Aus dem Universitätsklinikum Münster Klinik und Poliklinik für Kinder- und Jugendmedizin

- Direktor: Univ.-Prof. Dr. med. Heymut Omran -

Identifizierung von isolierten Defekten des Inneren Dynein-Arm-Komplex bei Patienten mit Primärer Ciliärer Dyskinesie

INAUGURAL-DISSERTATION

zur

Erlangung des doctor medicinae der Medizinischen Fakultät der Westfälischen Wilhelms-Universität Münster

> vorgelegt von Lammers, Franziska Barbara aus Dorsten

> > 2019

Gedruckt mit der Genehmigung der Medizinischen Fakultät der Westfälischen Wilhelms-Universität Münster

Dekan: Univ-Prof. Dr. med. Dr. rer. nat. Dr. h.c. Sven Meuth

- 1. Berichterstatter: Univ.-Prof. Dr. med. H. Omran
- 2. Berichterstatter: Univ.-Prof. Dr. med. R. Wiewrodt

Tag der mündlichen Prüfung: 24.11.2020

Aus dem Universitätsklinikum Münster

Klinik und Poliklinik für Kinder- und Jugendmedizin Direktor: Univ.-Prof. Dr. med. H. Omran Referent: Univ.-Prof. Dr. med. H. Omran Koreferent: Univ.-Prof. Dr. med. R. Wiewrodt

ZUSAMMENFASSUNG

Identifizierung von isolierten Defekten des Inneren Dynein-Arm-Komplex bei Patienten mit Primärer Ciliärer Dyskinesie Lammers, Franziska Barbara

Die Primäre Ciliäre Dyskinesie (PCD) ist eine seltene, genetisch heterogene Erkrankung, die durch eine defekte Ultrastruktur und/oder Dysfunktion motiler Zilien gekennzeichnet ist. Die hieraus resultierende Dysfunktion des ziliären Schlags führt bei betroffenen Patienten in unterschiedlichem Ausmaß zu rezidivierenden Atemwegsinfektionen, Lateralisationsdefekten und Unfruchtbarkeit. Durch die schwierige Diagnostik wird die PCD oft zu spät entdeckt, obwohl eine frühzeitige Diagnose mit sofort eingeleiteter adäquater Therapie die Lebensqualität der Patienten nachhaltig verbessern kann. Zu den häufigen Ursachen der PCD zählen Defekte der Motorproteine der Zilien, den Dynein-Armen. In den meisten Fällen handelt es sich dabei um einen Defekt der äußeren Dynein-Arme. Isolierte Defekte der inneren Dynein-Armen (IDA) wurden bislang kaum beschrieben.

Zur Identifikation weiterer bisher unbekannter isolierter Defekte der inneren Dynein-Arme wurde eine Kohorte von 421 PCD-Patienten mittels Immunfluoreszenzfärbung auf Abnormalitäten in der Ultrastruktur der IDAs gescreent. Zehn der dabei auffälligen 82 Patientenproben wurden zur genetischen Untersuchung zum Whole Exome Sequencing gesendet. Hierbei wurden neben zwei *DNAH11*-Mutationen und einer homozygoten *LRRC31*-Mutation zwei heterozygote *DNAH6*-Mutationen, eine heterozygote *DNAH10*-Mutation sowie zwei heterozygote *DNAH14*-Mutationen gefunden. Die heterozygoten Mutationen müssen im weiteren Verlauf noch bestätigt werden und können daher mit Abschluss dieser Arbeit noch nicht endgültig als ursächlich für die PCD der Patienten angesehen werden. Besonders die *DNAH10*- und die *DNAH14*-Mutationen geben aber einen Hinweis auf das Vorkommen weiterer, bisher unbekannter isolierter Defekte innerer Dynein-Arme.

Tag der mündlichen Prüfung: 24.11.2020

Eidesstattliche Erklärung

Ich gebe hiermit die Erklärung ab, dass ich die Dissertation mit dem Titel:

Identifizierung von isolierten Defekten des Inneren Dynein Arm Komplex bei Patienten mit Primärer Ciliärer Dyskinesie

in der Klinik und Poliklinik für Kinder- und Jugendmedizin des Universitätsklinikums Münster

unter der Anleitung von:

Herrn Univ.-Prof. Dr. med. H. Omran

1. selbstständig angefertigt,

2. nur unter Benutzung der im Literaturverzeichnis angegebenen Arbeiten angefertigt und sonst kein anderes gedrucktes oder ungedrucktes Material verwendet,

3. keine unerlaubte fremde Hilfe in Anspruch genommen,

4. sie weder in der gegenwärtigen noch in einer anderen Fassung einer in- oder ausländischen Fakultät als Dissertation, Semesterarbeit, Prüfungsarbeit, oder zur Erlangung eines akademischen Grades vorgelegt habe.

Ort, Datum

Name/Unterschrift

Inhaltsverzeichnis

1	Einle	eitung1		
	1.1	Aufbau der Zilien	1	
	1.2	Primäre Ciliäre Dyskinesie (PCD)	5	
	1.2.1	1 Symptome	5	
	1.2.2	2 Diagnostik	6	
	1.2.3	3 Therapie	8	
	1.2.4	4 Genetik	9	
	1.3	Aufbau der inneren Dynein-Arme (IDA)	10	
	1.4	IDA-Defekte und PCD	15	
	1.5	Isolierte IDA-Mutationen und PCD	15	
	1.6	Ziel der Arbeit	16	
2	Mate	erial	18	
	2.1	Chemikalie	18	
	2.2	Geräte	19	
	2.3	Programme	20	
	2.4	Primäre Antikörper	20	
	2.5	Sekundäre Antikörper	21	
	2.6	Verbrauchsmaterialien	21	
3	Meth	hoden	23	
	3.1	Immunfluoreszenzfärbung (IF)	23	
	3.1.1	1 Prinzip	23	
	3.1.2	2 Monoklonale Antikörper	23	
	3.1.3	3 Polyklonale Antikörper	24	
	3.1.4	4 Durchführung	24	
	3.2	Polymerase Ketten Reaktion (PCR)	25	
	3.2.1	1 Prinzip	25	
	3.2.2	2 Primerdesign	26	

		3.2.3	3	Durchführung	. 26
	3.	.3	G	radienten-PCR	. 27
	3.	.4	G	elelektrophorese	. 27
		3.4.1		Prinzip	. 27
		3.4.2	2	Durchführung	. 27
	3.	.5	W	/hole Exome Sequencing	. 28
	3.	.6	Sa	anger-Sequenzierung	. 28
		3.6.1		Prinzip	. 28
		3.6.2	2	Durchführung	. 28
4		Patie	ent	enkohorte	. 30
5		Erge	bn	isse	. 31
	5.	.1	In	nmunfluoreszenz-Färbung	. 31
	5.	.2	W	/hole Exome Sequencing	. 34
	5.	.3	Sa	anger Sequenzierung und weitere IF-Färbungen	. 36
		5.3.1		OP-2323 II1 und OP-1534 II1	. 36
		5.3.2	2	OP-2173 II1	. 40
		5.3.3	3	OP-1759 II1	. 42
		5.3.4	ł	OP-1521 II1	.44
		5.3.5	5	OP-2371 II1	. 46
		5.3.6	6	OP-1733 II1	. 47
6		Disk	uss	sion	. 53
	6.	.1	Μ	utationen in DNAH6	. 53
	6.	.2	Μ	utationen in DNAH10	. 54
	6.	.3	Μ	utationen in DNAH14	. 54
	6.	.4	Μ	utationen in LRRC31	. 55
	6.	.5	Μ	utationen in DNAH11	. 57
	6.	.6	A	bschließende Beurteilung und Ausblick	. 58
7		Zusa	ami	menfassung	. 60

8	Literatur	61
9	Danksagung	71
10	Lebenslauf	72
11	Abbildungsverzeichnis	73
12	Tabellenverzeichnis	74
13	Anhang	-XX

Abkürzungsverzeichnis

Abkürzung	Bedeutung		
ALI	Air-Liquid Interface		
ATP	Adenosintriphosphat		
ARMC4	Armadillo Repeat Containing Protein 4		
C19orf51 (DNAAF3)	Dynein Axonemal Assembly Factor 3		
Ca2+	Calcium		
CCDC19	Coiled-coil Domain Containing Protein 19		
CCDC39	Coiled-coil Domain Containing Protein 39		
CCDC40	Coiled-coil Domain Containing Protein 40		
CCDC65	Coiled-coil Domain Containing Protein 65		
CCDC103	Coiled-coil Domain Containing Protein 103		
CCDC114	Coiled-coil Domain Containing Protein 114		
CCDC151	Coiled-coil Domain Containing Protein 151		
CCDC164	Coiled-coil Domain Containing Protein 164		
CCNO	Cyclin O		
CFAP45	Cilia And Flagella Associated Protein 45		
CP	Zentrales Paar		
CPC-RS	Zentrales Paar-Radialspeichen Komplex		
ddATP	Didesoxyadenosintriphosphat		
ddCTP	Didesoxycytidintriphosphat		
ddGTP	Didesoxyguasintriphosphat		
ddGTP	Didesoxyguanosintriphosphat		
ddTTP	Didesoxythymidintriphosphat		
DNAAF	Dynein Axonemal Assembly Factor		
DNAH1	Dynein Axonemal Heavy Chain 1		
DNAH2	Dynein Axonemal Heavy Chain 2		
DNAH5	Dynein Axonemal Heavy Chain 5		
DNAH6	Dynein Axonemal Heavy Chain 6		
DNAH7	Dynein Axonemal Heavy Chain 7		
DNAH8	Dynein Axonemal Heavy Chain 8		
DNAH9	Dynein Axonemal Heavy Chain 9		
DNAH10	Dynein Axonemal Heavy Chain 10		
DNAH11	Dynein Axonemal Heavy Chain 11		
DNAH12	Dynein Axonemal Heavy Chain 12		
DNAH14	Dynein Axonemal Heavy Chain 14		
DNAI1	Dynein Axonemal Intermediate Chain 1		
DNAI2	Dynein Axonemal Intermediate Chain 2		
DNAL1	Dnyein Axonemal Light Chain 1		
DNALI1	Dynein Axonemal Light Intermediate Chain 1		
DNA	Desoxyribonukleinsäure		
dNTP	Desoxynukleosidtriphosphat		
DYX1C1 (DNAAF4)	Dyslexia Susceptibility 1 Candidate 1		

EDTA	Ethylendiamintetraacetat
FAP120	Flagellar Associated Protein 120
FOXJ1	Forkhead Box J1
g	Gramm
GAS8	Growth Arrest Specific 8
H2O	Wasser
HEATR2 (DNAAF5)	HEAT Repeat Containing 2
HPLC	High Performance Liquid Chromatography
HVMA	Hochfrequenzvideomikroskopie-Analyse
11	IDA Gruppe 1
12	IDA Gruppe 2
13	IDA Gruppe 3
IC2	intermediate chain 2
IC97	intermediate chain 97
IC138	intermediate chain 138
IC140	intermediate chain 140
ICLC	intermediate chain and light chain complex
IDA	innerer Dynein-Arm
IF	Immunfluoreszenz
kDa	Kilodalton
KTU (DNAAF2)	Kintoun (Dynein Axonemal-Assembly Factor 2)
LC7a	light chain 7
LC7b	roadblock/lc7 family protein
LC8	light chain 8
LRRC6	Leucine Rich Repeat Containing Protein 6
LRRC31	Leucine Rich Repeat Containing Protein 31
LRRC50 (DNAAF1)	Leucine Rich Repeat Containing Protein 50
MgCl2	Magnesiumchlorid
ml	Milliliter
N-DRC	Nexin-Dynein-Regulatorischer Komplex
ng	Nanogramm
NO	Stickstoffmonoxid
ODA	äußerer Dynein-Arm
OFD1	Oral-Facial-Digital Syndrome 1
P28	light chain p28
PBS	Phosphat-gepufferte Salzlösung
PCD	Primäre ciliäre Dyskinesie
PCR	Polymerasekettenreaktion
PPIH	Peptidylprolyl Isomerase H
PFA	Paraformaldehyd
PIH1D3	Protein Interacting with HSP90 1 Domain Containing
	Protein 3
ppb	Parts per billion
RPGR	Retinitis Pigmentosa GTPase Regulator
RPMI	Roswell Park Memorial Institute Zellkulturmedium

RS	Radialspeichen
RSPH1	Radial Spoke Head 1
RSPH3	Radial Spoke Head 3
RSPH4A	Radial Spoke Head 4 Homolog A
RSPH9	Radial Spoke Head 9
RSPH16A	Radial Spoke Head 16 Homolog A (DNAJB13)
SPAG1	Sperm Associated Antigen 1
STK36	Serine/Threonine Kinase 36
TBE	TRIS-Borat-EDTA Puffer
Tctex1	Light chain Tctex1
Tctex2b	Light chain Tctex2b
TEM	Transmissionselektronenmikroskopie
TTC25	Tetratricopeptide Repeat Domain Containing Protein 25
TXNDC3 (NME8)	Thioredoxin Domain Containing Protein 3 (NME/NME23 Family Member 8)
UV	Ültraviolett
WDR16	WD Repeat Domain 16
WDR63	WD Repeat Domain 63
WES	Whole Exome Sequencing
ZMYND10	Zinc Finger MYND-Type Containing 10
μΙ	Mikroliter

1 Einleitung

1.1 Aufbau der Zilien

Zilien sind komplexe, röhrenförmige Zellorganellen, die sich auf beinahe jeder eukaryotischen Zelle finden lassen und aus über 300 Proteinen bestehen (10, 13, 69). Die ca. 6 µm langen und 0,2 bis 0,3 µm breiten Zilien bestehen aus dem im Zellkörper verankerten Basalkörper, dem in den Extrazellularraum ragendem Axonem und sind von einer spezialisierten Plasmamembran umgeben (4, 13). Der Basalkörper wird von neun aus γ-Tubulin aufgebauten, zirkulär angeordneten Mikrotubulus-Tripletten gebildet und ist vom Mikrotubulus-organisierendem Zentrum umgeben (20, 64). In der Übergangszone werden aus diesen Mikrotubulus-Tripletten Mikrotubulus-Doubletten, die letztlich das Axonem formen. Die Mikrotubulus-Doubletten des Axonems bestehen aus Heterodimeren von α - und β - Tubulin und bilden 13 bzw. 11 Protofilamente, die Mikrotubuli A und B (4) (Abbildung 1).

Abbildung 1 Schematischer Aufbau einer respiratorischen Zilie

Zilien bestehen aus dem im Zellkörper verankerten Basalkörper, dem in den Extrazellularraum ragendem Axonem und sind von einer spezialisierten Plasmamembran umgeben. Der Basalkörper wird von neun Mikrotubulus-Tripletten gebildet. In der Übergangszone werden aus diesen Mikrotubulus-Tripletten Mikrotubulus-Doubletten, die letztlich das Axonem formen. Respiratorische Zilien sind mit einer 9+2 Struktur aufgebaut: Neun Mikrotubulus-Doubletten umgeben ein zentrales Mikrotubulus-Paar. Abbildung modifiziert nach Omran *et. al* 2009 (64) in Anlehnung an Fliegauf *et. al* 2009 (20).

Zilien lassen sich strukturell und funktionell klassifizieren (Tabelle 1).

Tabelle 1 Klassifizierung der Zilien

	9+0 Struktur	9+2 Struktur
Motile Zilien	Nodale Zilien	Sekundäre Zilien
Nichtmotile Zilien	Primäre Zilien	Kinozilien

Strukturell werden die Zilien durch die Anordnung der Mikrotubulus-Doubletten im Axonem in zwei Kategorien unterteilt: Zilien mit einer 9+2 Struktur und Zilien mit einer 9+0 Struktur. Die 9+2 Struktur ist durch ein zentrales Mikrotubulus-Paar gekennzeichnet, das von den neun peripheren Mikrotubulus-Doubletten umgeben ist. Dieses zentrale Mikrotubulus-Paar fehlt in den Zilien mit einer 9+0 Struktur (4, 13). Zu den Zilien mit einer 9+2 Struktur zählen die sekundären Zilien und die Kinozilien. Die primären Zilien und die nodalen Zilien besitzen hingegen eine 9+0 Struktur.

Funktionell werden bewegliche (motile) von unbeweglichen (nichtmotile) Zilien unterschieden. Die unbeweglichen Zilien sind die Kinozilien (9+2 Struktur) und die primären Zilien (9+0 Struktur). Kinozilien befinden sich im Innenohr (65), während die primären Zilien beispielsweise in den Nieren der Säuger als Chemo- oder Mechanosensor agieren (13). Wurden früher nur den primären Zilien sensorische Funktionen zugeschrieben, ist mittlerweile bekannt, dass alle Zilienarten auch sensorisch agieren (65). Zu den beweglichen Zilien zählen die nodalen Zilien (9+0 Struktur) und die sekundären Zilien (9+2 Struktur). Während der Embryonalentwicklung sorgen die nodalen Zilien durch Rotationsbewegungen für die richtige Platzierung der Organe. Da viele Mutationen, die einen Ziliendefekt auslösen, auch die nodalen Zilien betreffen. Fällen Lateralisationsdefekte treten in solchen (situs inversus totalis/ambiguus) auf (89).

Am besten erforscht sind die beweglichen sekundären Zilien (9+2 Struktur) (13). Die äußeren Mikrobulus-Doubletten sind hier untereinander über Nexin-Brücken verbunden und stehen über Radialspeichen mit dem zentralen Mikrotubulus-Paar in Verbindung. Eingehende Signale werden über das zentrale Mikrotubulus-Paar zu den T-förmigen Radialspeichen (RS) geleitet und gelangen über diese zum peripheren Mikrotubulus A (22). Die Nexin-Brücken verbinden wiederum den peripheren A-Mikrotubulus mit dem benachbarten B-Mikrotubulus und regulieren als Nexin-Dynein-Regulator-Komplex (N-DRC) die Aktivität der Dyneine (27). Das zentrale Mikrotubulus-Paar, die RS und der N-DRC spielen somit eine wichtige Rolle in der Regulierung des ziliären Schlages (27, 33).

Für die Bewegung der motilen Zilien sorgen die Dyneine. Diese Motorproteinkomplexe sind in zwei Reihen (äußere und innere Dynein-Arme) über die gesamte Länge des Mikrotubulus A an diesen angeheftet (27) (Abbildung 2).

Abbildung 2 Querschnitt durch das Axonem

Mithilfe von Energie aus ATP-Spaltung sorgen die Dynein-Arme dafür, dass der Mikrotubulus A am Mikrotubulus B entlang gleiten kann, was zu einer Schlagbewegung des gesamten Ziliums führt (27). Die Dynein-Arme bestehen aus mehreren Dynein-Peptiden, die entsprechend ihres Molekulargewichts in schwere Ketten (500-400 kDa), intermediäre Ketten (110-55 kDa) und leichte Ketten (45-8 kDa) eingeteilt werden (89). Während die äußeren Dynein-Arme (ODAs) für die Schlagkraft und die Schlagfrequenz verantwortlich sind, regulieren die inneren Dynein-Arme (IDAs) die Schlagform (8). Ein Defekt der Dynein-Arme schränkt daher die Schlagbewegungen ein oder lässt die Zilie sogar ganz unbeweglich werden. Motile Zilien kommen auf vielen verschiedenen Zelltypen vor, beispielsweise auf respiratorischen Epithelzellen, auf den Ependymzellen der Hirnventrikel und den Zellen der Tuba uterina (13). Die Symptome, die durch pathologisch unbewegliche Zilien hervorgerufen werden, sind daher vielfältig. Eine Folge ist unter anderem die Primäre Ciliäre Dyskinesie.

Die inneren (rot) und äußeren (hellblau) Dynein-Arme sind am Mikrotubulus A angeheftet. Die Radialspeichen (dunkelblau) verbinden das zentrale Mikrotubulus-Paar mit den peripheren Mikrotubuli. Über die Nexin-Brücken (grün) ist der periphere Mikrotubulus A mit dem benachbarten Mikrotublus B verbunden. Abbildung modifiziert nach Ibañez-Tallon *et. al* 2003 (33).

Info: Aufbau der äußeren Dynein-Arme

Der Aufbau der äußeren Dynein-Arme wurde zunächst an der Alge Chlamydomonas reinhardtii erforscht. In C. reinhardtii bestehen die äußeren Dynein-Arme (ODA) aus drei schweren Dynein-Ketten (α -, β - und y-schwere Kette), zwei intermediären und neun leichten Ketten. Über den ODA-Docking-Komplex sind die äußeren Dynein-Arme mit dem Mikrotubulus A verbunden (70). In den humanen äußeren Dynein-Armen wurden keine Orthologe der α -schweren Kette gefunden, allerdings ließen sich drei unterschiedliche Orthologe der β-schweren Kette (DNAH11, DNAH17, DNAH9) sowie zwei Orthologe der y-schweren Kette (DNAH5, DNAH8) nachweisen (70). Die humanen äußeren Dynein-Arme bestehen somit zwar nur aus zwei schweren Dynein-Ketten, bilden jedoch mit diesen unterschiedliche Isoformen aus. Da DNAH5 (Ortholog der y-schweren Kette) am gesamten Axonem nachgewiesen wurde, während DNAH9 (Ortholog der β-schweren Kette) nur distal und DNAH11 (Ortholog der β-schweren Kette) nur proximal am Axonem lokalisieren, existieren mindestens zwei unterschiedliche Typen der humanen äußeren Dynein-Arme: Ein proximaler DNAH5- und DNAH11-positiver Typ 1 und ein distal vorkommender DNAH9- und DNAH5- positiver Typ 2 (4, 16). Der schematische Aufbau der äußeren Dynein-Arme ist in Abbildung 3 dargestellt.

Abbildung 3 Schematischer Aufbau der äußeren Dynein-Arme

Im Gegensatz zu den humanen äußeren Dynein-Armen (**A** und **B**) bestehen die äußeren Dynein-Arme in *Chlamydomonas reinhardtii* aus drei schweren Ketten (α , β und γ) (**C**).

A: Aufbau des humanen proximalen äußeren Dynein-Arms Typ 1 mit den schweren Ketten DNAH11 und DNAH5. Dargestellt sind außerdem die intermediären (DNAI1, DNAI2, 2) und die leichten Ketten. B: Aufbau des humanen distalen äußeren Dynein-Arms Typ 2 mit den schweren Ketten DNAH9 und DNAH5. Abbildungen modifiziert nach Becker-Heck *et.al* 2012 (4) C: Aufbau der äußeren Dynein-Arme in *Chlamydomonas reinhardtii*. Abbildung modifiziert nach Pazour *et. al* 2006 (70).

1.2 Primäre Ciliäre Dyskinesie (PCD)

Die Primäre Ciliäre Dyskinesie (PCD) bezeichnet eine seltene, genetisch heterogene Gruppe von Erkrankungen, deren klinische Ausprägung durch ultrastrukturelle oder funktionelle Defekte von Zilien hervorgerufen wird (23, 60, 84). Die weniger bis gar nicht mehr beweglichen Zilien führen zu einer eingeschränkten mukoziliären Clearance im respiratorischen Trakt (23), was im Krankheitsverlauf unter anderem zu otosinopulmonalen Beeinträchtigungen und irreversiblen Lungenschäden führen kann (54, 79). Vermutlich aufgrund der schwierigen Diagnostik sowie der unterschiedlichen Konsanguinitätsrate in Gesellschaften variieren die Angaben zur Prävalenz der PCD von 1:4000 bis zu 1:40.000 (3, 48, 84). Die European Respiratory Society hielt 2009 eine Prävalenz von 1:4100 für wahrscheinlich (3). Die Erstdiagnose wurde bei Patienten mit *situs inversus* im Durchschnitt mit 4,4 Jahren gestellt, bei Patienten ohne *situs inversus* mit 6 Jahren (3).

1.2.1 Symptome

75-80% der PCD-Patienten werden in den ersten 12-24 Stunden nach der Geburt mit einem Atemnotsyndrom auffällig (58, 60). Dies zeigt sich durch eine erhöhte Atemarbeit und eine Tachypnoe sowie den Bedarf an Sauerstoff für Stunden bis Wochen (42, 58). Die weiteren Symptome entwickeln sich im Laufe der Kindheit und können unterschiedlich stark ausgeprägt sein. Während bei über 90% der Neonaten eine persistierende Rhinitis zu Fütterungsschwierigkeiten führen kann (60, 84), leiden Kleinkinder zusätzlich an chronisch produktiven Husten, ganzjähriger chronischer Sinusitis und therapieresistenter Otitiden mit Otorrhö (23, 60). Durch die chronische Otitis media kann es zu einem temporären oder sogar permanten Hörverlust kommen, was zu Sprachentwicklungsstörungen in der frühen Kindheit führen kann. Schon im Kindesalter können sich außerdem Atelektasen und peribronchiale Verdickungen entwickeln (36, 42). Generalisierte Bronchiektasen lassen sich im Kindesalter bei 56% der Erkrankten finden, im Erwachsenenalter sind fast alle Patienten betroffen (39). Die fehlende mukoziliäre Clearance kann zwar teilweise durch den produktiven Husten kompensiert werden, da sich aber dennoch zu viele Erreger im respiratorischen Trakt befinden, treten Atemwegsinfektionen insgesamt sehr häufig auf (42). Zu den wichtigsten Erregern im respiratorischen Trakt zählen Haemophilus influenza, Staphylococcus aureus und Streptococcus pneumonia, bei 15% der Erwachsenen auch Nontuberculus mycobacteria (75). In der Kindheit treten Lungenveränderungen meist in

den Lungenmittel- und später auch in den Lungenunterlappen auf, dies kann sich jedoch im späteren Krankheitsstadium auf die Lungenoberlappen ausweiten (39, 84). Ein verminderter Zilienschlag von nodalen Zilien während der Embryonalentwicklung kann für Lateralisationsdefekte verantwortlich sein. Bei ca. 50% der PCD-Patienten tritt daher ein situs inversus totalis auf (40). Die Trias aus chronischer Sinusitis, Bronchiektasen und situs inversus totalis ist als Kartagener Syndrom bekannt (42). Weitere 12% der Betroffenen weisen einen situs ambiguus auf, der häufig mit strukturellen kongenitalen Herzerkrankungen assoziiert ist (78). Durch die Strukturähnlichkeit des Flagellums des Spermiums und der bei einem Defekt daraus resultierenden Dysmotilität leiden etwa 50% der männlichen Patienten an Infertilität (60, 84). In seltenen Fällen können auch Frauen von einer reduzierten Fertilität betroffen sein (60). Aufgrund der Beeinträchtigung der Zilien in der Tuba uterina kommt es häufiger zu ektopen Schwangerschaften (79). Da das Ventrikelsystem im Gehirn mit einem Flimmerepithel aus Ependymzellen ausgekleidet ist, kann es in seltenen Fällen (<1%) zur Ausbildung eines Hydrocephalus kommen (60). 10% der PCD-Patienten sind außerdem von einer Trichterbrust betroffen. In der restlichen Bevölkerung tritt dies mit einer Wahrscheinlichkeit von 0,3% auf (39). Auch das Risiko für das Auftreten einer Skoliose ist erhöht. Bei Patienten mit Pectum excavatium und/oder Skoliose und unerklärlichen sinopulmonalen Erkrankungen sollte daher eine PCD in Betracht gezogen werden (42, 43).

1.2.2 Diagnostik

Aufgrund der schwierigen Diagnostik der PCD wird diese oft erst spät oder gar nicht erkannt (48). Häufig kommt es zu Verwechslungen mit bakteriellen oder viralen Infektionen oder Mukoviszidose. Die Mukoviszidose sollte daher im besten Fall bereits ausgeschlossen sein. Sollten bei einem Neonaten ein Atemnotsyndrom nach der Geburt, Sauerstoffbedarf und Auffälligkeiten im Röntgenbild festgestellt werden, muss eine PCD in Betracht gezogen werden, vor allem wenn dies in Kombination mit einem *situs inversus/ambiguus* auftritt (42). Der Algorithmus zur Diagnostik der PCD von 2013 sieht zunächst eine Messung der nasalen Stickstoffmonoxid-Produktionsrate (nNo) vor. Anschließend werden über eine Bürstenbiopsie respiratorische Epithelzellen entnommen und mittels Hochfrequenzvideomikroskopie auf funktionelle Defekte untersucht. Das Ergebnis wird danach über Transmissionenelektronenmikroskopie und hochauflösende Immunfluoreszenzmikroskopie bestätigt. Zur eindeutigen Sicherung der Diagnose kann dann noch eine Gendiagnostik durchgeführt werden (60). Bei der Messung der nNo-Produktionsrate wird über einen Katheter nasale Luft aspiriert und die Einleitung

nNO-Produktionsrate sowie der nNO-Gehalt ermittelt. Da die pulmonale NO-Konzentration wesentlich niedriger ist als die nasale, sollte das Velum palatinum während der Messung geschlossen sein (60). Dies lässt sich durch Atemanhalten oder durch Exspiration gegen einen Widerstand erreichen. Das Ergebnis ist somit von der Kooperation der Patienten abhängig, weshalb die nNO-Messung erst ab fünf Jahren empfohlen wird (23, 60). Da es bei über 90% der Kindern während der Ruheatmung durch einen Widerstand ebenfalls zu einem Verschluss des Velum palatinum kommt, kann dies bei Kindern unter 5 Jahren versucht werden. Die hierbei gemessenen nNO-Werte sind jedoch niedriger (60). Ein nasaler NO-Gehalt von >200 ppb (>66nl/min) spricht für einen unauffälligen Befund, <100 ppb (<33nl/min) ist pathologisch (60). Der nNO-Gehalt kann allerdings auch bei Patienten mit Mukoviszidose verringert sein, weshalb diese zuvor ausgeschlossen sein sollte (42). Generell hat die nNO-Messung eine hohe Sensitivität. Da aber auch PCD-Fälle mit einem normalen nasalen NO-Gehalt auftreten und niedrigere Werte durch andere Erkrankungen bedingt sein können, wird die nNO-Messung eher als Screeningmethode aenutzt (60). Die Hochfrequenzvideomikroskopie (HVMA) kann hingegen auch schon bei Neugeborenen und Kleinkindern eingesetzt werden. Sie gilt zur Zeit als Goldstandard in der Diagnostik der PCD (60). Hierbei werden durch eine Zervixbürste respiratorische Epithelzellen aus dem Bereich der Nasenconchae entnommen und auf einen Objektträger aufgetragen. Unter dem Mikroskop werden die Zilienschlagfrequenz, das Schlagmuster und der Sekrettransport beurteilt (60). Die HVMA hat eine hohe Sensitivität, allerdings lassen sich kleinere Defekte nur schwer erkennen und die Unterscheidung zu sekundären Zilienveränderungen aufgrund von Infekten anderer Genese ist schwierig (42, 60). Zur Bestätigung der HVMA wird deshalb die Transmissionenelektronenmikroskopie (TEM) und die hochauflösende Immunfluoreszenzmikroskopie (IF) genutzt (60). Die TEM war früher der Goldstandard der PCD-Diagnostik für die Untersuchung der ziliären Ultrastruktur. Mittlerweile ist jedoch bekannt, dass 30% der PCD-Patienten einen funktionellen Defekt bei einer intakten ziliären Ultrastruktur aufweisen (42, 60). Zudem war die TEM insbesondere bei der schwierigen Beurteilung ultrastruktureller Defekte der inneren Dynein Arme viel zu häufig falsch positiv. Sie war außerdem erfolgreicher bei Biopsien von Erwachsenen als von Kindern (42). Heute wird die TEM zur Bestätigung der Ergebnisse aus der HVMA genutzt (60). Die hochauflösende IF wird ebenfalls zur Bestätigung der Diagnose aus der HVMA hinzugezogen und hat eine gute Sensitivität und Spezifität (60). Die Zilien des respiratorischen Epithels aus der Bürstenbiopsie werden bei der IF-Mikroskopie mittels fluoreszierender Antikörper auf das Fehlen von

7

Einleitung

wichtigen Proteinen oder deren Bestandteile untersucht (21, 42). Im Gegensatz zur TEM können mittels IF-Mikroskopie auch Strukturdefekte von Nexin-Brücken und inneren Dynein-Armen erfasst werden (60). Ein immer wichtiger werdender Teil der Diagnostik ist die genetische Untersuchung (79). Diese dient zur eindeutigen Sicherung der PCD-Diagnose, ist in Deutschland jedoch auf den Patienten beschränkt, sodass klinisch unauffällige Geschwister von PCD-Patienten nicht genetisch untersucht werden dürfen (60). Die Gendiagnostik sollte von Experten ausgewertet werden, da einige Aminosäurenaustausche keinen Krankheitswert besitzen und falsch positiv gewertet werden könnten (60).

1.2.3 Therapie

Eine kausale Therapie der PCD ist nicht bekannt. Symptomatisch werden PCD-Patienten ähnlich wie Patienten mit Mukoviszidose behandelt. Ein wesentlicher Teil ist dabei vor allem die Physiotherapie und Sport zur Mobilisierung des Bronchialsekrets (3, 23, 73). Des weiteren sollten Umweltexpositionen wie aktives oder passives Rauchen gemieden werden (3). Als Prophylaxe gegen Atemwegsinfektionen ist außerdem ein Pneumokokkenimpfschutz und das regelmäßige Impfen gegen Influenza indiziert (3, 42). Generell wird dazu geraten mindestens zweimal im Jahr eine Klinik aufzusuchen, um die Veränderung der Lungenfunktion überwachen zu können. Hierbei sollten Thoraxaufnahmen angefertigt werden, um das Fortschreiten der Krankheit beobachten zu können (42). Sollten Lungenlappen sehr stark betroffenen sein, kann als Ultima ratio auch eine Lungenteilresektion durchgeführt werden (42). Lungenfunktion und Lebensqualität lassen sich durch die Inhalation mit 7%-iger hypertonischer Kochsalzlösung verbessern (38, 42). Akute Atemwegsinfektionen sollten mittels oraler Antibiotikagabe behandelt werden. Für eine prophylaktische Gabe oraler Antibiotika fehlt allerdings die Evidenz (3). In der Therapie von Mukoviszidose werden Makrolide als antiinflammatorische Agenten eingesetzt und steigern so die Lungenfunktion und senken das Auftreten von Exazerbationen. Dieser Effekt wurde auch bei PCD-Patienten beobachtet, wobei nicht geklärt ist, ob dies an der antiinflammatorischen oder der antibiotischen Wirkung der Makrolide liegt (42). Die chronische Otitis kann zu Cholesteatomen und Hörverlusten führen. Zur Verbesserung des Hörens können Paukenröhrchen eingesetzt werden. Dies ist jedoch umstritten, da Paukenröhrchen bei PCD das Risiko einer Otorrhö erhöhen und die Häufigkeit des Auftretens der Otitiden meist mit dem Teenageralter zurückgeht. In Europa werden Paukenröhrchen bei PCD daher wenn möglich vermieden (3, 42, 53). Gegen die Sinusitiden können nasale

Steroide verordnet werden. Sollte auf die Medikation nicht angesprochen werden, kann eine funktionelle Sinus-Operation Besserung verschaffen (42). Bei Auftreten von Polypen ist eine Resektion indiziert (42).

1.2.4 Genetik

Da die Gendiagnostik der PCD eine immer wichtigere Rolle einnimmt, wächst zunehmend auch die Anzahl der mit PCD assoziierten entdeckten Gene. Eine aktuelle Übersicht ist in Tabelle 2 dargestellt. 70% der PCD-Fälle sollen ihre Ursache in Mutationen der bereits identifizierten Genen haben (42). Die meisten Gene werden autosomal rezessiv vererbt (60). Bisher sind nur drei Gene bekannt, RPGR, PIH1D3 und OFD1, die x-chromosomal weitergegeben werden (3, 60, 63). In 81% der Fälle handelt es sich um eine Loss-of-Function Mutation (42). Die am häufigsten betroffenen Gene sind DNAH5, DNAH11, DNAI1, CCDC39 und CCDC40 (42), wobei in 35% der PCD-Fälle eine DNAH5- oder DNAI1-Mutation ursächlich ist (3). Elf Gene sind für den Zusammenbau von Proteinen im Zytoplasma der Zilien verantwortlich und führen daher zu einem kombinierten Verlust der ODAs und IDAs (42). Für die Diagnostik ist relevant, dass Mutationen in RSPH4A, RSPH9 und RSPH1 häufig mit einer normalen ziliären Schlagform und einer normalen TEM einhergehen. Eine unauffällige TEM wurde außerdem bei DNAH11-Mutationen beschrieben (42, 44). Bei Loss-of-Function Mutationen von RSPH1 kann außerdem die nasale NO-Produktionsrate normal sein (46). Auch sind PCD-Fälle durch RSPH1-Defekte häufiger mit einem milderen Verlauf assoziiert, während eine Mutation von CCDC39 oder CCDC40 meist mit einer schwereren Erkrankung mit frühem Beginn einhergeht (14, 46). In dieser Arbeit wurde der Schwerpunkt auf die isolierten Mutationen von IDA-Genen gelegt.

Struktur/Funktion	Gene	Phänotyp TEM	SI	Quelle
ODA-Untereinheit	DNAI1, DNAI2,	ODA-Defekt	Ja	(24), (52),
	DNAH5, DNAL1,			(32), (55),
	TXNDC3 (NME8)			(17), (16)
	DNAH11	Häufig normal	Ja	(16)
ODA-Docking-	CCDC114, ARMC4,	ODA-Defekt	Ja	(45), (66),
Komplex	CCDC151, TTC25			(28), (83)
Zytoplasmatische	C21orf59, LRRC50	ODA- + IDA-Defekt	Ja	(2), (51),
Dynein-Arm-	(DNAAF1), KTU			(59), (81),

Tabelle 2 Übersicht der bisher bestätigten mit PCD assoziierten Gene.**SI**=Situs inversus.Tabelle modifiziertnach Werner et. al 2015 (84) und Knowles et. al 2016 (42)

Assemblierung	(DNAAF2), C19orf51			(30), (31),
oder Transport	(DNAAF3), DYX1C1			(67), (47),
	(DNAAF4), HEATR2			(88), (68),
	(DNAAF5), LRRC6,			(29)
	PIH1D3, SPAG1,			
	ZMYND10,			
	C11ORF70,			
	CCDC103			
Radialspeichen	RSPH1, RSPH3,	Defekte im CP	Nein	(46), (37),
Untereinheit	RSPH4A, RSPH9,			(11), (19)
	DNAJB13/RSPH16A			
96nm Axonemal	CCDC39, CCDC40	IDA-Defekt und	Ja	(1)
ruler		MT-		
		Disorganisation		
Nexin-Brücken-	<i>CCDC65</i> , CCDC164	Nexin-Brücken-	Nein	(2), (85),
Untereinheit	(DRC1), GAS8	Defekt		(61)
Untereinheit des	HYDIN	Defekte im CP	Nein	(62)
zentralen Paars				
Ziliogenese	MCIDAS, CCNO	Reduzierte Anzahl	Nein	(6), (42)
		der Zilien		
Bestandteil des	STK36	Defekte im CP und	Nein	(18)
zentralen		den		
Proteinkomplexes		Radialspeichen		
Funktion in motilen	RPGR	ODA- und IDA-	Nein	(56), (42)
Zilien unbekannt		Defekt		
	OFD1	Unbekannt	Ja	(59), (42)

1.3 Aufbau der inneren Dynein-Arme (IDA)

Die komplexe Struktur der inneren Dynein-Arme wurde zunächst an der Alge *Chlamydomonas reinhardtii* erforscht. Acht verschiedene schwere Dynein-Ketten bilden die sieben IDA-Isoformen a-g. Von diesen sieben Isoformen ist eine, Isoform f,

zweiköpfig, die anderen sechs sind einköpfig (4, 9). Die sechs einköpfigen Isoformen ae und g bilden wiederum drei funktionelle Dimere (a und b; c und e; d und g) (9, 10). Die unterschiedliche Lokalisation der Strukturen im Verhältnis zu den Radialspeichen unterteilt diese in drei verschiedene Domänen (I1, I2, I3) (49), deren Anordnung sich alle 96nm über das gesamte Axonem wiederholt (74).

Die zweiköpfige Isoform f bildet die Domäne I1, die am proximalen Ende des 96nm großen Abschnitts lokalisiert ist (4, 26). Sie hat eine dreiteilige Struktur, bestehend aus den zwei schweren Dynein-Ketten 1 α und 1 β , sowie einem Komplex aus intermediären und leichten Dynein-Ketten, dem ICLC-Komplex (26) (Abbildung 4).

Abbildung 4 Aufbau der I1-Domäne

Die 11-Domäne hat eine dreiteilige Struktur, bestehend aus den zwei schweren Dynein-Ketten 1 α und 1 β , sowie dem ICLC-Komplex, einem Komplex aus intermediären und leichten Dynein-Ketten. Abbildung modifiziert nach Wirschell *et. al* 2009 (86).

Die intermediären Ketten des ICLC sind die Ketten IC140, IC97 und IC138, die leichten Ketten sind die Ketten LC8, LC7a, LC7b, Tctex1 und Tctex2b (26). Die einzelnen Strukturen übernehmen verschiedene Aufgaben innerhalb der I1 Domäne (2). So ist die schwere Dynein 1β-Kette wichtig für den Zusammenbau des gesamten I1-Komplexes (71) und agiert als Motor (26). Die schwere 1α-Kette soll hingegen eher eine Regulatorfunktion übernehmen (26). IC138, eine intermediäre Kette des ICLC-Komplexes ist für den Zusammenbau des IC138-Subkomplexes verantwortlich, der aus den Ketten IC138, IC97, LC7b und dem assoziierten Protein FAP120 besteht, dessen exakte Lokalisation aber unbekannt ist (7, 26). Der Phosphorylierungsstatus von IC138 ist außerdem entscheidend für die Dynein-Aktivität. Ist die IC138 durch die Casein Kinase 1 oder die Typ 2 Protein Phosphatase phosphoryliert, wird die Dynein-Aktivität vermindert (25, 26, 41). Des weiteren leitet IC138 Signale zwischen den Radialspeichen

und den schweren Ketten weiter (4, 41). Zusammen mit IC138 spielt vermutlich auch IC97, ein weiterer Teil des IC138 Subkomplex, eine Rolle in der Regulation der Dynein-Aktivität (86). IC97 interagiert direkt mit IC138 und IC140, sowie mit α - und β -Tubulin (86). IC140 wiederum soll die Anheftung an die äußeren Mikrotubulidoubletten regulieren (4).

Die I1-Domäne ist durch viele Verbindungen mit mehreren Nachbarstrukturen verknüpft, was sie für die Signalweiterleitung prädistiniert. So könnte das assoziierte Protein FAP120 mit Dynein d assoziiert sein, dies ist allerdings nicht bewiesen (26). Von der schweren 1α-Kette gehen außerdem Verbindungen zum A-Tubulus aus (26). Auch der ICLC-Komplex ist direkt mit dem A-Tubulus verbunden. Das distale Ende der I1-Domäne steht mit dem Nexin-Dynein-Regulator-Komplex in Verbindung. Zusätzlich gibt es eine proximale Verbindung zu den äußeren Dynein-Armen (26). Eine seilartige Struktur zwischen dem A-Mikrotubulus und I1 könnte außerdem als Spannungssensor fungieren (26) und somit dazu beitragen, dass die Domäne I1 nicht nur als Motor agiert, sondern auch regulatorische Aufgaben bei der Beugung des Ziliums übernehmen kann und so die Dynein-Aktivität als Antwort auf Signale aus dem Zentralen Paar-Radialspeichen-Komplex steuert (26).

Die sechs einköpfigen Isoformen bilden zusammen die Domänen I2 und I3. Innerhalb der beiden Domänen lassen sich anhand des Aufbaus die p28-assoziierten Isoformen von den Centrin-assoziierten Isoformen unterscheiden (Abbildung 5).

96 nm

Abbildung 5 Aufteilung der p28- und Centrin-assoziierten Isoformen

Neben der I1 Domäne (gelb, f α , f β und f ICLC) sind hier die p28-assoziierten Isoformen (lila, Dyneine a, c, d) sowie die Centrin-assoziierten Isoformen (rot, Dyneine b, e, g) dargestellt. Abbildung modifiziert nach Bui *et. al* 2012 (10).

Zu den p28-assoziierten Isoformen zählen die Dyneine a, c und d. Sie bestehen jeweils aus einer einköpfigen schweren Kette, die mit Aktin und p28 verbunden ist (siehe Abbildung 6). P28, dessen humanes Ortholog DNALI1 ist, gilt als wichtig für den Zusammenbau der p28-assoziierten Isoformen sowie deren Bindung an den Mikrotubulus A (4).

Abbildung 6 Schematischer Aufbau der p28-assoziierten Isoformen

Die p28-assoziierten Isoformen werden von den Dyneinen a, c und d gebildet. Sie bestehen jeweils aus einer einköpfigen schweren Kette (rot, HC), die mit Aktin (beige) und p28 (lila) verbunden ist. Abbildung modifiziert nach Yanagisawa *et. al* 2001 (87).

Die Centrin-assoziierten Isoformen b, e und g sind fast wie die p28-assoziierten Isoformen aufgebaut. Die schwere Kette ist allerdings mit Centrin anstelle von p28 verbunden (4) (Abbildung 7). Die Funktionen von Aktin und Centrin sind hier unbekannt. Aufgrund ihrer Aufgaben in anderen cytoskelettalen Strukturen wird aber vermutet, dass sie in Ca²⁺-abhängige Prozesse eingebunden sind (4, 76).

Abbildung 7 Schematischer Aufbau der Centrin-assoziierten Isoformen

Die Centrin-assoziierten Isoformen b, e und g sind fast wie die p28-assoziierten Isoformen aufgebaut. Die schwere Kette (rot, HC) ist hier mit Centrin (gelb) und Aktin (beige) verbunden. Abbildung modifiziert nach Yanagisawa *et. al* 2001 (87).

Die humanen Orthologe der inneren Dynein-Arme in *Chlamydomonas reinhardtii* sind DNAH7 (Centrin-assoziiert, Dynein b), DNAH14 (Centrin-assoziiert, Dynein e), DNAH1 (p28-assoziiert, Dynein d), DNAH12 (p28-assoziiert, Dynein a), DNAH10 (I1, Dynein f α), DNAH2 (I1, Dynein f β) und DNAH6 (Centrin-assoziiert, Dynein g). Sie sind in Abbildung 8 dargestellt (4).

Abbildung 8 Humane Orthologe von Chlamydomonas reinhardtii

Dargestellt ist der schematische Aufbau der inneren Dynein-Arme, eingeteilt in die Domäne I1 (gelb), die p28-assoziierten Isoformen (lila), sowie die Centrin-assoziierten Isoformen (rot) und die entsprechenden humanen Orthologe der inneren Dynein Arme in *Chlamydomonas reinhardtii*. Diese sind DNAH10 (I1, Dynein f α), DNAH2 (I1, Dynein f β), DNAH12 (p28 assoziiert, Dynein a), DNAH7 (Centrin-assoziiert, Dynein b), DNAH14 (Centrin-assoziiert, Dynein e), DNAH6 (Centrin-assoziiert, Dynein g) und DNAH1 (p28-assoziiert, Dynein d). Abbildung modifiziert nach Bui *et. al* 2012 (10).

In dieser Arbeit wurden Antikörper gegen DNAH10, DNAL11 und DNAH6 genutzt. DNAH10 ist das humane Ortholog der 1α schweren Kette der I1-Domäne in *Chlamydomonas reinhardtii.* Der Aufbau gleicht dem der anderen Dyneine. Die ringförmige Motordomäne steht über einen in sich gedrehten Schwanz mit dem ICLC-Komplex von I1 in Verbindung. Durch eine weitere Verbindung zum A-Mikrotubulus sorgt I1α vermutlich für die Stabilisierung des I1-Komplexes (26). Im Gegensatz zur 1β-schweren Kette (humanes Ortholog DNAH2) scheint die Aufgabe nicht der Antrieb (82), sondern eher eine Regulatorfunktion zu sein. Über diese kann I1α Einfluss auf die I1β-schwere Kette nehmen, welche wiederum die Aktivität der ODAs sowie die Form des Zilienschlags bestimmt (26, 82). Die IF-Färbung gegen DNAH10 wurde genutzt, um I1-auffällige Patientenproben zu selektieren, die dann im Anschluss auf Abnormalitäten in den p28-assoziierten und den Centrin-assoziierten Isoformen untersucht werden konnten. Dazu wurden im nächsten Schritt Antikörper gegen DNALI1, das humane Ortholog von p28, für die p28-assoziierten Isoformen verwendet. DNALI1 soll wichtig für

Einleitung

den Zusammenbau der p28-assoziierten Dyneine sein sowie deren Bindung an den Mikrotubulus A (4). Der Antikörper gegen DNAH6, das humane Ortholog von Dynein g, wurde schließlich zur Überprüfung der Centrin-assoziierten Isoformen genutzt. Es besteht aus einer ringförmigen Kopfstruktur und interagiert mit Centrin. Die Kombination der drei Antikörper machte es möglich, eine große Gruppe von Patienten auf isolierte IDA-Mutationen zu untersuchen.

1.4 IDA-Defekte und PCD

Die inneren Dynein-Arme sind vor allem für die Schlagform der Zilienbewegung verantwortlich. So wiesen Mutanten ohne IDAs in Chlamydomonas reinhardtii zwar eine normale Frequenz, aber eine geringere Amplitude der Schlagform auf (8). IDA-Defekte oder -Verluste im Krankheitsbild der PCD wurden bisher fast ausschließlich in Kombination mit ODA-Defekten oder einer Disorganisation der Mikrotubulus-Doubletten beschrieben (Tabelle 2). Ursächlich für kombinierte IDA-Defekte sind in den meisten Fällen Mutationen in DNAAF-Genen oder Mutationen in CCDC39/CCDC40. Die DNAAF-Gene sind für den Zusammenbau von ODAs und IDAs im Zytoplasma verantwortlich. Eine Mutation dieser Gene führt daher zu einem kombinierten ODA- und IDA-Defekt bzw. -Verlust. Bei Mutationen von CCDC39 oder CCDC40 kommt es zu einem Fehlen von IDAs sowie einer Disorganisation der 9+2 Mikrotubulus-Struktur. Hierbei kann neben einer Verlagerung der peripheren Mikrotubulus-Doubletten nach zentral auch das komplette Fehlen des zentralen Mikrotubulus-Paares (9+0) oder dessen Verdopplung (9+4) auftreten (1). Der Verlust der IDAs in diesen Mutationen wurde häufig anhand des Fehlens von DNALI1 und somit abnormen p28-assoziierten Isoformen bemerkt (2). Während kombinierte IDA-Defekte besonders in der letzten Zeit vermehrt entdeckt wurden, konnten isolierte IDA-Defekte bisher nur selten nachgewiesen werden.

1.5 Isolierte IDA-Mutationen und PCD

Obwohl die inneren Dynein Arme wichtiger für die Funktion des Ziliums sein sollen als die äußeren Dynein-Arme (9), sind isolierte IDA-Mutationen bislang bei PCD kaum beschrieben. Wurde zunächst noch vermutet, dass sich bis zu 30% der PCD-Fälle auf isolierte IDA-Mutationen zurückführen lassen, relativierte sich diese Zahl, als man erkannte, dass gerade die TEM-Diagnostik bei IDA-Defekten viel zu häufig falsch positiv

ist (80). Nur weniger als 1% der bestätigten PCD-Fälle ließen sich auf eine isolierte IDA-Mutation zurückführen (42). So konnte Ben Khalifa 2014 zeigen, dass DNAH1-Mutationen zu einer verminderten Beweglichkeit von Spermien und damit zur Unfruchtbarkeit führen können (5). Spermien und Zilien haben eine ähnliche Struktur, sind aber nicht gleich aufgebaut. Da außer der Unfruchtbarkeit keine weiteren PCD-Symptome auftraten, wurde vemutet, dass eine DNAH1-Mutation in den Zilien besser kompensiert werden könne als im Spermium. Imtiaz wies bei zwei consanguinen Schwestern eine isolierte DNAH1-Mutation nach, auf die er die PCD-Symptome zurückführte, allerdings wurden keine weiteren strukturellen Untersuchungen durchgeführt (34). Li et. al konnte 2016 in 8 von 149 Heterotaxie-Patienten DNAH6-Mutationen nachweisen. Bei sechs dieser acht Patienten wurden allerdings auch Mutationen im DNAH5- bzw. DNAI1-Gen gefunden, weshalb Li eine Interaktion dieser Gene mit DNAH6 vermutete (50). 2002 wurde außerdem über das Fehlen von DNAH7 bei einem PCD-Patienten berichtet. Dabei wurden die Bestandteile von DNAH7 zwar im Zytoplasma der Zelle gefunden, aber nicht zusammengebaut und in das Axonem transportiert. Da jedoch keine ursächliche Mutation im DNAH7-Gen gefunden werden konnte, wurde vermutet, dass eventuell eine Mutation eines Transportproteins für den DNAH7-Verlust verantwortlich sein könnte. Dies wurde jedoch nicht weiter verfolgt (90).

1.6 Ziel der Arbeit

Bisher sind isolierte IDA-Defekte insgesamt sehr selten beschrieben. Eine mögliche Erkärung wäre, dass sich IDA-Defekte in einem geringer ausgeprägten klinischen Phänotyp äußern und somit leichter übersehen werden. Hinzu kommt die schwierige Diagnostik ultrastruktureller IDA-Defekte. In der Vergangenheit wurde hier vor allem die TEM genutzt, die sich jedoch für die Beurteilung der IDAs als viel zu ungenau erwies (60, 80). So zeigte die TEM hinsichtlich der IDAs zu häufig falsch positive Ergebnisse. Mit der Entwicklung neuer Antikörper gegen unterschiedliche Bestandteile der IDAs eröffnete sich nun die Möglichkeit, Patienten mittels Immunfluoreszenz auf isolierte IDA-Defekte zu erfassen und eignet sich dafür als Screening-Methode. Ziel dieser Arbeit ist es isolierte IDA-Defekte in einer Kohorte mit 421 PCD-Patienten zu identifizieren. Mithilfe der Immunfluoreszenzmikroskopie als Screening-Methode wurden Patientenproben, die in der hochauflösende IF-Mikroskopie bisher unauffällig waren für ODA-, N-DRC- und

RS-Defekte, die aber die Klinik einer PCD zeigten, zunächst gegen DNAH10 gefärbt. Auffällige Patientenproben wurden dann gegen DNALI1 und DNAH6 gefärbt, so dass alle Isoformen untersucht wurden. Im Anschluss wurde bei ausgewählten Patienten eine Gendiagnostik durchgeführt.

2 Material

Im folgenden Abschnitt sind alle in diesem Projekt benutzten Chemikalien (Tabelle 3), Geräte (Tabelle 4), Programme (Tabelle 5), Antikörper (Tabelle 6, Tabelle 7), sowie Verbrauchsmaterialien (Tabelle 8) angeführt.

2.1 Chemikalie

Tabelle 3: Verwendete Chemikalien

Chemikalie	Bezeichnung	Hersteller
Agarose	Biozym LE-Agarose	Biozym Scientific GmbH, Hessisch Oldendorf
DNA-Polymerase	GoTaq®Flexi DNA Po- lymerase	Promega GmbH, Mannheim
dNTPs	100 mM dNTP Set, PCR Grade (10297- 0128)	Thermo Fisher Scientific (Invitrogen), Waltham, USA
Ethidiumbromid	Ethidiumbromidlösung 0,025%	CARL ROTH GmbH + Co. KG, Karlsruhe
EXO/SAP	ExoSap-IT®	Affymetrix (Thermo Fisher Scien- tific), St. Clara, USA
H2O reinst	-	AplliChem GmbH, Darmstadt
Kernfarbstoff Hoechst (1:1000 in PBS)	Hoechst 33342	Sigma-Aldrich Co. LLC, St. Louis, USA
Ladepuffer	5x GoTaq® Flexi Reac- tion Buffer	Promega GmbH, Mannheim (Madi- son-USA)
MgCl2	Magnesium Chloride Solution	Promega GmbH, Mannheim (Madi- son-USA)
Milchpulver	Milchpulver Blotting grade, pulverisiert, fett- arm	CARL ROTH GmbH + Co. KG, Karlsruhe
Paraformaldehyd	Paraformaldehyde, rea- gent grade, crystalline	Sigma-Aldrich Co. LLC, St. Louis, USA
PBS- Puffer	10x PBS Puffer, pH 7.4	Thermo Fisher Scientific Baltics UAB
PCR-Puffer	5x Colorless GoTaq® Flexi Reaction Buffer	Promega GmbH Mannheim
Primer	siehe Anhang Tabelle	APARA-Bioscience GmbH, Denzlin- gen
Sephadex	ilustra TM Sephadex TM G-50 fine DNA Grade	GE Medical Systems Deutschland GmbH & CO. KG, Solingen

Sequenzier-Puffer	BigDye Terminator V.3.1 Cycle Sequenc- ing Kit	Perkin Elmer Inc., Waltham, USA
TBE-Puffer	10x TBE-Puffer	AppliChem GmbH, Darmstadt
Triton-X-100	Triton-X-100, T8787- 100ML	SIGMA-ALDRICH, Co., 3050 Spruce Street, St. Louis, USA

2.2 Geräte

Tabelle 4 Geräte

		Hersteller
Apotome	Zeiss Apotome Axiovert	Carl Zeiss Jena GmbH, Jena
Eismaschine	Eismaschine ZBE70-35	ZIEGRA Eismaschinen GmbH, I- sernhagen
Gefrierschrank - 80°	SANYO	EWALD Innovationstechnik GmbH, Bad Nenndorf
Gel-Detektiergerät	E-BOX VX2 2.0 MP Geldokumentationssys- tem	VWR International GmbH, Life Sci- ence Competence Center, Erlangen
Gelelektrophorese- gerät	peqPOWER E300 Power Supply -230 VAC	VWR International GmbH, Life Sci- ence Competence Center, Erlangen
Gelwanne	PerfectBlueGelsystem Mini	VWR International GmbH, Life Sci- ence Competence Center, Erlangen
Kühlschrank	Liebherr Profi line	Liebherr-International Deutschland GmbH, Biberach an der Riß
Mikrowelle		Amica International GmbH, Asche- berg
Millipore-Anlage	Milli-Q Integral Wasser- aufbreitungssystem	Merck KGaA, Darmstadt
Mini-Zentrifuge	Sprout® Mini-Centri- fuge, 220-230 VAC, 50/60 Hz	Heathrow Scientific LLC, Illinois, USA
PCR-Maschine	BIO RAD T100TM Thermal Cycler	Bio-Rad Laboratories GmbH, Mün- chen
Waage	Mettler PE3600 Delta Range R	Mettler-Toledo GmbH, Gießen
Waage Ethidium- bromid-Raum		Sartoirus AG, Göttingen
Wecker	Triple Time Digitaler 3- fach Timer	TFA Dostmann GmbH& Co. KG, Wertheim-Reicholzheim
Pipetboy	INTEGRA Pipetboy	INTEGRA Bioscience GmbH, Bie- bertal
Pipette 0,5-10µl	Eppendorf Research plus	Eppendorf AG, Hamburg
Pipette 2-20µl	Eppendorf Research plus	Eppendorf AG, Hamburg

Pipette 100-1000µl	Eppendorf Research plus	Eppendorf AG, Hamburg
Pipette 2-200µl	Eppendorf Research plus	Eppendorf AG, Hamburg
Pipette 0,1-2,5µl	Eppendorf Research plus	Eppendorf AG, Hamburg

2.3 Programme

Tabelle 5 Programme

Programm	Hersteller
Adobe Creative Suite CS4	Adobe Systems, San José, USA
AxioVision 4.8.2	Carl Zeiss Jena GmbH, Jena
CodonCode Aligner Version 4.2.7	CodonCode Corporation, Centerville, USA
Ensembl	http://www.ensembl.org/index.html
NCBI Gene	https://www.ncbi.nlm.nih.gov/gene/55130
PolyPhen	http://genetics.bwh.harvard.edu/pph2/in- dex.shtml
SIFT	http://sift.jcvi.org/

2.4 Primäre Antikörper

 Tabelle 6 Primäre Antikörper (AK)

Bezeichnung			Hersteller	Konzentration
anti-DNAH10- AK	rabbit IgG	polyklonal	Atlas Antibodies, Stock- holm, Schweden	1 zu 500
anti-acety- liertes-α-Tubu- lin-AK	mouse	mono- klonal	Sigma-Aldrich Co. LLC, St. Louis, USA	1 zu 10000
anti-DNAH14- AK	rabbit IgG	polyklonal	Atlas Antibodies, Stock- holm, Schweden	
anti-DNAH11- AK (i-DNAH11 (Subclones 29/2 and -/12))	mouse IgG	mono- klonal	Prof. Zentgraf, DKFZ Heidelberg	
anti-DNAH6- AK	rabbit IgG	polyklonal	Atlas Antibodies, Stock- holm, Schweden	1 zu 400
anti-DNALI1- AK	rabbit, affi- nity isola- ted	polyklonal	Atlas Antibodies, Stock- holm, Schweden	1 zu 500
anti-WDR63- AK	rabbit IgG	polyklonal	Atlas Antibodies, Stock- holm, Schweden	1 zu 250

anti-CCDC39	rabbit affi- nity puri- fied	polyklonal	Sigma (prestige Antibo- dies)	1 zu 300
anti-WDR16	rabbit	polyklonal	Atlas Antibodies, Stock- holm, Schweden	1 zu 400
anti-RSPH4A	rabbit, affi- nity puri- fied	polyklonal	Atlas Antibodies, Stock- holm, Schweden	1 zu 400

2.5 Sekundäre Antikörper

Tabelle 7 Sekundäre Antikörper

Antikörper	Hersteller		Konzentration
goat anti-rabbit IgG (H+L) Alexa Fluor 546 conjugate	Life Technologies GmbH, Darmstadt	Ziege	1 zu 1000
goat anti-mouse IgG (H+L) Alexa Fluor 488 conjugate	Life Technologies GmbH, Darmstadt	Ziege	1 zu 1000

2.6 Verbrauchsmaterialien

Tabelle 8 Verbrauchsmaterialien

		Hersteller	
Dako	Dako Fluorescence Mounting Medium	Dako North America, Inc., Carpinteria, USA	
Deckgläser	Deckgläser für Mikro- skopie 24x50mm no.1	Engelbrecht Medizin- und Labortech- nik gmbh, Edermünde	
Eppis, 1,5ml	SafeSeal Gefäß 1,5ml	Sarstedt AG&Co., Nümbrecht	
Eppis, 5ml	Eppendorf Tubes® 5.0 mL	Eppendorf AG, Hamburg	
Falcons, 15ml	Corning® CentriStar TM 15ml Centrifuge Tube	Corning Incorporated, New York, USA	
Falcons, 50ml	Corning [®] CentriStar TM 50ml Centrifuge Tube	Corning Incorporated, New York, USA	
Fettstift	Liquid Blocker	Science Services GmbH, München	
Handschuhe Vasco® sensitive, unsteriler pu- derfreier Untersuchungshandschuh aus Na- turlatex		B. Braun Melsungen AG, Melsungen	
Pasteurpipette	Pasteurpipetten aus Glas	Brand GmbH + CO KG, Wertheim	
PCR-8er Streifen	Multiply® -µStrip Pro 8er Kette	Sarstedt AG&Co., Nümbrecht	

Stripette 5ml	Costar Stripette 5ml	Corning Incorporated, New York, USA
Pippettenspitzen	Quality Pipette Tips 100-1000µl	Sarstedt AG&Go Nürmbrecht
Sephadex Platte	Multiscreen®-HV, 96 Well-Plates	Merck KGaA, Darmstadt
Sephadex Lade- platte	MultiScreen® Filtration System, coumn loader	Merck KGaA, Darmstadt
Tücher	clean and clever Tü- cher	IGEFA Handelsgesellschaft gmbH & Co. KG, Ahrensfelde
Objektträger	Objektträger ca. 76x26mm/3x1 inch Ge- putzt/Gebrauchsfertig	Engelbrecht Medizin- und Labortech- nik gmbh, Edermünde
Pipettenspitzen bi- osphere	Biosphere® Filter Tips 2-200µl	Sarstedt AG&Co., Nümbrecht
Pipettenspitzen bi- osphere	Biosphere® Filter Tips 0,1-10µl	Sarstedt AG&Co., Nümbrecht
Pipettenspitzen bi- osphere	Biosphere® Filter Tips 0,1-2,5µl	Sarstedt AG&Co., Nümbrecht
Pipettenspitzen bi- osphere	Biosphere® Filter Tips 100-1000µl	Sarstedt AG&Co., Nümbrecht
Pippettenspitzen	Quality Pipette Tips 2- 200µl	Sarstedt AG&Go Nürmbrecht
Pippettenspitzen	Quality Pipette Tips 2,5-10µl	Sarstedt AG&Go Nürmbrecht
Pippettenspitzen	Quality Pipette Tips 0,1-2,5µl	Sarstedt AG&Go Nürmbrecht
Stripette 10ml	Costar Stripette 10ml	Corning Incorporated, New York, USA
Stripette 25ml	Costar Stripette 25ml	Corning Incorporated, New York, USA
PCR Platte	96 PCR-Platte randlos	Sarstedt AG&Co, Nürmbrecht
Sephadex Abdeck- folie	Adhesive PCR Sealing Foil sheets	Thermo Scientific
Microtube Tough- Spots	Microtube Tough-Spots	Diversified Biotech, USA

3 Methoden

Zur Identifizierung isolierter Defekte von inneren Dynein-Armen wurde die Immunfluoreszenzfärbung als Screening-Methode verwendet. Auffällige Proben wurden zur Gendiagnostik nach Köln gesendet und die dort im Whole Exome Sequencing gefundenen Mutationen mittels PCR und Sanger Sequencing bestätigt. Die in dieser Arbeit angewandten Methoden der IF-Färbung, der PCR und des Sanger Sequencings sind im folgenden Abschnitt beschrieben.

3.1 Immunfluoreszenzfärbung (IF)

3.1.1 Prinzip

Die Immunfluoreszenzfärbung dient der Detektion und Lokalisation von Proteinen in Zellen. Der Mechanismus beruht auf der Spezifität von Antigen-Antikörper-Bindungen. An das zu detektierende Protein bindet ein spezifischer primärer Antikörper. Der primäre Antikörper wird dann mit einem sekundären, mit fluoreszierenden Farbstoff markierten Antikörper detektiert. Das Fluoreszenzmikroskop regt den fluoreszierenden Farbstoff durch Licht einer spezifischen Wellenlänge an (Excitation) und erfasst das emittierte Licht, so dass der Nachweis des Antigens in den Zellen möglich ist. Hierbei wird die direkte von der indirekten Immunfluoreszenzfärbung unterschieden. Die direkte Immunfluoreszenzfärbung wird heutzutage kaum noch angewendet und bezeichnet die Verwendung von nur einem mit Fluoreszenzfarbstoff markierten Antikörper, der an das Antigen bindet. Bei der indirekten Immunfluoreszenzfärbung wird der primäre von dem sekundären Antikörper unterschieden. Der primäre Antikörper bindet direkt an das Antigen, ist jedoch nicht mit dem Fluoreszenzfarbstoff markiert. Erst der sekundäre Antikörper, welcher wiederum gegen den Wirt des primären Antikörpers gerichtet ist, ist mit dem Farbstoff gekennzeichnet.

3.1.2 Monoklonale Antikörper

Zur Herstellung von monoklonalen Antikörpern werden Plasmazellen aus zuvor immunisierten Tieren, meist Mäusen, entnommen und mit Myelomzellen fusioniert. Die entstehenden Hybridomazellen produzieren *in vitro* eine unbegrenzte Menge von Antikörpern. Da monoklonale Antikörper aus der selben sich fortwährend teilenden Hybridomazelle entstehen, erkennen sie auch nur ein Epitop auf dem Antigen und sind damit hochspezifisch (64).

3.1.3 Polyklonale Antikörper

Die Gewinnung von polyklonalen Antikörpern ist weniger zeitaufwändig. Hier wird einem zuvor immunisierten Tier, häufig Kaninchen, Blut entnommen. Die Antikörper aus dem Serum werden extrahiert. Ein Antigen hat mehrere Epitope, gegen die das immunisierte Tier jeweils Antikörper bildet. So entsteht eine Mischkultur, die in ihrer Gesamtheit den polyklonalen Antikörper darstellt. Damit ist zwar gewährleistet, das auch kleinere Peptide mit weniger Epitopen erkannt werden, allerdings ist ebenfalls das Risiko einer unspezifischen Bindung wesentlich erhöht (64).

3.1.4 Durchführung

Mit Einverständnis der Patienten wurden respiratorische Epithelzellen mittels nasaler Bürstenbiopsie entnommen und in ein Zellkulturmedium gegeben (RPMI). Danach wurden die Proben auf einen Objektträger aufgetragen, luftgetrocknet und bei -80°C bis zur weiteren Verwendung eingefroren.

Die IF-Färbung wurde anhand des Standardprotokolls des Labors durchgeführt. Zur besseren Detektion von Pathologien wurden in diesem Projekt jeweils zwei primäre und zwei sekundäre Antikörper verwendet. Der primäre monoklonale Maus-Antikörper antiα-Tubulin färbte als Kontrolle das gesamte Zilium, so dass mithilfe des zweiten polyklonalen Kaninchen-Antikörpers gegen das jeweilige gesuchte Antigen nicht nur das Fehlen des Proteins, sondern auch dessen inkomplette Ausprägung detektiert werden konnte. Als sekundäre fluoreszierende Antikörper wurden Ziege-anti-Maus- und Ziegeanti-Kaninchen-Antikörper genutzt. Nach dem Auftauen der Objektträger wurden die Zellen zunächst für 5 Minuten mit 1X isotonischer phosphatgepufferter Salzlösung (PBS) gewaschen. Dies minimiert die Hintergrundfärbung und verbessert so die Qualität der IF-Färbung. Anschließend wurden die Zellen mittels 4% Paraformaldehyd (PFA) für 15 Minuten fixiert. PFA ist ein Vernetzungsmittel, welches über Aminogruppen ein Antigennetzwerk bildet. Da dies allerdings auch die Bindung des Antikörpers an das Antigen erschwert, ist bei Verwendung von PFA ein Permeabilisierungsschritt notwendig. Nach zweimaligen fünfminütigen Waschschritten mit 1X PBS wurde dieser mit 2% Triton-X-100 für 10 Minuten durchgeführt. Danach wurden die Zellen dreimal kurz mit 1X PBS gewaschen und 1% Magermilch (gelöst in 1X PBS) über Nacht bei 4°C

aufgetragen. Dies dient der Blockierung unspezifischer Antigene und stellt so die Spezifität der Antikörperbindung sicher.

Am darauf folgenden Tag wurden die beiden primären Antikörper in ihrer spezifischen Konzentration in 200µl 1% Magermilch gelöst und inkubierten für vier Stunden bei Raumtemperatur. Die Zellen wurden dann 6 Mal innerhalb von 30 Minuten mit PBS gewaschen. Es folgte die 30-minütige Inkubation mit den beiden sekundären Antikörpern, jeweils 1:1000 in 200µl 1% Magermilch gelöst. Nach erneuten 5-6 maligen Waschschritten in 30 Minuten mit PBS wurden die Zellkerne angefärbt. Dazu wurde 10 Minuten lang Hoechst 33342, 1:1000 in 200µl 1X PBS gelöst, aufgetragen. Im Anschluss an drei weitere fünfminütige Waschschritte wurde mit DAKO Aqueous mounting medium gedeckelt.

Die Objektträger wurden dann mit dem Zeiss Apotome Axiovert mit einem 63x Objektiv mikroskopiert und die aufgenommenen Bilder schließlich mit der Software Axiovision 4.8.2. ausgewertet.

3.2 Polymerase Ketten Reaktion (PCR)

3.2.1 Prinzip

Durch die Polymerase Ketten Reaktion (PCR) ist es möglich DNA innerhalb von kürzester Zeit zu vervielfältigen. Hierzu werden zu der Ausgangs-DNA (Template) eine thermostabile DNA-Polymerase, zwei passende Oligonucleotidprimer, Puffer, MgCl₂ und Nucleotide gegeben. Der Puffer dient dazu, das pH-Optimum der Polymerase (>8) herzustellen. In der PCR-Maschine werden die Proben dann zunächst auf 94°C erhitzt, wodurch sich die Stränge der Template-DNA auftrennen. Daraufhin folgt der Annealingschritt, in dem die Oligonucleotidprimer sich an die einzelsträngige Template-DNA anlagern. Die Temperatur des Annealingschritts kann je nach Temperaturoptimum der benutzten Primer verändert werden (57). Der sich anschließende Elongationsschritt wird bei 72°C durchgeführt, dem Temperaturoptimum der DNA-Abschnitte erneut doppelsträngig vorliegen. Der Zyklus wird wiederholt, wobei sich die DNA-Abschnitte pro Zyklus um den Faktor 1,6-1,7 vervielfachen. Die einzelnen Schritte sind in ihrer Dauer variabel.
3.2.2 Primerdesign

Die Primer wurden mit NCBI Primer-BLAST designt. Um eine ausreichende Spezifität bei gleichzeitiger Stabilität zu gewährleisten, wurde darauf geachtet, dass die Länge der Primer 18-22 Basenpaare beträgt. Abhängig von der Konzentration an Guanin (G) und Cytosin (C) ist die Schmelztemperatur. Die GC-Konzentration sollte zwischen 50-60% und die Annealingtemperatur zwischen 50-70°C liegen (57). Aufgrund der Ausbildung von drei Wasserstoffbrückenbindungen sind Guanin und Cytosin-Bindungen thermodynamisch stabiler. Um die Stabilität der Primerbindung zu gewährleisten wurde hier darauf geachtet, dass die Primer möglichst auf Guanin oder Cytosin enden (12). Außerdem sollten sich die Primer mindestens zwanzig Basenpaare vor bzw. hinter dem zu codierenden Exon anlagern.

3.2.3 Durchführung

Durch Zugabe der spezifischen Menge HPLC-Grade H₂O (Herstellerangaben) wurden die Primer aufgelöst und dann bis zur weiteren Verwendung bei -20°C aufbewahrt. Die Patienten-DNA wurde in einer Konzentration von 500ng in 50µl HPLC-Grade H₂O verdünnt. 10µl Primer wurden in 90µl HPLC-Grade H₂O gelöst (Konzentration 1:10, 10pmol/µl). Der Grundstock des Mastermix bestand aus 10µl Puffer, 3µl MgCl₂, 3µl dNTPs, 0,3µl Polymerase und 22,7µl HPLC-Grade H₂O. Dieser wurde mit der Anzahl der Proben multipliziert und in ein autoklaviertes 1,5ml Eppendorfgefäß pipettiert. In autoklavierte Achterstreifen wurden je 3µl der Patienten-DNA pipettiert sowie 4µl des jeweiligen Forward- und 4µl des Reverse-Primers. Außerdem wurden 39µl des Mastermix hinzugefügt. Anschließend wurden die Proben in die PCR-Maschine gegeben und das Standardprogramm des Labors durchgeführt (Tabelle 9).

Schritt	Temperatur	Dauer	
Initiale Denaturierung	94°C	3 Minuten	
Denaturierung	94°C	30 Sekunden	
Annealing	60°C	30 Sekunden	32 Zyklen
Elongation	72°C	1 Minute	
Finale Elongation	72°C	10 Minuten	
Kühlung	4°C	∞	

Tabelle 9	PCR-Programm	des Labors
-----------	--------------	------------

3.3 Gradienten-PCR

Zur exakten Bestimmung der optimalen Temperatur des Annealingschrittes der jeweiligen Primer wurde eine Gradienten-PCR durchgeführt. Dazu wurde eine PCR nur mit Gesundkontrollen-DNA pipettiert, die zu untersuchenden Primer hinzugegeben und in der PCR-Maschine ein Temperaturgradient von 5°C über acht Proben verteilt eingestellt.

3.4 Gelelektrophorese

Im Anschluss an die PCR wurde zur Überprüfung deren Erfolgs eine Gelelektrophorese durchgeführt.

3.4.1 Prinzip

Ein Agarosegel wird in eine Gelelektrophoresekammer gelegt und diese mit Tris-Borat-EDTA-(TBE)-Puffer aufgefüllt . Anschließend wird das Agarosegel mit den Proben aus der PCR befüllt und die Kammer unter Strom gesetzt. Da die Kammer aus einer Kathode und einer Anode besteht, wandern die negativ geladenen DNA-Moleküle gleicher Größe Richtung Anode. Das im Gel enthaltene Ethidumbromid interkaliert mit der DNA und macht die Banden so unter UV-Licht sichtbar.

3.4.2 Durchführung

Als Gel wurde ein 2% Agarosegel, bestehend aus 3g Agarose, 150ml TBE und 4 Tropfen Ethidiumbromid verwendet. Zu 5µl der Proben aus der PCR wurde 3µl Loading Dye (5x Green GoTaq Flexi Buffer) gegeben und diese 8µl in die Geltaschen pipettiert. Als Marker wurde der 100bp GeneRulerPlus genutzt, von welchem 5µl in die erste Tasche gegeben wurde. Das Gel lief dann bei 110 Volt für ca. 45 Minuten. Anschließend wurden die DNA-Banden im Geldokumentationssystem sichtbar gemacht.

3.5 Whole Exome Sequencing

Zur Identifikation von möglichen Mutationen wurde die DNA auffälliger Patienten zum Cologne Center for Genomics (CCG) zum Whole Exome Sequencing geschickt. Die dort gefundenen Mutationen wurden mittels Sanger-Sequenzierung überprüft.

3.6 Sanger-Sequenzierung

3.6.1 Prinzip

Das Prinzip der Sanger-Sequenzierung ähnelt dem der PCR. Die Forward- und Reverse-Primer werden allerdings jeweils einzeln in ein Tube gegeben, so dass pro verwendeter Probe zwei Ansätze entstehen. Zusätzlich zu den vier 2-Desoxynucleotiden werden außerdem vier mit verschiedenen Fluoreszenzfarbstoffen markierte 2,3-Didesoxynucleotide verwendet. Bei diesen fehlt jeweils die Hydroxyl-Gruppe des dritten C-Atoms der Ribose, an die normalerweise das nächste Nucleotid anknüpfen würde. Während des Seguenzierungs-PCR-Programms bricht die Elongation des Strangs daher ab und es entstehen nach dem Zufallsprinzip viele DNA-Fragmente unterschiedlicher Länge. Die Basenendung der Fragmente ist dabei von dem jeweils eingebauten 2,3-Didesoxynucleotid (ddATP, ddCTP, ddGTP, ddTTP) abhängig. Während der Elektrophorese werden die Fluoreszenzfarbstoffe dann mittels eines Lasers angeregt und das emittierte Licht gemessen, so dass eine Aufschlüsselung der Basensequenz möglich ist. Zur Verminderung des Hintergrunds durch nicht eingebaute Primer oder Nucleotide wird der Ansatz im Anschluss an die Sequenzierungs-PCR aufgereinigt und die Proben auf ein Dextran-Epichlorhydrin-Copolymer-Gel (Sephadex) gegeben.

3.6.2 Durchführung

Zunächst wurden die DNA-Proben aus der PCR mit ExoSap-IT® aufgereinigt, um die dort enthaltenen übriggebliebenen Primer und Nucleotide auszuwaschen. Dazu wurden zu 3µl der DNA-Proben 1,5µl ExoSap-IT® pipettiert. Das darauffolgende PCR-Programm bestand aus 15 Minuten bei 37°C und 80°C für erneute 15 Minuten.

Im Anschluss wurde eine Sequenzierungs-PCR durchgeführt. Hierzu wurden zu den zuvor pipettierten 4,5µl 1µl des jeweiligen Primers (Foward oder Reverse), 0,75µl Big Dye (2,3 Didesoxynukleotide mit Fluoreszenzfarbstoff markiert), 2µl Seq Puffer und

1,75µl HPLC-Grade H₂O gegeben. Danach wurde das Sequenzierungs-PCR-Programm des Labors durchgeführt (Tabelle 10).

Schritt	Temperatur	Dauer	
Denaturierung	96°C	2 Minuten	
Denaturierung	50°C	5 Sekunden	
Annealing	60°C	2 Minuten	25 Zyklen
Elongation	94°C	10 Sekunden	
Cooling	14°C	∞	

 Tabelle 10 Sequenzierungs-PCR-Programm

Das pulverisierte Dextran-Epichlorhydrin-Copolymer (Sephadex) wurde auf eine Sephadex-Platte aufgetragen und nach Zugabe von 300µl HPLC-Grade-H₂O für drei Stunden quellen gelassen. Nach 5-minütiger Zentrifugation der Platte bei 2200 rpm wurden die Proben aus der Sequenzierungs-PCR aufgetragen, 20µl HPLC-Grade-H₂O hinzugefügt und die Platte erneut für 5 Minuten bei 2200 rpm abzentrifugiert. Anschließend wurden die Proben an das Zentrallabor des Uniklinikums Münster gegeben. Die dort ermittelteten Sequenzen wurden mittels Codon Code Aligner ausgewertet.

4 Patientenkohorte

Ziel dieser Arbeit ist die Identifikation von isolierten IDA-Defekten. Daher wurden Patienten, bei denen bereits Auffälligkeiten im ODA-Komplex, den Radialspeichen, den Nexin-Brücken oder dem zentralen Mikrotubulus-Paar festgestellt worden waren, aus der Kohorte ausgeschlossen. In Frage kamen somit nur solche Patienten, die zwar den klinischen Phänotyp einer PCD zeigten, bei denen aber alle bisher durchgeführten Screening-Färbungen auf die häufigsten PCD-Mutationen unauffällig waren. Unter diesen Voraussetzungen ergab sich aus der vorherigen Patientenanzahl von 4779 eine Kohorte mit 421 Patienten. Bei 202 (48%) dieser 421 Patienten war DNA-Material durch vorherige Blutabnahmen vorhanden, weshalb diese für eine mögliche Gendiagnostik im Anschluss an die Immunfluoreszenzfärbung in Frage kamen (Abbildung 9).

Abbildung 9 Häufigkeit von DNA-Material in der Patientenkohorte

In der aus 421 Patienten bestehenden Kohorte, war bei 219 (52%, blau) kein DNA-Material vorhanden, bei 202 (48%, orange) war DNA-Material zur genetischen Untersuchung vorhanden.

5 Ergebnisse

Die Patientenproben wurden zunächst mit einem Antikörper gegen DNAH10 zur Untersuchung der I1-Komponente gefärbt. Hierbei ergaben sich 82 auffällige Proben. Da bei 37 dieser 82 Patienten genügend DNA-Material für eine anschließende Gendiagnostik vorhanden war, wurden diese 37 gegen DNALI1 und DNAH6 gefärbt. Im Anschluss wurde DNA-Material von zehn der 37 Patienten zur Gendiagnostik nach Köln und DNA-Material von 23 Patienten in das Institut für Humangenetik Münster gesendet. Die in Köln gefundenen Mutationen wurden mittels Sanger Sequenzierung bestätigt. Die detaillierten Ergebnisse sind im folgenden Abschnitt beschrieben.

5.1 Immunfluoreszenz-Färbung

In dieser Arbeit wurde der Antikörper gegen DNAH10 genutzt, um die Patientenproben auf Auffälligkeiten der I1-Domäne zu überprüfen (Abbildung 11) 94 der 421 Patientenproben waren bereits zuvor von Anja Matter gegen DNAH10 gefärbt, aber nicht abschließend analysiert worden. Bei den restlichen 327 Patienten wurde eine Immunfluoreszenzfärbung gemäß dem Standardprotokoll des Labors durchgeführt. Zur weiteren Untersuchung wurden nur Proben ausgewählt, die bei der hochauflösenden IF-Mikroskopie auffällig waren, bei denen das DNAH10-Protein also entweder fehlte oder nur unvollständig ausgeprägt war (Abbildung 10). Dies war bei 82 (19%) der 421 mikroskopierten Patientenproben der Fall.

Abbildung 10 Anzahl der DNAH10-auffälligen Patienten

In der Kohorte mit 421 Patienten waren 339 Patientenproben unauffällig. Bei den 82 auffälligen Patientenproben war bei 45 kein DNA-Material vorhanden. Bei 37 Patienten lag DNA-Material zur weiteren Untersuchung vor.

Abbildung 11 Beispielfärbung mit dem anti-DNAH10 Antikörper

Der anti-acetyliertes-α-Tubulin-Antikörper färbt das Axonem grün. **A**: anti-DNAH10-Färbung einer Kontrolle mit regelrechter ziliärer Färbung durch den anti-DNAH10-Antikörper (rot). **B**: Anti-DNAH10-Beispielfärbung der Zilie eines PCD-Patienten. Es lässt sich kein DNAH10 im Zilium detektieren. Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10µm.

Bei 37 (45%) der 82 DNAH10-auffälligen Patienten war DNA-Material in ausreichender Menge zur Gendiagnostik verfügbar. Diese 37 wurden anschließend jeweils mit einem polyklonalen anti-DNALI1-Antikörper und einem polyklonalen anti-DNAH6-Antikörper gefärbt.

Zur Überprüfung auf Abnormalitäten der p28-assoziierten Isoformen wurde der polyklonale anti-DNALI1-Antikörper verwendet (Abbildung 12).

Abbildung 12 Beispielfärbung mit dem anti-DNALI1 Antikörper

Der anti-acetyliertes-α-Tubulin-Antikörper färbt das Axonem grün. **A**: anti-DNALI1-Färbung einer Kontrolle mit regelrechter ziliärer Färbung durch den anti-DNALI1-Antikörper (rot). **B**: Anti-DNALI1-Beispielfärbung der Zilie eines PCD-Patienten. Es lässt sich kein DNALI1 im Zilium detektieren. Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10µm. Zur Überprüfung der Centrin-assoziierten Isoformen wurde im Anschluss eine Färbung mit dem polyklonalen anti-DNAH6 Antikörper durchgeführt (Abbildung 13).

Abbildung 13 Beispielfärbung mit dem anti-DNAH6 Antikörper

Der anti-acetyliertes-α-Tubulin-Antikörper färbt das Axonem grün. **A**: anti-DNAH6-Färbung einer Kontrolle mit regelrechter ziliärer Färbung durch den anti-DNAH6-Antikörper (rot). **B**: Anti-DNAH6-Beispielfärbung der Zilie eines PCD-Patienten. Es lässt sich kein DNAH6 im Zilium detektieren. Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10µm.

Die Färbergebnisse aus der anti-DNAH10-, anti-DNALI1- und anti-DNAH6-Färbung ließen sich in vier Auffälligkeitsgruppen unterteilen (Tabelle 11). Hierbei waren 18 Proben in allen IDA-Isoformen auffällig und wurden damit der Gruppe 1 zugeordnet (49%). 5 Proben waren nur DNAH10-auffällig und zählten daher zur Gruppe 2 (13%). Gruppe 3 bestand aus 11 Patienten, die DNAH10- und DNAH6-auffällig waren, bei denen die DNALI1-Färbung sich aber als normal herausstellte (30%). In der Gruppe 4 war nur die DNAH6-Färbung unauffällig, DNAH10 und DNALI1 waren auffällig. Dieser Gruppe wurden 3 Patienten zugeordnet (8%) (Abbildung 14).

Gruppe 1	18 Patienten	Gruppe 2	5 Patienten
DNAH10	Auffällig	DNAH10	Auffällig
DNALI1	Auffällig	DNALI1	Normal
DNAH6	Auffällig	DNAH6	Normal
Gruppe 3	11 Patienten	Gruppe 4	3 Patienten
DNAH10	Auffällig	DNAH10	Auffällig
DNALI1	Normal	DNALI1	Auffällig
DNAH6	Auffällig	DNAH6	Normal

 Tabelle 11 Einteilung der Gruppen der Färbeergebnisse

Abbildung 14 Verteilung der Gruppen der Färbeergebnisse

Dargestellt ist die Verteilung der Patienten entsprechend der Färbeergebnisse aus der IF-Färbung in die vier Auffälligkeitsgruppen. Von 37 Patienten wurden 18 Patienten (49%) der Gruppe 1 zugeteilt (blau), 11 Patienten (30%) der Gruppe 3 (rot), 5 Patienten (13%) der Gruppe 2 (grau) und 3 Patienten der Gruppe 4 (8%) (gelb).

5.2 Whole Exome Sequencing

Zehn der 37 auffälligen Proben, bei denen DNA-Material vorhanden war, wurden zum Whole Exome Sequencing zum CCG nach Köln gesendet. 23 weitere DNA-Materialien wurden in das Institut für Humangenetik Münster gegeben, um mögliche Mutationen in bereits bekannten PCD-Genen zunächst ausschließen zu können. Hier wurden bei 19 Patienten keine Mutationen in bereits bekannten PCD-Genen gefunden. Bei den restlichen vier Patienten besteht der Verdacht auf eine *RPGR*-, eine *HYDIN*-, sowie zwei *DNAH11*-Mutationen. Bei den zehn zum Whole Exome Sequencing gesendeten DNA-Proben ergaben sich zwei *DNAH11*-Mutationen (homozygot und heterozygote *DNAH14*-Mutationen, eine heterozygote *DNAH6*-, eine heterozygote *DNAH10*-, und eine homozygote *LRRC31*-Mutation. Bei vier weiteren wurde eine genauere Varbank-Analyse durchgeführt, da potenzielle krankheitsverursachende Genmutationen nicht auf Anhieb gefunden werden konnten. Die genauen Mutationen, sowie die Klinik der Patienten sind in Tabelle 12 dargestellt.

Patient	Mutation	FG	Klinik
OP-2173 II1	DNAH6: c.9436A>G, p.S3246G (het.)	1	?
OP-1534 II1	DNAH11: c.7943T>G, p. F2648S (hom.)	1	rezidivierende Otitis media mit Perforation, rezidivierende Sinusitis, rezidivierende Pneumonie, Bronchiektasen, obstruktive Störungen
OP-2323 II1	DNAH11: c.11224-2A>G (het.), c.2965C>T, p.R989* (het.), c.8276A>T, p.D2759V (het.)	1	chronische Sinusitis, chronische Mittelohrprobleme, Bronchitis, feuchter Husten, Bronchiektasen
OP-1759 II1	DNAH6: c.6502A>T, p.M2168L (het.)	1	rezidivierende Otitis media, obstruktive Störungen
OP-2055 II1	Varbank	1	rezidivierende Otitis media, rezidivierende Sinusitis, rezidivierende Pneumonie, obstruktive Störungen, Adenoide, Asthma, chronische Bronchitis
OP-2168 II1	Varbank	1	rezidivierende Otitis media, rezidivierende Sinusitis, rezidivierende Pneumonie, offenes Foramen ovale mit Spontanverschluss
OP-2188 II1	Varbank	1	Chronische Bronchitis
OP-1521 II1	DNAH10: c.12718G>Y, p.E4240* (het.)	2	rezidivierende Pneumonie, ausgeprägte Bronchiektasen, obstruktive Störungen, bisher unerfüllter Kinderwunsch
OP-1733 II1	LRRC31: c.1467_1468del(C)2insC,	2	Situs Inversus, kongenitale kardiale Malformationen

Tabelle [•]	12 Fraebnisse	des WFS	und Klinik de	er untersuchten	Patienten.	FG=Färbegruppe
labelle					i unomori.	i alli albogi appo

	p. L490Ffs*20 (hom.)		
OP-2371 II1	DNAH14:	3	Situs ambiguus, Ventrikel
	c.4857_4860delAATT,		Septum Defekt, chronischer
	p.I1620Rfs*,		Husten
	c.10012G>A, p.G3338R (het.)		

5.3 Sanger Sequenzierung und weitere IF-Färbungen

5.3.1 OP-2323 II1 und OP-1534 II1

OP-2323 II1 und OP-1534 II1 wurden ihren Färbeergebnissen aus der Immunfluoreszenzfärbung entsprechend der Gruppe 1 zugeordnet, in der die IF-Mikroskopie für DNAH10, DNAL11 und DNAH6 auffällig war (Abbildung 15 und Abbildung 16).

Abbildung 15 IF-Färbeergebnisse von OP-2323 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes- α -Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-2323 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10 (**B**), der anti-DNAL11 (**D**) und der anti-DNAH6-Färbung (**F**). Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

Abbildung 16 IF-Färbeergebnisse von OP-1534 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes-α-Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-1534 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10 (**B**), der anti-DNAL11 (**D**) und der anti-DNAH6-Färbung (**F**). Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 μm.

Ein Whole Exome Sequencing durchgeführt in Köln ergab drei heterozygote *DNAH11*-Mutationen bei OP-2323 II1 und eine homozygote *DNAH11*-Mutation bei OP-1534 II1. Die *DNAH11*-Mutationen wurden im Anschluss mittels Sanger-Sequenzierung bestätigt (Abbildung 17).

Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und OP-2323 II1

Abgebildet sind die Stammbäume sowie die mittels Sanger-Sequenzierung bestätigten *DNAH11*-Mutationen von OP-1534 II1 und OP-2323 II1. **A**: Stammbaum von OP-1534 II1. **B**: Stammbaum von OP-2323 II1. **C**: Mutation von OP-1534: Exon 49, Mutation: c.7953T>C F2641S. **D**-**F**: Mutationen von OP-2323 II1: **D**: Exon 15, Mutation c.2965C>T p.R989*, **E**: Exon 69, Mutation c.11224-2A>G. **F**: Exon 50, c.8276A>T, p.D2759V

OP-1534 II1 wurde außerdem mit einem monoklonalen Antikörper gerichtet gegen DNAH11 gefärbt. Dies wurde in Kombination mit einem anti-RSPH4A-Antikörper als axonemalen Marker durchgeführt. Diese IF-Färbung war ebenfalls auffällig und bestätigte so die gefundene *DNAH11*-Mutation auch in der Färbung (Abbildung 18).

Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1

Die Färbungen wurden alle in Kombination mit anti-RSPH4A als axonemalem Marker durchgeführt. A: Zum Vergleich ist eine Kontrollfärbung gegen DNAH11 dargestellt. Hier ist deutlich die proximale Färbung des anti-DNAH11-Antikörpers zu sehen. B: OP-1534 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH11-Färbung. Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

5.3.2 OP-2173 II1

OP-2173 II1 wurde gemäß den Färbeergebnissen der IF-Färbung der Gruppe 1 zugeordnet (Abbildung 19). Im Whole Exome Sequencing wurde ein heterozygoter Basenaustausch im *DNAH6*-Gen gefunden. Die möglichen Folgen dieser Mutation werden im SIFT und Polyphen als schädlich angegeben.

Abbildung 19 IF-Färbeergebnisse von OP-2173 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes- α -Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-2173 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10 (**B**), der anti-DNAL11 (**D**) und der anti-DNAH6-Färbung (**F**). Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

5.3.3 OP-1759 II1

Bei OP-1759 II1, dessen Färbungen ebenfalls der Gruppe 1 zugeordnet wurden (Abbildung 20), ergab das Whole Exome Sequencing einen heterozygoten Basenaustausch im *DNAH6*-Gen. Auch dieser wurde von SIFT und Polyphen als krankheitsverursachend eingeordnet, müsste allerdings im Sanger Sequencing noch bestätigt werden. Inwieweit er wirklich krankheitsverursachend ist, lässt sich außerdem nicht hinreichend beurteilen.

Abbildung 20 IF-Färbeergebnisse von OP-1759 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes- α -Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-1759 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10 (**B**), der anti-DNAL11 (**D**) und der anti-DNAH6-Färbung (**F**). Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

5.3.4 OP-1521 II1

Bei dem zu Gruppe 2 (nur DNAH10-auffällig) zugeordneten OP-1521 II1 (Abbildung 22) ließ sich im Whole Exome Sequencing eine heterozygote *DNAH10*-Mutation finden (Abbildung 21). Diese ließ sich mittels Sanger-Sequenzierung bestätigen. Im Anschluss an die Sanger-Sequenzierung wurden eine Coverage- sowie eine IGV-Analyse durchgeführt, um andere eventuell krankheitsverusachende Mutationen ausschließen zu können. Die gefundene *DNAH10*-Mutation blieb dabei stärkster Kandidat. Zur weiteren Überprüfung wurden Patientenproben zum Whole Genome Sequencing gegeben. Die Ergebnisse fehlten jedoch noch beim Abschluss dieser Arbeit.

Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1

Abgebildet ist der Stammbaum und die mittels Sanger-Sequenzierung bestätigte *DNAH10*-Mutation von OP-1521 II1 **B:** *DNAH10*-Mutation: Exon 74, c.12718G>Y, p.E4240*.

Abbildung 22 IF-Färbeergebnisse von OP-1521 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes-α-Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-1521 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10-Färbung (**B**). Die anti-DNAL11 und die anti-DNAH6-Färbung waren unauffällig (**D und F**). Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 μm.

5.3.5 OP-2371 II1

Gemäß den Färbeergebnissen ließ sich OP-2371 II1 der Gruppe 3 zuordnen, womit DNAH10 und DNAH6 auffällig sind, DNALI1 jedoch normal ist (Abbildung 23).

Abbildung 23 IF-Färbeergebnisse von OP-2371 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes- α -Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-2371 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10 (**B**) und der anti-DNAH6-Färbung (**D**), die anti-DNAL11-Färbung war unauffällig (**F**). Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

Im Whole Exome Sequencing wurden zwei *DNAH14*-Mutationen gefunden. Beide ließen sich mittels Sanger-Sequenzierung bestätigen (Abbildung 24). Aufgrund fehlender DNA der Eltern von OP-2371 II1 konnte eine Segregationsanalyse zur Bestätigung einer compound-Heterozygotie der *DNAH14*-Mutationen nicht durchgeführt werden. Der Versuch die *DNAH14*-Mutation mittels IF-Färbung nachzuweisen, schlug fehl, da zwei unterschiedliche anti-DNAH14 Antikörper jeweils nur ungenügende Färbeergebnisse bei Gesundkontrollen zeigten.

Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1

Dargestellt sind die beiden mittels Sanger-Sequenzierung bestätigten *DNAH14*-Mutationen, sowie der Stammbaum von OP-2371 II1. **A**: Stammbaum von OP-2371 II1 **B**: heterozygote Mutation in Exon 65 c.10012G>A, p.G3338R **C**: heterozygote Mutation in Exon 30, c.4857_4860delAATT, p.I1620Rfs*.

5.3.6 OP-1733 II1

OP-1733 II1 ist ein consanguiner Patient (Abbildung 25 A), dessen Färberergebnisse der Gruppe 2 zugeordnet wurden, bei der nur DNAH10 auffällig ist (Abbildung 26). Im Whole Exome Sequencing wurde eine homozygote *LRRC31*-Mutation (Deletion, Abbildung 25, B) gefunden, die sich mittels Sanger-Sequenzierung bestätigen ließ.

Abbildung 25 Stammbaum und LRRC31-Mutation von OP-1733

Abgebildet sind der Stammbaum sowie die mittels Sanger-Sequenzierung bestätigte *LRRC31*-Mutation von OP-1733 II1 **A**: Stammbaum von OP-1733 II1 **B**: Homozygote *LRRC31*-Mutation: Exon 9, c.1467delC, p.L490Ffs*20

Abbildung 26 Färbeergebnisse von OP-1733 II1

Die Färbungen wurden alle in Kombination mit einem anti-acetyliertes- α -Tubulin-Antikörper als axonemalem Marker durchgeführt. OP-1733 II1 zeigte ein negatives Färbeergebnis bei der anti-DNAH10-Färbung (**B**). Die anti-DNAL11-Färbung (**D**) und die anti-DNAH6-Färbung (**F**) waren unauffällig. Zum Vergleich sind Kontrollfärbungen der jeweiligen Antikörper dargestellt (**A**, **C**, **E**). Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

Um herauszufinden ob LRRC31 Einfluss auf den Zusammenbau der I1-Domäne hat, wurde bei OP-1733 II1 eine Immunfluoreszenzfärbung gegen WDR63, dem humanen Ortholog von IC140 der I1-Domäne durchgeführt. Diese Färbung war ebenfalls auffällig (Abbildung 27).

Abbildung 27 anti-WDR63-Färbung von OP-1733 II1

Die Färbung wurden in Kombination mit einem anti-acetyliertes-α-Tubulin-Antikörper als axonemalem Marker durchgeführt. **A:** Zum Vergleich ist eine Kontrollfärbung gegen WDR63 abgebildet. **B**: OP-1733 II1 zeigte ein negatives Färbeergebnis bei der anti-WDR63 Färbung. Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm.

Zur weiteren Überprüfung wurde eine Sanger-Sequenzierung mit allen fünf Patienten der Gruppe 2 auf alle neun Exone des *LRRC31*-Gens durchgeführt. Hierbei fanden sich in den Exonen 1-4, 6 und 8 keine Mutationen. Die homozygote *LRRC31*-Mutation von OP-1733 II1 im Exon 9 wurde bestätigt. Im Exon 7 fand sich bei OP-1843 II1 ein seltener heterozygoter Basenaustausch (c.1082G>A, p.E342K, Abbildung 28), der von SIFT und PolyPhen als schädlich eingestuft wurde (SIFT: 0,02 deleterious; PolyPhen:0,951 probably damaging).

Abbildung 28 LRRC31-Mutation von OP-1843 II1

Abgebildet ist die heterozygote LRRC31-Mutation von OP-1843 II1: Exon 7, Mutation: c.1082G>A, p.E342K.

Die Untersuchung von Exon 5 war zum Zeitpunkt der Arbeit noch nicht abgeschlossen. OP-1733 II1 wurde im Anschluss von Lucas Wennemann mit einem anti-LRRC31-Antikörper (1:200, in Kombination mit einem anti-acetyliertes-α-Tubulin-Antikörper) gefärbt. Diese Färbung war ebenfalls auffällig und bestätigt so die gefundene Mutation (Abbildung 29).

Abbildung 29 anti-LRRC31 Färbung von OP-1733 II1

Die Färbung wurden in Kombination mit einem anti-acetyliertes-α-Tubulin-Antikörper als axonemalem Marker durchgeführt. **A**: Zum Vergleich ist eine Kontrollfärbung gegen LRRC31 abgebildet. **B und C**: OP-1733 II1 zeigte ein negatives Färbeergebnis bei der anti-LRRC31 Färbung. Merge=Überlagerung beider Bilder. Die gelbe Färbung bedeutet, dass beide Proteine kolokalisieren. Die Zellkerne (blau) wurden mit Hoechst 33342 gefärbt. Der Maßstabsbalken entspricht 10 µm. Färbung durchgeführt von Lucas Wennemann.

Basierend auf den von Diana Frank angefertigten RNA-Sequenzierungsdaten, wurden zur Beurteilung der gewebespezfischen RNA-Expression von *LRRC31* im V ergleich zu den anderen IDA-Genen Heatmaps angefertigt (Tabelle 13). Diese zeigte aber, wie die RNA-Expression von *LRRC31* während der Ziliogenese (Abbildung 30), keine Korrelation.

Gene	Nasale Biopsie	Nasale Biopsie	Nasale Biopsie	Blut	Blut	Blut
LRRC31	2	0	2	0	0	0
DNAH10	16	26	26	0	0	0
DNALI1	91	142	213	0	0	0
DNAH6	30	41	37	0	0	1

Gene	ALI-Kultur 1	ALI-Kultur 2	Nasale Biopsie 1	Nasale Biopsie 2	EBV 1	EBV 2
LRRC31	0	0	1	1	0	0
DNAH10	3	28	46	49	0	0
DNALI1	51	195	175	276	0	0
DNAH6	9	62	43	53	0	0

 Tabelle 13 Heatmaps der gewebespezifischen RNA-Expression von LRRC31 im Vergleich zur Expression der IDA-Gene

Die RNA-Sequenzierungsdaten wurden zu PPIH normalisiert. Die IDA-Gene *DNAH10*, *DNAH6* und *DNAL11* zeigten die stärkste Expression im Material nasaler Bürstenbiopsien. In EBV-transformierten Lymphozyten und in Blutzellen wurden die IDA-Genen hingegen kaum exprimiert. *LRRC31* ist im Vergleich dazu zwar ebenfalls schwach in EBV-infizierten Lymphozyten und in Blutzellen exprimiert, allerdings lässt sich auch kaum Expression im Material nasaler Bürstenbiopsien nachweisen.

Abbildung 30 RNA-Expression von *LRRC31* im Vergleich zu IDA-Genen in ALI-Kulturen nasaler Bürstenbiopsien während der Ziliogenese

Die RNA-Sequenzierungsdaten wurden zu PPIH normalisiert und die Expression an fünf verschiedenen Zeitpunkten (T=0 bis T=30) gemessen. Die RNA-Expression bleibt bei den frühen Zeitpunkten (bis T=3) niedrig. Ab T=3 steigt die RNA-Expression von *DNAH10* steil an, die RNA-Expressionen von *DNAH6* und *DNAL11* steigen ebenfalls, jedoch deutlich schwächer. Im Gegensatz dazu bleibt die RNA-Expression von *LRRC31* (rot) gleichbleibend sehr niedrig.

6 Diskussion

In dieser Arbeit sollten isolierte Defekte der inneren Dynein-Arme in einer Kohorte von 421 PCD-Patienten identifiziert werden. 82 Patientenproben erwiesen sich dabei als auffällig und DNA-Material von zehn dieser 82 Patienten wurde zur Gendiagnostik nach Köln gesendet. Beim Whole Exome Sequencing fanden sich unter den zehn Patientenproben eine homozygote *LRRC31*-Mutation, zwei heterozygote *DNAH6*-Mutationen, eine heterozygote *DNAH10*-Mutation, zwei heterozygote *DNAH14*-Mutationen und zwei *DNAH11*-Mutationen (homozygot und heterozygot). Die einzelnen Mutationen sowie ihre eventuelle Bedeutung für die PCD-Erkrankung soll im Folgenden diskutiert werden.

6.1 Mutationen in DNAH6

Bei OP-2173 II1 und OP-1759 II1, beide entsprechend der Färbeergebnisse der Aufälligkeitsgruppe 1 zugeordnet, wurden jeweils heterozygote Basenaustausche in DNAH6 gefunden, die im SIFT und Polyphen als schädlich beurteilt werden. DNAH6 ist als Dynein g eine Centrin-assoziierte Isoform und bildet ein funktionelles Dimer mit dem p28-assoziierten DNAH1 (Dynein d). Ein DNAH6-knockdown in Zebrafisch führte bei diesem zu Lateralisationsdefekten. Die weitere Untersuchung von 149 Heterotaxie Patienten zeigte sieben DNAH6-Mutationen, sechs heterozygote und eine homozygote Mutation. Vier der heterozygoten DNAH6-Mutationen hatten außerdem Mutationen in DNAH5. Bei DNAH6 wurde dabei eine Rolle in der Stabilisierung der axonemalen Mikrotubuli-Doubletten überlegt. Auch eine Interaktion mit anderen PCD-Genen, vor allem DNAI1, wurde vermutet (50). In dieser Arbeit ist die Symptomatik von OP-2173 II1 nicht bekannt, OP-1759 II1 leidet an rezidivierender Otitis media und obstruktiven Störungen, aber nicht an Heterotaxie. Auch wurde bei keinem der beiden Patienten eine weitere Mutation in einem anderen PCD-Gen festgestellt. In der durchgeführten Studie blieb eine DNALI1-IF-Färbung zudem unauffällig (50), bei OP-2173 II1 und OP-1759 II1 sind jedoch alle IDA-Isoformen betroffen. Dies könnte darauf hindeuten, dass DNAH6 auch mit den anderen IDA-Domänen interagiert. Auch wäre eine Beteiligung von DNAH6 am Zusammenbau der IDAs denkbar, was in der oben genannten Studie aufgund der unauffälligen DNALI1-Färbung ausgeschlossen wurde (50). Weder bei OP-2371 II1,

Diskussion

noch bei OP-1759 II1 wurde bisher eine weitere *DNAH6*-Mutation gefunden, die bei einem autosomal-rezessiven Erbgang jedoch nötig wäre um eine Klinik hervorzurufen. Somit lassen sich die bestätigten heterozygoten *DNAH6*-Mutationen momentan nicht endgültig als krankheitsverursachend einstufen und müssen im weiteren Verlauf genauer untersucht werden. Außerdem sollten die einzelnen Interaktionen der IDAs untereinander noch besser untersucht werden, um die auffälligen Färbeergebnisse von OP-2173 II1 und OP-1759 II1 in allen drei IDA-Komponenten erklären zu können.

6.2 Mutationen in DNAH10

Die bei OP-1521 II1 gefundene heterozygote *DNAH10*-Mutation stimmt mit den Färbeergebnissen dieses Patienten überein. So ist einzig DNAH10 auffällig, die Lokalisation von DNALI1 und DNAH6 ist normal. OP-1521 II1 ist eine Patientin mit rezidivierender Pneumonie, ausgeprägten Bronchiektasen, obstruktiven Störungen und einem bisher unerfüllten Kinderwunsch. Durch Coverage- und IGV-Analyse konnten Mutationen in anderen PCD-Genen bei OP-1521 II1 ausgeschlossen werden. Als humanes Ortholog der 1α-schweren Kette der I1-Domäne reguliert DNAH10 vermutlich die Aktivität der 1β-schweren Kette, die wiederum die Aktivität der ODAs reguliert. Eine *DNAH10*-Mutation könnte damit durchaus eine PCD-Erkrankung auslösen. Die bestätigte Stopmutation in Exon 74 von *DNAH10* ist allerdings heterozygot, weshalb auch hier eine weitere *DNAH10*-Mutation gefunden werden müsste, um sie bei dem autosomal-rezessiven Erbgang der PCD als krankheitsverusachend einstufen zu können.

6.3 Mutationen in DNAH14

Die Färbeergebnisse von OP-2371 II1 konnten der Gruppe 3 zugeordnet werden, in der die Lokalisationen von DNAH10 und DNAH6 auffällig sind, die von DNAL11 jedoch normal ist. Auch hier lässt sich, ähnlich wie bei den heterozygoten *DNAH6*-Mutationen, eine Interaktion von DNAH14 mit zumindest der I1-Domäne vermuten. DNAH14 ist das humane Ortholog von *Chlamydomonas reinhardtii* Dynein e. Die im Whole Exome Sequencing gefundenen heterozygoten *DNAH14*-Mutationen ließen sich mittels Sanger-Sequenzierung bestätigen. OP-2371 II1 hat einen *situs ambiguus*, einen Ventrikel Septum Defekt und chronischen Husten. Die Lateralitätsdefekte in Kombination mit der

unauffälligen DNALI1-Färbung erinnern an die Studie mit DNAH6 (50). Eine Interaktion zwischen DNAH14 und DNAH6 wurde bisher jedoch nicht beschrieben. Im weiteren Verlauf könnte diese daher näher untersucht werden. Außerdem wäre die Etablierung weiterer Antikörper gerichtet gegen DNAH14 notwendig, um die gefundenen Mutationen auch mittels IF-Färbung bestätigen zu können. In diesem Fall wurden zwei verschiedene DNAH14-Mutationen bei einem Patienten gefunden. Da die PCD einem autosomalrezessiven Erbgang folgt, müssen beide Allele eines Gens verändert sein, um eine Klinik hervorzurufen. Wenn beide Mutationen von einem Elternteil vererbt wurden, liegen sie auf nur einem Chromosomenstrang (in-cis) und haben keinen Krankheitswert. Bei der Compound-Heterozygotie handelt es sich um zwei verschiedene Mutationen des gleichen Gens, die auf unterschiedlichen Chromosomensträngen (in-trans) vorliegen und krankheitsverusachend sein können (77). Um bei OP-2371 II1 eine Compound-Heterozygotie der DNAH14-Mutationen abschließend bestätigen zu können, ist daher eine Segregationsanalyse der Eltern erforderlich. Da außer den DNAH14-Mutationen keine weiteren Mutationen in anderen PCD-Genen bei OP-2371 II1 gefunden wurden, könnten die DNAH14-Mutationen nach bestätigter Compound-Heterozygotie durchaus als krankheitsverusachend in Frage kommen.

6.4 Mutationen in *LRRC31*

LRRC31 ist ein wenig erforschtes Protein. Es wurde bisher im Zusammenhang mit eosinophiler Ösophagitis beschrieben (15). Hier soll es die Kalikrein-Expression regulieren und so Einfluss auf die Barrierefunktion des ösophagealen Epithels nehmen. Induziert wird LRRC31 in diesem Fall durch IL-13 (15). Auffällig ist, dass die höchste mRNA-Expression von LRRC31 dabei im Darm, aber auch im Epithel der Atemwege festgestellt wurde (15). Da in diesem Projekt eine homozygote LRRC31-Mutation im Zusammenhang mit PCD-Symptomen festgestellt wurde, stellt sich die Frage, ob LRRC31 nicht auch in anderen Bereichen Einfluss nimmt. OP-1733 II1 ist die Tochter einer konsanguinen Ehe gesunder Partner. Klinisch vorherrschend ist hier ein situs inversus und eine kongenitale kardiale Malformation. Die im Whole Exome Sequencing gefundene homozygote LRRC31-Mutation in Kombination mit der IF-Auffälligkeitsgruppe 2, bei der nur DNAH10 auffällig ist, deutet darauf hin, dass LRRC31 mit Dynein-Komponenten interagiert, hier besonders die I1-Domäne betreffend. Die durchgeführte Immunfluoreszenzfärbung gegen WDR63 war ebenfalls auffällig. WDR63

Diskussion

56

ist das humane Ortholog von Chlamydomonas reinhardtii IC140, einer intermediären Kette des Intermediär-Leichtketten-Komplex der I1-Domäne (ICLC) (70). Es spielt eine wichtige Rolle im Zusammenbau des ICLC und hält vermutlich die einzelnen Substrukturen zusammen (72). Außerdem ist WDR63 für das Anheften des ICLC-Komplex am Mikrotubulus A verantwortlich (4). Da sich bei OP-1733 II1 WDR63 nicht mehr detektieren lässt, ist es wahrscheinlich, dass der gesamte ICLC-Komplex nicht richtig zusammengebaut wurde. Dies würde die Vermutung unterstützen, dass eine LRRC31-Mutation über eine WDR63-Interaktion indirekt für den Zusammenbau der I1-Domäne verantwortlich ist. Diese These würde vor allem dadurch gestützt werden, dass die bislang besser erforschten Proteine LRRC6 und DNAAF1/LRRC50 jeweils Einfluss auf den Zusammenbau bzw. den Transport von Dyneinen nehmen und so ursächlich für eine PCD sind. Mutationen in DNAAF1/LRRC50 führen zu einem Fehlen von DNAH5, DNAH9, DNAI2 und DNALI1, was sich in der Hochfrequenzvideomikroskopie in immotilen Zilien äußert (4, 51). LRRC6 soll an dem Transport von äußeren Dynein-Armen oder Teilen von äußeren Dynein-Armen aus dem Zytoplasma in das ziliäre Axonem beteiligt sein (35). Die Untersuchung der restlichen fünf Patienten der Auffälligkeitsgruppe 2 ergab eine weitere heterozygote LRRC31-Mutation. Dies war ein seltener heterozygoter Basenaustausch bei OP-1843 II1, der von SIFT und Polyphen zwar als schädlich eingestuft wurde, bei dem aber dennoch nicht geklärt ist, ob es sich auch um eine krankheitsverursachende Mutation handelt. Exon 5 ließ sich zudem nicht beurteilen, da die Sequenzierung zum Zeitpunkt dieser Arbeit noch nicht abgeschlossen war. Die Mutation von OP-1733 II1 ließ sich auch in den von Lucas Wennemann angefertigten IF-Färbungen gegen LRRC31 bestätigen. Fraglich ist, warum die auf gewebespezifische RNA-Expression basierenden angefertigten Heatmaps keine Korrelation aufwiesen. Zwar war die Expression von LRRC31 wie auch anderer IDA-Gene wie erwartet kaum in Blutzellen und EBV-infizierten Lymphozyten nachweisbar, allerdings auch nicht im Material nasaler Bürstenbiopsie in denen die IDA-Gene am stärksten exprimiert waren. Auch während der Ziliogenese ließ sich kein Zusammenhang zwischen der gleichbleibend niedrigen LRRC31-Expression und den gegen Ende ansteigenden Expressionen der IDA-Gene nachweisen. Bei der eosinophilen Ösophagitis, bei der im Ösophagus ebenfalls eine im Vergleich zum Darm viel geringere RNA-Expression in Gesundkontrollen festgestellt worden war, wurde dies dadurch erklärt, dass die LRRC31-Expression erst während der aktiven Erkrankung durch IL-13 induziert wird (15). Ob dies auch im respiratorischen Epithel der Fall sein könnte, müsste weiter untersucht werden. Insgesamt ist es durchaus wahrscheinlich,

dass LRRC31 die PCD bei OP-1733 II1 verursacht hat. Da es sich bei dieser Mutation jedoch vermutlich um eine seltene Mutation handelt, müsste die Stichprobe wesentlich vergrößert werden. Mit einem funktionierenden LRRC31-Antikörper, der IF-Screening-Färbungen von PCD-Patienten mit IDA-Defekten ermöglicht und einer anschließenden Gendiagnostik könnte eine genauere Untersuchung durchgeführt werden. Mittels weiterer Antiköper gegen andere I1-Bestandteile (WDR78, DNAH2) könnte außerdem der genaue Aufbau von I1 und die Interaktionen der einzelnen Komponenten untereinander besser verstanden werden sowie die eventuellen Auswirkungen eines LRRC31-Verlusts auf diese Komponenten.

6.5 Mutationen in DNAH11

Eine DNAH11-Mutation wurde bei zwei von zehn genetisch untersuchten Patienten nachgewiesen. Insgesamt sollen DNAH11-Mutationen für 6-7% der PCD-Fälle verantwortlich sein (44). DNAH11 ist Teil der äußeren Dynein-Arme. Es ist das humane Ortholog der β-schweren Kette der ODAs in Chlamydomonas reinhardtii, dies jedoch nur im proximalen Teil des Ziliums, während im distalen Teil DNAH9 zu finden ist (16). Klinisch sind DNAH11-Mutationen oft mit einem Situs inversus und respiratorischen Problemen verbunden (3). In diesem Fall leiden beide Patienten an rezidivierenden Pneumonien, Bronchiektasen, chronischer Sinusitis und Otitis media und haben klinisch unauffällige Eltern. OP-2323 II1 wurde bereits vor Beginn des Projektes auf DNAH11 mittels eines DNAH11-Antikörpers und IF-Mikroskopie auf eine DNAH11-Mutation untersucht. Die IF-Färbung war damals aber normal, im Gegensatz zu der nun nachgewiesenen heterozygoten Mutation. Während sehr viele DNAH11-Mutationen gut mittels eines monoklonalen anti-DNAH11-Antikörpers nachzuweisen sind, gibt es immer noch solche Mutationen, die zu einem Funktionsverlust von DNAH11 führen aber die Proteinlokalisation in der IF-Mikroskopie nicht beeinträchtigen (16). Fraglich bleibt außerdem warum sich beide DNAH11-Mutationen in der IF-Mikroskopie mit Auffälligkeiten gegen DNAH10, DNALI1 und DNAH6 (Gruppe 1) darstellten. Aufgrund der proximalen Lokalisation von DNAH11 ist ein Einfluss auf den Zusammenbau der IDA-Domänen unwahrscheinlich. Durch die hohe Sensitivität der DNAH10-Färbung kommt es häufig zu falsch auffälligen Ergebnissen. Daher sollte zur Überprüfung eine größere Stichprobe an Patienten mit bekannten DNAH11-Mutationen gegen die IDA-Domänen gefärbt werden, um zu untersuchen ob sich die hier erzielten Färbeergebnisse

reproduzieren lassen. Zusätzlich sollte die IF-Mikroskopie mit dem anti-DNAH10-Antikörper und mit neuen Proben von OP-2323 II1 durchgeführt werden, um den auffälligen Befund zu bestätigen.

6.6 Abschließende Beurteilung und Ausblick

In dieser Arbeit wurden 82 von 421 Patientenproben mit IDA-Auffälligkeiten identifiziert. Von diesen 82 Patienten wurden zehn genetisch untersucht und dabei vier Mutationen in IDA-Genen gefunden: Zwei Patienten mit heterozygoten DNAH6-Mutationen, ein Patient mit heterozygoter DNAH10-Mutation und ein Patient mit compound heterozygoten DNAH14-Mutationen. Aufgrund der Heterozygotie und der Tatsache, dass wir von einem autosomal rezessiven Erbgang ausgehen, lassen sich die DNAH6-Mutationen und die DNAH10-Mutation bisher nicht als krankheitsverursachend einstufen und auch die Compound-Heterozygotie der DNAH14-Mutationen müsste dazu erst bestätigt werden. Die gefundenen Mutationen können somit bisher nur als Hinweis gedeutet werden, dass isolierte Mutationen in IDA-Genen zu einer PCD führen können. Mit vier Mutationen in 421 Patientenproben sind die IDA-Mutationen aber insgesamt selten. Hier ist jedoch zu bedenken, dass bei der Screening-Färbung mit dem anti-DNAH10-Antikörper alle Patienten mit einer normalen DNAH10-Lokalisation aussortiert wurden. Damit könnten eventuell aber auch Patienten von der weiteren Diagnostik ausgeschlossen worden sein, die nur DNALI1- und/oder DNAH6-auffällig und DNAH10 normal waren. Außerdem bleiben IDA-Mutationen auch beim typischen Phänotyp einer PCD schwer zu diagnostizieren. So zeigte die TEM in der Vergangenheit viel zu häufig falsch positive IDA-Auffälligkeiten. Die IF-Färbung gilt als sensitivste Screening-Methode und eignet sich somit am besten um die Häufigkeit von IDA-Auffälligkeiten zu untersuchen. Durch die unterschiedlichen Interaktionen der einzelnen Bestandteile der Zilien scheint sie jedoch wenig spezifisch für isolierte IDA-Mutationen zu sein. In zehn genetisch untersuchten Patienten wurden zwei DNAH11-Mutationen gefunden, die jedoch beide in der Immunfluoreszenzfärbung eher einen isolierten IDA-Defekt vermuten ließen. IF-Färbungen sind außerdem stark von der Qualität der Patientenproben und der genutzten Antikörper abhängig. Eine schlechte Patientenprobe (z.B. zu viel Schleim) kann die Färbung beeinträchtigen und das Ergebnis kann fälschlicherweise als auffällig interpretiert werden, obwohl es dies eigentlich nicht ist. Hinzu kommt, dass die Ergebnisse gelegentlich schwer zu interpretieren sind. In wenigen Fällen gab es auch

auffällige und unauffällige Zellen auf der gleichen Probe. Hier sollte weiterhin versucht werden neue Patientenproben anzufordern, um mögliche auffällige Proben eindeutig bestätigen zu können. Im Rahmen der weiteren Forschung müsste auch die Interaktion der IDA-Domänen untereinander noch näher untersucht werden. So legen die beiden *DNAH6*-Mutationen, bei denen alle drei IDA-Domänen auffällig waren, eine Verbundenheit der IDA-Komponenten nahe. Bei der *DNAH10*- und der *LRRC31*-Mutation ist allerdings jeweils nur die I1-Domäne auffällig. Es wäre daher zu überlegen, inwieweit ein betroffener Komplex mit dem anderen interagiert und diesen ebenfalls in der Ausprägung beeinflussen kann. Außerdem sollte DNA-Material der restlichen 44 auffälligen Patienten angefordert werden. Dies würde eine genetische Diagnostik aller auffälligen Patienten ermöglichen.

Auch wenn mit Abschluss dieser Arbeit keine Mutation endgültig als ursächlich für PCD bestätigt werden konnte, geben aber vor allem die *DNAH10*- und die *DNAH14*- Mutationen Hinweise auf das Vorkommen weiterer, bisher nicht beschriebener IDA-Mutationen.

7 Zusammenfassung

Die Primäre Ciliäre Dyskinesie (PCD) ist eine seltene, genetisch heterogene Erkrankung, die durch eine defekte Ultrastruktur und/oder Funktion von motilen Zilien gekennzeichnet ist. Mutationen in den bisher entdeckten mit PCD-assoziierten Genen führen meist zu einer Dysfunktion des ziliären Schlages. Die mukoziliären Clearance im respiratorischen Trakt ist daher vermindert, woraus bei betroffenen Patienten rezidivierende Atemwegsinfektionen resultieren. Da auch motile Zilien während der Embryonalentwicklung sowie Spermien betroffen sein können, zählen Lateralisationsdefekte und Unfruchtbarkeit zu den häufigen Symptomen. Durch die unspezifischen respiratorischen Symptome und die schwierige Diagnostik, die im besten Fall in einem PCD-Zentrum erfolgen sollte, werden PCD-Patienten oft erst spät diagnostiziert, so dass eine adäquate Therapie nur verzögert eingeleitet werden kann. Die ziliäre Dysfunktion lässt sich häufig auf einen Defekt der Motorproteine, der Dynein-Arme zurückführen. Hier sind meist die äußeren Dynein-Arme betroffen. Defekte der inneren Dynein-Arme treten fast ausschließlich in Kombination mit Defekten anderer ziliärer Strukturen auf. Isolierte Defekte von inneren Dynein-Armen wurden bisher kaum beschrieben. Eine mögliche Erklärung wäre, dass Defekte innerer Dynein-Arme mit einem schwächeren klinischen Phänotyp einhergehen und daher häufiger übersehen werden könnten. Hinzu kommt, dass sich IDA-Defekte nur schwer untersuchen lassen. So ist die zur Bewertung der Ultrastruktur oft verwendete TEM bei inneren Dynein-Armen viel zu häufig falsch positiv. Ziel dieser Arbeit war die Identifikation von isolierten Defekten der inneren Dynein-Arme in einer Kohorte von PCD-Patienten zu identifizieren. Dazu wurde die Immunfluoreszenzmikroskopie als Screening-Methode verwendet. 421 Patientenproben wurden so auf Abnormalitäten der inneren Dynein-Arme hin untersucht. Zehn der dabei auffälligen 82 Patientenproben wurden zur genetischen Untersuchung zum Whole Exome Sequencing gesendet. Hierbei wurden zwei heterozygote DNAH6-Mutationen, eine heterozygote DNAH10-Mutation, zwei heterozygote DNAH14-Mutationen, eine homozygote LRRC31-Mutation und zwei DNAH11-Mutationen gefunden. Die Auswirkungen der Mutationen in LRRC31 muss im Anschluss noch weiter untersucht werden. Auch die heterozygoten DNAH6-, DNAH10-, und DNAH14-Mutationen müssen im Weiteren noch bestätigt werden. Dennoch geben vor allem die DNAH10- und die DNAH14-Mutation Hinweise auf das Vorkommen weiterer, bislang unbekannter IDA-Mutationen.

8 Literatur

(1) Antony D, Becker-Heck A, Zariwala MA, et al. (2013) Mutations in CCDC39 and CCDC40 are the major cause of primary ciliary dyskinesia with axonemal disorganization and absent inner dynein arms. Hum Mutat 34, 3: 462–472. doi: 10.1002/humu.22261

(2) Austin-Tse C, Halbritter J, Zariwala MA, et al. (2013) Zebrafish ciliopathy screen plus human mutational analysis identifies C21orf59 and CCDC65 defects as causing primary ciliary dyskinesia. Am J Hum Genet 93, 4: 672–686. doi: 10.1016/j.ajhg.2013.08.015

(3) Barbato A, Frischer T, Kuehni CE, et al. (2009) Primary ciliary dyskinesia: a consensus statement on diagnostic and treatment approaches in children. Eur Respir J 34, 6: 1264–1276. doi:10.1183/09031936.00176608

(4) Becker-Heck A, Loges NT, Omran H (2012) Dynein dysfunction as a cause of primary ciliary dyskinesia and other ciliopathies. In: King S M (Hrsg) Dyneins. Elsevier Academic Press, Amsterdam, 1. Aufl., S. 602–627. doi: 10.1016/B978-0-12-382004-4.10024-X

(5) Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, Yassine S, Pierre V, Delaroche J, Hennebicq S, Delaroche J, Grunwald D, Escalier D, Pernet-Gallay K, Jouk PS, Thierry-Mieg N, Toure´ A, Arnoult C, Rayet PF (2014) Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 94, 1: 95– 104. doi: 10.1016/j.ajhg.2013.11.017

(6) Boon M, Wallmeier J, Ma L, et al. (2014) MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat Commun 5: 4418. doi: 10.1038/ncomms5418

(7) Bower R, VanderWaal K, O'Toole E, Fox L, Perrone C, Mueller J, Wirschell M, Kamiya R, Sale WS, Porter ME (2009) IC138 defines a subdomain at the base of the I1 dynein that regulates microtubule sliding and flagellar motility. Mol Biol Cell 20, 13: 3055– 3063. doi: 10.1091/mbc.E09-04-0277

(8) Brokaw CJ, Kamiya R (1987) Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 8, 1: 68–75. doi: 10.1002/cm.970080110
(9) Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T (2008) Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J Cell Biol 183, 5: 923–932. doi: 10.1083/jcb.200808050

(10) Bui KH, Yagi T, Yamamoto R, Kamiya R, Ishikawa T (2012) Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J Cell Biol 198, 5: 913–925. doi: 10.1083/jcb.201201120

(11) Castleman VH, Romio L, Chodhari R, et al. (2009) Mutations in radial spoke head protein genes RSPH9 and RSPH4A cause primary ciliary dyskinesia with central-micro-tubular-pair abnormalities. Am J Hum Genet 84, 2: 197–209. doi: 10.1016/j.ajhg.2009.01.011

(12) Chuang L-Y, Cheng Y-H, Yang C-H (2013) Specific primer design for the polymerase chain reaction. Biotechnol Lett 35, 10: 1541–1549. doi: 10.1007/s10529-013-1249-8

(13) Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: A look at a once-forgotten organelle. Am J Physiol Renal Physiol 289, 6: F1159-F1169. doi: 10.1152/ajprenal.00118.2005

(14) Davis SD, Ferkol TW, Rosenfeld M, Lee H-S, Dell SD, Sagel SD, Milla C, Zariwala MA, Pittman JE, Shapiro AJ, Carson JL, Krischer JP, Hazucha MJ, Cooper ML, Knowles MR, Leigh MW (2015) Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med 191, 3: 316–324. doi: 10.1164/rccm.201409-1672OC

(15) D'Mello RJ, Caldwell JM, Azouz NP, Wen T, Sherrill JD, Hogan SP, Rothenberg ME (2016) LRRC31 is induced by IL-13 and regulates kallikrein expression and barrier function in the esophageal epithelium. Mucosal Immunol 9, 3: 744–756. doi: 10.1038/mi.2015.98

(16) Dougherty GW, Loges NT, Klinkenbusch JA, et al. (2016) DNAH11 localization in the proximal region of respiratory cilia defines distinct outer dynein arm complexes. Am J Respir Cell Mol Biol 55, 2: 213–224. doi: 10.1165/rcmb.2015-0353OC

(17) Duriez B, Duquesnoy P, Escudier E, Bridoux A-M, Escalier D, Rayet I, Marcos E, Vojtek A-M, Bercher J-F, Amselem S (2007) A common variant in combination with a nonsense mutation in a member of the thioredoxin family causes primary ciliary dyskinesia. Proc Natl Acad Sci U S A 104, 9: 3336–3341. doi: 10.1073/pnas.0611405104

(18) Edelbusch C, Cindrić S, Dougherty GW, Loges NT, Olbrich H, Rivlin J, Wallmeier J, Pennekamp P, Amirav I, Omran H (2017) Mutation of serine/threonine protein kinase 36 (STK36) causes primary ciliary dyskinesia with a central pair defect. Hum Mutat 38, 8: 964–969. doi: 10.1002/humu.23261

(19) El Khouri E, Thomas L, Jeanson L, et al. (2016) Mutations in DNAJB13, encoding an HSP40 family member, cause primary ciliary dyskinesia and male infertility. Am J Hum Genet 99, 2: 489–500. doi: 10.1016/j.ajhg.2016.06.022

(20) Fliegauf M, Benzing T, Omran H (2007) When cilia go bad: Cilia defects and ciliopathies. Nat Rev Mol 8, 11: 2278. doi: 10.1038/nrm2278

(21) Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171, 12: 1343–1349. doi: 10.1164/rccm.200411-1583OC

(22) Frommer A, Hjeij R, Loges NT, et al. (2015) Immunofluorescence analysis and diagnosis of primary ciliary dyskinesia with radial spoke defects. Am J Respir Cell Mol Biol 53, 4: 563–573. doi: 10.1165/rcmb.2014-0483OC

(23) Grasemann H, Ratjen F (2012) Primäre Ziliendyskinesie. In: Gortner L, Meyer S, Sitzmann FC (Hrsg.) Duale Reihe Pädiatrie, 4. Aufl., Georg Thieme Verlag, Stuttgart, S. 308-309

(24) Guichard C, Harricane MC, Lafitte JJ, Godard P, Zaegel M, Tack V, Lalau G, Bouvagnet P (2001) Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet 68, 4: 1030–1035. doi: 10.1086/319511

(25) Habermacher G, Sale WS (1997) Regulation of flagellar dynein by phosphorylation of a 138-kD inner arm dynein intermediate chain. J Cell Biol 136, 1: 167–176. doi: 10.1083/jcb.136.1.167

(26) Heuser T, Barber CF, Lin J, Krell J, Rebesco M, Porter ME, Nicastro D (2012) Cryoelectron tomography reveals doublet-specific structures and unique interactions in the I1 dynein. Proc Natl Acad Sci U S A 109, 30: E2067-76. doi: 10.1073/pnas.1120690109

(27) Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187, 6: 921–933. doi: 10.1083/jcb.200908067

(28) Hjeij R, Onoufriadis A, Watson CM, et al. (2014) CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex formation. Am J Hum Genet 95, 3: 257–274. doi: 10.1016/j.ajhg.2014.08.005

(29) Höben IM, Hjeij R, Olbrich H, et al. (2018) Mutations in C11orf70 cause primary ciliary dyskinesia with randomization of left/right body asymmetry due to defects of outer and inner dynein arms. Am J Hum Genet 102, 5: 973–984. doi: 10.1016/j.ajhg.2018.03.025

(30) Horani A, Druley TE, Zariwala MA, Patel AC, Levinson BT, van Arendonk LG, Thornton KC, Giacalone JC, Albee AJ, Wilson KS, et al. (2012) Whole-exome capture and sequencing identifies HEATR2 mutation as a cause of primary ciliary dyskinesia. Am J Hum Genet 91, 4: 685–693. doi: 10.1016/j.ajhg.2012.08.022

(31) Horani A, Ferkol TW, Shoseyov D, et al. (2013) LRRC6 mutation causes primary ciliary dyskinesia with dynein arm defects. PLOS ONE 8, 3: e59436. doi: 10.1371/jour-nal.pone.0059436

(32) Hornef N, Olbrich H, Horvath J, et al. (2006) DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 174, 2: 120–126. doi: 10.1164/rccm.200601-084OC

(33) Ibañez-Tallon I, Heintz N, Omran H (2003) To beat or not to beat: Roles of cilia in development and disease. Hum Mol Genet 12, 1: 27-35. doi: 10.1093/hmg/ddg061

(34) Imtiaz F, Allam R, Ramzan K, Al-Sayed M (2015) Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet 16: 14. doi: 10.1186/s12881-015-0162-5

(35) Inaba Y, Shinohara K, Botilde Y, Nabeshima R, Takaoka K, Ajima R, Lamri L, Takeda H, Saga Y, Nakamura T, Hamada H (2016) Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6. Genes Cells 21, 7: 728–739. doi: 10.1111/gtc.12380

(36) Jain K, Padley SPG, Goldstraw EJ, Kidd SJ, Hogg C, Biggart E, Bush A (2007) Primary ciliary dyskinesia in the paediatric population: Range and severity of radiological findings in a cohort of patients receiving tertiary care. Clin Radiol 62, 10: 986–993. doi: 10.1016/j.crad.2007.04.015

(37) Jeanson L, Copin B, Papon J-F, et al. (2015) RSPH3 mutations cause primary ciliary dyskinesia with central-complex defects and a near absence of radial spokes. Am J Hum Genet 97, 1: 153–162. doi: 10.1016/j.ajhg.2015.05.004

(38) Kellett F, Robert NM (2011) Nebulised 7% hypertonic saline improves lung function and quality of life in bronchiectasis. Respir Med 105, 12: 1831–1835. doi: 10.1016/j.rmed.2011.07.019

(39) Kennedy MP, Noone PG, Leigh MW, Zariwala MA, Minnix SL, Knowles MR, Molina PL (2007) High-resolution CT of patients with primary ciliary dyskinesia. AJR Am J Roentgenol 188, 5: 1232–1238. doi: 10.2214/AJR.06.0965

(40) Kennedy MP, Omran H, Leigh MW, Dell S, Morgan L, Molina PL, Robinson BV, Minnix SL, Olbrich H, Severin T, Ahrens P, Lange L, Morillas HN, Noone PG, Zariwala, MA, Knowles MR (2007) Congenital heart disease and other heterotaxic defects in a large cohort of patients with primary ciliary dyskinesia. Circulation 115, 22: 2814–2821. doi: 10.1161/CIRCULATIONAHA.106.649038

(41) King SJ, Dutcher SK (1997) Phosphoregulation of an inner dynein arm complex in Chlamydomonas reinhardtii is altered in phototactic mutant strains. J Cell Biol 136, 1: 177–191. doi: 10.1083/jcb.136.1.177

(42) Knowles M, Zariwala M, Leigh M (2016) Primary ciliary dyskinesia. Clin Chest Med 37, 3: 449–461. doi: 10.1016/j.ccm.2016.04.008

(43) Knowles MR, Daniels LA, Davis SD, Zariwala MA, Leigh MW (2013) Primary ciliary dyskinesia. Recent advances in diagnostics, genetics, and characterization of clinical disease. Am J Respir Crit Care Med 188, 8: 913–922. doi: 10.1164/rccm.201301-0059CI

(44) Knowles MR, Leigh MW, Carson JL, et al. (2012) Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax 67, 5: 433–441. doi: 10.1136/thoraxjnl-2011-200301

(45) Knowles MR, Leigh MW, Ostrowski LE, et al. (2013) Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet 92, 1: 99–106. doi: 10.1016/j.ajhg.2012.11.003

(46) Knowles MR, Ostrowski LE, Leigh MW, et al. (2014) Mutations in RSPH1 cause primary ciliary dyskinesia with a unique clinical and ciliary phenotype. Am J Respir Crit Care Med 189, 6: 707–717. doi: 10.1164/rccm.201311-2047OC

(47) Knowles MR, Ostrowski LE, Loges NT, et al. (2013) Mutations in SPAG1 cause primary ciliary dyskinesia associated with defective outer and inner dynein arms. Am J Hum Genet 93, 4: 711–720. doi: 10.1016/j.ajhg.2013.07.025

(48) Kuehni CE, Frischer T, Strippoli M-PF, Maurer E, Bush A, Nielsen KG, Escribano A, Lucas JSA, Yiallouros P, Omran H, Eber E, O'Callaghan C, Snijders D, Barbato A (2010)
Factors influencing age at diagnosis of primary ciliary dyskinesia in European children.
Eur Respir J 36, 6: 1248–1258. doi: 10.1183/09031936.00001010

(49) LeDizet M, Piperno G (1995) The light chain p28 associates with a subset of inner dynein arm heavy chains in Chlamydomonas axonemes. Mol Biol Cell 6, 6: 697–711. doi: 10.1091/mbc.6.6.697

(50) Li Y, Yagi H, Onuoha EO, et al. (2016) DNAH6 and its interactions with PCD genes in heterotaxy and primary ciliary dyskinesia. PLoS Genet 12, 2: e1005821. doi: 10.1371/journal.pgen.1005821

(51) Loges NT, Olbrich H, Becker-Heck A, Haffner K, Heer A, Reinhard C, Schmidts M, Kispert A, Zariwala MA, Leigh MW, Knowles MR, Zentgraf H, Seithe H, Nürnberg G, Nürnberg P, Reinhardt R, Omran H (2009) Deletions and point mutations of LRRC50 cause primary ciliary dyskinesia due to dynein arm defects. Am J Hum Genet 85, 6: 883–889. doi: 10.1016/j.ajhg.2009.10.018

(52) Loges NT, Olbrich H, Fenske L, et al. (2008) DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 83, 5: 547–558. doi: 10.1016/j.ajhg.2008.10.001

(53) Majithia A, Fong J, Hariri M, Harcourt J (2005) Hearing outcomes in children with primary ciliary dyskinesia—a longitudinal study. Int J Pediatr Otorhinolaryngol 69, 8: 1061–1064. doi: 10.1016/j.ijporl.2005.02.013

(54) Marthin JK, Petersen N, Skovgaard LT, Nielsen KG (2010) Lung function in patients with primary ciliary dyskinesia: A cross-sectional and 3-decade longitudinal study. Am J Respir Crit Care Med 181, 11: 1262–1268. doi: 10.1164/rccm.200811-1731OC

(55) Mazor M, Alkrinawi S, Chalifa-Caspi V, Manor E, Sheffield VC, Aviram M, Parvari R (2011) Primary ciliary dyskinesia caused by homozygous mutation in DNAL1, encoding dynein light chain 1. Am J Hum Genet 88, 5: 599–607. doi: 10.1016/j.ajhg.2011.03.018

(56) Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, Clément A, Geremek M, Delaisi B, Bridoux A-M, Coste A, Witt M, Duriez B, Amselemet S (2006) RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet 43, 4: 326–333. doi: 10.1136/jmg.2005.034868

(57) Mülhardt C (2009) Die Polymerase Kettenreaktion. In: Der Experimentator: Molekularbiologie Genomics, 6. Aufl., Spektrum Akademischer Verlag, Heidelberg, S. 84-120

(58) Mullowney T, Manson D, Kim R, Stephens D, Shah V, Dell S (2014) Primary ciliary dyskinesia and neonatal respiratory distress. Pediatrics 134, 6: 1160–1166. doi: 10.1542/peds.2014-0808

(59) Omran H (2014) Ziliendiagnostik. In: Mutius Ev, Gappa M, Eber E, Frey U (Hrsg) Pädiatrische Pneumologie, 3. Aufl. Springer Medizin, Berlin, Heidelberg, S. 255-260

(60) Nüßlein T, Brinkmann F, Ahrens P, Ebsen M, Jung A, Kirchberger W, Kneißl A, Koerner-Rettberg C, Linz-Keul H, Loges NT, Theegarten D, Seithe H, Sendler J, Werner C, Omran H (2013) Diagnostik der primären ziliären Dyskinesie. Monatsschr Kinderheilkd 161, 5: 406–416. doi: 10.1007/s00112-012-2798-y

(61) Olbrich H, Cremers C, Loges NT, Werner C, Nielsen KG, Marthin JK, Philipsen M, Wallmeier J, Pennekamp P, Menchen T, Edelbusch C, Dougherty GW, Schwartz O, Thiele H, Altmüller J, Rommelmann F, Omran H (2015) Loss-of-function GAS8 mutations cause primary ciliary dyskinesia and disrupt the nexin-dynein regulatory complex. Am J Hum Genet 97, 4: 546–554. doi: 10.1016/j.ajhg.2015.08.012

(62) Olbrich H, Schmidts M, Werner C, et al. (2012) Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet 91, 4: 672–684. doi: 10.1016/j.ajhg.2012.08.016

(63) Olcese C, Patel MP, Shoemark A, et al. (2017) X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3. Nat Commun 8: 14279. doi: 10.1038/ncomms14279

(64) Omran H, Loges NT (2009) Immunfluorescence staining of ciliated respiratory epithelial cells. In: King SM, Pazour GJ (Hrsg.) Methods in Cell Biology (Volume 91), 1. Aufl., Academic Press Inc, San Diego, S. 123-133.

(65) Omran H, Olbrich H (2010) Zilienkrankheiten unter besonderer Berücksichtigung der primären ziliären Dyskinesie. medgen 22, 3: 315–321. doi: 10.1007/s11825-010-0235-y

(66) Onoufriadis A, Shoemark A, Munye MM, et al. (2014) Combined exome and wholegenome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet 51, 1: 61–67. doi: 10.1136/jmedgenet-2013-101938 (67) Paff T, Loges NT, Aprea I, Wu K, Bakey Z, Haarman EG, Daniels JMA, Sistermans EA, Bogunovic N, Dougherty GW, Hoben IM, Grosse-Onnebrink J, Matter A, Olbrich H, Werner C, Pals G, Schmidts M, Omran H, Micha D (2017) Mutations in PIH1D3 cause X-linked primary ciliary dyskinesia with outer and inner dynein arm defects. Am J Hum Genet 100, 1: 160–168. doi: 10.1016/j.ajhg.2016.11.019

(68) Panizzi JR, Becker-Heck A, Castleman VH, et al. (2012) CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet 44, 6: 714–719. doi: 10.1038/ng.2277

(69) Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170, 1: 103–113. doi: 10.1083/jcb.200504008

(70) Pazour GJ, Agrin N, Walker BL, Witman GB (2006) Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet 43, 1: 62–73. doi: 10.1136/jmg.2005.033001

(71) Perrone CA, Myster SH, Bower R, O'Toole ET, Porter ME (2000) Insights into the structural organization of the I1 inner arm dynein from a domain analysis of the 1beta dynein heavy chain. Mol Biol Cell 11, 7: 2297–2313. doi: 10.1091/mbc.11.7.2297

(72) Perrone CA, Yang P, O'Toole E, Sale WS, Porter ME (1998) The Chlamydomonas IDA7 locus encodes a 140-kDa dynein intermediate chain required to assemble the I1 inner arm complex. Mol Biol Cell 9, 12: 3351–3365. doi: 10.1091/mbc.9.12.3351

(73) Phillips GE, Thomas S, Heather S, Bush A (1998) Airway response of children with primary ciliary dyskinesia to exercise and beta2-agonist challenge. Eur Respir J 11, 6: 1389–1391. doi: 10.1183/09031936.98.11061389

(74) Piperno G, Ramanis Z, Smith EF, Sale WS (1990) Three distinct inner dynein arms in Chlamydomonas flagella: molecular composition and location in the axoneme. J Cell Biol 110, 2: 379–389. doi: 10.1083/jcb.110.2.379

(75) Sagel SD, Davis SD, Campisi P, Dell SD (2011) Update of respiratory tract disease in children with primary ciliary dyskinesia. Proc Am Thorac Soc 8, 5: 438–443. doi: 10.1513/pats.201103-024SD

(76) Sanders MA, Salisbury JL (1989) Centrin-mediated microtubule severing during flagellar excision in Chlamydomonas reinhardtii. J Cell Biol 108, 5: 1751–1760. doi: 10.1083/jcb.108.5.1751 (77) Zschocke J (2018) Pathomechanismen genetischer Krankheiten. In: Schaaf C, Zschocke J: Basiswissen Humangenetik, 3. Aufl., Springer Berlin, S. 67-95

(78) Shapiro AJ, Davis SD, Ferkol T, Dell SD, Rosenfeld M, Olivier KN, Sagel SD, Milla C, Zariwala MA, Wolf W, Carson JL, Hazucha MJ, Burns K, Robinson B, Knowles MR, Leigh MW (2014) Laterality defects other than situs inversus totalis in primary ciliary dyskinesia: Insights into situs ambiguus and heterotaxy. Chest 146, 5: 1176–1186. doi: 10.1378/chest.13-1704

(79) Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, Rosenfeld M, Olivier KN, Milla C, Daniel SJ, Kimple AJ, Manion M, Knowles MR, Leigh MW (2016) Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol 51, 2: 115–132. doi: 10.1002/ppul.23304

(80) Shoemark A, Ives A, Becker-Heck A, Burgoyne T, Dixon M, Bilton D, Wilson R,Omran H, Hogg C (2013) Inner dynein arm defects in primary ciliary dyskinesia. J GenetSyndr Gene Ther 4, 163. doi: 10.4172/2157-7412.1000163

(81) Tarkar A, Loges NT, Slagle CE, et al. (2013) DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat Genet 45, 9: 995–1003. doi: 10.1038/ng.2707

(82) Toba S, Fox LA, Sakakibara H, Porter ME, Oiwa K, Sale WS (2011) Distinct roles of 1alpha and 1beta heavy chains of the inner arm dynein I1 of Chlamydomonas flagella. Mol Biol Cell 22, 3: 342–353. doi: 10.1091/mbc.E10-10-0806

(83) Wallmeier J, Shiratori H, Dougherty GW, et al. (2016) TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am J Hum Genet 99, 2: 460–469. doi: 10.1016/j.ajhg.2016.06.014

(84) Werner C, Onnebrink JG, Omran H (2015) Diagnosis and management of primary ciliary dyskinesia. Cilia 4, 1: 2. doi: 10.1186/s13630-014-0011-8

(85) Wirschell M, Olbrich H, Werner C, Tritschler D, Bower R, Sale WS, Loges NT, Pennekamp P, Lindberg S, Stenram U, Carlén B, Horak E, Köhler G, Nürnberg P, Nürnberg G, Porter ME, Omran H (2013) The nexin-dynein regulatory complex subunit DRC1 is essential for motile cilia function in algae and humans. Nat Genet 45, 3: 262–268. doi: 10.1038/ng.2533

(86) Wirschell M, Yang C, Yang P, Fox L, Yanagisawa H-a, Kamiya R, Witman GB, Porter ME, Sale WS (2009) IC97 is a novel intermediate chain of 11 dynein that interacts with tubulin and regulates interdoublet sliding. Mol Biol Cell 20, 13: 3044–3054. doi: 10.1091/mbc.E09-04-0276

(87) Yanagisawa HA, Kamiya R (2001) Association between actin and light chains in Chlamydomonas flagellar inner-arm dyneins. Biochem Biophys Res Commun 288, 2: 443–447. doi: 10.1006/bbrc.2001.5776

(88) Zariwala MA, Gee HY, Kurkowiak M, et al. (2013) ZMYND10 is mutated in primary ciliary dyskinesia and interacts with LRRC6. Am J Hum Genet 93, 2: 336–345. doi: 10.1016/j.ajhg.2013.06.007

(89) Zein LE, Omran H, Bouvagnet P (2003) Lateralization defects and ciliary dyskinesia: Lessons from algae. Trends in Genetics 19, 3: 162–167. doi: 10.1016/S0168-9525(03)00026-X

(90) Zhang YJ, O'Neal WK, Randell SH, Blackburn K, Moyer MB, Boucher RC, Ostrowski LE (2002) Identification of dynein heavy chain 7 as an inner arm component of human cilia that is synthesized but not assembled in a case of primary ciliary dyskinesia. J Biol Chem 277, 20: 17906–17915. doi: 10.1074/jbc.M200348200

9 Danksagung

Hiermit bedanke ich mich bei Herrn Univ.-Prof. Dr. med. H. Omran für die Bereitstellung des Themas sowie die Möglichkeit diese Arbeit unter seiner Leitung durchzuführen.

Weiterhin möchte ich der gesamten Arbeitsgruppe danken, die mich während meiner Forschung stets unterstützt hat. Hervorheben möchte ich hier vor allem Niki Tomas Loges. Ganz besonders möchte ich mich außerdem bei Inga Höben bedanken, die mir stets bei allen Fragen zur Seite stand und an die ich mich immer wenden konnte. Durch sie und auch Friederike, Diana, Hannah und Anna wird die Zeit im Labor für mich unvergesslich bleiben.

Mein persönlicher Dank gilt meinen Eltern, die mich auf dem Weg durch das Studium und auf allen anderen Wegen immer unterstützen und jederzeit für mich da sind.

10 Lebenslauf

11 Abbildungsverzeichnis

Abbildung 1 Schematischer Aufbau einer respiratorischen Zilie	1
Abbildung 2 Querschnitt durch das Axonem	3
Abbildung 3 Schematischer Aufbau der äußeren Dynein-Arme	4
Abbildung 4 Aufbau der I1-Domäne	11
Abbildung 5 Aufteilung der p28- und Centrin-assoziierten Isoformen	12
Abbildung 6 Schematischer Aufbau der p28-assoziierten Isoformen	13
Abbildung 7 Schematischer Aufbau der Centrin-assoziierten Isoformen	13
Abbildung 8 Humane Orthologe von Chlamydomonas reinhardtii	14
Abbildung 9 Häufigkeit von DNA-Material in der Patientenkohorte	
Abbildung 10 Anzahl der DNAH10-auffälligen Patienten	31
Abbildung 11 Beispielfärbung mit dem anti-DNAH10 Antikörper	32
Abbildung 12 Beispielfärbung mit dem anti-DNALI1 Antikörper	32
Abbildung 13 Beispielfärbung mit dem anti-DNAH6 Antikörper	33
Abbildung 14 Verteilung der Gruppen der Färbeergebnisse	34
Abbildung 15 IF-Färbeergebnisse von OP-2323 II1	
Abbildung 16 IF-Färbeergebnisse von OP-1534 II1	
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und	d OP-2323
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1	d OP-2323 39
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1	d OP-2323 39 40
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1	d OP-2323 39 40 41
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 undII1Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1Abbildung 19 IF-Färbeergebnisse von OP-2173 II1Abbildung 20 IF-Färbeergebnisse von OP-1759 II1	d OP-2323
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 	d OP-2323
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 undII1Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1Abbildung 19 IF-Färbeergebnisse von OP-2173 II1Abbildung 20 IF-Färbeergebnisse von OP-1759 II1Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1Abbildung 22 IF-Färbeergebnisse von OP-1521 II1	d OP-2323
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 22 IF-Färbeergebnisse von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 	d OP-2323 39 40 41 43 43 44 45 46
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 22 IF-Färbeergebnisse von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1 	d OP-2323 39 40 41 43 43 44 45 46 47
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 22 IF-Färbeergebnisse von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1 Abbildung 25 Stammbaum und LRRC31-Mutation von OP-1733 	d OP-2323 39 40 41 43 43 44 45 46 47 48
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 22 IF-Färbeergebnisse von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1 Abbildung 25 Stammbaum und LRRC31-Mutation von OP-1733 Abbildung 26 Färbeergebnisse von OP-1733 II1 	d OP-2323 39 40 41 43 44 45 46 47 48 49
Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 undII1Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1Abbildung 19 IF-Färbeergebnisse von OP-2173 II1Abbildung 20 IF-Färbeergebnisse von OP-1759 II1Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1Abbildung 22 IF-Färbeergebnisse von OP-1521 II1Abbildung 23 IF-Färbeergebnisse von OP-2371 II1Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1Abbildung 25 Stammbaum und DNAH14-Mutation von OP-1733Abbildung 26 Färbeergebnisse von OP-1733 II1Abbildung 26 Färbeergebnisse von OP-1733 II1	d OP-2323 39 40 41 43 43 44 45 46 47 48 49 50
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1 Abbildung 25 Stammbaum und LRRC31-Mutation von OP-1733 Abbildung 26 Färbeergebnisse von OP-1733 II1 Abbildung 27 anti-WDR63-Färbung von OP-1733 II1 	d OP-2323 39 40 41 43 44 45 46 46 47 48 49 50 50
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1 Abbildung 25 Stammbaum und DNAH14-Mutation von OP-1733 Abbildung 26 Färbeergebnisse von OP-1733 II1 Abbildung 27 anti-WDR63-Färbung von OP-1733 II1 Abbildung 28 LRRC31-Mutation von OP-1733 II1 Abbildung 29 anti-LRRC31 Färbung von OP-1733 II1 	d OP-2323 39 40 41 43 44 45 46 46 47 48 49 50 51
 Abbildung 17 DNAH11-Mutationen und Stammbäume von OP-1534 II1 und II1 Abbildung 18 anti-DNAH11-Färbung von OP-1534 II1 Abbildung 19 IF-Färbeergebnisse von OP-2173 II1 Abbildung 20 IF-Färbeergebnisse von OP-1759 II1 Abbildung 21 Stammbaum und DNAH10-Mutation von OP-1521 II1 Abbildung 23 IF-Färbeergebnisse von OP-2371 II1 Abbildung 24 Stammbaum und DNAH14-Mutationen von OP-2371 II1 Abbildung 25 Stammbaum und LRRC31-Mutation von OP-1733 Abbildung 26 Färbeergebnisse von OP-1733 II1 Abbildung 27 anti-WDR63-Färbung von OP-1733 II1 Abbildung 28 LRRC31-Mutation von OP-1733 II1 Abbildung 29 anti-LRRC31 Färbung von OP-1733 II1 	d OP-2323 39 40 41 43 44 45 46 47 48 49 50 51 _I-Kulturen

12 Tabellenverzeichnis

Tabelle 1 Klassifizierung der Zilien	2
Tabelle 2 Übersicht der bisher bestätigten mit PCD assoziierten Gene	9
Tabelle 3: Verwendete Chemikalien	18
Tabelle 4 Geräte	19
Tabelle 5 Programme	20
Tabelle 6 Primäre Antikörper (AK)	20
Tabelle 7 Sekundäre Antikörper	21
Tabelle 8 Verbrauchsmaterialien	21
Tabelle 9 PCR-Programm des Labors	26
Tabelle 10 Sequenzierungs-PCR-Programm	29
Tabelle 11 Einteilung der Gruppen der Färbeergebnisse	33
Tabelle 12 Ergebnisse des WES und Klinik der untersuchten Patienten	35
Tabelle 13 Heatmaps der gewebespezifischen RNA-Expression von LRRC3	31 im Ver-
gleich zur Expression der IDA-Gene	52
Tabelle 14 Patientenkohorte	I
Tabelle 15 Übersicht aller DNAH10-auffälliger Patienten	XVIII
Tabelle 16 Übersicht aller DNAH10-auffälliger Patienten mit DNA-Material	XX

13 Anhang

Patient	Kons.	Video nativ	EM	NO
OP-1014		Am ehesten immotil mit Restzuckun-		
ll2		gen		
OP-1262				
OP-1262				
OP-1513	Nein		Normal	
0P-1514 II1				
OP-1515				
0P-1519 II1			Normal	
OP-1520	Nein	Normal	Normal	
OP-1521	Nein			
ll1				
OP-1526				
OP-1527				
1				
OP-1528		Großtenteils normal	Normal	
OP-1530	la			
II1	Ja			
OP-1534	Nein	Koordiniertes Schlagmuster mit ver-		43
ll1		minderter Amplitude und Rückwärts-		
OP 1536		schiag		
II1				
OP-1538	Nein	Normal		
ll1				
OP-1540	Nein			
OP-1542	Nein			
OP-1546	Nein			
0P-1549	Nein	Normal	Normal	
OP-1550		Normal	Normal	
II1		Normal	Norma	
OP-1551	Nein			
1				
OP-1552		Teilweise hypomotile Zilien	Normal	
	Main			
OP-1553	ivein			

Tabelle 14 Patientenkohorte (n=421). Kons=Konsanguinität; NO=nasales NO gemessen in ppb

OP-1554 II1	Nein			294
OP-1556 II1	Nein	Teilweise eingeschränkte Amplitude	Normal	
OP-1557 II1	Nein			
OP-1560 II1	Nein			
OP-1560 II2	Nein	Teilweise leicht reduzierte Frequenz und Amplitude	Normal	
OP-1561 II1	Nein		Normal	
OP-1564 II1	Nein			
OP-1565 II1	Nein			
OP-1566 II1	Nein	Normal		13
OP-1567	Nein			
OP-1569 II1	Nein			
OP-1570 II1	Nein			57
OP-1571 II1		Teilweise leicht hyperkinetisch, steif	Normal	
OP-1573	Nein			
OP-1581 II1	Nein	Normal	Normal	
OP-1583 II1	Nein	Frequenz normal (4-6 Hz), Koordina- tion teilweise steif (eher sek. Verän- derungen)	Normal	
OP-1584 II1	Nein			
OP-1585	Nein	Wenig zilienschlagende Zellen, ohne Schlagfrequenz		36
OP-1586	Nein	Normal		200
OP-1587 II1	Nein			
OP-1588 II1				
OP-1590	Nein			
OP-1591 II1	Nein			
OP-1592 II1	Nein			
OP-1594 II1	Nein			
OP-1596 II1	Nein			129
OP-1597		Frequenz vermindert (2-3 Hz), Zilien- schlag steif bei verminderter	Normal	

		Amplitude und reduzierter Ausholbe- wegung		
OP-1599			Normal	
OP-1600	Nein	Wenige zilientragende immotile Zel- len		
OP-1602	Nein	Zum Teil Zilien steif, hyperkinetisch, erhöhte Frequenz	Normal	353
OP-1607 II1	Nein			
OP-1609 II1		Zum Teil hyperkinetisch und dysko- ordiniert		
OP-1610 II1	Nein			
OP-1612 II1	Nein			
OP-1617		Normal		
OP-1618 II1	Nein			
OP-1621 II1				
OP-1624 II1	Nein	Hochgradig frequenzvermindert (< 2Hz), Amplitude reduziert, dyskine- tisch, eher Restzuckungen	Normal	800
OP-1625 II1		Normal	Normal	
OP-1626 II1	Nein			
OP-1629				
OP-1631 II1	Nein			
OP-1634	Nein			
OP-1635				
OP-1636	Nein			
OP-1637		Zustand nach Infekt: viele immotile Zilien (sekundär), ein reifer Zellver- bund mit normalem Schlag und Fre- quenz		
OP-1638	Nein	Nischbild aus dyskinetischen und hyperkinetischen Zilien	Normal	
OP-1639	Nein			
OP-1641	Nein			
OP-1642		Frequenz 4-8 Hz, zum Teil im Zell- verbund dyskoordiniert (eher sekun- däre Veränderungen)	Normal	
OP-1643	Nein	Normal		116
OP-1644				
OP-1645	Nein			
OP-1646	Nein		Normal	
OP-1647	Nein			54,6

OP-1648				4
OP-1649	Nein			
OP-1650 II1				
OP-1651 II1	Nein			201
OP-1653	Nein	Frequenz 2-4 Hz, teilweise redu- zierte Amplitude durch zu geringe Ausholbewegung (ggf. sekundäre Veränderung)	Normal	331, 8
OP-1654 II1			Normal	
OP-1655 II2	Ja		Normal	
OP-1655 II3	Ja		Normal	
OP-1656 II1	Ja	Frequenz 2-3Hz, leichte Auffälligkei- ten einzelne Zellverbände mit stei- fem Schlagbild	Normal	1259
OP-1657 II1	Nein			
OP-1659	Nein	Normal		
OP-1660			Normal	769
OP-1661 II1				
OP-1663 II1				
OP-1664 II1	Nein			960
OP-1668 II1				
OP-1669 II1	Nein			<50
OP-1670 II1	Nein			
OP-1671 II1	Nein	Normal	Normal	36
OP-1676 II1	Nein			
OP-1677 II1	Nein			
OP-1679		Normal		
OP-1681	Nein			
OP-1683 II1				
OP-1684 II1	Nein			
OP-1685 II1	Nein			
OP-1686	Nein			
OP-1687				

OP-1688	Nein			35,4
OP-1691	Nein	Teilweise leicht steif, kein Rotations- defekt, Frequenz: 2-3 Hz	Normal	
OP-1692 II2	Nein	Zilientragende Zellen ohne Schlag- freguenz		
OP-1695				
OP-1698 II1	Nein			
OP-1701	Nein			
OP-1702				
OP-1703		Unauffällige Frequenz, unauffälliges Schlagmuster	Normal	
OP-1705 II1	Nein	Frequenz 6-8 Hz, Schlagmuster na- hezu unauffällig, Amplitude erschien reduziert	Normal	
OP-1706 II1		Frequenz 4-7Hz, teilweise hyperki- netischer, steifer Zilienschlag und immotile Zilien	Normal	
OP-1708 II1	Nein			64
OP-1711				
OP-1712 II1	Nein	Hyperkinetisches Schlagmuster, Partukeltransport nicht vorhanden, rotierende Zellaggregate		
OP-1715	Nein			281
OP-1716 II1	Nein		Normal	
OP-1722		Normal	Normal	
OP-1723 II1		Frequenz 7 Hz, Schlagmuster unauf- fällig	Nexin-Defekt nicht ausge- schlossen	
OP-1724	Ja			
OP-1726		Normal	Normal	
OP-1727		Fast unauffällig, teilweise etwas steif, minimal reduzierte Fequenz	Normal	
OP-1731 II1	Nein			
OP-1733 II1	Ja			78
OP-1735	Nein			14
OP-1736	Nein			5
OP-1738 II1		Normal	Normal	
OP-1739 II1		Teilweise hyperkinetische Zilien mit steifem Schlagbild mit an der Basis abknickendem Zilienschlag		
OP-1745	Nein			
II1 OP-1746		Immotil (eventuell sekundär)	Normal	
		ininolii (eventueli sekunuar)	Normai	

OP-1747	Nein			
II I OP-1751			Normal	
			Normai	
OP-1758				
OP-1759	Nein	Normal		240
1				
OP-1761				
OP-1762				
	Naia	Viele Zillientregende Zellen, nerme		004
UP-1763 II1	Nein	les Schlagmuster, normale Frequenz		234
OP-1764	Nein	Viele Zillietragende Zellen mit nor-		>60
1		maler Schlagmuster und Frequenz		0
OP-1766				
ll1				
OP-1770		Normal	Normal	
	NI 1			4
0P-1771	Nein	Viele Zilientragene Zellen, normale		1
11.1		netisches Schlafmuster		
OP-1773	Nein			
1				
OP-1774	Nein	Steifer Zilienschlag	Normal	225
1				
OP-1775	Nein			
	Noin			
UF-1776 II1	Nein			
OP-1778	Nein			
1				
OP-1779		Normal	Normal	
1				
OP-1780				
	Noin	Loicht dyskinotischos Schlagmustor		500
II1	INCIII	Frequenz 5-12 Hz		500
OP-1802				80
ll1				
OP-1803				
OP-1804	Nein	Frequenz 3-4 Hz, Zilienschlagkoordi-		
1		nation keine immotile Zilien, differen-		
OD 1000		ziertere Beurteilung nicht moglich		
OF-1000				000
OF-1809	Nain	Viola nightaphlaganda Zallan Zallar		009
UP-1814	ivein	viele nichtschlagende Zellen, Zellen mit normalem Schlagmuster und		214
111		Frequenz		
OP-1815	Nein			
1				

OP-1816 II1	Nein			
OP-1822 II1		Zilienschlag 4HZ bis nicht messbar; Mischbild aus steifem und normalem	Normal	588
OP-1823		Schlag		
OP-1827			Normal	
1				
OP-1828		Normal	Normal	13
II1		Normal	Normal	150
II1		Norma	normai	150
OP-1831	Nein			
1				
OP-1835				223
0P-1836	Noin	Schlagmuster unauffällig. Frequenz		
II1	Non	grenzwertig niedrig		
OP-1839	Nein	5 5 5		
OP-1841			Normal	
ll1				
0P-1843				
OP-1846	Nein	Schlagfrequenz 7-10 Hz		414
1				
OP-1851	Nein			
OP-1858	Nein	Eingeschränkt beurteilbar, weitest-	Normal	438
		gehend unauffällig		
UP-1861 II1				
OP-1863	Nein			
1				
OP-1865				
0P-1866	Noin			~20
ll1	Nem			<20
OP-1869	Ja			
1				
OP-1870	Nein			
OP-1871	Nein	Einige Rückwartsschläge auffällig, Amplitude und Zilien-Biegung ver- mindert		51
OP-1873		Steifes Schlagmuster in einigen Fel- dern	Zentraltubulus- Defekt nicht si- cher ausge- schlossen	600
OP-1875		Normal	Normal	755
OP-1876	Nein	Frequenz 13-28 Hz, Zilienschlag überwiegend koordiniert, teilweise deutlich verminderte Amplitude, zum		48

		Teil nur leichtes Flackern, überwie- gend mäßig verringerte Amplitude mit reduziertem Bückwärtsschlag		
OP-1877 II1	Nein			
OP-1878 II1	Nein	Diskret auffällig	weitgehend nor- mal, tub. Trans- positionen	66
OP-1879 II1	Nein	Zilienschlag dyskoordiniert, relativ steif, herabgesetzte Amplitude, Ver- dacht auf rotierende Bewegung; Fre- quenz 7-11 Hz		137
OP-1880	Nein	Normal	Normal	610
OP-1881 II1	Nein			
OP-1882 II1		Reichlich respiratorisches Epithel, unziliert		200
OP-1887 II1	Nein	Normal		
OP-1889 II1	Nein			
OP-1895	Nein	Lokale Transportphänomene		
OP-1897 II1		Normal		257
OP-1900 II1				
OP-1902		Viele kurze Zilien, etwas steifes Schlagmuster, Frequenz: 3 Hz		
OP-1903	Nein			
OP-1905 II1	Nein			
OP-1906				
OP-1908 II1	Nein	In mehrfache Nasenbürstungen nur einzelne Zilientragende Zellen		
OP-1910	Nein	Wenig zilierte Zellen, im Durch- schnitt koordiniertes Schlagen		50
OP-1914				
OP-1922 II1		Frequenz 10-17 Hz, steif mit deutlich verminderter Amplitude, teilweise nicht koordiniert		
OP-1923 II2				
OP-1924 II1	Nein	Reichlich reife Epithelzellen, wenig Entzündungszellen; Frequenz 2-4 Hz; Zilienschlagkoordination: zum Teil steifes Schlagbild mit reduzierter Amplitude	Normal	
OP-1927 II1	Nein			
OP-1928		Frequenz 6-7 Hz, Schlagmuster: Normal		714

OP-1929 II2	Nein	Regelrechte Frequenz und Schlag- muster	Normal	300
OP-1932 II1	Nein			
OP-1935 II1	Nein	Auffällig		
OP-1942 II1		Normal	Nexinbrückende- fekt nicht sicher ausgeschlossen	130
OP-1945		Normal		86
OP-1946				
OP-1947 II1	Nein			
OP-1951	Nein			
OP-1954 II1	Nein			
OP-1956 II1	Nein			
OP-1958 II1		Frequenz 4 - 8 Hz, Zilienschlag weit- gehend unauffällig; wenige Zilien mit verminderter Amplitude	Normal	65
OP-1965 II1	Nein	Frequenz 4-7 Hz, dezent steif, frag- lich pathologisch	Normal	256
OP-1967 II1				
OP-1968 II1				
OP-1969 II1			Normal	
OP-1970				45
OP-1971 II1				
OP-1972	Nein			
OP-1981 II1	Nein			
OP-1983 II1	Nein			
OP-1984 II1	Nein		Normal	
OP-1985		Normal, Frequenz 4-8 Hz	Zum Teil dezente Tubulusdisorgani- sation	171
OP-1988	Nein		Normal	
OP-1989 II1	Nein			
OP-1993	Nein			
1				
OP-1994	Nein			
OP-1999 II1	Nein		Normal	

OP-2002		Frequenz 7 Hz, Schlagmuster weit- gehend unauffällig		122
OP-2003 II1			Normal	539
OP-2007	Nein			
OP-2009 II1		Normal bis teilweise etwas verlang- samt	Normal	131
OP-2010 II1	Nein			
OP-2012 II1		Frequenz 4-6 Hz, Koordination nor- mal	Normal	
OP-2013	Nein	Frequenz 2,5 - 5 Hz, leicht reduziert; steif, reduzierte Amplitude, zum Teil rotatorisch	Normal	228
OP-2015	Nein			
OP-2018	Nein			
OP-2019		Frequenz 2-5 Hz, Qualität schlecht, wenig Zellen, Schlagmuster etwas steif		80
OP-2020 II1	Nein	Frequenz 5 Hz, steifer Zilienschlag, Amplitude reduziert bei unzureichen- der Ausholbewegung, zum Teil kom- plett immotile Zilien	Normal	553
OP-2021 II1	Nein	Einzelne zilientragende Zellen mit reduzierter Schlagfrequenz (5-7 Hz) und lokalen Transportphänomenen		771
OP-2023 II1		Frequenz 2-3 Hz, fraglich patholo- gisch; viele Felder immotil, viele Se- kundärveränderungen		
OP-2025 II1		Frequenz: 8 Hz, Schlagmuster nor- mal		
OP-2028	Nein			
OP-2030 II1		Normal	Normal	
OP-2033		Frequenz 7 Hz, steifes Schlagmuster	Normal	136
OP-2038				
OP-2039 II1	Nein	Schlagmuster normal, Freuquenz 6- 8 Hz		
OP-2044 II1		Frequenz 4-8 Hz, unauffälliges Schlagmuster		624
OP-2045 II1	Nein			309
OP-2046				
OP-2048 II1		Viele vitale unzilierte Zellen	Normal	128
OP-2050 II1	Nein			
OP-2051 II1	Nein			
OP-2052 II1			Normal	1573

		1 A / · · · · · · · · · · · · · · · · · ·		
0P-2054 II1	Nein	Schlagmuster, reduzierte Frequenz		
OP-2055 II1	Nein			
OP-2059	Ja			
OP-	Nein			
2061111				
OP-2062 II1		Reichlich reife Zellen, wenig entzün- dete, Schlagfrequenz 3-4 Hz	Normal	192
OP-2063 II1		Reichlich reife Zellen, sehr viele ent- zündete. Schlagfrequenz 3-5 Hz	Normal	5
OP-2064		Teilweise unkoordiniert, teilweise steif, in den weiteren Feldern norma- les Schlagmuster	Normal	211
OP-2066 II1	Nein		Normal	
OP-2068		Frequenz 5-8 Hz, überwiegend nor- mal	Normal	700
OP-2069 II1	Nein	Unauffällige Zilienform und koordi- nierter Zilienschlag		
OP-2071 II1	Nein			
OP-2073 II1	Nein	Transportphänomen, positiver Schlag		
OP-2080	Nein	Frequenz 6 Hz; steif	8+1-Transpositi- onsdefekte	711
OP-2084	Nein			
OP-2090 II1	Nein	Nur in einigen Videos auffällig		229
OP-2092 II1		Frequenz 8 Hz, Zilienschlag unauf- fällig, etwas steif		731
OP-2093 II1	Nein	Wenige Zellverbände, keine zilierten Zellen		47
OP-2094 II1				
OP-2095	Nein	Leicht dyskinetisch, steif, viele apoptotische Zellen, Frequenz 4-5 Hz	Normal	
OP-2096 II1	Nein			
OP-2097 II1	Nein			
OP-2100 II1	Nein			
OP-2102 II1	Nein			
OP-2103 II1		Auffällig, reduzierte Amplitude, Rückwärtsbewegung		71
OP-2105 II1		Reduzierte Amplitude, rotierender Schlag nicht sicher auszuschließen, leicht erniedrigte Frequenz		<30

OP-2106 II1	Nein	Überwiegend Schlag mit reduzierter Amplitude und Biegung, zum Teil nicht koordiniert, Frequenz 10-15 Hz		13
OP-2107 II1	Nein	Zellreicher Abstrich mit zilientragen- den Zellen, die zum Teil gute Schlagkraft hatten	Normal	73
OP-2108 II1		Frequenz 10 Hz, Schlag normal	Normal	200
OP-2109 II1	Nein	Frequenz 5-6 Hz, Schlagmuster nor- mal		302
OP-2110 II1	Nein	Flimmern vorhanden, Schlag teil- weise unkoordiniert		
OP-2111 II3				
OP-2112 II1	Nein			30
OP-2114 II2			Normal	<10 0
OP-2115 II1	Nein	Eher steif, teils normal	Normal	329
OP-2116 II1		Sehr wenig vitale und teilweise hochfrequent synchron schlagende Epithelzellen		
OP-2118 II1	Nein	Frequenz 6 Hz, unauffälliges Schlag- muster		
OP-2122		Unauffälliges Schlagmuster		408
OP-2123				
OP-2124		Pathologisch, Rest Beweglichkeit	Normal	12
OP-2125		Mittlere Schlagfrequenz 5,5 Hz; Zili- enschlagkoordination und Zilien- schlagmuster normal	Normal	598
OP-2127 II2	Nein			
OP-2128 II1	Nein			
OP-2129 II1	Nein			
OP-2131	Nein	Normal		
OP-2132 II1	Nein	Etwas steif, Frequenz 7 Hz, Radial- speichen-Defekt	keine Zilien nach- weisbar	
OP-2133 II1				
OP-2134 II1		Frequenz 3-5 Hz, dyskinetisch, steif	Normal	220
OP-2136	Nein	Unauffällig, Frequenz 3-5 Hz		
OP-2137 II1	Nein			
OP-2140 II1		Frequenz 7,5 Hz; Schlagmuster et- was steif	verminderte Cilio- genese, keine spezifischen Ver- änderungen	160

OP-2141 II1	Nein			
OP-2142 II1	Nein	Wenig Zellen, etwas steif, sekundär verändert, Freguenz 6-7 Hz	Normal	497
OP-2144 II1	Nein	Steif, dyskoordiniert, Frequenz 3-4 Hz (aktuell: kortisonhaltiges Nasen- spray)		
OP-2145 II1		Weitgehend unauffällig, Frequenz 6 Hz	Normal	380
OP-2146 II1		Wenig zilierte Zellen, Frequenz 8 Hz	Ziliogenesedefekt nicht ausge- schlossen	460
OP-2147	Ja	Frequenz 3-7 Hz, einige Felder mit steifem Schlag, zum Teil dyskine- tisch		15
OP-2150	Nein		Normal	
OP-2152	Nein		Normal	510
OP-2153	Nein			<5
OP-2157 II1	Nein			
OP-2158 II2	Nein	Rotation	Auffälligkeiten im Zentralen Paar	
OP-2161 II1	Ja			
OP-2165 II1				
OP-2168 II1	Nein			
OP-2169 II1				400
OP-2173 II1				
OP-2177 II1		Frequenz 4 Hz, Schlagmuster steif; leicht verminderte Amplitude, Aus- holbewegung reduziert	Normal	392
OP-2180 II1	Nein	Frequenz 4,5-6,6 Hz, Schlagmuster normal	Normal	160
OP-2185 II1				
OP-2188 II1	Nein	Frequenz 5-7 Hz, unauffälliges Schlagmuster	Normal	843
OP-2192 II2				12
OP-2193 II1	Nein			
OP-2194 II1	Nein	Frequenz 3-4 Hz; normales Schlag- muster		
OP-2195 II1	Nein			83
OP-2197		Frequenz: 3 Hz; steifes Schlagmus- ter		

OP-2198 II1		Motile Zilien, aber verminderte Amplitude, steif		80
OP-2199 II1	Nein	Frequenz 4 Hz, steifer Zilienschlag, Amplitude reduziert bei unzureichen- der Ausholbewegung	CP-Defekt nicht ausgeschlossen	259
OP-2202 II1		Reichlich reife Epitelzellen, wenig Entzündungszellen, Frequenz 3-6 HZ, normaler Zilienschlag		358
OP-2203 II1		Reichlich reife Epithelzellen, wenig Entzündungszellen, Frequenz 4-6 HZ, normaler Zilienschlag	Normal	184
OP-2205 II1	Nein			
OP-2206 II1	Ja	Dyskinetisch, steif, verminderte Amplitude, sehr lange Zilien	eventuell CP-De- fekt	298
OP-2206 II2	Ja	Dyskinetisch, steif, Amplitude ver- mindert, lange Zilien	eventuell CP-De- fekt	217
OP-2209 II1	Nein	Etwas steif, teilweise immotil, unko- ordiniert (fraglich sekundär), redu- zierte Amplitude	Normal	187
OP-2210 II1	Nein			
OP-2211 II1		Etwas steifer Zilienschlag, jedoch nicht auf PCD weisend	Normal	
OP-2213		Frequenz 10 Hz, Hypokinetisch	Normal	78
OP-2214	Nein	Frequenz 6 Hz, in den meisten Fel- dern unauffällig, in wenigen steif	Normal	1221
OP-2215 II1	Nein	Frequenz 6 Hz, Schlagmuster leicht steif (eher sekundär), sonst unauffäl- lig		188
OP-2217 II1				68
OP-2219 II1		Normal	Normal	190
OP-2221 II1		Normal	Normal	
OP-2222 II1	Nein			
OP-2225 II1	Nein			
OP-2226 II1		Wenig reife Epithelzellen, Frequenz 3-6 Hz, Zilienschlagkoordination nor- mal	wenig ausgereifte Zilien. Zum Teil a- xonemale Organi- sation nicht intakt	40
OP-2227		Reichlich reife Epithelzellen, Fre- quenz 2-4 Hz, Zilienschlagkoordina- tion dyskoordiniert	Normal	
OP-2228		Reichlich reife Epithelzellen, Fre- quenz 3-5 Hz, Zilienschlagkoordina- tion normal	Normal	356

OP-2229 II1		Reichlich reife Epithelzellen, Fre- quenz 4-6 Hz, Zilienschlagkoordina- tion normal	Normal	
OP-2232				
OP-2233 II1	Nein	Wenige Zellen, nicht ziliert		227
OP-2234	Nein	Dyskinetisch, steif, unkoordiniert (nur wenig zilierte Zellen)		616
OP-2238 II1	Nein			7
OP-2240 II1				11
OP-2243 II1	Nein	Frequenz 4-6 Hz, weitgehend nor- mal koordinierter Zilienschlag, leicht verminderte Amplitude, vereinzelt et- was steif (am ehesten sekundär ver- ändert)	ODAs vermindert	541
OP-2245 II1	Nein			
OP-2247 II1			einmal 8+1 Struk- tur	
OP-2248 II1		Langsame Schlagfrequenz, rechel- rechtes Schlagmuster		
OP-2252 II1	Nein	Steifer Zilienschlag	Normal	300
OP-2253 II1	Nein	Viele Epithelzellen, viele zilientra- gende Zellen mit größtenteils sicht- baren Zilienschlag, Frequenz 6 Hz		
OP-2254	Nein	Frequenz 4-6 Hz, steif		700
OP-2256 II1	Nein			
OP-2257	Nein	Frequenz 4 Hz, steif	Normal	1000
OP-2259 II1	Nein	Schlag steif bei wenigen Zellen		30
OP-2260				
OP-2263 II1	Ja		teilweise kom- plette tubuläre Disorganisation	
OP-2266 II1	Nein	Frequenz 5-6 Hz, steifer Zilien- schlag, dyskinetisch		140
OP-2269	Nein			
OP-2271 II1	Nein	Frequenz 3-4 Hz, steif, zum Teil an- gedeutet rotatisch	Normal	190
OP-2273		Zilien fast komplett immotil	ODA-Defekt	59
OP-2275		Unauffälliges Zilienschlagmuster, Frequenz 5-7 Hz		854
OP-2278	Nein		Normal	376
OP-2280 II1	Nein			129
OP-2282 II1	Nein	Frequenz 8-9 Hz Schlag normal		187

OP-2286				
1				
OP-2298 II1	Nein	Wenig zilierte Zellen, nicht auswert- bar		
OP-2306	Nein	Frequenz 3-7 Hz, dyskinetisch, steif bei reduzierter Amplitude, Material blutig	Normal	
OP-2307	Nein			
OP-2315				1310
OP-2316 II1	Nein	Normales Schlagmuster, 7 Hz		220
OP-2317 II1				
OP-2323 II1	Nein	Schlagmuster steif		56
OP-2324	Nein	Pathologisch		118
OP-2326 II1				400
OP-2371 II1	Nein		Normal	
OP-2423 II1	Nein			777
OP-2425 II1		Überwiegend unauffällig		45
OP-2429 II1		Deutlich verminderte Amplitude, schlechter Rückwärstschlag, koordi- niertes Schlagmuster zum Teil ver- langsamt		256
OP-2431 II1	Nein	Diskrete Auffälligkeit mit geringem Rückschlag, Zilien richten sich nicht komplett auf		410
OP-2436 II1	Nein			260
OP-2437 II1	Nein	Frequenz 2-6 H; HFVM spricht ge- gen PCD	Normal	
OP-2438 II1	Nein			64
OP-2441 II1				
OP-2444 II1	Nein	Frequenz 12 Hz, normal		72
OP-2454				
OP-2457 II1		Frequenz >7 Hz, Schlagmuster nor- mal		
OP-2459 II1	Nein	Frequenz 13 Hz, steif, immotil, redu- zierte Amplitude		
OP-2460 II1	Nein	Frequenz 4-8 Hz, fraglich patholo- gisch	Normal	454
OP-2461 II1				

OP-2469 II1	Nein			
OP-2470	Nein	Hochfrequent, synchron schlagend		
OP-2472 II1	Nein	Schlagfrequenz normal, Zilien ge- rade, wenig Biegung, geringe Amplitude, auffälliger Befund		161
OP-2474 II1		Normal		
OP-2476	Nein	Schlagmuster fraglich pathologisch, steif, Frequenz 6-12 Hz	Normal	502
OP-2477				27
OP-2494 II1	Nein			
OP-2498 II1	Nein	Frequenz 7 Hz. Schlagmuster frag- lich etwas steifer, wahrscheinlich normal	Normal	190
OP-2500 II1	Nein	Frequenz 4-9 Hz, Schlagmuster etwa steif, dezent	Normal	70
OP-2501 II1	Nein	Frequenz 4-9 Hz, steifer Zileinschlag	Normal	500
OP-2508 II1	Nein	Frequenz 4-8 Hz, Schlagmuster et- was steif, später eher fast normal		80
OP-2510 II1	Nein	Frequenz 7 Hz, Schlagmuster: zum Teil steif, in großen Feldern unauffäl- lig		200

XVIII

Patient	DNA	DNAH10	DNALI1	DNAH6
OP-1515 II1	Nein	Auffällig		
OP-1521	Ja	Auffällig	Normal	Normal
OP-1526	Nein	Auffällig		
OP-1534	Ja	Auffällig	Auffällig	Auffällig
OP-1538 II1	Nein	Auffällig		
OP-1540	Ja	Auffällig	Normal	Auffällig
OP-1542 II1	Nein	Auffällig		
OP-1546	Ja	Auffällig	Normal	Auffällig
OP-1554 II1	Nein	Auffällig		
OP-1560 II2	Nein	Auffällig		
OP-1561 II1	Nein	Auffällig		
OP-1567	Nein	Auffällig		
OP-1581 II1	Nein	Auffällig		
OP-1585	Ja	Auffällig	Normal	Auffällig
OP-1586	Ja	Auffällig	Auffällig	Normal
OP-1587 II1	Nein	Auffällig	-	
OP-1588 II1	Nein	Auffällig		
OP-1607 II1	Nein	Auffällig		
OP-1661 II1	Nein	Auffällig		
OP-1668 II1	Nein	Auffällig		
OP-1669 II1	Nein	Auffällig		
OP-1715	Nein	Auffällig		
OP-1731	Nein	Auffällig		
OP-1733 II1	Ja	Auffällig	Normal	Normal
OP-1745 II1	Ja	Auffällig	Auffällig	Auffällig
OP-1747 II1	Nein	Auffällig		
OP-1758	Ja	Auffällig	Auffällig	Auffällig, schwach
OP-1759 II1	Ja	Auffällig	Auffällig	Auffällig
OP-1762 II1	Ja	Auffällig	Normal	Schwach, normal
OP-1763 II1	Ja	Auffällig	Normal	schwach, normal
OP-1764 II1	Ja	Auffällig	Normal	Auffällig
OP-1766 II1	Nein	Auffällig		
OP-1770 II1	Nein	Auffällig		
OP-1771 II1	Ja	Auffällig	Auffällig, schwach	Normal
OP-1778 II1	Nein	Auffällig		
OP-1803	Ja	Auffällig	Normal	Auffällig
OP-1808	Ja	Auffällig	Normal	Auffällig
OP-1823	Ja	Auffällig	Normal	Auffällig
OP-1843	Ja	Auffällig	Normal	Schwach, normal
OP-1877 II1	Ja	Auffällig	Auffällig, schwach	Schwach, auffällig
OP-1881 II1	Nein	Auffällig		-

Tabelle 15 Übersicht aller DNAH10-auffälliger Patienten (n=82)

OP-1906	Nein	Auffällig		
OP-1914	Ja	Auffällig	Auffällig, schwach	Schwach, auffällig
OP-1923 II2	Ja	Auffällig	Auffällig, schwach	Auffällig
OP-1946	Nein	Auffällig		
OP-1954 II1	Nein	Auffällig		
OP-1965 II1	Nein	Auffällig		
OP-1967 II1	Nein	Auffällig		
OP-1968 II1	Nein	Auffällig		
OP-1969 II1	Nein	Auffällig		
OP-1970	Ja	Auffällig	Auffällig	Auffällig
OP-1971 II1	Nein	Auffällig		
OP-1972	Nein	Auffällig		
OP-1985	Ja	Auffällig	Auffällig	Auffällig
OP-1988	Ja	Auffällig	Auffällig	Auffällig
OP-1989 II1	Ja	Auffällig	Auffällig	normal
OP-1993 II1	Nein	Auffällig		
OP-2009 II1	Nein	Auffällig		
OP-2010 II1	Ja	Auffällig	Normal, schwach	Auffällig
OP-2055 II1	Ja	Auffällig	Auffällig	Auffällig
OP-2059	Ja	Auffällig	Auffällig	Auffällig
OP-2111 II3	Ja	Auffällig	Normal, schwach	Auffällig
OP-2116 II1	Nein	Auffällig		
OP-2125	Nein	Auffällig		
OP-2136	Nein	Auffällig		
OP-2137 II1	Ja	Auffällig	Auffällig	Auffällig
OP-2157 II1	Nein	Auffällig		
OP-2168II1	Ja	Auffällig	Auffällig	Auffällig
OP-2173II1	Ja	Auffällig	Auffällig	Auffällig
OP-2188 II1	Ja	Auffällig	Auffällig	Auffällig
OP-2193 II1	Nein	Auffällig		
OP-2194 II1	Nein	Auffällig		
OP-2195 II1	Ja	Auffällig	Auffällig	Auffällig
OP-2219 II1	Nein	Auffällig		
OP-2222 II1	Nein	Auffällig		
OP-2238 II1	Nein	Auffällig		
OP-2240 II1	Ja	Auffällig	Normal	Auffällig
OP-2248 II1	Nein	Auffällig		
OP-2273	Nein	Auffällig		
OP-2323	Ja	Auffällig	Auffällig	Auffällig
OP-2371 II1	Ja	Auffällig	Normal	Auffällig
OP-2498 II1	Nein	Auffällig		

Patient	Gruppe	DNAH10	DNALI1	DNAH6
OP-1521	2	Auffällig	Normal	Normal
OP-1534	1	Auffällig	Auffällig	Auffällig
OP-1540	3	Auffällig	Normal	Auffällig
OP-1546	3	Auffällig	Normal	Auffällig
OP-1585	3	Auffällig	Normal	Auffällig
OP-1586	4	Auffällig	Auffällig	Normal
OP-1733 II1	2	Auffällig	Normal	Normal
OP-1745 II1	1	Auffällig	Auffällig	Auffällig
OP-1758	1	Auffällig	Auffällig	Auffällig, schwach
OP-1759 II1	1	Auffällig	Auffällig	Auffällig
OP-1762 II1	2	Auffällig	Normal	Schwach, normal
OP-1763 II1	2	Auffällig	Normal	Schwach, normal
OP-1764 II1	3	Auffällig	Normal	Auffällig
OP-1771 II1	4	Auffällig	Auffällig, schwach	Normal
OP-1803	3	Auffällig	Normal	Auffällig
OP-1808	3	Auffällig	Normal	Auffällig
OP-1823	3	Auffällig	Normal	Auffällig
OP-1843	2	Auffällig	Normal	Schwach, normal
OP-1877 II1	1	Auffällig	Auffällig, schwach	Schwach, auffällig
OP-1914	1	Auffällig	Auffällig, schwach	Schwach, auffällig
OP-1923 II2	1	Auffällig	Auffällig, schwach	Auffällig
OP-1970	1	Auffällig	Auffällig	Auffällig
OP-1985	1	Auffällig	Auffällig	Auffällig
OP-1988	1	Auffällig	Auffällig	Auffällig
OP-1989 II1	4	Auffällig	Auffällig	Auffällig
OP-2010 II1	3	Auffällig	Normal, schwächer	Auffällig
OP-2055 II1	1	Auffällig	Auffällig	Auffällig
OP-2059	1	Auffällig	Auffällig	Auffällig
OP-2111 II3	3	Auffällig	Normal, schwach	Auffällig
OP-2137 II1	1	Auffällig	Auffällig	Auffällig
OP-2168II1	1	Auffällig	Auffällig	Auffällig
OP-2173II1	1	Auffällig	Auffällig	Auffällig
OP-2188 II1	1	Auffällig	Auffällig	Auffällig
OP-2195 II1	1	Auffällig	Auffällig	Auffällig
OP-2240 II1	3	Auffällig	Normal	Auffällig
OP-2323	1	Auffällig	Auffällig	Auffällig
OP-2371 II1	3	Auffällig	Normal	Auffällig

 Tabelle 16 Übersicht aller DNAH10-auffälliger Patienten mit DNA-Material (n=37)