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1. Introduction 

1.1.  Electroencephalogram and brain research  

The electroencephalogram (EEG), developed and introduced by Hans Berger 1924 

(Berger, 1929, 1939), is a diagnostic tool for the supervision of brain activity. Electrodes, 

either placed on the scalp of a person or directly implanted into the brain, are used to 

record signals of summed electrical (field potential) activity. Therefore, it is a 

multifunctional tool suited to investigate states of the patient’s brain activity during 

clinical applications such as neurology, anesthesiology or intensive care. EEG is also used 

in a wide variety of research areas including neuroscience, biomedical engineering and 

neural engineering (Chen, 2014; Motamedi-Fakhr et al., 2014; Lüttjohann et al., 2016; He 

et al., 2018; Li et al., 2020). Specialists are required to decipher specific patterns 

belonging either to a pathological or physiological background. The automation of this 

process would make the application of EEG less dependent on professionals, quicker and 

reproducible to a higher degree. The structured form of EEG signals enables an 

automatized learning algorithm called Machine learning be used as a tool to process 

these data. Up to this point, several Machine learning algorithms are used for the 

differentiation and detection of EEG signals. These signals could correspond to the 

intention of a person to move his or her arm, thought processes or the detection of 

epileptic seizures (Aljalal et al., 2020; Siddiqui et 

al., 2020). Typically, EEG data is preprocessed in 

some ways to reduce the information load, thus 

increasing the pattern recognition speed. There 

are numerous techniques to process EEG 

signals. One example, also applied in this thesis, 

is the wavelet transformation (see Figure 1). 

With the application of wavelet transformation, 

time-series signals like EEG can be divided into 

their frequency components that appear in the 

analyzed time interval. In contrast to the 

standard Fast Fourier Transformation (FFT), 

which also decomposes the EEG into its 

Figure 1: Wavelet transformation output of EEG. 
The signal is split into time (t) and frequency (f) 
components. A wavelet transformation of 2 seconds 
would be split into A (1 Hz), B (2 Hz) and C (4 Hz). 

A

B

C

1 2
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frequency content, the wavelet analysis does not use a fixed duration of the analysis 

window, but adjusts the duration of the window to the frequency being analyzed. 

Consequently, the wavelet analysis is regarded as more suitable for the analysis of rapidly 

fluctuating signals like the EEG (Ende et al., 1998). Spectral components of EEG signals 

are generally grouped into five main bands including: delta (0.5-4 Hz), theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-32 Hz) and gamma (32-100 Hz). Each category is correlated to 

a specific vigilance state (Figure 2); e.g. delta waves are mostly detected during deep 

sleep and are paired with loss of awareness (Abhang et al., 2016). However, during sleep 

several other components possessing a higher frequency content like short lasting sleep 

spindles with a frequency between 8-15 Hz or K-Complexes are present as well (Cash et 

al., 2009). Activities like thinking or other cognitive tasks consist of faster frequency 

components (Figure 2).  

Small alterations in this intricate crosstalk can impair the accurate functioning of the 

brain. One of the neurological diseases, which originates from misfiring of neurons, is 

known as epilepsy. Still, EEG is the gold standard technique for the diagnosis of epilepsy 

and it is frequently used in research investigating the underlying pathology of epilepsy 

(Coenen, 1995; Kessler & McGinnis, 2019; Johnson, 2019).  

EEG signals are limited to the spatial resolution in close proximity to the recording site of 

pyramidal cells (Murakami & Okada, 2006). To investigate communication between brain 

regions also relevant for the study of epilepsy, several connectivity analyses can be 

applied to the recorded EEG. In this thesis, the product of the wavelet power, which is 

Figure 2: EEG of vigilance stages. The change in vigilance from alertness to sleep onset (Top to bottom) is depicted in 
the left column. EEG is divided into six different stages of vigilance (A1-C) with its corresponding 2 second EEG samples  
frontal (F3) and occipital (O1) (Brainclinics, 2019).  
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assessed in EEG traces recorded at different brain locations, is used as a measure for 

synchrony between the areas. 

 

1.2.  Epilepsy and seizures  

Epilepsy is one of the oldest known neurological disorders, which dates back to 4000 BC 

(Fischer-Elfert, 2005). Briefly, 10% of all humans are experiencing an unprovoked seizure 

event during their lifetime according to the World Health Organization (WHO). 

Spontaneous seizures are the main characteristic of epilepsy, however seizures in general 

can be provoked by various influences that interrupt the neuronal crosstalk within the 

brain. Patients suffering from epilepsy are characterized by frequent unprovoked 

seizures. The International League against Epilepsy (ILAE) defined that patients suffer 

from epilepsy once they have two or more unprovoked seizures within a day, one 

unprovoked seizure and the probability of creating further seizures or the diagnosis of a 

known epilepsy syndrome (Fisher et al., 2017). During a seizure, multiple behavioral 

aspects can happen from twitching or jerking movements to loss of consciousness. Tonic-

clonic seizures display the mainstream view of epileptic seizure, in which the patient 

experiences characteristic spasms of the rump and extremities (clonic) accompanied by 

a sudden stiffness (tonic) (ILAE). These behavioral phenomena go along with specific 

hypersynchronous activity in the brain that can be picked up by an EEG. Epileptic seizures 

are grouped into either focal or generalized seizures. Focal seizures are found in one 

region of the brain with simple connotation causing for example twitching or sensational 

changes and complex connotation that might cause loss of consciousness depending on 

the severity of the seizure. Generalized seizures are subdivided in two categories. Primary 

generalized seizures have no clear onset zone and are seen all over the cortex from the 

start of the seizure. Secondary generalized seizures are also considered focal due to the 

start in focal brain regions with a later generalization. Such secondary generalized 

seizures are seen in an epilepsy syndrome called Childhood Absence Epilepsy. The 

combination of seizure types and behavioral symptoms, as well as the cause of the 

epileptic seizures specifies different epilepsy syndromes. Their origin can be divided into 

five different categories, namely: Metabolic, infectious, structural, genetic or of unknown 

cause (Pitkänen et al., 2006). 
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1.3.  Childhood Absence Epilepsy 

Childhood Absence Epilepsy (CAE) is seen in children between the age of 4 and 12 years. 

Between 10 - 17% of all children diagnosed with epilepsy develop this specific form of 

epilepsy (Loiseau et al., 1995). The distribution of this syndrome is not equally dispersed 

within humans. As it is also known in other forms of epilepsy, girls show a higher 

prevalence of CAE in comparison to boys (Waaler et al., 2000; Christensen et al., 2005). 

CAE counts as a generalized non-convulsive form of epilepsy. Most of the time it is 

considered as a mild or benign form of epilepsy with low risk of injuries (van Luijtelaar et 

al., 2017). Children are observed to show an impairment of their consciousness during 

seizure with little movements in their eyes and facial muscle (Panayiotopoulos, 1999).  

In the EEG, absence seizures show a characteristic pattern within the whole brain, which 

is build up by a slow wave component and a spike component (Figure 3). This pattern is 

also known as spike and wave discharge (SWD) and has a predominant frequency 

between 2.5-4 Hz in humans (Figure 4) (Pitkänen et al., 2006; Kessler & McGinnis, 2019). 

As the SWD pattern can be recorded all over the cortex, SWDs are commonly classified 

as generalized seizures. Moreover, as they arise rapidly from a seemingly normal 

background EEG, they have been regarded as sudden unpredictable events for a long 

Figure 3: EEG of a child with Childhood Absence Epilepsy. EEG pattern contains typical spike and wave discharge 
(SWD) (taken from Cerminara et al., 2012). 
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time. Detecting and sorting these specific patterns requires a specialist who can 

distinguish the known pathological rhythm of CAE (Pitkänen et al., 2006).  

On average, seizure events take 10 seconds. However, episodes can last from 1 to 44 

seconds and are known for their suddenness of arrival and passing (Sadleir et al., 2006; 

Matricardi et al., 2014). Patients can be observed to have brief staring spell during 

seizures, which can be misinterpreted as normal child behavior. During seizures, children 

can remain unresponsive to external stimuli like touch or questions addressed to them. 

Activities like chewing or playing are halted during seizures but continue after the event. 

The loss of consciousness might not be complete. After an episode, there are cases in 

which they do not remember what happened during it or even recognize the seizure 

event in general. However, sometimes they are able to recall the presented stimuli 

(Gloor, 1986; Rosenow et al., 1998; Drinkenburg et al., 2003). Although CAE seizures are 

mostly considered harmless, they do influence the child in their daily life and contribute 

to a deterioration of quality of life (Kessler & McGinnis, 2019). Time periods of reduced 

consciousness or transition phases between sleep and wakefulness make up the lion 

share of the overall seizure occurrence. Seizure events happen repeatedly during the day 

and are classified to occur up to several hundred times a day summing up to a 

considerable time interval. Most of the time, seizure appearance is linked to epochs of 

Figure 4: Close up view on SWD pattern showing repetitive spike and wave complexes seen in 
human EEG (Blue). Wavelet power depicted in Orange. (adapted from Glaba et al., 2020). 
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low activity, also attributing the time spend in school (Kessler & McGinnis, 2019). 

Although CAE is a mild form of epilepsy, patients still show cognitive, behavioral and 

psychiatric comorbidities and are often affected by attention deficit hyperactivity 

disorders and anxiety (Caplan et al., 2008; Shinnar et al., 2017). At the beginning of 

adolescence, CAE patients have a remission of their symptoms with a chance of 56% to 

95%. CAE patients with no remission make up 15%. They form other types of seizure, 

which have a more malign character like juvenile myoclonic epilepsy with its generalized 

tonic seizures, myoclonic seizures or persistent absence seizures (Wirrell et al., 1997; 

Callenbach et al., 2009; Puka et al., 2020). 

CAE patients have a high responsive rate of 60-95% to the antiepileptic medications 

available (Wirrell et al., 1997; Grosso et al., 2005). Although the gold standard prescribed 

medication was already introduced in the 1950’s, valproic acid and ethosuximide are still 

the main first-line medications (Wheless et al., 2007; Glauser et al., 2010). There are 

several other medications available but valproic acid and ethosuximide have the most 

reasonable side effects paired with high effectiveness. Ethosuximide is considered the 

main choice for the initial starting drug due to its mild adverse effects in comparison to 

valproic acid. Where valproic acid targets the T-type sodium channel, ethosuximide is 

addressing the T-type calcium channel. Both medications work as antagonists on the 

respective channels. Altering the calcium and sodium channel results in changes of the 

polarization preventing the formation of burst firing and thereby the formation of SWDs 

(Coulter et al., 1989; Gören & Onat, 2007). Interestingly, CAE symptoms of patients 

aggravate by using standard drugs like carbamazepine and phenytoine available for 

generalized convulsive and partial seizures (Panayiotopoulos, 1999).  

Up to this point, CAE is considered an idiopathic disease with a polygenic background 

(Crunelli & Leresche, 2002; Asadi-Pooya & Homayoun, 2020). There have been several 

debates about involved regions but currently, there are two major theories on the origin 

of SWDs. While both theories coincide with the imperative importance of a functioning 

thalamo-cortical system, the first theory focuses on the thalamus as the most important 

brain structure, while the second considers the cortex as more important (see paragraph 

1.5 for more detail). 
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1.4.  The thalamo-cortical system 

As mentioned above, both theories on the origin of SWD coincide with the imperative 

importance of a functioning thalamo-cortical system. The brain’s function is heavily 

dependent on the internal interconnection it creates between brain regions. These 

interconnections are also known as neural circuits or loops, which carry information to 

manage bodily functions such as motor instructions, hormonal responses and many more 

(Purves et al., 2001). Neuronal disorders like CAE are known to display pathological 

changes in the neural circuitry. These changes in the intricate circuits cause the formation 

of the SWD pattern. Connections between the cortical and thalamic cells are mostly 

reciprocal and excitatory. In between the cortex and thalamus lies the thalamic reticular 

nucleus (RTN) taking up a regulatory function with its mostly inhibitory connections 

produced by gamma-Aminobutyric acid (GABA)-producing neurons. Both inhibitory and 

excitatory signaling are involved in the feedforward and feedback connections in the 

cortico-thalamo-cortical network (Sherman & Guillery, 2005; McCafferty et al., 2018). 

Thalamic nuclei involved in the somatosensory thalamo-cortical system can be classified 



The thalamo-cortical system 
 

14 

as either “first” order or “higher” order (Sherman & Guillery, 2002). First order nuclei 

receive driving inputs from subcortical areas, whereas higher order nuclei receive driving 

inputs from cortical areas.  

The ventral-postero-medial nucleus (VPM) as an example is a first order nucleus and part 

of the cross talk between thalamic areas and cortical areas. It receives sensory 

information from the head and transmits them to the neurons of the somatosensory 

cortex in layer IV (Zhang & Deschênes, 1997; Oda et al., 2004). The cerebral cortex has a 

unique morphology with its six known layers (I-VI) also known as the neocortex, each with 

a particular composition and a laminar build (Figure 5). These six layers are termed (I) 

molecular layer, (II) external granular layer, (III) external pyramidal layer, (IV) internal 

Figure 5. Cross section of the neocortex with its six layers. Three different types of staining were used. Golgi staining 
to show the nervous tissue, Nissl staining to visualize the cell bodies and Weigert staining to show the myelin content 
(taken from Amaral, 2006). 
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granular layer, (V) internal pyramidal layer and (VI) the multiform layer. The thalamo-

cortical system has multiple known connections to specific layers (Figure 6). Another 

thalamic nucleus involved in the somatosensory cortico-thalamo-cortical interaction is 

the posterior thalamic nucleus (Po), which acts as an example for a higher order nuclei. 

The PO receives driving inputs from the primary somatosensory cortex layer V and 

spreads the input reciprocally back onto the somatosensory cortex and other cortical 

areas (Sherman & Guillery, 2005). This reciprocal interaction between the thalamus and 

cortex is thought to be heavily involved in cortio-cortical communication (Sherman & 

Guillery, 2005). Neurons in layer VI of the somatosensory cortex send information to the 

VPM, PO and the RTN. The RTN is located between the cortex and thalamus like a barrier. 

It projects onto thalamic neurons via GABAergic interneurons and has an internal 

crosstalk via fast acting gap junctions as shown in Figure 6 (Pinault, 2004; Lüttjohann & 

van Luijtelaar, 2015). The RTN is divided into several compartments, which are 

responsible for different tasks (Guillery et al., 1998). The caudal part of the RTN receives 

and projects inputs from and to the VPM. It is considered as the somatosensory part of 

the RTN (Pinault & Deschênes, 1998). The ATN is involved in the limbic loop receiving 

information from the rostral part of RTN (Gonzalo-Ruiz & Lieberman, 1995). Actions of 

the RTN via GABAergic neurons are involved in the change of thalamic firing. There are 

two main firing modes called “tonic” firing and “burst” firing. Tonic firing is considered 

the normal firing pattern during active wakefulness, whereas burst firing is only seen once 

Figure 6: Schematic display of the somatosensory thalamo-cortical loop. GABAergic inhibitory neurons represented 
with blue arrows, glutamatergic excitatory neurons presented with grey arrows. HO = higher order; FO = first order 
(from Lüttjohann et al., 2015). 
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the neurons are hyperpolarized between -70 and -90 mV, which is common in phases of 

rest and sleep. It is known that a genetic rat model of CAE has more hyperexcitable cells 

in the somatosensory cortex, which makes them more susceptible to create burst firing. 

Burst firing prevents signal information to be passed to several brain compartments that 

would process the input. It is postulated that this hyperpolarization is the main culprit for 

the formation of seizures (Hughes & Crunelli, 2005). Hyperpolarization of thalamic cells 

by the RTN results in the activation of hyperpolarization-activated cyclic nucleotide-gated 

(HCN) channel, which produces a cation current called IH. This causes the activation of 

low threshold calcium currents (IT). Both the IH and IT currents depolarize thalamic cells 

leading to burst activation of Na+/K+-dependent fast action potentials. The depolarization 

by the action potentials inactivates IT and IH currents leading to the repolarization of the 

cell membrane. The action potential burst firing activates thalamic cells, which have 

collaterals to GABAergic RTN cells. The cycle starts anew with rhythmic hyperpolarization 

of thalamic cells by GABAergic signaling and thereby IH and IT dependent burst discharges 

(Steriade, 2003). 

The cortex as information processing region extends collaterals additionally to the RTN, 

which in turn can modulate the thalamic cells to a certain degree. Therefore, it is 

theorized that the RTN is responsible for modulatory, limiting and synchronizer actions 

of the thalamo-cortical system (Steriade 1998, Hugenard and McCormick 2007). To 

understand seizure generation, it is important to unravel interaction with this intricate 

brain network. 

 

1.5.  Animal models of absence epilepsy 

Up to this day, animal research is irreplaceable for studying types of neural disorder like 

CAE. However, not every model has the same face and predictive validity. For CAE, there 

are several ways to manifest absence seizures either chemically, electrically induced or 

genetically inbred (Pitkänen et al., 2006). The first model of CAE was in feline animals. 

Absence seizures were induced by a chemical injection of penicillin into the carotid artery 

acting as a gamma-Aminobutyric acid (GABAA) receptor antagonist (Avoli, 1995). The 

GABAA receptor is an ionotropic receptor and is also activated via ligand binding. In these 
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animals, absence epileptic seizures can be monitored in the EEG in the form of SWDs with 

a frequency of 3 Hz for a duration of 5-8 hours. Another chemically induced absence 

seizure is created by injecting gamma-Hydroxybutyric acid (GHB) into various test 

subjects like monkeys, cats and rats (Pitkänen et al., 2006). The injection of GHB created 

a seizure with a mean frequency of 7-9 Hz varying from the human form of CAE. In 

contrast to the chemically induced absence epileptic seizures, rodent models are more 

common. The available different mouse models of CAE have a single point mutation 

mostly affecting calcium channel efficiency. The phenotypes of these mouse models 

varied strongly from each other and also from the human version (Pitkänen et al., 2006). 

Therefore, the face validity is not as strong as preferred. At this point, two rat models, 

both derived from the Wistar rat strain, are common in the field of CAE research. The two 

models are termed Wistar Albino Glaxo Rijswijk (WAG/Rij) rats and Genetic Absence 

Epilepsy Rats from Strasbourg (GAERS) (Pitkänen et al., 2006). Seizures are unprovoked 

spontaneous, generalized and react similarly to medication. The animal models face the 

same symptoms of loss of consciousness with occasional facial twitching and chewing 

(Depaulis & van Luijtelaar, 2006). Their genotype is not known; however, evidence points 

to the direction of an autosomal-dominant inheritance (Engel, 2001). Studies have 

identified specific chromosomal loci, which control features of the SWDs. Interestingly, 

chromosomes influencing these SWDs are specific for each rat model. In WAG/Rij rats, 

parts of chromosomes 5 and 9 are responsible for features of SWDs, whereas parts of 

chromosomes 4, 7 and 8 influence SWDs in GAERS (Gauguier 2004. Rudolf 2004). The 

polygenic character of Absence Epilepsy could also be shown through the modulation of 

cumulative seizure duration in GAERS by T-channel calcium channel mutations. 

Contradictory, this modulation was not found in WAG/Rij rats (Powell et al., 2009). 

According to specialists, there are three distinctive features necessary for a validated 

animal model. The model needs to have the relevant features in the EEG pattern, the 

same pharmacological sensitivity, similar brain structure involved with the same behavior 

during seizure (Depaulis et al., 2016). The rodent model reacts similarly to medication, as 

the valproic acid/ethosuximide prevents the seizure whereas carbamazepine and 

phenytoin aggravate it (Feddersen et al., 2007; Nguyen-Michel et al., 2009). Both models 

show secondary generalized seizures with a spike and wave morphology lasting on 

average ~10 seconds with frequencies between 7-11 Hz. During the first two seconds of 
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the seizure, higher frequency in comparison to the later parts of the seizure are shown 

(Durón et al., 2005). Both rat strain have a polygenic background with unprovoked 

formation of fully formed SWDs from 3 month and 6 month for GAERS and WAG/Rij rats, 

respectively (Schridde & van Luijtelaar, 2004; Jarre et al., 2017). These rodent models still 

display differences to the human CAE. In the rodent model SWDs occur relatively late in 

their development and are persistent even after reaching adolescence. While the 

WAG/Rij rats have a higher discharge frequency of SWDs and displays a higher power in 

the frequency band of 8-14 Hz in the preictal timeframe, the GAERS animal line shows a 

longer cumulative total duration, a higher number and a higher mean duration of SWDs. 

The GAERS animal line also has differences in the morphology of a single SWD. These 

single cycle SWD display more energy in the faster components (Akman et al., 2010). 

 

1.6.  Spike and wave discharge onset 

For a long time, it was debated where the starting point of the SWDs is. Advances in 

techniques and equipment allow a more elaborate view on theories done in the last 

century Currently, there are two major theories available concerning the origin of SWDs 

(Gloor, 1968; Meeren et al., 2005). Both studies focus on the crosstalk between the 

thalamus and the cortex. However, these studies show a switching focus point. Gloor et 

al. proposed the cortico-reticular theory suggesting the thalamus to play a major role in 

the formation of absence seizures (Gloor, 1968). The thalamus is in parts responsible for 

the generation of sleep spindle oscillation. Gloor’s theory states that the whole cortex is 

hyperexcitable picking up sleep spindle oscillations, which in turn transforms them into 

the pathological pattern of the SWDs. This thesis was based on the SWDs display in the 

feline model, which created SWDs once the GABAA antagonist penicillin was injected into 

the cortex. Interestingly, injection of penicillin only into the thalamus did not produce the 

SWD pattern (Gloor et al., 1977). Upon transition towards sleep, the RTN creates a 

rhythmic oscillation frequency of 7-14 Hz corresponding to sleep spindles via inhibitory 

postsynaptic potentials (IPSP) being transmitted onto the thalamus via collaterals. 

Thalamic cells are consecutively hyperpolarized by the IPSP, send the oscillation back 

onto the cortex and via collaterals back onto the RTN. The RTN reactivates and restarts 
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the rhythmic firing (Steriade, 2003). Contrary to the suggestion that SWDs originate from 

sleep spindle, lesion studies of parts of the RTN showed that even in the absence of sleep 

spindles, SWDs were created (Meeren et al., 2009). Human data showed that patients 

produce SWDs not exclusively during slow wave sleep but also during wakefulness 

(Pinault, 2003). 

The current view on the origin of SWDs is based on research done by Meeren and 

colleagues (Meeren et al., 2002). By using the local field potential of a cortical grid and 

thalamic nuclei, they showed a local driving area in the barrel field of the somatosensory 

cortex. The somatosensory cortex has the driving role in the first 500 ms whereas 

afterwards the cortex and thalamus alternated in the driving role. It is now postulated 

that the cortex comprises a hot spot, which is responsible for the SWD generation once 

certain unknown criteria are fulfilled (Meeren et al., 2002, 2005; van Luijtelaar & 

Sitnikova, 2006). The onset zone and the highly repetitive SWD pattern make seizures of 

absence epilepsy (absence seizures) a good target for alternative ways to study it. 

 

1.7.  Towards treatment approach 

The overarching goal when working in epileptology is the complete abolishment of 

seizures in general, which is not yet possible at this point. With the advances in 

technology it is now possible to record and store long periods in a multitude of animal 

models like GAERS, WAG/Rij rats, non-epileptic control (NEC) rats and many more 

(Pitkänen et al., 2006). These datasets of EEG support the study of the epileptic brain and 

its circuitries, epileptogenesis, consequences of seizures, circadian rhythm (van Luijtelaar 

et al., 2013; Smyk & van Luijtelaar, 2020) and the efficacy of new invention of medication 

or other techniques. 

Although medications are available for CAE and reach high response rates, they can be 

accompanied with heavy adverse effects (Cunha, 2019). Recent advances in 

computational strength and techniques shine a new light on alternative treatment 

options. Deep brain stimulation (DBS) as one of the alternatives shows remarkable results 

in several neurological disorders like Parkinson’s disease, dystonia and depression 
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(Sironia, 2011; Hariz, 2014; Cleary et al., 2015; Vanhoecke & Hariz, 2017). This treatment 

option uses a neurostimulator to apply electrical impulses onto specific brain nuclei via 

implanted depth electrodes. Electrical impulses can modulate neuronal activity. DBS has 

already been used in several absence epilepsy animal models with varying success. High 

frequency stimulation showed suppression of neuronal activity once applied to either 

subcortical nuclei or cortical structures. Interestingly, open loop stimulation of a few 

short pulses can cause after-discharges to occur with the same common pattern as  SWDs 

(Lüttjohann et al., 2011, 2013). However, repetitive stimulation caused a passive conduct 

to the stimulation after a short period, pointing to a possible habituation mechanism 

(Kossoff, 2004; Osorio, 2005; Huang & van Luijtelaar, 2013). Based on the possible 

acclimatization of neurons to the DBS, a closed-loop system would be more effective in 

comparison to an open system. A closed-loop system would reduce the adaptation to the 

electrical stimulation, decrease the behavioral and physiological effects of the stimulation 

and might also increase the shelf life of the DBS application later on (van Luijtelaar et al., 

2017). 

 

1.7.1. Detection of SWDs 

Jandó and colleges took the first step towards the development of such a closed loop 

system by creating the first detection system for SWDs with the usage of an artificial 

neural network (ANN) (Jandó et al., 1993). He trained a neural network with an offline 

dataset of several rat strains (F344, BN, F1, F2), using a High Voltage Spindle (HVS) 

approach as deciding factor between interictal, i.e. the non-epileptic EEG in-between 

seizures and ictal, i.e. the seizure. However, HVS show variations with either suppressed 

spikes or missing wave components. The ANN had a “small” structure with just one 

hidden layer, which is considered the simplest neural network. This sturdy used a sliding 

window of 10 ms of either raw EEG data or FFT electrocorticography (ECoG) data. 

Subsequently, the ANN preformed rather well with a sensitivity of 93-99% of the manually 

marked HVS with an error rate of falsely detected seizures of 18-40%. This detection was 

based on a trade-off between the number of positive detected seizures, false positive 

detected seizures and missed detections. This rather limited approach was impeded by 

the low computation power of that time. He postulated that with better-tuned 
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hyperparameter, like the number of hidden layers, neurons in each layer or other 

parameters, his ANN would produce better results (Jandó et al., 1993). Another detection 

system was created by Westerhuis who used frontal-parietal ECoG measurements from 

the of WAG/Rij rats (Westerhuis et al., 1996). This approach was based on the maximized 

steepness of 250 ms intervals. Once the steepness surpassed an automatically detected 

threshold value based on interictal periods of wakefulness for more than one second, a 

SWD was detected. His algorithm produced a sensitivity of 97% with minimal error rate 

(movement artifacts). Sitnikova and colleagues developed an offline sleep spindle 

detection based ECoG measurement that detected seizures by using an automatic 

detection based on complex Morlet wavelet-based algorithm (Sitnikova & van Luijtelaar, 

2009). The differentiation between SWDs and sleep spindle was made possible by this 

implementation. Sleep spindle (7-14 Hz) of the rodent animal model WAG/Rij and GAERS 

produce similar frequencies to interspike frequencies of SWDs (8-12 Hz), which cause a 

high error rate. Another detection algorithm working on-line is based on the detection of 

SWDs by the frequency band of 30-50 Hz with a sensitivity and specificity reaching of 99% 

(Ovchinnikov et al., 2010). Such high frequency components are characteristic for sharp 

EEG waveforms like a spike of the SWDs and are therefore well suited for the detection 

of seizure events. 

Up to this point, there are several approaches to detect SWDs either working with raw 

EEG/ECoG, processed data like Morlet wavelet energy (Sitnikova & van Luijtelaar, 2009; 

Richard et al., 2015) or harmonic analysis (Van Hese et al., 2009) with varying success. 

The improvement of detection systems in general enables a more reproducible and 

stable way to analyze bigger datasets that are commonly produced during EEG 

measurements. 

 

1.7.2. Prediction 

The description of SWDs with its abrupt appearance was challenged by the detection of 

precursor discovered within thalamus and cortex (Panayiotopoulos, 1999; Sitnikova & 

van Luijtelaar, 2007; Ovchinnikov et al., 2010). EEG and magnetoencephalography of CAE 

patients showed an increase in power of the low frequencies within several brain regions 
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(Inouye et al., 1994; Gupta et al., 2011). Research on WAG/Rij rats showed equal 

increases in power levels in both frontal ECoG and thalamic ECoG measurements (van 

Luijtelaar et al., 2010). Transition of interictal to ictal intervals were analyzed with 

continuous wavelet transform (CWT) and Morlet wavelet to localize the time difference 

of onset and “precursor” (Sitnikova & van Luijtelaar, 2009; van Luijtelaar et al., 2016). 

Results showed an increase in delta-theta (3-5 Hz) power, which almost simultaneously 

preceded the start of the SWDs in cortex and thalamus (van Luijtelaar et al., 2010). This 

change in frequency, now labeled as a precursor, was measureable up to two seconds 

prior to the transition phase. The precursor was present over a period of 500 ms in 

thalamic and cortical readings. Precursor activity was shown to be present in both cortical 

and thalamic areas throughout the brain. Most of the time, seizure events preceded a 

precursor in both thalamus and cortex (79%) but some events only showed a cortical 

precursor (11%) or a thalamic precursor (5%) with a small percentage of total absence of 

precursor activity (5%) (van Luijtelaar et al., 2010, 2016). This occurrence of a defined 

precursor in both thalamic and cortical regions allowed a multitude of approaches to 

examine and alter the formation of the onset of SWDs. This approach allowed an 

investigation of precursor activity. However, seizures occurred during the transition of 

wakefulness to sleep, displaying sleep spindle oscillation (7-14 Hz) interfering with 

accurate prediction (van Luijtelaar et al., 2016). 

 

1.7.3. Prediction algorithm 

The first on-line approach for the prediction of the seizure used 4 h periods of WAG/Rij 

rats EEG measurements with three electrodes of which two were placed in the cortex 

(layer IV, V) and one in the Po (Maksimenko et al., 2017). Precursor activity was found in 

period preceding a seizure in the frequency band of 5-10 Hz. It was shown that this 

precursor activity produced local synchronization of neurons in the area of the electrode 

and global synchronization between cortex and thalamic nuclei. The prediction algorithm 

used the CWT and wavelet energies of three bands, which correspond to the precursor 

(5-10 Hz), and two frequency bands aiming to reduce some of the false detection. These 

two frequency bands resemble sleep spindle activity (7-20 Hz) and light slow wave sleep 

(3-5 Hz). A high occurrence of false predictions was noticed during light slow wave sleep, 
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where the brain is in a slightly hyperpolarized (Drinkenburg et al., 1991). In comparison, 

passive wakefulness, deep slow wave sleep and active wakefulness did not produce high 

levels of false predictions. The algorithm defines that a positive detection is achieved 

once the precursor band energy exceeds a rat specific threshold and has more power 

than the two other frequency bands. This algorithm achieved a high sensitivity of SWD 

precursor detection, which is necessary for the application in medical devices (88-100%). 

However, there is still a multitude of error produced with this prediction model, which 

might be attributable to the chosen recoding sites (Cortex layer IV, V and Po) 

(Maksimenko et al., 2017). 

 

1.8.  Artificial neural network and machine learning 

With the advent of big data collections, a need arises for automated, reproducible 

processing. The idea of automated functioning and even thinking machines was already 

thought upon by authors during the 19th century (Butler, 1872). However, the current 

view on artificial intelligence and machine learning is rather an elaborated way of 

teaching an algorithm to decide upon a question based on statistical regression analysis 

(Davison, 2008). Although machine learning is not a new method, it received more 

attention in recent years based on the improvement of available computation systems.  

With a more efficient way to analyze and react at the same time to certain signals, a 

method called brain-computer interface (BCI) comes into consideration. BCI systems act 

as a computation bridge and are already used in several tasks such as controlling robotic 

movements, artificial limbs or a cursor positioning on a computer (Bozinovski, 2017; 

Murphy et al., 2017). With the usage of EEG data acquired directly from the patient, 

correlations to pathological and physiological changes could be traced back more easily 

to a specific EEG pattern.  
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EEG data are highly specific and minuscule changes need a certain set of techniques to 

be processed and analyzed. One of those techniques is machine learning. The history of 

machine learning by neural networks goes back to the 1940’s, when Warren McCulloch 

and Walter Pitts laid the ground stone for further developments (McCulloch & Pitts, 

1943). The simple principle from McCulloch was based on his so called “neurons”, or 

computing units (Figure 7). During computing, neurons receive inputs of binary character 

(0, 1) and aggregate these within the neuron. Neuronal inputs have a certain range of 

modulation. They used the simple mechanical functions like “and”, “or”, “neither” and 

many more. With this set of binary input, decisions are made via a previous defined 

threshold. Once a value surpasses a certain threshold, the output from this neuron would 

then represent a decision corresponding to either a value of 0 or 1 (Mcculloch & Pitts, 

1990). The first neural networks contained three layers; namely one input, one hidden 

and one output layer. This type of shallow neural network was commonly used until 

Hinton and colleagues showed the ability of deep neural networks to achieve a higher 

learning capacity (Hinton & Salakhutdinov, 2006; Polson et al., 2015). 

This simple setup of a neuronal network went through many changes over the years. 

However, the principle of McCulloch is still used in the machine learning algorithm 

available at this moment. Nowadays there is a multitude of variations available designed 

Figure 7: Schematic illustration of process within a single neuron. (left) Input layer X with weighted connections w, 
(middle) processing (z) of input data corresponding to the inputs times weights with added bias, (right) output data 
(a) processed by an activation function. (Castrounis, 2019). 
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for specific tasks. Specified neural networks can best work with the input previous 

defined for its type. The development of specified neural networks aimed to create a 

sorting mechanism for every kind of problem. Recently, deep neural networks with 

multiple hidden layers have achieved positive results in the recognition tasks with even 

better accuracies in comparison to humans on a benchmark dataset (Schmidhuber, 

2015). Deep neural networks offer a greater capacity to extract features out of big data 

sets (Hinton & Salakhutdinov, 2006). The depth of a neural network needs to correspond 

to given features available in the dataset. Although large neural networks have a higher 

learning capacity, they are more resistant to the learning process (backpropagation) and 

thereby features are learned much slower. 

The most common recognition tasks comprise of image, video, speech and text 

recognition. The advantages of machine learning algorithms are related to their ability to 

work with almost any type of data, the amount of data processed, its ease to train, the 

relatively short time each decision takes and the high accuracy. 

 

1.9.  Artificial intelligence, machine learning and deep learning 

The current definition of artificial intelligence (AI) is a computer-based intelligence. In its 

early development, artificial intelligence resembled the learning process and reasoning 

equal to human beings. Machine learning as a subcategory of AI is defined as an algorithm 

that is able to “learn” by applying statistical methods without being explicitly 

programmed for a given task. An example of such a machine learning approach is the so 

called Random forest, which will be explained in more detail in the method section of this 

thesis. Several neural networks available and in use are considered deep learning 

algorithms. Neural networks are exclusive to deep learning that can adapt and adjust to 

process large data sets. 

Deep learning algorithms are grouped in three main categories: supervised, unsupervised 

and reinforcement learning (Ayodele, 2010). Supervised learning has input and output 

data provided at the beginning. Classification is previously done to the dataset to 

measure the accuracy and loss of the training efficiency. The input data is split in a training 
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set and a test set in a commonly used ratio like the 70:30 split. This ratio is heavily 

dependent on the actual size of the original dataset. However, more advanced 

comparison methods are also available like cross validation. In supervised learning, the 

output can only represent the probability of a sample data to belong to a previously 

defined class. 

Unsupervised learning has no classification done to the initial input data. The algorithm 

tries to create classes based on pattern recognition or find other relationships between 

inputs. This type of clustering tries to learn to distinguish similarities and differences of 

data points that are presented in the data and thereby group the data (Schmidhuber, 

2015). 

Reinforcement learning is a decision-based algorithm that reacts on given input. The 

algorithm has a goal set for a desired output. However, the way to achieve the output is 

unknown. The algorithm’s first iteration has randomly chosen decisions that are scored 

and related to the final output. Decisions are either punished or rewarded after the 

iteration. In the next iteration, a new solution is evaluated on their effect on the final 

output. There are two types of reinforcement learning, with positive reinforcement highly 

rewarding good decisions or negative reinforcement penalizing bad decisions 

(Schmidhuber, 2015; Bajaj, 2020).  
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2. Aims of this study 

Although there is evidence of precursor events in cases of CAE, up to this point there is 

no accurate way to detect them. Therefore, this thesis aims for a more accurate 

prediction of absence seizures by applying several techniques to improve the prediction 

of SWDs in the two Absence Epilepsy rat models WAG/Rij and GAERS. The algorithm 

previously published for the prediction produces high sensitivity of absence seizures 

prediction (Maksimenko et al., 2017). However, a big problem with the algorithm is the 

high false positive rate, which resulted in a low specificity. Therefore, this thesis has three 

distinct aims: 

 

I) Elucidating the influence of different EEG recording site combinations within 

the thalamo-cortical system on the accuracy of the algorithm. Additionally, the 

characteristics of false predictions are being compared to true prediction by 

applying spectral analysis. 

 

II) Optimization of SWD prediction by applying machine learning techniques. This 

study will implement a sorting algorithm to further divide the true positive 

from the false positive prediction of the above-mentioned algorithm. For this, 

a standard machine learning algorithm (Random forest) is used. 

 

III) Using a deep learning neural network approach evaluating the prediction 

possibility from unbiased unprocessed raw EEG data. For this, a deep learning 

neural network will be built of a combination of layers that are responsible for 

the extraction of temporal dependencies in EEG data and pattern recognition 

component distinguishing the features responsible for the formation of a 

SWD.  
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3. Materials and methods 

The following chapter will concentrate on the techniques used to optimize SWD 

prediction within two genetic rat models of absence epilepsy, WAG/Rij and GAERS. At the 

beginning, the focus lay on the acquisition of two datasets in WAG/Rij rats and GAERS 

(see Paragraph 3.1). Further, the background and application of a wavelet-based 

algorithm (Maksimenko et al., 2017) used in off- and online SWD prediction will be 

introduced (see Paragraph 3.2). This algorithm was used to compare the accuracy of SWD 

prediction (i.e. the sensitivity and specificity of SWD prediction), which can be obtained 

based on local field potential (LFP) recordings, acquired at several distinct recording sites 

within the thalamo-cortical system. 

In a next step, several techniques of machine learning and deep learning will be 

introduced, which were applied to the output generated by the wavelet-based algorithm 

of  Maksimenko et al. (2017), as well as to unprocessed raw LFP signals derived from 

GAERS and WAG/Rij rats (see Paragraph 3.3). 

 

3.1.  Data sets 

3.1.1. Wistar Albino Glaxo Rijswijk (WAG/Rij) 

A previous recorded dataset containing LFP recordings of 16 male WAG/Rij rats aged 

between 6 and 9 months, were analyzed (Lüttjohann & van Luijtelaar, 2012). In each rat, 

LFP signals were simultaneously measured in eight different brain structures within the 

thalamo-cortical system including the Po, VPM, caudal and rostral part of thalamic 

reticular nucleus (cRTN and rRTN), anterior thalamic nucleus (ATN) as well as layer IV, V, 

VI of the right somatosensory cortex (S1). LFP signals were gathered at a constant sample 

rate of 2048 Hz and filtered between 1 Hz high pass (HP) and 100 Hz (LP) low pass as well 

as by a 50 Hz notch filter, over a period of at least 4 hours in freely moving animals 

(Lüttjohann & van Luijtelaar, 2012). A WINDAQ-recording-system was used to digitize 

EEG signals (DATAQ-Instruments Inc., Akron, OH, USA). Rat movement was registered via 

a PIR detector (RK2000DPC LuNAR PR Ceiling Mount, Rokonet RISCO Group S.A., 

Drogenbos, BE). 
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A second dataset was acquired consisting of six male WAG/Rij rats aged between 6-9 

month from the secondary motor cortex of layer Va and b and layer VI, representing an 

offset region located in relative distance to the onset zone of SWDs in S1. 

 

3.1.2. Genetic absence epilepsy rat from Strasbourg (GAERS) 

Electrophysiological in vivo recordings were performed in 6 male GAERS aged between 3 

and 9 months over a period of 24 hours. They were born and raised at the animal facility 

of the Institute of Physiology I, Westphalian Wilhelms-University Münster. Prior to the 

surgery (electrode implantation see chapter 3.1.2.1.), the animals were housed in pairs 

with access to food and water ad libitum. Efforts were made to keep the discomfort of 

the animals as minimal as possible. After the surgery, they were placed separately to 

ensure integrity of the electrode head mount. All animals were housed with a 12:12 hours 

light:dark cycle (light on at 6 AM). All experimental procedures are in accordance with 

the guidelines and regulations of the council of the European Union (Directive 

2010/63/EU) and approved by local authorities (LANUV Nordrhein-Westfalen; approval 

ID number: 84-02.04.2016.A297). The EEG data were collected unilateral from layer IV, V 

and VI of the right somatosensory cortex. 

 

3.1.2.1. Surgery 

The stereotactic surgery was performed under an intraperitoneal applied pentobarbital 

(Narcoren, 50 mg/kg; Boehringer Ingelheim Vetmedica GmbH, Ingeheim am Rhein, 

Germany) anesthesia using a commercial stereotactic frame (Stoelting Co., Wood Dale, 

IL USA) with bregma and lambda in a horizontal alignment. Local anesthetic lidocaine 

(Xylocain Gel 2%, AstraZeneca GmbH, Wedel, Germany) was applied to the ear canal, 

which was exposed to the stereotactic frame. Body temperature was controlled and 

conserved via a heating pad. Before trepanation, the skull was cleaned with H2O2 (4%) 

and saline (0.9%). Three electrodes were implanted within the right hemisphere in layer 

IV of the somatosensory cortex (anterior-posterior: -1.8, M/L: -3.6, H: -3.2 mm to 

bregma). Tip distance between electrodes was less than 1 mm to ensure local recording 

without interference due to direct contact. A reference and a ground electrode were 
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implanted epidural on top of the cerebellum. All coordinates were determined according 

to the stereotactic atlas of Paxinos and Watson (1998). Electrodes (Stainless steel 

electrode isolated with poliamide, Ø 0.2 mm) were fixed to the skull with first glass 

Ionomer dental cement and dental acryl cement (Pulpdent Corporation, Watertown MA, 

USA). The rats were preoperative injected with Rimadyl® (carprofen, 5 mg/kg body 

weight; zoetis, Louvain-la-Neuve, Belgium) 30 minutes prior to the surgical procedure. 

Another two treatments with Rimadyl® were applied postoperative 24 and 48 hours after 

surgery. EEG recordings started two weeks after surgical recovery. 

 

3.1.2.2. Recording of local field potentials 

Animals were placed in a 43x28x42 cm Plexiglas recording box and were connected to 

the recording leads for LFP recordings. Using a physiological amplifier (TD 90087, 

Radboud University Nijmegen, Electronic Research Group, The Netherlands), LFP signals 

were amplified. Movements of the subject were controlled by a Passive Infrared 

Registration system (PIR, PK2000DPC LuNAR PR Ceiling Mount, Rokonet). Data were 

filtered in the same way as LFP signals of the WAG/Rij rat dataset, except a lower sample 

frequency of 500 Hz, allowing faster data processing.  

 

3.2.  Data processing 

3.2.1. Wavelet-based prediction algorithm of Maksimenko et al. (2017) 

Both datasets were analyzed by an offline-version of the SWD prediction algorithm 

developed by Maksimenko et al. (2017), which predicts SWDs based on wavelet analyses, 

performed in three LFP signals, acquired simultaneously in three different recording sites. 

In addition, a modified offline-version of the SWD prediction algorithm predicting SWDs 

based on wavelet analyses, performed in two LFP signals, acquired simultaneously in two 

different recording sites were equally applied to the datasets. 

The prediction based on two EEG traces screened 28 sets, which differed in the 

combination of recording sites within the thalamo-cortical system (see appendix 1b), 



Data processing 
 

32 

whereas for the prediction based on three EEG traces, 56 sets of different recording 

combinations (see appendix 1a) were tested on their SWD prediction performance. 

At each recording location, the algorithm assessed the mean wavelength energy within a 

time window of 500 ms shifting along the complete EEG trace sample by sample (Figure 

8). In each channel (i) and at each time step (t), the wavelet energy (W) within the 

frequency range of 5-10 Hz corresponding to the precursor (WiΔS1(t)) is calculated using 

wavelet transformation with a modified Morlet mother function (Maksimenko et al., 

2017). This energy obtained in each channel is then multiplied to determine the 

occurrence of thalamo-cortical synchronization at each moment in time (WΔS1(t) = 

W1ΔS1(t) X W2ΔS1(t) X W3ΔS1(t)). 

At the same time, wavelet energy is calculated and multiplied in each channel for a 

frequency range of 3-5 Hz in accordance to the light slow wave sleep (WΔS2(t) = W1ΔS2(t) 

X W2ΔS2(t) X W3ΔS2(t)) and within a frequency range of 7-20 Hz representing sleep spindles 

(WΔS3(t) = W1ΔS3(t) X W2ΔS3(t) X W3ΔS3(t)). 

 

Figure 8: Wavelet analysis criterion for precursor detection. (Top) Wavelet energy spectrum prior to a seizure. Mid-section 

arrow represents time point of precursor detection. Right-side arrow represents start of seizure. Rectangular window 

corresponds to frequency bands of defined: precursor (WΔS1), slow wave sleep (WΔS3) and sleep spindle (WΔS2). (Bottom) 

Product of the three frequency bands with rat specific threshold value Wth (Maksimenko et al., 2017).  
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To decide whether a SWD precursor is present in the EEG the algorithm, three criteria 

apply: 

1. Energy of WΔS1(t) needs to exceed an individualized specific threshold. 

2. Energy of WΔS1(t) must exceed energy of WΔS2(t).  

3. Energy of WΔS1(t) must exceed energy of WΔS3(t). 

Since SWD prediction quality depends on the above mentioned individualized thresholds, 

SWD prediction performance of each channel combination was determined for a total of 

14 fixed threshold values ranging from 0.1 to 0.75 in case of three channel combinations, 

and a total of 16 fixed threshold values ranging from 0.005 to 0.04 in case of two channel 

combinations. Threshold range varied based on acquired product from either two or 

three channel. 

 

3.2.2. Sensitivity, specificity and number of false positive 

For each analyzed channel combination, the algorithm created a list of time points, at 

which a potential SWD precursor was detected. With the aid of this list, the number of 

true positive predictions, the number of false positive predictions as well as the number 

of missed (unpredicted) SWDs were determined. 

In addition, sensitivity (sensitivity = number of correctly predicted SWDs / (number of 

correctly predicted SWDs + number of unpredicted SWDs) × 100%) as well as number 

false positives per hour were calculated for each channel combination and for each of 

the tested individualized specific threshold values. 

 

3.2.3. Histology 

After recordings, the animals were euthanized by an overdose of intraperitoneal injected 

pentobarbital (Narcoren, 100 mg/kg; Merial GmbH, Münster, Germany). A direct current 

(9 V, 25 µA, 2 s duration) was pathed though each electrode to create an electrolytic 

micro-lesion at the location of the electrode tip. The brain was removed carefully and 

fixed in 4% paraformaldehyde (PFA). After 24 hours, the brain was moved to a 30% 

sucrose solution for three days and then cut into coronal slices of 60 µm using a 
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microtome. Fixated brain-slices were stained with cresyl violet and inspected under a 

light-microscope (dnt, DigiMicro Profi, Germany). 

 

3.2.4. Statistical analysis of SWD prediction performance based on the algorithm of 

Maksimenko et al. (2017) 

In order to compare SWD prediction performance, the sensitivity and the number of false 

positives were visualized in histograms for each rat plotting channel combinations on the 

x-axis against fixed threshold values on the y-axis. 

Linear regression analysis (Pearson correlation) was used to determine the degree of 

interdependence between the sensitivity of prediction as well as the number of false 

positives per hour. 

An analysis of variance (ANOVA) was performed with sensitivity as dependent variable, 

channel combination as between subject factor 1, version of algorithm (2channels, 2ch; 

3channels, 3ch) as between subject factor 2, threshold as covariate 1 and number false 

positives per hour as covariate 2. 

Likewise, an ANOVA with number of false positives per hour as dependent variable, 

channel combination as between subject factor 1, version of algorithm (2ch, 3ch) as 

between subject factor 2, threshold as covariate 1 and sensitivity as covariate 2 was 

performed thereafter. 

To avoid the multiple comparison problem for post-hoc analyses, all channel 

combinations were grouped into different categories including category 1: two 

intracortical recording sites (CC), category 2: one cortical and one thalamic recording site 

(CT), category 3: two intrathalamic recording sites (TT), category 4: three intracortical 

recording sites (CCC), category 5: two cortical recording sites and one thalamic (CCT), 

category 6: one cortical recording site and two thalamic recording sites (CTT) and 

category 7: three intrathalamic recording sites (TTT). 
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Post hoc analyses included: 

1) ANOVA with sensitivity as dependent variable, category of channel combinations (CC, 

TC, TT, CCC, CTT, CCT, TTT, MCCC) as between subject factor 1, version of algorithm (2ch, 

3ch) as between subject factor 2, threshold as covariate 1 and number of false positives 

per hour as covariate 2. 

2) ANOVA with number of false positives per hour as dependent variable, category of 

channel combinations (CC, TC, TT, CCC, CTT, CCT, TTT, MCCC) as between subject factor 

1, version of algorithm (2ch, 3ch) as between subject factor 2, threshold as covariate 1 

and sensitivity as covariate 2. 

All statistical analyses were performed using IBM SPSS version 25. Data are expressed as 

the arithmetic mean values ± standard error of the mean (S.E.M.). Differences were 

considered statistically significant when p ≤ 0.05 (*), p ≤ 0.01 (**) and p ≤ 0.001 (***). 

 

3.2.5. Comparison of wavelet spectra displaying true positive or false positive detections. 

All true positive detections and a total number of 50 randomly selected false positive 

detections per rat, both identified by the wavelet-based algorithm of Maksimenko et al. 

(2017), were extracted from three cortical recordings within the somatosensory cortex 

of WAG/Rij rats and GAERS. Wavelet power within different frequencies were 

determined and statistically compared using repeated measures ANOVA with wavelet 

power as dependent variable, type of detection (true positive, false positive) as within 

subjects factor 1 and frequency bands WΔS1, WΔS2 and WΔS3 as between subjects factor 2 

was used for statistical comparison. 
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3.3. Machine learning and deep learning techniques 

The following section will focus on the technical background of machine learning and 

deep learning techniques applied in this thesis. Concurrently, the implementation of the 

deep learning techniques to the LFP data and the prediction of SWDs will be described. 

The general buildup of neural networks and its different conventional forms used in this 

thesis will be introduced including the techniques and concepts of convolutional neural 

networks, recurrent neural network and long short-term memory (LSTM) networks 

(Hochreiter & Schmidhuber, 1997). 

 

3.3.1. Random forest 

Simple decision trees are used in a broad context, for example in the algorithm of 

Maksimenko et al. (2017) that is used in this thesis. Here, a decision tree determines with 

a few parameters that need to be fulfilled the detection of the precursor. Once the 

performance of one single decision tree is not optimal, the machine learning paradigm 

Random forest might improve the accuracy. A random forest is an analogy of a forest that 

is made up by multiple trees. A single decision tree within a random forest algorithm on 

its own could possibly provide only mediocre results. However, as a group of trees, a 

random forest provides accurate decisions based on majority voting (Figure 9). In this 

research, a random forest with 1000 trees is utilized for further differentiation of features 

used in the wavelet based precursor detection, described in paragraph 3.2.1. The wavelet 

power of three EEG traces in three frequency bands is used for the classification, which 

results in a decision based on 9 alternating wavelet values. Two different dataset were 

measured with the random forest. The first dataset consisted of six GAERS in which the 

EEG was only measured within the somatosensory cortex. The second dataset comprised 

of six of the ten WAG/Rij rats that had matching electrode locations (appendix 2). Time 

points and wavelet features for true and false prediction were extracted at a threshold 

value resembling >60% sensitivity of given combination and rat resulting in small changes 

of the amount of predicted SWDs. These small changes are attributed to the fixed 

threshold value. Five combinations of channels were tested from EEG traces of WAG/Rij 

rats dataset: 1. Recordings in layer V and VI of the somatosensory cortex further referred 
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to as “CC” (n=177); 2. Recording in layer IV, V and VI referred to as “CCC” (n=161); 3. 

Recordings obtained in layer IV, VI and VPM as “CCT” (n=161); 4. Recordings acquired in 

Layer VI, VPM and cRTN as “CTT” (n=145) and lastly 5. Recordings acquired in VPM, cRTN 

and Po as “TTT” (n=162). In addition to the WAG/Rij rat dataset, one combination of intra-

cortical EEG measurements for the GAERS dataset from layer IV, V and VI (GCCC) of the 

somatosensory cortex was tested. Lastly, to get an impression on the effect of sample 

size, intra-cortical GAERS data containing either 1844, 161 and 145 true and false 

detections were compared to each other (GCCC 1844, GCCC 161 and GCCC 145).   

In this thesis, the technique called “random-undersampling” was applied to reduce the 

training time of the model with the least amount of data loss and counter the data 

imbalance. When applying random-undersampling, all events of the underrepresented 

class are selected but only equal amounts of the overrepresented class. This results in a 

dataset consisting of 50:50 preictal time intervals and interictal events. To visualize the 

range of the differentiation in each combination, each random forest (n=100) was fed 

with all available data samples of the true positive class, and different sets of randomly 

selected false positive detections. The balanced accuracy was calculated for each run and 

statistically compared between groups (CCC, CCT, CTT, TTT and CC) using an ANOVA. In 

Figure 9: Random forest example. Decision based on majority vote of multiple single decision tree results (taken from 
Sharma, 2020). 
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addition to that, the accuracy of one tree revealing the average (median) accuracy was 

statistically tested against chance level using permutation testing. To this end, true and 

false detections were randomly shuffled to one of the two classification classes and for 

each randomization the maximal accuracy was determined and displayed in a histogram. 

In case the accuracy computed from the real dataset was positioned above the 95th 

quantile of the histogram, the real dataset deviated (with a certainty of 95%) from 

randomized datasets, which did not have a difference between true positives and false 

positive detections. 

 

3.3.2. Raw EEG data analysis 

EEG contains a multitude of information corresponding to brain activity. Here, the 

information from the precursor of a SWD can already be found prior to seizure onset 

(Ovchinnikov et al., 2010; Lüttjohann & van Luijtelaar, 2012). To further improve the 

detection of SWD precursor, a deep learning approach was applied specifically designed 

for the analysis of rapidly fluctuating sequential data-like EEG. More precisely, a modified 

LeCun network, an artificial neuronal network that was previously used in image 

recognition (Figure 10) as well as the detection of epileptic seizures (LeCun, 1998; 

Mirowski et al., 2008), was applied for the sorting of interictal and preictal EEG fragments.  

This deep learning neural network, adapted from LeCun’s LeNet-5 (Figure 17), contains 

multiple convolutional layers, which are responsible for extraction of the internal 

structure within EEG signals. Two MaxPooling (retaining only maximum value in given 

window) layers reduced the amount of parameters from the data, which counters an 

overfitting of the model and increases the processing speed. Afterwards, features learned 

and extracted by the convolutional layer are presented to a layer of long short-term 

memory (LSTM). LSTM as recurrent neural networks retain information to a higher 

degree than other deep learning algorithms (e.g. like a support vector machine) and 

thereby are better suited to investigate the temporal dependencies within the EEG signal. 

The output of the LSTM layer is then fed into several fully connected (dense) layers that 

are used to further analyze the data. Lastly, a softmax activation layer sorts the output 

into the two classes: “preictal” and “interictal”. Dropout layers that nullify changing 
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neuronal output over each training are implemented between each layer to counter 

overfitting. Before describing this highly specialized network in more detail (section 

3.3.4.2), a general background on the concepts of ANN and deep learning including the 

technical background of the previous mentioned subparts (e.g. layers) of the applied 

LeCun network are introduced next.  

 

Figure 10: Modified LeCun network with implemented long short-term memory (LSTM). Far left showing the input layer 

(white) with 256x3 data points, corresponding to 512 ms and the three EEG traces. Numbers over the layer name display 

the change in data points remaining. Red boxes show the shifting kernel size with each one stride over the data. Blue 

Layers correspond to Convolution 1 dimensional layer with each 32 neurons per layer. MaxPooling layer is depicted in 

orange, which reduces the data by half (shifting kernel of 2). Long short-term layer (100 neurons) shown in green for 

recurrent processing. Three dense layer (128, 128 and 64 neurons) displayed in yellow. Far right shows the output layer 

with two neurons corresponding to the two available classes. The output layer applies the “softmax” activation function. 

Convolution and Dense layer each use the activation function “ReLU”. Between each layer, a Dropout layer (D) is 

implemented that counter overfitting by setting the output of randomly selected neurons (30-40%) to 0.  

 

3.3.3. Artificial neural network 

Artificial neural networks or short neural networks are processing systems inspired by the 

biological brain (Hopfield, 1988). ANN are built of interconnected nodes, generally called 

neurons, as stated earlier. The neurons are situated in layers where the input x(𝑡)  is 

modulated by a matrix out of weights 𝑤𝑥 and biases b and then passed through some 
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activation functions ∅. Generally, ANN are built up by stacking several layers after each 

other (Figure 11). 

Each neuron within the layer has connections to one or multiple neurons in the following 

layer. The connections between neurons are weighted and should mimic synapses of the 

biological system. The most important part of an ANN is the ability to learn. The learning 

process of ANN is comparable to the brain’s learning in a way that it can be traced back 

to the interconnections between neurons (Haykin, 2009). ANN are built of one input 

layer, at least one hidden layer and one output layer. Each layer receives inputs from the 

previous layer. The nodes of the input layer have the dimensionality of the given data and 

are the first nodes that process the data. Between the input and the output layer is the 

hidden layer, which is the key computing unit responsible for the processing and final 

decision. The output layer of an ANN is used for the classification tasks and is typically 

made up of only a few nodes, in which each node represents a different decision. The 

calculated value in the output neuron corresponds to the probability of the input x 

belonging to the class y (Nielsen, 2019). 

 

 

  

Input 
layer

Hidden 
layer

Output 
layer

Figure 11: Schematic structure of a shallow artificial neural network. (left to right) The input layer with three neurons is 
connected to all neurons of the hidden layer. The output layer receives inputs from the last hidden layer. (adapted from 
Castrounis, 2019) 
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At the beginning of each training session, the weights and the bias are set to initial values. 

The weights are set randomly in the range between values of 0 and 1 to break the 

symmetry. The bias on the other hand are initialized as a value close to zero to increase 

the dimensionality. Weights and biases are learnable and adjustable parameters 

corresponding to the learning of a neural network and are responsible for the signal 

furthered through the layers.  

An important feature of supervised machine learning, as applied in this thesis, is the cost 

function also known as loss function or error function. It represents the average 

difference between the predicted output and the desired output. The overall goal of an 

ANN is the reduction of cost function to zero for the training and the validation set, which 

would indicate that every feature of the training set is learned. The cost function 

represents miscalibration of the weights to separate the given classes. This allows the 

ANN to apply optimization methods for weight adjustments. Tracing back the influence 

of certain weights on the prediction is done via backpropagation.  

Backpropagation, also applied in this thesis, is an often-used optimization method for 

ANN. It is used to compute the contribution of each neuron/weight to the predicted 

output. Backpropagation starts by calculating the error of the last hidden layer to the 

output layer. By transitioning through the model layer by layer and changing the weights 

correspondingly to its average relation to the output, the ANN tries to optimize itself for 

the given classification task. Backpropagation algorithms use a gradient descent to 

optimize the weight configuration based on the cost function (Figure 12). Each iteration 

tries to reduce the loss to converge to a minimum.  
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Figure 12: Backpropagation in neural networks. (A) Gradient descent of a function is illustrated by a stepwise (white dots) 

nearing data minim (dark blue). Data values are displayed from high to low by a color code from red to blue. (B) 

Backpropagation of errors from the output layer back onto the weights of previous layer (Missinglink.ai, 2020, Chan 

Phooi M’ng & Mehralizadeh, 2016). 

 

3.3.3.1. Activation functions 

Activation functions are a necessary tool to modulate neuron output. Several activation 

functions are used to modulate and increase the dimensionality of the data helping to 

Figure 13: Most common activation functions. The three activation functions rectified linear unit (ReLU), Tangens 
hyperbolicus (Tanh) and Sigmoid are shown in comparison to a simple step. (Missinglink.ai, 2020). 

A B 
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learn complex patterns. Activation functions also limit the output to a certain range. The 

most commonly used activation functions also used in this thesis are Sigmoid, Tangens 

hyperbolicus (Tanh) and rectified linear unit (ReLU) (Figure 13). 

Each activation function alters the linear data and thereby increases the dimensionality 

using the following algorithms. 

 Sigmoid function 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) = 1/(1 + exp(−𝑧)) 

 Tanh function 

𝑇𝑎𝑛ℎ(𝑧) = 2𝜎(2𝑧) − 1 

 ReLU function 

𝑅𝑒𝐿𝑈(𝑧) = max (0, 𝑧) 

The ReLU function is a default function for most feedforward neural networks. ReLU 

changes linear output transformation to nonlinear transformation. This activation 

function remains close to linear so that optimizations devised for linear improvements 

and gradient-based modulations remain possible (Goodfellow et al., 2011). In this thesis, 

the ReLU activation function is used in the convolutional and dense layer of the modified 

LeCun network (see Figure 10 and LeCun et al., 1998) as it reduces the activation of 

neurons if the input value is negative.  

The output layer of the modified LeCun network on the other hand uses the so called 

softmax activation function, which applies the metric categorical cross-entropy. 

Categorical cross-entropy is specifically used, if only one class can be present 

simultaneously, e.g. EEG can only represent either interictal or ictal not both at the same 

time. The softmax activation function transforms the output into probabilities between 0 

and 1. Each value corresponds to a previously defined class with the sum adding up to 1. 
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3.3.4. Recurrent neural network 

The modified LeCun network is a so called recurrent neuronal network (RNN). Sequential 

data such as natural language processing, weather prediction, speech recognition and in 

this case EEG data processing require this type of ANN, because RNN are specialized to 

work with varying lengths of sequential data. Its internal state correlates to a shared 

weight across several time steps, which resembles a form of feedback connection within 

layers. By contrast, convolutional neural networks (CNN) with their convolution operation 

have the same capacity to share information over time, however they remain shallow on 

their ability to learn from long sequences (Sainath et al., 2015). ANN can work with one-

to-one data structures where the algorithm works with a fixed size input and gives out a 

classification. In this thesis, the approach many-to-one is applied. Many-to-one receives 

a sequence of inputs and produces a classification out of it. 

 

There are three types of mappings in sequential data: 

 sequence to sequence 

-    Time series is forecasted of stock values or weather data 

-    Sequences of data like time series data predicts multiple time 

points after the end of the training data 

 sequence to vector 

- Sequence data is analyzed and converted into a specific state 

e.g. Seizure/Baseline, vigilant, sleeping 

 vector to sequence 

- Images are converted and described into a specified image 

description 
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In this project, sequential EEG data are analyzed with a sequence to vector mapping, 

where the output is a prediction of a chance in which class the next time interval is 

situated. RNN consist of similar core computing units within the layers as seen in normal 

ANN. This core unit has an internal state that will be updated every time a new input is 

presented to the cell. The internal state will be fed back to the model the next time it 

reads an input, thereby creating a memory function to a certain extend. 

 

The common procedure of RNN units uses the ANN algorithm with the addition of 

reapplying another internal weight to the data that is retained during training to a certain 

degree, thus creating the memory function (Figure 14) (Missinglink.ai, 2020). 

 

3.3.4.1. Problems encountered in RNN: Vanishing and exploding gradient 

RNN can encounter a vanishing or exploding gradient with gradient-based learning once 

the derivatives of activation functions attain close to zero and large values, respectively. 

Gradient descent becomes less effective in big neural networks with many layers. 

Additionally, the noise on learning increases alongside with the length of temporal 

dependencies (Bengio et al., 1994; Goodfellow et al., 2011). Both problems inhibit the 

network’s ability to change weights by backpropagation due to long-term dependencies. 

Once the gradient is close to zero, weights are unable to adjust and change in a significant 

Figure 14: Core node of Recurrent Neural Networks. X resembles the input at a given time (t) with the current weights 
set for this input (Wx). As a core mechanism, the inputs from all connections are summed up (∑) and processed by an 
activation function (φ) and the internal weights (Wγ). The core cell has two outputs representing the input to the next 
layer (γ (t)) and the alternated internal weight (Missinglink.ai, 2020). 
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way to achieve learning. However, if the gradient is big, changes in weight increase too 

much so that the learning ability is still impeded. 

 

3.3.4.2. Convolutional neural network 

As displayed in Figure 10, the modified LeCun network contains a number of different 

types of layers including convolutional layers, a LSTM layer and fully connected (or dense) 

layers. Temporal convolutional neural networks (CNN) as a subcategory of Deep learning 

algorithms are designed to work best with a grid-like topology of the data. CNN can assign 

importance to aspects found in the data. They are used commonly in image recognition 

due to its 2-D grid like structure (Figure 15) (Geitgey, 2016). Similar to image recognition, 

EEG data can be viewed as a 2-D grid like structure as well. CNN can break down EEG 

pattern to learn, which temporal frequency changes are present in the data and adapt to 

it (Wang et al., 2017). 

CNN use the linear mathematical operation called convolution, which is used instead of 

matrix multiplications on the layers (Lecun et al., 1998). The result of convolution 

operation is termed feature map. In comparison to old methods where hand-crafted 

features/filters were applied to images, CCN have the ability to define learned features 

themselves. Each layer has the ability to extract several features depending on the size 

of the applied window and stride of the shifting window. This results in locally learned 

features, which can be globally traced back. In this way, a feature like a precursor can be 

traced back irrelevant of the position in the EEG signal. The irrelevance of signal 

Figure 15: Transfer of a picture to numerical display. (Left) Pixel matrix of a greyscale image depicting the 
handwritten digit eight. (Right) Pixel saturation indicated by a range from 0 to 255. Handwritten digits provided MNIST 
data set (Geitgey, 2016). 
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positioning like an edge detection is achieved by a sliding window. This window convolves 

over the data with a set of filters like width and height in image recognition. The filter 

runs over the entire input data so that in images all color channels are covered. This 

results in a two dimensional activation filter at each spatial location. Interestingly, CNN 

were designed after the organization structure of the visual cortex, where neurons in 

restricted areas of the visual field respond to a given stimulus (Fu et al., 2016). Alterations 

and optimizations are done by the size of the kernel (i.e. the analysis window) going over 

the grid like data. Correlations of features can be enhanced by a small sliding window 

(receptive field on the temporal EEG data) increasing the spatial shift. Further, a 

technique called polling is applied to reduce the information of the raw data. Pooling uses 

a shifting window that process the data in some ways e.g. retaining only the highest value, 

thereby increasing the processing speed and reducing the noise (Figure 16, Figure 17) 

(Goodfellow et al., 2011; Schmidhuber, 2015; Geitgey, 2016). 

CNN are not only built of convolutional layers. Convolutional layers are paired with 

several mathematical optimizations such as ReLU activations, pooling layers (Max, 

Figure 17: LeNet-5 CNN architecture. The handwritten digit (left) is processed first by feature extraction moving 
different sized kernels over the image and later processed by a pooling operation. Features are learned during 
classification, which then gives a prediction on the digit. (Geitgey, 2016). 

Figure 16: Max-pooling. Processing a dataset of 16 data point with a 2x2 kernel 
that keeps only the maximum values of each kernel. (Geitgey, 2016). 
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Average, Global), fully connected layer (dense layer), dropout layer, batch normalization 

layer and finally the output layer. With a wisely chosen combination of these 

compartments (Figure 10, Figure 17), CNN are a more efficient tool to process image data 

and sequence data as CNN display better results for classification accuracies that surpass 

human based precisions. 

In this thesis, multiple convolutional layers are responsible for extraction of EEG 

frequency features. EEG features are extracted based on different time intervals with a 

decreasing kernel size from the stating layer to the last convolution layer. This change in 

kernel size enables the focus of extracting specific temporal frequency dependencies at 

high-level layers and the extraction of small temporal dependencies at lower levels. Each 

layer applies the ReLU activation function with a dropout layer (30-40%) in between each 

convolutional layer to reduce overfitting. Additionally, two MaxPooling steps are 

implemented to reduce the data size while retaining most of the information and 

increasing the processing speed (see Figure 10). 

 

3.3.4.3. Long short-term memory 

The convolutional layers produce a feature map of the EEG data, however temporal 

dependencies between these features need to be processed with a memory retaining 

RNN. Normal RNN (see paragraph 3.3.4) retain information only to a certain degree and 

experience gradient based problem. A solution to this problem was the introduction of 

LSTM layers, which are also part of the modified LeCun network used in this thesis. 

Long sequence data such as EEG data require a certain RNN model depth to extract 

features accurately. In addition, RNN are not efficient in extracting long-term temporal 

dependencies. Models with a high number of hidden layers can suffer a problem by 

backpropagation. To address this problem, Hochreiter & Schmidhuber proposed the 

LSTM network in 1997. In this network, simple neurons are replaced with intricate 

computing cells that capture long-term dependencies while not diminishing short-term 

effects.  
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LSTM networks can retain information to a certain degree over longer training sets and 

have the ability to forget certain information thereby countering the vanishing or 

exploding gradient. They have a certain range of outputs that present data to the model 

and to further layers. These functions are called hidden state/short-term output h(t), long-

term memory state c(t) and output for the current time step y(t). To achieve these specific 

outputs, LSTM are built of four main components: an input gate, a forget gate, an output 

gate and a main gate (Figure 18). Within a single LSTM cell two activation functions, Tanh 

and ReLU are used for specific alterations of the data. 

 gt main gate: keeps track of inputs 

 ft forget gate: controls parts of c(t) output 

 it input gate: controls, which parts should be added from g(t) to c(t) 

 Ot output gate: controls, which parts of c(t) should be included in y(t) and h(t) 

  

Figure 18: Schematic display of a LSTM cell. (c(t-1)) represents the input from the previous LSTM memory function. 
(h(t-1)) represents the previous LSTM output, (c(t)) current LSTM memory, (h(t)) current LSTM output. The two 
activation functions (Tanh and sigmoid) are displayed in grey. Point wise operations are displayed in blue. (modified 
from Yuan et al., 2019). 

main gate: 
gt 



Machine learning and deep learning techniques 
 

50 

3.3.5. Training of ANN: Validation of a dataset 

Supervised machine learning algorithms need a similar unseen dataset to test their real 

accuracy. For this, the whole dataset is divided in a training and a test set (Figure 19A) 

(Scikit-learn, 2020). 

Data sets may not always represent the real world scenario due to missing information 

or unbalanced representation of a class. In our case for example, there are much more 

interictal periods available compared to precursor events. Cross-validation is a technique 

to ensure equal distribution. To achieve an accurate representation of all classes, several 

validation techniques are used. One of these techniques is called K-Folds cross-validation, 

where the training data is further randomly split in training data and test data (Figure 

19B).  

In this thesis, a 10-fold split is used splitting the 144 hours of LFP data derived from six 

rats into 10 equal parts. Each split shifts the data preserved for testing to ensure that 

each data set was used as validation set. At the end the parameters of each split is 

averaged and tested on the remaining unseen test data set. 

A 

B 

Figure 19: Data processing for validation. (A) The whole dataset is divided into a training set and a test set. (B) K-fold 
cross validation. Data is split into 5 different sets with an always shifting test data (Scikit-learn, 2020). 
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3.3.6. Preprocessing of the dataset fed to the modified LeCun network (Deep learning 

dataset) 

For the deep learning part of this thesis, it is imperative to preselect the data due to an 

unbalanced representation of classes. The first analysis considered WAG/Rij rat data. The 

same animals were selected for the analysis with the first deep learning algorithm 

focusing on on-line features as well as for the second algorithm working with 

unprocessed EEG data. The two prominent classes in this thesis are baseline and 

precursor, the precursor being highly underrepresented. In the second analysis, 

somatosensory EEG data was used from six GAERS, which were measured for 24 hours 

with a sampling frequency of 500 Hz resulting in 43.200.000 time points per animal (24 h 

x 60 min x 60 s x 500 Hz = 43.200.000). To address this problem, random undersampling 

was applied to reduce the interictal event to equal values of preictal event. The dataset 

was manually labeled in the WinDaq Playback software prior to the deep learning analysis 

to define the start and end of SWD seizures.  

The raw data was split into bins of 512 ms with an analysis window of 256 ms directly 

afterwards (Figure 20). The bins were shifted over the whole dataset by the size of the 

analysis window, which created an overlap by 50% of the raw data. The analysis windows 

was labeled to display the state of the animal with: “0” corresponding to baseline events, 

“1” transition time interval from baseline to SWDs and “2” corresponding to SWD 

intervals. For the purpose of the detection of a precursor prior to a SWD, the Deep 

learning model was trained to detect only baseline and transition intervals. To account 

for rat specific EEG measurements, raw EEG data was normalized. Shifting window of the 

raw EEG traces corresponded to 512 ms with a shift and analysis window (directly 

connected) of 256 ms. Data size was chosen based on exponents of two to allow faster 

processing. 

This intricate preprocessing and training of the deep neural network was additionally 

illustrated by video presentation (Appendix 3) 
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Figure 20: EEG deep learning preprocessing. (A) Raw EEG from GAERS animal recorded within cortex IV, V, VI. (B) 
Extracted raw data at position 1 (X) with bin length of 512 ms and an analysis window (Y) of 256 ms. (C) Moving 
window through the entire dataset at position 2 with an overlap of raw EEG data equal to the analysis window. Value 
of the analysis window (“0” for interictal and “1” for preictal) corresponding the state of the animal within set time. 



Materials and methods 

53 

3.3.7. Hyperparameter configuration 

The deep learning model was trained with the optimizer “Adam” designed to work with 

stochastic optimization (Kingma & Ba, 2015). Adam has pre-set hyperparameter settings 

with a learning rate of 0.001. This optimizer is chosen to reduce overfitting of the model 

while keeping the pattern learning at a reasonable level. The batch size was set to 64 

corresponding to the presented data within one training run. The model was trained with 

each data set split for 75 training epochs (Figure 19). 

The deep learning algorithm was built (programmed) and run (performed) with Keras 

version 2.3, Tensorflow version 2.2 and Python 2.6. 

 

3.3.8. Performance evaluation deep learning algorithm 

The evaluation of the 10-fold cross validation is done by averaging the balanced accuracy 

of the validation data set from each trial. Balanced accuracy is calculated by adding the 

sensitivity (True positives/the total number of seizure sample) and the specificity (True 

negative/the total number of interictal sample) and then dividing it by two. The loss 

function and validation loss (val-loss) representing the learning of the features with 0 

equals no information loss is checked for the steady decrease in both val-loss and loss. 

Decreasing val-loss represents accurate detected features in novel data sets. The data is 

then permutated as the data in the Random forest to test SWD prediction of the modified 

LeCun network against chance level prediction. A confusion matrix is further extracted to 

investigate the actual number of predicted interictal and preictal events (Figure 21). 

Figure 21: Confusion matrix. Sum of all windows resembles data set size. Predicted positive 
and negative are correlated to the actual positive and negative present within the data set. 
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Precision (correctly classified as preictal/(correctly classified as preictal + incorrectly 

classified as preictal) and predictive negative value (correctly classified as 

interictal/(correctly classified as interictal + incorrectly classified as interictal) is calculated 

with the help of the confusion matrix. 
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4. Results  

4.1. Cortical and thalamic relationships in precursor detection 

In a previous study, SWD prediction in WAG/Rij rats reached high sensitivities, however, 

produced a high degree of false positive predictions (Maksimenko et al., 2017). As the 

generation of a SWD is thought to rely on an intricate interaction between cortex and 

thalamus. It was postulated that the brain areas used for the prediction of SWDs in that 

study might not yet have been chosen optimal. To elucidate, if there is an optimal channel 

combination that is suited to improve the prediction of SWDs, this work combined EEG 

recordings acquired from eight different brain regions of the thalamo-cortical system of 

WAG/Rij rats and compared those combinations on their SWD prediction performance. 

This comparison resulted in alternating sensitivities of SWD prediction (Figure 22) [F(84, 

10869) = 6.093, p<0.001] and different rates of false positive (Figure 23) [F(84, 10869) = 

22.411, p<0.001]. 

Taking a closer look at the specific sensitivities that were achieved by the different 

channel combinations, it was revealed that both the number of EEG traces used for 

prediction (i.e. two (22.8 ± 0.5%) vs. three channels (41.0 ± 0.4%)) [F(1, 10946) = 644.348, 

p<0.001] as well as the type of combination (CC (33.0 ± 0.9%), CT (24.2 ± 0.6%), TT (13.7 

± 0.7%), CCC (61.7 ± 1.5%), CCT (48.9 ± 0.5%), CTT (36.7 ± 0.4%), TTT (32.2 ± 0.8%), MCCC 

(33.3 ± 2.5%)) mattered for the degree of sensitivity that could be reached for SWD 

prediction (Figure 22A) [F(7, 10946) = 250.6, p<0.001]. Intracortical measurements within 

S1 brain region showed significant differences between the prediction based on two 

channel CC (33.04 ± 0.9%) and its three channel counterpart CCC (61.7 ± 1.5%) (p<0.001) 

(Figure 22B,C). In general, two channel prediction showed lower sensitivities in 

comparison to three channel prediction (p<0.001). However, intracortical prediction 

based on two channel CC did not vary significantly from three channel of intrathalamic 

recording sites TTT (32.2 ± 0.8%) and three motorcortex recording sites MCCC (33.3 ± 

2.5%; p=0.918). Thalamo-cortical CT prediction showed significantly lower sensitivities to 

intrathalamic measurements (24.2 ± 0.6%; p<0.001). Lowest sensitivities were achieved 

by intrathalamic measurements TT (13.7 ± 0.8%) which were significantly lower to all 

other groups (all, p<0.001) (Figure 22).  
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As for the predictions based on two recording traces, differences in SWD prediction 

sensitivities was seen between intrathalamic, intracortical and thalamo-cortical (Figure 

22). Prediction based on three channels showed similar behavior as the prediction based 

on two channels. Highest sensitivity was achieved by intracortical measurements within 

layer IV, V and VI of the somatosensory cortex (61.7 ± 1.5%). CCC showed significant 

differences to combinations using thalamic regions for the prediction (Figure 22C) (all, 

p<0.001). Significant differences were additionally seen between sensitivities reached 

with either one thalamic channel used (CCT: 48.9 ± 0.5%; p<0.001) or two (CTT: 36.7 ± 

0.4%; p<0.001). No significant difference was measured between CTT and SWD onset 

zone far region MCCC (p=0.179). However, sensitivities reached with intracortical 

motorcortex combinations (MCCC) were significantly lower in comparison to intracortical 

somatosensory combinations (CCC) (p<0.001). CCT (48.9 ± 0.5%) showed significantly 

higher sensitivities in comparison to intrathalamic (TTT) combinations (32.2 ± 0.8%, 

p<0.001). The motorcortex (MCCC) combination did not differ significantly from 

intrathalamic measurements (p=0.68). 
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Figure 22: Average sensitivities of precursor detection achieved with different channel combinations. (A) 
Sensitivities [%] of SWD prediction (displayed on y-axis) achieved for different combinations of brain regions displayed 
on the x-axis (see Appendix 1a, 1b or bookmark for numerical indexing of the combinations). Triangles (▲) correspond 
to channel combinations with three electrodes while round dots (●) refer to two electrodes used. Covariate factor 
threshold was calculated for 0.2719 and for 116.9715 nFP/h. (B) Average sensitivities [%] achieved for group-types 
with 1: two intracortical recording sites (CC), category 2: one cortical and one thalamic recording site (CT), category 
3: two intrathalamic recording sites (TT), category 4: three intracortical recording sites (CCC), category 5: two cortical 
recording site and one thalamic (CCT), category 6: one cortical recording site and two thalamic recording sites (CTT) 
and category 7: three intrathalamic recording sites (TTT).  (C) Results of statistical comparison between groups (*** 
indicates significance at p<0.001).  
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Taking a closer look at the number of false positive per hour (nFP/h) the number of EEG 

traces again reveals to be of significant importance [F(1, 10869) = 187.683, p<0.001] 

(Figure 23A). Predictions based on two EEG traces showed significantly higher nFP/h 

(162.6 ± 3.3) than predictions based on three EEG traces (88.5 ± 2.3; p<0.001). The type 

of combination (intracortical, thalamo-cortical or intrathalamic) displayed significant 

difference in achieved nFP/h as well [F(1, 10869) = 6.093; p<0.001]). In contrast to the 

results seen for the achieved sensitivity above, intracortical CC combinations showed 

highest nFP/h (221.1 ± 6.2, p<0.001) (Figure 23B,C). Intrathalamic TT (164.9 ± 5.1) 

displayed the second highest false positive rate in comparison to CC (221.1 ±  6.2, 

p<0.001) and CT (144.7 ± 3.8, p<0.001). Interestingly, thalamo-cortical CT showed 

significantly reduced nFP/h to intrathalamic measurements (164.9 ± 5.1, p<0.001) and 

thereby produced the least errors of the two EEG trace version (Figure 23B,C). 

Considering predictions based on three EEG trace, MCCC (129.8 ± 17.9) was the only 

group that produced similar nFP/h as the two channel version (CT) (144.7 ± 3.8, p=0.396). 

Additionally, MCCC showed no significant difference to prediction based on three 

intrathalamic channel (TTT) (p=0.270). Intracortical CCC (85.2 ± 10.6) nFP/h did not differ 

significantly to groups with thalamo-cortical groups including either one thalamic EEG 

trace (CCT 70.6 ± 3.5, p=0.181) or two thalamic EEG traces (94.7 ± 2.9, p=0.181). 

However, CCC produced significantly less nFP/h than TTT (110.2 ± 5.4, p<0.001). CCT 

displayed a significant reduction of false positives in comparison to CTT (94.7 ± 3.0, 

p<0.001). 
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Figure 23: Average number of false positive detections per hour. (A) Number of false positive displayed for each channel 
combination for three (triangle (▲)) and two (round dot (●)) brain areas used in the algorithm. Covariate factor for all 
combinations are calculated for threshold values of 0.2719 and 34.00% for sensitivity. (B) Groups of brain regions differ 
from each other on their average number of false positives per hour. (C) Significance between groups is depicted by the 
p-values (p<0.05 (*); p<0.01 (**); p<0.001 (***)). Red underlay represents non-significant differences. Combination 
composition indicated with groups 1: two intracortical recording sites (CC), category 2: one cortical and one thalamic 
recording site (CT), category 3: two intrathalamic recording sites (TT), category 4: three intracortical recording sites 
(CCC), category 5: two cortical recording site and one thalamic (CCT), category 6: one cortical recording site and two 
thalamic recording sites (CTT) and category 7: three intrathalamic recording sites (TTT). (for further information see 
Appendix 1a and 1b).  
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Furthermore, a significant correlation between the achieved sensitivity and the nFP/h 

rate was revealed (Figure 24) (r=0.716; p<0.001). Again, a cloud formation of channel-

combinations could be observed (Figure 24). Differences could be seen between 

predictions based on two recording traces displaying lower sensitivities and higher nFP/h 

in comparison to three channel. The addition of a third EEG trace for SWD prediction 

produced lower nFP/h and higher sensitivities. Intracortical CC group displayed with its 

high nFP/h and relatively high sensitivity for predictions based on two channels a clear 

differentiation to the decreasing slope displayed from intrathalamic TT to thalamo-

cortical group CCT (Figure 24). Higher number of EEG traces (two channel and three 

channel) and influence of higher number of somatosensory cortex EEG traces within the 

prediction showed an interesting pattern that decrease the nFP/h and increases the 

sensitivity. Intracortical measurements for either two channel or three channel did not 

aligned with the decrease of nFP/h and increase of sensitivity displayed by the other 

groups. However, intracortical measurements displayed highest sensitivity of each 

version. Interestingly, two channel version thalamo-cortical prediction (CT) showed high 

sensitivity of two combinations (13 (Ctx V, rRTN): 29.26 ± 2.43%; 18 (Ctx VI, rRTN): 31.35 
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Figure 24: Correlation between nFP/h and sensitivity on precursor detection. Combinations are depicted as either triangles 
(▲; three channel combinations) or round dots (●; two channel combinations). Different classes of channel 
combinations include groups 1: two intracortical recording sites (CC), group  2: one cortical and one thalamic recording 
site (CT), group 3: two intrathalamic recording sites (TT), group 4: three intracortical recording sites (CCC), group 5: two 
cortical recording site and one thalamic (CCT), group 6: one cortical recording site and two thalamic recording sites (CTT) 
and group 7: three intrathalamic recording sites (TTT) (for further information see Appendix 1a and 1b). 
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± 2.43%) that did not vary significantly from intracortical measurements CC (1 (Ctx IV, Ctx 

V): 30.9 ± 2.6%; 2(Ctx IV, Ctx VI): 31.2 ± 2.6%; 3(Ctx V, Ctx VI):33.6 ± 1.5%) (all, p>0.05). 

 

4.2. SWD prediction: Differences between rat strains 

The overarching goal of seizure prediction is the detection of a precursor irrelevant of 

strain and species. As some differences between the two most widely used genetic rat 

models are already reported for some features of the SWDs itself (see introduction) it is 

aimed to compare the prediction-performance of the Maksimenko et al. algorithm based 

on EEG traces acquired in GAERS and WAG/Rij rats, respectively. More specifically, 

comparison of SWD prediction performance was compared between predictions based 

on three intracortical recordings acquired in either the somatosensory cortex (layer IV, V 

and VI) of GAERS or WAG/Rij rats (see paragraph 3.2.1), as highest sensitivities were 

reached for this channel combination in WAG/Rij. No significant differences were seen 

between GAERS and WAG/Rij rats for the sensitivity of precursor detection (GAERS: 61.0 

± 3.1%; WAG/Rij: 58.3 ± 1.9%; p=0.477) (Figure 25A). However, highly significant 

differences between GAERS and WAG/Rij rats were observed regarding the nFP/H 

(GAERS: 66.2 ± 21.5; WAG/Rij:  217.4 ± 13.2; p<0.001) (Figure 25B). Overall, the SWD 

prediction performance was significantly better in GAERS. Thus, indicating alternating 
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Figure 25: Differences in SWD prediction performance of the Maksimenko et al. algorithm in WAG/Rij rats and 
GAERS. (A) Average sensitivity [%] of SWD prediction based on three intracortical recordings of the somatosensory 
cortex of either WAG/Rij rats or GAERS with covariate factor value 0.4127 for threshold and 175.911 for nFP/h. (B) 
Average NFP/h based on the same recordings in WAG/Rij rats and GAERS seen in A, with covariate factor value 0.4127 
for threshold and 59.07% for sensitivity. *** indicates significance at p<0.001. 
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efficiency of frequency band ranges for predicting absence seizure in GAERS compared 

to WAG/Rij rats. 

 

4.3. Spectral comparison of true positive and false positive detections in 

GAERS and WAG/Rij rats 

As seen above, SWD prediction resulted in a higher number of false positive detections 

in WAG/Rij rats compared to GAERS. This indicates different reliance on the calculated 

spectral features applied by the algorithm for precursor detection. To further investigate 

this issue and to uncover possible other spectral features, which might improve SWD 

prediction, spectral features of true and false detections were compared for GAERS and 

WAG/Rij rats. 

Figure 26A-C depicts exemplary spectrogram images of true and false positive SWD 

predictions. Time point -0.5 to 0 features the analysis window in which either the true 

positive precursor or the false positive was detected. Time point 0 was used as a 

standardized reference point for averaging across multiple true positives and false 

positives respectively (Figure 26D-E). 

The SWD start is depicted as time point 0.4 seconds on the x-axes (Figure 26A-C2). 

Additionally, high synchronicity is indicated at the starting point between channels by 

high values of the wavelet product ranging from 0.1 to 0.2 in the 5-10 Hz band shown on 

the y-axes. Comparing the true (Figure 26B) and false (Figure 26C) detection, differences 

in the degree of synchronicity can be seen. In addition, SWD patterns are clearly seen 

starting from the red line (2) in Figure 26B. SWDs show initially high synchronicity that 

recedes shortly after. 

Next Figure 26D,E depicts average differences between true and false predictions. 

Average spectra of the wavelet product of true detections are subtracted from false 

detection to highlight the difference between both events. Here animal line specific 

differences are observed between WAG/Rij rats and GAERS (Figure 26D,E). In GAERS, 

higher power can be seen in comparison to WAG/Rij rats (Figure 26D,E) indicated by the 

maximum value of 0.02 (GAERS) to 0.004 (WAG/Rij). WAG/Rij rats and GAERS, display 
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negative values within the precursor detection window imply higher power within the 

false detections in both animal lines (Figure 26D,E-1). WAG/Rij rat EEG power showed a 

higher variance at the starting point, indicated by the less pronounced pattern between 

time points 0 to 1 second. However, at time point 0 higher power can be observed in 

comparison to the next second within WAG/Rij rats. GAERS product deduction of three 
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Figure 26: Spectrograms (product derived from three intracortical recordings) of true and false positive detections. (A) 
Example of 4 s- trace of a somatosensory cortex FP measurement in GAERS. “1” denotes the analysis window including 
the true or false positive detection used for calculation of wavelet power. “2” denotes the start of the SWD. (B) Product 
of Wavelet power from three intracortical EEG traces belonging to a true detection of a precursor event. Analyzed 
Frequencies range from 3.3 Hz to 20 Hz and are displayed on the y-axes. Time point 0.0 on the x-axes represents 
calculated point of precursor event detection. Power differences are displayed on the right side with color coding from 
blue to yellow. Bright colors correspond to synchronized EEG signals of the three recorded traces. (C) Product of Wavelet 
power from three intracortical EEG traces belonging to a true detection (D-E) Average difference between true and false 
detections. Grand Average products of 300 true detection are subtracted from grand average product of 300 false 
positive detection events from GAERS (n=6). For WAG/Rij rats (n=10), grand average product of 262 true detections were 
subtracted from grand average product of 500 false detections. 
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cortical EEG true events subtracted from false events, showed decreasing power 

beginning form time point 0.5 to 1.5 (Figure 27A).  

 

The product of wavelet power seen for the three frequency bands WΔS1 (5-10 Hz), WΔS2 

(3-5 Hz) und WΔS3 (6.6-20 Hz) was statistically compared between true and false 

detections for GAERS and WAG/Rij rats (Figure 27). WΔS1 of WAG/Rij rats exhibited 

significantly lower energy within true predictions (0.073 ± 0.021) in comparison to false 

predictions (0.123 ± 0.026; p<0.01) (Figure 27A). For WΔS2 displayed differences between 

true (0.089 ± 0.023) and false (0.135 ± 0.023; p<0.01) as well. The frequency band 

resembling sleep spindles WΔS3 on the other hand, did not significantly differ between 

true (0.066 ± 0.019) and false (0.088 ± 0.019; p=0.118) predictions. 

GAERS data revealed a similar trend as WAG/Rij rats, in that WΔS1 and WΔS2 showed 

differences between true and false but WΔS3 did not. WΔS1 resembling the precursor 

activity within GAERS showed significant differences between true (0.128 ± 0.04) and 

false (0.320 ± 0.103; p<0.01) predictions (Figure 27-B). Light slow wave sleep (WΔS2) had 

similar effects showing significant differences between true (0.280 ± 0.155) and false 

(0.431 ± 0.151; p<0.05) predictions. Both frequency bands showed lower energy during 
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Figure 27: Comparison of product wavelet power of true and false positive detections for the three frequency bands 
used by the Maksimenko et al algorithm. (A) Average product of wavelet power for the three frequency bands WΔS1 

= 5-10 Hz, WΔS2  = 3-5 Hz, and WΔS3  = 6.6-20 Hz calculated for true and false positive detections based on three 
intracortical EEG recordings in the somatosensory cortex of WAG/Rij rats. True detections are depicted in black 
while false positive detections are shown in grey. (B) Average product of wavelet power for the three frequency 
bands WΔS1 -WΔS3 calculated for true and false positive detections based on three intracortical EEG recordings in the 
somatosensory cortex of GAERS. * denotes significance at p<0.05 level, ** denotes significance at p<0.01 level. 
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epochs of true detection. WΔS3 on the other hand did not express significant differences 

between true (0.221 ± 0.106) and false (0.220 ± 0.086; p=962) predictions. 

Interestingly, differences in average power between true and false detections of the WΔS1 

band from GAERS were more pronounced in comparison to WAG/Rij rats (p<0.05). The 

same interaction could also be seen in the average power of WΔS2 with GAERS having a 

more pronounces difference between true and false positive as compared to WAG/Rij 

rats (p<0.05).  

 

4.4.  Differentiation of true and false predictions using the random forest 

machine learning approach.   

Frequency band based detection of precursor events prior to SWDs indicated differences 

between frequency bands of true and false detections. To further analyze and distinguish 

true and false detections from each other, the machine learning technique random forest 

was used. This technique tries to identify useful features for the differentiation of true 

and false detections within their spectral components. Nine spectral parameters (WΔS1-3) 

of each true and false detection including intracortical, intrathalamic and thalamo-

cortical measurements were fed to a random forest containing a total number of 1000 

decision trees (Table 1).  

Combination Area 1 Area 2 Area 3 N 

CC Ctx IV Ctx VI  177 

CCC Ctx IV Ctx V Ctx VI 161 

CCC 90% Ctx IV Ctx V Ctx VI 232 

CCT Ctx IV Ctx V VPM 161 

CTT Ctx IV cRTN VPM 145 

TTT Po cRTN VPM 162 

GCCC Ctx IV Ctx IV Ctx IV 1844/161/145 

GCCC 90% Ctx IV Ctx IV Ctx IV 2440 

Table 1: Different groups of training sets used for the random forest machine learning approach. Combination resembles 
the key reference for data used in random forest algorithm with each representing the three EEG trace regions used for 
prediction. Intracortical CC measurement featured two brain regions. N depicts the number of positive detections used 
in the data set with three variations for intracortical GAERS data. GCCC is the only combination done in GAERS whereas 
the rest is done in WAG/Rij rats. 
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For training, each tree was fed with the parameters of 70% of the positive detections as 

well as an equal amount of randomly selected false positive detections (see methods 

section for details). For performance evaluation features of the remaining 30% were fed 

to the trained trees. Final decision whether a true or false prediction was presented to 

the forest is based on a majority voting of the trees.  As in paragraph 4.1, the ability of 

the random forest to differentiate between true and false predictions was compared 

between different channel-pairs (Table 1). To further investigate the influence of random 

undersampling on the classification of events, 100 individual datasets of false detections 

where chosen. Deviations in balanced accuracy of combinations are attributed to dataset 

changes (Figure 28). 

Applying the random forest algorithm to different brain region combinations, produced 

balanced accuracy ranging from 56.2 to 78.8% (Figure 28-A/B). Except for intrathalamic 

channel pair TTT (p=0.167), all groups produced significantly higher than chance 

classification, as proven by the permutation test (p<0.05 revealed for combinations CC 

and CTT, p<0.01 revealed for CCC, CCC 90% and CCT and p<0.001 for GCCC (1844, 161, 

145) and GCCC 90%) (Figure 28A). Comparison of average balance accuracies between 

different combinations of analyzed brain region showed significant differences between 

the groups (Figure 28C) [F(8, 891)=223.451, p<0.001].  

For WAG/Rij rats, sorting of true and false detection in the intracortical CCC dataset 

produced the highest accuracy (71.47%) which significantly varied from the balanced 

accuracies reached by all other groups (Figure 28C) (p<0.001). Using 90% instead of 60% 

sensitivity- based input data of the intracortical CCC measurements did not improve the 

separation of true and false prediction instead CCC with 60% showed higher balanced 

accuracies (p<0.001). CCC 90% on the other hand did not significantly vary from the 

intracortical CC (62.5%, p=0.398) combination and thalamo-cortical CCT (66.7%, p=0.517) 

combination. Sorting based on two intracortical EEG traces (CC) did not differ in balanced 

accuracy significantly from balanced accuracy achieved in the sorting based on CCT 

recordings (p=0.844). Sorting based on the thalamo-cortical combination CCT 

significantly differed from sorting based on two thalamic and only one cortical recording 

CTT (p<0.001). Sorting based on intrathalamic measurements without cortical influence 

produced the lowest balanced accuracy (56.2%, p<0.001).  
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Comparison of sorting-balanced accuracies form intracortical measurements of GAERS 

and WAG/Rij rats showed significantly higher differentiation ability of the trained random 

forest in GAERS animals. GCCC with n=1844 reached the highest balanced accuracy 

(78.8%, p<0.001). Significant deterioration of trainings efficiency (balanced accuracy) was 

observed once the trainings data set was reduced to equal values applied in the WAG/Rij 

rat intracortical measurement. However, no difference was seen in GAERS intracortical 

GCCC measurement with n=161 (73.58%) to the lowest WAG/Rij rats trainings set size 

(73%, n=145), indicating the irrelevance of data set size differences between 145 and 

161. GCCC 90% shows no significant differences of its achieved classification success of 

73.1% balanced accuracy between both reduced data sample 145 (p=0.873) and 161 

(p=0.409) but still displayed significant lower balanced accuracies in comparison to GCCC 

measurements adjusted to threshold levels of 60%. This difference indicated a slightly 

lower classification success but overall classification is more successful due to 30% more 

preictal segments used in total. 
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Figure 28: Average balance accuracies achieved for SWD prediction by the random forest algorithm. (A) Boxplot 
analysis of balanced accuracy from random forest analysis of different combinations in WAG/Rij rats and GAERS. 
Boxplot analysis consists of 100 alternating seeds of chosen false positives (random undersampling) with all true 
positive predictions. Deviations in balanced accuracy of combinations are attributed to dataset changes. Tested data 
corresponded to intrathalamic, intracortical and thalamo-cortical prediction combinations (CC (n=177): Ctx V, Ctx VI; 
CCC (n=161): Ctx IV, Ctx V, Ctx VI; CCT (n=161): VPM, Ctx IV, Ctx VI; CTT (n=145): VPM, cRTN, Ctx VI; TTT (n=162): Po, 
VPM, cRTN). GCCC indicated intracortical measurements within GAERS animal with following training data size (n= 
1844, 161, 145) to compare to WAG/Rij rats intracortical measurements and adjusting for lowest trainings number. 
All combination thresholds were adjusted to reach ~60% sensitivity. Comparison to the adjusted ~60% sensitivity is 
done with the intracortical WAG/Rij rats and GAERS measurement (~90% sensitivity). Note the non-significant training 
in combination “TTT”. (B) Mean balanced accuracy from all 100 seeds of given combinations. (C) Statistical difference 
between groups. Note the non-significant difference between “GCCC 161” and “GCCC 145” ((p<0.05 (*); p<0.01 (**); 
p<0.001 (***)). 
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Given this non-significant difference the GCCC 90% dataset can be regarded as most 

promising for SWD prediction. Validation of the algorithm performance on 30% (i.e. 

approximately 7.2 hours) of unseen data correctly detected 520 out of 754 SWD with 

only 161 false positives remaining, which equals a sensitivity of 68.97% with 77.32% 

specificity (Table 2). The high specificity shows that the random forest can more easily 

classify interictal events (prior false positive of the Maksimenko-algorithm). The 

validation set used here consists of 30% of the total data set (n=4880) made up of equal 

amounts of interictal and preictal events (random undersampling). 

 

 

Predicted as 
interictal 
fragment 

 

Predicted as 
preictal 

fragment 
 

Actual 
interictal 
fragment 

 

549 161 

Actual preictal 
fragment 

234 520 

 

Table 2: Classification matrix shown of GAERS intracortical somatosensory SWD prediction classification. Data represents 
true and false positive received by the Maksimenko-algorithm, which was adjusted to achieve 90% sensitivity. A total 
number of 1464 true and false positive were used as a validation set corresponding to 30% of the trained data. 

 

Training of the random forest on five animals and validating the trained model on a 

complete unseen 24h data set showed lower averaged balanced accuracies (56.2 ± 

1.93%) in comparison to previous used validation technique (70:30 split). However, it 

must be noted that high values SEM were seen between the rats for both specificity (57.4 

± 10.19%) and sensitivity (55.23 ± 10.18%) of prediction, indicating rat specific differences 

between obtained accuracies.  

Corresponding to the hypothesis that the sleep spindle does not influence the 

classification of the random forest due to the non-significant effects seen prior in the 

surface plot, only the decision parameter for the light slow wave sleep and the precursor 

band are used for the classification. Classification was done on GAERS datasets adjusted 
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to reach significance levels of 90% to see differences to the prior determined balanced 

accuracies. Although there was no significant difference seen between true and false 

predictions within the sleep spindle band, classification was slightly reduced to 69.8%. 

 

4.5. A deep learning algorithm for SWD prediction based on raw, unprocessed 

EEG traces 

To investigate if next to the above used spectral features, additional features, which 

might be present in the EEG, are able to further improve the prediction of SWDs, a 

modified LeCun network was constructed (Figure 9). Considering this form of SWDs 

without prior feature specification and modulation, a highly specific deep learning 

algorithm was applied analyzing the raw EEG of three intracortical recordings of GAERS 

with 512 ms time windows to predict if a SWD will occur within the following 256 ms 

(Figure 20). Random undersampling was applied to the data to counter unbalanced 

training of features. Training of the deep neural network with a data set containing 2695 

interictal sample to match the 2695 preictal sample. After 75 training epochs, 

classification of interictal and preictal events on unseen test data was performed and 

resulted in an averaged balanced accuracy of 75.1%.  This balanced accuracy was shown 

to be significantly better (p<0.001) than chance-based prediction by permutation 

statistics (see methods for detail). The training of features reached higher negative 

predictive value (82.4%) in comparison to the lower precision (67.75%) (Table 3). Figure 

29A depicts the average-balanced accuracy at each training epoch. Averaged balanced 

accuracy over 10 validation sets of SWD prediction stagnated between the 40th (76.06%) 

and 50th (75.68%) trainings epoch, indicating that features of SWD precursor within this 

dataset are fully learned. This notion was also supported by the average loss and 

validation loss (val-loss) values depicted in Figure 29B for each run. Training loss of the 

trainings set showed improved learning to the last training epoch. However, validating 

error of the learned features with the unseen data (val-loss) stagnated beginning from 

the 40th epoch (Figure 29B). After the 40th epoch, val-loss values kept increasing, 

indicating slight overfitting of learned features.  
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Predicted as 
interictal 
fragment 

 

Predicted as 
preictal 

fragment 
 

Actual 
interictal 
fragment 

 

2221 474 

Actual preictal 
fragment 

869 1826 

Table 3: Confusion matrix of SWD prediction based on raw EEG data using a modified LeCun network. A total number of 
2695 preictal and 2695 interictal events had to be classified. 
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Figure 29: Training efficiency of the modified LeCun network in the prediction of SWD by raw EEG analysis. 512 ms 
raw EEG is analyzed on precursor activity signaling EEG occurrence within the next 256 ms. (A) Average-balanced 
accuracy of a 10-fold data split is depicted for each training epoch. Circles (○) indicate balanced accuracy during 
training, while crosses (×) indicate balanced accuracy of unseen test/validation set. (B) Average loss of training 
difference between real and predicted data is displayed for each epoch for the training set (round dots) and validation 
set (crosses). 
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To validate the algorithm on a full 24h dataset, the algorithm is trained on 5 animals with 

one unseen animal functioning as a validation set. Validation on a full 24h dataset showed 

a balanced accuracy of 68.2 ± 0.04% ( 

Table 4). Although a high number of false negatives where correctly detected (8579), they 

appear comparable small in relation to the accurately detected false negatives (144829) 

resulting in a precision of 94.4 ± 0.8%. Less than halve of the preictal EEG fragments were 

accurately classified resulting in 42.3 ± 4.0% sensitivity.  

 

 

 

Predicted as 
interictal 
fragment 

 

Predicted as 
preictal 

fragment 
 

Actual 
interictal 
fragment 

 

144829 8579 

Actual preictal 
fragment 

259 190 

 

Table 4: Confusion matrix of SWD prediction based on raw 24h EEG data using a modified LeCun network. Confusion 
matrix shows classification average of 6 tested 24h measurements with a total of 162963 tested EEG intervals for each 
rat. 
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5. Discussion 

The aim of this thesis was to optimize the prediction of absence seizures using a 

combination of different techniques. For this, the influence of different EEG recoding 

sites within the thalamo-cortical system on the predictability of absence seizures in 

WAG/Rij rats was elucidated using a previously developed wavelet-based SWD prediction 

algorithm of Maksimenko et al. (2017). Additionally, the performance of the algorithm 

was investigated on its applicability to another absence epileptic rat model GAERS. 

Furthermore, surface plots of true and false prediction of WAG/Rij rats and GAERS were 

compared and investigated regarding their suitability of being used by a random forest 

machine learning algorithm in order to further classify true and false positive predictions 

to improve overall prediction of SWDs. Finally, a deep learning algorithm was constructed 

and trained to investigate the possibility of SWD prediction based on unbiased and 

unprocessed raw EEG data of preictal and interictal epochs. 

Corresponding to the three postulated aims, the results reported in this thesis 

demonstrated significant improvement for each method used to optimize SWD 

prediction:  A significant increase in predictability was shown by using three intracortical 

EEG traces in the somatosensory cortex in respect to the first aim regarding the question 

about the best fitting brain region combination. Comparison of wavelet spectra of true 

and false positive predictions revealed significant differences in two of the three 

frequency band energies within true and false predictions. Using the extracted features 

of the Maksimenko-algorithm with either threshold levels corresponding to 60 or 90% 

sensitivity, allowed further classification of true and false predictions, reaching a balanced 

accuracy of 78.8% and 73.1% respectively by applying a machine learning algorithm called 

random forest. Lastly, the applied deep learning algorithm was able to predict absence 

seizure with an average accuracy of 75.5% based on raw EEG traces without previous self-

defined feature engineering.  

The following chapter will concentrate on the optimization of pre-existing and new 

founded methods predicting absence seizures and their correlation to the already 

published literature. Finally, the achieved findings of the efficiency of these techniques 

will be evaluated. 
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5.1. Region specific SWD prediction 

This study expanded the view on the involvement of brain regions within absence seizure 

prediction in the way that an improvement of prediction with EEG recordings in the 

vicinity to the onset zone of SWDs can be achieved. The research aimed to improve the 

prediction of SWDs by the algorithm developed by Maksimenko et al. (2017) that 

previously showed high sensitivity for precursor prediction but a high number of false 

positive as well. It was postulated that high number of false positive predictions might be 

correlated to the single brain region combination used for the prediction. Therefore, the 

effectivity of the algorithm for the prediction of seizures with combinations out of eight 

different brain regions within the rat model WAG/Rij rats was investigated in this thesis. 

The algorithm of Maksimenko et al. determines the synchronicity of brain regions by 

calculating the product out of different EEG traces. Therefore, it is not surprising that the 

use of either two or three channels within the prediction showed a significant difference 

with three channels providing higher predictability of seizures. Using the product for an 

indication of synchronicity provides an intricate play between enough information 

present to detect certain patterns and random synchronization of brain regions. The 

product of two EEG traces might provide less differentiable information between preictal 

and interictal events. Increasing the number of used EEG traces to three offers a better 

indication of synchronization. 

This work pointed out the importance of represented brain regions within the prediction, 

as increasing the number of somatosensory EEG traces resulted in the highest 

predictability. In comparison to previous research where two cortical and one thalamic 

region (Cortex IV, V and Po corresponding to combination no. 2) were used for the 

prediction, prediction based on intracortical regions in S1 tested in this study provided 

significantly better results (see Figure 22 and Figure 23 combination no. 1 (intracortical) 

and no. 2 (thalamo-cortical)) (cf. Maksimenko et al., 2017). The coupling of brain regions 

preictally might indicate a possible explanation for the higher influence of cortical regions 

on the predictability (Sysoeva et al., 2016). Sysoeva investigated the dynamic coupling 

seen prior and during SWDs showing a gradual increase of coupling between intracortical 

regions with additional increase in coupling between cortical and thalamic regions shortly 
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thereafter. Somatosensory cortical regions IV, V and VI are seen to drive the thalamus 

preictally except for bidirectional crosstalk seen between Po and somatosensory cortical 

region IV and V (Lüttjohann & van Luijtelaar, 2012). Surprisingly, in this study the thalamo-

cortical combination with two cortical regions and the thalamic region Po did not produce 

significantly different predictabilities compared to other combinations with one thalamic 

and two cortical regions. As there are time delays between cortex and Po of 

approximately 10-12 ms (Lüttjohann and van Luijtelaar 2012; Lüttjohann and van 

Luijtelaar 2013)  better results might be achieved once this signal delay is attributed for. 

The algorithm applied in this study did not adjust the delay between different brain 

regions. Implementing a function of adjusting the physical delay between brain regions 

might provide further insight into the precursor occurrence and increase SWD 

predictability. The high predictability of SWDs seen once using intracortical 

somatosensory cortex EEG traces can nicely be related to the assumed onset zone of 

SWDs, in which the precursor determining parameter are more prominent (Meeren et al. 

2002; Polack et al. 2007; van Luijtelaar et al. 2011). This is further supported by the fact 

that SWD prediction within motorcortex (MCCC) reached a less accurate prediction. 

Interestingly, intracortical prediction based on only two intracortical recording sites in S1 

was not distinctively better than two thalamo-cortical predictions with one thalamic and 

one cortical region. These two thalamo-cortical combinations showed surprising results. 

More specifically, both combinations used two channels for the prediction with both 

using the rRTN and alternating cortex V and VI for the prediction. Previous research 

showed initial interactions of cortical regions with the rRTN, which might influence the 

predictability (Sysoeva et al. 2016). Additionally, the rRTN contains a high importance for 

seizure formation as pharmacological inhibition or lesions of it decrease SWD activity 

(Aker et al., 2006; Meeren et al., 2009). A recent study debating over the influence of the 

centromedian thalamus (CM) on the seizure formation showed alterations of SWD 

patterns once local pharmacological inhibition is applied to the CM (Terlau et al., 2020). 

This novel view on the role of the CM to seizures in general might be another target for 

seizure prediction or treatment via stimulation, due to its high relevance to SWD 

formation. 
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The predictability of SWDs were analyzed in two rat models GAERS and WAG/Rij rats to 

investigate the algorithms interchangeability. Contrary to previous assumptions, WAG/Rij 

rats and GAERS showed a significant difference on the predictability of SWDs. GAERS 

produce less false positive, which might be related the higher power seen preictally 

(Akman et al., 2010). GAERS and WAG/Rij rats display slightly different prominent 

frequencies during seizure in any stage (start, mid, end), with GAERS showing slightly 

lower frequency of 8 Hz and WAG/Rij rats showing 9 Hz at the start of the seizure (Akman 

et al., 2010). Additionally, waveform differences of GAERS and WAG/Rij rats might also 

be extended to the precursor. Contrary to the finding in this study, Akman et al., (2010) 

showed that WAG/Rij rats display higher power between 8 and 14 Hz preictal, which 

would influence the sleep spindle parameter used in the applied algorithm. Moreover, 

the study showed a generally higher difference between baseline events and pre-SWD 

events, which would lead to contrary believes that precursors can be more accurately 

detected in WAG/Rij rats than in GAERS (Akman et al., 2010). This difference might be 

correlated to the EEG recording area within the frontal cortex. Furthermore, a highly 

specific pattern was seen within S2 and S1 regions preictally with the temporal starting 

point occurring previously in S2 regions, further supporting the importance of onset zone 

specific precursor prediction (Pinault et al. 2001; Zheng et al. 2012). This could be an 

indication for the efficiency of chosen frequency bands for the prediction, which might 

be more fitting for GAERS SWD prediction. This shows the first indication of distinct 

differences of precursor morphology. 

Concluding, intracortical SWD predictions based on three distinct EEG traces showed 

significantly higher predictability in comparison to two intracortical EEG traces. The 

additional information presented by the third channel might be responsible for the 

detection of more SWDs. The interplay between cortex IV, V and VI might be the 

information needed within this prediction. Resulting grouping accuracies seen between 

all combinations can also be traced back to the cortical focus theory in that the network 

aspect is further described by the sensitivities achieved (Meeren et al., 2005). 
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5.2. Frequency analysis 

Since the earlier mentioned precursor detection based on the algorithm of Maksimenko 

et al. (2017) had three distinctive criteria all concerning the energy within frequency 

bands, investigation of the frequency band differences between true and false positive 

prediction were done. Comparing the two animal models GAERS and WAG/Rij rats, true 

and false predictions displayed a lower overall product in WAG/Rij rats. This supports the 

idea that precursor wavelet energy is higher even in preictal events as it was shown in 

initial starting 500 ms of SWDs (Akman et al., 2010). Interestingly, precursor analysis of 

true and false predictions within GAERS displayed the slightly different pattern in that 

false predictions produce higher average power (Figure 25). As mentioned above, 

differences can be observed at the start of the seizure in GAERS and WAG/Rij rats. While 

GAERS show an increased power and synchronicity right at the beginning with steadily 

decreasing power after the initial second, WAG/Rij rats show low power at the start while 

after the first second the power and synchronicity increase. This difference in power 

could be attributed to species specific SWD patterns that are slightly different throughout 

a SWD (Akman et al., 2010). 

The research in this study showed considerable differences in the first and second 

parameter corresponding to slow wave sleep and precursor frequency respectively 

between true and false predictions.  Both parameters showed lower average power in 

true predictions. It cannot be ruled out that physiological brain activity produces similar 

synchronization interactions of brain regions due to the fact that frequencies between 4-

12 Hz are seen within normal wake related oscillations (Pinault et al. 2001). However, 

such combined delta and theta interaction are seen rarely (Sitnikova et al., 2009). A 

higher chance of SWD formation is seen during vigilance state corresponding to 

drowsiness and transitional states where EEG frequencies are slowing down (Drinkenburg 

et al. 1991; van Luijtelaar et al. 2011). Episodes of drowsiness as well as preictal temporal 

EEG segments are proven to include higher delta activity with additionally seen theta 

activity (van Luijtelaar et al., 2010). The precursor seems to consist of a lower power in 

comparison to the rarely occurring delta and theta synchronously appearing events. 

Considering the third parameter, frequency band corresponding to sleep spindle did not 

display any differences between true and false predictions. There is no indication that 
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sleep spindle activity, which display similar frequencies (7-14 Hz) as the precursor (5-

10 Hz), it not important for the differentiation between normal sleep activity and 

pathological SWD formation (Maksimenko et al., 2017). SWDs and sleep spindles are in 

some ways related; however, SWDs produce higher total power in beta frequencies 

(12.5-30 Hz) (Gloor, 1968; Kostopoulos, 2000; Sitnikova & van Luijtelaar, 2009). 

Therefore, it is not surprising that energies of true and false prediction did not differ 

within the third parameter due to the abundantly present sleep spindle during 

drowsiness and the higher error rate (Sorokin et al., 2016). 

Differences between true and false predictions energy band power were significantly 

more pronounced in GAERS compared to WAG/Rij rats. True to false prediction values 

displayed higher difference in GAERS for both the precursor and the light slow wave sleep 

parameter in comparison to WAG/Rij rats. These results were controversial due to 

previous studies showing similar differences between baseline and pre-SWD events in 

both GAERS and WAG/Rij rats (Akman et al., 2010). The length of the applied analysis 

window and grouping of the frequencies could explain this disagreement. However, it 

cannot be ruled out that other factors like the duration of the precursor event and 

prominent frequencies are involved in the slope difference as there are other differences 

seen between SWDs, which are in some ways relatable to the somatosensory recoding 

site (Akman et al., 2010). The more pronounced differences between true and false 

detections in this study might also explain the better predictability of SWDs in GAERS 

compared to WAG/Rij rats. 

 

5.3. Prediction optimization using random forest 

As stated in previous experiments, initial differences were seen in frequency bands of 

true and false predictions. To analyze this pattern, it was hypothesized that a machine 

learning algorithm termed random forest is able to divide true and false predictions to 

improve overall prediction of SWDs. Using a novel approach to apply a random forest to 

prediction decision parameter might lead to a significant reduction of the encountered 

problem of a high number of false positive (Maksimenko et al., 2017). 
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The machine learning approach showed that additional information is still present in the 

chosen parameter. The parameter allowed significant differentiation of precursor and 

false positive predictions. As it was mentioned before, seizure formation comprises of an 

intricate interplay of a network of neurons. Therefore, the given results are not surprising 

in that efficient predictions require more logical decisions as provided in the algorithm 

used (Blumenfeld, 2005; Maksimenko et al., 2017). This novel approach to add a random 

forest to the prediction output is hard to put in context to previous research. Although 

other groups have shown efficient seizure prediction when working with EEG data, the 

dataset was mostly comprised of different types of seizures (Wang et al., 2019). Using 

the CHB-MIT database providing intractable seizures of pediatric subjects, they achieved 

high accuracies (84.8%) by analyzing time intervals of 15 minutes with wavelet packet 

features and later on decoding the output with a random forest algorithm. These results 

show that a random forest can be used to further decode preprocessed EEG data and 

thereby function as an early seizure indication system. Manzouri et al. (2018) discussed 

the improved efficiency of random forest algorithms in comparison to another machine 

learning algorithm termed support vector machine (SVM). SVM try to find a hyperplane 

within the data that separates patterns linearly. Here, the random forest reacted quicker 

to detect the focal seizure in comparison to the SVM, which would coincide with the 

postulated goal to predict seizure online without considerable delay. 

Multiple recoding site combinations were tested for their still retaining information 

considering the seizure predictions. The results showed the same trend as received from 

the Maksimenko-algorithm in that processing intracortical recordings with the random 

forest reached higher balanced accuracies in comparison to combination groups having 

thalamic EEG traces. These results coincide with the previous experiments by the earlier 

shown synchronization of somatosensory cortical regions than in thalamic regions (van 

Luijtelaar et al., 2010). Interestingly, differences between GAERS and WAG/Rij rats could 

still be seen within intracortical measurement. It can be excluded that this difference is 

solely attributed to the higher training samples in that the influence of the small dataset 

size present in WAG/Rij rats was tested by reducing the training data from intracortical 

GAERS measurements to match the WAG/Rij rat intracortical sample size. This reduction 

to either a sample size of 145 or 161 showed still improved balanced accuracies. The 
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frequency bands between 3-5 Hz and 5-10 Hz are the main driving forces for the further 

differentiation. However, there is still an interaction of all three parameters due to a slight 

decrease of 3-5% balanced accuracy once the third parameter corresponding to sleep 

spindle (7-20 Hz) is excluded for the classification. Furthermore, the classification result 

of the random forest further supports the notion that the selected frequency bands are 

better suited for precursor detection in GAERS. 

Interestingly, parameters extracted from WAG/Rij rats and GAERS were chosen to 

resemble equal sensitivities (e.g. Maksimenko-algorithm thresholding to 60% or 90%), 

however classification success of true and false positive predictions was improved in 

GAERS. To test the information available, in higher sensitivities, two different threshold 

levels applied in the Maksimenko-algorithm were chosen to either reach a prediction 

sensitivity of ~60% or ~90% for intracortical measurements in both WAG/Rij rats and 

GAERS. Both intracortical predictions with threshold levels adjusted to reach ~60% 

sensitivity showed higher predictabilities in comparison to intracortical measurements in 

90% sensitivity. This difference demonstrates the more complex features, present in the 

additionally detected SWDs within the 90% version. The reduction of the rat specific 

threshold reduced the required energy within the frequency bands. Reducing the 

threshold is always accompanied by an increase in number of false positive due to the 

limiting factor of irrelevant EEG pattern that cause false positive declaration. Although 

additionally obtained true and false positive parameters reduce the balanced accuracy (-

5.7% in GAERS) of the trained model, but still higher sensitives are obtained in the end. 

However the additionally detected precursors by the lower threshold values introduce 

more versatile problems of classification that need more information as the extracted 

parameters that were retrieved from to the Maksimenko-algorithm. 

Although training of features was heavily influenced by the training sample size, quite 

convincing results were also reached with a medium sized dataset of 145 events. The 

required sample size to learn certain features is closely correlated to the information 

retained in the data. Generally, increasing sample sizes result in higher balanced 

accuracies and show stronger stability of predictions (Kim, 2009). 
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Finally, random forest algorithms are an efficient tool to differentiate true and false 

predictions further. Random forests show fast processing power and in many cases 

outperform other machine learning algorithms like SVM or neural networks (Liu et al., 

2013; Manzouri et al., 2018). With the rather small sample size and its tabular 

preprocessed data format, the random forest is the optimal tool to show classification 

success. Another positive feature of random forest is seen in its internal hyperparameter 

that do not need to be heavily optimized (Nitze et al., 2012). Highly unbalanced data 

structures such as in this study with low numbers of true possible predictions and high 

false positive predictions might benefit from bigger data sets as seen in the comparison 

of samples sizes in the intracortical GAERS data set. Although random undersampling is 

an established method to work with unbalanced data sets, valuable data received from 

experiments might not be presented to the algorithm (He & Ma, 2013). Easily discernable 

true and false predictions within the data set might result in a wrong assumption on the 

achieved balanced accuracies. False positive detections that are similar to true detections 

might not be discernable in some cases as it was seen by the reduction of balanced 

accuracy in intracortical WAG/Rij rats and GAERS prediction parameter with ~90% 

sensitivities.  

However, by alternating the chosen false positive 100 times, as performed in this thesis, 

a good impression on the prediction range is provided. An alternative approach to 

random undersampling is an oversampling of the underrepresented class. While this 

approach allows to account for a bigger variety of false positives to be considered by the 

algorithm, this approach bears the risk of unbalanced learning and overfitting of 

predictions features, which is avoided by the random undersampling approach chosen in 

this thesis.  

Applying both the Maksimenko adjusted to reach 90% sensitivity and random forest 

classification on-line would result in a reduction of precursor sensitivity by ~30%. 

However, only ~25% of the false positive would remain as well. High differences were 

seen between two types of validation. The 70:30 split showed higher accuracies in 

comparison to a validation of an unseen rat, indicating rat specific parameter like EEG 

measuring electrode location in relation to the onset zone. As a consequence, a trained 

model used in an on-line application might benefit from an initial training phase that 
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recalibrates the random forest model for the specific animal. Alternatively, longer lasting 

recordings of a single animal might allow training of the random forest algorithm in a rat 

specific manner. 

 

5.4. Unbiased raw EEG prediction with deep learning 

Previous approaches aimed for a precursor prediction with an a-priori preprocessing to 

extract features, which implies a parameter limitation and loss of information to a certain 

degree. Therefore, this part of the dissertation focuses on a deep learning algorithm that 

defines features for the prediction of absence seizure in intracortical EEG traces within 

GAERS. The deep learning approach was only applied in GAERS, as this method relies on 

a large amount of training data, which were only available in the long-lasting 24 hour 

measurements performed with GAERS (Alwosheel et al., 2018).  

In general, deep neural network models are an efficient tool to work with a multitude of 

data and thereby are promising candidates for EEG data. Previous research showed 

promising EEG information decoding using deep neural networks especially known for its 

high variability of hyperparameter and task specified layered build (Bashivan et al., 2016; 

Li et al., 2020). Here, a novel approach is presented to predict seizures applying a 

combination out of feature extracting layers, a LSTM layer responsible for decoding 

inherent temporal dependencies and three fully connected layers that are responsible 

for the differentiation of the classifiers preictal and interictal.  

In the first step, multiple convolutional layers designed to work best with image or 

sequential data process the raw EEG data (LeCun, 1998; Bashivan et al., 2016). This step 

is also known as feature extraction. Temporal and special features of EEG are picked up 

and identify different features corresponding to SWD formation (Goodfellow et al., 2011). 

Here, the reducing kernel (shifting window) of the convolutional layer extracted EEG 

information from 40 ms to 4 ms. In this study’s case, two max pooling steps after the 

consecutive convolutional layer reduced the data to decrease the training time. Following 

the convolutional layer, a LSTM with 100 units analyzed the inherent temporal 

dependencies within the features extracted from the convolutional layer. Although, 
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hyperparameter optimization like randomized search or grid search was not applied in 

this deep learning model, due to high processing power requirements and low chance of 

significant improvement of balanced accuracies over a few percent, significant 

predictions of absence seizure were still possible. 

The deep learning model showed low levels of overfitting by the slight increase seen in 

validation loss values after the 50th training epoch. However, due to the addition of 

dropout layers, overfitting was reduced (Srivastava et al., 2014; Cogswell et al., 2016). 

This slight overfitting did not show significant alteration in levels of balanced accuracies 

between the 50th and 75th training epoch. The confusion matrix of the 75th run showed a 

higher detectability of interictal epochs in comparison to preictal epochs, which could 

also be translated to a 67.75% sensitivity and 82.4% specificity. The low level of sensitivity 

might be attributed to the randomized undersampling method used. Episodes of 

interictal EEG have a higher chance to appear with similar EEG pattern due to the 

unproportionally high count of interictal in general. This notion was already seen in van 

Luijtelaar et al., 2016 where false positive detection occurred with the highest frequency 

during light sleep. Additionally, active wakefulness and deep slow wave sleep showed 

seldomly SWDs. Randomly selected interictal as in this studies case might contain equal 

amounts of EEG fragments of wakefulness, light and deep sleep and therefore does not 

account for the imbalance seen of SWD frequency during all vigilance states. Further, 

deep learning in general need big data sets to train for specific pattern as seen in this 

case (Alwosheel et al., 2018). In addition to that, the unknown length of the precursor 

and precursor pattern is hard to discern from normal interictal events with small sample 

sizes. In this case, interictal EEG data mostly comprises of background EEG during sleep 

and wakefulness and movement artifacts. Sleep and wakefulness seen in EEG show a high 

discernibility due to their steady character over longer periods. The exact time of 

precursor occurrence is not defined (van Luijtelaar et al., 2010). However, previous 

research showed timely coupling changes between brain region and differences of delta 

and theta prominent frequencies between cortical and thalamic brain regions 

(Ovchinnikov et al., 2010; van Luijtelaar et al., 2010; Sysoeva et al., 2016). These precursor 

indications were seen up to two seconds prior to the actual start of the seizure. The 

detection window size plays a major role in prediction delay in a way that the algorithm 
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needs to be fed with previously recorded data. Therefore, using an analysis window of 

two seconds would delay the processing of the data. Hence, the approach of this study 

was to investigate the direct time interval 512 ms prior to the seizure with a slight shift in 

actual seizure start of its predictability. A time window of 512 ms was chosen to allow 

measuring frequencies within previously used parameters. The results indicate that a 

time interval of 512 ms is sufficient to predict seizure to a certain degree.  

Testing the learned features corresponding to the precursor on an unseen 24 H dataset 

showed on average a low sensitivity. The same problems seen within the application of 

the Maksimenko-algorithm combined with the random forest on an unseen dataset of 

24 H was again encountered with the deep learning approach. This result adds to the 

prior stated assumption that the precursor prediction needs a specific recalibration phase 

where the weights within the model are fine tuned to a specific rat. These differences 

between animals was already seen before and addressed by applying a rat specific 

threshold (Maksimenko et al., 2017). 

As mentioned before, a strong limiting factor of deep neural networks is its requirement 

of a high amount of samples to detect and extract precursor defining features (Alwosheel 

et al., 2018). Deep neural networks processing of raw data require significantly higher 

amounts of samples in comparison to the earlier applied random forest that utilize 

preprocessed data. The precursor detection applied here aims to be applicable in 

patients, therefore a tradeoff of data size needs to be made.  

In summary, it can be concluded that absence seizures can be predicted without prior 

feature engineering like wavelet transform or preprocessing by applying the 

Maksimenko-algorithm (Maksimenko et al., 2017). However, further analysis is needed 

to reduce the analysis window to a minimum without a reduction in precursor 

predictability. Although this deep neural network shows efficient sorting of preictal and 

interictal events, the required heavy processing power will influence the speed of the 

prediction significantly. On-line approaches using this algorithm would most probably 

take more time in comparison to the previously applied algorithm, thereby delaying 

putative stimulation. These on-line predictions would show increased SWD predictability 

once the applied deep learning model is adjusted for the specific animal and more 



Discussion 

85 

training data is supplied. Comparing both data processing techniques random forest and 

the deep neural network, it is shown that similar accuracies were achieved. However, 

with the heavy preprocessing of the random forest by the Maksimenko-algorithm and its 

applicability in an on-line setting, random forest appears more appropriate to further 

investigate within new patients or experimental animals. 

 

5.5. Translation to CAE 

The ultimate goal on SWD prediction is a putative transfer of the above described 

improved SWD prediction algorithm(s) towards an application in human CAE EEG data.  

The biggest huddle in the comparison from rat to human EEG is might be the extraction 

of the optimal frequency bands for wavelet based precursor detection. While for the rats 

wavelet power in the frequency bands 3-5, 5-10 and 7-20 Hz were determined a study of 

Gupta et al., investigating the preictal period in EEG and MEG recordings of children with 

CAE, early preictal sources in the 2-4 Hz frequency were detected the difference in 

frequencies found and synchronizing brain regions preictally (Gupta et al., 2011). 

Although human EEG did provide information about a putative precursor, it is not in the 

same frequency range as used in this study. A modulation of frequencies must be done 

prior to the translation. CAE in general consist of slower frequencies (3-5 Hz) in 

comparison to the most prominent frequencies in rat SWDs (7-11 Hz). Therefore, this 

change might also be extended to the precursor. After modulation of the parameter, an 

identification of the precursor might be possible with the Maksimenko-algorithm. The 

most promising improvement to the seizure prediction might be achieved by a 

combination of the Maksimenko-algorithm and a further classification of true and false 

positives by a random forest. Although the applied deep learning algorithm provides a 

classification of interictal and preictal EEG events, random forest provides a faster 

processing of information and is to a higher degree more stable to low sample sizes. The 

deep learning algorithm applied here needs multiple layers to process precursor 

irrelevant information and to learn deciding features for preictal and interictal events. 

These features might be rather small and are easily overlooked by big data structures as 

seen in raw EEG. 
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6. Conclusion and outlook 

In this thesis, optimization of seizure prediction was shown to increase significantly by 

limiting EEG recording to intracortical brain regions in the proximity of the seizure onset. 

It was seen that precursor detection could be further improved by utilizing a classification 

step after the Maksimenko-algorithm preprocessed the EEG data, by applying a random 

forest approach. Lastly, by applying a deep learning approach it was shown that 

preprocessing of EEG data is not required to classify interictal and preictal EEG events. 

The reduction in unnecessary false positive might help in the development of a putative 

treatment approach. Roughly 15% of patients are unresponsive to available treatments, 

while available medication produces side effects like nausea, vomiting, sleepiness, 

insomnia and hyperactivity (Callenbach et al., 2009; Glauser et al., 2010; Puka et al., 

2020). An interesting alternative to standard medication and surgeries might be the 

application of brain computer interfaces (BCI). BCI provide multiple possibilities to work 

with patients experiencing seizures like the application of neurofeedback or deep brain 

stimulation (DBS) (Osterhagen et al., 2010; Zangiabadi et al., 2019). DBS was already 

successfully used in multiple settings, with Parkinson’s disease as one of the most popular 

one (Halpern et al., 2007). The idea to induce a stimulation onto specific brain regions 

thereby altering the firing pattern of neurons present is a promising approach to address 

neurological disorders. Previous research already showed initial success of high 

frequency stimulation within thalamic nuclei in both GAERS and WAG/Rij rats (Vercueil et 

al., 1998; Lüttjohann & van Luijtelaar, 2013). This high frequency stimulation resulted in 

local inhibitory effects of affected neurons and thereby inhibiting pathological firing 

(Vercueil et al., 1998). However, research showed that continuous stimulation by an 

open-loop approach caused the neurons to remain unresponsive due to putative 

habituation effects (Lüttjohann & van Luijtelaar, 2013). With a combination of techniques 

presented in this study, machines such as the RNS system (responsive cortical 

stimulation) could process EEG recordings and treatment of epilepsy (Sun & Morrell, 

2014). With the optimization demonstrated in this study, lower rates of false positives 

were achieved as in comparison to already in use stimulation devices, which focused on 

partial onset epilepsy (Sun & Morrell, 2014). Using the improvements presented in this 

study would allow the development of new treatment options including an automated 
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SWD prediction triggering an on-demand kind of bio-feedback/stimulation in a closed 

loop BCI system with a significant reduction of wrong predictions  
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7. Summary 

Childhood absence epilepsy affects about 10 - 17% of all children diagnosed with epilepsy 

and is not well treatable in some cases. The discovery of a precursor event shortly prior 

to seizures resulted in a putative treatment option via closed-loop deep brain stimulation. 

The previously developed online prediction system produces high sensitivity rates but 

also high number of false positive predictions. This thesis aimed to optimize seizure 

prediction by determining the impact of the number of EEG traces and the location of 

EEG recording sites in thalamus and in cortex on the prediction performance of the above 

mentioned algorithm in WAG/Rij rats and GAERS. Results indicate that three EEG traces 

in the somatosensory cortex close to the onset zone of SWD produce the highest 

predictability. Significant differences were observed between the two rodent models 

GAERS and WAG/Rij. Furthermore, comparison of wavelet spectra between true and false 

positive detections revealed significant differences, which were used to train a machine 

learning algorithm termed random forest. The random forest was able to accurately 

(73.1%) classify the true and false predictions. Comparing results from the random forest 

with an unbiased deep learning algorithm approach that was trained with raw EEG data 

also showed above chance classification success of interictal and preictal EEG epochs. 

However, the combination of the Maksimenko-algorithm and a further classification by 

the random forest showed a more promising predictability of SWDs. Both machine 

learning approaches bridged the problem of low sample size with the application of 

random undersampling. However, it cannot be excluded that an increase in training 

samples of somatosensory measured EEG and thereby an increase in trained interictal 

and preictal events would show higher classification success for unseen data. 

Consequently, the combination of a frequency modified Maksimenko-algorithm and 

random forest classification would allow a promising first view on human CAE seizure 

prediction.
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9. Appendix 

Appendix 1a: List of combinations used in predictions based on three channel. 

TYPE # AREA 1 AREA 2 AREA 3 COMBINATION N 

3 CHANNEL 1 Ctx 4 Ctx 5 Ctx 6 CCC 15 
 

2 Ctx 4 Ctx 5 Po CCT 15 
 

3 Ctx 4 Ctx 5 AN CCT 12 
 

4 Ctx 4 Ctx 5 rRTN CCT 6 
 

5 Ctx 4 Ctx 5 cRTN CCT 12 
 

6 Ctx 4 Ctx 5 VPM CCT 11 
 

7 Ctx 4 Ctx 6 Po CCT 13 
 

8 Ctx 4 Ctx 6 AN CCT 12 
 

9 Ctx 4 Ctx 6 rRTN CCT 6 
 

10 Ctx 4 Ctx 6 cRTN CCT 12 
 

11 Ctx 4 Ctx 6 VPM CCT 11 
 

12 Ctx 5 Ctx 6 Po CCT 10 
 

13 Ctx 5 Ctx 6 AN CCT 6 
 

14 Ctx 5 Ctx 6 rRTN CCT 12 
 

15 Ctx 5 Ctx 6 cRTN CCT 9 
 

16 Ctx 5 Ctx 6 VPM CCT 5 
 

17 Ctx 4 Po AN CTT 9 
 

18 Ctx 4 Po rRTN CTT 9 
 

19 Ctx 4 Po cRTN CTT 6 
 

20 Ctx 4 Po VPM CTT 5 
 

21 Ctx 4 AN rRTN CTT 8 
 

22 Ctx 4 AN cRTN CTT 13 
 

23 Ctx 4 AN VPM CTT 12 
 

24 Ctx 4 rRTN cRTN CTT 6 
 

25 Ctx 4 rRTN VPM CTT 12 
 

26 Ctx 4 cRTN VPM CTT 11 
 

27 Ctx 5 Po AN CTT 10 
 

28 Ctx 5 Po rRTN CTT 6 
 

29 Ctx 5 Po cRTN CTT 12 
 

30 Ctx 5 Po VPM CTT 9 
 

31 Ctx 5 AN rRTN CTT 5 
 

32 Ctx 5 AN cRTN CTT 9 
 

33 Ctx 5 AN VPM CTT 9 
 

34 Ctx 5 rRTN cRTN CTT 6 
 

35 Ctx 5 rRTN VPM CTT 5 
 

36 Ctx 5 cRTN VPM CTT 8 
 

37 Ctx 6 Po AN CTT 10 
 

38 Ctx 6 Po rRTN CTT 6 
 

39 Ctx 6 Po cRTN CTT 12 
 

40 Ctx 6 Po VPM CTT 9 
 

41 Ctx 6 AN rRTN CTT 5 
 

42 Ctx 6 AN cRTN CTT 9 
 

43 Ctx 6 AN VPM CTT 9 



 

102 

 
44 Ctx 6 rRTN cRTN CTT 6 

 
45 Ctx 6 rRTN VPM CTT 5 

 
46 Ctx 6 cRTN VPM CTT 8 

 
47 Po AN rRTN TTT 5 

 
48 Po AN cRTN TTT 9 

 
49 Po AN VPM TTT 7 

 
50 Po rRTN cRTN TTT 6 

 
51 Po rRTN VPM TTT 5 

 
52 Po cRTN VPM TTT 8 

 
53 AN rRTN cRTN TTT 5 

 
54 AN rRTN VPM TTT 4 

 
55 AN cRTN VPM TTT 6 

 
56 rRTN cRTN VPM TTT 5 

 
57 Ctx 5a Ctx 5b Ctx 6 MCCC 6 

 

Appendix 1b: List of combination within prediction based on two channel.  

TYPE # AREA 1 AREA 2 COMBINATION N 

2 CHANNEL 1 Ctx 4 Ctx 5 CC 16 
 

2 Ctx 4 Ctx 6 CC 16 
 

3 Ctx 5 Ctx 6 CC 16 
 

4 Ctx 4 VPM CT 11 
 

5 Ctx 4 AN CT 13 
 

6 Ctx 4 Po CT 14 
 

7 Ctx 4 cRTN CT 13 
 

8 Ctx 4 rRTN CT 6 
 

9 Ctx 5 VPM CT 11 
 

10 Ctx 5 AN CT 13 
 

11 Ctx 5 Po CT 14 
 

12 Ctx 5 cRTN CT 13 
 

13 Ctx 5 rRTN CT 6 
 

14 Ctx 6 VPM CT 11 
 

15 Ctx 6 AN CT 13 
 

16 Ctx 6 Po CT 14 
 

17 Ctx 6 cRTN CT 13 
 

18 Ctx 6 rRTN CT 6 
 

19 VPM AN TT 9 
 

20 VPM Po TT 9 
 

21 VPM cRTN TT 8 
 

22 VPM rRTN TT 5 
 

23 AN Po TT 11 
 

24 AN cRTN TT 10 
 

25 AN rRTN TT 5 
 

26 Po cRTN TT 13 
 

27 Po rRTN TT 6 
 

28 cRTN rRTN TT 6 
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Appendix 2: Historical verification of electrode position. X resembles properly assembled electrode. ctx4: 

somatosensory cortex layer 4, ctx5: somatosensory cortex layer 5, ctx6: somatosensory cortex layer 6, ATN: anterior 

thalamic nucleus, Po: posterior thalamic nucleus, VPM: ventral-postero-medial thalamic nucleus, cRTN: caudal reticular 

thalamic nucleus, rRTN: rostral reticular thalamic nucleus (Lüttjohann et al., 2013) 

 

 

Appendix 3: Video explaining preprocessing of raw EEG data for deep learning classification and data modulation by 

deep learning layers.   
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