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Zusammenfassung
In den späten 1980er Jahren erzielte A. Ancona weitreichende Ergebnisse in der

Potentialtheorie schwach koerziver Operatoren auf Gromov-hyperbolischen Mannig-
faltigkeiten beschränkter Geometrie. So konnte er Rand-Harnack-Ungleichungen be-
weisen und damit den Gromov-Rand mit dem potentialtheoretischen Martin-Rand
identifizieren. Nach einer ausführlichen Präsentation der zentralen Resultate benut-
zen wir diese, um eine asymptotische Formel für positive harmonische Funktionen
ausgedrückt durch ihr Martin-Maß und Greensche Funktionen anzugeben. Zudem
untersuchen wir den Fall des Laplace-Operators genauer und erhalten gewichtete
Friedrichs- und lineare isoperimetrische Ungleichungen. Diese sind nicht nur robus-
ter unter kleinskaligen Störungen als ihre ungewichteten Analoga, sondern enthalten
auch zusätzliche ortsaufgelöste Informationen.

Eine auf großen Skalen stabile Entsprechung von Minimierern des isoperimetri-
schen Quotienten sind (verallgemeinerte) Seifenblasen. Nach allgemeinen Betrach-
tungen zur Existenz und Regularität geben wir unter Einbeziehung gewichteter iso-
perimetrischer Ungleichungen ein Kriterium für die Existenz kompakter Seifenbla-
sen in vollständigen Mannigfaltigkeiten, das heißt, ein Entkommen minimierender
Folgen nach Unendlich wird ausgeschlossen.

Diese Ergebnisse zeigen ein transparentes Transformationsverhalten unter kon-
formen Deformationen wie der hyperbolischen Entfaltung uniformer Räume. Das
benutzen wir zur direkten Konstruktion von Metriken positiver oder verschwinden-
der Skalarkrümmung, in denen flächenminimierende Folgen von Hyperflächen nicht
nach Unendlich entkommen können. Anwendungen betreffen das singuläre Yamabe-
Problem für verschwindende Skalarkrümmung und Smale-Hyperflächen, die einzige
bekannte Beispielklasse für singuläre Minimierer, sofern die Dimension der Singu-
laritäten nicht zu hoch ist. Die Existenz von minimalen Hyperflächen niedrigerer
Dimension im regulären Teil minimaler Hyperflächen ist von Bedeutung, um eine
Methode zum Auffinden von Obstruktionen gegen Metriken positiver Skalarkrüm-
mung in höhere Dimensionen übertragen zu können.
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Summary
In the late 1980s, A. Ancona obtained far-reaching results in the potential theory

of weakly coercive operators on Gromov hyperbolic manifolds of bounded geometry.
He was able to prove boundary Harnack inequalities and use them to identify the
Gromov boundary with the potential theoretic Martin boundary. After carefully
presenting the central results, we use them to give an asymptotic formula for pos-
itive harmonic functions expressed in terms of their Martin measure and Green’s
functions. Furthermore, we examine the case of the Laplace operator in more detail
and obtain weighted Friedrichs and linear isoperimetric inequalities. These are not
only more robust under small-scale perturbations than their unweighted analogues,
but also contain additional spatial information.

A large-scale equivalent of minimisers of the isoperimetric quotient are (gener-
alised) bubbles. Following existence and regularity considerations, we give a crite-
rion for the existence of compact bubbles in complete manifolds assuming weighted
isoperimetric inequalities, i.e., minimising sequences are prevented from escaping to
infinity.

These results transparently transform under conformal deformations such as the
hyperbolic unfolding of uniform spaces. We use this for the direct construction of
metrics of positive or vanishing scalar curvature that prevent area-minimising se-
quences of hypersurfaces from escaping to infinity. Applications include the singular
Yamabe problem for vanishing scalar curvature and Smale hypersurfaces, the only
known example class for singular area-minimisers, provided the dimension of the
singular set is not too large. The existence of lower-dimensional minimal hyper-
surfaces in the regular part of minimal hypersurfaces is important for transferring
a method for finding obstructions against metrics of positive scalar curvature to
higher dimensions.
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Introduction

In the 1980s, M. Gromov popularised what we now call Gromov hyperbolic
spaces [Gro87]: they can be characterised as geodesic metric spaces where every not
unreasonably long path (a quasi-geodesic) between two points lies in a neighbour-
hood of a shortest path (geodesic) connecting these points.

Originally intended for the study of (Cayley graphs of) groups, Gromov hyper-
bolicity soon became a fascinating subject of its own. An intrinsic justification is
already given by a wealth of seemingly different but equivalent definitions, involving
thin triangles, quadrangles, divergence of geodesics, two-dimensional isoperimetric
inequalities or the presence of valleys as described above [BH99, III.H.1–2]. The
most basic examples are metric trees and classical hyperbolic space Hn. Gromov
hyperbolic metrics also arise as natural conformal deformations of uniform spaces
(generalising Lipschitz domains in Rn) and singular minimal hypersurfaces in Rie-
mannian manifolds. We will return to that in a moment.

Gromov hyperbolic spaces have a natural boundary at infinity, called Gro-
mov boundary, that encodes a large amount of information about the large-scale
structure of the space. It comes with a (bi-Lipschitz equivalence class of) induced
(quasi)metric(s). A clear indicator for the abundance of Gromov hyperbolic spaces
is the fact that every bounded metric space is the Gromov boundary of some Gro-
mov hyperbolic space, up to bi-Lipschitz equivalence. On the other hand, two
visual Gromov hyperbolic spaces with bi-Lipschitz equivalent boundaries are al-
ready quasi-isometric. The metric boundaries of uniform spaces and the singular
set of minimal hypersurfaces turn out to be the Gromov boundaries of the asso-
ciated hyperbolic metrics, hence one can try to study these intricate boundaries
(think of nasty fractals, even with spatially varying dimension) via the locally much
more well-behaved Gromov hyperbolic spaces (in many cases, graphs or Riemannian
manifolds of bounded geometry).

Soon after Gromov, there were many fruitful attempts to carry facts about hy-
perbolic spaces in a more classical sense over to Gromov hyperbolic spaces. Among
those are the works of A. Ancona [Anc87, Anc90], who started with results of Ander-
son and Schoen on harmonic functions on Cartan–Hadamard manifolds [AS85] and
vastly generalised them to a large class of second-order elliptic operators, contain-
ing the Laplacian and Schrödinger operators with bounded potential, on Gromov
hyperbolic manifolds of bounded geometry. Under the additional condition of weak
coercivity, which is equivalent to a positive principal eigenvalue for symmetric oper-
ators, Ancona gives explicit estimates for the Green’s function, proves a boundary
Harnack inequality and identifies the Gromov boundary with the potential theoretic
Martin boundary. Its relevance is that the space of positive harmonic functions can
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be identified with the space of Radon measures on the Martin boundary.
In the case of the Laplacian, one has even more control over the Green’s function.

Along geodesic rays, it decays at the same rate as the harmonic measure (the Martin
measure corresponding to the constant function 1) of balls of decreasing radius. We
exploit this interplay between the Green’s function and the harmonic measure on a
layer-wise cover of the hyperbolic manifold, the onion cover, to prove:

Theorem A (Weighted Friedrichs and Linear Isoperimetric Inequalities)
(Corollary 3.12 and Corollary 3.14) On a Gromov hyperbolic visual manifold X of
bounded geometry with positive principal eigenvalue of the Laplacian, we have for
any function w decaying exponentially slower than the Laplacian’s Green’s function
and p > 1 ∫

X
|u|pw dV 4

∫
X
|∇u|pw dV

for every u ∈W 1,p
loc (X) such that the left-hand side is finite and∫

U
w dV 4

∫
∂U
w dA

for every Caccioppoli set U ⊂ X such that the left-hand side is finite.

In particular, as the Green’s function decays exponentially towards infinity, the
p = 2 weighted Friedrichs inequality implies∫

X
|u|2 dV 4

∫
X
|∇u|2 dV (?)

for u ∈ C∞c (X). But this inequality is exactly the variational characterisation
of the positivity of the Laplacian’s principal eigenvalue, hence it self-improves: if
this inequality holds, it also holds with exponentially decaying weights. By work
of Martínez-Pérez and Rodríguez [MR18], this is also equivalent to the Gromov
boundary of X being uniformly perfect, i.e., it does not contain parts of (lower
Assouad) dimension zero. The weight function can be interpreted as a large-scale
analogue of the best constant in (?), containing additional directional information.

Our interest in Gromov hyperbolic manifolds is motivated by the two natural
classes of examples hinted at earlier:

• Uniform spaces can be conformally deformed with the inverse distance to the
boundary (or a regularisation thereof). This yields complete Gromov hyper-
bolic spaces as shown by Bonk, Heinonen and Koskela [BHK01], analogous to
the hyperbolic Poincaré metric on the unit disk in C. Examples for uniform
spaces include manifolds with Lipschitz boundary, but the (metric) boundary
might as well be lower-dimensional or fractal, as in the Koch snowflake.

• Area-minimising hypersurfaces in an (n + 1)-dimensional Riemannian mani-
fold (and solutions of similar variational problems) are smooth submanifolds
only outside a singular set of Hausdorff dimension up to n − 7. This is a
major result of geometric measure theory from the 1960s due to De Giorgi,
Reifenberg, Federer, Fleming, Almgren, Simons, and others. Since then, these
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singularities have remained rather mysterious. Recently, J. Lohkamp devel-
oped the theory of S-structures to handle potential theory on the regular part
of singular minimal hypersurfaces: the regular part is uniform with respect to
the S-distance, a generalised distance from the singular set incorporating the
norm of the second fundamental form, and a conformal deformation with its
inverse yields a complete Gromov hyperbolic metric of bounded geometry, the
hyperbolic unfolding [Loh18].

We handle both these situations simultaneously using the notion of a generalised
distance function.

Area-minimising hypersurfaces are an important tool in scalar curvature geom-
etry: as first observed by Schoen and Yau [SY79], a smooth, closed, stably minimal
hypersurface in a manifold of positive scalar curvature carries itself a conformal met-
ric of positive scalar curvature. It is constructed by conformal deformation with the
first eigenfunction of the conformal Laplacian. Using this argument inductively on
area-minimisers of decreasing dimension in prescribed homology classes one can find
obstructions to the existence of metrics of positive scalar curvature. E.g., assum-
ing there is a metric of positive scalar curvature on the n-torus, one can inductively
find Scal > 0-metrics on minimal hypersurfaces of decreasing dimension with a torus
component, until the Gauß–Bonnet formula yields a contradiction in dimension two.

To make this line of reasoning viable in dimensions higher than 7, one has to
understand the potential theory of the conformal Laplacian on singular minimal
hypersurfaces. In a Scal > 0 ambience, a version of this operator is in fact weakly
coercive on Lohkamp’s hyperbolic unfolding and hence Ancona’s potential theory
applies. The singular set, the Gromov boundary of the hyperbolic unfolding and
the Martin boundary classifying positive harmonic functions are all homeomorphic
[Loh20a, Loh20b].

Now one suddenly has a wealth of positive eigenfunctions of the conformal Lapla-
cian (as there are many Radon measures on the singular set)—we try to invest this
freedom of choice in finding an eigenfunction such that the conformally deformed
regular part of the hypersurface is mean convex at infinity, i.e., there is an exhaus-
tion by compact mean convex domains. This is relevant for the induction step in
Schoen-Yau dimensional descent because this condition guarantees that minimis-
ing hypersurfaces in such a conformally deformed hypersurface are blocked from a
neighbourhood of the singular set. One goal of this thesis is to explore the possibility
of a one-shot construction of such a metric by prescribing its Martin measure. We
propose to use the harmonic measure of the Laplacian on the hyperbolic unfolding
for this purpose.

In order to investigate mean convexity at infinity in a way that survives across
conformal deformations, we will introduce (β, φ)-bubbles for usually positive func-
tions β and φ on a manifold. These are (local) minimisers of the functional

bubbβ,φ(U) =
∫
∂U
β dA−

∫
U
φ dV

for Caccioppoli sets U . The boundaries of (1, φ)-bubbles are also known as hy-
persurfaces of prescribed mean curvature, as they have mean curvature φ on their
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regular parts, and the boundaries of (1, 0)-bubbles are area-minimisers. If a mani-
fold is (β, φ)–mean convex at infinity, i.e., there is an exhaustion by compact outer-
minimising (β, φ)-bubbles, it is also (β, φ′)–mean convex at infinity for φ′ 6 φ.

The connection to weighted isoperimetric inequalities is given by the following
main result:

Theorem B (Mean Convexity at Infinity) (Theorem 4.12) If a manifold (M, g)
admits a w-weighted linear isoperimetric inequality and sufficiently many weighted
nonlinear isoperimetric inequalities1 and (M,w

2
n−1 g) is complete, then (M, g) is

(w,C · w)–mean convex at infinity, for some C > 0.

Now if we can choose w in terms of an eigenfunction of the conformal Lapla-
cian in such a way that there is a w-weighted isoperimetric inequality, conformal
deformation with w

2
n−1 has positive scalar curvature and the other assumptions of

Theorem B are satisfied, we end up with a metric of positive scalar curvature that
is (1, φ)–mean convex at infinity (and in particular (1, 0)–mean convex at infinity).
We now describe a setting where this can be done.

N. Smale constructed a large class of singular homologically area-minimising
hypersurfaces [Sma00, Theorem B]. Their singular set is a disjoint union of closed
manifolds, and in a neighbourhood of each component, the hypersurface is isometric
to a product of the singular set and a regular area-minimising cone, i.e., its only
singularity is in the origin. We will call such minimisers Smale hypersurfaces (see
Definition 5.5 for a more precise definition). As far as the author is aware, this
is the most general known construction of singular homologically area-minimising
hypersurfaces.

We will show:

Theorem C (Shielding Singularities) (Theorem 5.8) The regular part of every
Smale hypersurface Hn in a manifold Mn+1 of positive scalar curvature can be
conformally deformed to a metric of positive scalar curvature that is mean convex
at infinity, provided the components Σi of the singular set have dimension

1 6 dim Σi <

(
2
√

3 + 1
n− 1 − 3

)
(n− 1)− 1 ≈ 0.46(n− 1)− 1 .

In particular, this is always true for n 6 11 since the dimension of the singular
set is at most n− 7.

As a warm-up for the case of minimal hypersurfaces, we will make a short ex-
cursion into the singular Yamabe problem. This concerns the question whether one
can find complete metrics of constant scalar curvature that are conformally equiv-
alent to the original metric on the complement of a certain set Σ ⊂Mn in a closed
manifold M of positive scalar curvature. With the methods above, we can prove:

Theorem D (Singular Yamabe Problem for Zero Scalar Curvature) (Corol-
lary 5.4) If (Mn, g) is a closed manifold of positive scalar curvature and Σ ⊂ M

1This will be made precise in the statement of Theorem 4.12.
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a disjoint union of closed submanifolds of dimension at most n−2
2 , then there is a

complete scalar flat metric on M \ Σ that is conformally equivalent to g and mean
convex at infinity.

Apart from the mean convexity at infinity, this was already proven independently
in [Del92] and [MM92] using different methods. Our result also applies to more
general subsets Σ with uniform complement and a certain bound on the Laplacian
of the distance to Σ, see Theorem 5.2 “metrics of zero scalar curvature”.

This thesis is structured as follows:
In chapter 1, we discuss the geometric and analytic prerequisites to apply An-

cona’s potential theory for weakly coercive operators on Gromov hyperbolic man-
ifolds of bounded geometry. We review known results about Gromov hyperbolic
spaces and give examples and context for all assumptions. The last section of this
chapter is focused on uniform spaces, their hyperbolic unfoldings, and how the con-
ditions on hyperbolic manifolds translate into this setting.

In chapter 2, we give a mostly self-contained account of Ancona’s potential
theory on Gromov hyperbolic manifolds of bounded geometry. This is essentially
the content of the survey [KL18]. We will present Ancona’s theory with slight
improvements, mainly keeping track of the involved constants, which will turn out
to depend only on global constants in the assumptions, not on the particular space
or operator. A new result presented at the end of this chapter is the ray expansion
which expresses a positive harmonic function along a geodesic ray solely in terms
of the Green’s function along this ray and the associated Martin measure of balls
around the endpoint of the ray in the Gromov/Martin boundary.

The subject of chapter 3 are stronger results for the Laplace operator on Gro-
mov hyperbolic manifolds of bounded geometry and a tree-like cover for such a
space, which are combined to yield a weighted “mesoscale” Friedrichs inequality.
This involves an averaged version of the gradient. Known Poincaré inequalities for
different function spaces permit to upgrade this mesoscale inequality to the more
usual weighted Friedrichs and linear isoperimetric inequalities in Theorem A.

Chapter 4 introduces (β, φ)-bubbles, their basic properties such as regularity
and existence, and examples, as well as mean convexity at infinity and implications.
The main result of this chapter is Theorem B “mean convexity at infinity” connecting
weighted linear isoperimetric inequalities with mean convexity at infinity.

In chapter 5, we first give a general procedure to generate conformal metrics
that are thick at infinity. Here all previous results come together. After applying this
to the singular Yamabe problem, we conclude our journey through different areas of
analysis and geometry in the realm of singular minimal hypersurfaces. We give an
overview of some results from Lohkamp’s potential theory on minimal hypersurfaces
[Loh18, Loh20a, Loh20b] and then present the more involved application to Smale
hypersurfaces in a positive scalar curvature ambience.

Danksagung
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Notation

By “manifold” we mean a connected second-countable C∞-smooth Riemannian
manifold with generic name Mn, where n > 1 is the dimension. M always carries
a C∞-smooth Riemannian metric, usually called g. Additional data naturally con-
structed from g bear the following names: d is the induced distance function (infimal
length of curves), ∇ is the Levi-Civita connection, expx : TxM →M the exponential
map, R(X,Y )Z = ∇X∇Y Z−∇Y∇XZ−∇[X,Y ]Z the Riemannian curvature tensor,
Sec the sectional curvature, Ric the Ricci curvature and Scal the scalar curvature.
Integration with respect to the volume measure is denoted by dV , integration over
a hypersurface (= codimension one submanifold) by dA (for area). If anything is
induced by a different metric than g, this will be indicated by sub- or superscripts.
λM is shorthand for the scaled manifold (M,λ2g), for λ > 0.

Curves in a metric space X (where the distance function is generically called d)
are often given as γ : x y, meaning the curve starts in x and ends in y. Geodesics
are always length-minimising, i.e., rectifiable curves γ : x  y of length d(x, y),
even if the underlying space is a manifold. A geodesic ray is a curve γ : [0,∞)→ X
such that γ|[0,t] is a geodesic for every t > 0. Geodesics and geodesic rays are
always parameterised by arc length, starting with parameter 0. Sometimes we
will not distinguish between a geodesic and its image. If a metric space X has
no canonical superspace, X denotes the metric completion of X (e.g., equivalence
classes of Cauchy sequences) and ∂X = X \X is called the metric boundary. The
distance from a point x to a set A in a metric space is written as dist(x,A).
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For a topological space V , the notation U b V means U is an open relatively
compact subset of V . A domain is a non-empty connected open subset.

A Radon measure on a locally compact topological space is an inner and outer
regular locally finite positive Borel measure.

We will use the symbols 4,<,� to mean 6,>,= up to a positive multiplicative
constant. Usually this constant depends only on other natural constants that appear
in the assumptions, if in doubt they are given as a subscript. E.g., the notation
A 4δ B stands for “there is a constant C = C(δ) > 0, such that A 6 C B”. A � B
is shorthand for A 4 B and A < B and can be paraphrased as “there is a C > 1
such that C−1A 6 B 6 C A”. When these symbols are used, A and B are always
positive numbers or functions.

Many of our statements are quantitative in the sense that constants in the asser-
tions depend only on constants in the assumptions. If the dependence of constants
is more intricate, we write it out explicitly.

XIII



XIV



Part I

Potential Theory on Hyperbolic
Spaces

1





Chapter 1

Basic Concepts

In this chapter, we introduce the geometric and analytic setting for the chap-
ters to follow. We will familiarise ourselves with Gromov hyperbolic manifolds of
bounded geometry, introduce basic concepts from potential theory such as balayage
and Martin boundary, and find large classes of examples in the form of hyperbolic
unfoldings of uniform manifolds. The goal is to present basic definitions and stan-
dard results used in later chapters to the non-expert reader. We give examples
and simple proofs, but for most proofs we refer to the indicated literature. There
are no completely new and original results in this chapter, but some variations or
abstractions, notably Theorem 1.34 “natural regularisation of generalised distance
functions” was adapted for more general distance functions on manifolds. More-
over, the transformed operator in subsection 1.3.5 does not seem to have been used
before.

This chapter is an extended version of parts of the preprint [KL18] by
J. Lohkamp and the author.

1.1 Geometric Structures
One scope of this work is a class of usually noncompact, complete manifolds

that have all of their interesting structure concentrated near infinity. This will be
formalised in the following two geometric conditions.

1.1.1 Bounded Geometry

The first condition ensures that the manifold has no interesting local structure,
it looks everywhere the same up to a uniformly controlled deviation.

Definition 1.1 (Bounded Geometry) A manifold M has (σ, `)–bounded ge-
ometry for global constants σ > 0, ` > 1 if for every ball Bσ(p) ⊂ M there is a
smooth `-bi-Lipschitz chart φp to an open subset Up of Rn with its Euclidean metric.

Examples 1.2.

• Closed manifolds always have bounded geometry.

• This is also true for their covering spaces, i.e., complete manifolds with a
cocompact isometric group action.
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• A complete manifold with an absolute sectional curvature bound | Sec | 6 C
and injectivity radius > C−1 for some C > 0 has bounded geometry as this
gives bounds on the metric tensor in normal coordinates by basic comparison
estimates, see e.g. [Pet16, Theorem 6.27].

1.1.2 Gromov Hyperbolic Spaces

The second condition is complementary to the first in the sense that it has no
local impact, but rather limits all efficient communication between two points to a
region near the shortest path between them.

Definition 1.3 (Gromov Hyperbolicity) A Riemannian manifold, or more gen-
erally a geodesic metric space1, is Gromov hyperbolic or, quantitatively, δ-hyper-
bolic, if there is a δ > 0 such that each point on the edge of any geodesic triangle2

is within δ-distance of one of the other two edges. See Figure 1.1.

δ

Figure 1.1: A geodesic triangle in a δ-hyperbolic space.

δ-hyperbolicity was introduced for Cayley graphs of finitely generated groups by
Gromov in [Gro87]. Basic examples are:
Examples 1.4.

(i) Bounded spaces are trivially δ-hyperbolic for δ equal to the diameter.

(ii) Hyperbolic space Hn is δ-hyperbolic for δ = ln 3 [Gd90, 2.23]. More gener-
ally, CAT(−1)-spaces are ln 3-hyperbolic, as directly seen from the definition
[BH99, Proposition 1.2].

(iii) Cartan–Hadamard manifolds, i.e., complete simply-connected manifolds with
sectional curvature bounded from above by a negative constant, are CAT(κ)-
spaces for some κ < 0 and hence Gromov hyperbolic [Gd90, §3.2]. If the sec-
tional curvature is additionally bounded from below, they have also bounded
geometry.

1A metric space is geodesic, if each two points can be connected by a curve of length equal to
the distance of the points. Such a curve is called a geodesic (in the metric space sense).

2Here, “geodesic” is meant in the metric space sense as “length-minimising geodesic”.
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(iv) Although we will mostly be concerned with manifolds, particularly simple
examples that can illustrate many phenomena are graphs. By a graph we
mean the geodesic metric space obtained by gluing intervals of a certain length
between elements of a potentially infinite set of vertices, such that each vertex
is adjacent to a finite number of these edges. Bounded geometry (and finite-
dimensionality) of manifolds is analogous to a global upper bound on the
number of adjacent edges for each vertex and a lower bound on their length.
Trees (simply connected graphs) are precisely the 0-hyperbolic graphs, hence
for δ-hyperbolic graphs, δ can be seen as a measure of deviation from being a
tree.

(v) A finitely generated group is called hyperbolic, if the Cayley graph with respect
to some (and hence any, see [BH99, Examples I.8.17 (2) and (3)]) finite set of
generators with edge length 1 is Gromov hyperbolic. Here, the easiest example
are free groups (corresponding to trees, for canonical generators).

(vi) The universal covering of a closed manifold M of negative sectional curva-
ture satisfies the requirements in (iii). By the Švarc-Milnor Lemma [BH99,
Prop. I.8.19], any Cayley graph of the fundamental group π1(M) is quasi-
isometric to M and hence also Gromov hyperbolic.
Here, a map f : X → Y between metric spaces (X, dX), (Y, dY ) is a (λ, S)-
quasi-isometry if there are constants λ > 1, S > 0 such that

λ−1dX(x, x′)− S 6 dY (f(x), f(x′)) 6 λdX(x, x′) + S ∀x, x′ ∈ X

and every point y ∈ Y has distance at most S to a point in the image of f .
Without the last condition, f is a (λ, S)-quasi-isometric embedding. If
such a quasi-isometric map exists, X and Y are quasi-isometric.
For invariance of Gromov hyperbolicity under quasi-isometries see e.g. [BS07,
1.3.1].

(vii) A non-example: Gromov hyperbolicity can be more demanding than constant
negative sectional curvature alone. Consider a Z2-covering of a Riemann sur-
face of genus > 2 equipped with a metric of constant negative sectional curva-
ture, as in Figure 1.2. This is quasi-isometric to Euclidean R2 and hence not
Gromov hyperbolic.

The idea alluded to above that there is no efficient path between two points that
is far away from the shortest path can be formalised as follows:

Proposition 1.5 (Stability of Geodesics) [BS07, Theorem 1.3.2], [Bon96] In
a δ-hyperbolic geodesic metric space X, for every λ > 1 and S > 0 there is an
H = H(δ, λ, S) > 0 such that each two (λ, S)-quasi-geodesics3 x  y with same
start- and endpoint x, y ∈ X have Hausdorff distance at most H. In fact, this
geodesic stability is equivalent to Gromov hyperbolicity.

3(λ, S)-quasi-isometric embeddings of a compact interval
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...

...

...

...

Figure 1.2: This 2-manifold has a metric with constant negative sectional curvature
that is not δ-hyperbolic.

There are several definitions of Gromov hyperbolicity highlighting different as-
pects, see e.g. [BS07, Chapter 1], [BH99, Chapter III.H] or [Gd90, Chapitre 2]. We
will only mention one other version using the Gromov product on X defined as

(x|y)z := 1
2 (d(z, x) + d(z, y)− d(x, y)) for x, y, z ∈ X.

This version works on arbitrary metric spaces.

Definition 1.6 (Hyperbolicity Via Gromov Product) A metric space X is
Gromov hyperbolic if there is a δ′ > 0 such that for any four points x, y, z, w ∈ X,

(x|y)z > min{(x|w)z, (w|y)z} − δ′ . (1.1)

This implies 4δ′-hyperbolicity and is implied by δ′/8-hyperbolicity as defined above,
see [Gd90, Proposition 2.21]. For convenience (and since the precise constant never
really matters) we assume from now on every δ-hyperbolic space to satisfy (1.1)
with δ′ = δ.

An intuitive interpretation of the Gromov product in Gromov hyperbolic spaces
is given by the following estimate (see also Figure 1.3):

Lemma 1.7 (Gromov Product as Distance to a Geodesic) [Gd90,
Lemme 2.17] In a δ-hyperbolic geodesic metric space X, let γ : x y be a geodesic
and z ∈ X. Then

(x|y)z 6 dist(z, γ) 6 (x|y)z + 4δ .

1.1.3 Gromov Boundary and Visuality

In Gromov hyperbolic spaces, the structure at infinity can be encoded in an
ideal boundary. We outline the construction presented in [BS07, Section 2.2], where
more details can be found.

Definition 1.8 (Gromov Boundary) In a Gromov hyperbolic metric space X
with basepoint o ∈ X, a sequence (xi) in x converges at infinity if (xi|xj)o

i,j→∞−→ ∞.
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Figure 1.3: Approximate value of the Gromov product in a δ-hyperbolic space.

We say two sequences (xi), (yi) convergent at infinity are equivalent if (xi|yi)o i→∞−→
∞. The Gromov boundary ∂GX of X is defined as the set of equivalence classes
of sequences convergent at infinity.

Note that ∂GX is independent of the chosen basepoint because |(x|y)o−(x|y)o′ | 6
d(o, o′) for a different basepoint o′ ∈ X.

To define a topology on X
G := X∪̇∂GX, we first extend the Gromov product

to the boundary. We formally identify points in X with constant sequences. Then
for a, b ∈ XG and z ∈ X, we can set

(a|b)z := inf
(xi)∈a
(yi)∈b

lim inf
i→∞

(xi|yi)z .

A topology on XG is defined by considering X ↪→ X
G as an embedding, choosing a

basepoint o ∈ X and declaring the sets

Wo
%(ξ) := {a ∈ XG | (a|ξ)o > %} for % > 0

to be a neighbourhood basis for ξ ∈ ∂GX. As above, this topology is independent
of o.

The sets Wo
%(ξ) ∩ ∂GX are in fact the open balls of radius e−% with respect to

do(ξ, η) := e−(ξ|η)o ,

which is a quasi-metric on ∂GX, i.e., an ultrametric triangle inequality holds only
up to a constant Q = Q(δ) = eδ,

do(ξ, ζ) 6 Qmax{do(ξ, η), do(η, ζ)} for ξ, η, ζ ∈ ∂GX,

while all other properties of metrics are still satisfied. This quasi-metric triangle in-
equality follows from an extension of (1.1) to the boundary [BS07, Lemma 2.2.2 (2)],
while the other properties are obvious.
Remarks 1.9.
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(i) If the Gromov hyperbolic space X is proper (balls are relatively compact)
and geodesic (e.g., a complete manifold), it is sufficient to consider sequences
on geodesic rays emanating from the basepoint o. One could also consider
equivalence classes consisting of geodesic rays with finite Hausdorff distance
[BS07, 2.4.2]. Hence any geodesic ray has a well-defined endpoint in ∂GX and
we may use the notation γ : x ξ for a geodesic ray γ starting in x ∈ X with
endpoint ξ ∈ ∂GX.

(ii) For a proper geodesic Gromov hyperbolic space X, XG is in fact a com-
pactification, i.e., X ⊂ X

G is open and dense and X
G is compact [BH99,

Proposition III.H.3.7].

(iii) For quasi-metrics with constant Q 6 2, there is a canonical procedure to
construct a bi-Lipschitz equivalent metric [BS07, 2.2.2]. This can be applied
to the quasi-metrics dεo for sufficiently small ε to get a family of metrics on
the boundary (called visual metrics), but we prefer to work with the canonical
quasi-metric instead.

(iv) There are many hyperbolic spaces in the following sense: for each bounded
metric space Z, there is a hyperbolic approximation of Z: this is a Gromov
hyperbolic graph X with basepoint o such that the boundary ∂GX equipped
with the quasi-metric do is bi-Lipschitz equivalent to Z [BS07, Theorem 6.4.1].
X is proper if and only if Z is compact [BS07, 6.4.3].

(v) The graph in the preceding remark can be approximated by a manifold of any
dimension n > 2. To this end, represent each vertex by an n-sphere and for
each edge connecting two vertices, form a connected sum of the representing
spheres. If there is a global upper bound on the number of edges adjacent
to any vertex, the metric on this manifold can be arranged to have bounded
geometry.

For later use, we note that following (special case of a) Lemma of Bonk and
Schramm, which also has a nice geometric interpretation:

Lemma 1.10 (Bonk–Schramm Lemma) [BS00, 5.1] In a proper geodesic δ-
hyperbolic space X, let x, y ∈ X be points on geodesics o a ∈ XG and o b ∈ XG

respectively. Then

|(x|y)o −min{(a|b)o, d(o, x), d(o, y)}| 6 4δ .

Proof. We can assume d(o, x) 6 d(o, y). In the case a, b ∈ X, (1.1) shows

(a|b)o > min{(a|x)o, (x|y)o, (y|b)o} − 2δ .

Now (a|x)o = d(o, x), (b|y)o = d(o, y), and (x|y)o 6 min{d(o, x), d(o, y)} by the
triangle inequality, hence min{(a|b)o, d(o, x), d(o, y)} > (x|y)o − 2δ.

On the other hand, another application of (1.1) shows

(x|y)o > min{(x|a)o, (a|b)o, (b|y)o} − 2δ
= min{(a|b)o, d(o, x), d(o, y)} − 2δ .
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This extends to a, b ∈ XG up to an additional constant of 2δ because

(a|b)o = inf
(xi)∈a
(yi)∈b

lim inf
i→∞

(xi|yi)o > sup
(xi)∈a
(yi)∈b

lim sup
i→∞

(xi|yi)o − 2δ

by [BS07, Lemma 2.2.2(1)].

The intuition behind this is that the geodesics stay close together up a point of
divergence in approximate distance (a|b)o from o, and for points x, y beyond this
point, (x|y)o is a good approximation of its distant counterpart (a|b)o.

For some but not all applications, we will need another condition to ensure that
the large-scale structure a Gromov hyperbolic space is completely encoded in the
boundary:

Definition 1.11 (Visuality) A proper geodesic δ-hyperbolic space X is S-visual
for some S > 0 if there is a basepoint o ∈ X such that every point x ∈ X has
distance at most S to a geodesic ray emanating from o.

Remarks 1.12.

• An S-visual δ-hyperbolic space X with basepoint o is S′-visual from any other
basepoint o′ ∈ X, where S′ = S′(S, o′, δ).

• The hyperbolic approximations from Remark 1.9(iv) are always visual.

• Two proper geodesic visual Gromov hyperbolic spaces with bi-Lipschitz equiv-
alent boundaries are (1, S)-quasi-isometric for some S > 0 [BS07, Corol-
lary 7.1.6].

1.1.4 Connecting Two Points: Harnack and Φ-Chains

Our two principal geometric assumptions each imply a way how two distant
points can be linked. In the case of bounded geometry, the construction is rather
trivial, but instructive by analogy to the more involved hyperbolic case.

Bounded Geometry In a complete manifold M of bounded geometry, one can
link any two points x, y ∈M by a sequence of balls that are uniformly bi-Lipschitz
equivalent to a Euclidean ball. Such configurations are known as Harnack chains
[JK82] because they are mostly used to apply Harnack inequalities along greater
distances as we will see later.

Definition 1.13 (Harnack Chains) For a fixed r ∈ (0, σ), we call a sequence of
balls Br(x1), . . . , Br(xk) with

x1 = x, xk = y and d(xi, xi+1) < r/2 for i = 1, . . . , k − 1

a Harnack chain of length k connecting x and y, see Figure 1.4.

Thus any point xi is contained even in the smaller neighbouring balls Br/2(xi±1).
By setting xi = γ(i · r/3) on a shortest geodesic γ : x  y parameterised by arc
length, we get a Harnack chain connecting x and y of length proportional to d(x, y).
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p q

Figure 1.4: Harnack chains (image from [KL18]).

Gromov Hyperbolicity To exploit Gromov hyperbolicity analytically, Ancona
introduced the concept of Φ-chains. As in the case of bounded geometry versus
hyperbolicity, Harnack chains and Φ-chains act complementary. This is best seen in
the discussion preceding Proposition 2.15 “Growth Recovery Along Φ-Chains” where
Harnack chains give basic estimates which, however, weaken the overall control,
while Φ-chains can be used to recover the apparently lost details.

Definition 1.14 (Φ-Chains) For a monotonically increasing function Φ : [0,∞)→
(0,∞) with Φ0 := Φ(0) > 0 and Φ(d) d→∞−→ ∞, a Φ-chain on a proper geodesic
metric space X is a finite or infinite sequence (Ui) of open subsets of X with Ui ⊃
Ui+1 together with a sequence of track points (xi) such that

(i) Φ0 6 d(xi, xi+1) 6 3Φ0,

(ii) xi ∈ ∂Ui,

(iii) d(x, ∂Ui±1) > Φ(d(x, xi)), for every x ∈ ∂Ui

for every i where applicable.4 See Figure 1.5.

Note that a Φ-chain traversed backwards, i.e., with sets · · · ⊃ X\Ui ⊃ X\Ui−1 ⊃
· · · , is again a Φ-chain with the same track points.

The existence of infinite Φ-chains can be considered as a partial hyperbolicity
property of the underlying space. It is easy to see that neither Euclidean space nor
asymptotically flat spaces admit any infinite Φ-chains.

A first non-trivial example can be created as follows: with the coordinates
(x, y) ∈ R × Rn−1 we consider the metric (1 + |y|2)2 · gR + gEucl on R × Rn−1.
Then the half-spaces Ui := (i,∞) × Rn−1 form a Φ-chain with track points
xi = (i, 0) for Φ(t) := 1 + t2. But as in the Euclidean case, the half-spaces
Ui[k] := Rk × (i,∞)× Rn−k−1, for 1 6 k 6 n− 1, do not make up a Φ-chain.

4For notational convenience this is slightly different from Ancona’s version in [Anc90, définitions
V.5.1], but essentially the same.
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Figure 1.5: Φ-Chains (image from [KL18]).

The hyperbolic n-space Hn carries Φ-chains in all directions and for the same Φ.
Namely, when we think of Hn as the upper half-space and B1/2i(0) is the Euclidean
ball of radius 1/2i, then Ui = B1/2i(0), i > 1, form a Φ-chain for Φ(t) = α · t+ β for
suitable α, β > 0, independent even of n. Due to the homogeneity of Hn this also
gives a Φ-chain along any hyperbolic geodesic γ, i.e., with track points on γ.

This ubiquity of Φ-chains, which we see already from considering hyperbolic
half-spaces relative to geodesics, extends to arbitrary non-homogenous Gromov hy-
perbolic spaces.
Theorem 1.15 (Φ-Chains on Hyperbolic Spaces) [BHK01, Section 8] On
a proper geodesic δ-hyperbolic space X, let γ : [0, 4δk] → X be a geodesic with
k ∈ Z+ ∪ {∞}. Set a = γ(0) ∈ X and b = γ(4kδ) ∈ XG. Then the sets

Ui := {x ∈ X | (x|b)a > 4iδ}

form a Φδ-chain with track points xi = γ(4iδ) for Φδ(t) = α · t + β, with constants
α = α(δ) > 0 and β = β(δ) > 0.

Note that for a geodesic ray o = a  b = ξ ∈ ∂GX, the sets Ui = Wo
4iδ(ξ) ∩X

are the restriction of our usual neighbourhood basis for ξ to X.

1.2 Analytic Structures
Now we turn to the analytic side. On a complete Riemannian manifold Mn of

bounded geometry, we consider an operator L with the following properties:
Definition 1.16 (Adaptedness) For constants k > 1 and β ∈ (0, 1], a linear
elliptic operator L of second order on M is called (k, β)-adapted if relative to a
bounded geometry chart φp for every point p ∈M ,

L(u) = −
∑
i,j

aij · ∂2u

∂xi∂xj
+
∑
i

bi · ∂u
∂xi

+ c · u
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for β-Hölder continuous coefficients aij , bi, c : Up → R, for i, j = 1, . . . , n, with

k−1∑
i

ξ2
i 6

∑
i,j

aijξiξj 6 k
∑
i

ξ2
i

for any ξ ∈ Rn and
|aij |, |bi|, |c| 6 k

and the same is true for the adjoint operator L∗, which is defined by the condition∫
M u·Lv dV =

∫
M L∗u·v dV on smooth functions u, v ∈ C∞c (M) of compact support.

Solutions u ∈ C2,α(M) of the equation Lu = 0 are called L-harmonic functions.
The adaptedness assumption is a generalised form of uniform ellipticity. It is

a compromise between generality and readability, trimmed to ensure that one can
apply the usual maximum principles and all weak L2

loc and strong solutions of Lu = 0
are classical C2,β-regular solutions [BJS64, p. 136–138]. The uniform boundedness
of coefficients will be used in global uniform estimates for L and for the adjoint
operator L∗. For even more general conditions, see [Anc87].

1.2.1 Green’s Functions

One main object of study will be a Green’s function G for L. This is a
function G : M ×M → (0,∞] which is finite and C2,β-regular outside the diagonal
{(x, x) | x ∈ M} and satisfies the equation LG(·, y) = δy in a distributional sense,
where δy is the Dirac delta function with basepoint y. This means that for any
y ∈ M , G(·, y) > 0 is a (singular) function so that for a given f ∈ C∞c (M), the
function

u(x) =
∫
M
G(x, y) f(y) dy

is a solution of Lu = f , where integration is with respect to the volume measure
induced by the Riemannian metric on M . Note that a Green’s function associated
to L∗ is given by G∗(x, y) = G(y, x).

The sum of a Green’s function G(·, y) and a positive solution of Lu = 0 is
again a (different) Green’s function, but there is always a uniquely determined
minimal Green’s function that does not admit a sum decomposition into another
Green’s function and a positive L-harmonic function. Unless stated differently,
we henceforth always mean minimal Green’s functions when referring to Green’s
functions.

A Green’s function for an adapted operator L does not always exist. We will
see criteria for its existence in subsection 1.2.3.

1.2.2 Potentials and Balayage

Later we will use several constructions that are best described in the language of
potential theory. Here we will briefly describe central concepts. More background
information and details can be found in standard literature on the subject such as
[Bau66, Bre67, Hel69, CC72, BH86].

A basic building block for axiomatic potential theory is local solvability of the
Dirichlet problem, i.e., one expects the existence of a topological basis of open sets,
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such that for every continuous function on the boundary, there is an L-harmonic
function in the interior that is continuous on the closure. For an adapted operator
L, this is true on small, smoothly bounded balls.

Any not necessarily minimal Green’s function G(·, y) is an example of an L-
superharmonic function, that is a lower semi-continuous function u with values in
(−∞,∞] such that u is finite on a dense set and u > vB for every ball B, where vB
is the Dirichlet solution of LvB = 0 on B with boundary conditions vB|∂B ≡ u|∂B.
On sufficiently regular parts, this is equivalent to Lu > 0.

An L-superharmonic function p > 0 such that there is no positive L-harmonic
function h with p > h > 0, is called an L-potential. Minimal Green’s functions
are not only examples for potentials, but also their basic building blocks:

Theorem 1.17 (Integral Representation of Potentials) [Her62, 22.], [Hel69,
Thm. 6.18] If L has a Green’s function G, every L-potential p on M can be repre-
sented by a unique (positive) Radon measure µp as

p(x) = G(µp)(x) :=
∫
M
G(x, y) dµp(y) .

The support of p (i.e., the complement of the largest open set where p is L-harmonic)
equals the support of µp.

The fact that every positive L-superharmonic function is uniquely representable
as the sum of an L-potential and a positive L-harmonic function is known as the
Riesz representation theorem. Hence, to get an integral representation for positive
L-superharmonic functions, only the L-harmonic part is left. We will see later that
the corresponding measures are supported on the Martin boundary which is defined
exactly for this purpose. Its identification in terms of more common geometric
boundaries is one of the goals of chapter 2.

Later we want to control L-superharmonic functions along Φ-chains. Here we
shift the part of the defining measure supported in M \U onto ∂U without changing
the function on U , for an unbounded open set U . This strategy is called sweeping
or, due to its French origin (Poincaré, Cartan), balayage.

Concretely, for an L-superharmonic function u > 0 on M and a subset A ⊂ M
we define

RAu := inf{v > 0 | v is L-superharmonic on M with v > u on A} .

This is called the reduit (reduced). It enjoys the following properties which we will
need later:

• RAu is L-harmonic outside of Ā and equal to u on A.

• The reduit is always L-superharmonic.

• If A is relatively compact, RAu is an L-potential.

• RAλu = λRAu for a constant λ > 0.

• RAu+v = RAu +RAv for functions u, v.
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• RA∪Bu 6 RAu +RBu for sets A,B ⊂M .

• Denoting the reduit with respect to the adjoint operator L∗ of L by ∗R, we
have RAG(·,y)(x) = ∗RAG(x,·)(y) [Anc90, I.5.1, p. 19].

• If G(µ) is an L-potential, RAG(µ)(x) =
∫
M RAG(·,y)(x) dµ(y) for any x /∈ Ā

[Her62, Théorème 22.4].

For general sets A, it may happen that RAu is not lower semi-continuous, but
it always admits a canonical regularisation R̂Au , the balayée (swept), defined as the
maximal lower semi-continuous function 6 RAu . For open sets A or in general outside
of Ā the two concepts coincide. We can even recover the classical Perron solution u
of the Dirichlet problem on a ball B with continuous positive boundary value f as

u(x) = R∂Bf (x) .

Also useful in this context are global variants of the maximum principle.

Theorem 1.18 (Global Maximum Principle) [Her62, p. 429]

(i) If u is L-superharmonic on an open set V ⊂ M , u > 0 on ∂V , and there is
an L-potential p such that u > −p, then u > 0 on V .

(ii) Let p an L-potential, L-harmonic on an open set V and locally upper bounded
near every point of ∂V . If u > p on ∂V for some positive L-superharmonic
function u, then u > p in all of V .

Proof. For (i), note that the function ū defined as min(u, 0) on V and 0 on
M \ V is L-superharmonic and > −p. Now the supremum of the family
{L-subharmonic functions 6 ū} is L-harmonic, > −p, and 6 0, hence by the defi-
nition of L-potentials it is 0 which implies u > 0.

(ii) follows from (i) by considering the function u− p.

1.2.3 Weak Coercivity

The existence of a Green’s function is not always granted. All relevant effects
can already be seen when considering the Laplacian −∆ on flat Rn. It is well-known
that the “shifted” operator −∆− λ admits a Green’s function if and only if λ 6 0.
Moreover, we will see later on that there is a fine distinction between the cases λ = 0
and λ < 0. The following assumption means that we are focussing on the second
case.

Definition 1.19 (Weak Coercivity) An adapted operator L is called weakly co-
ercive if there is a t > 0 such that the operator Lt := L−t admits a Green’s function
Gt.

Another way to express weak coercivity is to say that there is a positive C2,α-
regular strictly Lt-superharmonic function (i.e., Lu > 0 and Lu 6≡ 0) for some t > 0.
This is equivalent to the existence of a Green’s function Gt [Pin95, Proposition 4.2.3,
p. 133]. Now such a function is Lt′-superharmonic for every t′ 6 t and this almost
directly implies the following result:
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Theorem 1.20 (Criticality) [Pin95, sections 4.3 and 4.11] For an adapted oper-
ator L, there is a principal eigenvalue τ ∈ [−∞,∞] such that

• for t < τ , the Green’s function Gt exists and there are many positive Lt-
superharmonic functions, and

• for t > τ , there is no globally defined positive Lt-superharmonic function.

• In the borderline case t = τ , for a finite τ , the Green’s function Gτ might or
might not exist, but in any case there is a globally defined positive Lτ -harmonic
function, unique up to multiplication with positive constants.

Hence weak coercivity of an adapted L amounts to τ > 0 and the operators Lt,
which are adapted (with shared constants for any bounded range of t-values), are
for t < τ even weakly coercive.

In examples, we are mostly concerned with Schrödinger operators of the form
L = −∆+V for a real-valued function V . Such an operator is adapted as soon as V
is Hölder-continuous and bounded. It is often comfortable to estimate the principal
eigenvalue of a Schrödinger operator with variational methods:

Theorem 1.21 (Characterisation of the Principal Eigenvalue) For an
adapted Schrödinger operator L = −∆ + V , the principal eigenvalue τ is given
as5

τ = inf
f∈C∞c (M)

∫
M

(
|∇f |2 + V f2

)
dV
/∫

M
f2 dV .

Proof. We denote the infimum by µ.
For a bounded domain D b M with smooth boundary, let λDL be the first

Dirichlet eigenvalue of L on D and uD the corresponding eigenfunction, positive
on D and vanishing on ∂D. For a positive Lτ -harmonic function u on M , Green’s
identity shows

(λDL − τ)
∫
D
uuD dV =

∫
D

(u(LuD)− uD(Lu)) dV

=
∫
∂D

(
−u∂uD

∂ν
+ uD

∂u

∂ν

)
dA

= −
∫
∂D

u
∂uD
∂ν

dA > 0 ,

where ∂
∂ν is the outer normal derivative, and hence λDL > τ . From the variational

characterisation of the first Dirichlet eigenvalue by the Rayleigh quotient,

λDL = inf
f∈C∞(D)
f |∂D≡0

∫
D

(
|∇f |2 + V f2

)
dV
/∫

D
f2 dV ,

we see that µ = infDbM λDL > τ .
5Here, V is the usual name for the “potential” in a Schrödinger operator and dV the usual

name for the volume measure on M , not integration with respect to V . We hope this is not too
confusing. Besides, V is usually called “potential”, but it is no L-potential in the sense of potential
theory, these concepts merely have similar origins in physics.
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Conversely, the existence of an Lt-superharmonic function for 0 < t < µ is com-
monly proven with Hilbert space methods [Anc87, Lemma 2], [KS80, section II.4]:
the Dirichlet form

at(u, v) :=
∫
M

(g(∇u,∇v) + (V − t)u v) dV

associated to the operator Lt is a symmetric bilinear form which continuously ex-
tends to the closure H1,2

0 (M) of C∞c (M) in the Sobolev space H1,2(M) of square-
integrable functions on M with square-integrable first derivatives. H1,2

0 (M) is a
Hilbert space with scalar product 〈u, v〉H1,2 =

∫
M (g(∇u,∇v) + u v) dV .

Now at is also a scalar product on H1,2
0 (M) (it is coercive) for 0 < t < µ: because

V is bounded from below, there is a c > 0 such that

at(f, f) > ‖f‖2H1,2 − (c+ t)‖f‖2L2 ,

and from the definition of µ, we have at(f, f) > (µ− t)‖f‖2L2 and hence(
1 + c+ t

µ− t

)
at(f, f) > ‖f‖2H1,2 .

Then we can apply the Riesz representation theorem to the functional ψ 7→∫
M φψ dV for a fixed function φ ∈ H1,2

0 (M) with φ > 0 to see that there is a
v ∈ H1,2

0 (M) with

at(v, ψ) =
∫
M
φψ dV for all ψ ∈ H1,2

0 (M).

In particular, v is a weak solution of the equation Lt v = φ and hence (a version
of v is) a classical solution by the remark after Definition 1.16 “adaptedness”. It is
nonnegative because for v− := min{0, v},

0 6 at(v−, v−) = at(v, v−) =
∫
M
φ v− dV 6 0 .

Since v satisfies Lt v = φ > 0, there is a H1,2-small perturbation of v that is
strictly positive and still Lt-superharmonic. Because t < µ was arbitrary, this
shows τ > µ.

Hence a Schrödinger operator L is weakly coercive if and only if∫
M
f Lf dV <

∫
M
f2 dV for every f ∈ C∞c (M).

1.2.4 Martin Boundary

In the same spirit as L-potentials can be represented by Green’s functions inte-
grated over Radon measures on M , there is a representation of positive L-harmonic
functions by Radon measures on an abstractly associated space ∂M(M,L), the Mar-
tin boundary. A priori, this is a purely potential theoretic object and there might
be additional peculiarities in the representation, but as a central result of chapter 2
we will see that the Martin boundary for a weakly coercive adapted operator on
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a Gromov hyperbolic manifold of bounded geometry can be canonically identified
with the Gromov boundary.

Here, we sketch the basic notions from Martin theory, see [Anc90], [Pin95, 7.1]
or [Hel69, Ch. 12] for detailed proofs.

Definition 1.22 (Martin Boundary) For a non-compact Riemannian manifold
M , a linear second order elliptic operator L on M with a minimal Green’s function
G : M ×M → (0,∞] and a basepoint o ∈ M , we consider the set S of sequences s
of points xi ∈M , i = 1, 2, . . . , such that

• s has no accumulation point in M , and

• Kxi := G(·,xi)
G(o,xi)

i→∞−→ Ks compactly, for some function Ks : M → (0,∞).

As a set, the Martin boundary ∂M(M,L) is the quotient of S modulo the relation
s ∼ s′ if Ks ≡ Ks′ . For ζ ∈ ∂M(M,L), this function is written Kζ and called
Martin function.

The Martin boundary does not depend on the choice of the basepoint o. The
Harnack inequality which we will prove in Theorem 2.5 and elliptic theory show
that each Kζ ∈ ∂M(M,L) is a positive L-harmonic function on M . This also shows
that the convex set SL(M) of positive L-harmonic functions u on M with u(o) = 1
is compact in the topology of compact convergence. In turn, ∂M(M,L) is a compact
subset of SL(M).

We topologise the space MM := M ∪ ∂M(M,L) using the topology of compact
convergence on the space of associated Martin functions {Ky | y ∈ M

M}, which
can be canonically identified with M

M. Then the usual topology is induced on
M ⊂ M

M, ∂M(M,L) is closed and M
M is compact. The space MM is called the

Martin compactification. It is easy to see that MM is metrisable, see [BJ06,
Ch. I.7] or [Hel69, Ch. 12] for further details.

To motivate the idea of Martin integrals we recall the following classical result,
see e.g. [Cho69, Ch. 6]:

Proposition 1.23 (Minkowski’s Theorem) Each point in a convex set K ⊂ Rn
is a convex combination of the extremal points of K.

The Martin integral representation is essentially an extension of this result
to the case of the convex set SL(M). The extremal elements of SL(M) form a subset
∂0

M(M,L) ⊂ ∂M(M,L) of the Martin boundary which can be seen as the vertices of
an infinite dimensional simplex spanning SL(M). A positive solution u of Lu = 0 on
M with u(o) = 1 is extremal if and only if u is a minimal solution in the following
sense: for any other solution v > 0, v 6 u, there is a constant c > 0 such that
v ≡ c · u. Therefore ∂0

M(M,L) ⊂ ∂M(M,L) is also called the minimal Martin
boundary.

The Choquet integral representations in [Cho69, Ch. 6] give the following general
version of the Martin representation theorem, see [Pin95, 7.1]:
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Figure 1.6: Minkowski’s Theorem in R2 (image from [KL18]).

Proposition 1.24 (Martin Integral Representation) For any positive solution
u of Lu = 0 on M , there is a unique Radon measure µu on ∂0

M(M,L), sometimes
called Martin measure of u, so that

u(x) =
∫
∂0

M(M,L)
Kζ(x) dµu(ζ) .

Conversely, for any Radon measure µ on ∂0
M(M,L),

uµ(x) =
∫
∂0

M(M,L)
Kζ(x) dµ(ζ)

defines a positive solution of Luµ = 0 on M .

Although this already looks like a classical contour integral, the result is not yet
truly satisfactory. Unlike the classical case, the boundary ∂0

M(M,L) depends not
only on the underlying space, but also on the analysis of the operator L. A natural
question is whether one could get rid of this dependence. In general the answer is
no, as the by no means exotic Examples 2.29 show. However, we will see that in our
case of weakly coercive adapted operators on Gromov hyperbolic spaces of bounded
geometry, this is actually possible. This is a remarkable particularity not even valid
for such simple spaces as in Example 2.27 “Ideal Boundaries of Hm ×Hn”.

1.3 Hyperbolic Unfoldings
A large source of Gromov hyperbolic manifolds are hyperbolic unfoldings of uni-

form spaces. The basic idea is that a bounded subspace (a domain or the regular
part of a minimal hypersurface) of a well-controlled space (Rn or a compact man-
ifold) may degenerate towards a complicated boundary, but on the scale of the
distance to this boundary, it might look less obscure. In this situation, one can
conformally deform with the inverse of the distance to the boundary to push all
difficulties towards infinity. For uniform spaces, this hyperbolic unfolding yields
indeed a Gromov hyperbolic space.

In this section, we will explain how geometric and analytic conditions and results
translate between uniform spaces and their hyperbolic unfoldings. This provides us
with a rich source of spaces and operators where can apply the results of chapter 2.

18



1.3.1 Generalised Distance Functions

The main ingredient for passing from uniform to Gromov hyperbolic spaces is
a function encoding the distance to the boundary. The most obvious candidate,
the actual distance to the boundary, has analytical shortcomings: it is Lipschitz
regular, but in general not even C1, e.g. for a ball in Rn. To facilitate the discussion
of regularisations and to later be able to include information about curvature in
such a function, we define:

Definition 1.25 (Generalised Distance Function) On an incomplete Rieman-
nian manifold M with metric boundary ∂M := M \M , a function đ : M → (0,∞)
is called a generalised distance function if

(i) it is L-Lipschitz for some L > 0: |đ(x)− đ(y)| 6 Ld(x, y) for x, y ∈M , and

(ii) đ(x)→ 0 for x→ ∂M .

A direct consequence of these properties is

đ(x) 6 L dist(x, ∂M) for any x ∈M .

Examples 1.26.

• We can always take the distance to the boundary đ(x) = dist(x, ∂M). It is
1-Lipschitz by the triangle inequality.

• For area-minimising hypersurfaces Hn ⊂ Mn+1 with singular set Σ (or more
generally, almost-minimisers with bounded generalised mean curvature), the
S-distance δ〈A〉 is a generalised distance function on H \ Σ. There are various
possible definitions, e.g.,

δ〈A〉(x) = sup{r > 0 | sup
Br(x)

|A| 6 r−1} ,

where |A| is the norm of the second fundamental form on H \ Σ. Besides the
distance to the boundary, it encodes information about the relative curvature
of H, giving more control. For more details, see [Loh18].

• Regularisations of these functions are again generalised distance functions, see
subsection 1.3.4.

1.3.2 Uniform Spaces and đ–Bounded Geometry

The path connectedness of an open set is a topological condition. For finer
geometric and analytic investigations one seeks for a quantitative form of path
connectedness. One of the nowadays central notions is described in the following
definition. We refer to [Aik12] for an instructive overview and comparison of other
regularity concepts in the context of Euclidean domains.

Definition 1.27 (Uniform Spaces) An incomplete Riemannian manifold M with
metric boundary ∂M := M \M and generalised distance function đ is called uni-
form (with respect to đ), or, more precisely, c-uniform, if there is a c > 1 such that
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any two points x, y ∈M can be joined by a c-uniform curve, that is a rectifiable
curve γ : [a, b] → M , for some a < b, with γ(a) = x and γ(b) = y, so that the
following conditions are satisfied:

• Quasi-geodesic: length(γ) 6 c d(x, y).

• Twisted double cones: min{length(γ|[a,t]), length(γ|[t,b])} 6 c đ(γ(t)) for
any t ∈ [a, b].

Note that being c-uniform is a scaling invariant condition: whenever M is c-
uniform, λM , for some λ > 0, is also c-uniform.
Examples 1.28. We start with some types of mostly Euclidean domains that are
uniform with respect to the distance to the boundary, see also Figure 1.7. Note that
the distance d is defined here as the infimum over the lengths of curves connecting
two points; for non-convex domains this is different from the restriction of the
Euclidean distance. In the context of Euclidean domains, uniformity in this metric
is sometimes called inner uniformity [Aik04].

• Any bounded domain with smooth or at least Lipschitz boundary is uniform.
More generally, the complement of finitely many compact embedded Lipschitz
submanifolds of arbitrary dimension in a closed Riemannian manifold is uni-
form with respect to the distance to these submanifolds. This follows from
[MS79, 2.14] (bi-Lipschitz invariance of uniformity) and [Väi88, Theorem 4.1]
(uniformity of bounded domains is a local property of the boundary).

• Non-compact rotationally symmetric domains bounded with profile functions
of at least linear growth are uniform. As an explicit example, choose f(t) =
c1 · t + c2, for constants ci > 0 and let F : Rn−1 → R, n > 3, be given by
F (x) := f(|x|). Consider the domain

Df := {(x1, .., xn) ∈ Rn | |x1| < F (x2, .., xn)}.

To explain the idea of how to define the quasi-geodesics and twisted double
cones joining, e.g., the pairs of points p±k = (0, ...0,±k), k > 1, we note that
for k = 1 we can choose any such twisted double cone ⊂ Df along a half circle
in the (n−1, n)-plane joining p−1 and p+

1 . Then the quasi-geodesic and twisted
double cone scaled by k serve for p−k and p+

k . Here it is essential that f grows
at least linearly to ensure that the twisted double cone remains in Df .

• Bounded domains with certain types of fractal boundaries, like the Koch
snowflake in R2 or the complement of the Sierpiński gasket in R3 [ALM03],
are uniform domains.

However, even seemingly harmless domains can be non-uniform:

• The difference of the cube (−1, 1)n ⊂ Rn and the unit ball in Euclidean space,
(−1, 1)n \B1(0) ⊂ Rn, is not a uniform domain, since we cannot reach points
arbitrarily near to the boundary point (0, . . . , 0, 1) ∈ ∂ ((−1, 1)n \B1(0)) by
twisted cones, for a common constant c > 0.
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Figure 1.7: Typical (non-)uniform domains (image from [KL18]).

• The cylinder Bn−1
1 (0)×R ⊂ Rn and similarly Bk

1 (0)×Rn−k ⊂ Rn, for 1 6 k 6
n− 1, are non-uniform. For the pairs of points p±i = (0, ...0,±i), i > 1, there
are only twisted double cones reaching from p+

i to p−i , for c = c(i) 6 1/i.

• Similarly, the domain R3 \ R× Z2 is not uniform.

• As in the earlier example of non-compact rotationally symmetric domains
Df , we can choose profile functions, but this time of sublinear growth like
f(t) = c1 ·

√
t+ c2, for constants ci > 0. Then, as in the last counterexample,

Df is non-uniform.
For area-minimisers, we have:

• Every area-minimising hypersurface is c-uniform with respect to δ〈A〉, for some
c > 0, which depends only on the dimension n in the case of area-minimisers
in Rn [Loh18, Proposition 2.7]. Blow-up limits (such as tangent cones) of
c-uniform area-minimisers are also c-uniform [Loh18, Corollary 2.11].

As an analogue of bounded geometry for hyperbolic spaces we consider a version
scaled by đ .
Definition 1.29 M has đ–bounded geometry if there are constants ε > 0, K >
0, such that for every x ∈ M , the injectivity radius of the exponential map at
x is at least εđ(x) and on the rescaled ball 1

đ (x)Bεđ (x)(x), −K 6 Sec 6 K (i.e.,
−K 6 đ2(x) Sec 6 K in the original metric).
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Examples 1.30.

• For domains in Rn this is trivially true with ε = 1
2 and K = 0.

• In closed manifolds, there are global bounds on injectivity radius and sectional
curvatures that also apply to subdomains.

• For area-minimisers H, curvature bounds on the surrounding space and the
crucial property |A| 6 1/δ〈A〉 give bounds on the sectional curvatures of H
using the Gauß equation. Regularity theory helps to get a bound on the
injectivity radius. For details see the proof of Proposition 3.4 on page 111 and
step 2.2 in the proof of Proposition B.1 on page 126 in [Loh18].

1.3.3 Quasi-Hyperbolic Geometry

On any incomplete manifold M with generalised distance function đ we can
define the quasi-hyperbolic metric

k(x, y) := inf
{∫

γ
1/đ

∣∣∣∣∣ γ : x y rectifiable
}

for x, y ∈M .

This corresponds to a conformal deformation of g to the merely Lipschitz continuous
Riemannian metric đ−2g. Note that for đ = dist(·, ∂M), the quasi-hyperbolic metric
is tailored to make the resulting space just complete.

The quasi-hyperbolic metric can be interpreted as a generalisation of the
Poincaré metric on the unit disc B1(0) ⊂ C, given by

ghyp =
( 2

1− r2

)2
gEucl

with r = d(·, 0). Asymptotically near the boundary, 2
1−r2 = 2

(1−r)(1+r) →
1

1−r =
1

dist(·,∂B1(0)) .
In general, the quasi-hyperbolic metric k does not have to be (Gromov) hyper-

bolic, but uniformity is a sufficient condition. In the case đ = dist(·, ∂M), this
was first proven by Gehring and Osgood for uniform domains in Euclidean space
[GO79] and later generalised to locally compact, rectifiably connected incomplete
metric spaces by Bonk, Heinonen and Koskela [BHK01, Theorem 3.6].

After rescaling with L, a generalised distance function always underestimates
the distance to the boundary, đ 6 L dist(·, ∂M). The resulting additional stretch-
ing when deforming with đ instead of dist(·, ∂M) might destroy hyperbolicity, see
[Loh18, Example 3.6.C3], but uniformity with respect to đ counteracts this phe-
nomenon since a smaller đ strengthens the condition. For area-minimising hyper-
surfaces with the S-distance δ〈A〉, Gromov hyperbolicity of the quasi-hyperbolic
metric is proven in [Loh18, Section 3.2]. This proof uses only axiomatically stated
properties of δ〈A〉 that are satisfied for our generalised distance function, and in-
spection of the proof shows that indeed the following is true:

Theorem 1.31 (Hyperbolisation of Uniform Spaces) If an incomplete man-
ifold M with L-Lipschitz generalised distance function đ is c-uniform with respect
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to đ, it is δ-hyperbolic in the quasi-hyperbolic metric, for some δ = δ(L, c) > 0.
Moreover, if (M,d) is bounded6, the metric boundary ∂(M,d) is naturally quasi-
symmetrically equivalent7 to the Gromov boundary ∂G(M,k) equipped with a canon-
ical quasi-metric.

Note that the metric boundary ∂(M,d) is determined using the metric comple-
tion of the inner metric on M , hence for domains in Euclidean space it may not be
identical to the topological boundary. E.g., for M = R2 \ {(x, 0) |x 6 0}, the metric
boundary is naturally isometric to two copies of {(x, 0) | x 6 0} glued at (0, 0).

Our version of đ–bounded geometry implies bounded geometry in the quasi-
hyperbolic metric:

Proposition 1.32 (Bounded Geometries) If an incomplete manifold M with
L-Lipschitz generalised distance function đ has đ–bounded geometry with constants
ε and K, the quasi-hyperbolic deformation (M,k) has (σ, `)–bounded geometry in
the sense of Definition 1.1 with constants σ = σ(L, ε) and ` = `(K).

Proof. We assume Lε < 1
2 , else make ε smaller. Then for a fixed x ∈M , the map

Id : (Bd
εđ (x)(x), k)→ (Bd

εđ (x)(x), đ−2(x)g)

(with radii measured in the metric d) is 2-bi-Lipschitz since (1 − Lε)đ(x) 6 đ 6
(1 + Lε)đ(x) on Bd

εd(x). But on this ball, the exponential map expx at x is a
diffeomorphism and the absolute sectional curvatures are bounded by K, hence
expx is `/2-bi-Lipschitz for some ` = `(K) by basic comparison estimates [Pet16,
Theorem 6.27]. For σ = ε/2, Bk

σ(x) ⊂ Bd
εđ (x)(x) and hence we have an `-bi-Lipschitz

chart for Bk
σ(x) with constants σ = σ(L, ε) and ` = `(K).

Generalised distance functions that are better adapted to the geometry of the
underlying space make it easier to obtain bounded geometry. E.g. in converging
sequences of almost-minimisers, the S-distance can detect singularities in the limit
space even if every other space is non-singular. But this behaviour makes them prone
to having regions with arbitrarily small δ〈A〉 that are far away from the boundary.
In the quasi-hyperbolic metric, this may yield regions that are “bubbling off” from
shortest paths to infinity, the space is no longer visual.

This behaviour can be suppressed if a generalised distance function is not far
away from being the distance to the boundary and the manifold is bounded:

Proposition 1.33 (Visual Unfolding) A bounded uniform manifoldM with gen-
eralised distance function đ < dist(·, ∂M) is visual in the quasi-hyperbolic metric,
with constant depending only on universal constants for the input data.

6For unbounded uniform spaces, there is a version of this result involving the one-point com-
pactification [Loh18, Theorem 3.17], but we will only be concerned with bounded uniform spaces.

7A homeomorphism f : (X, d) → (Y, d′) between quasi-metric spaces is a quasi-symmetry, if
there is a homeomorphism η : [0,∞) → [0,∞) such that

d′(f(x), f(y))
d′(f(x), f(z)) 6 η

(
d(x, y)
d(x, z)

)
for distinct points x, y, z ∈ X.
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Proof. The proof from [BHK01, p. 23] applies directly with obvious modifications
for đ � dist(·, ∂M) instead of đ = dist(·, ∂M).

Alternatively, the quasi-hyperbolic metric corresponding to đ can be reached
from the dist(·, ∂M)-quasi-hyperbolic metric (which is visual [BHK01, Theorem 3.6])
by a conformal deformation with conformal factor � 1. This is a quasi-isometry and
maps geodesics to quasi-geodesics which are in bounded distance from geodesics by
Proposition 1.5 “stability of geodesics”. Hence it preserves visuality.

Assumptions for an incomplete manifold and the resulting properties of the
quasi-hyperbolic unfolding can be summarised as follows:

Incomplete Manifold Hyperbolic Unfolding
đ–bounded geometry bounded geometry
uniform complete and Gromov hyperbolic
bounded and đ � dist(·, ∂M) visual

1.3.4 Natural Regularisation of Distance Functions

Since đ is merely Lipschitz continuous, but in most cases not smooth, (M,k)
is in general not a smooth Riemannian manifold. But this will be a problem when
considering differential operators on (M,k), in particular we need uniform bounds
on the coefficients of operators that involve second derivatives of đ . Thus we will
work with a regularised version of đ .

For the distance to the boundary, there is a well-controlled regularisation devel-
oped byWhitney, see [Ste70, VI.2.1, p. 171]. This construction utilises a Besicovitch-
style cover and was generalised to area-minimisers in [Loh18, Appendix B]. Unfor-
tunately, such a cover involves many choices and does not behave naturally under
limits or symmetries. With applications in blow-up limits and on highly symmetric
tangent cones in mind, we will present a more natural regularisation for arbitrary
generalised distance functions on manifolds of đ–bounded geometry. This approach
utilises mollifiers instead of coverings and is based on [Lie85] considering domains
in Rn. As in Whitney’s construction, the central idea to obtain the regularisation
ð(x) is to average đ over a neighbourhood of x that is small compared to đ(x). To
avoid the influence of the less regular parameter đ(x), we use in a Münchhausen-like
manner ð(x) in its stead.

The only choice is a non-increasing C∞-smooth function φ : [0, 1] → [0, 1] with
φ ≡ const near 0, φ ≡ 0 near 1 and

∫
Rn φ(|z|) dz = 1.

Theorem 1.34 (Natural Regularisation of Generalised Distance Func-
tions) Let Mn be an incomplete manifold with L-Lipschitz generalised distance
function đ and of đ–bounded geometry with constants ε and K. If we set

I(x, α) :=
(
L

α

)n ∫
M

đ(y)φ(Ld(x, y)/α) dV (y) for α > 0 , (1.2)

then there is an ε0 = ε0(ε,K) > 0 such that for every 0 < ε̂ < ε0, the equation
ð(x) = I(x, ε̂ð(x)) has a unique solution ð with the following properties:

(i) ð : M → (0,∞) is a C∞-smooth Lipschitz function with ð → 0 at ∂M .
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(ii) ð � đ.

(iii) The partial derivatives of ð in normal coordinates around x ∈M satisfy∣∣∣∣∣∂βð∂xβ

∣∣∣∣∣ (x) 4n,L,φ,ε̂,β ð1−|β|(x)

for any multiindex β.

For the proof, we need the following technical consequence of đ–bounded geom-
etry:

Lemma 1.35 (Volume Bounds) On a manifold of đ–bounded geometry with con-
stants ε and K, there is a 0 < ε′(K, ε) 6 ε such that on every ball Bε′đ (x)(0) ⊂ TxM
in normal coordinates around x, the function

√
| det g| is L′/đ(x)-Lipschitz for an

L′ = L′(K) > 0.

Proof. On the rescaled ball đ(x) · Bε′đ (x)(x), sectional curvatures are absolutely
bounded by K, hence we can apply basic comparison estimates, e.g. [Pet16, Chap-
ter 6.5, Theorem 27], to get estimates on derivatives of gij in normal coordinates,
and hence on derivatives of

√
| det g|, on a sufficiently small ball.

Proof of Theorem 1.34 “natural regularisation of generalised distance functions”.
We start by investigating the integral I(x, α). Note that the properties of đ
imply dist(x, ∂M) > đ(x)/L. I is C∞ on {(x, α) ∈ M × (0,∞) | α < ε′đ(x)}
(with ε′ from the preceding Lemma) because the integrand has support in
Bα/L(x) ⊂ Bđ (x)/2L(x) ⊂ Bdist(x,∂M)/2(x) b M , ð is continuous there, d(x, y) is
C∞-smooth away from the diagonal x = y and φ is constant near 0.

For a fixed x ∈M , we can write in normal coordinates

I(x, α) =
(
L

α

)n ∫
TxM

đ(expx(y))φ(L |y|/α)
√
| det g(y)| dy

=
∫
TxM

đ(expx(zα/L))φ(|z|)
√
| det g(zα/L)| dz

with substitution z = Ly/α. From this last expression, we can see I(x, α) → đ(x)
for α→ 0 and hence set I(x, 0) := đ(x).

We can assume for simpler notation that L′ = L for the Lipschitz constant from
Lemma 1.35 “volume bounds”, else we increase one of the constants. Then Lipschitz
estimates on đ and from the Lemma imply

|I(x, α)− I(x, β)| 6
∫
TxM

L
|z|
L
|α− β|φ(|z|)

√
| det g(zα/L)| dz

+
∫
TxM

đ(expx(zβ/L))φ(|z|) L

đ(x)
|z|
L
|α− β| dz

6
∫
TxM
|z| |α− β|φ(|z|) (1 + |z|α) dz

+
∫
TxM

(
1 + |z| βđ(x)

)
φ(|z|) |z| |α− β| dz

6 4|α− β| .
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Hence for 0 < ε̂ < min{ε′/2, 1/8}, the map γ 7→ I(x, ε̂γ) is a 1
2 -contraction for every

x, i.e.,
|I(x, ε̂α)− I(x, ε̂β)| 6 1

2 |α− β| for α, β ∈ [0, 2đ(x)],

and it maps [0, 2đ(x)] to itself because

|I(x, ε̂γ)− đ(x)| = |I(x, ε̂γ)− I(x, 0)| 6 1
2γ 6 đ(x) for γ ∈ [0, đ(x)].

Thus by the Banach fixed-point theorem, there is a unique ð(x) ∈ [0, 2đ(x)] with
ð(x) = I(x, ε̂ð(x)). ð is smooth in x by the implicit function theorem.

From the contraction property, we also see

|ð(x)− đ(x)| = |I(x, ε̂ð(x))− I(x, 0)| 6 1
2ð(x)

and hence
1
2ð(x) 6 đ(x) 6 3

2ð(x) .

Furthermore, from (1.2),

|I(x, α)− I(y, α)| 6
(
L

α

)n ∫
M

đ(z) |φ(Ld(x, z)/α)− φ(Ld(y, z)/α)| dV (z)

6 (supφ′)L
α
d(x, y)

(
L

α

)n ∫
Bα/L(x)∪Bα/L(y)

đ(z) dV (z)

6 3 Vol(B1(0) ⊂ Rn)(supφ′)L
α
d(x, y) max{đ(x), đ(y)} .

This implies

|ð(x)− ð(y)| 6 |I(x, ε̂ð(x))− I(y, ε̂ð(x))|+ |I(y, ε̂ð(x))− I(y, ε̂ð(y))|

6 3 Vol(B1(0) ⊂ Rn)(supφ′) L

ε̂ð(x)d(x, y) max{đ(x), đ(y)}

+ 1
2 |ð(x)− ð(y)|

and hence by switching the roles of x and y

|ð(x)− ð(y)| 4n,φ,L,ε̂ d(x, y) .

This implies the asserted derivative estimate for |β| = 1. For higher |β| one proceeds
similarly. Note that every differentiation of (1.2) produces an additional factor of
1/α which determines the asymptotics ð1−|β|(x).

Remarks 1.36.

• By choosing smaller ε̂, the quotient of ð and đ can pushed arbitrarily near to
1, but the derivative estimates become worse.

• On large scales, e.g. for d(x, y) > max{ð(x), ð(y)}, comparison with đ shows
that ð is (L+ 1)-Lipschitz, even for small ε̂.
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1.3.5 Operators on Uniform Spaces

Quasi-hyperbolic metrics can be used to understand the potential theory on
uniform manifolds by transferring it to Gromov hyperbolic manifolds. Since there
are examples of non-uniform domains which carry a rather complicated potential
theory, this correspondence also gives us non-hyperbolic manifolds of bounded ge-
ometry with a much less transparent Martin theory than in the hyperbolic case.

In this section, we consider incomplete manifolds M with a smooth generalised
distance function ð as produced by Theorem 1.34 “natural regularisation of gener-
alised distance functions”. In particular, we will make use of the bounds in point
(iii) of the theorem.

A uniformly elliptic second-order operator L on (M, g) is in general not adapted
with respect to the quasi-hyperbolic metric g′ = ð−2g because the coefficients mea-
sured in the new metric degenerate towards ∂M . This can be mitigated by consid-
ering a transformed operator L′ with natural bijections between the spaces of L-
and L′-harmonic functions. Ancona proposed the operator ð2L, which has the same
harmonic functions as L, but for symmetric operators L, ð2L it is not symmetric
anymore. Ancona’s requirements for L might be a little more general, but as our
main examples are Schrödinger operators of the form L = −∆+V for smooth func-
tions V , we prefer to use a h-transform [Pin95, Section 4.1] of the operator ð2L,
given by

L′v = h−1ð2L(h · v) = ð
n+2

2 L(ð−
n−2

2 v) with h = ð−
n−2

2 .

A function u is L-harmonic if and only if ð
n−2

2 u is L′-harmonic. For symmetric
operators L, the operator L′ is again symmetric with respect to the metric g′ since∫

M
uL′v dV ′ =

∫
M
u ð

n+2
2 L(ð−

n−2
2 v) ð−ndV =

∫
M
L
(
ð−

n−2
2 u

)
ð−

n−2
2 v dV

for test functions u, v ∈ C∞c (M), where dV ′ = ð−ndV is the volume measure
associated to g′.

If G is a Green’s function for L with respect to dV , a Green’s function of L′
with respect to dV ′ is given by

G′(x, y) = ð
n−2

2 (x) ð
n−2

2 (y)G(x, y)

because then

L′
∫
M
G′(·, y)u(y) dV ′(y) = ð

n+2
2 L

∫
M

ð
n−2

2 (y)G(·, y)u(y) ð−n(y) dV (y)

= ð
n+2

2 u ð−
n+2

2 = u

for any u ∈ C∞c (M).
One could find precise conditions on L in order for L′ to be an adapted operator

by translating the requirements and using the bound (iii) from Theorem 1.34 “nat-
ural regularisation of generalised distance functions”, but we will content ourselves
with the following class of operators:
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Lemma 1.37 (Schrödinger Operators) If L = −∆ + V with |V | 4 ð−2 is a
Schrödinger operator on a manifold (M, g) of ð–bounded geometry, then L′ is a
Schrödinger operator on (M, g′ = ð−2g) with bounded potential term and hence
adapted.

Proof. Under conformal deformation g′ = ð−2g, the Laplacian transforms as [Bes87,
Theorem 1.159 j)]

−∆g′v = ð2(−∆gv + (n− 2)g(∇ ln ð ,∇v)) .

On the other hand, the transformed operator associated to −∆g is given by

−∆′v = −ð
n+2

2 ∆g(ð−
n−2

2 v)

= −ð
n+2

2 divg
(
ð−

n−2
2 ∇v + (∇ð−

n−2
2 )v

)
= −ð2∆gv − 2ð

n+2
2 g(∇ð−

n−2
2 ,∇v)− ð

n+2
2 (∆gð−

n−2
2 )v

= −ð2∆gv + (n− 2)ð2g(∇ ln ð ,∇v)− ð
n+2

2 (∆gð−
n−2

2 )v

=
(
−∆g′ − ð

n+2
2 (∆gð−

n−2
2 )
)
v .

Thus a Schrödinger operator L = −∆g + V is mapped to

L′ = −∆g′ + ð2 ·
(
V − ð

n−2
2 (∆gð−

n−2
2 )
)
.

The potential term is bounded by the assumption on V and property (iii) from
Theorem 1.34 “natural regularisation of generalised distance functions” with |β| =
0, 1, 2.

A short calculation shows that the operator L′ is weakly coercive if and only if
the operator L satisfies the following condition:
Definition 1.38 (Strong Barrier) L admits a ð-strong barrier if there are a
function s > 0 on M and an ε > 0 such that

Ls > ε ð−2 s .

Analogous to the unfolded case in subsection 1.2.3, the weighted principal eigen-
value λð

L of L is the largest such ε and for Schrödinger operators we have the
variational characterisation

λð
L = inf

f∈C∞c (M)

∫
M

(
|∇f |2 + V f2

)
dV
/∫

M
f2 ð−2 dV .

This follows from translating the characterisation of the principal eigenvalue 1.21.
Hence for Schrödinger operators, strong barrier is equivalent to a so-called Hardy
inequality ∫

M
f Lf dV 4

∫
M
f2 ð−2 dV for every f ∈ C∞c (M).

Example 1.39 (regularity versus strong barrier). The Laplace operator on bounded
domains with smooth or Lipschitz boundary always admits a strong barrier
[Anc86, KK66]. For more general domains, the strong barrier condition is not a
consequence of uniformity but of additional exterior conditions. An exterior twisted
cone condition is sufficient [Aik12].
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Chapter 2

Potential Theoretic Results

In this chapter, we present Ancona’s potential theory for weakly coercive oper-
ators on Gromov hyperbolic manifolds of bounded geometry [Anc87, Anc90] with
complete proofs. The main result is Ancona’s boundary Harnack inequality 2.21
which will be used to identify the potential theoretic Martin boundary with the
Gromov boundary. Ancona’s original article [Anc87] was conceived as a generalisa-
tion of work of Anderson and Schoen on Cartan–Hadamard manifolds [AS85] and
still primarily focuses on those while we will directly approach the more general case
of Gromov hyperbolic manifolds.

Another valuable source are the comprehensive French lecture notes [Anc90].
They point out connections to heat kernels and stochastic processes such as Brow-
nian motion and introduce potential theory on graphs. We try to give a more
streamlined account of (nearly) everything needed to arrive at the central for later
use. As a byproduct, we carefully keep track of all involved constants to show
that the quantitative results depend only on a set of universal constants, not on
the explicit manifold or operator under consideration. This is useful for blow-up
arguments such as in [Loh20a, Loh20b] where these constant can be shared among
sequences and limit spaces.

Apart from some details in the presentation, the only completely new result in
this chapter is the ray expansion in section 2.4 which expresses a harmonic function
along a geodesic ray in terms of the Green’s function along this ray and the corre-
sponding Martin measure of balls around the endpoint of this ray on the boundary
at infinity. The sections 2.1 to 2.3 and 2.5 previously appeared in the preprint
[KL18] by J. Lohkamp and the author.

2.1 Local Maximum Principles and Harnack Inequali-
ties

We derive estimates for positive solutions and Green’s functions of the shifted
adapted operators Lt = L− t on uniformly sized balls BR := Bσ/` := Bσ/`(0) ⊂ Rn
in bounded geometry charts. For notational convenience, in this section, all balls are
measured in the Euclidean distance. The required assumptions on Locally defined,
Adapted operators with a Green’s function will be called
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Assumption (LAG) We say that a second-order operator L on BR(0) ⊂ Rn sat-
isfies assumption (LAG) for R > 0, k > 0, β ∈ (0, 1] and n > 2 if

• L is (k, β)-adapted on BR(0) (Definition 1.16) and
• there is a Green’s function for L on BR(0) (subsection 1.2.1).

Later all results can be transferred to a manifold of bounded geometry using the bi-
Lipschitz charts with only a loss in constants. Weak coercivity will not yet be used
explicitly, but the results and estimates apply to all operators Lt with 0 6 t < τ ,
where the constants now depend on τ as well (via k), but not on t.

2.1.1 Maximum Principles

Contrary to the usual statement, the following version of the weak maximum
principle does not require positivity of the “potential” term c in L (see Definition 1.16
“adaptedness”). Instead the existence of a Green’s function (or equivalently, a
positive L-superharmonic function) is sufficient, but the result is weaker. It can
easily be obtained from the version for c > 0 using the h-transform, see [Pin95],
where the sign convention for L is different from ours.

Theorem 2.1 (Local Minimum-Zero Principle) [Pin95, Theorem 3.2.2, p. 81]
If L satisfies assumption (LAG), u is continuous on BR, L-superharmonic on a
domain D b BR and u|∂D > 0, then u > 0 in all of D.

With help of the uniform bounds on the coefficients, this can be upgraded to
quantitative bounds in terms of the boundary values.

Lemma 2.2 (Local Almost-Maximum Principle) If L satisfies (LAG), there
are constants 0 < ram < R and m > 0 depending only on k and n, such that any
L-subharmonic function u on Br, r < ram, with u|∂Br 6 m satisfies u 6 1 on Br.

Proof. In polar coordinates, L applied to a radial function f(r) can be written as

Lf = −αf ′′(r) + α− tr a
r

f ′(r) + bf ′(r) + cf(r)

with k−1 6 α := aij(x)xixj
r2 6 k, nk−1 6 tr a 6 nk and |b|, |c| bounded by k.

Consider the function f(r) = 1 − βr2 with a constant β > 0 to be fixed later.
We want to have the following properties:

• Lf > 0 for r < ram,

• f 6 1, and

• f |∂Br > f(ram) =: m for r < ram.

Only the first property is non-obvious and we need to tune the parameters ram and
β to achieve it. We estimate

Lf = 2β tr a− 2b β r + c(1− βr2) > 2βnk−1 − 2βkr − k − kβr2 .
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Hence we can find a large β and a small ram only depending on k and n such that
Lf > 0 and f(r) > 0 for r 6 ram.

Now we can apply the local minimum-zero principle 2.1 to f −u, because L(f −
u) > 0 and (f − u)|∂Br > 0. This yields u 6 f 6 1 on Br.

With completely different methods we can see that Green’s functions behave for
small distances like the Euclidean Green’s function

GEucl(x, y) = Φ(|x− y|) :=

−
1

2π log |x− y| , if n = 2
1

(n−2)ωn
1

|x−y|n−2 , if n > 3

with ωn = VolSn−1.

Lemma 2.3 (Local Bound for Some Green’s Function) For L satisfying
(LAG) there are constants rgb > 0, q̃ > 1 depending only on k and n and some
(not necessarily minimal) Green’s function G̃(x, y) such that

q̃−1Geucl(x, y) 6 G̃(x, y) 6 q̃ Geucl(x, y) for x, y ∈ Brgb .

Proof. We sketch the argument for aij = δij and n > 3. The general case is merely
notationally more involved and can be found in [Mir70, pp. 61–63].

As distributions, we have LxGEucl(x, y) = δ(x − y) + R(x, y), where δ is the
Dirac delta function and R(x, y) has a singularity at x = y of order O(r−(n−1)).
This means that we can choose rgb > 0 so that

∫
Brgb
|R(x, y)| dy < 1/2 for x ∈ Brgb

because the integral scales as O(rgb) and all involved constants depend only on the
bound k on the coefficients. This in turn implies the finiteness of all iterates Ri
where the product of kernels S, T is defined as (ST )(x, y) =

∫
Brgb

S(x, z)T (z, y) dz.
The bound ensures also the summability of

G̃ := GEucl

∞∑
i=0

(−R)i ,

again as products of kernels. Application of L yields

LG̃ = (δ +R)
∞∑
i=0

(−R)i =
∞∑
i=0

(−R)i −
∞∑
i=1

(−R)i = δ ,

so that G̃ is indeed a Green’s function. G̃ − GEucl has a singularity at x = y of
quantitatively lower order than GEucl, hence the explicit bounds.

Corollary 2.4 (Local Bound for the Minimal Green’s Function) If L fulfills
(LAG), there are constants q > 0 and 0 < rmgbi < rmgbo := min(ram, rgb) depending
only on k and n such that the minimal Green’s function g(x, y) of Brmgbo (i.e.,
vanishing on the boundary ∂Brmgbo) satisfies

q−1Geucl(x, y) 6 g(x, y) 6 q Geucl(x, y) for x, y ∈ Brmgbi .
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Proof. For fixed y ∈ Brmgbo/2, g can be represented as g(x, y) = G̃(x, y)−u(x) where
u is the solution of the Dirichlet problem Lu = 0 in Brmgbo and u(x) = G̃(x, y) on
∂Brmgbo . By the local bound for some Green’s function 2.3 we know

u(x) 6 q̃ Φ(|x− y|) 6 q̃ Φ(rmgbo/2) for x ∈ ∂Brmgbo .

Thus we can apply the local almost-maximum principle 2.2 to get u 6
q̃ m−1Φ(rmgbo/2) on Brmgbo , whence

g(x, y) > q̃−1Geucl(x, y)− q̃ m−1Φ(rmgbo/2) for x ∈ Brmgbo .

From this equation, q > q̃ and rmgbi can be determined to obtain the lower bound.
For the upper bound, note that G̃ is positive and thus g 6 G̃ by the local minimum-
zero principle 2.1 applied to u.

2.1.2 Harnack Inequalities

This standard result can be found e.g. in [GT98, Theorem 8.20], but we include
a proof here because it is an easy consequence of the previous results.

Theorem 2.5 (Harnack Inequalities) For L satisfying (LAG), there is an
H(k, n,R) > 1 such that if u > 0 is L-harmonic on Br(x0) ⊂ BR, for some
0 < r 6 R, then

H−1u(x0) 6 u(x) 6 Hu(x0) for any x ∈ Br/2(x0) .

Proof. We start with the case r 6 rmgbi.
The L-potential RBr(x0)

u (on the total space Brmgbo) can be represented as
RBr(x0)
u = g(µu) for some positive measure µu with support in ∂Br(x0). On Br(x0),
RBr(x0)
u coincides with u and we have u = g(µu). Now for y ∈ Br/2(x0), we can apply

both estimates from Corollary 2.4 “local bound for the minimal Green’s function”
to get

u(y) =
∫
∂Br(x0)

g(y, z) dµu(z) 6
∫
∂Br(x0)

q Φ(r/2) dµu(z)

6 2n−2q2
∫
∂Br(x0)

g(x0, z) dµu(z) = 2n−2q2 u(x0) .

The other inequality is analogous.
For the case of larger r, we can employ the Harnack chains introduced in Defi-

nition 1.13 with radius rmgbi. With every ball the estimate collects the constant for
that case, but the total number of balls needed is bounded from above by a constant
multiple of R/rmgbi, so we can just use the resulting power of 2n−2q2 as H in every
case.

The Harnack chain tactic just demonstrated will be used very frequently in the
rest of this thesis, sometimes implicitly, to get estimates in controlled distances or
interpolate known estimates for discrete larger distances. Applied alone for larger
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distances, the Harnack inequalities provide exponential bounds (with fixed con-
stants) for the growth or decay of L-harmonic functions—that is not especially
satisfying, but a good starting point for improvement.

This Harnack inequality always needs a little more space around the balls where
it holds, but for instance on bounded domains, it would be useful to have a similar
result near points on the boundary. A blueprint is the following classical result.

Theorem 2.6 (Boundary Harnack Inequality on a Disc) [Kem72] There exist
constants A, C > 1 such that for any point ξ ∈ ∂B1(0) ⊂ R2 and 0 < R < 1 the
following is true: for any two harmonic functions u, v > 0 (with respect to the
Laplacian) on BA·R(ξ) ∩B1(0) that vanish along BA·R(ξ) ∩ ∂B1(0),

u(x)
v(x) 6 C

u(y)
v(y) for all x, y ∈ BR(ξ) ∩B1(0) .

In the non-boundary version, the appearance of another function v is obscured
by the fact that the constant function 1 is (nearly) harmonic. Furthermore, the
restriction to functions vanishing on the relevant part of the boundary is unavoid-
able, yet in combination with balayage techniques there are powerful applications
as we will see after the proof of a much more general boundary Harnack inequality
in subsection 2.3.2.

2.2 Global Results from Resolvent Equations and
Bounded Geometry

Now we use that our manifold M has Bounded geometry and L is Adapted and
weakly Coercive, more precisely:

Assumption (BAC) We say that the pair (M,L) satisfies assumption (BAC) for
σ > 0, ` > 1, k > 0, β ∈ (0, 1], n > 2 and τ > 0 if L is a differential operator
on a connected complete noncompact Riemannian manifold Mn such that

• M is of (σ, `)–bounded geometry (Definition 1.1),
• L is (k, β)-adapted in the bounded geometry charts (Definition 1.16), and
• L is weakly coercive with principal eigenvalue τ =: 2θ (Definition 1.19).

This gives us global growth estimates for the minimal Green’s function G of L.
The basic idea is to combine the local estimates we derived in the last chapter with
the resolvent equation for Green’s functions viewed as operators.

While bounded geometry and adaptedness of L allow to carry over all results
from section 2.1 with constants now depending on k, n, σ, ` and τ as explained in the
beginning of that section, the weak coercivity assumption is the most important new
ingredient in this section. Note that we do not yet make use of Gromov hyperbolicity.

2.2.1 Resolvent Equation

For a closed operator L defined on a dense set of a Banach space, the set %(L)
of all λ ∈ R such that the resolvent Rλ = (L − λ)−1 exists and is continuous is
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typically called the resolvent set. %(L) is known to be an open set. For λ, µ ∈ %(L)
we have the resolvent equation

Rλ ◦Rµ = (λ− µ)−1 · (Rλ −Rµ).

One of the main applications of this identity in the context of elliptic operators
is the comparison of solutions of Rλw = 0 with those of Rµw = 0. We will use this
idea in the special case of the minimal Green’s functions Gt corresponding to the
operators Lt = L − t on M , viewed as resolvents. We include the simple proof of
the resolvent equation in our context and note some of its consequences.

Lemma 2.7 (Resolvent Equation) Assume (M,L) satisfies assumption (BAC).
For any 0 6 t < τ , the minimal Green’s function Gt, viewed as an operator on the
space of positive Radon measures µ with Gtµ <∞, satisfies

Gt = G+ t ·G ◦Gt .

Since all involved operators are positive, this yields the inequalities

G 6 Gt and (2.1)

G ◦Gt 6 1
t
Gt . (2.2)

In particular, these results hold in the cases of characteristic functions of bounded
measurable sets or Dirac measures.

Proof. Consider an increasing sequence of relatively compact, smoothly bounded
open sets (Ui) with ⋃Ui = M . On each Ui, the corresponding Dirichlet Green’s
function Gi (i.e., Gi(·, y)|∂Ui ≡ 0) satisfies the resolvent equation in the form

Gi(x, y) = Gti(x, y)− t
∫
Ui

Gi(x, z)Gti(z, y)dz

because the right-hand side fulfills the properties of a Green’s function (application
of L yields δy) and has the correct boundary behaviour. To see that the integral
is finite for x 6= y, notice that any Green’s function is integrable near its pole by
the same arguments as in the proof of Corollary 2.4 “local bound for the minimal
Green’s function”.

For i → ∞, the Gi and Gti converge to G and Gt, respectively, uniformly on
compact sets away from the pole because they are increasing and bounded from
above by the minimal Green’s function. The same is true if the first argument is
fixed because then one has the Green’s function for the adjoint operator. Hence the
equation survives in the limit i→∞.

By integration and Fubini’s theorem one obtains the resolvent equation for ar-
bitrary Radon measures µ, as soon as Gtµ <∞ (and thereby Gµ <∞).

Recall from section 1.2 that unlike Lt, for t < τ , the operator Lτ is no longer
weakly coercive. In turn, we observe from (2.2) that using resolvents loses its
strength when t approaches 0. This suggests to work with Lθ, for

θ := τ/2.
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Figure 2.1: Constructions in the proof of Proposition 2.8 “bound for the Green’s
function”. Along the dashed lines, we use Harnack chains.

2.2.2 Behaviour of Green’s Functions

We combine the resolvent equation with Harnack inequalities 2.5 to derive
growth estimates of minimal Green’s functions.

Proposition 2.8 (Bound for the Green’s Function) Given (M,L) satisfying
(BAC), there is a constant c1(σ, `, k, n, τ ) > 1 such that for the minimal Green’s
function of L,

c−1
1 6 G(x, y) if d(x, y) 6 σ, and

G(x, y) 6 c1 if d(x, y) = σ .

Proof. The lower bound is directly obtained from the local bound for the minimal
Green’s function 2.4, because we have G(·, y) > g(·, y) for any Green’s function g
on a smaller domain, and iterated application of the Harnack inequalities 2.5 along
a Harnack chain of length depending only on σ, ` and rmgbi.

For the upper bound, the strategy is to first obtain any localised bound and
then transfer it to two given points using Harnack chains. To this end, we apply
the resolvent equation 2.7 to the characteristic function χB of an arbitrary ball B
with radius σ/3 (see Figure 2.1) and integrate the result over B to see

0 6
∫
M
χBG(χB) =

∫
M
χBG

θ(χB)− θ
∫
M
χBG(Gθ(χB))

=
∫
M

[χB − θG∗(χB)]Gθ(χB) (2.3)

using Fubini’s theorem. Recall that G∗ denotes the Green’s function for the adjoint
operator L∗.

Note that all appearing integrals are in fact finite because for an arbitrary point
z with dist(z,B) = σ/3,

Gθ(χB) =
∫
B
Gθ(·, ζ)dζ 6 c1

∫
M
Gθ(·, ζ)G(ζ, z)dζ 6 c1

θ
Gθ(·, z)

by the lower bound 1 6 c1 ·G(ζ, z) and (2.2), and Gθ(·, z) is bounded on B.
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From (2.3), we infer the existence of an x′ ∈ B with (χB − θG∗(χB)) (x′) > 0
and therefore ∫

B
G(ζ, x′)dζ = G∗(χB)(x′) 6 1/θ .

Using the triangle inequality, we can find another ball B′ ⊂ B of radius σ/9, such
that B′ ∩ Bσ/9(x′) = ∅. Obviously

∫
B′ G(ζ, x′)dζ 6

∫
B G(ζ, x′)dζ 6 1/θ and hence

there is an x′′ ∈ B′ with
G(x′′, x′) 6 1/(θVolB′) .

By the bounded geometry assumption, VolB′ is bounded from below by a constant
depending only on σ, ` and n. The result is a universal upper bound on G(x′′, x′)
for two points with distance at least σ/9 in an arbitrary ball B.

To get an upper bound for any two points x, y ∈M with d(x, y) = σ, we choose
a ball B in between and connect x and x′′ by a Harnack chain in sufficiently large
distance from x′, and analogously for y and x′. Along these chains we can apply
Harnack inequalities for the operators L and L∗ respectively. Bounded geometry
shows that these chains can be chosen in such a way that the length depends only on
σ and `, thus we obtain an upper bound G(x, y) 6 c1 with c1 = c1(σ, `, k, n, τ ).

Note that we could now easily get more explicit growth estimates for G near the
pole by comparison with the local bound for the minimal Green’s function 2.4, but
for the following these coarse estimates are sufficient.

2.2.3 Relative Maximum Principles

We start with an elementary comparison result which already visualises the
primary effect of weak coercivity: with the same boundary conditions, L-harmonic
functions sag compared to Lθ-harmonic functions. Imagine a rope1 or a rubber
blanket where you apply less and less tension. To see this, we start with a paraboloid
that fits in between.

Lemma 2.9 Under the local assumptions (LAG), there is a constant m(R =
σ/`, k, n) > 0 such that we can find a smooth function f defined on BR/2(0) with

f(0) = −m, f |∂BR/4(0) > 0 and Lf > −1 .

Proof. In polar coordinates, L applied to a radial function f(r) can be written as

Lf(r) = −af ′′(r) + b

r
f ′(r) + cf(r)

with functions a, b, c bounded by a constant depending only on k, n and R.
With the ansatz f(r) = s(r2 − %) we have Lf(r) = −2as+ 2bs+ cs(r2 − %) and

first choose % > 0 sufficiently small to assure f > 0 outside of BR/4(0) and then
make s > 0 small to achieve Lf > −1. This only uses the bounds on coefficients
such that f(0) = −s% =: −m < 0 depends only on k, n and R.

1This analogy is quite precise, a suspended rope forms a hyperbolic cosine, a solution of the
shifted one-dimensional Laplace equation.
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Proposition 2.10 (Relative Maximum Principle, Local Version) Under as-
sumption (LAG) for L and Lθ = L − θ, assume further we have two functions u
and ū > 0 on BR = BR(0), u L-subharmonic (Lu 6 0) and ū Lθ-harmonic on BR
with ū|∂BR/4 > u|∂BR/4. Then there is a constant η̃ = η̃(R, k, n, τ ) ∈ (0, 1) such that

u(0) 6 η̃ ū(0) .

Proof. Consider the function h(z) := ū(z) + θf(z) infw∈BR/4 ū(w) − u(z) on BR/4
where f is the function from the previous lemma. On BR/4, we have Lū = Lθū+θū >
θū, Lf > −1 and therefore

Lh(z) > θ

(
ū(z)− inf

w∈BR/4
ū(w)

)
> 0 .

The boundary condition together with f |∂BR/4 > 0 yields h|∂BR/4 > 0 and we can
apply the local minimum-zero principle 2.1 for L to see h > 0 in the interior of BR/4
and especially h(0) > 0, with f(0) = −m we have

u(0) = ū(0)−mθ inf
w∈BR/4

ū(w) 6 (1−mθH−1)ū(0) .

The harmonicity on the full ball BR was used only in the last step to apply the
Harnack inequalities 2.5.

Applied globally, this describes the relative growth of L-harmonic versus Lθ-
harmonic functions.

Proposition 2.11 (Relative Maximum Principle, Global Version) If (M,L)
satisfies (BAC), there is a constant η = η(σ, `, k, n, τ ) ∈ (0, 1) such that the following
holds:

Assume we have two functions u and ū > 0 defined on Br+3(x) for some x ∈
M and r > σ, u L-subharmonic and ū Lθ-harmonic on Br+3(x) and ū|∂Br(x) >
u|∂Br(x). Then

u(x) 6 ηrū(x) .

Proof. For integer multiples r of σ/4`, this is proven by inductively applying the
local version in adapted charts along a chain of intersecting balls of length propor-
tional to r/(σ/`). On each of them we may apply the same Harnack inequality as
described in the proof of 2.8 above, so that we can choose η as a function of σ, `,
H and η̃.

For Green’s functions, we get the following variants. We do not use them in the
following arguments but they are worth being mentioned since they give some non-
trivial constraints on the Green’s functions from our standard assumption (BAC).

Corollary 2.12 (Exponentially Stronger Decay) Under assumptions (BAC),
there are constants A(σ, `, k, n, τ ) > 0 and α1(σ, `, k, n, τ ) > 0 such that

G(x, y) 6 A e−α1d(x,y)Gθ(x, y) ∀x, y ∈M .

From this we get the following growth estimate for Green’s functions using the
resolvent equation.
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Proposition 2.13 (Exponential Decay) Under assumptions (BAC), for suitable
constants B(σ, `, k, n, τ ) > 0 and α2(σ, `, k, n, τ ) > 0 we have

G(x, y)G(y, x) 6 B e−α2d(x,y) for d(x, y) > 2σ .

Proof. Let x′ ∈ M such that d(x, x′) = σ. Then employing the resolvent equation
2.7 we have

G(x, y)G(y, x) 6 G(x, y)H3G(y, x′) 6 H5

Vol(Bσ/2(y))

∫
Bσ/2(y)

G(x, z)G(z, x′)dz

6 c
∫
M
G(x, z)G(z, x′)dz

(2.1),(2.2)
6

c

θ
Gθ(x, x′) 6 ccθ1

θ

where we used the Harnack inequalities 2.5 for L∗ and the bound for the Green’s
function 2.8 applied to Lθ which itself satisfies the assumptions, but it may lead to
a weaker constant cθ1.

For the very same reason, we can do all of the above with Gθ instead of G to get
the uniform boundedness of Gθ(x, y)Gθ(y, x), again with slightly worse constants.
Combined with Corollary 2.12 “exponentially stronger decay” we have proved the
assertion.

In the case of a symmetric operator L = L∗ the Green’s function is also sym-
metric and the proposition says that it decays exponentially with the distance. This
result does not use Gromov hyperbolicity and holds also e.g. in Euclidean space.
One may remember that the familiar Euclidean Laplacian’s Green’s function only
decays with |x− y|−(n−2), but this is not in conflict to the result above because the
Euclidean Laplacian is not weakly coercive.

2.3 Hyperbolicity and Boundary Harnack Inequalities
Now we additionally invest the hyperbolicity of the underlying space. We employ

the property that in Gromov hyperbolic spaces any two points can be connected by
well-controlled Φ-chains as in Theorem 1.15 “Φ-Chains on Hyperbolic Spaces”. We
prove in fact a more general result which holds on a single Φ-chain, even if the space
carries essentially only this one Φ-chain as in the example (R × Rn−1, (1 + |y|2)2 ·
gR + gEucl). This can be seen as a directed form of hyperbolicity.

The technical main result of this section describes the behaviour of Green’s
function along Φ-chains, building on the results for bounded geometries and weakly
coercive operators we derived in the last few sections. In the presence of sufficiently
many Φ-chains, such as in Gromov hyperbolic spaces, we infer boundary Harnack
inequalities and employ them to identify the Martin boundary with the Gromov
boundary.

Our general assumptions (BAC) on the manifold M and the elliptic operator L
remain the same as in the previous section: M is complete with bounded geometry
and L is adapted and weakly coercive. The additional assumptions, that is, the
presence of a Φ-chain (depending on the function Φ) or even of an underlying hy-
perbolic geometry (with constant δ and coming with a universal function Φ = Φδ),
are stated directly in the results.
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2.3.1 Global Behaviour: Φ-Chains

The following result, sometimes called 3G inequality, describes the major influ-
ence of Φ-chains on the behaviour of Green’s functions.

Theorem 2.14 (Green’s Functions Along Φ-Chains) Under assumptions
(BAC), there is a suitable constant c(σ, `, k, n, τ, Φ) > 1 such that for any Φ-chain
with track points x1, . . . , xm (as in Definition 1.14), we have for the minimal Green’s
function G the estimate

c−1G(xm, xj)G(xj , x1) 6 G(xm, x1) 6 cG(xm, xj)G(xj , x1) , j = 2, . . . ,m− 1 .

At the heart of the argument we employ the pairing of two at first sight entirely
unrelated geometric and analytic properties: the existence of Φ-chains on M and
the weak coercivity of L. The idea is that, on the one hand, Φ-chains allow to find
balls of arbitrary large radii in Ui−1 \Ui+1 centered in ∂Ui within a uniformly upper
bounded distance to the track points. On the other hand, the relative maximum
principle 2.11 shows that on these balls we can improve crude estimates from a
previous application of a Harnack inequality by investing weak coercivity. This
makes the following result the main step in the proof of the Theorem.

Proposition 2.15 (Growth Recovery Along Φ-Chains) With assumptions
(BAC), for any given Φ-chain with track points x1, . . . , xj, we have

G(z, x1) 6 cGθ(z, xj)G(xj+1, x1) for z ∈ ∂Uj+1, (2.4)

for some constant c(σ, `, k, n, τ, Φ) > 0 independent of the length j of the Φ-chain.

Proof. The argument is by induction over the length j.
For j = 1, we can use Gθ > G, inequality (2.1), the lower bound for the Green’s

function 2.8 c1G(x2, x1) > 1 and Harnack inequalities to get a first guess for the
constant c = c1 and note that c1 depends only on σ, `, k, τ and Φ (via Harnack
inequalities).

For the induction step we first assume we have proved the weaker assertion that
there is a constant cj so that (2.4) holds for any Φ-chain of length j. Then we can
apply the Harnack inequalities for L and L∗θ to get a constant c′(σ, `, k, τ, Φ) > 1,
independent of j, such that

G(z, x1) 6 c′cj Gθ(z, xj+1)G(xj+2, x1) for z ∈ ∂Uj+1 . (2.5)

By the global maximum principle 1.18 this inequality extends to z ∈ Ūj+1. Now we
invest the weak coercivity of L and the properties of the Φ-chains to improve this
inequality.

Towards this end, we first apply the relative maximum principle 2.11 to the
(L-superharmonic) function Gθ(·, xj+1) and its greatest L-harmonic minorant u on
some ball BR(x) which we can represent as u = R∂BR(x)

Gθ(·,xj+1), the reduit always taken
with respect to L (see subsection 1.2.2 for properties of the reduit employed here
and below). For R = ln(1/c′)/ ln η and BR+3(x) ⊂ Uj+1, the relative maximum
principle yields

u(x) 6 1
c′
Gθ(x, xj+1) .
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In turn, the definition of a Φ-chain shows that there is some ∆(Φ,R) > 0 such
that BR+3(x) ⊂ Uj+1, for x ∈ ∂Uj+2, as soon as d(x, xj+2) > ∆. Then, we have
from (2.5)

G(x, x1) = R∂BR(x)
G(·,x1) (x) 6 c′cjR∂BR(x)

Gθ(·,xj+1)(x)G(xj+2, x1)

= c′cju(x)G(xj+2, x1) 6 cjGθ(x, xj+1)G(xj+2, x1).

On the other hand, we get universal estimates for x ∈ ∂Uj+2 with d(x, xj+2) < ∆:
since d(x, xj+2) < ∆, there are constants c′′, c′′′ > 1 only depending on ∆, Φ, H and
c1, such that G(x, x1) 6 c′′G(xj+2, x1) by Harnack inequalities and Gθ(x, xj+1) >
(c′′′)−1 by the bounds for the Green’s function 2.8 and Harnack inequalities. The
result is

G(x, x1) 6 c′′c′′′Gθ(x, xj+1)G(xj+2, x1) for x ∈ ∂Uj+2 with d(x, xj+2) < ∆ .

Everything combined, we can choose c = max{c1, c
′′c′′′} and outside a tube of

radius ∆ around the track points the constant can be kept in every induction step
while on the inside we can always use the universal constant.

Proof of Theorem 2.14 “Green’s Functions Along Φ-Chains”. The first inequality is
rather easy: For x ∈ ∂Bσ(xj) we have

G(x, xj)G(xj , x1) 6 c1G(xj , x1) 6 c1H G(x, x1)

by Proposition 2.8 “bound for the Green’s function” and the Harnack inequalities
2.5. Since the left-hand side is an L-potential and the right-hand side is L-
superharmonic, this inequality extends to M \ Bσ(xj) and in particular to xm by
the global maximum principle 1.18.

For the second inequality, we use repeatedly Proposition 2.15 “Growth Recovery
Along Φ-Chains” and the resolvent equation 2.7:

G(xm, x1) = R∂UjG(·,x1)(xm) | x1 /∈ Uj
(2.4)
6 cR∂Uj

Gθ(·,xj)(xm)G(xj+1, x1)

= cR∂Uj
G(·,xj)+θG(Gθ(·,xj))(xm)G(xj+1, x1) | res.eq.

6 c
(
G(xm, xj) + θ

∫
M
R∂UjG(·,z)(xm)Gθ(z, xj) dz

)
G(xj+1, x1) (2.6)

At this point, we can again employ the first step (2.4), but now for the reversed
Φ-chain xm, . . . , x1 withM \Um, . . . ,M \U1 and for the adjoint operator L∗, namely

G(xm, z) 6 cGθ(xj+2, z)G(xm, xj+1) for z ∈M \ Uj+1 .

This holds on all of M \ Uj+1 by the global maximum principle 1.18. Since xj ∈
M \ Uj+1, this can be directly applied to G(xm, xj). For the second summand in
(2.6), we have R∂UjG(·,z)(xm) = ∗R∂UjG(xm,·)(z) 6 G(xm, z) for z ∈ ∂Uj ⊂ M \ Uj+1
(denoting the reduit with respect to L∗ by ∗R, see subsection 1.2.2), but the upper
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bound ∗R∂UjG(xm,·)(z) 6 cGθ(xj+2, z)G(xm, xj+1) is valid for all z ∈ M by definition
of the reduit since the right-hand side is positive and L∗-superharmonic in z. Thus,

G(xm, x1) 6 c2 G(xm, xj+1)G(xj+1, x1)
(
Gθ(xj+2, xj) + θ

∫
M

Gθ(xj+2, z)Gθ(z, xj) dz
)
.

The large bracket is universally bounded from above by Proposition 2.8 “bound for
the Green’s function”, the Harnack inequalities 2.5, and the inequalities (2.1) and
(2.2) following from the resolvent equation 2.7 for t = 3

2θ.

Now we assume that M is a δ-hyperbolic space, then we can choose Φ = Φδ and
recall that there are Φ-chains along geodesics in M . Since Φδ is determined from δ,
the Φ-dependence of the estimates now reduces to a δ-dependence.

Corollary 2.16 (Green’s Function Along Hyperbolic Geodesics) Assum-
ing (BAC) for (M,L), M δ-hyperbolic, let x, y, z ∈ M such that y lies on
geodesic connecting x and z with d(x, y), d(y, z) > 22δ. Then there is a constant
c(σ, `, k, n, τ, δ) > 1 such that

c−1G(x, y)G(y, z) 6 G(x, z) 6 cG(x, y)G(y, z) .

Remark 2.17. This estimate for the Green’s function can be interpreted stochasti-
cally and algebraically:

• Stochastically, the Green’s function G(x, y) is a density for the expected num-
ber of times an L-Brownian motion starting at y reaches x, see [Pin95] or
[Anc90]. Now the estimate for the Green’s function above states that on a
hyperbolic geodesic x  y  z, up to a constant multiple there are as many
Brownian particles travelling directly from x to z as there are particles trav-
elling from x to y and then to z. This is in line with the geometric “valley”
interpretation of Gromov hyperbolic spaces, as seen in Proposition 1.5 “sta-
bility of geodesics”.

• Algebraically, we can examine the function

dG(x, y) := − lnG(x, y) for x, y ∈M .

For this Green metric, the estimate above says

dG(x, z) = dG(x, y) + dG(y, z)± ln c

along a geodesic x y  z, if the points are sufficiently far apart. Note that
the estimate “6” holds not only along a geodesic, but for general points x,
y, z with large mutual distance—this is a rough triangle inequality for dG.
The other direction suggests that the large-scale geodesic structure of dG is
comparable to that of d. In the context of hyperbolic groups, this has been
explored further in [BB07, BHM11], where the Green metric turns out to be
Gromov hyperbolic and quasi-isometric to the word metric for non-amenable
groups and certain operators.
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2.3.2 Boundary Harnack Inequality

Using Theorem 2.6 “boundary Harnack inequality on a disc” as a blueprint,
we want to formulate a boundary Harnack inequality near points on the Gromov
boundary of a δ-hyperbolic space.

As a replacement for balls in the classical version of the boundary Harnack
inequality, we need some characterisation of neighbourhoods of a point at infinity.
This is made precise by the notion of Φ-neighbourhood bases.

Definition 2.18 (Φ-Neighbourhood Basis) Two nonempty open subsets V ⊃W
ofM are called Φ-neighbourhoods with hub h ∈M , if W ⊂ V , BΦ0(h) ⊂ V \W
and any two points p ∈ ∂V and q ∈ ∂W can be joined by a Φ-chain that has
h as a track point. We call an infinite family of nonempty open sets Ni ⊂ M ,
i = 1, 2, 3, . . . , with ⋂iNi = ∅ a Φ-neighbourhood basis, if Ni and Ni+1 are
Φ-neighbourhoods with hub oi, for every i.

Just as metric balls are, besides their role as neighbourhood bases, the basic
playground for Harnack inequalities, these Φ-neighbourhoods are their counterpart
in boundary Harnack inequalities.

In δ-hyperbolic spaces, every point in the Gromov boundary has a canonical
neighbourhood basis that is also a Φδ-neighbourhood basis. Namely, as shown in
[BHK01, Proposition 8.10]2, we have:

Lemma 2.19 (Φδ-Neighbourhood Basis) If M is δ-hyperbolic and o ∈ M a
basepoint, there is a constant cδ > 0 only depending on δ such that for any ξ ∈
∂GM ⊂M

G, the open sets

N δ
i (ξ) :=Wo

cδi
(ξ) ∩M = {x ∈M | (x|ξ)o > cδi} for i = 1, 2, . . .

are a Φδ-neighbourhood basis. Recall that their closures N δ
i (ξ) = Wo

cδi
(ξ) ⊂ M

G in
the Gromov compactification form a neighbourhood basis of ξ ∈ ∂GM .

For non-symmetric operators it is not always possible to find L-harmonic func-
tions that vanish at infinity, because even minimal Green’s functions might diverge.
Hence we introduce a more general notion which can be thought of as a minimal
growth condition. This will be further explained in Proposition 2.26 “L-vanishing
and Martin boundary” below.

Definition/Proposition 2.20 (L-Vanishing) We say that a positive L-
superharmonic function u L-vanishes on an open set V ⊂M if one of the following
equivalent conditions is satisfied:

(i) There is a positive L-superharmonic function w, such that u/w → 0 at infinity,
i.e., for every ε > 0 there is a compact set K ⊂M with u/w < ε on V \K.

(ii) There is an L-potential p such that p > u on V .
2They define the neighbourhood basis with references to distances from geodesics, but the two

concepts can easily be translated into each other using Lemma 1.7 “Gromov product as distance
to a geodesic”.
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(iii) The reduit RVu is an L-potential (see subsection 1.2.2).3

Proof. (i) ⇒ (iii) Assume there is a positive L-harmonic function h, such that
RVu > h > 0 on M . For some fixed ε > 0, choose a compact set K with u < εw on
V \K. By the properties of the reduit, we even have

εw > RV \Ku > RVu −RV ∩Ku > h−RV ∩Ku

on all of M . Now RV ∩Ku is an L-potential since V ∩K is relatively compact in M ,
εw−h is L-superharmonic and εw > u = RVu > h on ∂(V \K) = ∂(M\(V \K)) ⊂M ,
thus we can apply the global maximum principle 1.18 to see εw > h on all of M .
Since ε was arbitrary, h = 0.

(iii)⇒ (ii) Choose p = RVu .

(ii) ⇒ (i) It suffices to show that an L-potential p satisfies the condition ev-
erywhere. Towards this end, consider the functions RM\BR(o)

p on balls around an
arbitrary basepoint o ∈ M . They converge to zero for R → ∞ because the limit
is L-harmonic and 6 p. Let (xj) be a countable dense set in M . We may choose
a sequence (Ri) such that RM\BRi (o)p (xj) 6 2−i for all j 6 i. Then the function
w = ∑

iR
M\BRi (o)
p is finite on a dense set, L-superharmonic and p/w 6 1/i outside

of BRi(o).

Note that all L-potentials such as the minimal Green’s function are L-vanishing
on V = M and hence on all open sets because the property of L-vanishing is
conserved on subsets as can be easily seen using condition (i).

On bounded sets, L-vanishing at infinity is trivially true for any L-
superharmonic function. The concept is also useless for unbounded sets shrinking
too quickly when approaching infinity. On Gromov hyperbolic manifolds, it be-
comes significant for sets V = W ∩M , where W ⊂ M

G is open with non-empty
intersection W ∩ ∂GM . For more elaborate criteria in the context of Martin theory
see Proposition 2.26 “L-vanishing and Martin boundary”.

On Φ-neighbourhoods we can now formulate the following central result.

Theorem 2.21 (Boundary Harnack Inequality) Assume (M,L) satisfies as-
sumptions (BAC). Let V ⊃W be Φ-neighbourhoods with hub h and u, v two positive
L-superharmonic functions that are L-harmonic and L-vanishing on V , then there
is a constant HB = HB(σ, `, k, n, τ, Φ) such that

u(x)
u(y) 6 HB

v(x)
v(y) for any x, y ∈W .

Proof. By Definition/Proposition 2.20 “L-vanishing”, the reduit RVu is an L-
potential and therefore admits a representation as

RVu =
∫
∂V
G(·, z) dν(z)

3[Anc87] uses the first definition, but it is easier to employ the last.
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for some Radon measure ν. On W , RVu agrees with u and therefore we have

u(x) =
∫
∂V
G(x, z) dν(z) 6 c

∫
∂V
G(x, h)G(h, z) dν(z) = cG(x, h)u(h) for x ∈ ∂W

using the assumption that x ∈ ∂W and z ∈ ∂V can be connected by a Φ-chain
through h and Theorem 2.14 “Green’s Functions Along Φ-Chains”. The other in-
equality from there gives

v(x) > c−1G(x, h) v(h) for x ∈ ∂W

and both inequalities extend to W by the global maximum principle 1.18 because
RVu and G(·, h) respectively are L-potentials. We can combine them to obtain

u(x)
v(x) 6 c

2u(h)
v(h) for x ∈W .

Interchanging the roles of u and v yields the result with HB = c4.

In most applications, u and v are either globally L-harmonic functions or minimal
Green’s functions with pole outside of V .

In the case of a δ-hyperbolic manifold, the size of the smaller neighbourhood
can be explicitly quantified using Lemma 2.19 “Φδ-neighbourhood basis”. We get

Corollary 2.22 (Hyperbolic Boundary Harnack Inequality) If (M,L)
satisfies (BAC) and M is δ-hyperbolic, there is some positive constant
HB(σ, `, k, n, τ, δ) > 1 such that two positive L-superharmonic functions u, v that
are L-harmonic and L-vanishing on a Φδ-neighbourhood N δ

i (ξ) of ξ ∈ ∂GM satisfy

u(x)
u(y) 6 HB

v(x)
v(y) for any x, y ∈ N δ

i+1(ξ) .

2.3.3 The Hyperbolic Martin Boundary

We now turn our attention towards the Martin boundary as introduced in sub-
section 1.2.4. In the situation at hand, Φ-neighbourhood bases are essentially neigh-
bourhood bases of minimal Martin boundary points.

Theorem 2.23 (Characterisation of Minimal Martin Points) Assume (BAC)
holds and o ∈ M is a basepoint. Let (Ni) be a Φ-neighbourhood basis with hubs hi
and assume o /∈ N1. Denoting the interior of the closure of Ni ⊂ M ⊂ M

M in
the Martin compactification MM of M by Ñi, there is exactly one Martin boundary
point ζ in

⋂
Ñi. The resulting Martin function Kζ is characterised as the only

positive L-harmonic function L-vanishing on every M \ Ni, up to scalar multiples.
In particular, this Martin point ζ is minimal.

Proof. By the Harnack inequalities, the sequence Khi = G(·,hi)
G(o,hi) has a subse-

quence compactly converging to some L-harmonic functionKζ representing a Martin
boundary point ζ. Kζ is L-vanishing on everyM \Ni because by the boundary Har-
nack inequality 2.21, every Khj for j > i, and hence every limit, is upper bounded
by the L-potential HBKhi on M \ Ni.
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Now assume there is another positive L-harmonic function u that is L-vanishing
on M \N i for every i, w.l.o.g. u(o) = 1. Applying the boundary Harnack inequality
2.21 we see H−1

B Kζ 6 u 6 HBKζ on M . Thus η := inf u/Kζ 6 1 is positive. By the
strong maximum principle [Pin95, Theorem 3.2.6, p. 84], the L-harmonic function
u − ηKζ > 0 has to be positive everywhere, else it would be identical zero. In the
former case we can again apply the boundary Harnack inequality 2.21 to Kζ and
u− ηKζ to get (η+ (1− η)H−1

B )Kζ 6 u which contradicts the definition of η, unless
η = 1 and u = Kζ .

This yields the following characterisation of the Martin boundary in case we
have enough Φ-neighbourhoods:

Corollary 2.24 (Identifying the Martin Boundary) If under assumptions
(BAC) in a given compactification M of M (i.e., M is compact and M ⊂ M open
and dense) every boundary point admits a neighbourhood basis of the form N i ⊂M
for some Φ-neighbourhood basis (Ni), it is canonically homeomorphic to the Martin
compactification MM.

Proof. Theorem 2.23 “characterisation of minimal Martin points” yields an injec-
tive map from M to MM. It is continuous because for every sequence (yi) in M
converging to ζ ∈ M \M the corresponding Martin functions Kyi converge to the
unique Martin function that is L-vanishing on all M \Ni for some Φ-neighbourhood
basis (Ni) of ζ, that is Kζ . Thus, by elementary properties of compactifications
[Mun00, §38], it is already a homeomorphism. Note that in particular all Martin
boundary points are minimal.

From this and Lemma 2.19 “Φδ-neighbourhood basis” we get the following prin-
cipal potential theoretic result on Gromov hyperbolic manifolds.

Corollary 2.25 (Gromov Boundary and Martin Boundary) Assume that M
is Gromov hyperbolic and (BAC) holds. Then the Gromov and Martin boundaries
of M are canonically homeomorphic and every Martin boundary point is already
minimal,

∂GM ∼= ∂M(M,L) ∼= ∂0
M(M,L).

This means that a positive function u > 0 on M is L-harmonic if and only if there
is a (unique) Radon measure µu on ∂GM such that

u(x) =
∫
∂GM

Kζ(x) dµu(ζ).

Now that we have the right notion for a potential theoretic boundary at infin-
ity, we can update the notion of L-vanishing. Note that the following character-
isations are slightly different from the formulation in Definition/Proposition 2.20
“L-vanishing” because there, without explicit references to a boundary, it was only
possible to refer to L-vanishing at infinity of open sets V in M , i.e., on the Martin
boundary points in V ∩ ∂MM ⊂M

M.

45



Proposition 2.26 (L-Vanishing and Martin Boundary) Assume (BAC) holds
and every Martin boundary point has a Φ-neighbourhood basis, e.g., M is Gromov
hyperbolic. For an open subset Ξ ⊂ ∂MM of the Martin boundary and a positive
L-harmonic function u on M the following are equivalent:

(i) u is L-vanishing on any open set V ⊂ M with V ∩ ∂MM ⊂ Ξ in the Martin
compactification.

(ii) On any open set V ⊂M with V ∩ ∂MM ⊂ Ξ in the Martin compactification,
the following property holds: each positive L-harmonic function v on V with
v > u on ∂V ∩M satisfies v > u on V .

(iii) The Martin measure µu associated to u is supported outside Ξ, i.e., µu(Ξ) = 0.

Proof. (i)⇒ (ii) If u is L-vanishing on V , RVu is an L-potential and RVu = u on V .
Then the global maximum principle 1.18 gives exactly the desired property.

(iii)⇒ (i) Each Martin function Kζ is L-vanishing outside ζ and, therefore, the
Martin integral representing u L-vanishes outside the support of µu.

(ii)⇒ (iii) Assume µu(Ξ) 6= 0, then there is a compact K ⊂ ∂MM and an open
set W ⊂ M

M such that K ⊂ W ∩ ∂MM b Ξ, V := W ∩M satisfies the condition
in (ii), and µu(K) 6= 0 (since the Radon measure µu is inner regular). Therefore it
is enough to consider the case where u ≡ uK :=

∫
K Kζ dµu(ζ).

We compare uK with the minimal Green’s function G(·, p) with pole p ∈M \V .
Recalling the argument of (iii) ⇒ (i) we know that uK is L-vanishing on an open
neighbourhood N of M \ V . By compactness of M \ V in the Martin compactifica-
tion, M \ V can be covered by finitely many Φ-neighbourhoods contained in N and
a compact subset of M . Then the boundary Harnack inequality 2.21 shows that
there is a C > 0 such that C · G(·, p) > uK on M \ V and especially on ∂V . But
then from (ii) it follows that C ·G(·, p) > uK on V , hence on all of M , hence uK ≡ 0
because G(·, p) is an L-potential.

2.3.4 Sharpness

The validity of such a simple identification of the Martin boundary with a geo-
metric boundary, which one may possibly expect from a naive guess, actually is a
rare exception. If we only slightly violate the hyperbolicity constraint we can get a
completely different and rather inscrutable outcome with many non-minimal Martin
boundary points.

Example 2.27 (Ideal Boundaries of Hm × Hn). The product space of two classical
hyperbolic spaces Hm × Hn, m,n > 2, has bounded geometry, but it is no longer
Gromov hyperbolic since it contains flat planes obtained as products of pairs of
geodesics in the two factors. In [GW93] we find a thorough discussion of the case of
the Laplace operator on Hm×Hn. There exist positive functions s with −∆s = λ ·s
if and only if λ 6 λ0, where λ0 is the principal eigenvalue. For λ < λ0, the
operator −∆ − λ is adapted and weakly coercive. The boundary at infinity (a
natural generalisation of Gromov boundary) is homeomorphic to Sn+m−1 [BH99,
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II.8.11(6), p. 266]. In turn, for the minimal Martin boundary of −∆−λ, for λ < λ0,
we have

∂0
M(Hm ×Hn,−∆− λ) = Sm−1 × Sn−1 × Iλ ,

where Iλ is a closed interval with a natural parametrisation which depends on λ and
degenerates to a single point when λ→ λ0 [GW93, p. 21]. The full Martin boundary
contains two additional pieces,

∂M(Hm×Hn,−∆−λ) = (Sm−1×Hn)∪(Sm−1×Sn−1×Iλ)∪(Hm×Sn−1)/ ∼ . (2.7)

The gluing maps for ∼ are described in [GW93, p. 27]. We observe that not only
the boundary at infinity does not coincide with ∂0

M(Hm × Hn,−∆ − λ), but even
the details of the partition of the full Martin boundary (2.7) depend on λ.

We will see more counterexamples in section 2.5 where we transfer Ancona’s
theory to uniform manifolds.

2.4 Ray Expansion of Harmonic Functions
In this short section, we assume that the operator L and manifold M with

basepoint o satisfy (BAC) and that M is δ-hyperbolic. We will apply Ancona’s
results to obtain a representation of an arbitrary positive L-harmonic function along
a geodesic ray in terms of the Green’s function along that ray and the Martin
measure of balls around the endpoint of the ray.

For a fixed boundary point ζ ∈ ∂GM and a geodesic ray γ : o ζ, the boundary
can be partitioned into sets Ui := U>i \ U>i+1, i = 0, 1, . . . , with

U>i := {η ∈ ∂GM | (η|ζ)o > i} .

Not that these sets are closed balls in the quasi-metric on the boundary.
The Ui are Borel sets and a positive L-harmonic function u with Martin measure

µ (with respect to the basepoint o) can be written as

u(x) =
∫
∂GM

Kη(x) dµ(η) =
∞∑
i=0

∫
Ui

Kη(x) dµ(η) .

For points xk = γ(k), k = 1, 2, . . . along the geodesic ray γ, this representation
can be improved because K·(xk) is almost constant on Ui:

• For 0 < i < k and η ∈ Ui, xi = γ(i) has universally bounded distance from
geodesic rays o η and xk  η. For o η,

(o|η)xi = d(o, xi)− (xi|η)o 6 i− i+ 4δ = 4δ

by the Bonk–Schramm Lemma 1.10 and hence the distance from xi to the
geodesic ray is bounded from above by Lemma 1.7 “Gromov product as dis-
tance to a geodesic”. One argues similarly for xk  η.
Hence we have by Corollary 2.16 “Green’s function along hyperbolic geodesics”
and Harnack inequalities

Kη(xk) = lim
y→η

G(xk, y)
G(o, y) � lim

y→η
G(xk, xi)G(xi, y)
G(o, xi)G(xi, y) = G(xk, xi)

G(o, xi)
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independent of the particular point η ∈ Ui, for y on a geodesic ray o η and
far away from xi.

• Now for the boundary cases: For η ∈ U0, Kη(xk) � G(xk, o) by the hyperbolic
boundary Harnack inequality 2.22 and ordinary Harnack inequalities since
both functions are � 1 in a point near o and L-vanishing on U>1.

• Analogously, Kη(xk) � Kζ(xk) for η ∈ U>k by the hyperbolic boundary Har-
nack inequality 2.22 on M \ U>k−1 and more Harnack inequalities.

Putting all together, we have the ray expansion of u,

u(xk) =
∞∑
i=0

∫
Ui

Kη(xk) dµ(η)

� G(xk, o)µ(U0) +
k−1∑
i=0

G(xk, xi)
G(o, xi)

µ(Ui) +Kζ(xk)µ(U>k)

� G(xk, o)
(
µ(U0) +

k−1∑
i=0

µ(Ui)
G(o, xi)G(xi, o)

+ µ(U>k)
G(o, xk)G(xk, o)

)

� Kζ(xk)
(
G(o, xk)G(xk, o)µ(U0) +

k−1∑
i=0

G(xi, xk)G(xk, xi)µ(Ui) + µ(U>k)
)
.

In the last two steps, we used again Corollary 2.16 “Green’s function along hyper-
bolic geodesics” and the direct consequence

Kζ(xk) �
1

G(o, xk)
.

2.5 Application to Uniform Spaces
Using the hyperbolisation presented in section 1.3, it is now easy to translate

Ancona’s results to the setting of uniform spaces. In the statement of a boundary
Harnack inequality, the sets N δ

i (ξ) from Lemma 2.19 “Φδ-neighbourhood basis”,
defined relative to the hyperbolised metric, now act as a replacement for the con-
centric balls of Theorem 2.6 “boundary Harnack inequality on a disc” in the classical
Euclidean setup.
Corollary 2.28 (Boundary Harnack Inequalities and Martin Theory on
Uniform Manifolds) Let L = −∆ + V be a Schrödinger operator with |V | 6
a · đ−2 satisfying a strong barrier condition (i.e., λđ

L > 0) on a bounded c-uniform
manifold (Mn, g) of đ–bounded geometry with constants ε and K, with respect to
an `-Lipschitz generalised distance function đ, for constants a, c, ε,K, ` > 0. Then
there is a C = C(a, c, ε,K, `, λđ

L, n) > 1 such that for any two L-harmonic functions
u, v > 0 on N δ

i (ξ) for some ξ ∈ ∂M both L-vanishing4 on N δ
i (ξ),

u(x)
v(x) 6 C

u(y)
v(y) for any two points x, y ∈ N δ

i+1(ξ) .

4The definition of L-vanishing on N δ
i (ξ) is the same as in Definition/Proposition 2.20 “L-

vanishing” and Proposition 2.26 “L-vanishing and Martin boundary” where we merely had an
ideal boundary of M .
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Furthermore, the topological and the Martin boundary are homeomorphic and every
Martin boundary point is minimal: ∂M ∼= ∂0

M(M,L) ∼= ∂M(M,L).

Proof. We start by smoothing đ to ð using the natural regularisation of generalised
distance functions 1.34. Then we apply Theorem 1.31 “hyperbolisation of uniform
spaces” to M with generalised distance function ð . We get a δ-hyperbolic manifold
(M, g′ = ð−2g) for δ depending on c, ` and the bounded geometry constants (via
the regularisation). (M, g′) is of (σ, `′)–bounded geometry with σ and `′ depending
on `, ε and K by Proposition 1.32 “bounded geometries”. For the boundary, we
have

∂M ∼= ∂G(M, g′) .

As argued in subsection 1.3.5, the operator L′ is weakly coercive and adapted on
(M, g′) with universal constants. Hence we can apply the hyperbolic boundary
Harnack inequality 2.22 to the L′-harmonic functions ð

n−2
2 u and ð

n−2
2 v which are

directly seen to be L′-vanishing on N δ
i (ξ). The additional factors ð

n−2
2 cancel and

we obtain the assertion.
Using Corollary 2.25 “Gromov boundary and Martin boundary” and the trans-

formation behaviour of harmonic functions and Martin functions, we further con-
clude that

∂M ∼= ∂G(M, g′) ∼= ∂M(M,L′) ∼= ∂M(M,L)

and every Martin boundary point is minimal.

On Euclidean domains which are uniform with respect to the distance to the
boundary, the constants ε, K and ` can be dropped. In this case, Aikawa has used
a somewhat different approach to prove some remarkable refinements underlining
the sharpness of these potential theoretic result.

• In [Aik01], he derives boundary Harnack inequalities for the Laplacian on uni-
form Euclidean domains without imposing a strong barrier condition. How-
ever, in his result the Harnack constant depends on the domain D, whereas in
the preceding result for the Laplacian it only depends on the parameters λđ

−∆
and c and the dimension.

• In [Aik04], Aikawa even proves that D ⊂ Rn is a uniform domain if and
only if the Laplacian satisfies boundary Harnack inequalities, as long as D is
a John domain and the capacity density condition holds. Similar to Exam-
ple 1.39 “regularity versus strong barrier”, an exterior twisted cone condition
is sufficient for the capacity density condition [Aik12].

Examples 2.29. We mention two instructive examples where non-uniformity of a
domain destroys the existence of boundary Harnack inequalities and where we con-
cretely see how far the topological boundary may deviate from the Martin boundary
of the Laplacian.

• In [Anc12], Ancona describes non-uniform Euclidean cones with only one topo-
logical point at infinity but with uncountably many minimal Martin boundary
points at infinity.
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• In [IP94], Ioffe and Pinsky prove that for the non-uniform rotationally sym-
metric domains Df ⊂ Rn from Examples 1.28 the set of Martin boundary
points at infinity is homeomorphic to Sn−2.

Finally we notice that this Martin theory on uniform domains reproves classical
contour integral formulae for harmonic functions. The Herglotz theorem [Her11,
Dur83] states that a function f > 0 on the Euclidean unit disk (D, gEucl) is harmonic,
−∆f = 0, if and only if there is a Radon measure µf on S1 such that

f(x) =
∫
S1

1− |x|2
|x− y|2

dµf (y) .

A direct computation shows that the Martin function for ∆ is

Kζ(x) = lim
z→ζ

G(x, z)
G(0, z) ∼

1− |x|2
|x− ζ|2

for x ∈ D and ζ ∈ S1.

Hence the Herglotz theorem is a direct consequence of the unique Martin integral
representation

f(x) =
∫
S1
Kζ(x) dµf (ζ)

on the Martin boundary ∂M(D,−∆) which is in this case canonically homeomorphic
to ∂D = S1 by Corollary 2.28 “boundary Harnack inequalities and Martin theory
on uniform manifolds”.
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Part II

Isoperimetry and Bubbles
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Chapter 3

Weighted Linear Isoperimetric
Inequalities

The purpose of this chapter is to show Friedrichs and isoperimetric inequalities
weighted with a function that decays exponentially slower than the Green’s function
of the Laplacian. This can be accomplished on a complete Gromov hyperbolic
manifold M of bounded geometry as soon as two additional conditions are satisfied:

• M is visual, see Definition 1.11. This ensures that there can not be sequences
of larger and larger “bubbles” that violate isoperimetric inequalities.

• The Laplacian−∆ has to be weakly coercive in order to apply Ancona’s theory.

The last condition has a well-understood geometric meaning: if we denote by λ1(M)
the principal eigenvalue of the Laplacian on M and by h(M) the Cheeger isoperi-
metric constant

h(M) = inf
AbM

Area(∂A)
Vol(A) ,

then the following are equivalent:

(i) h(M) > 0.

(ii) −∆ is weakly coercive, i.e., λ1(M) > 0.

(iii) ∂GM is uniformly perfect1.

(i)⇒ (ii) follows from Cheeger’s inequality

λ1(M) > 1
4h(M)

for arbitrary complete manifolds of infinite volume [Che70], the reverse (ii) ⇒ (i)
was proven by Buser for complete manifolds with a condition implied by bounded
geometry [Bus82]. Martínez-Pérez and Rodríguez [MR18] proved the equivalence of
(i) and (iii), extending work of Cao [Cao00].

1A (quasi)metric space Y is uniformly perfect, if there is a constant S > 1 such that the annulus
BR(y)\BR/S(y) is nonempty for every R > 0 and y ∈ Y , provided BR(y) 6= Y , see e.g. [Hei01, 11.1]
for further details. This is equivalent to the lower Assouad dimension of Y being strictly positive.
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After sharp characterisations of harmonic measure and Green’s function for −∆,
a hierarchically organised cover will enable us to geometrically prove the weighted
mesoscale Friedrichs inequality 3.8. This intermediate result features a “mesoscale”
approximation of the gradient on balls of a certain size. In section 3.4, we will
locally use Poincaré inequalities (implied by bounded geometry) to arrive at several
more customary versions of weighted Friedrichs and isoperimetric inequalities.

In section 3.5, we give examples for weight functions and hint at generalisations.
Some of these effectively reprove several implications in the equivalence above. We
conclude this chapter with a mechanism to change the weight function for Sobolev
inequalities in the presence of weighted Friedrichs inequalities for later usage.

Notation In this chapter, (Mn, g) is a δ-hyperbolic, S-visual, complete Rieman-
nian manifold of (σ, `)–bounded geometry. Without loss of generality, since S-visual
spaces are S′-visual for any S′ > S, we can and will assume

S > 4δ .

Furthermore, we suppose that the Laplacian −∆ on M with Green’s function G is
weakly coercive or, equivalently, ∂GM is uniformly perfect. The harmonic measure,
i.e., the Martin measure of the harmonic function 1, with respect to a variable
basepoint x ∈M , will be denoted by µx. We fix a basepoint o ∈M . All constants in
this chapter depend only on δ, S, σ, ` and the principal eigenvalue of the Laplacian,
λ1(M).

3.1 Laplacian and Harmonic Measure

We consider balls in the quasi-metric on the Gromov boundary of M as in
subsection 1.1.3,

V%(ξ) :=Wo
%(ξ) ∩ ∂GM = {η ∈ ∂GM | (ξ|η)o > %} for ξ ∈ ∂GM and % > 0.

The main result of this section is that the harmonic measure of V%(ξ) can be es-
timated by the Green’s function G(·, o) of the Laplacian in distance % from the
basepoint on a geodesic ray towards ξ ∈ ∂GM . This allows us to interpret results
for the Green’s function in terms of the harmonic measure and vice versa. Easy
facts such as the Harnack inequality and additivity of measures will turn out to be
powerful tools in the other picture.

By definition, the harmonic measure satisfies µx(∂GM) = 1 for any basepoint
x ∈ M and hence µx(V ) 6 1 for any V ⊂ ∂GM . On the other hand, a significant
contribution to the total measure is already given by the boundary points “nearest
to x”, or more precisely:

Lemma 3.1 (Lower Bound for Harmonic Measure) [Pet15, Lemma 5.3] For
any point x = γ(tx) on a geodesic ray γ : o ξ ∈ ∂GM ,

µx(Vtx(ξ)) < 1 .
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Proof. First note that for any Borel set U ⊂ ∂GM , the restricted measure µo
¬
U

represents a positive harmonic function uµo ¬U which −∆-vanishes on ∂GM \ Ū by
Proposition 2.26 “L-vanishing and Martin boundary” and satisfies

uµo
¬
U (x) =

∫
U
Ko
η(x) dµo(η) =

∫
U
Kx
η (x) dµx(η) = µx(U) .

Here Ko and Kx denote the Martin functions with respect to the basepoint o and
x, respectively.

Set V = Vtx(ξ). Then,

µγ(t)(∂GM \ V ) � G(γ(t), x)µx(∂GM \ V ) 6 G(γ(t), x)

by the hyperbolic boundary Harnack inequality 2.22 for t > tx sufficiently large to
form Φδ-neighbourhoods where µ·(∂GM \ V ) and G(·, x)µx(∂GM \ V ), which are
comparable near x, −∆-vanish.

By the quantitative bounds on G from Proposition 2.13 “exponential decay”,
there is a t1/2 > tx with t1/2 − tx only depending on universal constants such that

µγ(t1/2)(∂GM \ V ) 6 1/2 and hence µγ(t1/2)(V ) = 1− µγ(t1/2)(∂GM \ V ) > 1/2 .

Now we can apply the Harnack inequalities 2.5 to the harmonic function uµo ¬V =
µ·(V ) along a Harnack chain of controlled length along γ to see

µx(V ) < µγ(t1/2)(V ) < 1 .

Theorem 3.2 (Green’s Function and Harmonic Measure) For any geodesic
ray γ : o ξ and t > σ,

µo(Vt(ξ)) � G(γ(t), o) .

Proof. Fix γ, x = γ(t) and V = Vt(ξ). We have

µo(V ) = uµo
¬
V (o) � G(o, x)uµo ¬V (x) 6 G(o, x)

by Martin representation, the hyperbolic boundary Harnack inequality 2.22, Propo-
sition 2.8 “bound for the Green’s function” and uµo ¬V 6 1.

On the other hand,
uµo
¬
V (x) = µx(V ) < 1

and thus µo(V ) � G(o, x) by Lemma 3.1 “lower bound for harmonic measure”.

Using this representation of the harmonic measure in terms of the Green’s func-
tion, we directly get from Harnack inequalities for G:

Corollary 3.3 (Harnack Property of the Harmonic Measure)

µo(Vt(ξ)) � µo(Vs(η)) for |t− s| 6 σ and (ξ|η)o > t > 2σ.

Proof. Given (ξ|η)o > t, the Bonk–Schramm Lemma 1.10 implies that γ(t) and
γ′(t) are in distance at most 4δ from each other, for geodesic rays γ : o  ξ, γ′ :
o η. Hence we can apply the Harnack inequality to G and translate G(γ(t), o) �
G(γ′(s), o) according to Theorem 3.2 “Green’s function and harmonic measure”.
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This in turn implies an additivity property of µo. For the statement we recall
from subsection 1.1.3 that do(ξ, η) = e−(ξ|η)o is a quasi-metric on ∂GM , i.e., an
ultrametric triangle inequality holds only up to a constant Q = Q(δ) = eδ,

d(ξ, ζ) 6 Qmax{d(ξ, η), d(η, ζ)} for ξ, η, ζ ∈ ∂GM ,

while all other properties of metrics are still satisfied. The balls Br(ξ) in this quasi-
metric are precisely the sets V− ln r(ξ). Note that here − ln r is usually positive
because ∂GM has diameter 6 1 in the quasi-metric and we can restrict our attention
to the case r 6 1.

Corollary 3.4 (Quasi-Additivity of the Harmonic Measure) Let λ > 1,
BR(ξ) a ball of radius 0 < R 6 1 in ∂GM in the quasi-metric described above,
and (ηi) a (necessarily finite) family of points in BλR(ξ) with mutual distance at
least r for a fixed r ∈ (0, R) such that the balls Bλr(ηi) cover BR/λ(ξ). Then

µo(BR(ξ)) �δ,σ,λ
∑
i

µo(Br(ηi)) .

Proof. First, note that when plugged into µo we can ignore factors of λ or Q in the
radii of balls by the Harnack property of the harmonic measure 3.3.

The balls Bλr(ηi) cover all of BR/λ(ξ), hence “4” is clear from subadditivity of
µo.

On the other hand, the balls Br/Q(ηi) are disjoint because points in Br/Q(ηi)
have distance larger than r/Q to any other point ηj by the quasi–triangle inequality.
Each such ball is completely contained in BQλR(ξ), hence∑

i

µo(Br/Q(ηi)) 6 µo(BQλR(ξ)) .

The assertion follows from (iterated) application of the Harnack property of the
harmonic measure 3.3.

Remarks 3.5.

• The Harnack property of the harmonic measure 3.3 basically says that the
measure µo is doubling, i.e., 0 < µo(B2r(ξ)) 4 µo(Br(ξ)) for every ball. Corol-
lary 3.4 “quasi-additivity of the harmonic measure” holds for every doubling
measure, with constant only depending on the doubling constant, the quasi-
metric constant and λ.

• There is a quantitative version of the doubling property, the upper regularity
dimension of a measure, and the related lower regularity dimension, see e.g.
[KLV13, section 3]. The above shows that they are equal to the best constants
α > α > 0 such that

e−αd(x,y) 4 G(x, y) 4 e−αd(x,y) for all x, y ∈M with d(x, y) > σ

respectively.

• Since only uniformly perfect spaces can carry measures of strictly positive
lower regularity dimension (see loc. cit.), this implicitly shows that a uniform
perfect boundary is necessary for the Laplacian to be weakly coercive.
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𝜕𝐵(𝑘+ℓ)𝑆(𝑜) 𝒱𝑘𝑆(𝜉𝑖
(𝑘))

𝜕𝐵𝑘𝑆(𝑜)

𝑥𝑖
(𝑘)

𝑥𝑗
(𝑘+ℓ)

𝑥𝑗′
(𝑘+ℓ)

𝑜

𝜉𝑖
(𝑘)

𝜉𝑗′
(𝑘+ℓ)

𝜉𝑗
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Figure 3.1: Two layers in the onion cover, with j, j′ ∈ Ik,`,i.

3.2 Onion Cover

In this section, we construct a hierarchical cover ofM , organised in layers like an
onion. This cover is the main technical input for the proof of Theorem 3.8 “weighted
mesoscale Friedrichs inequality”.

We recall the assumption
S > 4δ .

Theorem 3.6 (Onion Cover) There is a cover of M by balls B(k)
i = B3S(x(k)

i )
with k = 0, 1, 2, . . . enumerating the layers and i from finite sets Ik, such that the
following properties are satisfied:

• the centers of distinct balls have distance at least S/2,

• d(o, x(k)
i ) = k · S,

• For any pair of indices k < k + `, there is a partition Ik+` = ⋃̇
i∈IkIk,`,i such

that for any i ∈ Ik, ∑
j∈Ik,`,i

G(x(k+`)
j , x

(k)
i ) � 1

and d(x(k)
i , x

(k+`)
j ) < (`+ 1)S for every j ∈ Ik,`,i.
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Proof. The layers B(k) := {B(k)
i | i ∈ Ik} are constructed as covers of thickened

distance spheres around the basepoint o. More precisely, set B(0) = {B3S(o)} and
for every k > 1, choose an S/2-net {x(k)

i |i ∈ Ik} (which is finite sinceM is proper) in
∂B∗kS(o) := ∂BkS(o)∩{points on geodesic rays o ∞}, i.e., the points have mutual
distance at least S/2 and {BS/2(x(k)

i ) | i ∈ Ik} is a cover of ∂B∗kS . Then the 3S-
balls in M around these points cover the annulus B(k+1/2)S(o) \B(k−1/2)S(o): each
point in this layer has distance at most S to a geodesic ray (since M is S-visual),
the nearest point on this geodesic ray has distance at most 3

2S to ∂BkS(o) by the
triangle inequality, and from there it is less than another S/2 to a point x(k)

i . This
adds up to a distance less than 3S.

To each point x(k)
i , we assign the endpoint ξ(k)

i ∈ ∂GM of a geodesic ray ema-
nating from o and passing through x

(k)
i , for every k and i ∈ Ik. To construct the

partition of Ik+`, we associate each point ξ(k+`)
j to a nearest point ξ(k)

i , as seen in
Figure 3.1, i.e., we assign each index j ∈ Ik+` to a set Ik,`,i such that

i ∈ argmini′∈Ik
{

e−(ξ(k+`)
j |ξ(k)

i′ )o
}
.

We check the prerequisites of Corollary 3.4 “quasi-additivity of the harmonic
measure”:

• For any k, the family (ξ(k)
i ) is e−kS-separated, i.e., the points have mutual

distance at least e−kS : for two points x(k)
i and x(k)

j in the same layer, we can
apply the Bonk–Schramm Lemma 1.10. Since d(x(k)

i , o) = d(x(k)
j , o) = kS,

d(x(k)
i , x

(k)
j ) > S/2 > 2δ and hence kS − (x(k)

i |x
(k)
j )o = d(x(k)

i , x
(k)
j )/2 > δ, the

minimum in the Bonk–Schramm Lemma must be attained in (ξ(k)
i |ξ

(k)
j )o, i.e.,

e−(ξ(k)
i |ξ

(k)
j )o > e−kS .

• For any k, the family (VkS−S/2(ξ(k)
i )) covers ∂M : for any point η ∈ ∂GM ,

choose a geodesic ray γ : o  η. Then γ(kS) is contained in BS/2(x(k)
i ) for

some i ∈ Ik. By the Bonk–Schramm Lemma 1.10, either (ξ(k)
i |η)o > kS (and

we are done) or (ξ(k)
i |η)o > kS − S/4− δ > kS − S/2.

• For j ∈ Ik,`,i, the point ξ(k+`)
j is contained in VkS−S/2(ξ(k)

i ): this is true by the
construction of the layers and the previous step.

• {V(k+`)S−S/2(ξ(k+`)
j ) | j ∈ Ik,`,i} covers VkS+S/2(ξ(k)

i ): for every point η in
VkS+S/2(ξ(k)

i ) there is a set V(k+`)S−S/2(ξ(k+`)
j ) with j ∈ Ik+` containing it, but

we still need to see j ∈ Ik,`,i. By the quasi–triangle inequality, e−(ξ(k)
i |ξ

(k+`)
j )o 6

eδ e−(kS+S/2) < e−δ e−kS (recall S > 4δ). As the points in ∂M corresponding
to the kth layer are e−kS-separated, another application of the quasi–triangle
inequality shows that any other of these points has larger distance from ξ

(k+`)
j

and hence j ∈ Ik,`,i.
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Now we are in the position to apply Corollary 3.4 “quasi-additivity of the harmonic
measure” with R = e−kS , r = e−(k+`)S and λ = eS/2. This yields

µo
(
VkS(ξ(k)

i )
)
�δ,S

∑
j∈Ik,`,i

µo
(
V(k+`)S(ξ(k+`)

j )
)
.

With Theorem 3.2 “Green’s function and harmonic measure”, this is equivalent to

G(x(k)
i , o) �δ,S

∑
j∈Ik,`,i

G(x(k+`)
j , o) . (3.1)

Furthermore, all j ∈ Ik,`,i satisfy (ξ(k+`)
j |ξ(k)

i )o > kS − S/2 and hence
(x(k+`)
j |x(k)

i )o > kS − S/2 − 2δ > (k − 1)S by the Bonk–Schramm Lemma 1.10.
On the one hand, this implies our last assertion d(x(k+`)

j , x
(k)
i ) < (` + 1)S. On the

other hand, (x(k+`)
j |o)

x
(k)
i

= d(x(k)
i , o) − (x(k+`)

j |x(k)
i )o < S and hence x(k)

i lies in

controlled distance from a geodesic ray o x
(k+`)
j by Lemma 1.7 “Gromov product

as distance to a geodesic”. Together with Harnack inequalities, this permits us to
apply Corollary 2.16 “Green’s function along hyperbolic geodesics”,

G(x(k+`)
j , o) � G(x(k+`)

j , x
(k)
i )G(x(k)

i , o) ,

and we can write (3.1) as ∑
j∈Ik,`,i

G(x(k+`)
j , x

(k)
i ) � 1 .

3.3 A Weighted Mesoscale Friedrichs Inequality
Our next step on the road to a weighted isoperimetric inequality is a weighted

Friedrichs inequality with an averaged gradient. Since the integral∫
BR(x)

|u(x)− u(y)| dV (y)

is an approximation of the gradient |∇u| near x on scale R, where R is typically
significantly larger than S but still finite, we will call this a mesoscale gradient. For
an elaboration on this idea in the context of Sobolev inequalities on metric measure
spaces at different scales cf. [Tes08].

Definition 3.7 (Good Weight Function) On an S-visual δ-hyperbolic Rieman-
nian manifoldM of (σ, `)–bounded geometry with basepoint o and uniformly perfect
boundary we say that a function w : M → (0,∞) is a good weight function if

• w is a Harnack function, i.e., there is a H > 1 such that

H−1 6
w(x)
w(y) 6 H for d(x, y) < σ, and
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• w decays exponentially slower than the Laplacian’s Green’s function G: there
are constants C,α > 0 such that w(x) > C eαd(x,y)G(x, y)w(y) for any x and
y on a geodesic ray emanating from the basepoint o with d(o, x) > d(o, y) +σ.

Using the scaffold provided by the onion cover, the proof of a weighted mesoscale
Friedrichs inequality is now relatively straightforward. The method of proof is
modelled after [DV14, Theorem 5], where an analogue on not necessarily uniform
open sets in metric measure spaces is proven which is similar to our result after
transition to the quasi-hyperbolic metric, see the remarks in section 3.5.

Theorem 3.8 (Weighted Mesoscale Friedrichs Inequality) Let w be a good
weight function. Then for any p > 0, there is an R > 0 such that for any measurable
function u,∫

M
|u(x)|pw(x) dV (x) 4

∫
M

∫
BR(x)

|u(x)− u(y)|pw(x) dV (y) dV (x)

as soon as the left-hand side is finite.

Proof. First note that for any Harnack function v and any ball B3S(x),∫
B3S(x)

v(y) dV (y) � v(x)

because the Harnack property bounds v(y) and bounded geometry gives bounds for
the volume. We will use this implicitly several times for v = w and v = G(·, z) for
z far from x.

In the onion cover 3.6, we consider two layers k and k + `. In the following, the
constants depend only on the universal constants, the constants for the good weight
function and p, but neither on k nor on `. Fix i ∈ Ik, then∫

B
(k)
i

|u(x)|p dx

�
∫
B

(k)
i

|u(x)|p dx
∑

j∈Ik,`,i

∫
B

(k+`)
j

G(y, x(k)
i ) dy

︸ ︷︷ ︸
�1

4
∫
B

(k)
i

∑
j∈Ik,`,i

∫
B

(k+`)
j

(|u(x)− u(y)|p + |u(y)|p)G(y, x(k)
i ) dy dx

�
∫
B

(k)
i

∑
j∈Ik,`,i

∫
B

(k+`)
j

|u(x)− u(y)|pG(y, x(k)
i ) dy dx

+
∑

j∈Ik,`,i

∫
B

(k+`)
j

|u(y)|pG(y, x(k)
i ) dy

∫
B

(k)
i

dx︸ ︷︷ ︸
�1

�
∫
B

(k)
i

∑
j∈Ik,`,i

∫
B

(k+`)
j

|u(x)− u(y)|pG(y, x(k)
i ) dy dx

+
∑

j∈Ik,`,i

∫
B

(k+`)
j

|u(y)|pG(y, x(k)
i ) dy ,
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where in the second step, we used the elementary inequalities |a|p 6 |a − b|p + |b|p
for 0 < p 6 1 or |a|p 6 2p−1 (|a− b|p + |b|p) for p > 1, respectively. Multiplying this
with w(x(k)

i ), summing over all k and i and using the explicit exponential bound
G(x(k+`)

j , x
(k)
i )w(x(k)

i ) 6 e−α(`+1)S w(x(k+`)
j ), we can make the contribution of the

second term on the right-hand side arbitrarily small in relation to the term on the
left-hand side and all involved constants by choosing ` sufficiently large. Subtracting
this small term yields∫

M
|u(x)|pw(x) dx

4
∑
k

∑
i∈Ik

∫
B

(k)
i

∑
j∈Ik,`,i

∫
B

(k+`)
j

|u(x)− u(y)|pw(x) dy dx

4
∫
M

∫
BR(x)

|u(x)− u(y)|pw(x) dy dx

with R = (`+ 1)S.

3.4 Infinitesimal Friedrichs and Isoperimetric Inequali-
ties

The weighted mesoscale Friedrichs inequality 3.8 implies an “infinitesimal”
Friedrichs inequality for W 1,p

loc -functions with the usual gradient on the right-hand
side. This can be seen with the help of Poincaré inequalities.

On balls B in Euclidean space Rn, we have the Poincaré inequality∫
B
|u− uB|p dx 4n,p (diamB)p

∫
B
|∇u|p dx for u ∈W 1,p(B)

with 1 6 p < n and uB := −
∫
B u(x) dx := Vol(B)−1 ∫

B u(x) dx [Hei01, (4.4)].
On balls in a manifold Mn of (σ, `)–bounded geometry, this carries over in the

form ∫
Br(x)

|u− uBr(x)|p dV 4n,p,` rp
∫
B`2r(x)

|∇u|p dV for u ∈W 1,p
loc (M)

for x ∈M and 0 < r < σ/`2, see [BB11, Proposition 4.16] for the short proof.
To apply this to the weighted mesoscale Friedrichs inequality 3.8, we need

Poincaré inequalities on larger balls of radius R. To this end, we use the following
extension principle:

Lemma 3.9 (Extension of Poincaré Inequalities) [BB18, Lemma 4.11] If
A,E ⊂ M are open sets with Vol(A ∩ E) > θVol(E) for some θ > 0, u is a
measurable function and there is a Q > 0 such that∫

A
|u− uA|p dx 6 Q and

∫
E
|u− uE |p dx 6 Q ,

then ∫
A∪E
|u− uA∪E |p dx 6 4p

(
1 + θ−1/p

)p
Q .
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This has to be applied only a finite number of times because bounded geometry
implies bounds on the number of smaller balls needed to cover a ball of larger radius.

Lemma 3.10 (Bounded Growth From Bounded Geometry) [Koi17,
Lemma 2] On a complete manifoldMn of (σ, `)–bounded geometry, for every % 6 σ/2
there is a number β = β(n, `, %/σ) > 1 such that every ball of radius kσ for can be
covered by at most βk balls of radius %.

Proof. By bounded geometry, there is a number N = N(n, `, %/σ) such that ev-
ery ball of radius σ can be covered by at most N balls of radius %. Cover a
fixed ball Bσ(x) with N such balls B%(x1), B%(x2), . . . , B%(xN ). Then the balls
B%(x1), B%(x2), . . . , B%(xN ) already cover B2σ−%(x): for every y ∈ B2σ−%(x) there
is a y′ ∈ Bσ(x) on a geodesic x  y with d(y, y′) < σ − %. Then for an
xi with d(xi, y′) < % (which exists by the cover property) we have d(xi, y) 6
d(xi, y) + d(y, y′) < σ.

As each of these balls Bσ(xi) can be covered by N balls of radius %, we need at
most N2 balls of radius % to cover B2σ−%(x).

Iteration of the argument shows that every ball of radius % + k(σ − %) can be
covered by Nk balls of radius % and we can choose β := N

σ
σ−% .

These are all ingredients to get Poincaré inequalities on a larger scale:

Theorem 3.11 (Poincaré Inequality) On a complete manifold Mn of (σ, `)–
bounded geometry, for any 1 6 p < n and R > 0 there is a Poincaré inequality∫

BR(x)
|u− uBR(x)|p dx 4n,p,`,R/σ

∫
B`2R(x)

|∇u|p dx for u ∈W 1,p(B`2R(x))

for every x ∈M .

Proof. In a given ball BR(x), we choose a % := σ/(2`2)-net (xi), i.e., the points
xi have mutual distance at least % and (B%(xi)) is a cover of BR(x). By bounded
growth from bounded geometry 3.10, there are at most 4n,`,R/σ 1 many elements in
the net. Because M is connected, we can assume they are arranged as x1, x2, . . . in
such a way that each point has distance less than 2% from one of its predecessors.

Starting with B2%(x1), we inductively apply the extension of Poincaré
inequalities 3.9, where in the jth step, A = ⋃

i<j B2%(xi), E = B2%(xj), and for
Q we can take a constant multiple of

∫
B`2R(x) |∇u|p dV . This constant becomes

worse in every step, but there is only a controlled number of steps and in every step
there is only a controlled factor: xj has distance less than 2% from a predecessor
xi(j) and there is a point x′j on a geodesic xj  xi(j) such that the ball B%(x′j) is
contained in A∪E. Hence bounded geometry gives a lower bound on θ, depending
only on `. In the end, we have the asserted Poincaré inequality.

Now we fix an R > 0 and choose a 2R-net (xi) in M . Using the elementary
inequality

|u(x)− u(y)|p 6 2p−1
(
|u(x)− uB2R(xi)|

p + |u(y)− uB2R(xi)|
p
)
,
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we have for any Harnack-function w with constant H∫
M

∫
BR(x)

|u(x)− u(y)|pw(x) dV (y) dV (x)

4H,R/σ
∑
i

∫
B2R(xi)

∫
BR(x)

|u(x)− u(y)|p dV (y) dV (x)w(xi)

6
∑
i

∫
B2R(xi)

∫
B2R(xi)

|u(x)− u(y)|p dV (y) dV (x)w(xi)

6
∑
i

2p Vol(B2R(xi))
∫
B2R(xi)

|u(x)− uB2R(xi)|
p dV (x)w(xi)

4n,p,`,R/σ
∑
i

∫
B2`2R(xi)

|∇u|p dV w(xi)

4n,`,R/σ

∫
M
|∇u|pw dV

for u ∈ W 1,p
loc (M), where we used again bounded growth from bounded geometry

3.10 in the last step.
Together with the weighted mesoscale Friedrichs inequality 3.8, this yields:

Corollary 3.12 (Weighted Friedrichs Inequality) On a δ-hyperbolic visual
manifold Mn of bounded geometry with uniformly perfect boundary, we have for
any good weight function2 w and 1 6 p < n∫

M
|u|pw dV 4

∫
M
|∇u|pw dV

for every u ∈W 1,p
loc (M) such that the left-hand side is finite.

The term Friedrichs inequality for an inequality of this form is used e.g. in [EO93]
and [LV16]. In common usage, it differs from a Poincaré inequalities in that these
contain an averaged term on the left-hand side and the constant depends on the size
of the domain in question. A Sobolev inequality usually has a different exponent
q > p on the left-hand side, see section 3.6.

BV functions, like the characteristic functions of Caccioppoli sets, are more
general than W 1,1

loc functions, but there is an 1-Poincaré inequality for them in Rn
as well in the form∫

B
|u− uB| dV 4n,VolB

∫
B
|Du| for u ∈ BV (B)

with the total variation of u on the right-hand side [EG15, Theorem 5.10(ii)]. For
definitions and more details on BV functions and Caccioppoli sets we refer to sec-
tion A.1. Either with the same reasoning as above for W 1,p

loc -functions or by approx-
imation with smooth functions and the p = 1 weighted Friedrichs inequality, we
have:

2See Definition 3.7.
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Corollary 3.13 (Weighted Friedrichs Inequality for BV-Functions) On a
complete δ-hyperbolic visual manifold M of bounded geometry with uniformly perfect
boundary, we have for any good weight function w∫

M
|u|w dV 4

∫
M
w |Du|

for every u ∈ BVloc(M) such that the left-hand side is finite.

Applied to characteristic functions of Caccioppoli sets, this is:

Corollary 3.14 (Weighted Linear Isoperimetric Inequality) On a complete δ-
hyperbolic visual manifold M of bounded geometry with uniformly perfect boundary,
we have for any good weight function w∫

U
w dV 4 Pw(U)

for every Caccioppoli set U ⊂M such that the left-hand side is finite.

3.5 Examples for Weight Functions and Generalisations

Here we will list some examples for good weight functions that can be used in
the inequalities in the previous section and hint at possible generalisations.

• The simplest choice is the constant function 1. It is a good weight function
because the Green’s function decays exponentially. The resulting (unweighted)
linear isoperimetric inequality

VolU 4 Area ∂U for every U of finite volume

shows that the Cheeger isoperimetric constant h(M) is positive, reproving the
implication (ii)⇒ (i) mentioned in the beginning of this chapter.

• It is really necessary that M is non-compact, visual and the boundary uni-
formly perfect because on a complete Gromov hyperbolic manifold of bounded
geometry these conditions are equivalent to the unweighted linear isoperimet-
ric inequality, as shown in a recent note by Martínez-Pérez and Rodríguez
[MR20, Theorem 5.2].

• A sharper choice of weight function is G(x, o)1−ε for an arbitrarily small ε > 0,
smoothed out in a neighbourhood of o.

• Any −∆ − ε-superharmonic Harnack function for ε > 0 is a good weight
function: this follows directly from the global maximum principle 1.18 (ii)
and Corollary 2.12 “exponentially stronger decay”.

• The Harnack property in the previous example is automatically satisfied for
positive solutions of −∆w + V w = 0 for V 6 −ε by the Harnack inequalities
2.5.
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• Note that we can substitute any other symmetric adapted operator L with
L1 = 0 for the Laplacian since we never used any other properties. Since this
corresponds to a choice of the second order coefficients, this amounts to taking
the Laplacian with respect to a metric g′ comparable to g (g′(X,X) � g(X,X)
for any tangent vector X).

• The best constant in the p = 1 Friedrichs
inequality,

F1(M) := inf
f∈C∞c (x)

∫
M |∇f | dV∫
M |f | dV

,

is equal to the best constant in the linear
isoperimetric inequality, the Cheeger con-
stant h(M) [Cha06, Theorem VIII.3.2]. This
constant is sensitive to compactly supported
perturbations, it can be made arbitrarily
small by “bubbling off” as depicted here
while preserving the large scale structure and
even bounded geometry (but on a smaller
scale).
On a manifold with positive F1(M), set v = u e−µd(·,o) for a basepoint o ∈
M , µ > 0 and u ∈ C∞c (M), then ∇v = (∇u) e−µd(·,o)−u e−µd(·,o) almost
everywhere and hence

F1(M)
∫
M
|u| e−µd(·,o) dV = F1(M)

∫
M
|v| dV 6

∫
M
|∇v| dV

6
∫
M
|∇u| e−µd(·,o) dV + µ

∫
M
|u| e−µd(·,o) dV

Subtracting the second term on the right-hand side, we see that M admits
a e−µd(·,o)-weighted Friedrichs (and hence linear isoperimetric) inequality for
0 < µ < F1(M).
This shows that weight functions for weighted Friedrichs inequalities are a
more robust large-scale generalisation of the Cheeger constant. Additionally,
the weights can take into account spatial differences, e.g., the weight function
can differ in the direction of boundary components with different dimension.

• Much more general, for an arbitrary doubling measure ν on ∂GM , we could
replace G(γ(t), o) with ν(Vt(ξ)), for any t > 0 and geodesic ray γ : o  ξ.
Then a weight function w would have to satisfy

w(γ(T ))
w(γ(t)) < eε(T−t) ν(VT (ξ))

ν(Vt(ξ))
for T > t > σ

along every such ray, for a fixed ε > 0, to yield a w-weighted Friedrichs
inequality. If dimreg(µ) denotes the lower regularity dimension of µ, this is
satisfied by the function

w(x) = e−(dimreg(µ)−ε) d(x,o) .
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The lower regularity dimension of a measure never exceeds the lower Assouad
dimension dimAs(∂GM), defined as the supremum of all d > 0 such that there
is a Cd > 0 such that one needs at least Cd(R/r)d balls of radius r to cover
a ball of radius R in ∂GM , for any 0 < r < R < diam(∂GM), see [Fra14]
for a detailed exposition. There are doubling measures whose lower regularity
dimension comes arbitrarily close to dimAs(∂GM) [BG00], hence we can choose

w(x) = e−(dimAs(∂GM)−ε) d(x,o)

for some ε > 0 as a geometrically motivated weight function. For boundaries
with spatially varying dimension, all these concepts can be localised.
Note that this reproves the result of [MR18] that every uniformly perfect
space has positive Cheeger constant since uniform perfectness is equivalent to
positive lower Assouad dimension and for spaces with such a Gromov boundary
we get in particular an unweighted linear isoperimetric inequality.

• The previous step can even be applied if the Gromov boundary is not uniformly
perfect, i.e., dimAs(∂GM) = 0. Then Friedrichs and linear isoperimetric in-
equalities hold with weight function

w(x) = e+ε d(x,o)

for any fixed ε > 0.

• On uniform manifolds M with generalised distance function ð , the results in
this section can be applied as soon as

– the hyperbolic unfolding is visual, which is e.g. guaranteed by ð �
dist(·, ∂M), and

– the Gromov boundary is uniformly perfect, which is equivalent to the
metric boundary ∂M being uniformly perfect, since quasi-symmetric
equivalences preserve uniform perfectness [Hei01, Exercise 11.2].

Then translation of the involved quantities under conformal deformation shows
in the uniform metric for p > 1 and any good weight function w, e.g., w = 1,
the weighted Friedrichs inequality∫

M
|u|p ð−nw dV 4

∫
M
|∇u|pðp−nw dV

for every u ∈W 1,p
loc (M) such that the left-hand side is finite.

• Combining the last few points, one could hope that ðdimAs(∂M) is a good weight
function. However, the estimates on quasi-symmetry exponents in [BHK01,
(3.19)] are not sufficiently sharp to see this directly. This would yield so-called
(p, p− n+ γ)-Hardy inequalities in the form∫

M
|u|p ðγ−n dV 4

∫
M
|∇u|pðp−n+γ dV
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for every u ∈ W 1,p
loc (M) such that the left-hand side is finite. These in-

equalities have in fact been studied in the case 1 < p < ∞ and γ <
min{dimAs(∂M), n − 1} and under various other conditions that are partly
more, partly less restrictive than ours, in [Leh17] and [DV14], where the lat-
ter uses the framework of fractional Hardy inequalities, an analogue to our
mesoscale inequality in section 3.3.

3.6 Local Sobolev Inequalities from Friedrichs Inequal-
ities

Usually, a Friedrichs inequality of type∫
|u|p 4

∫
|∇u|p for u ∈ C∞c

for p > 1 is obtained from a Sobolev inequality of type
(∫
|u|q

) 1
q

4
(∫
|∇u|p

) 1
p

for u ∈ C∞c

for some q > p > 1 (e.g., q = np
n−p in Rn) by an application of Hölder’s inequality,

but then the constant in the Friedrichs inequality depends on the volume of the
support of u.

In our situation with a global w-weighted Friedrichs inequality, we just need a
Sobolev inequality with some weight function to go in the other direction and get a
w-weighted Sobolev inequality. The proof is modelled after an analogous situation
before conformal hyperbolisation [LV16, Theorem 2.1], where a (weighted) Hardy
inequality is improved to a (weighted) Hardy–Sobolev inequality in the presence of
a Sobolev inequality.

Theorem 3.15 (Weight Transfer) Assume on a complete manifold M of bounded
geometry there are Harnack functions w, w̃ > 0 and numbers p, q > 1 such that there
are a w-weighted Friedrichs inequality∫

M
|u|pw dV 4

∫
M
|∇u|pw dV for u ∈ C∞c (M)

and a w̃-weighted Sobolev inequality on an open subset Ω ⊂M ,

(∫
Ω
|u|q w̃

q
p dV

) 1
q

4
(∫

Ω
|∇u|p w̃ dV

) 1
p

for u ∈ C∞c (Ω) .

Then there is also a w-weighted Sobolev inequality on Ω,

(∫
Ω
|u|q w

q
p dV

) 1
q

4
(∫

Ω
|∇u|pw dV

) 1
p

for u ∈ C∞c (Ω) ,

with constant depending only on the constants of the other inequalities, the Harnack
functions, and bounded geometry.
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Proof. First we observe that on a manifold of bounded geometry, for any Harnack
function W we can find a smooth Harnack function W � W with |∇W| 4 W by
convolution with mollifiers as in the proof of Theorem 1.34 “natural regularisation
of generalised distance functions”. Without loss of generality we can assume this
property for w, w̃ and all their products and powers because they are Harnack
functions as well.

Now set v = u
(
w
w̃

)1/p for an u ∈ C∞c (Ω). Then

|∇v| 6 |∇u|
(
w

w̃

)1/p
+ |u|

∣∣∣∣∣∇
(
w

w̃

)1/p
∣∣∣∣∣ 4 |∇u|

(
w

w̃

)1/p
+ |u|

(
w

w̃

)1/p

and using (in this order) the weighted Sobolev inequality, Minkowski’s inequality
and the weighted Friedrichs inequality, we have

(∫
Ω
|u|q w

q
p dV

) 1
q

=
(∫

Ω
|v|qw̃

q
p dV

) 1
q

4
(∫

Ω
|∇v|p w̃ dV

) 1
p

4
(∫

Ω
|∇u|pw dV

) 1
p

+
(∫

Ω
|u|p |∇W |pw̃ dV

) 1
p

4
(∫

Ω
|∇u|pw dV

) 1
p

.

By approximation, these inequalities can be extended to appropriately weighted
Sobolev spaces. By classical arguments, see e.g. [BDGM69, Lemma 1], the p = 1
w-weighted Sobolev inequality is equivalent to the isoperimetric inequality

(∫
U
wq dV

) 1
q

4 Pw(U) for U bM Caccioppoli.

There are several situations where a Sobolev (or isoperimetric) inequality such
as in the assumptions of the preceding theorem arises naturally:
Examples 3.16.

• By bounded geometry, we have an unweighted isoperimetric inequality with
q = n

n−1 on small balls by comparison with Euclidean space, but it is obvious
that this generalises to arbitrary Harnack weight functions.

More interesting examples arise for hyperbolic unfoldings of uniform manifolds.
Here we typically have Sobolev (or equivalently isoperimetric) inequalities on sets
Ω overlapping with the boundary, hence they are unbounded in the hyperbolic
unfolding.

• In a closed Riemannian manifoldMn, an (unweighted) isoperimetric inequality
with q = n

n−1 holds locally (by bounded geometry), hence on the hyperbolic
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unfolding (M \ Σ, ð−2g) of a dense uniform domain M \ Σ, there are ðn−1-
weighted isoperimetric inequalities(∫

U
ðndV

) n
n−1
4 Pðn−1(U) for U b Ω Caccioppoli,

where Ω is the image of a sufficiently small ball in (Mn, g) and might be
unbounded in (M \ Σ, ð−2g).

• On a minimal hypersurface Hn ⊂ Mn+1, an isoperimetric inequality with
q = n

n−1 holds locally [HS74], or even globally, if there is no closed minimal
hypersurface in the ambient space [Whi09]. This is true even at the singu-
lar set, hence we get the same isoperimetric inequalities as in the previous
example.

In the presence of a w-weighted Friedrichs inequality, we can now replace the
indicated weights with w.
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Chapter 4

Bubbles and Mean Convex
Exhaustion

Let (Mn, g) be a not necessarily complete Riemannian manifold without
boundary—this could be either of the types of manifolds discussed before, an incom-
plete uniform manifold or a complete Gromov hyperbolic manifold. In this chapter,
we will be concerned with non-empty Caccioppoli sets U that are local minimisers
of the functional

bubbβ,φ(U) := Pβ(U)−
∫
U
φ dV

for given measurable functions β : M → (0,∞) and φ : M → R, i.e., each x ∈ ∂U
has a neighbourhood Ω ⊂M such that

bubbβ,φ(U,Ω) := Pβ(U,Ω)−
∫
U∩Ω

φ dV

= inf{bubbβ,φ(V,Ω) | V Caccioppoli, V∆U b Ω}

where V∆U is the symmetric difference (V \ U) ∪ (U \ V ). Such a set U will be
called a (β,φ)-bubble. Here,

Pβ(U,Ω) := sup
{∫

U
divX dV

∣∣∣X ∈ C1
c (Ω, TΩ), |X| 6 β

}
is the weighted perimeter and for short we write Pβ(U) := Pβ(U,M). For a brief
summary of definitions and results for Caccioppoli sets and functions of bounded
variation, see section A.1.

(1, φ)-bubbles are also known as hypersurfaces of prescribed mean curvature since
φ is essentially the mean curvature of the boundary as we will see soon. Their
existence and regularity were first investigated by Massari and Miranda [Mas74,
Mir73], but Allard’s more general results for varifolds of bounded variation [All72]
from the same era apply as well. The term “bubble” is from [Gro96, § 55

6 ]. Very
recently, our generalised (β, φ)-bubbles appeared independently in [CL20].

We will make use of the extra flexibility provided by β to transport results across
conformal deformations of (M, g), especially in the case of uniform manifolds and
their hyperbolic unfoldings.
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4.1 Regularity of Bubbles
We notice that under a conformal deformation g′ = f2g, bubb transforms as

bubbgβ,φ(U) = P g
′

βf−(n−1)(U)−
∫
U
φf−ndV g′ = bubbg

′

(βf−(n−1),φf−n)(U)

and (β, φ)-bubbles with respect to the metric g are (βf−(n−1), φf−n)-bubbles in the
deformed metric g′. In particular, when we have a (β, φ)-bubble, we can deform with
f = β1/(n−1) to obtain a (1, φ′)-bubble in the deformed metric, with φ′ = β−n/(n−1)φ.

Hence we only need to consider (1, φ)-bubbles for regularity theory because
regularity is independent of the metric. Conveniently, they are almost-minimisers
for quite general φ and the regularity of almost-minimisers A.5 applies:

Proposition 4.1 (Bubbles Are Almost-Minimisers) For a locally bounded
measurable function φ : M → R, a (1, φ)-bubble U is locally an (K, 1)-almost-
minimiser: for every point in ∂U there are neighbourhood Ω and a constant K > 0
(depending on Ω and φ) such that

ψ(U, x, %) := P (U,B%(x))− inf{P (V,B%(x)) | V Caccioppoli, V∆U b B%(x)}
6 K%n−1+1

for every x ∈ ∂U ∩Ω and % > 0 with B%(x) ⊂ Ω.

Proof. Using the elementary inequality inf(A+B) > inf A+ inf B, we have on balls
B%(x) where U is bubb1,φ-minimising

ψ(U, x, %) = bubb1,φ(U,B%(x)) +
∫
U∩B%(x)

φ dV

− inf
V∆UbB%(x)

(
bubb1,φ(V,B%(x)) +

∫
V ∩B%(x)

φ dV
)

6 bubb1,φ(U,B%(x))− inf
V∆UbB%(x)

bubb1,φ(V,B%(x))

+
∫
B%(x)

φ+ dV −
∫
B%(x)

φ− dV

=
∫
B%(x)

|φ| dV 6 sup
Ω
|φ| ·Vol(B%(x)) ,

where φ+ = max{φ, 0} > 0 and φ− = min{φ, 0} 6 0.
On sufficiently small Ω, U is bubb1,φ-minimising and there is an estimate

Vol(B%(x)) 6 C%n for every ball B%(x) ⊂ Ω so that we can choose K =
C supΩ |φ|.

Remark 4.2. If φ is only assumed to be a Lploc function for some p > n, we can
estimate the last line as

. . . 6 ‖φ‖Lp(Ω) Vol(B%(x))1−1/p

by Hölder’s inequality and we get (K,λ)-almost minimisers with λ = 1− n/p.
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Combined with the partial regularity theory for almost-minimisers, this directly
gives us the general result:

Theorem 4.3 (Regularity of Bubbles) For a C1 function β : M → (0,∞) and a
locally bounded measurable function φ : M → R, the boundaries of (β, φ)-bubbles are
C1,1/2-regular submanifolds outside a singular set of Hausdorff dimension at most
n− 8.

Proof. By conformal deformation as indicated above we get an (1, φ′)-bubble with
φ′ = β−n/(n−1)φ in the new metric. This metric is only C1 regular, but that is
sufficient for our purposes. By the preceding Proposition, we can locally apply the
regularity of almost-minimisers A.5 with λ = 1.

Remarks 4.4.

• On smooth parts of ∂U and for sufficiently regular (say, smooth) β and φ, we
can apply the first variation formula for a variational vector field f · ν where
ν is the exterior normal of ∂U and H the scalar-valued mean curvature of ∂U
with respect to −ν (e.g. H > 0 for the boundary of Euclidean balls as seen
from the interior):

0 = bubb′β,φ(U)(f) =
∫
∂U
f · (∇νβ + βH − φ) dA .

This impliesH = β−1(φ−∇νβ) on smooth parts of ∂U , orH = φ in the special
case β ≡ 1, explaining the term hypersurface of prescribed mean curvature.

• On their regular part, (1, φ)-bubbles can locally be written as solutions of
the quasi-linear elliptic prescribed mean curvature equation. This shows even
higher regularity as soon as φ is sufficiently regular, e.g., the regular part is
smooth if β and φ are smooth, see [GT98, Chapter 16].

4.2 Mean Convexity at Infinity
We say a Caccioppoli set U is an outer-minimising (β, φ)-bubble if it minimises

bubbβ,φ among all relatively compact Caccioppoli sets containing U .
For smooth outer-minimising (β, φ)-bubbles, we have only the variational char-

acterisation bubb′β,φ(U)(f) > 0 for positive f , hence the mean curvature is H >
β−1(φ−∇νβ). This indicates that outer-minimising bubbles are a generalisation of
mean convex sets, i.e., smoothly bounded open sets with positive mean curvature
of the boundary. This motivates the following definition.

Definition 4.5 (Mean Convexity at Infinity) We call M (β, φ)–mean convex
at infinity if β : M → (0,∞) is C1, φ : M → R locally bounded and measurable and
there is an exhaustion of M by compact outer-minimising (β, φ)-bubbles Ui, i.e.,

bubbβ,φ(Ui) = inf
Ui⊂V bM

bubbβ,φ(V ), Ui ⊂ Ui+1 and
⋃
i

Ui = M .

“M is mean convex at infinity” is short for “M is (1, 0)–mean convex at infinity”.
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Example 4.6. In Euclidean Rn, bubb1,r−k(B%(0)) ∼ %n−1 −
∫ %

0 r
n−1−k dr = %n−1 −

1
n−k%

n−k. For k > 1, this has a strict minimum at % = (n−1)−1/(k−1) and in fact we
will see in Examples 4.11 that Rn is (1, r−k)–mean convex at infinity for any k > 1.

The significance of mean convexity at infinity is illustrated by the following
consequence:

Proposition 4.7 (Existence of Bubbles) IfMn is (β, φ)–mean convex at infinity
and ψ 6 φ, there is a solution for the following minimisation problem:

Given an open set Ω ⊂ M with M \ Ω compact and a compact Caccioppoli set
L ⊂ M , find a compact Caccioppoli set E ⊂ M that minimises bubbβ,ψ among all
compact Caccioppoli sets coinciding with L outside Ω, i.e., E \Ω = L \Ω and

bubbβ,ψ(E) 6 bubbβ,ψ(F )

for every compact Caccioppoli set F with F \Ω = L \Ω.

Proof. Take an outer-minimising (β, φ)-bubble U b M containing M \Ω and con-
sider a bubbβ,ψ-minimising sequence of Caccioppoli sets (Fi) with Fi \ Ω = L \ Ω.
Since U is bubbβ,φ-outer-minimising, we have

bubbβ,φ(U ∪ Fi) > bubbβ,φ(U)

and since ψ 6 φ,

bubbβ,ψ(U ∪ Fi)− bubbβ,ψ(U)

= bubbβ,φ(U ∪ Fi)− bubbβ,φ(U) +
∫
Fi\U

(φ− ψ)dV > 0 .

If Fi * U , we will replace Fi with F̃i := Fi∩U . Then subadditivity of the perimeter
A.3 and additivity of volume integrals on Borel sets imply

bubbβ,ψ(F̃i) 6 bubbβ,ψ(Fi) + bubbβ,ψ(U)− bubbβ,ψ(U ∪ Fi) 6 bubbβ,ψ(Fi)

and hence the sequence (F̃i) is minimising as well. Because Ū is compact,
∫
U ψ dV

is finite and hence the sequence P (F̃i) 6 Pβ(F̃i)/minŪ β is bounded and we can
apply compactness of Caccioppoli sets A.2 to find a subsequence converging to a
relatively compact bubbβ,ψ-minimising limit set.

The sets Ω and L in the proposition are used to prescribe a boundary condi-
tion for bubbles. This can be done more comfortably in the language of (integral)
currents, which are in our case essentially (possibly infinite) formal sums of integer-
weighted Caccioppoli sets, see section A.2 for statements of results we use. A reader
unfamiliar with currents may simply skip forward to Definition 4.9 “calibrations”.

The additional difficulty when trying to prove an existence result in the set-
ting of currents is that multiplicities or sums might become infinite. If there were
a Caccioppoli set E with bubbβ,ψ(E) < 0, we could just include more copies of
this set to make the total (current analogue of) bubbβ,ψ arbitrarily small, hence
bubbβ,ψ(E) > 0 for all relatively compact Caccioppoli sets E is a necessary addi-
tional condition. We will see that in combination with (β, ψ)–mean convexity at
infinity a slightly stronger condition is also sufficient:
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Theorem 4.8 (Existence of Minimising Currents) If Mn is (β, φ)–mean con-
vex at infinity, ψ 6 φ, bubbβ,ψ(E) > 0 for all relatively compact Caccioppoli sets
E ⊂M , and α ∈ (0, 1), there are compactly supported solutions for the Homolog-
ical Plateau Problem for (β, αψ)-bubbles: given a compactly supported integral
(n− 1)-current R, find a compactly supported integral n-current T with minimal

Mβ(R+ ∂T )−Mαψ(T ) .

Proof. Take an outer-minimising (β, φ)-bubble U bM containing the support of R
and consider a minimising sequence of integral n-currents Ti for the functional

Mβ(R+ ∂Ti)−Mαψ(Ti) .

Each Ti is a formal sum of Caccioppoli sets by the decomposition of currents A.6
and we can apply the procedure in the proof of the existence of bubbles 4.7 to each
component of each Ti. This shows that we can assume that the Ti are supported in
Ū . Furthermore, we can assume Mβ(R + ∂Ti) −Mαψ(Ti) < Mβ(R), else T = 0 is
our minimiser. Additionally, Mβ(∂Ti) 6 Mβ(R + ∂Ti) + Mβ(R) by subadditivity
of mass A.7 and hence

Mβ(∂Ti)−Mαψ(Ti) < 2Mβ(R) .

The assumption bubbβ,ψ > 0 carries over to currents (note that every series involved
converges absolutely) and hence

(1− α)Mβ(∂Ti) 6Mβ(∂Ti)−Mαψ(Ti) < 2Mβ(R) .

This yields a universal bound

M(∂Ti) 6 2Mβ(R)/(1− α)/min
U

β .

Linear isoperimetric inequalities1 applied to each component give a similar bound
on M(Ti), hence compactness of currents A.8 produces a minimising limit current
T .

Notable special cases are:

• In the case ∂R = 0, the boundary component R+ ∂T is homologous to R.

• For φ > 0 and ψ ≡ 0, the results are β-weighted mass–minimising currents.

• For ψ ≡ 0 and ∂R = 0, this yields a β-weighted mass–minimising current
R+ ∂T in the same homology class as R.

1We could not localise the appropriate statement in the literature, but here is a quick proof by
on-board means: take a smoothly bounded open set X b M with U b X, then the methods in
the preceding chapter yield a (unweighted) linear isoperimetric inequality for Caccioppoli sets in
the hyperbolic unfolding of X with respect to a regularised distance to the boundary ð . On the
compact subset U , this can be upgraded to a linear isoperimetric inequality in the original metric
because the (continuous) function ð is bounded and bounded away from zero.

75



• For ψ ≡ 0 and ∂R 6= 0, this is the β-weighted Plateau Problem (find a
minimal current S spanning a given boundary ∂S = ∂R) with the additional
restriction that S = R+∂T is homologous to R. But for ψ ≡ 0, Mβ(R+∂T )−
M0(T ) is just the β-weighted mass of S, T is no longer needed and we can drop
this restriction while the proof still goes through with minor modifications.

• The classical situation is ψ ≡ 0 and β ≡ 1, where the ordinary mass is min-
imised.

A useful tool to construct smooth minimising surfaces are calibrations, with a
famous one-line proof of minimality. One-sided minimality can be proven by so-
called sub-/supercalibrations, see [DPP09], where minimality of Simons’ cone is
proven in an elegant way by sandwiching it between sub-/supercalibrated smooth
hypersurfaces. It is surprisingly easy to modify the definition to accommodate
(outer-minimising) (β, φ)-bubbles:

Definition 4.9 (Calibrations) A (β, φ)-supercalibration of a Caccioppoli set U ⊂
M in Ω ⊂ M for measurable β : M → (0,∞) and φ : M → R with log β and φ
locally bounded is a C1-vector field ξ on Ω such that

(i) ξ/β = ν is the (exterior) normal vector field on ∂U ,

(ii) div ξ > φ on Ω \ U , and

(iii) |ξ| 6 β on Ω.

Lemma 4.10 A (β, φ)-supercalibrated Caccioppoli set U in Ω is an outer-
minimising (β, φ)-bubble in Ω.

Proof. bubbβ,φ(V,Ω)− bubbβ,φ(U,Ω) >
∫
V \U (div ξ − φ) dV > 0 for V ⊃ U .

Examples 4.11.

• On Ω = Rn \ {0} with Euclidean metric, the balls around 0 are (β, φ)-
supercalibrated by the radial vector field ξ = βer, for φ 6 div ξ = ∂rβ+ n−1

r β.

• One solution of this is β = 1 and φ = n−1
r , hence Euclidean Rn is (1, (n−1)/r)–

mean convex at infinity, and (1, r−k)–mean convex at infinity for any k > 1.

• Another solution on Ω = B1(0) \ {0} is β =
(

2
1−r2

)n−1
and φ = β n−1

r
1+r2

1−r2 .
In combination with the change under conformal deformation, this shows that
the hyperbolic Poincaré ball with metric

(
2

1−r2

)2
gEucl is (1, φ′)–mean convex

at infinity with φ′ 6 n−1
2r (1+r2). Hence hyperbolic space Hn is (1, n−1)–mean

convex at infinity.

4.3 Mean Convexity from Isoperimetric Inequalities
The main result of this chapter is that a weighted linear isoperimetric inequality

implies weighted mean convexity at infinity as soon as there are sufficiently many
nonlinear isoperimetric inequalities around and a certain conformal deformation is
complete.
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Theorem 4.12 (Mean Convexity at Infinity) Assume M is a manifold with a
w-weighted linear isoperimetric inequality for a smooth function w > 0: there is a
C > 0 such that

Pw(U) > C
∫
U
w dV (4.1)

for any Caccioppoli set U such that the right-hand side is finite. Further assume
that there is a cover M by open sets (Ωi) on each of which a w-weighted nonlinear
isoperimetric inequality

Pw(U) <
(∫

U
w

n
n−1 dV

)n−1
n

for U b Ωi

holds, that the cover (Ωi) has positive Lebesgue number in the conformally deformed
metric g̃ := w

2
n−1 g, and that (M, g̃) is complete.

Then M is (w,αCw)–mean convex at infinity, for any α ∈ (0, 1).

Proof. Assume there is no exhaustion of M by outer-minimising (w,αCw)-bubbles,
for a fixed α. Then there is a ball B (assumed smoothly bounded) that is not
contained in an outer-minimising (w,αCw)-bubble and we can find a sequence of
relatively compact Caccioppoli sets (Vi) with Vi+1 ⊃ Vi ⊃ B and

bubbw,αCw(B) > bubbw,αCw(Vi)→ inf
V⊃B
V bM

bubbw,αCw(V ) > 0

strictly decreasing. Here we use the linear isoperimetric inequality (4.1) in the form

bubbw,αCw(U) = Pw(U)− αC
∫
U
w dV > (1− α)C Pw(U) > 0

for any Caccioppoli set U bM .
Another application of (4.1) shows

bubbw,αCw(B) > bubbw,αCw(Vi) > (1− α)C
∫
Vi

w dV ,

hence (Vi) cannot converge to the whole space M , because (4.1) yields in particular∫
M w dV =∞ (for U = M).

Neither can the sequence stay bounded, because that would imply the existence
of an outer-minimising compact limit set by compactness of Caccioppoli sets A.2,
contradicting the assumption.

The last resort for the Vi is to grow tentacles reaching for infinity, but we still
get a limit set V∞ from compactness of Caccioppoli sets A.2 that is bubbw,αCw-
minimising on every Ω b M \ B. Uniform upper bounds for weighted perimeter
and volume carry over.

Using the subsequent lower bound for bubbles 4.13, we can find an infinite
sequence of disjoint balls (Bi) (measured with respect to the complete metric
w

2
n−1 g and with radius equal to the Lebesgue number of the cover (Ωi)) such that

Pw(V∞, Bi) < 1. This contradicts the upper bound on Pw(V∞).
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The following lemma is a generalisation of [Giu84, Prop. 5.14] where an un-
weighted isoperimetric inequality P (U) < Vol(U)n−1

n is applied to area-minimising
hypersurfaces in Euclidean space.

Lemma 4.13 (Lower Bound for Bubbles) In the setting of Theorem 4.12 “mean
convexity at infinity”, assume U is a minimising (w,αCw)-bubble in Ω bM . Then
in the metric g̃ = w

2
n−1 g,

P̃ (U, B̃r(x)) < rn−1

for any x ∈ ∂U and r > 0 such that B̃r(x) b Ωi ∩Ω for some i, with constant only
depending on the constants of the isoperimetric inequalities.

Proof. For any 0 < % < r, the minimiser U satisfies

bubbw,αCw(U,Ω) 6 bubbw,αCw(U \ B̃%(x), Ω)

and hence
Pw(U, B̃%(x))− αC

∫
B̃%(x)∩U

w dV 6 Pw(B̃%(x), U) .

Using this,

bubbw,αCw(B̃%(x) ∩ U,Ω) = Pw(U, B̃%(x)) + Pw(B̃%(x), U)− αC
∫
B̃%(x)∩U

w dV

6 2Pw(B̃%(x), U) .

On the other hand, by the linear weighted isoperimetric inequality, we have

bubbw,αCw(B̃%(x) ∩ U,Ω) > (1− α)C Pw(B̃%(x) ∩ U) (4.2)

and therefore
Pw(B̃%(x), U) < Pw(B̃%(x) ∩ U) .

If we translate this to the metric g̃ where the perimeter is P̃ = Pw and the
volume Ṽol =

∫
w

n
n−1 dV , we have

d
d% Ṽol(B̃%(x) ∩ U) = P̃ (B̃%(x), U) < P̃ (B̃%(x) ∩ U) < Ṽol(B̃%(x) ∩ U)

n−1
n ,

for almost every %, where the first step is the coarea formula [Giu84, Theorem 1.23]
and the last step the nonlinear isoperimetric inequality, both in the metric g̃. Inte-
gration yields

Ṽol(B̃r(x) ∩ U) < rn .
Now we can apply the same line of reasoning to the bubbw,−αCw-minimising set

M \ U . The only step that differs is (4.2) where we only need w > 0 (or can apply
the linear isoperimetric inequality to get a constant (1 + α)C on the right-hand
side). We end up with

Ṽol(B̃r(x) \ U) < rn .
Now we can apply a standard consequence of the Euclidean-style isoperimetric in-
equality, see [Giu84, Corollary 1.29],

P̃ (U, B̃r(x)) < min
{
B̃r(x) ∩ U, B̃r(x) \ U

}n−1
n ,
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to conclude
Pw(U, B̃r(x)) = P̃ (U, B̃r(x)) < rn−1 .

Remarks 4.14.

(i) The assumptions in Theorem 4.12 “mean convexity at infinity” are sufficient
to guarantee the existence of solutions for the Homological Plateau Problem
for (w,αCw)-bubbles as described in Theorem 4.8 “existence of minimising
currents”.

(ii) The proof still works for a different weight function on the right-hand side of
(4.1), as long as it is nonnegative and somewhere strictly positive. But in that
situation one does not get the appropriate nonlinear isoperimetric inequalities
from weight transfer 3.15 so easily.

(iii) The trivial “(1,0)-weighted isoperimetric inequality” P (U) > 0 is not sufficient
to get (1, 0)–mean convexity as there are complete manifolds, even of bounded
geometry and hence with local nonlinear isoperimetric inequalities, that are
not mean convex at infinity. Take for example an infinite tube with diameter
shrinking towards infinity, but always larger than a positive constant.

(iv) The previous example also shows that our notion of mean convexity at infinity
is sometimes stronger than Gromov’s thickness at infinity [Gro14, 2.1] which
excludes noncompact locally area-minimising solutions of the Plateau problem
with compact prescribed boundary and is satisfied for all complete manifolds
of bounded geometry.

(v) On the other hand, the interior of a compact n-manifold with mean convex
boundary is mean convex at infinity, but not thick at infinity (move a small
(n− 2)-sphere close to the boundary).

(vi) Complete visual Gromov hyperbolic manifolds of bounded geometry with uni-
formly perfect boundary are always (1, C)–mean convex at infinity for some
C > 0 since they admit a (1, 1)-weighted linear isoperimetric inequality (see
the introduction of chapter 3) and the nonlinear isoperimetric inequalities are
provided by bounded geometry.

(vii) If a complete manifold (M, g) is (w,αCw)–mean convex at infinity, the con-
formal deformation (M,w

2
n−1 g) is (1, αCw−

1
n−1 )–mean convex at infinity be-

cause outer-minimising (w,αCw)-bubbles in (M, g) become outer-minimising
(1, αCw−

1
n−1 )-bubbles in (M,w

2
n−1 g). This is exactly what we wish to show

for weights w resulting from a conformal deformation of a minimal hypersur-
face with an eigenfunction of the conformal Laplacian.
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Chapter 5

Application to the Conformal
Laplacian

In this chapter, we will apply the previous results in the area of scalar curvature
geometry. Here, the conformal Laplacian on an n-dimensional manifold (Mn, g)
with n > 3,

L = −∆ + n− 2
4(n− 1) Scal ,

plays a major role because the scalar curvature of the conformally deformed metric
g̃ = u

4
n−2 g, for a positive function u ∈ C∞(M), is given by [Bes87, (1.161a)]

Scalg̃ = 4n− 1
n− 2u

−n+2
n−2Lgu . (5.1)

This fact can also be expressed in form of the transformation rule for the conformal
Laplacian,

Lg̃v = u−
n+2
n−2Lg(u · v) for v ∈ C∞(M). (5.2)

We want to conformally deform certain metrics on uniform manifolds with an
eigenfunction of the conformal Laplacian in such a way that we obtain a metric
of positive or vanishing scalar curvature that is mean convex at infinity. For that
purpose, we start with a general recipe incorporating many of the results of the
previous chapters. We first apply this in the easily accessible setting of the singular
Yamabe problem for vanishing scalar curvature and then on Smale hypersurfaces,
a class of examples for singular area-minimisers.

5.1 Putting It All Together
For the applications, we want to conformally deform a manifold (Mn, g), which

is uniform with respect to a generalised distance function ð , to g̃ = u
4

n−2 g, where u
is a solution of the equation Lu = 0 for a natural Schrödinger operator L, typically
the (shifted) conformal Laplacian. By the transformation rules in subsection 1.3.5,
this is equivalent to v = u ð

n−2
2 being a solution of L′ v = 0, where the transformed

operator L′ is given by
L′v = ð

n+2
2 L(ð−

n−2
2 v) .
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Note in passing that if L is the conformal Laplacian for g, L′ is exactly the conformal
Laplacian for the conformally deformed quasi-hyperbolic metric g′ = ð−2g by (5.2).

Seen from the perspective of the metric g′,

g̃ = u
4

n−2 g = v
4

n−2 g′ .

Comparing this with Remark 4.14(vii), a w-weighted linear isoperimetric inequality
for w

2
n−1 = v

4
n−2 ⇔ w = v2n−1

n−2 in the quasi-hyperbolic metric g′ is the first step to
proving that (M, g̃) is mean convex at infinity using Theorem 4.12 “mean convexity
at infinity”.

Step 1: Linear Isoperimetric Inequality Corollary 3.14 “weighted linear
isoperimetric inequality” provides us with this linear isoperimetric inequality, given
(M, g′) we can show that w is a good weight function, i.e., decays at a quantitatively
slower rate towards infinity than the Green’s function G′0(·, o) of the Laplacian L′0
on the hyperbolic unfolding (M, g′), where o is an arbitrary fixed basepoint. Note
that this also requires that (M, g′) is Gromov hyperbolic, visual, of bounded geom-
etry and that L′0 is weakly coercive, i.e., ∂G(M, g′) ∼= ∂M is uniformly perfect, as
mentioned in the introduction of chapter 3.

Let µ be the Martin measure of the L′0-harmonic constant function 1 on (M, g′),
with respect to the basepoint o. Then we can set v as the unique normalised L′-
harmonic function with Martin measure µ. From Theorem 3.2 “Green’s function
and harmonic measure”,

µ(Vt(ξ)) � G′0(γ(t), o)
along a geodesic ray γ : o  ξ ∈ ∂G(M, g′), for t sufficiently large. Hence the ray
expansion in section 2.4 reads as

v(xk) � G′(xk, o)
(
µ(U0) +

k−1∑
i=0

µ(Ui)
G′(xi, o)2 + G′0(xk, o)

G′(xk, o)2

)

with µ(U0) 6 1 and µ(Ui) 4 G′0(xi, o) for 1 < i < k.
Now assume we have the equation

G′0(γ(T ), γ(t)) < G′(γ(T ), γ(t))2n−1
n
−ε′ for T > t > σ, (?′)

for some small ε′ > 0 and with constant independent of γ. By Corollary 2.16
“Green’s function along hyperbolic geodesics”, this implies

G′0(γ(T ), o)
G′(γ(T ), o)2G

′(γ(T ), γ(t))ε′ < G′0(γ(t), o)
G′(γ(t), o)2 for T > t > σ

and using Proposition 2.13 “exponential decay”, all summands in the ray expansion
are exponentially suppressed in comparison to the last one. Hence we have

v(γ(t)) � G′0(γ(t), o)
G′(γ(t), o) for t > σ

or, with another application of Corollary 2.16 “Green’s function along hyperbolic
geodesics”,

v(γ(T ))
v(γ(t)) �

G′0(γ(T ), γ(t))
G′(γ(T ), γ(t)) for T > t > σ.
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Now our assumption (?′) shows that

(
v(γ(T ))
v(γ(t))

)2n−1
n−2
�
(
G′0(γ(T ), γ(t))
G′(γ(T ), γ(t))

)2n−1
n−2
< G′0(γ(T ), γ(t))1−ε∗ for T > t > σ.

for a small ε∗ = ε∗(ε′, n) > 0, hence w = v2n−1
n−2 is a good weight function in the

sense of Definition 3.7 “good weight function” and the weighted linear isoperimetric
inequality 3.14 applies.

Back to Uniform Manifolds We can translate this condition back to operators
on (M, g). Using the formulae in subsection 1.3.5, (?′) is equivalent to

G(x, y)2n−1
n
−ε 4 (ð(x)ð(y))−

(n−2)2
2n G0(x, y) (?)

along quasi-hyperbolic geodesic rays, for some ε > 0, where G is the Green’s function
of L on (M, g) and G0 the Green’s function for the operator

L0 = −∆g + ð
n−2

2 (∆gð−
n−2

2 ) .

By the formula in the proof of Lemma 1.37 “Schrödinger operators”, this operator
is mapped to the hyperbolic Laplacian L′0.

Step 2: Completeness of g̃ (M, g̃) is complete if v
2

n−2 is not integrable along
hyperbolic geodesic rays emanating from the basepoint o. The ray expansion in the
first step shows that this is the case if along each geodesic ray γ,

G′0(γ(T ), γ(t)) < G′(γ(T ), γ(t)) for T > t > σ. (??′)

Because G′ decays exponentially by Proposition 2.13 “exponential decay”, this con-
dition already implies (?′). In the uniform picture, this translates as the condition

G0(γ(T ), γ(t)) < G(γ(T ), γ(t)) for T > t > σ. (??)

Step 3: Nonlinear Isoperimetric Inequalities Typically our original manifold
(M, g) is part of a larger but compact space M = M ∪̇∂M that is regular enough to
support (unweighted) Sobolev inequalities

(∫
Ω
|u|

n
n−1 dV

)n−1
n

4
∫
Ω
|∇u| dV for u ∈ C∞c (Ωi) . (5.3)

on balls Ωi around points of ∂M . This is the case if M is itself a compact manifold,
but also if M is a singular minimal hypersurface as we will see later. In the metric
g′, (5.3) is a ðn−1-weighted Sobolev inequality (see Examples 3.16) and ðn−1 is
a Harnack function, hence we can use the w-weighted Friedrichs inequality 3.12
that we obtain alongside the linear isoperimetric inequality in Step 1 and weight
transfer 3.15 to get the proper w-weighted Sobolev and hence nonlinear isoperimetric
inequality.
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For compact M , we can choose a finite subcover of these sets (Ωi) with positive
Lebesgue number. The Lebesgue number is still positive in the metric g̃ because the
assumptions in the previous step imply that the conformal factor u

2
n−2 = ð−2v

2
n−2

explodes towards ∂M on all quasi-hyperbolic geodesic rays and hence is bounded
from below.

This proves the following intermediate technical result:

Theorem 5.1 (From Green’s Function Bounds to Mean Convexity at In-
finity) On a uniform manifold (M, g) of ð–bounded geometry with uniformly per-
fect boundary and visual hyperbolic unfolding, assume that equation (??) holds along
quasi-hyperbolic geodesic rays emanating from a basepoint o, where G and G0 are the
Green’s functions of an adapted Schrödinger operator L admitting a strong barrier
and of the operator L0 above, respectively. Further assume that there is a cover with
positive Lebesgue number of M such that Sobolev inequalities (5.3) hold on every set
in this cover.

Then there is a solution u of Lu = 0 on M such that the metric u
4

n−2 g is
complete and mean convex at infinity.

The remainder of this chapter is devoted to proving these assumptions in two
sorts of applications.

5.2 The Singular Yamabe Problem

For a compact manifold (Mn, g) and a closed subset Σ ⊂ M , we might ask: Is
there a complete metric of constant scalar curvature on M \ Σ that is conformally
equivalent to g? Is there such a metric that is mean convex at infinity?

In general, this amounts to solving the nonlinear equation (5.1) for a prescribed
constant Scalg̃. We will content ourselves with the linear case Scalg̃ ≡ 0. This was
studied before in [Del92] and [MM92] for submanifolds Σ of dimension at most n−2

2 ,
but without reference to mean convexity. To get a complete metric of vanishing
scalar curvature on M \Σ, it is necessary that (M, g) has positive Yamabe invariant
or, equivalently, is conformally equivalent to a metric of positive scalar curvature
[Del92, Theorem 3]. We refer to these articles for more context.

With the methods from the preceding section, we can prove the following general
result:

Theorem 5.2 (Metrics of Zero Scalar Curvature) If a closed manifold (Mn, g)
has positive scalar curvature, Σ ⊂ M is uniformly perfect, M \ Σ is uniform with
respect to a smoothing ð of đ = dist(·,Σ), and max

{
ð
n−2

2 (∆ð−
n−2

2 ), 0
}
→ 0 uni-

formly towards Σ, then g is conformally equivalent to a complete metric of zero
scalar curvature on M \ Σ that is mean convex at infinity.

Proof. First we show that the conformal Laplacian L = −∆+V := −∆+ n−2
4(n−1) Scal

has a ð-strong barrier on M \ Σ. To this end, we compare it with the operator
L0 := −∆ + E := −∆ + ð

n−2
2 (∆ð−

n−2
2 ) corresponding to the Laplacian on the

hyperbolic unfolding. L0 has a strong barrier since Σ is uniformly perfect (see
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the introduction of chapter 3), hence by the characterisation after Definition 1.38
“strong barrier”, there is an ε > 0 such that we have the Hardy inequality∫

M\Σ

(
|∇u|2 + E u2

)
dV > ε

∫
M\Σ

u2 ð−2 dV for every u ∈ C∞c (M \ Σ) .

Because V is bounded from below by a positive constant while E is bounded from
above, there is an 0 < α 6 1 such that αE 6 V and∫

M\Σ

(
|∇u|2 + V u2

)
dV >

∫
M\Σ

(
|∇u|2 + αE u2

)
dV > αε

∫
M\Σ

u2 ð−2 dV

for every u ∈ C∞c (M \ Σ). This shows that L has a strong barrier.
We proceed with the other assumptions in Theorem 5.1 “from Green’s function

bounds to mean convexity at infinity”:

Bound for Green’s Functions There is a neighbourhood U of Σ such that
V > E on U , hence the Green’s function G0 of L0 is L-superharmonic on U . The
global maximum principle 1.18 (ii) together with local bounds on Green’s functions
directly implies the condition (??).

Sobolev Inequalities On (M, g), there are local Sobolev inequalities by bounded
geometry (which is a triviality for compact manifolds) as required.

Hence Theorem 5.1 “from Green’s function bounds to mean convexity at infinity”
can be applied to the conformal Laplacian L and we get a conformally equivalent
complete metric of zero scalar curvature onM\Σ that is mean convex at infinity.

Remark 5.3. To better understand the condition max
{
ð
n−2

2 (∆ð−
n−2

2 ), 0
}
→ 0, we

calculate

ð
n−2

2
(
∆ð−

n−2
2
)

= −n− 2
2 ð

n−2
2 div

(
ð−

n+2
2 ∇ð

)
= n− 2

2

(
−ð−1∆ð + n+ 2

2 ð−2|∇ð |2
)
.

In the case ð = đ = dist(·,Σ), we have |∇đ | = 1 almost everywhere and a simple
calculation shows that −∆đ is the mean curvature H of the superlevel sets of đ ,
given they are sufficiently regular. Hence our condition can be interpreted as H 6
−n+2

2 đ−1 asymptotically towards Σ. For Σ = Rs ⊂ Rn, the mean curvature of the
đ–superlevel sets is H = −(n − s)đ−1 and the condition translates into s 6 n−2

2 .
In the following section we will see more formally that this reformulation works for
submanifolds as well.

5.2.1 Submanifolds

Let Σs ⊂ Mn be a closed embedded submanifold of a complete manifold M .
Then we can consider Fermi coordinates around Σ: there is a map expΣ : NΣ→M ,
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sending a neighbourhood of the zero section in the normal bundle NΣ diffeomor-
phically to a neighbourhood of Σ ⊂ M by following geodesic rays perpendicular to
Σ. For a fixed point ξ ⊂ Σ, we can upgrade this to a map

expΣ
ξ : TξΣ×NξΣ ∼= TξM →M

which is a diffeomorphism on a neighbourhood of 0 and maps TξΣ to Σ, see e.g.
[Cha06, §III.6] for details.

For blow-ups gt := t2g for t > 1, we can consider the pull-back g̃t of gt with the
map

φt : Rs × Rk ∼= (TξΣ×NξΣ, gtξ)
expg

t,Σ
ξ−→ (M, gt) .

This compactly converges to the Euclidean metric in C3 norm.
The pullback of the distance to the boundary đ = dist(·,Σ) with φt is equal

to the distance function đ = dist(·,Rs) by construction of Fermi coordinates. Now
we could just use đ which is smooth on a neighbourhood of Σ and regularise it
only far away from Σ, but also the natural regularisation ð from Theorem 1.34
“natural regularisation of generalised distance functions” is sufficiently well-behaved
for our requirements: it compactly C3-converges under blowup limits (because the
smoothing kernel does) and ð = C · đ on Rn \Rs for some C near to 1 because the
regularisation process commutes with all isometries and scalings of Rn \ Rs.

Hence the function ð
n−2

2
(
∆ð−

n−2
2
)
on M \ Σ is natural in the sense that its

pullback with φt compactly C1-converges to its counterpart on Rn \ Rs. Now the
important point is that this convergence is uniform in ξ ∈ Σ because M and Σ are
compact and this yields uniform bounds on metric and Christoffel symbols in Fermi
coordinates.

In Rn \ Rs, we have

ð
n−2

2 (∆ð−
n−2

2 ) = n− 2
2

(
s− n− 2

2

)
ð−2 .

This is 6 0 for s 6 n−2
2 , hence the uniform convergence shows that for every ε > 0

we can find a neighbourhood Uε of Σ in M such that ð
n−2

2 (∆ð−
n−2

2 ) < ε on Uε \Σ.
Thus we can apply Theorem 5.2 “metrics of zero scalar curvature” to see:

Corollary 5.4 (Zero Scalar Curvature on Complements of Submanifolds)
Let (Mn, g) be a closed manifold with Scal > 0 and Σ = ⋃Σi a disjoint union of
finitely many closed submanifolds of M with dim Σi = si. If 1 < si 6 n−2

2 , there is
a complete scalar flat metric on M \ Σ that conformally equivalent to g and mean
convex at infinity.

5.3 Minimal Hypersurfaces
Looking for obstructions against metrics of positive scalar curvature, Schoen and

Yau discovered that on any stably minimal (regular) closed hypersurface Hn in a
manifold Mn+1 of positive scalar curvature, the conformal Laplacian has positive
principal eigenvalue and hence conformal deformation with its first eigenfunction
produces a metric of positive scalar curvature on H.
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In dimension n = 7 or higher, area-minimising hypersurface still exist (e.g. in
prescribed homology classes, or for prescribed boundary in the Plateau problem)
as integral currents, see section A.2, but they are smooth submanifolds only on the
complement of a singular set Σ of Hausdorff dimension at most n − 7. On the
complement H \ Σ, there are now many positive eigenfunctions of the conformal
Laplacian, more precisely they are classified by the Martin theory developed in
chapter 2 because the conformal Laplacian has a δ〈A〉-strong barrier with respect to
Lohkamp’s S-distance δ〈A〉 as a generalised distance function, see [Loh20b, Theo-
rem 2]. For dimensional descent strategies, it is desirable to construct a metric on
the complement of the singular set that is mean convex at infinity to inductively
find compact area-minimising hypersurfaces of decreasing dimension.

The regular part of a singular minimal hypersurface is a much more intricate
object than the complement of submanifolds in a smooth manifold considered in the
preceding section. But not all is lost, e.g., it is uniform with respect to δ〈A〉 and there
are Sobolev inequalities. We will indicate special cases in which the “automatic”
methods from section 5.1 still work, and point out limitations.

5.3.1 Potential Theory on Minimal Hypersurfaces

In this section, we will sketch results from Lohkamp’s potential theory on mini-
mal hypersurfaces [Loh18, Loh20a, Loh20b].

Let Mn+1 be a closed manifold and Hn ⊂ M (the support of) a compact area-
minimising integral current in M . We assume that H has multiplicity one. Then
there is a singular set Σ ⊂ H of Hausdorff dimension at most n−7 such that H \ Σ is
a smooth embedded submanifold. This follows essentially from regularity of almost-
minimisers A.5. We assume that Σ is not empty. The induced Riemannian metric
on H \ Σ is denoted by g.

The S-distance δ〈A〉 introduced in [Loh18] is a generalised distance function on
H \ Σ with the additional property 1/δ〈A〉 > |A|, where |A| is the norm of the second
fundamental form of H \ Σ ⊂ M . It is natural in the sense of [Loh18, section 1.3],
meaning that it behaves like the distance function under scalings, δ〈A〉λH = λδ〈A〉H
for λ > 0, and is preserved under certain limits of minimising hypersurfaces.

H \ Σ is connected and uniform with respect to δ〈A〉 [Loh18, Theorem 1.8].
As sketched in Examples 1.30, H \ Σ has δ〈A〉–bounded geometry. The natural
regularisation of generalised distance functions 1.34 yields a smooth version ð 〈A〉
of δ〈A〉. In this situation, the results reported in subsection 1.3.3 apply: H \ Σ is
Gromov hyperbolic in the quasi-hyperbolic metric ð−2

〈A〉g, has bounded geometry,
and the Gromov boundary is canonically homeomorphic (even quasi-symmetrically
equivalent) to Σ. This concludes the geometric part of the prerequisites for Ancona’s
theory.

Note that (H \ Σ, ð−2
〈A〉g) might not be visual. There are converging sequences of

minimisers where only the limit set has a singularity at a certain position, but this is
already detected by the value of δ〈A〉 on the sequence of minimisers which becomes
smaller and smaller in anticipation of the limit singularity. In the quasi-hyperbolic
metric, this phenomenon manifests as a protruding finger, possibly ruining visuality,
or only a uniform bound on the visuality constant. As far as the author is aware,
there are no explicit examples.
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For the analytic part, we consider three natural Schrödinger operators (in the
sense of [Loh20b, section 3.2]) on H \ Σ,

the Jacobi field operator: LJ := −∆− |A|2 − RicM (ν, ν) ,

the conformal Laplacian: L := −∆ + V := −∆ + n− 2
4(n− 1) ScalH\Σ ,

the hyperbolic Laplacian: L0 := −∆ + E := −∆ + ð
n−2

2
〈A〉 (∆ð−

n−2
2

〈A〉 ) .

These operators are all adapted and LJ has a ð 〈A〉-strong barrier, while this is true
for L ifM has nonnegative scalar curvature [Loh20b, Theorem 2.8], and for L0 if and
only if Σ is uniformly perfect, as seen in section 5.1. In these situations, Ancona’s
theory from chapter 2 can be applied.

Even for minimal hypersurfaces in manifolds M of positive scalar curvature, the
scalar curvature of H \ Σ does not stay bounded near Σ, it even diverges towards
−∞ as ScalH ∼ −|A|2, which follows from taking traces of the Gauß equation,

ScalM = ScalH +2 RicM (ν, ν) + |A|2 − (trA)2 .

Furthermore, the term E is not well controlled near Σ, even in case Σ is a mani-
fold. Hence we need methods different from those in subsection 5.2.1 using Fermi
coordinates.

5.3.2 Smale Hypersurfaces

We work on a special class of area-minimising hypersurfaces that have man-
ifold singularities and product form near these singularities, where the (unique)
tangent cones are products of Euclidean space and regular tangent cones, i.e., area-
minimising hypercones with singular set {0}.

Definition 5.5 (Smale Hypersurfaces) Hn ⊂Mn+1 is called a Smale hypersur-
face if it is a compact homologically area-minimising hypersurface with singular set
Σ = ∪̇iΣi for finitely many closed orientable Riemannian manifolds Σi of dimension
si 6 n − 7, such that the pair H ⊂ M is in a neighbourhood of Σi isometric to
a neighbourhood of Σi × {0} in the product Σi × C̃i ⊂ Σi × Rki+1, where each
C̃kii ⊂ Rki+1 is a regular area-minimising cone of dimension ki = n− si.

In [Sma00, Theorem B], Smale constructs singular homologically area-
minimising hypersurfaces of this form for prescribed Σi and C̃i. He requires that the
cones are strictly stable and strictly minimising, but we do not need this. As far as
the author is aware, this is the most general known construction of singular homo-
logically area-minimising hypersurfaces, all known area-minimising hypercones are
products of Rs with regular ones, and all known regular area-minimising hypercones
are strictly stable and strictly minimising.

To construct metrics of positive scalar curvature that are mean convex at in-
finity on Smale hypersurfaces in manifolds of positive scalar curvature, we proceed
analogously to the singular Yamabe problem. Nearly every step requires some mod-
ifications. The ideas are sketched here and then (i) and (iii) are made precise in the
following Lemmas, while all points reappear in the proof of Theorem 5.8 “positive
scalar curvature on Smale hypersurfaces”.
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(i) As a substitute for Fermi coordinates, we can use normal coordinates on Σi

and the product structure of H near Σi.

(ii) A strong barrier for the conformal Laplacian can be found from stability of
the minimal hypersurface, as in the classical Schoen-Yau argument for closed
minimal hypersurfaces. This heavily uses the properties of S-structures and
works for general stably minimal hypersurfaces.

(iii) To show that the hyperbolic Laplacian’s Green’s function is L-superharmonic,
we exploit the product structure of Smale hypersurfaces near the singular set.
Similar to the singular Yamabe problem, there is a dimensional restriction,
and in order to keep its influence as small as possible, we introduce a new,
optimised generalised distance function ð that is constructed with help of the
product structure. This does not interfere with results for the S-distance δ〈A〉
or dist(·,Σ) because in our situation, they are all comparable: ð � δ〈A〉 �
dist(·,Σ).

(iv) Local Sobolev inequalities hold on minimal hypersurfaces as already explained
in Examples 3.16.

On Smale hypersurfaces, we have the following improved version of the tangent
cone approximation in [Loh20a, 4.1] which is uniform in Σi.

Lemma 5.6 (Geometrical Freezing) In the notation of Definition 5.5 “Smale
hypersurfaces”, for each component Σi, open set U b Ci \ Σi := Rsi × (C̃i \ {0})
with ({0}× C̃i)∩U 6= ∅ and ε > 0 there is a constant τG = τG(H,Σi, U, ε) > 1 such
that:

For every τ > τG and ξ ∈ Σi there are canonical maps ιξτ : Ui → τH \ Σ with
Φτ (τ({ξ} × C̃i)) ∩ ιξτ (Ui) 6= ∅, where Φτ is the isometry identifying neighbourhoods
of τΣi in τCi and τH, such that

‖(ιξτ )∗(τ2gH\Σ)− gCi‖Ck(Ui) < ε and ‖(ιξτ )∗(AτH\Σ)−ACi‖Ck(Ui) < ε

for some k > 5 Here AτH\Σ and ACi denote the second fundamental form of
τH \ Σ ⊂ τM and Ci ⊂ Rn, respectively.

Proof. This Lemma is just a complicated reformulation of the fact that the pullback
of gτΣi = τ2gΣi with the exponential map expτξ : Rsi ∼= τTξΣi → τΣi converges
uniformly in ξ to the Euclidean metric in compact Ck+1 norm for τ → ∞ because
Σi is compact. Indeed, we can set

ιξτ = Φτ ◦ (expτξ , IdCi /τ)

and the induced metric converges uniformly in Ck norm on Ui while convergence of
the second fundamental form uses one derivative more. Uniform bounds on sectional
curvatures and derivatives of the curvature tensor ensure uniform convergence in
ξ ∈ Σi. The constant τG depends additionally on H because the neighbourhood of
Σi ⊂ H that is isometric to a product might be arbitrarily small.
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Lemma 5.7 (Customised Distance Function) On the regular part of a Smale
hypersurface Hn ⊂ Mn+1 with singular set Σ in a manifold M of positive scalar
curvature, there is a generalised distance function ð and an ε > 0 such that ð �
δ〈A〉 � dist(·,Σ) and

V > E + εð−2 in a neighbourhood of Σ

for the Schrödinger operator potentials

V = n− 2
4(n− 1) ScalH\Σ and E = ð

n−2
2 (∆ð−

n−2
2 )

of the conformal and the hyperbolic Laplacian, as soon as all components Σi of the
singular set satisfy

1 6 dim(Σi) <
(

2
√

3 + 1
n− 1 − 3

)
(n− 1)− 1 .

Proof. We will construct the function ð first on tangent cones and then on the total
hypersurface. Subscripts denote where the currently constructed version lives.

Step 1: On Tangent Cones Let C̃k ⊂ Rk+1 be a regular area-minimising
hypercone over S̃ = C̃ ∩ Sk ⊂ Rk+1, necessarily with k > 7. Then the cone
Cn := C̃k×Rs ⊂ Rk+s+1 is an area-minimising hypercone in Rn+1, n := k+ s, with
singular set σ ∼= Rs. We want to construct a customised distance function on C.

We denote the distance on C from σ (i.e., the radial coordinate in C̃) by %, the
S̃-coordinate by ω and the Rs-coordinate by z. Then the metric on C is

gC = d%2 + %2gS̃ + dz2 .

For a general hypersurface Hn ⊂ Mn+1 with normal vector ν and second fun-
damental form A, taking traces of the Gauß equation shows

ScalM = ScalH +2 RicM (ν, ν) + |A|2 − (trA)2 . (5.4)

Exploiting the symmetries of C, namely invariance under scalings in %-direction
and the action of O(s) nRs on the Rs-factor, we have the following factorisations:

• |AC | = |AC̃ | = |AS̃ |%−1, where AS̃ is the second fundamental form of S̃k−1 ⊂
Sk (not as a hypersurface in Ck).

• As C is stationary (trAC = 0), (5.4) shows ScalC = −|AC |2 = −|AS̃ |2%−2.

For product solutions u(%, ω, z) = u%(%)uω(ω)uz(z), the Laplacian factorises as

−∆Cu = −
[(
u′′% + k − 1

%
u′%

)
/u% + 1

%2 (∆S̃uω)/uω + (∆Rsuz)/uz
]
u . (5.5)

To satisfy symmetry requirements, we set ðC = % · ð S̃(ω) for a function ð S̃ on
S̃. Putting this together with (5.5), we have

ð
n−2

2
C (∆Cð

−n−2
2

C ) =
(
n(n− 2)

4 − (k − 1)n− 2
2 + ð

n−2
2

S̃
(ω)∆S̃ð

−n−2
2

S̃
(ω)
)
%−2 .
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Then the condition V > E reads as

− n− 2
4(n− 1) |AS̃ |

2 >
n− 2

2

(
s− n− 2

2

)
+ ð

n−2
2

S̃
(ω)∆S̃ð

−n−2
2

S̃
(ω) . (5.6)

We want to optimise ð S̃ in such a way that this equation holds for s as large as
possible. To this end, we define ð−

n−2
2

S̃
(ω) := f , where f is the (positive, normalised)

principal eigenfunction of the operator Ln
S̃

= −∆S̃ −
n−2

4(n−1) |AS̃ |
2 on the closed

manifold S̃.
As a direct consequence of the stability of the cones C and C̃, the Jacobi field

operator LJ
C̃
on C̃ has a nonnegative principal eigenvalue. Using the factorisations

above, this shows that the Jacobi field operator LJ
S̃
on S̃k−1 ⊂ Sk has principal

eigenvalue > −
(
k−2

2

)2
, see also [Loh20b, Theorem 4.5]. The variational character-

isation of the principal eigenvalue of LJ
S̃
is

∫
S̃
f LJ

S̃
f dV =

∫
S̃

(
|∇f |2 − |AS̃ |

2f2
)

dV > −
(
k − 2

2

)2 ∫
S̃
f2 dV for f ∈ C∞c (S̃)

and hence we have for the operator Ln
S̃∫

S̃
f Ln

S̃
f dV =

∫
S̃

(
|∇f |2 − n− 2

4(n− 1) |AS̃ |
2 f2

)
dV

=
∫
S̃

3n− 2
4(n− 1) |∇f |

2 dV + n− 2
4(n− 1)

∫
S̃
f J̃n

S̃
f dV

> − n− 2
4(n− 1)

(
k − 2

2

)2 ∫
S̃
f2 dV for any f ∈ C∞c (S̃).

This shows for the principal eigenvalue λn
S̃
of Ln

S̃

λn
S̃
> − n− 2

4(n− 1)

(
k − 2

2

)2
.

Hence for our choice of ð S̃ , equation (5.6) is satisfied if

λn
S̃
>
n− 2

2

(
s− n− 2

2

)
⇐ s <

n− 2
2 − 1

2(n− 1)

(
k − 2

2

)2

⇔ s <

(
2
√

3 + 1
n− 1 − 3

)
(n− 1)− 1 ≈ 0.46(n− 1)− 1

where the approximation holds for n large. Because we assumed strict inequality,
there is even enough space to smuggle in an ε′ > 0 to get

V > E + ε′%−2 .
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Step 2: On the Full Hypersurface Near each component Σi, where H is
isometric to a product Σi× C̃i, we can just set ðH := % ·ð S̃i(ω), where % is the radial
coordinate on C̃i from the previous step, and in the product metric, % = dist(·,Σi).
As the continuous function ð S̃i is bounded on the closed manifold S̃i, this shows
ðH � dist(·,Σ) near Σ. Far away from Σ, any positive smooth continuation of
ðH will do fine. By geometrical freezing 5.6, the estimates from step 1 carry over
in a sufficiently small neighbourhood of Σ, where ε′ has to be replaced with an
appropriate ε > 0, which is possible because % � ð .

Comparison by geometrical freezing 5.6 and naturality of δ〈A〉 show that also
ðH � δ〈A〉. Furthermore, note that ðH is Lipschitz continuous because ∇ðH is
bounded.

Theorem 5.8 (Positive Scalar Curvature on Smale Hypersurfaces) Let
Hn ⊂ Mn+1 be a Smale hypersurfaces, and suppose that M has positive scalar
curvature and the singular set Σ = ⋃Σi a disjoint union of finitely many closed
submanifolds of dimension

1 6 dim Σi = si <

(
2
√

3 + 1
n− 1 − 3

)
(n− 1)− 1 ≈ 0.46(n− 1)− 1 .

Then there is a complete metric of positive scalar curvature on H \ Σ that is mean
convex at infinity and conformally equivalent to the induced metric.

Here the approximation holds for n large. In the case n 6 11, the dimensional
condition is automatically satisfied since the singular set has Hausdorff dimension
at most n− 7.

Proof of Theorem 5.8. We proceed analogously to the proof of Theorem 5.2 “metrics
of zero scalar curvature”. During this proof, we will exclusively use the customised
distance function 5.7, denoted by ð . Note that ð � δ〈A〉 � dist(·,Σ) ensures that all
nice properties for these functions carry over to ð (with only a loss in constants):
H \ Σ is automatically uniform with respect to ð and has ð–bounded geometry
(because it is uniform with respect to δ〈A〉 and has δ〈A〉–bounded geometry, see
subsection 5.3.1), the hyperbolic unfolding is visual (since this is always true for the
generalised distance functions comparable to dist(·,Σ), see Proposition 1.33 “visual
unfolding”), and the conformal Laplacian has a ð-strong barrier (because it has a
δ〈A〉-strong barrier, subsection 5.3.1). Additionally, Σ is uniformly perfect since it
is assumed to have positive dimension.

Bound for Green’s Functions By the construction of the customised distance
function 5.7, we have V − εð−2 > E on a neighbourhood U of Σ, for some ε > 0.
We might choose this ε so small that Lε := L − εð−2 has a strong barrier. Then
the Green’s function G0 of the hyperbolic Laplacian L0 is Lε-superharmonic on U
and the global maximum principle 1.18 (ii) together with local bounds on Green’s
functions directly implies the condition (??).

Sobolev Inequalities As indicated in Examples 3.16, we get local Sobolev in-
equalities on H.
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Positive Scalar Curvature Now we have checked all the assumptions of Theo-
rem 5.1 “from Green’s function bounds to mean convexity at infinity” and can apply
this to the shifted conformal Laplacian Lε. This yields a solution u of Lεu = 0 and
a metric g̃ = u

4
n−2 g on H \ Σ that is complete, mean convex at infinity and has by

(5.1) scalar curvature

Scalg̃ = 4n− 1
n− 2u

−n+2
n−2Lu = 4n− 1

n− 2εð
−2u−

4
n−2 > 0 .

5.3.3 Future Prospects

We hope that the modular structure of this thesis makes it possible to reuse some
results and methods in future applications. On the way to a metric of positive scalar
curvature that is mean convex at infinity on arbitrary minimising hypersurfaces in
a Scal > 0 ambience, there are a few obstacles to overcome. Here we list some of
them together with suggestions.

• The dimensional restriction in Theorem 5.8 “positive scalar curvature on Smale
hypersurfaces” can be traced back to the completeness requirement in The-
orem 4.12 “mean convexity at infinity”. If it were possible to remove this
restriction and effectively construct (1, φ)-bubbles in incomplete spaces given
the provided isoperimetric inequalities (which works at least in highly symmet-
ric examples), we would only need condition (?) instead of (??) in section 5.1.
Explicit calculations show that (?) holds on minimising tangent cones that are
products of regular cones with Rs.

• To prove this condition on more general minimal hypersurfaces than cones, one
could employ tangent cone approximations such as the S-freezing in [Loh20b,
3.2] combined with minimal growth stability [Loh20b, 3.3]. This might work
for Smale hypersurfaces, but in general, a major problem for a global approach
is that these approximations might not be uniform.

• Related to the preceding point is the possibility that the hyperbolic unfold-
ing of a general minimal hypersurface might not be visual, as discussed in
subsection 5.3.1, but this condition is necessary even for unweighted linear
isoperimetric inequalities to hold, see the second point in section 3.5.
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Appendix A

Generalised Hypersurfaces

Here we will summarise some general results for the main two models of gener-
alised hypersurface that appear in this thesis, Caccioppoli sets and currents.

A.1 Perimeter and Caccioppoli Sets
The theory of Caccioppoli sets was developed by de Giorgi for subsets of Eu-

clidean space. The standard reference [Giu84] only covers this case, but the results
hold more generally in Riemannian manifolds [Sim84, §37]. Here we state the more
general results from [Sim84] in the simpler language of [Giu84] adapted to manifolds.

In this section (Mn, g) is always a (connected) Riemannian manifold without
boundary.

Definition A.1 (BV Functions, Perimeter and Caccioppoli Sets) For a func-
tion f ∈ L1

loc(M) and a relatively compact open set Ω bM , we define∫
Ω
|Df | := sup

{∫
Ω
f divX dV

∣∣∣X ∈ C1
c (Ω, TΩ), |X| 6 1

}
and say that f has (locally) bounded variation if

∫
Ω |Df | < ∞ for every Ω b M .

The space of functions of locally bounded variation on M is called BVloc(M).
The perimeter of a Borel set U ⊂M in Ω bM is

P (U,Ω) :=
∫
Ω
|DχU |

and Borel sets U of locally finite perimeter (i.e., χU has bounded variation) are
called Caccioppoli sets.

Notice that the localised properties “bounded variation” and “finite perimeter”
are independent of the metric, in particular we can locally choose an Euclidean
metric and qualitative results from Rn carry over. An example is the following:

Theorem A.2 (Compactness of Caccioppoli Sets) Let (Ui) be a sequence of
Caccioppoli sets in M such that P (Ui, Ω) is bounded for every Ω b M . Then a
subsequence converges in L1

loc to a Caccioppoli set U with

P (U,Ω) 6 lim inf
i→∞

P (Ui, Ω) for every Ω bM .
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Proof. On small, sufficiently regular balls one can apply the Euclidean BV com-
pactness theorem [Giu84, Theorem 1.19]. Using a countable cover of M by such
balls and a diagonal argument one gets a subsequence with the required properties.
Semicontinuity of the perimeter is proven in [Giu84, Theorem 1.9], the proof applies
verbatim on Riemannian manifolds.

We will also be interested in the weighted perimeter

Pβ(U,Ω) :=
∫
Ω
β |DχU | := sup

{∫
U

divX dV
∣∣∣X ∈ C1

c (Ω, TΩ), |X| 6 β
}

for a positive function β ∈ C∞(M). Completely analogous to the unweighted case
in Euclidean space [Mag12, Lemma 12.22] one can show:

Lemma A.3 (Subadditivity of the Perimeter) For any positive β ∈ C∞(M),
Caccioppoli sets E and F , and Ω bM ,

Pβ(E ∪ F,Ω) + Pβ(E ∩ F,Ω) 6 Pβ(E,Ω) + Pβ(F,Ω) .

A very flexible approach to regularity of Caccioppoli sets minimising a certain
function is via almost-minimisers. They include area-minimising Caccioppoli sets,
(smooth) submanifolds, and bubbles, as seen in detail in section 4.1.

Definition A.4 (Almost-Minimisers) A Caccioppoli set U ⊂ M is (K,λ)-
almost-minimising in Ω ⊂M for constants K,λ > 0, if

ψ(U, x, %) := P (U,B%(x))− inf{P (V,B%(x)) | V Caccioppoli, V∆U b B%(x)}
6 K%n−1+λ for every x ∈ ∂U ∩Ω and % > 0 with B%(x) ⊂ Ω.

Here, V∆U is the symmetric difference (V \ U) ∪ (U \ V ).

The partial regularity theorem for almost-minimisers is a deep result due to
Tamanini, extending the work of de Giorgi, Federer, Simons and others on actual
minimisers (K = 0).

Theorem A.5 (Regularity of Almost-Minimisers) [Tam82, Theorem 1],
[MM84, Theorem 2 in 2.5.4, Theorem in 2.6.4] If a Caccioppoli set U ⊂ Mn is
(K,λ)-almost-minimising in Ω ⊂M , the boundary ∂U ∩Ω is a C1,λ/2-regular sub-
manifold outside a singular set of Hausdorff dimension at most n− 8.

If the boundary can locally be written as a graph of a solution of a quasi-
elliptical equation, as in the case of area-minimisers or bubbles, the regularity can
be improved further, see [GT98, Chapter 16].

A.2 Currents
Currents are a more general method to represent singular submanifolds. This is

a deep subject and we do not even try to give an introduction, but simply state a few
results that we need in the only place in this thesis where they occur, Theorem 4.8
“existence of minimising currents”. For a thorough introduction, see [Mor09] or
[Sim84].
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Proposition A.6 (Decomposition of Currents) In an oriented manifold Mn,
each locally integral n-current T can be decomposed into Caccioppoli sets (Ui)i∈Z
with Ui ⊃ Ui+1 such that

T =
∞∑
i=1

JUiK−
∞∑
i=0

JM \ U−iK MΩ(T ) =
∞∑
i=1

Vol(Ui ∩Ω) +
∞∑
i=0

Vol(Ω \ U−i)

∂T =
∞∑

i=−∞
∂JUiK MΩ(∂T ) =

∞∑
i=−∞

P (Ui, Ω) for all Ω bM .

Proof. There is an integer-valued function θ of locally bounded variation such that T
can be written as T (ω) =

∫
M θ ω for n-forms ω. Then we can set Ui = {x ∈M |θ > i}

to obtain the desired Caccioppoli sets. Since M is orientable and we assumed ∂T
to be a boundary, this decomposition exists globally. The claimed properties can
be proven locally, see [Sim84, 27.6–8] for details.

We can use this decomposition to define integration of scalar-valued functions
over locally integral n-currents and their boundaries: in the setting of the decom-
position of currents A.6 and for measurable functions β > 0 and φ on M , we define
the weighted mass

Mφ(T ) =
∞∑

i=−∞

∫
Ui

φ dV and Mβ(∂T ) =
∞∑

i=−∞

∫
M
β |DχUi | .

Locally integral (n − 1)-currents which are no global boundaries are at least
locally boundaries, see [Sim84, 27.8], and we can modify the definitions above ap-
propriately. One immediately gets:

Lemma A.7 (Subadditivity of Mass) For locally integral (n−1)-currents S and
T in Mn,

Mβ(S + T ) 6Mβ(S) + Mβ(T ) .

As for Caccioppoli sets, existence of currents is usually proven with a compact-
ness theorem.

Theorem A.8 (Compactness of Currents) [Sim84, Theorem 27.3] Let (Ti) be
a sequence of integral n-currents in Mn such that MΩ(Ti) + MΩ(∂Ti) is bounded
for every Ω b M . Then a subsequence (Tij ) converges in flat norm to an integral
current T with

MΩ(T ) = lim
j→∞

MΩ(Tij ) and MΩ(∂T ) 6 lim inf
j→∞

MΩ(∂Tij ) for every Ω bM .
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