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Zusammenfassung

Das Ziel dieser Arbeit ist die Steigerung der Performanz für die Berechnung
von FEM mit niedriger Ordnung. Ein wesentliches Problem von FEM Anwen­
dungen ist der Memory Gap. Zu den vielversprechendsten Lösungsansätzen
zählen die matrixfreien Berechnungen, bei denen die von den linearen Glei­
chungssystemlösernbenötigteOperatoranwendungdirektberechnetwird, oh­
neeineSystemmatrix zuassemblieren.FürDiskretisierungenmithöhererOrd­
nung funktioniert dieser Ansatz, aber die naiven Umsetzungen für niedrige
Ordnungen schlägt fehl. Umauch für niedrigeOrdnungdiematrixfreieOpera­
toranwendungzubeschleunigen,betrachtetdieseArbeitdenAnsatzderblock­
strukturiertenGitter.DasHauptkonzept ist einzweistufigenGitters, bestehend
aus groben Makro­Elementen, welche bei ihrer Abarbeitung uniform verfei­
nert werden. Damit werden neue Optimierungen möglich. Zum einen kann
die globaleAssemblierung optimiertwerden, und zumanderenprofitierendie
Makro­Element­Kernel durch eine Reduzierung der FLOP sowie durch vekto­
risierte Operationen, neben weiteren Optimierungen. Um einen Vorkonditio­
nierer bereitzustellen, der mit dem matrixfreien Ansatz kompatibel ist, wur­
de ein einfaches, nicht überlappendes Gebietszerlegungsverfahren auf block­
strukturierteGitter angepasst.DiedargestelltenAnsätze sindalsTeil desCode­
Generierung­Frameworks DUNE­CODEGEN implementiert, um die Nutzbar­
keit der Optimierungen zu vereinfachen. Durch die Generierung der notwen­
digen Kernels kann dieselbe Performanz wie für eine handgeschriebene Im­
plementierung erreicht werden.



Abstract

The aim of this thesis is to increase the performance of low order FEM com­
putations. A major issue for FEM applications is the memory gap. One of the
most promising approaches to overcome this problem arematrix­free compu­
tations, where the operator application required bymost linear system solvers
is computed directly without assembling a system matrix. For high order dis­
cretizations this approach works well, but naive realizations fail for low order
discretizations. To accelerate thematrix­free operator application even for low
order methods, the block­structured grids approach is considered here. The
core concept is to use a two level grid, composed of coarse macro elements
which are uniformly refined during their handling. This opens up new opti­
mization possibilities. On the onehand, the global assembly can be optimized,
and, on the other hand, the macro element kernels benefit from a reduced
FLOPcount andvectorized computations, amongother optimizations. Topro­
vide a preconditioner compatible with the presented matrix­free approach, a
simple non­overlapping domain decomposition method is adapted to block­
structured grids. The presented approaches are implemented as part of the
codegeneration frameworkDUNE­CODEGENtoease theusageof theoptimiza­
tions. By generating the necessary kernels, the sameperformance as for hand­
written implementations can be reached.



Acknowledgements

I am deeply grateful to my supervisor Prof. Dr. Christian Engwer for his as­
sistance at every stage of my thesis. He first introduced me to this interest­
ing topic and continued to offer helpful advice if needed. I acknowledge the
funding fromGermanFederalMinistry ofEducationandResearch (BMBF)un­
der the grant 01IH16003A as part of the HPC2SE project. Additionally, I would
like to extend my sincere thanks to all members of the project. Especially Dr.
Domimic Kempf and René Heß offered valuable help with all things concern­
ing DUNE­CODEGEN. For his major contributions towards the discussion in
the outlook of chapter 5.1 I would like to thankDr. LawrenceMitchell. Further­
more, I would like to express my deepest gratitude to all current and former
colleges of the research group ‘Applications of PDEs’ for the pleasant working
climate. In particular my gratitude goes to Nils Dreier and Michael Wenske,
who proof­read this thesis and offered insightful comments and suggestions.
An meine Eltern, Danke, dass ich mich immer auf eure Unterstützung und
Rückhalt verlassen konnte.



Contents

List of Tables ix

List of Figures x

List of Algorithms xii

1 Introduction & Outline 1

2 Foundational Considerations 5
2.1 Finite Element Methods . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Weak Formulation . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Discretization . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Assembly . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Iterative Linear System Solvers . . . . . . . . . . . . . . . . . . 17
2.2.1 Simple Iterative Methods . . . . . . . . . . . . . . . . . . 17
2.2.2 Krylov Subspace Methods . . . . . . . . . . . . . . . . . 20

2.3 Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Dune . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.2 UFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Performance on Modern Hardware . . . . . . . . . . . . . . . . 27

3 Block-Structured Grids 33
3.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Geometry Transformation . . . . . . . . . . . . . . . . . 35
3.1.2 Local Data Structure . . . . . . . . . . . . . . . . . . . . 38
3.1.3 Global Data Structure . . . . . . . . . . . . . . . . . . . 40

3.2 Ensuring Consistency . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 Efficient Vectorization . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Global Assembly . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Efficient Geometry Computation . . . . . . . . . . . . . 49
3.4.3 Efficient Vectorization . . . . . . . . . . . . . . . . . . . 52
3.4.4 Operator Application . . . . . . . . . . . . . . . . . . . . 54
3.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Preconditioners for Block-Structured Grids 61
4.1 Domain Decomposition Theory . . . . . . . . . . . . . . . . . . 61

4.1.1 Non-Overlapping Methods . . . . . . . . . . . . . . . . 62
4.1.2 Neumann-Neumann Method . . . . . . . . . . . . . . . 65
4.1.3 Two Level Methods . . . . . . . . . . . . . . . . . . . . . 67

4.2 Application to Block-structured Grids . . . . . . . . . . . . . . . 70

CONTENTS vii



4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Generating Local Kernels 77
5.1 Code Generation Framework . . . . . . . . . . . . . . . . . . . 77

5.1.1 Intermediate Representation . . . . . . . . . . . . . . . . 78
5.1.2 UFL to Intermediate Representation . . . . . . . . . . . . 81

5.2 Support for Block-Structured Grids . . . . . . . . . . . . . . . . 83
5.2.1 Visitor Specializations . . . . . . . . . . . . . . . . . . . 85
5.2.2 Preconditioner Generation . . . . . . . . . . . . . . . . . 86

5.3 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.1 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.2 Loop Invariant Code Motion . . . . . . . . . . . . . . . . 89

5.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4.1 Efficient Vectorization . . . . . . . . . . . . . . . . . . . 95
5.4.2 Efficient Geometry Computation . . . . . . . . . . . . . 96
5.4.3 Operator Application . . . . . . . . . . . . . . . . . . . . 96

5.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.5.1 Representation of Local Structure . . . . . . . . . . . . . 99

6 Performance Evaluation 105
6.1 Theoretical Performance . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Measured Performance . . . . . . . . . . . . . . . . . . . . . . 110

6.2.1 Poisson Model . . . . . . . . . . . . . . . . . . . . . . . 112
6.2.2 p-Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.2.3 Navier-Stokes Model . . . . . . . . . . . . . . . . . . . . 126

6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . 138

7 Summary & Conclusion 141

A Performance Measuring Settings 145
A.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 151

viii CONTENTS



List of Tables

6.1 Navier-Stokes FLOP Bound . . . . . . . . . . . . . . . . . . . . . 129

A.1 CPU Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 145
A.2 CPU bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
A.3 CPU FLOP/s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.4 CPU Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

LIST OF TABLES ix



List of Figures

2.1 UFL AST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2 SpMxV Roofline . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Block-structured Grid . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Block-structured Geometry Transformation . . . . . . . . . . . . . 37
3.3 Local DoF Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Local and Global Data Layout . . . . . . . . . . . . . . . . . . . . 41
3.5 Inconsistent Local Numbering (Edge) . . . . . . . . . . . . . . . . 43
3.6 Inconsistent Local Numbering (Face) . . . . . . . . . . . . . . . . 44
3.7 Vectorized Local Assembly . . . . . . . . . . . . . . . . . . . . . 45
3.8 Explicit Vectorization Instructions . . . . . . . . . . . . . . . . . . 46
3.9 Non-Overlapping Vectorization . . . . . . . . . . . . . . . . . . . 47
3.10 Kernel with Non-Overlapping Vectorization . . . . . . . . . . . . 47
3.11 Ratio Local Runtime to Overall Runtime . . . . . . . . . . . . . . 50
3.12 Runtime Reduction against 𝑘 = 1 . . . . . . . . . . . . . . . . . . 50
3.13 Handwritten Geometry Transformation Optimization . . . . . . . 51
3.14 Handwritten Vectorization Speed-Up . . . . . . . . . . . . . . . . 53
3.15 Handwritten FLOP/s Performance . . . . . . . . . . . . . . . . . 55
3.16 Handwritten DoF/s Performance . . . . . . . . . . . . . . . . . . 55
3.17 Vectorization-Friendly Data Layout . . . . . . . . . . . . . . . . . 59

4.1 Preconditioner Validation . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Loopy Kernel Definition . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Loopy Kernel Representation . . . . . . . . . . . . . . . . . . . . 80
5.3 Dune-Codegen Pipeline . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Block-structured Loopy Kernel Representation . . . . . . . . . . . 84
5.5 Redundant Computation Examples . . . . . . . . . . . . . . . . . 89
5.6 Redundancy Definition . . . . . . . . . . . . . . . . . . . . . . . 91
5.7 Loopy Kernel LICM Example . . . . . . . . . . . . . . . . . . . . 94
5.8 Generated Vectorization Speed-Ups . . . . . . . . . . . . . . . . 95
5.9 Generated Geometry Transformation Optimization . . . . . . . . 97
5.10 Generated FLOP/s Performance . . . . . . . . . . . . . . . . . . 98
5.11 Generated DoF/s Performance . . . . . . . . . . . . . . . . . . . 98

6.1 Poisson DoF/s Performance (2D) . . . . . . . . . . . . . . . . . . 113
6.2 Poisson DoF/s Performance (3D) . . . . . . . . . . . . . . . . . . 115
6.3 Poisson FLOP/s Performance . . . . . . . . . . . . . . . . . . . . 116
6.4 Poisson Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.5 Poisson Transferred Data Volume . . . . . . . . . . . . . . . . . . 117
6.6 Poisson TTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.7 Poisson TTS (Scaled) . . . . . . . . . . . . . . . . . . . . . . . . 119
6.8 Poisson Solver Iterations . . . . . . . . . . . . . . . . . . . . . . . 120

x LIST OF FIGURES



6.9 Poisson Solver Iteration DoF/s Performance . . . . . . . . . . . . 121
6.10 𝑝-Laplacian DoF/s Performance . . . . . . . . . . . . . . . . . . . 123
6.11 𝑝-Laplacian Assembly Cost . . . . . . . . . . . . . . . . . . . . . 124
6.12 𝑝-Laplacian Linear Solver TTS . . . . . . . . . . . . . . . . . . . 125
6.13 𝑝-Laplacian Full Newton Step . . . . . . . . . . . . . . . . . . . . 125
6.14 Navier-Stokes DoF/s Performance . . . . . . . . . . . . . . . . . 130
6.15 Navier-Stokes FLOP/s Performance . . . . . . . . . . . . . . . . 132
6.16 Navier-Stokes Bandwidth . . . . . . . . . . . . . . . . . . . . . . 133
6.17 Navier-Stokes Linear Solver TTS . . . . . . . . . . . . . . . . . . 135
6.18 Navier-Stokes Linear Solver TTS (Scaled) . . . . . . . . . . . . . 136
6.19 Navier-Stokes Solver Iterations . . . . . . . . . . . . . . . . . . . 137
6.20 Navier-Stokes Solver Iteration DoF/s Performance . . . . . . . . . 138

LIST OF FIGURES xi



List of Algorithms

2.1 Stiffness Matrix Assembly . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Operator Application Assembly . . . . . . . . . . . . . . . . . . . 15
2.3 Sparse Matrix Vector Multiplication . . . . . . . . . . . . . . . . . 29
3.1 Local Block-structured Operator Application . . . . . . . . . . . . 36
5.1 Stable Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Schedule Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

xii LIST OF ALGORITHMS



chapter1
Introduction & Outline

T HE COMPUTER HARDWARE LANDSCAPE is ever­changing. In recent de­
cades, the main driver for performance advancements has been paral­

lelism. Not only did the number of computing cores within one CPU increase,
from single­core tomulti­core CPUs even for average consumers, the addition
of so­called instruction level parallelism introduced parallelism at the level of
each core. With these advancements, the performance of one CPU could grow
at a steady rate. An additional factor in the performance of any program is the
data transfer rate (called bandwidth) between the main memory and the CPU.
While this also advanced over the last decades, it did so at a significantly lower
rate than the CPU’s performance. Nowadays this leads to a disadvantage for
programs that require transferring large volumes of data. Since their perfor­
mance is restricted by the bandwidth, many resources of modern CPUs have
to be left unused.

Oneapplicationarea thathasbeenparticullarily impactedarecomputer sim­
ulations. They dominate the physics based computations, which appear for
example in weather predictions, structural analysis, measuring brain activity,
prevention of earthquake induced hazards, or cancer research. All of these ap­
plications have in common that they are described by one or multiple math­
ematical equations. A particular successful method to solving these so­called
partial differential equations (PDEs) is the finite element method (FEM). The
approach translates the complex equations into an easier to solve system of
linear equations, or at least into multiple steps consisting of linear systems.
For conventional implementations of the FEM, computing the solution of the
linear systems usually requires transferring large volumes of data and signifi­
cantly less arithmetic operations upon these data in comparison. Therefore,
the FEM is deeply affected by the gap between bandwidth and CPU perfor­
mance mentioned above.

A promising technique to lessen this impact are so­calledmatrix­freemeth­
ods, as opposed to the conventionalmatrix­basedapproaches. Thematrix­free
approach reduces the transferreddatavolumeat thecost ofnoticeably increas­
ing the number of required computations. As modern CPUs excel at multiple
computations with the same data, this should reduce the overall runtime of
the FEM. For certain classes of FEM, so­called high order discretizations, this
works especially well. Other classes, so­called low order discretizations, show
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nearly the same problems using the matrix­free method as with the matrix­
based method. In these cases, the number of arithmetic operations per trans­
ferred datum is still low and more adjustments are necessary to increase the
performance of matrix­free methods.

This thesis considers the so­called block­structured grids approach to accel­
eratematrix­freemethods for loworder discretizations. The approach regular­
izes the data access and computation patterns during the matrix­free compu­
tation. Besides higher utilization of the bandwidth, new optimization oppor­
tunities emerge. As writing code that leverages these optimizations is cum­
bersome, the source code for the main building blocks of the FEM, the local
integration kernels, are automatically generated, following a descriptive prob­
lem formulation in a simple programming language. By generating optimized
code for block­structured grids, users can easily increase the performance of
matrix­free methods with low order discretizations for a variety of different
problems.

Related Work
Currently, matrix­free methods are a highly active field of research. In recent
years the development of efficient methods using high order discretizations
hasbeen in the focus. Especiallyprominentare thediscussions fromthedeal.II
community [63, 64], the DUNE project [76], and as part of the CEED center [18]
and the MFEM library [5]. All of these underline the high performance capa­
bilities of the matrix­free approach for high order discretizations. An inter­
esting performance comparison of current matrix­free methods can be found
in [39]. While offering no comparison with matrix­based methods, this article
also considers some lower order finite elements, although the focus lies clearly
on the discussion of higher order discretizations.

Block­structured grids have been explored by several frameworks. One of
the earliest applications can be found in the finite element package FEAST [90,
91], which uses a coarse, unstructured mesh of cubical elements and refines
each coarse element with a tensor product structure. Exploiting the special
structure allows assemblinghighly efficient sparsematrices. Similarly, the lin­
ear algebra library HYPRE [35] provides a specialized matrix format for block­
structured grids. HYPRE also expects that the coarse grid is divided into cubi­
cal elements. However, in contrast to FEAST, the sparsity patternof structured
block can be described by a stencil. One framework that uses locally struc­
tured gridswithout explicitly formingmatrices is the hierarchical hybrid girds
approach [13, 61]. There, the regular structure is exploited to efficiently ap­
ply the matrix’s stencil on­the­fly. Currently, the implementation is restricted
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to coarse grids with simplex elements. As part of the EXA­DUNE project [10],
block­structured grids were investigated to increase the vectorization capabil­
ities for low order methods, again on cubical coarse grids. Although the ap­
proach developed in this thesis also builds upon DUNE, the data layout and
vectorization are significantly different from the earlier consideration.

Mostof thementioned frameworksbasedonblock­structuringemployavari­
ant of geometric multilevel method either as a solver or as a preconditioner.
Non­overlapping domain decomposition methods, similar to the one consid­
ered in this thesis, are also highly efficient preconditioners. However, the cur­
rent implementationsof thesemethods (e.g. [7, 96]) arematrix­based. Formod­
ern non­overlapping domain decomposition methods matrix­free implemen­
tations are still missing.

One of themost prominent example of code generationwithin the FEMcon­
text is the FEniCS project [2, 69]. It defines the Unified Form Language (UFL),
which allows the Python based description of PDEs. Its widespread success is
mostly due to its ease­of­use as part of the Python ecosystem and the close re­
semblance of UFL to the mathematical formulation of a FEM. Other projects,
such as Firedrake [80] also build upon UFL. The Firedrake implementation
usually generates C code for thewhole FEMprogram,while the FEniCSmostly
generates kernels that are plugged into the C++ frameworkDOLPHIN [70]. Ad­
ditionally, the Firedrake project employs a highly capable FLOPminimization
algorithms [80] during its local kernel optimization.

Outline
The major contributions of this work are the evaluation and implementation
of optimization techniques for low order discretizations. In the following, the
structure of the thesis is laid out. The thesis begins with a review of the ba­
sic concepts and current issues in chapter 2, which the following chapters are
build upon. Afterwards chapter 3 introduces the block­structured grids ap­
proach. This is the thesis’ main technique to accelerate matrix­free compu­
tations for low order finite element methods. The chapter also contains a dis­
cussionof optimizationsunique to theblock­structuredgrids approach,which
can be divided into local kernel and global assembly optimizations. Addition­
ally, the performance gain of each optimization is closely investigated, using a
handwritten implementation. In the following, awell knownnon­overlapping
domain decomposition preconditioner is applied to block­structured grids in
chapter 4. The outlined approach indicates how this kind of preconditioner
can be adapted to matrix­free methods. Chapter 5 discusses the implementa­
tionof the results so far aspart of thecodegenerationpipelineDUNE­CODEGEN.
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Thus, the benefits from block­structured grids can be easily applied to a vari­
ety of problems. Finally, for small subset of those problems theperformance of
the generated block­structured grids approach is evaluated on a modern CPU
in chapter 6. Both a single operator application and a full system solve are
considered, and set in comparison to a standard matrix­based method. Ad­
ditionally, a theoretical analysis of the block­structured matrix­free operator
application is provided.
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chapter2
Foundational Considerations

T HIS CHAPTER INTRODUCES the concepts and terminology necessary for
the rest of this work. First, a brief overview of the finite element method

is presented, with focus on implementation relevant parts. One of the first and
most defining textbooks on the finite element methods is by Ciarlet [19], and
many more have been released since. For example, the book by Brenner and
Scott [17] delivers a thorough analytic discussion of the method and a com­
pact introduction can be found in Braess’ work [16]. Practical concerns, which
are mostly left out in other works, are considered by Ern and Guermond in
[33]. Secondly, basic properties of common linear solvers are discussed. Stan­
dard introductions on solutionmethods for linear systems can be found in the
books by Saad [81] or by Rannacher [79], and an interesting discussion of the
conjugate gradient method is given from Shewchuk in [86]. Afterwards, the
software tools, DUNE and UFL, which are the fundations for the implemen­
tation of this thesis, are introduced. The final section, considers the perfor­
mance of the conventional finite element approach, which relies heavily on
sparse matrix vector multiplications.

2.1 Finite Element Methods

The finite elementmethod (FEM) allows to approximately solve a wide variety
of partial differential equations (PDEs), where it is not possible to analytically
compute the solution in general. To simplify the introduction of basic con­
cepts for the FEM only scalar linear second order elliptic PDEs are considered.
These take the following form

−
𝑑

∑
𝑖,𝑗=1

𝜕
𝜕𝑥𝑖

(𝑑𝑖𝑗(𝑥)
𝜕𝑢(𝑥)
𝜕𝑥𝑗

) +
𝑑

∑
𝑗=1

𝑏𝑗(𝑥)
𝜕𝑢(𝑥)
𝜕𝑥𝑗

+ 𝑐(𝑥)𝑢(𝑥) = 𝑓(𝑥) inΩ,

+boundary conditions on 𝜕Ω,

which may be compactly written as

ℒ𝑢 = 𝑓 inΩ,
𝐵𝑢 = 𝑔 on 𝜕Ω,
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whereΩ ⊂ ℝ𝑑 is a bounded, open, and polygonal domain, and the coefficients
𝐷 = [𝑑𝑖𝑗]𝑑𝑖,𝑗=1 ∶ Ω ↦ ℝ𝑑×𝑑, 𝑏 = [𝑏𝑖]𝑑𝑗=1 ∶ Ω ↦ ℝ𝑑, 𝑐 ∶ Ω ↦ ℝ, and the right­
hand­side 𝑓 ∶ Ω ↦ ℝ fulfil some suitable assumptions, which are described
later on. The boundary conditions 𝐵𝑢 = 𝑔 stemming from a physical problem
can be divided into three distinct types

1. Dirichlet condition: 𝑢(𝑥) = 𝑔𝐷(𝑥) on Γ = 𝜕Ω,

2. Neumann condition: 𝑛(𝑥) ⋅ 𝐷(𝑥)∇𝑢(𝑥) = 𝑔𝑁(𝑥) on Γwith the outer nor­
mal 𝑛,

3. Robin condition: 𝑢(𝑥) + 𝑛(𝑥) ⋅ 𝐷(𝑥)∇𝑢(𝑥) = 𝑔𝑅(𝑥) on Γ.

It is also possible tomix these boundary conditions. In this case, the boundary
is divided into Γ𝐷 ∪ Γ𝑁 ∪ Γ𝑅 = Γ with Γ𝑖 ∩ Γ𝑗 = ∅ for 𝑖 ≠ 𝑗, 𝑖, 𝑗 ∈ {𝐷,𝑁, 𝑅},
where the Dirichlet boundary condition is defined on Γ𝐷 ⊂ Γ, the Neumann
boundary condition on Γ𝑁 ⊂ Γ, and the Robin condition on Γ𝑅 ⊂ Γ.

2.1.1 Weak Formulation

The previous description of a PDE, called strong formulation, has the draw­
back that the existence and uniqueness of a solution can only be shown under
idealized assumptions, which usually don’t apply in real world applications.
Therefore, the weak formulation was developed to create a well­posed prob­
lem,which is equivalent to the strong formulation if the idealizedassumptions
hold. This formulation can be deduced bymultiplying the strong formulation
witha test function𝑣 ∈ 𝐶∞(Ω)with𝑣|Γ𝐷 = 0, integratingoverΩ, andapplying
Green’s formula, which results in (without Robin condition)

∫
Ω
∇𝑣 ⋅ 𝐷∇𝑢 + 𝑣(𝑏 ⋅ ∇𝑢 + 𝑐𝑢) dx

⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟
∶=𝑎(ᵆ,𝑣)

= ∫
Ω
𝑓𝑣 dx +∫

Γ𝑁

𝑣𝑔𝑁 dS
⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟

∶=𝐹(𝑣)

.

This equation requires less regularity of 𝑢 than the PDE in its strong formu­
lation. Now, it is sufficient that the first order weak derivative of 𝑢 exists and
that it is 𝐿2 integrable. The Sobolev space 𝐻1(Ω) contains all these functions
and the space𝐻1

Γ𝐷,0(Ω) additionally incorporates the homogeneous Dirichlet
condition on Γ𝐷.

Hence, theproblemin theweak formulation forhomogeneousDirichlet con­
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ditions is defined as:

Find 𝑢 ∈ 𝐻1
Γ𝐷,0(Ω) such that:

𝑎(𝑢, 𝑣) = 𝐹(𝑣) ∀𝑣 ∈ 𝐻1
Γ𝐷,0(Ω).

A solution to this problem is calledweak solution. For the analysis of weak for­
mulations it is sufficient to consider homogeneous Dirichlet conditions, since
a problem with a Dirichlet condition 𝑔𝐷 ≠ 0 can be reduced to problem with
homogeneous conditions. Let 𝑤 ∈ 𝐻1 with 𝑤|Γ𝐷 = 𝑔𝐷, then finding 𝑢 =
𝑢0 + 𝑤, with 𝑢0 ∈ 𝐻1

Γ𝐷,0, to solve the weak formulation is equivalent to solve

𝑎(𝑢0, 𝑣) = 𝐹(𝑣) − 𝑎(𝑤, 𝑣) ∀𝑣 ∈ 𝐻1
Γ𝐷,0,

which has only homogeneous Dirichlet conditions. Thus, in the following, the
Dirichlet conditions are considered to be homogeneous, unless stated other­
wise.

The existence anduniqueness of a solution to theweak formulation requires
someassumptions on the coefficients and theboundary conditions. The right­
hand­side 𝑓 and the boundary functions 𝑔𝑁, 𝑔𝑅 need to be 𝐿2 integrable, while
the coefficients should be bounded almost everywhere, i.e. 𝐷 ∈ [𝐿∞(Ω)]𝑑×𝑑,
𝑏 ∈ [𝐿∞(Ω)]𝑑, and 𝑐 ∈ 𝐿∞. These assumptions lead to the boundedness of
both the linear form 𝐹(⋅) and the bilinear form 𝑎(⋅, ⋅). For the well­posedness
of the weak formulation it is necessary that 𝑎(⋅, ⋅) is also coercive on𝐻1. This
can be achieved through amultitude of different assumptions. One necessary,
but not sufficient, assumption is that the matrix function 𝐷 is symmetric and
uniformly elliptic, i.e. 𝑑𝑖𝑗 = 𝑑𝑗𝑖 and 𝜉 ⋅ 𝐷𝜉 ≥ 𝛼||𝜉||22 > 0 for all 𝜉 ∈ ℝ𝑑 a.e. in
Ω. In the case of pure Dirichlet boundary conditions, coercivity is guaranteed
if 𝛼+min(0, 𝑝/𝐶Ω) > 0, where𝐶Ω is a domain dependent constant appearing
in the Poincaré inequality and 𝑝 = inf ess𝑥∈Ω(𝑐 −

1

2
div 𝑏). Further boundary

conditions are considered, for example, in [33].

2.1.2 Discretization

In contrast to the strong formulation, the weak formulation is well­posed, but
computing the solution analytically is not easier than before. This difficulty
leads to the Galerkinmethod, which tries to solve theweak problem on a finite
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dimensional subspace 𝑉ℎ ⊂ 𝐻1
Γ𝐷,0, resulting in the problem:

Find 𝑢ℎ ∈ 𝑉ℎ such that:

𝑎(𝑢, 𝑣) = 𝐹(𝑣) ∀𝑣 ∈ 𝑉ℎ.

The discrete solution 𝑢ℎ is quasi­optimal in the sense that it attains the min­
imal error to the weak solution over 𝑉ℎ, up to a constant, which is known as
Céa’s lemma

||𝑢 − 𝑢ℎ||𝐻1 ≤ 𝐶 inf
𝑣ℎ∈𝑉ℎ

||𝑢 − 𝑣ℎ||𝐻1,

and shown in [17] for example. Choosing a basis {𝜙𝑖}𝑁𝑖=1 for the subspace 𝑉ℎ
reduces the discrete weak problem to𝑁 linear equations

𝑎(𝑢ℎ, 𝜙𝑖) = 𝐹(𝜙𝑖), 𝑖 = 1, … , 𝑁,

and writing 𝑢ℎ as a linear combination of {𝜙𝑖} results in a linear system

𝑎 (
𝑁

∑
𝑗=1

𝐮𝑗𝜙𝑗, 𝜙𝑖) = 𝐹(𝜙𝑖), 𝑖 = 1, … , 𝑁,

⇔
𝑁

∑
𝑗=1

𝑎(𝜙𝑗, 𝜙𝑖)𝐮𝑗 = 𝐹(𝜙𝑖), 𝑖 = 1, … , 𝑁,

⇔ 𝐴𝐮 = 𝐟.

The matrix 𝐴 = [𝑎𝑖,𝑗]𝑁𝑖,𝑗=1 = [𝑎(𝜙𝑗, 𝜙𝑖)]𝑁𝑖,𝑗=1 is known as the stiffness matrix,
and the right­hand­side 𝐟 = [𝐹(𝜙𝑖)]𝑁𝑗=1 as the load vector. The entries in the
coefficient vector𝐮 = [𝐮𝑖]𝑁𝑖=1 are also referred to as degrees of freedom (DoFs).

The choice of the subspace𝑉ℎ is critical for the efficient and accurate approx­
imation of the weak solution. It should be large enough to minimize the error
determined byCea’s lemma, which results in a large linear system to be solved.
Therefore, a requirement on thebasis {𝜙𝑖}of𝑉ℎ is that the solution to linear sys­
tem 𝐴𝐮 = 𝐟 can be computed in reasonable time, preferably in 𝒪(𝑁), which
prohibits a dense structure of the matrix 𝐴. Instead, the matrix 𝐴 should be
sparse, meaning that only 𝒪(𝑁) entries are non­zero (𝑎𝑖,𝑗 = 𝑎(𝜙𝑗, 𝜙𝑖) ≠ 0).
Such a pattern emerges, if the support of each basis functions is highly re­
stricted.

Thefirst step towards thedefinitionof a suitablebasis is todivide thedomain
Ω into simpler subdomains. The subdivision of Ω is described by a grid 𝒯 =
{𝜏1, 𝜏2, … , 𝜏𝑀}, also calledmesh, or triangulation,whichconsists of boundeddo­
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mains 𝜏1 with Lipschitz boundary and

Ω =
𝑀

⋃
𝑖=1

𝜏𝑖, 𝜏𝑖 ∩ 𝜏𝑗 = ∅ if 𝑖 ≠ 𝑗.

Usually the elements 𝜏𝑖 are triangles or quadrilaterals in 2D, and tetrahedrons,
hexahedrals, prisms, or pyramids in 3D. A grid where diam(𝜏𝑖) ≤ ℎ for all
𝑖 = 1, … ,𝑀 is denoted by 𝒯ℎ, and ℎ is known as the mesh size. In some cases
additional requirements may be applied to the triangulation to improve the
error estimates, which can be found, for example, in [16].

It will become necessary to distinguish between parts of an element with
different dimensionality, for example between the interior volume of a hexa­
hedron and its faces. These parts are called entities, and they are defined re­
cursively by their topological connections to lower dimensional entities. For
example, a quadrilateral (dim = 2) is constructed by four edges (dim = 1),
which are in turn constructed by two vertices (dim = 0) each. In addition to
the dimension of an entity, the codimension of an entity is defined as

codim(𝑒) = 𝑑 − dim(𝑒).

All entities of codim > 𝑐 that are part of an entity 𝑒 with codim = 𝑐 are re­
ferred to as the subentities of 𝑒. Without reference to a particular entity, the
term subentities also refers to all entity of a grid element, the codim = 0 entity
included. A more rigorous definition of entities and subentities, especially as
part of the DUNE terminology, can be found in [8].

Furthermore, each element 𝜏𝑖 of the grid is defined by a geometry transfor­
mation 𝑇𝑖. The transformation 𝑇𝑖 maps ̂𝜏 ↦ 𝜏𝑖, where ̂𝜏 is called reference
element, and it is bijective and𝑇𝑖,𝑇−1

𝑖 are continuous. If the elements are sim­
plices, e.g. lines, triangles, or tetrahedron, the reference element is defined as
̂𝜏 = ̂𝑆 = {𝑥 ∈ ℝ𝑑

+ ∶ ||𝑥||1 ≤ 1}, and for cubical elements, e.g. quadrilaterals, or
hexahedrals, it is defined as ̂𝜏 = 𝑄 = {𝑥 ∈ 𝑅𝑑+ ∶ ||𝑥||∞ ≤ 1}. In some cases, the
mapping is affine and thus can bewritten as𝒯𝑖(𝑥) = 𝐽𝑖𝑥+𝑐𝑖 with 𝐽𝑖 ∈ ℝ𝑑×𝑑 and
𝑐𝑖 ∈ 𝑅𝑑. If every mapping is affine, the grid is also called affine. Furthermore,
if the mappings are affine and only differ in the offset 𝑐𝑖, i.e. 𝐽𝑖 = 𝐽𝑘 = 𝐽 for
all 𝑖, 𝑘 = 1, … ,𝑀, the grid is called structured, or uniform, which becomes an
important special case in the following chapters, and otherwise it will be de­
noted as unstructured. It is possible to have mappings for multiple reference
elements, for example if the grid contains both triangles and quadrilaterals.
However, it is assumed that the reference element is always the reference cube

2.1 FINITE ELEMENT METHODS 9



𝑄 for the rest of this work.
The definition of a grid allows to construct a discrete space𝑉ℎ with a basis 𝜙𝑖

conforming to the previouslymentioned requirements. One possible choice is

𝑉ℎ = {𝑣ℎ ∈ 𝐶0(Ω) ∶ 𝑣ℎ|𝜏 ∈ 𝑃, ∀𝜏 ∈ 𝒯ℎ}

with the basis {𝜙𝑖}𝑁𝑖=1 ⊂ 𝑉ℎ, satisfying 𝜙𝑖(𝑣𝑗) = 𝛿𝑖𝑗, where 𝑣𝑗 are the vertices of
the grid 𝒯ℎ, and 𝑃 = ℙ1 if simplicial elements are used, or 𝑃 = ℚ1 if cubical
elements are used. These functions are also known as hat functions or the La­
grange basis of order 1. The support of one basis function 𝜙𝑖 is restricted to the
elements sharing the vertex 𝑣𝑖. Therefore, the entry 𝑎𝑖,𝑗 = 𝑎(𝜙𝑗, 𝜙𝑖) ≠ 0 only
for 𝜙𝑗 with their associated vertex 𝑣𝑗 contained in one of the elements shar­
ing 𝑣𝑖. For a large class of grids, so called quasi­uniform grids, the number of
elements sharing one vertex is bounded, showing that the resulting stiffness
matrix is sparse.

Other spaces are also viable, for example by increasing the element­wise
polynomial degree, which requires nodes placed on entitieswith codimension
less than 𝑑, in addition to the vertices, to define the condition 𝜙𝑖(𝑣𝑗) = 𝛿𝑖𝑗. All
of thosepoints𝑣𝑗 on thegrid thatdefine thebasis {𝜙𝑖}areknownasnodes. If the
local polynomial degree is 𝑝, the basis is called Lagrange basis of order 𝑝, and
for this basis the same argument for the sparsity of𝐴 holds. The discrete func­
tions need to be continuous overΩ to ensure 𝑉ℎ ⊂ 𝑉, otherwise the finite ele­
ment method would be non­conforming, which exacerbates the definition of
the discretized weak formulation. An example for a non­conforming method
is the discontinuousGalerkinmethod (DG), where the continuity requirement
along element boundaries is dropped, see [51], [20], or [77] for details.

2.1.3 Assembly

The construction of𝑉ℎ and its basis {𝜙𝑖} above guarantee a sparse stiffnessma­
trix 𝐴, but due to the abstract definition of 𝜙𝑖, the computation of the inte­
gral 𝑎(𝜙𝑗, 𝜙𝑖) is not immediately clear. In 1D the functions 𝜙𝑖 can be explicitly
defined, while in 2D or 3D this becomes difficult for unstructured grids. As a
first step, it is necessary to define the local­to­global mapping 𝑔𝜏 ∶ {1, … , 𝑛} ↦
{1, … , 𝑁} for every element 𝜏 defined by the nodes 𝑣𝑖, 𝑖 ∈ {1, … , 𝑁}, which de­
scribes a local numbering of the element’s nodes by satisfying

𝑇𝜏( ̂𝑣𝑗) = 𝑣𝑔𝜏(𝑗)),
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where ̂𝑣𝑗, 𝑗 = 1, … , 𝑛, are the nodes of the reference element. Additionally, let

𝜙𝑖, 𝑖 = 1, … , 𝑛 be the Lagrange basis of order 1 on the reference element, i.e.
𝜙𝑖 ∈ ℚ1 and 𝜙𝑖( ̂𝑣𝑗) = 𝛿𝑖𝑗 for 𝑖, 𝑗 = 1, … , 𝑛. The localization of a basis function
𝜙𝑖 with supp(𝜙𝑖) ⊂ 𝜏 can now be written as

𝜙𝑖|𝜏 =
𝑛

∑
𝑙=1

𝛿𝑔𝜏(𝑙),𝑖 𝜙𝑙 ∘ 𝑇−1
𝜏 .

It should be noted that only one term is non­zero.
Using this localization, the computation of 𝐴 reduces to computing local

contributions and assembling them into the global data structure. As a first
step, splitting the integral overΩ into integrals over the grid elements 𝜏 results
in

𝑎(𝜙𝑗, 𝜙𝑖) = ∫
Ω
∇𝑣 ⋅ 𝐷∇𝑢 + 𝑣(𝑏 ⋅ ∇𝑢 + 𝑐𝑢) dx = ∫

Ω
ℎ(𝜙𝑗, 𝜙𝑖) dx

= ∑
𝜏∈𝒯ℎ

∫
𝜏
ℎ(𝜙𝑗, 𝜙𝑖) dx

for a problem without Robin boundary conditions. Then, applying the local
description of the basis function leads to

𝑎(𝜙𝑗, 𝜙𝑖) = ∑
𝜏∈𝒯ℎ

𝑛

∑
𝑙,𝑘=1

𝛿𝑔𝜏(𝑙),𝑗 𝛿𝑔𝜏(𝑘),𝑖 ∫
𝜏
ℎ (𝜙𝑘 ∘ 𝑇−1

𝜏 , 𝜙𝑙 ∘ 𝑇−1
𝜏 ) dx

= ∑
𝜏∈𝒯ℎ

𝑛

∑
𝑙,𝑘=1

𝛿𝑔𝜏(𝑙),𝑗 𝛿𝑔𝜏(𝑘),𝑖 𝐴𝜏𝑙,𝑘.

The 𝑛 × 𝑛matrix 𝐴𝜏 = [𝐴𝜏𝑙,𝑘]
𝑛

𝑙,𝑘
is known as the local stiffness matrix and to­

getherwith the boolean restrictionmatrix𝑅𝜏 = [𝛿𝑔𝜏(𝑖),𝑗]
𝑛,𝑁
𝑖,𝑗=1

∈ ℝ𝑛×𝑁 the com­

putation of the full stiffness matrix can be written compactly as

𝐴 = ∑
𝜏∈𝒯

(𝑅𝜏)𝑇 𝐴𝜏𝑅𝜏.

The localized formulation of the basis functions shows that its evaluation is
equivalent to evaluate the corresponding basis function on the reference el­
ement, which can be further exploited using the transformation rule for 𝜏 =
𝑇𝜏( ̂𝜏). Assume 𝑏(𝑥) = 0 for simplicity, then by transforming the integration
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domain the integral can be written as

𝐴𝜏𝑙,𝑘 = ∫
𝜏
∇𝜙𝑘 (𝑇−1

𝜏 (𝑥)) ⋅ 𝐷(𝑥)∇𝜙𝑙 (𝑇−1
𝜏 (𝑥)) + 𝑐(𝑥)𝜙𝑘 (𝑇−1

𝜏 (𝑥)) 𝜙𝑙 (𝑇−1
𝜏 (𝑥))) dx

= ∫
̂𝜏
| det 𝐽( ̂𝑥)| (𝐽−𝑇( ̂𝑥)∇𝜙𝑘(𝑥) ⋅ 𝐷 (𝑇𝜏( ̂𝑥)) 𝐽−𝑇( ̂𝑥)∇𝜙𝑙(𝑥)

+ 𝑐 (𝑇𝜏( ̂𝑥) 𝜙𝑘(𝑥)𝜙𝑙(𝑥))) d ̂𝑥,

where 𝐽 is the Jacobian matrix of 𝑇𝜏, and the factor 𝐽−𝑇 is introduced through
the chain rule to scale the gradients correctly. Since these integrals cannot be
computed analytically in general, a quadrature rule is used to approximate the
integral. For a quadrature rule with points 𝜉𝑞 and weights 𝜔𝑞, this leads to

𝐴𝜏𝑙,𝑘 = ∑
𝑞
𝜔𝑝𝐻(𝜉𝑞, 𝜙𝑘, 𝜙𝑙),

where𝐻 is the evaluation of the integrand at a quadrature point. Algorithm 2.1
, based on the description in [33], displays the global assembly of the stiffness
matrix 𝐴 for a linear second order elliptic PDE with coefficients𝐷, 𝑏, and 𝑐 on
a grid 𝒯, together with the corresponding computation of the local stiffness
matrices.

The application of the stiffness matrix 𝐴 to a vector can be computed by as­
sembling the element­local contributions, similar to the assembly of 𝐴. As a
first step, the entry (𝐴𝐮)𝑖 is rewritten as

𝐲𝑖 = (𝐴𝐮)𝑖 =
𝑁

∑
𝑗=1

𝐴𝑖,𝑗𝐮𝑗 =
𝑁

∑
𝑗=1

𝑎(𝜙𝑗, 𝜙𝑖)𝐮𝑗

= 𝑎(
𝑁

∑
𝑗=1

𝐮𝑗𝜙𝑗, 𝜙𝑖) = 𝑎(𝑢ℎ, 𝜙𝑖).

Now, using the local­to­globalmap 𝑔𝜏 defined above, the evaluation of 𝑎(⋅, ⋅) is
split into the element­local computations

𝑎(𝑢ℎ, 𝜙𝑖) = ∑
𝜏∈𝒯ℎ

𝑛

∑
𝑙=1

𝛿𝑔𝜏(𝑙),𝑗 ∫
𝜏
ℎ (

𝑛

∑
𝑘=1

𝐮𝑔𝜏(𝑘)𝜙𝑘 ∘ 𝑇−1
𝜏 , 𝜙𝑙 ∘ 𝑇−1

𝜏 ) dx

= ∑
𝜏∈𝒯ℎ

𝑛

∑
𝑙=1

𝛿𝑔𝜏(𝑙),𝑗 𝐲𝜏𝑙 ,
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Algorithm2.1: Pseudo code for the assembly of global stiffness ma­
trix𝐴
Function: AssembleStiffnessMatrix(𝒯,𝐷, 𝑏, 𝑐)

𝐴 = 0
for 𝜏 ∈ 𝒯 do

𝐴𝜏 = LocalStiffnessMatrix(𝜏, 𝐷, 𝑏, 𝑐)
for 𝑙 = 1, … , 𝑛 do
for 𝑘 = 1, … , 𝑛 do

𝑖 = LocalToGlobal(𝜏, 𝑙)
𝑗 = LocalToGlobal(𝜏, 𝑘)
𝐴𝑖,𝑗 = 𝐴𝑖,𝑗 + 𝐴𝜏𝑙,𝑘

Function: LocalStiffnessMatrix(𝜏, 𝐷, 𝑏, 𝑐)
𝐴𝜏 = 0
for (𝜉, 𝜔) ∈ QuadratureRule(𝜏, order) do

𝑥 = 𝑇𝜏(𝜉)
jit =𝐷𝑇𝜏(𝜉)−𝑇
weight = 𝜔 ∗ | det𝐷𝑇𝜏(𝜉)|
for 𝑙 = 1, … , 𝑛 do

phi𝑙 = 𝜙𝑙(𝜉)
grad𝑙 = jit ⋅ ∇𝜙𝑙(𝜉)

for 𝑙 = 1, … , 𝑛 do
for 𝑘 = 1, … , 𝑛 do

𝑡1 =
𝑑

∑
𝑖,𝑗

grad𝑙,𝑖 ∗ 𝐷(𝑥)𝑖,𝑗 ∗ grad𝑘,𝑗

𝑡2 = phi𝑙 ∗
𝑑

∑
𝑖
𝑏(𝑥)𝑖 ∗ grad𝑘,𝑖

𝑡3 = phi𝑙 ∗ 𝑐(𝑥) ∗ phi𝑘
𝐴𝜏𝑙,𝑘 = 𝐴𝜏𝑙,𝑘 + weight ∗ (𝑡1 + 𝑡2 + 𝑡3)
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andwith the restrictionmatrix𝑅𝜏 as before, the global application of𝐴 is given
by

𝐲 = ∑
𝜏∈𝒯ℎ

(𝑅𝜏)𝑇 𝐲𝜏.

This computation is called matrix­free operator application, and is displayed
in algorithm 2.2 . The operation 𝐮𝜏𝑘 = 𝐮𝑔𝜏(𝑘) is known as a gather operation,
or short gather, and the reverse operation 𝐲𝑔𝜏(𝑙) = 𝐲𝜏𝑙 as a scatter operation.
Due to their localizednature, both thecomputationof the local stiffnessmatrix
𝐴𝜏 and the computation of the local operator application 𝑦𝜏 are called local
kernels.

2.1.4 Extensions

The FEM introduced here was limited to linear second order elliptic PDEs, but
the FEM can also be applied to other kinds of PDEs. Some of those are briefly
discussed here. For the discretization of a non­linear PDE assume that it can
be written as

Find 𝑢 ∈ 𝑉 such that:

𝑟(𝑢, 𝑣) = 0 ∀𝑣 ∈ 𝑉,

with an appropriate function space𝑉 and the residual 𝑟(⋅, ⋅), which is linear in
its second component. This so­called residual formulation can be derived us­
ing the same techniques as in the linear case, or from aminimization problem,
as detailed in [34]. By restricting the problem to a finite dimensional subspace
𝑉ℎ ⊂ 𝑉withbasis {𝜙𝑖}𝑁𝑖=1 the solution is foundby solving thefinite dimensional
non­linear system

𝑅(𝐳) = 0, with 𝑅(𝐳) = [𝑟 (
𝑁

∑
𝑗=1

𝐳𝑗𝜙𝑗, 𝜙𝑖)]
𝑁

𝑖=1

.

The non­linear system can be solved iteratively with the Newton method. For
this method, the iterates are given by

𝐳𝑘+1 = 𝐳𝑘 + 𝛼𝑘Δ𝐳𝑘,
𝐷𝑅(𝐳𝑘)Δ𝐳𝑘 = −𝑅(𝐳𝑘),
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Algorithm 2.2: Pseudo code for the assembly of the operator appli­
cation to a vector 𝐮
Function:MatrixFreeOperatorApplication(𝒯,𝐮, 𝐷, 𝑏, 𝑐)

𝐲 = 0
for 𝜏 ∈ 𝒯 do
for 𝑘 = 1, … , 𝑛 do

𝑗 = LocalToGlobal(𝜏, 𝑘)
𝐮𝜏𝑘 = 𝐮𝑗

𝐲𝜏 = LocalOperatorApplication(𝜏, 𝐮𝜏, 𝐷, 𝑏, 𝑐)
for 𝑙 = 1, … , 𝑛 do

𝑖 = LocalToGlobal(𝜏, 𝑙)
𝐲𝑖 = 𝐲𝑖 + 𝐲𝜏𝑙

Function: LocalOperatorApplication(𝜏, 𝐮𝜏, 𝐷, 𝑏, 𝑐)
𝐲𝜏 = 0
for (𝜉, 𝜔) ∈ QuadratureRule(𝜏, order) do

𝑥 = 𝑇𝜏(𝜉)
jit =𝐷𝑇𝜏(𝜉)−𝑇
weight = 𝜔 ∗ | det𝐷𝑇𝜏(𝜉)|
for 𝑙 = 1, … , 𝑛 do

phi𝑙 = 𝜙𝑙(𝜉)
grad𝑙 = jit ⋅ ∇𝜙𝑙(𝜉)

u𝑙 =
𝑛

∑
𝑙=1

𝐮𝜏𝑙 ∗ phi𝑙

gradu𝑙 =
𝑛

∑
𝑙=1

𝐮𝜏𝑙 ∗ grad𝑙

for 𝑙 = 1, … , 𝑛 do

𝑡1 =
𝑑

∑
𝑖,𝑗

grad𝑙,𝑖 ∗ 𝐷(𝑥)𝑖,𝑗 ∗ gradu𝑗

𝑡2 = phi𝑙 ∗
𝑑

∑
𝑖
𝑏(𝑥)𝑖 ∗ gradu𝑘

𝑡3 = phi𝑙 ∗ 𝑐(𝑥) ∗ u
𝐲𝜏𝑙 = 𝐲𝜏𝑙 + weight ∗ (𝑡1 + 𝑡2 + 𝑡3)
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where in each iteration the Jacobian of 𝑅 has to be assembled and a linear sys­
temwith it needs to be solved. A broad overview of the Newtonmethod in dif­
ferent contexts can be found in [28]. If 𝑅 is linear, i.e. 𝑟(𝑢, 𝑣) = 𝑎(𝑢, 𝑣) − 𝐹(𝑣),
then the method is equivalent to the approach outlined before, since𝐷𝑅(𝐳) =
𝐴, and the method converges after one step.

The previous discussion was restricted to stationary PDEs, where the solu­
tion 𝑢 does not vary in time. Two important categories of time­dependent
PDEs are parabolic andhyperbolic PDEs,where aparabolic PDEcanbewritten
as

𝜕𝑡𝑢(𝑡, 𝑥) + ℒ𝑢(𝑡, 𝑥) = 𝑓(𝑡, 𝑥) on [0, 𝑇] × Ω

and a hyperbolic PDE as

𝜕𝑡𝑢(𝑡, 𝑥) + div𝐹(𝑡, 𝑥, 𝑢(𝑡, 𝑥)) = 𝑓(𝑡, 𝑥) on [0, 𝑇] × Ω.

Both categories require boundary conditions on [0, 𝑇] × 𝜕Ω and on {0} × Ω.
In the parabolic case, which are discussed in [78] or [33] besides many oth­

ers, the operator ℒ is a second order elliptic operator, such as defined in the
beginning of this section, and a weak formulation for this problem is deduced
in the same manner as in the stationary case leading to

𝑑
𝑑𝑡 ∫Ω

𝑢(𝑡, 𝑥)𝑣(𝑥) dx + 𝑟(𝑢, 𝑣) = 0,

where the residual formulation is used. By applying the so­called method of
lines, the PDE is first discretized in space with the FEM, resulting in

𝑑
𝑑𝑡𝑀𝑢ℎ(𝑡) + 𝑅(𝑢ℎ(𝑡)) = 0,

with the mass matrix𝑀 = [(𝜙𝑗, 𝜙𝑖)𝐿2]𝑁𝑖,𝑗=1 and the time dependent coefficient
vector 𝑢ℎ ∶ [0, 𝑇] ↦ ℝ𝑁. A suitable time stepping method is then used to
discretize the equation in time, for example with the 𝜃­method one obtains

𝑀𝐮𝑘+1 = 𝑀𝐮𝑘 − Δ𝑡𝑘 (𝜃𝑅(𝐮𝑘) − (1 − 𝜃)𝑅(𝐮𝑘+1)) .

Higher order Runge­Kuttamethodsmay be employed to increase the accuracy
of the time discretization.

A hyperbolic PDE, where𝐹may be a non­linear, vector­valued function, can
be handled similarly. But, other discrete function spaces than those discussed
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in 2.1.2 should be used. Usually the solution for these types of PDEs contains
discontinuities,whichareonly inadequately resolvedbycontinuousbasis func­
tions. Instead, thediscontinuousGalerkinmethodor thefinitevolumemethod
could be used, for an introduction see the series [24, 25, 22, 21, 23] or [66].

2.2 Iterative Linear System Solvers

The discretization of a PDE with the finite element methods leads to a linear
system

𝐴𝐱 = 𝐛,

whichneeds to be solved. Since thediscrete function space𝑉ℎ needs to be large
tominimize the errorw.r.t. theweak solution, direct solvers like theGaußelim­
ination are not feasible, and instead iterative methods are used. These meth­
ods solve the system approximately by constructing a sequence 𝐱0, 𝐱1, … that
converges to the solution 𝐱∗. A useful quantity for most iterative methods is
the residual, or defect,

𝐫𝑘 = 𝐛 − 𝐴𝐱𝑘 = 𝐴𝐱∗ − 𝐴𝐱𝑘 = 𝐴 (𝐱∗ − 𝐱𝑘) = 𝐴𝐞𝑘.

This can be used to define the iteration sequence or as part of a stopping crite­
rion to determine if the approximation is close enough.

2.2.1 Simple Iterative Methods

A simple definition of an iterative method is given by rewriting the linear sys­
tem as a fixed­point equation

𝐱 = 𝐺𝐱 + 𝐟,

where𝐺 = 𝑀−1𝑁 and 𝐟 = 𝑀−1𝐛 are defined by the matrix splitting

𝐴 = 𝑀 − 𝑁,

with a non­singular matrix𝑀, and𝑀−1 and𝑁 non­negative. The iteration

𝐱𝑘+1 = 𝐺𝐱𝑘 + 𝐟

converges to the fixed­point, which coincides with the solution of the linear
system, if the spectral radius 𝜌(𝐺) < 1. In the case that 𝐴 is non­singular
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and𝐴−1 is non­negative, convergence can be guaranteed, as shown in [81]. An
equivalent formulation of this iteration reads as

𝐱𝑘+1 = 𝑀−1𝑁𝐱𝑘 +𝑀−1𝐛
= (1 −𝑀−1𝐴)𝐱𝑘 +𝑀−1𝐛
= 𝐱𝑘 +𝑀−1(𝐛 − 𝐴𝐱𝑘)

For the efficient solution of the linear system some conditions on the choice
of𝑀 need to be imposed. The convergence rate of this method is given by the
Banach fixed­point theorem, which states that

||𝐞𝑘+1|| ≤ 𝑞||𝐞𝑘|| and ||𝐞𝑘|| ≤
𝑞𝑘

1 − 𝑞||𝐱
1 − 𝐱0||,

where 𝑞 = 𝜌(𝐺) = 𝜌(𝑀−1𝑁) = 𝜌(1 − 𝑀−1𝐴). It follows that the spectral ra­
dius of 1 − 𝑀−1𝐴 should be as small as possible to ensure a fast convergence
of this method. Furthermore, the application of𝑀−1 should be cheap to com­
pute, or,more specifically, comparable to the applicationof𝐴. Balancing these
two requirements is a difficult task, for example the best choice for the first
condition is using 𝑀−1 = 𝐴−1, but this also the worst choice for the second
condition, since applying 𝐴−1 was the initial problem. On the other side, the
application cost of𝑀−1 is optimized with the Richardson method𝑀−1 = 𝛼1,
𝛼 > 0, which neglects the first condition. Going forward, the matrix 𝑀−1 is
called preconditioner within this context.

Some importantmethods are derived from the splitting𝐴 = 𝐷+𝐿+𝑅with

𝑅 =
⎡
⎢
⎢
⎢
⎣

0 𝐴12 ⋯ 𝐴1𝑁
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝐴𝑁−1,𝑁
0 ⋯ 0 0

⎤
⎥
⎥
⎥
⎦

, 𝐿 =
⎡
⎢
⎢
⎢
⎣

0 0 ⋯ 0
𝐴2,1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0

𝐴𝑁,1 ⋯ 𝐴𝑁,𝑁−1 0

⎤
⎥
⎥
⎥
⎦

,

𝐷 =
⎡
⎢
⎢
⎢
⎣

𝐴11 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 0
0 ⋯ 0 𝐴𝑁𝑁

⎤
⎥
⎥
⎥
⎦

.

The choice𝑀 = 𝐷 leads to the Jacobi method with the iteration

𝐱𝑘+1 = 𝐱𝑘 + 𝐷−1(𝐛 − 𝐴𝐱𝑘),
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which can also be formulated component­wise as

𝐱𝑘+1𝑖 = 1
𝐴𝑖𝑖

⎛
⎜⎜
⎝

𝐛𝑖 −
𝑁

∑
𝑗=1
𝑗≠𝑖

𝐴𝑖𝑗𝐱𝑘𝑗
⎞
⎟⎟
⎠

.

Further iterative solver can be defined using this splitting. The Gauß­Seidel
method uses 𝑀 = 𝐷 + 𝐿, the successive over relaxation (SOR) method 𝑀 =
(𝐷
𝜔
+ 𝐿), 𝜔 ∈ (0, 2), and, if𝑈 = 𝐿𝑇, the symmetrized SOR (SSOR) method can

be used with𝑀 = (𝐷
𝜔
+ 𝐿) 𝜔

2−𝜔
𝐷−1 (𝐷

𝜔
+ 𝑅).

For symmetric and positive definitematrices𝐴 and𝑀, the convergence rate
can be estimated by considering the preconditioned system𝑀−1𝐴𝐱 = 𝑀−1𝐛
and applying the Richardson iteration. The resulting update is defined as

𝐱𝑘+1 = 𝐱𝑘 + 𝛼𝑀−1(𝐛 − 𝐴𝐱𝑘).

The optimal convergence rate of the Richardson iteration is achieved for 𝛼 =
2/(𝜆min(𝑀−1𝐴)+𝜆max(𝑀−1𝐴)), where𝜆min, 𝜆𝑚𝑎𝑥 denote theminimal andmax­
imal eigenvalue of𝑀−1𝐴 respectively, which leads to the convergence rate

𝑞opt =
𝜅(𝑀−1𝐴) − 1
𝜅(𝑀−1𝐴) + 1

= 1 − 2
𝜅(𝑀−1𝐴)

,

as shown in [81]. Thequantity𝜅(𝐵) = 𝜆max(𝐵)

𝜆min(𝐵)
is knownas the conditionnumber

of the matrix 𝐵. Therefore, the method requires

𝑘 ≈ 1
2𝜅(𝑀

−1𝐴) ln (2𝜀 ) = 𝒪(𝜅(𝑀−1𝐴))

iterations to reduce the initial error by a factor of 𝜀. In the case of the FEM the
condition number of the stiffness matrix has the estimate

𝜅(𝐴ℎ) = 𝒪(ℎ−2),

where ℎ denotes the grid size, derived for example in [33], which shows that
increasing the accuracy of the discretization also increases the number of it­
eration necessary, if no preconditioner is used. The other methods presented
here so far display the same asymptotic behavior. A good choice for the pre­
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conditioner𝑀−1 then satisfies the following relation

𝑐1⟨𝑀𝐱, 𝐱⟩2 ≤ ⟨𝐴𝐱, 𝐱⟩2 ≤ 𝑐2⟨𝑀𝐱, 𝐱⟩2

with grid independent constants 𝑐1, 𝑐2, which leads to constant iteration num­
bers under grid refinement.

2.2.2 Krylov Subspace Methods

A better convergence rate can be obtained by using Krylov subspace methods,
which seek an approximation𝐱𝑚 within an affine subspace𝐱0+𝒦𝑚 of dimen­
sion𝑚. The subspace𝒦𝑚 is defined as

𝒦𝑚(𝐴, 𝐫0) ={𝐫0, 𝐴𝐫0, 𝐴2𝐫0, … , 𝐴𝑚−1𝐫0},

with the residual 𝐫0 = 𝐛 − 𝐴𝐱0 and the initial guess 𝐱0. The most promi­
nent Krylov subspace method is the CG (conjugate gradients) method, which
requires that 𝐴 is symmetric and positive definite. For general matrices the
GMRES (generalizedminimum residual)method or the BiCGStabmethod can
be used. Since the discretization of an elliptic PDE without an advection term
(𝑏(𝑥) = 0) usually leads to a symmetric and positive definite stiffness matrix,
the CG method is especially popular in the context of the FEM.

While the construction of the iterates is more demanding for Krylov meth­
ods compared to the simple iterative methods, the benefit of these methods
is the increased convergence rate. Nevertheless, the complexity of the Krylov
method is not higher than the application of𝐴 or𝑀−1. For the preconditioned
CG method it can be shown that

||𝐱𝑚 − 𝐱∗||𝐴 ≤ 2(
√𝜅(𝑀−1𝐴) − 1
√𝜅(𝑀−1𝐴) + 1

)
𝑚

||𝐱0 − 𝐱∗||𝐴,

which reduces the necessary number of iterations to 𝒪(√𝜅(𝑀−1𝐴)), see [86].
Therefore, the linear systems appearing in the FEM context are usually solved
using a Krylov method, with an appropriate preconditioner.

There are numerous preconditioner to choose from, for instance the sim­
ple iterativemethods from the previous section 2.2.1. In this case, the applica­
tion of the preconditioner 𝐳 = 𝑀−1𝐫 is to be understood as solving the system
𝐴𝐳 = 𝐫withoneof thepresentedmethods for afixednumberof iterations, usu­
ally 1–3. Of course more sophisticated preconditioners are possible. One ex­
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ample is the incomplete LU (ILU) factorization, which needs amore expansive
setup phase, but yields better convergence than the discussed simple meth­
ods. Among thebest currently available preconditioner for FEMare variants of
a multigrid methods, which can achieve mesh size independent convergence.
ThehighlyPDEdependentgeometricmultigridmethodconstructs ahierarchy
of discretized problems and propagates the solution for the coarsest problem
to thefinest one. Ageneric versionwithout creatingnewdiscretizationbesides
the finest one is the algebraic multigrid (AMG) method.

Regardless ofwhich iterativemethoddiscussedhere isused to solve theFEM
discretized system 𝐴𝐮 = 𝐟 they all share similar features. Each method only
requires that the evaluation of 𝐴𝐮 is available in some form, which could be
provided as an extra function like in section 2.1.3 without assembling the stiff­
ness matrix. A preconditioner is necessary to reduce the condition number
of 𝐴, ideally in such a way that it does not depend on the mesh size. While
the preconditioner should efficiently decrease the condition number of 𝐴, its
evaluation should be fast and comparable to the evaluation of 𝐴. The precon­
ditioners may lead to stricter requirements on 𝐴 than the availability of the
matrix­vector­multiplication. In fact, most preconditioners discussed so far
need that thematrix𝐴 is fully assembled, whichmay be relaxed for the simple
iterative methods to the requirement that each row may be provided. This is
the case if, for example, a discretization with stencils is used.

2.3 Software Tools

The computer­aided solution of a PDE requires implementing the chosen dis­
cretizationmethod using a suitable programming language. Sincemany com­
ponents of the implementation are similar for different PDEs and discretiza­
tion methods, software frameworks emerged providing these basic building
blocks to reduce the user’s coding efforts. The frameworks can be broadly di­
vided into specialized and general­purpose tools. The specialized frameworks
are targeted at a specific type of PDE or discretization method, most often at
both, allowing them to optimize heavily for their specific targets, while also
simplifying the necessary user implementations. Examples for these kinds of
frameworks areOpenFOAM1, which is restricted to finite volumemethods, the
computationalfluiddynamics solversNek50002 andClawpack3, or code_aster4,

1https://openfoam.com/
2https://nek5000.mcs.anl.gov/
3http://clawpack.org/
4https://code-aster.org/
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which is targeted at structuralmechanics. In contrast, general­purpose frame­
works, such as deal.ii5, libMesh6, NGSolve7, or DUNE8, are less restrictive re­
garding the considered PDEs or discretization. The DUNE framework, for ex­
ample, requires only that the discretizations involves amesh. Usually the per­
missiveness comes at the cost of higher implementation burden on the user.

Due to the large linear or non linear systems, solving a discretized PDE usu­
ally requires high performance systems and software. Therefore, the software
frameworks need to be implemented in a programming language that allows
to efficiently use the hardware resources, which mostly reduced the language
choices toFORTRAN,C, orC++. Fromthementioned frameworks,Nek500and
Clawpack are written in FORTRAN, while the general­purpose frameworks, as
well as OpenFOAM, arewritten in C++. The downside of using these languages
is that they require a deep understanding of the language to achieve even sim­
ple tasks such that they are often perceived as user­unfriendly. Especially be­
ginners may be discouraged from using these frameworks.

In recent years a push towardsmoreuser­friendly and simpler interfaces has
been made, usually relying on higher level languages. For instance, script­
ing languages are used to provide simple wrappers for the underlying lower
level framework, e.g. OpenFOAM, PyClaw for CLAWPACK [56], or deal2lkit for
deal.ii [83]. A similar approach is the usage of so­called domain specific lan­
guages (DSL). Here, the description of a particular discretization is defined in
a simple language, which could be either newly designed, like ExaSlang9 [85]
or FreeFEM10 [50], or embedded within another language, such as the FEniCS
component UFL embedded in Python.

In the following the general­purpose framework DUNE is discussed in more
detail, as well as the UFL. Both are used in later parts of this work, DUNE as
the basic infrastructure for a PDE solver and UFL as the input for generating
efficient local kernels to be used within DUNE.

2.3.1 Dune

DUNE [8, 9, 11] is a framework for the solution of PDEs, which usesmodern C++
techniques to define flexible interfaces and achieve high efficiency. One of the
main principles in the development of DUNE is the separation of algorithms

5https://dealii.org/
6http://libmesh.github.io/
7https://ngsolve.org/
8https://dune-project.org/
9https://www.exastencils.fau.de/

10https://freefem.org/
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and data structures, similar to the design of the C++ STL, which allows design­
ing general algorithms applicable to multiple problems and using a special­
ized data structure most suitable for the specific problem. To this end, DUNE
defines abstract interfaces for the components of a PDE discretization, which
can be implemented by different providers for specific use cases. The most
notable example of this pattern is the grid interface implemented by differ­
ent grid managers specializing for different types of grids. Writing an algo­
rithm based only on the abstract grid interface and agnostic of a concrete im­
plementation allows to easily exchange the gridmanager. If a specialized grid
manager is developed and swapped in, the benefits from the specialization are
immediately available.

The interfaces defined by the DUNE framework are separated into distinct
libraries, called modules, striving for a clear separation of concerns. Since
DUNE predates the C++­20 modules, they should not be understood as those.
The modules can be grouped into the following categories11

Core The foundational modules of the DUNE framework. They cover a spe­
cialized build system, dense linear algebra (DUNE­COMMON), sparse lin­
ear algebra (DUNE­ISTL), the grid interface and some implementations
(DUNE­GRID), reference elements (DUNE­GEOMETRY), and local finite
elements (DUNE­LOCALFUNCTIONS), among others.

Grid Thesemodules offer additional implementations of the grid interfacede­
fined in DUNE­GRID, for example DUNE­UGGRID, or DUNE­ALUGRID.

Discretization Discretizing a PDE requires additional concepts that have not
been covered so far. The discretization modules provide, for instance,
discrete function spaces, generalized assembly, or simplified local ker­
nel definitions. Widely used modules are DUNE­PDELAB, DUNE­FEM,
DUNE­FUFEM, and DUNE­GDT.

Application Modules contained here are tailored to a specific kind of applica­
tion, usually based on a discretization module, for example DuMuX12 or
OPM13, which focus on flow in porous media, or duneuro14 for applica­
tions in neuroscience.

A thorough introduction to the core concepts and modules of DUNE can be
found in Sander’s textbook [82].
11Many of the modules can be found in under https://gitlab.dune-project.org
12https://dumux.org
13https://opm-project.org
14http://duneuro.org/
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The most important DUNE module for this thesis is DUNE­PDELAB. There­
fore, its addition beyond the scope of the core modules to the simplification
of the solution process are discussed with more detail. One significant build­
ing block of the discretization not covered by the core modules is the defini­
tion of a discrete function space, in which the solution of the weak formula­
tion is sought. DUNE­PDELAB introduces these with the GridFunctionSpace
type that combines a grid view with information on the local finite element
and global constraints on the discrete functions, which can be more compli­
cated than simple Dirichlet constraints. The LocalFiniteElementMap inter­
faceprovides context for the localfinite elementbymappingeachgridelement
to a local finite element fromDUNE­LOCALFUNCTIONS, with additional infor­
mation on the local DoFs. It is possible to construct a function space as the
product of two ormore functions spaces, for example to define a vector valued
finite element, or the Taylor­Hood element, using a compile­time tree struc­
ture. With the concept of a discrete function space available, other closely re­
lated concepts such as discrete functions, or interpolations, are also provided.

Another significant part of the solutionprocess is the grid­based assembly of
different quantities, e.g. residual evaluation, matrix assembly, or matrix­free
operator application. In the DUNE­PDELAB module this is simplified by the
GridOperator type, which applies these assembly processes for given func­
tion spaces. The local integration kernels required by the different assembly
processes are gathered into a class, satisfying LocalOperator interface. Since
the implementation depends directly on the PDE and the discretization used,
the class has to be provided by the user, although it is only necessary to imple­
ment the relevant kernels. For standard PDEs, such as convection­diffusion
equations, or Maxwell equations, default implementations already exist.

UsingDUNE­PDELAB the implementationof a discretizationmethod for the
solution of a PDE reduces to picking the right building blocks provided by the
module, adding user specific implementations where necessary, and fitting
them together appropriately. Which part the user needs to supply depends
strongly on the considered kind of application or research. For example, if a
type of PDE not covered by the standard LocalOperator is studied, a new im­
plementation of the LocalOperator interface has to be provided. However, if
a new time stepping method is considered for a well known PDE it might not
benecessary to implement anewLocalOperator, insteadonly adjustments to
the available time stepping methods are required. Nevertheless, users might
still want to use optimized LocalOperator, since the computationswithin the
LocalOperator can take up significant portion of the total runtime, especially
in matrix­free methods.

24 CHAPTER 2 FOUNDATIONAL CONSIDERATIONS



2.3.2 UFL

As outlined, DUNE provides most parts necessary for solving a PDE, reduc­
ing the user’s effort noticeably, but this assumes at least some familiarity with
modern C++. This entry barrier can be lowered by using a domain specific
language (DSL), which models only the concepts required in the targeted do­
main. UFL [3, 4] is such a DSL for describing discrete weak formulations of
PDEs directly embedded in Python, i.e. a valid UFL description is also a valid
Python program. It is the front end of the FEniCS ecosystem [2], which tries
to automate the solution process for a discretized PDE by generating finite el­
ement code based on an abstract problem definition. Additionally, it has been
adapted by other code generator such as Firedrake [80].

The main focus of UFL is to provide a simple language that is as close as
possible to the mathematical notation used for weak formulations. This is
achieved by providing nearly directmappings frommathematical concepts to
Python functions or classes. For instance, FunctionSpace(mesh, ”CG”, 1)
represents a discrete function space with a continuous Lagrange basis of or­
der 1 on a predefined mesh, and grad(u) defines the gradient of a (possible
vector valued) element within such a function space. Defining the integral of
an expression over the whole domain is easily expressed as expr * dx, where
dx is a predefined variable. Integrals over the boundary can be defined simi­
larly with the variable ds, and for integration over interior faces dS is used. To
demonstrate the simplicity of theUFL, the residual formulation of the Poisson
problem in UFL reads as:

mesh = # triangulation of Omega
V = FunctionSpace(mesh, ”CG”, 1)
u = TrialFunction(V)
v = TestFunction(V)
f = # analytic definition of f
r = dot(grad(u), grad(v)) * dx - f * v * dx

Due to its similarity to themathematical formulation, the intent of this excerpt
can be understood without knowledge of the python language, which would
not be true for the DUNE­PDELAB counterpart.

The previous discussion shows that using UFL as a front end leads to more
accessible simulation software compared to the DUNE framework, which also
enables rapid prototyping. But it should be noted that only discretizations
based on the weak formulation are possible. This limits the support for other
types of discretizations, whilemore complex frameworks, likeDUNE, have less
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strict requirements on the discretizations. For example finite volume schemes
are difficult to implement using UFL, since they require concepts that can not
be represented as a weak formulation. An additional advantage of UFL is its
capability to apply automatic differentiation to a symbolic representation of
a non­linear form, which is often times missing from C++ frameworks, and
thereby simplifying the derivation for non­linear PDEs.

The internal description of a linear or bilinear form in UFL uses abstract
syntax trees (AST) to represent integrand expressions such as dot(grad(u),
grad(v)). For reference, figure 2.1 displays the AST for the residual form de­
fined above with 𝑓 = −4. The nodes appearing in an AST are categorized in
either terminal nodes, which are leaves in the tree, and operator nodes, which
have child nodes. Mathematical operators, such as Sum or Product, and func­
tions, e.g. Sin and Abs, are modeled as operator nodes, as well as indexing
nodes, necessary for handling vector valued components like the gradient of a
function. In addition, compound derivatives, such as Grad, Div, or Curl, and
spatial derivatives are also considered as operator nodes. The terminal nodes
contain the form arguments, i.e. the function space arguments of the repre­
sented linear or bilinear form, geometric quantities, such as SpatialCoordi-
nate denoting the position of a quadrature point, or JacobianInversemod­
eling𝐷𝑇−𝑇

𝜏 , indices used in indexed nodes, and constant values.

Figure 2.1: Example of an AST in UFL representing the expression∇𝑢 ⋅ ∇𝑣 − (−4)𝑣.

UFL provides several algorithms acting on the AST representation, with ef­
ficient implementations for tree traversals and type­based dispatch at its core.
Thedispatchapproachallows simple implementations of tree transformations
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based on the visitor pattern15, i.e. the AST is traversed and at each node of the
AST the correct transformation, depending on the node’s type, is chosen. Sev­
eral essential transformations are supplied by UFL. These contain the rewrit­
ing of so­called compound algebraic nodes (e.g. dot) in terms of simple in­
dexed sums, applying standard derivation rules, or transforming the integra­
tion domain into reference coordinates, as explained in 2.1.3, which automat­
ically introduces geometry scaling terms such as det𝐷𝑇𝜏(𝑥) or𝐷𝑇−𝑇

𝜏 .
TheDSLdefinedbyUFLprovides convenient tools to define aweak formula­

tion for a PDE, close enough to themathematical notation that it can be easily
used even without programming experience. However, the representation in
UFLdoesnot solve thePDEby itself. Instead, theprovidedASTandalgorithms
are used to translate themathematical formulation into code that can be com­
piled or executed. For example, FEniCS uses its form compiler FFC andUFC to
generates C++ code for the element local operations and local­to­global maps
which are usedwithin theDOLFIN framework, and Firedrake uses the TSFC to
generate C code for both the general assembly and the local operations. Since
the generation is handled automatically after the definition of the weak for­
mulation in UFL, solving a PDE with a tool chain that uses UFL as a front end
is nearly as simple as deriving the mathematical formulation.

2.4 Performance on Modern Hardware

For a simulation framework, its convenience is not the only important feature,
it has to be balanced with the performance that can be achieved. It may not
be an advantage of a framework to implement a particular discretization in
a couple of minutes, if the solution process takes hours, or even days, due to
inefficiencies in the framework. One particular bottleneck that is shared by
most frameworks is the operator application during the iterative solution of a
linear system. The classical approach for solving the linear system associated
with a discretization uses a preconditioned Krylov solver with the assembled
stiffness matrix. Central to this approach is the sparse matrix vector multipli­
cation, short SpMxV. In the early days of the FEM the SpMxVwas very efficient,
but, due to the development of computer hardware, the efficiency steadily de­
creased. Nowadays it leaves many resources in modern CPUs unused. The
reasons for this failure are explored in this section.

Every program consists of operations that are executed and data that is op­
erated on. Therefore, the performance of a program is determined by how fast

15An introduction to this design pattern can be found in the standard reference [41].
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the necessary operations are processed by the CPU and how fast the data is
transferred to the CPU. Although the performance of both CPUs, measured as
floating­point operations per seconds (FLOP/s), and main memory, measured
as bandwidth (Byte/s), grew exponentially, the growth rate for the CPUs ex­
ceeded the main memory one, leading to significant performance differences
nowadays. This problem is known as thememory wall, or gap, and it has been
acknowledged since the 1990s. One of the most prominent description can be
found in [93] and the subsection discussion in [74]. For example, a modern
Intel server CPU can execute one addition instruction in 4 clock cycles, while
fetching data from the main memory exceeds 100 cycles, illustrating the per­
formance discrepancy. To fix this gap, both hardware and software has to be
improved together.

One of the most significant hardware advances w.r.t. memory performance
are caches, which are small memory components directly located on the CPU.
Instead of directly transferring data from the main memory into the registers
on theCPU, thedata isfirst stored inacacheand then transferred into the regis­
ters. Accessingdata stored in these caches is significantly faster thanaccessing
themainmemory, usually 1­2 cycles due to the proximity to the cores, which is
especially beneficial if the same data is accessed repeatedly. Furthermore, the
caches areorganized in cache lines offixed size, typically 64bytes. Even if only
a subset of one cache line is currently needed the complete cache line is trans­
ferred, favoring sequential data access, i.e. stepping consecutively through a
dense array, while discouraging random access patterns. These benefits come
at the cost significantly reduced sizes compared to the main memory. Typ­
ically, modern CPU have multiple levels of cache with different sizes and ac­
cess latencies, where larger sizes correlatewith lower bandwidth. For example,
the Intel Skylake server CPUs have three caches, L1 with size of 32 KiB and 64
Byte/cycle transfer rate into the registers, L2with 1 MiB and 32 Byte/cycle, and
L3 with 10–28 MiB and 16 Byte/cycle.

To fully exploit thebenefits fromcaching, softwarehas tobeadjusted toopti­
mally reuse data and minimize data transfers between cache levels and main
memory. For some algorithms this is difficult to achieve. Consider the stan­
dard procedure for a SpMxV in the CRS format in algorithm 2.3, where each
entry 𝑦[𝑖] canbe cachedduring the accumulation, but no value of𝐴 is required
twice and therefore transferring them into a cache yields no benefits. The el­
ements of 𝑥 are readmultiple times and should therefore be cached, although
the access sequence of the elements depends on the sparsity pattern. Since the
sparsity pattern is usually irregular, elements already in the cache are often re­
placed before they may be reused.
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Algorithm2.3: Sparse matrix vector multiplication
for 𝑖 = 1, … , 𝑁 do

𝑦[𝑖] = 0
for idx= rowstart(𝐴, 𝑖), … , rowstart(𝐴, 𝑖 + 1) do

𝑗 = colindex(𝐴, idx)
val = value(𝐴, idx)
𝑦[𝑖] = 𝑦[𝑖] + val ∗ 𝑥[𝑗]

The major driver for increasing CPU performance since the mid 2000s has
been parallelization. Due to physical constraints, the CPU clock speed of one
core could not be increased anymore, which is known as the end of Dennard’s
scaling. However, the transistor density kept growing exponentially,which led
CPUs with multiple cores on one chip. Each of these cores can handle indi­
vidual instructions concurrently. Since parallelization was necessary on su­
percomputers, efficient techniques for parallel sparse matrix vector multipli­
cation or alternative discretizationmethods that directly incorporating paral­
lelization, as touched on in chapter 4, have already been developed. Regard­
less of the parallelization approach, each core still needs to compute a sparse
matrix vector multiplication, and therefore needs to efficiently utilize each
single core.

The parallelization benefits are not restricted to adding new cores on one
CPU, also the single core performance grew significantly due to parallelization
approaches. One of the earliest models for this so­called instruction level par­
allelism is pipelining. This technique allows the CPU itself to split each in­
struction into predefined stages and execute multiple instruction at different
stages in parallel. A more recent technology is vectorization, where a single
operation is executed on multiple data at once within one instruction, for ex­
ample adding two4­sizedvectors together inone instruction. The instructions
are known as single instruction multiple data (SIMD) instructions. To benefit
from vectorization, it is necessary to explicitly issue these special instructions.
In some cases, modern compilers can automatically generate appropriate in­
structions, but this is still an active research area. Furthermore, oftentimes
users are required to adjust the used algorithms and data structures such that
vectorization becomes possible.

In the sparsematrix case, thenativeCSR formatdoesnot allow for automatic
vectorization,mostly due to the non­trivial data access and variable loop sizes,
which complicate the compiler’s heuristics to decide if a loop should be vec­
torized or not. Therefore, specialized sparse matrix formats are required to
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regularize the matrix access pattern. This could be achieved, for example, by
padding the values in one row with zeros such that every row has the same
number of entries, or more advanced storage formats as discussed for exam­
ple in [62]. Still, the resulting performance would is not optimal, since SIMD
instructions work best on packed data, i.e. the used data elements are directly
adjacent in memory, which is not given during the read of 𝑥. Instead, special
gather instructions would be necessary to efficiently load the elements of 𝑥.

The discussion shows that the main building block for the solution of the
discretized problem, the SpMxV, can not exploit modern hardware architec­
ture to its fullest. In fact, thememory inefficiencies are so severe that the peak
CPUperformance cannever be achieved, unless all data resideswithin a cache,
due to thememory gap. This claim can be justified by considering the roofline
model, which was first introduced in [92]. According to thismodel, the FLOP/s
performance of a particular kernel is fully determined by the necessary data
transfers and the number of computations. The model uses two key assump­
tions

1. the CPU can overlap the execution of data transfers and arithmetic oper­
ations,

2. the memory part can attain peak bandwidth 𝐵𝑊w.r.t. the memory hier­
archy the data resides in, and the compute­part can attain peak FLOP/s
𝑃.

With these assumptions, the total runtime of the kernel reduces to which part
takes longer, i.e.

𝑇 = max (#Byte
𝐵𝑊 , #FLOP

𝑃 ) .

Consequently, the FLOP/s performance of a kernel is given by

FLOP/s = #FLOP
𝑇 = min (#FLOP

#Byte
⋅ 𝐵𝑊, 𝑃) ,

whereAI =#FLOP/#Byte is knownas the arithmetic intensity of thekernel. The
rooflinemodel therefore reduces the performance of a program to a single pro­
gramdependent variable, and twomachine dependent variables, highlighting
its ease of use.

Applying thismodel to the SpMxV shows that the peak FLOP/s performance
cannot be reached on modern CPUs due to a low arithmetic intensity. First,
some assumptions on the sparse matrix format are necessary. The matrix has
dimension𝑁, which equals thenumber ofDoFs,withnnznon­zero entries and
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thedata type for the entries and indicesuses 8bytes. Now, revisiting algorithm
2.3 gives an estimate for the AI as

AI = #FLOP
#Byte

= 2 ⋅ 𝑛𝑛𝑧
8 ⋅ {(2 + 𝛼) ⋅ 𝑛𝑛𝑧 + 𝑁}

≈ 2
8 ⋅ (2 + 𝛼)

.

The parameter 𝛼measures the cache reuse for accessing 𝑥, where 𝛼 = 1 is the
worst case without any cache reuse, and 𝛼 = 𝑁/𝑛𝑛𝑧 is the best case, where
only one element of 𝑥 needs to be loaded for every row of 𝐴. Therefore, the
arithmetic intensity is bounded by 1/12 < AI < 1/8. Additionally, the more
domain oriented measure DoF/s can also be derived, using the same assump­
tions, as

DoF/s = #DoF
T

= 𝑁

max (#Byte

𝐵𝑊
, #FLOP

𝑃
)

= min ( 𝑁
8 ⋅ (2 + 𝛼) ⋅ 𝑛𝑛𝑧

⋅ 𝐵𝑊, 𝑁
2 ⋅ 𝑛𝑛𝑧 ⋅ 𝑃)

= 𝑁
8 ⋅ (2 + 𝛼) ⋅ 𝑛𝑛𝑧

⋅ 𝐵𝑊 (assuming 𝐵𝑊 < 𝑃).

Fig. 2.2 shows the estimated performance on one core of a modern Intel ar­
chitecture, as described in A.1, for the SpMxV. Although for typical FEM appli­
cations themainmemory bandwidth is the only relevant one, the bandwidths
of each cache level are also presented. Using the main memory bandwidth,
the SpMxV achieves only 0.3–0.5 GFLOP/s, which is less than 1% of the theo­
retical peak performance. Even in the best case, the data fits completely into
the L1 cache, the best possible performance of the SpMxV is only ∼1/3 of the
peak performance. Additionally, Fig. 2.2 illustrates that efficiently operating
on data from main memory requires a high number of arithmetic operations
per byte to reach the peak performance. Half of the peak can only be achieved
with an AI of ∼8, while the full peak requires an AI of ∼15. Thus, it becomes
clear that simulation techniques relying on assembled matrices cannot attain
any significant portionof thepeakperformance, and insteadother approaches
need to be pursued.
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Figure 2.2: Roofline plot showing the maximal and minimal performance for the Sp­
MxV for multiple memory levels on one core. In the most common case (MEM
bound) the SpMxV achieves only 0.3–0.5 GFLOP/s and in the best case (L1 bound)
10–20 GFLOP/s are possible.
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chapter3
Block-Structured Grids

O NE OF THE MOST LIMITING FACTORS of matrix­based FEM is the main
memory throughput, since the operator application requires the loading

large volumes of data for the matrix and nearly random access pattern due
to the sparsity pattern of the matrix. Matrix­free methods can reduce these
memory inefficiencies, see [76] for an application to higher order DG meth­
ods. However, for low order FEM they are still memory bound. This chapter
introduces the concept of block­structured grids for low order FEM in order
to increase the memory efficiency of these matrix­free methods. The viabil­
ity of this approach can be seen from the use in existing numerical software,
e.g. the Lattice­Boltzman simulation framework WALBERLA [38] and [47], in
the context of hierarichal hybrid grid methods used by TERRA­NEO [46] and
HyTeg [61], or the finite element toolkit FEAST [91]. In the following, at first
themethod is generally described, then issues arising from the handling of de­
grees of freedom associated with faces or edges are discussed, and afterwards
optimization techniques using SIMD are presented. Finally, numerical exam­
ples are examined and possible future directions are discussed.

3.1 General Description

Theblock­structuredgrids approach is centered around the idea of virtually re­
fining each grid element uniformly into multiple sub elements, referred to as
micro elements. While the standard uniform refinement approaches add these
micro elements to the grid structure as new elements, this is not the case for
block­structured grids. Instead, the grid structure contains only the original
elements, in the following called macro elements, and the iteration over mi­
cro elements happens during the handling of their associated macro element.
For this work, the macro elements are always cubical elements, intervals in
1D, quadrilaterals in 2D, or hexahedrals in 3D. Nevertheless, this approach is
also applicable to simplex elements, as seen in for example [61]. Fig. 3.1 illus­
trates the concept of a block­structuredgrid,where everymacro element of the
grid has been divided into 4×4micro elements. Since cubical elements have a
tensor product form, the numbering ofmicro elements also adapts this tensor
product form, i.e. micro elements inℝ𝑑 are indexed using 𝑑 indices [𝑒1, … , 𝑒𝑑],
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which are aliased in 2D or 3Dwith their common unit direction names leading
to [𝑒𝑥, 𝑒𝑦] in 2D or [𝑒𝑥, 𝑒𝑦, 𝑒𝑧] in 3D.

Figure 3.1: A block­structured quadrilateral grid. Additionally, the micro element
numbering for one macro element is shown.

While uniform refinement works in powers of two, i.e. for one level of re­
finement each quadrilateral gets divided into four new quadrilateral in 2D, the
local refinement for block­structured gridsmay be arbitrary but equal for each
spatial direction. Within thiswork, themacro elements are usually subdivided
into 10–100microelementper spatial direction. In this range thebenefits from
block­structuringwill becomealreadyvisible,while allowing theusageof grids
adapted to complex geometries. Higher local refinement in the order of 1000s
or more is possible for certain application, especially within the geometrical
multigrid context, or with higher order geometry support allowing for better
geometry approximation by the macro elements.

The concept described above leads to the following definition. A triangula­
tion𝒯ofadomainΩ ⊂ ℝ𝑑 is calledblock­structuredwith local refinement size
(synonymwith block size) 𝑘1, 𝑘2, … , 𝑘𝑑, or simply 𝑘when 𝑘1 = 𝑘2 = ⋯ = 𝑘𝑑, if

1. 𝒯 can be divided into equally sized parts 𝒯 = ⋃𝒯𝐸, with 𝒯𝐸 ∩ 𝒯𝐸′ = ∅,
#𝒯𝐸 =∏𝑑

𝑖=1 𝑘𝑖.

2. The union of all elements from one part𝒯𝐸, 𝐸 = ⋃𝑒∈𝒯𝐸
𝑒 ⊂ ℝ𝑑, is simply

connected with a𝐶1 diffeomorphism𝑇𝐸 ∶ 𝐸 ↦ 𝐸, where𝐸 is a reference
element, and for each 𝑒 ∈ 𝒯𝐸 exists a map 𝑇 ̂𝑒 ∶ ̂𝑒 ↦ 𝐸 with a possi­
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bly different reference element ̂𝑒 such that 𝑇𝐸 ∘ 𝑇 ̂𝑒 ∶ ̂𝑒 ↦ 𝑒 is also a 𝐶1

diffeomorphism.

The elements 𝑒 of𝒯 are denoted as micro elements and the part­wise union 𝐸
of these elements are calledmacro elements. Although themacroelements are
defined as the union of micro elements, in practice the macro grid containing
onlymacro elements𝒯𝐻 is createdfirst and themicro elements are constructed
by refining each macro element.

The following gives a short overview of the concrete implications of this ap­
proach, applied to the computation of the matrix­free operator application of
the Poisson operator

𝑦𝑖 = (𝐴𝑢)𝑖 = 𝑎(𝑢, 𝜙𝑖) = ∫
Ω
∇𝑢 ⋅ ∇𝜙𝑖 dx.

In the block­structured case, the local kernel does not only iterate over the
quadrature points and local basis, additionally it iterates over the micro ele­
ments. Thepseudo code for the assembly of the vector𝑦without using ablock­
structured gridwas already given in algorithm 2.2 in the previous chapter, and
the corresponding pseudo code with a block­structured grid is given by algo­
rithm 3.1 with a slightly different notation. Since the global assembly is nearly
the same as before, with some new optimization possibilities discussed later,
only the local kernel is considered. Here 𝑘 ∈ ℕ is the number of micro ele­
ment per direction, 𝑇𝐸[𝑒𝑥,𝑒𝑦] denotes the geometry transformation of the ref­
erence element ̂𝑒 onto the micro element with index [𝑒𝑥, 𝑒𝑦]within the macro
element 𝐸. During the quadrature loop, 𝑢[𝑒𝑥, 𝑒𝑦, 𝑖] and 𝑦[𝑒𝑥, 𝑒𝑦, 𝑖] are access­
ing the 𝑖­th DoF associated with the micro element [𝑒𝑥, 𝑒𝑦] of the vector 𝑢 and
𝑦 respectively. Finally, 𝑛 denotes the number of DoF per micro element.

3.1.1 Geometry Transformation

In the following, the special form of the geometry transformation is examined.
For block­structured grids, the mapping 𝑇𝐸[𝑒1,…,𝑒𝑑] ∶ ̂𝑒 ↦ 𝐸[𝑒1, … , 𝑒𝑑] for a
micro element 𝐸[𝑒1, … , 𝑒𝑑]within a macro element 𝐸 is defined as the compo­
sition of two transformations 𝑇 ̂𝑒[𝑒1,…,𝑒𝑑] ∶ ̂𝑒 ↦ 𝐸 and 𝑇𝐸 ∶ 𝐸 ↦ 𝐸, see Fig.
3.2. In the following 𝑘 denotes the number of micro elements per direction
and 1/𝑘 ⋅ ̂𝑣0 is the translation of the origin onto the origin of themicro element
[𝑒1, … , 𝑒𝑑] within the reference element 𝐸, e.g. in 2D ̂𝑣0 = (𝑒𝑥 𝑒𝑦)𝑇. Now, the
first transformation,mapping the reference element into the refined reference
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Algorithm 3.1: Pseudo code for the local assembly on a block­
structured grid.

Function: LocalOperatorApplication(𝐸, 𝑢𝐸)
𝑦𝐸 = 0
/* The order of the quadrature and micro element

loops can be changed */
for 𝑒𝑦 = 1, … , 𝑘 do
for 𝑒𝑥 = 1, … , 𝑘 do
for (𝜉, 𝜔) ∈ QuadratureRule(𝐸, order) do

weight = 𝜔 ∗ | det𝐷𝑇𝐸[𝑒𝑥,𝑒𝑦](𝜉)|
jit =𝐷𝑇𝐸[𝑒𝑥,𝑒𝑦](𝜉)

−𝑇

∇𝑢 =
𝑛

∑
𝑙=1

∇𝜙𝑖(𝜉)𝑢𝐸[𝑒𝑥, 𝑒𝑦, 𝑖]

for 𝑙 = 1, … , 𝑛 do
𝑦𝐸[𝑒𝑥, 𝑒𝑦, 𝑖] =
𝑦𝐸[𝑒𝑥, 𝑒𝑦, 𝑖] + weight ∗ (jit ⋅ ∇𝑢 ⋅ jit ⋅ ∇𝜙𝑖(𝜉))

through scaling and translation, is defined as

𝑇 ̂𝑒[𝑒𝑥,𝑒𝑦]( ̂𝑥) = 1
𝑘(1 ⋅ ̂𝑥 + ̂𝑣0).

The second transformation is the mapping from the reference element into
the physical grid entity. An alternative approach would be to define 𝑇𝐸[𝑒1,…,𝑒𝑑]
directly in terms of the corners of the micro elements as a linear combination
of ℚ1 basis functions, similar to the definition of 𝑇𝐸. Since the computation
of the required micro element corners is more complex than the composition,
this approach is not used during this work.

Exploiting the structure of the geometry transformation improves the com­
putation of geometrical quantities. For the computation of the local kernel,
both the determinant and the transposed inverse of the Jacobian of the geom­
etry transformation are needed. Applying the chain rule yields the following
formula for the Jacobian of the transformation 𝑇𝐸[𝑒1,…,𝑒𝑑]

𝐷𝑇𝐸[𝑒1,…,𝑒𝑑]( ̂𝑥) = 𝐷𝑇 ̂𝑒[𝑒1,…,𝑒𝑑]( ̂𝑥) ⋅ 𝐷𝑇𝐸[𝑒1,…,𝑒𝑑](𝑇 ̂𝑒[𝑒1,…,𝑒𝑑]( ̂𝑥))

= 1
𝑘𝐷𝑇𝐸(𝑇 ̂𝑒[𝑒1,…,𝑒𝑑]( ̂𝑥)).

Inspecting this formula shows that the determinant and the transposed in­
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Figure 3.2: Composition of geometry transformation for amicro element in 2D. 𝑇 ̂𝑒[1,1]
maps the reference elements of the micro element ̂𝑒 into the reference element of
the macro element 𝐸. 𝑇𝐸 is the usual geometry transformation for the macro ele­
ment, mapping its reference element𝐸 into the physicalmacro element𝐸. 𝑇𝑒 is the
composition of both transformations, which maps ̂𝑒 into the physical coordinates
of the micro element 𝑒.

verse simplify to

det𝑇𝐸[𝑒1,…,𝑒𝑑]( ̂𝑥) = 1/𝑘𝑑 det𝐷𝑇𝐸(𝑇 ̂𝑒[𝑒1,…,𝑒𝑑]( ̂𝑥)) and

𝐷𝑇−𝑇
𝐸[𝑒1,…,𝑒𝑑]( ̂𝑥) = 𝑘𝑑𝐷𝑇−𝑇

𝐸 (𝑇 ̂𝑒[𝑒1,…,𝑒𝑑]( ̂𝑥)).

Thus, only the evaluation of the macro element quantities at a transformed
reference point is required. Usually, the evaluations of the quantities 𝑇−𝑇

𝐸 and
det𝑇𝐸 are provided by the grid manager. However, these are not optimized
for the evaluation in the context of block­structured grids. Specifically the re­
peated evaluation of either quantities within the same macro element can be
optimized by precomputing terms depending only on the macro element ver­
tices.

While the previous discussion of the geometry transformation holds for any
multilinear macro element, in some cases further optimizations are possible.
For instance, if the underlying macro elements are parallelepipeds, e.g. in a
cartesian grid. Then, the geometry transformation of the macro element is an
affine mapping and, as such, needs to be evaluated only one for each macro
element. More precisely, in that case𝑇𝐸( ̂𝑥) = [𝑣2𝑗−𝑣0]𝑗=0,…,𝑑−1 ⋅ ̂𝑥+𝑣0, where

3.1 GENERAL DESCRIPTION 37



𝑣𝑖, 𝑖 = 1, … , 2𝑑, are the vertices of the macro element, and the micro element
transformation simplifies to

𝑇𝐸[𝑒1,…,𝑒𝑑]( ̂𝑥) = 1
𝑘 [𝑣1 − 𝑣0 … 𝑣2𝑑−1 − 𝑣0] ⋅ ( ̂𝑥 + ̂𝑣0) + 𝑣0.

Computing the inverse Jacobian of this map is independent of the evaluation
point and thus can be computed outside the micro element and quadrature
loop. This reduces thecomputational cost of the local kernel significantly, since
this allows additional precomputations, for example the scaling of the basis
gradients, outside the micro element loop.

3.1.2 Local Data Structure

The block­structured kernel requires a certain local data layout, discussed in
the following. As seen in the example pseudo code in algorithm 3.1, the local
kernel does not access the global data directly, instead all data belonging to the
DoF associated with a macro element are gathered into a local data structure
and after the processing of the local kernel, the local data is scattered back into
the global data structure. For a scalarℚ𝑝 finite element the local data structure
is a flat array of size (𝑝𝑘+1)𝑑, where 𝑘 is the number ofmicro elements per di­
rection, and the localDoFs of themacro element are lexicographically ordered,
according to their position in the refined reference element. Fig. 3.3 shows a
schematic view of these DoFs for aℚ2 basis function and 𝑘 = 3. In the case of
mixed or vector­valued finite elements, for example Taylor­Hood ℚ𝑑

𝑝 × ℚ𝑝−1,
each component of the finite element is represented as a flat array, the same
way as described above, and all arrays are combined lexicographically into one
flat array. Considering again at the Taylor­Hood element in 2D ℚ2

2 × ℚ1, this
means that the local data structure has size 2(2𝑘 + 1)2 + (𝑘 + 1)2 in total. The
first andsecondvelocity component takeup thefirst andsecond (2𝑘+1)2DoFs,
and the last (𝑘 + 1)2 DoFs belong to the pressure component.

During thehandlingof onemacroelement it is necessary to construct amap­
ping that assigns every local DoF of eachmicro element the corresponding in­
dex in the local data structure. For example, in Fig. 3.3 the index in the local
data structure of the second DoF of themicro element 𝐸[1, 1], as well as of the
eighth DoF of the micro element 𝐸[0, 1], is 18. More generally in 2D the local
index of the 𝐸[𝑒𝑥, 𝑒𝑦]micro element DoF 𝑖 of a ℚ𝑝 element within a 𝑘­refined
macro element is given by the mapping

idx(𝑒𝑥, 𝑒𝑦, 𝑖) = 𝑝𝑒𝑥 + 𝑖mod 𝑝 + (𝑝𝑒𝑦 + ⌊𝑖/𝑝⌋)(𝑘𝑝 + 1).
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Figure 3.3: Local ordering of the macro element DoFs for a ℚ2 basis on a block­
structured gridwith𝑘 = 3. Additionally, themicro element local numbering for the
element 𝐸[1, 1] is shown in blue. The differentmarker denote the different types of
subentities of themicro element subentities (codimension 0: red square, codimen­
sion 1: yellow x, codimension 2: green dot).

This computationgets significantly simpler if themicro element localDoFs are
also numbered using a tensor index, similar to the micro elements. With this
approach the index computation for a scalar finite element in any dimension
simplifies to

idx(𝑒1, … , 𝑒𝑑, 𝑖1, … , 𝑖𝑑) =
𝑑

∑
𝑗=1

(𝑝𝑒𝑗 + 𝑖𝑗)(𝑝𝑘 + 1)𝑗−1,

removing the need for expensive integer modulo and division operations. For
ℚ𝑝 elements this can be applied, but for other element types different con­
structions are necessary. The local data structure can now be understood as a
2𝑑­dimensional array with non­unit stride, which will be clarified in chapter 5
with explicitly denoted strides. Due to the lexicographic ordering of the finite
element components, the indexmaps for each component are simply offset by
the overall size of the previous components.

Beyond simplifying the index computation, the local data layout implies an
optimal loop ordering maximizing cache reuse. The index map above defines
the first direction as the fastest changing one, and this should be represented
in the iteration over the micro elements, as used in algorithm 3.1. In particu­
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lar, using the index of this direction as the innermost micro element loop in­
creases thecache locality compared toother looporderings, sincemodernCPU
prefetcher always loadmultiple adjacent bytes into the cache, and these bytes
correspond to theDoFs of thenextmicro elementw.r.t. the fastest changingdi­
rection. Another factor for cache locality is the order of themicro element and
quadrature loops. If the local data structure does not fit fully into the L1 cache,
it is advantageous to nests the iteration over the quadrature points within the
micro element loops as in algorithm3.1. In that case, it is sufficient that 2(𝑘+1)
DoFs fit into the L1 cache for each local vector to achieve minimal L1 misses
during the computation of the nextmicro element𝐸[𝑒𝑥+1, 𝑒𝑦], or in arbitrary
dimensions 2(𝑘+1)𝑑−1DoFs forℚ1 elements. This effect becomes less striking
for larger polynomial degrees 𝑝. For increasing 𝑝, the number of DoFs on the
intersections of micro elements, which are the only DoFs that can be reused
betweenmicro elements, grows slower than thenumber ofDoFs in the volume.
Changing the micro element and quadrature loop would increase the number
of L1 misses significantly if the whole local data structure does not fit into the
L1 cache, but it would also allow for additional precomputations, making it a
viable choice for small local refinements.

3.1.3 Global Data Structure

The efficient handling of the global­to­local gathering and scattering requires
special care. Reducing thenumber ofmacro elementsdirectly reduces the grid
iteration overhead and increases the memory efficiency, since the local data
is stored or loaded block wise instead of one­by­one for each micro element.
Nevertheless, more adjustments are necessary to fully exploit the structured
local data layout. The simple approach,which is the default inDUNE­PDELAB,
queries for each local DoF its global index. This is defined by the global index
of the entity the DoF belongs to and the local index w.r.t. the entity of the DoF.
Fig. 3.4 illustrates this approach. Unfortunately, this disregards the structure
of the local data. Since themacro element is refined uniformly, multiple DoFs
belong to the same entity, e.g. in Fig. 3.4 there are 5 DoFs associated with each
edge and 25 DoFs associated with the cell volume. The computation of the
global index for these entities is therefore redundant in many instances.

Instead of this default approach, an improved version is used in this the­
sis that iterates over each subentity of themacro element, computes its global
index once and then only needs to increment the global index for each local
DoF of that subentity. This version does not only reduce the computation of
redundant global indices of subentities, it also improves the memory access
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Figure 3.4: Connection between the local and global data layout. Besides the local DoF
numbering in black, the local numbering w.r.t. the subentity containing the DoF is
displayed in blue. 𝑣𝑖, 𝑒𝑖, and 𝑐𝑖 denote the offset into the global vector for corre­
sponding subentity.

into the global data. The global data is blocked according to the grid entities.
Thus, iterating over the subentities of the macro element leads to consecutive
access into the global data at the cost of accessing the local data not strictly
consecutive. If the local data fits completely into the L1 or L2 cache, which is
the case for small and medium block sizes, the extra cost is negligible. How­
ever, for large block sizes it might become noticeable. As long as the local data
size does not exceed the higher level caches, the benefits of this approach be­
come more pronounced for larger 𝑘 and higher dimension, since the ratio of
volume to surface DoFs increases.

3.2 Ensuring Consistency

An often encountered problem is the handling of multiple DoFs associated
with entities of codimension 0 < 𝑐 < 𝑑. In the case of continuous basis func­
tions, DoFs on these entities are shared between all elements containing the
entity. The sharing implies that for eachelement the informationonhowthese
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DoFs restricted to itself relate to theDoFs restricted to all other elements needs
to be available. For example theℚ3 basis onquadrilaterals hasDoFs associated
with the points 1/3 and 2/3 along each edge, and thus adjacent elements need
to have a consistent definition of the position of these points. This is a gen­
eral problem in finite element assembly, and it has other applications besides
block­structured grids, for instance in higher order methods. A thorough dis­
cussion can be found in [95].

One solution is to require additional mappings to correct for each subentity
the local­to­global mapping of each element containing this entity. Let 𝑔𝑠 ∶
̂𝐼𝑠 ↦ 𝐼 be the reference index mapping of the subentity 𝑠, contained by the

elements 𝑒𝑗, and 𝑔𝑒𝑗|𝑠 ∶ ̂𝐼𝑠 ↦ 𝐼 the restriction of the referencemappings for the
element 𝑒𝑗 to the subentity 𝑠. Then, the additionalmappings𝐶𝑠

𝑒𝑗 should satisfy

𝑔𝑠 ∘ 𝐶𝑠
𝑒𝑗 ∘ 𝑔

𝑒𝑗|−1𝑠 = 1.

To clarify, first for each entity a reference local coordinate system is chosen.
Then a mapping from the local coordinate system of each element containing
that entity into the reference coordinate system is constructed, such that the
DoFs on that entity are accessed according to the reference order.

Depending on the dimension of the subentity this approach is more or less
straight forward. For 1­dimensional entities this can be easily realized by flip­
ping the local order if necessary. First, define the reference local coordinate
system for an edge (𝑣1, 𝑣2) with global DoFs 𝑛1 < ⋯ < 𝑛𝑙 as 𝑔𝑠(𝑖) = 𝑛𝑖 if
𝑣1 < 𝑣2. If the local coordinate system within the element does not match the
reference coordinate system, then flip the local order of DoFs on an edge with
𝐶𝑠
𝑒𝑗(𝑖) = 𝑙 − 𝑖 + 1. Fig. 3.5 illustrates this example. In the case that 𝑣2 < 𝑣1 the

ordering from 𝑔𝑠 might also be reversed. For 2­dimensional entities this ap­
proach becomes significantly harder and is rarely done in numerical software.

In addition, this approach leads to unavoidable runtime overhead, as there
are conflicting memory access patterns implied by the correction mapping.
The assumption that for each shared entity all local coordinate systems w.r.t.
the containing element coincide with each other, i.e. the mapping is always
𝐶𝑠
𝑒𝑗 = 𝐼𝑑, would eliminate this overhead, since only one access pattern is actu­

ally used. A grid forwhich this assumptionholds is called consistently oriented.
Obviously, this assumption does not hold automatically for all grids, but any
grid may be modified as a preprocessing step to make it consistently oriented.
If themacro elements are simplices, then the local coordinate system for each
entity is chosen such that the global indices of the local vertices are in ascend­
ing order. If the macro elements are cubes, then this preprocessing becomes
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Figure 3.5: Two macro elements with different local numbering (blue) on the shared
intersection. The global numbering of the DoFs is provided in black

more complicated. The deal.II library uses an approachdescribed byAgelek et
al. in [1] to achieve consistently ordered gridswith cubes since the early 2000s,
which has also been adopted by the Firedrake project published in [53] with an
extension to parallel grids.

The algorithmdescribedbyAgelek et al. computesnew local coordinate sys­
tems for each cube element in 2D or 3D such that its restriction to edges co­
incides for all elements sharing the edge. This works for every orientable 2D
manifold, but may fail in 3D. In that case, after globally refining the grid once,
the algorithmwill always produce a gridwith consistently oriented edges. As a
downside, this algorithmdoes not guarantee that the local coordinate systems
of a face coincides for all joined elements. In Fig. 3.6 the problem is exempli­
fied, although the edges are consistently oriented, the coordinate systems of
the faces are not aligned, since there are two possible face coordinate systems
given any prescribed edge orientation.

Theedgeconsistencyalgorithmis implementedasa standaloneheader­only
C++ library, which is agnostic of any concrete grid implementation, and also
accepts simplex elements. The API of the library is defined by the function

template<typename Vertex, typename Element>
bool orient_consistently(const std::vector<Vertex>& vertices,

std::vector<Element>& elements,
/* tag */)

whereVertex is a typemodeling apoint inℝ𝑑 andElement is a random­access
container holding the global indices of the element vertices. The elements
parameter is an in­out parameter and holds the correct local numbering of the
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Figure 3.6: Two quadrilaterals with coinciding local coordinate systems on each edge
(as indicated by the arrows), butwith different local numbering of the volumeDoFs.

element vertices such that the local coordinate system of each edge matches
for all sharing elements. The tag parameter determines how the elements are
interpreted, either as cube elements or simplex elements, and can be used as
a runtime or compile­time parameter. If the elements parameter has been
changed the returnvalue istrue, otherwise if the gridwas already consistently
oriented and no change was necessary it is false.

3.3 Efficient Vectorization

In the following, a vectorization approach with two variants that can utilize
the block structure of the macro element is discussed. If the local basis and
the element geometry type are fixed, then the computation at each DoF of an
elementdoesnot differ betweenany twoelements in termsof theneededoper­
ations, only in terms of the needed data. This similarity can be used to vector­
ize the computation at the same local DoFs acrossmultiple elements, which is
referred to as cross­element vectorization. The local data structure explained
in section 3.1 is especially suited for this vectorization technique. Since the
macro element DoFs are ordered lexicographically, the data associated with
each vertex of a micro element is directly adjacent to the data of the vertex at
the same position in the neighboring element. However, there is no alignment
guarantee, as for an even number of micro elements per direction the number
of DoFs per direction is odd. The ordering simplifies the loading and storing
into/from the CPU SIMD registers further, because it can operate on contigu­
ous data. It should be noted that this only holds forℚ1 elements. An extension
for higher order is discussed in the outlook of this chapter.

Recalling the example from algorithm 3.1, the listing 3.7 shows C++ code of
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the vectorized kernel. Instead of a scalar type, the underlying type of detJ
or grad_u[d] are now SIMD vectors, which could be implemented using the
C++ compiler intrinsics directly or designated C++ classes adding wrappers to
these intrinsics. This work uses the wrappers provided by the vector class li­
brary (VCL) [40]. The SIMD vector has width 𝑤 and 𝐸[𝑒𝑥 + 𝑖, 𝑒𝑦] with 𝑖 =
0, … , 𝑤 − 1 denotes the𝑤micro element adjacent in the first direction begin­
ning at [𝑒𝑥, 𝑒𝑦]. The geometry quantities need to be evaluated for the same
quadrature point in multiple micro elements, which is equivalent to evaluate
𝑇𝐸 at multiple points, due to the composition of the geometry transformation,
which can easily be vectorized. Accessing the local vectors u, y needs specific
instructions depending on the SIMD vector type and are left out for brevity. It
should be noted that neither u nor y needs to be read from or written to each
iteration of the quadrature loop, loading u before the quadrature loop and up­
dating y afterwards is sufficient.

for(ey = 0; ey < k; ++ey)
for(ex = 0; ex < k; ex += w)

for(auto [qp, qw]: quadrature){
// the scalar type is replaced by a SIMD vector type
// denoted by the indices i=0,...,w-1
detJ = |det(DT_E[ex + i, ey](qp))|
jit = DT_E[ex + i, y](qp)^-T
grad_u = sum(j, grad_phi[j](qp) * u[ex + i, ey, j])
// for Q_1 in 2D the basis size is 4
for(j = 0; j < 4; ++j)
y[ex+i, ey, j] += qw * detJ * (jit * grad_u * jit

* grad_phi[j](qp))
}

Figure 3.7: Pseudo code displaying the vectorized local assembly.

In practice, this approach does not yield the expected performance gains, if
the workload per micro element is extremely low or if the local update is writ­
ten tomemorywithin every quadrature loop iteration. An explanation for this
behavior are store forwarding stalls, caused by misalignment. Most modern
processors are capable of forwarding a store directly to a following read of the
same data, but if the data does not exactly overlap an extra penalty may oc­
cur1. This is the case in the approach described above; the SIMD vector con­
taining the lower leftDoFof𝑤 adjacentmicro elements overlapswith theSIMD
vector containing the lower right DoF of these elements with an offset of one

1See section 9.4 in the VCL manual and section 11.13 in Agner Fog’s “The microarchitecture
of Intel, AMD and VIA CPUs”. Both can be found in https://agner.org/optimize/
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scalar entry. Thus, the vector with the lower left DoFs must be written back
into memory before the computation of the lower right DoFs can continue.

This problem is illustrated in listing 3.8, which is restricted to the innermost
loops over themicro element DoFs. For clarification, the indexmap described
in section 3.1 has been substituted, showing that the second iteration of the ix
loop directly reads the last 𝑤 − 1 entries written by the first iteration, caus­
ing the delayed execution. A partial mitigation is to change themicro element
DoF loop order. When adding the newly computed result to the local data the
currently innermost micro element DoF loop, which uses the same direction
as the vectorized loop, is swappedwith the outermostmicro element DoF loop.
This approachof thecross­elementvectorization is called theoverlapping vari­
ant. In listing 3.8 interchanging the ix and iy loop results in the overlapping
variant. For complex local kernels this may already be sufficient, since the
out­of­order execution may hide the write­back by other meaningful compu­
tations.

for(iy = 0; iy < 2; ++iy)
for(ix = 0; ix < 2; ++ix){
v = load(w, &y[(ey + iy) * (k + 1) + ex + ix])
v += qw * detJ * jit * grad_u * jit * grad_phi[ix + 2 * iy](qp)
store(v, w, &y[(ey + iy) * (k + 1) + ex + ix])

}

Figure 3.8: Innermost loop of listing 3.7 with load and store instructions. Additionally,
the tensor product structure of the ℚ1 basis has been exploited and the flat index
has been substituted.

Another approach that does not suffer from overlapping stores and reads,
is to combine the computation of DoFs adjacent w.r.t. the vectorization direc­
tion. Let rhs[ix] denote the right­hand side of the += operation above w.r.t.
the innermost loop. The elements rhs[0][1..w-1] in the first iteration and
rhs[1][0..w-2] in the second iteration update the same DoFs, which can
be seen after unrolling. Therefore, the DoFs belonging to [(ey+iy)*(k+1)+
ex+j]withj=1,...,w-1 canbeupdated in one stepby combining both inner­
most iterations. As a consequence, only one load and one store to thismemory
segment is needed. Thus, this approach is called the non­overlapping variant
of the cross­element vectorization.

A downside of this approach is the more elaborate carry handling. The in­
nermost loop in listing 3.8 alsoupdates theDoFs[(ey+iy)*(k+1)+ex+j]with
j=0,w, which are currently left out, because these do not overlap between the
twoix iterations and thus require special treatment. Since the ‘rightmost’DoF,
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i.e. j=w, of the current wmicro elements and the ‘leftmost’ DoF, i.e. j=0, of the
next w elements are identical, both rhs[1][w-1] of the current w micro ele­
ments and rhs[0][0] of the next wmicro elements contain the update for this
DoF. Using this relation, carrying over rhs[1][w-1] into the next ex iteration,
and adding it to rhs[0][0], computes the full update. Additionally, at the
start of each ex loop the carry must be initialized to 0 and at the end of the
loop the carry must be added to the last DoFs of that iteration, i.e. to the DoFs
with indices ex=k, j=1. Fig. 3.9 illustrates this approach.

Figure 3.9: Visualization of the non­
overlapping vectorization. The
first three values of SIMD vector
containing the lower right nodes
of the elements (green) are added
to the last three values of the SIMD
vector with the lower left nodes
(blue). The last entry of the green
vector is used as a carry for the
next four elements.

Listing 3.10 shows this approach applied to the previous listing 3.8. Here,
rhs[j] are persistent across the inner micro element loop ex and permute
shifts the entries of rhs[1] by 1 and sets rhs[1][0] to 0. The permute op­
eration is also known as a shuffle. This approach is easily extendible to higher
dimensions, since only the innermost loop over the micro elements and the
micro element DoFs are contributing to the overlap problem. A possible dis­
advantage of this approach is that it may interfere with the C++ compiler op­
timizations and thus may be less effective for complex kernels, where FLOP
reductions are more important.

for(iy = 0; iy < 2; ++iy){
rhs[2 * iy] = qw * detJ * jit * grad_u * jit

* grad_phi[2 * iy](qp) + {rhs[1][0], 0, ..., 0}
rhs[2 * iy + 1] = qw * detJ * jit * grad_u * jit

* grad_phi[2 * iy + 1](qp)
v = load(w, &y[(ey + iy) * (k + 1) + ex])
v += rhs[2 * iy] + permute(rhs[2 * iy + 1])
store(v, w, &y[(ey + iy) * (k + 1) + ex])

}

Figure 3.10: Innermost loop of 3.7 with non­overlapping computation of the two ix
nodes.

The previous discussion assumed that the number of micro elements per
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direction 𝑘 is a multiple of the SIMD vector width 𝑤, although this is quite
limiting especially for vectorization based on the AVX­512 instruction set. If
𝑘 ≠ 𝑐 ⋅ 𝑤 with 𝑐 ∈ ℕ, both vectorization methods can be applied by splitting
the innermost micro element loop into two parts. The bulk part ranges from
0 to ⌊𝑘/𝑤⌋ and is vectorized as described before, while the second part, the
tail, ranges from ⌊𝑘/𝑤⌋ to 𝑘 and may be vectorized with a smaller SIMD vector
width 𝑤′ < 𝑤. For example if 𝑘 = 20 and the largest vector width is 𝑤 = 8, a
vectorized handling of the tail with𝑤′ = 4 is possible. However, it may not be
desirable tomanually implement this tail vectorization, since it requires lots of
code duplication, which are known to be error prone, while the benefits from
vectorizing the tail are negligible compared to the vectorization of the bulk.

3.4 Benchmarks

In the following, benchmarksare considered to individuallyhighlight each im­
provement from the block­structured. All examples compute the matrix­free
Laplace operator application with constant coefficients

𝑦𝑖 = (𝐴𝑢)𝑖 = ∫
Ω
∇𝑢 ⋅ ∇𝜙𝑖 dx,

on a 2D quadrilateral grid with a total number of 1024 × 1024 elements, al­
though the size of the macro elements varies. Depending on the example the
geometry transformationmaybeaffineormultilinear. Using this simplebench­
markallows focusingoneachaspect individually, reducing thenoise fromother
optimizations. The hardware and software related information, as well as the
measuring techniques used in the following discussions, is summarized in ap­
pendix A.1.

The first example considers the improvement block­structured grids pro­
vide without any optimizations within the local kernels. The next two exam­
ples examine the impact of the kernel optimizations on the local assembly, dis­
cussed earlier in this chapter, the efficient computation of the micro element
geometry transformation and the cross­element vectorization. Bothoptimiza­
tions are specific to block­structured grids and cannot be easily applied to non
block­structured grids. Lastly the runtime dependency on the macro element
size is evaluated, specifically w.r.t. different loop orderings.
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3.4.1 Global Assembly

The first example considers the improvement block­structured grids provide
without any optimizations within the local kernels. Therefore, only the effect
of reducing the gather and scatter overhead is measured, while disregarding
most macro kernel optimizations. The adjustments to the local kernels are re­
stricted to adding themicro element loops and the corresponding indexmap­
ping. The underlying grid is assumed to be axiparallel and equidistant, which
reduces the FLOP count in themicro element local kernel to aminimum, since
the inverse and the determinant of the geometry transformation’s Jacobian is
the same for each macro element and thus can be precomputed once for all
macro elements. To simulate micro element local kernels with higher FLOP
count, the quadrature is increased, ranging from order 2 up to order 60, which
correlates to a 240­fold increase in the FLOP count. The size of the macro ele­
ments ranges between 1 × 1 and 1024 × 1024micro elements.

As the plot 3.11 shows, the block­structured approach succeeds in shifting
the focus of the execution towards the computationwithin themacro element
kernels. Since the total runtime also decreases, see Fig. 3.12, the difference is
not a result of an increase in the runtime of the macro element kernels. In­
stead, the previously described combination of specialized local and global
data structure removes unnecessary operations, which do not contribute to
the actual computation of the operator evaluation. This effect becomes less
pronouncedas the intensity of themicro element kernels increases, because in
these cases the ratio is already high to begin with. Nevertheless, the total run­
timebenefits significantly from the block­structuring even for those examples,
although a smaller local refinement is sufficient. In the lower quadrature or­
der cases, the local kernel against total runtime ratio improves notably with
medium local refinement, although it decreases for large refinements (𝑘 ≥
512) again. The decline ismost likely due to increased cachemisses, and could
perhaps be prevented by tiling.

3.4.2 Efficient Geometry Computation

The first local assembly example investigates the computation of the Jacobian
inverse and Jacobian determinant of themicro element geometry transforma­
tion. To estimate realistically the impact of the optimizations, the computa­
tion of the same Poisson operator application as before is considered, since
it requires both quantities. Two types of macro element geometry transfor­
mations are considered, affine and multilinear transformations. For each ge­
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Figure 3.11: Ratio of effective computational time compared to total runtime for vary­
ing local refinement sizes. Increasing the block size significantly reduces the
gather­scatter overhead, especially for local kernels with low amount of work. With
block­structuring, around 90% of the runtime is spent within the local kernels, re­
gardless of the kernels’ intensity.

Figure 3.12: The total runtime of the operator application normalized against 𝑘 = 1
instance. The overhead reduction from Fig. 3.11 directly leads to a total runtime
reduction. Depending on the work intensity of the local kernel, a decrease up to
30% can be realized.
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ometry transformation type, three local kernel versions are used, one without
block­structuring and two with block­structuring enabled. The unoptimized
block­structured kernel recomputes the geometry transformation for eachmi­
cro element using the DUNE gridmanager YASPGrid in the affine case and UG-
Grid in the multilinear case, while the optimized variant uses the precompu­
tations outlined in 3.1.1. Besides precomputing the geometry transformations,
no other precomputations, such as scaling the gradients, are performed dur­
ing the optimized kernel in order to single out the effects of the optimized
geometry transformation. The runtime within the macro element kernel is
measured for each geometry transformation type and kernel version, and the
block­structured versions are compared against the non block­structured one.

Figure 3.13: The local kernel runtime of block­structured kernels with andwithout op­
timizations on grids with affine andmultilinear geometries, reported as percentage
of the non block­structured kernel. In the affine case, the C++ compiler can realize
the same optimizations as the optimized by hand kernel. For multilinear geome­
tries, it is necessary to implement these optimizations manually.

Fig. 3.13 depicts the runtime reduction using the geometry optimizations.
On the affine grid, the unoptimized version achieves nearly the same runtime
as the optimized version. Both variants reduce the local kernel runtime to
∼60%of the non block­structured kernel, where the best reduction is attained
for medium­sized blocks, 𝑘 ∈ [10, 100]. Due to the heavy template use within
DUNE, the C++ compiler is able to determine that the computation of the ge­
ometry quantities does not depend on the quadrature point and can therefore
be hoisted outside the quadrature and micro element loop. Concerning the
multilinear grid, the C++ compiler is not capable to determine impactful pre­
computations anymore, and the runtime is still around∼90%of thenonblock­
structured one. Instead, these precomputations need to be specified by hand
to achieve a meaningful improvement. Even for low block sizes, the precom­
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putations are useful, since the geometry transformation is split into a quadra­
ture point dependent part and a quadrature point independent part, which is
not recomputed in the optimized case. Compared to the affine grid, this leads
to an even better reduction to ∼40% of the non block­structured local kernel
runtime in the optimized case.

3.4.3 Efficient Vectorization

The second local assembly example considers the cross­element vectorization
described in section 3.3. There are three versions of the macro element ker­
nel: without cross­element vectorization, vectorized without the overlapping
approach, and vectorized with the non­overlapping computation outlined in
section 3.3. The C++ compiler’s auto vectorization is enabled for the casewith­
out explicit cross­element vectorization and disabled if manual vectorization
is used. Each vectorized kernel has two variants, one with the SIMD vector
width 4 (AVX2) and one with 8 (AVX­512). The micro element geometries are
axiparallel and equidistant, such that the transformation can be precomputed
again, reducing the FLOP count within the kernel, while higher FLOP counts
are simulated through higher quadrature orders as before. The runtime of the
macro element kernels ismeasured and the speedups of the vectorized kernels
compared to the non vectorized ones are shown in Fig. 3.14.

An ideal vectorization of a local kernel should result in speed­up as high as
the SIMD width. In the AVX2 case, an even better speed­up is shown by the
𝑞 = 6, 14 variants, while the other variants still achieve a speed­up higher
than 3×. Presumably, the high speed­ups are caused by the inefficient auto
vectorization used by the C++ compiler (g++ 9.3), which vectorizes roughly 2/3
of all FLOP for 𝑞 > 2. In the AVX­512 case, the optimal speed­up is never at­
tained, as the clock speed of the CPU during the execution of AVX­512 heavy
code gets reduced, see appendix A.1. Incorporating this reduction results in
an ideal speed­up of ∼7.3× for AVX­512, which only the 𝑞 = 6 case using the
non­overlapping approach can reach. Nevertheless, in most cases a speed­up
between 5–7× are achieved across the board.

Although they reach different speed­ups, similarities between theAVX2 and
AVX­512 performance are noticeable. In both cases, the non­overlapping var­
ian increases the local kernel performancemore consistently than the overlap­
ping approach, especially for low and medium quadrature orders. The higher
quadrature orders exhibit worse scaling most likely due to the high amount
of temporaries necessary to store the precomputed gradients at each quadra­
ture point. The degradation for high block sizes, 𝑘 ≥ 512, in the 𝑞 = 2 case
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Figure 3.14: Runtime Speed­ups of the vectorized local kernels compared to unvector­
ized kernels for varying macro element sizes. The dotted lines correspond to AVX2
vectorized kernels (SIMD width 4) and the dashed­dotted lines to AVX­512 vector­
ized kernels (SIMD width 8). The explicitly vectorize kernel achieve nearly ideal
speed­ups. In the AVX2 casemost kernels achieve a runtime speed­up of 3–4×, and
kernels with medium work intensity can achieve a nearly ideal speed­up of ∼7× in
the AVX­512 case. The differences between the overlapping variant (simple vector­
ization) and the non­overlapping variant are limited.

is most likely due to themissing tiling. Other Kernels are not significantly im­
pacted by this, since the cache misses are hidden by the additional compu­
tations. Since the kernels with explicit vectorization achieve nearly optimal
speed­ups despite allowing auto vectorization for the baseline kernels, this
benchmark shows that the vectorization of the C++ compiler is not reliable for
finite element kernels. Manual implementations are necessary to fully exploit
the hardware’s capabilities. Furthermore, the auto vectorization is only avail­
able for high quadrature orders, which are unlikely for low order methods.

It shouldbenoted that the reported speed­upsonlyhold for the local kernels,
not for thewhole operator application. When considering thewhole assembly,
the gather­scatter overhead discussed earlier is not influenced by the vector­
ization, and therefore reduces the total speed­up. The overhead to local kernel
ratios fromFig. 3.11 show that for kernelswith lowamount ofwork around90%
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of the runtime are spent within the local kernel. Combining this with the local
kernel speed­up of∼5.5× results in an expected operator application speed­up
of∼3.7× compared to a non vectorized block­structured operator application.

3.4.4 Operator Application

The last example combines the optimizations discussed before in order to ex­
amine their impact on the operator application as a whole. Additionally, a dif­
ferent loop ordering within the macro kernel is considered, which has been
used during the early stages of this thesis, where the micro element loop is
nested inside the quadrature loop instead of the other way around. As before,
the total number of micro elements is fixed to 1024 per direction, and only the
block size varies. An affine grid is used and the local kernels are always vec­
torized with the largest available SIMD width. This choice highlights the best
case improvements gained by block­structuring, and more realistic settings
are explored in chapter 6. The reversed loop ordering may have some advan­
tages over the default ordering on affine grids, since in the reversed case the
basis evaluation and subsequent scaling of the gradients happens only once
for each quadrature point, while in the default case the scaled gradients need
to be precomputed for every quadrature point, increasing the L1 cache usage.
Fig. 3.15 depicts the floating point performance of the macro element kernels
as percentage of theLINPACKpeak,whichhas beenmissing so far. Finally, Fig.
3.16 shows the whole operator performance reported as DoF/s.

Concerning the FLOP/s performance in Fig. 3.15, the most notable behavior
is that the LINPACK peak is surpassed on multiple occasions. Since the LIN­
PACKbenchmark uses a highly tuned implementation from Intel, it is unusual
that for certain quadrature orders, 𝑞 = 6, 14, kernels using the default loop
ordering perform better. During the computation of the operator application
on one micro element, the local result and the local coefficient can be kept in
registers, thus most of the computations requires only little data movement
between the registers and the L1 cache. For higher quadrature orders more
precomputed gradients arenecessary and therefore thedatamovement andL1
occupation increases again, which results in noticeably lower performance for
the highest quadrature order. As a consequence, simulating local kernels with
high work per micro element by increasing the quadrature order is not quite
suitable. It clearly overestimates the efficiency of the macro element kernels,
while it misses detrimental effects such as long dependency chains or instruc­
tionswithhigh latency. Still, even if a lowquadratureorder isuseda significant
portion of the peak performance∼80–90% can be reached, assumingAVX­512
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Figure 3.15: FLOP/s performance of the macro element kernels reported as % of LIN­
PACK peak performance for the default loop ordering and the reversed loop order­
ing (i.e. quadrature loop before micro element loop). 100% of LINPACK peak on
one core corresponds to ∼45.5 GFLOP/s. Employing the block­structured grids ap­
proach leads to local kernel with a performance comparable to LINPACK. Already
for small and medium block sized (𝑘 = 16, 32) the peak performance is achieved.
The reversed loop ordering is consistently inferior to the default order.

Figure 3.16: Operator application performance,measured inDoF/s for the default loop
ordering and the reversed loop ordering (i.e. quadrature loop beforemicro element
loop). The optimal performance for a matrix­based operator application (∼35 MD­
oF/s) is depicted as the dashed, grayed­out line. For low work intensity kernels,
the matrix­free operator application, using a block­structured grid, surpasses the
performance of the corresponding matrix­based application by a factor of up to 4.
Similar to the FLOP/s performance, reversing the loop order deteriorates the perfor­
mance.
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instructions can be used.
In contrast to thedefault loop ordering, the reversed looporder achieves less

FLOP/s. Although some new precomputations are possible and the L1 cache
use is reduced, reversing the looporder requires explicit reads andwrites to the
local vectors once per quadrature point for each micro element DoFs, which
hinders the performance significantly.

The performance of the whole operator application, seen in Fig. 3.16, in­
creases until a plateau is reached after 𝑘 = 16, 32, which corresponds directly
to both the increased FLOP/s performance and the overhead reduction. If the
amount of work permacro element is low, the performance degenerates again
for large block sizes (𝑘 ≥ 128). This ismost likely caused by an increased num­
ber of cache misses, which increases the overhead as observed in Fig. 3.11. In
the other cases, the misses are masked in the other cases by more computa­
tions. The usage of tiling could circumvent cachemisses, andwould therefore
represent an interesting option for further optimizations. Since the FLOP/s
performance using the reversed loop order was one half of the default perfor­
mance, only half of the DoF/s are reached. Therefore, the reversed order is not
investigated further.

Naturally, the variant with the lowest quadrature order attains the highest
performance. Interestingly, the performance in the other cases does not scale
down as expected. With the chosen quadrature order the number of quadra­
ture points is increased by a factor of 4, which should result in a performance
decrease by the same factor. However, for medium quadrature orders a bet­
ter down scaling of ∼2 can be noticed. The performance increase for higher
quadrature order, as seen in Fig. 3.15, seems to compensate for the higherwork
per macro element, until the FLOP/s performance is saturated. The lowest
quadratureorder caseachieves 100–130MDoF/s formediumblock sizes,which
is significantly faster than the corresponding matrix­based operator applica­
tion∼35MDoF/s, based the theoretical estimate from 2.4. Even the 𝑞 = 6 case
exceed thematrix­based performance, although only by a factor of 2 instead of
4. In the other case the matrix application is faster, due to the high local work.
Nevertheless, the application of the block­structuring approach increases the
matrix­free performance by a factor of 30–40, or even 90 for 𝑞 = 60, compared
to a non block­structured matrix­free application, i.e. 𝑘 = 1.

3.4.5 Summary

The benchmarks show that block­structured grids increase significantly the
performance ofmatrix­free operator applications for low order discretizations.
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These benefits arise from two aspects, first the global assembly improvements,
and secondly the newly possible optimizations within the local kernel. Block­
structured grids use less grid elements compared to a non block­structured
grid of the same size. Thus, the overhead from the grid element iteration gets
reduced. Additionally, the overhead from gathering and scattering the global
data into local data and vice versa is reduced by requiring less global index
computations and accessing global data in a streaming fashion. The perfor­
mance of themicro elementwise computations are improved by the increased
data locality, and optimizations which are not possible otherwise, like the effi­
cient geometry transformation evaluation or the cross­element vectorization.
As seen in the previous benchmarks, the highest improvements are achieved
formedium block sizes, and no additional increases are found for larger block
sizes. Tiling the micro element loops could alleviate this issue. Since this is
currently not implemented, the focus lies onmedium block sized 𝑘 ∈ [8, 128].

3.5 Outlook

Although block­structured girds showpromising results already, there are still
multiple areas left for further investigation. The use cases of the method pre­
sented here are currently restricted tomultilinear cubical geometries and con­
tinuous Lagrange finite elements, although there are no conceptual barriers
to apply this approach to other geometries or finite elements. Additionally,
different local data structures could be explored to facilitate vectorization for
local basis function with degree greater than 1. Since implementing local ker­
nels for block­structured grids and exploiting the now possible vectorization
opportunities is cumbersome and error prone, automating this process would
be beneficial. The latter topic will be discussed in chapter 5, while the former
will be briefly examined in the following.

Thepresentedapproach is targetedat cubical elements, becauseof their ten­
sor product form, but there are several drawbacks compared to simplex ele­
ments. Creating meshes for complex geometries requires external meshing
tools. Themost commonmeshing tools, like Gmsh [43], offer superior support
for simplex elements, especially in 3D,whereas fully unstructured, hexahedral
meshes are usually not available, see the discussions in [15], [42]. Since the ge­
ometry transformation of a simplex macro element is always affine linear, it
is independent of the micro element loop and can be precomputed, regard­
less of the macro grid. Therefore, simplices offer more flexibility and reduced
computational cost. However, more complex loop nestings and index maps
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are needed, because these elements do not have a simple tensor product form.
Another approach to increase the flexibility w.r.t. complex geometries are

higher order geometry transformations. In this case, the geometry transfor­
mation of the macro element uses a higher order basis than theℚ1, which re­
sults in better approximation of curvedboundarieswithout refining themacro
grid. This allows the usage of coarser, but highly locally refined, macro ele­
ments and thus profiting from the efficient global gather and scatter opera­
tions evenmore. One side effect of thismethod is the increased computational
complexity of the local kernel, since more FLOP are required to compute the
geometry transformation and the higher basis degree increases the necessary
quadrature order. Both of these disadvantages can be reduced by using ap­
proximations, as described in [32] and [12] for stencil local kernels. Further­
more, this could be already useful in reducing the computational cost formul­
tilinear geometries.

Low order discontinuous Galerkin finite elements could be an interesting
choice of basis functions for block­structured grids, since common optimiza­
tion techniques, suchas sumfactorization, are less effective for loworder func­
tions, see [76] or [55]. Additionally, there are less vectorization opportunities
for low order DG. Thus, the cross­element vectorization approach could be a
good choice for these finite element types. Besides the iteration over the vol­
ume of the micro elements, the DG basis requires the iteration over the inter­
sections of micro elements within one macro element, which could be imple­
mented either in combination with the volume kernel or as a separate kernel.
The computation of the intersection integrals between two macro elements
needs a careful implementation of the index map, such that only micro ele­
ments are selected which intersect with the macro element boundary.

While the local data layout described in section 3.1 allowes an simple ap­
proach to cross­element vectorization technique, as explained in section 3.3, it
also restricts it toℚ1 finite elements. Switching to a different local data struc­
ture could lift this restriction. For example splitting the macro element into
𝑤 equally shaped subdomains, as in Fig. 3.17, and interleaving the 𝑤 DoFs of
each subdomain at the same position, allows operating on these subdomains
in lock­step. This also removes the need for the non­overlapping vectoriza­
tion construction. The change in the local data structure implies adjustments
in the global gather and scatter operation, since some DoFs on the boundary
of these new subdomains are duplicated.
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Figure 3.17: Vectorization­friendly data layout (𝑤 = 4). DoFs with the same color de­
note vectorized handling. The different colors of the same DoFs indicate the dupli­
cation of the corresponding DoF.

3.5 OUTLOOK 59





chapter4
Preconditioners for Block-Structured Grids

F OR THE EFFICIENT SOLUTION of a linear system, using a suitableprecon­
ditioner is essential, as discussed in section 2.2. Many of the most com­

mon and most efficient preconditioners for the systems stemming from a dis­
cretizedweak formulation require the full assembly of the stiffnessmatrix, for
example the AMG or ILU preconditioners. In some cases it is sufficient to be
able to compute the full row for each DoF, e.g. for the Jacobi or Gauß­Seidel
preconditioner. Neitherworkswell out of the boxwithmatrix­free approaches.
Therefore, in this chapter, a non­overlapping domain decomposition method
is adapted to allow its matrix­free application on block­structured grids. Al­
though usually ameans to enable parallelism over multiple cores, domain de­
compositionmethods also act as powerful preconditioners, which can achieve
mesh size independent convergence rates, and thus are useful for solving on a
single core. Examples for other kinds of preconditioners formatrix­freemeth­
ods, suitable for block­structured grids, are hierarchical multigrid methods,
which are proven to be efficient for example in [13, 45].

4.1 Domain Decomposition Theory

This section introduces the algebraic formulation of a non­overlapping do­
main decomposition method, based on the description found in [88]. Other
introductions to domain decompositionmethods can be found for example in
[6], which has a more theoretical approach and discusses more evolved non­
overlapping methods, or in [31], which also discusses modern approach such
as GenEO, and inspires some notation used here. As described in section 2.1.2,
the discretization of a weak formulation leads to a linear system

𝐴𝐮 = 𝐟,

where𝐴 is the assembled stiffnessmatrix,𝐮 is theDoFvector, and 𝐟 is the right­
hand side. As an introduction, the decomposition into two subdomains is con­
sidered first in detail, with a generalization added later on.
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4.1.1 Non-Overlapping Methods

Let the triangulation 𝒯 for the domain Ω of the weak formulation be divided
into two sub­triangulations 𝒯 = 𝒯1 ∪ 𝒯2, each covering the subdomain Ω𝑖 =
⋃𝜏∈𝒯𝑖

𝜏, 𝑖 = 1, 2, and denote with Γ = Ω1 ∩ Ω2 ⧵ 𝜕Ω the interior boundary
of both subdomains. Using this decomposition, the set of DoFs𝒩 can be par­
titioned into two set of interior DoFs, 𝒩1 and 𝒩2, and a set of interface DoFs
𝒩𝐵. The interior DoF sets𝒩𝑖 contain all DoFs corresponding exclusively to the
subdomainΩ𝑖, which may include DoFs associated with the true boundary of
Ω𝑖, while the interface set𝒩𝐵 containsDoF shared by both subdomains. By re­
ordering the DoF vector according to the above partition reveals the following
structure of the linear system

[
𝐴11 0 𝐴1𝐵
0 𝐴22 𝐴2𝐵
𝐴𝐵1 𝐴𝐵2 𝐴𝐵𝐵

][
𝐮1
𝐮2
𝐮𝐵
] = [

𝐟1
𝐟2
𝐟𝐵
] .

This formulation allows for a factorization of𝐴 as

𝐴 = [
1 0 0
0 1 0

𝐴𝐵1𝐴−111 𝐴𝐵2𝐴−122 1

][
𝐴11 0 𝐴1𝐵
0 𝐴22 𝐴2𝐵
0 0 𝑆

] ,

where 𝑆 is the Schur complement of the block𝐴𝐵𝐵 w.r.t.𝐴 defined by

𝑆 = 𝐴𝐵𝐵 − 𝐴𝐵1𝐴−111𝐴1𝐵 − 𝐴𝐵2𝐴−122𝐴2𝐵.

Applying forward elimination to the system𝐴𝐮 = 𝐟 results in

[
𝐴11 0 𝐴1𝐵
0 𝐴22 𝐴2𝐵
0 0 𝑆

]𝐮 = [
𝐟1
𝐟2
𝐠
] , with 𝐠 = 𝐟𝐵 − 𝐴𝐵1𝐴−111 𝐟1 − 𝐴𝐵2𝐴−122 𝐟2,

and then the unknown at the interface can be determined by solving the re­
duced Schur complement system

𝑆𝐮𝐵 = 𝐠.

With these interfacevalues, thebackwards eliminationyields the interiorDoFs
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after solving the systems

𝐴11𝐮1 = 𝐟1 − 𝐴1𝐵𝐮𝐵,
𝐴22𝐮2 = 𝐟2 − 𝐴2𝐵𝐮𝐵.

The advantage of using this factorization is the possibility of parallelizing
the solution of the systems involving 𝐴11 and 𝐴22, since these systems don’t
update shared DoFs. Although not directly noticeable, the Schur complement
𝑆 and the right­hand side 𝐠 can also be assembled by subdomain­local contri­
butions. Since𝐴𝐵𝐵 can be split into

𝐴𝐵𝐵 = 𝐴1𝐵𝐵 + 𝐴2𝐵𝐵,

where𝐴𝑖𝐵𝐵 are computed onlyw.r.t. the subdomainΩ𝑖, this leads to the follow­
ing formulation of 𝑆:

𝑆 = 𝑆1 + 𝑆2, with 𝑆𝑖 = 𝐴𝑖𝐵𝐵 − 𝐴𝐵𝑖𝐴−1𝑖𝑖 𝐴𝑖𝐵, 𝑖 = 1, 2,

where 𝑆𝑖 are called local Schur complements. In the same manner 𝐟𝐵 may be
split into 𝐟𝐵 = 𝐟1𝐵 + 𝐟2𝐵 and therefore 𝐠 reduces to

𝐠 = 𝐠1 + 𝐠2, with 𝐠𝑖 = 𝐟𝑖𝐵 − 𝐴𝐵𝑖𝐴−1𝑖𝑖 𝐟𝑖.

The reduced Schur complement systemcanbe solved in parallel by employing
a Krylov­subspace method, since it requires only the application of 𝑆, which
consists of two independent local Schur complement applications. In practice,
the inverse of 𝐴𝑖𝑖, necessary for the matrix­vector product with 𝑆 and the for­
ward and backward elimination, is not computed explicitly. Instead, a linear
system with𝐴𝑖𝑖 is solved, which is equivalent to solving the weak formulation
onΩ𝑖 with an additional zero Dirichlet condition on the interface Γ.

The procedure described above can be generalized to multiple subdomains.
Similar as before, the triangulation is partitiond 𝒯 into 𝑁 parts 𝒯𝑖 and non­
overlapping subdomains are defined as Ω𝑖 = ⋃𝜏∈𝒯𝑖

𝜏, 𝑖 = 1, … , 𝑁 covering
each part of the triangulation. Furthermore, the interface between all subdo­
mains is denoted as Γ = ⋃𝑖≠𝑗Ω𝑖 ∩ Ω𝑗. The DoFs𝒩 are grouped according to
this partition by defining

𝒩𝑖 = {𝑗 ∈ 𝒩 ∶ supp(𝜙𝑗) ∩ Ω𝑖 ≠ ∅},

𝒩𝐵 =⋃
𝑖≠𝑗

𝒩𝑖 ∩𝒩𝑗,
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where (𝜙𝑖)𝑖∈𝒩 is the chosen finite element basis of the discretization. As a con­

sequence 𝒩𝑖 contains all DoF associated with the subdomain Ω𝑖, and 𝒩𝐵 all
DoFs shared by two or more subdomains. Additionally, the DoFs exclusively
owned by subdomainΩ𝑖 are defined as

𝒩𝑖 = 𝒩𝑖 ⧵𝒩𝐵.

By reordering the DoFs, the same blocking as before of the stiffness matrix 𝐴
and the vectors 𝐮 and 𝐟 can be achieved:

⎡
⎢
⎢
⎢
⎢
⎣

𝐴11 0 ⋯ 0 𝐴1𝐵
0 𝐴22 𝐴2𝐵
⋮ ⋱ ⋮
0 𝐴𝑁𝑁 𝐴𝑁𝐵
𝐴𝐵1 𝐴𝐵2 ⋯ 𝐴𝐵𝑁 𝐴𝐵𝐵

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝐮1
𝐮2
⋮
𝐮𝑁
𝐮𝐵

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐟1
𝐟2
⋮
𝐟𝑁
𝐟𝐵

⎤
⎥
⎥
⎥
⎥
⎦

,

where𝐴𝑖𝑖 is thematrix block containing the coupling between𝜙𝑘, 𝜙𝑙with𝑘, 𝑙 ∈
𝒩𝑖.

The definition of the reduced Schur complement system requires introduc­
ing additional interface DoF subsets𝒩𝐵𝑖

as

𝒩𝐵𝑖
= 𝒩𝐵 ∩𝒩𝑖,

which contain the DoFs belonging to the interface Γ and to the subdomain
Ω𝑖. Let 𝑅𝑖 be the boolean matrix restricting the index set𝒩𝐵 to𝒩𝐵𝑖

, such that
𝐮𝐵𝑖

= 𝑅𝑖𝐮𝐵 consists of the DoFs on the interface ofΩ𝑖. This results in the fol­
lowing definition of the Schur complement, using again the additive splitting
as described above:

𝑆 =
𝑁

∑
𝑖=1

𝑅𝑇𝑖 𝑆𝑖𝑅𝑖,

𝑆𝑖 = 𝐴𝐵𝑖𝐵𝑖
− 𝐴𝐵𝑖𝑖𝐴

−1
𝑖𝑖 𝐴𝑖𝐵𝑖

,

where 𝑆𝑖 are the local Schur complements. The right­hand side of the system
is defined analogously as

𝐠 =
𝑁

∑
𝑖=1

𝑅𝑇𝑖 (𝐟𝐵𝑖
− 𝐴𝐵𝑖𝑖𝐴

−1
𝑖𝑖 𝑓𝑖).

The following steps summarize the general approach for a non­overlapping
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domain decomposition method:

1. Compute right­hand side 𝐠 = ∑𝑁
𝑖=1 𝐠𝑖 by assembling the local contribu­

tions.

2. Solve the reduced Schur complement system 𝑆𝐮𝐵 = 𝐠 iteratively. This
requires the application of 𝑆𝑖 for each subdomain, which, in turn, re­
quires the solution of the local Dirichlet problem

𝐴𝑖𝑖𝐱 = 𝐴𝑖𝐵𝑖
𝐲.

3. Use backwards elimination to determine the interior DoF, again by solv­
ing a local Dirichlet problem

𝐴𝑖𝑖𝐮𝑖 = 𝐟𝑖 − 𝐴𝑖𝐵𝑖
𝐮𝐵𝑖

.

4.1.2 Neumann-Neumann Method

The matrix 𝑆 has a better condition number (𝒪(1/ℎ)) compared to the stiff­
ness matrix 𝐴 (𝒪(1/ℎ2)), see [14] or [94], but it is still dependent on the mesh
size. Therefore, the Krylov solver for Schur complement system needs a pre­
conditioner to achieve mesh independent convergence rates. A wide variety
of preconditioner for this system have been investigated, some notable exam­
ples are iterative substructuringmethods, see chapter 4.3 in [88], FETI [36] and
FETI­DP [37] methods, or the BDD [72] and BDDC [29, 73] methods. Some of
these methods are also discussed as part of the review [94]. The last two pre­
conditioners are variants of the Neumann­Neumann method, which will be
presented here in its simplest form.

Tomotivate theNeumann­Neumannmethod, the two subdomain case is ex­
amined again. On a structured grid with uniform mesh size and two equally
sized subdomains, which aremirror images of eachother, the local Schur com­
plements 𝑆1, 𝑆2 are equal under the assumption that the weak formulation
has constant coefficients. Therefore, 𝑆1 = 𝑆2 = 1

2
𝑆 and consequently 𝐵 =

1

2
(𝑆−11 + 𝑆−11 ) 1

2
is a good preconditioner for 𝑆 since

𝐵𝑆 = 1
2(𝑆

−1
1 + 𝑆−12 )12𝑆 = 𝑆−1𝑆 = 1.
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If the subdomains are not mirror images, 𝐵 is still suitable since

𝐵𝑆 = 1
2(2 ⋅ 1 + 𝑆−11 𝑆2 + 𝑆−12 𝑆1)

1
2

and the eigenvalues of 𝑆−11 𝑆2 and 𝑆−12 𝑆1 are uniformly bounded from above
and below, see section 1.3.3 and 1.3.4 in [6].

Closely related to the application of 𝑆𝑖, the matrix­vector product with 𝑆−1𝑖
can be computed without assembling 𝑆𝑖 or 𝑆−1𝑖 , by solving a local problem in­
stead. To demonstrate that, let 𝐴𝑖 be the local stiffness matrix for the subdo­
mainΩ𝑖 with blocking

𝐴𝑖 = [ 𝐴𝑖𝑖 𝐴𝑖𝐵𝑖

𝐴𝐵𝑖𝑖 𝐴𝐵𝑖𝐵𝑖

] .

Then, the inverse of𝐴𝑖 can be written as

𝐴−1𝑖 = [1 −𝐴−1𝑖𝑖 𝐴𝑖𝐵𝑖

0 1
] [𝐴

−1
𝑖𝑖 0
0 𝑆−1𝑖

] [ 1 0
−𝐴𝐵𝑖𝑖𝐴

−1
𝑖𝑖 1

] ,

which shows that applying 𝑆−1𝑖 is equivalent to solving a local Neumann prob­
lem, i.e.

𝑦 = 𝑆−1𝑖 𝑥 ⇔ 𝐴𝑖 [
𝑣
𝑦] = [0𝑥] ,

where the interior values 𝑣 of the solution vector are discarded. Conceptually,
solving the reduced Schur complement system with this preconditioner ap­
plies correction terms to the solutions of the two local Dirichlet problems that
have the same trace on the interface in order to align the normal derivative of
the solutions.

The Neumann­Neumann method may be easily extended to more subdo­
mains. As s first step, it is necessary to define for each interface DoF the num­
ber of subdomains containing that DoF

𝛿𝑙 = #{𝑗 ∶ 1 ≤ 𝑗 ≤ 𝑁 and 𝑙 ∈ 𝒩𝑗}.

Afterwards, the following diagonal scaling matrices

(𝐷𝑖)𝑙𝑙 =
1
𝛿𝑙
, ∀𝑙 ∈ 𝒩𝐵𝑖

are constructed to achieve good convergence, similar to the scaling factor 1/2
used in the two subdomain case. These could also be defined as weight func­
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tions, if the PDEhas varying coefficients. With these scalingmatrices, the gen­
eralization of the two subdomain preconditioner is straight forward,

𝐵𝑁𝑁 =
𝑁

∑
𝑖=1

𝑅𝑇𝑖 𝐷𝑖𝑆−1𝑖 𝐷𝑖𝑅𝑖.

Again, theapplicationof𝑆−1𝑖 canbe realizedas the solution toa localNeumann
problem.

However, unlike the two subdomain case, someNeumann problems are not
uniquely solvable. This problem arises from so­called floating subdomains.
In this case the subdomain does not touch the true Dirichlet boundary of the
whole domain, which results in a local problem with pure Neumann condi­
tions, implying that 𝐴𝑖 has a non­trivial kernel. Thus, a unique solution does
not exist. One approach to circumvent this difficulty is to use the pseudo­
inverse of 𝑆𝑖, although this has a similar computational cost to directly invert­
ing 𝑆𝑖, which should be avoided if possible. A cheaper approach is solving a
regularized problem with ̃𝐴𝑖 = 𝐴𝑖 + 𝛼𝑇, where 𝛼 is a suitable constant and 𝑇
is a non­singular matrix. In this work, 𝑇 = 1 is chosen for simplicity and 𝛼 is
experimentally chosen such that ̃𝐴𝑖 is close to𝐴𝑖 and the local solves converge
resonably fast.

With the Neumann­Neumann preconditioner the convergence rate of the
Krylov method is improved, but it is still not truly mesh independent. The
condition number of the preconditioned system can be estimated by

𝜅(𝐵𝑁𝑁𝑆) ≤
𝐶
𝐻2 (1 + log

𝐻
ℎ )

2
,

where𝐻 is the upper bound for the diameter of the subdomains, which shows
that by increasing the number of subdomains the convergence of the Krylov
solver will deteriorate.

4.1.3 Two Level Methods

Thedependencyof the convergenceon the subdomain size𝐻 is typical for one­
level domaindecompositionmethods. Colloquially speaking, this is due to the
fact that the solution at any point depends on the values of right­hand side on
the whole domain and the boundary conditions. For example, the solution of
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a linear second order elliptic PDE can be written as

𝑢(𝑥) = ∫
Ω
𝐺(𝑥, 𝑦)𝑓(𝑦) dy,

with an appropriate Green’s function, see e.g. [34], showing that the solution
at a point 𝑥 ∈ Ω𝑖 depends additionally on information only available outside
Ω𝑖. Through use of subdomain local solves, the solution update can only in­
corporate the information from directly adjacent subdomains during one step
of the global solve. On a cartesian grid with𝑁𝑑 subdomains per direction, the
information about the right­hand side in one subdomain requires about𝑁𝑑 it­
erations until it reaches any other subdomain, which implies that the Krylov
solver needs also𝑁𝑑 iterations until convergence is possible. Recognizing that
𝑁𝑑 = 𝐻−1 underlines the initially stated dependency.

Correspondingly, a preconditioner for the reduced Schur complement sys­
temneeds to add long range coupling between the subdomains to achieve con­
vergence independent of both the element and subdomain size. A standard
approach is a coarse grid correction. The necessary coarse grid𝒯0 is defined by
using the subdomains as coarse elements, i.e. 𝒯0 = ⋃𝑁

𝑖=1 𝜏𝑖 with 𝜏𝑖 = ⋃𝜏∈𝒯𝑖
𝜏.

Suppose 𝐮𝑛 is an approximate solution of 𝑆𝐮 = 𝐠 as part of an iterative proce­
dure, then the update 𝐮𝑛+1 = 𝐮𝑛 + 𝐞𝑛 would result in the exact solution if 𝐞𝑛
solves

𝑆𝐞𝑛 = 𝐫𝑛, with 𝐫𝑛 = 𝑔 − 𝑆𝐮𝑛.

This problem is just as difficult as the original problem, but the complexity can
be significantly reduced by transferring the problem onto the coarse grid, i.e.
solving for a correction 𝐞0 on the coarse grid

𝑆0𝐞0 = 𝐫0,

where 𝑆0 is the discretized Schur complement on 𝒯0 and 𝐫0 is the residual 𝐫𝑛
restricted onto the coarse grid. Afterwards, the fine grid correction 𝐞𝑛 is recon­
structed by prolonging 𝐞0 onto the fine grid.

Thematrix𝑆0 is the Schur complement of the coarse grid stiffnessmatrix𝐴0,
which results from the discretization over 𝒯0. In the case of piece­wise linear
or multilinear finite elements on 𝒯0, 𝐴0 does not have any interior DoFs, and
therefore 𝑆0 and𝐴0 are equal, simplifying the construction of 𝑆0 substantially.
Due to this simple description of the coarse Schur complement, other finite el­
ements on the coarse grid are not considered further. The coarse grid residual
𝐫0 is obtained by applying the restriction matrix 𝑅0 to 𝐫𝑛, where 𝑅0 is the ma­
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trix representation of the operatorℛ0 ∶ 𝑉(Γ) ↦ 𝑉(Γ)𝐻 and the finite element
spaces 𝑉(Γ) and 𝑉(Γ)𝐻 are defined as

𝑉(Γ) = span{𝜙𝑖|Γ ∶ 𝑖 ∈ 𝒩𝐵}
𝑉(Γ)𝐻 = span{𝜙𝐻𝑖 |Γ ∶ 𝑖 ∈ 𝒩0} ⊂ 𝑉(Γ),

with the Lagrange basis {𝜙𝑖}𝑖∈𝒩𝐵
on the fine grid and {𝜙𝐻𝑖 }𝑖∈𝒩0

on the coarse
grid. Since the finite element spaces are nested,ℛ0 is the identity on 𝑉(Γ), i.e.
ℛ0𝑣 = 𝑣 for all 𝑣 ∈ 𝑉(Γ)𝐻, which leads to the following definition of 𝑅0

𝜙𝐻𝑖 = ∑
𝑗∈𝒩𝐵

(𝑅0)𝑖𝑗𝜙𝑗 = ∑
𝑗∈𝒩𝐵

𝜙𝐻𝑖 (𝑥𝑗)𝜙𝑗,

where 𝑥𝑗 are the Lagrange nodes of {𝜙𝑖}𝑖∈𝒩. The prolongation of the coarse
grid correction is performed by applying the transpose of the restriction ma­
trix, 𝐞𝑛 = 𝑅𝑇0𝐞0. Writing these steps compactly results in the coarse grid pre­
conditioner

𝐵0 = 𝑅𝑇0𝐴−10 𝑅0.

Although employing the coarse grid preconditioner results in a reasonable
correction of the current error, it cannot be used alone, since𝐵0 has a large null
space, and instead it has to be used in conjunction with a fine grid precondi­
tioner. Now, the final additive two­level Neumann­Neumann preconditioner
is defined by

𝐵 = 𝐵0 + 𝐵𝑁𝑁 = 𝑅𝑇0𝐴−10 𝑅0 +
𝑁

∑
𝑖=1

𝑅𝑇𝑖 𝐷𝑖𝑆−1𝑖 𝐷𝑖𝑅𝑖.

It is also possible to define a multiplicative version of this preconditioner. Al­
though the resulting preconditioner leads to a better condition number, it has
a higher computational cost, and therefore is not investigated further. In [94],
the condition number with additive preconditioner is given by

𝜅(𝐵𝑆) ≤ 𝐶 (1 + log
𝐻
ℎ )

2
,

which depends only on the ratio between the subdomain size and the element
size, showing that grid independent convergence can be achieved as long as
the ratio stays constant.
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Simple Fine Grid Preconditioners

As discussed above, the coarse grid correction needs to be employed with a
fine grid preconditioner to reduce the parts of the error corresponding to its
null space. Besides the Neumann­Neumann preconditioner, other types can
be used for the fine grid part. The discussed two­level preconditioner has the
general structure

𝐵 = 𝐵0 + 𝐵𝐹,

where𝐵0 is the coarse grid correctionas before, and𝐵𝐹 is thepreconditioner on
the fine grid. The Neumann­Neumannmethod uses explicit knowledge of the
stiffnessmatrix’ structure to construct a preconditioner for the Schur comple­
ment systemandemploys elaborate local solves to compute approximationsof
the local solutions. Simpler preconditioners, without complex local solves or
even the need for the Schur complement system, could replace the Neumann­
Neumann preconditioner on the fine grid to reduce the work per macro ele­
ment. The faster preconditione application comes usually at the cost of slower
convergence.

In the same manner as for the Schur complement system, a two­level pre­
conditioner can be applied to the original system 𝐴𝐮 = 𝐟, with suitable ad­
justments. On the coarse grid, the preconditioner is defined as 𝐵0 = 𝑅𝑇0𝐴0𝑅0,
where 𝐴0 is the coarse grid discretization of 𝐴 and 𝑅0 the extension of 𝑅0 to
the full fine grid basis. With a fitting DoF numbering 𝑅0 can be written as
𝑅0 = [𝑅0 𝑅0]. This shows that only the implementation of 𝑅0 is strictly nec­
essary, as𝑅0𝑣 = [1 0]𝑅0[1 0]𝑇𝑣, although it is beneficial to specialize𝑅0 to re­
duce the number of unnecessary operations. On the fine grid, iterative linear
solvers, like the Jacobimethod, the Gauß­Seidelmethod, or the SSORmethod,
are suitable preconditioners to correct the errors in the kernel of 𝐵0, while be­
ing cheap to evaluate. Using these methods, the application of the precondi­
tioner 𝐵𝐹 is computed by solving 𝐴𝐯 = 𝐫𝑛 for a fixed number of iterations,
where 𝐫𝑛 is the current residual.

4.2 Application to Block-structured Grids

The block­structured grid approach, introduced in chapter 3, lends itself nat­
urally to domain decomposition methods and two­level methods in general.
Due to the constructionbasedonmacro elements andmicro elements, thepar­
tition of the grid into subdomains is already available. Furthermore, the unre­
finedmacro elements build a suitable coarse grid, necessary for the coarse grid
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correction. Since the local data for one macro element does not overlap with
any other macro element, the non­overlapping domain decomposition meth­
ods are better suited than overlapping domain decomposition methods.

As discussed in section 4.1.1, the non­overlapping methods contain the fol­
lowing three steps:

1. Transforming𝐴𝐮 = 𝐟 into a reduced Schur complement system.

2. Solve the reduced Schur complement system 𝑆𝐮𝐵 = 𝐠 with a precondi­
tioned Krylov method.

3. Use the backwards elimination to compute the interior values.

Each of these steps can be executed without assembling any matrices on the
fine grid. The matrices 𝑆𝑖 and 𝑆−1𝑖 require the application of 𝐴−1𝑖𝑖 or 𝐴−1𝑖 to a
vector, which is realized by solving a local problem of Dirichlet or Neumann
type respectively. By solving the local problems iteratively, it is not necessary
to assemble 𝐴𝑖𝑖 or 𝐴𝑖, instead it suffices to compute the local application of
these matrices. Additionally, 𝐴𝑖𝑖 can be applied by using the full local matrix
𝐴𝑖, since𝐴𝑖𝑖 = [1 0]𝐴𝑖[1 0]𝑇 and therefore

𝑦 = 𝐴𝑖𝑖𝑥 ⇔ [𝑦𝑦′] = 𝐴𝑖 [
𝑥
0] .

In the same manner, the application of the local matrix blocks𝐴𝐵𝑖𝐵𝑖
,𝐴𝐵𝑖𝑖, and

𝐴𝑖𝐵𝑖
can be reduced to applying𝐴𝑖 to a vector paddedwith zeros appropriately

and restricting the result. Therefore, multiplying 𝑆 or 𝑆−1 with a vector does
not need any assembled matrices.

The preconditioner for step 2 requires a coarse grid correction, as discussed
earlier, which is computed by directly solving the coarse problem. Since the
coarse problem usually has orders of magnitude less DoFs, fully assembling
the stiffness matrix 𝐴0 and factorizing it once has a negligible cost compared
to the repeated application of the fine grid preconditioner. If the coarse grid
problem does become too large to solve directly, the system can also be solved
using amatrix­based preconditioner like AMG. As is generally the case, the re­
striction and prolongation matrices are not formed explicitly. Instead, their
application to a vector is computed through iterating over themacro elements
and evaluating the local restriction or prolongation, where an additional scal­
ing has to be introduced to account for multiple updates on DoFs shared be­
tween multiple macro elements. This scaling coincides exactly with the di­
agonal scaling matrices𝐷−1

𝑖 necessary for the Neumann­Neumann precondi­
tioner. The local evaluation of the restriction or prolongation operator is the
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same as the standard evaluation on a structured grid, except that it only oper­
ates on the boundary DoFs.

Due to the simple choice of coarse grid correction, the handling of the lo­
cal Neumann problems needs special care. As mentioned in 4.1.2, the system
is undetermined. The regularization discussed there consists of solving the
problem with 𝐴𝑖 = 𝐴𝑖 + 𝛼1. A fitting choice for the parameter 𝛼 could be
𝛼 = ||𝐴𝑖||⋅𝛾with an appropriate normand a regularization parameter 𝛾, which
is fixed to 𝛾 = 10−3. The choice allows reasonably fast convergence, while re­
ducing thedeviation from𝐴𝑖, at least for theproblemsconsidered in this thesis.
However, the computation of any norm of 𝐴𝑖 is not trivial if the local problem
is solvedmatrix­free, and therefore an approximation of the norm is necessary,
which does not require a matrix assembly.

The approach taken in this work is to derive an upper bound for the infinity
norm ||𝐴||∞ = max𝑖∑𝑗 |𝐴𝑖𝑗|, where the subdomain index 𝑖 has been dropped
for clarity. Let ℎ(𝑢, 𝑣) be themicro­element local integration kernel appearing
in the weak formulation of the PDE, then

max
𝑖
∑
𝑗
|𝐴𝑖| = max

𝑖
∑
𝑗
| ∑
𝑒∈𝒯𝑖𝑗

∫
𝑒
ℎ(𝜙𝑖, 𝜙𝑗) dx|

≤ max
𝑖

∑
𝑗
∑
𝑒∈𝒯𝑖𝑗

∫
𝑒
|ℎ(𝜙𝑖, 𝜙𝑗)| dx

⏟⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⏟
=𝑛𝑖

with𝒯𝑖𝑗 = {𝑒 ∈ 𝒯 ∶ 𝑒 ∈ supp(𝜙𝑖)∩ supp(𝜙𝑗)}. The vector 𝑛 = (𝑛𝑖)𝑖 can be com­
puted similarly to the local stiffnessmatrix assembly, but instead of scattering
the entries |ℎ(𝜙𝑖, 𝜙𝑗)| into the local matrix they are added up row wise, which
is easily implemented by exchanging the local matrix data structure. This re­
quires the same number of operations as assembling the local matrix, but the
memory usage is significantly reduced.

The previous discussion illustrates that the two­level Neumann­Neumann
preconditioner can be implemented in a matrix­free fashion, as it does not
require the assembly of any matrices, except the coarse grid stiffness matrix.
Furthermore, most operations can be reduced to applying the macro­element
local stiffness matrix. This is realized by padding or restricting the input to
the local kernel. For example the application of 𝐴𝐵𝑖𝐵𝑖

requires that all interior
DoFs are set to zero before applying the local kernel, andduring the solution of
a local Neumann problem it is necessary to set the DoFs, which are part of the
trueDirichlet boundaryof thePDE, to zero,while keeping theDoFson the inte­
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rior boundary. Therefore, the implementation uses only few problem depen­
dent kernels. These are bundled and passed into wrapper classes that offers
an interface to the macro element local operations, such as solving a Dirich­
let or Neumann problem locally, or applying the boundary­interior coupling
matrix. This results in an easy­to­use and generic implementation of the pre­
conditioner.

If a two­level method without non­overlapping domain decomposition is
used, only solving the system 𝐴𝐮 = 𝐟 with a preconditioned Krylov method
is necessary. The coarse grid correction works as before, except that the input
and output vectors are not restricted to the interface DoFs anymore. Under
certain circumstances, the iterative solvers mentioned previously can be ap­
plied in a matrix­free fashion, for example if the full matrix row for each DoF
can be computed on­the­fly. Due to the non­overlapping local data structure
of the macro element DoFs, the couplings with DoFs outside the current ele­
ment are not available, and therefore the matrix row for a DoF on the macro
element boundary cannot fully be assembled. Still, for the Jacobi method it is
possible to apply it in a mostly matrix­free context, after a preprocessing step.
This can be seen from examining one step of this method

𝑥𝑘+1 = 𝑥𝑘 + 𝐷−1(𝑟 − 𝐴𝑥𝑘),

where 𝐴𝑥𝑘 can be computed matrix­free and the diagonal 𝐷 = diag(𝐴) can
be precomputed similarily by recognizing that 𝐷𝑗𝑗 = 𝑎(𝜙𝑗, 𝜙𝑗). Since the com­
putation and application of 𝐷 has the same complexity, operation and mem­
ory wise, as the matrix­free evaluation of 𝐴𝑥𝑘, one step of the Jacobi precon­
ditioner does not require the assembly of the stiffness matrix 𝐴 at any time.
Therefore, the two­level method with a Jacobi preconditioner on the fine grid
is also implemented for block­structured grids.

4.3 Validation

Finally, in this section the convergence properties of the discussed precondi­
tioner, the two­level Neumann­Neumann method and the two­level method
with the Jacobi preconditioner on the fine grid, are examined. The example
problem is a Poisson problem

−Δ𝑢 = 𝑓 inΩ,
𝑢 = 𝑔 on 𝜕Ω,
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where 𝑢(𝑥) = ||𝑥||22 is chosen as the exact solution. The domain Ω = [0, 1]2
is discretized with equidistant quadrilaterals into 𝑁2 macro­elements, which
are, in turn, refined into 𝑘2 micro­elements piece­wise ℚ1 functions are used
for the finite element space. The resulting linear system is solvedwith the pre­
conditioned BiCGStab Krylov method until a reduction of the residual norm
of 10−10 is reached. The implementation of the coarse grid correction uses
the direct solver SuperLU [68] for the coarse problem. During the Neumann­
Neumann fine grid preconditioner application, the local solves also use the
BiCGStabmethod, although without preconditioning. As all systems are sym­
metric, theCGmethodwouldbemore efficient. However, as part of the generic
implementation the BiCGStab method was chosen. Finally, all local kernels
are generated, as discussed in the following section, only the driver is hand­
written.

There are two interesting behaviors to inspect for these two precondition­
ers. The first one is to analyze the convergence behavior under fixed𝐻/ℎ = 𝑘
with decreasingmesh sizes, and the second one is to keep themesh size ℎ con­
stant but increase the macro­element size𝐻. In the first case, both precondi­
tioner should yield constant convergence rates. In the second case, the condi­
tion number for the Neumann­Neumannmethod should grow as log2(𝐻/ℎ) =
log2 𝑘, which results in an expected increase inKrylov solver iterations of log 𝑘.
The necessary iterations of the two­level Jacobi method should increase at a
faster rate, although there is no theoretical estimate. Fig. 4.1 displays both be­
haviors.

As expected, both preconditioners exhibit grid independent convergence
rates for fixed block sizes (𝐻/ℎ), although the Jacobi preconditioner increases
for small grid sizes before flattening for medium and larger grid sizes. With
the Neumann­Neumann preconditioner, the solver converges in significantly
fewer iterations thanwith the Jacobi preconditioner. However, theNeumann­
Neumann advantage is revoked by its higher runtime per iteration. Apply­
ing the Neumann­Neumann fine grid preconditioner requires the solution of
a local problem on each macro element, thereby increasing the runtime of
the preconditioner application by the number of local solver iterations com­
pared to one operator application. In the case 𝐻/ℎ = 16, this results in an
increased cost per runtime of∼10×, which also grows for larger𝐻/ℎ, since the
local solvers converge slower.

The required number of iterations increases for fixed fine mesh sizes (ℎ) if
the block size is increased. In the Jacobi preconditioner case a nearly linear
dependency can be observed, indicating a condition number of𝒪(𝐻/ℎ). The
Neumann­Neumann preconditioner has a better theoretical estimate, which
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Figure 4.1: Number of iterations until error reduction of 10−10 for decreasing ℎ with
fixed𝐻/ℎ = 16 on the left side and for increasing𝐻/ℎ, or equivalently for increas­
ing block size, with fixed ℎ = 1/1024. With fixed 𝐻/ℎ the convergence rate for
both preconditioners is independent of the fine grid size ℎ. For fixed ℎ the Jacobi
preconditioner shows a growth rate of 𝐻/ℎ in the number of iterations, while the
Neumann­Neumann preconditioner displays the expected log(𝐻/ℎ) growth after
an initial decline.

can be observed after 𝑘 = 16. Before that point, the number of iterations de­
creases. The reason for the decline is currently unclear, although it might be
connected to the simple regularization used here. Nevertheless, this shows
again that medium block sizes are more favorable than smaller sizes, similar
to the discussion in 3.4.

4.4 Outlook

This chapter introduced twopreconditioners forblock­structuredgrids thatdo
not require theassemblyof thefinegrid stiffnessmatrix anddemonstrate good
convergence properties. Nevertheless, the convergence rate of the two­level
Neumann­Neumannpreconditioner canbe increasedsignificantlybyemploy­
ing a different coarse space correction. For instance the balancing domain
decomposition (BDD) method or the balancing domain decomposition with
constraint (BDDC) method could be used, which have the additional benefit
of restricting the local Neumann problem to a subspace on which𝐴𝑖 is invert­
ible. Other non­overlapping domain decompositionmethods, like the FETI or
FETI­DPmethod, without theNeumann­Neumannpreconditioner on the fine
grid, promise comparable convergence and could thus be evaluated. Regard­
less ofwhichpreconditioner is examinedmore closely, the important property
which thepreconditionerneeds to fulfil is that it canbe appliedmatrix­free, af­
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ter an optional preprocessing step.
Although the two­level Neumann­Neumann preconditioner shows better a

convergence rate than the two­level Jacobi method, it is not the best choice.
Since the Neumann­Neumann preconditioner requires expensive local solves
of either Dirichlet or Neumann type, the time­to­solution is too high in most
cases. Therefore, to use the Neumann­Neumann method efficiently, the local
solve time needs to be reduced. If the PDE has constant coefficients and the
macro­elements are equidistant and axiparallel, it is possible to precompute
and factorize the local matrix𝐴𝑖, since there are only a handful of different𝐴𝑖.
Otherwise, the local solver itself could be accelerated with a preconditioner,
or the local problems are only solved approximately using this preconditioner.
The latter approach requires, at first, recognizing that

𝐴−1 = [1 −𝐴−1𝐼𝐼 𝐴𝐼𝐵
0 1

] [𝐴
−1
𝐼𝐼 0
0 𝑆−1] [

1 0
−𝐴𝐵𝐼𝐴−1𝐼𝐼 1

] ,

where 𝐴𝐼𝐼 is the block­diagonal matrix containing all local 𝐴𝑖𝑖, and 𝐴𝐵𝐼, 𝐴𝐼𝐵
are its coupling with the interface DoFs. With suitable preconditioners 𝐵𝐼 for
𝐴𝐼𝐼 and 𝐵𝑆 for 𝑆 it follows that

𝐵 = [1 −𝐵𝐼𝐴𝐼𝐵
0 1

] [𝐵𝐼 0
0 𝐵𝑆

] [ 1 0
−𝐴𝐵𝐼𝐵𝐼 0]

is a reasonable preconditioner for the system 𝐴𝐮 = 𝐟. The preconditioners
𝐵𝐼, 𝐵𝑆 could now use inexact solvers for the local problems and comparable
convergence can still be expected, which is shown for other types of precondi­
tioners, such as the BDDC method [67] and the FETI­DP method [57].
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chapter5
Generating Local Kernels

N UMERICAL SOFTWARE FRAMEWORKS should aim to support end users
as much as possible to ease the development of their specific software.

This means frameworks should strife to allow users to focus on implement­
ing parts most vital to their research, while reducing the burden to develop
the remaining necessary parts of the software. In particular, users should not
be bothered with implementing advanced optimizations that are not part of
their research area. Instead, the framework should be designed in such a way
that users can get these benefits forminimal effort. One approach to automate
the application of the block­structured grid optimization in the context of C++
frameworks, likeDUNEor deal.II, could be to implement awrapper for user de­
fined local kernels, which handles the optimized geometry computations and
local data structure. However, automating the vectorizationdescribed in 3.3 in
this way is not viable. Another approach, used by FEniCS [2, 69] and Firedrake
[80] among others, is to generate a local kernel, which already incorporates
these optimizations, based on a simple description of the local integrals. The
following chapter considers the code generation process for block­structured
kernels and the application of optimizations for these local kernels.

5.1 Code Generation Framework

The code generation pipeline used in this thesis is implemented in the DUNE­
CODEGEN framework, which was established in [54] and [55]. Based on input
files using UFL to describe a weak formulation of a PDE a C++ class is gener­
ated, satisfying the LocalOperator concept used inDUNE­PDELAB. The cho­
sen interface is suitable to realize code generationwithinwell­defined bounds,
which reduces the overall complexity. Additionally, interfacing with DUNE al­
lows the reuse of advanced and thoroughly tested features likeMPI paralleliza­
tion or advanced grid managers. A downside to this approach is the tight cou­
pling between the code generator and DUNE, and especially DUNE­PDELAB,
which is often times only implicitly defined, whereas the whole program gen­
eration approach, as examined for example in the ExaStencils project [65, 85],
allows greater control over all interfaces at the cost of increased generation
complexity.
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5.1.1 Intermediate Representation

To allow for greater control and additional optimizations, an intermediate rep­
resentation (IR) is introduced between the weak formulation in UFL and the
final C++ code. DUNE­CODEGEN uses the python package Loopy as IR, which
is described in [58]. In this IR the computational kernel consists of a collection
of loop domains, instructions, and arguments. This description follows the
polyhedral model and Loopy is already bundled with kernel transformation
exploiting that model, e.g. loop tiling, vectorization, or unrolling. Listing 5.1
shows a verbose implementation of a Loopy kernel for the computation of the
matrix­free application of the Laplace operator in 1D, and the resulting Loopy
representation of kernel is printed in listing 5.2 using Loopy’s visualization ca­
pabilities.

In the following, theelementsof aLoopykernel arediscussed indetail. First­
ly, the loop domains are integer sets defined in the integer set library (ISL) syn­
tax, which consists of variables, in the Loopy context commonly referred to as
‘inames’, and affine constraints on these variables. The ISL, internally used by
Loopy, allows polyhedral computations on these set and, as such, is also used
by the polyhedral optimizers of the Clang and GNU compilers [48, 87]. Lines
8–10 in listing 5.1 define three of these sets. Thefirst onemakes use of a param­
eterized bound, while the size of the other two is fixed. Therefore, four loops
are introduced into the kernel, although there is no relationshipbetween these
inames at this state, not even between i and j except that both inames have
the same constraints. Loopy determines the actual nesting and ordering of
the loops using a polyhedral scheduling algorithm after the kernel’s creation,
depending on the instructions used in the kernel.

Secondly, instructions within the Loopy kernel are either symbolic expres­
sions, which are defined using the python package pymbolic [59], or opaque
strings representing C or C++ code snippets. In contrast to other symbolic
mathematics packages, e.g. SymPy [75], pymbolic does not employ any auto­
matic simplification heuristics. Instead, pymbolic preserves the expression
exactly as stated. If requested, DUNE­CODEGEN can apply SymPy’s simplifi­
cation algorithm as a post­processing step. The lines 11–26 in listing 5.1 show
the AST structure of the pymbolic expressions appearing in the computation
of the operator application.

Each instruction carries additional dependency information used to define
the schedule later on. The loop iname dependency defines implicitly the loop
nesting. In listing 5.1 only one instruction (l.11) depends on the e, q, and i loop,
while the other two (l.18 & l.22) depend only on the e loop. To prohibit adding

78 CHAPTER 5 GENERATING LOCAL KERNELS



1 from loopy import *
2 from pymbolic.primitives import *
3 import numpy as np
4

5 r, u, x, grad_u, h, qw, grad_phi, e, i, j, q, N = \
6 variables(”r u x grad_u h qw grad_phi e i j q N”)
7

8 dom = [”[N] -> {[e]: 0 <= e < N}”,
9 ”{[i, j]: 0 <= i,j < 2}”,

10 ”{[q]: 0 <= q < 2}”]
11 ins = [Assignment(assignee=Subscript(r, (e, i)),
12 expression=Sum((Subscript(r, (e, i)),
13 Product((Quotient(grad_u, h),
14 Quotient(Subscript(grad_phi,
15 (i,)), h),
16 Subscript(qw, (q,)), h)))),
17 within_inames=frozenset((”e”, ”i”, ”q”))),
18 Assignment(assignee=h,
19 expression=Sum((Subscript(x, (Sum((e, 1)),)),
20 Product((-1, Subscript(x, (e,)))))),
21 within_inames=frozenset((”e”,))),
22 Assignment(assignee=grad_u,
23 expression=Reduction(”sum”, inames=j,
24 expr=Product((Subscript(grad_phi,
25 (j,)),
26 Subscript(u, (e, j))
27 ))),
28 within_inames=frozenset((”e”,)))]
29 arg = [ValueArg(”N”, dtype=np.int64),
30 GlobalArg(”r”, dtype=np.float64, shape=(N, 2), strides=(1, 1)),
31 GlobalArg(”u”, dtype=np.float64, shape=(N, 2), strides=(1, 1)),
32 GlobalArg(”x”, dtype=np.float64, shape=(N + 1,)),
33 GlobalArg(”grad_phi”, dtype=np.float64, shape=(2,)),
34 GlobalArg(”qw”, dtype=np.float64, shape=(2,)),
35 TemporaryVariable(”grad_u”, dtype=np.float64),
36 TemporaryVariable(”h”, dtype=np.float64)]
37 knl = make_kernel(dom, ins, arg)

Figure 5.1: Explicit instantiation of a Loopy kernel representing a 1D Poisson operator
application assembly.
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ARGUMENTS:

N: ValueArg, type: np:dtype('int64')

grad_phi: type: np:dtype('float64'), shape: (2), dim_tags: (N0:stride:1)

aspace: global↪

qw: type: np:dtype('float64'), shape: (2), dim_tags: (N0:stride:1) aspace:

global↪

r: type: np:dtype('float64'), shape: (N, 2), dim_tags: (stride:1,

stride:1) aspace: global↪

u: type: np:dtype('float64'), shape: (N, 2), dim_tags: (stride:1,

stride:1) aspace: global↪

x: type: np:dtype('float64'), shape: (N + 1), dim_tags: (N0:stride:1)

aspace: global↪

——————————————————————–

DOMAINS:

[N] -> { [e] : 0 <= e < N }

{ [i, j] : 0 <= i <= 1 and 0 <= j <= 1 }

{ [q] : 0 <= q <= 1 }

——————————————————————–

TEMPORARIES:

acc_j: type: np:dtype('float64'), shape: () scope:private

grad_u: type: np:dtype('float64'), shape: () scope:private

h: type: np:dtype('float64'), shape: () scope:private

——————————————————————–

INSTRUCTIONS:

for e

↱ h = x[e + 1] + (-1)*x[e] {id=insn_0}

│↱ grad_u = reduce(sum, [j], grad_phi[j]*u[e, j]) {id=insn_1}

││ for q, i

└└ r[e, i] = r[e, i] + (grad_u / h)*(grad_phi[i] / h)*qw[q]*h

{id=insn}↪

end e, q, i

——————————————————————–

SCHEDULE:

0: CALL KERNEL loopy_kernel(extra_args=[], extra_inames=[])

1: for e

2: acc_j = 0 {id=insn_1_j_init}

3: h = x[e + 1] + (-1)*x[e] {id=insn_0}

4: for j

5: acc_j = acc_j + grad_phi[j]*u[e, j] {id=insn_1_j_update}

6: end j

7: grad_u = acc_j {id=insn_1_0}

8: for q

9: for i

10: r[e, i] = r[e, i] + (grad_u / h)*(grad_phi[i] /

h)*qw[q]*h {id=insn}↪

11: end i

12: end q

13: end e

14: RETURN FROM KERNEL loopy_kernel

Figure 5.2: Loopy’s internal representation of the previous kernel, after preprocessing
and scheduling.
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unnecessary loop dependencies to these two instructions, the q and i loop are
nestedwithin thee loop. Additionally, thedependencies between instructions
may be explicitly stated, although Loopy’s heuristic that each instruction de­
pends on all write instructions to its read variables is usually sufficient.

Lastly, all variables appearing in the kernel need to be defined as arguments.
The variables can represent temporary variables or global variables that are
passed into the kernel as parameters. For multidimensional data the extent
for eachdimensionhas tobedefined. Additionally, a stride for eachdimension
may be defined, if the canonical strides are not suitable. The combination of
extent (𝑒𝑖) and stride (𝑠𝑖) completely defines an index map by

idx(𝑖1, … , 𝑖𝑛) =
𝑛

∑
𝑙=1

𝑖𝑙 ⋅ 𝑠𝑙, with 𝑖𝑙 ∈ {0, … , 𝑒𝑖 − 1}.

In listing 5.1, a non­unit stride is explicitly stated for the r an u variables, both
of which model global vectors vector. These are indexed by the current ele­
ment and the localDoFof that element, andusing anondefault stride for them
results the index map [𝑒, 𝑖] ↦ 𝑒 + 𝑖, which maps each local DoF to the corre­
sponding global DoF.

5.1.2 UFL to Intermediate Representation

The Loopy kernel, as defined above, is created by transforming the UFL AST
into a pymbolic expression using a visitor pattern. The resulting pymbolic ex­
pression, called accumulation expression, represents the local contribution of
that kernel, e.g. the local residual or the local stiffness matrix, and it is cached
as a Loopy instruction. If a systemof PDEs is considered, the accumulation ex­
pression for each component is derived separately. Each UFL type is mapped
onto appropriate pymbolic types, using the algorithms provided in the UFL
package. During the tree traversal some UFL nodes are mapped to precom­
puted temporary variables, most notably the Coefficient node, represent­
ing the evaluation of the coefficient function or gradient, and geometry nodes
like SpatialCoordinate, JacobianDeterminant, or JacobianInverse. Ad­
ditionally, simple constant folding and zero elimination is automatically ap­
pliedduring the traversal. TheLoopy instructions for thecomputationof these
temporaries are cached, alongside with temporary variable and loop domain
definitions encountered throughout the course of the AST traversal. In the fi­
nal kernel creation step, these objects, together with the final accumulation
instructions, are extracted from the cache and used to create the Loopy ker­
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nel.
The visitor used in theAST traversal withinDUNE­CODEGEN can be special­

ized for block­structured grids or sum­factorized kernels, through the mixin
pattern, which is discussed for block­structured in the next section. This is
achieved by splitting the visitor into the following five parts, each one han­
dling conceptually similar UFL nodes:

Geometry handles nodes concerning geometric quantities like the Jacobian
determinant or the face outer normal.

Basis handles the basis and coefficient evaluation.

Quadrature handles the quadrature rule evaluation.

Accumulation although not connected to any UFL node directly this handles
the creation of the accumulation instruction based on its pymbolic ex­
pression.

Auxiliary handles nodes not covered by the other groups, which are mostly
algebraic or indexing nodes.

For each of these parts a default mixin class exists, and the first four parts
can be specialized by providing a custom mixin class. The specializations en­
able certain optimizations during the AST transformation. For instance, the
default geometry mixin exists in multiple variants, simplifying the compu­
tation of geometric quantities on axiparallel or equidistant grids. Currently,
the block­structured and sum­factorized specializations are mutually exclu­
sive, although it should be noted that sum­factorization ofmicro element ker­
nels is conceptually possible on block­structured grids. The specializedmixin
classes can be chosen by providing the according options in an additional ini
file, otherwise the default mixins are used.

The overall generation process is summarized in Fig. 5.3. A specialized vis­
itor transforms the UFL AST into a pymbolic AST symbolizing the accumu­
lation instruction, which is added to the Loopy kernel alongside previously
cached instructions. Once the kernel is created, certain transformations are
applied, which consists of optimizations depending on type of the tree visi­
tor and the user specification. Using the existing code generation capabilities
of Loopy a C++ function is generated and fitted into a DUNE­PDELAB Local-
Operator class. For a complete program a handwritten main file, also called
driver, using the DUNE framework needs to be supplied. In simple test cases
the code generator is capable to automatically provide the driver, but formore
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Figure 5.3: Schematic view of the DUNE­CODEGEN generation pipeline.

evolved applications additional user input is necessary. Lastly, the C++ com­
piler of choice, supporting at least C++–17, compiles the driver and LocalOper-
ator class together with the DUNE libraries into the final executable. Thereby,
the user effort for creating local kernels is significantly reduced.

5.2 Support for Block-Structured Grids

The following section outlines the handling of block­structured grids within
DUNE­CODEGEN, detailing the mixin approach outlined in the previous sec­
tion. With only minor adjustments, minimal support as described in section
3.1 can be achieved. It suffices to add the micro element loops, change the
local data structure and the corresponding index mappings for basic support.
Together with the optimized geometry computations from section 3.1.1 these
changes are implemented as specialized mixin classes, while the vectoriza­
tionmentioned in section 3.3 is realized as a Loopy kernel transformation, dis­
cussed in section 5.3.1. All four mixin classes, geometry, basis, accumulation,
and quadrature, need to be specialized in order to implement the features that
are crucial for block­structured grids. The specialized mixins are controlled
by flags within the .ini file. Fig. 5.4 shows the domains and instructions of a
finished Loopy kernel, without further optimizations, for the residual compu­
tation of the Poissonproblemwith𝑓 = −4 on a 2Dequidistant gridwithmacro
element size 𝑘 = 16.
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...

———————————————————————

DOMAINS:

{ [i_4_x, i_4_y] : 0 <= i_4_x <= 1 and 0 <= i_4_y <= 1 }

{ [q] : 0 <= q <= 3 }

{ [idim0] : 0 <= idim0 <= 1 }

{ [i_5_x, i_5_y] : 0 <= i_5_x <= 1 and 0 <= i_5_y <= 1 }

{ [e_x, e_y] : 0 <= e_x <= 15 and 0 <= e_y <= 15 }

{ [i_6_x, i_6_y] : 0 <= i_6_x <= 1 and 0 <= i_6_y <= 1 }

{ [i_7_x, i_7_y] : 0 <= i_7_x <= 1 and 0 <= i_7_y <= 1 }

———————————————————————

INSTRUCTIONS:

for e_x, e_y, i_6_x, i_6_y

↱ r_lfsv_loc[i_6_x, i_6_y] = 0 {id=insn_0007}

│↱ x_lfsv_loc[i_6_x, i_6_y] = x_lfsv_alias[e_x, e_y, i_6_x,

i_6_y] {id=insn_0005}↪

││ end i_6_x, i_6_y

││ for q, idim0

││↱ acc_i_5_x_i_5_y = 0 {id=insn_0006_i_5_x_i_5_y_init}

│││ for i_5_y, i_5_x

│├└↱ acc_i_5_x_i_5_y = acc_i_5_x_i_5_y + x_lfsv_loc[i_5_x,

i_5_y]*js_BCG1[q, i_5_x + 2*i_5_y, 0, idim0]

{id=insn_0006_i_5_x_i_5_y_update}

↪

↪

││ │ end i_5_y, i_5_x

│└↱└ gradu_None[idim0] = acc_i_5_x_i_5_y {id=insn_0006_0}

│ │ end idim0

│ │ for i_4_y, i_4_x

├↱├ r_lfsv_loc[i_4_x, i_4_y] = 0.00390625*(4*phi_BCG1[q, i_4_x

+ 2*i_4_y, 0] + 256*js_BCG1[q, i_4_x + 2*i_4_y, 0, 0]*jit[0,

0]*gradu_None[0]*jit[0, 0] + 256*js_BCG1[q, i_4_x + 2*i_4_y, 0,

1]*jit[1, 1]*gradu_None[1]*jit[1, 1])*qw_dim2_order2[q]*detjac +

r_lfsv_loc[i_4_x, i_4_y] {id=insn_0008}

↪

↪

↪

↪

│││ end q, i_4_y, i_4_x

│││ for i_7_y, i_7_x

└└└ r_lfsv_alias[e_x, e_y, i_7_x, i_7_y] = r_lfsv_alias[e_x, e_y,

i_7_x, i_7_y] + r_lfsv_loc[i_7_x, i_7_y]*r.weight() {id=insn_0009,

tags=accum}

↪

↪

end e_x, e_y, i_7_y, i_7_x

———————————————————————

...

Figure 5.4: The generated Loopy kernel for a 2D block­structured grid with 𝑘 = 16
(abbreviated).
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5.2.1 Visitor Specializations

In the following, the visitor specializations are discussed, starting with the
quadrature mixin. This mixin realizes the characteristic micro element loops.
More specifically, the default mixin defines the quadrature loop, its inames
andextents, and the specializedversionextents it byadding themicro element
loop inames and their extents. Thereby, any instruction previously dependent
on thequadrature loop is nowalsodependent onmicro element loops. Besides
thedefinitionof thequadrature loops, themixin implements thepositions and
weights of the quadrature points. On block­structured grids a distinction be­
tween a quadrature point within the micro element and the macro element is
implemented. The positionw.r.t. themicro element is used for local computa­
tions, such as the basis evaluations, while thepositionw.r.t. themacro element
is mostly necessary during the evaluation of the geometry transformation.

As discussed in section 3.1.2, adjustments to the local data structure are nec­
essary. These are addressed by the both the basismixin and the accumulation
mixin. As afirst step inbothmixins tensor product indices, 𝑖1, … , 𝑖𝑑 ∈ {0, … , 𝑝},
are introduced for theenumerationof themicroelementDoFsbelonging to the
local ℚ𝑝 basis, as mentioned in section 3.1.2. Using this local DoF indexing,
and the micro element indexing discussed before, the local coefficient data
and the local result data are defined as 2𝑑­dimensional arrays with shape and
strides defined as

shape = (
𝑑 times

⏞⎴⏞⎴⏞𝑘,… , 𝑘,
𝑑 times

⏞⎴⎴⎴⏞⎴⎴⎴⏞𝑝 + 1, … , 𝑝 + 1)

stride𝑗 = {
𝑝(𝑝𝑘 + 1)𝑗−1 if 𝑗 ≤ 𝑑,
(𝑝𝑘 + 1)𝑗−𝑑−1 if 𝑗 > 𝑑,

whichare similar to the shape and strides from listing 5.1. Bydefining this non­
unit stride, Loopy is able to compute the linearized index the same way as in
section 3.1.2, since

idx(𝑗1, … , 𝑗2𝑑) =
2𝑑

∑
𝑙=1

𝑗𝑙 ⋅ stride𝑙 =
𝑑

∑
𝑙=1

𝑗𝑙𝑝(𝑝𝑘 + 1)𝑙−1 +
2𝑑

∑
𝑙=𝑑+1

𝑗𝑙(𝑝𝑘 + 1)𝑙−𝑑−1

=
𝑑

∑
𝑗=1

(𝑝𝑗𝑙 + 𝑗𝑑+𝑙)(𝑝𝑘 + 1)𝑙−1

with 𝑗𝑙 = 𝑒𝑙 and 𝑗𝑑+𝑙 = 𝑖𝑙 for 𝑙 = 1, … , 𝑑. As in chapter 3 𝑒1, … , 𝑒𝑑 refer to the
micro element loop inames and 𝑖1, … , 𝑖𝑑 denote inames of the local DoFs loop.
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For a system of PDEs, an array for each finite element component is defined
in that way. These arrays alias the DUNE­PDELAB local vectors passed into
the generated kernel to enable direct accessing. Finally, the basis mixin adds
the precomputation of the basis evaluation at each micro element quadrature
point to the constructor of the generated LocalOperator class.

Similar to the default geometrymixin, there aremultiple variants of geome­
trymixin classes for block­structured grids, specialized for differentmacro el­
ement geometry types. The most general variant handles multilinear geome­
tries, which have to be reevaluated at each quadrature point. First, a tempo­
rary variable representing the Jacobian of the geometry transformation and
the necessary instructions for its computation using the ℚ1 basis are cached.
Then temporaries and their corresponding instructions, representing the in­
verse or the determinant, are cached, and the UFL geometry node is trans­
formed into a pymbolic variable symbolizing the precomputed quantity. If the
underlyingmacro grid consists only of axiparallel elements, themixin adds in­
structions to evaluate the inverse or determinant only oncepermacro element,
and scales them according to the micro element size. For equidistant macro
grids, the mixin derives from the axiparallel mixin, with the optimization to
compute the inverse and determinant only once for the whole grid. All spe­
cialized block­structured geometry mixins derive from the default mixin and
use their implementation for intersection quantities.

Except for the geometry mixin, the block­structured mixins rely indirectly
on DUNE’s representations. The quadrature mixin assumes that a Gaussian
quadrature rule is used in order to compute the number of quadrature points
needed at compile time, simplifying the quadrature loop for the C++ compiler.
The basis and accumulation mixin expect that the local data passed into the
macro element kernel adheres to the layout specified in section 3.1.2. These as­
sumptions are not enforced in any kind, leaving them fragile w.r.t. changes in
upstreamDUNEmodules. Usingpythonbindings forDUNEmodules [27] could
reduce this issue, by querying for example the quadrature rule for a specific
degree from DUNE­GEOMETRY or the local layout interface defined in DUNE­
LOCALFUNCTIONS. However, these are still in development.

5.2.2 Preconditioner Generation

The additions outlined above are sufficient to create block­structured Loopy
kernels, but the two levelpreconditioners introduced inchapter4 require some
auxiliarykernels. First of all, local kernels for thecoarsegridareneeded. These
are trivially generated using the default mixins. Since only continuousℚ𝑝 el­
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ements are considered, the macro element local restriction and prolongation
operations can easily be generated. The required scaling for both the handling
of the macro element interface DoFs and the Neumann­Neumann fine grid
preconditioner is not generated. Instead, a generic local kernel that simply
adds 1 to all macro element DoFs is sufficient. Through the additive assembly
of the local contributions, this results in a global vector, containing the num­
ber of elements each DoF is contained in, and element­wise inversion results
in the required scaling factors.

Both theJacobi andNeumann­Neumannfinegridcorrectionneedsomespe­
cial kernelsnot sharedbetweeneachother. TheJacobipreconditioner requires
a kernel to precompute the diagonal of the stiffness matrix, since this cannot
be computed on­the­fly. Although UFL does not directly support extracting
thediagonal of the stiffnessmatrix, onlyminor adjustments are necessary. Re­
placing the first argument of the Jacobian bilinear form with the second one
leads to a weak formulation that assembles diag(𝐴)𝑖 = 𝑎(𝜙𝑖, 𝜙𝑖) directly.

As laid out in section 4.2, solving the local Neumann or Dirichlet problem
depends only on already generated macro element kernels. These kernels re­
quire some additional pre­ or post­processing. If a Dirichlet condition has to
be applied, either artificial ones on internal faces or problem dependent ones
on boundary faces, the interface values need to be zeroed out. In other cases,
for example applying the local boundary­interface couplings, all interior DoFs
need to be set to zero. For each of these operations, specialized copy kernels
are generated. The scaling of the identity matrix, required by the Neumann
solver, uses the approach outlined in 4.2, which requires the generation of a
kernel for computing the macro element local stiffness matrix. This is part of
the standard generation process, although for other matrix­free applications
it is disabled.

5.3 Optimizations

This sectiondescribes the block­structuring specific Loopykernel transforma­
tions implemented in DUNE­CODEGEN. The optimized geometry transforma­
tion computation mentioned in section 3.1.1 are part of the specialized mixin
classes and, as such, already mentioned in 5.2. The other optimization dis­
cussed in chapter 3, vectorization, is implemented as a transformation on top
of the Loopy kernel created after the UFLAST traversal and examined later on.
Another optimization, mentioned only implicitly in chapter 3, is the precom­
putation of quantities independent of themicro element loop, like the scaling
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of gradients in the affine geometry case. In the code generator this is realized
through loop invariant code motion (LICM), and will be described in the sec­
ond part of this section.

5.3.1 Vectorization

Loopy supports vectorization for OpenCL or CUDA targets natively, and the
support for C++ code using the VCL vector types has been added in DUNE­
CODEGEN. Vectorized Loopy kernels are created by tagging loop inames and
shape dimensions of arrays with an appropriate tag. Contrary to the vector­
ization mostly used in C++ compilers, the vectorized loop does not need to
be the innermost loop, which is beneficial for the block­structured grids ker­
nel, since the iname for the cross­element vectorization is never the innermost
iname. The vectorization described in section 3.3 is achieved by first tagging
the innermost micro element loop to be vectorized, creating vectorizable data
aliases, and then adding explicit SIMD load and store expressions. Afterwards,
the accumulation instruction is adjusted depending on the vectorization vari­
ant used (overlapping or non­overlapping).

Since only inames with loop size of exactly the SIMD vector width 𝑤 may
be tagged, the innermost micro element loop is split into an inner loop of size
𝑤 and an outer loop of size 𝑘/𝑤, where 𝑘 is the macro element size, assum­
ing that 𝑘 is divisible by 𝑤. If the data layout of the tagged arrays is simple
enough, i.e. standard strides are used, Loopy handles the vectorized access­
ing of the data by itself. This is not the case for the local data structures used
in the block­structured kernels. Due to their non­trivial strides as discussed
in 5.2.1, Loopy’s code generation fails and the kernel has to be transformed to
comply with Loopy’s requirements for vectorizable code. The transformation
adds new temporaries of size 𝑤, which alias the access of the [𝑖1, … , 𝑖𝑑]micro
element DoF of 𝑤 adjacent elements, and new instructions to directly load or
store these SIMD vectors using the VCL interface.

Dependingon thevectorizationvariant, theaccumulation into the local data
structure ismodifiedusing the approachesmentioned in section 3.3. The non­
overlapping variant requires unrolling the innermost micro element loop and
merging the computations. For the overlapping variant the loop ordering of
the micro element DoF loop is adjusted, such that the loop with the same di­
rectionas thevectorizedmacro element loopbecomes theoutermost loop. Ad­
ditionally, someexpressions require the valueof vectorized inamedirectly and
not as part of an indexing, which cannot be vectorized by Loopy. One instance
is the computation of the quadrature position within the macro element. A
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workaround for that issue is to create an array, containing all values of the
iname, and vectorize that array.

The previous discussion assumed that the macro element size is a multiple
of the vector width, which is quite strict especially on AVX512 machines with
𝑤 = 8. To accommodate for the cases where 𝑘mod𝑤 ≠ 0, the innermost mi­
cro element loop is divided into two chunks, the first one of size 𝑤 ⌊𝑘/𝑤⌋ and
the second one with 𝑘mod𝑤. If desired, the second chunk can be vectorized
with a lower SIMDvectorwidth. In order to repeat theprocess described above,
the chunk needs to be realized with duplicated instructions. Loopy does not
duplicate these by itself, instead an additional transformation adds the neces­
sary second chunk. The process of splitting the vectorization loop, realizing
the tail chunk and vectorizing it may applied recursively until vectorization is
not possible anymore. This ensures that as many vectorized instructions as
possible are issued during the macro element kernel.

5.3.2 Loop Invariant Code Motion

The major contributor to the local kernel runtime are the number of FLOPs
executedwithin the innermost loop, specifically theoperationsneeded tocom­
pute the accumulation expression. One approach to reduce these FLOPs is to
use loop invariant codemotion (LICM),which shares similaritieswith common
subexpression elimination (CSE). In both cases redundant computations are
replaced by precomputed temporaries. While CSE only recognizes redundan­
cieswithin a single instruction, LICMalso considers subexpressionswhich are
invariant with respect to the instructions loop nesting, and can thus be pre­
computed inside a smaller loop nesting. Since the block­structuring approach
introduces additional loops andexpressiondependingon these, LICM isbetter
suited than plain CSE. Consider, for example, the kernel in Fig. 5.5. On a struc­
tured grid, the scaling of the basis function gradients is independent of the in­
nermost loop and should be precomputed. In such simple cases, the C++ com­
piler might be able to apply the LICM transformation, but that chance rapidly

Figure 5.5: Example kernel with redun­
dant computations. The kernel com­
putes the local operator application.
Since the geometry is assumed to be
affine linear, the scaling of the gradi­
ents is redundant and should be pre­
computed outside of the micro ele­
ment loop.

for ex in 0..k
for (qp, qw) in quadrature
grad_u = sum(j, grad_phi[j] *

u[ex, j])
for i in 0..n_b
r[ex, i] += qw / k *

(1/k * J^-T * grad_u) *
(1/k * J^-T * grad_phi[i]))
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decreases for more complex weak formulations or kernels, and therefore this
transformation is best applied at the loopy kernel level.

While algorithms implementing LICM are well known and widely used, see
for example [26], thedifficulty in this casearises fromapplying themwithin the
Loopy kernel framework. Since an unscheduled Loopy kernel has no informa­
tion about the nesting of its loop domains, it is not possible to determine loop
invariant expressions at thatmoment. Thus, the kernelmust be scheduled, us­
ing Loopy’s capabilities, before the LICM algorithm can be applied. The algo­
rithm consists of two parts, where the first part identifies subexpression suit­
able for precomputation, and in the second part these precomputation must
be added to the kernel’s schedule. It is possible to leave the scheduling of the
new kernel to Loopy. However, it is more efficient to directly compute the new
schedule, since all the necessary dependency information is already available
from the first part. In the following, both parts of the algorithm are described
in more detail.

Part I — Finding Subexpressions
The first step is to detect which subexpressions are worthwhile to precompute,
by determining the number of redundant computations done for each subex­
pression. Computing this redundancy requires knowledge of the scope of each
subexpression— theminimal loop domain, withinwhich the subexpression is
valid w.r.t. the current schedule— and removing that from the loop domain of
the root expression containing the subexpression. Afterwards, the size of the
remaining loop domain gives the redundancy cost. For example, the minimal
loop domain of the expression t+b[i] in Fig. 5.6 is defined by the iname i, al­
though t is also updated in the k loop. For the expression c[j] the minimal
inames are i,j, since the j loop is nested within the i loop. From these min­
imal loop domains, it can be seen, that n additional computations are made
for each computation of d[i,j], which should be avoided. Both the detection
of the minimal necessary loop domain and the computation of the redundant
cost are implemented as AST visitors. Before applying the redundant cost vis­
itor it is advantageous to group the child nodes of the Sum and Product nodes
according to their loop domain to maximize the size of the possible precom­
putations.

Next, all subexpressions with cost greater than 1 are precomputation candi­
dates, but it is generally not feasible to precompute every possible subexpres­
sion, since the high number of added temporarieswould increase the pressure
on the CPU registers. Instead, the precomputations are filtered into two cate­
gories. The first one contains the precomputations that can either be hoisted
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Figure 5.6: Simple loop nesting illustrating
the redundant cost definition. Although t
is accessed in loop i and k its scope is only
loop i. Thus, theminimal loop domain for
the expression t+b[i] is i, and i,j for the
expression (t+b[i])*c[j].

for i in 0..n
t = 0
for k in -1,0,1
t = t + a[k]

for j in 0..n
d[i,j] = (t + b[i]) * c[j]

outside the loop domain of their root expressions or have an arithmetic cost
higher than a heuristic value. These precomputations are realized as part of
the LICM transformation. All other precomputations fall into the second cat­
egory, and are left for the C++ compiler to decide. Thus, these subexpressions
are removed from the ASTs of each root expression.

Finally, the Loopy instructions and temporaries defining the precomputed
subexpressions are added to the kernel. But this does not update the existing
schedule automatically, which is addressed in the second part. Additionally,
a dependency DAG for the newly added instructions is created, mirroring the
reduced precomputation AST with the addition of dependencies on already
existing instructions.

Part II — Updating the Schedule
Using the dependency DAG from the previous step, the existing schedule is
updated. The new schedulemust satisfy the following conditions: i) each new
precomputation is scheduled after all precomputations or existing instruction
it depends on, ii) all precomputations are scheduled before any instruction de­
pending on it, iii) each precomputation is nested within its minimal loop do­
main. This problem is similar to finding a topological ordering, but condition
iii) prohibits the formulation of this problem in that way, since the condition
cannot be easily represented in the dependency DAG.

Nevertheless, starting from a topologically ordering of the precomputation
subset of the DAG, the schedule index is determined for each precomputation,
satisfying the conditions above. The schedule is not modified during this in­
dex computation, since this would lead to a 𝒪(𝑚 ⋅ 𝑛) complexity. In this in­
stance 𝑚 is the number of new precomputations and 𝑛 is the number of ex­
isting instructions. These new indices are used later on to create the updated
schedule. This is accomplished by a stable insertion method 5.1, which adds
the precomputation to the schedule, such that each precomputation is located
at its corresponding index, if no other precomputation were added.

Subject to the dependency types of a precomputation, satisfying the condi­
tions requires special care. If the precomputation does not depend on other
precomputations, conditions i) and ii) can be easily satisfied by incrementing
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the index of the last instruction the new precomputation depends on. To sat­
isfy condition iii) the currently active loop domain needs to be known at each
indexof the current schedule. Then the insertion indexdeterminedbefore can
be increased until the loop domainsmatch. If a precomputation also depends
on other precomputations, these instructions are already scheduled due to the
topologically ordering used in the beginning. Therefore, using the same index
as the last scheduled precomputation it depends on suffices, as the insertion
at the end guarantees that two instructionswith the same index are inserted in
the order they were handled during the DAG traversal. Algorithm 5.2 depicts
the described approach.

One aim of using code generation is to transfer the handwritten optimiza­
tions applied to a specific problem to a broader class of problems, which re­
quires as a first step that the code generation can replicate the known hand­
writtenoptimizations. Thedescribedalgorithmcanapply thoseoptimizations
to the examples described earlier. For example, applied to the example Loopy
kernel in Fig. 5.4 from section 5.2 it results in the kernel shown in Fig. 5.7. This
shows that the code generation, togetherwithLICM, can createmacro element
kernels with similar computational complexity as the geometry optimizations
discussed in section 3.1.1.

5.4 Benchmarks

In the following, the benchmarks for the handwritten code from section 3.4
are revisited to show that the generated kernels reach the performance of the
handwritten ones. As before, all examples compute the matrix­free Laplace
operator application with constant coefficients. In the generated case both a
2Dgridwith 1024×1024fine grid elements and a 3Dgridwith 128×128×128 fine
grid elements are used, while the handwritten kernels are only implemented
for the 2D grid. In either cases, the size of themacro elements varies. The first
example considers the generated vectorization, without further optimizations.
Then, the secondexample examines theLICMoptimizationbyconsidering the
geometry computation again, and lastly, the overall performance of the oper­
ator application is discussed.
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Algorithm5.1: Stable Insertion
Function: StableInsertion(a, b, idx)
Data: 𝑎 list, 𝑏 list, 𝑖𝑑𝑥 indices of 𝑏
Result: 𝑟merged list
𝑟 = []
𝑖 = 0
𝑐 = 0
while 𝑎 or 𝑏 not empty do
if 𝑏 not empty and 𝑖 = 𝑖𝑑𝑥[0] + 𝑐 then

𝑛 = PopFront(b)
PopFront(𝑖𝑑𝑥)
𝑐 = 𝑐 + 1

else
𝑛 = PopFront(a)

Append(𝑟, 𝑛)
𝑖 = 𝑖 + 1

Algorithm5.2: Schedule Update
Function: ScheduleUpdate(I, D, S, AI, G, T,MI)
Data: 𝐼 sorted set of scheduled existing instructions,𝐷 set of all

inames, 𝑃(𝐷) power set of𝐷, 𝑆 ∶ 𝐼 ↦ ℕ schedule,
𝐴𝐼 ∶ ℕ ↦ 𝑃(𝐷)maps schedule index to active inames,
𝐺 = (𝑉, 𝐸) dependency DAG, 𝑇 set of precomputation
instructions,𝑀𝐼 ∶ 𝑉 ↦ 𝑃(𝐷)maps subexpression to
minimal inames

Result: 𝑅 scheduled list of instructions satisfying conditions i)–iii)
𝑄 = TopologicalSort(G)
while𝑄 ≠ ∅ do

𝑣 = Deque(Q)
if 𝑣 ∈ 𝑇 then

𝑆(𝑣) = max({𝑆(𝑑) + 1|𝑑 ∈ Children(v) ∩ 𝐼} ∪ {𝑆(𝑑)|𝑑 ∈
Children(v) ∩ 𝑇})
while𝐴𝐼(𝑆(𝑣)) ≠ 𝑀𝐼(𝑣) do

𝑆(𝑣) = 𝑆(𝑣) + 1
𝑇 = StableSort(T, key=S)
𝑖𝑑𝑥 = StableSort({𝑆(𝑣)|𝑣 ∈ 𝑇})
𝑅 = StableInsertion(I, T, idx)
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...

———————————————————————

INSTRUCTIONS:

↱ t = r.weight() {id=precompute_t}

│↱ t_0 = 256*jit[1, 1]*jit[1, 1] {id=precompute_t_0}

││↱ t_2 = 256*jit[0, 0]*jit[0, 0] {id=precompute_t_2}

│││↱ t_4 = 0.00390625*detjac {id=precompute_t_4}

││││ for e_y, e_x, i_6_y, i_6_x

││││↱ r_lfsv_loc[i_6_x, i_6_y] = 0 {id=insn_0007}

│││││↱ x_lfsv_loc[i_6_x, i_6_y] = x_lfsv_alias[e_x, e_y,

i_6_x, i_6_y] {id=insn_0005}↪

││││││ end i_6_y, i_6_x

││││││ for q

│││├││↱ t_5 = t_4*qw_dim2_order2[q] {id=precompute_t_5}

│││││││ for idim0

│││││││↱ acc_i_5_x_i_5_y = 0 {id=insn_0006_i_5_x_i_5_y_init}

││││││││ for i_5_x, i_5_y

│││││├│└↱ acc_i_5_x_i_5_y = acc_i_5_x_i_5_y +

x_lfsv_loc[i_5_x, i_5_y]*js_BCG1[q, i_5_x + 2*i_5_y, 0, idim0]

{id=insn_0006_i_5_x_i_5_y_update}

↪

↪

│││││││ │ end i_5_x, i_5_y

│││││└│↱└ gradu_None[idim0] = acc_i_5_x_i_5_y {id=insn_0006_0}

│││││ ││ end idim0

│├│││↱│├ t_1 = t_0*gradu_None[1] {id=precompute_t_1}

││├││││├↱ t_3 = t_2*gradu_None[0] {id=precompute_t_3}

│││││││││ for i_4_x, i_4_y

│└└└├└└├└↱ r_lfsv_loc[i_4_x, i_4_y] = t_5*(4*phi_BCG1[q, i_4_x +

2*i_4_y, 0] + t_3*js_BCG1[q, i_4_x + 2*i_4_y, 0, 0] + t_1*js_BCG1[q,

i_4_x + 2*i_4_y, 0, 1]) + r_lfsv_loc[i_4_x, i_4_y] {id=insn_0008}

↪

↪

│ │ │ │ end q, i_4_x, i_4_y

│ │ │ │ for i_7_x, i_7_y

└ └ └ └ r_lfsv_alias[e_x, e_y, i_7_x, i_7_y] =

r_lfsv_alias[e_x, e_y, i_7_x, i_7_y] + r_lfsv_loc[i_7_x, i_7_y]*t

{id=insn_0009, tags=accum}

↪

↪

end e_y, e_x, i_7_x, i_7_y

———————————————————————

...

Figure 5.7: Abbreviated Loopy kernel resulting from LICM application to the kernel
presented in 5.4. The combination of the precomputations t_0,...,t_3 is nearly
equivalent to scale the gradients beforehand.
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5.4.1 Efficient Vectorization

To show the validity of the vectorization transformation, the speed­up gained
by generating the vectorized code is examined, similar to section 3.4.3. The
same setup is used, although only low andmediumquadrature orders are con­
sidered. Fig. 5.8 shows the attained speed­up for the generated kernels, the
corresponding values for the handwritten kernels in 2D can be found in Fig.
3.14.

Figure 5.8: Speed­upsof thevectorized local kernels compared tounvectorizedkernels
for varying macro element sizes. The dotted lines correspond to AVX2 vectorized
kernels (SIMD width 4) and the dashed­dotted lines to AVX­512 vectorized kernels
(SIMDwidth 8). The speed­up is shown only for generated kernels, refer to Fig. 3.14
for the handwritten kernels. The 2D computations don’t fully reach the optimal
speed­up, especially the medium quadrature rule computations. In 3D, good and
nearly ideal speed­ups are achieved, with little variation between the overlapping
and non­overlapping variant. The poorer results in the 2D case might be explained
by the better auto vectorization of the baseline kernel.

Compared to thehandwritten speed­ups, the generatedkernels achieve gen­
erally lower speed­ups in 2D. Especially for kernels with AVX­512 instructions
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and medium quadrature orders this difference is significant, while for 𝑞 = 2
the gap is nearly closed. Again it should be noted that the baseline kernels
still uses auto vectorization from the C++ compiler. Combinedwith the higher
number of FLOP compared to the handwritten kernels in 3.4.3 due to omit­
ting further optimizations, this could result in a higher performance of the
baseline kernels, which would in turn reduce the scaling gained from cross­
element vectorization. Furthermore, in 3D the auto vectorization fails, and
therefore the generated kernels reach higher speed­ups, which resemble the
expected speed­ups more closely. This shows that generating vectorized code
canachievenearly optimal speed­ups, whichwill be supportedby the operator
application benchmark in section 5.4.3.

5.4.2 Efficient Geometry Computation

The following benchmark examines the optimizations w.r.t. to the type of the
geometry transformation, multilinear or affine, more closely and compares it
with the handwritten code used in section 3.4.2. The setup is the same as in
that section, and only the optimized handwritten kernels are compared to the
generated kernels with the LICM optimization enabled. Additionally, the run­
time reduction on a 3D grid is considered for the generated kernels.

The resulting performance, as illustrated in 5.9, is considered in the follow­
ingThe visitor optimizes the precomputations strictly constrained to the com­
putationof the Jacobiandeterminant and theJacobian’s inverse. All otherpre­
computations, such as scaling the gradients, are realized by the LICM transfor­
mation. These optimizations combined can replicate the runtime reduction of
the handwritten kernels. In the affine case, the generated kernels are slightly
slower, but for themultilinear case theyachieveanadditional reductionof 10%
points, which are most likely caused by further precomputations realized by
LICM that are not present in the handwritten case. The computations in 3D do
not achieve the same reduction as in the 2D case, since the computation of the
geometry quantities takes up less of the kernel runtime.

5.4.3 Operator Application

Finally, the benchmark from section 3.4.4 is replicated, examining the perfor­
mance of the generated,matrix­free operator application. Bothpreviously dis­
cussedoptimizationsare combined in this example. Fig. 5.10 shows theFLOP/s
performance and Fig. 5.11 displays the DoF/s performance of one operator ap­
plication, comparing the generated and handwritten kernels in 2D. Addition­
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Figure 5.9: The local kernel runtime of block­structured kernels, both generated and
handwritten, on grids with affine and multilinear geometries, reported as percent­
age of the nonblock­structured kernel. The handwritten kernel has been optimized
by hand, while the generated kernel relies on LICM. Compared to the handwritten
kernels, thegeneratedkernels achievenearly the same runtime reduction, even sur­
passing the handwritten performance for the multilinear case. The 3D behavior is
similar to the 2D case, although the increased non geometry related work leads to a
smaller reduction.

ally, the performance of the generated kernels in 3D is provided. In Fig. 5.11
the grayed­out line represents the theoretical performance of a matrix­based
operator application for this problem, i.e. ∼35 MDoF/s in 2D and ∼11 MDoF/s
in 3D. Across all benchmarks the generated kernels achieve nearly the same
performance as the handwritten kernels, in some cases it even surpasses the
handwritten performance. This comparison establishes generated kernels as
a suitable replacement for kernels optimized by hand.
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Figure 5.10: FLOP/s performance of the macro element kernels reported as % of LIN­
PACK peak performance for the generated kernels (dashed­dotted lines) and the
handwritten kernels (dotted lines). The generated kernels are also considered in 3D.
100%of LINPACKpeak on one core corresponds to∼45.5 GFLOP/s. In 2D the gener­
atedkernels achieve their peakperformance faster than thehandwrittenones. Nev­
ertheless, thepeakperformanceofbothvariants isnearly indistinguishable. The3D
kernels exhibit the same qualitative behavior as the 2D cases, although the FLOP/s
performance is slightly lower than the LINPACK peak.

Figure 5.11: Operator application performance in MDoF/s for the generated kernels
(dashed­dotted lines) and the handwritten kernels (dotted lines). The generated
kernels are also considered in 3D. Additionally, the dashed, grayed­out line depicts
the performance of the corresponding assembledmatrix application. Similar to the
FLOP/s discussion, the generated kernels achieve the same performance as the op­
timized, handwritten ones. Additionally, in 3D thematrix­free applicationwith the
𝑞 = 2 kernel is faster than the corresponding matrix vector multiplication.
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5.5 Outlook

The code generation for block­structured grids, introduced in this chapter, can
result in similar performance to handwritten codes. The discussed optimiza­
tions, realized either as specialized visitor or as Loopy transformations, are
crucial to achieving this performance, but they are not the only possible op­
timizations. As seen in the numerical examples presented earlier as well as in
chapter 3, the performance of block­structured kernels degenerates for large
macro element sizes, starting in the hundreds for 2D grids and a bit earlier for
3D grids, which could be offset by tiling the micro element loop to increase
cache locality. The benefits of this optimization are well understood and can
be seen for example in [89]. Additionally, the LICM optimization discussed
earlier is restricted to precomputing scalar expressions. But, in some cases the
FLOP count of the kernel can be reduced further by precomputing array ex­
pressions, using the approach outlined in [71].

One issue in the current generation approach are the implicit dependen­
cies on DUNE, mentioned in the introduction of section 5.1 and during the
discussion of the block­structured specific generation. Some of these depen­
dencies could be reduced, by extending the python bindings for DUNE mod­
ules [27, 11] and then querying themodules directly to gain the required infor­
mation. Another way to minimize these dependencies and at the same time
increase the flexibility of the code generator would be to extend the genera­
tion beyond local kernels. Out of necessity, this is already done for some parts
of the block­structured preconditioner. Still, other components of the block­
structured code generation may also benefit from it. For example, generating
the gather and scatter functions depending on the local data structure would
allow theuse of the layout explained in 3.5, enabling vectorization for arbitrary
local polynomial degrees.

5.5.1 Representation of Local Structure

The current code generation is restricted to continuous Lagrange elements on
cubical grids, but more flexibility would be desirable, as already mentioned
in 3.5. This flexibility could be gained by using a symbolic representation of
local structuring patterns. Besides the discussed block­structured refinement
with cube, these could describe a structured refinement with simplices, or a
columnwise extrusion of a 2D grid. Conceptually, the structuring refers to cre­
ating a new structured mesh𝒯𝑒 with 𝑁𝑒 new micro elements 𝑒 for each macro
element 𝐸 of the original macro Mesh𝒯𝑜. The micro elements may have a dif­
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ferent type than the original element𝐸. Considering the block­structured case
with cubical elements, the meshes𝒯𝑒 are again cubical meshes, but in the ex­
trusion case the elements 𝑒 are prism elements, created by a tensor product of
the original element type and an interval. The generated local kernel operates
on each𝐸, handling the iteration over themesh𝒯𝑒, while the outside assembly
engine handles the iteration over𝒯𝐸.

The new mesh is structured in the sense that the new elements are indexed
by a multiindex 𝛼 defined over an integral polyhedral set Φ, short index set,
and there exists an iteration order 𝐼 ∶ Φ ↦ [0, 𝑁𝑒). For example, the polyhe­
dral set for a block­structured refinement in 3D is defined as

Φ = {(𝑖, 𝑗, 𝑘) ∶ 0 ≤ 𝑖, 𝑗, 𝑘 < 𝑁𝑐},

with lexicographic iteration order given by 𝐼(𝑖, 𝑗, 𝑘) = 𝑖 + 𝑗𝑁𝑐 + 𝑘𝑁2
𝑐 , and for

an extrusion of a 2D simplex grid as

Φ = {(𝑖) ∶ 0 ≤ 𝑖 < 𝑁𝑐},

where 𝑁𝑐 denotes the cells per direction in the first case and the number of
extrusion levels in the second case. These sets cover only the volume of the
micro elements, and additional index sets Φ𝑠 for subentities 𝑠 with different
codimension are needed, aswell as their corresponding iterationmaps 𝐼𝑠. Fur­
thermore, the full description of the local structure requires the topological
connections between entities of different codimension, i.e. mapping between
indices in different subentity set.

These topological connections are defined by the maps,

𝑇𝑠,𝑠′ ∶Φ𝑠 × 𝛽 ↦ Φ𝑠′,
𝑇∗
𝑠′,𝑠 ∶Φ𝑠′ ↦ Φ𝑠 × 𝛽,

where 𝑠 is an entity of codimension 0 ≤ 𝑐 ≤ 𝑑 and 𝑠′ has codimension 𝑐 + 1,
and 𝛽 denotes the subentity index on the reference element of 𝑠′ w.r.t. 𝑠. The
maps 𝑇𝑠,𝑠′ and 𝑇∗

𝑠,𝑠′ are sometimes called cone and support operations respec­
tively, for example in the PETSc unstructured grid interface DMPlex, see [60].
Concatenating thesemaps allows, for example, querying all vertex indices of a
cell (𝑖, 𝑗, 𝑘) within a block­structured refinement, which is necessary to iden­
tify the DoFs associated with that cell if aℚ1 finite element is used.

In the following, the local extrusion case is examined inmoredetail to clarify
the meaning of the previously described objects. Here, the cell index set is
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the same as above, and the face entities of codimension 1 are divided into two
distinct classes, horizontal facesΦℎ𝑓 and vertical facesΦ𝑣𝑓, defined by

Φℎ𝑓 = {(𝑖) ∶ 0 ≤ 𝑖 < 𝑁𝑐 + 1},
Φ𝑣𝑓 = {(𝑖, 𝑗) ∶ 0 ≤ 𝑖 < 𝑁𝑐, 0 ≤ 𝑗 < 3}.

In the same manner, there is a distinction between horizontal edges Φℎ𝑒 and
vertical edgesΦ𝑣𝑒, where the index sets are given by

Φℎ𝑒 = {(𝑖, 𝑗) ∶ 0 ≤ 𝑖 < 𝑁𝑐 + 1},
Φ𝑣𝑒 = {(𝑖, 𝑗) ∶ 0 ≤ 𝑖 < 𝑁𝑐, 0 ≤ 𝑗 < 3},

and finally the vertex index setΦ𝑣 is defined as

Φ𝑣 = {(𝑖, 𝑗) ∶ 0 ≤ 𝑖 < 𝑁𝑐 + 1, 0 ≤ 𝑗 < 3}.

The corresponding cone maps are defined as

𝑇𝑐,ℎ𝑓(𝑖, 𝛽) = {
𝑖 𝛽 = 0 bottom face,
𝑖 + 1 𝛽 = 1 top face,

𝑇𝑐,𝑣𝑓(𝑖, 𝛽) = (𝑖) 𝛽 ∈ {0, 1, 2},
𝑇ℎ𝑓,ℎ𝑒(𝑖, 𝛽) = (𝑖) 𝛽 ∈ {0, 1, 2},

𝑇𝑣𝑓,ℎ𝑒((𝑖, 𝑗), 𝛽) = {
(𝑖, 𝑗) 𝛽 = 0 bottom edge,
(𝑖 + 1, 𝑗) 𝛽 = 1 top edge,

𝑇𝑣𝑓,𝑣𝑒((𝑖, 𝑗), 𝛽) = {
(𝑖, 𝑗) 𝛽 = 0 right edge,
(𝑖, 𝑗 + 1 mod 3) 𝛽 = 1 left edge,

𝑇ℎ𝑒,𝑣((𝑖, 𝑗), 𝛽) = {
(𝑖, 𝑗) 𝛽 = 0 right vertex,
(𝑖, 𝑗 + 1 mod 3) 𝛽 = 1 left vertex,

𝑇𝑣𝑒,𝑣((𝑖, 𝑗), 𝛽) = {
(𝑖, 𝑗) 𝛽 = 0 bottom vertex,
(𝑖 + 1, 𝑗) 𝛽 = 1 top vertex.

It should be noted that it is not guaranteed for every entity of codimension 𝑐 to
be connected to all types of entities with codimension 𝑐 + 1. These conemaps
can now be used to gather all subentities topologically connected to a suben­
tity of higher codimension. For example, iteratively applying these maps for
each possible value of 𝛽, starting froman index 𝑖withinΦ𝑐, results lastly in the
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indices {(𝑖, 0), (𝑖, 1), (𝑖, 2), (𝑖 + 1, 0), (𝑖 + 1, 1), (𝑖 + 1, 2)} ⊂ Φ𝑣, which represents
the indices of the vertices of the cell 𝑖.

For completion’s sake, the support maps, used to gather topologically con­
nected subentities in the other direction, are given by

𝑇∗
𝑣,𝑣𝑒(𝑖, 𝑗) = {(𝑖 − 1, 𝑗), (𝑖, 𝑗)}, 𝑇∗

ℎ𝑒,ℎ𝑒(𝑖, 𝑗) = {𝑖},
𝑇∗
𝑣,ℎ𝑒(𝑖, 𝑗) = {(𝑖, 𝑗 − 1 mod 3), (𝑖, 𝑗)}, 𝑇∗

𝑣𝑓,𝑐(𝑖, 𝑗) = {𝑖},

𝑇∗
𝑣𝑒,𝑣𝑓(𝑖, 𝑗) = {(𝑖, 𝑗 − 1 mod 3), (𝑖, 𝑗)}, 𝑇∗

ℎ𝑓,𝑐(𝑖, 𝑗) = {𝑖 − 1, 𝑖},

𝑇∗
ℎ𝑒,𝑣𝑓(𝑖, 𝑗) = {(𝑖 − 1, 𝑗), (𝑖, 𝑗)},

where additional bound checking has to be applied in the case of boundary
indices, e.g. when computing the support of the horizontal face with index 0.

The representation can simplify the code generation process for different
typesof local structuringbydefiningabstract interfaces, one for themesh topol­
ogy and one for its geometry. These can then be specialized for concrete local
structure patterns. A preliminary implementation of both interfaces is avail­
able inDUNE­CODEGEN1. The topology interface is composedof the index sets
for all subentities, and the cone and support maps as mentioned above. Fur­
thermore, an index relation map is defined, which computes the topological
relationbetweenan index inone index set andanyother index set regardless of
their codimension,with the constraint that the target entitymust be reachable
from the starting entity. This new map has a generic implementation, which
applies iteratively either the cone or support map, until the target index set is
attained. As demonstrated above, these maps are useful to describe the iter­
ation over subentities within the macro element and identify which DoFs, for
example defined at the vertices, are connected to the current entity.

For certain integrals, the iteration domain specified by an index set is not
suitable. During the integration over all interior faces of an extruded column,
for instance, the first and last index of the index set should be excluded. This
motivates the addition of interior and exterior sets to the index sets. These sets
restrict the index set to the indices needed for an iteration over the interior
or exterior micro element entities captured in the set, although they are not
necessarily the interior or exterior of the entity set in a strict set topological
sense. For instance, the index set of the horizontal edges of a block­structured

1Within the branch feature/structured-refinement:
https://gitlab.dune-project.org/extensions/dune-codegen/-/tree/feature/
structured-refinement
Supported are a 2D block­structured refinement and a 1D extrusion.

102 CHAPTER 5 GENERATING LOCAL KERNELS

https://gitlab.dune-project.org/extensions/dune-codegen/-/tree/feature/structured-refinement
https://gitlab.dune-project.org/extensions/dune-codegen/-/tree/feature/structured-refinement


refinement with macro element size 𝑘 is given by

Φℎ𝑓 = {(𝑖, 𝑗) ∶ 0 ≤ 𝑖 < 𝑘 ∧ 0 ≤ 𝑗 < 𝑘 + 1}.

The required indices for iterating over interior horizontal faces are defined by

Iℎ𝑓 = {(𝑖, 𝑗) ∶ 0 ≤ 𝑖 < 𝑘 ∧ 1 ≤ 𝑗 < 𝑘},

while the interior set in the strict sense

int(Φℎ𝑓) = {(𝑖, 𝑗) ∶ 1 ≤ 𝑖 < 𝑘 − 1 ∧ 1 ≤ 𝑗 < 𝑘}

misses the horizontal faces that are only touching the macro element vertical
boundary, but are not entirely contained in the boundary.

The second part of the interface, the mesh geometry, connects the topolog­
ical description of the locally structured mesh with the physical mesh. It de­
fines amapping from a given entity index to the physical corners of that entity.
These are typically required to compute any geometric quantity and canbede­
fined using the corners of the corresponding macro element entity. As part of
the UFL preprocessing of the weak formulation, the spatial coordinates of an
entitywith codimension greater than0are reformulated in termsof the spatial
coordinates of the cell corners and a transformation from the reference entity
to the reference cell. Therefore, the geometry mapping reduces to computing
the corners of a given cell entity and implementing transformation within the
reference element.

Unfortunately, this approach leads to inefficient computationswithout care­
ful considerations. For a 2D block­structured refinement, the computation of
the global coordinates of a given quadrature point 𝑞 in the cell entity (𝑖, 𝑗) is
given by

𝑇(𝑞) = 𝑇𝐸 (𝑇𝑒[𝑖,𝑗])(𝑞)) = ∑
𝑙
𝑐𝑙𝜙𝑙((𝑞 + [𝑖 𝑗]𝑇)/𝑘),

where 𝑙 iterates over the multilinear basis 𝜙𝑙 of the geometry transformation,
and 𝑐𝑙 denotes the macro element corners. The approach using the mesh ge­
ometry interface, as outlined above, would be written as

𝑇(𝑞) = ∑
𝑙
𝑣𝑙𝜙𝑙(𝑞),

𝑣𝑙 = ∑
𝑖
𝑐𝑖𝜙𝑙(𝑐𝑙 + [𝑖 𝑗]𝑇),
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where 𝑣𝑙 are the physical coordinates of the micro element (𝑖, 𝑗). The second
variant involves significantly more operations than the former one. However,
this is not an argument against this interface definition. Since the multilinear
basis is known at generation time, the expression may be simplified, yielding
the efficient formulation under the right choice of simplifications.
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chapter6
Performance Evaluation

I N THIS CHAPTER the components of amatrix­free simulation using block­
structured grid, discussed in the previous chapters, are combined and their

performance as a whole is examined. But, as a first step, some theoretical per­
formance estimates are developed. With these estimates, the usefulness of the
block­structured matrix­free approach might be predicted, especially regard­
ing if the operator applicationwouldbe faster thana sparsematrix­vectormul­
tiplication. Afterwards, multiple benchmarks for different types of PDEs are
considered, each highlighting specific strengths and weaknesses of the block­
structured grids approach, and to validate the theoretical performance esti­
mates.

6.1 Theoretical Performance

In the following, the theoretical performance of one full matrix­free operator
application is investigated, with the intent to predict the runtime of a given
matrix­free operator for a specific problem and to compare it with the corre­
sponding matrix­based operator. The roofline model described in section 2.4
is a handy approach for simple loops, but not applicable in this case. Since
the kernel of the matrix­free operator application use localized data instead
of directly accessing global data, the main assumption of the roofline model,
memory transfers and computations overlap, does not hold anymore, at least
w.r.t. the main memory. Instead, the performance of two mostly separate seg­
ments, the global­to­local gather and scatter, and the local kernel application,
has to be considered individually. Due to pipelining and out­of­order execu­
tion some overlap still exists, but themain chunk of both parts should be sepa­
rated. Therefore, the theoretical runtime 𝑇𝑀𝐹 for the matrix­free application
is modeled as

𝑇𝑀𝐹 = 𝑇𝑀𝐸𝑀 + 𝑇𝐶𝑂𝑀𝑃.

Adownside to this approach is that determining the grid size independent per­
formance inDoF/s is not directly possible anymore,whereas that is the case for
the roofline model used in section 2.4.
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The memory bound runtime 𝑇𝑀𝐸𝑀 is easily approximated by

𝑇𝑀𝐸𝑀 = #Byte
𝐵𝑊 ,

similar to the roofline model, where #Byte is the total number of transferred
bytes and BW is the main memory bandwidth. Applying the matrix­free op­
erator requires three streams in total to compute 𝑦 = 𝑦 + 𝐴𝑥. One read­only
stream is necessary for the vector it is applied to, and one read­write stream
for the result. On a block­structured grid in ℝ𝑑 with 𝑁𝐸 macro elements and
𝑘micro elements per direction, one stream transfers𝑁𝐸 ⋅ 𝑀𝑙𝑜𝑐 values over the
course of one operator application. For a scalar, CG finite element with local
basis degree 𝑝, the local data size is given by

𝑀𝑙𝑜𝑐 = (𝑘 ⋅ 𝑝 + 1)𝑑.

In the case of a finite element withmultiple components𝑀𝑙𝑜𝑐 adds up accord­
ingly. Additional 𝑛𝑐 streams may be required, which could represent inter­
polated coefficients of the PDE or a linearization point if a non­linear PDE is
considered. Therefore, the total number of transferred bytes (for a double pre­
cision data type) is given by

#Byte = 8 ⋅ (3 + 𝑛𝑐) ⋅ 𝑁𝐸 ⋅ 𝑀𝑙𝑜𝑐.

For a comparison with the runtime of a matrix­based operator application,
it is beneficial to write this number in terms of the problem size 𝑁. As a first
step, the transferred data is split based on codimension resulting in

𝑁𝐸 ⋅ 𝑀𝑙𝑜𝑐 = 𝑁𝐸 ⋅ (𝑘 ⋅ 𝑝 + 1)𝑑

= 𝑁𝐸 ⋅ (𝑘 ⋅ 𝑝 − 1)𝑑 + 2 ⋅ 𝑁𝐹𝑖 ⋅ (𝑘 ⋅ 𝑝 − 1)𝑑−1 + 𝑁𝐹𝑒 ⋅ (𝑘 ⋅ 𝑝 − 1)𝑑−1

+ 𝒪(𝑁𝐸(𝑘 ⋅ 𝑝)𝑑−2)

with𝑁𝐹𝑖 denoting the number of interior macro faces, and𝑁𝐹𝑒 the number of
exterior faces. The data associated with the macro element’s volume is trans­
ferred only once, while the data attached to entities with higher codimension
is transferredmultiple times, as these are shared betweenmultiple macro ele­
ments. Therefore, more than 𝑁 values are handled in total, and more specifi­
cally

𝑁𝐸 ⋅ 𝑀𝑙𝑜𝑐 = 𝑁 + 𝛽,
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with 𝛽 > 0 and 𝛽 = 𝒪 (𝑁𝐹(𝑘𝑝)𝑑−1) = 𝒪 (𝑁𝐸(𝑘𝑝)𝑑−1). Relative to the total
amount of data 𝑁 = 𝒪 (𝑁𝐸(𝑘𝑝)𝑑−1), the shared data is negligible for larger
block sizes due to 𝛽/𝑁 = 𝒪((𝑘𝑝)−1). Thus, leaving it out in the approximation
leads to

𝑇𝑀𝐸𝑀 = #Byte
𝐵𝑊 ≈

8 ⋅ (3 + 𝑛𝑐) ⋅ 𝑁
𝐵𝑊 ,

which resembles the estimate for the matrix­based approach. If the simplifi­
cation is too broad, which might be the case for lower block sizes, the shared
data volume can be taken into consideration by increasing the coefficient pa­
rameter 𝑛𝑐.

Deriving a precise estimate for the runtime of the local kernels ismore com­
plicated anddependsmore tightly on the discretized PDE. The runtime is sim­
ply modeled as

𝑇𝐶𝑂𝑀𝑃 = #FLOP
𝑃 ,

where #FLOP is the total number of floating point operations executed during
one operator application, and 𝑃 the achieved performance as FLOP/s. Accord­
ing to the rooflinemodel, theFLOP/sareeasily computedasmin(AI⋅𝐵𝑊, 𝑃peak),
assuming the data resides in the main memory. It is possible to use the same
approach defining an AI w.r.t. the L1 cache, but this requires careful inspec­
tion of assembly code and ignores other in­core effects, such as dependency
chains.

Therefore, the rooflinemodel is not a suitable estimator for the performance
of the local kernels and more fitting models need be found. A more nuanced
model is the execution­cache­memory (ECM) model [52], which provides ac­
curate results for relatively simple loops. This model requires the number of
transfers between the core registers and the L1 cache, as well as the number
of arithmetic operations, ideally grouped by their corresponding instruction
throughput. However, these are hard to predict accurately based on the source
code even for simple local kernels, due to the C++ compiler’s optimizations.
Therefore, this model is currently not considered further, instead the FLOP/s
performance from the LINPACK benchmark is used later on. An interesting
approach for future investigationswould be to use the FLOP counting capabil­
ities of Loopy, although these still don’t account for all optimizations, or to run
the compiled kernel on a dummy macro element and use hardware counters
to determine the actual number of executed operations.

Similarly to thepreviousdiscussion for the total numberof transferredbytes,
the number of executed FLOP can be approximated by estimating the macro­
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element local computations. Starting from

#FLOP = 𝑁𝐸 ⋅ 𝐹𝑙𝑜𝑐

the macro element local work 𝐹𝑙𝑜𝑐 can be further factorized as

𝐹𝑙𝑜𝑐 = 𝑘𝑑 ⋅ (𝑛𝑞 ⋅ (𝑛𝑏 ⋅ 𝐹𝑑𝑜𝑓 + 𝛾) + 𝜀0) + 𝜀1,

where 𝑘 is the block size as before, 𝑛𝑞 the number of quadrature points, 𝑛𝑏 =
(𝑝+1)𝑑 the number ofmicro element local basis functions, and 𝐹𝑑𝑜𝑓 the num­
ber of FLOP executed at one DoF of one micro element for one quadrature
point. The parameters 𝛾, 𝜀0, and 𝜀1 denote additional FLOP independent of
the local basis or quadrature points. Since the scaling of 𝜀0 and 𝜀1 is negligible
compared to the remaining terms, they are dropped in the following discus­
sions.

To reformulate this in terms of the number of DoFs, it would be tempting to
use the approximation (𝑘 ⋅ (𝑝+1))𝑑 ≈ (𝑘 ⋅𝑝+1)𝑑, but for small𝑝 this is widely
inaccurate. Instead, a scaling factor 𝑠 is introduced as

(𝑘 ⋅ (𝑝+1))𝑑 = (𝑘 ⋅ 𝑝+1)𝑑 ⋅ (
𝑘 ⋅ (𝑝 + 1)
𝑘 ⋅ 𝑝 + 1 )

𝑑

≈ (𝑘 ⋅ 𝑝+1)𝑑 ⋅ 𝑠𝑑, with 𝑠 =
𝑝 + 1
𝑝 ,

which can be interpreted as how often the sameDoFwill be considered during
one macro element computation. For example, an interior DoF of a ℚ1 dis­
cretization on a 2D gridwill be handled during the computation of 𝑠 = 4micro
elements. Now, the number of DoFs can be introduced as before, leading to

#FLOP = 𝑁𝐸 ⋅ 𝐹𝑙𝑜𝑐
≈ 𝑁𝐸 ⋅ (𝑘 ⋅ 𝑝 + 1)𝑑 ⋅ 𝑠𝑑 ⋅ 𝑛𝑞 ⋅ (𝐹𝑑𝑜𝑓 + 𝛾′) with 𝛾′ = 𝛾

𝑛𝑏
≈ 𝑁 ⋅ 𝑠𝑑 ⋅ 𝑛𝑞 ⋅ (𝐹𝑑𝑜𝑓 + 𝛾′),

and finally

𝑇𝐶𝑂𝑀𝑃 = #FLOP
𝑃 =

𝑁 ⋅ 𝑠𝑑 ⋅ 𝑛𝑞 ⋅ (𝐹𝑑𝑜𝑓 + 𝛾′)
𝑃 .

Due to the difficulties of determining both 𝑃 and 𝐹𝑙𝑜𝑐 as outlined earlier, this
approach is currently not capable of estimating the performance beforehand,
but it canbeused to formulate conditionsunderwhich thematrix­freeapplica­
tion is faster than the corresponding matrix based one. It needs to be stressed
that due to the imprecise approximations this can only give a rough estimate.
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Recalling the rooflinemodel for thematrix­based application from section 2.4
leads to the runtime

𝑇𝑀𝐵 = 8 ⋅ (2 + 𝛼) ⋅ 𝑛𝑛𝑧
𝐵𝑊 .

For nearly every relevant number of additional coefficients, the runtime for
the memory transfer part 𝑇𝑀𝐸𝑀 is faster than 𝑇𝑀𝐵, more precisely

𝑇𝑀𝐸𝑀 < 𝑇𝑀𝐵 if 3 + 𝑛′𝑐 < (2 + 𝛼) ⋅ 𝑛𝑧𝑟,

where𝑛𝑧𝑟 = 𝑛𝑛𝑧/𝑁 is the averagenumber ofnon­zerosper row. Therefore, the
matrix­free application can only be faster than thematrix­based application if

𝑇𝐶𝑂𝑀𝑃 < 𝑇𝑀𝐵 − 𝑇𝑀𝐸𝑀,

⇔
𝑁 ⋅ 𝑠𝑑 ⋅ 𝑛𝑞 ⋅ (𝐹𝑑𝑜𝑓 + 𝛾′)

𝑃 <
8 ⋅ ((2 + 𝛼) ⋅ 𝑛𝑧𝑟 − 3 − 𝑛′𝑐) ⋅ 𝑁

𝐵𝑊 .

This results in the following upper bound for the amount of work at one DoF

𝑛𝑞 ⋅ (𝐹𝑑𝑜𝑓 + 𝛾′) < 𝑠−𝑑 ⋅ ((2 + 𝛼) ⋅ 𝑛𝑧𝑟 − 3 − 𝑛′𝑐) ⋅
8 ⋅ 𝑃
𝐵𝑊 .

The previous estimate shows that if a high quadrature order is required or
the evaluation at one DoF is costly, the matrix­free application may be slower
than the matrix­based version, despite using significantly less memory trans­
fers. The first part of the right­hand­side is PDE and discretization depen­
dent through the number of non­zeros per row and the number of coefficients,
while the secondpart is onlymachinedependent, encodinghowmanyfloating
point operations can be executed during the transfer of one double precision
value (8 byte), from main memory. Due to the necessary approximations, this
estimate is not strict in the sense that even if the estimate holds, the matrix­
free application may still be slower. Instead, this bound guarantees that after
a specific number of floating point operations per DoF the matrix­based ap­
proach is faster than the matrix­free one.

To get a more practical understanding of this estimate, some examples are
considered. As discussed above, 𝑃 is estimated using the LINPACK bench­
mark and with 𝐵𝑊 provided by the STREAM benchmark this results in a ma­
chine dependent factor of 𝑃/𝐵𝑊 ≈ 8 for the Skylake architecture described
in appendix A.1. For the discretized Poisson equation the stiffness matrix has
𝑛𝑧𝑟 ≈ (2 ⋅𝑝+1)𝑑 on a structured grid inℝ𝑑, andmore specifically 𝑛𝑧𝑟 ≈ 3𝑑 for
ℚ1 basis functions. Assuming the best cache reuse during the matrix applica­
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tion, i.e. 𝛼 = 0, and no additional coefficients are necessary, the upper bound
for the total computation per DoF is given by

𝑛𝑞 ⋅ (𝐹𝑑𝑜𝑓 + 𝛾′) < {
30 ⋅ 8 if 𝑑 = 2,
51 ⋅ 8 if 𝑑 = 3,

where the scaling factor 𝑠 = (𝑝+ 1)/𝑝 = 2was used. In the same setting, 𝑛𝑞 =
2𝑑 quadrature points are necessary to accurately compute the micro element
integrals resulting in the following FLOP bound per quadrature

𝐹𝑑𝑜𝑓 + 𝛾′ ≲ {
8 ⋅ 8 if 𝑑 = 2,
3 ⋅ 8 if 𝑑 = 3.

On a structured grid and without coefficients 𝐹𝑑𝑜𝑓 ≈ 10, and thus the simple
estimate shows that under idealized assumptions the matrix­free application
should be faster, even if the matrix vector multiplication has the best cache
reuse. The estimate is supported by the benchmark discussed in section 6.2.1.

In less favorable settings, the allowed number of FLOP before the matrix­
based application is guaranteed to be faster might be significantly lower. If,
for example, an unstructured grid is used, the number of quadrature points
should be increased to 𝑛𝑞 = 3𝑑, which reduces the previous bound noticeably.
As the matrix­based performance is not dependent on the quadrature order,
the bound is lowered to

𝐹𝑑𝑜𝑓 + 𝛾′ ≲ {
10/6 ⋅ 8 if 𝑑 = 2,
8/9 ⋅ 8 if 𝑑 = 3.

Additionally, if the floating point performance 𝑃 is overestimated, then the
bound is reduced even further. Assuming, for example, that only half of the
LINPACK performance can be achieved then the estimate reduces to ∼ 120
FLOP per DoF in total in the 2D case and∼ 200 FLOP in the 3D case, on struc­
tured grids. The benchmarks in section 6.2.3 illustrate this problem.

6.2 Measured Performance

In the following, three distinct benchmarks are considered to evaluate the per­
formance of thematrix­free block­structured grid approachwith generated lo­
cal kernels. For comparison, a matrix­based implementation without block­
structuring is used as a baseline. In contrast to the block­structured variants,
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the matrix­based local kernels are handwritten, utilizing, if possible, existing
DUNE­PDELAB implementations, andusingablockedsparsematrix if thePDE
has multiple components. The performance discussion is divided into two
parts, the first one focused on a single operator application, and the second
one considering the full simulation process, i.e. solving a linear or non­linear
system. Due to the immature nature of the block­structured preconditioner
themain focus lies on theoperator application,while the full solutionacts only
as an accessory.

The first benchmark is a Poisson equation with an additional coefficient on
a structured grid. Due to the simplicity of the PDE and the subsequent sim­
plicity of the local kernels, this example is well suited to illustrate the advan­
tages the block­structured matrix­free approach can provide compared to the
matrix­based one. Next, a non­linear extension to this model is considered,
which increases themicro element local computations immensely, thereby re­
ducing the efficiency of the matrix­free operator application. But the missing
matrix­assembly may improve the overall performance, making it compara­
ble to the matrix­based approach. And finally, the performance of solving the
Navier­Stokes equation with the Chorin projection method is examined. Be­
sides thenewcharacteristics stemming fromanexplicit time steppingmethod,
this benchmark explores the effects of amultilinear grid on the overall perfor­
mance.

Some implementationdetails of thebenchmarks arediscussed in the follow­
ing. The first two benchmark are discretized with ℚ1 elements, and the last
benchmark with both a Taylor­Hood element pair and an unstable element
pair. For the first benchmark, the matrix­based variant uses preexisting local
kernels fromDUNE­PDELAB, while for the remaining benchmarks the kernels
had to be implementedmanually. In the block­structured case, each local ker­
nel is generated with the optimizations discussed in the previous chapters en­
abled, namely specialized geometry transformations, loop invariant codemo­
tion, and vectorization using the permutation approach. The first benchmark
requires the restriction of the piece­wise constant coefficient for matrix­free
preconditioner. As the restriction and prolongation operations are currently
only implemented for continuous functions, this is implementedbyhand. The
driver for all benchmarks are alsohandwrittenboth in thematrix­free case and
the matrix­based case.

The linear systems appearing in each model are solved with the BiCGStab
method, using the AMG from DUNE­ISTL in the matrix­based case and the
two­grid, matrix­free preconditioner with a Jacobi iteration on the fine grid
otherwise. For the Poisson­type systems appearing for these models the AMG
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provides good convergence behavior. Additionally, it is easy to use with an
implementation effort similar to the generated variant, while other precondi­
tioners, such as geometric multigrid methods, would require more elaborate
user implementations. Therefore, the AMG is a suitable choice for the tests
considered here. Furthermore, most of the observations remain valid if other
preconditioner or solution techniques are compared, as long as they are still
matrix­based, since the operator results are not altered by this change, while
the solver resultsmostly impact the requirements on thematrix­freeprecondi­
tioner. The comparison with non­iterativemethods, for instance the fastmul­
tipolemethod or the fast Fourier transformation, which are especially suitable
for the Poissonproblemon structured grids (see [44]), is out of the scope of this
work.

6.2.1 Poisson Model

This benchmark considers the Poisson equation with a scalar coefficient

−∇ ⋅ (𝑐(𝑥)∇𝑢(𝑥)) = 𝑓(𝑥)

in the domain Ω = [0, 1]𝑑, 𝑑 = 2, 3, with homogenous Dirichlet conditions.
The coefficient is piece­wise constant on the micro element grid with values
randomlychosen from [0.5, 2]usingauniformdistribution, and the right­hand­
side is chosen as 𝑓 = 1. Different block sizes 𝑘 = 8 ⋅ 𝑖with 𝑖 = 1, … , 8 are con­
sidered to examine the performance of small and medium block sizes more
detailed. A structured mesh with 𝑛𝑑𝑒 micro elements is used, where for each
block size multiple values for 𝑛𝑒 are chosen as 𝑛𝑒 = 2𝑖 ⋅ 𝑘 such that the total
number of DoFs𝑁 = (𝑛𝑒+1)𝑑 is between 103 and 107. For larger grid sizes, the
solution on one core becomes quite expensive and therefore distributing the
grid acrossmore coreswouldbemorebeneficial, while for smaller sizes the full
performance of the codes is usually not achieved yet. Furthermore, this range
contains problem sizes, where thewhole problem inclusive the fullmatrix can
be cached, which is extremely favorable for the matrix­based application, as
well as problems, where the data needs to be transferred from the main mem­
ory.

Operator Application Measurements

Concerning the operator application, themost significant performancemetric
is DoF/s, which represents a grid independentmeasure on the efficiency of the
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implementation. Assuming that the runtime grows linearly in the number of
DoFs this metric gives the proportion factor in that relation, allowing to esti­
mate the runtime of the operator application on any grid size. Fig. 6.1 and 6.2
depict the DoF/s for thematrix­based operator application, i.e. a sparsematrix
vector multiplication, as well as for thematrix­free operator applications with
different block sizes, both in 2D and in 3D.

Figure 6.1: Performance of one operator application measured as MDoF/s (million
DoF/s) on a 2D structured grid w.r.t. one core. For problem sizes, which exceed the
L3 cache, the matrix­free application clearly surpasses the matrix­based one. Af­
ter a short start­up period depending on the block size, the lowest block size kernel
reaches a speed­up of 2×, while kernels with larger block sizes (𝑘 ≥ 32) achieve up
to 100 MDoF/s, which results in a speed­up of 3×.

Both plots illustrate the diametrical behavior of the matrix­free andmatrix­
based operator application. In the former case the DoF/s either increases with
the number of DoFs or stagnates, while it decreases in the latter case. Be­
cause the matrix vector multiplication is memory bound, its performance de­
pends strongly on the possible bandwidth for the data transfer. For tiny prob­
lems with #DoF ∼ 103 the whole operator matrix and the necessary vectors
fit into the L2 or L3 cache, which have a significant higher bandwidth than
the main memory. Therefore, the matrix vector multiplication attains a high
performance, even the highest measured performance. As the problem size
increases, the caches cannot hold the entire problem anymore and the data
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needs to be transferred from themainmemory instead, resulting in a decreas­
ingbandwidth, until thefinalmainmemorybandwidth ishit atproblemsizeof
∼ 50 000 DoFs. The final matrix­based performance after this point is around
30 MDoF/s in 2D and around 10 MDoF/s in 3D.

The behavior for matrix­free application significantly differs, since it first
increases in most cases with the number of DoFs. For higher block sizes this
is most pronounced and correlates to going from a macro grid with only one
macro element to grids with multiple macro elements. The macro grid used
in the later Navier­Stokes section has always more than one macro element
and those benchmarks donot show this behavior, indicating that there is some
significant assembly setup cost. Further investigations in that area seem rea­
sonable. In 3D this becomes especially clear, since for the higher block sizes
only 2 or 4 macro elements per direction are possible, if the total number of
DoFs should be kept under 107. In those cases with more macro elements,
the performance does not degenerate even for larger problemswithmore than
106DoFsdemonstrating that the operator applications are indeednotmemory
bound anymore. It is also worthwhile to point out that, at least in 2D and for
lower block sizes in 3D, relatively small problem sizes are sufficient to achieve
the DoF/s saturation point, around 104 DoFs. This could be beneficial in fur­
ther studies concerning parallelism and strong scaling.

Besides the concrete realized performance, the qualitative behavior of the
block­structured variants in 2D and 3D differ. The highest achieved perfor­
mance in 2D corresponds to the highest block sizes 𝑘 = 56, 64 with around
100MDoF/s, although 90MDoF/s are already reached with 𝑘 = 24, which rep­
resents a speedup of ∼3× compared to the matrix­based operator application.
In contrast, the lower block sizes, 𝑘 = 16, 24 realize the highest performance
in 3D, around 25 MDoF/s. This corresponds to the increased amount of work
per DoF by a factor∼2–3× from 2D to 3D, as the 𝑘 = 8 variant achieves 50MD­
oF/s in 2D. However, for higher block sizes the observed reduction seems to be
too harsh. One reason could be the already mentioned assembly setup cost,
but another potential reason could be inefficient caching. In 3D, it is neces­
sary to keep one 2D plane of each local vector in the L1 cache to minimize the
cache miss rate, if straight forward loop nests are used, which corresponds to
(𝑘 ⋅ 𝑝 + 1)2 values. For 𝑘 ≥ 40 this becomes problematic. These cache misses
could be further reduced by introducing tiling, asmentioned in the outlook of
chapter 5.

The next segment compares the performance of the block­structured vari­
antswith the theoretical estimates provided earlier. In particular, the program
is split into a local kernel part and a transfer part, and the individual perfor­
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Figure 6.2: Performance of one operator application measured as MDoF/s on a 3D
structuredgridw.r.t. one core. Again, allmatrix­free application surpass thematrix­
based on for medium and large grid sizes. The ramp­up of the DoF/s performance
is more prominent than in 2D, since for large block sizes the macro grid contains
only one or four macro elements. Therefore, the kernels with smaller block sizes
(𝑘 ≤ 32) achieve the best performance of ∼25 MDoF/s, which is ∼2× higher than
the matrix­based performance.

mance of each part is considered in more detail, i.e. the FLOP/s for the kernel,
shown in Fig. 6.3, and the bandwidth, depicted in Fig. 6.4, for the transfer part.
It should be noted that only the local kernel is measured separately, and the
runtime of the transfer part is given by the difference of the total runtime and
the local kernel runtime. Therefore, it is not possible to directly support the
claim that the total runtime may be split as 𝑇𝑀𝐹 = 𝑇𝑀𝐸𝑀 + 𝑇𝐶𝑂𝑀𝑃. If esti­
mates for 𝑇𝐶𝑂𝑀𝑃 were available, as suggested earlier, it would be possible to
compare these estimate with the measured runtime to verify the claim.

In Fig. 6.3 the attained FLOP/s for each block size is plotted against the total
number of DoFs both in 2D and in 3D. While the generated kernels in section
5.4.3 could reach the full LINPACKpeak, this is not the case anymore. Still, the
block­structured kernels reach a significant portion of the LINPACK peak, at
least 50%, and usually more than 60%, which translates to between 30% and
40%of the theoretical FLOP/s limit. The difference to the previous benchmark
might be caused by the loading of the coefficient, which is included in the lo­
cal kernel timings. Compared to theDoF/s behavior, the performance does not
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Figure 6.3: Performance of the compute­part of one operator application reported as
% of LINPACK peak performance w.r.t. one core. 60% of LINPACK peak on one core
corresponds to ∼27.3 GFLOP/s. Kernels with higher block sizes (𝑘 ≥ 32) achieve
over 60% of the LINPACK peak performance both in 2D and 3D, while in 2D lower
block size kernel exceed consistently the 50% mark. In 3D the higher performance
of kernels with lower block size the DoF/s results is mirrored here.

increase significantly with higher problem sizes as it did for the DoF/s metric,
which supports the assumption that there are some unoptimized setup costs.
However, the performance degenerates slightly, about 10%, for higher prob­
lem sizes, but only in 2D. Since the decline is not noticeable in the DoF/s per­
formance, other parts of the program seem to compensate for it.

The comparatively higher performance of the lower block sizes in 3D from
the DoF/s plot is mirrored here. As the local computation uses more quadra­
ture points, which increases the amount of work on data usually placed in reg­
isters, it is understandable that theFLOP/sperformance increases for theblock
sizes 𝑘 = 8, 16. Similar to the DoF/s case, the FLOP/s for higher block sizes in
3D could be increased by tiling the micro element loop to improve the data
locality.

The achieved main memory bandwidth outside the local kernel is depicted
in Fig. 6.4. As a reference, the bandwidth of the matrix­based operator appli­
cation is also supplied, which is mostly identical to the STREAM peak per­
formance. Two clearly distinct phases can be detected, first the bandwidth
increases for each block size until a saturation point is reached, after which
the full bandwidth is attained. These different phases stem from the measur­
ing approach. By using performance counters, which measure only the trans­
ferred data volume from main memory, the bulk of the data used for smaller
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Figure 6.4: Performance of the memory­part of one operator application measured
in GiB/s. In contrast to the other measurements in this section, the bandwidth is
reported per NUMA domain and not per core, i.e. for 20 parallel programs, due to
themeasuring approach as explained in appendix A. Thematrix­based application
reaches consistently the STREAMpeakof 100GiB/s. After a start­upphase,which is
less pronounced in 3D, the matrix­free methods attain their peak bandwidth. Only
the lowest block size variant achieves significantly less than the STREAM peak,
while higher block size variants even surpass this peak.

Figure 6.5: Total data volume transferred to and from themainmemory over one oper­
ator applicationmeasured in GiB. The dotted linemarks the size of the L3 cache (30
MiB), indicating after which point the whole problem does not fit into the caches
anymore. The intersection with the dotted line marks the grid size after which the
matrix­free applications reach their peak bandwidth.
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problem sizes is ignored, since it resides within the caches and not the main
memory, as canbe seen inFig. 6.5. Therefore, the saturationpoint corresponds
to the smallest problemsize for eachblock size atwhich the full problemneeds
to be moved from the main memory.

After the saturation point, a constant bandwidth is attained, where a higher
block size results in a higher bandwidth. This can be explained by recalling
that the gather and scatter becomesmore efficient for higher block sizes, since
the number of values per subentity with codimension less than 𝑑 increases
with the block size, and therefore more values can be transfer with a stream­
ing access pattern in these cases, implying a higher efficiency. It should be
noted that in multiple cases bandwidth higher than the STREAM benchmark
are reached. Since this is anupper limit on thebandwidth, it is likely that some
measured transfershappenduring the local kernel timings. This indicates that
the strict distinction inmemory part and compute part in the theoretical esti­
mates does not hold. Instead, some overlap has to modeled into the estimate.
Nevertheless, this shows that the memory part of the block­structured vari­
ants can achieve optimal performance at least for higher block sizes, although
there is still for improvement, especially in 3D.

Combining the results for the memory and computational part shows that
the assumptions of the theoretical estimate are partially supported. Although
using the LINPACK benchmark as part of the runtime estimate for the com­
putational part is too optimistic, as already suggested, for the memory part
the optimistic assumptions seem to hold. Furthermore, the generated code
computes around 10–14 FLOP per DoF and per quadrature point, which is well
below the established upper bound. Therefore, the estimate suggests that the
matrix­free computation should be faster. The DoF/s measurements support
the estimate, especially for larger problem sizes. All of these reinforce the
theoretical estimate with some necessary adjustments, namely adapting the
performance of the computational part and apply some overlap between both
parts.

Solver Measurements

In the following, the performance of the solution process as a whole is consid­
ered, where at first, the most important measure in this regard, the time­to­
solution, is shown in Fig. 6.6 and in Fig. 6.7. Later on, this is dissected into the
necessary iterations until convergence, Fig. 6.8, and into the timeper iteration,
Fig. 6.9.

Fig. 6.6 shows the time­to­solution on one core, for the matrix­based vari­
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Figure 6.6: Time until linear solver convergence with a residual reduction of 10−10.
Some lines are dotted solely to improve visibility. For smaller grid sizes thematrix­
based solver is faster than anymatrix­free variant. On larger grids somematrix­free
solvers surpass the matrix­based one. The significantly faster operator application
can compensate for the slower convergence rate, which will be discussed later, at
least for variant with low and medium block sizes (𝑘 ≤ 24). There is no difference
in the qualitative behavior of the 2D and 3D case.

Figure 6.7: Time per DoF until linear solver convergence with a residual reduction of
10−10. Again, some lines are dotted solely to improve visibility. This plot is a rescal­
ing of the previous results to clarify the different convergence speeds for each block
size. Thus, the same conclusions as before apply.
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ants, as well as each matrix­free variant, and Fig. 6.7 shows the rescaled per­
formance using DoF/s to increase the clarity. Compared to the matrix­based
application, only the matrix­free solvers corresponding to the smaller block
sizes are faster than thematrix­based solver. Additionally, the advantage only
holds after a certain problem size, where that intersection point depends on
the block size. The highest speedup of ∼2–2.5x is achieved by the 𝑘 = 8 vari­
ant, while the worst slowdown of ∼0.5x is realized by 𝑘 = 64. Additionally, a
nearly linear increase in runtime can be observed, even in those cases where
the DoF/s metric increased for larger block sizes, which will be examined in
more detail as part of the iteration number and time per iteration discussions.
All in all, the solution process benchmark illustrates that a faster operator ap­
plication does not translate directly into a faster solution time. In the follow­
ing, the reasons for this failure are examined.

Figure 6.8: Number of iterations until convergence of the linear solver. Allmatrix­free
solver converge slower than thematrix­based solver, where the difference increases
with the block size. The largest block sizes require about 10×more iterations until
convergence. Only the convergence speed of the variant with 𝑘 = 8 on the largest
grid comes close to matrix­based one.

The main culprit for the high time­to­solution is the number of iterations
necessary for convergence, presented in Fig. 6.8. Both in 2D and in 3D, the
matrix­free block­structured solvers require more iterations than the conven­
tional solverwith thematrix­basedAMGpreconditioner. Furthermore, the lin­
ear dependency of the iterationnumber on the block size, asmentioned in sec­
tion4.3, is clearlynoticeable. This dependency results in 7–9×higher iteration
number for thehighest block sizes compared to thematrix­basedcomputation.
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Since the convergence rate is mainly determined by the preconditioner, this
underlines the necessity for better preconditioners in the matrix­free case to
improve upon the state­of­the­art matrix based approach. Nevertheless, it is
remarkable that the time­to­solution difference is significantly lower than the
iteration count difference, which can be explained by examining one iteration
in detail next up.

Figure 6.9: Performance of one full linear solver iteration, measured in MDoF/s. The
DoF/s performance behavior for a full iteration closely resembles the DoF/s perfor­
mance of the operator application. The benefit of the matrix­free variants is more
noticeable than in the operator application, since the preconditioner application is
also incorporated.

The performance of one solver iteration is illustrated in Fig. 6.9 using again
the DoF/s metric to reveal similarities to the operator application. Since one
BiCGStab iteration contains two preconditioner applications, multiple axpy
operations, and scalar products, besides two operator applications, the total
DoF/s is lower than in the operator application case. Nevertheless, the qual­
itative behavior is clearly mirrored here. The AMG preconditioner employed
in the matrix­based case is quite expensive, such that the matrix­free variants
achieve higher DoF/s, around 2–5x the matrix­based DoF/s, even where that
is not the case for the operator application. This indicates that improving the
preconditioner to reach the convergence rate of the AMG method will signifi­
cantly speed­up the time­to­solution up to 5× in the best case.
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6.2.2 p-Laplacian

In the following section, the𝑝­Laplace equation is considered inorder todeter­
mine the advantages or disadvantages the matrix­free block­structured grids
approach would convey in a non­linear setting. This simple non­linear exten­
sion of the Poisson equation defined as

−∇ ⋅ (|𝑢|𝑝−2∇𝑢) = 𝑓 inΩ,
𝑢 = 𝑔 on 𝜕Ω,

with 1 < 𝑝 < ∞. The parameter 𝑝 = 3/2 is chosen here. The right­hand­side
is defined as

𝑓(𝑥, 𝑦) = 1 + cos(2𝜋𝑥) sin(2𝜋𝑦),

and homogenous Dirichlet conditions are used. The domain and the element
geometry is the sameas in thePoissonbenchmark, i.e.Ω = [0, 1]2with a struc­
tured mesh, which allows focusing on the new aspects brought in by the non­
linearity.

The discretization, using ℚ1 finite elements, leads to the non­linear func­
tional

𝑟(𝑢, 𝑣) = ∫
Ω
(𝜀 + |𝑢|2)−

1
4 ∇𝑢 ⋅ ∇𝑣 − 𝑓𝑣 dx,

where the 𝑝­Laplacian is regularized with 𝜀 = 10−10 to handle the singular­
ity at 𝑢 = 0. Both the handwritten matrix­based variant and the generated
matrix­free variants solve the corresponding non­linear equation 𝑅(𝐳) = 0
with Newton’s method, where the linearized equation 𝐷𝑅(𝐳)𝛿𝐳 = −𝑅(𝐳) is
solved using the setup described at the beginning of this section. The imple­
mentation of the Newton method available in DUNE­PDELAB automatically
chooses a target reduction for the linear solver such that quadratic conver­
gence canbe guaranteed. Therefore, the linear systems areusually solvedwith
a lower precision than in the previous benchmark. Unfortunately, the Newton
implementation in DUNE­PDELAB 2.7 does not support matrix­free applica­
tion, but apatch for it is provided in the custombranchmentioned in appendix
A.

Due to the evaluation of the non­linear coefficient at each matrix­free op­
erator application, the local amount of work is significantly higher than dur­
ing the linear Poisson benchmark. To be more precise, around 300 FLOP per
DoF are executed during one operator application, 7.5× the work of the linear
Laplace operator. Additionally, the theoretical FLOP bound is even a bit lower
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for the non­linear Laplace operator due to the additional linearization point
coefficient 𝑛𝑐 = 1. Assuming best cache reuse of the matrix­vector multipli­
cation, the upper FLOP bound is 224 FLOP per DoF, and for no cache reuse,
which is unlikely on structured grids, the FLOP bound is 368. Therefore, even
if the LINPACK performance can be achieved in the local kernels, the matrix­
free operator application will be slower than the matrix­based one. The DoF/s
performance in Fig. 6.10 clearly supports this theoretical finding.

Figure 6.10: Performance of one operator application measured as MDoF/s (million
DoF/s) on a 2D structured grid w.r.t. one core. The matrix­based operator perfor­
mance is the same as in the previous benchmark. Due to the evaluation of the non­
linearity, the matrix­free performance is considerably lower than previously, and
also lower than the matrix­based variant.

Although the matrix­free variants cannot be faster than the matrix­based
variants comparing only the operator application, this is not necessarily the
case for the whole solution process. During each Newton step, a new linear
system has to be solved, which requires assembling a new matrix in each step.
It should be noted that this is only required to achieve the best convergence,
otherwise techniques to reduce the number ofmatrix assemblies could be em­
ployed, outlined for example in [28]. However, to guarantee the same conver­
gence behavior as in thematrix­free case, these techniques are not considered
here. This matrix assembly step takes notably longer than the matrix applica­
tion and when taking this setup cost into account the matrix­based operator
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Figure 6.11: The number of operator applications until the matrix­based variant with
the matrix assembly setup cost included becomes faster than the matrix­free vari­
ants. For medium and larger grid sizes, the assembly of the stiffness matrix is as
expansive as 30–35 applications of the matrix­free operator.

application is slower than the matrix­free variants for the first 30–35 applica­
tions, as can be seen in Fig. 6.11.

However, this cannot be directly transferred to the linear solver iterations,
since thepreconditioner cost is not considered. If the two­level preconditioner
described beforewith three Jacobi iterations on the fine grid is used, the solver
iterations advantage for thematrix­free variants reduce to 5–6 iterations in the
worst case, i.e. thematrix­based preconditioner is just as fast as thematrix ap­
plication. Nevertheless, there is a certain number of iteration, which could be
considered ‘free’ for the matrix­free variants. As long as the matrix­free vari­
ants converge within this iteration number, it does not matter if the matrix­
based operator application is significantly faster or if the matrix­based linear
solver converges earlier, the matrix­free solver will be faster.

This effect of the large setup cost is barely notable in this benchmark due to
the slow convergence of thematrix­free linear solver, which can be seen in Fig.
6.12. After a slight increase in the linear solver iterations per Newton step, the
matrix­free variantswith 𝑘 ≥ 16 requiremore than 40 iterations, or evenmore
than 100 iterations, on average, surpassing the 10 iterations of matrix­based
linear solver by a significant amount. The setup cost is amortized already af­
ter the first 5–6 combined matrix­free operator and preconditioner applica­
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Figure 6.12: Left, average number of iterations until the linear solver converges with
the accuracy prescribed by the Newton solver within one Newton step. Right, the
performance for one linear solver iteration asMDoF/s, including the assembly cost.
The convergence behavior of the linear solver is nearly identical to the behavior ob­
served during the Poisson benchmark. Although the operator application of the
matrix­free variant is slower, considering one linear solver iteration they are faster
than the matrix­based variant, due to the reduced setup cost.

Figure 6.13: Left, the runtime per DoF of both one full linear solve. Right, the runtime
per DoF for one single Newton step, including additional setup cost and the line
search besides the linear solve. The cost of the assembly is also included in the run­
time of the linear solve for thematrix­based variant. Thematrix­free linear solver is
never faster than the matrix­based one due to the higher number of required itera­
tions and the slow operator application. Nevertheless, in few cases the runtime per
Newton step is lower in the matrix­free case. The full Newton step contains addi­
tional costs,which impact thematrix­basedcomputationmore than thematrix­free
ones.

6.2 MEASURED PERFORMANCE 125



tions, which translates to 2–3 BiCGStab iterations, since two applications are
executed per iterations. Therefore, the gap in the remaining linear solver iter­
ation cannot be closed, even with a faster runtime per iteration, shown in Fig.
6.12. In the instanceswhere thematrix­free linear solver comes close, 𝑘 = 8 on
larger grids, see Fig. 6.13, some influence of the setup cost can be recognized.
After removing the ‘free’ iterations, gained from skipping thematrix assembly,
the matrix­free linear solver converges after ∼15 additional iterations. There­
fore, the difference to the matrix­based variant is reduced, but the reduction
is still not enough to surpass the matrix­based performance. If the additional
cost of a Newton step besides the linear solve, such as line search, that require
multiple residual evaluation, the matrix­free variant becomes slightly faster,
see Fig. 6.13. This shows that removing the assembly cost can give the required
edge to outperform the matrix­based computation.

6.2.3 Navier-Stokes Model

The final benchmark considers the incompressible Navier­Stokes equations,
defined as

𝜌 (𝜕𝑢𝜕𝑡 + 𝑢 ⋅ ∇𝑢) = 𝜇Δ𝑢 − ∇𝑝 + 𝑓,

∇ ⋅ 𝑢 = 0,

to simulate a channel flow around a cylinder in 2D. The problem parameters
are chosen according to the DFG 2D­3 benchmark [84], leading to the domain
Ω = [0, 2.2]×[0, 0.41]⧵𝐵𝑟(0.2, 0.2)with 𝑟 = 0.05, a density of𝜌 = 1, a dynamic
viscosity of 𝜇 = 0.001, and no source term, i.e. 𝑓 = 0. On the top and bottom
walls Γ𝐵 = [0, 2.2] × {0}, Γ𝑇 = [0, 2.2] × {0.41}, as well as the boundary of the
cylinder Γ𝐶 = 𝜕𝐵𝑟(0.2, 0.2) no­slip boundary conditions are prescribed, i.e.

𝑢|Γ𝑇 = 𝑢|Γ𝐵 = 𝑢|Γ𝐶 = 0.

The left wall Γ𝐼 = {0} × [0, 0.41] acts as an inflow boundary with the following
inflow profile

𝑢(0, 𝑦, 𝑡) = (
4𝑈(𝑡)𝑦(0.41 − 𝑦)

0.412 ) , 𝑦 ∈ [0, 0.41]

𝑈(𝑡) = 1.5 sin (𝜋𝑡8 ) ,
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and a do­nothing outflow together with a homogenous Dirichlet condition on
the pressure is defined on the right wall Γ𝑂 = {2.2} × [0, 0.41] leading to

𝜕𝜂𝑢 = 0 on Γ𝑂,
𝑝 = 0 on Γ𝑂.

On the other boundary parts, homogenous Neumann conditions are applied
to the pressure.

These equations are solvedwith the Chorin projection using the explicit Eu­
ler time steppingmethod, which allows splitting the initial equation into three
separate steps. An overview of the Chorin projection, as well as other projec­
tion methods, can be found in the review [49]. Let 𝑢𝑛 be the current approx­
imation of the velocity, 𝑝𝑛 the corresponding pressure approximation, and 𝜏
the time step size. Then, the next step is computed by first determining an
intermediate velocity 𝑢∗ with

𝜌𝑢
∗ − 𝑢𝑛
𝜏 = −𝜌(𝑢𝑛 ⋅ ∇)𝑢𝑛 + 𝜇Δ𝑢∗ inΩ,

𝑢∗ = 𝑔 on Γ𝐵 ∪ Γ𝑇 ∪ Γ𝐶 ∪ Γ𝐼,
𝜕𝜂𝑢∗ − 𝑝𝑛𝜂 = 0 on Γ𝑂,

where 𝜂 is the unit outer normal on Γ𝑂. Afterwards a pressure correction is
computed by solving for the new pressure

Δ𝑝𝑛+1 = −
𝜌
𝜏∇ ⋅ 𝑢∗ inΩ,

𝑝𝑛+1 = 0 on Γ𝑂,
𝜕𝑛𝑝𝑛+1 = 0 on Γ𝐵 ∪ Γ𝑇 ∪ Γ𝐶 ∪ Γ𝐼,

and then correcting the intermediate velocity by

𝜌𝑢𝑛+1 = 𝜌𝑢∗ − 𝜏∇𝑝𝑛+1.

Using a finite element discretization leads to the following three problems, the
intermediate problem

𝜌
𝜏 ⟨𝑢

∗, 𝑣⟩ + 𝜇⟨∇𝑢∗, ∇𝑣⟩ =
𝜌
𝜏 ⟨𝑢

𝑛, 𝑣⟩ − 𝜌⟨(𝑢𝑛 ⋅ ∇)𝑢𝑛, 𝑣⟩ ∀𝑣 ∈ 𝑉ᵆ
𝐷 ,
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the pressure problem

⟨∇𝑝𝑛+1, ∇𝑞⟩ =
𝜌
𝜏 ⟨∇ ⋅ 𝑢∗, 𝑞⟩ ∀𝑞 ∈ 𝑉𝑝

𝐷 ,

and the projection problem

𝜌⟨𝑢𝑛+1, 𝑣⟩ = 𝜌⟨𝑢∗, 𝑣⟩ − 𝜏⟨∇𝑝𝑛+1, 𝑣⟩ ∀𝑣 ∈ 𝑉ᵆ,

where 𝑉ᵆ is the finite element space for the velocity, without constraints, 𝑉ᵆ
𝐷

the same space with the specified Dirichlet constraints, and 𝑉𝑝
𝐷 the finite ele­

ment space for the pressure with Dirichlet constraints.
The handwritten and generated implementations use both a stable finite

element, the ℚ2­ℚ1 Taylor­Hood pair, and an unstable ℚ1­ℚ1 element. The
sparse matrix from the discretized intermediate problem uses blocking of the
velocity unknown at each grid node, resulting in a matrix with 2 × 2 blocks
as entries. Blocked matrices have more efficient the operator application, as
the arithmetic intensity increases to 1/4 in the limit. Since the vectorization
of the ℚ2 element is not supported, only the local kernels using the unstable
element are vectorized. In either case, both the handwrittenmatrix­based and
the generated matrix­free variant apply mass lumping to the projection prob­
lem, reducing it to assembling the right­hand­side and scaling it. Therefore,
the projection step is also effectively matrix­free for the handwritten variant.

These settings for the Navier­Stokes benchmark explore several aspects not
covered in theprevious benchmarks. First, theparticular choice of thedomain
necessitates the usage of anunstructured grid to account for the interior circu­
lar boundary. In contrast, the other benchmarks used an axiparallel, equidis­
tant grid, which is more favorable for any matrix­free computation. The us­
ageofmultilinear geometries automatically increases the total amountofwork
per DoF, through an increased quadrature order to stay accurate and the addi­
tionalFLOPs tocompute thegeometryquantities. Furthermore, theprojection
step closely resembles one step of an explicit time steppingmethod, which al­
lows estimating how the block­structured approach would compare against a
non block­structured approach for solving a time dependent PDE with an ex­
plicit method.

The performance discussion is analogous to the previous sections, i.e. the
performance of one single operator for each step, and the performance of the
full intermediate and pressure solver are considered separately. As a first step,
somepredictionson the followingperformanceareprovided, basedon the the­
oretical estimates from the beginning of the chapter. Table 6.1 presents the
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Intermediate Pressure 𝐵𝑖 𝐵𝑝

ℚ2­ℚ1 323.75 222.19 600.89 384.00
ℚ1­ℚ1 198.73 206.05 456.00 384.00

Table 6.1: Comparing themeasuredwork (FLOP) permicro element for the intermedi­
ate and pressure operator for both element types on the left with the corresponding
theoretical upper bounds 𝐵• on the right side.

worst­case FLOP bound estimates (𝛼 = 1) and the measured data. Due to the
higher quadrature order and the higher local polynomial degree for the ve­
locity part of the stable element, the measured work per DoF is significantly
higher than in the Poisson benchmark, which uses similar local kernels. Since
theestimatedFLOPboundsare reportedw.r.t. theLINPACKpeakperformance,
the matrix­free approach cannot be faster than the matrix­based operator ap­
plication if less than 50% of that peak performance is achieved, except in the
unstable case for the intermediate operator application where∼40% are suffi­
cient. The FLOP bounds are worsened further by the fact that the local kernels
are not vectorized for the stable element. In that case, only 1/8th of the LIN­
PACK performance can be realized, indicating that the matrix­based variant
will be faster.

Operator Performance

In Fig. 6.14 theDoF/s of the operator application is presented for each step and
each element type. Considering the pressure and intermediate step, the per­
formance behaves as expected. Compared to the initial Poisson benchmark no
variancew.r.t. the grid size is notable, as the coarse grid always consists ofmul­
tiple macro elements and only lower block sizes are used. Due to the missing
vectorization with the stable element, the matrix­free variants fails to reach a
significant portion of the LINPACK performance. Thus, it falls well below the
matrix­based operator application performance. By switching to an unstable
element and utilizing vectorization for larger block sizes, the matrix­free op­
erator application can catch up. The matrix­free performance does not sur­
pass thematrix­based oneby a large amount, which suggests that the achieved
FLOP/s performance of the local kernels is close to the 50% LINPACK bound
mentioned earlier. Since the projection step in the handwritten non block­
structured variant is also computed matrix­free, the qualitative comparison
differs from the other steps. In this case, the block­structured right­hand­side
assembly is vastly faster. Without vectorization speed­ups between 4× for the
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Figure 6.14: Performance of one operator applicationmeasured as MDoF/s for each of
the three steps defined above and for both element types. Although the handwrit­
ten variant is denoted as ‘Matrix’, the projection step is computed matrix­free also
in that case, since only the assembly of the right­hand­side is considered. Due to
missing vectorization, the matrix­free performance of the intermediate and pres­
sure step is significantly lower than the matrix­based one for the stable element. If
vectorization is possible with the unstable element, the matrix­free variants with
high block sizes reach or even surpass the matrix­based performance. The matrix­
based computation during the projection step is identical to a matrix­free compu­
tation with 𝑘 = 1. Therefore, in this step each matrix­free variant clearly exceeds
the matrix­based performance.
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smaller block size (𝑘 = 4) and 5× for larger block sizes can be achieved, while
with vectorization speed­ups between 10–50× can be achieved.

In the following, the performance of the data transfer and the compute­part
are examined, with similar findings as in the previous benchmarks. First off,
Fig. 6.15 shows FLOP/s performance relative to the LINPACK peak w.r.t. one
core. Again, due to the higher amount work per macro element and the in­
creased number of macro elements, there is no variation due to the grid sizes.
Without vectorization only 20% of the LINPACK benchmark is reached, illus­
trating the cause of failing to reach the DoF/s of the matrix­based operator
application. If vectorization is enabled by using the unstable finite element
pair and AVX­512 instructions are possible, between 35%–55% of the peak are
achieved for block sized 𝑘 ≥ 8. For multilinear geometries, the local ker­
nels becomes more complicated than in the previous models with longer de­
pendency chains, which results in lower performance compared to previous
benchmarks. Curiously, the performance of the projection step is lower than
the intermediate step, although both steps have the same loop nests. The pro­
jection step requires loadingadditional data for the coefficients to compute the
residual of the projection step, which are transferred as part of the local kernel
andarenot excluded formthe timings, thereby increasing the local kernel time
without adding any FLOPs.

The attained bandwidth for the data transfer part, or the whole operator ap­
plication in the matrix­based case, is presented in Fig. 6.16. The assembled
matrix application continues to achieve the STREAM benchmark bandwidth.
Matrix­free variants reach the benchmark’s bandwidth only in caseswhere the
amount of DoFs associatedwith themacro element interior is high enough, i.e.
𝑘 ≥ 8 for the stable elements and 𝑘 ≥ 16 for the unstable elements. Since
the stable elements use theℚ2 element with a higher volume to surface DoFs
ratio, these variants achieve higher bandwidths compared to the unstable ele­
ment pair. As in the benchmarks before, some matrix­free measurements are
higher than the STREAMbenchmark. This supports the previous conclusions,
namely thatmatrix­free variants withmany interior DoFs can fully exploit the
mainmemory bandwidth and the overlap betweenmemory and computation
part is larger than initially assumed.

Solver Performance

Next up, the whole solution process is examined following the procedure of
the previous benchmarks. Since this model is an instationary problem, the
solution process would normally refer to computing a solution for each time
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Figure 6.15: Performance of the compute­part of one operator application reported as
% of LINPACK peak performance w.r.t. one core. 55% of LINPACK peak on one core
corresponds to ∼25 GFLOP/s. Due to the current restrictions of the code generator,
only the local kernels for the unstable element can be vectorized. Without vector­
ization, thematrix­free kernels cannot achieve any significantly portion of the LIN­
PACK peak. Using the unstable element with vectorized local kernels, 35–55% of
LINPACK peak are attained.
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Figure 6.16: Performance of thememory­part of one operator applicationmeasured in
GiB/s. As before, the measurements are w.r.t. one NUMA domain. Since the other­
wise matrix­based computation is matrix­free for the projection step and there are
no separate kernel timings available in this case, themeasurements for that case are
dropped. The computations using the ℚ2 velocity element achieve a higher band­
width than theirℚ1 element counterparts. Similar to the bandwidth results for the
Poissonmodel, the variants with higher block sizes reach higher bandwidths, again
surpassing the STREAM bandwidth.

6.2 MEASURED PERFORMANCE 133



steponafixed time interval, possiblyusing adaptive time stepping. Forperfor­
mance considerations this is not useful. Instead, it is sufficient to investigate
the performance of one time step, which includes the solution of two linear
system and one lumped system. Since solving the lumped system is equal to
the, already discussed, assembly of the residual, this system is not considered
further. Only the system for the intermediate velocity and the new pressure
are considered. As for all measurements, one time step is repeated until the
total runtime of each solution is larger than 0.5s.

The total runtime for one time step is given in Fig. 6.17 and the runtime per
DoF is shown inFig. 6.18. As expected fromthemostly sloweroperator applica­
tion, thematrix­free solutionprocess is generally slower than thematrix­based
variants, only inone case, the intermediate solverusingunstable elements and
𝑘 = 8without any additional grid refinement, the matrix­free computation is
slightly faster. Considering the runtime per DoF, the runtime does not scale
linearly with the number of DoFs anymore, or at least the runtime per DoF
did not level off during the used grid sizes. Examining the number of solver
iterations in Fig. 6.19 and the performance per solver iteration in Fig. 6.20 illu­
minates this behavior.
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Figure 6.17: Runtimeuntil linear solver convergencewith a residual reductionof10−10
for the intermediate and pressure step and both element types. The matrix­based
variant is faster for virtually all grid sizes. The marginally faster operator applica­
tion for some matrix­free variants is not enough to compensate for the slower con­
vergence, discussed later on.
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Figure 6.18: RuntimeperDoFuntil linear solver convergencewith a residual reduction
of 10−10 for the intermediate and pressure step and both element types. This is a
rescaling of the results from Fig. 6.17. It becomes clear that in only one case, 𝑘 = 8
and a grid size of∼2×105, the matrix­free solver exceeds the matrix­based.

The iteration number, as shown in Fig. 6.19, grows slightly with the grid size
for the pressure solver, which is in agreement with the Poisson benchmark,
since in both instances the same assembled matrix is considered. Besides the
grid size scaling, the matrix­free variants scale again linearly with the block
size, leading tohigh iterationnumbers for high local refinement cases, roughly
10×more than the matrix­based iteration number. For the intermediate sys­
tem, both the absolute iteration numbers and the block size scaling are signif­
icantly reduced, most likely due to themassmatrix. As a result, the difference
in iterations betweenmatrix­free andmatrix­basedvariants reduces to a factor
of ∼5–7×. Additionally, the scaling due to the grid size seems to be increased.
Considering the lowest block size, which also uses the most macro elements,
the iteration numbers seem to level off, suggesting that the iteration numbers
for the higher block sizes might also flatten for larger grid sizes.
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Figure 6.19: Average number of iterations of each linear solver for one time step. For
the intermediate step some ramp­up of the required iteration number can be seen
for higher block sizes. Similar to the earlier iteration number discussions, the
matrix­based solver converges faster than most matrix­free solver. Only very small
block sizes (𝑘 = 2, 4) can lead to fewer required iterations. In the worst case, the
slowestmatrix­free variant (𝑘 = 32) requires∼10× asmany iterations as thematrix­
based variant for the pressure step, and∼5–7×more iterations for the intermediate
step.

Similar to the previous benchmarks, the DoF/s of one linear solver iteration
for the matrix­free variants (𝑘 ≥ 8) exceeds the matrix­based performance,
due to the less expansivepreconditioner application. Fig. 6.20depicts this per­
formance. A roughly 2× higher performance than the matrix­based variant is
achieved by the matrix­free variants during the intermediate step in the best
case. During the pressure step, this increases slightly to a speed­up of ∼3×.
There are some clear dips in the matrix­based performance, because the lin­
ear solver converges immediately after thefirst preconditioner application, re­
sulting in a runtimedominatedby setup costs. Theperformance of thematrix­
free variants degenerateswith increasing grid sizes, especially for lower block­
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Figure 6.20: Performance of one iteration of each linear solver measured in MDoF/s.
Most matrix­free variants achieve a higher performance for a single iteration than
thematrix­based variant. In the best case, during the intermediate step thematrix­
free variants attain∼2×more DoF/s than thematrix­based variant, and in the pres­
sure step even up to 3×more DoF/s.

sizes, which ismost likely caused by the direct solver used for the coarse prob­
lem as part of the coarse grid correction. Since the coarse problem is consider­
ably larger for smaller block sizes, the reduction is more pronounced in these
cases.

6.3 Concluding Remarks

The performance analysis revealed two key characteristics of the matrix­free
block­structured grid approach presented in this thesis. One concerning the
single operator application and one concerning the whole solution process. If
the amount of work per DoF is well beneath the established theoretical bound,
the matrix­free operator application is faster than the corresponding sparse
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matrix­vector multiplication. To sharpen this bound and give a more reliable
estimate the FLOP/s performance of the local kernel needs to be determined
more accurately. Ideally it should depend directly on the generated code, us­
ing the ideas mentioned in section 6.1. In those instances where the bound is
violated, the matrix­free approach might still be advantageous, especially for
non­linear systems, as it does not require to assemble the system matrix. Al­
though inmany cases considered above thematrix­free operator application is
faster, this does not translate to the solution process. The matrix­free precon­
ditioner used here, i.e. the two­level method with Jacobi iterations on the fine
grid and a coarse gird correction, showed a significantly lower convergence
rate than the AMG preconditioner for the matrix­based variants. This leads to
high iteration number that lessen the advantage per iteration. Therefore, the
common theme of these benchmarks is the requirement for better precondi­
tioners to fully utilize the benefits from the matrix­free block­structured grid
approach.
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chapter7
Summary & Conclusion

T HIS THESIS SHOWED that the efficiency of matrix­free methods for low
order discretizations can be significantly increased by using the block­

structured grids approach. The groundwork for that is laid out in chapter 3, de­
tailing the block­structuring approach and its implementation. Different op­
timizations that apply to block­structured grids were discussed, such as cross­
element vectorization and efficient computation of geometry quantities, tar­
geting the local kernels, or using streaming access into the global data struc­
ture during the gather and scatter operations, which reduces the global assem­
bly overhead. Additionally, the problem of consistent assembly was brought
up referencing known solutions without runtime overhead. With the previ­
ouslymentionedoptimizationsup to50–70%of the theoretical compute­bound
peak performance were reached for handwritten local kernels.

By generating the local kernels, this performance can be reached for differ­
ent PDEs without substantially more effort than deducing the weak formula­
tion. Chapter 5 illustrates the generation process for block­structured kernels
implemented in DUNE­CODEGEN. First, the weak formulation using the pop­
ular DSLUFL is transformed into an intermediate representation using Loopy,
uponwhich transformations are applied to recreate the aforementionedhand­
written optimizations. Besides the vectorization and efficient geometry com­
putations, the code generator employs a simple loop invariant code motion
method to further reduce the number of FLOP per local kernel, getting closer
to ideal handwritten kernels. After these transformations, the intermediate
representation is then translated into a C++ class, which can be used within a
DUNE­PDELAB program.

A simple two­level preconditioner, based on non­overlapping domain de­
composition, was adapted to the block­structuring approach in chapter 4. In
contrast to the most widely available preconditioners, the application of the
preconditioner does not require an assembled matrix on the fine grid and is
therefore useful in the matrix­free setting considered in this thesis. By also
solving the local problems appearing during thefine grid computationsmatrix
free, the preconditioner can directly use the already generated local kernels.
Thereby, it benefits immediately from the optimizations mentioned before.

Finally, the performance of the matrix­free block­structured grid approach
has been thoroughly evaluated in chapter 6, highlighting the advantages of
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this approach as well as illustrating about its shortcomings. The performance
of one single operator application is discussed, showing the high efficiency
under appropriate circumstances. Its performance is also considered in the
context of one full solution. Furthermore, a bound on the micro element lo­
cal amount of work has been developed to specify these circumstances. This
can help to estimate if the matrix­free operator application will be faster than
multiplying the corresponding assembled matrix with a vector, although bet­
ter estimates for the FLOP/s performance of the local kernels are necessary to
supply sharper bounds.

As can be seen from the discussion in chapter 6, the block­structured grid
approach is not suitable for all problems. Above all, if the FLOP bound is vi­
olated, perhaps due to an expansive coefficient function or non­linearity, the
matrix­free approachmight be slower than thematrix­basedone. But there are
other limiting factors than the FLOP bound. Since block­structuring is equiv­
alent to uniform grid refinement, it should only be applied to problems where
this grid refinement strategy is appropriate. Otherwise, for problems requiring
highly adaptive meshes, it is not suitable conceptually. In these cases either
thematrix­basedapproach shouldbe chosenor other optimization techniques
formatrix­free computations have to be considered. However, at least in those
instances where the FLOP bound holds and the macro grid is suitable for uni­
form refinement, block­structuring is a strong choice to increase the operator
application performance, especially if it is developed further.

Most of the further research direction were already mentioned in the corre­
sponding chapters, nevertheless, themost important and promising areas are
highlighted in the following. The current local kernel performance is already
substantial, especially for low ordermethods, but there are still some opportu­
nities for further enhancements, most pressing the vectorization for elements
with degree greater than 1 and tiling for higher block sizes. These would lead
to amore consistently high performance. In order to widen the possible appli­
cation of the block­structured optimization, the generalized interface for local
structuring, discussed in section 5.5.1, could be pursued further. In particular,
generating locally structured simplex meshes would be helpful for 3D appli­
cations with unstructured grids, as the mesh generation for 3D purely cubi­
cal meshes is still in its early stages. Additionally, using affine linear simplex
elements implies that the geometry transformation is also affine linear, and
therefore needs to be computed only once per macro elements even for un­
structured meshes, which benefits more from the optimization developed in
chapter 5. As seen during the benchmark evaluation in chapter 6, in particu­
lar during the solver performance discussion, better preconditioners are nec­
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essary. In cases where the matrix­free operator application out­performs the
conventional sparsematrix­vectormultiplication, thematrix­free solver could
not achieve this performance due to slower convergence. With more efficient
preconditioners, for example those alluded to in the outlook of chapter 4, this
deficiency would be fixed. It needs to be stressed that investigating more effi­
cient preconditioners that harness the efficiency of the generated, optimized
local kernels is imperative to find practical use for the block­structured grid
approach discussed here.

Inconclusion, this thesis shows thatgeneratingblock­structuredkernels im­
proves the efficiency of matrix­free computations for low order FEM, without
requiring elaborate user implementations. The resulting matrix­free operator
application is faster than the corresponding matrix­vector multiplication, if
the local amount of work stays below a theoretical limit, which depends on
the sparsity of the assembled matrix. Three key factors are responsible for
the attained high performance. First, the reduction of the global assembly
overhead by allowing streaming access into the global data and decreasing the
number of global index computations significant. The second factor, reduc­
ing themacro­element local work, is quite general and obvious, but the block­
structuring revealsmore options for removing redundant operations thanoth­
erwise possible, especially regarding the geometry computations. And lastly,
cross­element vectorization allows to efficiently utilize modern CPU features.
Therefore, the block­structured, matrix­free approach is a viable candidate to
replace the conventionalmatrix­based computations for a specific set of prob­
lems, but for practical use efficient preconditioner need to be developed.
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appendixA
Performance Measuring Settings

All performancemeasurements in this thesiswere done on the samehardware,
using the same software stack with the same methodology, described in the
following. First, the hardware stats of the used CPU are provided and then the
versions andoptions of thenecessary softwarepackages aredescribed. Finally,
the considered performance measures as well as the measuring approach are
explained.

A.1 Hardware

Supported core freqs: 1.2–3.6 GHz
Supported uncore freqs: 1.2–2.4 GHz
Cores/Threads: 20/40
SIMD extensions: AVX­512
L1 cache capacity: 20×32 KiB
L2 cache capacity: 20×1 MiB
L1 cache capacity: 27.5 MiB
Memory configuration: 6 ch. DDR4­2666
Theor. mem. bandwidth: 128.0 GiB/s

Table A.1: CPU specification

The benchmarks were run on a dual­socket machine with an Intel Skylake
server CPU, the exact model is a Xeon Gold 6148. In table A.1, borrowed from
[52], the most important features of this particular CPU are gathered.

Judging the efficiency of a particular program requires a baseline for com­
parison. Inparticular, twohardware characteristics arewidelyused in theHPC
community, the peak bandwidth in Byte/s for memory­bound codes and the
peak FLOP/s for compute­bound codes. Both values can be determined the­
oretically or empirically, where the empiric peak is measured by running an
appropriate benchmark. These benchmarks are chosen such that they reflect
the typical work load of an either memory­bound or compute­bound and are
therefore a more realistic target than the theoretical peaks.

The common benchmark for peak bandwidth is the STREAM benchmark1,
which computes

𝑎𝑖 = 𝑏𝑖 ∗ 𝑐 + 𝑑𝑖.
This benchmark can be used as reference by any code that has the samemem­
ory access pattern, in this case one write/write stream and two read streams.

1http://www.cs.virginia.edu/stream/
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Another popular benchmark is the triad benchmark, using one additional read
stream by computing

𝑎𝑖 = 𝑏𝑖 ∗ 𝑐𝑖 + 𝑑𝑖.
The achieved bandwidth directly depends on the size of these vectors, which
dictates in which memory layer they fit in. Table A.2 displays the measured
bandwidth for both benchmark run on 20 cores, using vector sizes character­
istic for each memory layer.

Level Size Stream Triad

L1 20×16 KiB 4358.98 GiB/s 4207.79 GiB/s
L2 20×256 KiB 1338.86 GiB/s 1522.34 GiB/s
L3 27 MiB 362.04 GiB/s 375.96 GiB/s
Main
memory 1 GiB 100.91 GiB/s 100.75 GiB/s

Table A.2: Empirical peak bandwidth in GiB/s depending on the work size.

Nowadays the theoretical peakFLOP/s of aCPU is usually not advertised and
has to be determined through combining lower level specifications. Dolbeau’s
paper [30] describes exactly how this computationworks and also supplies the
peak FLOP/s for the Skylake server architecture. According to Dolbeau, the
peak FLOP/s directly depends on the used SIMDwidth and the achieved clock
frequency. On Skylake CPUs the clock frequency is linked to the SIMD width
of the instructions to be executed, leading to lower frequencies when AVX­512
heavy code is run, although the reduction can only be measured empirically.
In tableA.3 thefirst rowsdisplay the theoretical FLOP/s dependingon theused
SIMD width assuming a clock frequency of 2.4 GHz for non AVX­512 code and
between 1.8–2.2 GHz for AVX­512 codes. The last row in table A.3 shows the
measured peak FLOP/s and achieved clock frequency for the LINPACK bench­
mark2, which is the standard benchmark for compute­bound codes and also
used as part of the TOP5003 supercomputer list.

Since the CPU core frequency directly influences the achieved FLOP/s, ac­
curately evaluating the performance of a program requires to control the ac­
tual frequency at which it runs. Modern CPUs operate on a range of possible
frequencies, which is controlled by the operating system according to the cur­
rent CPU governor. The default ‘ondemand’ governor lowers or raises the fre­
quency depending on the current work load, and the ‘performance’ governor
uses always the highest possible frequency. Additionally, to the restrictions
depending on the used SIMD instructions, the maximal frequency of a single
core scales inversely with the number of currently active cores if the ‘turbo
mode’ is activated, which are captured in table A.4. Therefore, to ensure that

2https://software.intel.com/content/www/us/en/develop/articles/
intel-mkl-benchmarks-suite.html

3https://top500.org/
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SIMD Instructions GFLOP/s

None 124
AVX2 416
AVX2 + FMA 832
AVX­512 576 (1.8 Ghz) – 704 (2.2 GHz)
AVX­512 + FMA 1152 (1.8 GHz) – 1408 (2.2 GHz)

LINPACK 910.62 (1.8 GHz)

Table A.3: Theoretical and empirical peak GFLOP/s depending on the used SIMD in­
structions.

Active
CPUs Normal AVX2 AVX512

Base 2.4 1.9 1.6

1 3.7 3.6 3.5
2 3.7 3.6 3.5
3 3.5 3.4 3.3
4 3.5 3.4 3.3
5 3.4 3.3 3.1
6 3.4 3.3 3.1
7 3.4 3.3 3.1
8 3.4 3.3 3.1
9 3.4 3.1 2.6
10 3.4 3.1 2.6
11 3.4 3.1 2.6
12 3.4 3.1 2.6
13 3.3 2.8 2.3
14 3.3 2.8 2.3
15 3.3 2.8 2.3
16 3.3 2.8 2.3
17 3.1 2.6 2.2
18 3.1 2.6 2.2
19 3.1 2.6 2.2
20 3.1 2.6 2.2

Table A.4: CPU frequencies in GHz with ‘turbo mode’ activated.
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the frequency is as stable as possible the ‘turbo mode’ is deactivated and the
‘performance’ CPU governor is activated for every benchmark. An additional
benefit of these settings is that the socket GFLOP/s performances can be di­
rectly translated into single core performance, i.e. dividing the values in table
A.3 by 20 results in the achievable floating point performance for one core.

A.2 Software

All benchmarks appearing in this thesis are written as DUNE projects, which,
together with all required DUNE modules, can be found in the following git
super project:

https://gitlab.com/MarcelKoch/thesis-superproject

The modules use the 2.7 release branch, if that is available, otherwise they are
fixed to a commit compatible with the 2.7 releases. Both DUNE­PDELAB and
DUNE­CODEGEN use custom branches, which incorporate some changes that
were notmerged into themaster branch, in particular the DUNE­PDELAB cus­
tom branch contains the optimized gather and scatter operations discussed in
3.1.3. The modules are build using the dunecontrol command with the sup­
plied dune.opts file, containing the C++ compiler and CMake options. Since
this thesis is only concerned with single core performance and does not sup­
port parallelization in its current state, DUNE is build without MPI support,
although enabling it would not change any outcomes.

Themachinedescribed earlier operates onUbuntu 18.04with kernel version
4.15.0­117­generic. As C++ compiler the GNU compiler g++ version 9.3.0 was
used with the following flags:

-O3 -DRELEASE -DNDEBUG -march=native
-ftemplate-backtrace-limit=0 -Wno-deprecated-declarations

During the benchmarks in section 3.4.3 and 5.3.1 the auto­vectorization of g++
isdisableswith theadditional ‘-fno-tree-vectorize’ option for theprograms
with explicit vectorization. The coarse grid correction from chapter 4 uses the
SuperLU library to solve the coarse problemdirectly, where version 5.2.1 is pro­
vided by the apt package libsuperlu. The BLAS and LAPACK dependencies
of SuperLU are provided by the packages libblas3 and liblapack3 each im­
plementing version 3.7.1.

The tool suite LIKWID version 4.3.4 is used for pinning threads to cores and
monitoring performance counters as described in the following section.

A.3 Methodology

This section discusses what exactly is measured and, perhaps more impor­
tantly, how it is measured. As stated in the beginning of this chapter, both
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the achieved FLOP/s and bandwidth (BW), computed as

FLOP/s = number of executed FLOP
runtime in s

, BW = number of transferred Byte
runtime in s

,

of aprogramarecommonmeasures in theHPCcommunity. Theyallowaquick
comparison with the best possible values, which gives an easy­to­understand
ranking of different implementations of the same algorithm. But these mea­
sures can be deceiving. For example, executing redundant operations on al­
ready loaded data will most likely increase the FLOP/s without increasing the
overall efficiency. Therefore,measuresmore closely related to the targeted do­
main should be examined in addition. One such measure for FEM is DoF/s,
computed as

DoF/s = number of DoF
runtime in s

,

which is especially useful for evaluating a single operator application, and an­
other crucial measure is time­to­solution (tts), which is used when examin­
ing the whole simulation process, from assembling the (non­)linear system to
computing its solution. In some cases more niche measures such as the ratio
between vectorized and scalar instructions appear to be useful.

Manymeasures require the runtime of the program, which can be easily de­
termined either through source code additions or a command­line wrapper.
Determining the other part of the measurement, especially hardware related
ones, is usually trickier. The number of FLOP a program executes, or the num­
ber of bytes it transfers, may be counted by hand for simplistic local kernels,
but for complicatedones, suchas theones appearing in chapter 6, this is nearly
impossible. At least for theFLOPnumber aC++basedapproach ispossible. For
this approach theunderlyingdata type, double orfloat, is replacedby a class,
which implements all the arithmetic operations and static counters for each
operation, allowing afterwards to inspect the number of FLOP executed dur­
ing the programs run. Since this approach may interfere with the compiler’s
optimization and it is not extensible to measure memory transfers, it is not
considered further.

An alternative approach monitors hardware performance counters through
a special tool, where a fixed number of hardware events are counted automat­
ically by the core. Depending on the CPU architecture, these events can con­
tain, for example, the number of all retired instructions, the number of retired
256 bit SIMD instructions, or the number of L3 cache hits or misses. The qual­
ity of this approach directly depends on the quality of the available hardware
events. OnSkylake these events arefine­grained and reliable enough such that
accurate measurements are possible, while on other architectures this is not
the case, for instance, on Intel’s Haswell the FLOP related events were too in­
accurate, and on AMD’s Zen does not distinguish between arithmetic opera­
tion of different SIMD sizes. The tool used for measuring the hardware events
is likwid-perfctr from the LIKWID tool suite.
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Although the current implementation of the block­structured grids is not
optimized for parallelization, the effect of running onmultiple cores is at least
simulated. To this end, for each benchmark,multiple instances of that bench­
mark are executed at the same time filling up one socket of the system, which
corresponds to oneNUMAdomain on this architecture. The likwid-perfctr
tool allows to pin the currently executed program to a specific core, thereby
making it is possible to guarantee that every core of a socket is busy, while no
hyperthreading is used. Each benchmark is accompanied by a python script
available from the superproject. These scripts manage the execution of mul­
tiple instances with a correctly parameterized likwid-perfctrwrapper, and
additionally ensure that the CPU frequency behavior is set as defined at the
end of section A.1.

Every benchmark is repeated multiple times within one run, until the to­
tal runtime is larger than 0.5s to stabilize the measurements for smaller prob­
lems, where the number of repetitions is determined adaptively, depending
on the runtime of one iteration. Thus, the reported measurements is an aver­
age of multiple iterations of the considered benchmark. Due to the specified
frequency behavior and guaranteed minimal runtime, the measurements are
quite stable with low variance, usually less than 5%. Therefore, every bench­
mark is run only once on 20 cores simultaneously, unless otherwise stated.
Fromthese 20 separate results, the 10%quantile, or 90%quantile if lowernum­
bers are better, is chosen as the representative for that benchmark with the
rational that the lower bound on a particular performance measure is more
relevant than the upper bound for real­world applications. The last thing to
note is that eachmeasurement, e.g. the achieved FLOP/s or DoF/s, is w.r.t. one
core, except for the bandwidthmeasurements, since that cannot bemeasured
per­core.
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