
Benchmarking Recommender Systems

Inauguraldissertation zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften durch die

Wirtschaftswissenschaftliche Fakultät der
Westfälischen Wilhelms-Universität Münster

Vorgelegt von

Dipl.-Inf. Leschek Adam Homann geb. Fitzek

aus Krappitz, Polen

Dezember 2020

Dekan Prof. Dr. Gottfried Vossen
Erster Gutachter Prof. Dr. Gottfried Vossen

Zweiter Gutachter Prof. Dr. Stephan Meisel
Mündliche Prüfung 05.02.2021

Acknowledgements

First and foremost, I would like to thank my doctoral adviser Prof. Dr. Gottfried Vossen. I am
grateful for the opportunity to write my thesis in his DBIS Group and his support during the
research and writing process. I would also like to thank Prof. Dr. Stephan Meisel for engaging
as a second reviewer and Prof. Dr. Sonja Gensler for taking the role of the third reviewer
during the defense of this thesis.

Furthermore, I am very grateful to my colleagues at the DBIS Group: Dr. Jens Lechtenbörger
and Dr. Denis Martins for providing valuable feedback as well as Felix Nolte, Jan Everding, and
Nico Grohmann for participating in my rehearsals for the disputation. I am also thankful to
Ralf Farke for his technical support during my research and Julia Seither for her assistance in
bureaucratic matters. I thank all of you for your kindness and friendship. Additionally, I would
like to thank my former colleagues Dr. Florian Stahl, Dr. Fabian Schomm-von Auenmüller, Dr.
David Fekete, and Dr. Nicolas Pflanzl for their support at the start of my employment at the
chair.

I also like to thank the members of the Omni-Channel Lab powered by Arvato for the three
amazing years of collaboration between the ERCIS and Arvato CRM: Dr. Matthias Carnein
for providing valuable input for my thesis and Markus Heuchert for the joint work in the
lab, Karsten Kraume, Jiaqing Zhong, and Klaus Voormanns from Arvato for their support
throughout the project as well as Prof. Dr. Gottfried Vossen, Prof. Dr. Heike Trautmann, and
Prof. Dr. Dr. h.c. Dr. h.c. Jörg Becker.
Furthermore, I would also like to thank Prof. Dr. Bart Goethals from the University of

Antwerp for the opportunity to visit his group to discuss and present my research.
I would like to express my gratitude to my parents Irene and Herbert Fitzek for always

believing in me and for all the support I received from them in my life. Also, I am grateful to
my lovely parents-in-law Monika and Karl-Heinz Homann, who always let me feel as being
their own son. Unfortunately, Karl passed away before this thesis was finished, but his spirit
and optimism are always around us. I also thank Monika for providing me access to her office
and, especially, for the exciting conversations during our lunchtimes, which always were a
pleasant distraction.

Finally, I would like to thank my incredible wife Linda Homann for her unlimited support.
Without her, this thesis would not be written yet. In times of doubt, her positive thinking
helpedme to believe inmyself andmywork to finish this thesis. She did all of this besides being
a wonderful and lovingmother to our son Leonhard. I am blessed to have both of you inmy life.

Hamm, May 2021 Leschek Adam Homann

Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Introductory Example . 2
1.3 Goals . 3
1.4 Thesis Structure . 4

2 Recommender Systems 6

2.1 Motivation . 6
2.2 Application Domains . 7
2.3 Explicit and Implicit Feedback . 11
2.4 Approaches . 12

2.4.1 Collaborative Filtering Approaches 12
2.4.2 Content-Based Filtering Approaches 19
2.4.3 Hybrid Approaches . 21
2.4.4 Selected Recommender System Research 21
2.4.5 Recommender Systems as Machine Learning Systems 23

2.5 Metrics . 23
2.5.1 Accuracy Metrics . 24
2.5.2 Non-Accuracy Metrics . 28
2.5.3 Performance Metrics . 30

2.6 Evaluating Recommender Systems . 30
2.6.1 Offline Evaluation . 31
2.6.2 Online Evaluation . 32

2.7 Evaluation Libraries and Frameworks . 33
2.7.1 Libraries . 33
2.7.2 Frameworks . 35
2.7.3 Recommender System Services . 38

2.8 Industrial Recommender System Implementations 40
2.8.1 Netflix Recommender System . 40
2.8.2 Mendeley Suggest Architecture . 43
2.8.3 Zalando Recommender System . 44
2.8.4 Summary . 46

2.9 General Trends and Future Developments . 48
2.10 Discussion . 49

3 Fundamentals of Benchmarking 51

3.1 Motivation . 51

ii

Contents

3.2 History of Benchmarking . 52
3.2.1 Benchmarking Origin . 52
3.2.2 Benchmarking Information Technologies 53
3.2.3 Benchmarking Database and Big Data Systems 53

3.3 Benchmarking Types and Consortia . 54
3.3.1 Types . 54
3.3.2 Consortia . 55

3.4 Requirements on Benchmarks . 56
3.5 State-of-the-Art Benchmarks . 58

3.5.1 TPC-DS . 58
3.5.2 BigBench . 59
3.5.3 Graphalytics . 62
3.5.4 BigDataBench . 64
3.5.5 ShenZhen Transportation System (SZTS) 65
3.5.6 SparkBench . 66
3.5.7 StreamBench . 68
3.5.8 Yahoo! Cloud Serving Benchmark (YCSB) 69
3.5.9 MLPerf . 70
3.5.10 Summary . 73

3.6 Benchmark Model and Benchmark Execution Process 75
3.6.1 Benchmark Model . 75
3.6.2 Benchmark Execution Process . 76

4 A Benchmark Concept for Recommender Systems based on Omni-Channel

Data 79

4.1 Channels and Signal Types . 79
4.2 Data Model . 81
4.3 Data . 85

4.3.1 Own and Public Data . 85
4.3.2 Data Generation . 85

4.4 Data Processing . 88
4.4.1 User Matching . 88
4.4.2 Item Matching . 90
4.4.3 Content Matching . 90

4.5 Data Aggregation . 90
4.5.1 Binary Aggregation . 90
4.5.2 Equally Weighted Aggregation . 91
4.5.3 Weighted Aggregation . 91
4.5.4 Sequence-based Aggregation . 92
4.5.5 Generalized Aggregation . 93

4.6 Benchmarking Process . 93
4.6.1 Overview . 94
4.6.2 Data Loading . 94
4.6.3 Model Training . 95

iii

Contents

4.6.4 Model Testing . 96
4.6.5 Benchmark Components . 98

5 Implementation of the Recommender System Benchmark 101

5.1 Overview . 101
5.2 Modules . 101

5.2.1 Data Loading . 102
5.2.2 Data Preprocessing . 102
5.2.3 Data Aggregation . 103
5.2.4 Data Splitting . 103
5.2.5 Algorithms . 104
5.2.6 Evaluation . 106
5.2.7 Configuration . 106
5.2.8 Visualization . 107

6 Application of the Recommender System Benchmark 108

6.1 Analysis of the Online Retailer Data . 108
6.1.1 Collaboration Context . 108
6.1.2 Channels and Signal Types . 109
6.1.3 Data Analysis . 109
6.1.4 Data Preprocessing . 111
6.1.5 Considered Data . 113

6.2 Application of the Benchmark to the Online Retailer Data 114
6.2.1 General Setup . 114
6.2.2 Binary Aggregation on Purchase Data 116
6.2.3 Binary Aggregation on Omni-Channel Data 119
6.2.4 Weighting-based Aggregation on Omni-Channel Data 122
6.2.5 Sequence-based Aggregation on Omni-Channel Data 126
6.2.6 Overall Analysis . 129
6.2.7 Discussion . 134

7 Conclusion 135

7.1 Summary . 135
7.2 Outlook . 137

Bibliography 138

List of Web Pages 152

iv

List of Figures

1.1 Structure of the thesis . 5

2.1 Application domains of recommender systems 7
2.2 Overview of Collaborative Filtering approaches 14
2.3 Overview of accuracy metrics . 24
2.4 The Netflix architecture . 42
2.5 The Mendeley architecture . 44
2.6 The Zalando architecture . 46

3.1 Differnet benchmark configurations . 60
3.2 TPCx-BB data model . 61
3.3 Benchmark kit with three frameworks . 62
3.4 Graphalytics architecture and execution process 63
3.5 YCSB client architecture . 70
3.6 MLPerf inference system . 72
3.7 Benchmark execution process . 77

4.1 The Shannon and Weaver communication model 80
4.2 Omni-channel Entity Relationship Model . 83
4.3 MovieLens ratings distribution . 86
4.4 MovieLens movie distributions . 89
4.5 Overview of the benchmark concept . 99

5.1 Overview of the benchmark modules . 102
5.2 The splitting methods . 104

6.1 Time intervals of the data . 110
6.2 Number of preference indicators per channel 114
6.3 Customer and product results of the purchase data 117
6.4 Accuracy results of the purchase data . 118
6.5 Timing results of the purchase data . 119
6.6 Customer and product results of the complete data 120
6.7 Accuracy results of the complete data . 121
6.8 Timing results of the complete data . 122
6.9 Relative coverage results of the weighted data 124
6.10 MRR results of the weighted data . 125
6.11 nDCG results of the weighted data . 125
6.12 Response time results of the weighted data 126

v

List of Figures

6.13 Customer and product results of the sequence-based data 127
6.14 Accuracy results of the sequence-based data 128
6.15 Timing results of the sequence-based data 129
6.16 Overall customer and product results . 130
6.17 Overall accuracy results . 131
6.18 Overall timing results . 132
6.19 Results of different weighting combinations 133

vi

List of Tables

2.1 Product ratings and predictions . 25
2.2 Comparison of industrial recommender systems 48

3.1 Summary of the benchmarks . 74

4.1 Channels and signal types . 81
4.2 Movie example . 82
4.3 Movie user signals . 83
4.4 Online retailer example . 84
4.5 Online retailer user signals . 84

5.1 Algorithm default parameters . 105

6.1 HTTP-request examples . 111
6.2 Token set ration examples . 113
6.3 Channels and signals of the real-world online retailer 115
6.4 Abbreviations for the online retailer . 115

vii

1 Introduction

1.1 Motivation

Nowadays, users are confronted with a boundless range of items such as services, products,
and information. Accordingly, searching for items represents a tedious and time-consuming
task for users. Beyond that, today, users are not even willing to bother to search for items
actively. Instead, they prefer a more convenient way to łfindž items matching their interests
and preferences. To do so, recommender systems are heavily applied as active and personalized
filters. Consequently, they are an integral part of users’ daily lives. Whether users are watching
movies, looking for new job positions, or browsing in an online catalog, a recommender system
is running in the background to generate personalized recommendations based on the users’
behavior and feedback. These include, for instance, rating movies, clicking on job positions,
or reviewing products.
Besides, a recommender system is also important from a business perspective since it

has proven to increase a company’s revenue. This statement is based on the observation
that appropriate recommendations can strengthen user engagement and user satisfaction.
As a result, users tend to spend more time consuming a service or purchasing more items.
Noteworthy, at this point, are popular streaming services such as Netflix and Spotify, as well
as famous online retailers such as Amazon or Zalando. The business value of recommender
systems for these companies is further underlined by their support of related recommender
system conferences such as the RecSys1 or by initiating competitions such as the famous
Netflix Prize aiming to improve recommendation quality [25].
As a result, recommender systems have become an attractive research field to study both

from industry and academia alike. In this regard, most research still focuses on improving
recommendation quality as far as possible by developing new approaches, improving es-
tablished ones, or combining them in new ways. The most considered quality aspect of a
recommender system is its accuracy. The accuracy reflects how well a prediction for a so
far unknown item matches a user’s real preference or whether a list of recommended items
contains relevant ones. The former is termed as the prediction task, and the latter as the
top-N task with N denoting the number of recommended items in a list. Trying to improve
accuracy by combining approaches might even lead to complex systems, which are hard to
deploy, such as stated by Amatriain for the winner of the Netflix Prize [Ama13, p. 2]. Besides,
most publications focus on evaluating recommender systems’ accuracy based on standard
data sets and one specific type of user feedback such as movie ratings. This evaluation process
is supported by many frameworks and libraries, such as LensKit, Implicit, or Surprise, which
have been developed for and by researchers.

1https://recsys.acm.org/

1

https://recsys.acm.org/

1 Introduction

However, to further improve recommendations, it is essential to collect as much information
as possible about users to infer their preferences correctly. Since companies reach their users
by various communication channels such as email, social media, and the web, the information
based on these interactions provides additional insights about the users. Depending on the
number of provided communication channels and their interplay, the terms cross-channel,
multi-channel, and omni-channel are commonly used, where omni-channel represents the
highest form of interplay. For instance, in online retailing, it is still common practice to send
newsletters regularly. Combining the information about whether a user clicked a particular
item in the newsletter with its purchase history might improve the recommendation results.
Additionally, social media provide a communication channel for companies to engage with
their users by sharing pictures and commenting on information. Incorporating these social
media user interactions into a user’s profile might lead to a better understanding of his or her
preferences.

1.2 Introductory Example

For a better understanding, a retailing scenario is introduced. A fictitious retailer provides
brick and mortar stores and operates an online shop to reach its customers without time and
location restrictions. To request information about the status of orders, the retailer offers its
customers a service hotline. Furthermore, the retailer leverages social media to engage with its
customers. This includes posting new product information or product images that customers
can like or comment on. Besides, the retailer regularly sends a newsletter to its subscribers.
Customers can write reviews about the purchased products to share their experiences with
other customers. Another possibility to express their opinion is to rate the products on a
classical 1-to-5 scale. The retailer currently generates personalized recommendations deduced
by a customer’s purchase history as implemented by many of its competitors. To further
improve the recommendations, the retailer decides to utilize additional sources such aswhether
a customer liked a product image, clicked on the newsletter, or searched for a product.
One challenge a retailer faces is to integrate and associate this information with its cus-

tomers, e.g., matching customers engaging on social media with those in the customer database.
The other challenge considers confidence in the information. For instance, is the gained infor-
mation that a customer liked a product on social media equally important as the information
that he or she bought a product. In other words, the confidence in the information differs
among the sources and needs to be examined.

Based on this, the retailer specifies requirements for the new recommender system covering
different views. The retailer’s management aims to increase the Click-through Rate of the
recommendations and the number of recommended items from the product catalog. The
technical department has to investigate the impact of the additional sources since more data
has to be processed compared to the current implementation. This involves guaranteeing a
maintainable system with high throughput and low latency utilizing the new data sources.
Moreover, the acceptance of customers for the new recommender system has to be evaluated.
This includes determining whether the recommendations represent his or her interests and
preferences.

2

1 Introduction

The retailer would like to benchmark various recommender systems and different data
source aggregations considering these requirements. Based on the results, the retailer can
make a profound decision aboutwhat sources to use andwhich recommender system approach
to apply.

1.3 Goals

As explained in Section 1.1, the amount of available information about users and their behavior
is still increasing. One reason is attributed to the fact that companies and services utilize
multiple ways to reach their users, e.g., phone, email, or social media, which are termed
communication channels. In particular, email and social media provide insights about a user’s
interest in products as part of a newsletter or a new product posted on social media.
This thesis investigates the influence on user recommendations by incorporating user

signals from multiple communication channels. To assess this influence, the thesis develops a
benchmark concept that mainly focuses on evaluating omni-channel data. At this point, a
benchmark concept and a benchmark itself are suitable since they enable a systematic and
comprehensive process for evaluation.
The benchmark concept includes introducing and elaborating different aggregation ap-

proaches to combine user signals among the communication channels. For instance, the first
aggregation approach considers the confidence in user signals by weighting them depending
on the communication channel. The second aggregation approach examines the timely se-
quence of user signals occurring on each communication channel. The proposed aggregation
approaches focus on popular and established Collaborative Filtering approaches. Concluding,
the influence of the communication channels depending on the applied aggregation method is
evaluated from a user, business, and technical perspective, as suggested in [STS+12]. The user
perspective considers the recommendation quality to answer how well do the recommendations
cover the user preferences. From the business perspective, it is beneficial to know how many
products of the catalog are part of the recommendations. And finally, the technical perspective
considers how long it takes to generate and provide the recommendations to the users.

This leads to the following research questions:

1. How to evaluate recommender systems based on omni-channel data?

2. How does omni-channel data influence recommendations?

Therefore, initially, a benchmark concept is elaborated as part of this thesis. Based on
this concept, a benchmark prototype is developed. The implementation utilizes established
implementations from the following libraries: LensKit, Implicit and Surprise. After that, the
benchmark is applied to a real-world data set from online retailing. This also provides useful
results about the individual capabilities and limitations of the implementations. Furthermore,
the application of the benchmark provides insights into the real-world data.

3

1 Introduction

1.4 Thesis Structure

This thesis comprises six additional chapters besides this introductory chapter, as depicted
in Figure 1.1. Chapter 2 introduces the main concepts of recommender systems, such as
their application domains, algorithms, and evaluation. In doing so, the reader gets familiar
with the concept of the algorithms considered in this thesis. Furthermore, the evaluation
process and the related metrics are explained in detail, considering the different perspectives.
Chapter 3 provides an overview of the fundamentals of benchmarking by considering their
origin and impact on Information Technology (IT) as well as analyzing established benchmark
implementations. This chapter intends to provide a deep understanding of how benchmarks
are developed and designed considering their types and target scenarios concerning data
models, workloads, and metrics.
Based on the gained knowledge and insights from the previous chapters, a benchmark

concept for recommender systems is elaborated with the focus on omni-channel data in
Chapter 4. For instance, this concept includes the specification of a data model, data aggre-
gation, workloads, and metrics. In Chapter 5, the benchmark concept is implemented as a
prototype. The prototypical implementation of the benchmark offers others and third parties
the possibility to apply it. Based on a real-world data set from the online retailing domain,
the benchmark is applied in Chapter 6.

Then, the thesis concludes with a summary considering the gained insights and an outlook
of future work in Chapter 7. Furthermore, the limitations of the algorithms and the benchmark
implementation are discussed. These limitations lead to an outlook on how to improve the
benchmark in the future further.

4

1 Introduction

2) Recommender
Systems

3) Fundamentals of
Benchmarking

4) A Benchmark Concept for Recommender
Systems based on Omni-Channel Data

6) Application of the Recommender System
Benchmark

7) Conclusion

1) Introduction

5) Implementation of the Recommender System
Benchmark

Figure 1.1: An overview of the structure of the thesis. The thesis starts with an introduc-
tion containing the motivation and goals of the thesis. Then, in Chapter 2 and
Chapter 3, the foundations for the proposed benchmark concept, elaborated in
Chapter 4, are given. In Chapter 5, the benchmark implemented is explained.
Then, its application is considered in Chapter 6. A conclusion is given in Chapter 7.

5

2 Recommender Systems

This chapter considers the topic of recommender systems as an essential instrument to provide
personalized services to users. Besides thewidely known application domain of online retailing,
recommender systems are part of professional online networks, social networks, e-dating,
tourism services, academic research, and e-learning platforms. Therefore, in the beginning,
this chapter elaborates on the purpose of a recommender system and its versatile application
domains.

Then, the most popular and established approaches, i.e., Collaborative Filtering and Content-
based Filtering, are introduced and explained exemplarily. Subsequently, the evaluation of
recommender systems is explained, which involves training and testing techniques as well as
metrics for comparative analysis.
This chapter compiles current recommender system software libraries and evaluation

frameworks, which simplify the testing and evaluation processes by supporting the automa-
tion, the documentation, and the reproducibility of tasks. Furthermore, recommender system
frameworks, which provide out-of-the-box solutions, are presented. The chapter concludes
with an overview of industrial implementations of recommender systems.

2.1 Motivation

In the past, consumers tended to ask a person of trust, e.g., a family member, a friend, or a
familiar salesperson, for recommendations relying on their opinion and experience regarding
an item (i.e., a product or a service). For instance, what music album to listen to, what book
to read, or what insurance to choose. Some consumers may also read technical literature to
collect information about whether an item meets their ideas and requirements to make an
appropriate decision. In these scenarios, the recommendations require an explicit action or
request from the consumer. In other words, consumers are actively searching for items of
interest. Additionally, consumers purchased their items in brick and mortar stores without
leaving any personal information regarding their purchase.
With the advent of the Internet, the situation changed considerably for companies and

consumers. Nowadays, online retailers, such as Amazon, provide their consumers with a
very convenient way to search and buy items without leaving the house and without any
restrictions to opening hours. Additionally, the number of available items to choose from
has grown considerably since the Internet covers the global market. Even niche items are
accessible in an effortless manner. However, the downside of providing a large number of
items is that it makes it more difficult for a consumer to find appropriate and interesting ones.
This leads to a time-consuming and tedious task for the consumer. Therefore, a system to
assist a consumer in this process is desirable.

6

2 Recommender Systems

(a) Job recommendations provided by Xing.

Source: [23].

(b) Article suggestions provided as weekly

newsletter by Mendeley. Source: [48].

Figure 2.1: Recommendations generated in different application domains.

The new possibilities of collecting information about a consumer, e.g., purchases or brows-
ing behavior, enable the generation of personalized recommendations. Consequently, from a
business perspective, a well-implemented recommender system supports increasing sales and
from a user perspective finding interesting items.

2.2 Application Domains

As discussed in the previous section, a well-known application domain of recommender
systems is e-commerce. However, in the last years, recommender systems became an integral
part of many application domains, as illustrated in Figure 2.1. In [LWM+15, p. 12], the authors
conducted a survey to classify recommender systems by their application domains. Besides
e-commerce, they identified the application domains e-government, e-business, e-library, e-
learning, e-tourism, e-resources, and e-group activities. However, additionally, the application
domains e-dating and e-health are considered. In the following, for each application domain,
examples of recommender systems are introduced. The order is based on the respectability of
the application domain from the government over the business to the consumer.

E-government

Recommender systems in the e-government application domain aim to support citizens
and businesses alike to find the appropriate government services [LWM+15]. The authors

7

2 Recommender Systems

further distinguish between Government-to-Business (G2B) and Government-to-Citizen
(G2C) recommender systems [LWM+15, p. 16]. For instance, BizSeeker is a G2B recommender
system that supports individual businesses in finding a business partner for the distribution
of retailing [LWM+15, p. 16]. A G2C recommender system supports citizens to find the right
public administration office based on their profile.

E-business

In contrast to [LWM+15, p. 17], which considers e-business recommender systems focusing
on providing products and services among businesses, here the term e-business is relaxed to
include recommender systems used in a business context from consumers and companies
alike.
In this sense, professional online networks provide a serious-minded way to manage a

professional business profile. This enables consumers to maintain business relationships
as well as to create new business contacts. Another exciting aspect for consumers is to
present themselves in the digital job marketplace for other companies and recruiters. The
other way around, companies and recruiters can find potential employees meeting their
requirements. Therefore, consumers of such platforms groom their personal information
seriously and conscientiously. This involves a complete résumé, including information about
their educational background, previous employments, and current job position. Besides, the
services allow consumers to specify their skills and interests by tags. Other consumers can
confirm the correctness of potential skills and interests by endorsements.
Two widely known companies in this domain are LinkedIn1 and Xing2. LinkedIn is the

largest platform with about 467 million members [13], whereas Xing is the largest in the
German-speaking area with about 15 million members [33]. One of the goals of LinkedIn
and Xing is to recommend appropriate jobs to its consumers, as depicted in Figure 2.1a.
In this regard, a challenge is the short lifetime of job advertisements, which drives the
necessity to provide job recommendations as soon as possible. Furthermore, the services
provide recommendations to add additional skills and interests based on similarities to other
consumers. Besides, recommendations for potential business contacts are made.

E-health

According to [WP14, p. 2583], the target audience of a recommender system in health care
are health professionals and patients. In the process, from a professional’s perspective, recom-
mender systems assist in analyzing a large amount of patient data and thereby getting insights,
for instance, to predict diseases or to recommend diagnoses, or clinical treatment, whereas a
patient might be interested in alternative medicine or a new health insurance. [SPBD19, p. 1].
Besides diagnosis and medication, in [VZV+16, p. 10], the authors mention recommendations
for nutrition information or physical exercises. For instance, a recommender system could
guide a user to achieve the goal of participating in a marathon by a personalized training
plan. Due to the usage of confidential and personal data, such recommender systems have to
provide high information quality and trustworthiness as well as to consider authentication
and privacy concerns [SPBD19, p. 1].

1www.linkedin.com
2www.xing.com

8

www.linkedin.com
www.xing.com

2 Recommender Systems

E-library

In academia, researchers rely on software solutions to manage the literature they need for
their current paper or are simply interested in. Furthermore, researchers might be interested
in collaborations with other researchers working in a similar field of study. Another use case
might be to follow specific authors to be aware of new publications.

Mendeley3 is a widely known and applied tool that leverages information such as the pub-
lications in a user’s library or the recently read articles to recommend potentially interesting
articles to their users. The recommendations are presented in the form łArticles suggested to
you related to ...ž, which complementary delivers an explanation for each recommendation,
as shown in Figure 2.1b. Furthermore, people to follow are recommended with explanations
such as łFollowed by people you followž, łFollowing the people you followž or simply since
he or she is noted in a specific research field.

E-learning

E-learning, sometimes also referred to as Massive Open Online Courses (MOOC), provides a
convenient way for users to improve their skills. In this domain, recommender systems help
users to find, for instance, video courses and digital content by their current skills, activities,
and experiences [LWM+15, p. 20]. Therefore, this domain is predestined for recommender
systems due to the number of available subjects and different skill levels of the users. Providing
users with the right and exciting content strengthens his or her confidence in these services.
Famous services in this regard are Coursera4, Udemy5 or Skillshare6.

E-tourism

The travel market is still growing and moving from traditional travel agencies to the Internet
[39]. Today, nearly two-thirds of all users book their next journey on websites or via apps
[39]. In this regard, platforms such as Trivago7 and Booking.com8 enjoy high popularity.
They provide access to a large number of accommodations, which prevents users from
gathering information by themselves. Although it may seem that the platforms just revert
to the information given by filters, e.g., price limit or destination, recommender systems are
running in the background. Since the platforms’ revenue depends on forwardings to hotel
websites, it is of high interest for them to provide an adequate ranked list of recommendations
[36]. The importance of this is further underlined by a challenge Trivago initiated as part of a
recommender systems conference in 20199.

E-resource service

As the name suggests, a resource service offers consumers access to a wide range of music,
video, audio, and text content. In [LWM+15], content is considered to be user-provided, e.g.,
by uploads, which is neglected at this point.

3www.mendeley.com
4https://de.coursera.org/
5https://www.udemy.com/
6https://www.skillshare.com/
7www.trivago.com
8www.booking.com
9www.recsyschallenge.com/2019

9

www.mendeley.com
https://de.coursera.org/
https://www.udemy.com/
https://www.skillshare.com/
www.trivago.com
www.booking.com
www.recsyschallenge.com/2019

2 Recommender Systems

Famous companies in this domain are, for instance, Spotify10, Netflix11, Audible12 and,
Reddit13. Nowadays, such content providers witness increasing popularity on the consumer
side. However, this also results in a growing number of competitors. Therefore, companies are
interested in increasing the engagement of their consumers with their service. One approach
in this context is to provide exclusive content to their consumers, which competitors may not
provide. Another approach is to deliver continuously exciting content to their consumers. This
leads to a satisfied consumer, which is unlikely to change the provider. Netflix provides most
of its recommendations in the form of a so-called matrix-like layout [GUH16, p. 2]. According
to a predefined topic, each row in the matrix layout contains an ordered list of recommended
videos [GUH16, p. 3-4]. Topics are based on specific movie genres, current trends [GUH16,
p. 4] as well as similarities among videos in the form of a łBecause YouWatchedž row [GUH16,
p. 4]. Furthermore, Netflix provides recommendations in case a consumer search for a specific
movie fails, e.g., because the movie is not available on their platform [GUH16, p. 5]. In such
cases, the consumer receives a list of recommendations matching his or her taste.

E-group and social activities

In [LWM+15, p. 24], the authors consider e-group recommender systems to generate rec-
ommendations for a group instead of an individual user. In this sense, the preferences and
interests of each group member have to be balanced. Nevertheless, here, social networks
are also considered part of this application domain since they are based on interactions and
relationships among users.

Since its foundation in 2004, Facebook14 became part of many peoples’ daily lives as reflected
by nearly 2.4 billion active users per month[10]. Facebook enables users to connect with
each other, create and join groups, play games, sell and buy things as well as comment and
like content [4]. Companies leverage Facebook to represent their brand, get in touch with
potential customers, or promote new products. Also, customer service is provided by some
companies due to its convenient application. For instance, airlines use social media to respond
to consumer requests about the boarding process, e.g., luggage information, or to support
consumers in case of delays, rebookings, or cancellations of flights as discussed in [CHT+17].
Besides Facebook, another popular social network is Twitter15. In contrast to Facebook,

Twitter provides a more granular partitioning of relationships by allowing users to follow
others. Due to this concept and the content limit of 280 characters, Twitter is also termed as
a microblogging service. In this regard, users can post messages, so-called tweets, and share
messages by retweeting them or mentioning others.
As a consequence, social network providers have detailed information about a user’s

interests, interactions, and social relationships. Based on this information, social network
providers are able to provide recommendations, for instance, about groups a user might be
interested in or are popular in his or her area. Furthermore, recommendations of other people

10www.spotify.com
11www.netflix.com
12www.audible.com
13www.reddit.com
14www.facebook.com
15www.twitter.com

10

www.spotify.com
www.netflix.com
www.audible.com
www.reddit.com
www.facebook.com
www.twitter.com

2 Recommender Systems

a user may know are provided. Additionally, suggestions for interesting videos, pages, and
upcoming events are made.

E-dating

Another application domain of high attention for recommender systems is, without any doubt,
dating. In 2018, approximately 34 million users in the United States used an online dating
platform [12]. This is demonstrated by the fact that the dating app Tinder16 had the largest
reach among all apps in September 2019 [6]. Dating platforms provide an easy way for users
to find a partner. In this sense, the usability of Tinder with the concept of swiping right in
case a recommended profile attracts a user or swiping left in the other case represents an easy
way of interaction. A match between two users is only given when both swiped right, seeing
the profile of the other. In this regard, Tinder aims to show profiles as a sequence, which most
likely represent a match. As explained by Dr. Steve Liu [47] during his session at the MLconf
in 2017, Tinder, besides using the profile information, leverages swipe patterns of their users
to provide recommendations.

2.3 Explicit and Implicit Feedback

Recommender systems highly rely on the feedback given by users, which is expressed in an
explicit or implicit form. Explicit user feedback involves, for instance, ratings of items on a
specified scale, e.g., 1 to 5 to indicate whether he or she considered a movie, song, or book
as uninteresting (1) or interesting (5) [JZFF10, p. 22]. Considering online retailing, Amazon
represents a good example, where products are rated on a 1 to 5 scale. In the past, Amazon
only allowed ratings on products with a corresponding review but changed the concept to
a so-called one-click rating system to increase the number of ratings [42]. In this context, a
special case is likes or dislikes of items, which can be represented as 0 and 1, respectively. An
example in this regard is the swiping concept applied by Tinder or the thumb-up/thumb-down
rating system of Netflix [41]. Besides, product reviews are a source of explicit user feedback
but are difficult to evaluate since they are represented in unstructured form as text, e.g.,
comments about hotels. Consequently, this requires the application of Natural Language
Processing (NLP) or text mining techniques.
In [AF01, p. 4], Amoo et al. investigate the numeric influence of rating scales on users’

responses by comparing scales from 4 to −4 and 9 to 1. Based on their experiments with
139 students, the researchers conclude that negative feedback is considered more negative
when it is expressed by negative numbers [AF01, p. 8]. A detailed evaluation of what users
expect from a rating scale and the impact of a rating scale are discussed in [CLA+03, p. 586].
In their experiments, the authors applied three different rating scales, thumb-up/thumb-down,
a scale from −3 to 3 without the zero and a half star increment scale from 0.5 to 5. One of
the experiment outcomes was that most users preferred the fine-grained 0.5 incremental
scale [CLA+03, p. 586]. Another outcome was that users should be able to decide which
rating scale to use since the user ratings correlated among the different scales. In [GBCV11,
p. 128], the authors evaluated six scaling systems: thumb-up/thumb-down, thumb-up/thumb-

16www.tinder.com

11

www.tinder.com

2 Recommender Systems

down/thumb-medium, 3/5/10-points stars and 3/10-points sliders. Their results, however,
show no correlation among the different rating scales [GBCV11, p. 130]. This shows the
difficulty of choosing the right rating type, e.g., even, odd, or balanced number of ratings and
the scale itself.

On the other hand, nowadays, most users often provide feedback unknowingly in implicit
form. One reason for this is that the task of rating and reviewing items requires additional
effort on a user’s side and is perceived as annoying and distracting. To circumvent this
situation, implicit feedback aims to infer an interest in or preference for an item leaving a level
of uncertainty to the real user preference. Examples of implicit user feedback are purchases
of items, consuming media content, or browsing and searching in a product catalog [JZFF10,
p. 23], [RRS11, p. 146]. Even though it might sound strange at first to consider a purchase as
implicit, the reasoning behind this is that it is not clear whether a user is satisfied with the
item. The same holds for pure media consumption, e.g., just watching a movie on Netflix,
reading an article on Mendeley, or listening to a song on Spotify. In these cases, the user does
not give any explicit feedback about whether the content matches their taste.
Generally, the amount of available implicit user feedback exceeds the amount of explicit

user feedback. Even though explicit user feedback is considered as a more trustworthy and
reliable source. Nevertheless, both play an important role in modern recommender system
implementations, which is discussed elaborately in [BCT18, p. 233-248]
Two common tasks of recommender systems are to generate rating predictions and/or

top-N recommendations. The rating prediction task aims to predict a particular rating for an
item a user has not rated so far and therefore relies on explicit user feedback. On the other
hand, the top-N recommendation task aims to generate a set of N relevant items for a user
mostly based on implicit user feedback. Alternatively, a combination of these two tasks can
take place by simply using the results of the rating task to generate a sorted list containing
the items with the highest prediction ratings as top-N recommendations.

2.4 Approaches

After discussing the main application domains of recommender systems and clarifying
user feedback, Collaborative Filtering and Content-based Filtering recommender system
approaches are explained. This is based on the fact that they are still the ones witnessing
high attention in research and industry alike. In particular, Collaborative Filtering approaches
illustrated in Figure 2.2 are considered. Furthermore, this section explains their algorithmic
implementations.

2.4.1 Collaborative Filtering Approaches

Collaborative Filtering (CF) relies on the assumption that consumers who shared a similar
taste in the past are likely to share a similar taste in the future [JZFF10, p. 13]. In other words,
if consumer A, for instance, bought a subset of products consumer B also bought, it seems
natural to recommend A some of the products B bought, but A did not. At this point, it
must be noted that it requires no additional information about the products themselves to

12

2 Recommender Systems

make a feasible recommendation for consumer A. The recommendation is only based on the
information that both consumers showed a similar preference pattern, without considering
any specific characteristics or features of the products. Extending this approach by considering
a community of like-minded consumers leads to the term collaborative. In this sense, for
instance, the influence of each consumer inside the community on the overall recommendation
could be reflected by the similarity to the target consumer. In this case, the opinion of the most
similar consumer for the target product has the highest impact on the final result, followed
by the next similar consumer and so forth.
In general CF approaches rely on a utility matrix U , which consists of consumers C =

{c1, ..., cn} represented as rows and items I = {i1, ..., im} represented as columns. Here,
n = |C| defines the number of consumers and m = |I| the number of items, which leads to a
matrix size of n×m. Each cell value rp,j = U(cp, ij) indicates an interest of a consumer cp with
p ∈ {1, ..., n} for an item ij with j ∈ {1, ...,m}, as illustrated in Matrix 2.1. Typically, most
cell values of the utility matrix U are missing since, for most consumer-item combinations, no
indication of interest is available so far. As explained in Section 2.3, an indication of interest
is represented explicitly or implicitly.

Generally, CF is divided into two different approaches, namely, memory-based and model-
based [JZFF10, p. 26], [BOHG13, p. 113], as illustrated in Figure 2.2. Both approaches utilize
the explained utility matrix, representing an indication of interest between a consumer and
an item. Memory-based approaches generate recommendations based on the most current
and recent information, e.g., a new movie rating or product purchase [BOHG13, p. 113]. To
do so, they keep the complete data for the recommendation process in memory and generate
recommendations when requested. In contrast, model-based approaches use techniques to
process the complete data and transform it. The goal is to deduce a concise and compact model
representation, considering the complete data. This, for instance, leads to lower memory con-
sumption. However, a generated model is outdated as soon as new data is available [BOHG13,
p. 113].

U =

⎛

⎜

⎜

⎝

i1 i2 . . . im
c1 r11 r12 . . . r1m
c2 r21 r22 . . . r2m
...

...
...

. . .
...

cn rn1 rn2 . . . rnm

⎞

⎟

⎟

⎠

(2.1)

Memory-based

As previously mentioned, CF generates predictions on whether to recommend an item based
on similarities among consumers considering their preferences. In this regard, one popular
implementation of the memory-based approach determines similar consumers by applying
the k-Nearest Neighbor (kNN) method, where k specifies the number of neighbors. In the
literature, the implementation is also referred to as user-based CF [JZFF10]. At this point,
one widely used way to determine the similarity among consumers cp and cq is the Pearson
correlation, as explained in [JZFF10, p. 14] and represented in Equation 2.2. Here, the set I
contains all items the consumers cp and cq showed a preference for. Furthermore, the variables

13

2 Recommender Systems

Collaborative
Filtering

Memory-
based Model-based

Matrix
Factorization Co-Clustering

Alternating
Least

Squares

Stochastic
Gradient
Descent

Item-basedUser-based

Figure 2.2: An overview of different Collaborative Filtering approaches, based on [BOHG13,
p. 112].

rp and rq represent the average consumer preferences of cp and cq, respectively. In this case,
the numerator of Equation 2.2 adjusts consumer preferences by subtracting their average
preferences and multiplying the results. Finally, the denominator of Equation 2.2 normalizes
the result to fit into the range of [−1, ..., 1], in which a higher value indicates higher similarity.

sim(cp, cq) =

∑︁

i∈I(rp,i − rp)(rq,i − rq)
√︁

∑︁

i∈I(rp,i − rp)2
√︁

∑︁

i∈I(rq,i − rq)2
(2.2)

Based on the similarity function, a preference can be estimated, as illustrated in Equation 2.3
for the consumer cp and item ij , where N is the set of nearest neighbors determined by the
applied similarity function. The sum of the nominator weights the preferences of each neighbor
cq ∈ N for the target item ij by its similarity to the target user cp. Additionally, the average
preference of the neighbors is removed to get rid of a consumer’s bias. In this context, the bias
describes a consumer’s tendency to rate low or high generally and, therefore, be considered
critical or sweet-tempered. Concluding, the prediction is normalized and adjusted by the
average preference of the target consumer.

pred(cp, ij) = rp +

∑︁

cq∈N
sim(cp, cq)(rq,i − rq)

∑︁

cq∈N
sim(cp, cq)

(2.3)

Another implementation of the memory-based approach considers the similarity among
items to generate predictions. The concept was published by Amazon in 2003 and termed
item-based CF [LSY03]. The basic idea is the following: If two items k and l are similar
regarding their consumer preferences and a consumer cp has already shown a preference
for item k, then it makes perfect sense to recommend item l to consumer cp. In this case, a

14

2 Recommender Systems

widely applied function to determine the similarity among item pairs is the adjusted cosine
function [JZFF10, p. 19]. To determine the similarity of the items ik and il, as illustrated
in Equation 2.4, the set of consumers C only comprises the consumers who have shown a
preference for both. The numerator in Equation 2.4 multiplies the preference for the items
ik and il for each consumer cp ∈ C , adjusted by the average preference. The denominator
serves to normalize the resulting prediction.

sim(ik, il) =

∑︁

cp∈C
(rp,k − rp)(rp,l − rp)

√︂

∑︁

cp∈C
(rp,k − rp)2

√︂

∑︁

cp∈C
(rp,l − rp)2

(2.4)

The prediction for a consumer cp regarding an item ik is illustrated by Equation 2.5, where
the setRI stands for relevant items and comprises all items the consumer showed a preference
for. In the process, for each item il in RI , the similarity to the target item is calculated and
weighted by a consumer’s preference for ik. In doing so, a high preference strengthens the
impact of a similarity.

pred(cp, ik) =

∑︁

il∈RI sim(ik, il)rp,l
∑︁

il∈RI sim(ik, il)
(2.5)

Implementations of this approach often precompute the similarities of all item pairs to
speed up the performance of the recommendation calculation, as described in [LSY03]. On
the other hand, the precomputed matrix is out of date as soon as the initial utility matrix is
updated since it is based on a snapshot. In this sense, it is a tradeoff between the currentness
of data and the cost of generating a recommendation. A representation of a precomputed
item-based similarity matrix IB is illustrated in Matrix 2.6. Since the initial utility matrix
is processed and transformed into another representation, it is classified as a model-based
approach. The same idea is applicable to precompute all consumer pairs, as illustrated by the
matrix UB in 2.7.

IB =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

i1 . . . ik . . . im
i1 1 . . . sim(i1, ik) . . . sim(i1, im)
...

...
. . .

...
...

...
ik sim(ik, i1) . . . 1 . . . sim(ik, im)
...

...
...

...
. . .

...
im sim(im, i1) . . . sim(im, ik) . . . 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.6)

UB =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

c1 . . . cp . . . cn
c1 1 . . . sim(c1, cp) . . . sim(c1, cn)
...

...
. . .

...
...

...
cp sim(cp, c1) . . . 1 . . . sim(cp, cn)
...

...
...

...
. . .

...
cn sim(cn, c1) . . . sim(cn, cp) . . . 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(2.7)

Because most platforms provide more items than consumers, the item-based approach

15

2 Recommender Systems

demands less memory to store the matrix. Nevertheless, in both cases, the computational
effort to precompute the similarity matrices is relatively high. In user-based CF, it is quadratic
in the number of consumers, and in item-based CF, quadratic in the number of items.

Model-based

The idea of model-based approaches is to process or transform the initial utility matrix into a
model from which preference predictions can be generated [BOHG13, p. 113]. In the following,
widely applied approaches in this regard as Matrix Factorization (MF) and Co-Clustering
(CoC) are explained.

Matrix Factorization In the context of recommender systems, MF aims to decompose
a utility matrix U into matrices of smaller dimension to reveal so-called latent features
characterizing consumers and items [BCT18, p. 35]. Here, the features are represented as row
and column vectors of the decomposed matrices. The dimension of the vectors is a predefined
value, which is identical for the consumer and item features. Thus, only the most important
features are considered in the further process.
One approach to decompose a utility matrix U ∈ R

m×n is Singular Value Decomposition
(SVD) [EY36]. The result of SVD are the three matrices V ∈ R

M×M , Σ ∈ R
M×N and W ∈

R
N×N , as depicted in Equation 2.8.

A = V ΣW T (2.8)

Here, Σ contains the so-called singular values on its diagonal in ascending order, which
describe the impact of the corresponding dimension. The matrices V andW are characterizing
the consumer and items, respectively. By considering only r singular values of Σ it is possible
to reduce the dimensions of the matrices V and W , which leads to an approximation of A as
VrΣrW

T
r . In other words, the features are projected into an r-dimensional space. After the

projection, it is possible to predict preferences by, for instance, applying the cosine similarity
among consumers or consumers and items, as illustrated exemplarily in [JZFF10, p. 28].
Unfortunately, SVD can only be applied to dense matrices, which means matrices without
missing values [BCT18, p. 41]. In this respect, SVD cannot be used directly on a utility matrix,
as illustrated in Equation 2.1, since most of the entries are not set due to the fact that not
all consumers interacted with all available items. There exist multiple ways to circumvent
this issue, e.g., replacing the missing values with zeros [BCT18, p. 41]. But, this may bias the
recommendations to a certain extent. For instance, replacing a missing value with zero may
lead to the wrong impression that a consumer is not interested in an item.
Another approach to decompose the utility matrix is to consider it as a minimization

problem as represented in Equation 2.9. The idea is to determine feature vectors pc ∈ R
f and

qi ∈ R
f for consumers and items such that the dot product pTc qi denoted as r̂c,i approximates

a known rating rc,i of consumer c for item i [BCT18, p. 38-39]. Similarly to SVD, f is a
predefined value, which describes the dimension of the vectors. Then, these vectors can be
used to generate predictions for unknown consumer-item pairs.
In this regard, the task is the following: Given a set of ratings rc,i ∈ R, find the vectors

pc and qi, which minimize the quadratic error of rc,i − r̂c,i [HKV08]. Since the number of

16

2 Recommender Systems

ratings is quite sparse, Equation 2.9 additionally contains a regulation parameter λ to prevent
overfitting. In other words, the regulation parameter prevents the vectors from adapting too
heavily to the actual ratings.

min
p∗,q∗

∑︂

rc,i∈R

(rc,i − pTc qi)
2 + λ(∥pc∥2 + ∥qi∥2) (2.9)

A further extension of Equation 2.9 is represented in Equation 2.10. Here, the actual ratings
of a consumer for an item are adjusted by the overall average rating µ, the average consumer
rating bc and the average item rating bi [BCT18, p. 43]. The idea is to eliminate bias introduced
by consumers and items during the process [BCT18, p. 44]. For instance, some consumers
might tend to rate items rather low or high generally. On the other hand, there also exist
items that are generally rated lower or higher than others.

min
p∗,q∗,b∗

∑︂

rc,i∈R

(rc,i − µ− bc − bi − pTc qi)
2 + λ(∥pc∥2 + ∥qi∥2 + b2c + b2i) (2.10)

Until now, all introduced approaches are based on explicit feedback from a consumer for
an item. This might not always be the case in real-world scenarios, as discussed in Section
2.3. For instance, a consumer can watch a movie without providing a rating for it at the end.
Furthermore, buying an item does not express satisfaction explicitly. To cover this aspect, in
[HKV08], the authors introduce the concept of confidence, as illustrated in Equation 2.11.

min
p∗,q∗

∑︂

c,i

cc,i(pc,i − pTc qi)
2 + λ(

∑︂

c

∥pc∥2 +
∑︂

i

∥qi∥2) (2.11)

Compared to Equation 2.9 the ratings rc,i are replaced by pc,i, where pc,i is equal to 1 when
rc,i > 0 and 0 otherwise. The confidence factor is defined as cc,i = 1 + αrc,i. The idea of the
confidence factor is to introduce a weighting α, which increases its value, the more confident
we are about the user’s preference. For example, a user might purchase multiple copies of
the same item or browse through a website of the same product several times [HKV08, p. 4].
Additionally, in contrast to Equation 2.9, all missing user-item combinations are considered
with a preference of 0. However, these entries are considered with low confidence since no
reasonable conclusion about a preference can be inferred from them [KBV09, p. 3]. A downside
of the approach is an increased computational effort since all consumer-item combinations
are part of the minimization problem.
To solve this kind of minimization problem, two techniques are widely applied, namely,

Stochastic Gradient Descent (SGD) and Alternating Least Squares (ALS) [BCT18, p. 50-53].
The basic idea of SGD is to adapt the feature vectors pc and qi iteratively for each rating rc,i.
Therefore, SGD first determines the error ec,i between the actual rc,i and predicted rating
r̂c,i = pTc qi. Afterward, the vectors are updated as represented in Equation 2.12 and 2.13. Here,
γ is the learning rate, which specifies the size of movement towards the gradient. To solve
the minimization problem of Equation 2.10 the average consumer and average item biases
have to updated, as illustrated in Equation 2.14 and 2.15.

pc ← pc + γ(ec,iqi − λpc) (2.12)

17

2 Recommender Systems

qi ← qi + γ(ec,ipc − λqi) (2.13)

bc ← bc + γ(ec,i − λbc) (2.14)

bi ← bi + γ(ec,i − λbi) (2.15)

Alternatively, ALS can be used to solve the minimization problem in Equation 2.10. In
contrast to SGD, ALS does not consider each rating separately. Instead, ALS takes advantage
of the following observation: Fixing the values of pc enables to optimize the values of qi
and the other way around. The resulting minimization problems can be solved directly by
the least squares approach. The alternating calculation is repeated either by a predefined
number of iterations, so-called epochs, or until it converges to a certain threshold. According
to [KBV09], due to the independent determination of pc and qi, the implementation of the
algorithm allows high parallelization. In this regard, it is particularly suited to handle implicit
consumer feedback since it has the ability to incorporate all consumer-item combinations in
its computation.

Co-clustering In general, clustering is an unsupervised learning technique that aims to
separate data into so-called clusters. Data is considered similar within a cluster and dissimilar
among different clusters, given a specific characteristic [Liu09, p. 133]. Clustering is classified
as unsupervised learning since it requires no prior knowledge about the data for its execution.

One widely applied algorithm for clustering is k-Means [Liu09, p. 136-138]. k-Means works
as follows: From a given set of data points, it first selects randomly k data points, representing
the initial centroids of the clusters. Then, for each data point, its distance to each centroid
is determined and assigned to the cluster with the shortest distance. After assigning each
data point to a cluster, the centers of the clusters represent the new centroids. The process is
repeated until it converges, i.e., until the cluster assignment stops changing over the iterations.

CoC, sometimes also referred to as biclustering, extends the idea of k-Means. It aims to clus-
ter a matrix by its rows and columns simultaneously [GM05]. In the context of recommender
systems, the resulting clusters comprise similar consumers and items. Here, the consumer
clusters are denoted as Cu and the item clusters as Ci. The number of clusters is predefined
as ku for consumers and ki for items, respectively. Based on these clusters, the co-clusters
Cc,i are determined by relating the corresponding consumer and item clusters. Consequently,
this leads to kc · ki co-clusters. Besides, CoC is particularly suitable for sparse matrices. The
prediction r̂c,i of consumer c for item i is determined by Equation 2.16.

r̂c,i = Cc,i + (rc − Cc) + (ri − C i) (2.16)

In Equation 2.16, Cc and C i are the average consumer and item preferences within the
corresponding cluster. Cc,i is the average rating within a co-cluster. The average consumer
and item preferences are denoted as rc and ri.

18

2 Recommender Systems

Limitations Despite its popularity, CF comes with some drawbacks and problems. One
famous problem in this regard is the cold start problem. The cold start problem addresses the
challenge of generating recommendations for an unknown consumer or a new item. In case
an unknown consumer starts its interaction with a service, no historical information about
its preferences is available. Therefore, CF approaches are not able to determine consumers
sharing the same taste based on their previous preference patterns. The same problem occurs
when a new item is becoming part of the product catalog. In this case, the item simply
disappears since it shares no similarities to other items based on the preference behavior of
the consumers.
Another problem results from the sparsity of the utility matrix. In many cases, the utility

matrix dimensions are quite high compared to the number of actual preferences represented
by it. Therefore, the number of items preferred by two distinct consumers might be quite
small. In other words, a consumer shares hardly any similarities to other consumers due to
their special preferences. This leads to inadequate and improper recommendations. In the
literature, such a consumer is referred to as a grey sheep [GBB16].

In order to solve the cold start problem, different approaches are developed and implemented.
One approach to request initial preferences is to present a random but diverse selection of
items to an unknown consumer. Based on the ratings of the presented items, the recommender
system is then able to generate recommendations.

2.4.2 Content-Based Filtering Approaches

Another widely applied approach in the field of recommender systems is Content-based
Filtering (CB) [RRS11, p. 74-100]. In contrast to CF, where recommendations are made based
on the taste of similar consumers, CB recommends items that have the same or similar
characteristics as the ones a consumer preferred in the past [JZFF10, p. 58]. To do this, CB
highly relies on an appropriate consumer profile or model as well as complete item descriptions
[CJSD08, p. 7]. In this context, a consumer profile or model reflects the consumer preferences
and is generated by applying Machine Learning (ML) techniques [CJSD08, p. 5]. Consequently,
a consumer model has to be created initially and updated continuously when new consumer
feedback is available.
To exploit similarities between items, CB relies on item descriptions or profiles, which

typically consist of metadata represented in structured and unstructured forms. For instance,
some metadata values might have constraints such as number ranges or predefined formats,
whereas others contain free text. Therefore, item descriptions have to be transformed into a
suitable representation, e.g., feature vectors, to check whether an item matches the consumer
preferences described by the model. This applies in particular to textual values such as the
content of an article or a movie synopsis. At this point, domain knowledge is also beneficial
since it enables to leverage experiences regarding item descriptions.
The following simple example illustrates the basic idea of CB. Consider a consumer A

who is highly interested in political articles. By doing so, its profile is updated continuously
according to the information provided by the articles. Here, this information includes metadata
such as the title, the author, the publisher, the release date, the keywords, and the content. In
its simplest form, the consumer profile of A maintains a data structure, e.g., a feature vector,

19

2 Recommender Systems

containing the same metadata. In order to predict a recommendation for an unread article, it
has to be checked whether it reflects the consumer profile. For instance, this means comparing
whether the author of the unread article appears in the list of already read authors. Another
possibility is to check if the keywords of the unread article are part of the consumer profile.
For an accurate prediction, the entire item feature vector is compared against the consumer
profile.

Term Frequency - Inverse Document Frequency

Term Frequency - Inverse Document Frequency (TF-IDF) is a technique adopted from Infor-
mation Retrieval (IR) to represent documents as multidimensional vectors [JZFF10, p. 55].
To do this, irrelevant terms, namely, stop words, such as prepositions and articles, are first
removed [JZFF10, p. 56]. Furthermore, it is common to shorten words to their word stem,
e.g., replace łrecommendingž with łrecommendž. As the name implies, Term Frequency (TF)
describes the frequency of a term within a document. On the other hand, Inverse Document
Frequency (IDF) denotes the number of documents a term occurs within the complete set of
documents, commonly termed corpus. A term that frequently appears in different documents
of the corpus is not considered to have high value as a keyword since it does not discriminate
the documents quite well. Therefore, the inverse is taken. Here, the formal definition of TF-IDF
from [RRS11, p. 82] is used:

TF-IDF(tk, dj) = TF(tk, dj) · log
N

nk

(2.17)

Here, dj denotes a document from the corpus D = {d1, ..., dN}, where N is the size of
the corpus and nk the number of occurrences of tk within the documents. Furthermore, tk
represents a term from the set of distinct terms T = {t1, ..., tn} occurring in the corpus.

TF(tk, dj) =
fk,j

maxz fz,j
(2.18)

Equation 2.18 defines the calculation of the TF. At is point, fk,j denotes the frequency of
tk in document dj . Additionally, fk,j is normalized by the most frequently occurring term in
document dj . In doing so, a keyword, which occurs more often in a document compared to
other keywords, has higher importance. Finally, the weights wk,j for the document dj are
normalized, as illustrated in Equation 2.19.

wk,j =
TF-IDF(tk, dj)

√︂

∑︁|T |
s=1 TF-IDF(tk, dj)

2

(2.19)

Accordingly, a document dj is encoded as {w1,j, ..., wn,j}. A widely used measure to com-
pare the similarity between two documents is the cosine similarity [RRS11, p. 82].

Limitations There are three main limitations of this approach, namely, shallow content
analysis, overspecialization, and rating acquirement. Lops et al. [RRS11, p. 78-79] mention
the same drawback as limited content analysis, overspecialization, and new users. Shallow

20

2 Recommender Systems

content analysis refers to extracting appropriate features from texts, images as well as audio
and video content. Overspecialization reflects the problem of receiving recommendations
containing items that are very similar to those a user already bought in the past. Rating
acquirement is related to the cold start problem in CF. A CB recommender system can only
provide recommendations when a certain amount of information about a user’s preferences
is given.

2.4.3 Hybrid Approaches

Hybrid recommender systems aim to balance the limitations of CF and CB approaches by
combining them. Considered separately, each approach incorporates only a specific aspect of
the available information into the recommendation process. CF relies on the preferences of like-
minded consumers within a community, whereas CB utilizes item features and characteristics
[JZFF10, p. 124]. Therefore, it seems natural to assume better recommendation results if both
approaches are combined to a hybrid recommender system. In this regard, Burke proposes
seven ways to implement a hybrid recommender system [Bur02, p. 6-8]. The possibilities
are named as follows: weighted, switching, mixed, feature combination, cascade, feature
augmentation, and meta-level.

As the name implies, the weighted approach combines different recommendation results to
one overall result. In the switching approach, one recommendation technique is preferred
to another given a specific criterion. A mixed hybrid system shows the recommendation
results determined by multiple techniques. The idea of feature combination is to enrich and
enhance content-based information with collaborative information. Both cascade and feature
augmentation are built on a sequence of recommendation approaches. In the latter case, the
output of one recommender is used as input for the recommender in the process, whereas in
the former case, an additional recommender only needs to be applied to discriminate further
and refine the recommendations. Finally, a meta-level system goes even one step further by
utilizing a learned model from one recommendation approach as input for the upcoming one.

2.4.4 Selected Recommender System Research

A general overview of recommender systems is given by Jannach in [JZFF10]. A detailed
survey on recommender systems is elaborated in [BOHG13]. In [BCT18], the authors mainly
target the topic of CF recommendations. CB recommender systems are covered by Pazzani
and Billsus in [PB07] and Lops et al. in [RRS11, p. 73-100]. A survey of hybrid recommender
systems is given by Burke in [Bur02]. Additionally, Burke provides a detailed comparison of
different hybrid recommender systems considering the combination of CF, CB, and knowledge-
based recommendation approaches in [Bur07]. The authors of [PKCK12] provide a systematic
literature review about recommender systems and future directions.
In [SKKR01] item-based CF approaches are analyzed considering item similarity and pre-

diction computation. A further comparison of CF approaches applied to the Netflix and
MovieLens data set can be found in [CCFF11]. The application of the item-based approach in
a real-life environment is shown by Amazon in [LSY03]. In their paper [DK04], Deshpande et
al. investigate top-N item-based algorithms focusing on different similarity measures as well

21

2 Recommender Systems

as the generation of recommendations and comparing them with user-based algorithms. The
work of [Aio13] particularly focuses on binary implicit feedback to generate top-N recom-
mendations, which was applied by the online retailer Zalando in the past [Fre17]. An approach
to incrementally update item similarities in a dynamic environment based on implicit user
feedback is proposed in [JVG19]. The developers of TenentRec [HCZ+15] introduce another
fast incremental item-based approach, which divides the similarity calculation into three
parts for parallelization.
In [DDGR07], Google explains how its news recommender system is implemented as a

model-based CF approach based on clustering techniques.
MF and its successful application in the famous Netflix Prize is discussed in [KBV09]. In

[TPNT09], further variations of MF approaches are introduced and compared. An incremental
MF approach is introduced in [YMJ+16]. Another fast MF approach by He et al. [HPV16]
introduces the concept of weighting missing values.
In the industrial context, hybrid recommender systems are widely applied. As explained

in [BCT18, p. 571-598], Xing implemented a hybrid recommender system based on CF and
CB approaches. In particular, Xing leverage CB to generate user profiles and interest profiles
based on TF-IDF. Since the Mendeley recommender system relies on content information
[BCT18, p. 604], its implementation is also based on a CF and CB approach. As explained by
Freno in [Fre17], CB approaches are part of the Zalando recommender system. The TenentRec
[HCZ+15] recommender system combines multiple approaches such as CF, CB, and rule-based.
Considering the news domain, Karimi et al. [KJJ18] classify recommender systems into CF,
CB and hybrid implementations. One example in this regard is a sport recommender system
for the German sports channel Sport1, which is based on a weighting hybrid combination of
CB and CF [LH16].

Besides CF and CB approaches, further extensions and approaches are mentioned in the lit-
erature. In [JZFF10], for instance, Knowledge-based Recommender Systems are described
based on the work of [Bur00] and [FB08] and divided into constraint-based and case-based
types. Both types try to find appropriate recommendations in an interactive process [JZFF10],
utilizing łdetailed knowledge about item characteristicsž [JZFF10, p. 82] and specific user
requirements. In contrast to case-based, which relies on domain knowledge, constraint-based
applies filtering mechanisms [FB08]. Considering the computer domain, these requirements
or constraints may involve a price range, screen resolution, frame rate, or disk size.
Context-aware Recommender Systems, also termed CARS, aim to include contextual

information into the recommendation process. Examples of context information are time,
location, weather, activity [BCT18, p. 174-175] or device. As discussed in [BCT18, p. 179],
in CF, it is possible to incorporate context as contextual pre- or post-processing as well as
contextual modeling. In this regard, CARS can extent other approaches and also operate on
their own. Further information about CARS is provided by Adomavicius and Tuzhilin in
[RRS11]. For instance, the location and weather might be important to exclude certain places
of interest during a city trip since they are too far away from the current user position or not
worth visiting due to bad weather conditions. Recommender systems focussing on tempo-
ral information are termed Time-aware Recommender Systems (TARS) and discussed
in [CDC14]. For instance, movie recommendations shown to a user might differ depending
on the time, recommending rather entertaining comedy shows in the evening and demanding

22

2 Recommender Systems

documentations in the afternoon. Additionally, over time user preferences might change, such
that the most recent actives should be considered with higher importance. Another aspect
might be how to generate recommendations for a shared account if a household shares one
streaming or shopping account. Verstrepen and Goethals address this challenge in [VG15].
Sequence-based Recommender Systems are discussed in [QCJ18]. Here, the authors

distinguish between last-N interactions-based, session-based, and session-aware recommen-
dations. Last-N interactions considers only the last n actions of a user. In session-based recom-
mendation, only actions of the last user session are available, whereas, in the session-aware
case, past user sessions are available [QCJ18, p. 66]. Generally, sequence-based recommen-
dations rely on time-stamped data collected as a list of user interactions such as viewing,
collecting, or purchasing items [BCT18, p. 246]. Depending on whether the current user is
known or completely anonymous different information is available. In case the user is known,
since he or she is logged into the system or tracked by cookies, recommendations are made
by considering their behavior in the past session. For anonymous users, only the information
of the current session is available, and recommendations are made based on similar sessions
of other users, which is the basic goal, as discussed in [QCJ18].

2.4.5 Recommender Systems as Machine Learning Systems

Machine Learning (ML) combines the fields of computer science and statistics. According to
Michael I. Jordan [JM15], the aim of ML is defined as the capability of a system to improve
constantly through experience. In this sense, experience means being trained to solve a
specific problem to improve a performance measure. Generally, most applications in ML try
to improve the performance measure of a function. Such a function can be determined by
a search, a factorization, an optimization, or a simulation. Considering this, recommender
systems represent a practical application of ML since their goal is to recommend exciting
items for users utilizing a function trained on the users’ past behavior. Furthermore, rec-
ommender systems need to adapt to new data and improve the recommendation results by
incorporating this new experience. To measure improvement and thereby learning the system,
the specified function is optimized against a predefined metric. In this context, metrics are
mostly considering the accuracy of the ML task, such as the correct prediction of ratings or
the order of recommendations provided to a user in the recommender system case. These
metrics are discussed in the next section.

2.5 Metrics

To compare and analyze recommender systems and their generated results, it must be decided
what objective(s) to consider and, consequently, which metrics to apply in the evaluation
process. A quote addressed to the famous business pioneer Peter Drucker17 underlines the
importance: łIf you can’t measure it, you can’t improve itž. The most applied metrics regarding
recommender systems are related to accuracy. Besides, current research also investigates
so-called non-accuracy metrics [BCT18, p. 302]. In addition, metrics to develop, deploy,

17https://en.wikipedia.org/wiki/Peter_Drucker

23

https://en.wikipedia.org/wiki/Peter_Drucker

2 Recommender Systems

Accuracy

Prediction Classification Ranking

Root Mean
Square Error Precision

RecallMean Absolute
Error

Normalized
Discounted

Cumulative Gain

F1

Mean Percentile
Rank

Mean Reciprocal
Rank

Figure 2.3: Overview of accuracy metrics.

maintain, and run a recommender system are important measurements to consider [BCT18,
p. 303], [JZFF10, p. 169]. These metrics are termed performance metrics in the following. Next,
different metrics are discussed.

2.5.1 Accuracy Metrics

As illustrated in Figure 2.3, to measure the accuracy of the generated recommendations various
metrics exist, which are commonly divided into three classes considering the accuracy of
predictions [JZFF10, p. 179] [RRS11, p. 273], the accuracy of classification [JZFF10, p. 180-181]
or usage [RRS11, p. 273] and the accuracy of rankings [JZFF10, p. 182] [RRS11, p. 274]. In
[BCT18, p. 301], the accuracy measures are considered as error metrics or precision-oriented
metrics.

Prediction Accuracy

In the past, recommender systems were mostly evaluated on data sets containing explicit
user feedback for items. A famous example in this context is the Netflix challenge, where
the user feedback consisted of movie ratings on a scale from 1 to 5. Under this setting, the
recommender system’s task was to predict the ratings for movies a user had not seen so far.
The most common metrics in this regard are the Root Mean Square Error (RMSE) and the
Mean Absolute Error (MAE). In the following, R comprises a set of rating predictions ru,i of
user u for item i and r̂u,i the corresponding observed ground truth rating.

24

2 Recommender Systems

Table 2.1: Ratings and predictions for products of a fictitious retailer on a 1 to 5 scale. In
this example, products rated by 4 or higher are classified as relevant.

Product Rating (r) Prediction (r̂) Relevance (rel) Rank Percentile Rank

Trousers 5 4 1 1 0.25

T-Shirt 3 4 0 2 0.5

Jacket 4 3 1 3 0.75

Pullover 1 1 0 4 1.0

The RMSE is defined as follows:

RMSE =

√︄

∑︁

ru,i∈R
(ru,i − r̂u,i)2

|R| (2.20)

The RMSE determines the overall prediction error by considering the squared distance between
the predicted rating and its ground truth. At the end, the square root is taken.

TheMAE is defined as:

MAE =

∑︁

ru,i∈R
|ru,i − r̂u,i|
|R| (2.21)

In contrast to the RMSE, the MAE considers the magnitude of the predicted rating and its
ground truth.

Considering the ratings and predictions in Table 2.1 the RMSE and MAE are determined in
Equation 2.22 and 2.23, respectively.

RMSE =

√︃

(5− 4)2 + (3− 4)2 + (4− 3)2 + (1− 1)2

4
≈ 0.87 (2.22)

MAE =
|5− 4|+ |3− 4|+ |4− 3|+ |1− 1|

4
= 0.75 (2.23)

Classification Accuracy

In contrast to the prediction accuracy, the classification accuracy aims to predict whether
a specific item is of relevance or utility for a user. Generally, an item might be classified as
relevant since it received a high rating or was purchased by the user. Hence, the evaluation
is based on a list of n items provided to a user, so-called top-N recommendations. In this
scenario, a recommender system’s task is to generate a list of n recommendations containing
as many relevant items as possible. In the following, nrs defines the number of relevant and
selected items, ns the number of selected items, and nr the number of relevant items as applied
in [HKTR04].

25

2 Recommender Systems

Precision is defined as follows:

precision =
nrs

ns

(2.24)

The precision determines the ratio of the number of relevant and selected items nrs to the
selected ones ns. In other words, it measures how many of the recommended items are
considered as relevant [HKTR04, p. 23].

Recall is defined as:
recall =

nrs

nr

(2.25)

In contrast to precision, recall describes the ratio of the number of relevant and selected items
nrs to the relevant ones nr, i.e., how likely is it to recommend a relevant item [HKTR04, p. 23].
The harmonic mean of precision and recall is termed as F1. It is an important metric that

shows a balance between these two metrics and is expressed as:

F1 = 2 · precision · recall
precision+ recall

(2.26)

Considering a recommendation list containing the products Trousers, T-Shirt, Jacket, and
Pullover, as shown in Table 2.1, the number of relevant and total items nrs is 2 and the number
of selected items ns is 4. This leads to a precision of 2

4
= 0.5. On the other hand, the number

of relevant items nr is 2, resulting in a recall of 2
2
= 1.0. Consequently, applying Equation 2.26

leads to the following F1 score:

F1 = 2 · 0.5 · 1.0
0.5 + 1.0

=
1.0

1.5
=

2

3
.

Ranking Accuracy

The ranking accuracy goes beyond the simple classification of items into relevant and irrele-
vant. It extends the evaluation by not only considering whether a particular item is part of the
top-N recommendation but also its position in the recommendation list. The idea is to reward
recommender systems, generating a ranked list with relevant items at the top and penalizing
the ones containing irrelevant items. In the following, some of the most established metrics
to measure ranking accuracy are discussed.

Discounted Cumulative Gain (DCG) and its normalized version are defined as follows:

DCG(L,u) =
N
∑︂

i=1

relu,i
log2(i+ 1)

(2.27)

nDCG(L,u) =
DCG(L, u)

DCG(Lideal, u)
(2.28)

In Equation 2.27, the parameters specify a ranked list of items L for a user u. The size
of the ranked list L is defined by N . Furthermore, relu,i indicates whether the i-th item is
relevant for user u and is weighted by its position in the ranked list L. Finally, Equation 2.28

26

2 Recommender Systems

normalizes the result by dividing by the DCG value of an ideal ranked list Lideal.
The following example, based on the product ranking in Table 2.1, illustrates the application

of normalized Discounted Cumulative Gain (nDCG). Here, the ranked list L is defined as:

L = [Trousers,T-Shirt, Jacket, Pullover].

On the other hand, the ideal ranked list Lideal is represented as:

Lideal = [Trousers, Jacket,T-Shirt, Pullover].

In this case, the DCG applied to L leads to:

DCG(L, u) =
1

log2(2)
+

0

log2(3)
+

1

log2(4)
+

0

log2(5)
=

1

1
+

1

2
= 1.5.

And the DCG for the ideal ranked list Lideal leads to:

DCG(Lideal, u) =
1

log2(2)
+

1

log2(3)
+

0

log2(4)
+

0

log2(5)
=

1

1
+

1

1.585
= 1.63.

Consequently, applying Equation 2.28, the final nDCG value is 1.5
1.63

= 0.92.
Another popular metric is the Mean Percentile Rank (MPR) as defined in Equation 2.29.

It measures an item’s percentile ranking in a recommendation list, whereas a rank value of
0% indicates high and 100% low preference. In other words, the lower the MPR, the better
the generated recommendation list.

MPR =

∑︁

u,i relu,i · ranku,i
∑︁

u,i relu,i
(2.29)

Here, relu,i defines the relevance of item i for user u and ranku,i the according percentile
ranking in the recommendation list. Applying the metrics to the example in Table 2.1 leads to:

MPR =
(1 · 0.25) + (0 · 0.5) + (1 · 0.75) + (0 · 1.0)

2
=

1

2
= 0.5.

Considering a list of 4 items, the percentile is divided into 0.25, 0.5, 0.75 and 1.0. Then, each
item is weighted by its relevance and ranking percentile. Finally, the result is divided by the
total number of relevant items in the list. In this case, on average, a relevant item appears
within the first 50% of the recommendation list. It must be noted that the MPR is rather
intended to be applied to the complete test data set than on a per user basis.

Besides,Mean Reciprocal Rank (MRR) is widely used and defined as follows:

MRR =

∑︁

u∈U
1

ranku

|U | (2.30)

Here, ranku is the position of the first relevant item in the recommendation list of user u and
1

ranku
the corresponding reciprocal. For the mean value, the reciprocal ranking is determined

27

2 Recommender Systems

for all users U and divided by its size |U |. Considering Table 2.1 again, Trousers is relevant
and recommended first, such that ranku = 1. This leads to a reciprocal ranking of 1

1
= 1.

2.5.2 Non-Accuracy Metrics

The following part compiles and explains non-accuracy metrics from [RRS11, p. 281-293],
[RMWZ14, p. 246-267] and [KB16].

Coverage

The coverage of the recommendations can be considered from a user and item perspective.
User coverage measures for how many users the recommender system could generate recom-
mendations [JZFF10, p. 183]. On the other hand, item or catalog coverage aims to measure
how many of the available items are part of recommendations. The catalog coverage can be
further examined by the Gini Index and the Shannon Entropy, which additionally consider
how the items are distributed [RRS11, p. 282].

Diversity

Diversity aims to measure whether the provided items within a list of recommendations are
rather similar or diverse. The idea of this measure is to avoid showing too many similar items
to the user and instead generate a recommendation list covering more items of the catalog
[JZFF10, p. 183]. In doing so, a recommender system avoids that a user stucks in a filter bubble.
A commonly used metric in this context is the Intra-List Similarity (ILS).

Confidence

As discussed in [RRS11, p. 283], [STS+12, p. 283], confidence tries to measure how sure the
recommender system is that the generated recommendation will be trusted by a user.

Novelty

The idea of novelty is to provide recommendations to users, they might not be aware of. In
other words, items that are unknown to the user. One approach in this regard is to exclude
already known and popular items from the recommendation list of a user, assuming that these
items are more likely to be known by him or her [RRS11, p. 285-286].

Serendipity

According to [RRS11, p. 287-287], serendipity aims to recommend surprising, unexpected,
and novel but still relevant items to a user. One approach might be to add some random items
into the recommendation list [JZFF10, p. 76]. A survey on the topic is provided by Kotkov et
al. in [KWV16].

Adaptivity

In [RRS11, p. 292], adaptivity is defined as the capability of a recommender system to adapt
due to fast changes in the catalog. Besides, adaptivity also includes a recommender system to
adapt to changes in user preferences. A possible way to measure the adaptivity is to compare
the recommendations for a user before and after including new information [RRS11, p. 292].

28

2 Recommender Systems

Robustness

Despite adaptivity, it is also important for a recommender system to be robust against attacks
that try to impact the recommendation results [RRS11, p. 290]. Such an attack might involve
fake accounts giving high rates to poor items so that these items appear as recommendations
for other users.

Learning Rate

According to [STS+12], [RMWZ14, p. 283], the learning rate measures the accuracy of a rec-
ommender system over time. In this case, the underlying assumption is that the recommender
system generates better recommendations when more data is available. As a consequence,
problems such as the cold start problem can be alleviated [RMWZ14, p. 283].

Calibration

Calibration aims to evaluatewhether the generated recommendations preserve the proportions
of past user interests. In other words, when a user shows a balanced interest in the topic of
recommender systems and benchmarking, the recommendations should reflect this ratio, as
discussed by Steck in [Ste18].

Click-through Rate and Conversion Rate

The Click-through Rate (CTR) measures how many presented recommendations are actually
clicked by a user. Consequently, it provides useful information about the efficiency and
acceptance of the applied recommender system. The Conversion Rate (CR) measures, for
instance, how many of the recommendations lead to actual purchases. In this regard, both
represent important business metrics, which are mostly applied in the online evaluation of
recommender systems, as discussed by Antonino Freno for Zalando in [Fre17] or Wang et al.
for Alibaba in [WBCR17].

Competitive Ratio

Traditional recommender system algorithms compute recommendations offline and periodi-
cally, e.g., on an hourly or a daily basis, considering the complete input and data. On the other
hand, streaming recommender systems aim to incorporate new information continuously to
keep their corresponding models updated. In this sense, it might be of interest to compare
streaming recommender systems with traditional recommender systems, whereas the latter
serves as a baseline. In computer science, this relates to determining the competitive ratio
among the two approaches. In other words, the trade-off between scalability and accuracy.

Others

Other mentioned non-accuracy metrics are utility [RRS11, p. 289-290], risk [RRS11, p. 290] and
privacy [RRS11, p. 291]. They are mentioned for the sake of completeness but are not clearly
defined in the literature and hard to evaluate. For instance, the utility of a recommender
system can be evaluated from a business or user perspective. Risk considers to what extent
the provided recommendations may lead to harmful user decisions, e.g., gambling on the
stock market. Privacy aims to avoid revealing private information about user interests in the
recommendation process.

29

2 Recommender Systems

2.5.3 Performance Metrics

Scalability

Scalability can be considered from a system and algorithmic view. One option to increase a
system’s performance is to add additional hardware resources, termed vertical scaling. The
other option, horizontal scaling, aims to improve performance by distributing a system as a
cluster, e.g., Database Management Systems (DBMSs). From an algorithmic view, scalability
describes how well it performs to a growing input. More precisely, the łcomputational com-
plexity of an algorithm in terms of time or spacež [RRS11, p. 293]. Since the number of users
and items is continuously increasing, it is critical to evaluate these aspects [RRS11, p. 293].
For instance, whether an increase of the user has a linear or exponential effect on the runtime.
In computer science, these aspects are termed polynomial and non-polynomial complexities
[Weg03]. In the industry, the most popular metrics are Central Processing Unit (CPU) runtime
and memory consumption.

Reactivity

Another important aspect is to consider how fast a recommender system is able to generate and
provide recommendations to a user [RRS11, p. 293], [STS+12]. At this point, the throughput
and response times of a recommender system are significant metrics. In this case, throughput
measures the number of recommendations that can be generated, for instance, per second.
The response time measures the time a user has to wait to retrieve recommendations, for
instance, after its login.

2.6 Evaluating Recommender Systems

Besides the łwhatž to measure, defined by the metrics, the łhowž to measure is discussed
next. In general, the goal of an evaluation is to assess, for instance, algorithms or systems,
considering their performance [BCT18, p. 295-328]. In the case of recommender systems,
the evaluation mostly focuses on the accuracy of the generated recommendations. In the
beginning, especially, the accuracy of predicting ratings was investigated [BCT18, p. 295].
According to [BCT18, p. 296], focussing on this aspect might even lead to useless recommen-
dations for a user. Nowadays, the focus has changed to evaluate the order of the generated
recommendations, also referred to as ranking, within a list instead, since it is considered more
beneficial for a user [BCT18, p. 296]. Besides accuracy, other aspects, for instance, coverage,
diversity, novelty, or serendipity of recommendations, are receiving more attention [BCT18,
p. 296]. Also, aspects considering the deployment and maintenance, as well as the runtime
and memory consumption, might be part of the evaluation [BCT18, p. 303],[JZFF10, p. 167].
However, for an evaluation, it is important to define clearly what is going to be evaluated
by specifying an objective function [BCT18, p. 307]. Beyond that, a systematic process and
its documentation are an integral part of each recommender system evaluation to ensure
the reproducibility of the achieved results [JZFF10, p. 168]. In the literature, recommender
systems are commonly evaluated by offline and online experiments, referred to as offline and
online evaluation [JZFF10, BCT18, RRS11].

30

2 Recommender Systems

2.6.1 Offline Evaluation

In offline evaluation, a recommender system is evaluated on static data, which represents the
historical preferences of users for items. In doing so, offline evaluation assumes that the user
behavior of the historical data is similar to the user behavior łwhen the recommender system is
deployedž [BCT18, p. 261]. In this regard, one goal of an offline evaluation might be to narrow
down the number of possible recommender system approaches [RRS11, p. 261]. Preferences
are generated by users in explicit or implicit form as ratings or purchases, respectively. In
this context, the data might not represent real user preferences but rather synthetically
generated ones [JZFF10, p. 169]. Since the available data is static, it is possible to examine
many algorithms with different parameter settings [BCT18, p. 297]. A common approach,
adapted from ML, is to split the available data into training and test data. The chosen splitting
method directly influences the results of the applied algorithms [BCT18, p. 298]. Therefore,
in the following, some widely used splitting methods are discussed.

N -fold cross-validation

This method splits the data into N disjoint partitions, where N − 1 partitions are used for
training and the remaining partition for testing. Consequently, during the evaluation, each
partition is used N − 1 times for training and exactly once for testing [JZFF10, p. 177].

Leave one out

This method considers each preference of a user as a partition. Consequently, during the
evaluation, all available user preferences are used for training except one, which is used for
testing [JZFF10, p. 178].

All but N
This method splits the data in such a way that the generated training data set contains exactly
N item preferences for each user [JZFF10, p. 178]. A critique of this method is that it does not
reflect the real world since it is not the case that all users have N item interactions [RRS11,
p. 262]. In this regard, such a splitting method shows under which conditions an algorithm
performs best [RRS11, p.263] since it specifically evaluates how many preferences must be at
least given for each user to achieve high accuracy.

Given N
This method splits the data in such a way that the generated testing data set contains exactly
N item preferences for each user [JZFF10, p. 178]. Similar to all but N , given N might
not represent the real world and therefore rather evaluates the best-case scenario for a
recommender system.

Time-based

This method is only applicable when the data includes a timestamp for each user preference.
Then, the data is split according to a specified fixed point in time t, meaning that the training
data set contains all preferences appearing before t, whereas the testing data contains those
appearing after t [BCT18, p. 298]. Due to the fact that recommender systems aim to predict
future interactions based on historical data, time-based splitting is considered to be a good
representative of real-world scenarios [BCT18, p. 298].

31

2 Recommender Systems

P -cores

This method is used to reduce the sparsity within a given data set. To do so, only user and
items interactions remain in the data set, which have at least p interactions [BCT18, p. 299].
However, such a preprocessing of the data set might introduce bias and should, therefore, be
applied carefully [RRS11, p. 262].

Mask-based

The idea of mask-based splitting is to generate train data by randomly masking a certain
percentage p of its entries [51]. In doing so, these entries are hidden from the recommender
system during its training. In contrast to the other methods, the test data is a copy of the
initial data, such that the train and test data are not disjoint. Finally, during the evaluation,
for all users having at least one masked entry in the train data, a recommendation list is
generated and compared to the test data. In this thesis, the evaluation also only considers
users who were part of the training data.

2.6.2 Online Evaluation

In contrast to offline evaluation, the results obtained by an online evaluation are regarded
to be more trustworthy since they are based on a deployed recommender system retrieving
direct feedback from the users [BCT18, p. 297]. For instance, in the offline evaluation, a
recommendation for an item might be made that is not part of the test data of a specific user.
Nevertheless, the item might be of interest to him or her, but the user was simply not aware
of it and, therefore, not able to indicate a preference. In this case, the recommender system is
penalized for recommending it since the item is classified as irrelevant [JZFF10, p. 171]. Such
recommendations can be made and directly evaluated during an online evaluation since a
user either ignores the recommendation or utilizes it.

Another advantage of online evaluation is its ability to check the usability of the graphical
representation of the recommendations, for instance, how many items to recommend or
where to place the recommendations [BCT18, p. 506-507]. There exist two commonly applied
online evaluation approaches that will be discussed in the following.

A/B Testing

In A/B testing, the population of users is separated randomly into different groups. In this
regard, a user does not know to which group he or she belongs, nor being part of an experi-
ment at all [BCT18, p. 305-306]. Each of these groups uses a different recommender system
implementation. Consequently, the results of the different recommender system implementa-
tions are examined and conclusions are made. For instance, a company might be interested
in whether a new recommender system performs better than the current one. To reduce the
uncertainty about the quality of the new approach, the company may decide first to deploy it
to a small group of users and gain some insights before providing it to all of its users. In doing
so, a company lowers the risk of losing its reputation due to a bad user experience [BCT18,
p. 406].

32

2 Recommender Systems

User Studies

According to [BCT18, p. 306], user studies represent a qualitative evaluation of a recommender
system. This is based on the fact that the feedback from the users is collected by, for instance,
questionnaires, interviews, or during the execution of given tasks. In this regard, a company
is able to create concrete and goal-oriented tests in a controllable environment. Thus, in user
studies, the users are aware of be being part of a study. Since participation in user studies
involves additional effort for the users, incentives are given [BCT18, p. 306]. As a consequence,
user studies are more costly to conduct and evaluate [RRS11, p. 264]. Furthermore, the number
of participants in user studies is much smaller compared to A/B testing. This leads additionally
to the question of how to select representative participants for the study [RRS11, p. 265].
Besides, the results might be biased since the users know to be part of a study and therefore
behave differently [RRS11, p. 265].

2.7 Evaluation Libraries and Frameworks

Since recommender systems represent an active research field, multiple libraries exist, which
provide implementations of themost established algorithms. In addition, most of these libraries
contain built-in metrics to measure the accuracy of the algorithms. Besides, there exist specific
frameworks focusing on the evaluation of recommender systems. Therefore, this section aims
to give an overview of the most popular libraries, frameworks, and services.

2.7.1 Libraries

LensKit18

LensKit is a Python and Java-based library that supports the evaluation of various recom-
mender system algorithms. Therefore, the library comprises not only implementations of
algorithms but also data sets, splitting methods, and common metrics. Currently, the library
supports CF algorithms such as item-based and user-based kNN, as shown in Listing 2.1.
Additionally, the MF implementation of Implicit and FunkSVD are available. The built-in
metrics for evaluation are classified into prediction, classification, ranked list, and utility
metrics. The metrics are RMSE, MAE, precision, recall, RR and nDCG, as discussed in Section
2.5. Furthermore, the library provides interfaces to implement own algorithms. In [Eks18]
additional information about the library is available.

from l e n s k i t . a l g o r i t hms import i tem_knn as knn

i t em_ i t em_c f = knn . I t emI tem (nnbrs =20)

i t em_ i t em_c f . f i t (t r a i n _ d a t a)

recommendat ions = i t em_ i t em_c f . recommend (u s e r)

Listing 2.1: Example of applying item-based CF with LensKit. Here, nnbrs defines the num-
ber of neighbors.

18https://lenskit.org

33

https://lenskit.org

2 Recommender Systems

Implicit19

The Implicit library provides implementations of the following algorithms: Alternating Least
Squares (ALS), Bayesian Personalized Ranking (BPR), and Logistic Matrix Factorization (LMF).
The implementations of the algorithms are heavily optimized by using Cython20 andOpenMP21

to parallelize the model generation. As the name implies, the library focuses on recommender
systems based on implicit user feedback. An example code is shown in Listing 2.2. Implicit
provides support for the evaluation of the recommender system by a simple splitting method
and metrics. These include precision, MAP, nDCG, and AUC. However, LensKit also includes
the algorithms of Implicit so that it is easier to evaluate the results in that way.

import i m p l i c i t

a l s = i m p l i c i t . a l s . A l t e r n a t i n g L e a s t S q u a r e s (f a c t o r s =100 , i t e r a t i o n s =20)

a l s . f i t (t r a i n _ d a t a)

recommendat ions = a l s . recommend (u s e r)

Listing 2.2: Example of applying ALS with Implicit. Here, factors denotes the dimension of
the vectors and iterations the number of iterations.

Surprise22

The Surprise library is mainly specialized for evaluating recommender systems based on
explicit user feedback. Currently, it supports multiple algorithms such as kNN based ones,
MF approaches such as SVD, SVD++, and Non-negative Matrix Factorization (NMF). Besides,
Slope one and Co-Clustering (CoC) are part of the library. Furthermore, Surprise comprises
a data set, a splitting, a similarity, and an accuracy module, thereby covering most aspects
of an evaluation. The available accuracy metrics are RMSE, MSE, MAE and FCP. Listing 2.3
shows how to implement SVD with the Surprise library.

from s u r p r i s e import SVD

svd = SVD (n _ f a c t o r s =100 , n_epochs =20)

svd . f i t (t r a i n _ d a t a)

p r e d i c t i o n = svd . p r e d i c t (user , i t em)

Listing 2.3: Example of applying SVD with Surprise. Here, n_factors defines the dimension
of the vectors and n_epochs the number of iterations.

FluRS23

FluRS is a Python-based library for online recommendations [43]. Therefore, the library
provides implementations of algorithms, which adapt their models incrementally, such as
incremental CF, incremental MF, incremental MF with Bayesian Personalized Ranking (BPR)
optimization, or incremental Factorization Machines [43]. For evaluation purposes, the library

19https://implicit.readthedocs.io/en/latest/index.html
20https://cython.org
21https://www.openmp.org
22http://surpriselib.com
23https://takuti.github.io/flurs/

34

https://implicit.readthedocs.io/en/latest/index.html
https://cython.org
https://www.openmp.org
http://surpriselib.com
https://takuti.github.io/flurs/

2 Recommender Systems

contains the following metrics: precision, recall, AUC, RR, MPR, and nDCG. According to the
developers [43], the library is based on user, item, and event entities. An event is described
by its value, e.g., purchase and its context, e.g., time or location [43]. In order to provide
flexibility, algorithms and recommenders are implemented separately.

MyMediaLite24

MyMediaLite is a .NET-based library developed at the University of Hildesheim. The library
targets to evaluate CF algorithms, particularly rating prediction in case of explicit feedback
and item prediction in case of implicit feedback. Part of the library are implementations of
nearest neighbor, e.g., user-based and item-based, as well as MF approaches, e.g., SVD [8, 7].
For evaluation purposes, it provides metrics such as RMSE, MAE, AUC, precision, MAP, and
nDCG. Further information about the library is available in the following paper [GRFST11].

2.7.2 Frameworks

OpenRec25

In [YBG+18], the authors introduce the Python framework OpenRec. The goals of the frame-
work are to provide extensibility and adaptability by a modular architecture of a recommender
system. At this point, a recommender system represents a composition of modules for extrac-
tion, fusion, and interaction. By their defined interfaces, it is possible to connect the modules
easily. An extraction module aims to determine łrepresentations for a data trace from users,
items, or contextsž [YBG+18, p. 667]. In some cases, a recommender system may incorporate
various data sources, which leads to multiple implementations of extraction modules. At
this point, a fusion module takes care of combining the extraction modules. In addition, an
interaction module uses the input of a fusion or extraction module for training and testing.
Besides, the framework includes utility functions for splitting data and evaluating results. In
contrast to other libraries, OpenRec leverages modern hardware capabilities such as GPUs
through TensorFlow26 to speed up the computation.

RiVal27

RiVal is a Java-based framework focusing on the evaluation of recommender systems [SB14a,
SB14b]. As discussed in [SB14a], recommender system libraries provide functionality for
splitting data, applying algorithms, and measuring results, but even though the parameters
are chosen similarly among the libraries, the results vary considerably. Therefore, to achieve
a fair comparison, RiVal takes care of data splitting, candidate generation, and performance
measurement [SB14a], only leaving the item recommendation part to the libraries.

Idomaar28

Idomaar [SLK+16] aims to evaluate a recommender system in a realistic environment, reflect-
ing industry requirements. In this regard, besides accuracy, e.g., RMSE, recall, and precision,

24http://www.mymedialite.net
25https://openrec.ai
26https://www.tensorflow.org
27http://rival.recommenders.net
28https://github.com/crowdrec/idomaar

35

http://www.mymedialite.net
https://openrec.ai
https://www.tensorflow.org
http://rival.recommenders.net
https://github.com/crowdrec/idomaar

2 Recommender Systems

the technical aspects, for instance, the throughput and the response time of recommender sys-
tems, are part of the evaluation. In contrast to other frameworks that evaluate recommender
systems on static data, Idomaar considers data as a continuous stream of new information
about users, items, and their interactions. In doing so, Idomaar tries to bridge the gap between
offline and online evaluation. The proposed generic architecture comprises a data container,
an evaluator, an orchestrator, and a computing environment [SLK+16]. The authors provide
an implementation of the architecture in the form of a virtual machine. Here, Vagrant29 is
used to setup the internal components, such as Apache Flume30 to read and Apache Kafka31

to process the data. The evaluator takes care of splitting the data and evaluating the results.
As the name implies, the orchestrator manages the lifetime of the computing engine as well
as the execution of the evaluator [SLK+16]. A streaming scenario can be realized by ingesting
the data directly into Apache Kafka.

AlpenGlow32

In [FPK+17] the C++-based evaluation framework AlpenGlow is introduced, which addi-
tionally provides a Python API. The framework aims to support a fast implementation of
recommender systems by providing so-called environments to conduct offline and online
experiments. In this regard, the authors emphasize their goal to evaluate top-N recommender
systems in dynamic application scenarios. To do this, the framework provides online experi-
ments for realistic recommender systems, which update their models incrementally whenever
new information about a user is available. Nevertheless, offline experiments are available,
covering the traditional evaluation of recommender systems based on historical batch data.
According to [FPK+17], the framework supports, for instance, batch and online MF approaches
as well as SVD++ and their variations. In addition, the framework allows combining batch
and online approaches based on timely conditions. This means that a recommender system
might be trained weekly by a complete batch of data and afterward updated incrementally
on a daily basis. Currently, only MSE, DCG, precision, and recall are supported during an
experiment.

sRec

sRec is a framework to generate recommendations based on streaming data [FPK+17]. In
this regard, the authors consider three challenges streaming recommender systems have
to tackle: real-time updating of models, an unknown number of users and items, and con-
cept shifts in the popularity of items or user preferences. The general architecture of sRec
comprises one component to estimate appropriate parameter settings based on historical
data, whereas the other component updates the models and generates recommendations
based on streaming data [FPK+17, p. 383]. The framework provides a self-developed recom-
mender system approach, which is compared against Probabilistic Matrix Factorization (PMF),
Multi-Dimensional Collaborative Recommendation (MDCR), Time-SVD++, and Gaussian
Process Factorization Machines (GPFM). The algorithms were applied to the following data
sets: MovieLens Latest Small, MovieLens-10M, and Netflix and compared by their resulting

29https://www.vagrantup.com
30https://flume.apache.org
31https://kafka.apache.org
32https://alpenglow.readthedocs.io/en/latest

36

https://www.vagrantup.com
 https://flume.apache.org
https://kafka.apache.org
https://alpenglow.readthedocs.io/en/latest

2 Recommender Systems

RMSE.

StreamingRec33

The open-source framework StreamingRec focuses on the application domain of news [JJK18].
One challenge in this specific application domain is to handle an endless stream of new and
popular items of the last couple of minutes instead of hours and weeks as in other domains.
Consequently, a recommender system has to be able to update its models continuously to
provide appropriate recommendations to its users. This leads to the other challenge of finding
recommender system algorithms that are capable of adapting quickly. As a solution, the
authors propose to use session-based and context-aware recommender system approaches.
StreamingRec is based on a łreplay-based evaluation protocolž [JJK18, p. 1], which aims to
address these challenges. The framework comes with some algorithmic implementations such
as most popular, recently popular, recently clicked, recently published. Besides, an item-based
CF approach, as well as a session-based kNN (SkNN) and its extension v-SkNN, are part of
StreamingRec [JJK18, p. 3]. Finally, two rule-based and two CB algorithms are implemented.
During the evaluation, the data sets Outbrain and Plista were used. Furthermore, a time-based
approach was applied with 70% for training and 30% for testing. As baseline algorithms,
the authors used Bayesian Personalized Ranking (BPR) and GRU4Rec. The results of the
evaluation are reported by accuracy, for instance, F1 and MRR. Additionally, diversity, as well
as the computation time, are considered in the results.

StreamRec

In [CLEM11], the authors present a CF recommender system for streaming data, called
StreamRec. More specifically, StreamRec is implemented by leveraging a stream processing
system, which enables high scalability. In their implementation, the authors use Microsoft
StreamInsight for processing data. In doing so, the recommender system only utilizes łnative
incremental streaming operatorsž [CLEM11, p. 1] in a well-defined query plan. The query
plan is able to build a model as well as generate recommendations, depending on the input
event type. Here, two stream event types are distinguished: update and recommend events.
An update event represents interactions of users with items, whereas recommend events
represent requests for new recommendations. In this context, an event is represented as a tu-
ple of the following form: (T imestamp, StreamId, UserId, ItemId,Rating). The authors
demonstrate the usability of the recommender by providing two exemplified implementations:
MSRFlix and MSRNews. MSRFlix uses the MovieLens data set and MSRNews the Digg data
set.

FAiR

In [CSS+18], the authors introduce FAiR - A Framework for Analysis in Recommender Systems.
The source code is publicly available on GitHub34. FAiR aims to support researchers in the
selection and implementation of evaluation metrics as well as in the comparison of the results.
The authors classify metrics into effectiveness-based metrics, complementary dimensions of
quality, and domain profiling [CSS+18, p. 2]. Effectiveness-based metrics are, for instance,
precision or recall [CSS+18, p. 4-5]. Novelty, serendipity, and diversity are considered as

33https://github.com/mjugo/StreamingRec
34https://github.com/dcomp-labPi/FAiR

37

https://github.com/mjugo/StreamingRec
https://github.com/dcomp-labPi/FAiR

2 Recommender Systems

complementary dimensions [CSS+18, p. 6]. On the other hand, domain profiling represents
statistical metrics such as item popularity or the average rating of users and items [CSS+18,
p. 7]. To use FAiR in a convenient way, the authors provide a graphical user interface to
import the input files, which includes a train, a test, a feature, and a recommendation file, as
well as to configure metrics.

2.7.3 Recommender System Services

Beyond that, some projects provide complete recommender system services to simplify their
deployment, execution, and maintenance.

PredictionIO35

PredictionIO is a server suited for developing ML tasks such as recommendation, classification,
and clustering. The architecture of PredictionIO comprises an event server and one or multiple
so-called engines. At this point, an event server is responsible for collecting and processing
incoming data for the engines. An engine is implemented in a DASE architecture, which
stands for Data Preparator, Algorithm, Serving, and Evaluation Metrics. This architecture
enables to create own engines by implementing the defined interfaces of the corresponding
component as needed. The default template configuration uses HBase36 as an event server,
Spark to train ML models, and Hadoop Distributed File System (HDFS) to store the data
sets and the model. Besides, Elasticsearch is used to store general metadata. To deploy a
server effortlessly, PredicitionIO provides a Docker container and supports Docker Compose
to combine the technologies. Furthermore, PredictionIO provides a template gallery with
recommender systems.

Oryx 237

Similar to PredictionIO, Oryx represents an open-source38 ML server implemented by the
lambda architecture. In this sense, Oryx 2 is especially suited for real-time ML applications, for
instance, CF, clustering, and classification [14]. Since the architecture is based on the lambda
architecture, it comprises a batch, a speed, and a serving layer. Oryx 2 stores incoming events
in a HDFS39. The incoming events are collected via the serving layer, which is implemented
by an Apache Tomcat40 web server with an exposed HTTP REST API for communication. In
the process, Apache Kafka41 is used to transfer the events to the batch and streaming layer.
At this point, the batch layer takes care of storing the events in HDFS. Additionally, the batch
layer periodically, mostly hours or even days, generates ML models by data retrieved from
HDFS. For this purpose, Oryx 2 uses Apache Spark42. Afterward, the models are provided
to the streaming layer, which incorporates the events of the last couple of seconds into the

35https://predictionio.apache.org
36https://hbase.apache.org
37http://oryx.io/
38https://github.com/OryxProject/oryx
39https://hadoop.apache.org
40http://tomcat.apache.org
41https://kafka.apache.org
42https://spark.apache.org

38

https://predictionio.apache.org
https://hbase.apache.org
http://oryx.io/
https://github.com/OryxProject/oryx
https://hadoop.apache.org
http://tomcat.apache.org
https://kafka.apache.org
https://spark.apache.org

2 Recommender Systems

model. Finally, the updated model is transferred to the serving layer by Apache Kafka and
used to respond to new queries. The performance of Oryx 2 is evaluated considering its
memory consumption (heap size), latency (milliseconds), and throughput (queries per second)
by various combinations of feature, item, and user sizes.

Froomle43

Froomle provides a service to personalize a user’s experience during his or her interaction
with a website. This includes, for instance, presenting personalized recommendations in
real-time, personalized search results as well as generating personalized email content. Fur-
thermore, personalized communication with a chatbot is possible, considering the current
user’s preferences.
The goal of Froomle is to alleviate the integration of a recommender system for their

customers by taking care of the internal implementation details, such as scalability or algorithm
selection. Their customers’ application domains range from news to online retailing, which
leads to different requirements and, therefore, customer-specific adaptations. For instance, in
the news domain, new articles appear frequently and therefore lead to other requirements as
in online retailing, where the number of products is more stable. Consequently, the underlying
system architecture of Froomle has to be implemented in a flexible and adaptable manner.
To achieve this, the architecture of Froomle is hosted on the Google Cloud Platform44.

The architecture provides multiple REST APIs covering different aspects of the system. Ac-
cording to the official documentation [20], Froomle provides APIs for configuration, search,
recommendation, batch recommendation, events, and metrics. Besides, customers can upload
meta item data via Secure File Transfer Protocol (SFTP), for instance, to keep track of the
item availability in the recommendation process. This kind of data is stored within a cloud
storage system separately from the other data and is mostly uploaded once a day, but other
intervals are also possible. As the name implies, the events API collects events generated by
users during their interaction with a customer’s website. Events are distinguished by different
types, such as tracking events, e.g., visiting a page, integration events, e.g., clicking on a
recommendation, or retail events, e.g., purchasing an item. In the process, the collected events
are processed by an asynchronous publish-subscribe message queue and forwarded to an
event and history writer. The events writer stores all incoming events in the Parquet45 file
format, whereas the history writer stores events such as page views, purchases or impressions
in a Scylla46 database. A model recomputation component leverages the events processed
by the events writer in combination with the available item metadata and stores the recom-
mendation models. Finally, the recommendation service component takes care of loading
the recommendation models into memory and generating recommendations based on the
events stored in the Scylla database. Moreover, it applies additional filter operations on the
recommendation results, for instance, to either present similar or complementary items and
check whether an item is currently available.
In Froomle a recommender system is highly configurable through multiple configuration

43https://www.froomle.ai
44https://cloud.google.com
45https://parquet.apache.org
46https://www.scylladb.com

39

https://www.froomle.ai
https://cloud.google.com
https://parquet.apache.org
https://www.scylladb.com

2 Recommender Systems

files, which compose an environment for a customer. One part of the configuration, for in-
stance, defines how to transfer incoming events to the internal data representation of Froomle.
In addition, it is possible to define which events are considered by the applied algorithms. At
this point, Froomle basically utilizes a popularity and an item-based CF approach. The param-
eters for the popularity-based approach are, for instance, the time interval popular items are
generated for and the event types to take into account. On the other hand, the configuration of
item-based CF involves the number of nearest neighbors, the minimum number of user-item
interactions, and the considered event types. For both approaches, Froomle generates the
recommendations in real-time but additionally provides a batch mode to retrieve recommen-
dations for multiple users. In this regard, the location to store the recommendation models can
be specified. Moreover, Froomle is able to apply different recommender system approaches
depending on the current user context or device. For instance, depending on whether a user’s
current context is a home page, an overview page, or a product detail page. Furthermore, the
internal representation of the provided metadata of a customer is configurable since it might
differ among different application domains.

In order to evaluate different recommender system approaches online, it is possible to apply
different recommender systems and thereby other recommendations to users depending on
their assigned group.

2.8 Industrial Recommender System Implementations

In the following, selected industrial recommender system implementations of Netflix, Mende-
ley, and Zalando are explained. The selection represents one implementation of the application
domains e-resource, e-library, and e-commerce as introduced in Section 2.2. The implemen-
tations provide insights into how recommender systems are deployed in an industrial envi-
ronment and emphasis that algorithms are just one part of a recommender system, which
compose the overall architecture. Furthermore, it shows which technologies are applied to
run the recommender systems in real-world scenarios.

2.8.1 Netflix Recommender System

Netflix was founded in 1997 and initially provided a service to rent DVDs via mail. In the
following years, Netflix moved into a video streaming provider with approximately 182
million users across the world [11]. Nowadays, Netflix additionally evolved into a movie and
series production company. Due to its business model of providing its customers with flexible
monthly subscriptions to access their content and the growing number of competitors in
the field of video streaming, Netflix aims to create high user engagement and retention. One
major cornerstone in this regard is to provide a customer with the content he or she is most
interested in. In the past, customers went into their video rental store of trust and may be
asked the owner for suggestions. Nowadays, the situation changed, customers are not willing
to spend much time searching for content on their own but rather receive interesting content
automatically. What sounds like a simple task to do, indeed, is challenging because of the
following reasons. First, the amount of possible movies and series to choose from is extended

40

2 Recommender Systems

continuously and overwhelming. And second, the number of customers using the service
is increasing from year to year. In this regard, Netflix’s success is highly dependent on an
accurate and well-engineered recommender system.

In 2013, Netflix, for the first time, granted some insights into the involved technologies of
their recommender system. The description is available in a blog entry by Xavier Amatriain
and Justin Basilico [53]. Their architecture comprises three layers denoted as offline, nearline,
and online, as illustrated in Figure 2.4. In the online layer of the recommender system, the
customers interact with the Netflix service by using smartphones, tablets, TVs, or the web
browser on his or her computer. During an interaction with the service, Netflix collects all
information about his or her behavior. This involves information about what movies and
series the customer has played, rated, and browsed.
Additionally, Netflix stores what information was presented to the customer during its

interaction, which they refer to as impressions internally. For instance, which genres have
been presented to the customer, what movies were part of each genre, and what was the
ordering of the movies within each genre. Furthermore, information such as the used device
and the time of playing are of interest to Netflix. All this information is collected via the
clients, transferred to Netflix and stored.

In its first implementation, Netflix used Apache Chukwa47 to process the massive amount
of event data generated by the customers. In the next step, the event data is distributed to be
stored in its raw format in HDFS for heavy and expensive ML algorithms running regularly
in the offline layer. To query the appropriate data to train models via ML approaches Apache
Hive48 and Apache Pig49 are used. Because of the runtime of the queries, Netflix uses a system
called Netflix.Hermes to propagate the results to ML algorithms, which use the data to build
models out of it. In addition, offline data and external data, such as box office performance
and reviews of movie critics, are processed. The trained models are used within the offline
layer to precompute intermediate recommendation results but are also available in the online
layer.

Furthermore, the user event data is stored into different database systems, such as Apache
Cassandra50, Oracle MySQL51 and EVCache52. As explained in [53], the reason for that is
related to balance the advantages and disadvantages of the different technologies.

According to their technical blog post in 2016 [26], Netflix stepwise adapted its architecture.
The reason behind that was to reduce the latency for data analytic tasks. With the advent of
new streaming technologies, such as Apache Kafka53, the overall latency could be reduced
from approximately 10 minutes to sub-minutes. In the first step, Netflix kept the initial
implementation and just extended its current infrastructure by Apache Kafka. In this way,
they were able to balance the amount of data to be processed by the stream and batch
application. In the last step, Apache Chukwa was completely replaced by Apache Kafka.

47http://chukwa.apache.org
48https://hive.apache.org
49https://pig.apache.org
50https://cassandra.apache.org
51https://www.oracle.com/de/mysql
52https://github.com/Netflix/EVCache
53https://kafka.apache.org

41

http://chukwa.apache.org
https://hive.apache.org
https://pig.apache.org
https://cassandra.apache.org
https://www.oracle.com/de/mysql
https://github.com/Netflix/EVCache
https://kafka.apache.org

2 Recommender Systems

Play, Rate, Browse

User

Offline

Nearline

Online

Online Computation

Offline Computation

Nearline
Computation

Cassandra MySQL EvCache

Hadoop

Algorithm Service

Recommendations

UI Client

Event Distribution

Model Training

Machine Learning

Machine Learning

Offline Data

Online Data
Service

Models

Netflix.Hermes

Netflix.Manhattan

User Event Queue

Machine Learning

Query Results

Figure 2.4: The Netflix architecture, based on [53].

Afterward, Apache Kafka provides the data to a router, distributing the data to the appropriate
application.
In the last years, the demand to deliver recommendations in real-time has grown. For

instance, Netflix aims to generate recommendations as soon as possible to its customers.
In this regard, a fast feedback loop has to be implemented [50]. Therefore, Netflix uses an
architecture combining Apache Kafka, Apache Spark, and Apache Cassandra to generate
personalized recommendations for the łTrending Nowž row, as explained in [50]. To achieve
this, Netflix first collects data generated in its Impression and Viewing History Service. In
the case of łTrending Nowž, Apache Kafka distributes the data to Apache Spark to compute
currently trending movies and series. The collected trends are stored in the wide column
database system Apache Cassandra in half-hour intervals. Additionally, the underlying data
model represents metadata information, such as the location, language, and so on. For the
final model training by Apache Spark, the trending information is enriched by data of the
Viewing History Service and Ratings.

42

2 Recommender Systems

2.8.2 Mendeley Suggest Architecture

Mendeley54 is a service for researchers to manage their digital library of scientific papers in a
convenient manner. In doing so, Mendeley gains knowledge about the papers a researcher is
interested in or focusing on to generate personalized recommendations. This alleviates the
burden for researchers to find relevant publications in their research field. According to [35],
the number of researchers using the service was over 8 million in 2018. In addition, over one
hundred million articles are available [BCT18, p. 612].
In [44], a recommender system implementation is divided into five core components. As

explained in the article, a recommender system comprises data collection and processing, rec-
ommender models, post-processing, online modules, and a user interface. The data collection
and processing component transfers the raw data into a valuable representation. Based on
this data, recommender models are build, which enable to generate recommendations to the
users. Post-processing checks the recommendations for their meaning and plausibility. The
online modules are responsible for providing recommendations to the users and keep track
of their usage. Finally, the recommendations are presented to the user via a graphical user
interface.

The implementation of the recommender system based on these components is elaborated
in [45] and illustrated in Figure 2.5. The user interfaces, Mendeley suggest, email, and the
newsfeed, serve as the primary sources to collect user events such as clicks or scrolls. All
generated events are stored in an event service and filtered by the ones relevant for recom-
mendations by an Apache Spark cluster. Besides, an article service is available, which takes
care of processing the metadata of articles added manually by users. Here, the data is stored
in an HBase database and processed by Map Reduce. The last service stores user profiles. All
services use an Amazon S3 database to store the processed data in the Avro55 format.

The recommendermodels are CF-based, popularity-based, trending-based, andCB-based [45].
Due to millions of available publications, a user-based approach was preferred to an item-
based one [BCT18, p. 605]. Here, the user-based CF approach utilizes Apache Mahout and
Apache Spark [45]. The popularity and trending-based approaches generate recommendations
by considering the current activities of the users. At this point, Apache Spark is used. The CB
approach is based on the data extracted of the article content and stored in Elasticsearch for
retrieval [45]. In all cases, the generated recommendations are forwarded as Spark RDD files
to the post-processing module.

The post-processing module filters the recommendations, for instance, by re-ranking them
to avoid showing the results over again. Furthermore, some automated processes are part of
the post-processing to assure that users receive a sufficient number of recommendations.
In the online module, the final recommendations are stored as JSON files in HBase and

Elasticsearch [BCT18, p. 613]. Moreover, Elasticsearch stores the metadata of the publications.
The online filter in the online module checks the recommendations based on the most recent
information and provides them to the recommendation service.

The user interface is the last module of the architecture. It fulfills two tasks. On the one hand,
it collects user events and sends them back to the recommender system such that it constantly

54https://www.mendeley.com
55https://avro.apache.org

43

https://www.mendeley.com
https://avro.apache.org

2 Recommender Systems

Recommender Post-Processing Recommender Model

Online Modules Data Collection and Processing

Validation Offline Filters Predictions Model Training

HBase Elastic
Search

Online Filters Recommendation
Service

User Profile Service

Article Service

Events Service

Profiles

Articles

Events

Clicks, Scrolls

Actor

Recommendations

UI Client

Models

Offline Filters

Spark

JSON AVRO

Figure 2.5: The Mendeley architecture, based on [45].

improves the generated recommendations. On the other hand, it provides recommendations
to the users.
In order to improve the recommendation results, the CF approach was adapted by signif-

icance weighting [BCT18, p. 606-607], time decay [BCT18, p. 607], impression discounting
[BCT18, p. 607-608] and dithering [BCT18, p. 608]. Significance weighting aims to scale the
impact of users considered as similar but only have a small number of publications in their
library. Time decay emphasizes the importance of recently added articles to the library. Im-
pression discount considers presented recommendations that were ignored by a user over a
certain amount of time as an indication of having no interest. On the other hand, dithering
randomizes the order of recommendations to convey the impression of freshness.

The architecture was evaluated online as well as offline. In the offline evaluation, accuracy
metrics such as precision, recall, F1 score, and Mean Average Precision (MAP) were applied
[BCT18, p. 617]. For online evaluation, Mendeley used A/B testing, considering the CTR as a
metric. Moreover, the CTR was evaluated by considering different aspects, for instance, user
interface adaptions and algorithmic changes.

2.8.3 Zalando Recommender System

Zalando56 belongs to one of the most famous online retailers for fashion in Europe [Fre17, p. 1],
[BCT18, p. 687]. According to statistics provided by Statista [9], Zalando had over 31 million

56http://www.zalando.de

44

http://www.zalando.de

2 Recommender Systems

active users in the fourth quarter of 2019. In this sense, a well-implemented recommender
system plays an important part role for the company to retain customer satisfaction and
engagement [Fre17]. To achieve this goal, the recommender system of Zalando addresses to
support the following three technical dimensions: adaptation to new use cases, maintenance
costs and complexity, leveraging existing and incorporating new user signals and sources
[Fre17].
Depending on the current user context, Zalando combines different recommendation

approaches with different levels of personalization. For instance, on a product details page,
items are shown similar to the currently visible one, without considering any personalization.
In this case, the similarity of two products is determined by their feature vectors based
on a scoring function [BCT18, p. 689]. Parts of the feature vector might be attributes such
as the color or price of the products. On the Zalando home page, generic personalized
recommendations are generated based on similarities between the user and item feature
vectors [BCT18, p. 691]. In this case, a user vector might contain attributes that show a
preference of the user for a specific brand. The last approach combines both approaches in
the sense that the current user context is considered to find similar items, which also match
the user preferences described by its feature vector [BCT18, p. 692].
The architecture of Zalando’s recommender system is deployed on the Amazon Web

Services (AWS) platform and basically comprises offline jobs as well as web services [BCT18,
p. 696]. Here, offline jobs are implemented by Apache Spark, whereas the data storage utilizes
S3 databases, as illustrated in Figure 2.6. The user logs are the most important data source for
the recommender system. Therefore, the user interactions are processed to generate event
histories, which are used to extract item and user features such as the number of product
clicks and purchases or a user’s activity, brand, and price preferences, respectively [BCT18,
p. 697]. In the following, a Learning to Rank approach utilizes the features on a daily basis to
generate recommendations depending on the different contexts [BCT18, p. 697].
The web services provide top-N recommendations based on an item, a user or their

combination via a REST API [BCT18, p. 698]. In order to retrieve user and item features in
real-time, the data is indexed in an Apache Solr cluster, which comprises a master and slave
instance. To separate recommendation generation and post-processing, requests are processed
by a so-called Reco-Servlet, which takes care of filtering and rendering the recommendations,
and a backdoor engine, which takes care of their retrieval. The backdoor engine relies on the
indexed data on the Apache Solr database and the Learning to Rank model. Additionally, the
backdoor engine has direct access to the article features database since they are more stable
than user features.

The applied overall evaluation process of the recommender system is based on the offline
and online parts. The offline evaluation aims to reduce the number of possible approaches
for the following online evaluation performed by A/B testing considering measures such as
CTR and CR [BCT18, p. 707]. The offline evaluation was applied to a time-based approach,
which utilizes data from the last seven days as training data to predict the purchases of the
following day. The used metric was nDCG [BCT18, p. 704].
The authors conclude their architectural description by emphasizing their importance in

the following statement: łFocus on operational excellence should never be missing from a
scientific investigation of recommender systemsž [BCT18, p. 708].

45

2 Recommender Systems

Other sources

User
Action
Logs

User
Histories

User
Features

Article
Features

Learned ModelLearning to Rank

Other sources

User Event
Aggregation

User Features
Aggregation

Article Features
Extraction

Spank-Solr-Master Spank-Solr-Slave Spank-Backdoor

Reco-Servlet

Figure 2.6: The Zalando architecture, based on [Fre17].

2.8.4 Summary

The industrial recommender system implementations of Netflix, Mendeley, and Zalando
clarify that a deployed recommender system comprises more than algorithms. Although
the application domains of the three implementations differ, the implementations share
similarities, which are summarized next. An overview is given in Table 2.2.

Signals

All implementations are based on signals generated by a services’ users. For instance, Netflix
collects play, rate and browse signals. In case of Mendeley the signals are clicks and scrolls.
In [Fre17, p. 257], Zalando mentions purchases and clicks. User applications primarily collect
these signals.

46

2 Recommender Systems

Recommendation Service

The recommendations have to be provided to the users when requested. For this purpose, these
implementations include a recommendation service, which they denote differently. Netflix
uses the term Algorithm Service, whereas Mendeley referees to it as Recommendation Service
and Zalando calls it Reco-Servlet. However, neglecting the different namings, the purpose of
the service is the same.

Post and Preprocessing

Post and preprocessing are explicitly mentioned in the Mendeley architecture but are certainly
also parts of Netflix’s and Zalando’s implementation. For Mendeley, preprocessing aims
to filter the collected signals, for instance, by their type and importance. Complementary
postprocessing considers the generated recommendations before they are provided to the
users to check their plausibility.

Model Training and Models

To provide recommendations to their users, the implementations comprise model training
processes based on the application of ML approaches. The models exploit the collected signals
and additional information, such as user profiles and item information. For instance, Mendeley
incorporates profiles, articles, and events. Zalando integrates user features and article features.

Data Storage

Data storage systems play an integral part in the implementations and serve two purposes.
The first purpose is to store the collected user signals and the second to store precomputed
recommendations for the users. In this regard, various types of data storage systems are part
of the implementation to balance their strengths and weaknesses, such as NoSQL databases
and relational databases.

Data Collection

Data collection aims to provide the collected user signals to the system. Therefore, the im-
plementations contain processing systems to distribute the user signals to the responsible
components. In the Mendeley architecture, this is part of the Data Collection and Process-
ing component, whereas in the Netflix case, the Event Distribution and User Event Queue
components take care of this task.

Online and Offline Layer

Considering the architecture of Netflix, it relies on computational expensive models build
in the Offline layer but also on the most recent information build in the Nearline and Online
layers. The overall architecture comprises a batch and streaming pipeline. In this sense, it can
be considered as a Lambda architecture. It aims to balance historical and recent information
to generate user recommendations.

47

2 Recommender Systems

Table 2.2: Comparison of the industrial recommender systems regarding their application
domains, storage, and processing systems as well as their applied recommender
system approaches and layers.

Netflix Mendeley Zalando

Application Domain E-resource service E-library E-commerce

Storage

Cassandra HBase AWS S3
MySQL Elasticsearch
EvCache
Hadoop

Processing

Netflix.Hermes Spark Spark
Netflix.Manhattan Hadoop
Pig
Hive
Kafka
Spark

File formats
JSON
AVRO
RDD files

Approaches

MF Learning to rank CF
Restricted Boltzmann CB
Machines Popularity

Trending

Layers & Components

Offline Data Collection and Data and
Nearline Processing Jobs
Online Recommender Model

Post Processing
Online Modules
User Interface

2.9 General Trends and Future Developments

Considering the accepted papers on the recommender system conference RecSys in 2020, one
exciting research trend is bias. Furthermore, a keynote given by Ricardo Baeza-Yates was
dedicated exclusively to this topic [BY20]. In [STSO20, p. 378], the authors investigate the
causal effect of purchases which are based on recommendations and products a customer
would have purchased anyway. The authors of [ZHZC20, p. 551] aim to generate unbiased
recommendations based on implicit user feedback since such feedback might not reflect a
user’s interest in all cases. The bias on so-called satisfaction surveys is investigated in [CTP+20,
p. 450]. In such surveys, a user’s explicit opinion about a certain item is asked but might

48

2 Recommender Systems

already lead to a bias by participation in the survey [CTP+20, p. 451]. The bias in synthetically
generated data is investigated in [HOdRvH20, p. 190]. For this, the authors also developed the
Simulator for OFfline leArning and evaluation (SOFA). The bias based on a user’s personality
and the influence of the personality on the recommendations is considered in [MZS20]. Here,
the focus is, particularly on music recommender systems. Another exciting aspect, examined
by the authors of [YLH+20], is the bias generated by the position of recommendations.

Besides bias, fairness and explainability are researched aspects of recommender systems. In
this context, the fairness of a recommender system is given when it provides consistent results
among various groups, for instance, male and female [AMBM20, p. 726]. In the paper, the
authors examine fairness by a recommender system’s capability to generate recommendations
based on the proportion of a user’s preferences [AMBM20, p. 727]. Explainability aims to
provide users with information about why certain items are recommended to them. For
instance, in [TG20, p. 462], the authors investigate explanations based on repeatedly consumed
items. On the other hand, in [BFCK20] explanations of novel items are investigated by
identifying different so-called personas in a user’s profile. For instance, one persona covers a
user’s interest in horror and the other in comedy.
Furthermore, deep learning approaches aim to increase the accuracy of recommender

systems. A comprehensive overview of the topic is given in [ZYST19]. The authors consider
deep learning as a possibility to learn non-trivial user-item relationships. On the other hand,
in [FMY+19], a deep learning approach utilizing social network information is introduced. For
instance, in [KH17] the importance of deep learning for recommender systems is explained
by its capability to reuse established MF approaches. Nevertheless, in [DCJ19] several deep
learning approaches have been analyzed and discussed. One result of the work is that less
complex algorithms can partially outperform these approaches.
From an industrial perspective, companies still have to tackle the challenge of providing

recommendations on historical and most recent data, as discussed in Section 2.8. In [RSP20],
a Japanese dating company, explains its hybrid approach based on batch jobs and streaming
endpoints to generate recommendations for warm-up and cold-start users. Besides, this shows
the architectural need to investigate incremental recommender systems approaches further.

2.10 Discussion

This chapter has provided an overview of common approaches in the research field of recom-
mender systems. It further has discussed the evaluation of recommender systems considering
what to measure and how to measure. In this regard, libraries and frameworks have been
presented which support the evaluation process by providing implementations of popular
and established approaches. They enable a systematic evaluation of these algorithms on given
data sets. In particular, they are useful to run hyperparameter optimization, for instance,
a grid search, to find optimal parameters for a specific algorithm and data set. However,
their main focus is based on implicit or explicit user feedback, like user ratings or customer
purchases. In this sense, they are well suited to analyze the data for one specific user signal
type. Nevertheless, in reality, users generate signals of various types. These libraries and
frameworks do not directly support the aspect of multiple signal types during the evaluation

49

2 Recommender Systems

of data sets and algorithms.
In [JMO19], the authors consider this aspect and investigate how to combine implicit

and explicit user signals in a unified approach. Their approach reflects the thesis’ idea to
incorporate various channels and user signals in the recommendation process. However, this
thesis especially investigates the combination of multiple sources of implicit and explicit
user signals. In this regard, it does not discriminate whether an algorithm is targeting rather
implicit than explicit user signals. In [WM18], the authors consider user signals as a monotonic
sequence. This consideration means they assume a specific order in the occurrence of user
signals. For instance, a user first clicks, then purchases, and finally reviews a product. Such
a sequence might be a limited view of possible sequences since it assumes a specific user
behavior. This thesis does not make such assumptions since it is also reasonable for a customer
to review a product without having bought it. At this point, the monotonic chain represents
one data aggregation type. In contrast, the thesis’ idea is to propose a generalized definition
of data aggregation types adapted to specific application domains and shared to get further
insights.
The FAiR framework also includes this thesis’ idea to evaluate a recommender system

with different metrics and support the results’ comparison. However, a user of FAiR has to
run the algorithms by himself or herself. Besides FAiR, RiVal also focuses on the evaluation
process and not the algorithms. Idomaar reflects the idea of providing an infrastructure for
a recommender system and can be considered as a complement to the proposed concept.
However, its implementation is technology agnostic and not easy to set up. Although these
frameworks are beneficial for evaluating recommender systems, they do not focus on multiple
user signal types.
Considering the frameworks sRec, StreamingRec, StreamRec, and AlpenGlow, they focus

on evaluating streaming recommender systems. For instance, StreamingRec considers the ap-
plication domain of news articles. StreamRec aims to generate fast real-time recommendations
by optimizing item-based CF. AlpenGlow also evaluates online recommender systems. SRec
targets to provide real-time recommendations but focus on explicit user signals. However,
in real-world implementations, a recommender system has to handle user signals of various
types.

50

3 Fundamentals of Benchmarking

The objective of this chapter is to provide an overview of the topic of benchmarking and Big
Data benchmarking in particular. Initially, a motivation to investigate benchmarking in the
context of recommender systems is provided. Then, the history of benchmarking in general
and in the specific area of Information Technology (IT) is given. This leads to a consideration
of the different benchmark types, such as micro, component, system, application, and end-to-
end. In the following, the concepts and ideas of consortia such as the Transaction Processing
Performance Council (TPC), Standard Performance Evaluation Corporation (SPEC), Linked
Data Benchmark Council (LDBC), and BenchCouncil to standardize the benchmarking process
for transparency are introduced. After that, features and requirements which characterize a
well-defined benchmark, e.g., relevance/acceptance, portability, scalability/extensibility/adapt-
ability, simplicity/usability, repeatability/verifiability/reproducibility, and fairness, are defined.
Accordingly, standard terms and definitions, such as System under Test (SUT), data models,
workloads, queries, and metrics, are explained to assure a consistent understanding of the
topic. Finally, current state-of-the-art Big Data benchmarks are presented and investigated
considering their application domains, use cases, workloads, data, and metrics.

3.1 Motivation

As discussed in Chapter 2, recommender systems play an important role in academia and
industry alike. In the context of academic research, the focus is mostly on evaluating and
comparing different algorithmic approaches in view of their accuracy, whereas in industry,
the integration of these approaches into a system environment is another important aspect
to consider. This difference occurs because, from an industrial perspective, a recommender
system is characterized by more than just plain algorithms. Instead, it is a composition
of components and modern technologies, as shown in Section 2.8. This composition of
components requires a complex technical selection process, which can be supported by a
benchmark. For instance, the recommender systems of Netflix, Mendeley, or Zalando have
to collect, store, and process many user interactions in a fast manner. In this regard, the
involved technologies have to deal with large data volumes and a still increasing velocity of
data generated by users. Furthermore, with the integration and incorporation of various data
sources, technologies have to be able to exploit as much information as possible to increase,
for instance, recommender system results. Consequently, the applied technologies have to
meet high requirements for data storage and data processing.

To support and facilitate the technology selection process, the use of benchmarks represents
an effective tool to verify whether the considered technologies meet the defined requirements.
Besides accuracy, this includes non-functional requirements such as scalability or availability,

51

3 Fundamentals of Benchmarking

measured by throughput or response time, which are also crucial for the overall performance
of a recommender system. Moreover, these requirements highly influence the acceptance of
a recommender system by the end users since they assure a fast and smooth user-system
interaction. Consequently, this motivates to introduce and explain benchmarks developed
with the purpose of evaluating these requirements by low-level metrics in the following.

3.2 History of Benchmarking

3.2.1 Benchmarking Origin

The term benchmark consists of the nouns łbenchž and łmarkž. According to [Tuc00, p. 71],
a mark on a bench served craftsmen during the process of measuring. Benchmarking has
its origin in the topography domain to compare heights and directions based on reference
points, the benchmarks. In this sense, [Tuc00, p. 71] considers benchmarking as the process
of measuring, defining criteria, determining reference values, and comparing the results.
According to [Tuc00, p. 71], [Sta09, p. 8] a starting point of modern benchmarking were

the visits of Japanese managers to get insights about the production processes of American
companies after World War II.

In the seventies, the American company Xerox was faced with strong competition. In order
to stay competitive, Xerox decided to visit companies superior in their field to improve their
processes, for instance, the retail company L.L. Bean to get insights about its distribution
process [Sta09, p. 9]. Additionally, Xerox analyzed their competitors’ products by reverse
engineering to understand how they were constructed [Tuc00, p. 72] and the corresponding
production process.
Therefore, in the organizational context, benchmarking is considered as part of an im-

provement culture as well as a driver and a short-cut for improvement. Furthermore, to solve
problems, to build up networks, to justify proposals, and to identify weak points of competi-
tors [Sta09, p. 12-14]. To spot out weak points, to scout out opportunities for improvement,
and to plan actions to achieve them are mentioned in [Rol95, p. 211]. In [Sta09, p. 19-20],
seven methods are introduced, namely, public domain, one-to-one, review, database, trial,
survey, and business excellence models benchmarking.

General Definition

Therefore, in general, benchmarking defines a continuous and systematic process of com-
paring, for instance, products and services as well as processes and methods to identify
weaknesses and initiate actions to eliminate them [52]. From a business and process per-
spective, Camp et al. ’s definition is widely accepted and used. It says: łBenchmarking is
the continuous process of measuring products, services, and practices against the toughest
competitors or those companies recognized as industry leadersž [Cam89, p. 89]. According to
Rolstadås [Rol95, p. 5], benchmarking can be classified into three main types: competitive, in-
ternal, and functional. As the name implies, competitive aims to compare to direct competitors,
whereas internal focuses on internal aspects and functional considers a generic comparison
across different industries. In this sense, benchmarking in Information Technology can be
classified as competitive and internal.

52

3 Fundamentals of Benchmarking

3.2.2 Benchmarking Information Technologies

Nowadays, benchmarking is applied in a wide range of application domains. Besides manage-
ment, benchmarking is widely used in the computer industry and the information technology
domain. The reason for that is based on the fact that computers are basically invented to accel-
erate and improve task execution by making them easier and faster [Wei90, p. 65]. According
to [LC85], the first necessity of benchmarking arose in the sixties due to a diversity of systems
and vendors. In this context, the benchmarks serve to compare the capabilities of computer
systems primarily considered as ła routine used to determine the speed performance of a
computer systemž [HJ65, p. 27]. A first approach were the Auerbach Corporation’s Standard
EDP Reports, which considered, for instance, the data structure, the CPU speed, the storage
size as well as the price of the systems [LC85, p. 8]. EDP stands for Electronic Data Processing.
In the following, benchmarks evolved to consider an applied point of view, in a sense that the
routines target particular applications [LC85, p. 8-9].
Besides, the first idea of synthetic programs to mimic real application was introduced by

Buchholz [Buc69]. Such a program aims to emulate common data processing tasks, like the
file maintenance program implemented by Buchholz [LC85, p. 10]. As stated by [Wei90, p. 66]:
łThe Wheatstone benchmark was the first program in the literature explicitly designed for
benchmarkingž and published in 1976. Nevertheless, it must be noted that the benchmark
was not intended to execute useful operations [WCZ+16, p. 66]. Another important program
in this regard is Linpack, which was initially rather published to perform linear algebra
subroutines than to serve as a benchmark [Wei90, p. 67]. Other notable benchmarks published
in the eighties are the EDN benchmarks (1981), Dhrystone (1984), Livermore Fortran Kernels
(1986), Rhealstone (1989) and the ones developed by the Standard Performance Evaluation
Corporation (SPEC) in 1989 [Wei90, p. 71-72]. Overall, these benchmarks were basically
targeting computer system performance.

3.2.3 Benchmarking Database and Big Data Systems

In the domain of DBMSs, the necessity for benchmarks was driven by the demand for high-
performance transaction systems, for instance, Automated Teller Machine (ATM) and auto-
matic operations in gasoline stations as stated by Omir Serlin in [Ser91, p. 1]. In 1983, the
Wisconsin Benchmark [BDT83] was published to evaluate the performance of databases
specifically. Later in 1985, the TP1 was developed by IBM [NLW+09, p. 2] and DebitCredit by
Jim Gray [ABB+85]. However, these benchmarks did not provide any standards for applying
them, which led to arguable results. For instance, vendors tried to optimize the results to
promote their products better. This procedure was denoted as łbenchmarketingž [NLW+09,
p. 2]. Nevertheless, according to [VM09], these benchmarks represent starting points to found
non-profit consortia to specify standardized benchmarks such as the Transaction Processing
Performance Council (TPC). Based on the TP1 and DebitCredit benchmarks, the first bench-
mark published by the TPC was the TPC-A in 1989. Consequently, more benchmarks have
been developed and standardized by the TPC.

With the advent of the Big Data era around 2005, new challenges arose from the possibility
to collect and analyze data for further decision making. The availability of the data is based

53

3 Fundamentals of Benchmarking

on the spread of the Web 2.0, especially social media, which enables users to participate
actively on the Internet instead of only consuming information. This is further increased by
the popularity and usage of mobile devices, which enable to access content from anywhere at
any point in time. Hence, Big Data is basically characterized by the 3Vs: volume, velocity, and
variety [Lan01]. Volume defines a large amount of data, velocity defines the speed at which
the data appears and gets processed, and variety considers the different data representations.
To tackle the characteristics of Big Data, new technologies have been developed. For instance,
databases evolve from monolithic to distributed systems to handle large amounts of data as
well as to increase availability. An example of this are NoSQL databases. They relax classical
requirements on databases, which guarantee Atomicity, Consistency, Isolation, and Durability
(ACID) of transactions by the concept of BASE. BASE stands for Basically Available, Soft
state, and Eventual consistency and enables databases to distribute their data among different
servers [Cat10, p. 1]. Besides, they further enable to manage various kinds of data. To deal
with the high velocity of data in real-time, sophisticated processing technologies emerged.
Considering this, benchmarking Big Data systems rather means to evaluate a pipeline of
connected components than a single system.

3.3 Benchmarking Types and Consortia

3.3.1 Types

In Big Data benchmarking literature, various types of benchmarks are mentioned, applied,
and developed. Therefore, this section introduces and explains the different benchmarking
types in this context. In the review of Han et al. [HJZ18], benchmarks are classified into micro
benchmarks, end-to-end benchmarks, and benchmark suites. The benchmark compendium of
Ivanov et al. mentions a similar classification [IRP+15]. In [Bog14, p. 49-50], benchmarks are
additionally classified into hardware and software benchmarks. Hardware benchmarks are
further divided into component, system, andmicro benchmarks, whereas software benchmarks
are divided into application and system software as well as micro benchmarks. In [BWT17,
p. 63-64] benchmarks are considered as application-driven or micro. In the following, the
different benchmark types are listed and explained.

Micro Benchmarking

Amicro benchmark aims to evaluate a small and specific functionality of hardware or software.
In the case of software, this functionality might be a specific method or the implementation
of an algorithm [Bog14, p. 49-50]. In [IBGZ18, p. 2], for instance, the authors mention dif-
ferent streaming functionalities as part of a micro benchmark. In the case of hardware, the
performance of a particular CPU unit could be part of the benchmark.

Component Benchmarking

A component benchmark mostly serves to assess the performance of hardware components
such as CPU, storage, or network devices [Bog14, p. 49-50]. Nevertheless, software could also
be considered as a component such that the differentiation into component benchmark and
application software benchmark made in [Bog14] is neglected here. Examples of software

54

3 Fundamentals of Benchmarking

components are business software or mail clients [Bog14].

System Benchmarking

Complementary to a component benchmark, a system benchmark evaluates a system as a
whole, considering it as a black box [Bog14, p. 49]. In this sense, such a benchmark evaluates a
specific and dedicated functionally of a system, for instance, providing a database or a DBMS.

Application Benchmarking

The goal of an application benchmark is to evaluate a system considering real-world scenarios
or realistic use cases [HJZ18, p. 582], [IS18, p. 1]. For Poess et al., an application benchmark
also has to simulate a real use case [PRJ17, p. 574].

End-to-end Benchmarking

End-to-end benchmarks aim to evaluate the performance among various components build
on each other, for instance, considering hardware components as well as operating systems
an application is running on. In this case, the performance from one end, the application, to
the other end, the hardware, is evaluated. Another example represents the evaluation of a
specific software technology stack.

Benchmarking Suite

In contrast to end-to-end benchmarks, a benchmark suite is a composition of different bench-
marks [HJZ18, p. 582]. More precisely, a benchmark suite covers various application domains
or scenarios a benchmark user can choose from.

3.3.2 Consortia

Regarding benchmarking of information systems and technologies, four established and
widely accepted consortia exist that pursue the goal of providing standardized guidelines
and specifications for an objective comparison among vendors. Therefore, in the following,
the four consortia, namely, the Standard Performance Evaluation Corporation (SPEC), the
Transaction Processing Performance Council (TPC), the Linked Data Benchmark Council
(LDBC), and the International Open Benchmark Council (BenchCouncil) are introduced.

Standard Performance Evaluation Corporation (SPEC)

The SPEC was founded in 1988 by vendors to provide a trustful platform for realistic bench-
marks and prevent benchmarketing, which was very common at that time. According to [17],
the SPEC is ła non-profit corporation formed to establish, maintain and endorse standardized
benchmarks and tools to evaluate performance and energy efficiency for the newest generation
of computing systemsž. The SPEC provides a wide range of benchmark specifications covering
cloud platforms, CPUs, graphics and workstation performance, handhelds, high-performance
computing, java client/server applications, mail servers, storage, power, and virtualization [17].
In order to guarantee high-quality benchmarks, the SPEC is organized into subcommittees
focusing on the different benchmark specifications. To facilitate the configuration and setup
process of their benchmarks, the SPEC provides platform-independent tools.

55

3 Fundamentals of Benchmarking

Transaction Processing Performance Council (TPC)

Founded in 1988, the TPC is ła non-profit corporation focused on developing data-centric
benchmark standards and disseminating objective, verifiable performance data to industryž
[21]. In contrast to the SPEC, the TPC has a clear focus on benchmarking transaction pro-
cessing and DBMSs. As a consequence, the benchmarks provided by the TPC are covering
data integration, decision support solutions, online transaction processing, and virtualization.
In this regard, the benchmarks represent real-world applications by simulating a wholesale
supplier, an online retailer, or a brokerage company. To achieve high credibility, all provided
test sponsor results are reviewed by an independent auditor before publication.

Linked Data Benchmark Council (LDBC)

The LDBC aims to specify łbenchmarks, benchmarking procedures and verifying/publishing
results for software systems designed to manage graph and RDF dataž [22]. In contrast to
the TPC and the SPEC, the LDBC targets to benchmark RDF and graph database systems,
which get active attention in recent years. In particular, the benchmarks support transaction,
analytic, and graph analytical queries. Similar to the TPC, the LDBC results are audited before
they are published publicly.

International Open Benchmark Council - BenchCouncil

BenchCouncil łis a non-profit research institute which aims to promote the standardization,
benchmarking, evaluation, incubation, and promotion of open-source chip, AI, and Big Data
techniquesž [1]. BenchCouncil provides benchmarks covering Big Data and Artificial Intel-
ligence (AI) as well as a Big Data generator. The development of a benchmark comprises
a six-step process: (1) propose a benchmark, (2) found a working group, (3) publish bench-
mark specifications, (4) publish implementation specifications, (5) organize challenges and (6)
present results [1]. Moreover, the council organizes workshops and conferences to further
support development in the topic of benchmarking.

3.4 Requirements on Benchmarks

To develop a well-defined and accepted benchmark, some requirements have to be met. Ac-
cording to Jim Gray [Gra93], a benchmark has to be relevant, portable, scalable, and simple.
Furthermore, Huppler [Hup09] characterizes a good benchmark by its relevance, repeata-
bility, fairness, verifiability, and economy. For the TPC a benchmark needs to be relevant,
understandable, portable, and scalable. Besides, good metrics, coverage, and acceptance are
preferable [46]. The SPEC specifies four design objectives: portability, repeatability and relia-
bility, consistency and fairness, and application-oriented [34, p. 15]. In [HLX14] additional
requirements considering Big Data such as adapting to different data formats, portability to
representative software stacks, fair measurement, extensibility, and usability are mentioned.
In the following, the collected requirements are listed and described.

Relevance and Acceptance

A benchmark has to be relevant in the sense that its results lead to new insights for academia
or industry [Hup09]. For Huppler, relevance is given when the benchmark targets software

56

3 Fundamentals of Benchmarking

features and hardware systems used in the real world [Hup09]. In this sense, relevance covers
one design goal of SPEC, that a benchmark has to be application-oriented. Furthermore,
relevance includes broad adaptability and longevity [Hup09]. Jim Gray also considers as
relevant to measure the peak performance of a system [Gra93]. In this regard, meaningful
and understandable metrics are important [Hup09]. Since only a relevant benchmark will
gain acceptance by vendors and researchers, both requirements are highly interconnected.

Portability

Gray considers portability to implement and deploy the benchmark for and on various systems
[Gra93]. According to [Hup09, p. 26], due to current standards in programming and query
languages, portability is considered non-critical. However, for benchmarking Big Data systems,
which might be built on multiple technologies, portability has to be considered [HLX14, p. 7].
In this sense, it should be preferred to implement a benchmark in a high-level language such
that a wide audience is able to apply it easily.

Scalability, Extensibility and Adaptability

In [Gra93], scalability is defined as the ability of a benchmark to be applied to small and
large systems as well as parallel and distributed ones. For instance, in the context of Big Data,
scalability refers to the data generation process of a benchmark to increase the volume or
velocity of the data considering the tested software or system [HLX14, p. 11]. In this sense,
scalability additionally enables a benchmark to support future developments. Furthermore,
modern Big Data benchmarks should be extensible and adaptable to support, for instance,
new workloads or data sets [HLX14, p. 8].

Simplicity and Usability

Simplicity involves the deployment, configuration, and execution of a benchmark as well the
representation and interpretation of its results [HLX14, p. 8]. In this sense, the benchmark
must be simple in its usage and providing understandable results [Gra93]. At this point, the
usability and user experience could be improved by a convenient user interface [HLX14, p. 8].
In addition, since simplicity reduces the potential effort to apply and run the benchmark, it is
more likely to be economical in its application regarding, for instance, cost-efficiency and
execution time [Hup09]. However, a benchmark should not oversimplify the tested scenario,
referred to as coverage by the TPC. In doing so, a benchmark gains more acceptance in the
industry and academia alike.

Repeatability, Verifiability and Reproducibility

According to [Hup09], repeatability ensures that the benchmark provides the same results
when running multiple times under the same conditions. In this sense, repeatability increases
the reliability and confidence in the results of the benchmark [Hup09]. Furthermore, the
repeatability of a benchmark is preferable since it additionally enables audits or third parties
to reproduce and verify the provided results. Accordingly, the benchmark configuration has
to be documented in a traceable manner to rerun the benchmark [HLX14, p. 7]. This involves
a precise specification of the involved components.

57

3 Fundamentals of Benchmarking

Fairness

Huppler considers fairness as the possibility for all compared systems to participate equally in
the benchmark [Hup09]. Consequently, fairness assures that no participant of the benchmark
benefits from specific workloads. Han et al. [HLX14] mention configuring the competing
systems, especially Big Data systems, in a fair and appropriate way, for instance, by adapting
the default parameters such that the systems become comparable.

3.5 State-of-the-Art Benchmarks

This section provides an overview of current state-of-the-art benchmarks and Big Data
benchmarks in particular selected based on the following considerations. First, famous and
widely used benchmarks published by the four benchmarking consortia (see Section 3.3.2)
are explained. Second, micro and application benchmarks covering storage and processing
are analyzed. Each benchmark is presented with a focus on the following aspects: data model,
data, workloads, metrics, technologies, design, and code. Data models are considered when
they are explicitly described. Depending on the benchmark, they are based on specific data
sets, generate synthetic data on their own, or use a combination of both. Therefore, the aspect
data comprises these three possibilities.

3.5.1 TPC-DS

The TPC-DS benchmark aims to evaluate the performance of decision support systems [31]. In
contrast to its first version, the current one targets to analyze the performance of SQL-based
Big Data solutions [PRJ17]. Therefore, some adaptions to the first version were made to
cover these new requirements. One of the major differences between the first and second
version of the benchmark refers to the new requirements which arose with the advent of Big
Data moving from ACID-based systems to more relaxed BASE-based systems [PRJ17, p. 574].
Additionally, Big Data systems are loosely coupled compared to traditional database systems,
where the database system takes ownership of the data [PRJ17, p. 574].

Data Model The underlying data model describes a sales organization distributing its
goods in stores, by catalogs, and over the Internet [29, p. 22]. Overall, the model comprises 17
dimensions and seven fact tables, such as store sales, catalog sales, and web sales, as well as
their corresponding returns and inventory [29, p. 22].

Data The raw data for the benchmark is generated in the form of flat files by the provided
dsdgen tool. A scale factor specifies the raw data size in GB, for instance, 100, 300, 1,000,
3,000, 10,000, 30,000 or 100,000 [PRJ17, p. 576]. Afterward, the generated files have to be
loaded into the data processing system by using tools or APIs [29, p. 71].

Workloads The benchmark comprises 99 queries classified into reporting, ad hoc, iterative
Online Analytical Processing (OLAP), and data mining [29, p. 19]. Typical queries are, for
instance, calculate the average sales quantity of an item or select the products generating the

58

3 Fundamentals of Benchmarking

highest revenue for a given year or month. To generate the queries, the dsqgen tool is applied.
The execution process of the benchmark consists of the following tests: a load test, a single
user test, two multi-user tests, and two data integration tests, whereas TL, TSU , TMU and TDI

denote the execution times of the corresponding test. The repetition of the data integration
test tends to evaluate the update process of the fact tables, e.g., adding or deleting sales data
[PRJ17, p. 576].

Metrics The overall performance metric for the benchmark is determined as the geometric
mean of the four executed tests as [PRJ17, p. 576]:

QphDS@SF =
⌊︂ SF · (Sq · 99)

4
√︁

(TSU · Sq) + (TMU1 + TMU2) + (TDI1 + TDI2) + (0.01 · Sq · TL)

⌋︂

where SF specifies the scale factor of the generated data and Sq the number of concurrent
users involved in the benchmark process. Additionally, a price-performance metric is defined
as the ratio of the system’s costs to its performance.

Technologies In [PRJ17, p. 576-584], the authors applied the benchmark on four different
systems without revealing the underlying technologies. However, the four tests cover two
HDFS-based storage engines as well as one representative of a traditional Relational Database
Management System (RDBMS) and one representative of a columnar in-memory storage
system. In this regard, results of the execution of the single [PRJ17, p. 578-579] and multi-user
tests [PRJ17, p. 580] as well as resource tests [PRJ17, p. 581-584] considering CPU, IO, memory
and network utilization are provided.

Design As illustrated in Figure 3.1a, the benchmark driver, short driver, takes care of the
query execution and database access during the benchmark execution process. Here, two
configurations are possible: a host-based and a client-server-based one. In the host-based case,
the driver is located on the same machine as the SUT. In the client-server-based case, both
run on separate systems. To assure the communication between the driver and the SUT, it
might be required to develop an implementation-specific layer as depicted in Figure 3.1b.

Code All files to execute the benchmark are available on the TPC download page [30].

3.5.2 BigBench

BigBench is an end-to-end benchmark that aims to standardize the assessment of Big Data
analytic tasks. The first specification of the benchmark was introduced in [RGH+12] and
further elaborated in [RFD+14]. In the following, BigBench became a standardized TPC
benchmark, namely, TPCx-BB, as discussed in [CGL+16].

Data Model BigBench’s underlying data model represents a retail product supplier in the
e-commerce domain. The data model consists of entities that are common for the e-commerce

59

3 Fundamentals of Benchmarking

Network Network
Database
Access

Query
ExecutionDriver

Network
Query

Execution
&

Database
Access

Host Systems

Driver

DriverDriver

Client(s) Server(s)

(a) Two different configurations: a łhost-

basedž and a łclient/serverž configuration,

based on [29].

System under Test

Driver

Implementation Specific Layer

Commercially Available Products

Query Text Output Data

(b) Implementation of a specific driver layer,

based on [29].

Figure 3.1: Different benchmark configurations (left) and a driver specific layer implementa-
tion (right).

domain, as illustrated in Figure 3.2. This includes customers and items as well as sales and
review information of items. Additionally, the online interactions of customers are available
as weblogs. Besides, the different market prices of competitors for the provided items are part
of the model. Furthermore, the data model entities represent the various data types in the Big
Data context, e.g., structured, unstructured, and semi-structured. For instance, reviews are
mostly free-text and, therefore, unstructured data. Weblogs, on the other hand, are considered
as semi-structured due to their specific format but missing data type information. Customer,
item, and sales information are represented in a structured format.

Data In addition, the benchmark includes a scalable data generator known as Parallel
Data Generator Framework (PDGF). In its initial version [RGH+12], BigBench used dsgen
and PDGF for data generation. Additionally, a review generator was developed to generate
unstructured data, e.g., reviews, using the Markov Chain Algorithm [RGH+12, p. 3]. Since
the publication of [RFD+14, p. 2], the PDGF can generate the complete data model. Besides,
the data generator is able to produce data with different scale factors, e.g., 100, 300, 1,000,
3,000, 10,000, 30,000, 100,000 GB [RFD+14, p. 5].

Workloads The analytical tasks of the benchmark are defined by 30 queries which cover
marketing, merchandising and operations aspects as well as considerations of supply chain
and new business models [RGH+12, p. 4]. As a result, the queries cover the different data
structures [Raa19, p. 4]. Additionally, the queries cover different algorithms such as statistical,
path, and text analysis as well as classification, clustering, and reporting [RGH+12, p. 4]. To
provide a technology-agnostic benchmark, the queries are described in natural language such
as łfind the most frequently sold productsž or łfind the most viewed products before an online

60

3 Fundamentals of Benchmarking

Marketprice Item

Web Page

Sales

Customer

Web Log

Reviews

Structured Data

Semi-Structured Data

Unstructured Data

Adapted TPC-DS

BigBench Specific

Figure 3.2: TPCx-BB data model, based on [32, p. 19].

purchasež [32, p. 92]. Since BigBench targets batch processing in the first place, in [IBGZ18]
the authors propose how to extend it to support stream processing as well.

Metrics The considered metrics are a performance metric and a price-performance metric,
defined as queries per minute for a specific scale factor and related to the costs of the SUT,
respectively. The overall performance metric for the benchmark is determined as [32, p. 37-38]:

BBQpm@SF =
SF · 60 ·M

TLD +
√
TPT · TTT

where TLD is the load factor, TPT represents the geometric mean weighted by the number
of queries and TTT is the average of all throughput test runs considering the number of
streams [32, p. 37-38]. Besides,M denotes the number of queries and SF the scale factor. The
price-performance metric is defined as the ratio of the system’s costs to its performance.

Technologies The first implementation of the benchmark was applied to the Teradata
Aster DBMS [RGH+12, p. 2]. In [CRS+13], the authors apply the benchmark on the Hadoop
technology stack using Apache Hadoop, Apache Hive, Apache Mahout, and the Natural
Language Processing Toolkit (NLTK) for declarative and procedural queries. Furthermore, in
[CGL+16, p. 34], the benchmark was applied to Hive on MapReduce, Hive on Spark, Hive on
Tez, and SparkSQL. Another implementation, based on Apache Flink, is provided in [BGSZ17].

61

3 Fundamentals of Benchmarking

Benchmark
Driver

Data Generator Big Data
Framework 1

Big Data
Framework 2

Big Data
Framework 3

Workload Workload Workload

Config Files Config Files Config Files

Result Set Result Set Result Set

Figure 3.3: An exemplified illustration of the benchmark kit with three Big Data frameworks,
based on [CGL+16, p. 27].

Design The overall design of the provided benchmark kit is depicted in Figure 3.3. Here, a
framework comprises the Big Data analytics software and its APIs as well as the distributed
computing engines and libraries required for the benchmark execution such as MapReduce,
Apache Spark, or Apache Flink [32, p. 13], [CGL+16, p. 28]. According to [32, p. 21], the
kit contains documentation, configuration files for the SUT, a script for the benchmark
execution, the benchmark driver which takes care of the execution, time measurement, and
result computation, and scripts to verify and check the results. To reduce the high complexity
of running and configuring the benchmark, it is provided as a self-contained kit, which, per
default, includes configurations for the following data analytics distributions: Cloudera CDP,
Cloudera CDH, and Hortonworks HDP [CGL+16].

Code The benchmark kit containing all relevant components to execute the benchmark re-
quires a registration for its download and is published under the TPC-Tools License Agreement
[19].

3.5.3 Graphalytics

Graphalytics is a BigData benchmark developed targeting the performance of graph-processing
platforms [CHI+15a, p. 1]. The first vision of the benchmark and its idea are explained by
Capota et al. in [CHI+15a]. Since the publication of [IHN+16], the benchmark is an offi-
cial benchmark of the LDBC. Besides the LDBC, the SPEC supported its development and
implementation [CHI+15a, p. 1].

Data To generate large graphs, the benchmark utilizes the Graph500 data generator [38]
and the LDBC Social Network Benchmark (SNB) data generator [27], where the latter uses
t-shirt sizes as scale factors to assure an easy understanding [IHN+16, p. 1317].

62

3 Fundamentals of Benchmarking

Workloads Initially, the benchmark prototype consisted of five common scenarios applied
to graphs [CHI+15a, p. 4]. In [IHN+16], the authors implemented six scenarios based on a
conducted survey. As a result, Breadth-first Search (BFS) and PageRank, as well as identifying
weakly connected components and detecting communities, are tested. Additionally, local
clustering coefficient and single-source shortest paths are part of the benchmark [IHN+16,
p. 1317]. Furthermore, the authors introduce and consider so-called łchoke pointsž, which aim
to reveal technological challenges in the implementation by getting knowledge of external
experts [CHI+15a, p. 2]. For instance, excessive network utilization, large graph memory
footprint, poor access locality, and skewed execution intensity [CHI+15a, p. 2].

Metrics The reported metrics are Edges per Second (EPS) as well as Edges and Vertices per
Second (EVPS), which are defined as the ratio of the number of edges to the processing time
and the ratio of edges and vertices to processing time, respectively [IHN+16, p. 1320]. In this
case, processing time represents the time to execute an algorithm.

Technologies Initially, the benchmark provided implementations for the following plat-
forms: Hadoop MapReduce, Giraph, GraphX, and Neo4j [CHI+15a, p. 4]. In [IHN+16], the
benchmark was applied to the three community-driven platforms Giraph, GraphX, and Power-
Graph, as well as to the three industry-driven platforms GraphMat, OpenG, and PGX [IHN+16,
p. 1322].

Public
Driver

Repositories

Workload Generator

Testing System

Benchmark
Configuration

Reference DriversBenchmark
Description

Core Harness
Services

Driver

Monitoring
&

Logging

System under Test

Graph Processing
Platform

Own Infrastructure Iaas

Results
Validation

Results Analysis
&

Modeling

Public
Results

Driver
Code

Public
Workload
Archives

Workload
Data

Results
Data

DataGen Graph500

Graphalytics
Team

System Customer
DevOps

Figure 3.4: Graphalytics architecture and execution process, based on [IHN+16].

Design The benchmark comprises four steps: (1) graph selection, (2) platform configuration,
(3) workload selection, and (4) benchmark execution [CHI+15a, p. 4]. Its implementation
includes a workload generator, a benchmark configuration, a harness service, a driver, a SUT,

63

3 Fundamentals of Benchmarking

a monitoring and logging component, as well as an analysis component [IHN+16, p. 1321].
The interplay among the components is illustrated in Figure 3.4.

Code The benchmark is publicly available as an open-source project1. In doing so, the
authors also aim to achieve high code quality through, e.g., peer reviews, code analysis, and
bug tracking [CHI+15a, p. 6]. To assure sustainability of the benchmark, it is developed with
the purpose of integrating new data sets, algorithms, and platforms easily [CHI+15a, p. 3].

3.5.4 BigDataBench

BigDataBench [WZL+14] is a benchmark suite tailored for internet services covering the
application scenarios of search engines, social networks, and e-commerce. Additionally, a sci-
entific version of BigDataBench, called BigDataBench-S [TDD+17], is available, which covers
common scenarios in physics, astronomy, and genomics. Another version of BigDataBench is
BigDataBench-MT [HZS+15], where MT stands for multi-tenancy. This benchmark aims to
assess the performance of a Big Data system, a data center, in particular, to handle a mix of
scenarios. In this sense, the overall aim is to consider all aspects Big Data applications have
to face nowadays, such as volume, velocity, variety, and veracity.

Data BigDataBench focuses on diverse data sources such as Wikipedia Entries, Amazon
Movie Reviews, Google Web Graph, Facebook Social Network, e-commerce transaction data,
and ProfSearch Person Resumes, which form representatives of text, graph, and table data. In
addition, the data generator Big Data Generator Suite (BDGS) was developed in the context of
the benchmark, which can generate synthetic data for various application domains [WZL+14,
p. 6].
In BigDataBench-S, the used data sets are the ATLAS data set from high-energy physics

as well as astronomical and genomic simulation data sets generated by SS-DB and GenBase
[TDD+17, p. 1071]. Otherwise, the BigDataBench-MT is based on event logs from Sogou and
cluster traces from Google [HZS+15, p. 5].

Workloads Version 5.0 of the BigDataBenchmark benchmark suite comprises micro, compo-
nent, and application benchmarks. It covers search engines, social networks, and e-commerce
from the internet services application domain [3]. Besides, the benchmark additionally sup-
ports recognition and medical sciences [3]. Depending on the application scenario and type,
the workloads of the benchmark vary. The workload types are classified into AI, online
services, offline and graph analytics, data warehouse, NoSQL, and streaming. Furthermore,
micro benchmarks for basic datastore operations and relational queries are part of the suite.
Overall, the suite contains 27 benchmarks and 13 data sources.

In BigDataBench-S, the workloads are classified into data manipulation queries and complex
analysis for astronomy and genomics, as well as classification and regression for physics. Data
manipulation queries contain selection, aggregation, and join operations, whereas complex
analysis depends on the application domain. In astronomy, for instance, the complex analysis

1https://github.com/ldbc/ldbc_graphalytics

64

https://github.com/ldbc/ldbc_graphalytics

3 Fundamentals of Benchmarking

includes the intersection of images and sigma clipping. In genomics, the complex analysis
comprises QR decomposition, SVD, and Covariance. On the other hand, BigDataBench-MT
focuses on a mix of workloads considering long-running services and short-term data analysis
jobs to simulate multi-tenancy support.

Metrics BigDataBench distinguishes between two types ofmetrics, namely, user-perceivable
and architectural metrics [WZL+14, p. 7]. User-perceivable metrics, on the one hand, consider
the requests, operations, and data processed per second. On the other hand, Million Instruc-
tions per Second (MIPS) and Misses per Kilo Instructions (MPKI) are used as architectural
metrics. The performance of the data analysis jobs is evaluated by their execution time, CPU
usage, total memory size, Cycles per Instruction (CPI), and Memory Accesses per Instruction
(MAI). Furthermore, the accuracy of the model predictions is measured [3].

Technologies The suite provides various implementations, for instance, Spark and Flink
for offline and graph analytics or TensorFlow for AI [3]. Additionally, NoSQL systems are
covered by implementations for MongoDB, and Hive [3]. For demonstration purposes, the
authors use the Hadoop framework applying wordcount, naive Bayes, sorting, and page index
for data analysis workloads.

In [TDD+17], an implementation of BigDataBench-S for the genomics domain comparing
Apache Spark, HiveOnMR, and HiveOnTez in combination with various data file formats is
provided.

Design In BigDataBench-MT, the three-step execution process of the benchmark is sup-
ported by a user interface, which guides the user through the process of specifying the
machines and workloads, selecting the benchmarking period, and finally generating the
workload.

Code The benchmark software, the data sets, and the data generator are available under [2].

3.5.5 ShenZhen Transportation System (SZTS)

The benchmark aims to analyze the Smart Urban Transportation System of the Chinese city
Shenzhen to gain useful insights into the future development of the infrastructure of the
city [XYE+16, p. 4340]. Although the city was recently founded in 1979, it has become one
of the biggest cities in China, with approximately 18 million citizens and a surface area of
2,000 square kilometers [XYE+16, p. 4340]. Shenzhen’s transportation system comprises five
subway lines approaching 118 stations supplemented by 936 buses with 10,300 bus stations
and nearly 30,000 cabs.

Data The benchmark is based on four data sources, such as cellular phone records, cab Global
Positioning System (GPS) records, smart-card transaction records, and cab deal information
[XYE+16, p. 4340], which are collected in real-time and stored in a data warehouse. For
instance, cab deal information includes a timestamp, transaction account, distance, and start

65

3 Fundamentals of Benchmarking

time [XYE+16, p. 4340]. Considering the data sizes, the bus stations, for instance, generate
about 5 GB per day, whereas the cabs are responsible for 4.8 GB [XYE+16, p. 4342-4343].

Workloads In order to analyse the transportation system, the SZTS benchmark suite com-
prises five workloads, namely, sztod, hotregion, mapmatching, hotspots and secsort [XYE+16,
p. 4342]. The first workload, called sztod, computes the movement of objects starting at A
and heading to B considering a specific time interval. Hotregion computes the distribution of
people and vehicles in a time interval. Mapmatching aims to compensate for measurement
errors of GPS records. Hotspots identifies locations of high traffic, e.g., shopping centers or
airports. And finally, secsort targets to sort incoming GPS records, which are received in the
wrong order. Furthermore, the workloads are run with different input data sizes. For instance,
sztod is executed with 20, 50, 100, 160, and 200 GB [XYE+16, p. 4349].

Metrics For the evaluation, the benchmark considers micro-architectural and job-level
metrics. On the one hand, micro-architectural metrics are used to measure the performance
of a specific node, e.g., Instructions per Cycle (IPC) or Last-level Cache Misses per Thousand
Instructions (LLCMPKI) [XYE+16, p. 4345-4346]. On the other hand, job-level metrics are
specific for the Hadoop characterization, e.g., Map Output/Input Ratio (MOI) or Time Map/Re-
duce Stage Ratio (TMRS) [XYE+16, p. 4343]. Furthermore, the benchmark analyzes the time
consumption of OS and system libraries [XYE+16, p. 4344], for instance, Java-based libraries.

Technologies The benchmark basically targets the Hadoop framework and its analytical
extensions Hive and Pig [XYE+16, p. 4341]. For instance, the secsort workload is implemented
in Apache Pig [XYE+16, p. 4343].

Design The authors did not mention further information about how the benchmark was
designed and implemented.

Code At the time of writing this thesis, only the documentation is still available as a
download on [18]. A download of the benchmark, as well as the basic and large data sets, was
not possible.

3.5.6 SparkBench

SparkBench is a technology-dependent benchmark aiming to support the optimization process
of analytical workloads [LTW+17, p. 2575]. The growing popularity of the framework gives
the relevance of the benchmark.

Data SparkBench utilities various data sets, such as Wikipedia, Amazon Movie Review,
Google Web Graph, E-commerce, and Twitter [LTW+17, p. 2577]. Considering the data
sets used by the benchmark basically different data types, structured, semi-structured, and
unstructured, are covered [LTW+17, p. 2577]. To generate large data sizes, SparkBench
additionally uses the Big Data Generator Suite (BDGS) [LTW+17, p. 2577]. In doing so, the

66

3 Fundamentals of Benchmarking

benchmark covers the main characteristics of Big Data, namely, volume, velocity, and variety
[LTW+17, p. 2577].

Workloads SparkBench covers the following application types: ML, graph computation,
SQL engine, and streaming applications [LTW+17, p. 2577].

In the case of ML, the workloads comprise Logistic Regression (LR), Support Vector Machine
(SVM) and Matrix Factorization (MF) [LTW+17, p. 2577]. LR and SVM are tested with the
Wikipedia data set, and MF with the Amazon Movie Review data set [LTW+17, p. 2577].

Graph computation considers algorithms such as PageRank, SVD++ and TriangleCount
[LTW+17, p. 2578]. Amazon Movie Reviews are used as input data for SVD++ and Triangle-
Count, and the Google Web Graph data to test PageRank [LTW+17, p. 2578].

The SQL engine of Apache Spark is tested by select, aggregate, and join query workloads
with Hive on Spark and Sparks native SQL capabilities [LTW+17, p. 2578]. In this context, the
queries target a database representing product orders on an e-commerce website [LTW+17,
p. 2578].

The streaming application feature of Apache Spark is evaluated by two use cases [LTW+17,
p. 2578]. The first one determines the most popular tweets on Twitter in the last 60 seconds.
The second use case, called PageView, determines statistics such as counts of active users and
pages on synthetically generated user interactions.

Furthermore, the workloads are executed with different parameter configurations of Apache
Spark. This includes the configuration of the RDD cache size, parallelism, executor, and data
compression [LTW+17, p. 2583-2586].

Metrics During the execution of the benchmark, SparkBench measures various system
resources such as CPU, memory, disk, and network usage. In this regard, SparkBench monitors
the job execution time, the data process rate, shuffle data size, the input and output data
sizes, and the average resource consumption [LTW+17, p. 2578]. Nevertheless, the authors
consider the job execution time as the most valuable metric to measure an improvement in
performance due to optimizations. To measure the accuracy of the generated models, the
RMSE is used [LTW+17, p. 2580].

Technologies SparkBench is specifically tailored to benchmark Apache Spark and its
previously discussed ML features, graph computation, streaming, and SQL processing.

Design The design of SparkBench is based on the following components: a data generator,
workloads, workload suites, and spark-submit configurations [15]. A benchmark is executed
as a spark job based on a nested configuration of spark-submit configurations and worksuits,
which comprise a set of workloads. The data to run the benchmark has to be provided before
the execution of the benchmark starts. The benchmark provides two data generators, one for
k-Means and the other for LR. Own data generators can be integrated easily by implementing
the appropriate interfaces, as explained in [16].

67

3 Fundamentals of Benchmarking

Code The implementation of SparkBench is publicly available under the Apache-2.0 License
as an open-source project on GitHub [28].

3.5.7 StreamBench

In contrast to SparkBench, StreamBench [LWXH14] is not limited to benchmark only one
specific streaming processing engine but multiple, namely, Apache Spark and Apache Storm.
Nevertheless, StreamBench has to be classified as a technology-specific benchmark.

Data In order to represent a real-world scenario, the benchmark uses the AOL Search data
and the CAIDA Anonymized Internet Traces Dataset.

Workloads StreamBench encompasses four benchmark suites: a performance, a multi-
recipient performance, a fault tolerance, and a durability workload suite. Each suite assesses
different aspects of the stream processing engines and therefore contains a different subset
of available workloads or parameter settings. In general, StreamBench specifies three target
aspects of stream processing engines, which are covered by the seven workloads.
The first aspect relates to processing numeric and textual data types. The second aspect

considers the complexity of computations, such as sample, project and filter data. And the
last aspect aims to test the ability of the processing engine to combine stored and streamed
data. The seven workloads of the benchmark are identity, sample, projection, grep, word count,
distinct count and statistics. Identity, sample, projection and grep are simple workloads which
are applied to textual data. Identity acts as a no-operation (no-op) to provide a baseline for
the other workloads. The sample workload extracts data with a specified probability from
the incoming data stream. Projection represents the extraction of particular fields and grep
checks the data for specific content. The workloads word count, distinct count and statistics are
more complex since they are more demanding in the number of computational steps.Word
count, for instance, is known as the hello-world example for many Big Data applications. It
counts the frequency of words within a text. On the other hand, distinct count determines
the number of distinct appearances of specific values. The only workload covering numeric
data types is statistics, which determines the minimum, maximum, sum, and average for an
attribute in the stream.
The performance, multi-recipient, and fault tolerance workload suites contain all seven

benchmarks and only differ in the applied data scale sizes and the number of recipients in the
cluster. In contrast, the durability workload suite only contains the word count benchmark
with two available data scale sizes to test the availability of the processing engines within a
time interval of two days.

Metrics In the case of pure performance, the determined metrics are throughput and latency.
For the fault tolerance benchmark, two additional metrics, the Throughput Penalty Factor
(TPF) and the Latency Penalty Factor (LPF), are introduced. Both metrics represent a relative
factor comparing the throughput and latency in a cluster for the case in which all nodes are
available to the case of a drop out of a single node in the cluster.

68

3 Fundamentals of Benchmarking

Technologies The benchmarked technologies are Apache Spark and Apache Storm.

Design The authors state that the design of StreamBench allows to benchmark any stream
processing framework since it is decoupled from the implementation. More precisely, their
design aims to decouple data generation from data consumption. In order to do so, they
integrated a message system between the data generation cluster and data streaming clus-
ter [LWXH14, p. 73]. For this purpose, they used the message system Apache Kafka in their
experiments.

Code At the time of writing, no source code of the benchmark was available, but it was
planned to publish it as an open-source project on GitHub [LWXH14, p. 78].

3.5.8 Yahoo! Cloud Serving Benchmark (YCSB)

YCSBwas developed to compare cloud data serving systems, as the authors call it in their paper
[CST+10, p. 143]. More precisely, the benchmark focuses on the evaluation of cloud OLTP
applications, which not necessarily support ACID-transactions but rather BASE-transactions,
such as NoSQL databases [CST+10, p. 143].

Data The data used during the execution of the benchmark is generated synthetically
by YCSB. In the process, the underlying data model represents a row in a database with a
predefined number of fields. Furthermore, the size of the fields can be configured. For instance,
by default a primary key and ten additional fields, numbered consecutively from field0 to
field9, are generated containing 100 bytes of random ASCII characters [CST+10, p. 146]. The
primary key is represented as a concatenation of the string łuserž and a unique identifier, e.g.,
łuser123456ž.

Workloads By default, the YCSB provides seven basic workloads, namely, workloada to
wordloadf and tsworkloada in the form of simple key value files. The included workloads
aim to cover different application aspects such as persisting an action of a web session in
workloada or adding and reading tags in workloadb [CST+10, p. 146]. For this purpose, each
workload contains values to describe the proportion of read, update, scan and insert operations.
Additionally, the number of records and operations as well as the distribution of requests, e.g.,
Zipfian, are basic parameters of each workload. For instance, workloada specifies a ratio of 50
percent read and 50 percent update operations based on 1,000 records and 1,000 operations.
Furthermore, the number of fields and their corresponding size are part of the workload
specification.

Metrics The benchmark measures the latency and throughput of the read, update, insert,
and delete operations. The throughput is measured in operations per second and the latency
in milliseconds.

69

3 Fundamentals of Benchmarking

Technologies Initially, the authors’ motivation to develop the benchmark was to compare
their system, called PNUTS, with Cassandra, HBase, and MySQL [CST+10, p. 144]. Since
then, YCSB has evolved and currently supports a wide range of famous database systems, e.g.,
MongoDB, Cassandra, or Redis. A comprehensive and up-to-date list of supported database
systems is given by the code repository in [24].

Workload
Executor

Client
Threads

Stats

DB
Interface

Layer

YCSB Client

Cloud
Serving
Store

Figure 3.5: YCSB client architecture, based on [CST+10].

Design As illustrated in Figure 3.5, the main component of the benchmark is the YCSB
client. The YCSB client is responsible for generating the data and for running the workload
against a specified database [CST+10, p. 148]. Threads represent users running operations on
the database. Finally, the stats component collects and aggregates the results of the threads to
generate the overall result of the benchmark. To extend the YCSB benchmark to support a
new database system, a connector has to be developed. This includes implementing a read,
an insert, an update, a delete, and a scan method of a Java-based interface [CST+10, p. 149].
Additionally, it is possible to create new workload executors.

The execution of the benchmark is divided into six steps [37]. First, the database to test
needs to be setup, e.g., creating the appropriate database schema. In the second step, the
connector for the target database has to be chosen. Third, the workload has to be selected.
Then, some runtime parameters, e.g., the number of clients, have to be defined. Afterward,
the data is loaded into the database. And finally, the benchmark is executed.

Code The benchmark is publicly available as an open-source project under the Apache-2.0
License [24]. The author of the thesis contributed to the YCSB project by its implementation
of a PostgreSQL database connector [40]. More precisely, the implemented connector enables
to benchmark PostgreSQL regarding its NoSQL support, e.g., storing JSON.

3.5.9 MLPerf

MLPerf is a benchmark suite made for Machine Learning (ML) and Deep Learning (DL) in
particular with the goals to enable a fair comparison, to accelerate ML development, to ensure
reproducibility and to minimize the benchmark effort in order to be beneficial for academia
and industry alike [MTW+20, p. 2].

70

3 Fundamentals of Benchmarking

The benchmark is motivated by the specific characteristics of DL computations, which
allow versatile statistic, hardware, and software optimizations [MTW+20, p. 1]. For instance,
the underlying hardware and its configuration affect the hyperparameter settings and thereby
the results. Another challenge to tackle is that statistical approaches may lead to various
correct results between multiple runs [MTW+20, p. 1].
The benchmark is divided into a training benchmarking [MTW+20] and an inference

benchmark [RCK+20]. As the name implies, the training benchmark targets to assess the
performance focussing on training amodel to achieve a certain accuracy, whereas the inference
benchmark evaluates the latency and throughput of the trained models.

Workloads and Data (Training)

The workloads of MLPerf aim to cover typical ML tasks. These include image classification,
object detection, instance segmentation, translation, recommendation, and reinforcement
learning [MTW+20, p. 5].
Since the ML tasks of the benchmark suite differ, each workload has its own related data

set [MTW+20, p. 5]. Image classification is based on ImageNet. Object detection and instance
segmentation utilize COCO 2017. The translation workloads use the WMT17 EN-DE data set.
Recommendation exploits the MovieLens-20M data set. Besides, a synthetic data generator is
developed to produce large data sets that are based on characteristics of the initial data. And
finally, reinforcement learning works with a Go (9x9) board.

Workloads and Data (Inference)

The workloads of the inference benchmark cover four scenarios, namely, single-stream, multi-
stream, server, and offline [RCK+20, p. 5-6]. Single stream considers the responsiveness of an
application on a mobile device receiving one query at a time, whereas multi-stream covers
handling a stream of queries such as autonomous vehicles do [RCK+20]. Server targets to
mimic online applications, which have to respond to a user interaction quickly. In contrast,
offline evaluates the performance of batch-processing applications.

Metrics

In contrast to the previously discussed benchmarks, MLPerf’s performance metric considers
the time to train a model until a certain quality is reached [MTW+20, p. 6]. In this context,
the time to train includes all operations, which use the data. Nevertheless, system initializa-
tion, model creation, and initialization, as well as data reformatting, are excluded from the
timing [MTW+20, p. 6-7]. Due to the variety of workloads, the quality metrics are different.
For instance, recommendation uses the Hit Rate (HR) within the top 10 items (HR@10) as an
accuracy measure, whereas object detection applies mAP. To achieve verifiable results, the
workloads have to be executed multiple times.

The inference benchmark ofMLPerf applies differentmetrics for the four scenarios [RCK+20,
p. 5]. In the single-stream scenario, the 90-th percentile latency is measured. The multi-stream
scenario focuses on the number of streams, which are subject to latency bound. The server
scenario considers the queries per second, which are subject to latency bound. And finally,
the throughput is part of the offline scenario.

71

3 Fundamentals of Benchmarking

Technologies

The inference benchmark provides reference models, which are based on the formats of
TensorFlow, PyTorch, and ONNX [RCK+20, p. 4].

Design

As already said, the benchmark is designed to consider training and inference. Since the
training benchmark focuses on training and the inference benchmark assesses pre-trained
models with a certain quality, it complements the former [RCK+20, p. 2]. An inference
benchmark submission comprises the following components: a SUT, a load generator, a data
set, and an accuracy script [RCK+20, p. 7], as depicted in Figure 3.6. The SUT has to be
provided by the submitter. The load generator is responsible for loading the SUT and run
the benchmark according to the configured scenario. Besides, it collects information, records
queries and responses, and reports statistics [RCK+20, p. 8]. Furthermore, the benchmark
supports an accuracy and a performance mode [RCK+20, p. 8]. In the accuracy mode, the
complete data set is considered, whereas the performance mode considers only a subset. For
extensibility, MLPerf provides an interface between the SUT and the load generator. The
complete submission and review process is explained in [RCK+20, p. 9].

LoadGen Accuracy Script

System under Test

Data Set

7

2 3

1 4 5 6

Figure 3.6:MLPerf Inference system, based on [RCK+20, p. 8].

Code

The source code of the benchmarks is publicly available as an open-source project under
the Apache-2.0 License [5]. Most of the source code is implemented in Python, but C++ and
shell scripts, are also used. For instance, the load generator is developed as a C++ applica-
tion [RCK+20, p. 8]. Additionally, some Docker files are provided too.

72

3 Fundamentals of Benchmarking

3.5.10 Summary

Up to this point, several benchmarks have been presented, whose relevance in the context of
recommender systems and for the remainder of the thesis follows.
TPC-DS and BigBench represent benchmarks that are based on a well-defined and elabo-

rated data model of a retailer. Here, the data model comprises entities, which are essential
parts of retail. In addition, the workloads cover representative tasks in retail. In doing so, both
show how to develop standardized benchmarks covering a relevant application domain and
representative tasks. Consequently, a benchmark for a recommender system has to consider
and incorporate these findings.

Although not directly related to recommender systems, the SZTS benchmark also represents
a benchmark motivated by a real-world scenario. It shows how to develop and implement a
benchmark that measures metrics on different abstract levels and thereby leads to findings
since they are not considered by the other benchmarks.
Considering Graphalytics, the benchmark reflects the increasing importance of analyz-

ing social networks by graph-processing systems. In the context of recommender systems,
especially workloads such as identifying weakly connected components enable to derive
additional insights by considering the interest of related users. This leads to the finding that
such relations have to be considered in a data model for recommender systems.
Recommender systems highly rely on up-to-date data to generate an accurate recom-

mendation. Therefore, the underlying data storage systems have to perform basic database
operations in a fast manner. First, to adopt the models based on the newest information but
also to provide the recommendations to the user. In this sense, a benchmark for recommender
systems has to take this into account, as shown by YCSB.

As data processing systems aim to process and analyze large data sets as well as streaming
data, they are widely applied in recommender systems. Therefore, SparkBench and Stream-
Bench are useful benchmarks to evaluate their performance, applying ML approaches, e.g.,
Matrix Factorization (MF), or dealing with an incoming stream of data generated by user
interactions. Therefore, processing and streaming have to be considered in the implementation
of recommender systems.
MLPerf provides insights about how to evaluate ML tasks by considering the trade-off

between accuracy and performance, which are important aspects to consider in a benchmark
for recommender systems. Especially, the separation of training and inference represents an
interesting design approach.
An overview of the introduced benchmarks compared by type, application domain, tech-

nologies, and metrics is given in Table 3.1.

73

3 Fundamentals of Benchmarking

Table 3.1: Summary of the main aspects of the introduced benchmarks. At this point, the
abbreviations have the following meanings: L (Latency), T (Throughput), Latency
Penalty Factor (LPF), Throughput Penalty Factor (TPF), Edges per Second (EPS),
Edges and Vertices per Second (EVPS), T2T (Time to Train), Instructions per
Cycle (IPC), JET (Job Execution Time), Cycles per Instruction (CPI) and Million
Instructions per Second (MIPS).

Benchmark Type Application Domain Technologies Metrics

TPC-DS
End-to-end Decision Support SQL-based Query-based,

e.g., QphDS

BigBench
End-to-end Big Data Analytics SQL-based Query-based,

Streaming-based e.g., BBQpm
Hadoop-based

Graphalytics
System Graph Analysis Graph-processing Graph-based,

e.g., EPS, EVPS

BigDataBench

Suite Internet Services Streaming-based Low-level,
Recognition Sciences ML-based e.g., MIPS, CPI
Medical Sciences NoSQL-based Quality,

e.g., Accuracy

ShenZhen
End-to-end Big Data Analytics Hadoop-based Low-level,

e.g., IPC

SparkBench

Application Machine Learning Streaming-based Low-level,
Graph Analysis e.g., JET
SQL Quality,
Streaming e.g., Accuracy

StreamBench
Micro Streaming Streaming-based Low-Level,

e.g., L, LPF,
T, TPF

YCSB
System Storage NoSQL-based Low-level,

e.g., L, T

MLPerf

Suite Machine Learning ML-based Low-level,
e.g., L, T, T2T
Quality,
e.g., Accuracy

74

3 Fundamentals of Benchmarking

3.6 Benchmark Model and Benchmark Execution Process

3.6.1 Benchmark Model

Based on the investigated benchmarks and their designs in Section 3.5, the components which
comprise a benchmark implementation are deduced and explained.

System under Test

According to [Raa19], a SUT defines hardware, software, and connectivity components, which
are part of the benchmark process but may also explicitly specify the ones which are not
part of it. In the TPC-DS specification, a SUT is considered as ła collection of configured
components used to complete the benchmarkž [29, p. 66]. Depending on the considered
benchmark objective and type, for instance, the hardware components are considered to be
fixed to evaluate a specific software component. On the other hand, to benchmark different
hardware components, the software component could be fixed. As the name implies, the
connectivity components specify how the hardware and software communicate with each
other. For instance, a benchmark could provide a connectivity component to communicatewith
the SUT. In these cases, it must be defined whether such communication is to be considered
part of the SUT or not since it impacts the benchmark results.

Data Generator

In the first place, a data generator generates data used by a benchmark, for instance, loaded
into the SUT. In addition, the data generator is responsible for stressing the SUT [BWT17,
p. 15]. Such stress is commonly named workload. In [BWT17, p. 62], two types of workloads
are mentioned, namely, synthetic and trace-based workloads. As the name implies, synthetic
workloads generate data based on, e.g., a particular probability distribution, whereas trace-
based workloads are based on a sequence of timed instructions [BWT17, p. 62]. Consequently,
trace-based workloads, in contrast to synthetic workloads, are repeatable but are also easier
to adapt to [BWT17]. Both approaches can be based on collected data of real applications. In
this regard, the generation and ingestion of the data into the SUT might already be part of the
stress test. For instance, generating a large data set to test a database. On the other hand, a
data generator might stress the SUT on the already imported and generated data by invoking,
for instance, SQL statements.

Benchmark Driver

Besides the benchmark driver, another term used by the authors in [BWT17, p. 15] is the
experiment control component. Furthermore, sometimes the term harness is used, for instance,
in [IHN+16, p. 1321]. Nevertheless, neglecting the naming, its purpose is the same. In [CGL+16,
p. 28], the authors define the benchmark driver’s task to orchestrate the workflow during
the benchmark execution on the SUT. The experiment control component mentioned in
[BWT17] aims to manage the execution of the experiments. In this sense, the benchmark
driver assures the interplay between the data generator and the SUT given a specific workload
and configuration as specified in TPCx-BB. Furthermore, the benchmark driver is responsible
for ensuring specific prerequisites of the SUT before workloads are executed.

75

3 Fundamentals of Benchmarking

Interface

To ensure smooth communication between the benchmark driver and the SUT, most bench-
marks require the implementation of a specified interface. In this way, the benchmark driver
and the SUT are decoupled. This enables a benchmark to support various SUT by implement-
ing a corresponding interface or driver. For instance, in [CST+10], the benchmark requires
to implement a database interface layer to support new databases. Another example is the
so-called driver implementation in [IHN+16], which aims to integrate new platforms in the
future.

Measurement Data Component

The primary task of the measurement data component [BWT17, p. 15] or logging component
[IHN+16, p. 1321] is to collect all necessary results of the benchmark run for further analysis.
Accordingly, such a data component might be a database or a widely used file format, which
provides a standard interface to answer queries [BWT17, p. 15].

Monitoring

Monitoring does not necessarily have to be part of a benchmark model, but it provides the
benefit to identify bottlenecks in the SUT, the load generator, or the measurement process
[BWT17, p. 15]. For instance, monitoring prevents to run long-running benchmarks with
wrong parameter settings or configurations.

Configuration Files

Configuration files are used to configure the components involved in the benchmarking
process. This includes setting parameters of the SUT and the benchmark, as well as selecting
and configuring the workload to run.

3.6.2 Benchmark Execution Process

In this sense, the benchmark execution process, as illustrated in Figure 3.7, generally comprises
the following activities:

Preliminary Activities

Before the benchmark can be executed, some preliminary activities have to be done. Depending
on the benchmark and the targeted SUT, it might be required to implement an interface for
the communication between the benchmark driver and the SUT. An example is to implement
database-specific query operations, as explained in the YCSB benchmark in Section 3.5.8. This
optional activity is represented as Implement Interface in Figure 3.7.
In the activity Setup SUT, the SUT is defined and setup correctly. For instance, this in-

cludes selecting hardware resources, software components, or even algorithms depending
on the benchmark type. Furthermore, this activity involves the deployment of the software
components or algorithms on the hardware resources. Next, the SUT must be configured
appropriately by a given configuration, which serves for documentation purposes. The Config-
ure SUT activity includes configuring software components such as processing and database
systems. In the former case, this activity might involve configuring the appropriate data
sources or structures. In the latter case, it might be required to create users and roles to access
the database or generate a database schema matching the benchmark requirements.

76

3 Fundamentals of Benchmarking

Figure 3.7: Illustration of the benchmark execution process and the involved activities.

Benchmark Activities

After performing the preliminary activities, the SUT can be benchmarked. Part of the activity
Configure Benchmark is to specify the workloads and their corresponding parameters for the
benchmark execution. For instance, a specific workload can be configured to mimic create,
read, update, and delete operations by only one or multiple users simultaneously. Furthermore,
the workload might support various data sizes and data types.
Besides, the activity Generate Data involves generating data representing the application

scenario covered by the benchmark. For instance, generate data to mimic a retailer as BigBench
in Section 3.5.2. This activity might be optional for some benchmarks since a data set is
available for its execution, which is mostly not the case. After the data has been generated, the
activity Load Data takes care to load it into the SUT. In some benchmarks, this step is already
considered as one part of the benchmark. For instance, it might be of interest to measure how
long it takes for a specific database to load it.
Now that the interface, the SUT, the workloads, and the data have been generated and

configured appropriately, the activity Execute & Monitor Benchmark can be executed. At
this point, no changes to the active components are allowed, which affect the benchmark.
In the following, the benchmark driver orchestrates to stress the SUT with workloads or
additionally requests new data from a data generator, as illustrated by Request in Figure 3.7.
This additionally reflects workloads based on streaming data. Furthermore, the current status
of the SUT is monitored, for instance, to show CPU usage and memory consumption during

77

3 Fundamentals of Benchmarking

the execution.
Finally, the benchmark results are collected in a proper format for further analysis repre-

sented in the activity Collect Results. Additionally, the SUT and the benchmark configurations
should be part of the results too. In doing so, external parties can reproduce the complete
benchmark process.

78

4 A Benchmark Concept for

Recommender Systems based on

Omni-Channel Data

This chapter develops a benchmark concept for a recommender system benchmark based
on omni-channel data. The idea of the benchmark concept is to show how to evaluate a
recommender system that utilizes data from multiple channels.
In this regard, the number, as well as the characteristics of each channel, are depending

on the application domain of the recommender system. For instance, in e-commerce, such
channels include a social media account, an email service, or an online shop. In contrast, in e-
library, only an online service and newsletters are used to retrieve user feedback. Furthermore,
the collected information within a channel differs among various application domains. In
online retailing, for example, users may use social media heavily to engage with their preferred
retailer by likes and comments, whereas in the scientific context, users instead tend to use
newsletters to indicate interest.

Nevertheless, the information might be useful to generate more accurate recommendations
by incorporating this implicit feedback in the recommendation process. Since most of the
collected data only indicates interest in the form of implicit feedback, the impact of the
channels has to be considered in the proposed benchmark concept. In this sense, the data
among the various channels can be combined, considering different aggregations to apply
recommender system approaches afterward. In doing so, the proposed benchmark concept
complements and generalizes current evaluations of recommender systems, which mainly
focus on one signal type.
Finally, the results have to be evaluated, considering business, user, and technical aspects

covered by different metrics. In this sense, the proposed concept represents an end-to-end
benchmark. In the following, a benchmark concept and its components are described.

4.1 Channels and Signal Types

Nowadays, companies are able to reach their user in manifold ways to distribute, promote, and
sell their products and services. In marketing and distribution, the term channel is commonly
used to refer to this concept. According to [49] and [Emr08, p. 209], examples of channels
are stationary, online, mobile, call center (phone), social media, catalogs, email, websites
(online service) and personal contact. In [Hol14], specifically, online marketing channels
are investigated intensively. Furthermore, channels can be distinguished by whether the
information is pushed to or pulled by a user [Emr08, p. 35]. Depending on the provided number

79

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

Figure 4.1: The figure illustrates the generic communication model of Shannon and Weaver,
based on [Sha48].

of channels, their integration, and interplay, they can be categorized into omni-channel, multi-
channel, and cross-channel management, as defined in [49]. In this context, omni-channel
management is characterized by a seamless interplay and the highest integration among the
different channels, whereas multi-channel considers them mostly separately or only partially
connected. Cross-channel management, on the other hand, is considered as somewhere in
between. By their interactions with the channels, users provide useful information about
their behavior and interests in services. To cover different kinds of interactions, the broader
term signal is used in the following, which was introduced by Shannon and Weaver in their
mathematical communication model [Sha48] and is used in the communication research area
[Emr08, p. 56-59]. An illustration of the communication model is depicted in Figure 4.1.
Taking the phone as an example, a user is able to request information about a particular

item by calling a call center, for instance, its release date and so indicating interest for it
[Hol14, p. 271]. A user can also write an email to a company’s customer service to complain
about or praise the quality of an item [Hol14, p. 271]. On the other hand, a company can
send information about upcoming items in the form of a newsletter. Here, a signal type could
represent a newsletter’s delivery, and other signals might represent whether a user opens
or clicks it. Considering social media, signals appear in the form of comments, likes, and
shares [Guy15], [Hol14, p. 189]. In this regard, a company can collect this information to infer
interest, for instance, by analyzing the content of a comment regarding an item. In the case
of an online service for clothes, a user’s behavior can be represented by signal types such
as clicks, searches, reviews, or purchases. Other examples are clicks, purchases, ratings, and
reviews, as mentioned in [WM18]. In [AB15] and [53], Netflix uses the term signal to refer to
recent information collected by their services, for instance, what movie a user watched or how
it was rated. Reading, sharing, printing, and commenting on an article are examples of signals
generated regarding a news service [KJJ18]. Although the previous examples are related to
signal types generated digitally, users are still using personal contact or brick and mortar
stores to get information about an item in a personal conversation or buy it directly. At this
point, for instance, loyalty cards provide a way for companies to link purchase information to
individual users.

Besides, signals are characterized by their communication direction. Depending on whether
one, two, or more participants are part of the communication, it is referred to as uni, bi, or

80

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

Table 4.1: Overview of various channels of a fictitious retailer, their corresponding signal
types and communication direction.

Channel Signal type Direction

Phone
Request product information bidirectional
Complain about a product bidirectional
Praise a product bidirectional

Email

Send a newsletter unidirectional
Open a newsletter unidirectional
Click a newsletter unidirectional
Complain about a product bidirectional
Praise a product bidirectional
Request product information bidirectional
Send product information unidirectional

Social media
Comment multidirectional
Like multidirectional
Share multidirectional

Online service

Click unidirectional
Search unidirectional
Review multidirectional
Purchase unidirectional
View unidirectional
Rate unidirectional

Personal contact
Buy item bidirectional
Request information bidirectional

multidirectional. For instance, in social media, many users participate in the same conversation
about products by comments or likes. The same applies to reviews of products in an online
service. On the other hand, rate, purchase, or click signals only require one participant.
These examples illustrate the importance of channels and signal types for modern rec-

ommender system implementations since they enable to draw conclusions about a user’s
interests by considering multiple perspectives. Table 4.1 summarizes channels, signal types
and communication directions.

4.2 Data Model

The data utilized in the proposed benchmark concept should reflect the real-world application
domain of recommender systems. Therefore, initially, a realistic Entity Relationship Model
(ERM) has to be introduced and described, as depicted in Figure 4.2. The aim of this ERM
is to identify all relevant entities and their relationships, which compose an omni-channel

81

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

Table 4.2: The table describes possible entity values for an exemplified movie streaming
provider based on the ERM in Figure 4.2.

Entity Description Value

U set of users {A, B, C}
I set of items {Stars Wars, Back to the Future, Star Trek, Matrix}
Ch set of channels {online service}
S set of signal types {rate}
D set of devices {AppleTV, Personal Computer}

recommender system.
In the center of the data model are signals on channels between users and items. Each user

generates signals of a specific type and channel which are associated with one or multiple
items, as explained in Section 4.1. For instance, a purchase signal can be clearly assigned to
one specific item, whereas a search signal can cover many different items due to ambiguity in
the search result. In this case, every item of the search result generates an own entry. On the
other hand, an item can be part of various signals, either since different users interacted with it
or one user used multiple channels for interaction. Therefore, the relation between items and
signals is represented as a many to many cardinality. Furthermore, a user generates signals by
various devices he or she owns, such as a smartphone, a tablet, or a personal computer. Beyond
that, the device type plays an essential role in presenting recommendations regarding their
number and arrangement. For example, in general, the number of products shown to the user
differs between a smartphone and a personal computer due to space limitations. Nevertheless,
it is possible to generate signals without explicit usage of a device, e.g., buying in a brick and
mortar store. Additionally, each signal is characterized by its type and temporal occurrence.
Here, a signal type can be part of different signals, but a signal is of exactly one specific type.
The time reflects the occurrence of a signal. Consequently, a signal occurs at a specific time,
but multiple signals can occur at the same time. Supplementary, each signal is related to
a channel. In addition, a signal has to contain content, for instance, a purchase, rating, or
comment. Concluding, the data model has to consider all items provided as recommendations
to a user.
To provide a generic data model, items and users are described by item and user features,

respectively. In doing so, the data model is not limited to specific recommender system
approaches. Item features describe item characteristics by their metadata, e.g., a description,
color, or genre. Consequently, user features characterize a user by, for instance, its demographic
information, buying behavior, or interests. Moreover, the data model is able to represent
diverse application domains by specifying different channels and signal types.
In Table 4.2 an example of possible entity values for a movie streaming provider is repre-

sented. Here, the items represent movies, and the content of the signals is their corresponding
rating represented on a numerical scale from one to five. The provided movies for the three
users A, B, and C are Star Wars, Back to the Future, Star Trek, and Matrix. Furthermore, the
users are using AppleTV and PCs to stream the movies.
Another example, based on a fictitious online retailer, illustrates the usage of multiple

82

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

Figure 4.2: An ERM in Crow’s foot notation. It comprises the entities and their cardinalities
required for benchmarking omni-channel recommender systems.

Table 4.3: The table lists signals collected by a movie streaming provider. Here, the represen-
tation is based on the structure of a relational database.

ID User Item Channel Signal type Content Time Device

1 A Star Wars online service rate 5 2020-02-25 AppleTV
2 B Star Trek online service rate 3 2020-02-26 PC
3 C Matrix online service rate 4 2020-02-27 AppleTV

83

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

Table 4.4: The table describes possible entity values for an exemplified online retailer based
on the ERM in Figure 4.2.

Entity Description Value

U set of users {A, B, C, D, E}
I set of items {t-shirt, trousers, jacket, pullover, socks}
Ch set of channels {online shop, social media}
S set of signal types {click, purchase, comment, view}
D set of devices {iPhone, Samsung, Huawei, PC, iMac}

channels and signal types. In this case, the items are products such as t-shirts, trousers,
jackets, pullovers, socks, and signal types such as clicks, purchases, comments, or views
collected over an online shop and social media. In this regard, the content of purchases
and views is defined as a numerical value indicating their amount, whereas comments are
represented as unstructured text data. Table 4.4 illustrates exemplary user, item, channel and
signal values for the online retailer application domain.

Table 4.5: The table lists signals collected by an online retailer. At this point, the representa-
tion is based on the structure of a relational database.

ID User Item Channel Signal type Content Time Device

1 A t-shirt online shop purchase 1 2020-02-25 iPhone
2 A trousers online shop purchase 2 2020-02-26 iPhone
3 B t-shirt online shop purchase 3 2020-02-25 Huawei
4 B trousers online shop purchase 3 2020-02-26 Huawei
5 B jacket online shop purchase 1 2020-02-27 PC
6 C trousers online shop purchase 3 2020-02-25 iPhone
7 C jacket online shop purchase 1 2020-02-26 iMac
8 C socks online shop purchase 5 2020-02-27 iMac
9 D t-shirt online shop purchase 1 2020-02-25 Honor
10 D trousers online shop purchase 2 2020-02-26 PC
11 D pullover online shop purchase 3 2020-02-27 Honor
12 E trousers online shop purchase 1 2020-02-25 Samsung
13 E pullover online shop purchase 2 2020-02-26 PC

14 A pullover online shop click 1 2020-02-25 iPhone
15 B socks online shop view 4 2020-02-25 Samsung
16 C t-shirt social media comment Great t-shirt. 2020-02-27 PC
17 D pullover social media comment Bad quality. 2020-02-27 Honor

In the context of utilizing data to benchmark recommender systems, signals could represent
rows within a table in a relational database, as illustrated by the Tables 4.3 and 4.5. In Table
4.3, user A, for instance, rated Stars Wars with 5 on 2020-02-25 using his or her AppleTV for

84

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

streaming the movie. Additionally, Table 4.5 shows different signals generated by users during
their interactions. For instance, user A clicked on a pullover on 2020-02-25 utilizing its iPhone,
user C commented his or her experience about a t-shirt and user B purchased three trousers
via his or her smartphone. Here, the tables are generated by connecting the different entities
by their foreign keys. For instance, a user or item in a row could be represented by a unique
identifier pointing to the corresponding table of the entity. The same applies to the entities’
channel and signal type as well as content, time, and device.

Accordingly, a signal can be defined as a tuple (id, u, i, ch, s, c, t, d). Here, id denominates
a unique identifier to distinguish among the different user signals. Furthermore, u denotes a
user of the set U of users, and i denotes an item of the set I of items. Additionally, s denotes
a signal type of the set S of signal types on the channel ch of the set Ch of channels, and c
defines the content provided by a signal. Finally, d denotes a device that generates a signal at
time t.

4.3 Data

Besides a data model, appropriate data is of relevance for the benchmark execution. As
elaborated in Section 3.5, benchmarks use public data sets or provide a data generator out
of the box. Since both approaches should be supported by the benchmark concept, they are
discussed in the following.

4.3.1 Own and Public Data

In case a benchmark user intends to use his or her own data, he or she is in charge of
converting it into the data model introduced in Section 4.2 and illustrated in Figure 4.2. Since
the internal representation of the data differs among application domains, a benchmark user
has to implement a customized Extract, Transform, and Load (ETL) process to ingest the
required data into the target data model.

To force a benchmark user to perform this task might sound like an additional burden and
thereby violating the requirement on a benchmark to be simple (Section 3.4). However, this
leads to two advantages. First, if the benchmark user decides to publish the data, its format is
already standardized by the given data model, making it easier for third parties to use. As a
consequence, the reproducibility and verifiability of the results are strengthened, as required
by a good benchmark (Section 3.4). Second, this representation enables the benchmark to
consider the task of a recommender system to load the appropriate data for the execution of
a recommender system approach. This task will be explained in the further sections.

4.3.2 Data Generation

Although the general idea of the benchmark is to apply it to a company’s own or publicly
available data, it also aims to provide a way to generate synthetic data sets to mimic real-
world data sets from different application domains. More specifically, the generated data
has to reflect the amount and distribution realistically. The usage of synthetic data not only

85

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

Figure 4.3: The green dots depict for each possible rating value (1 to 5) its occurrence within
the MovieLens-100K data set scaled to 0 to 1. For instance, approximately 7
percent of the movies have a rating of 1 and 33 percent a rating of 4. The average
rating in the data set is approximately 3.5, and the corresponding deviation is
1.1. The blue line depicts an approximated normal distribution with µ = 3.5 and
σ = 1.1.

enables to share the results of the benchmark but also the data itself. In doing so, a higher
understanding and reproducibility are given by rerunning the benchmark, as discussed in
Section 3.4. Figure 4.3 aims to convey the idea behind this.
Here, the publicly available MovieLens-100K data set is used. The data set comprises

100,000 ratings from 943 users for 1,682 movies on a scale from one to five. In this sense, the
data represents rating signals, as illustrated in Table 4.3. Here, the five green dots depict the
ratings (1-5) on the x-axis and the percentage of their occurrence within the data set on the
y-axis scaled to [0, .., 1]. Considering the dot distribution, it seems to follow a bell-shaped
curve with only a few users giving very low or very high ratings and a peak for medium
ratings of 3 and 4. Therefore, a normal distribution can be used to approximate the dots as
depicted by the blue line in Figure 4.3. The normal distribution depends on the two values µ
and σ as shown in the corresponding equation:

f(x, µ, σ) =
1√

2 · π · σ2
e

(x−µ)2

2·σ2 ,

where µ is the average movie rating and σ the standard deviation, which in this case, are 3.5
and 1.1, respectively.
The approximation serves to generate synthetic data sets. Additionally, since the data is

generated by imitating real-world data sets, it is further desirable to create similar data on
different scales. Considering recommender systems, each application domain differs in the
number of provided and available channels. Furthermore, each channel is characterized by
varying and diverse user behavior in the form of signals. Consequently, multiple aspects of
the data distribution have to be considered for synthetically generated data.

86

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

User Aspects

First, the data has to reflect the user behavior regarding the generated signals within each
channel individually. For instance, in online retailing, some users might prefer to write detailed
reviews about items directly in the online store, whereas others engage with their favorite
retailer by liking or commenting on items shared on social media. Consequently, the number
of generated signals in the online store and social media differs depending on the target
audience. Considering Amazon as one of the most popular online retailers, which provides a
wide range of items, the amount of reviews generated by users on its platform exceeds the
amount generated by a smaller online retailer, which may provide only niche products and
does not act globally. In another application domain, the situation might be the other way
around. According to this, the number of generated signals varies among different application
domains and channels and has to be considered in the data generation process.

Second, the data has to reflect a realistic number of user signals with items as well as signals
an item receives by users. More specifically, the generated data has to capture the behavior of
rather conservative or passive users and frequently active ones. In this context, it might be
of interest to specify a minimum number of user signals to enable certain approaches. For
instance, the MovieLens-100K data set1 provides at least 20 ratings per movie.
Third, the time of the occurrence of signals should mimic real-world user behavior. For

instance, users might tend to engage with a service, preferably after work than in the morning.
Furthermore, it might be the case that user signals increase on certain days, e.g., Christmas or
Black Fridays.

Fourth, considering an individual user, the generated data has to reflect his or her behavior.
More specifically, the data has to describe a reasonable amount of signals among the channels
a user uses. In this sense, the data generation process has to respect different user profiles. For
instance, one user profile might be characterized as a heavy online shopper, which additionally
writes many reviews. Considering the consistency of the data, it could make sense for a user
to like a movie on social media but giving it a low rating after streaming. The reason for that
might be that he or she was looking forward to seeing it at the beginning but disappointed
afterward. On the other hand, it does not make sense to rate a movie high and then dislike
it. Another example is online retailing, where it is reasonable to write a critical review of a
purchased item. User profiles could either be identified by applying classification approaches
to known data sets or defined in advance since certain user behavior is assumed within the
considered application domain.

In implementing these user aspects the benchmark covers the requirements relevance and
acceptance, as elaborated in Section 3.4.

Item Aspects

Considering item aspects, the data has to take the popularity distribution of items for each
channel in the application domain into account. In other words, items are not consumed
equally since there are always items enjoying higher popularity than others. In doing so, the
generated data reflects natural user behavior. For instance, in movie streaming, some movies
have a generally higher demand since a famous actor is part of it or it was directed by a

1https://grouplens.org/datasets/movielens

87

https://grouplens.org/datasets/movielens

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

reputable director. An exemplary popularity distribution is depicted in Figure 4.4a. Here, the
data represents how many times a specific movie has been rated by users.

Furthermore, the data has to consider the overall average preferences given to the items. In
Figure 4.4b, the average rating distribution of the MovieLens-100K data set is given on a scale
of one to five. The distribution illustrates that most movies are rated higher than 1. In addition,
Figures 4.4c and 4.4d illustrate that popular items do not have to be rated high and highly
rated movies do not have to be popular. Another example is the implicit feedback expressed
by users through the number of purchased items, increasing confidence in a particular signal.

Consequently, these item aspects further strengthen the requirements relevance and accep-
tance, as mentioned in Section 3.4.

Technical Aspects

In this case, the data generation has to consider the dynamic of user signals. For instance,
a real-world recommender system constantly receives new user signals. The quicker each
new signal can be incorporated into the recommender system, the more current the provided
recommendations. Therefore, the data generation additionally has to be able to generate not
only static or batch data sets but also streaming data sets.
Besides, the data distribution must be able to scale with a varying number of users and

items, preserving the previously mentioned aspects. For instance, how does a doubling of
users affect the final recommendation results regarding runtime and accuracy? The same has
to be considered by varying the number of items.

As a result, the implementation of these technical aspects leads to a scalable benchmark as
required based on Section 3.4.

4.4 Data Processing

As discussed in Section 2.3 users provide implicit feedback by different signals, which occur
in various representations. In this regard, three common preprocessing tasks are part of a
recommender system and explained next.

4.4.1 User Matching

The first task aims to relate signals to users. Signals are rather useless if it is not possible to
associate them with an individual user. It is relatively simple to assign purchases to customers
when they use their accounts during online shopping. In the case of customers use a guest
account, this task appears more complicated. At this point, technologies, such as cookies,
help to connect the purchase with a possible customer. Another example is the delivery of
newsletters. Customers may not provide an email address in their official account but use
newsletters heavily. Here, a mapping of newsletter subscribers and customer accounts can be
beneficial. The same applies to match names of customers on social media when they use
their real names and the methods align with legal requirements.

88

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

(a) The sorted movie popularity distribution.

The figure illustrates that somemovies wit-

ness significantly higher popularity than

others.

(b) The sorted average movie rating distribu-

tion. The figure shows that most movies

are rated higher than 1.

(c) The average movie rating distribution

sorted bymovie popularity. The figure illus-

trates that popularity does not necessarily

correlate with a high rating.

(d) The movie popularity distribution sorted

by their average ratings. The figure shows

that highly rated movies do not have to

be popular.

Figure 4.4: The subfigures represent different perspectives on the MovieLens-100K data set.
Here, the values on the x-axis do not correspond to the values in the MovieLens
data set.

89

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

4.4.2 Item Matching

The second task aims to relate user signals to items in case no direct relation is given. Such a
situation appears, for instance, when a user searches for an item. In this case, the search result
consists of multiple items covering the search term. Consequently, a user signal is derived for
each search result and is considered as an indication of interest. Although these user signals
might not have the same quality as those directly related to items, they provide an additional
source of a user’s interest or preference.

4.4.3 Content Matching

The third task aims to interpret the content of a given user signal. In this context, unstructured
data, such as text, must be processed to classify its content as positive, negative, or neutral
feedback. At this point, NLP from AI and ML are applicable. In particular, NLP approaches for
sentiment analysis are of interest.

4.5 Data Aggregation

With the data at hand, the central idea is to aggregate the various signal types of users to
investigate their influence on the recommendation results.

4.5.1 Binary Aggregation

The simplest form of aggregation is given by considering only one specific user signal type
with explicit feedback, e.g., movie ratings, as illustrated in Table 4.3. However, in the following,
a slightly more complex example, based on implicit user feedback of purchases from Table 4.5,
is utilized for aggregation. In this case, each signal content contains the amount of a purchased
item. In the process, the amount is neglected, and only the purchase itself is considered. More
precisely, each signal content value larger than 0 is converted to 1, assuming an indication
of interest. At this point, it must be noted that this assumption might not reflect the real
interest of a user since a purchase does necessarily imply a positive user experience. The
result of the aggregation is shown in Matrix 4.1. Using this aggregated data, exemplified
product recommendations for user A are generated. Comparing user A′s similarity to the
other users, he or she seems to share similar taste with usersB andD since all bought t-shirts
and trousers in the past. Consequently, it makes sense to recommend a jacket or a pullover to
user A due to the behavior of user B or D, respectively.

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 1 1
B 1 1 1
C 1 1 1
D 1 1 1
E 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(4.1)

90

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

4.5.2 Equally Weighted Aggregation

However, since the idea is to aggregate multiple signal types of users, the purchase data is
extended by the additional signal type comment from a social media channel, as illustrated
in Table 4.5. In this case, the positive comment of user C from Table 4.5 regarding t-shirts
is evaluated as an indication of interest and incorporated into Matrix 4.1 leading to Matrix
4.2. As a consequence, the recommendations for user A change. Now, besides user B and
D, user A also shares a similar taste with user C , which results in an additional feasible
recommendation of socks. At this point, the negative review of user D for the purchased
pullover is not considered as indicated by the question mark.

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 1 1
B 1 1 1
C 1 1 1 1
D 1 1 ?

E 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(4.2)

4.5.3 Weighted Aggregation

In the previous example, two aspects have been neglected so far. On the one hand, since no
signal regarding user C and the t-shirt was available before and only one signal type was
utilized for aggregation, the unknown value was simply added for this user-item combination.
On the other hand, both signal types have been treated equally. This means it was assumed
that the signal type purchase is as strong or weak as the signal type comment. Nevertheless,
both aspects influence the recommendation results.

For instance, weightings of 2
3
for the purchase and 1

3
for the comment signal type produce

Matrix 4.3. In this sense, purchase information is treated as more significant than comments.
Considering the question mark in the Matrix 4.2 for user D and pullover, the weighted value
is determined as 1

3
. The reason for that is based on weighting the purchase as a positive

indication of interest with 1 · 2
3
and the comment as a dislike with −1 · 1

3
, which results in 1

3
.

In this case, user A again shares a rather similar taste with users B and D as in the initial
situation. But now, it is reasonable to recommend only a jacket to user A, due to the influence
of the previous bad review of user D for the pullover.

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 2/3 2/3
B 2/3 2/3 2/3
C 1/3 2/3 2/3 2/3
D 2/3 2/3 1/3

E 2/3 2/3

⎞

⎟

⎟

⎟

⎟

⎠

(4.3)

Generalized Definition

In the following, the applied aggregation approach will be generalized to Equation 4.4 and
explained by the previous example.

91

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

w(u, i,Data, Ch∗, S∗) =
∑︂

(u,i)∈Data,ch∈Ch∗,s∈S∗

αch,s · fch,s(u, i, c) (4.4)

Here, the aggregated value for user u and item i on the data set Data is denoted as
w(u, i,Data, Ch∗, S∗). The data set Data comprises all available user signals as shown
exemplified in Table 4.5. Additionally, the parametersCh∗ and S∗ define the sets of considered
channels and signal types. Furthermore, αch,s defines a weighting for each individual channel
and signal type combination ch and s as a generalization of the previously applied weightings
of 1

3
and 2

3
. At this point,

∑︂

ch∈Ch

∑︂

s∈S

αch,s = 1.

Additionally, a function fch,s(u, i, c) is utilized to map the content c of a signal type s on a
channel ch for a user-item combination to a numerical value, since the individual values are
aggregated. In the following, two functions fos,p and fsm,c are applied to the channel online
shop (os) and social media (sm) considering the signal types purchase (p) and comment (c):

fos,p(B,trousers,3) = 1

fsm,c(C,t-shirt,łGreat t-shirt.ž) = 1

fsm,c(D,pullover,łBad quality.ž) = −1
Here, fos,p, for instance, maps the number of purchased trousers of user B to 1, which, at

least, represents an interest. On the other hand, the function fsm,c considers the comment of
user C regarding a t-shirt and maps it to 1. The critical review of user D is mapped to −1.
In the following, Equation 4.4 is applied to determine the weighted indication of interest for
user C in the t-shirt concerning the previously mentioned channels and signal types.

w(C,t-shirt,Data,{os, sm},{p,c}) =αos,p · fos,p(C,t-shirt,NONE)+
αsm,c · fsm,c(C,t-shirt,łGreat t-shirt.ž)

=
2

3
· 0 + 1

3
· 1 =

1

3

At this point, Ch∗ contains the channel online shop and social media. Furthermore, the
considered signal types S∗ are purchase and comment. The weighting of the signal type
purchase is specified by αos,p =

2
3
and comment by αsm,c =

1
3
on the corresponding channel.

Since no purchase signal is available in this case, the content of NONE is mapped to 0 and the
positive comment to 1

3
. This leads to the overall result of 1

3
.

4.5.4 Sequence-based Aggregation

Another possible aggregation approach could consider the time of occurrence of a user signal.
Considering Matrix 4.2 again, the two conflicting signals of userD regarding the item pullover
represent a good example. In this case, user D initially bought the pullover but afterward

92

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

wrote a bad review about it. Applying an aggregation based on the weightings of the two
signals still results in a positive indication of interest for the pullover, as shown in Matrix 4.3.
However, it would make more sense to rely on the latest signal userD provided. Consequently,
such a time-dependent aggregation leads to Matrix 4.5. As a result, a pullover is definitely not
an appropriate recommendation for user A.

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 1 1
B 1 1 1
C 1 1 1 1
D 1 1 −1
E 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(4.5)

In this sense, the aggregation function can be formulated as shown in Equation 4.6. Here,
latest defines the most recent signal for a user-item combination under consideration of all
available channels and signal types.

w(u, i,Data, Ch∗, S∗) = latest
∀(u,i)∈Data,ch∈Ch∗,s∈S∗

fch,s(u, i, c) (4.6)

Beyond that, it is possible to combine a weighted and time-dependent aggregation function to
weaken or strengthen the most recent user signals since, for instance, a review is considered
to be more important than a purchase.

4.5.5 Generalized Aggregation

The data aggregation can be further generalized to Equation 4.7 to support multiple aggrega-
tion approaches. At this point, the aggregation function in Equation 4.4 is flexible in the sense
that it is able to consider only subsets Ch∗ ⊆ Ch of the available channels or signal types
S∗ ⊆ S. To further extend its generality, in Equation 4.7 it is possible to only examine specific
devices by specifying D∗ ⊆ D. Furthermore, the aggregation function agg is capable to filter
user signals which occur within a certain time interval defined by the input parameters tmin

and tmax. This enables to exclude user signals from the aggregation, which, for instance, occur
a long time ago and consequently are regarded as irrelevant.

w(u, i,Data, Ch∗, S∗, D∗, tmin, tmax) = agg(u, i, ch, s, c, t, d)
∀(u,i)∈Data,ch∈Ch∗,s∈S∗,d∈D∗,t∈[tmin,tmax]

(4.7)

4.6 Benchmarking Process

In Section 4.5, a derivation of recommendations based on different aggregation approaches is
introduced to highlight their impact on the results. In this section, a systematic evaluation
process to benchmark an omni-channel recommender system from a business, user, and
technical perspective is introduced and explained sequentially.

93

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

4.6.1 Overview

Generally, the evaluation process of recommender systems comprises a training and testing
step. Before an evaluation can be performed, it is important to define how to split the data,
what recommender system approach(es) to apply, and what metric(s) to measure. Then, in
the training step, a recommender system approach is applied to a specified train data set to
generate a model. In this context, a model is a mathematical representation, which aims to
characterize a given train data set. Subsequently, in the testing step, this model is utilized to
check its generality on a test data set considering the defined accuracy metric(s), as discussed
in Section 2.5.

Besides accuracy, metrics considering the runtime performance or memory consumption,
as well as the response time and throughput of a recommender system, represent other
important and valuable aspects within the evaluation process. In this regard, it is reasonable
to regard the training and testing step separately to evaluate the effort to generate a model as
well as the generation of the recommendations itself based on the model. This approach is
also applied by MLPerf, as explained in Section 3.5.

Another aspect that is mostly neglected is considering the effort it takes to collect and load
the required data to run a recommender system approach. Consequently, this benchmark
comprises the scenarios of data loading, model training and recommendation generation.

4.6.2 Data Loading

Data loading considers the components and steps of a recommender system to retrieve the
required data for its training. The faster a recommender system has access to the data, the
earlier it can start its training and generate a model, as depicted in Figure 4.5.

Especially for an omni-channel recommender system, which incorporates multiple channels,
it must consider whether the retrieval of additional user signals is worth the effort to request
it. For instance, combining purchase and social media data might lead to better accuracy but
also increases the retrieval time since more data has been requested.

However, this also applies to retrieving only one specific user signal. In this case, it might
be more beneficial only to retrieve the last day, week, or month than the complete data since
its influence on the accuracy is only minimal.
For this scenario, the Response Time (TRes), as well as the Memory Consumption (MCon),

are of interest. TRes, since it expresses the time between requesting and receiving the data.
Also,MCon gives information about the required hardware resources.

The following equations cover these metrics:

eTRes
: Data× {s ∈ S} × {ch ∈ Ch}

eMCon
: Data× {s ∈ S} × {ch ∈ Ch}

After the data has been loaded, a data aggregation approach is applied, and the training
process of the recommender system starts.

94

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

4.6.3 Model Training

To demonstrate the recommender system evaluation process, Matrix 4.1 is extended to Matrix
4.8, denoted as Uos,p, by incorporating additional purchases (p) from the online shop (os).
So now, in contrast to Matrix 4.1, it is known that user A bought a pullover and socks as
indicated by the highlighted values in Matrix 4.8.

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 1 1 1 1

B 1 1 1
C 1 1 1
D 1 1 1
E 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(4.8)

In the first step, a data splitting strategy sp from a set of splitting strategies SP has to be
chosen and applied to generate the previously mentioned train set and test set (Section 2.6.1).
Here, the data set is split by considering the purchase date of the items, assuming that pullover
and socks are the most recently purchased ones. The result are the train data set UTrain

os,p and
the test data set UTest

os,p as depicted by the Matrices 4.9 and 4.10. To illustrate the dimensions of
a real-world test data set, the complete Matrix UTest

os,p is depicted, although it only contains the
two purchases of user A.

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 1 1
B 1 1 1
C 1 1 1
D 1 1 1
E 1 1

⎞

⎟

⎟

⎟

⎟

⎠

(4.9)

⎛

⎜

⎜

⎜

⎜

⎝

t-shirt trousers jacket pullover socks

A 1 1
B
C
D
E

⎞

⎟

⎟

⎟

⎟

⎠

(4.10)

In the next step, the train data set is used as input for a recommender system approach,
e.g., user-user based Collaborative Filtering, short uu, as introduced and explained in Section
2.4.1. Since the algorithm is based on determining a neighborhood of similar users, a set of
parameters P , e.g., the neighborhood size k and the minimum similarity sim among them,
have to be specified. In this case, k is set to 2 and a user considered as a neighbor when a
similarity of at least 0.49 is given, which leads to the following function:

uu : UTrain
os,p × {k = 2, sim = 0.49} ↦→ θos,p

The result of running the algorithm uu on the data UTrain
os,p and parameter set P is the model

95

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

θos,p. At this point, for instance, the CPU runtime to generate the model θos,p is measured in
milliseconds on the given recommender system approach uu by applying:

eCPU : uu× UTrain
os,p × {k = 2, sim = 0.49} ↦→ R+.

4.6.4 Model Testing

In the testing step, the model θos,p can be further evaluated under accuracy and performance
aspects. Here, the runtime to generate the recommendations is determined by the following
evaluation function:

eCPU : θos,p × UTest
os,p × {nrecs = 3} ↦→ R+.

Here, in contrast to the first evaluation function, the model θos,p, the test data set U
Test
os,p and

the number of recommendations nrecs to generate are required to measure the CPU runtime,
since they all have an impact on it.

Considering the accuracy, the model θos,p is evaluated based on the test data set UTest
os,p and

a set Ma of accuracy metrics, for instance, normalized Discounted Cumulative Gain (nDCG)
to measure the recommendation quality, as discussed in Section 2.5. In addition, the number
of recommendations nrecs to generate as a ranked list is set to 3. The following evaluation
function e shows its application given the mentioned parameters:

enDCG : θos,p × UTest
os,p × {nrecs = 3} ↦→ R+.

The provided recommendations by the model θos,p based on algorithm uu for user A
are jacket and pullover in this particular order. Unfortunately, no third product could be
recommended, given the current configuration. Comparing the items within the ranked
recommendation list to the items user A purchased results in an nDCG value of 0.5. In this
context, a higher value implies a better recommendation result. The low nDCG value has two
reasons. First, the user A is recommended a jacket, even though he or she did not buy one in
the future. Second, the jacket is also ranked high in the recommendation list, decreasing the
nDCG value.

Applying the recommender system approach uu on the aggregated data of the online shop
and social media channel as illustrated in Matrix 4.2 leads to the following equation:

uu : ATrain
agg × {k = 2, sim = 0.49} ↦→ θagg

In this case, ATrain
agg denotes the aggregated train data set based on applying an aggregation

function agg. In doing so, a model θagg is trained, which changes the ranked list of recommen-
dations for user A to jacket, socks, and pullover. Consequently, the result of the evaluation
function e based on the algorithm uu and the metric nDCG increases to 0.82. This is a sig-
nificant improvement compared to the previous result of 0.5. Therefore, from the accuracy
perspective, in this example, it makes sense to incorporate the social media channel data into
the training step.
Taking the CPU runtime performance into account, no measurable difference could be

96

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

recognized due to the small number of users and items in this example. However, this must not
always be the case since the number of incorporated signals may increase the computational
effort in determine neighborhoods for uu. This means that a higher accuracy may not be
worth the high demand for computation.

To sum up, the goals of this example were to check whether the incorporation of the social
media channel improves the recommendation results, based on the accuracy metric nDCG
considering the CPU runtime during the train and test step. Having said that, the goals of the
evaluation are defined in the following mathematical representations:

eCPU : uu× ATrain
agg × {k = 2, sim = 0.49} ≈ eCPU : uu× UTrain

os,p × {k = 2, sim = 0.49}

eCPU : θagg × ATest
agg × {nrecs = 3} ≈ eCPU : θos,p × UTest

os,p × {nrecs = 3}
enDCG : θagg × ATest

agg × {nrecs = 3} > enDCG : θos,p × UTest
os,p × {nrecs = 3}

Nevertheless, some users of the benchmark might focus on accuracy aspects, neglecting
performance. In such cases, the corresponding functions are simply not applied during the
evaluation process. Even more importantly, some of the goals may be conflicting and need to
be prioritized by the given criteria. Consequently, a well-defined balance in the selection of
suitable metrics to evaluate and compare, in other words, to benchmark a recommender SUT
is of importance. This leads to a flexible, customizable, and comprehensible benchmark.
With the example in mind, the evaluation process can be further generalized to support

the evaluation of various data aggregation functions and their resulting data sets. Therefore,
initially, an aggregation function agg, as explained in Section 4.5, has to be applied to the
available dataData. At this point, it must be noted that in contrast to the classical evaluation
process, the prediction target of the recommender system has to be defined in advance.
Basically, in the classical evaluation process, one signal type is used for training and testing
the recommender system. For instance, training a recommender system based on purchase
data aims to predict whether to recommend a product. Considering multiple signal types, this
must not hold. This is based on the fact that the aggregated data sets incorporate various
channels and their user signals. Consequently, the goal of a recommender system might range
from predicting social media engagement to newsletter interactions or product purchases.
Then, first, a data splitting approach sp from a set SP of splitting approaches has to be

selected and applied to the aggregated data sets Aagg to produce the corresponding train and
test data setsATrain

agg andATest
agg . Since the evaluation process to find an appropriate aggregation

function may involve adapting the aggregation function, the same splitting approach sp has
to be applied to achieve a fair comparison, as illustrated in the following:

sp : Aagg ↦→ (ATrain
agg , ATest

agg).

Based on a given data set Aagg, various recommender system approaches rs of a set RS
of recommender system approaches can be applied to the aggregated train data sets ATrain

agg .
Additionally, a corresponding set of parameters Prs for the selected recommender system

97

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

approach rs has to be defined and applied, which leads to:

rsagg : A
Train
agg × Prs ↦→ θagg,rs,Prs

.

The result is a model θagg,rs,Prs
for the combination of the aggregated data set, recommender

system approach and its parameters. As explained in the example, a performance metricm of
a set Mp, for instance, CPU runtime or memory consumption, can be used to measure the
model generation for a specific recommender system approach rs by:

em : rs× ATrain
agg × Prs ↦→ R+.

Furthermore, a model θaggi,rs,Prs
is evaluated by a generic evaluation function e considering

a metricm of a setM = Ma ∪Mp of metrics to measure its accuracy and performance based
on a test data set ATest

agg and a set Prs of parameters of how to generate recommendations, as
illustrated in the following:

em : θagg,rs,Prs
× ATest

agg × Prs ↦→ R+.

Finally, the results of different recommender systemswith varying parameter configurations
and train data sets based on various aggregation functions have to be compared to find the
most suitable one for the given application domain considering the available channels and
signals.
Additionally, the evaluation process may involve comparing the results to an existing

or already implemented recommender system rse, which is capable of dealing with the
representation of the aggregated data sets. Considering such a recommender system as a
black box, its recommendations could be used as a baseline to check whether a new approach
makes sense regarding accuracy and performance.

4.6.5 Benchmark Components

System under Test

According to Section 3.6.1, a benchmark has to define the components comprising the SUT
clearly and appropriately. Considering the introduced scenarios of the benchmark, the first
component represents a storage system for the signals based on the data model in Section 4.2.
The second component of the SUT is the considered recommender system approach. Conse-
quently, the third component of the recommender system is the model of the recommender
system. Another component is responsible for deploying the model and generate recommen-
dations based on user queries.

Benchmark Driver

As illustrated in Figure 4.5, the benchmark driver orchestrates the SUT and the data generation
based on a provided configuration of the benchmark user. Considering the SUT, the benchmark
driver coordinates the steps in the benchmarking process. This includes to execute the
loading of the data (Section 4.6.2) for the first workload and prepare it for the model training
(Section 4.6.3) by applying the data aggregation and data splitting. Last, the benchmark driver

98

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

takes care of requesting recommendations on the generated model.

System under Test

Scenario 2

Scenario 1

Data GeneratorA Services' Own or Public
Data

Extract/Transform/Load
(ETL)

Interface

Storage
Data AggregationData Loading

Splitting

Recommender System
Approach Model

Result Generation

Recommendations Training
Data

 Testing
Data

Configuration

Request Recommendations

Benchmark Driver

Configuration

Scenario 3

Figure 4.5: An overview of the benchmark concept. The benchmark driver (green rectangle)
orchestrates all components and process steps during the benchmark execution
based on a specific configuration. Top left (red rectangle) are the data components
as discussed in Section 4.3. The SUT (grey rectangle) comprises data storage as
well as the data aggregation (Section 4.5) and splitting steps. Furthermore, the
recommender system approach (Section 2.4.1) and its model are part of the SUT.
In addition, the three blue rectangles highlight the components and steps of the
three scenarios.

Configuration

In this context, the configuration contains specifications for the data generation, such as the
channels and the corresponding signals. For each channel, a distribution function has to be
defined to generate a realistic number of signals, as discussed in Section 4.3.2. Additionally,
the number of users and the number of items has to be specified. Furthermore, the config-
uration includes the applied data aggregation approach and its required parameters, such
as the weightings for the channels (Section 4.5). The utilized splitting method is part of the
configuration, too. Also, the recommender system approach and its required parameters are
defined in the configuration. Besides, the configuration includes parameters to specify which
metrics are determined during the execution. Finally, the number of recommendation requests
for the users and their frequency is configured. To enable non-technical users to specify the
benchmark, its configuration has to be provided in a readable format such as XML, JSON, or

99

4 A Benchmark Concept for Recommender Systems based on Omni-Channel Data

YAML.

Results

Since the benchmark considers different aspects and consequently delivers multiple metrics,
the representation of the results is important. In this sense, besides representing the results
by numbers, it is also valuable to provide a visual representation, for instance, in the form of
a radar chart. Furthermore, to support an analysis of the results, they have to be provided in
a standardized form. Besides the results of the pure metrics, it also beneficial to provide the
generated recommendations for the users. This enables the benchmark user to compare the
recommender system approaches on a user basis, for instance, by checking how the generated
recommendations differ. In this context, possible representations might be a relational database
or a tabular format, such as an Excel sheet or CSV file.

100

5 Implementation of the Recommender

System Benchmark

In this chapter, the benchmark concept introduced in Chapter 4 is explained and implemented.
First, an overview of the modular implementation of the benchmark concept and how the
modules relate to each other is given.

Then, the modules, namely, data loading, data preprocessing, data aggregation, data splitting,
algorithms, evaluation, configuration and visualization are explained. This primarily involves
elaborating on the implemented splitting and aggregation methods as well as the applied
algorithms and metrics.

5.1 Overview

The benchmark implementation comprises a data loading, data preprocessing, data aggregation,
data splitting, algorithms, evaluation, configuration and visualization module. To make the
benchmark adaptable and extensible by a broad target audience, its implementation is based
on Python. Python is easy to learn and, thereby, a widely-used programming language. This
popularity especially holds for the field of data analysis and ML, to which recommender
systems are addressed. Another advantage of Python is that it enables the benchmark to run
on nearly every operating system, for instance, Microsoft Windows, Linux, or MacOSX. This
fulfills the requirement for a benchmark to be portable.
Each module is responsible for one specific task. The data loading module provides func-

tions to load the data from a source and transform it into the appropriate format. The data
preprocessing module contains essential functions to manipulate the data. In the data ag-
gregation module, functions to combine the different user signals are provided. In the data
splitting module, functions to create train and test data sets are implemented. The algorithms
module represents a wrapper to run already implemented recommender system algorithms.
An evaluator in the evaluation module measures and updates the different metrics during
the benchmark execution. Besides, a visualization module is available to save the benchmark
results as figures. Finally, the configuration module represents a convenient way to load
the benchmark and algorithm configurations. It is planned to publish the benchmark as an
open-source project on GitHub as soon as it leaves its prototypical state. An overview of the
described modules is depicted in Figure 5.1.

5.2 Modules

In the following section, the modules of the benchmark concept are described and explained.

101

5 Implementation of the Recommender System Benchmark

Data Loading Module

Data Preprocessing Module

Data Aggregation Module

Data Splitting Module

Configuration Module

Algorithms Module

Visualization Module

Driver

Evaluation Module

Figure 5.1: An overview of the modules and how they relate to each other. The arrows
indicate the method call flow.

5.2.1 Data Loading

The data loading module is responsible for loading the required data from a specified data
source. Therefore, a connection to the relevant database has to be established by this module.
Due to the vast amount of different databases and interfaces, it might be required to customize
the module’s implementation to load the data. However, the effort for such an implementation
is manageable since most databases provide Python libraries to connect to them. In the current
implementation the loading is supported for the MySQL database and CSV files. The resulting
format is a Pandas dataframe structure, which can be considered a table representation of the
data.

5.2.2 Data Preprocessing

This module’s functions provide easy manipulation and filtering of the data build on the
Python Pandas library and its dataframe structure. First, this includes the transformation of
the different data structures into appropriate data types. For instance, convert user and item
information into numerical types and dates represented by strings into a corresponding date
type. Furthermore, recommender system algorithms often require users and items to be stored
sequentially. Therefore, the module implements functionality to support this task. Besides,
functions to filter the data for a specific time interval or individual ratings are part of the
module. Finally, it is possible to group users and items in the data set.

102

5 Implementation of the Recommender System Benchmark

5.2.3 Data Aggregation

The data aggregation module provides two functions to aggregate the data, which are based
on the idea elaborated in Section 4.5. The first function weights the different channels based
on a given configuration. It is possible to specify an individual weight for a channel or even
for a specific signal type (Section 4.5.3). The second function considers the timely occurrence
of the user signals, keeping the latest for the further process (Section 4.5.4). To do so, the
user signals are first sorted by their date, and then the duplicates are removed from the date,
whereas the last one is kept. Here, a duplicate constitutes equal user-item signals. In doing so,
the latest user-item signal remains in the data.

5.2.4 Data Splitting

The splitting methods implemented in this module are not part of most recommender system
evaluations and are also not implemented in the libraries introduced in Section 2.7. Themodule
contains two splitting methods, namely, mask-based and time-based. Their implementations
are based on the explanations in Section 2.6.1 but are outlined in more detail here.
During the analysis of the online retailer data (Section 6.1.3), it became apparent that the

same customer-product interactions appear multiple times. This is because some customers
send a product back to the retailer, which resulted in negative values.

Another reason for that is the incorporation of additional user signals from other channels.
Here, a customer might purchase and like an item leading to two user signals. Therefore, after
a data aggregation method has been applied, in the case of mask-based splitting, all user-item
signals are summed up to represent only one value. If the resulting value is negative, this
user-item signal is neglected in the following, as depicted on the left-hand side of Figure 5.2.
In the case of time-based splitting the situation is slightly different, as illustrated on the

right-hand side of Figure 5.2. Since the user signal dates are considered, the initial data set is
first separated by a specified date. Then, for each data set, equal user-item signals are summed
up and represented as one value. Finally, negative values are neglected.
A percentage value is used to split the data into a train and test set in both cases. For the

time-based method, the percentage relates to the number of days within the configured time
interval. Finally, the splitting module takes care of transforming the user and item names
into a sequential numeric representation required by most recommender system algorithms
applied in the following.

Besides, it is possible to define whether values in the train and test set should be considered
as binary values. Binary values indicate relevance for an item and are, therefore, potentially
more suitable for implicit user signals.
Applying the notation of the benchmark concept leads to the following set of splitting

methods:

SP = {mask-based, time-based}

103

5 Implementation of the Recommender System Benchmark

Figure 5.2: An overview of how themask-based (left) and time-based (right) splittingmethods
process the initial utility matrix. The red object stores, which represent the matrix,
are not named to keep the model clear. However, according to the activity name,
the matrix changes. For instance, the activity Remove Non-Zero Entries generates
a new matrix without zero entries.

5.2.5 Algorithms

The algorithms applied in this benchmark are Alternating Least Squares (ALS), Bayesian
Personalized Ranking (BPR), Item-based CF (II), Singular Value Decomposition (SVD) and Co-
Clustering (CoC). For the application of ALS and BPR, their Python implementations from the
Implicit library are used. BPR is included additionally, since it is classified as an approach,
which is specifically suited for implicit user signals, as discussed in [RFGST09]. Besides, the
LensKit implementation of the II is part of the benchmark. Furthermore, the Surprise library
provides the implementations of CoC and SVD, which are also used. Additionally, two baseline
algorithms are applied, referred to as Random (RAN) and Popularity (POP). In the former case,
products are randomly selected for each customer from the product catalog and are afterward
compared with the products purchased by the customers. In the latter case, the popularity of

104

5 Implementation of the Recommender System Benchmark

an item is based on the number of users who show a preference for it. In this approach, only
one user preference contributes to the overall popularity of an item, although the user has
shown multiple preferences by viewing, clicking, purchasing, or liking the item. Accordingly,
the set of considered algorithms is defined as:

RS = {ALS, BPR, II, SVD,CoC, RAN, POP}
Furthermore, the benchmark focuses on the influence of the different aggregation methods

considering the channels and signals; therefore, the default parameters of the considered
algorithms are used in the benchmark. In Table 5.1 an overview of the parameters is given. An
exception is the center setting of II, which is disabled in the default configuration for binary
training, since a centering with 1-entries does not make sense. The algorithms are also defined
to return a list of the ten most appropriate products for each customer. In other words, the
top-N recommendations withN = 10 are considered, which reflects typical implementations
of recommender systems.

Another important fact is that the algorithms, by default, are allowed to recommend items
a user already showed an interest in in the past. This is based on the data analysis of an online
retailer in Section 6.1.3, where about 8.5% of transactions have been repurchases of customers
for the same product. This scenario might be unique for online retailing or in e-commerce but
might not hold for other application domains. Consequently, this option can be defined in the
configuration file of the benchmark. Nevertheless, a user of the benchmark can configure the
algorithm parameters as he or she likes by changing the corresponding configuration files.

Table 5.1: An overview of the applied algorithms, the used abbreviations, their default param-
eters, the number of recommendations, and the utilized libraries. Here, f specifies
the factor size, e the number epochs, l_r the learning rate, u_c the number of user
clusters and i_c the number of item clusters.

Algorithm Parameter Set Top-N Library

Alternating Least Squares (ALS) {f = 100, e = 20} 10 Implicit

Bayesian Personalized Ranking (BPR) {f = 100, e = 20, l_r = 0.01} 10 Implicit

Item-based CF (II) {k = 10, center} 10 LensKit

Singular Value Decomposition (SVD)
{f = 100, e = 20, l_r = 0.005, 10 Surprise
biased=True}

Co-Clustering (CoC) {u_c = 3, i_c = 3, e = 20} 10 Surprise

Popularity (POP) {} 10 LensKit

Random (RAN) {} 10 LensKit

105

5 Implementation of the Recommender System Benchmark

5.2.6 Evaluation

The following metrics are part of the evaluation module to benchmark the recommender
system from a technical, business, and customer perspective. The technical metrics are
Response Time (TRes) and runtime in milliseconds. In this regard, the runtimes of loading the
required data (TLoad), training a model (TTrain), and testing a model (TTest) are measured
individually. The TRes is measured by considering the time it takes for a model to generate
the recommendations for a specific user. In this case, these are method calls of the utilized
recommender system libraries. In the end, the average TRes per user is determined by the
evaluator. The customer perspective is covered by the metrics nDCG and MRR to evaluate
the accuracy of the provided recommendations. From the business perspective, the Catlog
Coverage (CatCov) is considered since it enables a company to check whether certain items
are not relevant at all and mostly neglected by most evaluation libraries and frameworks.
Furthermore, the evaluator discriminates between the absolute and relative CatCov. Denoted
as CatCova and CatCovr, respectively. The CatCova is the ratio of all items in the product
catalog to the ones in the user recommendations, whereas CatCovr is the ratio of those in
the test data to the ones in the user recommendations. To determine the metrics, the evaluator
works on the generated recommendation list and the real user preferences given by the
test data. Consequently, the accuracy, non-accuracy, and performance metrics discussed in
Section 2.5 are defined as follows:

Ma = {nDCG,MRR}

Mna = {CatCova, CatCovr}

Mp = {TRes, TLoad, TTrain, TTest}
Besides, the evaluator collects basic information about the considered data, such as the

number of users and the number of items. Beyond that, for each algorithm, the number of
unique items and the number of users receiving no recommendations are presented.

5.2.7 Configuration

The configuration module loads a configuration file for the execution of the benchmark. The
chosen file format is JSON since it is commonly used as well as easy to read and maintain.
Furthermore, it enables even non-technical users to run the benchmark since its execution
is based on this configuration. In doing so, the benchmark satisfies the requirement to be
easy to use. The configuration file contains parameters for the applied algorithms as well as a
configuration for the benchmark. For the load module, it specifies the time interval of the
data to consider. For the aggregationmodule, it specifies the method to use and how to weight
the channels. For the splitting module, it contains the split method and the corresponding
distribution of train and test data. In addition, it is possible to define if the train and test data
should be binarized. The algorithm parameters are, for instance, the number of neighbors in
case of II, the factor size in case of ALS and SVD, or the cluster sizes for CoC. It is also possible

106

5 Implementation of the Recommender System Benchmark

to specify whether it is allowed to recommend items a user already showed a preference for.

5.2.8 Visualization

The visualizationmodule provides an easy way to analyze the benchmark results by generating
figures for each considered metric depending on the applied algorithm. It generates bar charts
where the x-axis denotes the algorithm, grouped by the split method, e.g., mask-based or
time-based. The y-axis represents the corresponding metric, e.g., TRes, TLoad TTrain, TTest,
nDCG, MRR, or the CatCov. The implementation is based on the Python library Seaborn.

107

6 Application of the Recommender

System Benchmark

In this chapter, the benchmark is applied to a real-world data set from an online retailer
covering the e-commerce application domain. This application extends the initial evaluation
presented in [CHTV19].
At the beginning, an analysis of the real-world data of the online retailer is given. This

analysis includes an overview of the available channels and signal types, as well as customer
behavior and product information.
Then, the benchmark is applied, and its results are discussed from a technical, business,

and customer perspective. Here, the technical perspective considers the loading time and
response time. From the business perspective, the catalog coverage is examined. MRR and
nDCG cover the customer perspective.

6.1 Analysis of the Online Retailer Data

This section provides some background information about the collaboration between the
University of Münster and the online retailer, the channels and signal types, as well as an
analysis of the provided data. Then, the applied data processing steps are explained, followed
by a description of the considered data for the benchmark execution.

6.1.1 Collaboration Context

In 2016, the ERCIS and Arvato CRM Solutions initiated the project ERCIS Omni-Channel Lab
powered by Arvato1. The collaboration combined research and teaching knowledge from
academia with practical experience by an industrial business process outsourcing company.
The overall goal of the collaboration was to investigate how to combine customer information
distributed over several isolated systems in order to improve Customer Relationship Manage-
ment (CRM) and customer service in particular. To do so, the team comprised researchers from
the areas statistics, processes and data covered by the chairs Information Systems and Statistics,
Information Systems and Information Management as well as Computer Science. During the
project, the research team had the opportunity to work with a business partner of Arvato.
The business partner was an online retailer interested in improving its recommender system.

1https://omni-channel.ercis.org/

108

https://omni-channel.ercis.org/

6 Application of the Recommender System Benchmark

6.1.2 Channels and Signal Types

The online retailer uses various channels to reach its customers. First, the online retailer
offers its goods by classical brick and mortar stores. Here, the customers are tracked by the
unique MAC addresses of their smartphones, which are broadcasted to the WiFi routers
in the stores. Besides knowing what products a customer bought, this additionally enables
the online retailer to record the time a customer spent in the store. Furthermore, an online
shop is available to provide timely unrestricted and convenient access to its products. At this
point, besides collecting customer purchases, the application of cookies enables to track a
customer’s browsing and search behavior. In the following, these signals are considered to
be part of the channel weblog since they are collected by the retailer servers. Moreover, the
online retailer uses social media to keep its customers updated by posting product promotions
and campaigns, and general information on its Facebook channel. In doing so, the online
retailer increases its customer’s engagement by enabling the customers to like, comment,
and share the provided content. Accordingly, these signals are assigned to the channel social
media. Also, the online retailer regularly sends newsletters to its customers via email. In this
regard, the online retailer collects whether a newsletter was sent to a customer, opened by
a customer, or clicked by a customer. Opening and clicking a newsletter are considered as
signals, which indicate an interest in its content. These signals are associated with the channel
email.

6.1.3 Data Analysis

The data sets are provided as CSV files containing the catalog of the online retailer, customer
tracking information of the stores, and purchases made by the customers. In addition, the
weblog, as well as comments and likes on Facebook, are available. Furthermore, the newsletter
interactions are part of the data set. In Figure 6.1 the time intervals of the data are depicted.

Products

The catalog data contains approximately 30,000 different products in total. Considering the
interval of the available purchase data from June 2014 to December 2017, the number of
products is roughly 11,000. A product is described by a unique identifier and metadata such
as a description, product collection, product model, and product color.

Stores

Furthermore, the data set provides information about customers visiting the online retailer’s
brick and mortar stores. The data is collected by using the MAC addresses of the customers’
smartphones during their visit. At this point, the time entering and leaving a store is recorded.
The available data covers a time interval from May 2016 to May 2017. In this time interval,
3,500 customers with smartphones visited the stores. The average stay of a customer was
approximately 230 seconds. A reason for such a short average duration might be given by
the fact that people simply just pass the store without the goal of entering it. From the 3,500
collected customers 2,500 have a duration time larger than 0. Considering these customers,
the average stay increases to 473 seconds, roughly 8minutes. Unfortunately, the data collected
asWiFi-Logs in the stores could not be utilized in the further process since it does not intersect

109

6 Application of the Recommender System Benchmark

Figure 6.1: The available data sets and the time intervals they cover.

with the other data, as illustrated in Figure 6.1.

Purchases

The purchase data covers a time range from June 2014 until December 2017. In total, the data
has 4,800,000 entries with approximately 2,200,000 orders, whereas an order contains one
or multiple products and the purchased quantity. Considering identifiable customers, the data
contains purchases of approximately 500,000 customers for nearly 11,000 different products.
The maximum number of purchases is about 1,650 and 1 is the minimum number. Roughly
20% of the 500,000 customers purchased only one product of the catalog. On average, a
customer bought about seven different products.

Weblog

The weblog data contains data collected by the server hosting the online shop of the online
retailer. In this sense, it is a collection of browsing and searching behavior of the customers.
The data covers a time range fromMay 2017 until January 2018 and contains 9,000,000 entries
in total. To gain useful insights from the data, it has to be processed, as will be explained
in Section 6.1.4. The number of unique customers, determined by cookies, in the data set is
237,856.

Social Media

The social media data contains likes and comments of customers on photos, videos, links,
status, and notes on the company’s Facebook page. Here, the total number of provided media
content of the online retailer is 2,539 in which 1,612 are photos, 120 are videos, 405 are links,
398 are status, and 4 are notes.

110

6 Application of the Recommender System Benchmark

Table 6.1: Two exemplary HTTP-requests illustrating the structure of the weblogs. The
name of the online retailer as well as the product name have been replaced by
online-retailer and blanket, respectively.

Type HTTP-request

Website visit https://www.online-retailer.com/blanket-model-number.html

Product search https://www.online-retailer.com/?q=blanket

The likes data on social media covers a time range from March 2011 until December 2017.
The total amount of customers liking one of the different media content types is approximately
25,000. The maximum number of likes made by a customer is 972, and the minimum number
is 1. On average, a customer liked about five different media contents posted by the online
retailer.

The comments data on social media covers a time range from March 2011 until December
2017. The total amount of customers commenting on one of the different media content types
is approximately 1,500. The maximum number of comments made by a customer is 234, and
the minimum number is 1. On average, a customer commented about three different media
contents posted by the online retailer.

Email

Besides, the data set contains newsletter information classified into whether it was sent,
opened, or clicked. At this point, the data covers a time range from May 2017 until June 2017.
In this regard, about 254,000 customers received a newsletter, 68,000 opened it, and 15,000
clicked on its content. In total, 775,000 newsletters were send, 176,000 were opened, and
29,000 were clicked in that time. Furthermore, 10 different newsletters have been sent to the
customers weekly in the considered time interval.

6.1.4 Data Preprocessing

Weblogs

To incorporate the weblogs as additional information into the recommender system, it must
be preprocessed first. The weblogs collect all customer interactions in the online store. These,
for instance, include a customer’s browsing behavior as well as his or her product searches.
To extract this information from the weblogs, regular expressions have been applied to the
data to discriminate entries as either website visits or product searches and associate the
results with products in the catalog. In Table 6.1 two exemplary entries illustrate the structure
of the HTTP-requests. The customers in the weblogs are linked to the customers in the data
by considering their devices’ stored cookies.

Social Media

The available media content on the Facebook channel includes photos, videos, links, and
status, which are liked or commented on by the customers. As discussed in Section 2.3 such
signals would generally represent an explicit customer signal since the customer explicitly

111

6 Application of the Recommender System Benchmark

likes or expresses his or her opinion about the provided media content. In this scenario, this
does not hold since the provided media content includes various products. On Facebook, a
company can tag specific products within a photo. For instance, a posted photo may illustrate
a living room with a couch, a blanket, and a candle from the catalog. Consequently, a like of a
customer cannot be associated with exactly one product. Nevertheless, Facebook provides
an API to extract the tagged products within the photo. Utilizing this API, the product
names are extracted and associated with the catalog by applying a string matching approach.
Besides, videos and links are associated with products considering their descriptions. A simple
name matching achieves the association of customers using Facebook to the customers in
the database. The described method can extend the purchase data by implicit feedback of
customers using Facebook.

Newsletter

Moreover, the interaction of customers with newsletters is utilized as an additional data source.
Unfortunately, it is unclear which product of the newsletter has been clicked by a customer,
but only that the newsletter was clicked at all. In this case, a newsletter’s header information
is extracted and associated with possible products in the catalog by string matching. This
leads to an indication of interest in the products, but with less confidence.

Product Matching

As explained for weblogs, social media, and newsletters, a preprocessing step is required
to benefit from these additional sources since no direct association with a product is given.
To generate this association, the extracted strings are compared to products in the catalog.
For this reason, the string matching approach token set ratio has been applied. Compared to
similarity measures such as the Levenshtein distance, the token set ratio works for strings of
different lengths and word orders. Furthermore, it also supports partial matches. In the process,
a string is first separated into words and then split into an intersection and two remainders,
as illustrated for the words X and Y in the Equations 6.1, 6.2 and 6.3. As indicated by sort,
each set is ordered alphabetically to handle different word orders. The pairwise similarity is
defined as 2·M

T
, where M is the number of matches and T the number of characters.

t0 = sort(X ∩ Y) (6.1)

t1 = t0 + sort(X \ t0) (6.2)

t2 = t0 + sort(Y \ t0) (6.3)

An example of the sets t0, t1 and t2 for X=łblue blanketž and Y =łgrey blanketž is given
in Table 6.2. Here, the pairwise comparisons lead to the following scores: sim(t0, t1) = 0.74,
sim(t0, t2) = 0.74 and sim(t1, t2) = 0.75. Considering the former score, it is determined as
2·9

12+12
where 12 is the length of t1 and t2. The 9 matching characters are based on the match

of the term łblanketž in t1 and t2 having 8 common characters as well as the partial match of
łež in łbluež and łgreyž.

112

6 Application of the Recommender System Benchmark

Table 6.2: The following example illustrates the application of the token set ratio on the
words X=łblue blanketž and Y =łgrey blanketž.

Tokens

t0=sort({łbluež, łblanketž} ∩ {łgreyž, łblanketž})=łblanketž

t1=łblanketž + sort({łblue", łblanketž} \ {łblanketž})=łblanket bluež
t2=łblanketž + sort({łgreyž, łblanketž} \ {łblanketž})=łblanket greyž

6.1.5 Considered Data

The time interval covering most of the channels’ available data is from May 2017 to January
2018. Considering the mentioned time interval, the considered data contains the following
information, as illustrated in Figure 6.2.

Purchases

In this case, the total number of purchases in the data set is 643,409, which are part of 316,790
orders. Considering the identifiable customers and purchased products, the data set contains
170,000 and 6,000, respectively.

After removing products with negative quantities from the data and grouping and summing
by customer-product combinations, the number of interactions was 588,168. From the 170,000
customers nearly 56,000 purchased only one product.

Weblog

The time range of the weblogs covers the considered time interval, such that the previously
provided information is still valid. The number of preference indicators could be increased by
applying the string token ratio approach on the server log files.

After doing this, the number of website visits inferred by the weblogs was 2,410,111, and the
number of searches 48,127. After grouping and summing by customer-product interactions,
there were 325,329 website visits and 7,511 searches.

Social Media

For the time between May 2017 and January 2018, roughly 25,000 entries are available from
the likes data. These entries cover likes of 232 different media contents from approximately
6,700 customers.
The number of entries in the comments data is 760. Here, the comments are placed on

approximately 232 media content from roughly 402 customers.
Applying the set token ratio, the total number of inferred preferences by comments and

likes was 5,834 and 390,828, respectively.
In the specified time interval, likes contributed 189,559, and comments contributed 45 addi-

tional preference indicators after grouping and summing by customer-product combinations.

Email

The number of sent, opened, and clicked newsletters remains the same as described in
Section 6.1.3. Here, 544,075 preferences could be inferred from opened newsletters and 28,359

113

6 Application of the Recommender System Benchmark

Figure 6.2: The inferred preference indicators among the provided channels.

from clicked newsletters.

6.2 Application of the Benchmark to the Online Retailer

Data

In this section, the different workloads are executed and the results are presented. Before that,
the general setup of the benchmark is explained, which includes the utilized notation and the
specification of the testing environment.

6.2.1 General Setup

Notation

At this point, the available channels Chor and signal types Sor are summarized in Table
6.3. Here, the or denotes the online retailer. Additionally, the abbreviations of the channels
and signals used in the further process are listed in Table 6.4. In this regard, ∗, ∗ denotes a
shorthand notation for all channels and all signal types.

In addition, the algorithms are abbreviated as Alternating Least Squares (ALS), Bayesian Per-
sonalized Ranking (BPR), Item-based CF (II), Singular Value Decomposition (SVD), Co-Clustering
(CoC), Popularity (POP), and Random (RAN).

114

6 Application of the Recommender System Benchmark

Table 6.3: The table summarizes the channels and signal types provided by the online retailer.

Entity Value

Chor {online shop, brick and mortar, weblog, social media, email}

Sor

{purchase, view, search,
comment, like, visit,
open newsletter, click newsletter}

Table 6.4: Overview of the channels and their corresponding signal types used by the online
retailer. Furthermore, their abbreviations are listed. To represent all channels and
signal types, the shorthand notation ∗, ∗ is used.

Channel Signal type Abbreviation

online shop purchase os,p

brick and mortar stores
visit bm,v
purchase bm,p

weblog
view wl,v
search wl,s

social media
comment sm,c
like sm,l

email
open newsletter em,o
click newsletter em,c

all all ∗, ∗

Furthermore, the labelling of the algorithms in the resulting figures has to be explained,
which makes use of the following pattern:

{alg}_{os}_{wl}_{em}_{sm}_{agg}_{b}
for which

als_40_30_20_10_w_b

may serve as an example in the following sense: The first letters represent an abbreviation
for the algorithm, for instance, ALS. Then, the used weighting of the considered channels and
the applied aggregation method follow, for instance, 40 for online shop, 30 for the weblog, 20
for email, and 10 for social media. At this point, w stands for the weighting-based aggregation,
whereas a s for the sequence-based. At the end, the b indicates whether the model training is
based on a binary representation of the data.

115

6 Application of the Recommender System Benchmark

Testing Environment

The testing environment specifies the hardware resources the SUT was deployed on. For
the benchmark execution, a single system is utilized. The operating system installed on the
system is Windows 8.1 Enterprise Edition (64-bit). Besides, the system includes an Intel(R)
Core(TM) i7-6700 CPU with 8 Cores and 16 GB main memory. Furthermore, an Intel(R) HD
Graphics 530 graphic card is part of the system.
For extracting, transforming, and loading the CSV files Pentaho was used. The database

access during the benchmark execution has been simulated through the usage of a locally
stored CSV file containing all needed customer and product signals. Besides, Python 3.8.5 is
installed with the following libraries: Pandas (1.1.0), NumPy (1.19.1), Cython (0.29.21), Implicit
(0.4.2), LensKit (0.10.1) and Surprise (1.1.1). The Pandas library is used to load the CSV file.

Configuration

In the following benchmarks, some configurations are always applied in the same way and
should be mentioned. The first configuration relates to the distribution of the training and
testing data. Considering themask-based splitting, the training data contains 80% of the initial
data. For time-based splitting, the training data covers 80% of the days between the minimal
and maximal date within the initial data. Furthermore, in all cases, the testing data is given in
binary form. This representation means that it only contains zero or one values where one
indicates a product’s relevance for a customer. For the training data, different configurations
are applied and will be explained for each benchmark separately. Besides, for all benchmarks,
the time interval from 2017-05-05 to 2018-01-30 is considered. To recall, the applied metrics
by the benchmark are summarized in Section 5.2.6 and explained in Section 2.5.

6.2.2 Binary Aggregation on Purchase Data

This approach investigates the channels online shop and brick and mortar store and the signal
type purchase.

Applying this to Equation 4.7 leads to:

w(u, i,Data, {os, bm}, {p}, 2017-05-05, 2018-01-30) =
∑︂

(u,i)∈Data,ch∈{os,bm},s∈{p}

fch,s(u, i, c)

Here, the function fch,s(u, i, c) returns the amount of purchases. In the following, all aggre-
gated values w(u, i) larger than 0 are set to 1.

Result Analysis

In case of time-based splitting the number of customers in the test set are 16,828 and 59,960
in case of mask-based splitting. In both cases, the number of products is 5,787.
Considering the number of customers without recommendations in Figure 6.3a, only II

stands out by leaving 29 and 6 customers without any recommendation. Nevertheless, this
issue could be circumvented by extending the recommendation lists with random or popular
products. The other algorithms are able to generate recommendations for all customers, as
depicted in Figure 6.3a. Considering the number of different products among all customer
recommendation lists in Figure 6.3b, the baseline algorithms show the expected results. The

116

6 Application of the Recommender System Benchmark

RAN approach recommends each product of the catalog at least once. This leads to the best
result since a high value is preferred. In contrast, the POP approach is limited to recommend
the 10 most popular products. The second-highest number of different products is provided
by II, followed by SVD for both splitting methods. In this setup, CoC and BPR perform equally
poor, with only 10 different products.
The catalog coverage underlines the gained findings, as illustrated in Figure 6.3c and

Figure 6.3d, where the relative coverage is the ratio of the number of different products in
the recommendation lists to the number of products in the data set. In contrast, the absolute
coverage is the ratio of the different products in the recommendation lists to the number of
all products in the retailer’s catalog. It shows, that POP, BPR and CoC have the lowest catalog
coverage. The best performance is achieved by RAN, followed by II, which performs well for
time-based and mask-based splitting with a coverage of 93% and 91%, respectively. Then,
SVD follows with 80% and 78% and ALS with approximately 10% in both cases.

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0

5

10

15

20

25

30

Nu
m

be
r o

f C
us

to
m

er
s w

ith
ou

t R
ec

om
m

en
da

tio
ns Split

mask_based
time_based

(a) Customers without

recommendations.

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f U
ni

qu
e

Pr
od

uc
ts

Split
mask_based
time_based

(b) Unique products.

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Co
ve

ra
ge

Split
mask_based
time_based

(c) Relative coverage.

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ab
so

lu
te

 C
ov

er
ag

e

Split
mask_based
time_based

(d) Absolute coverage.

Figure 6.3: An overview of the customer and product results based on the purchase data.

Considering the accuracymetric MRR of the recommendation,ALS, II and POP show the best

117

6 Application of the Recommender System Benchmark

results for both splitting methods as indicated in Figure 6.4a. To recall its interpretation, the
higher the MRR, the higher the first appearance of a relevant product in the recommendation
list is observed.
The best performance for mask-based splitting is given by ALS with a value of 0.65. In

case of time-based splitting, POP performs best, with a value of 0.10. The ranking quality of
the complete recommendation list is measured by its nDCG. Applying this metric shows no
difference in the order of the results, as illustrated in Figure 6.4b. Still ALS outperforms II and
POP in case of masked-based splitting, whereas POP is slightly better in case of time-based
splitting.

al
s_
1_
w_

b

bp
r_
1_
w_

b

ii_
1_
w_

b

co
c_
1_
w_

b

sv
d_
1_
w_

b

po
p_
1_
w_

b

ra
n_
1_
w_

b

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Split
mask_based
time_based

(a) MRR.

al
s_
1_
w_

b

bp
r_
1_
w_

b

ii_
1_
w_

b

co
c_
1_
w_

b

sv
d_
1_
w_

b

po
p_
1_
w_

b

ra
n_
1_
w_

b

Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

nD
CG

Split
mask_based
time_based

(b) nDCG.

Figure 6.4: An overview of the accuracy results based on the purchase data.

Finally, the runtimes of the algorithms are investigated. As expected, the time to load the
data is similar since all algorithms apply the same query to retrieve it from the local CSV file,
as shown in Figure 6.5a.
Considering the training time of Figure 6.5b, POP and RAN are the fastest with less than

0.01 seconds, for both splitting methods. Then, II, BPR and ALS are following. Considering
the applied splitting methods, the training time is stable for each algorithm. This is actually
not the case for the testing times in Figure 6.5c, since the number of tested customers differs
between the two methods. In this case, the testing time for mask-based splitting is higher
than for time-based splitting. The lowest testing time is given by ALS with 56 and 17 seconds,
followed by BPR with 63 and 17 seconds. Then, II follows with 270 and 77 seconds.
The implementations of CoC and SVD perform poorly in this regard with testing times

higher than 1,600 seconds for mask-based splitting and 460 seconds for time-based splitting.
The models’ response times underline the observed testing times, as illustrated in Figure 6.5d.
The lowest response time is given by the ALS and BPR with less than 0.2 seconds, followed
by POP and RAN. Far behind are CoC and SVD.

118

6 Application of the Recommender System Benchmark

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Lo

ad
in

g
Ti

m
e

Split
mask_based
time_based

(a) Loading Time (sec).

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0

5

10

15

20

25

Tr
ai

ni
ng

 T
im

e

Split
mask_based
time_based

(b) Training Time (sec).

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0

500

1000

1500

2000

Te
st

in
g

Ti
m

e

Split
mask_based
time_based

(c) Testing Time (sec).

al
s_

1_
w_

b

bp
r_

1_
w_

b

ii_
1_

w_
b

co
c_

1_
w_

b

sv
d_

1_
w_

b

po
p_

1_
w_

b

ra
n_

1_
w_

b

Algorithm

0

5

10

15

20

25

30

35

Re
sp

on
se

 T
im

e

Split
mask_based
time_based

(d) Response Time (ms).

Figure 6.5: An overview of the timing results based on the purchase data.

Conclusion

Considering the technical perspective, ALS and BPR perform best. They are trained fast and
have a low response time, but ALS outperforms BPR in the other metrics, such as product
coverage and accuracy. From the business perspective II can recommend many products
from the catalog. Taken accuracy into account ALS outperforms II clearly in case of mask-
based splitting but only slightly for time-based splitting which rather represents a real-world
scenario. In this sense, depending on the importance of the response time, both represent
suitable solutions.

6.2.3 Binary Aggregation on Omni-Channel Data

This approach investigates all channels and all signal types.
Applying this to Equation 4.7 leads to:

w(u, i,Data, ∗, ∗, 2017-05-05, 2018-01-30) =
∑︂

(u,i)∈Data,∗,∗

f∗,∗(u, i, c)

119

6 Application of the Recommender System Benchmark

In this case, the function f∗,∗(u, i, c), depending on the channel ch and signal type s, returns
the number of purchases, the number of views and searches, the number of likes and comments
or the number of newsletter interactions. Then, for each customer-product combination, the
returned values are summed up to an overall preference value. Afterward, for each non-zero
value of w(u, i), the final value is set to 1, motivating the name binary aggregation.

Result Analysis

In case of time-based splitting the number of tested customers is 10,796 and 61,703 in case of
mask-based splitting. In both cases, the number of products is 10,502.

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Nu
m

be
r o

f C
us

to
m

er
s w

ith
ou

t R
ec

om
m

en
da

tio
ns

Split
mask_based
time_based

(a) Customers without

recommendations.

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f U
ni

qu
e

Pr
od

uc
ts

Split
mask_based
time_based

(b) Unique products.

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Co
ve

ra
ge

Split
mask_based
time_based

(c) Relative coverage.

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ab
so

lu
te

 C
ov

er
ag

e

Split
mask_based
time_based

(d) Absolute coverage.

Figure 6.6: An overview of the customer and product results based on the complete data.

Comparing the number of customers without recommendations in Figure 6.6a, only II is not
able to generate recommendations for 4 customers. The highest number of unique products
is given by RAN with 10,502, as shown in Figure 6.6b, followed by SVD and II with 7,434 and
7,172 for mask-based splitting, respectively. In case of time-based splitting, the difference of
the two implementations is higher with 6,655 for SVD and only 2,807 for II. Then, ALS and

120

6 Application of the Recommender System Benchmark

BPR are following. Here, both implementations provide more different products in case of
mask-based splitting, with 3,052 compared to 1,218 and 597 compared to 361. The lowest
performance is given by CoC with 10 products. Consequently, the number of unique products
is reflected by the product coverage, as shown in Figure 6.6c. Regarding the products in the
data set, RAN recommends each product at least once. For mask-based splitting, II and SVD
show a relative coverage of approximately 70% and an absolute coverage of roughly 24% in
Figure 6.6d.
Considering the accuracy of the implementations, ALS shows the best MRR and nDCG

results based on mask-based splitting, as shown in Figure 6.7b. Then, far behind, BPR, II and
POP follow. In case of time-based splitting, POP is able to compete with ALS, with a nDCG of
0.052 compared to 0.054. The results of POP and ALS are in line with the MRR results with
0.053 and 0.07, respectively. Comparing BPR and II, they show similar nDCG results, but BPR
performs better considering its MRR value of 0.12 compared to 0.09, as shown in Figure 6.7a.
To recall, this means that a relevant product appears high in the recommendation list.

al
s_
1_
1_
1_
1_
w_

b

bp
r_
1_
1_
1_
1_
w_

b

ii_
1_
1_
1_
1_
w_

b

co
c_
1_
1_
1_
1_
w_

b

sv
d_
1_
1_
1_
1_
w_

b

po
p_
1_
1_
1_
1_
w_

b

ra
n_
1_
1_
1_
1_
w_

b

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Split
mask_based
time_based

(a) MRR.

al
s_
1_
1_
1_
1_
w_

b

bp
r_
1_
1_
1_
1_
w_

b

ii_
1_
1_
1_
1_
w_

b

co
c_
1_
1_
1_
1_
w_

b

sv
d_
1_
1_
1_
1_
w_

b

po
p_
1_
1_
1_
1_
w_

b

ra
n_
1_
1_
1_
1_
w_

b

Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
nD

CG
Split
mask_based
time_based

(b) nDCG.

Figure 6.7: An overview of the accuracy results based on the complete data.

The loading times of the algorithms are quite similar, as illustrated in Figure 6.8a. The
shortest training times were achieved by POP and RAN. Compared to the other algorithms, SVD
has the longest training times for both splitting methods, as shown in Figure 6.8b. Generally,
the best training time is achieved by BPR, followed by ALS, II and CoC. The measured testing
times in Figure 6.8c show that the testing time of SVD is the longest with 4,250 seconds.
The lowest testing times are given by ALS and BPR with roughly 10.8 and 4.5 seconds for
time-based splitting, respectively. They even outperform the testing times of RAN and POP.
The performance of II is acceptable compared to ALS, but CoC is nearly 20 seconds slower.
The response times in Figure 6.8d show the superiority of BPR and ALS with response times
between 0.23 and 0.34 milliseconds. Neglecting RAN and POP, the next best response time is
given by II with 12 milliseconds.

121

6 Application of the Recommender System Benchmark

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0

1

2

3

4

5
Lo

ad
in

g
Ti

m
e

Split
mask_based
time_based

(a) Loading Time (sec).

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0

10

20

30

40

50

60

70

Tr
ai

ni
ng

 T
im

e

Split
mask_based
time_based

(b) Training Time (sec).

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

Te
st

in
g

Ti
m

e

Split
mask_based
time_based

(c) Testing Time (sec).

al
s_

1_
1_

1_
1_

w_
b

bp
r_

1_
1_

1_
1_

w_
b

ii_
1_

1_
1_

1_
w_

b

co
c_

1_
1_

1_
1_

w_
b

sv
d_

1_
1_

1_
1_

w_
b

po
p_

1_
1_

1_
1_

w_
b

ra
n_

1_
1_

1_
1_

w_
b

Algorithm

0

10

20

30

40

50

60

70

Re
sp

on
se

 T
im

e

Split
mask_based
time_based

(d) Response Time (ms).

Figure 6.8: An overview of the timing results based on the complete data.

Conclusion

Considering training time, testing time and response time, RAN and POP perform best. How-
ever, the former lacks in accuracy and the latter only covers a small portion of the catalog.
Besides, BPR has a short training time, testing time, and response time but only recommends
a few different products. In this sense, the most suitable implementations are ALS and II.
Considering the product coverage, II performs better, such that it is a suitable approach from
a business perspective. However, the provided accuracy of the ALS is much higher, leading to
satisfying results for the customers. Depending on whether accuracy or catalog coverage is
preferred either II or ALS are reasonable solutions.

6.2.4 Weighting-based Aggregation on Omni-Channel Data

This approach investigates all channels and all signal types occurring in the time interval from
2017-05-05 to 2018-01-30. Besides, this approach is referred to as weighting-based aggregation
since the customer signals are weighted depending on the channel.

122

6 Application of the Recommender System Benchmark

Applying this to Equation 4.7 leads to:

w(u, i,Data, ∗, ∗, 2017-05-05, 2018-01-30) =
∑︂

(u,i)∈Data,∗,∗

αch,∗ · f∗,∗(u, i, c)

In this case, the function f∗,∗(u, i, c), depending on the channel ch and signal type s returns, for
instance, the amount of purchases, the number of views or searches, or a like of the customer-
product combination. Each customer-product is summed up to an overall preference value.
At this point, three different weighting configurations have been applied:

(α∗,p = 25, αwl,∗ = 25, αem,∗ = 25, αsm,∗ = 25) (6.4)

(α∗,p = 40, αwl,∗ = 30, αem,∗ = 10, αsm,∗ = 20) (6.5)

(α∗,p = 40, αwl,∗ = 20, αem,∗ = 10, αsm,∗ = 30) (6.6)

At this point, it must be noted that the weightings are absolute values. Furthermore, the
values are not optimized for any of the considered implementations. The values instead
represent an intuitive selection of weighting the signals on the channels. For instance, in
each configuration, the individual absolute weightings on each channel sum up to 100. In
Weighting 6.4 all channels are treated as equally important such that each of the four channels
is weighted by 25. Next, in Weighting 6.5, the purchases are considered as the most important
customer signal followed by views and searches in the online shop. Then, social media and
newsletter are following. Finally, in Weighting 6.6, only the importance of social media and
views and searches changes.

Result Analysis

In case of time-based splitting the number of tested customers is 10,796 and 61,703 in case of
mask-based splitting. In both cases, the number of products is 10,502.
As already observed by the other approaches, II is the only algorithm that is not able to

generate recommendations for all customers. However, the number varies based on the applied
weightings. In case of Weighting 6.4, 234 customers remain without any recommendation,
whereas applying Weighting 6.5 or Weighting 6.6 leads to 65 and 63 customers without
recommendations for masked-based splitting. Considering the number of unique products,
ALS provides approximately 2,500 different products with Weighting 6.5 and Weighting 6.6.
This covers about 28% of the products in the data set and 10% of the complete catalog. In
contrast,Weighting 6.4 leads to about 2,300 different products covering 26% of the data set and
9% of the catalog. In case of II, Weighting 6.4 and Weighting 6.5 generate the highest number
of different products with at least 1,300, whereas the number is 1,236 for Weighting 6.6. Here,
the relative coverage is 12% as shown in Figure 6.9 and the absolute coverage is 4%. The
order of the highest to lowest number of different products is independent of the splitting
method. Considering SVD and BPR, no influence of the weightings is observable. In contrast,
CoC performs quite poor but is able to double the number from 10 to 20 with Weighting 6.4.

123

6 Application of the Recommender System Benchmark

al
s_

25
_2

5_
25

_2
5_

w
bp

r_
25

_2
5_

25
_2

5_
w

ii_
25

_2
5_

25
_2

5_
w

co
c_

25
_2

5_
25

_2
5_

w
sv

d_
25

_2
5_

25
_2

5_
w

po
p_

25
_2

5_
25

_2
5_

w
ra

n_
25

_2
5_

25
_2

5_
w

al
s_

40
_3

0_
10

_2
0_

w
bp

r_
40

_3
0_

10
_2

0_
w

ii_
40

_3
0_

10
_2

0_
w

co
c_

40
_3

0_
10

_2
0_

w
sv

d_
40

_3
0_

10
_2

0_
w

po
p_

40
_3

0_
10

_2
0_

w
ra

n_
40

_3
0_

10
_2

0_
w

al
s_

40
_2

0_
10

_3
0_

w
bp

r_
40

_2
0_

10
_3

0_
w

ii_
40

_2
0_

10
_3

0_
w

co
c_

40
_2

0_
10

_3
0_

w
sv

d_
40

_2
0_

10
_3

0_
w

po
p_

40
_2

0_
10

_3
0_

w
ra

n_
40

_2
0_

10
_3

0_
w

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Co
ve

ra
ge

Split
mask_based
time_based

Figure 6.9: An overview of the relative coverage results based on the weighted data.

Considering the accuracy of the recommendations in Figure 6.10 and Figure 6.11, the nDCG
value improves slightly for ALS from 0.70 to 0.72 when Weighting 6.5 or 6.6 are applied in
case of mask-based splitting.

For time-based splitting, the situation is the other way around, but the differences are quite
small. However, the MRR aligns with the results of nDCG, showing the same order.
Considering II, SVD and CoC, they show very low nDCG and MRR values and are even

beaten by RAN. Besides ALS and POP, only BPR achieves reasonable nDCG results with a
value of 0.055 for Weighting 6.4, 0.051 for Weighting 6.6 and 0.047 for Weighting 6.5 in case
of mask-based splitting. The values of MRR show the same order.
The weightings themselves show no influence on the training times, testing times, and

response times of the different implementations. Regarding the training time, POP and RAN
still perform best, followed by BPR, ALS and II.
The lowest response times are performed by BPR and ALS, followed by RAN and POP,

whereas CoC and SVD show the highest response times, as illustrated in Figure 6.12. Compared
to CoC and SVD, the implementation of II also achieves acceptable results.

124

6 Application of the Recommender System Benchmark

al
s_
25

_2
5_
25

_2
5_
w

bp
r_
25

_2
5_
25

_2
5_
w

ii_
25

_2
5_
25

_2
5_
w

co
c_
25

_2
5_
25

_2
5_
w

sv
d_
25

_2
5_
25

_2
5_
w

po
p_
25

_2
5_
25

_2
5_
w

ra
n_
25

_2
5_
25

_2
5_
w

al
s_
40

_3
0_
10

_2
0_
w

bp
r_
40

_3
0_
10

_2
0_
w

ii_
40

_3
0_
10

_2
0_
w

co
c_
40

_3
0_
10

_2
0_
w

sv
d_
40

_3
0_
10

_2
0_
w

po
p_
40

_3
0_
10

_2
0_
w

ra
n_
40

_3
0_
10

_2
0_
w

al
s_
40

_2
0_
10

_3
0_
w

bp
r_
40

_2
0_
10

_3
0_
w

ii_
40

_2
0_
10

_3
0_
w

co
c_
40

_2
0_
10

_3
0_
w

sv
d_
40

_2
0_
10

_3
0_
w

po
p_
40

_2
0_
10

_3
0_
w

ra
n_
40

_2
0_
10

_3
0_
w

Algorithm

0.0

0.2

0.4

0.6

0.8

M
RR

Split
mask_based
time_based

Figure 6.10: An overview of the MRR results based on the weighted data.

al
s_
25

_2
5_
25

_2
5_
w

bp
r_
25

_2
5_
25

_2
5_
w

ii_
25

_2
5_
25

_2
5_
w

co
c_
25

_2
5_
25

_2
5_
w

sv
d_
25

_2
5_
25

_2
5_
w

po
p_
25

_2
5_
25

_2
5_
w

ra
n_
25

_2
5_
25

_2
5_
w

al
s_
40

_3
0_
10

_2
0_
w

bp
r_
40

_3
0_
10

_2
0_
w

ii_
40

_3
0_
10

_2
0_
w

co
c_
40

_3
0_
10

_2
0_
w

sv
d_
40

_3
0_
10

_2
0_
w

po
p_
40

_3
0_
10

_2
0_
w

ra
n_
40

_3
0_
10

_2
0_
w

al
s_
40

_2
0_
10

_3
0_
w

bp
r_
40

_2
0_
10

_3
0_
w

ii_
40

_2
0_
10

_3
0_
w

co
c_
40

_2
0_
10

_3
0_
w

sv
d_
40

_2
0_
10

_3
0_
w

po
p_
40

_2
0_
10

_3
0_
w

ra
n_
40

_2
0_
10

_3
0_
w

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

nD
CG

Split
mask_based
time_based

Figure 6.11: An overview of the nDCG results based on the weighted data.

125

6 Application of the Recommender System Benchmark

al
s_

25
_2

5_
25

_2
5_

w
bp

r_
25

_2
5_

25
_2

5_
w

ii_
25

_2
5_

25
_2

5_
w

co
c_

25
_2

5_
25

_2
5_

w
sv

d_
25

_2
5_

25
_2

5_
w

po
p_

25
_2

5_
25

_2
5_

w
ra

n_
25

_2
5_

25
_2

5_
w

al
s_

40
_3

0_
10

_2
0_

w
bp

r_
40

_3
0_

10
_2

0_
w

ii_
40

_3
0_

10
_2

0_
w

co
c_

40
_3

0_
10

_2
0_

w
sv

d_
40

_3
0_

10
_2

0_
w

po
p_

40
_3

0_
10

_2
0_

w
ra

n_
40

_3
0_

10
_2

0_
w

al
s_

40
_2

0_
10

_3
0_

w
bp

r_
40

_2
0_

10
_3

0_
w

ii_
40

_2
0_

10
_3

0_
w

co
c_

40
_2

0_
10

_3
0_

w
sv

d_
40

_2
0_

10
_3

0_
w

po
p_

40
_2

0_
10

_3
0_

w
ra

n_
40

_2
0_

10
_3

0_
w

Algorithm

0

10

20

30

40

50

60

Re
sp

on
se

 T
im

e

Split
mask_based
time_based

Figure 6.12: An overview of the response time (ms) results based on the weighted data.

Conclusion

The three selected weightings show only a small influence on the results. However, ALS
achieves a better accuracy and higher product coverage when the Weightings 6.5 and 6.6
are applied. This might be a result of weighting purchases with a factor of 40 instead of
25. Furthermore, an improvement for II is given by the catalog coverage. To sum up, in this
scenario ALS clearly outperforms the other implementations. The reason for this is that, in
contrast to the other implementations, ALS is optimized for implicit feedback provided by the
customers.

6.2.5 Sequence-based Aggregation on Omni-Channel Data

In the sequence-based aggregation, for all channels and signal types, only a customer’s last
signal is kept regardless of its signal type.

Applying this to Equation 4.6 leads to:

w(u, i,Data, ∗, ∗, 2017-05-05, 2018-01-30) = latest
∀(u,i)∈Data,∗,∗

f∗,∗(u, i, c)

In this case, only the last indication of interest for a product is considered relevant since
it might represent a customer’s most recent preference for it. Here, the latest occurrence of
customer signals is considered for the time between 2017-05-05 and 2018-01-30.

Result Analysis

For mask-based splitting the number of customers is 61,876 and for time-based 10,590. The
number of products for the two splitting methods is the same with a value of 10,095. Again,

126

6 Application of the Recommender System Benchmark

only II is not able to recommender products for 7 customers for time-based splitting, as
illustrated in Figure 6.13a. The highest number of unique products is achieved by RAN,
whereas CoC and POP provided the lowest value with only 10. In case of mask-based splitting,
the next best value is achieved by SVD with 7,454 followed by II with 7,106 products. Then,
with a bigger gap, ALS and BPR are following, as shown in Figure 6.13b. Considering the
time-based splitting, the gap between SVD and the other algorithms is larger. For instance, SVD
provides 6,643 products and II as third best only 2,840. These results are further underlined by
the relative product coverage in Figure 6.13c. Here, SVD covers at least 67% of the products in
the test data catalog, representing nearly 25% of the complete catalog, as shown in Figure 6.13d.
Only the implementation of II is able to keep up with it for mask-based splitting. In contrast,
the highest relative coverage that ALS achieves is 28%, which corresponds to 10% of the
complete catalog.

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0

1

2

3

4

5

6

7

Nu
m

be
r o

f C
us

to
m

er
s w

ith
ou

t R
ec

om
m

en
da

tio
ns

Split
mask_based
time_based

(a) Customers without

recommendations.

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f U
ni

qu
e

Pr
od

uc
ts

Split
mask_based
time_based

(b) Unique products.

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Co
ve

ra
ge

Split
mask_based
time_based

(c) Relative coverage.

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ab
so

lu
te

 C
ov

er
ag

e

Split
mask_based
time_based

(d) Absolute coverage.

Figure 6.13: An overview of the customer and product results based on the sequence-based
data.

With regard to the accuracymetrics in Figure 6.14a and Figure 6.14bALS clearly outperforms

127

6 Application of the Recommender System Benchmark

the other algorithms when mask-based splitting is applied. In this case, its nDCG value is
0.4 and the second best, achieved by POP, is 0.077, followed by II with 0.06. However, in the
case of time-based splitting, the achieved results are much closer. Now, POP performs best
with a value of 0.05, followed by ALS, BPR and II. The lowest performances are achieved
by RAN, CoC and SVD. The MRR metric in Figure 6.14a shows similar results and thereby
supports the results of nDCG. This metric further underlines the high accuracy of ALS in case
of mask-based splitting.

al
s_
0_
0_
0_
0_
s_
b

bp
r_
0_
0_
0_
0_
s_
b

ii_
0_
0_
0_
0_
s_
b

co
c_
0_
0_
0_
0_
s_
b

sv
d_
0_
0_
0_
0_
s_
b

po
p_
0_
0_
0_
0_
s_
b

ra
n_
0_
0_
0_
0_
s_
b

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
RR

Split
mask_based
time_based

(a) MRR.

al
s_
0_
0_
0_
0_
s_
b

bp
r_
0_
0_
0_
0_
s_
b

ii_
0_
0_
0_
0_
s_
b

co
c_
0_
0_
0_
0_
s_
b

sv
d_
0_
0_
0_
0_
s_
b

po
p_
0_
0_
0_
0_
s_
b

ra
n_
0_
0_
0_
0_
s_
b

Algorithm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

nD
CG

Split
mask_based
time_based

(b) nDCG.

Figure 6.14: An overview of the accuracy results based on the sequence-based data.

Since the algorithms work on the same data, the loading times do not differ considerably
among them, as shown in Figure 6.15a. Considering the training time in Figure 6.15b, BPR
shows the shortest runtime for both splitting methods with about 4 seconds, when RAN
and POP are ignored. Then, ALS and II follow with approximately 10.5 and 14.5 seconds,
respectively. The longest training time is given by SVD, which requires nearly double the
time for training as CoC, roughly 60 against 30 seconds for mask-based splitting.

Taking a look at the testing time in Figure 6.15c, SVD shows the poorest performance of the
algorithms, followed by CoC. In particular, for the mask-based splitting, since more customers
are tested.
After SVD and CoC, II follows with a lower time of 800 seconds for mask-based and 163

seconds for time-based splitting. The shortest testing times are achieved by ALS and BPR with
about 60 seconds for mask-based and 10 for time-based splitting. These numbers are in line
with the response times of the models to generate recommendations shown in Figure 6.15d.
Here, ALS and BPR show their strength of fast recommendation generation. The next best
times are achieved by POP and RAN. The highest response times are given by CoC and SVD,
whereas II is placed in between.

128

6 Application of the Recommender System Benchmark

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0

1

2

3

4
Lo

ad
in

g
Ti

m
e

Split
mask_based
time_based

(a) Loading Time (sec).

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0

10

20

30

40

50

60

70

Tr
ai

ni
ng

 T
im

e

Split
mask_based
time_based

(b) Training Time (sec).

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

Te
st

in
g

Ti
m

e

Split
mask_based
time_based

(c) Testing Time (sec).

al
s_

0_
0_

0_
0_

s_
b

bp
r_

0_
0_

0_
0_

s_
b

ii_
0_

0_
0_

0_
s_

b

co
c_

0_
0_

0_
0_

s_
b

sv
d_

0_
0_

0_
0_

s_
b

po
p_

0_
0_

0_
0_

s_
b

ra
n_

0_
0_

0_
0_

s_
b

Algorithm

0

10

20

30

40

50

60

70

Re
sp

on
se

 T
im

e

Split
mask_based
time_based

(d) Response Time (ms).

Figure 6.15: An overview of the timing results based on the sequence-based data.

Conclusion

Considering SVD, it shows the best product coverage values but a low accuracy, which makes
it a less preferable option. On the other hand, POP also shows a low coverage, but a good
accuracy for time-based splitting. This underlines the impression that the recommendation
of currently trending and popular products provide a simple but still useful heuristic. Also,
the runtime is acceptable, making it an option to generate fast recommendations for, e.g.,
trending products. The best overall performance from a customer and technical perspective
is provided by ALS with mask-based splitting, but with the downside of lower coverage. In
this sense, II could represent an alternative if coverage is more important.

6.2.6 Overall Analysis

In the previous section, different algorithms have been benchmarked against each other under
consideration of a specific aggregation method. In this section, the best results of the different
aggregation methods are compared. Therefore, since ALS and II showed the best results, these
two are examined in the following. For a fair comparison, three other evaluation results are

129

6 Application of the Recommender System Benchmark

part of this analysis. This includes the application of ALS and II directly on the purchase
data denoted as als_1_w and ii_1_w as well as the application on the complete channel data
denoted as als_1_1_1_1_w and ii_1_1_1_1_w. Furthermore, als_40_w has been added. This is
because a weighting of 40 is a proposed value in [HKV08, p. 4]. The other als_40_30_10_20_w
is the best ALS solution considering nDCG in the weighting-based aggregation, whereas
ii_40_20_10_30_w is the best for II.

Results Analysis

Considering the number of customers without recommendation, II shows a benefit by using
the other channels, since the number is lower in case of ii_1_1_1_1_w_b and ii_0_0_0_0_s_b.
The other algorithms provide recommendations in all cases, as illustrated in Figure 6.16a.

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0

200

400

600

800

1000

Nu
m

be
r o

f C
us

to
m

er
s w

ith
ou

t R
ec

om
m

en
da

tio
ns

Split
mask_based
time_based

(a) Customers without

recommendations.

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f U
ni

qu
e

Pr
od

uc
ts

Split
mask_based
time_based

(b) Unique products.

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e

Co
ve

ra
ge

Split
mask_based
time_based

(c) Relative coverage.

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0.00

0.05

0.10

0.15

0.20

Ab
so

lu
te

 C
ov

er
ag

e

Split
mask_based
time_based

(d) Absolute coverage.

Figure 6.16: An overview of the overall customer and product results.

Comparing the number of unique products provided by the algorithms, II outperforms the
others in case of mask-based splitting, when the other channels are used, regardless of the
applied aggregation method as shown by ii_1_1_1_1_w_b and ii_0_0_0_0_s_b in Figure 6.16b.

130

6 Application of the Recommender System Benchmark

Nevertheless, the second-best result is achieved by ii_1_w_b on the binary purchase data
without using the channels. Considering the best results ofALS, in case ofmask-based splitting
the results are slightly better when additional channels are added, 2,848 compared to 3,113. As
shown in Figure 6.16c, the best relative coverage result is achieved by ii_1_w_b with a value of
93%, followed by two other configurations with additional channel information, whereas the
absolute coverage in Figure 6.16d is lower compared to ii_1_1_1_1_w_b and ii_0_0_0_0_s_b. In
the case of ALS, the best relative coverage is given with a weighting of 40 without additional
channel information. Taking a look at the sequence-based and weighting-based aggregation
for ALS they show no positive effect to the relative product coverage, but a slight one for the
absolute coverage, as shown in Figure 6.16d.

Next, the accuracy of the aggregation methods is examined. As shown in Figure 6.17b, ALS
already shows a very high accuracy without including additional channel information into
the data set. The quality is high whenever the purchase data is weighted with a value of 40,
als_40_w, als_40_40_40_40_w and als_40_30_10_20_w. Considering the time-based splitting,
the differences are lower, but still, no positive effect in the recommendation quality is visible.
The same holds for II, where the initial data set provides the best results and the values
only considered by their relevance in binary form as shown by ii_1_w_b, ii_1_1_1_1_w_b
and ii_0_0_0_0_s_b. Generally, II cannot compete with the nDCG values achieved by ALS,
especially, in the case of mask-based splitting. The nDCG results correspond to the MRR
results shown in Figure 6.17a.

al
s_
1_
w

al
s_
1_
w_

b

al
s_
40

_w

al
s_
1_
1_
1_
1_
w

al
s_
1_
1_
1_
1_
w_

b

al
s_
40

_4
0_
40

_4
0_
w

al
s_
40

_3
0_
10

_2
0_
w

al
s_
0_
0_
0_
0_
s_
b

ii_
1_
w

ii_
1_
w_

b

ii_
1_
1_
1_
1_
w

ii_
1_
1_
1_
1_
w_

b

ii_
40

_2
0_
10

_3
0_
w

ii_
0_
0_
0_
0_
s_
b

Algorithm

0.0

0.2

0.4

0.6

0.8

M
RR

Split
mask_based
time_based

(a) MRR.

al
s_
1_
w

al
s_
1_
w_

b

al
s_
40

_w

al
s_
1_
1_
1_
1_
w

al
s_
1_
1_
1_
1_
w_

b

al
s_
40

_4
0_
40

_4
0_
w

al
s_
40

_3
0_
10

_2
0_
w

al
s_
0_
0_
0_
0_
s_
b

ii_
1_
w

ii_
1_
w_

b

ii_
1_
1_
1_
1_
w

ii_
1_
1_
1_
1_
w_

b

ii_
40

_2
0_
10

_3
0_
w

ii_
0_
0_
0_
0_
s_
b

Algorithm

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

nD
CG

Split
mask_based
time_based

(b) nDCG.

Figure 6.17: An overview of the accuracy results.

Since the data loading is based on a local CSV file the corresponding loading times in
Figure 6.18a are quite similar among the different aggregations. Considering the training
time, the results of II vary, as shown in Figure 6.18b. Here, the training time is influenced
by the higher number of products when additional channels are part of the data set, which
increases from 5,787 to 10,502. In the case of ALS this influence is also visible in the results.
For instance, by comparing als_40_w and als_1_1_1_1_w_b. When the same aggregation is
used, no influence is observable. The testing time of II is longer compared to ALS, as illustrated

131

6 Application of the Recommender System Benchmark

in Figure 6.18c. Again, testing more customers leads to longer testing times. In Figure 6.18d,
the response time results show the high performance ofALS. Nevertheless, again, the influence
of the additional channels is visible. Even ALS shows slightly higher response times when all
channels are used. In this case, the response times are larger than 0.22 milliseconds, whereas
in the other case, they are less than 0.18 milliseconds.

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0

1

2

3

4

5

Lo
ad

in
g

Ti
m

e

Split
mask_based
time_based

(a) Loading Time (sec).
al

s_
1_

w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Tr
ai

ni
ng

 T
im

e

Split
mask_based
time_based

(b) Training Time (sec).

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b

Algorithm

0

100

200

300

400

500

600

700

800

Te
st

in
g

Ti
m

e

Split
mask_based
time_based

(c) Testing Time (sec).

al
s_

1_
w

al
s_

1_
w_

b

al
s_

40
_w

al
s_

1_
1_

1_
1_

w

al
s_

1_
1_

1_
1_

w_
b

al
s_

40
_4

0_
40

_4
0_

w

al
s_

40
_3

0_
10

_2
0_

w

al
s_

0_
0_

0_
0_

s_
b

ii_
1_

w

ii_
1_

w_
b

ii_
1_

1_
1_

1_
w

ii_
1_

1_
1_

1_
w_

b

ii_
40

_2
0_

10
_3

0_
w

ii_
0_

0_
0_

0_
s_

b
Algorithm

0

2

4

6

8

10

12

14

16

Re
sp

on
se

 T
im

e

Split
mask_based
time_based

(d) Response Time (ms).

Figure 6.18: An overview of the overall timing results.

For the investigated weightings, no positive influence in the resulting recommendation
accuracy was measurable so far. In the following, for ALS and II various weighting combina-
tions are tested with the masked-based splitting method. At this point, the weighting-based
aggregation, discussed in Section 6.2.4, is applied. In the case of II, 75 combinations are tried
based on individual channel weightings. Here, the weightings are defined as:

α∗,p, αwl,∗, αem,∗, αsm,∗ ∈ [0.0, .., 1.0],

with
α∗,p + αwl,∗ + αem,∗ + αsm,∗ = 1.0

132

6 Application of the Recommender System Benchmark

The results of the different weighting configurations are illustrated in Figure 6.19a. The
used metric is nDCG. As conveyed by the figure, the different weightings have only a small
influence on the resulting nDCG. The lowest value is 0.033 and the highest is 0.067, whereas
the result without using the additional channels is 0.046. In this sense, the accuracy increased
slightly when the channels are weighted as:

α∗,p = 0.7, αwl,∗ = 0.1, αem,∗ = 0.1, αsm,∗ = 0.1

In case of ALS, the weighting for purchases is set as α∗,p = 40 as it shows good results. The
other weightings cover the following intervals:

αwl,∗, αem,∗, αsm,∗ ∈ [40, .., 200]

The results are shown in Figure 6.19b. To recall the result of als_w_40, which is based on the
purchase data, is 0.73. Compared to this, only small differences are visible. Furthermore, the
best result, with a value of 0.729, is achieved by the following weighting configuration:

α∗,p = 40, αwl,∗ = 160, αem,∗ = 40, αsm,∗ = 120

However, this shows no considerable improvement in the recommendation accuracy.

(a) 75 weighting combinations applied to II. (b) 125 weighting combinations applied to ALS.

Figure 6.19: The results of different weighting combinations sorted by the resulting nDCG
values in ascending order.

Conclusion

The overall analysis of the aggregation method results reveals no considerable improvement in
the recommendation accuracy by incorporating the customer signals of the channels weblog,
email and social media. However, it must be noted that incorporating also does not influence
the results negatively. This means the resulting nDCG values show a similar quality as the
ones only considering the purchases of a customer, as shown in Figure 6.17b. Nevertheless, it
must be clearly stated that the incorporation of the additional channels extends the number of

133

6 Application of the Recommender System Benchmark

customers and products. For instance, in ALS, the number of customers increased from 59,950
to 61,703 and the number of products from 5,787 to 10,502. Having this in mind, the stable
accuracy results can be considered an improvement since more customers receive and more
products are part of the recommendations. This alleviates the cold-start problem of customers
and products. For instance, a product might be liked on social media but not purchased so
far. This product would not be recommended when only the purchase data is used. The same
applies to customers. When a customer did not purchase a product but clicked a newsletter of
an email, the recommender system can generate appropriate recommendations; otherwise, no
recommendations could be created. In this sense, from a business and customer perspective,
the incorporation of additional channels is worth the effort. From a technical perspective,
this incorporation leads to more extended training and testing times. Besides, the response
time is negatively influenced. However, especially in the application of ALS the differences
are relatively small and can be neglected. Consequently, this leads to the statement that
incorporation is beneficial.

6.2.7 Discussion

Although incorporating the omni-channel data shows no improvement in the recommen-
dation accuracy for the particular online retailer, companies such as Netflix, Mendeley, and
Zalando collect and utilize omni-channel data in their recommender systems, as discussed
and elaborated in Section 2.8. Accordingly, it seems to contradict the presented results in this
thesis for those companies to invest effort in incorporating the omni-channel data.
One reason for this is that recommendations generated by these companies are mostly

based on a combination of various recommender system approaches implemented as hybrid
systems (see Section 2.4.3). This means, for instance, that for each user signal type in the
omni-channel data, a different recommender system approach could be applied to achieve
high accuracy by combining the recommendations of the approaches at the end. Besides, the
parameter settings of the recommender system approaches are heavily optimized. In contrast
to that, the focus of this thesis is the application of one recommender system approach at a
time based on different aggregations of the omni-channel data.

Furthermore, these companies can conduct online evaluations, such as A/B testing or user
studies, as discussed in Section 2.6.2. An online evaluation might show different results since
the recommender system is deployed and used by the customers such that direct feedback is
available, whereas the results in this thesis are based on an offline evaluation.

134

7 Conclusion

This section summarizes the thesis’ outcome and gives an outlook about future ideas as well
as challenges.

7.1 Summary

Nowadays, companies aim to provide their customers with preferably personalized products
and services, and recommender systems provide customers with products they are most likely
interested in. To achieve this, companies are collecting and combining as much information
about their customers as possible. On the other hand, customers today leave much information
revealing their interests and preferences by using different communication channels offered by
companies. In the case of an online retailer, these channels might include an online shop, email
communication, or a social media presence. Through these channels’ usage, the customers
provide insights about their interests and preferences, so-called signals. During browsing in
an online catalog, these signals are, for instance, product views and searches or purchases.
Engaging with a company on social media might include to like or comment on new product
promotions. However, it is not directly clear how confident the gained information of these
signals is. For instance, is a purchase more trustworthy than a like or comment?

This leads to the first research question of this thesis:

1. How to evaluate recommender systems based on omni-channel data?

To do so, Chapter 2 provided an overview of the various application domains of recom-
mender systems. Consequently, the established recommender system approaches Collabora-
tive Filtering and Content-based Filtering were introduced and explained. Then, the evaluation
of recommender systems was elaborated. This included a comprehensive overview of metrics
applied in the evaluation process. Additionally, available libraries and frameworks were dis-
cussed, which support this process. The chapter concluded with a detailed investigation of
industrial implementations from three different application domains.

After that, Chapter 3 introduced benchmarking as a process for evaluation. Therefore, first,
the historical context of benchmarking and its impact for the Information Technology was
explained. Accordingly, different benchmark types and requirements were discussed. Then,
state-of-the-art benchmarks covering different system aspects were investigated. This was
done by considering their data models, workloads, metrics, and designs.

In Chapter 4, this knowledge led to a benchmark concept to evaluate recommender systems
based on omni-channel data. Therefore, first, the idea of channels and signals in the omni-
channel context was elaborated. Based on that, a data model was developed, which covers the

135

7 Conclusion

entities for this scenario. Consequently, the concept provides an overview of data generation
aspects that have to be addressed to mimic a real-world scenario. The central part of the
concept was addressed to introduce data aggregation methods that define possible ways
to weight and combine user signals among the channels. At this point, two approaches
were introduced, a weighted and a sequence-based aggregation. As the names suggest, the
former addresses to weight signals individually for each channel, for instance, if a like is
more trustworthy than a click on a product in a newsletter. The latter considers user signals
from a timely perspective aiming to put the highest confidence in the last user signals. For
the evaluation, the concept suggests evaluating the aggregations using three scenarios: data
loading, model training, and testing.

Then, the thesis continues in answering the second research question:

2. How does omni-channel data influence recommendations?

Therefore, in Chapter 5, an prototypical implementation of the benchmark concept was
explained. The prototype was implemented in a modular way such that it is possible to
adapt and extend it. Furthermore, it comprises the main characteristics of a benchmark. The
implementation contains modules for loading, preprocessing, aggregation, splitting, algorithms,
configuration, and visualization. The applied algorithms are implementations of established
recommender system libraries. Furthermore, the chapter explained the defined settings and
implemented metrics. These metrics evaluate the recommendations from a user, business, and
technical perspective.

In Chapter 6 the implementation was applied to a real-world data set from a retailer. First,
the chapter provided an analysis of the data. The utilized data comprised purchases from
an online shop and brick and mortar stores. Additionally, views, searches from logs, and
likes and comments from social media were part of the data. Besides, newsletter interactions
were available as sent, opened, and clicked signals. Based on this data and the prototypical
benchmark implementation, the chapter provided an extensive result analysis. This included
four different applications of the benchmark based on the aggregation methods. An overall
analysis was given at the end of the chapter.

Generally, the incorporation of the data showed no quality improvement regarding recom-
mendation accuracy. However, the accuracy results also did not decrease compared to only use
the purchase data. Indeed, the results reveal that their values are relatively stable and provide
nearly similar results. This holds especially for the results of the applied Alternating Least
Squares implementation. Due to the similarity of the accuracy, it is meaningful to consider
another aspect of incorporating additional data, such as the number of customers and products.
As shown by the analysis, both numbers increase through the usage of the additional channels.
This means that for customers who did not purchase a product in the examined time interval
but, for instance, liked a product on social media, a list of recommendations can be provided
now. Besides, products, which have not been purchased so far, were not considered as possible
recommendations for a customer. Now, products based on other signals become possible
recommendations for the customers. From the business perspective, this is beneficial since
the recommendations cover more products of their catalog. Considering these aspects, the
accuracy results must be interpreted differently. In this sense, an increase in customers and
products with a stable accuracy result is already an improvement.

136

7 Conclusion

7.2 Outlook

The introduced benchmark concept and its prototypical implementation provide a first step
to evaluate recommender systems based on omni-channel data. In this sense, it is considered
as a starting point that enables the exploration of further ideas in the future. Such ideas are
discussed in the following.

Concept

Currently the concept contains two aggregation methods, namely, weighted and sequence-
based. At this point, other approaches could be developed and integrated. One idea in this
regard might integrate customer and product characteristics in the aggregation process. For
instance, to use the weighted aggregation approaches for specific customer groups. In this
regard, customers could be grouped by, e.g., demographic, social, or geospatial aspects. The
proposed data model already supports user and item characteristics in the form of features.

Application Domains

In this thesis, the benchmark has been applied to channels and signals provided by a specific
retailer covering the e-commerce application domain. Given the limited amount of channel
data for the considered retailer, other retailers have to be examined based on their channels
and signals to investigate the influence of their incorporation further and compare the results.
In doing so, an overall analysis for a complete application domain might be possible. Besides,
the consideration of other application domains is of interest. For instance, this means to
investigate channels and signals provided in e-business, e-learning, or e-tourism.

Implementation

As already stated, the current implementation serves as a starting point. Considering the
individual modules, the following extensions appear promising as future work. For instance,
the integrated algorithms only work on static data sets neglecting streaming data. Therefore,
algorithms that update their models incrementally have to be integrated and analyzed. This
further enables to compare the algorithms by their competitive ratio.

Furthermore, the number of metrics could be extended. One exciting metric in this regard
might be the Intra-List Similarity to prove a recommendation list’s diversity, for instance,
to avoid that a recommendation list contains too many similar products. Another idea is
to compare the recommendation lists provided by the different implementations and the
incorporated data sets on a user basis, for instance, to measure whether certain products
are always recommended for a customer. This leads to the idea of measuring the bias and
fairness of different recommender system approaches. Therefore, a metric should be part of
the implementation that compares the results under this aspect.

Extending the benchmarkwith additional metrics only leads to insights when the results can
be compared efficiently. In this sense, other ways to visualize the results are required. In this
regard, one idea might be implementing radar charts, which can visualize many dimensions,
in this case, metrics, in a well-arranged representation.

137

Bibliography

[AB15] Xavier Amatriain and Justin Basilico. Recommender systems in industry: A
netflix case study. In Recommender Systems Handbook, pages 385ś419. Springer
US, Boston, MA, 2015.

[ABB+85] Anon, Dina Bitton, Mark Brown, Rick Catell, Stefano Ceri, Tim Chou, Dave De-
Witt, Dieter Gawlick, Hector Garcia-Molina, Bob Good, Jim Gray, Pete Homan,
Bob Jolls, Tony Lukes, Ed Lazowska, John Nauman, Mike Pong, Alfred Spector,
Kent Trieber, Harald Sammer, Omri Serlin, Mike Stonebraker, Andreas Reuter,
and Peter Weinberger. A measure of transaction processing power. Datamation,
31(7):112ś118, April 1985.

[AF01] Taiwo Amoo and Hershey Friedman. Do Numeric Values Influence Subjects’
Responses to Rating Scales? Journal of International Marketing and Marketing
Research, 2001.

[Aio13] Fabio Aiolli. Efficient top-n recommendation for very large scale binary rated
datasets. In Proceedings of the 7th ACM Conference on Recommender Systems,
RecSys ’13, page 273ś280, New York, NY, USA, 2013. Association for Computing
Machinery.

[Ama13] Xavier Amatriain. Big & personal: Data and models behind netflix recommen-
dations. In Proceedings of the 2nd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming Models
and Applications, BigMine ’13, page 1ś6, New York, NY, USA, 2013. Association
for Computing Machinery.

[AMBM20] HimanAbdollahpouri, MasoudMansoury, Robin Burke, and BamshadMobasher.
The connection between popularity bias, calibration, and fairness in recommen-
dation. In Fourteenth ACM Conference on Recommender Systems, RecSys ’20,
page 726ś731, New York, NY, USA, 2020. Association for Computing Machinery.

[BCT18] Shlomo Berkovsky, Iván Cantador, and Domonkos Tikk. Collaborative Recom-
mendations. World Scientific, 2018.

[BDT83] Dina Bitton, David J. DeWitt, and Carolyn Turbyfill. Benchmarking database
systems a systematic approach. In Proceedings of the 9th International Conference
on Very Large Data Bases, VLDB ’83, page 8ś19, San Francisco, CA, USA, 1983.
Morgan Kaufmann Publishers Inc.

138

Bibliography

[BFCK20] Oren Barkan, Yonatan Fuchs, Avi Caciularu, and Noam Koenigstein. Explain-
able recommendations via attentive multi-persona collaborative filtering. In
Fourteenth ACM Conference on Recommender Systems, RecSys ’20, page 468ś473,
New York, NY, USA, 2020. Association for Computing Machinery.

[BGSZ17] Sonia Bergamaschi, Luca Gagliardelli, Giovanni Simonini, and Song Zhu. Big-
Bench Workload Executed by using Apache Flink. Procedia Manufacturing,
11:695ś702, 2017.

[Bog14] Anja Bog. Benchmarks for Transaction and Analytical Processing Systems.
Springer-Verlag, 2014.

[BOHG13] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems
survey. Knowledge-Based Systems, 46:109ś132, July 2013.

[Buc69] Werner Buchholz. A synthetic job for measuring system performance. IBM
Systems Journal, 1969.

[Bur00] Robin Burke. Knowledge-based recommender systems. Encyclopedia of Library
and Information Systems, 69:175ś186, 2000.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and User-Adapted Interaction, 12(4):331ś370, November 2002.

[Bur07] Robin Burke. Hybrid Web Recommender Systems, page 377ś408. Springer-Verlag,
Berlin, Heidelberg, 2007.

[BWT17] David Bermbach, Erik Wittern, and Stefan Tai. Cloud Service Benchmarking:
Measuring Quality of Cloud Services from a Client Perspective. Springer Publish-
ing Company, Incorporated, 1st edition, 2017.

[BY20] Ricardo Baeza-Yates. Bias in search and recommender systems. In Fourteenth
ACM Conference on Recommender Systems, RecSys ’20, page 2, New York, NY,
USA, 2020. Association for Computing Machinery.

[Cam89] Robert C. Camp. Benchmarking: The search for industry best practices that lead
to superior performance. Productivity Press, 1989.

[Cat10] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, 2010.

[CCFF11] Fidel Cacheda, Víctor Carneiro, Diego Fernández, and Vreixo Formoso. Com-
parison of collaborative filtering algorithms: Limitations of current techniques
and proposals for scalable, high-performance recommender systems. ACM
Trans. Web, 5(1), February 2011.

[CDC14] Pedro G. Campos, Fernando Díez, and Iván Cantador. Time-aware recommender
systems: A comprehensive survey and analysis of existing evaluation protocols.
User Modeling and User-Adapted Interaction, 24(1ś2):67ś119, February 2014.

139

Bibliography

[CGL+16] Paul Cao, Bhaskar Gowda, Seetha Lakshmi, Chinmayi Narasimhadevara, Patrick
Nguyen, John Poelman, Meikel Poess, and Tilmann Rabl. From bigbench to tpcx-
bb: Standardization of a big data benchmark. In Performance Evaluation and
Benchmarking. Traditional - Big Data - Interest of Things - 8th TPC Technology
Conference, TPCTC 2016, New Delhi, India, September 5-9, 2016, Revised Selected
Papers, volume 10080 of Lecture Notes in Computer Science, pages 24ś44. Springer,
2016.

[CHI+15a] Mihai Capotă, Tim Hegeman, Alexandru Iosup, Arnau Prat-Pérez, Orri Erling,
and Peter Boncz. Graphalytics: A big data benchmark for graph-processing
platforms. In 3rd InternationalWorkshop on Graph DataManagement Experiences
and Systems, GRADES 2015 - co-located with SIGMOD/PODS 2015, 2015.

[CHT+17] Matthias Carnein, Leschek Homann, Heike Trautmann, Gottfried Vossen, and
Karsten Kraume. Customer service in social media: An empirical study of the
airline industry. In Datenbanksysteme für Business, Technologie und Web (BTW
2017), 17. Fachtagung des GI-Fachbereichs źDatenbanken und Informationssys-
teme" (DBIS), 6.-10. März 2017, Stuttgart, Germany, Workshopband, volume P-266
of LNI, pages 33ś40. GI, 2017.

[CHTV19] Matthias Carnein, Leschek Homann, Heike Trautmann, and Gottfried Vossen.
A recommender system based on omni-channel customer data. In 21st IEEE
Conference on Business Informatics, CBI 2019, Moscow, Russia, July 15-17, 2019,
Volume 1 - Research Papers, pages 65ś74. IEEE, 2019.

[CJSD08] Max Chevalier, Christine Julien, and Chantal Soule-Dupuy. Collaborative and
Social Information Retrieval and Access: Techniques for Improved User Modeling.
Information Science Reference - Imprint of: IGI Publishing, Hershey, PA, 1st
edition, 2008.

[CLA+03] Dan Cosley, Shyong K. Lam, István Albert, Joseph A. Konstan, and John Riedl.
Is seeing believing?: how recommender system interfaces affect users’ opinions.
In Proceedings of the 2003 Conference on Human Factors in Computing Systems,
CHI 2003, Ft. Lauderdale, Florida, USA, April 5-10, 2003, pages 585ś592. ACM,
2003.

[CLEM11] Badrish Chandramouli, Justin J. Levandoski, Ahmed Eldawy, and Mohamed F.
Mokbel. Streamrec: A real-time recommender system. In Proceedings of the
2011 ACM SIGMOD International Conference on Management of Data, SIGMOD
’11, page 1243ś1246, New York, NY, USA, 2011. Association for Computing
Machinery.

[CRS+13] Badrul Chowdhury, Tilmann Rabl, Pooya Saadatpanah, Jiang Du, and Hans-
Arno Jacobsen. A bigbench implementation in the hadoop ecosystem. In
Advancing Big Data Benchmarks - Proceedings of the 2013 Workshop Series on
Big Data Benchmarking, WBDB.cn, Xi’an, China, July 16-17, 2013 and WBDB.us,

140

Bibliography

San José, CA, USA, October 9-10, 2013 Revised Selected Papers, volume 8585 of
Lecture Notes in Computer Science, pages 3ś18. Springer, 2013.

[CSS+18] Diego Carvalho, Nícollas Silva, Thiago Silveira, Fernando Mourão, Adriano
C. M. Pereira, Diego Dias, and Leonardo C. da Rocha. Fair: A framework for
analyses and evaluations on recommender systems. In Computational Science
and Its Applications - ICCSA 2018 - 18th International Conference, Melbourne,
VIC, Australia, July 2-5, 2018, Proceedings, Part III, volume 10962 of Lecture Notes
in Computer Science, pages 383ś397. Springer, 2018.

[CST+10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC ’10, page 143ś154, New
York, NY, USA, 2010. Association for Computing Machinery.

[CTP+20] Konstantina Christakopoulou, Madeleine Traverse, Trevor Potter, Emma Mar-
riott, Daniel Li, Chris Haulk, Ed H. Chi, and Minmin Chen. Deconfounding user
satisfaction estimation from response rate bias. In Fourteenth ACM Conference
on Recommender Systems, RecSys ’20, page 450ś455, New York, NY, USA, 2020.
Association for Computing Machinery.

[DCJ19] Maurizio Ferrari Dacrema, Paolo Cremonesi, and Dietmar Jannach. Are we
really making much progress? a worrying analysis of recent neural recommen-
dation approaches. In Proceedings of the 13th ACM Conference on Recommender
Systems, RecSys ’19, page 101ś109, New York, NY, USA, 2019. Association for
Computing Machinery.

[DDGR07] Abhinandan S. Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google
news personalization: Scalable online collaborative filtering. In Proceedings of
the 16th International Conference on World Wide Web, WWW ’07, page 271ś280,
New York, NY, USA, 2007. Association for Computing Machinery.

[DK04] Mukund Deshpande and George Karypis. Item-based top-n recommendation
algorithms. ACM Trans. Inf. Syst., 22(1):143ś177, January 2004.

[Eks18] Michael D. Ekstrand. The lkpy package for recommender systems experiments.
Computer Science Faculty Publications and Presentations 147, Boise State
University, Aug 2018.

[Emr08] Christian Emrich.Multi-Channel-Communications- undMarketing-Management.
Gabler Verlag, 2008.

[EY36] Carl Eckart and Gale Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1936.

[FB08] A. Felfernig and R. Burke. Constraint-based recommender systems: Technolo-
gies and research issues. In Proceedings of the 10th International Conference

141

Bibliography

on Electronic Commerce, ICEC ’08, New York, NY, USA, 2008. Association for
Computing Machinery.

[FMY+19] Wenqi Fan, Yao Ma, Dawei Yin, Jianping Wang, Jiliang Tang, and Qing Li. Deep
social collaborative filtering. In Proceedings of the 13th ACM Conference on
Recommender Systems, RecSys ’19, page 305ś313, New York, NY, USA, 2019.
Association for Computing Machinery.

[FPK+17] Erzsébet Frigó, Róbert Pálovics, Domokos Kelen, Levente Kocsis, and András A.
Benczúr. Alpenglow: Open source recommender framework with time-aware
learning and evaluation. In Proceedings of the Poster Track of the 11th ACM
Conference on Recommender Systems (RecSys 2017), Como, Italy, August 28, 2017,
volume 1905 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[Fre17] Antonino Freno. Practical lessons from developing a large-scale recommender
system at zalando. In Proceedings of the Eleventh ACM Conference on Recom-
mender Systems, RecSys ’17, page 251ś259, New York, NY, USA, 2017. Associa-
tion for Computing Machinery.

[GBB16] Benjamin Gras, Armelle Brun, and Anne Boyer. Identifying grey sheep users
in collaborative filtering: A distribution-based technique. In Proceedings of the
2016 Conference on User Modeling Adaptation and Personalization, UMAP ’16,
page 17ś26, New York, NY, USA, 2016. Association for Computing Machinery.

[GBCV11] Cristina Gena, Roberto Brogi, Federica Cena, and Fabiana Vernero. The impact
of rating scales on user’s rating behavior. In Proceedings of the 19th International
Conference on User Modeling, Adaption, and Personalization, UMAP’11, page
123ś134, Berlin, Heidelberg, 2011. Springer-Verlag.

[GM05] Thomas George and Srujana Merugu. A scalable collaborative filtering frame-
work based on co-clustering. In Proceedings of the Fifth IEEE International
Conference on Data Mining, ICDM ’05, page 625ś628, USA, 2005. IEEE Com-
puter Society.

[Gra93] Jim Gray. The Benchmark Handbook for Database and Transaction Systems.
The Benchmark Handbook for Database and Transaction Systems, 1993.

[GRFST11] Zeno Gantner, Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-
Thieme. Mymedialite: A free recommender system library. In Proceedings of
the Fifth ACM Conference on Recommender Systems, RecSys ’11, page 305ś308,
New York, NY, USA, 2011. Association for Computing Machinery.

[GUH16] Carlos A. Gomez-Uribe and Neil Hunt. The netflix recommender system:
Algorithms, business value, and innovation. ACM Trans. Manage. Inf. Syst., 6(4),
December 2016.

142

Bibliography

[Guy15] Ido Guy. Social recommender systems. In Recommender Systems Handbook,
Second Edition. 2015.

[HCZ+15] Yanxiang Huang, Bin Cui, Wenyu Zhang, Jie Jiang, and Ying Xu. TencentRec:
Real-time Stream Recommendation in Practice. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
227ś238, New York, NY, USA, 2015. ACM.

[HJ65] R. F. Hitti and E. O. Joslin. Session 2: Evaluation and performance of computers:
2.1: Application benchmarks: The key to meaningful computer evaluations. In
Proceedings of the 1965 20th National Conference, ACM 1965, 1965.

[HJZ18] Rui Han, Lizy Kurian John, and Jianfeng Zhan. Benchmarking big data systems:
A review. IEEE Transactions on Services Computing, 11(3):580ś597, 2018.

[HKTR04] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.
Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst.,
22(1):5ś53, January 2004.

[HKV08] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 2008 Eighth IEEE International Conference
on Data Mining, ICDM ’08, page 263ś272, USA, 2008. IEEE Computer Society.

[HLX14] Rui Han, Xiaoyi Lu, and Jiangtao Xu. On big data benchmarking. In Jianfeng
Zhan, Rui Han, and Chuliang Weng, editors, Big Data Benchmarks, Performance
Optimization, and Emerging Hardware - 4th and 5th Workshops, BPOE 2014, Salt
Lake City, USA, March 1, 2014 and Hangzhou, China, September 5, 2014, Revised
Selected Papers, volume 8807 of Lecture Notes in Computer Science, pages 3ś18.
Springer, 2014.

[HOdRvH20] Jin Huang, Harrie Oosterhuis, Maarten de Rijke, and Herke van Hoof. Keep-
ing dataset biases out of the simulation: A debiased simulator for reinforce-
ment learning based recommender systems. In Fourteenth ACM Conference on
Recommender Systems, RecSys ’20, page 190ś199, New York, NY, USA, 2020.
Association for Computing Machinery.

[Hol14] Heinrich Holland. Digitales Dialogmarketing. Gabler Verlag, 2014.

[HPV16] Chen He, Denis Parra, and Katrien Verbert. Interactive recommender systems:
A survey of the state of the art and future research challenges and opportunities.
Expert Systems with Applications, 2016.

[Hup09] Karl Huppler. The art of building a good benchmark. In Performance Evaluation
and Benchmarking: First TPC Technology Conference, TPCTC 2009, Lyon, France,
August 24-28, 2009, Revised Selected Papers, page 18ś30, Berlin, Heidelberg, 2009.
Springer-Verlag.

143

Bibliography

[HZS+15] Rui Han, Shulin Zhan, Chenrong Shao, Junwei Wang, Lizy K. John, Jiangtao Xu,
Gang Lu, and Lei Wang. Bigdatabench-mt: A benchmark tool for generating
realistic mixed data center workloads. In Big Data Benchmarks, Performance
Optimization, and Emerging Hardware - 6th Workshop, BPOE 2015, Kohala, HI,
USA, August 31 - September 4, 2015. Revised Selected Papers, volume 9495 of
Lecture Notes in Computer Science, pages 10ś21. Springer, 2015.

[IBGZ18] Todor Ivanov, Patrick Bedué, Ahmad Ghazal, and Roberto V. Zicari. Adding
velocity to bigbench. In Proceedings of theWorkshop on Testing Database Systems,
DBTest’18, New York, NY, USA, 2018. Association for Computing Machinery.

[IHN+16] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-
Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram,
Michael Anderson, Ilie Gabriel Tănase, Yinglong Xia, Lifeng Nai, and Peter
Boncz. Ldbc graphalytics: A benchmark for large-scale graph analysis on par-
allel and distributed platforms. Proc. VLDB Endow., 9(13):1317ś1328, September
2016.

[IRP+15] Todor Ivanov, Tilmann Rabl, Meikel Poess, Anna Queralt, John Poelman, Nicolás
Poggi, and Jeffrey Buell. Big data benchmark compendium. In Performance
Evaluation and Benchmarking: Traditional to Big Data to Internet of Things -
7th TPC Technology Conference, TPCTC 2015, Kohala Coast, HI, USA, August 31
- September 4, 2015. Revised Selected Papers, volume 9508 of Lecture Notes in
Computer Science, pages 135ś155. Springer, 2015.

[IS18] Todor Ivanov and Rekha Singhal. ABench: Big data architecture stack bench-
mark. In ICPE 2018 - Companion of the 2018 ACM/SPEC International Conference
on Performance Engineering, 2018.

[JJK18] Michael Jugovac, Dietmar Jannach, and Mozhgan Karimi. Streamingrec: A
framework for benchmarking stream-based news recommenders. In Proceedings
of the 12th ACM Conference on Recommender Systems, RecSys ’18, page 269ś273,
New York, NY, USA, 2018. Association for Computing Machinery.

[JM15] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspectives, and
prospects, 2015.

[JMO19] Amir H. Jadidinejad, Craig Macdonald, and Iadh Ounis. Unifying explicit and
implicit feedback for rating prediction and ranking recommendation tasks. In
Proceedings of the 2019 ACM SIGIR International Conference on Theory of Informa-
tion Retrieval, ICTIR ’19, page 149ś156, New York, NY, USA, 2019. Association
for Computing Machinery.

[JVG19] Olivier Jeunen, Koen Verstrepen, and Bart Goethals. Efficient similarity com-
putation for collaborative filtering in dynamic environments. In Proceedings of
the 13th ACM Conference on Recommender Systems, RecSys ’19, page 251ś259,
New York, NY, USA, 2019. Association for Computing Machinery.

144

Bibliography

[JZFF10] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich.
Recommender systems: An introduction. Cambridge University Press, 2010.

[KB16] Marius Kaminskas and Derek Bridge. Diversity, serendipity, novelty, and
coverage: A survey and empirical analysis of beyond-accuracy objectives in
recommender systems. ACM Trans. Interact. Intell. Syst., 7(1), December 2016.

[KBV09] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8):30ś37, August 2009.

[KH17] Alexandros Karatzoglou and Balázs Hidasi. Deep learning for recommender
systems. In Proceedings of the Eleventh ACM Conference on Recommender
Systems, RecSys ’17, page 396ś397, New York, NY, USA, 2017. Association
for Computing Machinery.

[KJJ18] Mozhgan Karimi, Dietmar Jannach, and Michael Jugovac. News recommender
systems ś Survey and roads ahead. Information Processing and Management,
2018.

[KWV16] Denis Kotkov, Shuaiqiang Wang, and Jari Veijalainen. A survey of serendipity
in recommender systems. Know.-Based Syst., 111(C):180ś192, November 2016.

[Lan01] Doug Laney. 3D Data Management: Controlling Data Volume, Velocity, and
Variety. Application Delivery Strategies, 2001.

[LC85] Bryon C. Lewis and Albert E. Crews. The evolution of benchmarking as a
computer performance evaluation technique. MIS Q., 9(1):7ś16, March 1985.

[LH16] Philip Lenhart and Daniel Herzog. Combining content-based and collaborative
filtering for personalized sports news recommendations. In Proceedings of the
3rd Workshop on New Trends in Content-Based Recommender Systems co-located
with ACM Conference on Recommender Systems (RecSys 2016), Boston, MA, USA,
September 16, 2016, volume 1673 of CEUR Workshop Proceedings, pages 3ś10.
CEUR-WS.org, 2016.

[Liu09] Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data.
Springer-Verlag, Berlin, Heidelberg, 2009.

[LSY03] Greg Linden, Brent Smith, and Jeremy York. Amazon.com recommendations:
Item-to-item collaborative filtering. IEEE Internet Computing, 7(1):76ś80, Jan-
uary 2003.

[LTW+17] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. Spark-
bench: A spark benchmarking suite characterizing large-scale in-memory data
analytics. Cluster Computing, 20(3):2575ś2589, September 2017.

145

Bibliography

[LWM+15] Jie Lu, DianshuangWu, MingsongMao,WeiWang, and Guangquan Zhang. Rec-
ommender system application developments. Decis. Support Syst., 74(C):12ś32,
June 2015.

[LWXH14] Ruirui Lu, Gang Wu, Bin Xie, and Jingtong Hu. Stream bench: Towards bench-
marking modern distributed stream computing frameworks. In Proceedings of
the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing,
UCC ’14, page 69ś78, USA, 2014. IEEE Computer Society.

[MTW+20] Peter Mattson, Hanlin Tang, Gu-Yeon Wei, Carole-Jean Wu, Vijay Janapa Reddi,
Christine Cheng, Cody Coleman, Greg Diamos, David Kanter, Paulius Micike-
vicius, David A. Patterson, and Guenther Schmuelling. Mlperf: An industry
standard benchmark suite for machine learning performance. IEEE Micro,
40(2):8ś16, 2020.

[MZS20] Alessandro B. Melchiorre, Eva Zangerle, and Markus Schedl. Personality bias
of music recommendation algorithms. In Fourteenth ACM Conference on Rec-
ommender Systems, RecSys ’20, page 533ś538, New York, NY, USA, 2020. Asso-
ciation for Computing Machinery.

[NLW+09] Raghunath Othayoth Nambiar, Matthew Lanken, Nicholas Wakou, Forrest
Carman, and Michael Majdalany. Transaction processing performance council
(tpc): Twenty years later Ð a look back, a look ahead. In Performance Evaluation
and Benchmarking: First TPC Technology Conference, TPCTC 2009, Lyon, France,
August 24-28, 2009, Revised Selected Papers, page 1ś10, Berlin, Heidelberg, 2009.
Springer-Verlag.

[PB07] Michael J. Pazzani and Daniel Billsus. Content-Based Recommendation Systems,
volume 4321 of Lecture Notes in Computer Science, pages 325ś341. Springer,
2007.

[PKCK12] Deuk Hee Park, Hyea Kyeong Kim, Il Young Choi, and Jae Kyeong Kim. A
literature review and classification of recommender systems research. Expert
Syst. Appl., 39(11):10059ś10072, September 2012.

[PRJ17] Meikel Poess, Tilmann Rabl, and Hans-Arno Jacobsen. Analysis of tpc-ds: The
first standard benchmark for sql-based big data systems. In Proceedings of the
2017 Symposium on Cloud Computing, page 573ś585, New York, NY, USA, 2017.
Association for Computing Machinery.

[QCJ18] Massimo Quadrana, Paolo Cremonesi, and Dietmar Jannach. Sequence-aware
recommender systems. ACM Comput. Surv., 51(4), July 2018.

[Raa19] Francois Raab. System Under Test. Springer, 2019.

[RCK+20] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther
Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark

146

Bibliography

Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan
Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin
Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee,
Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevi-
cius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan,
Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank
Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron
Zhong, Peizhao Zhang, and Yuchen Zhou. Mlperf inference benchmark. In
Proceedings of the ACM/IEEE 47th Annual International Symposium on Computer
Architecture, page 446ś459. IEEE Press, 2020.

[RFD+14] Tilmann Rabl, Michael Frank, Manuel Danisch, Bhaskar Gowda, and Hans-Arno
Jacobsen. Towards a complete bigbench implementation. In Big Data Bench-
marking - 5th International Workshop, WBDB 2014, Potsdam, Germany, August
5-6, 2014, Revised Selected Papers, volume 8991 of Lecture Notes in Computer
Science, pages 3ś11. Springer, 2014.

[RFGST09] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. BPR: Bayesian personalized ranking from implicit feedback. In Pro-
ceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009,
2009.

[RGH+12] Tilmann Rabl, Ahmad Ghazal, Minqing Hu, Alain Crolotte, Francois Raab,
Meikel Poess, and Hans-Arno Jacobsen. Bigbench specification v0.1. In Revised
Selected Papers of the First Workshop on Specifying Big Data Benchmarks - Volume
8163, page 164ś201, Berlin, Heidelberg, 2012. Springer-Verlag.

[RMWZ14] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmermann.
Recommendation Systems in Software Engineering. Springer Publishing Com-
pany, Incorporated, 2014.

[Rol95] Asbjùrn Rolstadås. Benchmarking Ð Theory and Practice. Springer US, 1 edition,
1995.

[RRS11] Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to Recom-
mender Systems Handbook. In Recommender Systems Handbook. 2011.

[RSP20] R. Ramanathan, Nicolas K. Shinada, and Sucheendra K. Palaniappan. Building
a reciprocal recommendation system at scale from scratch: Learnings from one
of japan’s prominent dating applications. In Fourteenth ACM Conference on
Recommender Systems, RecSys ’20, page 566ś567, New York, NY, USA, 2020.
Association for Computing Machinery.

[SB14a] Alan Said and Alejandro Bellogín. Comparative recommender system evalu-
ation: Benchmarking recommendation frameworks. In Proceedings of the 8th
ACM Conference on Recommender Systems, RecSys ’14, page 129ś136, New York,
NY, USA, 2014. Association for Computing Machinery.

147

Bibliography

[SB14b] Alan Said and Alejandro Bellogín. Rival: A toolkit to foster reproducibility in
recommender system evaluation. In Proceedings of the 8th ACM Conference on
Recommender Systems, RecSys ’14, page 371ś372, New York, NY, USA, 2014.
Association for Computing Machinery.

[Ser91] Omri Serlin. The history of debitcredit and the TPC. In Jim Gray, editor, The
Benchmark Handbook for Database and Transaction Systems (1st Edition), pages
19ś38. Morgan Kaufmann, 1991.

[Sha48] C. E. Shannon. AMathematical Theory of Communication. Bell System Technical
Journal, 1948.

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
International Conference on World Wide Web, WWW ’01, page 285ś295, New
York, NY, USA, 2001. Association for Computing Machinery.

[SLK+16] Mario Scriminaci, Andreas Lommatzsch, Benjamin Kille, Frank Hopfgartner,
Martha A. Larson, Davide Malagoli, András Serény, and Till Plumbaum. Ido-
maar: A framework for multi-dimensional benchmarking of recommender
algorithms. In Proceedings of the Poster Track of the 10th ACM Conference on
Recommender Systems (RecSys 2016), Boston, USA, September 17, 2016, volume
1688 of CEUR Workshop Proceedings. CEUR-WS.org, 2016.

[SPBD19] Abhaya Kumar Sahoo, Chittaranjan Pradhan, Rabindra Kumar Barik, and Har-
ishchandra Dubey. Deepreco: Deep learning based health recommender system
using collaborative filtering. Computation, 7(2):25, 2019.

[Sta09] Tim Stapenhurst. The Benchmarking Book. Taylor & Francis Ltd., 2009.

[Ste18] Harald Steck. Calibrated recommendations. In Proceedings of the 12th ACM
Conference on Recommender Systems, RecSys ’18, page 154ś162, New York, NY,
USA, 2018. Association for Computing Machinery.

[STS+12] Alan Said, Domonkos Tikk, Klara Stumpf, Yue Shi, Martha A. Larson, and Paolo
Cremonesi. Recommender systems evaluation: A 3d benchmark. In Proceedings
of the Workshop on Recommendation Utility Evaluation: Beyond RMSE, RUE 2012,
Dublin, Ireland, September 9, 2012, volume 910 of CEUR Workshop Proceedings,
pages 21ś23. CEUR-WS.org, 2012.

[STSO20] Masahiro Sato, Sho Takemori, Janmajay Singh, and Tomoko Ohkuma. Unbiased
learning for the causal effect of recommendation. In Fourteenth ACM Conference
on Recommender Systems, RecSys ’20, page 378ś387, New York, NY, USA, 2020.
Association for Computing Machinery.

[TDD+17] Xinhui Tian, Shaopeng Dai, Zhihui Du, Wanling Gao, Rui Ren, Yaodong Cheng,
Zhifei Zhang, Zhen Jia, Peijian Wang, and Jianfeng Zhan. Bigdatabench-s: An

148

Bibliography

open-source scientific big data benchmark suite. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops, IPDPS Workshops
2017, Orlando / Buena Vista, FL, USA, May 29 - June 2, 2017, pages 1068ś1077.
IEEE Computer Society, 2017.

[TG20] Kosetsu Tsukuda and Masataka Goto. Explainable recommendation for repeat
consumption. In Fourteenth ACM Conference on Recommender Systems, Rec-
Sys ’20, page 462ś467, New York, NY, USA, 2020. Association for Computing
Machinery.

[TPNT09] Gábor Takács, István Pilászy, Bottyán Németh, and Domonkos Tikk. Scalable
collaborative filtering approaches for large recommender systems. Journal of
Machine Learning Research, 10:623ś656, June 2009.

[Tuc00] Friedrich W. Frhr Tucher. Benchmarking von Wissensmanagement. Deutscher
Universitätsverlag, 2000.

[VG15] Koen Verstrepen and Bart Goethals. Top-n recommendation for shared accounts.
In Proceedings of the 9th ACM Conference on Recommender Systems, RecSys ’15,
page 59ś66, New York, NY, USA, 2015. Association for Computing Machinery.

[VM09] Marco Vieira and Henrique Madeira. From performance to dependability bench-
marking: A mandatory path. In Performance Evaluation and Benchmarking,
First TPC Technology Conference, TPCTC 2009, Lyon, France, August 24-28, 2009,
Revised Selected Papers, volume 5895 of Lecture Notes in Computer Science, pages
67ś83. Springer, 2009.

[VZV+16] André Calero Valdez, Martina Ziefle, Katrien Verbert, Alexander Felfernig, and
Andreas Holzinger. Recommender systems for health informatics: State-of-
the-art and future perspectives. In Machine Learning for Health Informatics -
State-of-the-Art and Future Challenges, volume 9605 of Lecture Notes in Computer
Science, pages 391ś414. Springer, 2016.

[WBCR17] Kebing Wang, Bianny Bian, Paul Cao, and Mike Riess. Experiences and lessons
in practice using tpcx-bb benchmarks. In Performance Evaluation and Bench-
marking for the Analytics Era - 9th TPC Technology Conference, TPCTC 2017,
Munich, Germany, August 28, 2017, Revised Selected Papers, volume 10661 of
Lecture Notes in Computer Science, pages 93ś102. Springer, 2017.

[WCZ+16] Jian Wei, Kai Chen, Yi Zhou, Qu Zhou, and Jianhua He. Benchmarking of dis-
tributed computing engines spark and graphlab for big data analytics. In Second
IEEE International Conference on Big Data Computing Service and Applications,
BigDataService 2016, Oxford, United Kingdom, March 29 - April 1, 2016, pages
10ś13. IEEE Computer Society, 2016.

[Weg03] Ingo Wegener. Komplexitätstheorie - Grenzen der Effizienz von Algorithmen.
Springer, 2003.

149

Bibliography

[Wei90] Reinhold P. Weicker. An overview of common benchmarks. Computer,
23(12):65ś75, December 1990.

[WM18] Mengting Wan and Julian McAuley. Item recommendation on monotonic
behavior chains. In Proceedings of the 12th ACM Conference on Recommender
Systems, RecSys ’18, page 86ś94, New York, NY, USA, 2018. Association for
Computing Machinery.

[WP14] Martin Wiesner and Daniel Pfeifer. Health recommender systems: Concepts,
requirements, technical basics and challenges. International Journal of Environ-
mental Research and Public Health, 2014.

[WZL+14] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang
He, Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, Chen Zheng, Gang Lu,
Kent Zhan, Xiaona Li, and Bizhu Qiu. Bigdatabench: A big data benchmark
suite from internet services. In 20th IEEE International Symposium on High
Performance Computer Architecture, HPCA 2014, Orlando, FL, USA, February
15-19, 2014, pages 488ś499. IEEE Computer Society, 2014.

[XYE+16] Wen Xiong, Zhibin Yu, Lieven Eeckhout, Zhengdong Bei, Fan Zhang, and
Cheng-Zhong Xu. Shenzhen transportation system (SZTS): a novel big data
benchmark suite. Journal of Supercomputing, 72(11):4337ś4364, 2016.

[YBG+18] Longqi Yang, Eugene Bagdasaryan, Joshua Gruenstein, Cheng-Kang Hsieh, and
Deborah Estrin. Openrec: A modular framework for extensible and adaptable
recommendation algorithms. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, WSDM ’18, page 664ś672, New
York, NY, USA, 2018. Association for Computing Machinery.

[YLH+20] Bowen Yuan, Yaxu Liu, Jui-Yang Hsia, Zhenhua Dong, and Chih-Jen Lin. Unbi-
ased ad click prediction for position-aware advertising systems. In Fourteenth
ACM Conference on Recommender Systems, RecSys ’20, page 368ś377, New York,
NY, USA, 2020. Association for Computing Machinery.

[YMJ+16] Tong Yu, Ole J. Mengshoel, Alvin Jude, Eugen Feller, Julien Forgeat, and Nimish
Radia. Incremental learning for matrix factorization in recommender systems.
In James Joshi, George Karypis, Ling Liu, Xiaohua Hu, Ronay Ak, Yinglong
Xia, Weijia Xu, Aki-Hiro Sato, Sudarsan Rachuri, Lyle H. Ungar, Philip S. Yu,
Rama Govindaraju, and Toyotaro Suzumura, editors, 2016 IEEE International
Conference on Big Data, BigData 2016, Washington DC, USA, December 5-8, 2016,
pages 1056ś1063. IEEE Computer Society, 2016.

[ZHZC20] Ziwei Zhu, Yun He, Yin Zhang, and James Caverlee. Unbiased implicit rec-
ommendation and propensity estimation via combinational joint learning. In
Fourteenth ACM Conference on Recommender Systems, RecSys ’20, page 551ś556,
New York, NY, USA, 2020. Association for Computing Machinery.

150

Bibliography

[ZYST19] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recom-
mender system: A survey and new perspectives. ACM Comput. Surv., 52(1),
February 2019.

151

List of Web Pages

[1] Benchcouncil: International open benchmark council. https://www.

benchcouncil.org/mission.html. Last accessed: 2020-12-09.

[2] Bigdatabench - download. https://www.benchcouncil.org/

BigDataBench/download.html. Last accessed: 2020-12-09.

[3] Bigdatabench - summary. https://www.benchcouncil.org/

BigDataBench/index.html. Last accessed: 2020-12-09.

[4] Facebook marketplace. https://de-de.facebook.com/marketplace/.
Last accessed: 2020-12-09.

[5] Mlperf benchmark suite. https://github.com/mlperf. Last accessed: 2020-
12-09.

[6] Most popular online dating apps in the united states as of september 2019,
by reach. https://www.statista.com/statistics/826782/most-
popular-dating-apps-by-reach-usa. Last accessed: 2020-12-09.

[7] Mymedialite: Item recommendation tool. http://www.mymedialite.net/
documentation/item_prediction.html. Last accessed: 2020-12-09.

[8] Mymedialite: Rating prediction tool. http://www.mymedialite.net/

documentation/rating_prediction.html. Last accessed: 2020-12-09.

[9] Number of active zalando customers from 1st quarter 2014 to 4th quarter
2019. https://www.statista.com/statistics/370657/zalando-
active-buyers. Last accessed: 2020-12-09.

[10] Number of monthly active facebook users worldwide as of 1st quarter 2020.
https://www.statista.com/statistics/264810/number-of-

monthly-active-facebook-users-worldwide. Last accessed: 2020-12-
09.

[11] Number of netflix paying streaming subscribers worldwide from 3rd quarter 2011 to
1st quarter 2020. https://www.statista.com/statistics/250934/
quarterly-number-of-netflix-streaming-subscribers-

worldwide. Last accessed: 2020-12-09.

152

https://www.benchcouncil.org/mission.html
https://www.benchcouncil.org/mission.html
https://www.benchcouncil.org/BigDataBench/download.html
https://www.benchcouncil.org/BigDataBench/download.html
https://www.benchcouncil.org/BigDataBench/index.html
https://www.benchcouncil.org/BigDataBench/index.html
https://de-de.facebook.com/marketplace/
https://github.com/mlperf
https://www.statista.com/statistics/826782/most-popular-dating-apps-by-reach-usa
https://www.statista.com/statistics/826782/most-popular-dating-apps-by-reach-usa
http://www.mymedialite.net/documentation/item_prediction.html
http://www.mymedialite.net/documentation/item_prediction.html
http://www.mymedialite.net/documentation/rating_prediction.html
http://www.mymedialite.net/documentation/rating_prediction.html
https://www.statista.com/statistics/370657/zalando-active-buyers
https://www.statista.com/statistics/370657/zalando-active-buyers
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide
https://www.statista.com/statistics/250934/quarterly-number-of-netflix-streaming-subscribers-worldwide

List of Web Pages

[12] Number of online dating users in the united states from 2017 to 2024.
https://www.statista.com/statistics/417654/us-online-

dating-user-numbers. Last accessed: 2020-12-09.

[13] Numbers of linkedin members from 1st quarter 2009 to 3rd quarter 2016.
https://www.statista.com/statistics/274050/quarterly-

numbers-of-linkedin-members. Last accessed: 2020-12-09.

[14] Oryx 2. http://oryx.io/. Last accessed: 2020-12-09.

[15] Sparkbench. https://codait.github.io/spark-bench/. Last accessed:
2020-12-09.

[16] Sparkbench - adding new workloads. https://codait.github.io/spark-
bench/developers-guide/adding-new-workloads/. Last accessed:
2020-12-09.

[17] Standard performance evaluation corporation. https://www.spec.org/. Last
accessed: 2020-12-09.

[18] Szts - download. http://cloud.siat.ac.cn/cloud/szts/szts-

download.php.

[19] Tpcx-bb tools download. http://tpc.org/TPC_Documents_Current_
Versions/download_programs/tools-download-request5.

asp?bm_type=TPCX-BB&bm_vers=1.4.0&mode=CURRENT-ONLY.
Last accessed: 2020-12-09.

[20] What is the froomle platform? https://docs.froomle.com. Last accessed:
2020-12-09.

[21] What is the tpc. http://www.tpc.org/information/about/about.

asp? Last accessed: 2020-12-09.

[22] Why ldbc. http://ldbcouncil.org/public/why-ldbc. Last accessed:
2020-12-09.

[23] Xing. https://www.xing.de. Last accessed: 2020-06-08.

[24] Ycsb - download. https://github.com/brianfrankcooper/YCSB. Last
accessed: 2020-12-09.

[25] Netflix prize. https://www.netflixprize.com/, 2009. Last accessed: 2020-
12-09.

[26] Evolution of the netflix data pipeline. https://netflixtechblog.com/

evolution-of-the-netflix-data-pipeline-da246ca36905,
2016. Last accessed: 2020-12-09.

153

https://www.statista.com/statistics/417654/us-online-dating-user-numbers
https://www.statista.com/statistics/417654/us-online-dating-user-numbers
https://www.statista.com/statistics/274050/quarterly-numbers-of-linkedin-members
https://www.statista.com/statistics/274050/quarterly-numbers-of-linkedin-members
http://oryx.io/
https://codait.github.io/spark-bench/
https://codait.github.io/spark-bench/developers-guide/adding-new-workloads/
https://codait.github.io/spark-bench/developers-guide/adding-new-workloads/
https://www.spec.org/
http://cloud.siat.ac.cn/cloud/szts/szts-download.php
http://cloud.siat.ac.cn/cloud/szts/szts-download.php
http://tpc.org/TPC_Documents_Current_Versions/download_programs/tools-download-request5.asp?bm_type=TPCX-BB&bm_vers=1.4.0&mode=CURRENT-ONLY
http://tpc.org/TPC_Documents_Current_Versions/download_programs/tools-download-request5.asp?bm_type=TPCX-BB&bm_vers=1.4.0&mode=CURRENT-ONLY
http://tpc.org/TPC_Documents_Current_Versions/download_programs/tools-download-request5.asp?bm_type=TPCX-BB&bm_vers=1.4.0&mode=CURRENT-ONLY
https://docs.froomle.com
http://www.tpc.org/information/about/about.asp?
http://www.tpc.org/information/about/about.asp?
http://ldbcouncil.org/public/why-ldbc
https://www.xing.de
https://github.com/brianfrankcooper/YCSB
https://www.netflixprize.com/
https://netflixtechblog.com/evolution-of-the-netflix-data-pipeline-da246ca36905
https://netflixtechblog.com/evolution-of-the-netflix-data-pipeline-da246ca36905

List of Web Pages

[27] Ldbc snb data generator. https://github.com/ldbc/ldbc_snb_

datagen, 2020. Last accessed: 2020-12-09.

[28] Sparkbench - download. https://github.com/CODAIT/spark-bench,
2020. Last accessed: 2020-12-09.

[29] Tpc benchmark ™ ds - standard specification. http://www.tpc.org/tpc_
documents_current_versions/pdf/tpc-ds_v2.13.0.pdf, 2020.
Last accessed: 2020-12-09.

[30] Tpc download current. http://www.tpc.org/tpc_documents_

current_versions/current_specifications5.asp, 2020. Last
accessed: 2020-12-09.

[31] Tpc-ds is a decision support benchmark. http://www.tpc.org/tpcds/, 2020.
Last accessed: 2020-12-09.

[32] Tpc express big bench - standard specification. http://www.tpc.org/tpc_
documents_current_versions/pdf/tpcx-bb_v1.4.0.pdf, 2020.
Last accessed: 2020-12-09.

[33] Xing - facts & figures. https://www.new-work.se/en/about-new-

work-se/facts-and-figures, 2020. Last accessed: 2020-12-09.

[34] Renzo Angles. Benchmark principles and methods. http://ldbcouncil.org/
sites/default/files/LDBC_D1.1.2.pdf, 2013. Last accessed:.

[35] Alice Atkinson-Bonasio. Ten years of mendeley ś and what’s next. https:

//www.elsevier.com/connect/ten-years-of-mendeley-and-

whats-next, 2018. Last accessed: 2020-12-09.

[36] Nachiket Bhat. Trivago business model ś everything you need to know about how
trivago works & revenue analysis. https://www.ncrypted.net/blog/

trivago-business-model-everything-you-need-to-know-

about-how-trivago-works-revenue-analysis, 2018. Last accessed:
2020-12-09.

[37] Sean Busbey. Running a workload. https://github.com/

brianfrankcooper/YCSB/wiki/Running-a-Workload, 2019. Last
accessed: 2020-12-09.

[38] Graph 500 Steering Committee. Benchmark specification. https://graph500.
org/?page_id=12, 2017. Last accessed: 2020-12-09.

[39] Andrew Gaft. Travel and tourism statistics: The ultimate collection.
https://blog.accessdevelopment.com/tourism-and-travel-

statistics-the-ultimate-collection, 2019. Last accessed: 2020-12-09.

154

https://github.com/ldbc/ldbc_snb_datagen
https://github.com/ldbc/ldbc_snb_datagen
https://github.com/CODAIT/spark-bench
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpc_documents_current_versions/current_specifications5.asp
http://www.tpc.org/tpcds/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-bb_v1.4.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpcx-bb_v1.4.0.pdf
https://www.new-work.se/en/about-new-work-se/facts-and-figures
https://www.new-work.se/en/about-new-work-se/facts-and-figures
http://ldbcouncil.org/sites/default/files/LDBC_D1.1.2.pdf
http://ldbcouncil.org/sites/default/files/LDBC_D1.1.2.pdf
https://www.elsevier.com/connect/ten-years-of-mendeley-and-whats-next
https://www.elsevier.com/connect/ten-years-of-mendeley-and-whats-next
https://www.elsevier.com/connect/ten-years-of-mendeley-and-whats-next
https://www.ncrypted.net/blog/trivago-business-model-everything-you-need-to-know-about-how-trivago-works-revenue-analysis
https://www.ncrypted.net/blog/trivago-business-model-everything-you-need-to-know-about-how-trivago-works-revenue-analysis
https://www.ncrypted.net/blog/trivago-business-model-everything-you-need-to-know-about-how-trivago-works-revenue-analysis
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
https://github.com/brianfrankcooper/YCSB/wiki/Running-a-Workload
https://graph500.org/?page_id=12
https://graph500.org/?page_id=12
https://blog.accessdevelopment.com/tourism-and-travel-statistics-the-ultimate-collection
https://blog.accessdevelopment.com/tourism-and-travel-statistics-the-ultimate-collection

List of Web Pages

[40] Leschek Homann. Postgrenosql. https://github.com/

brianfrankcooper/YCSB/tree/master/postgrenosql, 2018.
Last accessed: 2020-12-09.

[41] Cameron Johnson. Goodbye stars, hello thumbs. https://about.netflix.
com/en/news/goodbye-stars-hello-thumbs, 2017. Last accessed: 2020-
12-09.

[42] Juozas Kaziukenas. Amazon replaces "reviews" with "ratings". https:

//www.marketplacepulse.com/articles/amazon-replaces-

reviews-with-ratings, 2019. Last accessed: 2020-12-09.

[43] Takuya Kitazawa. Flurs: A python library for online item recommendation. https:
//takuti.me/note/flurs, 2017. Last accessed: 2020-12-09.

[44] Ed Ingold Kris Jack and Maya Hristakeva. The components of a recommender sys-
tem. https://buildingrecommenders.wordpress.com/2015/11/
10/the-components-of-a-recommender-system, 2015. Last accessed:
2020-12-09.

[45] Ed Ingold Kris Jack and Maya Hristakeva. Mendeley suggest architec-
ture. https://buildingrecommenders.wordpress.com/2016/10/
10/mendeley-suggest-architecture, 2016. Last accessed: 2020-12-09.

[46] Charles Levine. Tpc-c: The oltp benchmark. http://www.tpc.org/

information/sessions/sigmod/sld002.htm, 1997. Last accessed: 2020-
12-09.

[47] Steve Liu. https://www.slideshare.net/sessionsevents/dr-steve-liu-chief-scientist-tinder-
at-mlconf-sf-2017. https://www.elsevier.com/connect/ten-years-
of-mendeley-and-whats-next, 2017. Last accessed: 2020-12-09.

[48] Mendeley. https://www.mendeley.com. Last accessed: 2020-06-08.

[49] Prof. Dr. Gerald Oeser. Omni-channel-management. https://

wirtschaftslexikon.gabler.de/definition/omni-channel-

management-54201, 1999. Last accessed: 2020-12-09.

[50] Prasanna Padmanabhan and Roopa Tangirala. Netflix recommendations using spark
+ cassandra. https://www.slideshare.net/DataStax/netflix-

recommendations-using-spark-cassandra, 2016. Last accessed: 2020-
12-09.

[51] Jesse Steinweg-Woods. A gentle introduction to recommender systems with implicit
feedback. https://jessesw.com/Rec-System/, 2016. Last accessed: 2020-
12-09.

155

https://github.com/brianfrankcooper/YCSB/tree/master/postgrenosql
https://github.com/brianfrankcooper/YCSB/tree/master/postgrenosql
https://about.netflix.com/en/news/goodbye-stars-hello-thumbs
https://about.netflix.com/en/news/goodbye-stars-hello-thumbs
https://www.marketplacepulse.com/articles/amazon-replaces-reviews-with-ratings
https://www.marketplacepulse.com/articles/amazon-replaces-reviews-with-ratings
https://www.marketplacepulse.com/articles/amazon-replaces-reviews-with-ratings
https://takuti.me/note/flurs
https://takuti.me/note/flurs
https://buildingrecommenders.wordpress.com/2015/11/10/the-components-of-a-recommender-system
https://buildingrecommenders.wordpress.com/2015/11/10/the-components-of-a-recommender-system
https://buildingrecommenders.wordpress.com/2016/10/10/mendeley-suggest-architecture
https://buildingrecommenders.wordpress.com/2016/10/10/mendeley-suggest-architecture
http://www.tpc.org/information/sessions/sigmod/sld002.htm
http://www.tpc.org/information/sessions/sigmod/sld002.htm
https://www.elsevier.com/connect/ten-years-of-mendeley-and-whats-next
https://www.elsevier.com/connect/ten-years-of-mendeley-and-whats-next
https://www.mendeley.com
https://wirtschaftslexikon.gabler.de/definition/omni-channel-management-54201
https://wirtschaftslexikon.gabler.de/definition/omni-channel-management-54201
https://wirtschaftslexikon.gabler.de/definition/omni-channel-management-54201
https://www.slideshare.net/DataStax/netflix-recommendations-using-spark-cassandra
https://www.slideshare.net/DataStax/netflix-recommendations-using-spark-cassandra
https://jessesw.com/Rec-System/

List of Web Pages

[52] Klaus Wübbenhorst. Definition: Was ist "benchmarking"? https://

wirtschaftslexikon.gabler.de/definition/benchmarking-

29988, 2020. Last accessed: 2020-12-09.

[53] Justin Basilico Xavier Amatriain. System architectures for personalization
and recommendation. https://netflixtechblog.com/system-

architectures-for-personalization-and-recommendation-

e081aa94b5d8, 2013. Last accessed: 2020-12-09.

156

https://wirtschaftslexikon.gabler.de/definition/benchmarking-29988
https://wirtschaftslexikon.gabler.de/definition/benchmarking-29988
https://wirtschaftslexikon.gabler.de/definition/benchmarking-29988
https://netflixtechblog.com/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
https://netflixtechblog.com/system-architectures-for-personalization-and-recommendation-e081aa94b5d8
https://netflixtechblog.com/system-architectures-for-personalization-and-recommendation-e081aa94b5d8

List of Abbreviations and Acronyms

CatCova absolute CatCov.

CatCovr relative CatCov.

MCon Memory Consumption.

TLoad Loading Time.

TRes Response Time.

TTest Testing Time.

TTrain Training Time.

ACID Atomicity, Consistency, Isolation, and Durability.

AI Artificial Intelligence.

ALS Alternating Least Squares.

API Application Programming Interface.

ATM Automated Teller Machine.

AUC Area Under the Curve.

AWS Amazon Web Services.

BASE Basically Available, Soft state, and Eventual consistency.

BDGS Big Data Generator Suite.

BFS Breadth-first Search.

BPR Bayesian Personalized Ranking.

CARS Context-aware Recommender Systems.

CatCov Catlog Coverage.

CB Content-based Filtering.

157

List of Abbreviations

CF Collaborative Filtering.

CoC Co-Clustering.

CPI Cycles per Instruction.

CPU Central Processing Unit.

CR Conversion Rate.

CRM Customer Relationship Management.

CSV Comma-separated Values.

CTR Click-through Rate.

DASE Data Preparator, Algorithm, Serving, and Evaluation Metrics.

DBMS Database Management System.

DCG Discounted Cumulative Gain.

DL Deep Learning.

EDP Electronic Data Processing.

EPS Edges per Second.

ERM Entity Relationship Model.

ETL Extract, Transform, and Load.

EVPS Edges and Vertices per Second.

FCP Fraction of Concordant Pairs.

G2B Government-to-Business.

G2C Government-to-Citizen.

GPFM Gaussian Process Factorization Machines.

GPS Global Positioning System.

GPU Graphics Processing Unit.

HDFS Hadoop Distributed File System.

HR Hit Rate.

158

List of Abbreviations

HTTP Hypertext Transfer Protocol.

IDF Inverse Document Frequency.

II Item-based CF.

ILS Intra-List Similarity.

IO InputOutput.

IPC Instructions per Cycle.

IR Information Retrieval.

IT Information Technology.

JSON JavaScript Object Notation.

KBRS Knowledge-based Recommender Systems.

kNN k-Nearest Neighbor.

LDBC Linked Data Benchmark Council.

LLCMPKI Last-level Cache Misses per Thousand Instructions.

LMF Logistic Matrix Factorization.

LPF Latency Penalty Factor.

LR Logistic Regression.

MAC Media Access Control.

MAE Mean Absolute Error.

MAI Memory Accesses per Instruction.

MAP Mean Average Precision.

MDCR Multi-Dimensional Collaborative Recommendation.

MF Matrix Factorization.

MIPS Million Instructions per Second.

ML Machine Learning.

MOI Map Output/Input Ratio.

159

List of Abbreviations

MOOC Massive Open Online Courses.

MPKI Misses per Kilo Instructions.

MPR Mean Percentile Rank.

MRR Mean Reciprocal Rank.

MSE Mean Square Error.

nDCG normalized Discounted Cumulative Gain.

NLP Natural Language Processing.

NLTK Natural Language Processing Toolkit.

NMF Non-negative Matrix Factorization.

NoSQL Not only SQL.

OLAP Online Analytical Processing.

OLTP Online Transaction Processing.

PDGF Parallel Data Generator Framework.

PMF Probabilistic Matrix Factorization.

POP Popularity.

RAN Random.

RDBMS Relational Database Management System.

RDD Resilient Distributed Dataset.

RDF Resource Description Framework.

REST Representational State Transfer.

RMSE Root Mean Square Error.

RR Reciprocal Rank.

SBRS Sequence-based Recommender Systems.

SFTP Secure File Transfer Protocol.

SGD Stochastic Gradient Descent.

160

List of Abbreviations

SkNN session-based kNN.

SNB Social Network Benchmark.

SPEC Standard Performance Evaluation Corporation.

SQL Structured Query Language.

SUT System under Test.

SVD Singular Value Decomposition.

SVM Support Vector Machine.

SZTS ShenZhen Transportation System.

TARS Time-aware Recommender Systems.

TF Term Frequency.

TF-IDF Term Frequency - Inverse Document Frequency.

TMRS Time Map/Reduce Stage Ratio.

TPC Transaction Processing Performance Council.

TPF Throughput Penalty Factor.

WiFi Wireless Fidelity.

XML Extensible Markup Language.

YAML YAML Ain’t Markup Language.

YCSB Yahoo! Cloud Serving Benchmark.

161

	Introduction
	Motivation
	Introductory Example
	Goals
	Thesis Structure

	Recommender Systems
	Motivation
	Application Domains
	Explicit and Implicit Feedback
	Approaches
	Collaborative Filtering Approaches
	Content-Based Filtering Approaches
	Hybrid Approaches
	Selected Recommender System Research
	Recommender Systems as Machine Learning Systems

	Metrics
	Accuracy Metrics
	Non-Accuracy Metrics
	Performance Metrics

	Evaluating Recommender Systems
	Offline Evaluation
	Online Evaluation

	Evaluation Libraries and Frameworks
	Libraries
	Frameworks
	Recommender System Services

	Industrial Recommender System Implementations
	Netflix Recommender System
	Mendeley Suggest Architecture
	Zalando Recommender System
	Summary

	General Trends and Future Developments
	Discussion

	Fundamentals of Benchmarking
	Motivation
	History of Benchmarking
	Benchmarking Origin
	Benchmarking Information Technologies
	Benchmarking Database and Big Data Systems

	Benchmarking Types and Consortia
	Types
	Consortia

	Requirements on Benchmarks
	State-of-the-Art Benchmarks
	TPC-DS
	BigBench
	Graphalytics
	BigDataBench
	acr:szts
	SparkBench
	StreamBench
	acr:ycsb
	MLPerf
	Summary

	Benchmark Model and Benchmark Execution Process
	Benchmark Model
	Benchmark Execution Process

	A Benchmark Concept for Recommender Systems based on Omni-Channel Data
	Channels and Signal Types
	Data Model
	Data
	Own and Public Data
	Data Generation

	Data Processing
	User Matching
	Item Matching
	Content Matching

	Data Aggregation
	Binary Aggregation
	Equally Weighted Aggregation
	Weighted Aggregation
	Sequence-based Aggregation
	Generalized Aggregation

	Benchmarking Process
	Overview
	Data Loading
	Model Training
	Model Testing
	Benchmark Components

	Implementation of the Recommender System Benchmark
	Overview
	Modules
	Data Loading
	Data Preprocessing
	Data Aggregation
	Data Splitting
	Algorithms
	Evaluation
	Configuration
	Visualization

	Application of the Recommender System Benchmark
	Analysis of the Online Retailer Data
	Collaboration Context
	Channels and Signal Types
	Data Analysis
	Data Preprocessing
	Considered Data

	Application of the Benchmark to the Online Retailer Data
	General Setup
	Binary Aggregation on Purchase Data
	Binary Aggregation on Omni-Channel Data
	Weighting-based Aggregation on Omni-Channel Data
	Sequence-based Aggregation on Omni-Channel Data
	Overall Analysis
	Discussion

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Web Pages

