0 := inf sup 5 (v )5 > 0, (3.17)
weas oo T oy 07T

where we additionally require stability of the scheme as § — 0, i.e., that there is 3; > 0
such that

B >p >0, Vi>0.

The stability (or inf-sup) constant 5{5 also plays a key role for the relation of the error
e’ := u — u® and the residual r® € Y/ defined as

ro(w) i= flw) — be(u,w) = by(e’,w),  we N,

SIf we use a tensor product discretization in space, § may also take the form 6 = (h1,...,hq) or
0 = (At, ha, ..., hq), respectively.
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as can be seen by the standard lines

2 bt(eaa ’(U) T(; (w) 1)
Belle’ |l 2oy < sup = sup —— = [[7°[ly
“) wWEYy HwHM wEYy HwH)}t ¢
1]l 2o lwlly
< 7 sup O A Py
weYy ”"LUHyt
In the optimal case, i.e., By = 7 = 1, error and residual coincide, i.e., H65||L2(Q) = ||r5||yt/.

Moreover, we have the quasi-best approximation result Proposition 2.2.9

I€llzaiey = llu =z < 5 inf Ju =2 = 5 o2 (ui A7),
where 0720 (u; Q) = inf s s |u—2v° | 22(q) denotes the error of the best approximation
to an element u € L2(Q) in &’ w.r.t. the L?(Q)-norm. Since u® € &, it is trivially seen
that o72(q)(y; x0) < |ju— U(SHLQ(Q) = H65||L2(Q), so that in the optimal case f; = v, = 1
it holds that
7y = €1l L2y = oL (u; &), (3.18)

i.e., the numerical approximation is the best approximation.

3.2.1 Optimally stable discrete spaces

To realize an optimally conditioned and thus optimally stable Petrov-Galerkin method,
which is also computationally feasible, we suggest to first choose a conformal finite-
dimensional test space yf C Y, and then to set

X0 = Br()}) c L*(Q). (3.19)

For this pair of trial and test spaces we then obtain for every w® € A? that

by (w®,v°) by (w’, B "w’) (', Bi B wf)2io)
sup = — = — =1.
weys W0zl [lwdll 2@l By willy, (w2l Bf By *w? || 12(q
(3.20)
Here, we have exploited the fact that for all w® € A? for the supremizer 52;5 e,
defined as the solution of (Sg}(;,’l)&)yt = by (w?,v%) for all v° € Y2, we have sfu(; = B "w
as By is boundedly invertible. From (3.20) we may thus conclude that indeed
Bl=7=1 (3.21)

and the proposed method is optimally stable.

Moreover, we emphasize that the suggested approach is computationally feasible since
By is a differential operator which can easily be applied — as long as the test space is
formed by “easy” functions such as splines as in the case of FEs. Additionally, for our
choice of test and trial space we may reformulate the discrete problem (3.16) as follows:
Thanks to the definition of the trial space &? in (3.19), there exists for all v € A a
unique w? € Y? such that v = Bfw’. Therefore, the problem (3.16) is equivalent to
the problem

w’ e Y a(w®,v?) = (B;*w5,B;‘v5)L2(Q) = f(v°) Vo e )P, (3.22)
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3.2 An optimally stable Petrov-Galerkin method

which obviously is a symmetric and coercive problem, the normal equations, or a least-
squares problem. Thus, problem (3.22) is well-posed and we identify the solution of
(3.16) as u® := Bfw’. This reformulation will also be used for the implementation of
the framework. From (3.22) we see that for the setup of the linear system for w’ the
precise knowledge of the basis of &> = B)? is not needed; it is needed only for the
pointwise evaluation of u’ when e.g. visualizing the solution. For further details on the
computational realization we refer the reader to section 3.4.

Thanks to (3.21), we are, moreover, in the optimal case described in the beginning of
this section and the numerical approximation u’ € /'\’t‘S is thus the best approximation of
u € L?(Q) for our suggested choice of trial and test space. Hence, we obtain ||¢|| 2(Q) =
o2 (u, AP = Hr5||yt/. Due to (3.19) we have that for any w® € X? there exists a unique
v? € Y9 with Bfv® = w®. In view of (B1) in Assumption 3.1.1, there also exists a unique
v € ) such that Bfv = u, namely v* = B "u. Therefore,

) 9 . § . * o)
e lrziq) = o2y (u, &) = inf ||lu — w°||z2(q) = inf ||Bfv — B{v°| 2
€%l L2q) = or2(a)(u, &) e | z2(0) e | B¢ t vl L2
S ) (3.23)
— it o=l = o (Bt ).
ULISNA
We may thus also infer from (3.23) the (strong) convergence of the approximation u%
to u in L?(2) provided that infv5eyf |v — 9|y, converges to 0 as & — 0. Note that the

latter can be ensured by choosing an appropriate test space y,? , such as, say, a standard
FE space.

We finally remark that in standard FE methods the error analysis is usually done in
two steps: (1) relation of the error to the best approximation by a Céa-type lemma; (2)
proving an asymptotic rate of convergence e.g. by using a Clément-type interpolation
operator. As seen above, (1) also holds for our new trial spaces — in a nonstandard norm,
however. Regarding the second step (2) there is hope that it might maybe be possible
to derive convergence rates via the term inf sy lv — ||y, (see (3.23)) and mapping
properties of the operator B;. This is, however, beyond the scope of this work. We will
instead investigate the rate of convergence in numerical experiments in section 3.5.

Example 3.2.1 (Illustration of trial space). We illustrate the trial space X0 as defined
in (3.19) for a very simple, one-dimensional problem. In detail, we consider € := (0, 1),
a constant transport term b > 0, and a variable reaction coefficient ¢ € C°([0, 1]); that
means B ou(z) = bu/(z) + c(z)u(z), z € Q, as well as u(0) = g on I'_ = {0}. We

get Bf v(x) := —bv'(x) + c(x)v(x). According to our proposed approach, we start by
defining a test space J}*. To this end, let n; € N and h := n—lh, I; ;= [(i — 1)h,ih) N Q,
1=1,...,nyp, Iy := 0. We use standard piecewise linear FEs, i.e.,

%‘i‘l—i, ifxelq,

ni(x) == g+ 144, ifzel,
0, else,
for i = 1,...,n, and define yth = span{mi,...,ny, }. Then, we construct the optimal
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Figure 3.2: Basis functions of Y and X" for h = i, b=1,c=2.
trial space in the above sense by /'t;;h :=span{{y, ..., &, }, where we set

Y@ (E+1-1d), ifzeliy,
&i(2) = Bini(x) = —buni(x) + c(z) mi(w) =  § +e(2)(—F +1+10), frel,
0, else,

for i = 1,...,n,. Note, that for the special case of constant reaction c(z) = ¢, the
functions &; are piecewise linear and discontinuous, see Figure 3.2.

3.2.2 Nonphysical restrictions at the boundary

From a computational perspective it is appealing to use discrete spaces that are tensor
products of one-dimensional spaces; for details see section 3.4. However, this choice may
result in nonphysical restrictions of functions in the trial space on certain parts of the
outflow boundary.

To illustrate this, consider Q = (0,1)? and let b = (by,b2)T € R% ¢ € R with
b1, by > 0, such that we have for the inflow boundary I'_ = ({0} x (0,1)) U ((0,1) x {0})
and thus for the outflow boundary I'y = ({1} x (0,1)) U ((0,1) x {1}). Let yt’le be a

univariate finite-dimensional space with yt’le = span{¢i,...,¢pn, } C H(ll)(O, 1):={ve
H'(0,1) : v(1) = 0}. Next, we define the discrete test space on £ = (0,1)? as the tensor
product space

W =Yp @V =span{g; ® ¢;: 1 <i,j<np}t, 0= (hh).

Then, the optimal trial functions are given for ¢,j,=1,...,n, by
Vij = Bi (¢ @ ¢j) = —b1(¢; @ ¢;) — ba(¢s ® @) + c(¢s @ ¢;)

and we set Xt‘s :=span{v; ; : 1 <1i,j <np}. However, this simple tensor product ansatz
results in ¢; ;(1,1) = 0 for all ¢ and j; i.e., any numerical approximation would vanish
at the right upper corner (1,1) € €. Needless to say, this is a nonphysical restriction at
the boundary, even though point values do not matter for an L?-approximation. It is
obvious that the 2D case is only the simplest one in which this effect appears. In fact, in
a general dD situation (d > 2), we would obtain that optimal trial functions constructed
as the Bf-image of tensor products would vanish on (d — 2)-dimensional sets along the
boundary of €2, leading to nonphysical boundary values. To reduce the impact of this
effect, we suggest considering an additional “layer” around the computational domain
by defining a tube of width « > 0 around I'y by

Qi(a) ={zeR*"\Q: Jyels:|r—yllw <al, Qa) :=QU (). (3.24)
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3.2 An optimally stable Petrov-Galerkin method

Then, we solve the original transport problem on the extended domain Q(«) using the
associated pair of optimal trial and test spaces. As a result, the trial functions vanish
on the exterior boundary of €, (a), but not on 9€2. From a numerical perspective, by
choosing @ = mh for a (small) m € N and the mesh size h, this adds m layers of grid
cells and thus O(n{~') degrees of freedom. On the larger domain Q. («), the numerical
solution remains a best-approximation in the enlarged trial space. Due to the larger
dimension, this is no longer true w.r.t. the original domain 2. However, note that the
additional unknowns are only (d — 1)-dimensional. We will numerically investigate this
effect in section 3.5.

3.2.3 Postprocessing

As already mentioned, we are particularly interested in using our framework for problems
with nonregular solutions u € L?(2), which especially includes jump discontinuities that
are transported through the domain. However, it is well known that (piecewise) polyno-
mial L2-approximations of such discontinuities result — especially for higher polynomial
orders — in overshoots; this is the so-called Gibbs phenomenon. There are many works
concerning postprocessing techniques to mitigate such effects, see, for instance, [122]
and the references therein.

Here, we restrict ourselves to a rather simple postprocessing procedure aimed at
limiting the solution near jump discontinuities. Let yf C ), be a conforming FE test
space on 2 C R" corresponding to a partition T3 = {KZ}?:T‘i of Q = U?:T‘i K; with
polynomial order p > 2:

V3= {v e C%Q) : v|k € PP(K)VK € T5,v|r, =0} C W

If w® € ) denotes the solution to (3.22), the solution u® € X2 = B;)? to (3.16) reads

u’ = Bfuw® = — Zbi&riwé + (¢ =V -b)u’.
i=1

6

Since w’ € yf is an FE function, the partial derivatives 6%.105,@ = 1,...,n contain
discontinuities across the cell boundaries, such that limiting these terms has the potential
to mitigate overshoot effects. For all K € Ty, we have 0,,w°|x € PP(K). Based upon
this, we define

P P

Op,wd € L*(Q) by  0n,wf|k = Poi1(s0) O, 0’| VK € T5,

where P]P(p,l)( K) 18 the L?-orthogonal projection onto the polynomials of order at most
(p—1) on K. We then define the postprocessed solution to (3.16) as
n —_—
@ = — z:bi@gciwfS +(¢c—V-b)u’.
i=1

As a first attempt, one may perform the elementwise L2-projection on all grid cells.

However, for many problems it might be better (or even necessary) to choose a set of
grid cells 7™ C 75 that contains all cells where overshoots due to the jumps indeed

occur, and only perform the postprocessing for the cells K € 7:5jump. For methods that
are able to detect such cells we refer to [111].
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3 The transport equation

Due to the construction of the postprocessed solution independent from the trial space
2\’{5 , it is not clear whether the postprocessed solution shows the same convergence rate
as the standard solution. We will investigate the convergence behavior in numerical ex-
amples in section 3.5. We will test this approach for piecewise constant solutions u with
jump discontinuities. For more complex problems, perhaps other, more sophisticated
methods from the literature have to be used.

3.2.4 Comparison with other approaches

There are many different approaches to define stable FE solutions to the transport equa-
tion (3.2). As already mentioned, the variational formulation developed in section 3.1 is
equivalent to the formulations used in [43] and for the DPG method [29,51,52]. On the
discrete level, however, our scheme differs from the DPG method: While we here use
a Petrov-Galerkin projection onto conforming spaces X2 C L?(Q) and )? C ), in the
DPG method, a mesh-dependent discrete bilinear form is defined so that discontinuous
test functions can be used.

Our discrete scheme is more closely related to continuous and conforming formulations
of the LSFEM for (3.2) as e.g. in [19,20,48] and to the framework presented in [43].

The LSFEM is based on the minimization of the residual usually in the L?-norm. In
[19], the L2-residual minimization problem for (3.2) with homogeneous boundary condi-
tion g = 0 (after a possible lifting) is defined on the space Hp_ (€2, b) (see (2.14)). Rewrit-
ing the minimization problem as a variational formulation, one seeks u € Hp_ (2, b) such
that

(Btu, Bt”)LQ(Q) = (f, BtU>L2(Q) Vv € Hp_ (Q, b), (3.25)

where the transport operator By : H(,b) — L?(€) is the continuous extension of Bi o
from dom(By,) to H(Q,b)7. In [20, sect. 10.3], the inhomogeneous boundary condition
is included into the formulation, resulting in the variational problem: Find u € H (2, b)
such that

(Byu, Bt'U)L?(Q) + (u, U)LZ(F77|b,n|) = (f, Bt'U)LZ(Q) + (g, BtU)LQ(F,,|b~n\) Vv € H(,b).
(3.26)
Alternatively, in [48] a version of (3.26) with a different boundary functional is used.

We notice that the LSFEM method, viewed from the angle of the variational formu-
lation, can be described as a “strong” weak formulation of (3.2) (i.e., with the transport
operator on the trial space) and with test functions that are defined by applying the
operator By to the trial functions. In this way, the method developed in subsection 3.2.1
is an “adjoint version” of LSFEM in using an ultraweak formulation and choosing the
trial space as application of B; onto the test space. From the viewpoint of the compu-
tation, the definition of w’ in (3.22) resembles the problem (3.25) with By instead of
B and with a different right-hand side, while we afterwards compute the solution by
applying the adjoint operator, i.e., u® = B;kw‘s.

The method developed in [43] is based on the ultraweak variational formulation of
section 3.1, but differs from our method in the choice of the discrete spaces. As for our
method, the goal is to achieve a residual minimization in the )}-norm, which means
that the discrete solution is the L?-best approximation of the weak solution in Xf.

"By : H(Q,b) — L*(Q) is the transport operator of a “strong” weak formulation, and is thus a
restriction of the “ultraweak” operator By : L?(2) — ) defined in section 3.1.
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3.2 An optimally stable Petrov-Galerkin method

Our discretization developed in subsection 3.2.1, which we call optimal trial approach,
consists of choosing a test space J C )i which automatically determines the optimally
stable trial space X = B;)? C L%(Q). In contrast, for the method in [43], which we
call the optimal test method, one first chooses a trial space )&5 C L*(9). The optimally
stable test space realizing a discrete inf-sup constant of one and residual minimization in
V! is then given by (Bf)~1X?, which is not feasible for the numerical scheme. Therefore,
an approximation, called §-proximal test space®, is defined by choosing an auziliary or
test search space Zt‘S C ), of larger dimension than /’\Aft‘s. The optimally stable problem
in X0 x (B¥)~1A? is then substituted by the problem in X9 x Pzés((B;k)_lé?t5), where
Pzg denotes the Y-orthogonal projection onto Z¢. To circumvent the still prohibitively

expensive computation of the basis functions of Pzs (( B} )_1/ﬁ5), the variational problem
(3.15) is reformulated into the saddle point problem: Find (u,#) € L*(Q) x ) such that

(Bi#, By 2)p2(q) + (B, 2)yr y, = (£, 2)yr 0 V2 €W,
; (3.27)

(v, B{7) 12 (0 Vv € L*(Q),

with the auxiliary variable 7 := (ByB;)~!(f — Byu) € ). This, in turn, is solved
approximately by an Uzawa algorithm, where the discretization is realized with the
following iteration: Given u®* € X2, find #%F € Z2 and u**+! € A such that

(B, Bi 2°)12(0) = (f — Biu™*,2%)y 3, V20 e 29,

(u5’k+1, 7)6)L2(Q) = (ué’k, ’1)6)L2(Q) + (B:fa’k, Ué)L2(Q) VU5 S /?té. (328)
Here, the first equation is based upon the same bilinear form as for (3.22). As the
optimal trial method and the optimal test method are similar both in the continuous
formulation as starting point and in the actual numerical problem to solve, we will
compare the methods in the numerical experiments in subsection 3.5.1.

Finally, in [9] the SPLS method was proposed for abstract inf-sup stable problems and
then subsequently applied to a div-curl-system. The authors first rewrite the abstract
weak problem (2.5) in a least-squares form involving the operators associated to the
scalar products of the trial and test space. This is equivalent to a saddle-point problem
containing the bilinear form of the variational formulation and the test space scalar
product, which corresponds to (3.27) when using the specific test space norm of our
setting (from section 3.1 and [43]).

The authors state different versions of an Uzawa algorithm to solve the saddle point
problem. Then, they propose pairs of discrete trial and test spaces, where the trial space
is built from the test space by the application of the adjoint operator B*, the inverse
of the operator associated to the trial space scalar product and possibly a projection
operator. Inserting the specific choice of spaces of our setting and using no additional
projection, this corresponds to our choice of discrete spaces in subsection 3.2.1. Due
to the saddle-point formulation, however, the exact discrete problem to solve differs.
In fact, our solution procedure (3.22) corresponds to the first iteration of the Uzawa
algorithm in [9] when applying the SPLS method to the setting of section 3.1.

8in [43], § is an additional parameter different from the usage here
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3 The transport equation

3.3 The reduced basis method for parametrized transport
problems

In this section we generalize the above setting to problems depending on a parameter
and apply the RB method for that purpose [76,83,112].

3.3.1 Parametrized transport problem

We consider a parametrized problem based upon a compact set of parameters P C RP. In
analogy to the above framework we define the domain 2 and the now possibly parameter-
dependent quantities b, € CI(Q)ﬁ and ¢, € CO(Q_) with ¢, — 3V -b, > 0 for all € P.
For all € P we define f,.c € C°(Q) and g, € C°(I'_). Then we consider the parametric
problem of finding u, : 2 — R such that

Byouu(z) :=bu(z) - Vuu(2) + cu(2)uu(z) = fuo(z), z€Q,
uu(z) = gu(2), zeT_.

Assumption 3.3.1. We assume that 2, P and b, are chosen such that the inflow and
outflow boundaries I'y. := {z € 9Q : b,(2) - n(z) = 0} are parameter-independent.

Remark 3.3.2. As we shall see below, Assumption 3.3.1 is a direct consequence of a
necessary density assumption to be formulated below. However, as stated in [45], for
parameter-dependent I'y () and a polyhedral domain €, it is always possible to de-
compose P into a finite number of subsets P,,, m = 1,..., M, with fixed parameter-
independent corresponding inflow and outflow boundaries. Hence, one considers M
subproblems on P,,, m = 1,..., M, with separate reduced models. Moreover, one could
also consider parameter-dependent €2, I'y , that can be mapped onto a parameter-
independent reference domain 2 with fixed inflow and outflow boundaries by varying
the data.

Next, we require Assumption 3.1.1 for the formal adjoint B, for all u € P such
that we can apply the above framework separately for all 4 € P in order to define the
test space )}, with parameter-dependent norm |[lv[|y, , = || Bjv[[r2(q) as well as the
extended operators B, : L*(2) — W, and B Y, — L?(2). Hence, we aim at
determining solutions u,, € L*(2) such that

by, v) = (uu, Byv)r2q) = fu(v) Vv € Ve (3.29)
Note that, thanks to the definition of J; ,, we have || B, || z(z2(0), 3, ,,) = 1, and therefore
Jalzzoy < Wl (3.30)

We mention that the norms || - ||y, , cannot be expected to be pairwise equivalent for
different p € P, which means that even the sets of two test spaces Vi 1, M o> U1 7 M2,
can differ. Therefore, we define as in [45] the parameter-independent test space

V= ﬂ Ve, (3.31)

nEP
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3.3 The reduced basis method for parametrized transport problems

where we assume Ehat ), is dense in Yi,u for all p € P.? Thanks to the compactness of
P, we may equip ); with the norm

[0lly, = sup [[v]ly,-
HEP

The above theory of optimal trial and test spaces as well as well-posedness immediately

extends to the parameter-dependent case in an obvious manner.

As usual, we assume that B), and f, are affine w.r.t. the parameter. In detail, we
assume that there exist functions 6] € C(P) for ¢ = 1,...,Qp and 9;{ € C%P) for
g = 1,...,Q; and p-independent operators (B9)* € L(J;, L*(Q)),q = 1,...,Qs, and
linear functionals f7 € .’)3{, qr =1,...,Qy, such that for all 4 € P we have

Qb Qy
B =3 0§(u) (BY)" € LOku, L2(Q)),  fu= D 03(1) fT € W, (3.32)
q=1 q=1

Lemma 3.3.3. Under the above assumptions, the set M := {u, solves (3.29), p € P}
of solutions is a compact subset of L*(2).

Proof. Let u,(uy,) form a sequence in M. Thanks to (3.30), (3.32), and the assumption
that 9;% € C%(P),q=1,...,Qy, there exists a subsequence un, (fin, ) € M that converges
weakly in L2(€2) to a limit @ € L?(Q2). To infer compactness of M, it thus remains to
show that & € M. To that end, we employ the parameter values p,, of the weakly
converging subsequence uy, (n,) to define a sequence (i, )r in P. Thanks to the
compactness of P this sequence has a weakly converging subsequence which we denote
w.l.o.g. again by (n, ), that converges to a limit & € P.

To show continuity of the mappings u +— Bj, and u +— f,, we first note that we have
for all 1 € P and all v € )} that
| fu(v)] < sup | fu(v)]

I1Buvll2 @) = lolw, < llvlly, and  sup -
w ( ) t, 1 Vi UEjﬁ H'I}Hj;t veyw Hvat,M

= 117l

and thus Bj, € LV, L2(Q)) and f, € Y{. Thanks to the assumption that By, and f,
are affine w.r.t. parameter we may thus infer as in [45] that for all yy, 2 € P and all
v € ), we have

(B3, = Bj)oliae) < Ca_max 165(m) = 6] ol

b

Fia(0) = Fua ()] <y mase 1603(1) = B (2)| ol

which yields the continuity of the mappings P — L(J;, L*(Q)), u B}, and P — Y,
fu € V{. As a consequence we have that for all v € J}; the sequences (ankv) € L3()
and fy,, (v) € R converge in the following sense

1By, — Boollizay =0 and |fu, ) = fa(0)l >0 for j, = (3.33)

9This assumption, which is required, for instance, for Lemma 3.3.3, automatically implies that '+ are
parameter-independent (Assumption 3.3.1), since a homogeneous Dirichlet boundary condition on
I't is included in the test spaces.
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In particular, the sequence (B}, v) hence converges strongly to Bjv in L2(9).

Hng, 3
We may thus infer that we have for all v € )} that

(tny, (tiny ) By, 0)r2(@) = fun, (0) — (@ Bpv)r2a) — fa(v)

and as a consequence (&, B;v)r2(q) = fa(v) for all v € Y. To conclude, it remains to
prove that there holds (@, B;v)r2(q) = fa(v) for all v € )} 5. To that end, consider an
arbitrary function v € ); ;. As ), is dense in Wi, there exists a sequence v;, such that
|[vn —vlly,; — 0. Then, we have

(@, Brv)r2q) — fa(v) = (@, Bi(v — vn))r2() — fa(v — vn)
< lall 2 @)1 Ball e 2 v = vnlly s + 1 fallyy 1o = vnlly
— 0.

We may thus infer that @ = u; € M, which was to be proven. O

3.3.2 Discretization

For the discretization of the parametric problem, we introduce a parameter-independent
discrete space yf C ;. Next, for fixed u € P we define the discrete test space and the
corresponding trial space as

Vo=V ) C Ve Xy = B € LA(Q).

Note that, for different p € P, the spaces Xt‘s u differ as sets but have the common norm
| [[2(q), Whereas the spaces yg{ ., consist of the common set V8 with different norms
| - ly,.- By the same reasoning as for the nonparametric case (see (3.20)), we have an
optimal discrete inf-sup constant for all u € P, i.e.,
by (w?, v°
Bi = mf sup 5 p(10” 6) =1.
eXt#v‘seyt‘iM Hw ||L2(Q)||U ||yw

The discrete solution “Z € Xt‘fﬂ is then defined via

uz € Xt‘g“ : bﬂ(ui,v‘s) = (uz,BZU‘;)Lz(Q) = fu(v‘s) vl e y,f“. (3.34)
As in subsection 3.2.1 we observe that problem (3.34) is equivalent to the problem
wh et auwd,v°) == (Biw), Biv’) 2y = fu(d?) Vo€ yfu (3.35)

and we may thus solve (3.35) and identify the solution of (3.34) as u = Bjw
Remark 3.3.4. Since for all 4 € P we have

X, =B Z o1 (1 ),
there holds .
X0, C A= (B (OR) +- -+ (B9) (7)) € LA(9),

which means that the trial spaces for all 4 € P are contained in a common discrete

space with dimension dim &2 < Qy, - dim ).

44



3.3 The reduced basis method for parametrized transport problems

Corollary 3.3.5. Under the above assumptions the discrete solution set
M = {qu solves (3.34), p € P} C XY is a compact subset of X.

Proof. The proof can be done completely analogously to the continuous setting exploit-
ing that &7 is a Hilbert space equipped with the L2-inner product. O

3.3.3 Reduced scheme

We assume that we have determined a reduced test space'’ YN < )9 with dimen-
sion N € N constructed, for instance, via a greedy algorithm (see subsection 3.3.4).
Then, for each u € P we introduce the reduced discretization with test space YMN =
YN lw) € yg{u and trial space X!]LV = B;(Y#N) C Xt‘f#. The reduced problem then
reads

ufy € Xliv : bu(uﬁ[,vN) = (UIJY,BZUN)L2(Q) = fu(o™) W € Yliv. (3.36)

As in the high-dimensional case discussed in subsection 3.3.2, these pairs of spaces yield
optimal inf-sup constants

b N N
,6’5 ;= inf  sup N“(w ’UN) =1 VpeP.
wNexN yveyn [wN|[L2o)llo™,

Hence, regardless of the choice of the “initial” reduced test space YV we get a perfectly
stable numerical scheme without the need to stabilize. Note that this is a major differ-
ence from the related work [45], where, due to a different strategy in finding discrete
spaces, a stabilization procedure is necessary. Using the least-squares-type reformulation
(3.35), we can (similarly to (3.22)) first compute wﬁ] € YHN such that

a“(wljy,vN) = (B;w/]y,B;vN)LQ(Q) = fu(o™) W ¢ YMN, (3.37)

N ._ N -
and then set u;,; := Bjw, as the solution of (3.36).

Offline- /Online-Decomposition

By employing the assumed affine parameter dependence of B, and fu, the computation
of ufy can be decomposed efficiently in an offline stage and an online stage: Let {va :
i =1,...,N} be a basis of the parameter-independent test space YN, In the offline
stage, we precompute and store the following parameter-independent quantities:

bqﬂ-::(Bq)*le, forg=1,...,Qp,i=1,..., N,
Aql,qg;i,j = (bql,iyqu,j)LQ(Q)) for q1,q2 = ]-7‘ .. 7Qb) /Lm] = 17 v )N)
fq,i::fq(vZN), forg=1,...,Qf,i=1,...,N.

°Tn order to have a clear distinction between high- and low-dimensional spaces, we use calligraphic
letters for the high-dimensional and normal symbols for the reduced spaces.
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3 The transport equation

In the online stage, given a new parameter u € P, we assemble for all ¢,5 =1,..., N
N N N Qv Qo
(Au )Z j (B; i ’B* Z Z 9 AQI:(D;ivj’
q=1¢2=1

(£))i == Z 0%(11) fo.i-

Next, we compute w,ﬂv = SN wi(p) v € YV as in (3.37) by solving the linear system

ANWLV = fiv of size N, where Wﬁ[ = (wi(p))i=1,..N € RY. The RB approximation is
then determined as
N N Qp
N * N x N
up = Brwy =Y wi(u) Bivl =303 wi(p) 03, (1) by
i=1 i=1q=1

3.3.4 Basis generation

While in the standard RB method a reduced trial space is generated from snapshots of
the parametrized problem, the reduced discretization of our method is based upon one
common reduced test space, while the reduced trial spaces are parameter-dependent.
However, although we have to find a good basis of the reduced test space YV C ygS ,
we still want to build the reduced model from snapshots of the problem. To that end,
we again use the formulation (3.35): Given i € P, let wg € ygﬂ be the solution of
(3.35), such that ug = Bzwg € Xt‘5~ is the solution of (3.34). If wg € YV then we have
ug € X;LV = BZYN, such that uﬂ = ug holds for the solution of (3.36). Note, however,

that due to the parameter dependence of the trial spaces ug is only included in X Iév , but
in general uf] ¢ X ZLV for p # [ (instead, B/’ng eX iv ). Building the reduced test space
YN from “snapshots” of (3.35) is thus analogous to the standard RB strategy to build
the reduced trial space from snapshots of the problem of interest: Although a single
trial space X év is not solely spanned by snapshots, the model error Huiy - qu r2(q) s
zero for all parameter values u whose (3.35)-snapshot is included in YV,

Algorithm 1 describes an analogue of the standard RB strong greedy algorithm for
our setting: Iteratively, we first evaluate the model errors of reduced solutions for all
parameters p in a train sample = C P. Then, we extend Y by the (3.35)-snapshot

* € 5),0 corresponding to the worst- approximated parameter p*. This automatically
extends X N by the (3.34)-snapshot u L€AY 'i+» such that from then on the model error
for p* is zero.

Of course, this algorithm is computationally expensive, since we have to compute uz
for all 4 € =, which may not be feasible for very complex problems and a finely resolved
= C P. It is hence desirable to use some kind of surrogate — ideally a reliable and efficient
error estimator — instead of the true model error in the greedy algorithm. However, as
will be seen in the next subsection, the standard error estimator is not offline-online
decomposable in our setting — a problem already encountered in [45]. Therefore, we
have to use error indicators instead when using the full model error is computationally
not feasible. We note that until now we have not been able to prove convergence of the
greedy algorithm due to the parameter-dependent trial spaces.
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Algorithm 1 Strong greedy method

input: train sample = C P, tolerance ¢
output: set of chosen parameters Sy, reduced test space YV

1: Initialize Sy « 0, Y « {0}

2: for all p € = do

3: Compute wz and UZ = B;wz

4: end for

5: while true do

6: if max,c= Hul‘i - U'{YHLQ(Q) < ¢ then
7 return

8: end if

9: p* 4 argmax,e= Huz — ufyHLz(Q)
10: Sn+1 « Sy U{u*}

1: YN« span{w!, € Sy}

12: N+ N+1
13: end while

Alternatively, to obtain a computationally more feasible offline stage one might let
the strong greedy algorithm run on a small test set with relatively high tolerance and
use a hierarchical a posteriori error estimator on the large(r) training set, which was
proposed in a slightly different context in [123]. Another idea might be to keep a second
test training set during the greedy algorithm. In order to estimate the dual norm of
the residual more cheaply, one could then compute Riesz representations on the span of
test training snapshots instead of the full discrete space.

3.3.5 Error analysis for the reduced basis approximation

In the online stage, for a given (new) parameter p € P we are interested in efficiently
estimating the model error Hui — ufy | 22(q) to assess the quality of the reduced solution.
As already mentioned above, due to the choice of the reduced spaces, the reduced inf-
sup and continuity constants are unity. This means that the error, the residual, and the
error of best approximation coincide also in the reduced setting (cf. (3.18)). To be more
precise, defining for some v € L?(Q) the discrete residual rg(v) € (ygfu)’ as

<’I"i(1]), w(S)(yéH)’xyéu = f(w5> - (’U, B;wg)lﬂ(ﬂ)? w(5 € yté,;u

we have

é N _ 6/, N o d N
Huu — U, HLQ(Q) - Hru(uu )H(:)Jé#)’ = vl\’lg;(iv Huu -v HL2(Q)

’ can be computed. However, due to the special choice of

In principle, 74(v) € (37,
the parameter-dependent norm of yfﬂ, ie., HwHyf = || BjwllL2(q), the computation of
’ S
the dual norm involves applying the inverse operator (BZ)_1 and is thus as computa-
tionally expensive as solving the discrete problem (3.34). Therefore, the computation

of Hri(ufy )|l (¢ is not offline-online decomposable, so that the residual cannot be
N7

computed in an online-efficient manner.
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3 The transport equation

As an alternative for the error estimation mainly in the online stage, we consider an
online-efficient but nonrigorous hierarchical error estimator similar to the one proposed
n [13]. Let YV € YM C Y? be nested reduced spaces with dimensions N and M,
N < M and denote for some p € P by u™ (i) € Xﬁv = BZYN7 uM(p) € XM B*YM
the corresponding solutions of (3.36). Then, we can rewrite the model error of u” as

[u® — |2y = u™ — ™ + 6 = 2y < [ = M| L2 + [ — 00| L2

Assuming that Y™ is large enough such that ||u — /|| r2(Q) <& < 1, we can approxi-
mate the model error of u”V by

[ — w0l o) < [ — w2+ = o — uM| 120,

which can be computed efficiently also in the online stage. In practice, YV and Y™ can
be generated by the strong greedy algorithm with different tolerances ey and ej; < ey .
Of course, this approximation to the model error is in general not reliable, since it
depends on the quality of Y™ . Reliable and rigorous variants of such an error estimator
can be derived based on an appropriate saturation assumption, see [79]. Reference [79]
also discusses a strategy for the use of hierarchical estimators in terms of Hermite spaces
YM for the construction of a reduced model in the offline phase. We do not go into
details here. Numerical investigations of the quality of the error estimator will be given
in subsection 3.5.2.

3.3.6 Comparison with the double greedy algorithm

As already mentioned, our scheme is closely related to the double greedy framework [45],
where an RB approximation of the parametrized transport equation based on the optimal
test method discretization scheme of [43] (see also subsection 3.2.4) is developed. Hence,
the scheme is based on the variational formulation described in subsection 3.3.1 but uses
a discrete scheme based on the saddle-point problem (3.27). For the high-dimensional
“truth solution” a discrete trial space ??t‘s C L?*(Q) and a “test search space”'! Z9 C ), of
larger dimension are chosen independently of the parameter (recall that Vi =N peP Yo,
see (3.31)). Then, the “truth solution” uz € 2&5 is defined by the parametrized version

of (3.27): Given u € P, find (fz,ui) € Z9 x X9 such that

A ) 6 0 d d
(B e BE 2 2@y + (Begwtp 2°)y1 iy = (20031 o, V20 € 2L,

3.38
(’U Bt MAN>L2(Q) =0 VU(S S .5(15, ( )
see also [45, Eq. (3.22)]. For well-posedness and stability of (3.38), it is then assumed
that Zt is large enough to ensure uniform stability in the parameter, i.e., b, is assumed
to be inf-sup stable on X X Pz(s((B*’ )~ 12\%‘5) with a uniform inf-sup estlmate for all
parameter values.
The reduced model is built on a pair of reduced trial and test (search) spaces XV C /‘?t‘;
of dimension N and ZM™) ¢ Z¢ of dimension M(N) > N. Then, the reduced solution

"'Note that the terminology and notation of the spaces in [45] differs from the usage in [43]. We here
try to stay consistent with the notation introduced in subsection 3.2.4.
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3.3 The reduced basis method for parametrized transport problems

uﬁf € XV is one solution component of the reduced saddle point problem given by (3.38)
with the reduced spaces instead of the “truth” spaces.

In order to obtain an accurate and stable reduced model, the goal is to generate the
pairs of spaces (XN, ZM(N)) such that X% is built from snapshots ufwi =1,...,N to
obtain a good approximation quality and ZM®) is chosen so that the uniform inf-sup
condition N

inf inf sup bu(w?,p) > Bmin (3.39)
REPwNexN ey [N | p2)llpN [,

(cf. [45, Eq. 4.1 and 5.14]) is fulfilled. To that end, the double greedy algorithm ([45,
Algorithm 5]) is proposed, in which two different algorithms are executed alternately:

 The algorithm update-inf-sup ([45, Algorithm 2]) takes a trial space XV*+! and a
(not sufficiently stable) test space Z M(N) " For a sample set of parameter values,
all respective inf-sup constants are computed from the reduced system matrices by
corresponding Cholesky or spectral factorizations and singular value decomposi-
tions. For the parameter value i1 with the smallest inf-sup constant, the infimizing
trial space vector wl]]V € X" is computed. Then, the supremizer of w}y , i.e.,

ba(wh, pd
P’ = argmaxiu( 6“ b ),
P,

which is given as p° = (Bg)_*wf—y,
to the reduced test space, i.e., ZMMNHL = span{ZMN) 591 This procedure is
repeated k times until the test space ZMW+1) .— ZM(N)+k ig Jarge enough such
that the uniform inf-sup condition (3.39) is fulfilled.

is computed and added as a new basis function

o The algorithm update-approzimation ([45, Algorithm 4]) takes spaces XN, ZMX)
that satisfy (3.39) and then determines a new basis function for XV by one step of a
(“standard RB”) greedy algorithm: For a sample set of parameter values, an error
indicator for the reduced solution is evaluated. Then, for the worst approximated
parameter [i, the solution ug of (3.38) is computed and is added to the trial space,
Le., XN = span{X™ u}.

By alternately executing update-inf-sup and update-approximation, the double greedy
algorithm iteratively generates reduced function pairs with increasing approximation
quality in the trial space and fixed lower bounds for the uniform inf-sup constant.
However, unlike the reduced model from subsection 3.3.3, here the test space is generally
of larger dimension than the trial space, since update-inf-sup may (need to) increase the
dimension of the test space by more than one.

The double greedy algorithm includes an error indicator in wupdate-approximation,
while we so far only proposed a strong greedy algorithm using the true reduction er-
rors in Algorithm 1. This indicator aims to approximate the residual ||f — Bjul) 1R%H
in dual norms of additional reduced test spaces that are computed by iterated re-runs
of the double greedy algorithm (which the authors call iterative tightening). For details
see [45, subsec. 5.1.2 and sec. 6.3].

As for the non-parametric case, we include a comparison of our new method and the
double greedy algorithm in the numerical experiments in subsection 3.5.2.
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3 The transport equation

3.4 Computational realization

In this section, we specify the implementation of the solution procedure developed in sec-
tion 3.2. This is also used for the methods for parameter-dependent problems developed
in section 3.3. In fact, due to our assumption of affine dependence in the parameter
(3.32), the computational realization in the parametric setting is very similar to the
standard setting and can be done following the offline-online decomposition described
at the end of subsection 3.3.3, which is why we do not address it in this section.

To solve the discrete problem (3.16) we use the equivalent formulation (3.22); i.e., we
first find w® € Y2 such that (Bjw®, Biv®)2q) = f(v°) for all v* € )}, and then set
u® := Bfw® € X?. The solution procedure thus consists of first assembling and solving
the problem for w® in yf and second computing u. The implementation is especially
dependent on the exact form of the adjoint operator By. First, we address the case of
constant data, which is easier to implement and slightly more computationally efficient
than the general case which we discuss subsequently.

3.4.1 Implementation for constant data

We first consider constant data functions in the adjoint operator, which has thus the
form Bfw := —b-Vw+cw for 0 # b € R", c € R. We have already seen in Example 3.2.1
that in the one-dimensional case, choosing a standard linear continuous FE space for the
test space yf yields a trial space 2\’{; with piecewise linear and discontinuous functions.
This can be generalized to conforming FE test spaces with arbitrary dimension, grid,
and polynomial order: If v9 € yf is globally continuous and polynomial on each grid
cell, all terms of Biv%, due to the constant data functions, are still polynomials of the
same or lower order on the cells, while the gradient terms yield discontinuities on the
cell boundaries. Denoting thus by ) C ) a conforming FE space on a partition 75 =
{Kz}jg‘i of Q = U:L:T‘i K; with polynomial order p, and by X2 C L?() the corresponding
discontinuous FE space, i.e.,

V0= {v e C%Q) : vk € PP(K)VK € Ts,v|r, =0} C W, (3.40)
X ={ueL*9):ulg e PP(K)VK € T3} C L}(), (3.41)

9 ¢ X? in terms of the

we have X0 = B#)? C X? and can determine the solution u
standard nodal basis of X?.

Let B} € R™*™ be the matrix representation of B : ? — X7 in the nodal bases
(1, Pn,) of V¥ and (¢4, ...,v¥5,) of X?, meaning that the ith column of Bf contains
the coefficients of Bf¢; in the basis (¢1,...,vY5,), i.e., Bf¢; = Z?;I[Bf]ﬂwj. Due
to the form of the operator and the chosen spaces, the matrix B} can be computed
rather easily, see the example in subsection 3.4.2. Then, the coefficient vector u =
(uty ... uq,)T of u® = 30 wjah; € A can simply be computed from the coefficient
vector w = (w1, ..., wy,) of w? =Y wigi € VP by u=Bjw.

To solve (3.22), we have to assemble the matrix corresponding to the bilinear form
a: Y x V) with

a(w‘s, Ua) = (B:(w(sv B:’U(;)L%Q) = (w67 Ué):)}m

i.e., the )i-inner product matrix of yf . One possibility for the assembly is to use the
matrix Bi: Denoting by Mg € R™ %7 the [?-mass matrix of A2, i.e., [M;gta]m =
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3.4 Computational realization

(Vi ¥5)12(0), We see that for Yi := (B;‘)TM&;B;" € R™>™ it holds that [Yi];; =
(Bi i, B{b5)r2(0) = (91 D) -

The solution procedure thus consists of the following steps:

1. Assemble B} and Y.

2. Assemble the load vector f € R™, [f]; := f(¢;),i=1,...,n,.
3. Solve Yiw = f.

4. Compute u = Bjw

3.4.2 Assembling the matrices for spaces on rectangular grids

As a concrete example of how to assemble the matrices B and Y we consider © = (0,1)"
and use a rectangular grid. We start with the one-dimensional case as already seen in
Example 3.2.1. Let thus Q = (0,1) and b > 0. Moreover, let T" = {[(i — 1)h,ih)} ",
be the uniform one-dimensional grid with mesh size h = 1/ny, fix a polynomial order
p > 1, and define )}’ o XD 4p as in (3.40), (3.41). Let (¢1,...,¢n,) and (¢1,...,%z,)
be the respective nodal bases of yMD and X’t?l’%.

Moreover let I1p € R"™*™ be the matrix representation of the embedding Id :
yt ho Xt 1’% in the respective nodal bases, i.e., the i-th column of I;p contains the
coefficients of ¢; € yt C Xt in the basis (¢1,...,%s, ), such that for u = I1p - w it
holds ZZ LUt = 30 1 wqul Similarly, let A1D € R™%*™ bhe the matrix representation
of the differentiation <T :))t — Xt 1’%, wh — (wh)'. Additionally, as above, we define
Mip € R™*" [Miplij = (¥i,¥5)12((0,1)) as the L?-mass matrix of /ﬁ%)

For p =1, i.e., linear FEs, and a standard choice of the nodal bases the matrices I1p,
A;p, and M;p read

1 00 - -1 1 0 - 3 1 0 0
Ip:=10 10 Ajpp:=--| 0-11 Mp=h|0 0 15 s
00 1 hilo-11

0 0 16 1/3

With these three matrices we can then compose the matrices B and Yp by
‘t,lD = —b- A1D +c- Ile YID = (BZ,ID)TMIDB:,ID'

Next, we consider a rectangular domain of higher dimension, e.g., @ = (0,1)",n > 2.
We choose in each dimension one-dimensional FE spaces ), )?ti, i=1,...,nasin (3.40),
(3.41) separately, and use the tensor product of these spaces )¢ = @7, Vi, &} =
R, é\_if as FE spaces on the rectangular grid formed by a tensor product of all one-
dimensional grids. The system matrices can then be assembled from Kronecker products
of the one-dimensional matrices corresponding to the spaces ), /’\_ftZ i=1,...,n: Wefirst
assemble for ¢ = 1,...,n the matrices Il1D and A ip corresponding to the pair of spaces
Vi, X¢. Then, the matrix corresponding to the adjoint operator can be assembled by

n
ZbIlD@) oV oA eliVe ol +c@Lp,  (342)
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3 The transport equation

e.g., for n = 2 we have
top = —b1(Aip ® Iip) — ba(I1p ® Alp) + c(Ijp ® Ifp).

Similarly, the mass matrix M e of &2 can be computed from the one-dimensional mass
matrices M of &/,i = 1,...,n, by M;gta = @7, M}, such that Yy := (B;‘)TM/»\?taB;‘

can also be directly assembled using the matrices Iip, Alpy, Mip,i =1,...,n.

3.4.3 Implementation for nonconstant data

If the data functions b and c are not constant, we do not automatically get a standard
FE space /'\_ft‘S in which the solution u’ can be described; thus the implementation has
to be adapted. A way to retain the implementation for constant data functions is
to approximate the data by piecewise constants on each grid cell. Then, there holds
again us € /'Et‘s, and we only have to slightly modify the implementation presented in
subsection 3.4.1: Every nodal basis function v; € A_ft‘s,z' = 1,...,n,, has, due to the
discontinuous FE space, a support of only one grid cell. Denoting by ¢’ the value of ¢ on
the grid cell of v;, we define the diagonal matrix ¢ € R%*"= [c];; := ¢!, and, similarly,
the matrices b; € R"*"= corresponding to b;,j = 1,...,n. We then simply change the
scalars bj and c in (3.42) to matrices b and ¢, j =1,...,n.

However, a piecewise constant approximation of the functions b € C1(Q)", c € C°(Q)
may not lead to a sufficient accuracy of the solution. For general b € C1(2)",c € C°(Q),
we thus first assemble the )i-inner product matrix Yy € R™*™ of :))t‘s and the load
vector f € R™ corresponding to the right-hand side as in standard FE implementations
for elliptic equations, by using e.g. Gauss quadratures for the approximation of the
integrals. We can then solve (3.22) as above by w := Y; 'f, w® := 31, [w]i¢y € VP.
To compute the solution us € X, we use the fact that we still have w® € &’ and %—ﬁ €
/\7{; ,t = 1,...,n, and store the corresponding /ﬁé—coeﬂicien‘cs of w® and its derivatives
separately, as well as the data functions. We can then evaluate u® = B*w?® for arbitrary
z € Q by evaluating all w®-dependent functions and all data functions in z and using
the definition of B* to get u®(z) = — 31", bl(x)%—g(x) + (¢ — V- b)(2)w’ ().

3.5 Numerical experiments

In this section, we report on results of our numerical experiments. We consider the
parametric and the nonparametric case, starting with the latter. We are particularly
interested in quantitative results concerning the rate of approximation for the discrete
case as the discretization parameter ¢ (see above) approaches zero, quantitative compar-
isons of the inf-sup constant with existing methods from the literature, and the greedy
convergence in the parametric case. We report on time-dependent and time-independent
test cases. The source code to reproduce all results is provided in [24].

3.5.1 Non-parametric cases
Convergence rates for problems with different smoothness

As indicated in subsection 3.2.1, we can show the convergence of the proposed approxi-
mation for appropriate test spaces yf , but did not derive theoretical rates of convergence
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3.5 Numerical experiments

Table 3.1: 1D: L%-error and convergence rate as h — 0 for 11 N
linear and quadratic FE spaces.
Linear FE Quadratic FE 0.8 |
1/h L*-error rate L2?-error rate 0.6 - -
4| 0.03311 — || 0.00247 — osl |
8 0.01664 | 0.99274 0.00062 | 1.98932
16 0.00833 | 0.99817 0.00016 | 1.99729 0.2 N
32 | 0.00417 | 0.99954 || 3.896e-05 | 1.99932 0 OF 1
64 | 0.00208 | 0.99989 || 9.741e-06 | 1.99983 Figure 3.3: 1D: L2-approximation vs.
128 | 0.00104 | 0.99997 || 2.435e-06 | 1.99996 exact solution for linear FE space with
256 | 0.00052 | 0.99999 || 6.088¢-07 | 1.99999 h=1/8.

in this work. Therefore, in this subsection we investigate the rate of convergence in nu-
merical experiments. In all test cases we use as test space yf a continuous FE space on
a uniform hexahedral grid. Since we want to investigate here the best possible conver-
gence rates, we choose test cases where the trial space restrictions due to tensor product
spaces described in subsection 3.2.2 do mot lead to additional errors. These cases will
then afterwards be compared to cases where the restrictions indeed do lead to additional
errors in subsection 3.5.1.

We start with the one-dimensional problem introduced in Example 3.2.1 and set
Q=1(0,1),b(x) =1, ¢(x) = 2 with boundary value u(0) = 1. We compute approximate
solutions for linear FE spaces )" (recall Figure 3.2 for the corresponding basis functions
and see Figure 3.3 for an illustration of the solution) as well as quadratic FE spaces. We
observe an (optimal) convergence rate of 1 for the linear case and 2 for the quadratic
case (see Table 3.1).

Next, we consider = (0,1)2, and choose b = (cos 30°,sin30°)", ¢ = 0, f = 0 and
compare boundary values with different smoothness. In detail, we solve

b-Vu=0 inQ, u=g" onT_=({0}x(0,1)u((0,1)x{0}), i=1,2,3,

for the boundary values

31.25y% — 18.75y% + 1, y <0.4

gteCl(l), ¢'(x,00=1, ¢'(0,y) = (3.43)
0, y > 0.4,
1, y<0.2

P el ), ¢x,0=1, ¢20,9)={2-5y 02<y<0.4 (3.44)
0, 0.4 <y,
1, y<0.25

3 2 3 — 3 ’
e LA(T_), z,0) = 1, 0,y) = 3.45
g (I'-), ¢°(z,0) 9°(0,y) {0, 0.25 < . (3.45)

We use second order FEs on a uniform rectangular mesh with nj, = h~! cells in both
dimensions, i.e., d = (h,h). As already mentioned above, the data is chosen such that
for all boundary conditions it holds that u(1,1) = 0 for the exact solution, so that we
do not observe problems from the nonphysical restriction of the trial space. We observe
a convergence of order about 1.65 for the differentiable case ¢ = ¢!, an order of 1 for
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3 The transport equation

Table 3.2: L2-errors and convergence rates for two-dimensional problem with boundary values (3.43),
(3.44), and (3.45).

g=¢'€C'(T) || g=g"€C(T) || g=g’€L’()
1/h | LP-error rate || L2-error rate || L2-error rate
16 0.00768 — 0.01974 — 0.10630 —

32 0.00247 | 1.63387 0.00973 | 1.02096 0.08484 | 0.32533
64 0.00079 | 1.65196 0.00493 | 0.98128 0.06764 | 0.32683
128 0.00025 | 1.65937 0.00248 | 0.99302 0.05386 | 0.32862
256 | 7.872e-05 | 1.66280 0.00124 | 0.99476 0.04285 | 0.33009
512 | 2.483e-05 | 1.66452 0.00062 | 0.99636 0.03406 | 0.33120

Table 3.3: L*-error and convergence
rate for b= (1 —y,z)7 and g = ¢*.
1/h | L*-error Rate
4 | 0.09317 —
8 | 0.03329 | 1.48458
16 | 0.01124 | 1.56702
32 | 0.00366 | 1.61950
64 | 0.00117 | 1.64276
128 | 0.00037 | 1.65386

Figure 3.4: Appréxirﬁate solution for b = (1—
y,z), g =g"* and h = 1/32.

the continuous case g = g2, and an order of about 1/3 for the discontinuous boundary
g = g° (see Table 3.2).

To assess the effect of a nonconstant transport direction on the convergence rate we
use b(z,y) = (1 —y,x)”, which has an Q-filling flow with T = 5,¢=0, f=0,and a
Cl-boundary value g* € C}(T'_) as

256y% — 512y + 35242 — 96y +9, 0.25 < x < 0.75,

9'(2,0) =0, ¢*(0,y) =
0, else.

We observe a convergence behavior even slightly better than that for the case of constant

b with a C'-boundary function; see Table 3.3. The curved transport is resolved without

artifacts; see Figure 3.4.

Influence of restrictions due to tensor product spaces

So far we have investigated the convergence of discrete solutions for cases where the
nonphysical boundary restrictions described in subsection 3.2.2 do not lead to problems.
Here we want to compare these results to similar test cases where the restriction indeed
is unphysical, i.e., for the exact solution we have u # 0 at the relevant outflow boundary
part. We again choose Q = (0,1)%, b = (cos 30°,sin30°)7, ¢ = 0, and f = 0. We first
consider a constant boundary value ¢ = 1, leading to u = 1, where the impact of the
unphysical restriction can be observed best, since the shifted version g = 0 leading to
u = 0 would of course have no discretization error at all. We compare this to shifted
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3.5 Numerical experiments

Table 3.4: L2-errors and convergence rates for two-dimensional problem with different boundary condi-
tions and unphysical restrictions of the trial space.

g=1 g=9' —1€C'(T-) || g=¢*-1eC’(T-) || g=¢°-1€ L*I)
1/h L2-error Rate L*%-error Rate L2%-error Rate L?-error Rate
16 0.01280 — 0.01479 — 0.02627 — 0.10618 —

32 | 0.00676 | 0.92191 0.00691 1.09798 0.01281 1.03615 0.08515 0.31838
64 | 0.00355 | 0.92883 0.00349 0.98507 0.00616 1.05729 0.06773 0.33028
128 | 0.00186 | 0.93469 0.00183 0.92944 0.00292 1.07500 0.05389 0.32963
256 | 0.00097 | 0.93973 0.00097 0.92081 0.00149 0.97073 0.04286 0.33058
512 | 0.00050 | 0.94411 0.00050 0.94099 0.00081 0.88878 0.03406 0.33141

versions of the boundary values considered in subsection 3.5.1, i.e., ' = ¢'—1,i=1,2,3
for g*, g%, and ¢ defined in (3.43)—(3.45).

In the constant case ¢ = 1 we have a convergence of order ~ 1 (see Table 3.4).
Comparing Tables 3.2 and 3.4, we see that indeed the restriction leads to an additional
error that converges with order 1: While the problem for the C'-boundary value ¢
converges with an order of about 1.65, the shifted problem for g! = g' — 1 converges
only with an order of ~1. For the less smooth boundaries > € C°(I'_) and g% € L?(I'_)
we see that the convergence order stays the same, and thus the full error is not dominated
by the restriction artifacts. All in all, for the present test cases, the restriction due to
the tensor product structure limits the convergence rate to 1, but does not deteriorate
smaller convergence orders for less smooth problems, such that for these problems the
additional error is negligible. Recall that we are primarily interested in such nonsmooth
solutions in L?(12).

Next, we investigate the approach proposed in subsection 3.2.2 to use an additional
layer for the computational domain. In detail, we extend the data functions onto the
larger domain («) defined in (3.24), solve the problem for the discrete solution ug( a) €
L?(Q(a)) on this extended problem, and then define the restriction ug( a)|g € L?(Q) as
the discrete solution to the original problem.

We consider constant boundary values g = 1. For each discrete space yf ,0 = (h,h),
we compare values of @« = mh, m = 1,...,5, i.e., we extend the domain by 1 to 5
layers of grid cells of the original size. The L?- and L>-errors of these solutions and the
respective solutions computed on the original domain €2 are shown in Figure 3.5. We see
that using extended domains for the computation reduces the L?-errors: A first layer of
grid cells has the most significant effect, but also larger extensions further reduce the
errors. Since the difference is larger for coarser meshes, the L%-rates are slightly lower
than those for the original solution, which improves, however, for finer mesh sizes. We
obtained similar results for the boundary values ¢ = g' — 1. Moreover, the extended
domain approach has a positive impact on the L*-error of the solution and thus on the
“optical quality”: While for the computations on {2 we automatically have an L*°-error
of 1 for all mesh sizes, the error is reduced to values between about 0.16 for a = h
and 0.05 for a = 5h; also the L*-error on the extended domains seems to be relatively
independent of the mesh size (see Figure 3.5). A comparison of the solution computed
on Q and Q(h) is provided in Figure 3.6.

We conclude from these experiments that for the current test case the use of an ex-
tended domain slightly reduces the L?-error while maintaining comparable convergence
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Figure 3.5: 2D, g = 1, L2-errors (left) and L*-errors (right) for solutions computed on the standard
domain Q2 = Q(0) and on extended domains Q(a), o = mh, m = 1,...,5 for different mesh sizes.
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Figure 3.6: 2D, numerical approximation for h = 1/32, g = 1. Left: Standard domain Q. Right: u6|g
solved on extended domain Q(h)

rates and considerably reduces the L*-error at the boundary. Hence, at the expense of
(moderate) additional computational cost a better approximation of the solution on the
outflow boundary can be achieved.

Assessment of postprocessing procedure

We next compare the approximation of discontinuities of a standard solution u° € Xt‘s
to the postprocessed solution @’ described in subsection 3.2.3. To this end, we again
consider the example in subsection 3.5.1 with boundary value ¢ € L?(I'_) that is
piecewise constant with a discontinuity. Note that the choice of a constant advection
b and no reaction simplifies the postprocessing procedure, such that the postprocessed
solution @’ directly is the L2-orthogonal projection of u® onto the discontinuous first
order FE space. Comparing the errors of u® and 4% (see Tables 3.2 and 3.5), we see
that the errors for the postprocessed solutions are about 8% smaller than those for the
standard solutions, while the order of convergence stays the same. Figure 3.7 shows that
the postprocessing removes the severe overshoots of the standard solution at the jump
discontinuity. We also note that the postprocessing is computationally inexpensive,
since it is only based upon local multiplications of an element projection matrix for
each grid cell. A comparison of the computational costs will be given in in the next
paragraph.
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2.0
Table 3.5: L2-error and conver-
gence ra(‘ge for postprocessed so- s
lution @’ for boundary ¢°.

1/h | L*-error Rate
16 | 0.09769 —
32 | 0.07765 | 0.33128
64 | 0.06179 | 0.32946

128 | 0.04917 | 0.32965

256 | 0.03911 | 0.33042

512 | 0.03108 | 0.33123

-0.5

Figure 3.7: Standard solution u’ (left) and postprocessed solution @°

(right) for boundary g® and h = 1/32.
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Figure 3.8: L?-errors versus CPU-times for the optimal test method with 1 iteration (opt. test 1) and 5
iterations (opt. test 5) of the Uzawa algorithm, and for the optimal ¢rial method in standard (opt. trial)
and postprocessed (opt. trial postproc.) form.

Comparison of the optimal trial method and the optimal test method

As discussed in subsection 3.2.4, the approaches proposed in subsection 3.2.1 (optimal
trial method) and in [43] (optimal test method) are closely related. To compare the
results for both methods, we use the same test case as in [43]; i.e., we set Q = (0,1)2,
b = (cos22.5%55in22.5°)7, ¢ = 0, and f = 0. For the boundary condition we again have
the discontinuous boundary value g = ¢® defined in (3.45).

As the equations for w® € ) in (3.22) (optimal trial) and for #¥° € 2 in (3.28)
(optimal test) are based on the same bilinear form, we choose the spaces such that )9 =
Z?, which means that the same matrix has to be assembled for both methods. More
precisely, we choose for the optimal trial method the same spaces as in the experiments
above, i.e., yt6 is the space of continuous FEs of second order on a rectangular grid with
mesh size § = (h,h). Consistent with that, we choose — as proposed in [43] — for X2
the space of discontinuous bilinear FEs on a rectangular grid with mesh size (2h,2h),
and Z% = ygs , such that here the grid for the test search space results from one uniform
refinement of the grid of the trial space.

We first compare the relation of L?-errors and CPU times for both methods. For the
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3 The transport equation

Table 3.6: Inf-sup constants for the opti-
mal test method and the 2D problem

Table 3.7: Inf-sup constants for the opti-
1/(2h Inf-
/(2h) n-sup mal test method and the 3D problem
4 | 0.74521 1/(2h) | Inf
nf-su
8 | 0.66426 410 64SOE
16 | 0.55840 8 0.60160
32 | 0.45422 .
16 | 0.48294
64 | 0.36029
32 | 0.38015
128 | 0.28273
256 | 0.21901

solution of the linear systems, we always use sparse LU factorization and subsequent
forward and back substitution implemented in UMFPACK. Figure 3.8 shows the respec-
tive CPU-error plots for the optimal test method using 1 iteration and 5 iterations of
the Uzawa algorithm (as proposed in [43]) and for the standard solution of the optimal
trial method as well as the postprocessed solution described in subsection 3.2.3. We
observe similar decay rates of the errors w.r.t. the CPU times for both methods. For
the chosen linear solver, the optimal test methods with 5 iterations performs best, which
is mainly due to the fact that assembly of the matrices and LU factorization dominate
the computational costs. Therefore, the costs for 5 Uzawa iterations are only slightly
higher than for e.g. only 1 Uzawa iteration, while the errors are reduced significantly.
If we use iterative methods, e.g. the CG method , instead, the results depend on the
used preconditioner: If the computation of the preconditioner dominates, the results
are similar to the results using LU decomposition. In contrast, if the iterative solver
takes as much time as or more time than the preconditioner, then the optimal test so-
lutions using 5 Uzawa iterations would take considerably more time compared to the
other solutions and we speculate that the postprocessed optimal trial solution might
perform fairly equally to the optimal test solutions. However, a comparison of different
preconditioners is outside the scope of this work.

Finally, we compare the inf-sup constants of both methods. While for the optimal
trial method we automatically have an inf-sup constant of 1, this is not the case for the
optimal test method. Since here not the truly optimal test space (B*)_l)?t‘s, but the
projection onto the test search space Pgzs ((B*)_l/?{s) is used for the discrete test space,
the inf-sup constant for the discrete problem as well as for the corresponding saddle-
point problem on which the Uzawa iteration is based is suboptimal. Tables 3.6 and 3.7
show the inf-sup constants for the considered two-dimensional problem, i.e., Q = (0,1)2,
b = (c0s22.5°5sin22.5°)7, ¢ = 0, and the corresponding time-dependent problem, i.e.,
a three-dimensional problem with Q = (0,1)? and b = (1, cos 22.5°, sin 22.5°)T", respec-
tively. We clearly see that the inf-sup constants decrease with smaller mesh sizes; in
both cases they decay roughly with an order of h'/3.

3.5.2 Parametric cases: The reduced basis method

To examine our method in the parametric setting, we consider three different test cases.
For all cases, we choose £ = (0,1)? and a parametrized constant transport direction
b, € R?, u € P, such that T_ = ({0} x (0,1)) U ((0,1) x {0}) for all u € P, as well as
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3.5 Numerical experiments

Table 3.8: Data for parametric test cases.

’ ‘ test case 1 (see [107]) ‘ test case 2 (cf. [45]) ‘ test case 3 (cf. [45]) ‘

by | (1, 1)" (cos p, sin p) " (cos p, sin )"
P | [0.01,1] 0.2,5 —0.2] [0.2,5 —0.2]
c | =0 =1 =1
fFl=o0 1 05, z<y
L, x>y
_ — < 0.

p 1, =z —0 11—y, <05

0, y=0 0, x> 0.5

parameter-independent reaction, source, and boundary data; see Table 3.8. Again, we
want to solve for all u € P

b, -Vu+4cu=f in (), u=g¢g onl_.

For all test cases, we choose a training set of 500 equidistant parameter values dis-
tributed over P and set ¢ = 1074, We then generate reduced models with Algorithm 1
for different mesh sizes. The maximum model errors ||u () — ud(u)]| £2(Q) on an ad-
ditional test set of 500 uniformly distributed random parameter values are shown in
Figure 3.9.

Since we did not derive theoretical convergence results for the greedy algorithm, we
investigate the convergence behavior numerically. To that end, we first consider a test
case where the best possible convergence rate of linear approximations is known: In [107],
it is shown that the Kolmogorov N-width of the solution set of test case 1 decays with
an order of N~1/2. In the corresponding results of our greedy algorithm, we indeed
observe the same (and thus optimal) convergence behavior; see Figure 3.9.

In test case 2 we choose constant reaction and source terms that lead to more regular
solutions. Here, the greedy algorithm shows a faster convergence of order about N~3/2.
With discontinuous source and boundary data in test case 3 we finally observe an order
of roughly N1,

As described in subsection 3.3.6, our approach is closely related to the double greedy
algorithm framework developed in [45]. To realize a fair comparison with our approach,
we implemented a “strong” double greedy algorithm using the model error instead of a
surrogate in [45, Algorithm 4] (update-approzimation, see also page 49). For the full solu-
tions we use the discretization of the optimal test method described in subsections 3.2.4
and 3.5.1. We then run the “strong” variant of the double greedy algorithm [45, Algo-
rithm 5] for test case 3 on a training set of 500 equidistant parameter values distributed
over P and with tolerance £ = 0.01 comparing different thresholds S;;, for the inf-sup
stability of the reduced spaces'?.

The resulting maximum model errors for 500 test parameter values are shown in
Figure 3.10. For the smaller stability thresholds of 0.3 and 0.6 we observe slight in-

21 [45] it is proposed to use Bmin := (Bs, where 0 < 85 < 1 is a lower bound of the discrete inf-sup
constants of the full discretizations for all u € P and some 0 < ¢ < 1, such that the desired threshold
is guaranteed to be achievable for all reduced spaces. Here, we simply compare different values of
Bmin < 1 without computing fs.
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Figure 3.10: test case 3, h~! = 512. Maximum errors of 500 test parameter values for reduced models
from Algorithm 1 (optimal trial greedy) and the strong double greedy algorithm with different lower inf-
sup bounds, plots of maximum error versus trial space dimension and test space dimension, respectively.

60

10!
N

102




3.5 Numerical experiments
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Figure 3.11: test case 3, h~* = 512. Comparison of online computation times (median of 5000 runs) for
reduced models from optimal trial greedy Algorithm and strong double greedy algorithm with Sy > 0.7.
Left: Computation time versus trial space dimension, right: maximum model error versus computation
time.

stabilities while for a threshold of 0.7 the maximum model errors are decreasing for
increasing model orders. Comparing the approximation properties of the trial spaces of
the double greedy and optimal trial greedy method, we see that for model orders up to
32 the double greedy trial spaces lead to smaller errors than the optimal trial spaces of
same dimension, while for larger model orders the optimal trial reduced spaces perform
better.

Since, unlike the new method, for the double greedy method the test spaces are signif-
icantly larger than the trial spaces (for test case 3, S > 0.7, approximately by a factor
of 3), the test space dimensions are essential for the online complexity of the reduced
saddle point problems. In Figure 3.11 online computation times for both methods are
shown, where we use for the double greedy solutions a reformulation of the saddle point
problem where the inversion of a test space sized matrix dominates the costs'®. We
clearly see that the optimal trial reduced models outperform the double greedy models
both when comparing the same trial space dimensions and the same model errors'?.

These results show that for the rather challenging test case 3 the optimal trial method
leads to comparable, and for larger model orders even better, approximation properties
for the same dimension of the trial spaces and to faster online computation times than
the double greedy method. We note that for smoother cases, e.g. test case 2, the optimal
trial models show the same, but not better, convergence order as the double greedy
models.

Finally, to test the hierarchical error estimator described in subsection 3.3.5, we use
test case 2 with mesh size 6 = (h,h), h™' = 512. For the reduced space YV, we
choose a greedy basis with tolerance ¢ = 1072, which here corresponds to N = 13.
For the error estimator reference space Y™ > YV we compare spaces with tolerances
e=10725,1073,10735, and 1074, leading to M = 31,62, 91, and 127, respectively. The

3Directly solving the larger linear system of size (trial space dim.)+(test space dim.) corresponding to
the saddle point formulation leads to comparable results.

M Note, however, that as usual online computation times contain only the computation of the coefficients
of the reduced solutions in the respective reduced basis. If an assembly of the full-dimensional solution
vector is needed, this dominates the costs and is clearly faster for the double greedy models, since for
the optimal trial method the separate parts of the affine decomposition of the trial space have to be
assembled, and the trial space vector is usually larger.
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Figure 3.12: test case 2, h~' = 512. Model errors ||u’¥ — u5||L2(Q) for all test parameter values (left)
and ratios of estimated and real model errors ||u” — uMHLz(Q)/HuN — u‘SHLz(Q) (right).

results in Figure 3.12 show the quantitative good performance. Note that the values
of M are significantly larger than reported for the hierarchical error estimator in [79]
which is due to the fact that M is determined differently and transport problems are
not considered there.
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4 The kinetic Fokker-Planck equation

In this chapter, we develop a stable and efficient Petrov-Galerkin approximation scheme
for a kinetic Fokker-Planck equation of the type

Ou((t,2),v) + v Vou((t,2),v) = A, (UD0) in Q=1 x Q xQ,, (4)

q(z,v)

which is a prototype for the mesoscopic glioma tumor equation (2.3) introduced in
section 2.1. Equation (4.1) describes the density of glioma tumor cells in phase space
dependent on time ¢ € I, position z € Q, C R%, d € {2,3}, and velocity v € 2, = S9!
As for the transport equation in chapter 3, we aim to develop a stable discretization
based on a suitable variational formulation of the equation.

After a more detailed description of the considered Fokker-Planck equation in sec-
tion 4.1, we establish the necessary function spaces for the variational formulation in
section 4.2. We use Bochner-type spaces mapping the combined space-time domain
Qi = Iy x ) to a Sobolev space defined on the velocity domain €2, similar to spaces
defined in [3,34]. After introducing the spaces, we show necessary density and trace
properties.

We then derive the variational formulation and prove the existence and uniqueness
results in section 4.3. To that end, we take the viewpoint that the Fokker-Planck
equation could be interpreted as a “generalization” of a parabolic equation with a (d+1)-
dimensional kinetic transport operator d; + v - V, instead of a one-dimensional time
derivative 0;. Therefore, we analyze the well-posedness of the variational formulation for
(4.1) by combining respective approaches developed for parabolic equations [65,119,129]
and for transport equations [28,43,52]. We show existence of a weak solution by verifying
the dual inf-sup condition. To that end, similarly to [65,119] specific function pairs in
the trial and test spaces are constructed: We associate a test space function p to a trial
space function roughly defined as w, = p — (A,) " (dp + v - Vyp). Then the bilinear
form evaluated in w, and p can be bounded from below by the respective norms of w,
and p, which leads to a lower bound for the dual inf-sup constant. Under an additional
assumption on the global traces of certain considered functions, we also show uniqueness
of the solution and have a stability estimate dependent on the inf-sup constant which is
similar to the respective estimates for parabolic equations.

In section 4.4, we then introduce the discrete scheme. We reuse the strategy from
chapter 3 to design a Petrov-Galerkin discretization with problem-specific trial spaces
ensuring stability: We first choose an arbitrary discrete test space yf‘; and then define
the discrete trial space roughly as Xf‘; = yf‘; + (Ay) 710 + v - vx)x:;. The spaces thus
g, p®) that are the discrete counterparts of the pairs (wp,p) used in
the proof for the lower bound of the dual inf-sup constant. Therefore, a discrete inf-sup
estimate follows analogously to the inf-sup estimate of the variational formulation. As
the computation of the trial space involves (A,)~!, i.e., the solution of elliptic problems
in the velocity domain, we discuss how the trial space can be efficiently computed for
certain discrete spaces and a separable form of the data functions.

consist of pairs (w
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4 The kinetic Fokker-Planck equation

We conclude the chapter in section 4.5 with a numerical example, where we investigate
the sharpness of the inf-sup estimate and the efficiency of the scheme.
The contents of this chapter have been published as a preprint in [27].

4.1 Problem setting

We consider a simplified version of (2.3), the Fokker-Planck mesoscopic glioma model
developed in [90, sect. 2.4.2], for details see section 2.1.

Let Q, C RY, d € {2,3} be the spatial domain with piecewise C'! boundary that is
globally Lipschitz and let I; := (0,7") be the time interval. Moreover, let the velocity
domain be the (d — 1)-dimensional unit sphere €, := S9=1 which corresponds to the
assumption of particles with constant speed but varying direction. As we will often treat
space and time variables simultaneously, we denote by € , := I; x 2, the space-time
domain. The full domain is defined as Q := Q; ; x Q.

Boundary conditions have to be prescribed at the inflow part of 9€2. To that end, we
first define the spatial in- and outflow domains I'% (v) := {& € 9, : n(x)-v 2 0} C 9Ny,
where n(z) is the unit outer normal to 92, at x. The full in- and outflow domains I
and 'y are then defined as

Py ={((t,z),v) € Oz xQy : (1) -n(t,x) =0} C 09,

where n(¢,x) is the unit outer normal to 9€Q;, at (t,x). 'y thus contain both the
temporal and the spatial boundaries, i.e., I'_ contains the “initial boundary” and the
(v-dependent) spatial inflow boundary whereas I' ;. contains the final time boundary and
the spatial outflow boundary.
The strong form of the Fokker-Planck equation then reads
Oul(t,2),v) + v - Vau((t,2),v) = A, (M) in @,

(4.2)
u((t,z),v) = g((t, z),v) onT_.

Here, A, is the Laplace-Beltrami operator on the unit sphere €, = S%1 (see Defini-
tion 2.3.13 and Example 2.3.14). The function ¢ : 2, x£, — R is the tissue fiber orienta-
tion distribution satisfying ¢(x,v) > a, > 0 for all (z,v) € Q; xQ, and [, g¢(z,v)dv =1
for all x € Q, (see section 2.1), and ¢g : I'_ — R is the inflow boundary condition that
contains the initial condition g|y—gy as well as the spatial inflow boundary condition
g‘Ff(v)a’U € (1.

In section 4.3, we develop a variational formulation for this equation, where we allow
for a more general differential operator on 2,, and give specific conditions on ¢ and g
leading to well-posedness.

4.2 Function spaces

To develop a variational formulation for (4.2) we first introduce the necessary function
spaces. Since we aim for a full-dimensional (i.e., space-time-velocity) formulation, we
use Bochner spaces mapping the space-time domain 2 , to a space of functions on §2,.

We start with the function space for the velocity variable: Since the equation con-
tains a Laplace-Beltrami operator on the velocity domain Q, = S% !, we define V :=
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H'(Q,) C L?(%,) as the Sobolev space of weakly differentiable functions on the sur-
face 2, = S%~! with norm ||¢[|3 = HqﬁH%Q(QU) + ||VU¢H%2(QU), see Definition 2.3.16. We
denote the dual space of V by V' := H-1(Q,). V is a dense subspace of L%({,) and
we will make use of the Gelfand triple V — L?(9,) < V', where we denote the dual
pairing by (-, )vv.

On the full domain, we define the Bochner space L%(€; ,; V) with norm

020y = [ ot.) (k) (13)

for functions without space or time derivatives. To incorporate the kinetic space-time
transport operator, we define (using from now on (})-Vizp :=dp +v - Vyp)

Hi(Q) :={p € L*(Q2;V) : (1) Viap € L*(Qua; V)1, (4.4)

with norm
IIPIIf{gp(Q) =Pl Z2 g0y + 1(3) - Vieaplli2, v (4.5)

This definition is similar to the spaces used for other variants of the kinetic Fokker-
Planck equation e.g. in [3,10,34]. We use ideas from [3] to show the following:

Proposition 4.2.1. The set C*®°(Qx x Q,) N Hflp(Q) is dense in Hflp(Q).

Proof. The claim is only a slight variant of [3, Prop. 7.1], where the respective density
result is shown for the space

ﬁflp(Q) ={p € L*(Uas; V) : Op—v-Vaup € L2 (a3 V')}

with V = H% (R9) being the Sobolev space on R? with standard Gaussian measure.
The space Iijlp(Q) is used to describe a Fokker-Planck equation similar to (4.2), but on
Q, = R% and with a reverse sign for the transport term. We will therefore reuse the
proofs of [3, Prop. 7.1] (and [3, Prop. 2.2], which treats the time-independent case) and
modify only the parts dependent on V and €),.

In step 1 of the proofs it is shown that we can assume without loss of generality that
for every z := (t,x) € U, C R¥™! and ¢ € (0,1] we have B((1 — ¢)z,&) C Qi, where
B(z,) is the open ball with radius r around z.

Let then f € Hflp(Q). As in step 2 of the proofs we take ¢ € C§°(R¥*! R) as a smooth
function with compact support in B(0,1) such that [gsr1 ( = 1. For each ¢ > 0 and
z € R we write

Co(2) i= e~ (e712),
and define for € € (0, %], 2 € 4, and v € Q, the mollification

fe(z,0) = flL=e)z+2,v)¢(2) de,

]Rd"'l

so that we have f; € COO(QW; V). We may then show completely analogous to step 2
of the proofs of [3, Prop. 2.2 and 7.1] that f belongs to the closed convex hull of the
set {f: : € € (0, %]} by just changing the spaces of all dual pairings and norms from
V= H%(Rd) to V = H'(S%!) and from L%(Rd) to L2(S471).
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4 The kinetic Fokker-Planck equation

It then remains to be shown that for fixed € € (0 ,2] the function f. belongs to
closH,”H1 C™>(Q 5 x ) by approximating f. also in the v-variable.
fp

We construct a basis of V = H'(Q,) that is contained in C*(,): Since V as a
subspace of L?(f2,) is separable and C*(Q2,) C V, there exists a dense countable set
in (C*(Qy), | - ||v), from which we can obtain an orthonormal basis (1;);eny by the
Gram-Schmidt algorithm. Since span(v;);en is dense in C*°(£2,) which is again dense
in V (see Theorem 2.3.19), (1;);en is also an orthonormal basis of V.

For k € N, we define f. 1 : ;» x 2, = R as

k
fs,k(zu /U) = Z(f&(z7 ')7 wl)le(rU)
i=1
Since we have f. € COO(QW;V), the map z — (fe(2,-),%:)v is in COO(Qt’x). As ¢; €
C>(Qy) for all i € N, we have f. € C°°(Qtq % €2y) for all k € N.
Next, we compute limg_, || fo — (Qu.0;v)- First, fix 2 € Q ;. Since (1;)ien is an
orthonormal basis of V' we have f.(2) = >572,(f:(2),%i)v¢; and thus

o

Z (fe(2), ¥i)v i
i=k—+1
As this holds for all z € Q, and ||f-(2) — fex(2)|lv < 2[|f-(2)|lv, we obtain by the
dominated convergence theorem that limg o || fe — (Qe0;v) = 0. To determine
limg o0 [[(5)- Vo (fe—fe )l L2(0u.05v7), we first consider the partial derivatives separately:
Since f. € C* (Qt,x; V'), all first z-partial derivatives of f; lie in LQ(Qt,x; V) and we know
that

oo

= 3 (f(2), 00} =0,

Vo i=k+1

1f(2) = fer(2)llv =

102, f-(2) = 0z, fene (v = | S (02, £o(2), wi)vaullv 2225 0

i=k+1
forj=1,...,d+1,and all z € Q4. Since |(1)| is bounded on Q, = S?~1, we thus have

d+1

103) - Va(fe(2) = fer(2Dllr2a, <ZH )jllLoe @)1 fo(2) = 0z, ek (2) | 2202,

d+1
< STl @10, £2(2) = 0, fee(2) v <= 0,
j=1

and again by the dominated convergence theorem that
klin;o ”(11;) Ve(fe - f&k)HLQ(Qt’I;V/) < kli)n;o H(ql;) “Va(fe — f€,k)||L2(Qt7E;L2(QU)) =0.
Hence, f.  converges to fc in Hflp(Q), which completes the proof of Proposition 4.2.1. [

To discuss the boundary behavior of functions in Hflp(Q), we introduce weighted L2-
spaces as usually used for transport and kinetic equations (cf. subsections 2.3.1 and 2.3.2
and section 3.1) and also for different versions of the kinetic Fokker-Planck equation
[3,34]. For any T' C 99 we introduce L?(T, |(1,v)T - n|) with norm

e oo = [ w?1(3) -0l ds. (46)

Then, we can show first that functions in pr (©) admit local traces in 092\ I'p:
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Proposition 4.2.2. For every compact set K C I'y (resp. K C T'_), the trace operator
w — w|g from C®(Q) to L*(K,|(1,v)T -n|) extends to a continuous linear operator on
H ().

For the proof we need to estimate the product of Hflp(Q) functions with different test
functions in the following way:

Lemma 4.2.3. Let ¢ € CY(Q). Then, the mapping f — &f is continuous in Hflp(Q)
with the estimate

10 £l @) < Clidlov@llfllug -

Proof. We estimate ||¢f|| u} (). Using the definition of the V-norm and the product
P

rule we obtain for the first term!

1651, = 6511320 + I(Vo8) f + Vo fllF2(q)
< 2l ooy 1 £ 132y + 2V o zoe @) 1 F 12200y + 21620 o) | Vo 320y
<2 (613 + IVl 0y ) 113, (47)

By using the product rule, the characterization (-, ) xs 3, = (-,*)12(0), and the continuity
p7
of C*() in Hflp (Q) we see that for arbitrary ¢ € A, it holds

((3) - Vealof), D)y a, = ((0) - Veaf, o) ar x, + (F((5) - Viwd) ¥)120)

<G - Veafllag 1o¥lla, +11F((5) - Vead) 2@ ¢l 2()-

(4.7)
< V(1613 g + IVeb (@) 105 - Tl ],
(

1) - Vewdll @I L2 1l 20
< V2 (I8l + IVl + 1(3) - Teadllioe(en) 1 Lzp o 1911,

We thus have

13) - Vea(@Pllay, < 22 (I8l 0) + 1Vodl @)

) (4.8)
+1(3) - Vewdllos o)) 1111 -
Combining (4.7) and (4.8) and using that |(})| is bounded in €2, we thus have
10f1lmg @) < Clidlorv@llfllug @)
O

Proof of Proposition 4.2.2. We use ideas of the proof of a similar result for transport
equations e.g. in [47, Chap. XXI, Thm. 1, p. 220]. Analogous results for spaces similar
to Hflp(Q) are also given in [3, Proofs of Lemmas 4.3, 7.6].

! As introduced in section 4.3, we write Xip = L? (Q,z, V).
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4 The kinetic Fokker-Planck equation

Given a compact set K C T'y, let ng € C1(Q) with nik = lon K and supp ngNI'- = 0.
We then obtain by integrating by parts for w € C*°(Q)

[Py mlds = [ () mlas< [ (miw)?l(}) - nlds

(2/8 (nrw)?(1) - nds—2/an )+ Vi (ngw) d((t, ), v)

< 2||77KU)HL2(Qt,z,V)H(11)) : Vt,x(an)lle(Qt,z,V’)
9 Lemma 4.2.3 2 2
< 2nxvlpy@ = Clellera vl @

We thus have continuity of the mapping w — w|g for all w € C*°(Q), and by density
(Proposition 4.2.1) the map extends to a continuous operator Hflp(Q) — LA(K,|(1,v)T
n|). For K C I'_ the claim can be shown analogously using |(1) -n| = —(l) - n on

supp nx in (x). O

This result ensures that Hflp(Q) functions have a trace on the non-characteristic
boundary I'y UT'_. However, from the local existence of traces we cannot directly
deduce that these generally lie in global trace spaces as e.g. L2(9,|(1,v)T - n|).

To include the boundary condition treatment in the function space, we define

Hfler(Q) = clos”.”H%p(Q) C’%JQ), (4.9)

which will be used as the test space for our variational formulation. With the restriction
of functions in Hf1p7l“+ (©) on the outflow boundary and the definition through the closure,

we can show that these functions have a trace in L%(T'_,|(1,v)T - n|):
Proposition 4.2.4. There exists a linear continuous trace operator ~y_ : Hflp,FJr Q) —
L*(T_,|(1,v)T - n|) such that

H’Y—(w)HL2(F,,|(1,U)T~n|) < CHwHHflp(Q) Vw € Hflp,r+(Q)-

Furthermore, the integration by parts formula

/ (1) Vegw, whyrydt,z) = 1 [ w?(1)-nds
Qt,m I'_

holds for all w € Hflp,l—‘+ Q).

Proof. The proof is similar to the respective result for transport equations in Propo-
sition 3.1.6, see also [3, sect. 4]. Let w € C*°() with w = 0 on I'y. Performing
integration by parts we obtain

/w - Vizwd((t, z) /Vtxw Dwd((t,z),v) + [ w?(l)-nds,
T ——
<0
and thus
[l jamray = [, w21 0] ds=2 [ (~(}) - Visw)wd((t,2).v)

<2l = (4) - Veawll 2 v lwllz ) < 2Hw||§{f1p(g)-

By density (due to the definition of Hflp’m (2)) the integration by parts formula and the
bound for [[w||z2r_ 1,0)7.n)) hold for all w € Hflp,F+ (Q). O
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4.3 Variational formulation

Remark 4.2.5. Similarly, it can be shown that the space Hflp’R (Q) defined analogously
to (4.9) admits a continuous trace operator 7 : Hflp,r, (Q) — L2(T4, |(1,v)T - n).

While the global existence of the trace and the integration by parts formula can be
easily shown for functions in the closure of smooth functions vanishing on the outflow
boundary in the same way as for the respective spaces for transport equations, we need
a more general result, as well. To later show the uniqueness of the weak solution in
section 4.3, we also need to verify the existence of a global trace and the integration
by parts formula for certain functions in Hflp(Q) with vanishing trace on I'_, but not
necessarily in HflpI_ (Q).

This is established for spaces like Hy(Q), where the kinetic term lies in L2(Q), see
subsection 2.3.2. Similar or even stronger results for respective functions in Hflp(Q) are
claimed to be proven in [3,10,34], however, we believe the arguments to be incomplete,
for more details see Appendix A.

Since we were not able to prove the existence of a global trace for Hflp(Q) functions
with vanishing trace on the inflow or the outflow boundary, we will formulate the exact
result needed for uniqueness of the weak solution as an assumption in section 4.3.

4.3 Variational formulation

In this section, we develop a variational formulation for (4.2) and show its well-posedness.
To that end, we first define a bilinear form on the velocity domain that can describe
an arbitrary elliptic operator as a generalization of the specific diffusion term in (4.2).
Then, we choose an ultraweak approach for the kinetic transport operator in the full-
dimensional variational formulation: Parallel to the formulation for the transport equa-
tion developed in section 3.1, we define the bilinear form with the space and time deriva-
tives on the test function. This is also done in similar formulations in [10, 34], while
in [3] a formulation with the transport derivatives on the trial space is used. With our
strategy, we can easily handle the inflow boundary conditions similarly to section 3.1 and
can later apply the strategy to find stable discrete spaces from the transport equation
to the Fokker-Planck equation.

Let ay : Q4 x V x V — R be a potentially (x,t)-dependent bilinear form defined on
the velocity space V. Moreover, let a, satisfy the following assumptions:

the map (t,z) — a,((t,2); ¢,) is measurable on Q; , for all ¢, € V,
a,((t,x);-,-) is bilinear for a.e. (t,z) € Qy,
ay((t,2); ¢,1) < vlldllv vy with 7, < oo for all ¢,¢ €V, ae. (x,t) € Qya,
a((1,2);6.0) + Moll 8320,y = aulll} with A, € Ry, > 0
for all p € V, a.e. (z,t) € Q4.
Note that 7,, Ay, and «, are assumed to be independent of (z, ).

Example 4.3.1. For the strong form of the Fokker-Planck equation (4.2), a, is given
for all ¢, € V, a.e. x € , by

av(w; 6,0) = (Vo (a(z,0)"6(v)) , Voro(v)
= (a(z,0) ' Vui(v), Vuti(v) )

L2(2)

L2(Q0)
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4 The kinetic Fokker-Planck equation

where V, is the tangential gradient on €, see Definition 2.3.13.

If g1 € L®(Qy x Q) with Vg™t € L®(Q, x Q) and ¢~ (z,v) > I, > 0 for a.e.
(z,v), then a, fulfills the conditions (4.10)—(4.13), for instance, with v, = ||¢~ ||z +
IVoqg oo, o = 3lg, and Ay = [|[Voqg |3 /(2ly) + 3lg. Depending on g, other esti-
mates might be better, e.g. for ¢ = ¢(z) and thus V,¢ = 0 we can get o, = A\, = .

Recalling the function spaces introduced in (4.3) and (4.9), we define the full-dimen-
sional trial and test spaces as

Xip = L*(Qe, V), Vo= Hir, (). (4.14)

We then define the full bilinear form by, : X, x Vg — R for w € A, p € Vyp, by

bep(w, p) == ~/Qt (w(t,z), —(1)-Viap(t,z))vv+as((t, z); w(t,x), p(t, z)) d(t, z). (4.15)

By definition, bg, is continuous on g, X Yy, i.e.,
bfp(wap) = <wv _(11;) : Vt,$p>X,X/ +/Q av((t,x);w(t,x),p(t,x)) d(t,l‘)
t,x

< wlxll(3) - Veapllx +%/ [w(t, z)|lv[p(t, ©)[lv d(t, )

t,x
< wllxll(3) - Veapllar +ywllwllxllpllx
< max{L wHwllx (1(;) - Viaplla + llplx)
< V2max{1, v }|w] xplly-

The functional f : Vg, — R containing the boundary condition g € L2(T'_,|(}) - n|) is
given as

@)= [ apl()-nl d((t.x)v) Vpe Vi

which is well-defined due to Proposition 4.2.4, and we thus have f € yf’p.
We call u € &, a weak solution of (4.2), if

bip(u,p) = f(p) V€ Vip- (4.16)

In the following, we examine the well-posedness of the variational formulation, using
the Banach-Necas-Babuska (or inf-sup) Theorem, see Theorem 2.2.4. We first prove
existence of a weak solution in subsection 4.3.1. Then, in subsection 4.3.2 we also show
uniqueness of the weak solution under an additional assumption on the trace of certain
Hflp(Q) functions.

4.3.1 Existence of a weak solution

We show the existence of a weak solution u to (4.16) by verifying a dual inf-sup condition.
To that end, we construct stable pairs of trial and test space functions such that the
application of the bilinear form to the function pairs can be estimated from below by the
respective norms of the functions. In these pairs, the trial space functions are derived
from the test space functions by the application of the kinetic transport operator and
the inverse elliptic velocity operator. We thus generalize similar proofs for parabolic
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4.3 Variational formulation

equations [65, 119] using a time derivative instead of the kinetic transport operator
and for transport equations using only an application of the transport operator as in
chapter 3 and e.g. [43,52].

Theorem 4.3.2. The bilinear form by, satisfies the dual inf-sup condition

inf sup brp (W, 1)

T 2 B
PV wei, Wl Pl — "

with an inf-sup constant

Bep > if ay s coercive, i.e., A\, <0,

Qy
\/imax{l, Yot ’
Qy

>
fp = \/imax{l,% + )\v} \/max{l + 2)‘1213 2}7

e—AUT

B if Ay > 0.

Consequently, the variational formulation (4.16) has at least one weak solution u € Xg,.

Remark 4.3.3. The estimates for 3g, are not worse than possible estimates for space-
time variational formulations for parabolic equations. In fact, for the coercive case
and assuming a, < 1 and v, > 1 the estimate in [119] roughly translates to Bparab >
a2/(v/272), while we here have Bg, > a,/(v/27,). The exponential dependence on the
final time T for the non-coercive case is the same for both types of equations.

Proof of Theorem /.3.2. We start with the case of a, being coercive, i.e., A\, < 0; the
non-coercive case will be treated afterwards via a temporal transformation.

To show the inf-sup condition we combine ideas from well-posedness results for para-
bolic equations as e.g. in [65,119] with the stable functions pairs defined for transport
equations in chapter 3. To that end, we take 0 # p € ), arbitrary, but fixed. We want
to construct a suitable w, € &y, and show by, (wy, p) > Brpllwpll x4, [Pl for a constant
Brp independent of p, which makes 3y, a lower bound for the inf-sup constant.

Since p € Vg, we have f, := —(}) - Vizp € L2 Q0 V') = /'\.’f;) Similar to [100, pp.
235], we define the bilinear form m : X, X A, — R by

m (w1, ws) ::/Q ay((t,z);wi(t, ), wa(t, x)) d(t, z), Vwi,wa € Xpp.

Since the function (t,x) — a,((t,z); ¢,1) is assumed to be measurable for all ¢,v € V
(see (4.10)) and a((¢,x), -, -) is continuous and coercive with constants v, a,, independent
of (t,z) ((4.12) and (4.13) with A\, <0), m is well-defined and continuous and coercive
over Xy, X X, with constants v, and . Therefore, by the Lax-Milgram theorem there
exists a unique z, € X, with

m(zp, w) = <fp,w),yf/p’xfp Yw € Ay, (4.17)

Due to the definitions of z,, f,, and m, there holds

/ o (2, w) d(t, ) = / (—(1) - Viap,whyry d(t,2) Vo € Xip. (4.18)
Qt,z Qt,z
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4 The kinetic Fokker-Planck equation

We now define wy, := p + 2, € A,. To bound bg, (wy, p) from below we use (4.18) for
w = 2z, and w = p, and the integration by parts formula from Proposition 4.2.4:

bip(p ) = [ 0+ 2, ~(3) - Veaphvvr + au(p+ 25,p) d(t,2)

t,r

= 0 <p, _( 11;) : vt,a:p>V,V’ + av(zpa Zp)
t,x

+ ay (pap) + <_( 11;) : Vt,xp7p>V/,V d(ta l’)

> (ol + zol,) +2 [ (~(2)- Viap, By d(t.a).

t,x

(4.19)

= aullply, + lal,) + [ #*15) -l ds
> au (el + )%, )-

Since we have (fp, w)xs x, = m(zp, w) < Yo 2plx;, |l x;, for all w € App,, there holds
p7

ol < vollzpll s, - (4.20)

Using the definition of wy, fp, and the norm of )V, as defined in (4.5), we can then
estimate

1/2
sl 1ol = o+ 2ol (11, + 15l

(4.20) 1/2
<l + 2%, (P13, +72120%, )]

< [2(lIpl%, + l1261%,) (P13, +72021%, )]
< Vamax{1, 7} (P, + II1%, )
(429) V2max{1,7,}

Qy

1/2 (4.21)

bfp (wp>p)'
Since p € )y, was chosen arbitrarily, we thus have

e (w, p) : a

inf su > L —
; P (170}

bepw.p) (4.22)
PV wey, |wllag, PNy,

i.e., the claim for coercive a,,.

To address the case that a, fulfills the Garding inequality (4.13) with A, > 0, we use
a standard temporal transformation of the full problem as proposed e.g. in [119,129].
We set @ := e Mtw for w € Xp, P = ety for p € Yip, and define the bilinear form
pr : Xfp X yfp — R by

bey (10, P) = /Q (W, —(5) - ViagD)vyr + au((t,2); 0, D) + X (W, D) 2(0,) A(t, x).  (4.23)
t,x

Then it holds by, (w,p) = by, (b, p) for all w € Xy, p € V. The transformed bilinear
form pr satisfies the definition of b with the transformed velocity bilinear form a, :
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4.3 Variational formulation

V xV — R defined by &’U((t’z)vQSa 1/)) = av((t’l‘);d)a d)) + )\v(¢a qu))LQ(QU) for ¢, € V.
Due to the Garding inequality (4.13) and continuity (4.12) of a,, G, is coercive with
constant &, = «, and continuous with constant 4, = v, + A,. As in [119], we can
estimate the norms of W € Ay, and p € Vg, by

1
" o .« -3
l@la, > e i, 1Blly, = (max{l+233,2}) * llply

where we use [|Y|lv: < [[¥][12(q,) < [[¥]lv for the estimation of the Y,-norm.
Then, the dual inf-sup constant of b can be bounded from below as follows

b b, (0, p) |10 p
inf sup fp(wap) _ Ainf sup - fp(wa?) H ||Xfp HpHyfp
PV wedy, Wl [Pl 9V wes, W1, D1y 10l 2],

e*)\vT

Ay

> .
~ V2max{1,v, + A, } vmax{1 + 2)2,2}

As by, is continuous, the associated operator By, : X, — yf’p defined by (pr~, ) VLV =
bep (-, -) is also bounded. By Proposition 2.2.1, the dual inf-sup condition implies surjec-
tivity of Byg,. Therefore, there exists a weak solution u € Xy, to (4.16), which concludes
the proof. 0

4.3.2 Uniqueness of the weak solution

As already mentioned in section 4.2, we were not able to prove all necessary trace results
in our specific function space. To show uniqueness of the weak solution, we therefore
assume the following;:

Assumption 4.3.4. Let w € Hflp(Q) with w = 0 a.e. on I'_, ie., w|x = 0 for all
compact K C I'_. Moreover, assume that bg,(w,p) = 0 for all p € Vg,. Then, we have
w € L?(09, |(1,v)T - n|) and the integration by parts formula

/ (1) Vigw,w)yryd(tz) = L [ w?(l) nds (4.24)
Qo 0

holds.

As discussed in more detail in Appendix A, we do not know how to prove Assump-
tion 4.3.4, since, for instance, ideas from existing approaches for the related space
HL(Q) = {w € L*Q) : (}) - Vizw € L*(Q)} cannot readily be transferred to the
Hflp(Q) case. We therefore leave it as an open problem. We emphasize that the respec-
tive trace and integration by parts result holds for all HL () functions with zero inflow
or outflow trace (cf. [12,35,36], [47, Chap. XXI]), and also for all Hflp(Q) functions that
can be approximated by smooth functions vanishing on the inflow or outflow boundary
(Proposition 4.2.4). Additionally, Assumption 4.3.4 is limited to Hflp(Q) functions with
vanishing trace on I'_ and satisfying a weak form of the differential equation with zero
boundary condition. This additional condition on the considered functions might make
it possible to show and exploit a higher regularity of the considered functions to prove
existence of suitable traces and (4.24).

We now show uniqueness of the weak solution in the form of surjectivity of the dual
operator. To that end, we follow the general structure of respective proofs for parabolic
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4 The kinetic Fokker-Planck equation

equations [65, Thm 6.6, p. 283] and transport equations [6, Thm. 16], also used for a
similar Fokker-Planck equation in [10]: We take a function w € &, solving (4.16) with
zero right-hand side and prove that w = 0 step by step by showing that w possesses
space- and time derivatives, that w has trace zero on the outflow boundary, and finally
that w must therefore vanish on the whole domain.

Theorem 4.3.5. If Assumption 4.3.4 holds, then for all 0 # w € Ay, we have

sup bg,(w,p) > 0.
peyfp

Proof. Let w € Xy, such that
bfp(w,p) =0 Vp € yfp. (4.25)

To prove the claim, we need to show that w = 0. First, we show that w has a weak
derivative —(3) - Vizw € & = L*(Q4.4; V'). To that end, let 1 € C§°(Q ;) and ¢ € V
be arbitrary. Then ¢ = 0 on 912, and by approximating ¢ in C*°(Q2,) we see that
¢ € Y. Using the definition of the weak (¢, x)-derivative and testing (4.25) with
p = ¢ we obtain

/Q ((3) - Vigw(t,z),0)yy ¥t x)d(t, z)
T /Q (w(t, ), (}) - Vead(t, 2)d)y,y d(t, )
_ _/QM au(t, 2); w(t, 2), w(t, 2)6) d(t, 2)
= /Qm (Ay(t, )w(t, x), o)y (t, ) d(t, ),

where the operator A,(t,z) € L(V, V') is defined as (A,(t,z)¢, p)viv = av((t,2); 9, p)
for all ¢, p € V, a.e. (t,z) € Q.. Due to the density of C§°(Q: ) in L?(Q4,) we have

—(4) - Vigw = Ayw € &, (4.26)

which especially means that w € Hflp(Q).
Next, let K CC I'_ be an arbitrary but fixed compactly embedded subset of I'_.
Moreover, let z € C>°(€Q2) with z = 0 on 902\ K. We show wz € Vg,: Since w € Hflp(Q),

due to Proposition 4.2.1 there is a sequence (wy )nen C C(Q) with Hwn—wHHfl ©) nze
P

0. Therefore, we have w,z € C*°(2) with wz = 0 on I'y. Due to Lemma 4.2.3, it holds
|wz — wnZ”ng(Q) < Clzller o llw — wn”Hflp(Q)

and thus w,z — wz in Hflp(Q) as n — oo. Invoking the definition of Vg, in (4.14),(4.9)
we obtain wz € V.

Since K C I'_ is compact, we may apply Proposition 4.2.2 to infer that w has a trace
on K and w|x € L*(K,|(1,v)T - n|). Thanks to z|gq € L>(9Q) and supp z|gn C K, we
have

[ w12 ml s
o0

= | [ 2102 -l ds| < el ol .y <
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4.4 Discretization

As a consequence we can apply the linear functional in (4.26) to wz € Vg C Ay,
perform integration by parts, since the boundary integral exists, and use (4.25):

0=j/ (L) Vigw + Ayw, wz)yryd(t, x)
Qt,z

= | {w,=(3) Via(w2))vy + av(w,w2)d(t, ) + [ w’z(}) nds

Qo o9
:bfp(w,wz)—/ w?z|(1) - n ds:—/ w?z|(1) -n| ds.
—— K K
=0

Since z|x € C§°(K) can be chosen arbitrarily and |(1)-n| > 0 on K, the fundamental
lemma of calculus of variations yields w = 0 a.e. on K. As also K C I'_ was chosen
arbitrarily, we have w =0 a.e. on I'_.

Thanks to Assumption 4.3.4, it therefore holds w € L?(9%,|(1,v)” -n|). We can thus
use integration by parts for (4.26) applied to w. Assuming first that a, is coercive, i.e.,
Ay < 0, we obtain

0:/ (1) - Viww + Agw, whyry d(t, z)
Qt,z

= / ((3) - Vigw,w)yry d(t, z) + ay(w,w)d(t, )
Qt,z Qt,z

Z%/ w2(}))-nd5+av\|w|]3¥fp,
>

which implies w = 0.
If a, is not coercive, we use the temporal transformation described in the proof of
Theorem 4.3.2. Setting 1 = e **w and using the definition of by in (4.23), we see that

(4.25) is equivalent to pr (w,p) = 0 for all p € Vg,. Since a, is coercive, we have proven
that @ = 0 and thus also w = 0. O

We summarize our findings in the following theorem.

Theorem 4.3.6 (Well-posedness). There exists a solution u € Xy, to the variational
problem (4.16). If Assumption 4.3.J holds, the solution is unique and satisfies the sta-
bility estimate

1
< — /
Julls, < 51513,
for By, as defined in Theorem 4.5.2.

Proof. Theorem 4.3.2 asserts the dual inf-sup condition and the existence of a solution
to (4.16). If additionally Assumption 4.3.4 holds, we also have the dual surjectivity
Theorem 4.3.5. Therefore, by Theorem 2.2.4, the solution to (4.16) is unique, and the
stability estimate holds. O

4.4 Discretization

We now design a stable and efficient discretization scheme for (4.16). To that end, we
use a Petrov-Galerkin projection onto problem-dependent discrete spaces realizing the
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4 The kinetic Fokker-Planck equation

stable function pairs with test functions p € ), and trial functions w), € &f, developed
in the proof of Theorem 4.3.2. As a result, the discrete inf-sup stability and thus the
well-posedness of the discrete problem follow analogously to the continuous results with
the same stability constant. We then illustrate for a class of data functions how the
trial space functions wg can be efficiently computed by solving low-dimensional elliptic

problems in the velocity domain.

4.4.1 Stable Petrov-Galerkin schemes

To define an approximation of the solution u € &, of (4.16), we use a Petrov-Galerkin
projection onto suitable discrete spaces: Given discrete trial and test spaces Xf‘; C Xp

and yff) C Vip, the Petrov-Galerkin approximation uw e Xf‘; is defined by
bip(u’,0%) = f(v°) W € yff). (4.27)

Well-posedness then depends on the discrete inf-sup stability of the discrete problem. To
find a pair of spaces leading to a stable scheme, we transfer the ideas from chapter 3 to
the Fokker-Planck setting. For the transport equation, we built a stable discretization
with a discrete inf-sup constant of one by fixing a discrete test space and defining a
problem dependent trial space with optimal stability properties. For the Fokker-Planck
equation we will use the same strategy: We start with a discrete test space and define
the corresponding trial space based on the trial space functions used in the proof of
Theorem 4.3.2.

To that end, we first define a discrete space V* C V for the discretization in the
velocity direction. Since the )Mg,-norm contains a term in the Xf/p = LZ(QW, V’)-norm
which is not computable, we consider the norm

b, ")y

oty = [, 10ty a2), oy = s, I (1)
instead of | - [ 12(q, ,,v7) Where necessary.

Let yff) C Vi be a discrete space for which we assume w® (¢, x) € V" for all w’ € yf‘f)
and a.e. (t,x) € Q4 . yff) will be used as test space for the Petrov-Galerkin approxima-
tion. We define the discrete version of the Vg,-norm by

lwll = lwlia,. vy +102) - Veswl i, . ) (4.29)

Since we will make use of the function pairs developed in the proof of Theorem 4.3.2,
we assume for the discretization that the velocity bilinear form a, is coercive, i.e.,
Ay < 0. For problems, where a, only satisfies the Garding inequality (4.13) with A, > 0,
a temporal transform of the problem as described in section 4.3 can be performed, then
the transformed problem with a coercive bilinear form da, can be discretized.

We now define a problem-dependent discrete trial space. For each p® € yg), we denote

o= (1) .V, .p°(t,x) € X.. We then define the function 2z € A4, as the solution of
p v ) fp D P

av(zg(t,:c),éh) = (f]f(t,x), ¢h)vf’v, Vol e VI ae. (t,x) € Q4 . (4.30)
4

z, is the discrete counterpart of 2, defined in (4.17), but is here defined pointwise in

Q; » due to the discrete setting. Then, the discrete trial space Xf‘; C Xy, is defined as

Xff) = {p’ + zg e yf‘;} (4.31)
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4.4 Discretization

Proposition 4.4.1. If a, is coercive, i.e., Ay < 0 in (4.13), and if the discrete trial
and test spaces Xf‘; and yf‘; are chosen according to (4.31), then there exists a unique
solution u’® € Xf‘; to (4.27).

Remark 4.4.2. For non-coercive a, the respective result holds for the discretization of
the transformed problem according to (4.23) with &, being coercive.

Proof of Proposition 4.4.1. We can reuse all essential parts of the proof of the inf-sup
constant for the continuous problem to also prove discrete inf-sup stability of (4.27).
Let 0 # w’ € Xf‘; be fixed. Then, by definition of Xf‘; there is p° € )7{; such that

wd = pd + zg with zf, defined as in (4.30). By using (4.30) and the same arguments as
in (4.19) we obtain

6 0 4 d 0 4 )
by (w®, %) = by (B + 25, 9°) > e (107113, + 1251, ) - (4.32)
As we have

<f£(t733)7¢h>v/,v = av(zg(tux)vth) < ’Yszg(tax)HVHéf)h”V v¢h € Vh? a.e. (t,CC) S Qt,l‘

we can inflect that
9 )
1ol 200, vmyy < Yoll2pllag, - (4.33)

Therefore, we obtain analogously to (4.21), but using the discrete yf‘;—norm,

1/2
6 & & é 9 9
Sl 1l = 119° + 281, (16203, + 1212000y

(4.33) 1/2
o 1) o 1)
<[ + 1%, (115, + 212005, )]
1/2

s s 5 5
< [2(IP°1%, + 12313, ) (1P 1%, +21=p1%, )] (4.34)
= vamax{l, 7w} (1'%, + 1513, )
(432) /2 max{1,~
< #bﬁ)(wg’pé).
Ay
This means that bg, is inf-sup stable on the spaces (Xf‘f), |- 1) (yff), | - Hyfi ) with

constant B?p > ap(v2max{1,7,})"!. Since for all 0 # p° it holds bfp(wg,p5) > 0 and
thus wg # 0, we have dim(/'l,’f‘;) = dim(yf‘;). Therefore, by Proposition 2.2.7, the discrete
problem (4.27) is well-posed. O

Remark 4.4.3. Due to the finite-dimensional spaces, the Petrov-Galerkin approximation
ud € Xf‘; is unique even if Assumption 4.3.4 does not hold.

4.4.2 Efficient numerical scheme

Regarding the computational realization of the Petrov-Galerkin approximation, we have
to take into account the specific choice of the discrete spaces according to (4.31). To
assemble the linear system and to represent the discrete solution, the nonstandard parts
of the Xf‘;—basis functions, i.e., the functions zg defined by (4.30), have to be computed
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4 The kinetic Fokker-Planck equation

for all basis functions of yf‘;. We illustrate how this can be done very efficiently for the
case where a, is coercive and has the separable form

av((tvx)v¢a¢) = d(t7$)&v(¢vw)v (435)

where d € L>®(€; ) satisfies d(t,x) > a? > 0 for a.e. (t,2) € Y and G, : V xV = R
is a coercive bilinear form.
To build the discrete test space, let first yf‘” ¥ C HY(Q4) be a discrete space in the

space-time domain with basis (pi™°(t, )% and let V? C V be the already defined
velocity discrete space with basis (ﬂ)h( ). Denoting the tensor product of these

Jj=1
spaces by yfp y‘s’“ ® V", we then set

t 1) -
:))ff) = Span{p?,j > wh pz]‘F+ O} C yf(f) N yfp.

We may then use this tensor product structure to efficiently solve (4.30): Fixing a basis

function pij t w 57,bh of )¢ | the right-hand side of (4.30) reads

fp7

<_(11))'Vt,:cp?,j(t,m)?¢h>\/’,v ——aptwé t,x /wj ¢h
- Z O™ °(t /QUkIZ)?(U)QSh(U) dv

for all " € V" a.e. (t,z) € . Using the separable form of a, (4.35), we can rewrite
(4.30) as follows: Find zgj = zgé - € Ay, such that
2,3

) (2 (t2). ") = ~0p ™ (t,3) [ 000" o) do

— 3 0 ) /Q okt (v)¢" (v) do
Vol e VR ae. (t,x) € Qt .

Hence, the computatlon of all 20, can be separated in the following way: We first

j
compute the solutions pj, pj ,...,pj € V" to the problems

(0} 0") = [ Wi @) dv, W e VP,

(4.36)
ay(p}*, ¢") = /%%’(U)th(v) dv, Vo"eVhk=1,...,d,
Qy
for all basis functions 1/1? eVvhj=1,.. . Then, the z . are given by
2ty v) = —d(t,x)” <8 PO (¢, a) pk(v) + Z&mpf” ’“(v)) . (437)

The full solution process thus consists of the following steps:

1. Precompute p}, p;”“, i.e., solve (d+ 1) x n, problems of size n,, which can be done
in parallel.
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4.5 Numerical experiments

2. Assemble the stiffness matrix [bfp(pf,j + Z?,j?]oi,l)](k,l),(i,j)’ using (4.37), and assem-
ble the load vector [f(pil)](k’l).

3. Solve the linear system of equations to obtain the coefficient vector [u; ] ;)-
4. Compose the solution u® = D Ui (pf’j + 22]-) € Xf‘; again using (4.37).

Compared to a naive approach using FE spaces without any stabilization, the additional
costs thus only lie in the n,-sized problems (step 1) and possibly more nonzero elements
in the stiffness matrix. These effects only depend on the dimension n, of V. Therefore,
the proposed discretization strategy is especially well-suited for using specific spaces V"
of low dimension, which can be achieved for example by using polynomial bases or a
hierarchical model reduction approach as proposed in [26].

In order to efficiently compute the problem-dependent basis functions, we heavily rely
on the separable form of the bilinear form a, given in (4.35). To consider more general
bilinear forms, the method could for example be combined with low-rank approxima-
tions to efficiently compute a discrete trial space as done in a related setting in [17].
More generally, due to the high-dimensionality of the problem, it is especially desirable
to combine the discretization with further approximations as the already mentioned
hierarchical model reduction [26] or tensor-based methods that have already been used
in similar Petrov-Galerkin settings [17,82] and to discretize kinetic equations like the
radiative transfer equation [74,134] or the Vlasov equation [59,60,98].

4.5 Numerical experiments

We investigate the properties of the method developed in section 4.4 by implementing
the discretization for a basic model problem. We are especially interested in analyzing
how sharp the lower bound for the inf-sup constant is and examining the efficiency in
light of the nonstandard discrete spaces. The source code to reproduce all results is
provided in [25].

4.5.1 Test Case

We consider the time-independent model problem
v - Veu(z,v) + cu(z,v) = dAyu(z,v) + folz,v) (4.38)

on the domain Q = €, x Q,, for Q, = (0,1)? and Q, = S! and with reaction and velocity
diffusion constants c¢,d € R, ¢,d > 0. We assume zero inflow boundary conditions on
I'_ C 9Q and define a source function fo € L?(Q) as a substitute for the initial condition
of the time-dependent equation. We parametrize 2, = S' by the angle ¢ € [0,27),
leading to v = (o) and Ayu = 8‘9—:211.

Then, we have V = H!(£2,) and the bilinear form a, : V x V — R reads

al.p) = [ AU @)+ eleple)de Vo eV

Thanks to the definition of the H!'(,)-norm, the bilinear form a, is coercive with
constant «,, = min(¢,d) > 0 and continuous with constant v, = max(c,d). We then
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Figure 4.1: Plots of basis functions p° and wf, on a grid with only one spatial grid cell (n, = 1) and
n, = 16, for data d = 0.1, ¢ = 1. Upper left: pé(',-,ﬂ'), upper right: wg(~7 -,m). Lower plot: Velocity
dependence of p? and wg for p® in the middle of the domain and wg left and right of the discontinuity.

have Xf, := L?(Qy; HY(Qy)), and Vg, = clospi,, {we CHQ) :w=0o0nT,}, where
P

Iy ={(z,v) € 00y x Qy : (‘;’jj) ‘ng >0} C 99,

w3, = llwll, + 1 (Gng) 'wallgcf/p-
The full bilinear form is

bfp(va) = /(w(:n), _((s:?;fz) : vzp(x»V,V’ + av(w(:n),p(:z‘)) dz, Vw € Xfpap S yfp

T

and the functional describing the source term is defined as

2
)= [ [ fae @ o) dede pe i

Well-posedness of the weak formulation of (4.38) follows completely analogously to the
time-dependent case, as a, is coercive and f € yf’p.

For the discretization we choose V*  V = H'(Q,) as the continuous linear FE
space on [0,27) with periodic boundary condition and uniform mesh with size h, =
27 /n,. The space )_Jf(;x CH 1(Qz) is chosen as the continuous Q9 FE space on a uniform
rectangular mesh with size h, = v/2/n,. The trial space Xf‘; is then chosen according to
(4.31). For our test case, this amounts to the following form of the trial space functions:
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4.5 Numerical experiments

Table 4.1: Computed discrete inf-sup constants for
varying mesh sizes and values for the diffusion and
reaction constants d and c.
d=04, |d=01, ] d
hy | c=1 c=1 c

%Tﬂ 0.61855 | 0.41087 | 0.30579

27 10.44891 | 0.18628 | 0.14924

%f 0.40915 | 0.11688 | 0.10585

2
3% 0.40202 | 0.1033 0.10041 Figure 4.2: Sparsity pattern of the stiff-

i—g 0.40088 | 0.10137 | 0.10008 ness matrix for hyy = hay = 75, hy = 35,
dim Y5 = 16256.

SORISEISPISTS &

Given a test space function p’ € yf‘;, the corresponding stable trial space function
defined in subsection 4.4.1 is given by

wh=p’ = (A ((5nf) - Vap’) o)
= —(=dA, +cld) ™ ((32) - Var’),
where we abbreviate the definition of zg in (4.30) by using the operator A" := —dA,+cld
corresponding to the bilinear form a, on V" x V",
In practice, the trial space Xf‘; is computed as described in subsection 4.4.2 by first
solving 2n, problems of dimension n,. From the definition we see that Xff) C /’\_.’figx QVh,
with /'E'f(;’x C L*(Q,) being the discontinuous Q3 FE space.

4.5.2 Numerical results

We first visualize a pair of corresponding trial and test space basis functions. For
a given FE basis function in the test space p® € yg), the corresponding trial space
function wg € Xf‘; is given by (4.39). Since the definition of w, involves the inverse
velocity operator (Af))*l, wp, may have larger support in 2, than p%, while the support
in 0, stays the same. Therefore, we visualize only one spatial grid cell, i.e., n, = 1,
and examine the velocity dependence of the functions. We take p® as FE nodal basis
function with p5(0.5,0.5,7r) = 1. In Figure 4.1, spatial plots of p? and wg as well as a
plot in the velocity direction are given. Indeed, we see that wg has a non-local support
in €,. In the spatial plots, we observe that wg is positive in (—1,0)” direction from the
middle of the domain. Since p° is a nodal basis function in ¢ = 7, which corresponds
to (cos(m),sin(r))” = (—=1,0)7, we observe that w’ in a way mimics the transport in
(—=1,0)T direction directly in the spatial domain.

To investigate whether the estimate for the discrete inf-sup constant from section 4.4
is sharp, we compute the constants for different mesh sizes, and reaction and diffusion
constants c and d; see Table 4.1. The estimate established in section 4.4 is given in our
test case as ﬂgp > min{c,d}/(v/2max{1, c,d}), which is min{c,d}/+/2 for all considered
data values in Table 4.1. As can be seen in the table, the computed inf-sup constants
tend to min{c, d} with increasing mesh sizes for all tested combinations of d and ¢. In
these cases the estimate is thus sharp up to a factor of /2.

81



4 The kinetic Fokker-Planck equation

0=1.751 =0.0n

025 0.20
0.90 0.15
0.15 0.10
0.10 0.05
0.05 0.00

0.00
1.0
0.8
0.6

x2
0.4

0.2

0.0
00 02 04 06 08 10

00 02 04 06 08 10 X1

x1

(JJ:D.25T[ q;:l]_5n

0.20
0.15
0.10

0.05
0.00

1.0

0.8

0.6
x2
0.4

0.2

0.0 0.0

00 02 04 06 08 10 00 02 04 06 08 10
x1 x1

Figure 4.3: Plots of the solution u for d = ¢ = 0.1, fo = X[0.4,0.6]2 ha1 = hzy = 1/48, hy = 27/48,
dim Vs = 441984. Left: u(-,-, ) for different angles . Right: moment fo% u(s, -, p)dep.

Since the basis functions of the discrete trial space Xf‘; are not chosen as standard
nodal basis functions but have larger support in €, one can ask if the choice of spaces
still leads to an efficient numerical scheme. Therefore, in Figure 4.2 we plot the sparsity
pattern of the stiffness matrix for a discrete problem of dimension 16256. We see that
for our test case the choice of spaces indeed leads to a sparse matrix and thus does not
induce efficiency problems.

To examine if the nonstandard trial space is able to capture the dynamics of the
equation properly, we plot a discrete solution to (4.38) with a particle source fp in
the middle of the domain, see Figure 4.3. The plots for different angles ¢ show the
particle transport from the middle to the respective directions, the plot of the moment

02 g u‘s(-, -, p)dyp, i.e., the spatial density then shows the overall picture of the particle
dynamics. Indeed the nonstandard trial space leads to a realistic solution. We also see
that there are no oscillations that would indicate instabilities of the method.

However, we observe small artifacts in the corners of the domain: Since we have
chosen the discrete test space yf‘; C J%i’x ® V" in Q, analogously to the test space yf for
the transport equation in chapter 3, similar nonphysical restrictions of the trial space as
described in subsection 3.2.2 occur here, as well. More precisely, the space )%i’m has the
same tensor product structure as yf . Moreover, functions in the full space y;; vanish at
the outflow boundary, which is here velocity dependent, but has, for fixed v, the same
form as the outflow boundary of yf . The trial space Xf‘; is then built from the test space
yf‘;. This leads to trial space functions that vanish for each v on the respective “outflow
corner” analogously to the transport case described in subsection 3.2.2. Therefore, we see
in Figure 4.3 that the solution u vanishes e.g. for ¢ = 1.75m on the corner z = (1,0)7.
The moment of u does not necessarily vanish on the corners. However, we observe
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4.5 Numerical experiments

artifacts on all corners, since the problem describes a transport from the middle of the
domain to the exterior with zero inflow, so that we have only “outflow contributions”
on all corners. To mitigate this effect, one could for example choose the computational
domain larger than the domain of interest as proposed in subsection 3.2.2, or use other
spaces that are not based on tensor product spaces.
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5 Conclusion and outlook

5.1 Conclusion

In this thesis we developed stable Petrov-Galerkin discretizations for parametrized linear
first-order transport equations and for kinetic Fokker-Planck equations.

The numerical scheme for the transport equation is based on an ultraweak variational
formulation already used for related methods such as DPG formulations [51,52] and
in [43]. By putting all derivatives on the test function and choosing the trial space as
L?(9) and the test space norm including the whole adjoint operator By, the variational
formulation is optimally conditioned on the infinite-dimensional level.

To retain this optimal stability also on the discrete level, we “reversed” the classical
strategy to find a stable test space to a given trial space: Instead of fixing the trial
space and trying to approximate the “optimal test space” consisting of the supremizer
functions By *w € ) for all w € A}, as has been done with different strategies in related
works [29,43,51,52], we fix a discrete test space V% and choose the nonstandard trial
space X° := B#)?. With this choice, we obtain a discrete inf-sup constant of one for
a Petrov-Galerkin scheme with directly computable spaces. This especially means that
the discrete solution is the L2-best approximation in the (nonstandard) trial space. This
best-approximation problem can be rewritten as a respective problem in the test space
V9 with the transport-operator-norm || - ||;, we can therefore ensure convergence of the
scheme by choosing an appropriate FE space for )°.

The numerical experiments show convergence of order about % for non-smooth L?2-
solutions. Despite the L2-framework, higher convergence orders between 1 and 2 can
be observed for smooth solutions, even though tensor product discrete spaces may limit
the convergence order to 1 due to unphysical restrictions of the trial space at the out-
flow boundary. The proposed method shows similar ratios of errors and computational
costs to [43], where fixed trial spaces are used. We thus conclude that our nonstan-
dard problem-dependent trial spaces have satisfying approximation properties for the
considered test cases.

We used this framework to develop an efficient realization and implementation of
RB methods for parametrized transport equations. Unlike standard RB models, our
reduced model consists of a reduced test space with fixed functions, but a parameter-
dependent norm, while the reduced trial space has parameter-dependent basis functions
but the common L2-norm. A (strong) greedy algorithm generates the reduced test
space consisting of “test space snapshots”, which ensure that for the chosen parameter
values the model error is zero, even if the reduced trial spaces are not solely consisting
of common trial space snapshots. This unusual choice of spaces guarantees that the
reduced model is automatically optimally stable for all parameter values, which means
that we do not need additional stabilization in the basis generation process and have a
reduced model with the same trial and test space dimension, unlike the related reduced
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models generated by the double greedy algorithm [45]. Since due to the nonstandard
test space norm the standard residual-based RB error estimator is not offline-/online
decomposable in our setting, we proposed as an alternative a hierarchical error estimator
based on the comparison of reduced spaces of different model order.

In the numerical experiments, we saw that our reduced model realizes the convergence
order of the Kolmogorov n-width for a non-smooth transport problem. A comparison
with the algorithm in [45] showed comparable, or even better convergence rates and
significantly lower online costs for the new framework. The results suggest that the new
framework might be especially beneficial for problems where a stabilization is rather
challenging.

We then presented a stable Petrov-Galerkin discretization of a kinetic Fokker-Planck
equation. To that end, we first developed a new proof for the well-posedness of a vari-
ational formulation in all dimensions with the kinetic transport operator on the test
space. Combining ideas from similar proofs for parabolic equations and transport equa-
tions we gave a lower bound for the dual inf-sup constant which is not worse than
respective estimates for parabolic equations [119]. The proof is based on specific “sta-
ble function pairs” given by a test space function and a trial space function obtained
by applying the kinetic transport and the inverse velocity Laplace-Beltrami operator.
Under an additional assumption on the traces of certain functions in the Fokker-Planck
function space Hflp (Q), we obtained well-posedness of the variational formulation.

To derive stable discrete spaces, we adapted the “optimal trial” strategy from our
discretization of the transport equation to the Fokker-Planck case: By defining the
discrete trial space dependent on the chosen discrete test space through the application
of the kinetic transport and the inverse velocity Laplace-Beltrami operator, we built the
“stable function pairs” introduced in the continuous inf-sup estimate into our discrete
spaces. We hence obtained a well-posed numerical scheme with the same lower bound of
the discrete inf-sup constant as for the continuous problem independently of the mesh
size. We showed that under suitable conditions on the data functions these spaces can
be computed efficiently, since as in the transport case the (high-dimensional) kinetic
transport operator only has to be applied to the test space functions, while for the
inverse Laplace-Beltrami operator low-dimensional elliptic problems have to be solved,
which are, however, not dominant in the overall computational costs.

The numerical experiments showed that for the examined test case the estimate of
the discrete inf-sup constant is sharp up to a factor of v/2 and confirmed that our choice
of spaces leads to an efficient scheme.

5.2 Qutlook

The proposed methods provide several starting points for future research.

On the one hand, the proposed “optimal trial” framework for the parametrized trans-
port equation can be explored further by evaluating other possibilities for discrete test
spaces beyond the simple tensor product FE spaces we used so far. Depending on the
choice of the space, the observed nonphysical corner restriction and overshoots might
be mitigated and possibly specific convergence estimates for the scheme might be de-
rived. On the other hand, it would be especially interesting to apply the “optimal trial”
strategy to other equations. For the kinetic Fokker-Planck equation we used a formu-
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lation with the transport operator on the test space, but velocity derivatives still on
both spaces as usual. Therefore, the computation of the optimal function pair still in-
cluded the inversion of the (in this case low-dimensional) elliptic operator. The “optimal
trial” framework is however especially favorable for true “ultraweak” approaches with
all derivatives on the test space, since then the trial space is obtained by only applying
differential operators. An application to other transport problems as, for instance, hy-
perbolic systems or to a true “ultraweak” formulation of second-order equations might
be interesting.

In the same way, the model reduction framework might be beneficial in the reduc-
tion of other parametrized problems where the stability of reduced models is an issue.
However, the success of our linear approach is limited by the decay of the Kolmogorov-
n-width, which is very slow for transport problems. It might therefore be interesting
to also look at different proposed strategies to circumvent the Kolmogorov-n-width by
nonlinear transformations or adaptations and combine our framework with these.

For the kinetic Fokker-Planck equation we could show the existence of the weak
solution, but the uniqueness only under an additional assumption on the global traces
of certain Hflp(Q) functions, which we left as an open problem, see Assumption 4.3.4
and Appendix A. The further investigation of the trace properties of Hflp(Q) remains
thus subject of our future work.

Regarding the discretization, we here developed a stable numerical scheme for the ki-
netic Fokker-Planck equation. However, the largest problem for the numerical solution
of the equation in practice beyond low-dimensional test problems is the dimension of the
underlying phase space which makes schemes based on standard FE spaces prohibitively
expensive. Therefore, dimensional reduction approaches or tensorized methods are nec-
essary. The hierarchical model reduction approach developed in [26] used an expansion
in problem-dependent basis functions in the velocity variable, which fits into our scheme
where a small dimension in the velocity space is favorable for an efficient computation
of the trial space functions. A combination with our scheme (that would mitigate the
stability problems encountered in [26]) might therefore be interesting. Alternatively, a
combination with low-rank or tensor-based decompositions might be interesting.
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A Discussion: Global traces in Hg, ()

As already mentioned in section 4.2, we believe that the statement in Assumption 4.3.4 is
still an open problem, despite the fact that more general results implying the respective
version of Assumption 4.3.4 hold true for L?-based spaces, and that similar results for
Fokker-Planck equations are given in other works.

More precisely, on the one hand, [3, Lemma 4.5] states that the space C§°(2\ I'g) of
smooth functions vanishing in a neighborhood of I'y is dense in Hflp(Q), and that Hflp(Q)
functions lying in L?(I'y,|(1,v)T - n|) or L3(T'_,|(1,v)T - n|) already have a full global
trace in L2(09,|(1,v)T - nl).

On the other hand, in [34], and based on that also in [10] the following is stated':

Claim A.1 (cf. [34, Lemma 2.3|, [10, p. 3493]). Let w € Hflp(Q). Then, w has traces
wlr, € L*(T4,|(1,v)T - n|) and the integration by parts formula (4.24) holds.

Note that [3, Lemma 4.5] would already imply Assumption 4.3.4 (where functions
that have zero trace on I'_ are considered), while Claim A.l is an even stronger claim.
However, we believe that the arguments both for [3, Lemma 4.5] and for Claim A.1
given in [3, 10, 34] are incomplete.

While the function spaces considered for the different versions of the Fokker-Planck
equation are typically of the form

Hflp((z) ={weXx: (1) Viwe X'} with X = L2(Q0, H' (),

(cf. (4.4)), function spaces for other kinetic equations like neutron transport require
considering

Hu() = {w € LX(Q) : (1) Vyow € LX(Q)},

(cf. (2.16)). In subsection 2.3.2, we summarize some trace properties of Hp(Q2) that
were shown in [12, 35, 36], see also [47, Chap. XXI]. On the one hand one can show
similarly for Hyi(Q2) and HE (Q) that the spaces both admit local L*-traces on I' and
I'4, see Proposition 2.3.8 and Proposition 4.2.2.

We note that while the statement of [3, Lemma 4.5] and thus of Assumption 4.3.4
holds for Hy(2) instead of Hflp(Q) (see Proposition 2.3.10), Claim A.1 is not true for
H,(2) functions, see Example 2.3.9.

The argument to show Claim A.1 in [34] is based on two steps:

Step 1: Show that the space C3°(Q\ I'p) is dense in Hflp(Q) (this is also included in [3,
Lemma 4.5])

Step 2: Decompose w € CSO(Q \ I'p) into w = w4 + w_ with w4 vanishing on 'y and
use the density from Step 1 to show the claim.

'In describing the estimates in different cited works, we substitute the notation and the concrete spaces
to the respective equivalent in this work to simplify the discussion. This sometimes slightly changes
the spaces, but has no effect on the used arguments.
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We believe the arguments in both steps to be incomplete.

For Step 1, the author of [34] refers to [49], where a time-dependent Fokker-Planck
equation in one space dimension is considered and where it is stated that using an
argument of Bardos ( [12, p. 203]), it can be seen that C§°(Q\ T'g) is dense in Hflp(Q).

The work of Bardos [12] considers the L2-based function spaces H (€2, b) and Hy (),
see subsections 2.3.1 and 2.3.2. The mentioned argument corresponds to Lemma 2.3.4.

In the respective proof, a family of functions (¢.).s0 C C°°(Q) is constructed such
that ¢. vanishes in the §-neighborhood of OI'_, and is equal to unity outside of the
e-neighborhood, see (2.15). Given u € Hyt(2) N L%°(Q), it is then shown that u¢. —
win L2(Q) and (1) - Viz(upe) — (1) Vigu in L2(Q) as e — 0. The estimate of
[u(l) - Viadellr2(q) uses the fact that [V¢.| < Ce™! while supp ¢. has a measure
bounded by Ce? and u € L>(1).

Subsequently, in [12] this density result is used to show that functions with vanishing
trace on I'_ can be approximated by smooth functions that vanish on I'_, see also
Proposition 2.3.5.

To use the same approach for Hflp(Q), one needs to show that |ju — ugbaHng(Q) -0
as € — 0, which has not been addressed in [34,49]. The convergence of ||[u — u¢.||x can
indeed be shown analogously to the proof of Lemma 2.3.4, since the additional term
IV (u—uge)|| 12(q) can be treated exactly as the L*-derivative term in [12], see also [3].

However, it is unclear to us how to show convergence (or even boundedness indepen-
dently of €) for ||(}) - Viz(u—u¢.)|ar. Instead of L2-norms, here it is required to have
an estimate of the form

<¢e<11)) : vt,mu7¢>X’,X = <(11;) ' Vt,zua¢6¢>X’,X S C(U)WHX Vw eX.

Unfortunately, we do not know how to obtain such an estimate. Note, that ||¢-9)||x can-
not be bounded analogously to the proof of Lemma 2.3.4, since generally 1) ¢ L*().
We therefore do not see how to obtain a bound of ||¢.%||x independently of ¢ as claimed
in [3]. Therefore, it is unclear to us if and how the approach for Hy(€2) can be trans-
ferred to Hflp(Q) to show Assumption 4.3.4, [3, Lemma 4.5], and Step 1 in the proof of
Claim A.1 by [34].

In Step 2 to prove Claim A.1l, the authors of [10,34] decompose a function ¢ €
C3 (2 \ Tp) into a sum ¢ = vy + ¢, where 13 € C®(Q) vanish on I'y. Using
integration by parts separately for ¢4, one can show that

[+ ll2_ 1y n) < CllHllag ) and V-l jqoray < ClY-lmg @)

The authors conclude from this that [|9|| 20, ur_ j(1,0)7 ) < CHz/JHHfl (- However, as
) ) o)

already noted in [3, Appendix], it is not clear if this conclusion holds for a constant C'
independently of 1, since the decomposition actually leads to

19l 22 o )7 a) < U+ @) + 9=l 0)- (A1)

It is unclear to us whether ¢ and ©_ can be chosen in such a way that their single
norms can be bounded from above by ||| HL (q); see also the discussion in [3].
P

We emphasize again that Claim A.1 does not hold for Hy:(£2), as demonstrated in
FExample 2.3.9. Since Hflp(Q) functions have additional regularity in the velocity variable,
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one cannot conclude from the Hy(€2) case that Claim A.1 must be false. However, we
conjecture that a proof of Claim A.1 has to rely on this additional regularity to exploit
the difference between the spaces.

An indicator that the additional regularity may indeed make a difference can be seen
when returning to Example 2.3.9 and evaluating the proposed function in the Hflp(Q)—
norm instead of the Hy(€2)-norm:

Example A.2. Consider Example 2.3.9 (which stems from [102, pp. 562-563]) in two
space dimensions. Let Q, = B1(0) € R? and Q, = S'. For ¢ > 0, we define wy
Q, x Q, - R as?

wq(z1,22,¢) = (1 — |z2cos ¢ — z1sinp|) Y,

which is in polar coordinates (z1,x2) = (r cos(y¢), 7 sin(y)):

wy(r, ¢, ¢) = (1 = rfsin(p — @)) "

For the L?-norm, we obtain by using the 27-periodicity of the sin function
9 1 pr27 p2m 9
[wllz2(q) = (1 —r[sin(p — ¢))"Irdedpdr
o Jo Jo
1 27 pr27—¢
:/ / / (1 — 7/ sin()])~20r dg dpdr
0o Jo J-g¢

1 p2m
= 277/ / (1 —r|sin(@)|) 2% dpdr
0o Jo

Y
—ar [ [V 1y dady
—1J—y/1—42
1
:871'/ 1—y2(1—y) 2d
oV y*(1—y) "dy
1
:877/ VI+y(1—y)z 2 dy.
0
With 1 < /T+y <2, we see that w, € L%(Q2) if and only of

1
A(l—y)%_zqdy<oo — q¢<3.

For [|wql 2(q,,vy = (lwg H%Q(Q) +|0pwy H%z(m)%, we additionally need the velocity deriva-
tive. We have

0p(1 —rsin(¢ — ¢)) 7 = —¢(1 — r|sin(¢ — ¢)|) 777" (~rsgn(sin(é — ¢)) cos(é — @),

and thus
2 o 2.2 2 2q—2
sl = [ [ [ o6 = @)1 —rlsino - p)) P dpdiods

1 r2m
—arg? [ [ eost(@)(1 = rsin(p)) 2 g dr
0 Jo

2Note, that wyq is the respective 2D version of the function w, from Example 2.3.9. Here, we give an
explicit definition of the velocity dependence that was described as the appropriate rotation of a
function for fixed v = vp in Example 2.3.9.
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1 V192
—org [ [V L ata- R dedy
—1J—y/1—42

1 3
= 47rq2/0 2(1—yH2(1—y) 2 2dy

8rq® (1 3 oy o3
-3 0(1+y)2(1—y) 20-2+3 dy.

Hence, it holds dyw, € L*(f) if and only if

1
/0(1—y)‘2‘1‘%dy<oo — qg<i

The function is chosen such that v - V,w, = 0. Hence, with these computations we
see that

lwgll3r, ) = llwgllFzq) + v Vaowgliay <00 <= q<3,

2 2 2
Hw(ZHHflp(Q) = [lwgllz2(,v) + v Vaowglli2qyny <00 = ¢< I
From [102], we also see
2 2
lwall 7250, jvn)) = /(mw lv-n|d(z,v) < 0o <> ¢ < 3,
quH%Q(aQ) = /89 wg d(z,v) <0 <= ¢ < %.

Therefore, choosing ¢ such that w, € Hflp(Q) implies w, € L?(d%, |v - n|) and even
wy € L?(09).

We see that this particular counterexample for the Hy(£2)-version of Claim A.1 is not
a counterexample for Claim A.1. This shows that the additional velocity regularity of
Hflp(Q) may indeed be helpful (and crucial) to show global trace results for Hflp(Q). We
note, however, that here the “problematic” term |[v - Vywgl|12(q,,v) vanished.

To summarize the discussion, we believe the arguments in [3,10,34] to be incomplete.
Moreover, we do not know how to use ideas from the existing approaches for HJ ()
to show Assumption 4.3.4, since we are unsure how to compensate for the missing L?
regularity of the transport term even with a higher regularity in the velocity direction.
Therefore, we leave Assumption 4.3.4 as an open problem.
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