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Abstract

In the first part of this thesis, we study dp-minimal infinite profinite groups that are
equipped with a uniformly definable fundamental system of open subgroups. We show
that these groups have an open subgroup A such that either A is a direct product of
countably many copies of Fp for some prime p, or A is of the form A ∼=

∏
p Z

αp
p × Ap

where αp < ω and Ap is a finite abelian p-group for each prime p. Moreover, we
show that if A is of this form, then there is a fundamental system of open subgroups
such that the expansion of A by this family of subgroups is dp-minimal. Our main
ingredient is a quantifier elimination result for a class of valued abelian groups. We
also apply it to (Z,+) and we show that if we expand (Z,+) by any chain of subgroups
(Bi)i<ω, we obtain a dp-minimal structure. This structure is distal if and only if the
size of the quotients Bi/Bi+1 is bounded.
The second part of this thesis is about sharply 2-transitive groups of finite Morley

rank. We show that sharply 2-transitive groups of Morley rank 6 are standard, i.e. of
the form AGL1(K) for an algebraically closed field K. Our main tool is the following:
If the point-stabilizers of such a group contain involutions, then there is a point line
geometry on the set of involutions. This geometry was already studied by Borovik and
Nesin in [5]. We introduce the notion of a generic projective plane, a generalization of
projective planes. Generic projective planes cannot exist in the point-line geometry on
the set of involutions. We then show that a non-standard sharply 2-transitive group
of Morley rank 6 would allow us to construct such a generic projective plane. This
construction uses geometric arguments which are similar to those used by Frécon in
[12] in the setting of bad groups.
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Part I.

Dp-minimal profinite groups
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1. Introduction and overview

A profinite group G together with a fundamental system {Ki : i ∈ I} of open sub-
groups can be viewed as a two-sorted structure (G, I) in the two-sorted language Lprof.
In these structures the fundamental system of open subgroups is definable. Since a
fundamental system of open subgroups is a neighborhood basis at the identity, this
implies that the topology on G is definable.

These structures have been studied by Macpherson and Tent in [31]. They mainly
considered full profinite groups, i.e. profinite groups G where the family {Ki : i ∈ I}
consists of all open subgroups. Their main result states that a full profinite group
(G, I) is NIP if and only if it is NTP2 if and only if it is virtually a finite direct
product of analytic pro-p groups.

Since analytic pro-p groups can be described as products of copies of Zp with a
twisted multiplication, profinite NIP groups are composed of “one-dimensional” profi-
nite NIP groups. In the setting of full profinite groups the combinatorial structure of
the lattice of open subgroups is visible in the model theoretic structure. This plays an
important role in the classification.

Without the fullness assumption, only a portion of this lattice is visible. In general
the family {Ki : i ∈ I} could simply consist of a chain of open subgroups. In this more
general setting, we will restrict ourselves to the “one-dimensional”, i.e. dp-minimal
case. A profinite group (G, I) is dp-minimal if it has NIP and is dp-minimal in the
group sort. We prove the following classification result:

Theorem. Let (G, I) be a dp-minimal profinite group. Then G has an open abelian
subgroup A such that either A is a direct product of countably many copies of Fp for
some prime p, or A is isomorphic to

∏
p Z

αp
p × Ap where αp < ω and Ap is a finite

abelian p-group for each prime p. Moreover, every abelian profinite group A of the
above form admits a fundamental system of open subgroups such that the corresponding
Lprof-structure is dp-minimal.

The main ingredient of this theorem is a quantifier elimination result which is also
applicable in other settings. We apply it to this situation: Consider the structure
(Z,+). If we expand it by the full lattice of subgroups, then the expanded structure
interprets Peano Arithmetic and hence is not tame in any sense. However, if we
only name a chain in this lattice, we obtain a tame structure. A chain of subgroups
Z = B0 > B1 > . . . is the same as a valuation v : Z→ ω ∪ {∞} defined by

v(a) = max{i : a ∈ Bi}.

3



1. Introduction and overview

Theorem. Let (Bi)i<ω be a strictly descending chain of subgroups of Z, B0 = Z, and
let v : Z→ ω ∪ {∞} be the valuation defined by

v(x) = max{i : x ∈ Bi}.

Then (Z, 0, 1,+, v) is dp-minimal. Moreover, (Z, 0, 1,+, v) is distal if and only if the
size of the quotients Bi/Bi+1 is bounded.

This stays true if we expand the value sort by unary predicates and monotone binary
relations. There has been recent interest in dp-minimal expansions of (Z,+) (e.g. [2],
[34], [1], and [36]). Alouf and d’Elbée showed in [2] that if p is a prime and vp denotes
the p-adic valuation, then (Z, 0, 1,+, vp) is a minimal expansion of (Z, 0, 1,+) in the
sense that there are no proper intermediate expansions. We show that this does not
hold true for all valuations and we conjecture that the p-adic valuations are essentially
the only examples with this property among valuations v such that (Z, 0, 1,+, v) is
distal.
The proof of the classification theorem for dp-minimal profinite groups consists of

three parts: We analyze the algebraic structure of dp-minimal profinite groups in
Chapter 3. This will imply the first part of the theorem. It then remains to show that
these groups appear as dp-minimal profinite groups. This is done in Chapter 4. The
case where the group is given by an Fp-vector space has already been done by Maalouf
in [17]. We explain this result in Section 4.1. The remaining case is handled by a
quantifier elimination result (see Section 4.2). This quantifier elimination result allows
us to show that a certain class of profinite groups as Lprof-structures is dp-minimal
(Theorem 4.4.2) and we are able to characterize distality in this class (Theorem 4.4.5).
We will also apply the quantifier elimination result to valuations on (Z,+). This will

be done in Chapter 5 where we discuss the second theorem and its consequences for the
study of dp-minimal expansions of (Z,+, 0, 1). We also show that the p-adic valuations
have a limit theory (Proposition 5.1.9) and we consider expansions of (Z,+, 0, 1) given
by multiple valuations.
Chapter 6 contains a few results which are related to dp-minimal profinite groups.

We show that our main result implies some structural consequences for uniformly
definable families of finite index subgroups in dp-minimal groups (Proposition 6.1.4).
Jarden and Lubotzky [14] showed that two elementarily equivalent profinite groups
are isomorphic if one of them is finitely generated. This was generalized to strongly
complete profinite groups by Helbig [13]. We will give an alternative proof for these
results in Section 6.2. Finally, we prove a result about uniformly definable families
of normal subgroups in NTP2 groups (Proposition 6.3.2)1: If such a family is closed
under finite intersections, then it must be defined by an NIP formula.

1Thanks to Pierre Simon for bringing this question to my attention.
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2. Preliminaries

We assume that the reader is familiar with both profinite groups and model theory.
We will give a quick overview about the notions and tools that are used to prove the
main result.

2.1. Profinite groups
A topological group is profinite if it is the inverse limit of an inverse system of (discrete)
finite groups. This condition is equivalent to the group being Hausdorff, compact, and
totally disconnected. If G is a profinite group, then

G ∼= lim←−G/N

where N ranges over all open normal subgroups.
The open subgroups generate the topology on G, i.e. every open set is a union

of cosets of open subgroups. A fundamental system of open subgroups is a family F
consisting of open subgroups which generate the topology on G. Equivalently, every
open subgroup of G contains a subgroup in F . If P is a property of groups, we will
say that G is virtually P if G has an open subgroup H which satisfies P.

We will use a number of results about the structure of abelian profinite groups.
Recall that a profinite group is pro-p if it is the inverse limit of finite p-groups. A free
abelian pro-p group is a direct product of copies of Zp.

Proposition 2.1.1 (Theorem 4.3.4 of [22]). Let p be a prime.

(a) If G is a torsion free pro-p abelian group, then G is a free abelian pro-p group.

(b) Let G be a finitely generated pro-p abelian group. Then the torsion subgroup
tor(G) is finite and

G ∼= F ⊕ tor(G)
where F is a free pro-p abelian group of finite rank.

Proposition 2.1.2 (Corollary 4.3.9 of [22]). Let G be a torsion profinite abelian group.
Then there is a finite set of primes π and a natural number e such that

G ∼=
∏
p∈π

(
e∏
i=1

(
∏
m(i,p)

Cpi))

where each m(i, p) is a cardinal and each Cpi is the cyclic group of order pi. In
particular, G is of finite exponent.

5



2. Preliminaries

Proposition 2.1.3 (Proposition 1.13 and Proposition 1.14 of [10]). Let G be a pro-p
group. Then G is (topologically) finitely generated if and only if the Frattini subgroup
Φ(G) = Gp[G,G] is open in G.

Proposition 2.1.4. Let A be an abelian profinite group. Then nA ≤ A is an open
subgroup for all n ≥ 1 if and only if

A ∼=
∏
p

Zαpp ×Ap

where αp < ω and Ap is a finite abelian p-group for each prime p.

Proof. An abelian profinite group is the direct product of its p-Sylow subgroups. Let P
be a p-Sylow subgroup of A. If pP ≤ P has finite index, then P is finitely generated by
Proposition 2.1.3. Then by Proposition 2.1.1 the p-Sylow subgroup P has the desired
form.

We will also need the following result by Zelmanov:

Theorem 2.1.5 (Theorem 2 of [38]). Every infinite compact group has an infinite
abelian subgroup.

We will view profinite groups as two-sorted structures in the following language
which was introduced in [31]:

Definition 2.1.6. Lprof is a two-sorted language containing the group sort G and the
index sort I. The language Lprof then consists of:

• the usual language of groups on G,

• a binary relation ≤ on I, and

• a binary relation K ⊆ G × I.

Remark 2.1.7. A profinite group G together with a fundamental system of open sub-
groups {Ki : i ∈ I} can be viewed as an Lprof structure (G, I) as follows:

• we set i ≤ j if and only if Ki ⊇ Kj , and

• the relation K is defined by K(G, i) = Ki for all i ∈ I.

2.2. Model theoretic notions of complexity

We will mostly work in the context of an NIP theory. We use [28] as our main reference
for this section.
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2.2. Model theoretic notions of complexity

2.2.1. The independence property
An important class of model theoretic theories is the class of NIP (or dependent)
theories, i.e. the class of theories which cannot code the ∈-relation on an infinite set.
This notion was introduced by Shelah.

Definition 2.2.1. A formula ϕ(x, y) has the independence property (IP) if there are
sequences (ai)i<ω and (bJ)J⊆ω such that

|= ϕ(ai, bJ) ⇐⇒ i ∈ J.

We say that ϕ(x, y) has NIP if it does not have IP. This notion is symmetric in the
sense that a formula ϕ(x, y) has NIP if and only if the formula ψ(y, x) ≡ ϕ(x, y) has
NIP (see Lemma 2.5 of [28]).
We will make use of the following characterization of IP:

Lemma 2.2.2 (Lemma 2.7 of [28]). A formula ϕ(x, y) has IP if and only if there
exists an indiscernible sequence (ai)i<ω and a tuple b such that

|= ϕ(ai, b) ⇐⇒ i is odd.

We call a theory NIP if all formulas have NIP.

Definition 2.2.3. A subset X ⊆ M |= T is externally definable if there is a formula
ϕ(x, y), an elementary expansion M∗ of M , and an element b ∈ M∗ such that X =
ϕ(M, b).

By a result of Shelah, naming all externally definable sets in an NIP structure
preserves NIP:

Theorem 2.2.4 (Proposition 3.23 and Corollary 3.24 of [28]). Let M be a model of
an NIP theory and let MSh be the Shelah expansion, i.e. the expansion of M by all
externally definable sets. Then MSh has quantifier elimination and is NIP.

Theorem 2.2.5 (Baldwin-Saxl, Theorem 2.13 of [28]). Let G be an NIP group and
let {Hi : i ∈ I} be a family of uniformly definable subgroups of G. Then there is a
constant K such that for any finite subset J ⊆ I there is J0 ⊆ J of size |J0| ≤ K such
that ⋂

{Hi : i ∈ J} =
⋂
{Hi : i ∈ J0}.

As an easy consequence we obtain:

Corollary 2.2.6. If (G, I) is an NIP profinite group, then {Ki : i ∈ I} can only
contain finitely many subgroups of any given finite index.

By a result of Shelah, abelian subgroups of NIP groups have definable envelopes
given by centralizers of definable sets:

Theorem 2.2.7 (Proposition 2.27 of [28]). Let G be an NIP group and let X be a
set of commuting elements. Then there is a formula ϕ(x, y) and a parameter b (in
some elementary extension G∗) such that Cen(Cen(ϕ(G∗, b))) is an abelian (definable)
subgroup of G∗ and contains X.

7



2. Preliminaries

2.2.2. Dp-minimality

NIP theories admit a notion of dimension given by dp-rank:

Definition 2.2.8 (Definition 4.2 of [28]). Let p be a partial type over a set A, and let
κ be a cardinal. We define

dp-rk(p,A) < κ

if and only if for every family (It)t<κ of mutually indiscernible sequences over A and
b |= p, one of these sequences is indiscernible over Ab.

A theory is called dp-minimal if dp-rk(x = x, ∅) = 1 where x is a singleton. We call
a multi-sorted theory with distinguished home-sort dp-minimal if it is NIP and it is
dp-minimal in the home-sort, i.e. dp-rk(x = x, ∅) = 1 where x is a singleton in the
home-sort.

Remark 2.2.9. As a consequence of the quantifier elimination in Theorem 2.2.4 the
Shelah expansion of a dp-minimal structure is dp-minimal.

We will use the fact that definable subgroups in a dp-minimal group are always
comparable in the following sense:

Lemma 2.2.10 (Claim in Lemma 4.31 of [28]). Suppose G is dp-minimal and H1 and
H2 are definable subgroups. Then |H1 : H1 ∩H2| or |H2 : H1 ∩H2| is finite.

2.2.3. Distality

Distality is a notion introduced by Simon to describe the unstable part of an NIP
theory. The general definition of distality is slightly more complicated than the defi-
nitions of NIP and dp-minimality (see Definition 2.1 in [27] or Chapter 9 in [28]). In
case of a dp-minimal theory distality can be described as follows:

Proposition 2.2.11. A dp-minimal theory T is distal if and only if there is no infinite
non-constant totally indiscernible set of singletons.

Proof. This characterization follows from Example 2.4 and Lemma 2.10 in [27].

By Exercise 9.12 of [28] distality is preserved under going to T eq:

Proposition 2.2.12. If T is distal, then so is T eq.

2.3. Quantifier elimination

Recall that a theory T has quantifier elimination if every formula is equivalent to
a quantifier free formula modulo T . The proof of Theorem 3.2.5 in [32] gives the
following useful criterion for quantifier elimination:

8



2.3. Quantifier elimination

Proposition 2.3.1. Let T be a theory and let ϕ(x) be a formula. Then ϕ(x) is
equivalent to a quantifier free formula modulo T if and only if for all M1,M2 |= T
with common substructure A and all a ∈ A we have

M1 |= ϕ(a) =⇒ M2 |= ϕ(a).

If T is a two-sorted theory and the only symbols that connect the two sorts are
functions from one sort to the other, then it suffices to check quantifier elimination for
very specific formulas:

Lemma 2.3.2. Let T be a theory in a two-sorted language L = L0 ∪L1 ∪{fj : j ∈ J}
with sorts S0 and S1 where L0 is purely in the sort S0, L1 is purely in the sort S1, and
each fj is a function from sort S0 to sort S1. Suppose

(a) every L1-formula is equivalent to a quantifier free formula modulo T and

(b) every formula of the form

∃x ∈ S0
∧
r∈R

ϕr(x, ȳr, z̄r)

is equivalent to a quantifier free formula modulo T where x is a singleton,
ȳr ⊆ S0, z̄r ⊆ S1, and each ϕr is either a basic L0-formula or is of the form
fj(t(x, ȳr)) = z where t is an L0 term and z is one of the variables in the tuple
z̄r.

Then T eliminates quantifiers.

Proof. To show quantifier elimination it suffices to consider simple existential formulas.
Consider a formula of the form

∃γ ∈ S1
∧
r∈R

ϕr(γ, ȳr, z̄r)

where γ is a singleton, ȳr ⊆ S0, z̄r ⊆ S1, and each ϕr is a basic formula. We may
assume that γ appears non-trivially in each formula ϕr. Then each ϕr is a basic
L1-formula where the variables ȳr only appear as terms of the form

f(t(ȳr))

where f is a function symbol and t is an L0-term. Now the S1-quantifier can be
eliminated by (a).
Now consider a formula of the form

∃x ∈ S0
∧
r∈R

ϕr(x, ȳr, z̄r)

where x is a singleton, ȳr ⊆ S0, z̄r ⊆ S1, and each ϕr is a basic formula.

9



2. Preliminaries

Let R̃ ⊆ R be the set of all r ∈ R such that ϕr is a basic L1-formula. If r ∈ R̃, then
we may write ϕr as

ϕr ≡ ψr(f̄r(t̄r(x, ȳr)), z̄r)

where ψr is a basic L1-formula such that all variables of ψr are in S1. Then ϕr is
equivalent to

∃ξ̄ ∈ S1 : (ξ̄ = f̄r(t̄r(x, ȳr)) ∧ ψr(ξ̄, z̄r)).

Now we may rewrite
∃x ∈ S0

∧
r∈R

ϕr(x, ȳr, z̄r)

as a formula of the form

∃(ξ̄r)r∈R̃ ∈ S1 : ((
∧
r∈R̃

ψr(ξ̄, z̄r)) ∧ (∃x ∈ S0
∧
r∈R̃

ξ̄r = f̄r(t̄r(x, ȳr)) ∧
∧

r∈R\R̃

ϕr(x, ȳr))).

We can now eliminate the S0-quantifier by (b) and then eliminate the S1-quantifiers
as in the first step.

10



3. Algebraic properties of dp-minimal
profinite groups

We view a profinite group G together with a fundamental system of open subgroups
{Ki : i ∈ I} as an Lprof-structure (G, I) (as in Remark 2.1.7). The aim of this chapter
is to prove the first part of the main theorem: If (G, I) is a dp-minimal profinite group,
then G has an open abelian subgroup A such that either A is a vector space over Fp
for some prime p, or A ∼=

∏
p Z

αp
p ×Ap where αp < ω and Ap is a finite abelian p-group

for each prime p.
Simon showed in [26] that all dp-minimal groups are abelian-by-finite-exponent. An

example of a dp-minimal group that is not abelian-by-finite was given by Simonetta
in [29].

We will show that all dp-minimal profinite groups have an open abelian subgroup.
We will then analyze the structure of this abelian profinite group. For dp-minimal
profinite groups the fundamental system of open subgroups can always be replaced by
a chain of open subgroups:

Lemma 3.0.1. Let (G, I) be a dp-minimal profinite group. Then the subgroups

Hi :=
⋂
{Kj : |G : Kj | ≤ |G : Ki|}

are uniformly definable open subgroups and hence the topology on G is generated by a
definable chain of open subgroups.

Proof. The Hi are open subgroups by Corollary 2.2.6. By Lemma 2.2.10 and com-
pactness we can find a constant K such that for all i, j |Ki : Ki ∩ Kj | < K or
|Kj : Ki ∩Kj | < K. Given i, j ∈ I we have

|G : Ki| ≤ |G : Kj | ⇐⇒ |Ki : Ki ∩Kj | ≥ |Kj : Ki ∩Kj |.

Moreover, we have |Ki : Ki ∩ Kj | < K or |Kj : Ki ∩ Kj | < K. Therefore this is a
definable condition and hence the subgroups Hi are uniformly definable.

In a dp-minimal profinite group we cannot find infinite definable subgroups of infinite
index:

Lemma 3.0.2. Let (G, I) be a dp-minimal profinite group. Let (G∗, I∗) be an ele-
mentary extension and let H < G∗ be a definable subgroup. If G ∩H is infinite, then
|G∗ : H| is finite.

11



3. Algebraic properties of dp-minimal profinite groups

Proof. If |K∗i : K∗i ∩H| is finite for some i ∈ I, then clearly |G∗ : H| <∞.
Now assume |K∗i : K∗i ∩H| is infinite for all i ∈ I. We aim to show that |H : K∗i ∩H|

must be unbounded: Since G ∩ H is infinite and ⋂
i∈I Ki = 1, |G ∩ H : Ki ∩ H|

must be unbounded. Therefore |H : K∗i ∩ H| must be unbounded. This contradicts
Lemma 2.2.10.

As a consequence of Zelmanov’s theorem (Theorem 2.1.5) and the existence of de-
finable envelopes for abelian subgroups (Theorem 2.2.7) we get that a dp-minimal
profinite group must be virtually abelian:

Proposition 3.0.3. Let (G, I) be a dp-minimal profinite group. Then G is virtually
abelian.

Proof. By Theorem 2.1.5 G has an infinite abelian subgroup A. By Theorem 2.2.7,
we can find an elementary extension (G∗, I∗), a formula ϕ(x, y), and a parameter
b ∈ (G∗, I∗) such that Cen(Cen(ϕ(G∗, b))) is an abelian subgroup ofG∗ and contains A.
Therefore Cen(Cen(ϕ(G∗, b))) has finite index in G∗ by Lemma 3.0.2. By elementarity
there is some b′ ∈ (G, I) such that Cen(Cen(ϕ(G, b′))) is an abelian group and has
finite index in G. Moreover, Cen(Cen(ϕ(G, b′))) is closed since it is a centralizer.
Closed subgroups of finite index are open and therefore Cen(Cen(ϕ(G, b′))) is an open
abelian subgroup of G.

We are now able to prove the first part of the main theorem:

Theorem 3.0.4. Let (A, I) be an abelian dp-minimal profinite group. Then either
A is virtually a direct product of countably many copies of Fp for some prime p, or
A ∼=

∏
p Z

αp
p ×Ap where αp < ω and Ap is a finite abelian p-group for each prime p.

Proof. Consider the closed subgroup A[n] := {x ∈ A : nx = 0}. Suppose there is a
minimal n such that A[n] is infinite. Then A[n] has finite index in A (by Lemma 3.0.2)
and hence is an open subgroup of A. Therefore we may assume A = A[n]. Now the
minimality of n and Proposition 2.1.2 imply that n must be prime and therefore A is a
direct product of copies of Fp (again by Proposition 2.1.2). Since A admits a countable
fundamental system of open subgroups, this direct product must be a direct product
of countably many copies of Fp.

Now assume A[n] is finite for all n. Then the closed subgroup nA must be open in
A for all n (by Lemma 3.0.2). Now Proposition 2.1.4 implies the theorem.
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4. Valued abelian profinite groups

If A is an abelian group and (Ai)i<ω is a strictly descending chain of subgroups such
that A0 = A and ⋂

i<ω Ai = {0}, then we can define a valuation map v : A→ ω∪{∞}
by setting

v(x) = max{i : x ∈ Ai}.

We have v(x) =∞ if and only if x = 0, and this valuation satisfies the inequality

v(x− y) ≥ min{v(x), v(y)}

where we have equality in case v(x) 6= v(y).
The valued group (A, v) can be seen as a two-sorted structure consisting of the group

A, the linear order (ω ∪ {∞},≤), and the valuation v : A→ ω ∪ {∞}.
Our goal is to classify dp-minimal profinite groups up to finite index. We know by

Lemma 3.0.1 that the fundamental system of open subgroups can be assumed to be a
chain. Moreover, by Theorem 3.0.4 we only need to consider groups of the form∏

i<ω

Fp or
∏
p

Zαpp ×Ap

where αp < ω and Ap is a finite abelian p-group for each prime p.
If A is such a group and {Bi : i < ω} is a fundamental system of open subgroups

which is given by a strictly descending chain, then the above construction yields a
definable valuation v : A → ω ∪ {∞}. Conversely, given such a valuation v, we can
recover the fundamental system of open subgroups by setting

Bi = {a ∈ A : v(a) ≥ i}.

Hence the valuation and the fundamental system are interdefinable.
We will show that if A is of the above form, then A admits a fundamental sys-

tem given by a chain of open subgroups such that the expansion of A by the corre-
sponding valuation (and hence the corresponding Lprof-structure) is dp-minimal. If
A = ∏

i<ω Fp, this follows from results by Maalouf in [17] and will be explained in
Section 4.1.

Definition 4.0.1. (a) The subgroups Bi = {a ∈ A : v(a) ≥ i} are called the v-balls
of radius i. We will also denote them by Bv

i to emphasize that they correspond
to the valuation v.

(b) A valuation v : A → ω ∪ {∞} is good if for all i < ω the subgroup Bi is of the
form Bi = nA for some positive integer n.

13



4. Valued abelian profinite groups

In case A ∼=
∏
p Z

αp
p × Ap, we will prove a quantifier elimination result for good

valuations. Note that by Proposition 2.1.4 each such group can be equipped with a
good valuation such that {Bi : i < ω} is a fundamental system of open subgroups. We
will show the following theorem:

Theorem 4.0.2. Let A ∼=
∏
p Z

αp
p ×Ap as above and let v be a good valuation. Then

the structure (A,+, v) is dp-minimal. Moreover, it is distal if and only if the size of
the quotients Bi/Bi+1 is bounded.

This theorem will be proven in this chapter. If π is a set of primes, a natural number
n ≥ 1 is called a π-number if the prime decomposition of n only contains primes in π.
An immediate consequence of the above theorem is the following:

Corollary 4.0.3. Let (πi)i<ω be a sequence of finite non-empty disjoint sets of primes.
For each i < ω fix a finite non-trivial abelian group Ai such that |Ai| is a πi-number.
Set

A =
∏
i<ω

Ai

and let v be the valuation defined by

v((ai)i<ω) = min{i : ai 6= 0}.

Then (A,+, v) is dp-minimal but not distal.

Proof. We have Bv
k = (∏i<k |Ai|)A. Hence v is a good valuation and the theorem

applies.

4.1. Valued vector spaces
Valued vector spaces have been studies by S. Kuhlmann and F.-V. Kuhlmann in [16]
and by Maalouf in [17]. Set A = ∏

i<ω Fp and let v : A → ω ∪ {∞} be the valuation
given by

v((xi)i<ω) = min{i : xi 6= 0}.

It follows from results by Maalouf in [17] that this valued abelian profinite group is
dp-minimal:

Proposition 4.1.1. The valued abelian profinite group (A, v) is dp-minimal.

Proof. Set B = ⊕
i<ω Fp and let w : B → ω ∪ {∞} be the valuation given by

w((xi)i<ω) = min{i : xi 6= 0}.

By Proposition 4 of [17] the valued vector space (B,w) is C-minimal and hence dp-
minimal (by Theorem A.7 of [28]).
Théorème 1 of [17] implies that (A, v) and (B,w) are elementarily equivalent. Hence

(A, v) is dp-minimal.

14



4.2. A quantifier elimination result

Remark 4.1.2. The last step of the previous proof also follows from results in Sec-
tion 6.1. Let (B,w) be as in the proof of Proposition 4.1.1 and set

Bi = {x ∈ B : w(x) ≥ i}.

Then A ∼= lim←−i<ω B/Bi and hence (A, v) is dp-minimal by Lemma 6.1.2.

4.2. A quantifier elimination result
We denote the set of primes by P. For each prime p ∈ P we fix an integer αp ≥ 0 and
a finite p-group Ap. Let

Z ≺
∏
p∈P

Zαpp ×Ap

be an abelian group that is (as a pure group) an elementary substructure. We will
always assume Z to be infinite. We fix a set of constants {cj : j < ω} ⊆ Z containing
0 such that the set is dense with respect to the profinite topology on Z and contains
every torsion element. It follows from Proposition 2.1.4 that the set of constants is
also dense with respect to the profinite topology on ∏

p∈P Z
αp
p ×Ap.

Definition 4.2.1. If π is a set of primes, we set

Zπ = Z ∩ (
∏
p∈P

Zαpp ×
∏

p∈P\π
Ap) and Aπ = Z ∩

∏
p∈π

Ap.

Note that we have Z = Zπ × Aπ for any set π ⊆ P. The group Aπ is the π-torsion
part of Z and the group Zπ has no π-torsion.

Let v be a good valuation and set I := ω ∪ {+∞,−∞}. For each l ≥ 1 we define a
function vl : Z → I by

vl(a) =


+∞ iff a = 0
i iff a ∈ lBi \ lBi+1

−∞ iff a 6∈ lZ.

Note that if a ∈ lZ, then vl(a) = v(a/l). Now Z together with the valuation v may
be viewed as a two-sorted structure with group sort Z and value sort I in the language
L− = LZ ∪ Lv ∪ L−I where

• LZ = {+,−, cj : j < ω} is the obvious language on Z,

• Lv = {vl : l ≥ 1} consists of symbols for the functions vl, and

• L−I = {≤, 0,+∞,−∞} is the obvious language on I.

Since we consider the group Z and the constants cj to be fixed, this structure only
depends on the valuation and we denote it by (Z, v).

15



4. Valued abelian profinite groups

We define the following binary relations on I:

• Indπ,lk (i, j) ⇐⇒ i ≤ j and |Zπ ∩ lBi : Zπ ∩ lBj | ≥ k,

• Divπ,l
qk

(i, j) ⇐⇒ i ≤ j and qkαq divides |Zπ ∩ lBi : Zπ ∩ lBj |,

where π is a finite set of primes, q ∈ π is a prime, and k ≥ 0. We set Indπ,lk (i,+∞)
and Divπ,l

qk
(i,+∞) to be always true.

Observation 4.2.2. (a) If q ∈ π then qkαq divides |Zπ ∩ lBi : Zπ ∩ lBj | if and only
if (Zπ ∩ lBi)/(Zπ ∩ lBj) has an element of order qk. In particular, the predicate
Divπ,l

qk
is definable.

(b) In the standard model Divπ,l
qk

(i, j) is equivalent to the statement that qk divides
|Zq ∩ lBi : Zq ∩ lBj |. In that sense the expression |Zq ∩ lBi : Zq ∩ lBj | makes
sense even in non-standard models.

(c) We have x ∈ nZ if and only if vn(x) ≥ 0. Hence the subgroups nZ are quantifier
free 0-definable. Since the subgroups nZ generate the profinite topology on Z,
this implies that the open subgroups Zπ are quantifier free 0-definable for finite
subsets π ⊆ P. Moreover, in that case Aπ is also quantifier free 0-definable since
it is a finite set of constants.

Let V be the set of good valuations on Z. We set TZ := ⋂
v∈V Th((Z, v)) to be the

common L−-Theory of structures (Z, v), v ∈ V . The following quantifier elimination
result will be shown in the next sections:

Theorem 4.2.3. Let LI ⊇ L−I be an expansion on the sort I and let T ⊇ TZ be an
expansion of TZ to the language L = LZ ∪ Lv ∪ LI . Suppose that:

1. The relations Divπ,l
qk

and Indπ,lk are quantifier free 0-definable modulo T .

2. The successor function on I is contained in LI .

3. Every LI-formula is equivalent to a quantifier free L-formula modulo T .

Then T eliminates quantifiers.

To prove the quantifier elimination result we will need to understand formulas that
describe systems of linear congruences. Therefore we will need to understand linear
congruences in models of the theory T .

4.2.1. Linear congruences in Z

We will need generalizations of the following well-known fact:

16



4.2. A quantifier elimination result

Fact 4.2.4. A linear congruence nx ≡ a mod m in Z has a solution if and only if
d = gcd(n,m) divides a. In that case it has exactly d many solutions modulo m. If s
is a solution, then a complete system of solutions modulo m is given by

s+ tm/d, t = 0, . . . d− 1.

Observation 4.2.5. Fact 4.2.4 has two important consequences:

(a) If nx ≡ a mod m has a solution and n = gcd(n,m), then n divides a and hence
a/n is a solution.

(b) If nx ≡ a mod m has a solution, then all solutions agree modulo m/d.

Part (a) will be important since in that case a solution will be determined by the
constant a. Part (b) tells us that solutions of linear congruences can “collapse”. We
will need to understand this collapsing of solutions.

We now fix a group A of the form A = ∏
p∈P Z

αp
p , αp < ω. If n is a positive integer,

let n(p) be the unique integer such that n = ∏
pn(p). Note that Fact 4.2.4 can be

applied to Zp because Zp/kZp = Z/pk(p)Z.
We consider linear congruences

nx ≡ a mod m

in A where n andm are positive integers and a ∈ A. Note that solving the above linear
congruence is equivalent to solving it in each copy of Zp in the product A = ∏

p∈P Z
αp
p :

Lemma 4.2.6. (a) Let nx ≡ a mod m be a linear congruence in A. Write

a = (ap,i)p∈P,i<αp ∈ A =
∏
p∈P

Zαpp .

The solutions for nx ≡ a mod m in A are exactly the tuples s = (sp,i)p∈P,i<αp
where each sp,i is a solution for nx ≡ ap,i mod m in Zp.

(b) Set d = gcd(n,m). Then the linear congruence nx ≡ a mod m has a solution if
and only if d divides a in A (i.e. a ∈ dA). In that case it has exactly

∏
p|d p

αpd(p)

many solutions modulo m in A.

We call a finite family of linear congruences (and negations of linear congruences) a
system of linear congruences. Recall Bézout’s identity:

Fact 4.2.7 (Bézout’s identity). If a1, . . . an are integers, then gcd(a1, . . . an) is a Z-
linear combination of a1, . . . an.

We will look at systems of linear congruences where the modulus is fixed:

Proposition 4.2.8. Let nrx ≡ ar mod m, r ∈ R, be a system S of linear congruences
in A (where R is a finite set). Set n = gcd(nr : r ∈ R) and d = gcd(n,m). By Bézout’s
identity we can find integers zr such that n = ∑

r∈R zrnr. Put a = ∑
r∈R zrar.

17



4. Valued abelian profinite groups

(a) If the system S has a common solution, the solutions of S are exactly the solu-
tions of nx ≡ a mod m.

(b) Set k = n/d and dr = nr/k. Then the system S has a solution if and only if the
system T :

drx ≡ ar mod m, r ∈ R,
has a solution. Moreover, the systems S and T have the same number of solutions
modulo m.

Proof. (a) It suffices to show this for each factor in the product A = ∏
p∈P Z

αp
p . Hence

we may assume A = Zp and m = pm(p). Clearly any common solution of the system
S solves nx ≡ a mod m.

Now suppose s is a solution of S (and hence a solution of nx ≡ a mod m). Then by
Fact 4.2.4 all solutions of nx ≡ a mod m are of the form s+tm/d where d = gcd(n,m).
Fix r ∈ R. Now d divides dr = gcd(nr,m), say dr = krd. Therefore

s+ tm/d = s+ tkrm/dr

solves nrx ≡ ar mod m for all t = 0, . . . d − 1 (by Fact 4.2.4). Hence every solution
of nx ≡ a mod m solves S.
(b) We have n = gcd(nr : r ∈ R) = ∑

r∈R zrnr. If we divide by k, we get that
d = gcd(dr : r ∈ R) = ∑

r∈R zrdr. We aim to show that S has a solution if and only if
T has a solution. If s is a solution for S, then ks solves T . Now assume that T has a
solution. Then by (a) the system T has the same solutions as the linear congruence

dx ≡ a mod m.

Since we assume that T has a solution, this implies that d = gcd(d,m) divides a (by
part (b) of Lemma 4.2.6). Then the linear congruence

nx ≡ a mod m

also has solutions by part (b) of Lemma 4.2.6 since d = gcd(n,m) divides a. If s
solves nx ≡ a mod m, then ks solves dx ≡ a mod m and hence is a solution for T .
This implies that s solves S. Hence S has a solution if and only if T has a solution.
Moreover, if S and T have solutions, then by (a) the solutions of S are exactly the
solutions of nx ≡ a mod m and the solutions of T are exactly the solutions of dx ≡ a
mod m. Hence they have the same number of solutions modulo m by part (b) of
Lemma 4.2.6.

We will now consider systems of linear congruences where we vary the modulus:

Lemma 4.2.9. Let nx ≡ a mod pm be a linear congruence in Zp. Set d = gcd(n, pm)
and suppose l > 0 divides pm such that d divides pm/l. Then

nx ≡ a mod pm and nx ≡ a mod dl

have exactly d solutions modulo pm respectively dl and all these solutions agree modulo
l.

18



4.2. A quantifier elimination result

Proof. The assumption implies that dl divides pm. Therefore

d = gcd(n, pm) = gcd(n, dl).

By Fact 4.2.4 the congruences have a solution if and only if d divides a. In that
case nx ≡ a mod pm has exactly d solutions modulo pm and the congruence nx ≡ a
mod dl has exactly d solutions modulo dl. Moreover, by part (b) of Observation 4.2.5
all these solutions agree modulo l.

Proposition 4.2.10. Let nx ≡ a mod m be a linear congruence in A. Set d =
gcd(n,m). Suppose l > 0 divides m and is such that for all p|d we have pd(p)|(m/l) or
p does not divide (m/l). Set

k =
∏

p|d,p|(m/l)
pd(p).

Then the linear congruences

nx ≡ a mod m and nx ≡ a mod kl

have the same number of solutions modulo m respectively kl. Moreover, if X is the
set of solutions modulo m of nx ≡ a mod m, Y is the set of solutions modulo kl of
nx ≡ a mod kl, and X/l and Y/l are the images of X and Y in A/lA, then X/l = Y/l
and each element in X/l (resp. Y/l) has exactly

∏
p|d,p|(m/l) p

αpd(p) many preimages in
X (resp. Y ).

Proof. By an application of Lemma 4.2.6 it suffices to show this in case A = Zp. Hence
we will assume A = Zp.
If p does not divide d, then d is a unit in Zp and hence each of the congruences has

a unique solution in Zp.
Hence we may assume p divides d. If p does not divide m/l, then m(p) = l(p) and

k(p) = 0. Then mZp = klZp = lZp and therefore the linear congruences

nx ≡ a mod m, nx ≡ a mod kl, and nx ≡ a mod l

have the same solutions (in Zp). Since solutions modulo m (resp. modulo kl) are the
same as solutions modulo l, each element of X/l (resp. Y/l) has a unique preimage in
X (resp. Y ).

Now assume p divides m/l. Then by assumption pd(p) divides m/l. In that case the
result follows by Lemma 4.2.9. Note that each element in X/l (resp. Y/l) has exactly
d preimages in X (resp. Y ).

4.2.2. Linear congruences in Z
Fix T ⊃ TZ as in Theorem 4.2.3 (for a group Z ≺ ∏

p∈P Z
αp
p ×Ap as in the beginning

of Section 4.2). We have vl(a) ≥ i if and only if a ∈ Bvl
i = lBi. Therefore we will

consider certain formulas as linear congruences:

vl(nx− a) ≥ i ⇐⇒ nx ≡ a mod lBi,

vl(nx− a) < i ⇐⇒ nx 6≡ a mod lBi.
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4. Valued abelian profinite groups

Here x will be a variable and a will be a constant. The integer n will be part of the
formula. In particular, it will always be a standard integer. Recall that for a subset
π ⊆ P a natural number n ≥ 1 is called a π-number if the prime decomposition of n
only contains primes in π.
We will often work in the π-torsion free group Zπ defined in Definition 4.2.1. If

we assume that π is finite, then by part (c) of Observation 4.2.2 the subgroup Zπ is
quantifier free 0-definable. If M |= T is any model, then we set Zπ(M) to be the
subgroup defined by the formula which defines Zπ in Z. The subgroup Aπ(M) is
defined analogously.
If we use the notation in part (b) of Observation 4.2.2, then

gcd(n, lBi) := gcd(n,
∏

{p:αp>0}
|Zp : Zp ∩ lBi|)

is well-defined even if lBi has infinite index because n is always a standard integer.
Therefore the results in Section 4.2.1 can be formulated using the divisibility predicates
and they will hold true for models of T .

Proposition 4.2.11. Let M be a model of T and let nx ≡ a mod lBi be a linear
congruence in Z(M). Let π be a finite set of primes such that n is a π-number and
a ∈ Zπ(M). Then the linear congruence has a solution in Zπ(M) if and only if
d = gcd(n, lBi) divides a (i.e. a ∈ dZπ(M)). In that case there are exactly

∏
pαpd(p)

many solutions modulo lBi in Zπ(M).

Proof. This is essentially part (b) of Lemma 4.2.6. Since this is a first-order statement,
it suffices to consider good valuations v on Z. Since the statement only affects the
quotients Z/lBi, we may assume that Z is of the form

Z =
∏
p∈P

Zαpp ×Ap.

Put A = ∏
p∈P Z

αp
p and H = ∏

p 6∈π Ap. Then

Zπ = A×H

and H has no π-torsion. Write a = a0h for a0 ∈ A and h ∈ H. Then we can apply
Lemma 4.2.6 to the linear congruence

nx ≡ a0 mod lBi

in A. Note that the linear congruence

nx ≡ h mod lBi

has a unique solution modulo lBi in H (namely h/n). This shows the proposition.
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4.2. A quantifier elimination result

Proposition 4.2.12. Let M be a model of T and let nrx ≡ ar mod lBi, r ∈ R,
be a system of linear congruences. Let π be a finite set of primes such that all nr
are π-numbers and all ar are contained in Zπ(M). Set n = gcd(nr : r ∈ R) and
d = gcd(n, lBi). By Bézout’s identity we can find integers zr such that n = ∑

r∈R zrnr.
Put a = ∑

r∈R zrar.

(a) If the system has a common solution in Zπ(M), the solutions of the system in
Zπ(M) are exactly the solutions of nx ≡ a mod lBi in Zπ(M).

(b) Set k = n/d and dr = nr/k. Then the system has a solution in Zπ(M) if and
only if the system

drx ≡ ar mod lBi, r ∈ R,

has a solution in Zπ(M). Moreover, these systems have the same number of
solutions modulo lBi in Zπ(M).

Proof. This follows from Proposition 4.2.8 by the same arguments that are used in
Proposition 4.2.11.

Proposition 4.2.13. Let M be a model of T and let nx ≡ a mod lBi be a linear
congruence. Let π be a finite set of primes such that n is a π-number and a ∈ Zπ(M).
Set d = gcd(n, lBi). Fix u > 0 and j > i such that ulBj < lBi is a subgroup and is
such that for all p|d we have that pd(p) divides |Zp ∩ lBi : Zp ∩ ulBi| or p does not
divide |Zp ∩ lBi : Zp ∩ ulBi|. Set

k =
∏
{pd(p) : p divides d and |Zp ∩ lBi : Zp ∩ ulBi|}.

Then the linear congruences

nx ≡ a mod lBi and nx ≡ a mod kulBj

have the same number of solutions modulo lBi respectively kulBj in Zπ(M). Moreover,
if X is the set of solutions modulo lBi of nx ≡ a mod lBi, Y is the set of solutions
modulo kulBj of nx ≡ a mod kulBj, and X/ulBj and Y/ulBj are the images of
X and Y modulo ulBj, then X/ulBj = Y/ulBj and each element in X/ulBj (resp.
Y/ulBj) has exactly

∏
p|d,p|(m/l) p

αpd(p) many preimages in X (resp. Y ).

Proof. This follows from Proposition 4.2.10 by the same arguments that are used in
Proposition 4.2.11.

The following lemma will often be useful:

Lemma 4.2.14. Fix a model M |= T , let π be a finite set of primes, let a ∈ Zπ(M),
and let t be a π-number. Then the linear congruences

nx ≡ a mod lBi and tnx ≡ ta mod tlBi

have the same solutions in Zπ(M).

Proof. Multiplying by t is injective since Zπ(M) does not have t-torsion.
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4. Valued abelian profinite groups

4.2.3. Systems of linear congruences in Z
Fix T as in Theorem 4.2.3. Note that we assume that the successor function S (on I)
is contained in LI .
Lemma 4.2.15. Let M1 and M2 be models of T and let (A, J) be a common substruc-
ture. Let π be a finite set of primes and let S :

nrx ≡ ar mod lBi, r ∈ R,

be a system of linear congruences where each nr is a π-number, ar ∈ Zπ(A), and i ∈ J .
Suppose there is a π-number t and a constant b ∈ A such that t divides b and b/t solves
S in Zπ(M1). Then b/t solves S in Zπ(M2).
Proof. We have t divides b if and only if vt(b) ≥ 0. This does not depend on the
model. Moreover, b/t solves nrx ≡ ar mod lBi if and only if vl(nr(b/t)− ar) ≥ i. By
Lemma 4.2.14 we have

vl(nr(b/t)− ar) = vtl(nrb− tar).

Therefore this value does not depend on the model.

Lemma 4.2.16. Let M1 and M2 be models of T and let (A, J) be a common substruc-
ture. Let π be a finite set of primes and let

nrx ≡ ar mod lBi, r ∈ R,

be a system of linear congruences where each nr is a π-number, ar ∈ Zπ(A), and
i ∈ J . Then the system has the same number of solutions modulo lBi in Zπ(M1) and
Zπ(M2).
Proof. Set n := gcd(nr : r ∈ R), say n = ∑

r∈R zrnr (by Bézout’s identity), and put
a := ∑

r∈R zrar. Set d := gcd(n,∏{p:αp>0} |Zp : Zp ∩ lBi|), k = n/d, and dr = nr/k.
Then by Proposition 4.2.12 (b) the system

nrx ≡ ar mod lBi, r ∈ R,

has the same number of solutions modulo lBi in Zπ(M1) (resp. Zπ(M2)) as the system

drx ≡ ar mod lBi, r ∈ R.

We have d = gcd(dr : r ∈ R) = ∑
r∈R zrdr. By Proposition 4.2.12 (a) any solution

of the system
drx ≡ ar mod lBi, r ∈ R,

is a solution of dx ≡ a mod lBi. Now by Proposition 4.2.11 the linear congruence
dx ≡ a mod lBi has a solution if and only if d divides a. In that case a/d must be
a solution and we can apply Lemma 4.2.15 to see that this must hold true in both
models.
Hence Zπ(M1) contains a solution if and only if Zπ(M2) contains a solution. In

that case the solutions are exactly the solutions of nx ≡ a mod lBi and by Proposi-
tion 4.2.11 the number of solutions modulo lBi does not depend on the model.
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Lemma 4.2.17. Let M1 and M2 be models of T and let (A, J) be a common substruc-
ture. Let π be a finite set of primes and let S be a system

nrx ≡ ar mod lBir , r ∈ R,

of linear congruences where l and each nr is a π-number, ar ∈ Zπ(A), ir ∈ J . Suppose
moreover, that the index |Bir : Bir′ | is a π-number whenever it is finite. Fix rmax ∈ R
such that irmax is maximal. Then S has the same number of solutions modulo lBirmax
in Zπ(M1) and Zπ(M2).

Proof. If |lBir : lBir′ | is finite, then there is a π-number t such that lBir = tlBir′ .
Lemma 4.2.14 allows us to replace the linear congruence

nr′x ≡ ar′ mod lBir′

by the linear congruence
tnr′x ≡ tar′ mod lBir .

Hence we may assume that the index |lBir : lBir′ | is infinite whenever ir < ir′ .
For r0 ∈ R set R[r0] = {r ∈ R : ir = ir0} and consider the system Sr0 :

nrx ≡ ar mod lBir , r ∈ R[r0].

By Lemma 4.2.16 the system Sr0 has the same number of solutions modulo lBir0
in

Zπ(M1) and Zπ(M2). If Sr0 has no solution, then S has no solution and we are done.
Hence assume that Sr0 has a solution (and hence has the same number of solutions in
both models by Lemma 4.2.16).

Then by Proposition 4.2.12 we can replace the system Sr0 by a single linear congru-
ence without changing the solutions.
Hence we may assume

ir = ir′ ⇐⇒ r = r′

for all r, r′ ∈ R. Now we may write R = {r0, . . . rm} such that ir0 > · · · > irm . We
prove the lemma by induction on m. The case m = 0 is done by Lemma 4.2.16. Hence
we assume m > 0.

The system S has the form

nr0x ≡ ar0 mod lBir0
,

...
nrmx ≡ ar0 mod lBirm .

Now set d := gcd(nr0 ,
∏
p∈P,αp>0 |Zp : Zp ∩ lBir0

|) and put

u =
∏

p|d,αp>0
{|Zp ∩ lBir1

: Zp ∩ lBir0
| : |Zp ∩ lBir1

: Zp ∩ lBir0
| is finite}.

Set k = ∏
{pd(p) : αp > 0 and p does not divide u} and consider the system S ′ :
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4. Valued abelian profinite groups

nr0x ≡ ar0 mod kulBir1
,

unr1x ≡ uar1 mod ulBir1
,

unr2x ≡ uar2 mod ulBir2
,

...
unrmx ≡ uarm mod ulBirm .

By Proposition 4.2.13 the linear congruences nr0x ≡ ar0 mod lBir0
and nr0x ≡ ar0

mod kulBir1
have the same number of solutions modulo lBir0

respectively kulBir1
and the sets of solutions agree modulo ulBir1

. The statement about the number
of preimages in Proposition 4.2.13 implies that S and S ′ have the same number of
solutions modulo lBir0

respectively kulBir1
. By Lemma 4.2.14 we can rewrite S ′ as

follows:

nr0x ≡ ar0 mod kulBir1
,

kunr1x ≡ kuar1 mod kulBir1
,

kunr2x ≡ kuar2 mod kulBir2
,

...
kunrmx ≡ kuarm mod kulBirm .

By induction the system S ′ has the same number of solutions modulo kulBir1
in

Zπ(M1) and Zπ(M2). Hence S has the same number of solutions modulo lBir0
in

Zπ(M1) and Zπ(M2).

To deal with the general case we will make use of the following:

Fact 4.2.18 (Inclusion-exclusion priciple). Let A1, . . . An be finite sets. Then

|
n⋃
i=1

Ai| =
∑

∅6=J⊆{1,...n}
(−1)|J |+1|

⋂
j∈J

Aj |.

Proposition 4.2.19. Let M1 and M2 be models of T and let (A, J) be a common
substructure. Let π be a finite set of primes and let S be a system

nrx ≡ ar mod lBir , r ∈ R,
nsx 6≡ as mod lBis , s ∈ S,

of linear congruences where each nt is a π-number, at ∈ Zπ(A), it ∈ J for all t ∈ R∪S.
Assume there is r0 ∈ R such that ir0 is maximal in {it : t ∈ R∪S}. Suppose moreover,
that the index |Bit : Bit′ | is a π-number whenever it is finite. Then S has the same
number of solutions modulo lBir0

in Zπ(M1) and Zπ(M2).
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4.2. A quantifier elimination result

Proof. For pairwise distinct s1, . . . sn ∈ S let As1,...sn be the set of solutions modulo
lBir0

of the system Ss1,...sn :

nrx ≡ ar mod lBir , r ∈ R,
ns1x ≡ as1 mod lBis1

,

...
nsnx ≡ asn mod lBisn .

By Lemma 4.2.17 the system Ss1,...sn has the same number of solutions in Zπ(M1)
and Zπ(M2). In particular, this holds true for the system S∅:

nrx ≡ ar mod lBir , r ∈ R.

Moreover, ⋃
s∈S As is exactly the set of solutions modulo lBir0

for S∅ that do not solve
S.
Note that As1 ∩ · · · ∩ Asn = As1,...sn and hence by an application of the inclusion-

exclusion principle the number |⋃s∈S As| (which is finite since we only count solutions
modulo lBir0

) does not depend on the model.
Now the system S is solved by exactly

|A∅| − |
⋃
s∈S

As|

many solutions modulo lBir0
and this number does not depend on the model.

4.2.4. Proof of quantifier elimination
Proof of Theorem 4.2.3. By Lemma 2.3.2 it suffices to show that every formula of the
form

ψ(z̄, ī) ≡ ∃x ∈ Z
∧
r∈R

ϕr(x, z̄, ī)

is equivalent to a quantifier free formula modulo T where z̄ ⊆ Z, ī ⊆ I and each ϕr is
either a basic LZ-formula or is of the form

vlr(tr(x, z̄)) = ir

where tr is an LZ-term and ir is one variable in the tuple ī.
Write R = R0 ∪R1 ∪R2 such that

ϕr(x, z̄, ī) ≡ nrx− tr(z̄) = 0, for r ∈ R0,

ϕr(x, z̄, ī) ≡ nrx− tr(z̄) 6= 0, for r ∈ R1, and
ϕr(x, z̄, ī) ≡ vlr(nrx− tr(z̄)) = ir, for r ∈ R2.

Now let π be a finite set of primes such that nr, lr, and the cardinalities of all finite
quotients |lBir : lBir′ | are π-numbers. Fix two models M1,M2 of T and let (A, J) be

25



4. Valued abelian profinite groups

a common substructure, ā ⊆ A, η̄ ⊆ J . Set ar := tr(ā). We have A = Zπ(A)× Aπ(A)
(since Aπ is a finite set of constants) and hence each ar can be written as ar = aπr b

π
r

with aπr ∈ Zπ(A) and bπr ∈ Aπ(A). Now suppose the formula ψ(ā, η̄) has a solution in
M1. By Proposition 2.3.1 it suffices to show that it has a solution in M2.

If r ∈ R0, then ϕr must be satisfied in Zπ(M1) and Aπ(M1). If r ∈ R1, then it
suffices if ϕr is satisfied in Zπ(M1) or Aπ(M1). If r ∈ R2, then we have

ϕr(x, ā, η̄) ≡ vlr(nrx− ar) = ir.

This is satisfied if we have “=” in Zπ(M1) or Aπ(M1) and “≥” in the other subgroup.
Hence there are subsets Rπ1 ⊆ R1 and Rπ2 ⊆ R2 such that the formulas

ψπ ≡ ∃x ∈ Zπ
∧
r∈R0

nrx− aπr = 0

∧
∧
r∈Rπ1

nrx− aπr 6= 0

∧
∧
r∈Rπ2

vlr(nrx− aπr ) = ir

∧
∧

r∈R2\Rπ2

vlr(nrx− aπr ) ≥ ir

and

ψπ ≡ ∃x ∈ Aπ
∧
r∈R0

nrx− bπr = 0

∧
∧

r∈R1\Rπ1

nrx− bπr 6= 0

∧
∧

r∈R2\Rπ2

vlr(nrx− bπr ) = ir

∧
∧
r∈Rπ2

vlr(nrx− bπr ) ≥ ir

have a solution in Zπ(M1) respectively Aπ(M1). Since Aπ is a finite set of constants,
this implies that ψπ has a solution in Aπ(M2). It remains to show that ψπ has a
solution in Zπ(M2).

If R2 = ∅, then we are done since the formulas x ∈ nZ are quantifier free 0-definable
and hence the result follows from the usual quantifier elimination for abelian groups.
Therefore we assume R2 6= ∅.

If R0 6= ∅, say r0 ∈ R0, then aπr0/nr0 is the solution of ψπ in Zπ(M1). Lemma 4.2.15
implies that aπr0/nr0 also solves ψπ in Zπ(M2). Hence we may assume R0 = ∅.
If ir = +∞ for some r, then we have

vlr(nrx− aπr ) ≥ ir ⇐⇒ nrx− aπr = 0.
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4.2. A quantifier elimination result

Hence we may assume ir < +∞ for all r ∈ R2.
Given l′ ≥ 1 there is a finite set of constants Cl′ in the language such that the

formula vl′(t(x, z̄)) = −∞ is equivalent to
∨
c∈Cl′

vl
′(t(x, z̄)− c) ≥ 0.

Thus we may also assume ir > −∞ for all r ∈ R2.
Note that each formula of the form nrx − aπr 6= 0 excludes only a single solution.

Since we assume R2 6= ∅ and all formulas of the form

vlr(nrx− aπr ) = ir or vlr(nrx− aπr ) ≥ ir

are solved by cosets of lrBir+1, we may moreover assume R1 = ∅.
By Lemma 4.2.14 we have vlr(nrx− aπr ) = vmlr(mnrx−maπr ) for all π-numbers m.

Thus we may use Lemma 4.2.14 to replace each lr′ by l := lcm(lr : r ∈ R2).
We consider formulas as linear congruences:

vl(nrx− aπr ) = ir ⇐⇒ (nrx− aπr ≡ 0 mod lBir ∧ nrx− aπr 6≡ 0 mod lBir+1),
vl(nrx− aπr ) ≥ ir ⇐⇒ nrx− aπr ≡ 0 mod lBir .

Hence it suffices to show that the system of linear congruences

nrx− aπr ≡ 0 mod lBir , r ∈ R2,

nrx− aπr 6≡ 0 mod lBir+1, r ∈ Rπ2 ,

has a solution in Zπ(M2). After slightly adjusting the system (by using Lemma 4.2.14)
and renaming, we get a system

nsx− bs ≡ 0 mod lBis , s ∈ S,
ntx− bt 6≡ 0 mod lBit , t ∈ T,

where S 6= ∅ and every index |Bir : Bir′ |, r, r
′ ∈ S ∪ T is infinite or trivial. If there

is an element s ∈ S such that is is maximal in {ir : r ∈ S ∪ T}, then we are done
by Proposition 4.2.19. Hence suppose there is t0 ∈ T such that it0 > is for all s ∈ S.
Then |Bis : Bit0 | is infinite for all s ∈ S. In particular, the congruence

nt0x− bt0 6≡ 0 mod lBit0

can be ignored, since each lBis-class consists of infinitely many lBt0 classes. Hence
we removed one linear congruence from the system. After iterating this, we can find
s ∈ S such that is is maximal.
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4.3. The monotone hull
Theorem 4.2.3 gives quantifier elimination up to a suitable language on I. The fol-
lowing gives a tame expansion of L−I which allows us to analyze the definable sets.

A binary relation R on a linear ordering is called monotone if and only if it satisfies

x′ ≤ xRy ≤ y′ implies x′Ry′.

The following result by Simon states that expanding a linear ordering by monotone
binary relations is tame:

Proposition 4.3.1 (Proposition 4.1 and Proposition 4.2 of [26]). Let (I,≤, Rα, Cβ)α,β
be a linear order equipped with monotone binary relations and unary predicates such
that every ∅-definable monotone binary relation is given by one of the Rα and every
∅-definable unary predicate is given by one of the Cβ. Then (I,≤, Rα, Cβ)α,β has
quantifier elimination and is dp-minimal.

Fix a theory TZ as in the quantifier elimination statement and let M |= TZ be a
model. Note that the definable relations ≤, Divπ,l

qk
, and Indπ,lk are monotone.

Definition 4.3.2. Let S be a set of unary predicates and monotone binary relations
on the value set of M .

(a) We define LSI,mon to be the monotone hull of

LSI := L−I ∪ {Divπ,l
qk
, Indπ,lk }q,π,l,k ∪ S,

i.e. the expansion of LSI by all 0-definable (in LSI ) unary relations and all 0-
definable monotone binary relations on the value sort.

(b) Set LSmon = LZ ∪ Lv ∪ LSI,mon and define Lmon = L∅mon.

Note that Lmon ⊇ L− is an expansion by definitions.

Proposition 4.3.3. Let S be as in Definition 4.3.2. Then Th(M) admits quantifier
elimination in the language LSmon.

Proof. The successor function and its inverse are 0-definable. If R ∈ LSI,mon is a mono-
tone binary relation, then so is Rm,n(x, y) ⇐⇒ R(x+m, y+n) for all m,n ∈ Z. The
same holds true for 0-definable unary predicates. Therefore adding the successor func-
tion to the language does not add any new definable sets in I. Hence Theorem 4.2.3
and Proposition 4.3.1 imply quantifier elimination in LSmon.

4.4. Dp-minimality and distality
Let T be a complete LSmon-theory as in Proposition 4.3.3.
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Lemma 4.4.1. Let (Z, I, v) |= T be a sufficiently saturated model and let (aj)j∈J1 and
(bj)j∈J2 be mutually indiscernible sequences in the group sort. Let γ ∈ I be a singleton.
Then one of the sequences is indiscernible over γ.

Proof. We may assume that both sequences are indexed by a dense linear order. Sup-
pose (aj)j∈J1 is not indiscernible over γ. By the quantifier elimination result this must
be witnessed by a formula of the form

R(vl(t(x̄)), γ)

where t is an LZ -term, R is a monotone binary relation on I, and l ≥ 1. Hence we
can find tuples j̄0, j̄1 ⊆ J1 of the same order type such that

|= R(vl(t(aj0)), c) and 6|= R(vl(t(aj1)), c)

where aji = (aj)j∈ji is the tuple corresponding to ji ⊆ J1.
After replacing j̄0 or j̄1 if necessary, we may assume that j̄0 and j̄1 have disjoint

convex hulls in J1. We can extend to a sequence (j̄i)i<ω such that (aji)i<ω is an
indiscernable sequence. Then

(vl(t(aji)))i<ω

is a non-constant indiscernible sequence in the value sort that is not indiscernible over
γ.

By Proposition 4.3.1 the value sort is dp-minimal. Therefore (bj)j∈J2 must be in-
discernible over γ: Otherwise we could apply the above argument to the sequence
(bj)j∈J2 to get a second non-constant indiscernible sequence in the value sort which is
not indiscernible over γ. Since these two sequences would be mutually indiscernible,
this would contradict dp-minimality of the value sort.

Theorem 4.4.2. T is dp-minimal.

Proof. Let M = (Z, I, v) |= T be a sufficiently saturated model and let J1 and J2
be mutually indiscernible sequences. We will assume that both of them are indexed
by a dense linear order. Let z ∈ Z be a singleton. We aim to show that one of the
sequences is indiscernible over z.
Since I is essentially an imaginary sort, we may assume that the sequences J1 and

J2 live in the sort Z. Note that equality on the value sort can be expressed using
the monotone binary relation ≤. By the quantifier elimination result, the failure of
indiscernibility must be witnessed by formulas of the following form:

1. t(x̄)− nz = 0,

2. C(vl(t(x̄)− nz)),

3. R(vl1(t1(x̄)− n1z), vl2(t2(x̄)− n2z)),
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where t is an LZ -term, C is a coloring on I, R is a monotone binary relation on I,
l ≥ 1, and n ∈ Z. One of the terms in the third case could also be a quantifier free
0-definable constant in the value sort. This case is analogous to case (b) below and
therefore we will not consider it separately.

Note that a formula of the first type would imply that z is algebraic over the param-
eters plugged in for x̄. Hence it suffices to consider the other two types of formulas.
If an indiscernible sequence J is not indiscernible over z, then this must be witnessed
by ā, ā′ ⊆ J of the same order type such that we are in one of the following cases:

(a) We have

vl1(t(ā)− nz) 6= vl1(t(ā′)− nz) and vl2(t′(ā)− n′z) 6= vl2(t′(ā′)− n′z)

and

|= R(vl1(t(ā)−nz), vl2(t′(ā)−n′z)) and 6|= R(vl1(t(ā′)−nz), vl2(t′(ā′)−n′z))

for some choice of t, t′, n 6= 0, n′ 6= 0, and a relation R.

(b) We have
vl1(t(ā)− nz) 6= vl1(t(ā′)− nz)

and

|= R(vl1(t(ā)− nz), vl2(t′(ā))) and 6|= R(vl1(t(ā′)− nz), vl2(t′(ā′)))

for some choice of t, t′, n 6= 0, and a relation R.

(c) We have

vl1(t(ā)− nz) = vl1(t(ā′)− nz) and vl2(t′(ā)) < vl2(t′(ā′))

and

6|= R(vl1(t(ā)− nz), vl2(t′(ā))) and |= R(vl1(t(ā′)− nz), vl2(t′(ā′)))

or

|= R(vl2(t′(ā), vl1(t(ā)− nz))) and 6|= R(vl2(t′(ā′)), vl1(t(ā′)− nz))

for some choice of t, t′, n 6= 0, and a monotone binary relation R.

(d) We have

vl1(t(ā)− nz) = vl1(t(ā′)− nz) and vl2(t′(ā)− n′z) < vl2(t′(ā′)− n′z)

and

6|= R(vl1(t(ā)−nz), vl2(t′(ā)−n′z)) and |= R(vl1(t(ā′)−nz), vl2(t′(ā′)−n′z))

or

|= R(vl2(t′(ā)−n′z), vl1(t(ā)−nz))) and 6|= R(vl2(t′(ā′)−n′z), vl1(t(ā′)−nz))

for some choice of t, t′, n 6= 0, n′ 6= 0, and a monotone binary relation R.
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The case corresponding to a coloring is essentially the same as (b) so we will not do
it explicitly.

We will use Lemma 4.2.14 to assume that all the li coincide: Let π be a finite set of
primes. We want to be able to work in Zπ(M). Fix a term

vl(t(ā)− nz)

and write t(ā) = b0(ā) + b1(ā), z = c0 + c1 for b0(ā), c0 ∈ Zπ(M), b1(ā), c1 ∈ Aπ(M).
Since Aπ(M) is a finite set of constants, the value of b1(ā) only depends on the order
type of ā. Therefore

γ = vl(b1(ā) + nc1) ∈ Aπ(M)

also only depends on the order type of ā. We have

vl(t(x̄)− nz) = min{vl(b0(x̄)− nc0), γ}

because Z = Zπ(M)× Aπ(M). If vl(t(ā′)− nz) = γ for all ā′ of the same order type
as ā, then this value is a constant. If vl(t(ā′)− nz) = vl(b0(ā′)− nc0) for all ā′ of the
same order type as ā, then this value can always be calculated in Zπ(M). If we are
not in one of these two cases, then the quantifier free 0-definable coloring

C<γ(i) ⇐⇒ i < γ

witnesses (in Zπ(M)) that J is not indiscernible over z. Hence we can work in Zπ(M)
and therefore we can assume that all the li coincide (by Lemma 4.2.14). Moreover, to
simplify the notation we will assume that all the li are equal to 1.

We say that an indiscernible sequence J has an approximation for z over α ∈ I if
there is a set D such that J is indiscernible over D, α is definable over D, and the
residue class of z modulo Bα is algebraic (in Z/Bα) over parameters in D.
We now assume that the mutually indiscernible sequences J1 and J2 both fail to be

indiscernible over z. Then this must be witnessed as in (a) to (d). Such a witness
for J1 (resp. J2) is good if J2 (resp. J1) has an approximation for z for a suitable α
defined as follows:

• If the witness is given as in (a), then we set

α = max{v(t(ā)− t(ā′)), v(t′(ā)− t′(ā′))}+ 1.

If (for example) α = v(t(ā)−t(ā′))+1 (= v(t(ā)−nz)+1 < v(t(ā′)−nz)+1), then
t(ā′) ≡ n′z mod Bα. Therefore the residue class of z modulo Bα is algebraic
over t(ā′).

• If the witness is given as in (b), then we set

α = v(t(ā)− t(ā′)) + 1 = min{v(t(ā)− nz), v(t(ā′)− nz)}+ 1.

If v(t(ā) − nz) < v(t(ā′) − nz), then t(ā′) ≡ n′z mod Bα and therefore the
residue class of z modulo Bα is algebraic over t(ā′).
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• If the witness is given as in (c), we set

α = v(t(ā)− nz).

• Now assume the witness is given as in (d). We set

α1 = v(t(ā)− nz) and α2 = v(t′(ā)− n′z) + 1.

Now put α = max{α1, α2}.

In particular, every witness of type (a) or (b) is good because J1 and J2 are mutually
indiscernible. Recall that if v(x) < v(y), then v(x− y) = v(x). We aim to show that
we can always find a good witness:

Suppose the witness is given as in (c). Choose ā0 ⊆ J1 of the same order type as
ā and ā′ such that all indices involved in ā0 are smaller than the indices in ā and ā′
(from now on, we will write ā0 � ā, ā′ in that case). If v(t(ā0) − nz) 6= v(t(ā) − nz),
then either the pair (ā0, ā) or the pair (ā0, ā

′) gives a good witness as in case (b).
Hence we will assume v(t(ā0) − nz) = v(t(ā) − nz). Let J>ā0

1 be the sequence
consisting of all elements of J1 with index larger than all indices in ā0 and set J2 ∪ ā0
to be the sequence J2 where each tuple is expanded by ā0. Then J>ā0

1 and J2 ∪ ā0 are
mutually indiscernible. Moreover, J>ā0

1 is not indiscernible over α = v(t(ā)− nz) (as
witnessed by ā and ā′). Hence J2 ∪ ā0 is indiscernible over α by Lemma 4.4.1. Now
J2 is indiscernible over the set {ā0, α} and we have ā0 ≡ nz mod Bα. Therefore the
residue class of z modulo Bα is algebraic over ā0 and hence the witness is good.
Now suppose the witness is given as in (d). We set

α1 = v(t(ā)− nz) and α2 = v(t′(ā)− n′z) + 1.

If α2 ≥ α1, then we have a good witness by the same arguments as in (a) and (b).
Hence assume α := α1 > α2. Suppose for all ā0 � ā, ā′ we have v(t(ā0) − nz) = α.
Fix

ā0 � ā1 � ā, ā′.

Consider the mutually indiscernible sequences J>ā0
1 and J2 ∪ ā0.

Assume that J>ā0
1 is indiscernible over α. Then the residue class of z modulo Bα

is algebraic over t(ā1). Since t′(ā) 6≡ n′z mod Bα, we get t′(ā′) 6≡ n′z mod Bα by
indiscernibility (applied to α and ā1). Therefore v(t′(ā)−n′z) and v(t′(ā′)−n′z) only
depend on the residue class of z modulo Bα (and can be calculated in Z/Bα) and
hence cannot witness the failure of indiscernibility over z.
Hence J>ā0

1 is not indiscernible over α. Then J2 ∪ ā0 is indiscernible over α by
Lemma 4.4.1. Therefore J2 is indiscernible over {ā0, α} and the residue class of z
modulo Bα is algebraic over ā0. Hence we have a good witness.
Hence we assume that there is ā0 � ā, ā′ such that

v(t(ā0)− nz) 6= α.
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If v(t(ā0)− nz) > α, then α = v(t(ā0)− t(ā)) and we have a good witness as in cases
(a) and (b). Hence we assume v(t(ā0)− nz) < α.

If v(t′(ā0) − n′z) 6∈ {v(t′(ā) − n′z), v(t′(ā′) − n′z)}, then (ā0, ā) or (ā0, ā
′) gives a

good witness as in case (a). If v(t′(ā0)−n′z) = v(t′(ā)−n′z), then either (ā0, ā
′) gives

a witness as in case (a) or the new witness is given by (ā0, ā) and we have

v(t(ā)− nz) > v(t(ā0)− nz) and v(t′ā)− n′z) = v(t′(ā0)− n′z).

Hence we are again in case (d) but J2 is indiscernible over

v(t′(ā)− n′z) = v(t′(ā)− t′(ā′))

and hence this witness given by (ā0, ā) must be good.
Now only the case v(t′(ā0)− n′z) = v(t′(ā′)− n′z) is left. We then have

v(t(ā)− nz) = v(t(ā′)− nz) > v(t(ā0)− nz),

v(t′(ā)− n′z) < v(t′(ā′)− n′z) = v(t′(ā0)− n′z).

Assume the witnessing formula was of the form

R(v(t(x̄)− nz), v(t′(x̄)− n′z))

for a monotone binary relation R (the other case is done analogously).
We then have the following implications by monotonicity:

|= R(v(t(ā)− nz), v(t′(ā)− n′z))
=⇒ |= R(v(t(ā′)− nz), v(t′(ā′)− n′z))
=⇒ |= R(v(t(ā0)− nz), v(t′(ā0)− n′z)).

Hence R(v(t(ā)−nz), v(t′(ā)−n′z)) must be false and R(v(t(ā′)−nz), v(t′(ā′)−n′z))
must be true (since this was a witness for the failure of indiscernibility over z). Then
R(v(t(ā0)− nz), v(t′(ā0)− n′z)) must be true. But then ā and ā0 give a witness as in
(a). Hence we can always find a good witness.
Since we assume that both J1 and J2 fail to be indiscernible over z, we can find a

good witness for each of them. Let α be the constant for the witness in J1 and let β
be the constant for the witness in J2. We assume α ≤ β. Then J1 is indiscernible over
β and over the residue class of z in Z/Bβ.

Suppose the witness for J1 is given as in (a) or (b). If we have

v(t(ā)− nz) < v(t(ā′)− nz),

then v(t(ā) − nz) < β and indiscernibility (and algebraicity of z modulo Bβ over a
suitable parameter) imply that v(t(ā′)− nz) < β. Hence those values only depend on
the residue class of z modulo Bβ (and can be calculated in Z/Bβ with the restricted
valuation). Therefore they cannot witness the failure of indiscernibility over z.
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Now suppose the witness for J1 is given as in case (c). If α = β, then this cannot
be a witness for the failure for indiscernibility. Hence we must have α < β. But then

v(t(ā)− nz) = v(t(ā′)− nz)

only depends on the residue class of z in Bβ and we can argue as before. The same
arguments work if the witness for J1 is given as in case (d).

Hence J1 or J2 must be indiscernible over z.

To characterize distality we will show that the quotients Bi/Bi+1 are stable. We
will make use of the following lemma:

Lemma 4.4.3 (Lemma 5.13 of [2]). Let L0 be any language and let T0 be an unstable
L0-theory. Let L−0 ⊆ L0 be such that T0|L−0 is stable. Then there exists an L0-formula
ϕ(x, y), |x| = 1, over ∅ and a parameter b such that ϕ(x, b) is not L−0 -definable.

Proposition 4.4.4. Suppose Bi/Bi+1 is infinite. Then the induced structure on
Bi/Bi+1 is stable.

Proof. Suppose Bi/Bi+1 is infinite. By Lemma 4.4.3 it suffices to show that for every
formula ϕ̃(x̃, ỹ) (in Bi/Bi+1) and every constant b̃ ∈ Bi/Bi+1 the formula ϕ̃(x̃, b̃) is
definable in the pure group (Bi/Bi+1,+).

Given such a formula there is an LSmon-formula ϕ(x, y) such that ϕ is the preimage
of ϕ̃ under the natural projection

πi : Bi → Bi/Bi+1.

Now fix a preimage b of b̃. Note that ϕ(Bi, b) is a union of cosets of Bi+1.
By the quantifier elimination result ϕ is equivalent to a boolean combination of

atomic LSmon-formulas. We aim to show the following:
Claim. There is a formula ψ(x, y) which is defined in the pure abelian group (Bi,+)
such that ϕ(Bi, b) and ψ(Bi, b) coincide on all but finitely many cosets of Bi+1.

It suffices to prove the claim for atomic formulas. Therefore we may assume that ϕ
is atomic. Then we are in one of the following cases:

(a) ϕ(x, b) ≡ nx− t(b) = 0,

(b) ϕ(x, b) ≡ R(vl1(n1x− t1(b)), vl2(n2x− t2(b))),

(c) ϕ(x, b) ≡ C(vl(nx− t(b))).

In case (a) there is nothing to show. Therefore we consider the cases (b) and (c) which
include valuations. We show that sets of the form

(a+ lBj) ∩Bi

are definable in the pure abelian group (Bi,+) up to a unique coset of Bi+1:
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If j < i, then Bj > Bi and lBj has finite index in Bj . Hence lBj ∩ Bi has finite
index in Bi. Moreover, lBj ∩Bi is of the form

lBj ∩Bi = l′Bi

for a positive integer l′ because this holds true for the standard models. The cosets of
l′Bi are definable in the pure group language. If j = i, then lBi∩Bi = lBi is definable
in the pure group language. Now assume j > i. Then lBj < Bj ≤ Bi+1 and therefore
Bi ∩ (a+ lBj) is trivial outside of a single coset of Bi+1.

This also shows that there are only finitely many intersections of the form

(a+ lBj) ∩ (Bi \ (a+Bi+1))

where everything except j is fixed. Therefore the restriction of vl(x−a) toBi\(a+Bi+1)
is given by a finite chain of definable subgroups (in the pure abelian group (Bi,+)).
Since nx ≡ 0 mod Bi+1 has only finitely many solutions modulo Bi+1 the same

holds true for the valuation vl(nx−a) restricted to Bi: Outside of finitely many cosets
of Bi+1 it is given by a finite chain of (Bi,+)-definable subgroups. In that sense
vl(nx− a) is (Bi,+)-definable outside of finitely many cosets of Bi+1.

Therefore the formula ϕ in (a) or (b) is definable in (Bi,+) outside of finitely many
cosets of Bi+1. This shows the claim.

Hence we can find such a formula ψ(x, y) defined in the pure abelian group (Bi,+)
such that ϕ(Bi, b) and ψ(Bi, b) coincide on all but finitely many cosets of Bi+1. The
usual quantifier elimination result for abelian groups shows that ψ(B1, b) is a boolean
combination of cosets of the trivial subgroup and groups of the form lBi for l ≥ 1.
Each subgroup lBi has finite index in Bi and the family {lBi : l ≥ 1} is closed under
finite intersections. Hence a boolean combination of such groups is a union of finitely
many cosets of lBi for a suitable l.
Since ϕ(Bi, b) and ψ(Bi, b) agree on all but finitely many cosets of Bi+1 and ϕ(Bi, b)

is a union of cosets of Bi+1, the same must be true for ϕ̃(Bi/Bi+1, b̃), i.e. ϕ̃(Bi/Bi+1, b̃)
is a boolean combination of cosets of (Bi/Bi+1,+)-definable subgroups. Therefore
ϕ̃(Bi/Bi+1, b̃) is definable in (Bi/Bi+1,+).

Theorem 4.4.5. T is distal if and only if there is a constant k < ω such that

|Bi/Bi+1| ≤ k

holds for all i <∞.
Proof. Suppose |Bi/Bi+1| is unbounded. Then there is some i0 such that |Bi0/Bi0+1|
is infinite. By Proposition 4.4.4 the induced structure on Bi0/Bi0+1 is stable. Hence
it follows from Proposition 2.2.12 that T is not distal.

Now let X be a non-constant totally indiscernible set of singletons and fix x, y ∈ X.
Put i0 = v(x−1y). If x 6= y, then i0 <∞ and hence

xBi0 = yBi0 xBi0+1 6= xBi0+1.

It follows easily from total indiscernibility that i0 does not depend on the choice of
x 6= y. Hence |X| ≤ |Bi0/Bi0+1|.
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The most well-known example of a dp-minimal expansion of (Z,+) is (Z,+,≤). Based
on work by Palacín and Sklinos [20], Conant and Pillay [9] proved the remarkable result
that (Z,+, 0) has no proper stable expansions of finite dp-rank. Hence any proper
dp-minimal expansion must be unstable. The other known examples of dp-minimal
expansions are:

• (Z,+, vp) where vp is the p-adic valuation on Z. This was shown by Alouf and
d’Elbée in [2].

• (Z,+, C) where C is cyclic order. These were found by Tran and Walsberg in
[34].

• Proper dp-minimal expansions of (Z,+, S), where S is a dense cyclic order, and
(Z,+, vp) were very recently found by Walsberg in [36].

An overview about the current research on dp-minimal expansions of (Z,+) is given
by Walsberg in Section 6 of [36].

5.1. A single valuation
We add the following family of examples which generalize the p-adic examples by Alouf
and d’Elbée:

Theorem 5.1.1. Let (Bi)i<ω be a strictly descending chain of subgroups of Z, B0 = Z,
let v : Z→ ω ∪ {∞} be the valuation defined by

v(x) = max{i : x ∈ Bi},

and let S be a set of unary predicates and monotone binary relations on the value set.
Then (Z, 0, 1,+, v, S) admits quantifier elimination in the language LSmon (with 0 and
1 as constants) and is dp-minimal. Moreover, (Z, 0, 1,+, v, S) is distal if and only if
the size of the quotients Bi/Bi+1 is bounded.

Proof. Note that any infinite strictly descending chain of subgroups of Z must have
trivial intersection. Moreover, every non-trivial subgroup of Z is of the form nZ for
some n ≥ 1 and hence v is a good valuation in the sense of Definition 4.0.1.

Moreover, Z ≺ Ẑ = ∏
p Zp and 〈1〉 = Z is dense. Hence Proposition 4.3.3 implies the

quantifier elimination result. Dp-minimality follows by Theorem 4.4.2 and the claim
about distality follows by Theorem 4.4.5.
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In case of the p-adic valuation Alouf and d’Elbée proved in Theorem 1.1 of [2] that
(Z,+, vp) has quantifier elimination in the language LEp = {+,−, 0, 1, |p, Dn)n≥1 where

x|py ⇐⇒ vp(x) ≤ vp(y) and Dn = nZ.

Conant [8] showed that the structure (Z,+, 0, 1,≤) is a minimal proper expansion of
(Z,+, 0, 1), i.e. there is no proper intermediate expansion. Alouf and d’Elbée proved
the same for (Z,+, 0, 1, vp). We will show that this does not hold true for arbitrary
valuations.

Proposition 5.1.2. Fix distinct primes p0, p1, q ∈ P and put s = p0p1q. For i < ω fix
σi ∈ Sym({0, 1}), set n0 = 1, and recursively define

n3l+m =


n3l−1q iff m = 0,
n3lpσl(0) iff m = 1,
n3l+1pσl(1) iff m = 2.

Set vσ to be the valuation corresponding to (niZ)i<ω and let w be the valuation corre-
sponding to (siZ)i<ω. Then w is definable in (Z,+, vσ).

Proof. If a ∈ Z \ {0}, then there is a unique ta ∈ {p0, p1, q} such that vσ(a) < vσ(taa).
Let a, b ∈ Z \ {0}. If |vσ(a)− vσ(b)| ≥ 3, then

w(a) < w(b) ⇐⇒ vσ(a) < vσ(b).

If |vσ(a)− vσ(b)| < 3, then w(a) ≤ w(b) can be determined using ta and tb.

Corollary 5.1.3. Let w be as in Proposition 5.1.2. Then there are 2ℵ0 many valu-
ations v such that w is definable in (Z,+, v). Only countably many of those can be
definable in (Z,+, w).

Proof. There are 2ℵ0 many valuations vσ as in Proposition 5.1.2 and w is definable
in each (Z,+, vσ). On the other hand, (Z,+, w) has only countably many definable
sets.

Remark 5.1.4. Note that by Theorem 4.4.5 all these structures are distal. Hence not
even all dp-minimal distal expansions by valuations are minimal expansions.

The fact that expansions by arbitrary valuations are dp-minimal allows us to con-
struct other non-trivial examples: For k ≥ 2 let vk denote the valuation corresponding
to the sequence (kiZ)i<ω.

Proposition 5.1.5. Let r and s be coprime positive integers. Then the expansion
(Z,+, vr(x) < vs(x)) is dp-minimal.

Proof. We have
vr(x) < vs(x) ⇐⇒ vrs(x) < vrs(rx).

Hence the relation vr(x) < vs(x) is definable in the dp-minimal structure (Z,+, vrs).
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It seems unlikely that vrs is definable from vr(x) ≤ vs(x).
The induced structure on the index set ω ∪ {∞} seems to be important. If it is not

o-minimal and X ⊆ ω ∪ {∞} is a definable infinite and co-infinite subset, then the set

A = {a ∈ Z : w(a) ∈ X} ⊆ Z

is definable. It is not clear if w is definable in (Z,+, 0, 1, A).
If the induced structure on ω ∪ {∞} is o-minimal, then k = |Bi/Bi+1| ∈ N ∪ {∞}

must be constant for all sufficiently large i (in some elementary extension). If k is
finite, then w is bounded and hence we are in the distal case.

Conjecture 5.1.6. Let (Z,+, 0, 1, v) be distal. Then the following are equivalent:

(a) (Z,+, 0, 1, v) is a minimal expansion of (Z,+, 0, 1),

(b) there is a prime p such that |Bi/Bi+1| = p for almost all i < ω,

(c) v is interdefinable with a p-adic valuation for some prime p,

(d) the (Z,+, v)-induced structure on the value set of v′ is o-minimal for all (Z,+, v)-
definable valuations v′.

Proposition 5.1.7. If (a) implies (d), then Conjecture 5.1.6 holds.

Proof. We already know (b) =⇒ (c) =⇒ (a) and by assumption (a) =⇒ (d) holds.
Hence (d) =⇒ (b) remains to be shown.

Let (Z,+, 0, 1, v) be distal and assume (d). Then there is k > 1 such that

|Bi : Bi+1| = k

for almost all i < ω. Therefore v and vk are interdefinable and we may assume v = vk.
If k = st where s and t are coprime, then v is interdefinable with the valuation w

such that |Bw
i /B

w
i+1| alternates between s and t. Then the induced structure on the

value set of w is not o-minimal. This contradicts (d).
Hence we may assume k = pn for some prime p and n ≥ 1. If n > 1, then the p-adic

valuation vp is definable by

vp(x) ≤ vp(y) ⇐⇒
n−1∧
r=0

vpn(prx) ≤ vpn(pry).

Now the set vp({a ∈ Z : vpn(pa) > vpn(a)}) contradicts (d).
Hence k = p must be a prime. This shows (b).

There are non-distal candidates for minimal expansions:
Question 5.1.8. Let (pi)0<i<ω be an enumeration of the primes such that each prime
appears exactly once and let v be the valuation corresponding to (p1 · · · piZ)i<ω. Then
the induced structure on the value set is o-minimal. Is (Z,+, 0, 1, v) a minimal expan-
sion of (Z,+, 0, 1)?
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We end this section with the observation that the p-adic valuations have a limit
theory:

Proposition 5.1.9. For each prime p let vp denote the p-adic valuation on Z. Then
the corresponding limit theory exists, i.e.

Th(
∏
p

(Z,+, vp)/U)

does not depend on the choice of the non-principal ultrafilter U ⊆ P(P).

Proof. We fix the common L−-theory

T =
⋂
U

ThL−(
∏
p

(Z,+, vp)/U)

of these ultraproducts. Note that the predicate Divlqk(i, j) fails for all 0 < i < j and
the predicate Indlk holds true for all 0 < i < j. Thus they are quantifier free 0-definable
after naming the successor function S on I. Therefore T has quantifier elimination
after naming S by Theorem 4.2.3 (because (ω, 0,≤, S) has quantifier elimination). The
constants in LZ generate a subgroup that is isomorphic to Z. An element a ∈ Z \ {0}
must have valuation 0 in all models of T . Therefore all models of T have isomorphic
substructures and hence T is complete.

5.2. Multiple valuations
If P ⊆ P is a non-empty set of primes, then Alouf and d’Elbée proved that the structure
(Z,+, vp)p∈P has dp-rank exactly |P |. We will generalize this result to expansions of
(Z,+) by arbitrary valuations which involve disjoint sets of primes.

Let V be a non-empty family of non-trivial valuations v : Z → ω ∪ {∞}. For each
v ∈ V set

πv = {p ∈ P : p divides |Bv
i /B

v
i+1| for some i < ω}.

We view (Z,+) together with these valuations as a multi-sorted structure with group
sort Z and with a distinct value sort Iv for each valuation v ∈ V . Now put

• LZ = {0, 1,+,−},

• Lv = {vl : l ≥ 1}, and

• L−Iv = {−∞, 0,+∞,≤,Divlqk , Indlk}q,k,l

for each valuation v ∈ V . Let Lvmon be the monotone hull of L−Iv as in Section 4.3 and
set

Lmon = LZ ∪ (
⋃
v∈V
Lv) ∪ (

⋃
v∈V
Lvmon)

to be the disjoint union of these languages.
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Proposition 5.2.1. Suppose the sets πv are pairwise disjoint. Then (Z,+, v)v∈V has
quantifier elimination in the language Lmon.

Proof. This is very similar to the proof of Theorem 4.2.3. Note that a multi-sorted
version of Lemma 2.3.2 holds true in this setting. As in the proof of Theorem 4.2.3 it
suffices to show the back-and-forth property for systems of linear congruences. Let S
be the system

nsx− bs ≡ 0 mod lsB
v
is , s ∈ Sv,

ntx− bt 6≡ 0 mod ltB
v
it , t ∈ T v,

where Sv 6= ∅ and T v are finite index sets for each v ∈ V0 for a finite subset V0 ⊆ V .
By an application of Lemma 4.2.14 we may assume that all the ls and lt have the same
value which we denote by l.

Let a be a solution. We will show that we can assume that a and all constants bs
and bt are contained in lB0: If a is in lB0, then all bs must be contained in lB0 since
otherwise the congruences can not be satisfied. If bt is not contained in lB0, then the
congruence

ntx− bt 6≡ 0 mod lBv
it

does not impose any restrictions on lB0 and we can ignore it without changing the
solutions in lB0.

If a is not contained in lB0, then there is a constant c ∈ Z (and hence in the
language) such that a− c ∈ lB0. In that case the shifted system Sc:

ns(x+ c)− bs ≡ 0 mod lBv
is , s ∈ Sv,

nt(x+ c)− bt 6≡ 0 mod lBv
it , t ∈ T v,

is solved by a− c ∈ lB0 and all the constants nsc− bs and ntc− bt can be assumed to
lie in lB0. Thus we can replace S by Sc.

Hence we may assume that S is a system of linear congruences in the subgroup lB0.
We have

lB0 ≡ Ẑ =
∏
p

Zp

and the valuations vl involve disjoint sets of primes. Therefore the system S can
be solved independently for each valuation v ∈ V . This is done as in the proof of
Theorem 4.2.3.

Theorem 5.2.2. Suppose the sets πv are pairwise disjoint. Then

dp-rk((Z,+, v)v∈V ) = |V |.

Proof. ≥ is shown exactly as in the case of the p-adic valuations which was done by
Alouf and d’Elbée (Theorem 1.2 of [2]).

Now assume κ := dp-rk((Z,+, v)v∈V ) > |V |. As in the proof of Theorem 4.4.2
this is witnessed by mutually indiscernible sequences (Ii)i<κ (in the group sort) and a
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singleton c in the group sort such that no sequence is indiscernible over c. As argued in
Theorem 4.4.2, the fact that a sequence I is not indiscernible over c must be witnessed
by an atomic Lmon-formula which involves a valuation.

Since κ > |V |, there must be two sequences I1 and I2 for which this witnessing
formula involves the same valuation v. This is a contradiction because (Z,+, v) is
dp-minimal by Theorem 4.4.2.
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6. Further results

6.1. Uniformly definable families of finite-index subgroups of
dp-minimal groups

The classification of NIP profinite groups by Macpherson and Tent in [31] yields in-
formation about uniformly definable families of finite index subgroups in arbitrary
NIP groups (see Theorem 8.7 in [7]). We will do the same in the dp-minimal case.
The arguments are almost identical to those in Section 8 of [7] (see also Remark 5.5
in [31]), we only need to make sure that the construction presented there preserves
dp-minimality.

Let H be a group and let (Ni : i ∈ I) be a family of normal subgroups of finite index
such that

∀i, j∃k : Nk ≤ Ni ∩Nj .

We view H as an Lprof-structure H = (H, I). Let fj : lim←−H/Ni → H/Nj be the
projection maps. Then {ker fj : j ∈ I} is a neighborhood basis at the identity.
Therefore we may view lim←−H/Ni as an Lprof-structure (lim←−H/Ni, I).

Lemma 6.1.1. Let H∗ = (H∗, I∗) be an |I|+-saturated elementary extension of H.
Then

H∗/
⋂
i∈I

N∗i
∼= lim←−

i∈I
H/Ni

and (N∗j /
⋂
i∈I N

∗
i : j ∈ I) is a neighborhood basis for the identity consisting of open

normal subgroups.

Proof. By elementarity we have |H∗ : N∗i | = |H : Ni| for all i ∈ I. Using this and
elementarity it is easy to see that

lim←−
i∈I

H∗/N∗i = lim←−
i∈I

H/Ni.

Now write
lim←−
i∈I

H∗/N∗i = {(giN∗i )i : ∀i ≥ j : giN∗j = gjN
∗
j }

and let f : H∗ → lim←−i∈I H
∗/N∗i , g 7→ (gN∗i )i be the natural homomorphism. Clearly

ker f = ⋂
i∈I N

∗
i . It remains to show that f is surjective.

Fix (giNi)i ∈ lim←−i∈I H
∗/N∗i and consider the partial type

Σ(x) = {x ∈ giN∗i : i ∈ I}.
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Given Io ⊆ I finite, there is j ∈ I such that Nj ≤
⋂
i∈I0 Ni. Then giNj = gi′Nj for

all i, i′ ∈ I0. Hence Σ(x) is finitely satisfiable and as H∗ is |I|+-saturated, there exists
g ∈ H∗ such that g ∈ giN∗i for all i ∈ I and hence f(g) = (giN∗i ).

The family (N∗j /
⋂
i∈I N

∗
i : j ∈ I) is a neighborhood basis for the identity consisting

of open normal subgroups.

Lemma 6.1.2. If H = (H, I) has NIP, then (lim←−i∈I H/Ni, I) has NIP. If moreover
(H, I) is dp-minimal, then (lim←−i∈I H/Ni, I) is dp-minimal.

Proof. Since (H, I) has NIP, every uniformly definable family of subgroups contains
only finitely many subgroups of each finite index. Let (H∗, I∗) be an |I|+-saturated
elementary extension. Then I is externally definable (since I = {i ∈ I∗ : |H∗ : K∗i | <
∞}). If (H, I) is dp-minimal, then (H∗, I∗, I) is dp-minimal by Remark 2.2.9. By the
above lemma the structure (lim←−i∈I H/Ni, I) is interpretable as a quotient in (H∗, I∗, I)
and hence is NIP (resp. dp-minimal).

Let G be a group and let ϕ(x, y) be a formula. Set Nϕ = {Ni : i ∈ I} to be
the family of all normal subgroups which are finite intersections of conjugates of ϕ-
definable subgroups of finite index. Note that every ϕ-definable subgroup of finite
index contains some N ∈ Nϕ. The profinite group lim←−i∈I G/Ni naturally becomes an
Lprof-structure Gϕ = (lim←−i∈I G/Ni, I).

Proposition 6.1.3. Let G and ϕ be as above. If G is NIP, then Gϕ is NIP. If moreover
G is dp-minimal, then Gϕ is dp-minimal in the group sort.

Proof. By Baldwin-Saxl finite intersections of conjugates of ϕ-definable subgroups are
uniformly definable by some formula ψ(x, z). The set J = {b : ψ(G, b) E G} is
definable. Put J0 = {b : |G : ψ(G, b)| <∞}. Then Nϕ = {ψ(G, b) : b ∈ J0}. Since Nϕ
is closed under intersections, it follows that J0 is externally definable. Let E be the
equivalence relation defined by aEb ⇐⇒ ψ(G, a) = ψ(G, b). Now apply the previous
lemma to the structure (G, J0/E).

By Proposition 3.0.3 every dp-minimal profinite group (G, I) has an open abelian
subgroup. Now Proposition 6.1.3 implies the following:

Proposition 6.1.4. Let G be a dp-minimal group and let ϕ(x, y) be a formula. Let
Nϕ be the family of all normal subgroups which are finite intersections of conjugates
of ϕ-definable subgroups of finite index. If Nϕ is infinite, then there is N ∈ Nϕ such
that for all M ∈ Nϕ the quotient N/(N ∩M) is abelian.

Proof. The profinite group (lim←−N∈Nϕ G/N,Nϕ) is dp-minimal and therefore is virtually
abelian by Proposition 3.0.3. Since the quotients G/N are preserved, this implies the
proposition.

Remark 6.1.5. By Theorem 3.0.4 there are essentially two types of dp-minimal profinite
groups. This will also be seen in the abelian quotients in the statement of Proposi-
tion 6.1.4.
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Remark 6.1.6. By Proposition 5.1 of [31] every profinite NIP group (G, I) has an open
prosolvable subgroup. Hence if we only assume NIP in the previous theorem, the
quotients will be solvable instead of abelian (see Theorem 8.7 of [7]).

6.2. Strong homogeneity of profinite groups
Jarden and Lubotzky [14] showed that two elementarily equivalent profinite groups
are isomorphic if one of them is finitely generated. This was generalized to strongly
complete profinite groups by Helbig [13]. The tools used by Helbig and the construction
in Section 6.1 give a proof for strong homogeneity.
Let G be a profinite group and suppose (Ni : i ∈ I) is a neighborhood basis at the

identity consisting of open normal subgroups. Let LP be the group language expanded
by a family of unary predicates (Pi : i ∈ I). We consider G as an Lp structure by
setting Pi(G) = Ni. Note that if G∗ is an elementary expansion, then there is a natural
LP -structure on the quotient G∗/(⋂i∈I Pi(G∗)).

Lemma 6.2.1. Let G a profinite group equipped with an LP structure as above. Let
G∗ be an elementary extension of G in the language LP . Then the composition

G→ G∗ → G∗/(
⋂
i∈I

Pi(G∗))

is an LP -isomorphism.

Proof. The lemma follows from the same arguments as Lemma 6.1.1.

Proposition 6.2.2. Let G and H be profinite groups as LP structures such that
the predicates (Pi : i ∈ I) encode neighborhood bases at the identity consisting of
open normal subgroups in both groups. Suppose A ⊆ G is a subset and f : A → H
is an elementary map with respect to the language LP . Then f extends to an LP -
isomorphism between G and H.

Proof. Let G∗ be a common strongly |A|+-homogeneous elementary extension of G
and H. We can find f̃ ∈ Aut(G∗) such that f̃ |A = f . Since f̃ is an LP -automorphism,
it induces an automorphism of G∗/(⋂i∈I Pi(G∗)). Now use Lemma 6.2.1 to get the
desired isomorphism between G and H.

The following observation in Remark 3.12 in [13] is a consequence of Theorem 2 in
[30] and Corollary 52.12 in [19]:

Theorem 6.2.3. Let G be a profinite group. Then the following are equivalent:

(a) G is strongly complete.

(b) For each finite group A there exists a group word w such that w(A) = 1 and
w(G) is open in G.
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6. Further results

Recall that a group word has finite width if 〈w(G)〉 = w(G)n for some n > ω. We
will make use of the following result:

Proposition 6.2.4 (Proposition 5.2(b) of [37]). Let G be a profinite group. If w is a
group word, then w(G) is closed in G if and only if w has finite width in G.

Proposition 6.2.5. Let G and H be profinite groups. Let A ⊆ G be a subset of G
and let f : A → H be an elementary map. If one of the groups is strongly complete,
then f extends to an isomorphism.

Proof. By Theorem 6.2.3 and Proposition 6.2.4 strong completeness is a first-order
property among profinite groups. For each finite group A there is a group word wA
such that wA(A) = 1, wA(G) is open in G, and wA(H) is open in H. Note that
by Proposition 6.2.4 and elementary equivalence of G and H, wA(G) and wA(H) are
definable by the same formula without parameters.

If N is an open normal subgroup of G then wG/N (G/N) = 1 and hence wG/N (G) ⊆
N . Therefore the family (wB(G) : B a finite group) is a neighborhood basis at the
identity.
Hence we may consider G and H as LP -structures where the predicates are given

by PB(G) = wB(G). By Proposition 6.2.2 f extends to an isomorphism.

6.3. A result on families of subgroups of NTP2 groups
By Theorem 1.1 of [31] a full profinite NIP group is NIP if and only if it is NTP2.
Since the structure of these groups is determined by the lattice of subgroups, this only
depends on a single formula. We will show a version for formulas in NTP2 groups. We
will use the following lemma by Macpherson and Tent on groups in NTP2:

Lemma 6.3.1 (Lemma 4.3 in [31]). Let G be an ∅-definable group in a structure with
NTP2 theory, and ϕ(x, ȳ) a formula implying x ∈ G. Then there is k = kϕ ∈ N
such that the following holds. Suppose that H is a subgroup of G, π : H −→ Πi∈JTi
is an epimorphism to the Cartesian product of the groups Ti, and πj : H −→ Tj
is for each j ∈ J the composition of π with the canonical projection Πi∈JTi → Tj.
Suppose also that for each j ∈ J , there is a subgroup R̄j ≤ G and group Rj < Tj
with R̄j ∩H = π−1

j (Rj), such that finite intersections of the groups R̄j are uniformly
definable by instances of ϕ(x, ȳ). Then |J | ≤ k.

Proposition 6.3.2. Let G be an NTP2 group and let ϕ(x, y) be a formula such that
|x| = 1. Suppose that the family {ϕ(G, b) : b ∈ G} consists of normal subgroups of G
and is closed under finite intersections. Then ϕ(x, y) has NIP.

Proof. We aim to show that ϕ satisfies the Baldwin-Saxl condition. Let N1, . . . Nn be
instances of ϕ and fix kϕ as in Lemma 6.3.1. Now set Ck = ⋂

{Ni : 1 ≤ i ≤ n, i 6= k}
and C = ⋂

{Ni : 1 ≤ i ≤ n}. Note that Ci ∩ Ni = C and we have Ci ⊆ Nj if i 6= j.
Now set

H = 〈Ci : 1 ≤ i ≤ n〉.
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We then have
H/C ∼=

n∏
i=1

Ci/C.

Now set Ti = Ci/C and assume that all Ti are non-trivial. Let

π : H → H/C =
n∏
i=1

Ti

be the natural projection and let πj : H → Tj be the projection on Tj . Set Rj = 1 < Tj
and put R̄j = Nj . Then

R̄j ∩H = Nj ∩H = π−1
j (Rj).

Hence Lemma 6.3.1 implies n ≤ kϕ.
If n > kϕ, then there must be 1 ≤ i ≤ n such that Ti = 1 and hence C = Ci

can be written as in intersection of n − 1 instances of ϕ. Inductively this shows that
any intersection of instances of ϕ is an intersection of at most kϕ instances. Hence ϕ
satisfies the Baldwin-Saxl condition.
This implies that ϕ has NIP: Otherwise we can find a constant a and an indiscernible

sequence (bi)i<ω such that

|= ϕ(a, bi) ⇐⇒ i is odd.

Set n = kϕ and take i0, . . . in < ω, all of them odd. By the Baldwin-Saxl lemma we
may assume

Hi0 ∩ . . . Hin = Hi1 ∩ . . . Hin .

By indiscernibility this implies

Hi0+1 ∩ . . . Hin = Hi1 ∩ . . . Hin .

But this is a contradiction since a 6∈ Hi0+1.

While it is clearly sufficient to assume that the ϕ-definable subgroups normalize
each other, the above proof requires some normality assumption.
Question 6.3.3. Does Proposition 6.3.2 hold even without any normality assumption?
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Part II.

Planes in sharply 2-transitive groups
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7. Introduction and overview

The standard example of a sharply 2-transitive group is of the form AGL1(K) ∼=
K+oK∗ where K is a field or more generally a near-field. A sharply 2-transitive group
is called split if it is of this form; equivalently, if it has a nontrivial abelian normal
subgroup. By results of Zassenhaus and Jordan every finite sharply 2-transitive group
is in fact split. Recently the first examples of non-split infinite sharply 2-transitive
groups were constructed by Rips, Segev, and Tent in characteristic two [23], and by
Rips and Tent in characteristic zero [24]. However, these groups are not of finite
Morley rank. It is not known if non-split sharply 2-transitive groups of finite Morley
rank exist.

The Algebraicity Conjecture by Cherlin and Zilber states that an infinite simple
group of finite Morley rank should be an algebraic group over an algebraically closed
field. This is known for groups of Morley rank up to three. Cherlin classified connected
groups of Morley rank at most 3 up to the existence of a bad group. Frécon very re-
cently showed that these bad groups of Morley rank 3 do not exist [12] and completed
Cherlin’s classification. Epstein and Nesin showed in [11] that the Algebraicity Con-
jecture would imply that Frobenius groups of finite Morley rank split. Since sharply
2-transitive groups are Frobenius groups, sharply 2-transitive groups of finite Morley
rank can be considered a test case for the Algebraicity Conjecture. If the Morley rank
of a sharply 2-transitive group is at most 4, then it is known that the group must be
standard.

Recent results by Altınel, Berkman, and Wagner [3] show that any infinite sharply 2-
transitive group of finite Morley rank and characteristic 2 is split and that any infinite
split sharply 2-transitive group of finite Morley rank of characteristic different from 2
is of the form AGL1(K) for some algebraically closed field K.

If G is an infinite non-split sharply 2-transitive group of finite Morley rank such
that char(G) 6= 2, then G admits a point-line geometry on the set of its involutions
which has been studied by Borovik and Nesin in Section 11.4 of [5]. We show that G
must be simple if the lines in this geometry are strongly minimal. Moreover, we show
that this geometry cannot contain a proper projective plane.

This observation about planes is the starting point of this work. We use the geometry
to prove new rank inequalities for G. These rank inequalities then imply:

Theorem. A sharply 2-transitive group of Morley rank 6 is split and hence of the
form AGL1(K) for an algebraically closed field K of Morley rank 3.

This result also holds true if char(G) = 2. Our geometric arguments are similar to
those used by Frécon in [12] to show that there is no bad group of Morley rank 3.
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We consider generic projective planes which generalize proper projective planes. Our
proof consists of the following two parts:

(a) Show that a sharply 2-transitive group of finite Morley rank and
characteristic 6= 2 cannot contain a generic projective plane.

(b) Find such a plane in certain rank configurations.

This outline is remarkably similar to the outline of Frécon’s proof. However, the two
parts are proved differently. Part (a) relies on a generalization of Bachman’s theorem:
We show that if H ≤ G is a definable subgroup, then H ∩ J cannot be a generic
projective plane. To find a generic projective plane in (b), we utilize properties of the
product map J × J × J → J3. The role of this map in our proof is similar to the role
of the commutator map in Frécon’s proof.
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8.1. Sharply 2-transitive groups
A permutation group G acting on a set X, |X| ≥ 2, is called sharply 2-transitive if
it acts regularly on pairs of distinct points, or, equivalently, if G acts transitively on
X and for each x ∈ X the point stabilizer Gx acts regularly on X \ {x}. For two
distinct elements x, y ∈ X the unique g ∈ G such that (x, y)g = (y, x) is an involution.
Hence the set J of involutions in G is non-empty and forms a conjugacy class. We put
J2 = {ij : i, j ∈ J} and call the elements of J2 translations extending the terminology
used in the standard examples of sharply 2-transitive groups.
The (permutation) characteristic of a group G acting sharply 2-transitively on a set

X is defined as follows: put char(G) = 2 if and only if involutions have no fixed points.
If involutions have a (necessarily unique) fixed point, the G-equivariant bijection i 7→
fix(i) allows us to identify the given action of G on X with the conjugation action of G
on J . Thus in this case, the nontrivial translations also form a single conjugacy class.
We put char(G) = p (or 0) if translations have order p (or infinite order, respectively).
For standard examples this definition of characteristic agrees with the characteristic
of the field.
The following are well-known properties of sharply 2-transitive groups:

Remark 8.1.1. Let G be a sharply 2-transitive group of characteristic char(G) 6= 2.

(a) Cen(i) acts regularly on J \ {i},

(b) the set J acts regularly on J , i.e. for any two involutions i, j ∈ J there is a
unique involution k ∈ J such that ik = j, and

(c) J2 ∩ Cen(i) = {1} for all i ∈ J .

In particular, a nontrivial translation does not have a fixed point.
The crucial criterion for the splitting of a sharply 2-transitive group is the follow-

ing [18]:

Theorem 8.1.2. A sharply 2-transitive group G splits if and only if the set of trans-
lations J2 is a subgroup of G (and in that case, J2 must in fact be abelian).

Since we aim to show that sharply 2-transitive groups of finite Morley rank are
necessarily split, we will be focusing on the failure of J2 being a subgroup. By Theorem
3.7 of [15] the group G is split if and only if iJ = J2 for all i ∈ J . It then follows from
Remark 8.1.1 that:

Proposition 8.1.3. If G is split, then G = iJ o Cen(i) for any i ∈ J .
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8.2. Groups of finite Morley rank
We assume that the reader is familiar with groups of finite Morley rank and we will give
a quick overview about the notions and tools that we will use. A detailed introduction
to the topic can be found in [21] and [5]. We will denote Morley rank by MR and
Morley degree by MD.

8.2.1. Zilber’s Indecomposability Theorem
Definition 8.2.1. A definable subset A of a group G is indecomposable if for every
definable subgroup H ≤ G the cardinality

|{aH : a ∈ A}|

is either 1 or infinite.

In many cases it suffices to check indecomposability for a smaller family of subgroups:

Proposition 8.2.2. Let G be a stable group and suppose S is a definable group of
automorphisms of G. If A ⊂ G is a definable subset which is normalized by S, then A
is indecomposable if Definition 8.2.1 is satisfied for all S-normal definable subgroups
H ≤ G.

Theorem 8.2.3 (Zilber’s Indecomposability Theorem). Let G be a group of finite
Morley rank and let Ai, i ∈ I, be a family of indecomposable definable subsets such
that 1 ∈ Ai for all i ∈ I. Then the group

H = 〈
⋃
{Ai : i ∈ I}〉

is definable and connected. In fact, there are i1, . . . im ∈ I, m ≤ MR(H), such that

H = (Ai1 · · ·Aim)2.

Remark 8.2.4. The proof of Theorem 8.2.3 shows that we have H = (Ai1 · · ·Aim)2

whenever Ai1 · · ·Aim has maximal rank among finite products of the Ai. In that case
MR(H) = MR(Ai1 · · ·Aim).

8.2.2. Definable group actions
For definable sets X and Y , we write X ≈ Y if and only if MR(X∆Y ) < MR(X).
Then we have

X ≈ Y ⇐⇒ (MR,MD)(X) = (MR,MD)(X ∩ Y ) = (MR,MD)(Y )

and hence ≈ defines an equivalence relation on definable sets.
If G is a group of finite Morley rank and X ⊆ G is a definable subset, then

N≈G (X) = {g ∈ G : Xg ≈ X}

is a definable subgroup of G.
We will use the following result by Wagner:
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Proposition 8.2.5 (Lemma 4.3 of [35]). Let G be a group acting definably on a set
X in an ω-stable structure. Let Y be a definable subset of X such that gY ≈ Y for all
g ∈ G. Then there is a G-invariant Z ⊆ X such that Z ≈ Y .

8.2.3. Groups of small rank
By a result of Reineke connected groups of Morley rank 1 are abelian. Groups of
Morley rank at most 3 have been studied by Cherlin in [6]. He classified them up to
the possible existence of a bad group of Morley rank 3. It was very recently shown by
Frécon [12] that these bad groups do not exist. We obtain the following description of
groups of small rank:
Let G be a connected group of finite Morley rank.

(a) If MR(G) = 1, then G is abelian.

(b) If MR(G) = 2, then G is solvable.

(c) If MR(G) = 3, then G is solvable or G ∼= PSL2(K) or G ∼= SL2(K) where K is
an algebraically closed field.

8.3. Bachmann’s theorem
The following form of Bachmann’s theorem is due to Schröder [25] (see also sections
8.2 and 8.3 in [5]).

Theorem 8.3.1 (Bachmann). Suppose the set J of all involutions of a group G admits
the structure of a projective plane such that three involutions i, j and k are collinear if
and only if their product ijk is an involution. Then the subgroup 〈J〉 is isomorphic to
SO3(K, f) for some G-interpretable field K of characteristic 6= 2 and a nonisotropic
quadratic form f on K3.

Borovik and Nesin proved the following:

Theorem 8.3.2 (Theorem 8.18 of [5]). The conditions in Theorem 8.3.1 cannot be
satisfied by a group of finite Morley rank.
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9. A point-line geometry

Let G be a sharply 2-transitive group of characteristic char(G) 6= 2 and let J be the
set of involutions. If commuting is transitive on the set of non-trivial translations in
J2, there is a well-behaved point-line geometry first defined by Schröder [25] following
ideas of Bachmann [4]. We follow the construction in Section 11 of [5] although we
explicitly define lines as subsets of J .

9.1. Points and lines
The equivalent conditions in the following lemma can be viewed as geometricity con-
ditions. They will allow us to define the point-line geometry.

Lemma 9.1.1. If char(G) 6= 2, the following conditions are equivalent:

(a) Commuting is transitive on J2\{1}, i.e. [x, y] = 1 defines an equivalence relation
on J2 \ {1}.

(b) iJ ∩ kJ is uniquely 2-divisible for all involutions i 6= k ∈ J .

(c) Cen(ik) = iJ ∩ kJ is abelian and is inverted by k for all i 6= k ∈ J .

(d) The set {Cen(σ) \ {1} : σ ∈ J2 \ {1}} forms a partition of J2 \ {1}.

Proof. (a) ⇒ (b): Note that since (ij)2 = iij ∈ iJ every element of iJ has a unique
square-root in iJ . Let τ ∈ iJ ∩ kJ . By assumption the group

A = 〈Cen(τ) ∩ J2〉 ≤ Cen(τ)

is abelian. Moreover, A ∩ J = ∅ by Remark 8.1.1. Hence the squaring map is an
injective group homomorphism from A to A.
There is σi ∈ iJ such that σ2

i = τ and therefore σi ∈ Cen(τ)∩iJ because commuting
is transitive. Similarly we find σk ∈ Cen(τ)∩ kJ such that σ2

k = τ . Since the squaring
map is injective, it follows that σi = σk ∈ iJ ∩ kJ . Therefore iJ ∩ kJ is uniquely
2-divisible.
(b) ⇒ (c) is contained in Lemma 11.50 iv of [5].
(c) ⇒ (d) and (d) ⇒ (a) are obvious.

Clearly, these conditions are satisfied in split sharply 2-transitive groups by Theo-
rem 8.1.2. Furthermore, by Lemma 11.50 of [5], these conditions are automatically
satisfied whenever char(G) = p 6= 0, 2 or in case G satisfies the descending chain condi-
tion for centralizers and hence in particular if G has finite Morley rank. On the other
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hand, the examples constructed by Rips, Segev, and Tent [23] (see also [33]) show that
in characteristic 2 these conditions need not be satisfied. The non-split examples in
characteristic 0 constructed by Rips and Tent [24] satisfy the assumptions and it is
an open question whether non-split sharply 2-transitive groups exist in characteristic
0 which fail to satisfy these conditions.

If any of the conditions of Lemma 9.1.1 is satisfied, we obtain a point-line geometry
as follows: the points of this geometry are the involutions of G. Given two points
i 6= j ∈ J , we set

`ij = {k ∈ J : ij ∈ kJ}
to be the (unique) line containing i and j. By Lemma 9.1.1 we have ij ∈ kJ if and
only if (ij)k = (ij)−1 = ji. Moreover, (ij)k = ji if and only if k ∈ iCen(ij). Therefore
we have

`ij = {k ∈ J : ij ∈ kJ} = i Cen(ij) = {k ∈ J : (ij)k = ji}.

If u 6= v are contained in `ij , then

ij ∈ uJ ∩ vJ = Cen(uv)

and hence Cen(uv) = Cen(ij) by Lemma 9.1.1.
This implies that the point-line geometry is well-behaved: any two points are con-

tained in a unique line and (hence) any two lines intersect in at most one point.
If G satisfies the geometricity conditions, then G contains split sharply 2-transitive

subgroups:

Proposition 9.1.2 (Theorem 11.51 of [5]). Suppose char(G) 6= 2 and suppose that G
satisfies the conditions in Lemma 9.1.1. Let i and j be two distinct involutions. Then

NG(Cen(ij)) = Cen(ij) oNCen(i)(Cen(ij))

is split sharply 2-transitive.

In that case, `ij is the set of involutions inNG(Cen(ij)) = Cen(ij)oNCen(i)(Cen(ij)).
Also note that

i`ij = `2ij = Cen(ij).

9.2. Projective planes
We first observe that the geometry associated to such a group G does not contain a
proper projective plane.

Lemma 9.2.1. Suppose char(G) 6= 2 and suppose that G satisfies the conditions in
Lemma 9.1.1. Let H ⊆ J2 be a subgroup of G which is uniquely 2-divisible and
normalized by an involution i ∈ J . Then H = Cen(σ) for some σ ∈ J2 \ {1}.

Proof. H is uniquely 2-divisible and i acts as an involutionary automorphism without
fixed points. Neumann showed in [18] that such a group is abelian and hence H must
be contained in the centralizer of some translation.
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Proposition 9.2.2. Suppose char(G) 6= 2 and suppose that G satisfies the conditions
in Lemma 9.1.1. There is no proper projective plane X ⊆ J . I.e. if X ⊆ J satisfies

(a) ∀i 6= j ∈ X : `ij ⊆ X, and

(b) if λ and δ are lines contained in X then λ ∩ δ 6= ∅,

then X contains at most one line.

Proof. Suppose X ⊆ J satisfies (a) and (b). Take σ, τ ∈ X2 \ {1} and let i be a
point in `σ ∩ `τ . We may write σ = ai, τ = ib for some a ∈ `σ, b ∈ `τ . Then
στ = ab ∈ X2. Therefore X2 is closed under multiplication and thus must be a
subgroup of G. Moreover, X2 is uniquely 2-divisible since it is a union of centralizers
of translations.
Each j ∈ X acts on X2 as an involutionary automorphism without fixed points. By

the previous lemma X2 ≤ Cen(σ) and hence X ⊆ `σ.

Remark 9.2.3. The non-existence of a proper projective plane in Proposition 9.2.2 can
also be seen as an instance of Bachmann’s theorem: If X ⊆ J is a proper projective
plane, then NG(X) ∩ J = X and hence Theorem 8.3.1 can be applied to NG(X).
Therefore 〈X〉 must be isomorphic to SO3(K, f) for a field K of characteristic 6= 2
and a nonisotropic quadratic form f on K3. Such a group would contain commuting
involutions and thus cannot be a subgroup of G.
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10. Sharply 2-transitive groups of finite
Morley rank

Let G be a non-split sharply 2-transitive group of finite Morley rank with char(G) 6= 2
and let J denote the set of involutions in G. By Lemma 11.50 of [5], iJ∩jJ is uniquely
2-divisible for all i 6= j ∈ J and so we can use the point-line geometry introduced in
the previous section. We set n = MR(J) and k = MR(Cen(ij)) for involutions i 6= j.
Note that k does not depend on the choice of i and j.

Since G acts sharply 2-transitively on J , it is easy to see that MR(G) = 2n and
MR(J2) = 2n − k. Moreover, G and Cen(ij) have Morley degree 1 by Lemma 11.60
of [5].
Altınel, Berkman, and Wagner [3] showed that split sharply 2-transitive groups of

finite Morley rank of characteristic 6= 2 are standard. In particular,

NG(Cen(ij)) = Cen(ij) oNCen(i)(Cen(ij))

is standard, i.e. of the form AGL1(K) for an algebraically closed field K. This implies
the following:

Lemma 10.0.1. NG(Cen(ij)) is planar, i.e.

NG(Cen(ij)) = Cen(ij) ∪
⋃
t∈`ij

NCen(t)(Cen(ij)).

Proof. Theorem 7.2 and Theorem 7.3 in [15].

We will need the following lemma about lines:

Lemma 10.0.2. Let λ be a line.

(a) Suppose λi = λj for involutions i 6= j. Then i, j ∈ λ.

(b) Suppose λ ∩ λi 6= ∅ for some involution i. Then i ∈ λ.

Proof. Part (a) is contained in the proof of Theorem 11.71 in [5], part (b) is Lemma
11.59 in [5]. Since our definition of lines is slightly different from the one given in [5],
we include proofs.

(a) If λi = λj , then ij ∈ NG(λ) and hence ij ∈ NG(λ2). Now λ2 = Cen(σ)
for some σ ∈ J2 \ {1} such that λ = `σ. Fix s ∈ λ. The group NG(Cen(σ)) =
Cen(σ) oNCen(s)(Cen(σ)) is split sharply 2-transitive by Proposition 9.1.2. Hence

ij ∈ NG(Cen(σ)) ∩ J2 = Cen(σ)
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and therefore i, j ∈ `σ = λ.
(b) We may assume λ 6= λi. Hence there must be a unique j ∈ λ ∩ λi. But then j

is fixed by i and by Lemma 8.1.1 (b) we have i = j ∈ λ.

Lemma 10.0.3. Let H ≤ G be a definable subgroup such that MR(H ∩ J) = 2k and
MD(H ∩ J) = 1. Then MR({λ : λ is a line s.t. λ ⊆ H ∩ J}) < 2k.

Proof. This is proved in the same way as Proposition 11.71 of [5]. Put Z = H ∩J and
let Λ be the set of lines contained in Z. Since each λ ∈ Λ has Morley rank 2k many
preimages in Z × Z, we have MR(Λ) ≤ 2k. Now assume MR(Λ) = 2k. By the above
argument we have MD(Λ) = 1 since MD(Z) = 1.
Let λ ∈ Λ be a line. By Lemma 10.0.2 the family (λi : i ∈ Z \ λ) consists of Morley

rank 2k many lines which do not intersect λ. Hence the set {δ ∈ Λ : λ∩ δ = ∅} ⊆ Λ is
a generic subset of Λ.

We aim to find a line which intersects Morley rank 2k many lines contradicting
MD(Λ) = 1. For x ∈ Z set Λx = {λ ∈ Λ : x ∈ λ} and set B(x) = ⋃ Λx ⊆ Z. Note that
MR(B(x)) = MR(Λx) + k and hence MR(Λx) ≤ k for all x ∈ Z. Since each λ ∈ Λ
contains Morley rank k many points and we assume MR(Λ) = 2k = MR(H ∩ J), we
must have MR(Λx) = k for a generic set of x ∈ Z.

Fix x0 ∈ Z such that Λx0 has Morley rank 2k. Then B(x0) ⊆ Z is generic and
hence MR(Λx) = k for a generic set of x ∈ B(x0). Since B(x0) = ⋃ Λx0 , we can find
a line λ ∈ Λx0 such that MR(Λx) = k for a generic set of x ∈ λ. But then λ intersects
Morley rank 2k many lines in Λ.

10.1. Generic projective planes
We will need a more general version of Proposition 9.2.2. Therefore we need to consider
generalizations of projective planes. For definable sets X and Y we write X ≈ Y if
and only if MR(X∆Y ) < MR(X) (as explained in Section 8.2.2).

Definition 10.1.1. A definable subset X ⊆ J is a generic projective plane if

(a) MR(X) = 2k and MD(X) = 1, and

(b) MR(ΛX) = 2k and MD(ΛX) = 1,

where ΛX is the set of all lines λ ⊆ J such that λ ∩X ≈ λ.

Lemma 10.1.2. Let X ⊆ J be a definable set of Morley rank 2k and Morley degree
1. The following are equivalent:

(a) X is a generic projective plane,

(b) MR(ΛX) ≥ 2k,

(c) MR({λ ∈ ΛX : x ∈ λ}) = k for a generic set of x ∈ X.
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10.2. Products of involutions

Proof. Since MR(X) = 2k and each line in ΛX contains Morley rank k many points
in X, each point is contained in at most Morley rank k many lines in ΛX . The lemma
follows from easy counting arguments.

Remark 10.1.3. Lemma 10.0.3 can be seen as a version of Bachmann’s theorem for
generic projective planes: Let H be as in the statement of Lemma 10.0.3. Bachmann’s
theorem and Theorem 8.3.2 imply that H ∩ J cannot be a proper projective plane.
If we assume MR({λ : λ is a line s.t. λ ⊆ H ∩ J}) ≥ 2k, then H ∩ J is a generic
projective plane. Hence Lemma 10.0.3 can be restated as: If H ≤ G is a definable
subgroup, then H ∩ J cannot be a generic projective plane.

Lemma 10.1.4. Assume X ⊆ J is a generic projective plane and let Z ⊆ J be a
definable subset such that X ≈ Z. Then Z is a generic projective plane.

Proof. For x ∈ X put Λx = {λ ∈ ΛX : x ∈ λ}. If MR(Λx) = k, then B(x) = ⋃ Λx ≈
X. In particular, B(x) ≈ Z for a generic set of x ∈ X ∩Z. If B(x) ≈ Z, then Λx ∩ΛZ
must have Morley rank k. Hence it follows from the previous lemma that Z must be
a generic projective plane.

Proposition 10.1.5. G does not contain a generic projective plane X ⊆ J .

Proof. Assume X ⊆ J is a generic projective plane and put

H = N≈G (X) = {g ∈ G : Xg ≈ X}.

By Proposition 8.2.5 we can find Z ⊆ J, Z ≈ X such that H ≤ NG(Z). If the set
Λx = {λ ∈ ΛX : x ∈ λ} has Morley rank k, then ⋃

λ∈Λx λ ≈ X and hence x ∈ H. Thus
X ∩H ⊆ X is generic and therefore we may assume Z ⊆ H. Since H normalizes Z, it
follows from Lemma 8.1.1 (b) that Z must be generic in H ∩J . Hence we may assume
Z = H ∩ J .

Note that if λ is a line such that λ ∩ H ⊆ λ is generic, then λ ⊆ H. Each line
contained in H has rank 2k many preimages in Z ×Z. Since X is a generic projective
plane and Z ≈ X, the previous lemma implies that Z is a generic projective plane
and hence the set of all lines in H has rank 2k and degree 1. This contradicts Lemma
10.0.3.

10.2. Products of involutions
Proposition 10.2.1. (a) The set iJ is indecomposable for all i ∈ J .

(b) 〈J2〉 is a definable connected subgroup. In particular, there is a bound m such
that any g ∈ 〈J2〉 is a product of at most m translations.

(c) J2 is not generic in 〈J2〉.

(d) MR(J3) > MR(J2).
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10. Sharply 2-transitive groups of finite Morley rank

Proof. (a) Fix an involution i ∈ J . The set iJ is normalized by Cen(i), hence it suffices
to check indecomposability for Cen(i)-normal subgroups. If H ≤ G is a Cen(i)-normal
subgroup of G, then either Cen(ij) ≤ H for all j ∈ J \ {i} or H ∩ Cen(ij) has
infinite index in Cen(ij) for all j ∈ J \ {i}. Therefore the set iJ = ⋃

j∈J\{i}Cen(ij) is
indecomposable.
(b) Since 〈J2〉 = 〈iJ〉, this follows from Zilber’s indecomposability theorem using

(a).
(c) Fix two involutions i 6= j. We claim that

MR({τ ∈ J2 : iτ = j}) ≥ n− k.

To see this note that for any r ∈ J by Remark 8.1.1 there is a unique s ∈ J such
that irs = j. Hence the set Tij = {(r, s) : irs = j} ⊂ J × J has Morley rank n. The
equivalence classes on Tij given by (r, s) ≡ (r′, s′) if and only if rs = r′s′ have Morley
rank at most k. Hence the claim follows.
In particular, for any σ ∈ J2 \ {1} and i ∈ J the set Σi = {τ ∈ J2 : iσ = iτ} has

Morley rank at least n− k. Since for i 6= j ∈ J the sets Σi and Σj intersect only in σ,
it follows that {τ ∈ J2 : ∃i ∈ J : iσ = iτ} has Morley rank (at least) 2n−k = MR(J2).
Hence for every σ ∈ J2 \ {1} the set

{τ ∈ J2 : στ−1 has a fixed point}

is a generic subset of J2. Since translations do not have fixed points, it follows that

MR(σJ2 ∩ J2) < 2n− k.

Thus, J2 is not generic in 〈J2〉.
(d) Suppose MR(J2) = MR(J3). Since (iJ)2 = J iJ = J2 and (iJ)3 = iJ3 we

have MR((iJ)2) = MR((iJ)3) and by (the proof of) Zilber’s indecomposability the-
orem we get MR(〈iJ〉) = MR((iJ)2). In particular, J2 ⊆ 〈iJ〉 is a generic subset
contradicting (c).

Remark 10.2.2. The non-split examples of sharply 2-transitive groups of character-
istic 0 constructed in [24] contain unbounded products of translations. By Proposi-
tion 10.2.1 (b) they cannot have finite Morley rank.

Corollary 10.2.3. If the lines are strongly minimal, then G is simple.

Proof. Let N 6= 1 be a normal subgroup of G. Fix an involution i and an element
g ∈ N \ Cen(i). Then iig = (g−1)ig ∈ N and therefore N ∩ J2 6= 1. Since J2 \ {1}
is a conjugacy class, it follows that J2 ⊆ N . If k = 1 then N must be generic since
MR(J3) > MR(J2) = 2n− 1 and iJ3 ⊆ N . Therefore N = G.
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10.3. Rank inequalities

By Proposition 11.71 of [5] we have the following inequality:

Proposition 10.3.1. 0 < 2k < n.

We will improve this rank inequality. This will show that certain rank configurations
(i.e. combinations of n and k) cannot appear.

Theorem 10.3.2. Set l = MR(J3)−MR(J2) ≥ 1. Then n > 2k + l.

Proof. Consider the multiplication map µ : J × J × J → J3. For α ∈ J3 we set Xα to
be the set

Xα = {i ∈ J : ∃r, s ∈ J irs = α}.

Equivalently, Xα = {i ∈ J : iα ∈ J2} is the set of all involutions i such that iα is a
translation.
Since MR(J3) = 2n−k+l there must be some α ∈ J3\J such that µ−1(α) ≤ n+k−l.

Set X = Xα for such an α ∈ J3 \ J . If irs = α, then MR({j ∈ J : rs ∈ jJ}) = k and
hence MR(µ−1(α)) = MR(X) + k. Therefore we have MR(X) ≤ n− l.

We now aim to show that 2k < MR(X). If irs = α and v ∈ `rs, then `iv ⊆ X: We
have irs = ivu for some u ∈ `rs and moreover for each p ∈ `iv there is some q ∈ `iv
such that pq = iv and hence pqu = ivu = irs = α. Hence each point in X is contained
in Morley rank k many lines which are contained in X. Hence X must have Morley
rank at least 2k.
Now assume MR(X) = 2k and set m = MD(X). Let Λ be the set of lines obtained

as above. For each x ∈ X the set {λ ∈ Λ : x ∈ λ} has Morley rank k and Morley degree
1. Write X as the disjoint union of definable sets X1, . . . Xm, each of Morley rank 2k
and Morley degree 1. For a = 1, . . .m let Λa ⊆ Λ be the set Λa = {λ ∈ Λ : λ∩Xa ≈ λ}.
Since each x ∈ X is contained in Morley rank k many lines in Λ and each line in Λ
contains Morley rank k many points, the set Λ must have Morley rank 2k. Hence
there is b such that Λb has Morley rank 2k. Now Xb is a generic projective plane. This
contradicts Proposition 10.1.5.
Therefore 2k < MR(X) ≤ n− l and hence 2k + l < n.

10.4. Sharply 2-transitive groups of Morley rank 6

As an immediate consequence of the improved rank inequality, sharply 2-transitive
groups of Morley rank 6 and characteristic 6= 2 must be split (and hence standard by
[3]). The description of the structure of groups of small Morley rank in Section 8.2.3
will also imply this in characteristic 2.

Theorem 10.4.1. Let G be a sharply 2-transitive group of any characteristic and
assume MR(G) = 6. Then G = AGL1(K) for an algebraically closed field K of
Morley rank 3.
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Proof. If char(G) 6= 2, then this follows from Theorem 10.3.2. Now assume char(G) =
2. Then G is split by [3] and the point stabilizers have Morley rank 3 and are connected
(by Lemma 11.60 of [5]). Since they do not contain involutions they must be solvable
by Section 8.2.3. By Corollary 11.66 of [5] a split sharply 2-transitive group of finite
Morley rank where the point stabilizer contains an infinite normal solvable subgroup
must be standard.
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