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Abstract. The Baum–Connes conjecture predicts that a certain assembly map is an iso-
morphism. We identify the homotopy theoretical construction of the assembly map by Davis

and Lück [8] with the category theoretical construction by Meyer and Nest [22]. This ex-
tends the result of Hambleton and Pedersen [12] to arbitrary coefficients. Our approach uses
abstract properties rather than explicit constructions and is formally similar to Meyer’s and
Nest’s identification of their assembly map with the original construction of the assembly
map by Baum, Connes and Higson [2].

1. Introduction

Let G be a countable discrete group and A a separable G-C∗-algebra. The
Baum–Connes conjecture predicts that the Baum–Connes assembly map

µ : KG
∗ (EFinG,A) → K∗(A⋊r G)

is an isomorphism. The map was defined by Baum, Connes and Higson [2]
using the equivariant KK-theory of Kasparov [16]. Later, a homotopy theo-
retical definition of the assembly map was given by Davis and Lück [8]. They
developed an abstract machinery to study isomorphism conjectures like the
Baum–Connes conjecture or the Farrell–Jones conjecture in a common frame-
work. Their machinery takes as input a family F of subgroups of G and
an Or(G)-spectrum E, i.e. a functor from the category of all homogeneous
G-spaces G/H to the category of spectra. Every Or(G)-spectrum E has a nat-
ural extension to the category of G-CW -complexes and defines a G-equivariant
homology theory HG

∗ (−,E) by taking homotopy groups. In this setting, the
(E,F , G)-assembly map is the map

(1) HG
∗ (EFG,E) → HG

∗ (pt,E)
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510 Julian Kranz

induced by the projection EFG → pt, where EFG denotes a classifying space
for the family F .

To obtain the Baum–Connes assembly map in (1), one takes F = Fin to be
the family of finite subgroups and K

G
A to be an Or(G)-spectrum satisfying

(2) π∗(K
G
A (G/H)) ∼= K∗(A⋊r H)

for all subgroups H ⊆ G. We call the resulting assembly map

HG
∗ (EFinG,KG

A ) → HG
∗ (pt,KG

A )

the Davis–Lück assembly map. The construction of K
G
A has been done by

Davis and Lück in the case A = C and by Mitchener [23] in the general case.
We will give a variant of Mitchener’s construction using Michael Joachims
K-theory spectrum for C∗-categories [15].

It is not at all obvious that this construction gives rise to the same assembly
map as in [2]. Identifications have been made in [12] for the case A = C and
in [23] for the general case. However, both works rely on heavy machinery and
omit a lot of detail. Furthermore, the construction of the assembly map in [23]
contains some inconsistencies. For example, it is not clear to the author of
this paper whether the K-theory class [EK ] in [23, Def. 6.2] is well-defined for
a noncompact G-space K.

The main ingredient for our identification is yet another construction of
the assembly map by Meyer and Nest [22]. Recall that the equivariant KK-

groupsKKG(A,B) are the morphism sets of a triangulated category KKG with

separable G-C∗-algebras as objects. Let CI ⊆ KKG be the full subcategory
of G-C∗-algebras IndGH B induced from finite subgroups H ⊆ G. Let 〈CI〉 be
the localizing subcategory generated by CI, i.e. the smallest full subcategory
containing CI which is closed under KKG-equivalence, suspension, mapping
cones and countable direct sums. Every G-C∗-algebra can be approximated
by a G-C∗-algebra in 〈CI〉 in the following sense.

Theorem 1.1 ([22, Prop. 4.6]). Let A be a separable G-C∗-algebra. Then there

is a G-C∗-algebra Ã ∈ 〈CI〉 and an element D ∈ KKG(Ã, A) which restricts
to a KKH-equivalence for every finite subgroup H ⊆ G.

Meyer and Nest identify the Baum–Connes assembly map with the map

D∗ : K∗(Ã⋊r G) → K∗(A⋊r G),

which we call the Meyer–Nest assembly map. In fact, they achieve the identi-
fication as follows.

Theorem 1.2 ([22, Thm. 5.2]). The indicated maps in the following diagram
are isomorphisms:

KG
∗ (EFinG, Ã) K∗(Ã⋊r G)

KG
∗ (EFinG,A) K∗(A⋊r G)

∼=
µ

∼=D∗ D∗

µ
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We use the same strategy, to identify the Davis–Lück assembly map to the
Meyer–Nest assembly map.

Theorem 1.3 (Theorem 5.3). The indicated maps in the following diagram
are isomorphisms:

(3)

HG
∗ (EFinG,KG

Ã
) HG

∗ (pt,KG
Ã
)

HG
∗ (EFinG,KG

A ) HG
∗ (pt,KG

A )

∼=
pr∗

∼=D∗ D∗

pr∗

Here the lower-hand map is the Davis–Lück assembly map and the right-
hand map is identical to the Meyer–Nest assembly map by (2).

Let us outline the proof of the above theorem. First we prove that the map

HG
∗ (G/H,KG

Ã
) → HG

∗ (G/H,KG
A )

is an isomorphism for any finite subgroup H ⊆ G. Indeed, by (2), this map
can be identified with the map

K∗(Ã⋊r H) → K∗(A⋊r H).

It is an isomorphism since D ∈ KKG(Ã, A) is a KKH-equivalence. Using
excision, we conclude that the map

HG
∗ (EFinG,KG

Ã
) → HG

∗ (EFinG,KG
A )

is an isomorphism as well.
To prove that the upper-hand map in (3) is an isomorphism, we proceed

in two steps. First we show that the class of all Ã ∈ KKG, for which it is an
isomorphism, is localizing. This boils down to translating KKG-equivalences,
suspensions, mapping cone sequences and direct sums in KKG to stable equiv-
alences, loops, fiber sequences and wedge sums in spectra. The next step is
to show that the upper-hand map in (3) is an isomorphism for all genera-

tors Ã = IndG
H B ∈ CI. To see this, we use Green’s imprimitivity theorem to

construct a natural induction isomorphism

(4) HH
∗ (X |H ,KH

B ) ∼= HG
∗ (X,KG

IndG
H B)

for any G-CW -complex X . We can then identify the map in question with the
map

HH
∗ (EFinG|H ,KH

B ) → HH
∗ (pt,KH

B ).

This map is an isomorphism since H is finite.

Outline of the paper. The paper is organized as follows. In Section 2,
we describe the category KKG and recall the construction of the Meyer–Nest
assembly map. Section 3 contains the construction of equivariant homology
theories and assembly maps from Or(G)-spectra as well as some basic homo-
topy theory for Or(G)-spectra. The results are well-known and can be found
either explicitly or implicitly in [8, 19]. But we hope that including them
keeps the exposition reasonably self-contained. In Section 4, we construct the
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Or(G)-spectrum K
G
A . We begin by discussing groupoid C∗-algebras and their

reduced crossed products. For better functoriality properties, we consider the
reduced crossed product of a groupoid C∗-algebra as a C∗-category rather
than a C∗-algebra. Our construction is similar to the construction in [23]. We
then recall the construction of Michael Joachims K-theory spectrum K for
C∗-categories (see [15]). Finally, we define K

G
A by the formula

K
G
A (G/H) := K(A⋊r G/H),

where G/H denotes the transformation groupoid associated to the G-space
G/H . We end the section by discussing some homotopy theoretical properties
of the functor A 7→ K

G
A . In Section 5, we use all the technology developed

so far to construct the induction isomorphism (4) and to prove Theorem 1.3.
We include a discussion on variants of our results for other crossed product
functors in Section 6.

Notation. If C is a category, we denote its homomorphism sets by C(x, y),
its collection of objects by Ob(C) and its opposite category by Cop. All C∗-
algebras are complex. If A is a C∗-algebra, we denote by M(A) its multiplier
algebra and by Z(A) its center. If X is a set, we denote by ℓ2(X,A) the right
Hilbert-A-module ⊕x∈XA and by LA(ℓ

2(X,A)) its adjointable operators.

2. Meyer–Nest theory

In this section, we recall the basic properties of equivariant KK-theory and
the definition of the Meyer–Nest assembly map. Throughout this section, G
is a countable discrete group and all C∗-algebras are assumed to be separable.
By a G-Hilbert space, we mean a Hilbert space H together with a unitary
representation u : G → U(H). We denote the algebra of compact operators
on H by K(H) and equip it with the G-action given by conjugation with u. We
denote by C∗

G the category of all separable G-C∗-algebras with G-equivariant
∗-homomorphisms. For two G-C∗-algebras A and B, the tensor product A⊗B
denotes the minimal tensor product with the natural G-action. We denote the
reduced crossed product of A and G by A ⋊r G. The suspension of A is the
G-C∗-algebra SA := C0((0,1))⊗A∼= C0((0,1),A) with the trivial G-action on
the first factor. The mapping cone of a morphism π : A → B is given by

Cone(π) := {(a, b) ∈ A⊕ C0((0, 1], B) | π(a) = b(1)}.

The mapping cone triangle associated to π is the sequence

SB −→ Cone(π) −→ A
π
−→ B,

where the first map is given by inclusion and the second map is given by
evaluation at 1. We also call Cone(π) → A → B a mapping cone sequence.
A short exact sequence

0 −→ I −→ A
π
−→ B −→ 0

of G-C∗-algebras is called split exact if there is a G-equivariant ∗-homomor-
phism σ : B → A satisfying πσ = idB. For a subgroup H ⊆ G, we denote by
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ResHG : C∗
G → C∗

H the obvious restriction functor. Let B be an H-C∗-algebra

with H-action β. The induced algebra IndG
H B is the C∗-algebra of all bounded

functions f : G → B satisfying f(gh) = βh−1(f(g)) for all g ∈ G and h ∈ H ,

such that the function gH 7→ ‖f(gH)‖ belongs to C0(G/H). We equip IndGH B
with the G-action given by left translation.

The following theorem is a collection of well-known results on equivariant
KK-theory. For more details, we refer to [21] and the references therein.

Theorem 2.1. There is an additive category KKG with the same objects as
C∗
G and a functor KKG : C∗

G → KKG with the following properties.
(i) KKG is G-homotopy invariant.
(ii) For any two separable G-Hilbert spaces H,H′ and any G-C∗-algebra A,

the stabilization morphism

A⊗K(H) → A⊗K(H⊕H′)

is mapped to an isomorphism in KKG.
(iii) Any split exact sequence 0→ I →A→B→ 0 of G-C∗-algebras is mapped

to a split exact sequence in KKG.
(iv) KKG : C∗

G → KKG is universal with the above properties in the sense
that any other functor from C∗

G into an additive category with the above
properties uniquely factors through KKG.

(v) The category KKG is triangulated with respect to the suspension functor
S and the mapping cone triangles

SB −→ Cone(π) −→ A
π
−→ B.

We write KKG
n (A,B) := KKG(A,SnB) := KKG(A,SnB).

(vi) We have Bott periodicity: KKG
n (A,B) ∼= KKG

n+2(A,B).
(vii) Topological K-theory is given by K∗(A) ∼= KK∗(C, A) := KK

{e}
∗ (C, A).

(viii) Let H ⊆ G be a subgroup and A a G-C∗-algebra. Then the functors

(5)

IndGH : C∗
H → C∗

G,

ResHG : C∗
G → C∗

H ,

⋊rG : C∗
G → C∗,

⊗A : C∗
G → C∗

G

uniquely extend to functors

(6)

IndGH : KKH → KKG,

ResHG : KKG → KKH ,

⋊rG : KKG → KK,

⊗A : KKG → KKG.

Natural transformations between the functors in (5) are in bijection
with natural transformations between the corresponding functors in (6).

Furthermore, IndGH : KKH → KKG is left adjoint to ResHG : KKG → KKH .
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The isomorphisms in KKG are also called KKG-equivalences. A G-C∗-
algebra A is called KKG-contractible if it is isomorphic to 0 in KKG.

Definition 2.2. A full subcategory C ⊆ KKG is called localizing if it is closed
under KKG-equivalence, suspension, mapping cones and countable direct
sums. Being closed under mapping cones means that if Cone(π) −→ A

π
−→ B

is a mapping cone sequence and if A and B belong to C, then Cone(π) also
belongs to C.

Since exact triangles may be rotated, the algebras Cone(π), A and B belong
to a localizing subcategory C if at least two of them belong to C. The restriction
to countable direct sums in the above definition is necessary in order to stay in
the realm of separable C∗-algebras. For any full subcategory C ⊆ KKG, there
is a smallest localizing subcategory 〈C〉 ⊆ KKG containing C.

Definition 2.3 ([22, Def. 4.1]). Let CI ⊆ KKG denote the full subcategory

of G-C∗-algebras of the form IndGH B, where H ⊆ G is a finite subgroup and

B is an H-C∗-algebra. Let CC ⊆ KKG denote the full subcategory of G-C∗-
algebras N such that N is KKH-contractible for any finite subgroup H ⊆ G.

Theorem 2.4 ([22, Thm. 4.7]). The localizing subcategories 〈CI〉 ⊆ KKG and

CC ⊆ KKG are complementary in the following sense.
(i) For any A ∈ 〈CI〉 and B ∈ CC, we have KKG(A,B) = 0.
(ii) For any G-C∗-algebra A, there is an exact triangle

SN −→ Ã
D
−→ A −→ N

with N ∈ CC and Ã ∈ 〈CI〉. The above triangle is unique up to isomor-
phism.

Remark 2.5. The morphism D : Ã → A is called the Dirac morphism. Note
that it follows from the adjunction of IndGH and ResHG that D is a KKH-
equivalence for any finite subgroup H ⊆ G.

Theorem 2.6 ([22, Thm. 5.2]). The indicated maps in the following diagram
are isomorphisms:

KG
∗ (EFinG, Ã) K∗(Ã⋊r G)

KG
∗ (EFinG,A) K∗(A⋊r G)

∼=
µ

∼=D∗ D∗

µ

In particular, the Baum–Connes assembly map can canonically be identified
with the map

D∗ : K∗(Ã⋊r G) → K∗(A⋊r G).

We call the above map the Meyer–Nest assembly map.

Münster Journal of Mathematics Vol. 14 (2021), 509–536
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3. Davis–Lück theory

In this section, we recall the basic machinery of [8] in order to write down the
Davis–Lück assembly map. We also state some homotopy theoretical results
which will allow us to prove that the class of G-C∗-algebras, for which the
Davis–Lück assembly map is an isomorphism, is localizing.

Throughout this section, we work in the category of compactly generated
weak Hausdorff spaces with continuous maps (see [26]) and denote this category
by Top. Similarly, we denote the category of pointed compactly generated weak
Hausdorff spaces with pointed continuous maps by Top∗. These categories are
closed symmetric monoidal with respect to the product X × Y respectively
the smash product X ∧ Y . We denote the mapping spaces by Top(X, Y ) re-
spectively Top∗(X, Y ). We write X+ := X

∐

{+} to equip a space X with
a disjoint basepoint + and reserve the notation Y + for the one-point compact-
ification of a locally compact space Y . We use the notation ΩX :=Top∗(S

1,X)
and ΣX := S1 ∧X to denote the loop space and the suspension of a pointed
space X . Recall that there is a natural adjunction homeomorphism

(7) Top∗(ΣX,Y ) ∼= Top∗(X,ΩY ).

We denote by πn(X) := π0(Ω
nX), n≥ 0, the n-th homotopy group of a pointed

space X . A pointed map is called a weak equivalence if it induces an isomor-
phism on all homotopy groups. For a discrete group G, we denote by TopG the
category of (compactly generated weak Hausdorff) G-spaces and G-equivariant

maps. We equip the mapping spaces TopG(X, Y ) with the topology inherited

from the inclusion TopG(X,Y ) ⊆ Top(X,Y ).

Spaces and spectra over the orbit category.

Definition 3.1. A spectrum E is a sequence of pointed spaces En, n ≥ 0,
together with pointed maps En → ΩEn+1 called structure maps. A map
f : E → F of spectra is a sequence of pointed maps fn : En → Fn which
commute with the structure maps. We denote the category of spectra by Sp.

Definition 3.2. Let E be a spectrum. For n ∈ Z, the n-th homotopy group
of E is the group

πn(E) := colim
k→∞

πn+k(Ek).

Here the colimit is taken with respect to the maps

πn+k(Ek) → πn+k(ΩEk+1) ∼= πn+k+1(Ek+1).

A map of spectra is called a stable equivalence if it induces an isomorphism on
all homotopy groups.

Definition 3.3. Let G be a discrete group. The orbit category Or(G) is the
category of all homogeneous G-sets G/H together with G-equivariant maps.

Münster Journal of Mathematics Vol. 14 (2021), 509–536
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Definition 3.4 ([8, Def. 1.2]). A pointed Or(G)-space is a functorX : Or(G)→
Top∗. A map of pointed Or(G)-spaces is a natural transformation of the under-
lying functors. Analogously, we define (pointed) Or(G)op-spaces and Or(G)-
spectra.

Example 3.5. Let X be a G-space. We can define a pointed Or(G)op-space

G/H 7→ TopG(G/H,X)+ ∼= XH
+ ,

where XH ⊆ X denotes the space of H-fixed-points.

Definition 3.6 ([8, Def. 1.4]). Let X be a pointed Or(G)op-space and Y
a pointed Or(G)-space. The balanced smash product of X and Y is the pointed
space

X ∧Or(G) Y :=
(

∨

G/H∈Or(G)

X(G/H) ∧ Y (G/H)
)

/∼,

where the equivalence relation ∼ is generated by the relations

f∗x ∧ y ∼ x ∧ f∗y, x ∈ X(G/H), y ∈ Y (G/K), f ∈ Or(G)(G/K,G/H).

If E is an Or(G)-spectrum, we define the balanced smash product

X ∧Or(G) E of X and E

as the spectrum given by the sequence of pointed spaces X ∧Or(G) En, n ∈ N,
with structure maps given by the adjoints of the natural maps

(X ∧Or(G) En) ∧ S1 ∼= X ∧Or(G) (En ∧ S1) → X ∧En+1

under the adjunction (7).

Definition 3.7 (cp. [8, Def. 4.3]). Let X be a G-CW -complex and E an
Or(G)-spectrum. The G-equivariant homology of X with coefficients in E is
given by

HG
∗ (X,E) := π∗(Top

G(−, X)+ ∧Or(G) E).

Remark 3.8. Note that there is a natural homeomorphism

TopG(−, G/H)+ ∧Or(G) E → E(G/H), f ∧ x 7→ f∗(x)

for any subgroup H ⊆ G. In particular, we have a natural isomorphism

HG
∗ (G/H,E) ∼= π∗E(G/H).

Proposition 3.9 ([8, Lem. 4.4]). The functor HG
∗ (−,E) defines a generalized

homology theory for G-CW -complexes.

Definition 3.10. A collection F of subgroups of G is called a family of sub-
groups if it is closed under conjugation and taking subgroups. A classifying
space for F is a G-CW -complex EFG such that the fixed points (EFG)H with
respect to a subgroup H ⊆G are contractible for H ∈ F and empty for H /∈ F .

Lemma 3.11 ([8, Sec. 7]). For any family F of subgroups of G, there is a clas-
sifying space EFG. Furthermore, EFG is unique up to G-homotopy equivalence.
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Definition 3.12 ([8, Sec. 5.1]). Let G be a discrete group, F a family of
subgroups and E an Or(G)-spectrum. The (E,F , G)-assembly map is the
map

HG
∗ (EFG,E) → HG

∗ (pt,E)

induced by the projection EFG → pt.

The following lemma is a special case of [8, Lem. 1.9].

Lemma 3.13. Let H ⊆ G be a subgroup. Consider the induction functor

I : Or(H) → Or(G), H/K 7→ G×H H/K ∼= G/K.

Let E be an Or(H)-spectrum, and denote by I∗E the Or(G)-spectrum given by

I∗E(G/K) := TopG(I(−), G/K)+ ∧Or(H) E
∼= TopH(−, G/K)+ ∧Or(H) E.

Let X be a G-CW -complex, and denote by X |H the same space with the action
restricted to H. Then there is a natural isomorphism

HH
∗ (X |H ,E) ∼= HG

∗ (X, I∗E).

Homotopy theory for Or(G)-spectra. The last part of this section deals
with those homotopy theoretical statements which guarantee that the class
of G-C∗-algebras A, for which the (KG

A ,Fin, G)-assembly map is an isomor-
phism, is localizing. We recall some basic homotopy theoretical terminology
and refer to [27] for more details.

Let f : X → Y be a pointed map, and let x0 ∈ X, y0 ∈ Y be the base-
points. We denote by Cf the cone of f , that is the pointed space obtained
from (X × [0, 1]) ∪ Y by gluing X × {1} to Y along f and by collapsing
X × {0} ∪ {x0} × [0, 1] to a point. The homotopy fiber of f is the pointed
space

Ff := {(x, γ) ∈ X × Top([0, 1], Y ) | f(x) = γ(1), γ(0) = y0}

whose basepoint is given by (x0, y0). Both the cone and the homotopy fiber
define functors on a category with pointed maps as objects and commutative
squares as morphisms. There are natural pointed homeomorphisms

(8) CΣf
∼= ΣCf , FΩf

∼= ΩFf .

We define the cone Cf of a map f :E → F of spectra as the sequence of spaces
Cfn with structure maps given by the adjoints of the maps

ΣCfn
∼= CΣfn → Cfn+1 .

The homotopy fiber of f is defined analogously, using the second homeomor-
phism of (8). Let X

f
−→ Y

g
−→ Z be a sequence of pointed maps together with

a homotopy h : [0, 1] ×X → Z of pointed maps such that h1 is equal to gf
and h0 is the constant map. We call X

f
−→ Y

g
−→ Z a cofiber sequence if the

canonical map

Cf → Z,

{

(x, t) 7→ ht(x),

y 7→ g(y)

Münster Journal of Mathematics Vol. 14 (2021), 509–536
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is a weak equivalence. Dually, we call X
f
−→ Y

g
−→ Z a fiber sequence if the

canonical map

X → Fg, x 7→ (f(x), t 7→ ht(x))

is a weak equivalence. Note that the homotopy is part of the datum of a (co-)
fiber sequence. However, we drop the homotopy from our notation when-
ever it is clear from context. By replacing (homotopies of) pointed maps by
(homotopies of) maps of (Or(G)-)spectra and by replacing weak equivalences
by stable equivalences, we obtain analog notions of (co-)fiber sequences of
(Or(G)-)spectra.

Lemma 3.14 ([19, Lem. 2.6]). A sequence E → F → G of maps of spectra
is a fiber sequence if and only if it is a cofiber sequence. In this case, there is
a natural long exact sequence

· · · → πn+1(G) → πn(E) → πn(F ) → πn(G) → πn−1(F ) → · · ·

of homotopy groups.

The following well-known lemma is an easy consequence of Lemma 3.14.

Lemma 3.15 (cp. [25, Prop. 6.12 (i)]). Let Ei, i ∈ I, be a collection of spectra.
Then the natural map

π∗

(

∨

i∈I

Ei

)

→
⊕

i∈I

π∗(Ei)

is an isomorphism.

Lemma 3.16 ([8, Lem. 4.6]). Let E → F be a stable equivalence of Or(G)-
spectra and X a G-CW -complex. Then the induced map

HG
∗ (X,E) → HG

∗ (X,F )

is an isomorphism.

The following lemma is inspired by [8, Def. 3.13].

Lemma 3.17. Let X be a G-CW -complex. Then the functor

TopG(−, X)+ ∧Or(G) −

maps cofiber sequences of Or(G)-spectra to cofiber sequences of spectra.

Proof. The preceding lemma shows that the functor TopG(−, X)+ ∧Or(G) −
commutes with stable equivalences. It therefore suffices to show that it also
commutes with taking cones. To see that this is indeed the case, we reformulate
the definition of the cone. Consider the category C represented by the following
diagram:

(9)

c0 c1

c2

Münster Journal of Mathematics Vol. 14 (2021), 509–536
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There is a natural Cop-space EC given by

EC(c0) = [0, 1], EC(c2) = {0}, EC(c1) = {1}

on objects and by the obvious inclusions on morphisms. A morphism f : E →
F of spectra gives rise to a C-spectrum Df by mapping diagram (9) to the
following diagram:

E F

pt

f

Similarly, a morphism f : E → F of Or(G)-spectra gives rise to a C ×Or(G)-
spectrum Df . Now the cone of f can be rewritten as

Cf = EC+ ∧C Df .

Using associativity of balanced smash products and observing that the con-
struction f 7→ Df commutes with our functor TopG(−, X)+ ∧Or(G) −, we ob-
tain the desired formula

CTopG(−,X)+∧Or(G)f
= EC+ ∧C DTopG(−,X)+∧Or(G)f

= EC+ ∧C (TopG(−, X)+ ∧Or(G) Df)

= TopG(−, X)+ ∧Or(G) (EC+ ∧C Df)

= TopG(−, X)+ ∧Or(G) Cf . �

4. The Or(G)-spectrum K
G
A

In this section, we associate an Or(G)-spectrum K
G
A to every G-C∗-algebra

A, closely following [23, 15]. We call the resulting assembly map

HG
∗ (EFinG,KG

A ) → HG
∗ (pt,KG

A )

the Davis–Lück assembly map, where Fin denotes the family of finite subgroups
of G. Let us motivate the construction of KG

A . In order for the right-hand
sides of the Baum–Connes and Davis–Lück assembly maps to match, we need
an isomorphism

HG
∗ (pt,KG

A ) = π∗(K
G
A (G/G))

!
∼= K∗(A⋊r G).

In order for the left-hand sides to match, we expect an isomorphism

HG
∗ (X,KG

A )
!
∼= KKG

∗ (C0(X), A)

for all cocompact proper G-spaces X . For a finite subgroup H ⊆ G and X =
G/H , this boils down to the isomorphism

HG
∗ (G/H,KG

A )
!
∼= KKG

∗ (C0(G/H), A) ∼= KKH
∗ (C, A) ∼= K∗(A⋊r H).

Now we are tempted to define K
G
A (G/H) := K(A⋊r H), where K : C∗ → Sp

is a functor representing K-theory for C∗-algebras. Unfortunately, the assign-
ment G/H 7→A⋊r H does not define a functor on the orbit category. To solve
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this, we replace A ⋊r H by a Morita-equivalent C∗-category A ⋊r G/H . We
then define K

G
A (G/H) to be the K-theory spectrum in the sense of [15] of

that C∗-category. The construction of the C∗-category A⋊r G/H given here
is a minor modification of the construction in [23].

Groupoid actions and crossed products.

Definition 4.1. A unital C∗-category is a small category A, whose morphism
sets A(x, y) are complex Banach spaces equipped with conjugate linear invo-
lution maps ∗ : A(x, y) → A(y, x) satisfying the axioms
(i) (a∗)∗ = a,
(ii) ‖ab‖ ≤ ‖a‖‖b‖,
(iii) ‖a∗a‖ = ‖a‖2,
(iv) (ab)∗ = b∗a∗,
(v) a∗a ≥ 0
for all morphisms a ∈ A(y, z), b ∈ A(x, y). A unital C∗-functor is a functor
between C∗-categories which is linear on morphism sets and preserves the
involution. A (nonunital) C∗-category is defined in the same way as a uni-
tal C∗-category except that the morphism sets are not required to contain
identity morphisms. A (nonunital) C∗-functor is defined in the same way as
a C∗-functor except that it does not need to preserve identity morphisms. By
dropping the norm from the definition, we obtain analog notions of ∗-categories
and ∗-functors.

Definition 4.2. A groupoid G is a small category with all morphisms invert-
ible. We do not equip groupoids with any topology. A groupoid morphism
F : G → H is a functor between the underlying categories. A G-C∗-algebra A
is a functor x 7→ Ax from G to the category of C∗-algebras. A G-equivariant
morphism A → B is a natural transformation of the underlying functors.

Sticking to the notation for G-C∗-algebras, we denote the action of an ele-
ment g ∈ G(x, y) by αg : Ax → Ay and say that the G-action is denoted by α.

Remark 4.3. Our definition of G-C∗-algebras is adapted from [23] and for-
mally differs from the classical definition (e.g. the one in [18]). Usually, a G-C∗-
algebra A is defined as a single C∗-algebra A together with a non-degenerate
∗-homomorphism ϕ : C0(Ob(G)) → ZM(A) and an additional datum imple-
menting the action. Our definition can be obtained from the classical one by
taking the fibers

Ax := A/ϕ(C0(Ob(G) \ {x})A).

Example 4.4. Let G be a discrete group acting on a set X . The transforma-
tion groupoid X has the points of X as objects and morphisms given by

X(x, y) := {g ∈ G | gx = y}.

Every G-equivariant map X → Y gives rise to a faithful (i.e. injective on mor-
phism sets) groupoid morphism X → Y . In particular, there is a natural
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morphism X → G = pt. By precomposition with this morphism, every G-C∗-
algebra (considered as a functor from G to the category of C∗-algebras) can
be considered as an X-C∗-algebra as well.

Definition 4.5. Let G be a groupoid and A a G-C∗-algebra with G-action
denoted by α. The convolution category AG is the category with the same
objects as G and morphism sets given by formal sums

AG(x, y) :=

{

n
∑

i=1

aiugi

∣

∣

∣

∣

n ∈ N, gi ∈ G(x, y), ai ∈ Ay

}

.

We define composition and involution on AG by linear extension of the formulas

aug · buh := aαg(b)ugh, (aug)
∗ := αg−1(a)∗ug−1

for a ∈ Az , b ∈ Ay, h ∈ G(x, y) and g ∈ G(y, z). In this way, AG becomes
a ∗-category.

Definition 4.6. Let A be a G-C∗-algebra with G-action α. Let x, y ∈ Ob(G),
and choose z ∈ Ob(G) such that G(z, x) is nonempty. To each f ∈ AG(x, y),
we associate an adjointable operator

ΛA,G,z(f) : ℓ
2(G(z, x), Az) → ℓ2(G(z, y), Az)

of Hilbert-Az-modules, defined by linear extension of the formula

ΛA,G,z(aug)ξ(h) := αh−1(a)ξ(g−1h)

for a ∈ Ay, ξ ∈ ℓ2(G(z, x), Az), g ∈ G(x, y) and h ∈ G(z, y). The reduced norm
of f is given by

(10) ‖f‖r := ‖ΛA,G,z(f)‖.

The reduced crossed product A ⋊r G is the C∗-category obtained from AG by
completing all the morphism sets with respect to the reduced norm.

Remark 4.7. The norm in (10) does not depend on the choice of z. Indeed,
if z′ ∈ Ob(G) is another object such that G(x, z′) is nonempty, we may pick
a morphism g ∈ G(z, z′). A calculation then shows that, for every f ∈AG(x,y),
the diagram

(11)

ℓ2(G(z, x), Az) ℓ2(G(z′, x), Az′ )

ℓ2(G(z, y), Az) ℓ2(G(z′, y), Az′)

ΛA,G,z(f)

ρg⊗αg

∼=

ΛA,G,z′ (f)

ρg⊗αg

∼=

commutes, where ρg ⊗ αg is defined by the formula

(ρg ⊗ αg)ξ(h) = αg(ξ(hg)).

Thus, we have ‖ΛA,G,z(−)‖ = ‖ΛA,G,z′(−)‖.
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It is sometimes convenient to have a fixed representation of the reduced
crossed product. We call the representation

(12) ΛA,G :=
∏

z∈Ob(G)

ΛA,G,z : AG →
∏

z∈Ob(G)

LAz

(

⊕

x∈Ob(G)

ℓ2(G(z, x), Az)
)

the regular representation of AG.

Lemma 4.8. The following statements hold.
(i) Let A,B be G-C∗-algebras and ϕ :A→B a G-equivariant morphism. Then

the canonical ∗-functor ϕG : AG → BG, defined as the identity on objects
and as aug 7→ ϕ(a)ug on morphisms, extends to a C∗-functor

ϕ⋊r G : A⋊r G → B ⋊r G.

(ii) Let A be a G-C∗-algebra and ϕ :H→G a faithful groupoid morphism. De-
note the H-C∗-algebra obtained by precomposition with ϕ also by A. Then
the natural ∗-functor idA ϕ : AH → AG, defined by x 7→ ϕ(x) on objects
and aug 7→ auϕ(g) on morphisms extends to an isometric C∗-functor

idA ⋊rϕ : A⋊r H → A⋊r G.

Proof. For the first statement, fix x, y ∈ Ob(G) and fix z ∈ Ob(G) such that
G(z, x) is nonempty. Consider the following commutative diagram:

AG(x, y) LAz

(

⊕

w∈Ob(G)

ℓ2(G(z, w), Az)
)

M
(

Az ⊗K

(

⊕

w∈Ob(G)

ℓ2G(z, w)
))

BG(x, y) LBz

(

⊕

w∈Ob(G)

ℓ2(G(z, w), Bz)
)

M
(

Bz ⊗K

(

⊕

w∈Ob(G)

ℓ2G(z, w)
))

ϕG

ΛA,G,z ∼=

ϕz⊗id

ΛB,G,z ∼=

The horizontal isomorphisms are the standard identifications (cp. [17, Thm. 2.4
and p. 37]). In general, ϕz ⊗ id does not extend to the whole multiplier algebra.
However, it extends to a C∗-subalgebra which contains the image of ΛA,G,z by
[10, Def. A.3, Prop. A.6 (i)]. In any case, the extension of ϕz ⊗ id is norm-
decreasing. Since the horizontal arrows in the above diagram are isometric by
definition, ϕG must be norm-decreasing as well.

For the second statement of the lemma, fix x,y ∈Ob(H) and pick z ∈Ob(H)
such that H(z, x) is nonempty. We have to prove the following equation:

(13) ‖ΛA,H,z(f)‖ = ‖ΛA,G,ϕ(z) ◦ (idA ϕ)(f)‖ for all f ∈ AH(x, y).

Let S ⊆ G(ϕ(z), ϕ(z)) be a system of coset representatives for

H(z, z) \ G(ϕ(z), ϕ(z))

(this expression makes sense since ϕ is faithful). We get a direct sum decom-
position

ℓ2(G(ϕ(z), ϕ(x)), Aϕ(z)) =
⊕

g∈S

ℓ2(H(z, x)g,Aϕ(z))
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and a similar decomposition for y instead of x. As in (11), we have a commu-
tative diagram

ℓ2(H(z, x)g,Aϕ(z)) ℓ2(H(z, x), Aϕ(z))

ℓ2(H(z, y)g,Aϕ(z)) ℓ2(H(z, y), Aϕ(z))

ΛA,H,z(f)

ρg⊗αg

∼=

ΛA,H,z(f)

ρg⊗αg

∼=

for every f ∈AH(x,y) and g ∈S. Thus, the representation ΛA,G,ϕ(z) ◦ (idAϕ) of
AH(x, y) is equivalent to a direct sum of |S|-many copies of the representation
ΛA,H,z. This proves (13). �

C
∗-algebras associated to C

∗-categories. We now recall the construction
from [15] of a K-theory spectrum for C∗-categories. The idea is to first asso-
ciate a C∗-algebra to a C∗-category and then associate a K-theory spectrum to
this C∗-algebra. There are two KK-equivalent constructions of the associated
C∗-algebra. The first construction is easier to compute for our examples, while
the second construction has better functoriality properties.

Definition 4.9 ([15]). Let A be a C∗-category. We equip

C∗
0A :=

⊕

x,y

A(x, y)

with the structure of a ∗-algebra by inheriting the involution from A and by
defining the product of two elements f ∈ A(x, y), g ∈ A(z, w) to be

g · f :=

{

gf, y = z,

0, y 6= z.

We denote by C∗A the enveloping C∗-algebra of C∗
0A, i.e. the completion

with respect to the supremum of all C∗-semi-norms.

In [15], the above C∗-algebra is denoted by AA rather than C∗A.

Remark 4.10. (i) The supremum of all C∗-semi-norms ρ on C∗
0A is indeed

finite: the semi-norm of an element a =
∑

x,y axy ∈ C∗
0A with axy ∈ A(x, y)

can be bounded by

ρ(a) ≤
∑

x,y

ρ(axy) =
∑

x,y

ρ(a∗xyaxy)
1
2 ≤

∑

x,y

‖a∗xyaxy‖
1
2

since each C∗-algebra A(x,x) has a unique C∗-norm. Furthermore, it is shown
in [15] that the supremum is indeed a norm.

(ii) The C∗-category C∗A has the following universal property: given any
C∗-algebra B and any C∗-functor F : A → B satisfying F (f)F (g) = 0 for
all non-composable morphisms f and g, there is a unique ∗-homomorphism
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C∗F : C∗A → B such that the following diagram commutes:

A B

C∗A

F

C∗F

Unfortunately, the assignment A 7→ C∗A is not functorial with respect to
arbitrary C∗-functors. Before giving a functorial construction, we list some
useful properties of C∗A.

Lemma 4.11. Let A be a C∗-category, B a C∗-algebra and F : A → B a
C∗-functor satisfying F (f)F (g) = 0 whenever f and g are non-composable
morphisms in A. Suppose that F is isometric on morphism sets and that

C∗
0F : C∗

0A → B

is injective. Then C∗F : C∗A → B is isometric.

Proof. The proof is a variant of the proof of [15, Lem. 3.6]. We have to show
that C∗

0F is isometric. By construction, we have

C∗
0A =

⋃

A′

C∗
0A

′,

where the union is taken over all full subcategories A′ ⊆ A with only finitely
many objects. It suffices to show that C∗

0F is isometric on each C∗
0A

′. Since
F is isometric and C∗

0F is injective, it suffices to show that there is only one
C∗-norm ‖ · ‖ on C∗

0A
′ which restricts to the given norm on the morphism sets

(note that the inclusions A′(x, y) →֒ C∗A′ are isometric since F is isometric
and C∗F norm-decreasing). Write a ∈ C∗

0A
′ as a finite sum

a =
∑

axy, axy ∈ A′(x, y),

and denote by N the number of objects of A′. Then the estimate

(14) max
x,y

‖axy‖ ≤ ‖a‖ ≤ N2 max
x,y

‖axy‖

shows that ‖ · ‖ is already complete on C∗
0A

′ and therefore the unique C∗-
norm with this property. The first inequality in (14) can be verified by writing
axy = limλ uλavλ for approximate units uλ ∈ A′(y, y) and vλ ∈ A′(x, x). �

Corollary 4.12. Let A be a G-C∗-algebra. Then C∗(A ⋊r G) is naturally
isomorphic to the classical reduced crossed product C∗-algebra of A as defined
in [1, Sec. 1.4].

Proof. Denote the classical reduced crossed product of A by Ã⋊r G. Although
using different notation, it is precisely defined as the closed image of the reg-
ular representation ΛA,G from (12). Since ΛA,G is by definition isometric on
morphism sets, Lemma 4.11 provides us with an isomorphism

C∗ΛA,G : C∗(A⋊r G) → Ã⋊r G. �

In particular, we obtain the following special case.

Münster Journal of Mathematics Vol. 14 (2021), 509–536



An identification of the Baum–Connes and Davis–Lück assembly maps 525

Corollary 4.13. Let G be a discrete group acting on a set X. Let A be a
G-C∗-algebra, and consider A as an X-C∗-algebra as in Example 4.4. Then
there is a natural isomorphism

C∗(A⋊r X) ∼= C0(X,A)⋊r G.

Corollary 4.14. Let A be a G-C∗-algebra and B a C∗-algebra (endowed with
the trivial G-action). Then there is a canonical ∗-isomorphism

C∗((A⊗B)⋊r G) ∼= C∗(A⋊r G)⊗B.

Proof. By Lemma 4.11, the representation

C∗ΛA⊗B,G : C∗((A ⊗B)⋊r G) →
∏

z

LAz⊗B(⊕xℓ
2(G(z, x), Az ⊗ B))

is faithful. Its image coincides with the image of the faithful representation

C∗(A⋊r G)⊗B →
∏

z

LAz (⊕xℓ
2(G(z, x), Az))⊗B

→
∏

z

LAz⊗B(⊕xℓ
2(G(z, x), Az ⊗B)). �

Definition 4.15 ([15, Def. 3.7]). Let A be a C∗-category. We denote by C∗
fA

the universal C∗-algebra generated by symbols (f) for morphisms f ∈ A(x, y)
subject to the relations

(λf + g) = λ(f) + (g), (f∗) = (f)∗, (hg) = (h)(g)

for f, g ∈ A(x, y), h ∈ A(y, z) and λ ∈ C. By construction, A 7→ C∗
fA is the left

adjoint functor of the inclusion functor from the category of C∗-categories to
the category of C∗-algebras.

In [15], the above algebra is denoted by Af
A rather than C∗

fA.

Proposition 4.16 ([15, Prop. 3.8]). Let A be a C∗-category with countably
many objects and separable morphism sets. Then the canonical ∗-homomor-
phism C∗

fA → C∗A is a stable homotopy equivalence and therefore a KK-
equivalence.

The reader should not be concerned about the unitality assumptions in [15]
since they are not used in the proof of the above proposition.

A K-theory spectrum. We now recall very briefly the construction of the
K-theory spectrum K from [15]. We use this particular model because it is
quite easy to show that K maps mapping cone sequences to fiber sequences,
KK-equivalences to stable equivalences, suspensions to loops and direct sums
to wedge sums. The definition of K involves graded C∗-algebras. We only re-
call the basic definitions and refer to [4] for a more detailed account on graded
C∗-algebras. A graded C∗-algebra is a Z2-C

∗-algebra, i.e. a C∗-algebra A to-
gether with a self-inverse grading automorphism α. We will need the following
examples.
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(i) We denote by K̂ the graded C∗-algebra of compact operators on ℓ2N⊕ ℓ2N
with grading automorphism given by conjugation with the unitary

(

0 1
1 0

)

.
(ii) We denote by Ŝ the C∗-algebra C0(R) with grading automorphism given

by reflecting functions at the origin 0 ∈ R.
(iii) The Clifford algebra Cn on n generators is the universal C∗-algebra gener-

ated by selfadjoint unitaries e1, . . . , en satisfying eiej = −ejei, i 6= j. The
grading automorphism of Cn is given by ei 7→ −ei.

(iv) If not specified otherwise, we equip any C∗-algebra with a trivial grading.
For any two graded C∗-algebras A and B, there is a spatial graded tensor

product A ⊗̂ B. It is a completion of the algebraic tensor product A ⊙ B
equipped with a non-standard multiplication and involution depending on the
grading [4, Def. 14.4.1]. If one of the factors is trivially graded, then A ⊗̂B is
naturally isomorphic to the usual spatial tensor product. We denote the space
of Z2-equivariant ∗-homomorphisms A → B by C∗

Z2
(A, B) and endow it with

the compact-open topology and the zero morphism as a basepoint.

Proposition 4.17 ([15, Prop. 4.1]). Let A, B be graded C∗-algebras and X
a locally compact space. Then there is a natural homeomorphism

C∗
Z2
(A,B ⊗̂ C0(X)) → Top∗(X

+,C∗
Z2
(A,B)), f 7→ (x 7→ (idB ⊗̂ evx) ◦ f),

where X+ denotes the one-point compactification and evx : C0(X) → C the
evaluation at x.

Definition 4.18. Let A be a separable C∗-algebra. The spectrum K(A) is
given by the sequence of pointed spaces

K(A)n := C∗
Z2
(Ŝ, A ⊗̂ Cn ⊗̂ K̂)

and structure maps K(A)n → ΩK(A)n+1 given by

C∗
Z2
(Ŝ, A ⊗̂ Cn ⊗̂ K̂)

β
−→
∼

C∗
Z2
(Ŝ, A ⊗̂ Cn+1 ⊗̂ C0((0, 1)) ⊗̂ K̂)

4.17
∼= ΩC∗

Z2
(Ŝ, A ⊗̂ Cn+1 ⊗̂ K̂),

where β denotes the Bott map from [13, Lecture 1].
Let A be a C∗-category with countably many objects and separable mor-

phism sets. The K-theory spectrum of A is given by

K(A) := K(C∗
fA) ≃ K(C∗A).

Proposition 4.19 ([15, Thm. A.2]). Let A be a trivially graded separable
C∗-algebra. Then there is a natural isomorphism π∗K(A) ∼= K∗(A).

Definition 4.20. Let G be a countable discrete group and A a separable
G-C∗-algebra. We define an Or(G)-spectrum K

G
A by

K
G
A (G/H) := K(A⋊r G/H).

The Davis–Lück assembly map for G with coefficients in A is the map

HG
∗ (EFinG,KG

A ) → HG
∗ (pt,KG

A ),

where Fin denotes the family of finite subgroups.
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Note that the functoriality of C∗
f and Lemma 4.8 guarantee functoriality of

K
G
A (G/H) both in G/H for G-equivariant maps and in A for G-equivariant

∗-homomorphisms.

Lemma 4.21. The functor A 7→ K
G
A from the category of separable G-C∗-

algebras to the category of Or(G)-spectra has the following properties.
(i) It maps KKG-equivalences to stable equivalences.
(ii) It maps mapping cone sequences to fiber sequences.
(iii) For any separable G-C∗-algebra A, we have K

G
SA

∼= ΩKG
A .

(iv) Let Ai, i ∈ I be a countable family of separable G-C∗-algebras. Then there
is a natural stable equivalence

∨

i∈I K
G
Ai

≃ K
G
⊕i∈IAi

.

Proof. We fix G/H ∈ Or(G) throughout the proof.
(i) Every KKG-equivalence A → B induces a KK-equivalence

C0(G/H,A)⋊r G → C0(G/H,B)⋊r G.

Therefore, the induced map

π∗(K
G
A (G/H))

4.13
∼= K∗(C0(G/H,A)⋊r G)

→ K∗(C0(G/H,B)⋊r G)
4.13
∼= π∗(K

G
B (G/H))

is an isomorphism.

(ii) We claim that the functor A 7→ C∗(A⋊r G/H) preserves mapping cone
sequences and that the functor A 7→ K(A) maps mapping cone sequences to
fiber sequences. Let Cone(π) −→ A

π
−→ B be a mapping cone sequence. For the

first claim, use Corollaries 4.13 and 4.14 to identify C∗(Cone(π)⋊r G/H) with

the cone of the map C∗(A⋊r G/H) → C∗(B ⋊r G/H). For the second claim,
use Proposition 4.17 to identify K(Cone(π)) with the homotopy fiber of the
map K(A) → K(B).

(iii) By Corollary 4.14, the functor A 7→ C∗(A ⋊r G/H) commutes with
suspensions. Now the claim follows from Proposition 4.17.

(iv) There is a natural map
∨

i∈I K
G
Ai
(G/H) → K

G
⊕i∈IAi

(G/H) which we
claim to be a stable equivalence. On homotopy groups, the above map can be
written as the composition

π∗

(

∨

i∈I

K(C∗(A⋊r G/H))
)

∼=
−→

⊕

i∈I

π∗K(C∗(Ai ⋊r G/H))

∼=
−→ π∗K

(

⊕

i∈I

C∗(Ai ⋊r G/H)
)

∼=
−→ π∗K

(

C∗
((

⊕

i∈I

Ai

)

⋊r G/H
))

.

The first map is an isomorphism by Lemma 3.15, the second map is an isomor-
phism since K-theory commutes with countable direct sums [28, Prop. 6.2.9]
and the third isomorphism arises from an isomorphism of the underlying C∗-
algebras. �
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5. Identification of the assembly maps

In this section, we finally identify the Davis–Lück assembly map

HG
∗ (EFinG,KG

A ) → HG
∗ (pt,KG

A )

with the Meyer–Nest assembly map

K∗(Ã⋊r G) → K∗(A⋊r G).

The strategy is to use the Dirac morphism D ∈KKG(Ã,A) from Theorem 2.4
to compare the Davis–Lück map with coefficients in A to the Davis–Lück map
with coefficients in Ã. To do so, we need the functor A 7→ K

G
A to extend from

the category of separable G-C∗-algebras to the category KKG. Due to the
choice of our specific model of the K-theory spectrum K, it is not obvious
how to construct such an extension. One solution could be to choose a KK-
functorial model for K which also satisfies Lemma 4.21 and show that the
functor A 7→ C∗(A ⋊r G/H) extends to a triangulated functor KKG → KK.
The necessary machinery for such an approach can be found in the recent
preprint [5] which appeared after the first preprint of this work. However,
the author decided to stick to the explicit K-theory spectrum and give an
elementary solution to the functoriality problem using zig-zags.

Definition 5.1. A zig-zag of G-equivariant ∗-homomorphisms is a diagram

A1
ϕ1
−→ B1

ψ1
←−− A2

ϕ2
−→ · · ·

ϕn
−−→ Bn

ψn
←−− An+1

of G-equivariant ∗-homomorphisms such that each ψk is a KKG-equivalence.
Such a zig-zag naturally defines a KKG-class

[ψn]
−1 ◦ [ϕn] ◦ · · · ◦ [ψ1]

−1 ◦ [ϕ1] ∈ KKG(A1, An+1).

Similarly, a zig-zag of (Or(G)-)spectra is a diagram

E1
f1
−→ F1

g1
←− E2

f2
−→ · · ·

fn
−→ Fn

gn
←− En+1

of (Or(G)-)spectra such that each gk is a stable equivalence. By Lemma 3.16,
every such zig-zag gives rise to a well-defined natural transformation

(idX ⊗gn)
−1
∗ ◦ · · · ◦ (idX ⊗f1)∗ : HG

∗ (X,E1) → HG
∗ (X,En+1)

on homology. Thus, any zig-zag of G-equivariant ∗-homomorphisms gives rise
to a natural transformation on homology.

The following lemma shows that we can always restrict to the case of zig-
zags.

Lemma 5.2. Every morphism in KKG can be represented by a zig-zag of G-
equivariant ∗-homomorphisms.

Proof. This follows from the proofs of [20, Prop. 6.1, Theorem 6.5]. �
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From now on, we pretend that all KKG-classes are represented by G-
equivariant ∗-homomorphisms. We leave it to the reader to replace the relevant
maps of spectra by zig-zags. Recall from Remark 3.8 that there is a natural iso-
morphism HG

∗ (pt,KG
A ) ∼= K∗(A ⋊r G). Thus, the Meyer–Nest assembly map

can be identified with the map HG
∗ (pt,KG

Ã
)→HG

∗ (pt,KG
A ). We are now ready

to state our main theorem.

Theorem 5.3. The indicated maps in the following diagram are isomorphisms:

HG
∗ (EFinG,KG

Ã
) HG

∗ (pt,KG
Ã
)

HG
∗ (EFinG,KG

A ) HG
∗ (pt,KG

A )

pr∗
∼=

D∗
∼= D∗

pr∗

In particular, the Meyer–Nest assembly map can be identified with the Davis–
Lück assembly map.

We reduce the proof to the trivial case of finite groups by a series of lemmas.
A key ingredient is the following classical theorem. A simple proof of it for
discrete groups can be found in [9, Prop. 6.8].

Theorem 5.4 (Green’s imprimitivity theorem). Let G be a countable discrete
group, H a subgroup and B a separable H-C∗-algebra with H-action β. Then
the H-equivariant ∗-homomorphism

ψB : B → IndGH B, b 7→

(

g 7→

{

βg−1(b), g ∈ H,

0, g /∈ H

)

gives rise to an inclusion

B ⋊r H
ψB⋊rH
−−−−−→ (IndG

H B)⋊r H −֒→ (IndG
H B)⋊r G

whose image is a full corner. In particular, the inclusion

B ⋊r H →֒ (IndGH B)⋊r G

is a KK-equivalence.

Lemma 5.5. The map

D∗ : HG
∗ (EFinG,KG

Ã
) → HG

∗ (EFinG,KG
A )

is an isomorphism.

Proof. Let H ⊆G be a finite subgroup and consider the following commutative
diagram:

HG
∗ (G/H,KG

Ã
) HG

∗ (G/H,KG
A )

K∗(C0(G/H, Ã)⋊r G) K∗(C0(G/H,A)⋊r G)

K∗(Ã⋊r H) K∗(A⋊r H)

∼= ∼=

∼=

∼= ∼=
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Here the horizontal maps are induced by D. The vertical isomorphisms are
obtained from Corollary 4.13 and Theorem 5.4. The lower horizontal map is an
isomorphism sinceD is aKKH-equivalence. Thus, the upper horizontal map is
an isomorphism. Since H ⊆G was an arbitrary finite subgroup, it follows from
an excision argument that the map D∗ : HG

∗ (EFinG,KG
Ã
) → HG

∗ (EFinG,KG
A )

is an isomorphism too. �

Lemma 5.6. Let D ⊆ KKG be the full subcategory of all G-C∗-algebras, for
which the Davis–Lück assembly map is an isomorphism. Then D is localizing
in the sense of Definition 2.2.

In particular, we can reduce the proof of Theorem 5.3 to the case Ã= IndGH B
for a finite subgroup H ⊆ G and a separable H-C∗-algebra B.

Proof. By Lemma 4.21 (i) and Lemma 3.16, D is closed under KKG-equiv-
alence. By Lemma 4.21 (iii), the Davis–Lück map for a suspension can be
identified with the Davis–Lück map for the original algebra with homology
groups shifted by one. Thus, D is closed under suspension. By Lemma 3.15,
Lemma 4.21 (iv) and compatibility of the balanced smash product ∧Or(G) with
wedge sums, the Davis–Lück map for a countable direct sum

⊕

i∈I Ai can
be identified with the direct sum of the Davis–Lück maps for the individual
summands Ai, i∈ I. Thus, D is closed under countable direct sums. It remains
to verify stability under mapping cone sequences. Let Cone(π) −→ A

π
−→ B be

a mapping cone sequence. By Lemma 4.21 (ii), the sequence

K
G
Cone(π) → K

G
A → K

G
B

is a fiber sequence. Now, if X is any G-CW -complex, the sequence

TopG(−, X)+ ∧Or(G) K
G
Cone(π) → TopG(−, X)+ ∧Or(G) K

G
A

→ TopG(−, X)+ ∧Or(G) K
G
B

is still a fiber sequence by Lemmas 3.14 and 3.17. In particular, the rows in
the following diagram are exact:

· · · HG
∗ (EFinG,KG

Cone(π)) HG
∗ (EFinG,KG

A ) HG
∗ (EFinG,KG

B ) · · ·

· · · HG
∗ (pt,KG

Cone(π)) HG
∗ (pt,KG

A ) HG
∗ (pt,KG

B ) · · ·

It follows from the five-lemma that Cone(π), A and B belong to D if at least
two of them do. �

Theorem 5.7. Let H ⊆ G be a finite subgroup, B an H-C∗-algebra and X
a G-CW -complex. Then there is a natural induction isomorphism

HH
∗ (X |H ,KH

B )
∼=
−→ HG

∗ (X,KG
IndG

H B),

where X |H denotes the restriction of X to H.

Münster Journal of Mathematics Vol. 14 (2021), 509–536



An identification of the Baum–Connes and Davis–Lück assembly maps 531

Proof. Consider the induction functor

I : Or(H) → Or(G), H/K 7→ G×H H/K ∼= G/K.

By Lemma 3.13, there is a natural isomorphism

HH
∗ (X |H ,KH

B ) ∼= HG
∗ (X, I∗K

H
B ).

It thus suffices to construct a natural stable equivalence I∗K
H
B ≃ K

G
IndG

H B of
Or(G)-spectra. We prove this in two steps. Our first claim is that the natural
map

I∗K
H
B (G/K) = TopH(−, G/K)+ ∧Or(H) K

H
B → K(B ⋊r (G/K)|H)

given by f ∧ x 7→ f∗(x) is a stable equivalence for each G/K ∈ Or(G). To
see this, decompose G/K ∼=

∐

i H/Li into H-orbits. We get a commutative
diagram

TopH(−, G/K)+ ∧Or(H) K
H
B K(B ⋊r (G/K)|H)

∨

i Top
H(−, H/Li)+ ∧Or(H) K

H
B

∨

iK(B ⋊r H/Li)

∼=

∼=

≃

Here the left vertical map is an isomorphism by compatibility of balanced
smash products with wedge sums. The lower horizontal map is an isomor-
phism by Remark 3.8. To see that the right-hand map is an equivalence, use
Corollary 4.13 to identify

C∗(B ⋊r (G/K)|H) ∼=
⊕

i

C∗(B ⋊r H/Li),

and apply Lemma 4.21 (iv). This proves the first claim.
Our second claim is that there is a natural C∗-functor

F : B ⋊r (G/K)|H → (IndG
H B)⋊r G/K

which induces a stable equivalence ofK-theory spectra. To construct F , denote
the H-action on B by β, and consider the H-equivariant ∗-homomorphism

ψB : B → IndGH B, b 7→

(

g 7→

{

βg−1(b), g ∈ H,

0, g /∈ H

)

.

Then ψB is automatically (G/K)|H -equivariant and induces a C∗-functor

F : B ⋊r (G/K)|H
ψB⋊r(G/K)|H
−−−−−−−−−−→ (IndGH B)⋊r (G/K)|H −֒→ (IndGH B)⋊r G/K.

To see that F induces a stable equivalence of K-theory spectra, we claim
that C∗F can be identified with the ∗-homomorphism

C0(G/K,B)⋊r H
ψC0(G/K,B)⋊rH
−−−−−−−−−−−→ IndG

H(C0(G/K,B))⋊r H

→֒ IndGH(C0(G/K,B))⋊r G
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from Theorem 5.4. Indeed this identification can easily be made by using
Corollary 4.13 and checking commutativity of the diagram

C0(G/K,B) C0(G/K, IndGH B)

IndGH(C0(G/K,B))

idC0(G/K) ⊗ψB

ψC0(G/K,B)

α∼=

where α is defined by

α(f)(g)(hK) := f(ghK)(g), f ∈ C0(G/K, IndGH B), g ∈ G, hK ∈ G/K,

as in [11, Lem. 12.6]. This proves the second claim and provides us with a
natural equivalence

I∗K
H
B (G/K) ≃ K(B ⋊r (G/K)|H) ≃ K

G
IndG

H B(G/K), G/K ∈ Or(G). �

Proof of Theorem 5.3. By Lemma 5.5, the map

HG
∗ (EFinG,KG

Ã
) → HG

∗ (EFinG,KG
A )

is an isomorphism. By Lemma 5.6, it suffices to prove that

HG
∗ (EFinG,KG

IndG
H B) → HG

∗ (pt,KG
IndG

H B)

is an isomorphism for every finite subgroup H ⊆G and every H-C∗-algebra B.
Theorem 5.7 provides us with a commutative diagram

HG
∗ (EFinG,KG

IndG
H B

) HG
∗ (pt,KG

IndG
H B

)

HH
∗ (EFinG|H ,KH

B ) HH
∗ (pt,KH

B )

∼=

∼=

∼=

Since H is finite, EFinG is H-contractible. Thus, the lower map in the diagram
is an isomorphism and so is the upper one. �

6. Exotic crossed products

As shown in [14], the Baum–Connes conjecture (with coefficients) turns out
to be false in general. The problem is that, for certain discrete groups G,
the functor A 7→ K∗(A ⋊r G) is not exact in the middle. Motivated by these
counterexamples, Baum, Guentner and Willett gave a new formulation of the
Baum–Connes conjecture in [3] which fixes these counterexamples and is equiv-
alent to the old conjecture for all exact groups. The idea is to replace the
reduced crossed product by a better behaved crossed product functor. Such ex-
otic crossed product functors were also studied extensively by Buss, Echterhoff
and Willett; see [6] for a survey.

In this section, we reformulate our main result for more general exotic
crossed product functors and indicate how to adapt the proofs to this situ-
ation.
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Definition 6.1 ([3, Def. 2.1]). Let G be a countable discrete group. A crossed
product functor ⋊µG is a functor A 7→ A ⋊µ G from the category of G-C∗-
algebras to the category of C∗-algebras such that every A ⋊µ G contains the
convolution algebra AG as a dense subalgebra, together with natural transfor-
mations

A⋊max G → A⋊µ G → A⋊r G

which extend the identity on AG.

For a G-C∗-algebra A, the maximal Meyer–Nest assembly map can be de-
fined as the map

K∗(Ã⋊max G) → K∗(A⋊max G)

induced by the image of the Dirac morphism D ∈ KKG(Ã, A) under the de-

scent functor ⋊maxG : KKG → KK. Similarly, there is a maximal Baum–Connes
assembly map

KG
∗ (EFinG,A) → K∗(A⋊max G).

The maximal Baum–Connes and Meyer–Nest assembly maps can be identified
with exactly the same proof as in [22, Thm. 5.2]. The reduced versions of the
assembly maps can be obtained from the maximal versions by postcomposing
with the natural map

K∗(A⋊max G) → K∗(A⋊r G).

More generally, for any crossed product functor ⋊µG, we can define the µ-
Baum–Connes assembly map and the µ-Meyer–Nest assembly map by post-
composing their maximal versions with the natural map

(15) K∗(A⋊max G) → K∗(A⋊µ G).

Remark 6.2. If an exotic crossed product functor ⋊µG is Morita-compatible
in the sense of [3, Def. 3.3], then there is a potentially different way of con-
structing the µ-Meyer–Nest-assembly map. One could also directly use the
descent functor ⋊µG : KKG → KK constructed in [7, Prop. 6.1] and define the
µ-Meyer–Nest assembly map as the map

K∗(Ã⋊µ G) → K∗(A⋊µ G).

Since the natural transformation⋊maxG⇒⋊µG descends to a natural transfor-

mation of the corresponding functors on KKG, we get a commutative diagram

K∗(Ã⋊max G) K∗(A⋊max G)

K∗(Ã⋊µ G) K∗(A⋊µ G)

∼=

Since the generators of 〈CI〉 are proper, the left vertical map is an isomorphism.
So, in fact, we end up with the same assembly map. The same remark also
applies to the µ-Baum–Connes assembly map (cp. [7, Lem. 6.4]).

Münster Journal of Mathematics Vol. 14 (2021), 509–536



534 Julian Kranz

To complete the picture, we define a maximal version of the Davis–Lück
assembly map and indicate how to identify it with the maximal Meyer–Nest
assembly map. We can then define the µ-Davis–Lück assembly map by post-
composing it with the natural map (15) and conclude that all three pictures
of the µ-assembly map are equivalent.

Definition 6.3. Let G be a groupoid and A a G-C∗-algebra, and denote by
A⋊max G the completion of the convolution category AG by the supremum of
all C∗-norms.

Remark 6.4. The supremum of all C∗-semi-norms ρ on AG is finite. Indeed,
this fact is well-known if G is a discrete group, and in the general case, the
norm of an element a ∈ AG(x, y) can be estimated by

ρ(a)2 = ρ(a∗a) ≤ ‖a∗a‖Ax⋊max(G(x,x)).

It follows directly from the definition that an analog of Lemma 4.8 holds
for the maximal crossed product, i.e. A ⋊max G is functorial both in A and
in G. Note that we also defined C∗(A ⋊max G) as an enveloping C∗-algebra.
For discrete groupoids, the classical maximal groupoid crossed product algebra
(defined as in [1, Sec. 1.4]) can also be defined as an enveloping C∗-algebra of
a certain convolution algebra (cp. [24, Sec. 3]). Using this and Lemma 4.11, it is
easy to prove an analog of Corollary 4.12, i.e. that C∗(A⋊max G) is canonically
isomorphic to the classical maximal groupoid crossed product algebra of the
G-C∗-algebra A. In particular, we get the following corollary.

Corollary 6.5 (cp. Corollary 4.13). Let G be a discrete group acting on
a set X. Let A be a G-C∗-algebra, and consider A as an X-C∗-algebra as
in Example 4.4. Then there is a natural isomorphism

C∗(A⋊max X) ∼= C0(X,A)⋊max G.

An easy application of the universal property of the maximal tensor product
also gives the following result.

Lemma 6.6 (cp. Lemma 4.14). Let G be a groupoid, A a G-C∗-algebra and
B a C∗-algebra (endowed with the trivial G-action). Then there is a canonical
∗-isomorphism

C∗((A⊗max B)⋊max G) ∼= C∗(A⋊max G)⊗max B.

Note that we only applied the above lemma for nuclear B, in which case we
safely can replace the maximal tensor product by the minimal tensor product.

Definition 6.7 (cp. Definition 4.20). Let G be a discrete group acting on
a C∗-algebra A. We define an Or(G)-spectrum K

G
A,max by

K
G
A,max(G/H) := K(A⋊max G/H).

The maximal Davis–Lück assembly map is the map

HG
∗ (EFinG,KG

A,max) → HG
∗ (pt,KG

A,max).
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From the above, one can adapt the proof of Lemma 4.21 to K
G
A,max.

Lemma 6.8 (cp. Lemma 4.21). The functor A 7→ K
G
A,max from the category

of separable G-C∗-algebras to the category of Or(G)-spectra has the following
properties.
(i) It maps KKG-equivalences to stable equivalences.
(ii) It maps mapping cone sequences to fiber sequences.
(iii) For any separable G-C∗-algebra A, we have K

G
SA,max

∼= ΩKG
A,max.

(iv) Let Ai, i ∈ I be a countable family of separable G-C∗-algebras. Then there
is a natural stable equivalence

∨

i∈I K
G
Ai,max ≃ K

G
⊕i∈IAi,max.

Using this and the maximal version of Green’s imprimitivity theorem (The-
orem 5.4), we can adapt all the proofs in Section 5 to the maximal crossed
product.

Theorem 6.9 (cp. Theorem 5.3). The indicated maps in the following diagram
are isomorphisms:

HG
∗ (EFinG,KG

Ã,max
) HG

∗ (pt,KG
Ã,max

)

HG
∗ (EFinG,KG

A,max) HG
∗ (pt,KG

A,max)

pr∗
∼=

D∗
∼= D∗

pr∗

In particular, the maximal Meyer–Nest assembly map can be identified with the
maximal Davis–Lück assembly map.

Corollary 6.10. For any exotic crossed product functor ⋊µG, the µ-Meyer–
Nest assembly map can be identified with the µ-Davis–Lück assembly map.
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