
Text to Process Model: Automating
Process Model Creation from Text
Felix Reinold Noltelix Reinold NolteFe

Text to Process Model:
Automating Process Model

Creation from Text

Inauguraldissertation zur Erlangung des akademischen Grades
eines

Doktors der Wirtscha�swissenscha�en durch die
Wirtscha�swissenscha�liche Fakultät der

Westfälischen Wilhelms-Universität Münster

Vorgelegt von

Felix Reinold Nolte, MSc
aus Stadtlohn

Dezember 2020

Dekan Prof. Dr. Go�fried Vossen
Erster Gutachter Prof. Dr. Go�fried Vossen

Zweiter Gutachter Prof. Dr. Dr. h.c. Dr. h.c. Jörg Becker
Dri�er Gutachter Prof. Dr. David Bendig

Mündliche Prüfung 08.02.2021

Felix Reinold Nolte

Text to Process Model: Automating Process
Model Creation from Text

Wissenschaftliche Schriften der WWU Münster

Reihe IV
Band 20

Felix Reinold Nolte

Text to Process Model: Automating Process
Model Creation from Text

Wissenschaftliche Schriften der WWU Münster
herausgegeben von der Universitäts- und Landesbibliothek Münster
http://www.ulb.uni-muenster.de

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie;
detaillierte bibliografische Daten sind im Internet über https://www.dnb.de abrufbar.

Dieses Buch steht gleichzeitig in einer elektronischen Version über den Publikations- und
Archivierungsserver der WWU Münster zur Verfügung.
https://www.ulb.uni-muenster.de/wissenschaftliche-schriften

Felix Reinold Nolte
„Text to Process Model: Automating Process Model Creation from Text“
Wissenschaftliche Schriften der WWU Münster, Reihe IV, Band 20
Verlag readbox unipress in der readbox publishing GmbH, Dortmund
www.readbox.net/unipress

Zugl.: Diss. Universität Münster, 2021

Dieses Werk ist unter der Creative-Commons-Lizenz vom Typ 'CC BY-SA 4.0 International'
lizenziert: https://creativecommons.org/licenses/by-sa/4.0/deed.de
Von dieser Lizenz ausgenommen sind Abbildungen, welche sich nicht im Besitz
des Autors oder der ULB Münster befinden.

ISBN 978-3-8405-0256-9 (Druckausgabe)
URN urn:nbn:de:hbz:6-77079625138 (elektronische Version) direkt zur Online-Version:

© 2021 Felix Reinold Nolte

Satz: Felix Reinold Nolte
Titelbild: Felix Reinold Nolte (WordCloud)
Umschlag: ULB Münster

Acknowledgements
First and foremost, I would like to thank my parents, Martin Nolte
and Gabriele Worth-Nolte, who not only made sure that under
their guidance I grew into the person that was able to go this way
until the end, but also gave me all their support and love along this
speci�c part of my life. This includes my sister, Carla Nolte, who
was always giving me the feeling that I can prevail on the way I
have chosen to pursue and at the same time reminded me of the
fact that life consists of way more than work and research.

It is di�cult to put my gratitude into words for Gülşah Özdil,
the love of my life, who was at my side throughout my doctorate
studies with love, patience, and support that goes beyond what
one could ask for and imagine. She gave me purpose and made
the physical distance between us feel as merely a formality. Words
cannot capture how happy and grateful I am that she was at my
side all this time.

I want to thank Julia Seither for being of big help with any
issue and question of organizational nature, but most importantly
also for taking care that I was able to keep myself together in
di�cult times, Dr. Denis Martins and Raquel Mello for all their
e�ort and commitment to support me, not only as colleagues and
in research but as friends, Nico Grohmann for all the times when I
was visiting his o�ce to either discuss our research or to just talk

about football as a welcoming distraction, Jan Everding, who with
his experience and humor encouraged me to get into things instead
of overthinking the planning, Dr. Leschek Homann, who wrote his
thesis in parallel to me and of whom I was lucky to bene�t from
his experience and who reminded me from time to time to take
things more seriously, Ralf Farke for his technical support and the
interesting conversations, Dr. Jens Lechtenbörger for his feedback
on my research and all his support in teaching, Dr. David Fekete,
Dr. Nicolas P�anz, and Dr. Fabian Schomm-von-Auenmüller for
their support in my early days at the DBIS Group.

Furthermore, I want to express my gratitude towards Dr. Frank
Schönthaler, Dr. Thomas Karle, Dr. Mana Taghdiri, and Johannes
Micheler, who gave me the opportunity to work on an industry-
relevant problem and provided me with valuable feedback along
the way.

I would like to thank my doctoral supervisor Prof. Dr. Gottfried
Vossen for his support throughout my studies and research, Prof.
Dr. Jörg Becker for acting as a second reviewer of this thesis and
Prof. Dr. David Bendig for acting as a third reviewer for the defense
of this thesis.

Not directed to any speci�c person in name, I want to thank
the Institute of Information Systems at the University of Münster,
which I spend almost ten years at as a bachelor, master, and lastly
doctorate student. I always felt welcomed, supported, and as a part
of the institute.

Münster, April 2021 Felix Reinold Nolte

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Research Question and Goal 8
1.3 Thesis Structure . 11

I Foundations 13

2 Process Modeling and Knowledge Management 19
2.1 Basics of Business Process Modeling 19

2.1.1 Business Processes 21
2.1.2 Business Process Models 22
2.1.3 Business Process Modeling Languages . . . 22
2.1.4 Imperative and Declarative Modeling 25

2.2 Business Modeling with Petri Nets 27
2.3 Quality of Business Process Models 31

2.3.1 Quality Frameworks and Guidelines 34
2.3.2 Quality Metrics 44

2.4 Knowledge Management via Models 47
2.4.1 Knowledge Management 48

iii

Contents

2.4.2 Business Process Modeling in Knowledge
Management 66

2.5 Model Generation and Transformation 73

3 Natural Language Processing 77
3.1 Fundamentals . 77

3.1.1 Historical Development 80
3.1.2 Theoretical Foundations 82
3.1.3 Tasks and Challenges 86

3.2 Examples . 96
3.2.1 Industry . 97
3.2.2 Academia 99

3.3 Related Concepts . 101
3.4 Related Implementations 104

II Automated Model Creation from Text 109

4 Problem Specification 111
4.1 Related Work . 111

4.1.1 Existing Approaches 112
4.1.2 Related Approaches 124

4.2 Challenges . 130
4.2.1 Information Acquisition 130
4.2.2 Language Speci�cs 133
4.2.3 Petri Net and Horus Model Speci�cs 139
4.2.4 Modeling Conventions 143

4.3 Contribution . 146

iv

Contents

5 Context Description and Design 151
5.1 Horus Method . 151

5.1.1 Horus Business Modeler 155
5.1.2 Horus Procedure Models 157

5.2 Concept . 157
5.2.1 Objectives 161
5.2.2 Methods and Techniques 164
5.2.3 Reference Point to Contextual Knowledge

Base . 165
5.2.4 Transformation Approach 186

6 Implementation and Evaluation 207
6.1 Scope . 208
6.2 Architecture . 209

6.2.1 Pipeline . 209
6.2.2 Input Requirements 210
6.2.3 Artifacts . 211

6.3 Features . 213
6.3.1 Natural Language Text Pre-Processing . . . 213
6.3.2 Linguistic Feature Extraction 218
6.3.3 Model Element Mapping 233
6.3.4 Process Model Generation 251

6.4 Evaluation . 255
6.4.1 Experimental Setup 256
6.4.2 Summary of Results 260
6.4.3 Discussion 263

v

Contents

III Closing Remarks 275

7 Conclusions 277
7.1 Summary . 277
7.2 Implications . 279
7.3 Outlook . 282

Bibliography 287

List of Abbreviations 317

vi

List of Figures

1.1 Example Transformation: Text to Model 4
1.2 Thesis Structure . 12
1.3 Thesis Foundations . 17

2.1 Purposes of Business Process Models 23
2.2 Petri Net Patterns . 31
2.3 Semiotic Ladder . 37
2.4 Guidelines of Modeling 40
2.5 The SEQUAL Framework 42
2.6 From Data to Knowledge 53
2.7 The SECI Model . 55
2.8 Pillars of Knowledge Management 62
2.9 The Four Steps of Knowledge Conversion 63
2.10 The Four Dimensions of Core Capability 64
2.11 Knowledge Management Assessment Tool 65
2.12 Process-oriented Knowledge Management 68

3.1 Taxonomy of Natural Language Processing 78
3.2 A sample three-layer Neural Network 84
3.3 Part-of-Speech (POS)-Tagging with StanfordCoreNLP . 91
3.4 Named Entity Recognition 91

vii

List of Figures

3.5 Constituency Parsing with StanfordCoreNLP 93
3.6 Dependency Parsing with StanfordCoreNLP 93
3.7 Semantic Role Labeling with StanfordCoreNLP 94
3.8 Coreference Annotation with StanfordCoreNLP 95
3.9 Machine Translation on the Example of Google Translate 99

4.1 Steps of the Sentence Level Analysis 114
4.2 Method for Process Elicitation 118
4.3 Subset of BPMN Elements 121
4.4 Natural Language Generation System 126
4.5 Process Architecture of UMGAR 127
4.6 Comparison to a Text Mining System 149

5.1 Phases of the Horus Method 153
5.2 Horus Perspectives . 154
5.3 Model created with the Horus Business Modeler 155
5.4 Exclusive Choices in a traditional Petri Net 158
5.5 Exclusive Choices in a Horus Procedure Model 158
5.6 Running Example based on the Introduction 159
5.7 Process Steps of the Transformation Approach 160
5.8 Example of an Ontology 170
5.9 Key Features of Concept Maps 172
5.10 Example of a Knowledge Graph 174
5.11 Ontology-based Schema of the Knowledge Base 176
5.12 Example of a Knowledge Graph 178
5.13 One Instance of the Knowledge Graph 179
5.14 Second Instance of the Knowledge Graph 180
5.15 Syntax Tree of the Example Sentence 188
5.16 Inputs and Outputs based on a "creating" Verb 189

viii

List of Figures

5.17 Inputs and Outputs based on a "processing" Verb 189
5.18 Example of a Sequence 194
5.19 Example of a Parallel Split 197
5.20 Example of an Exclusive Choice 197
5.21 Example of a Synchronization 198
5.22 Example of a Simple Merge 198
5.23 A Data Frame of a Horus Procedure Model 200
5.24 Con�ict Resolution based on Object Occurrence 202
5.25 Con�ict Resolution based on Activity Types 202

6.1 Implementation Pipeline 210
6.2 Object Types and Flow 212
6.3 Example Test Model for Evaluation 258
6.4 Example Generated Model for Evaluation 259
6.5 Petri Net Generation including a Loop 263
6.6 Incorrect Identi�cation of an Exclusive Split 263
6.7 Textual Input and Generated Process Model 268

ix

List of Tables

2.1 Model Quality Frameworks 35
2.2 List of Quality Metrics 46
2.3 Knowledge Management Frameworks 66
2.4 Knowledge Management in the Project Context 74

3.1 Information Extraction Tasks and Techniques 96
3.2 Information Extraction in existing Solutions 108

4.1 Overview: Related Work 113
4.2 Topics in Related Work 150

5.1 Model Elements from the �rst Sentence 195
5.2 Model Elements from the second Sentence 196

6.1 Output Data Frame Header Feature Extraction 219
6.2 Extraction of Subject, Verb, Object (SVO)-tuples 222
6.3 Extraction of Prepositional Phrase (PP)-tuples 224
6.4 Extraction from an Adverbial Clauses 227
6.5 Extraction from a Conditional Clauses 229
6.6 Extraction from a Relative Clause 231
6.7 Extraction from the Core Sentence 233

xi

List of Tables

6.8 Output Data Frame Header Mapping 234
6.9 Mapping the Core Sentence 243
6.10 Mapping a Conditional Clause 245
6.11 Mapping a Adverbial Clause 247
6.12 Mapping a Relative Clause 249
6.13 Recall and Precision of the evaluated Models 261

xii

List of Listings

6.1 Coreference Resolution 216
6.2 Sentence Splitting . 217
6.3 Extraction of Subject, Verb and Objects 220
6.4 Extraction from a Prepositional Phrases 223
6.5 Extraction of Objectroles 224
6.6 Extraction of Adverbial and Conditional Clauses 226
6.7 Extraction from an Adverbial Clauses 226
6.8 Extraction from a Conditional Clauses 228
6.9 Extraction of a Relative Clause 229
6.10 Extraction from a Relative Clause 231
6.11 Extraction from the Core Sentence 232
6.12 Acquisition of the Antonym of a Word 240
6.13 Mapping the Core Sentence 242
6.14 Mapping a Conditional Clause 245
6.15 Mapping a Adverbial Clause 247
6.16 Mapping a Relative Clause 249
6.17 Combination of Mapping Results 252
6.18 Checking for Disconnected Parts 254
6.19 Connecting Model Parts 255

xiii

1 Introduction
The description and visualization of processes are among the core
tasks in a variety of IT projects today. The translation of informa-
tion between di�erent forms of representation aims to integrate
information in the di�erent steps of a project e�ciently. For in-
stance, it is used to describe the as-is and to-be states in a commonly
understandable manner. However, transforming a textual descrip-
tion into a visual representation of a business process model is still
a costly and complex task that often comes with an inevitable loss
of information.

To address shortcomings in modeling processes, di�erent tech-
niques of Natural Language Processing (NLP) are combined to
analyze textual descriptions of a process to enable a transformation
of texts into process models. The performed steps of analysis and
transformation ensure conformance between process models and
their textual description. With the help of an ontology and corre-
sponding knowledge graphs generated from positive examples, a
reference point is used to improve the transformation by providing
additional information about the context the model is created in. In
the upcoming sections, the motivation for this project, the research
questions, and the structure of this thesis will be described. Lastly,
an overview of the remainder of this thesis is given.

1

1 Introduction

1.1 Motivation
Process modeling has grown into one of the main aspects of busi-
ness process management and the business process life cycle. Em-
bedded into di�erent phases of an IT project, process modeling is
used to support conceptualization and documentation, serving as a
reference to the employees or enabling communication between
stakeholders.

Even though the topic of process modeling is not new and has
been extensively investigated since the 1990s, the modeling process
itself remains costly and time-consuming for the sta� involved. Next
to the creation itself, ensuring that a model is of good quality and
representing the circumstances and contents it is supposed to show
is challenging. Misunderstandings between a process modeler and
a domain expert or the lack of accessible information additionally
hinder the creation of process models [Ber07]. The latter will typi-
cally provide a textual description of a process, which the former
has to transform into a formal model.

However, both typically lack the other side’s expertise, which is
why the texts are often not written in a process-oriented pattern.
Simultaneously, the models often miss implicit information hidden
in the written text and fail to represent their content correctly. Even
though there are already guidelines, frameworks, and best practices
to support process modeling and ensure the mentioned quality and
consistency of process models, the shortcomings did not vanish and
still are the reason for additional costs. Consequently, supporting
the translation from a textual description into a process model
leaves signi�cant room for improvement; to make a step in this
direction is the goal of this thesis.

2

1.1 Motivation

An automated way of creating process models from textual input
to reduce modeling tasks for the user is presented to achieve this
goal. Di�erent related �elds already investigate the problem and
potentials at hand, such as text mining, process mining, process
modeling recommender, social business process modeling, and in-
sight from related work will be investigated and incorporated later
on in Section 4.1.

One of the functional application areas of process modeling is
Knowledge Management (KM), which has been gaining increased
attention in the literature from di�erent viewpoints since the early
2000s [KB06; JHS01; RL00]. With the rise of digital transformation
and the increase of digital capabilities, new ways of capturing, stor-
ing, and sharing knowledge were discovered. They gave momen-
tum to new approaches and extensions to Knowledge Management
(KM).

One of the rather recent approaches aims to integrate KM ac-
tivities into an organization’s process landscape. In such process-
oriented knowledge management, process models can store knowl-
edge in a visualized and process-related manner. Knowledge resid-
ing in companies is often needed on the one hand for the realization
of projects and on the other as part of product and service.

Motivating Example
As an example, consider a simpli�ed process of checking a received
lead. From asking one of the involved employees, the textual process
description seen as input in Fig. 1.1 was obtained. Based on this
textual description, a process model, more speci�cally, a specialized
Petri net in our case, should be created automatically. The intended
output is depicted in Fig. 1.1.

3

1 Introduction

Although a simpli�ed example is used throughout this paper, it is
considered that its characteristics resemble the complex problems
tackled by this approach. However, more extensive models and
their textual descriptions can also be processed up to the limits
described later.

Figure 1.1: Example Transformation: Text to Model.

In the approach described in this thesis, the importance, but
also the de�ciencies of process modeling as means of representing
knowledge are considered by presenting a prototype to translate
knowledge residing in process descriptions into process models.
The transformation further is intended to support employees in the
creation and maintenance of knowledge bases using automated ad-
justments to the knowledge artifacts in the form of process models.

To this end, the focus is put on Horus procedure models as a
specialization of Petri nets that are part of the Horus method. The
Horus method incorporates di�erent kinds of models to capture
knowledge about an organization’s business processes and related
aspects, such as systems, sta�, and resources. It focuses on practices

4

1.1 Motivation

that support these processes over their whole life cycle. Maintaining
the knowledge bases within a company supported by this approach
should consistently lead to a more comprehensive body of knowl-
edge that is also of higher quality. An ontology-based collection
of positive examples of process models and �tting textual descrip-
tions is used to enhance the transformation steps. With the help
of the reference point, extracted information about process model
elements can be validated or even extended by missing or implicit
information that is not identi�ed during our text analysis.

The resulting approach additionally supports the assessment of
the quality of the mentioned Horus procedure models with the help
of a comparison of manually created and automatically generated
models. The degree of conformance between both models o�ers
information about the quality of either text or process model. The
task of translating a model into text and vice versa, and capturing
the semantics of a model, is already acknowledged in the literature
as a signi�cant challenge nowadays and gained increased attention
over the last years. With the automatic generation of models from
text, three objectives are aimed at that capture the potential of
enhancing the process of modeling:

1. Automation: Reduce human involvement in the process of
modeling. The optimal goal is the full automation of creating
a correct process model from a textual input. However, this
is a di�cult task to solve. This approach aims to reduce hu-
man interaction in the modeling process, meaning that some
human interaction might still be necessary or advisable for a
better result with the developed approach.

5

1 Introduction

2. Quality: Increase the quality of process models, especially
when it comes to consistency and correctness. Di�erent di-
mensions of quality, foremost the semantic and syntactic
dimensions, are explored, while the transformation addresses
especially the semantic dimension due to the lack of recogni-
tion and attention it experienced up to now.

3. Training: With a transparent description of the transforma-
tion process and the included steps, inexperienced process
modelers can be introduced to the topic of process modeling
without the introduction of any speci�c tool or environment.
The required textual input can be written by anyone, prefer-
ably with a process-oriented structure already in mind, and
no need to get familiar with modeling conventions and spe-
ci�c modeling languages (even though just Petri nets are
included).

Business Problem

Knowledge Management plays a signi�cant role in consultancies,
such as the business partners PROMATIS and Horus software
GmbH involved in this project. PROMATIS’ core business focuses
on consulting companies on corporate strategies and business man-
agement combined with IT concepts and implementation-oriented
project management. Horus, as a subsidiary company of PROMA-
TIS, is a software company that has developed a process modeling
software for businesses and private users in the form of the Horus
Business Modeler (HBM) following the Horus method.

6

1.1 Motivation

Knowledge in the case of both companies is needed on the one
hand for the realization of projects and, on the other hand, as part
of product and service. The scope and quality of the knowledge
that is bundled in a Knowledge Base is of signi�cant relevance for
both use cases, and continuous quality control of the knowledge
bases is desired and necessary.

As one method to manage knowledge integrated into the relevant
processes, process-oriented knowledge management examines the
necessity for the orientation of knowledge management to the busi-
ness processes. Its goal is the recognition and further development
of knowledge processing in the operative business processes. To
this end, both the process �ow and the knowledge management
activities along the processes are examined in this approach.

Even though the knowledge bases can consist of various artifacts,
process models created with the HBM represent the preferred used
representation form for both business partners’ knowledge. Focus-
ing on process modeling with the HBM, which builds on Petri nets
as an underlying modeling language, the concept considers using a
typical development cycle of a model during a project. The auto-
mated transformation between text and model should contribute to
a precise creation, maintenance, and use of the knowledge bases.

The approach described here aims at two scenarios: Process
model as input as well as text as input. The latter scenario is at the
core of this thesis. Nevertheless, the �rst scenario is relevant for the
model adjustment step and provides di�erent potentials to improve
the di�erent process modeling tasks during a process model’s life
cycle. Maintaining a company’s knowledge bases should consis-
tently lead to a more comprehensive body of knowledge and higher
quality.

7

1 Introduction

1.2 Research �estion and Goal
For a thorough investigation and meaningful design and imple-
mentation of the approach described in this thesis, the problem
statement and challenges coming with it have to be kept in mind.
First, natural language texts that describe processes have to be
analyzed to extract model elements. With the ability to identify
model elements in textual descriptions, the translation of a text into
process models can be addressed.

With the reference point’s help, information about process model
elements can be validated or even extended by missing or implicit
information not identi�ed during the text analysis. Results can
support the assessment of a process model’s semantic quality based
on a comparison between the original process model and the from
text generated process model. The degree of conformance between
both models o�ers information about the quality of either the text
or the model. The task of translating a model into text and vice
versa, and capturing the semantic quality of a model, is already
present in recent literature and research projects. Progress in this
�eld is evident, but development is ongoing, and the translation
between model and text is still a task with open challenges.

This thesis aims at answering the following research question:

How can Natural Language Processing (NLP) in combination with
an ontology-based knowledge base be used to enable an automatic
transformation of natural language texts into process models to sup-
port the process of modeling and assess as well as ensure the quality
of a model?

8

1.2 Research Question and Goal

The transformation approach between text and process models
includes the step of Model Adjustments, which suggests adjustments
to a Horus procedure model based on available contextual knowl-
edge. As the input for this step is a process model, manually or
automatically created, two possible executions of the approach are
intended:

1. Following the main intention of this thesis, a textual input is
provided that is transformed into a process model.

2. Focusing on the Model Adjustments an already existing pro-
cess model can be used as an input, skipping the transfor-
mation steps. The process model can then be improved from
this point on with the help of the reference point.

Insights gained from investigating the existing literature of this
topic and related topics contribute to a deeper understanding of
the semantic quality of process models and means to assess these
quality aspects over the model generation and transformation from
natural language texts. A description and explanation of how to
evaluate a process model in the form of a specialized Petri net
(Horus procedure models) towards its ability to represent the un-
derlying content is one expected outcome.

With the help and the combination of techniques from the ex-
plored �elds of Process Modelling, Natural Language Processing and
Model Transformation and Generation and the use of an ontology-
based reference point, the transformation of textual descriptions of
processes into a Horus procedure model that represents this process
is addressed. Using this transformation, both generated models and
manually created models can be compared.

9

1 Introduction

Lastly, the module contributes to an existing strategy to support
users in creating correct and meaningful process models, including
their attached elements, such as descriptions and related models.
The implementation supports the combination of direct feedback
about the syntactic and semantic qualities of models. It can con-
tribute to di�erent further activities, such as teaching users the
modeling language or model-oriented thinking.

10

1.3 Thesis Structure

1.3 Thesis Structure
The remainder of this thesis is structured as follows and shown in
Figure 1.2.

Part I provides an overview of the foundations of this thesis
and focuses on the introduction into the related topics of Business
Process Modeling (BPMod), Knowledge Management (KM), and
Natural Language Processing (NLP). An understanding of the three
topics is established to, later on, follow with the connection of
the three �elds. Business Process Modeling (BPMod) introduces
a shared understanding of business processes, the corresponding
models, and the idea of de�ning and measuring the quality of these.
While the topic of KM represents the practical context for the busi-
ness problem, NLP provides an understanding of the used technical
approach that is followed.

Part II describes and explains the contribution of a model trans-
formation approach that can generate business process models
based on textual input. The problem at hand is de�ned in this part
and includes challenges that have to be overcome by the solution.
Following the concept and design of the transformation, the ap-
proach is described. From the concept, implemented features are
presented in a subsequent section. Lastly, in this part, the imple-
mented features are evaluated, and the results are discussed.

Part III concludes this thesis with a summary, a discussion of the
drawn implications, and an outlook for future research.

11

1 Introduction

Figure 1.2: Thesis Structure.

12

Part I

Foundations

Before having a look at Natural Language Processing (NLP) and
how it has already been utilized in the context of Business Process
Modeling (BPMod), especially Petri net (PN) modeling following the
Horus Method, and the way this synthesis can be used to enable and
support Knowledge Management (KM) processes, every topic will
be investigated separately to establish a common understanding of
the matter at hand.

Knowledge Management
This thesis is motivated from a practical viewpoint and gained in-
sights from the KM of a business partner. Creating, storing, and
sharing knowledge among the company and its workforce is a
challenging task that is seen as necessary and bene�cial for the
companies success. The realization of mentioned knowledge man-
agement activities and the use of structures that facilitate these can
be achieved through di�erent approaches. In this regard, the busi-
ness problem’s origin lies in the �eld of Knowledge Management
(KM) and focuses on ways to leverage visualization techniques, such
as Business Process Modeling (BPMod), to enhance the di�erent
steps of managing knowledge.

Business Process Modeling
Even though Business Process Modeling (BPMod) is an already
established method to visualize information and knowledge in dif-
ferent situations, a discussion has grown in the community of
Business Process Management (BPM) about its future. While other
approaches, such as Process Mining, gained more attention in the
recent past, it cannot be denied that Business Process Modeling
(BPMod) still takes on a crucial role in managing information knowl-

15

edge. Particularly, business process models can be at the center of
knowledge management related to the insights gained from practice.
Thus, getting an idea of how these models are created and used and
gaining an understanding of the quality of these models is essential
for the success of the later presented transformation approach be-
tween texts and process models. Of importance is additionally the
clari�cation of di�erences between individual process models and
process modeling languages, as the structure and level of expression
can vary and has a direct impact on the transformation.

Natural Language Processing
NLP is a rising �eld of interest that gained interest not only in
academia but also is already used and applied in di�erent commer-
cial solutions. The di�erent approaches and viewpoints on natural
language, written or spoken, o�er a foundation of existing infor-
mation on the topic, accompanied by a broad spectrum of tools,
libraries, and pre-trained language models that are in place to ad-
dress di�erent steps of analyzing textual inputs. NLP solutions may
not deliver perfect results, but show a satisfying accuracy already
and have been improved to such an extent that it can be used e�ec-
tively in various areas. Examples of the application in practice and
academia are provided in 3.2.

In the end, all three topics are coming together as the relation-
ships between �elds in each topic are discovered and investigated
throughout this thesis. Business Process Models are used in the
context of Knowledge Management to appropriately and e�ciently
deal with contents. Furthermore, enhancements in BPMod are seen
as going hand in hand with a potential enhancements in KM. To
achieve such improvements and support the process of BPMod,

16

methods and techniques o�ered in the �eld of NLP are utilized. In
the end, these techniques and methods are used to improve the
created business process models in quality, but also should lead to
automated creation of these to reduce the time spend. The higher
quality or less-time-consuming BPMod should facilitate the sharing
and transformation of knowledge and improve knowledge manage-
ment. The general relationships between the three topics are shown
in Figure 1.3. Several approaches can be found in the literature that
tried to utilize NLP already when working with di�erent kinds of
models. These previous works o�er valuable insights into the topic
and for the contribution of this thesis. In a compilation of di�erent
works [Leo+13; LMP14], Leopold et al. split these approaches based
on whether NLP techniques were used on models themselves or
any text related to modeling.

Figure 1.3: Thesis Foundations.

17

2 Process Modeling and
Knowledge Management

In this chapter, one of the three main topics of this thesis’s foun-
dations, namely Business Process Modeling (BPMod), is described.
First, the business processes and business process models are ex-
plained. Following, BPMod and commonly used modeling lan-
guages are introduced together with a look at modeling processes
with Petri Nets (PNs). In the second part, the quality of Business
Process Models and ways to capture the di�erent quality dimen-
sions are presented. Lastly, the topic of model transformation and
generation is explained.

2.1 Basics of Business Process Modeling
Next to the key components of Business Processes and Business
Process Models, central aspects of the process of modeling itself
are explained here to facilitate the understanding of how BPMod
is commonly (manually) approached and how automation of this
process can be achieved. As part of this section, di�erent modeling
languages are listed and described as ways to approach modeling
business processes.

19

2 Process Modeling and Knowledge Management

BPMod is the graphical representation and modeling of business
processes or segments of these [BRVU00]. The focus lies on the
representation of business processes with the addition of data and
organizational structures [CKO92]. Business process models in
this context are used to described selected business processes to
enable analysis and subsequent improvement of processes and thus
company performance [Wes10].

BPMod includes individuals familiar with the processes and ex-
perts in modeling these, but can also involve non-experts and ex-
ternal stakeholders. Including all involved stakeholders in a project
is necessary to obtain a clear impression and description of the
processes and to improve process models regarding their represen-
tation of reality. Besides, di�erent methods, modeling languages,
are used and serve distinct purposes. Common modeling languages
are the Business Process Modeling Notation (BPMN) [Whi04], Petri
nets [Pet62] or Work�ow nets [Aal98].

BPMod aims at clear goals embedded in the goals of the overall
Business Process Management (BPM) life cycle. While Business
Process Management (BPM) aims to manage and improve the com-
pany’s business processes, and thus a company’s performance, the
goal of BPMod as part of the management is the structured and
clear representation of current business processes [Hav05]. BPMod
provides a clear idea and description of the processes to work with
and the changes or improvements to apply and implement. As part
of BPM, BPMod is responsible for the design of processes, including
the conceptual development of improvements and changes. Never-
theless, BPMod and BPM face several challenges, such as the need
for standardization, the inclusion of stakeholders from di�erent
�elds of expertise, and the training of modelers [Ind+09].

20

2.1 Basics of Business Process Modeling

2.1.1 Business Processes
Before introducing BPMod and its modeling languages, a short
clari�cation of the term business process is given to provide a
working de�nition for this thesis. Weske includes de�nitions of
terms regarding BPM in [Wes10], which are seen as suitable for the
use in this thesis, as they match with de�nitions by other authors.

One de�nition given in [Wes10, p.5] for the term business process
states that "[a] business process consists of a set of activities that
are performed in coordination in an organizational and technical
environment. These activities jointly realize a business goal. Each
business process is enacted by a single organization, but it may interact
with business processes performed by other organizations."

Another often used and considered established de�nition of a
(business) process is provided by Becker, Rosemann, and Schütte
as: "A process is the chronological and logical sequence of activities
that are necessary to process a business-relevant object" [BRS95].

Both de�nitions emphasize the set of activities interacting se-
quentially and processing business objects to achieve or contribute
to a de�ned business goal. With a focus on this thesis’s core inten-
tion, to transform textual input into a process model, the mentioned
commonalities between the two de�nitions represent the general
elements that have to be extracted from the input. To generate a
process model from text, three core elements of processes have to
be identi�ed and extracted, namely the set of activities, the pro-
cessed objects (inputs/outputs of activities), and the control �ow
("interacting in a sequential way").

21

2 Process Modeling and Knowledge Management

2.1.2 Business Process Models
In this subsection, the next higher level of BPMod, Business Pro-
cess Models, is provided to visualize the composition of connected
business processes. The structure and underlying rules of creat-
ing business process models are relevant for the later-described
analysis of textual inputs.

A de�nition given in [Wes10, p.7] for the term business process
model states that "[a] business process model consists of a set of
activity models and execution constraints between them. A business
process instance represents a concrete case in a company’s operational
business, consisting of activity instances. Each business process model
acts as a blueprint for a set of business process instances, and each
activity model acts as a blueprint for a set of activity instances".
Thus, business process models are representations of the business
processes and instances of the included sequence activities. The
sequence of and connection between elements follows de�ned rules
provided, e.g., by the chosen modeling language.

Business Process Models are used in a broad spectrum of tasks.
Becker, Kugeler, and Rosemann [BKR13] categorize these task into
the �elds of organizational design and application system design, as
shown in Figure 2.1.

2.1.3 Business Process Modeling Languages
Business Process Modeling, as used for representing a business’s
processes to enable analysis and improvement of current processes,
can be applied in di�erent ways. Di�erent ways include di�erent ap-
proaches, methods, or languages. While all applications follow the

22

2.1 Basics of Business Process Modeling

Figure 2.1: Purposes of Business Process Models. Source: based
on [BKR13; BPV12].

primary purpose of representing processes, they can di�er in their
ability to support di�erent tasks, such as analysis or monitoring.
Di�erent applications, using di�erent languages, rules, and con-
ventions, and following di�erent goals are also supported through
di�erent process modeling software. New applications of BPMod
also raise new challenges with new possibilities [PV13].

In consequence, di�erent modeling languages serving di�erent
purposes were developed over the years. Each modeling language
follows rules that di�er in aspects, e.g., in the used elements, con-

23

2 Process Modeling and Knowledge Management

nections, and control �ow. This diversity makes the interpretation
for approaches such as the one described in this thesis highly de-
pendent on the chosen modeling language.

An interpretation of a meta-modeling language covering a spe-
ci�c group of similar modeling languages could cover a broader
spectrum of modeling languages. However, it would come along
with an expected loss of information.

Examples of the most common and used in practice modeling
languages are:

� Petri nets: A PN is a bipartite graph consisting of transitions,
representing events that occur, and places, which represent
conditions [Pet62]. A modeling approach with PNs is the
Horus method (see [Sch+11]), which is supported by the
Horus Business Modeler as a modeling tool.

� BPMN 2.0: BPMN 2.0 is the current version of the Business
Process Modeling Notation, a graphical representation for
business processes introduced in [Whi04] and is included in
various modeling tools. It is based on �owcharts and shows
similarities to other model types, such as UML diagrams.

� Work�ow nets: Work�ow nets are a subclass of PNs that
are used to model the work�ow of process activities. Work-
�ow nets can be modeled with tools for modeling PNs, but
also work�ow focused software, for instance, the Camunda
work�ow-management system [Aal98].

24

2.1 Basics of Business Process Modeling

2.1.4 Imperative and Declarative Modeling
Next to the mentioned languages, numerous other alternative lan-
guages and variations exist that serve di�erent purposes, such as,
for instance, imperative and declarative modeling. The distinction
between declarative and imperative modeling languages is rooted
in computer programming.

While imperative modeling languages explicitly de�ne the execu-
tion of a process and express what action and how it is performed,
declarative languages do not specify a procedure. They instead
declare the constraints and requirements that de�ne what has to
happen for an action to be performed. The execution is left to be
determined by the system itself. Declarative constraints are often
used to reduce the space of possible executions of an imperatively
described process [Pic+11].

Imperative models are often considered to follow an ’inside-
to-outside’ approach, which de�nes the execution, and possible
alternatives or extensions have to be explicitly stated and added. In
contrast, declarative models follow an ’outside-to-inside’ approach,
which includes constraints that specify the execution alternatives,
and every execution within these constraints is considered valid.
The number of alternative executions is regulated over adding and
removing constraints [Pes08].

An imperative approach comes close to the idea of using process
descriptions according to stated input requirements in the context
of this thesis as a means to express the sequence of performed
actions of the business process. Declarative languages in the form
of, e.g., constraints or execution rules are nevertheless relevant
when considering process models as part of a bigger construct,

25

2 Process Modeling and Knowledge Management

such as the Horus method, which includes di�erent kinds of models
and their relationship to each other in a broader business man-
agement context. Additionally, as observed over a �rst iteration of
experiments in [Pic+11], imperative process models promise better
comprehensibility among experienced and inexperienced process
modelers.

In this regard, in this thesis, the assumption is followed that
imperative process models and the corresponding imperative pro-
cess description are generally easier to assess. It describes the di-
rectly and visually represented contents. In contrast, the declarative
expression of process model relevant elements adds complexity.
Though the description of constraints and rules that add informa-
tion to a process model, a declarative approach would help include
the other models used in the Horus method and express the "back-
ground" of a process model.

26

2.2 Business Modeling with Petri Nets

2.2 Business Modeling with Petri Nets
In this section, the modeling language of Petri nets is explained.
An understanding of basic PNs is required in later chapters that
introduce a specialization of PNs, Horus procedure models used by
the business partner.

Since Carl Adam Petri created his modeling language in 1939,
aimed to illustrate chemical processes better [Rei13], it has under-
gone much research. It is nowadays utilized as a discrete state-based
system modeling technique in di�erent domains. The possibility to
analyze these graphs mathematically while remaining accessible
gave them a unique value and led to PNs being utilized more inten-
sively. As a result, various techniques have been created, allowing
users to check these models, extract information, or work with
those. For the usage in speci�c domains, additions to the initially
small set of notation elements and de�nitions were designed and
applied like Stochastic PNs [HTT00] or Coloured PNs [BRR06].

The application areas of PNs are diverse. The modeling language
is widely used in technical areas like creating and analyzing com-
munication protocols [ZZ94], in functional areas such as the align-
ment of manufacturing systems, or software development, espe-
cially when dealing with particular cases like parallel execution as
a means to analyze and verify the code [ZC06]. As a result, PNs are
practiced in domains where discrete event systems of every shape
prevail. There are e�orts to extend the standard PN notation to
include new elements utilizable in more speci�c domains. However,
there exists a common ground to describe the systems through only
places, transitions, and arcs.

27

2 Process Modeling and Knowledge Management

PNs o�er the potential of expressing complex structures with a
limited amount of model elements. With PNs, one can ensure to
represent almost all the process-related knowledge that may come
up. In contrast, the generation of PNs from texts can focus on tex-
tual structures mapped to a small number of model elements. This
enables us to provide an early concept and prototype of mapping
that includes all relevant model elements of a PN. An early proto-
type might be �awed and not recognize all structures perfectly, but
the extension of this working prototype that can generate in this
�rst iteration already PNs from texts, even though not completely
correct, would cover the set of elements used for PNs. An extension
and further development of such a prototype would then have to
focus solely on structures and patterns found in PNs and not on
additional elements that have to be integrated.

PNs are used as a modeling tool that applies to various systems.
A single PN model is a bipartite graph. It consists in its base form
of three di�erent elements:

� Places, which contain zero or more tokens, and describe the
formal state of a system.

� Transitions, which enable tokens to move between places.

� Arcs, connecting a place with a transition or vice versa.

Based on this simplicity, PNs can be handily depicted both graph-
ically and mathematically. The mathematical representation also
allows for the analysis of said models by creating equation systems
and checking for correctness properties through algorithms [Mur89].

28

2.2 Business Modeling with Petri Nets

Furthermore, asynchronous and concurrent activities can be mod-
eled while satisfying constraints on sequential properties [Pet77].

To have a shared understanding of terms and to use consistent
notation across implementation and analysis, the de�nition by
Murata [Mur89] will serve as a starting point: This standard PN
notation is as such isolated from any speci�c domain. However, in
practice, the modeling of a PN may generally take di�erent tech-
niques. The mentioned original intention of Reisig to use those mod-
els to make the structure of chemical reactions accessible [Rei12]
has a di�erent semantic meaning for places and transitions when
comparing those to PNs used for analyzing software patterns de-
spite sharing the same elements. The procedure to create this model
would di�er and require a distinct domain language when talking
about the graphical illustration.

As one goal of this thesis is to analyze to what extent and how
reliably a machine can automatically generate PNs from natural
language texts. The focus will be �xed on a single domain: The
translation and creation of PNs depicting real-world processes.

PNs are typically used when creating a state-based version of
business processes for analysis and deploying them into other sys-
tems. Specialized PNs, such as the Horus models used by the busi-
ness partner, which are introduced in Section 5.1.1, are often called
Work�ow Nets (WNs) [ELS10]. Work�ow Nets (WNs) can be charac-
terized by their transition based structure. In addition to the seman-
tic di�erences between PNs and WNs, WNs do have supplementary
de�nitions and properties. The most common characteristic is called
soundness, which guarantees a deadlock-free model through its sub-
characteristics liveness and boundedness [VDA+11]. With regards
to the distinct di�erences that can be identi�ed between PNs and

29

2 Process Modeling and Knowledge Management

WNs, Van der Aalst and Hofstede claim that a well-formed business
process described through a PN can be considered compliant with
the idea of a WN.

The di�erence between both is thus not of signi�cant relevance
for the transformation process in this thesis. However, it should
be kept in mind as WNs are often closer to the application level of
a business process and important when it comes to the execution.
The focus will lie on the semantic notion of the specialized version
of PNs in the form of Horus models as a tool to model real-world
processes with the notion of WNs as a formal concept with the
focus on the practically related work�ow of a process.

The main challenge of transforming text sources into a modeling
notation such as PN or based on PNs will be the extraction of
atomic process steps and connecting them in a meaningful way,
not violating either the modeling language’s underlying rules or
being contrary to the source text.

A promising starting point for the e�cient and precise extraction
of Petri net elements is provided by regular patterns that can be
identi�ed additionally. Such patterns describe additional structures
common in PNs and can be used to identify "sub-models" of the
respective PN that ful�ll a certain purpose, such as choices, paral-
lelism, or sequence [LVD09]. Examples of patterns found in PNs,
such as parallel splits or exclusive choices, are shown in Figure 2.2.

30

2.3 Quality of Business Process Models

Figure 2.2: Petri Net Pa�erns. Source: based on [LVD09, p. 4].

2.3 �ality of Business Process Models
The quality of business process models is often perceived di�er-
ently based on the subjective interpretation of the particular model
user [HS06; SG+12]. Therefore, proposing a universal de�nition
covering all aspects and possible utilization scenarios is hardly
possible.

As a consequence, Overhage, Birkmeier, and Schlauderer de�ne
the quality of business process models in a more generalized way
as "the totality of its characteristics that bear on its ability to satisfy
stated requirements" [OBS12, p.232]. Ensuring a high degree of
model quality can imply a higher quality level for any information
system that is implemented based on the former [Moo05], as models
generally are not created solely for their representational aspects
but serve a purpose in di�erent kind of projects.

31

2 Process Modeling and Knowledge Management

Two di�erent categories of quality assurance approaches can be
distinguished in practice:

1. Analytical approaches aiming at quantifying the quality level
of a particular model,

2. and constructive approaches with the intention to provide
guidance for the modeler during the actual modeling process
and to ensure that the resulting model satis�es de�ned quality
criteria [Bal08; OBS12].

Analytical quality assurance approaches build upon quality met-
rics and corresponding measurement procedures [Moo05; OBS12].
Such metrics are, e.g., the size, diameter, and density of a busi-
ness process model [Men08]. Additionally, comprehensive quality
frameworks exist to assess general model quality on a higher level
of abstraction. The mentioned frameworks exhibit a hierarchical
structure, with the model quality residing at the top and the cor-
responding quality metrics at the lowest level. Between these two
levels, there can be one or more additional levels that are structured
around quality (sub-)characteristics to aggregate metrics of a similar
nature [Moo05].

Frameworks commonly discussed in the BPMod literate include,
for instance, the 3QM-Framework described in [OBS12]. Overhage,
Birkmeier, and Schlauderer de�ne three characteristics: syntactic
quality (rule adherence), semantic quality (validity and complete-
ness), and pragmatic quality (comprehension). Another exemplary
framework is the SEQUAL framework [KSJ06], which is compared
to the 3QM-Framework more extensive, as it also considers empir-
ical quality (readability), social quality (feasible agreement), and

32

2.3 Quality of Business Process Models

organizational quality (goal ful�lment). The literature on quality
assurance found in the �eld of BPM focuses on approaches ranging
from the design and evaluation of entire modeling languages down
to the level of individual models [OBS12]. For the latter, prominent
approaches include the Guidelines of Modeling (GoM) [BRS95] and
the Seven Process Modeling Guidelines (7PMG) [MRA10].

Another approach is presented in [LR+11] and focuses on the
secondary notation of process models. This notation focuses on
the representation and visualization for the user. La Rosa et al.
[LR+11] describe di�erent patterns that aim to change this type of
representation to improve a model’s understandability. Patterns,
such as shown in Figure 2.2, include the provision of guidance
for �nding a good spatial arrangement of model elements, using
enclosures, color, or other visual elements for emphasis, and adding
additional annotations to a model.

In practice, measuring the quality of business process models is
di�cult, especially as there is no single number, quanti�ed measure-
ment, or value that can delimit good from bad quality or something
in between. While the mentioned approaches generally allow creat-
ing higher-quality models, they usually do not de�ne any concrete
metrics or measurements and do not enable an actual quanti�ca-
tion [OBS12]. Additionally, approaches such as the Guidelines of
Modeling (GoM) require particular expertise in modeling to be
applied and are less suitable for novice modelers [MRA10].

Independently of the approach, most frameworks focus on quality
categories but leave out an actual de�nition of metrics and measure-
ment procedures. Consequently, Metrics are rendered subjective
and too abstract to be directly used in practice [MRA10; Moo05;
OBS12]. Lastly, one component that many analytical frameworks

33

2 Process Modeling and Knowledge Management

are not paying attention to is guidelines that allow the improve-
ment of models based on any shortcomings identi�ed during quality
measurement [Moo05].

This section establishes an understanding of business process
model quality and means to assess such. A subset of the intro-
duced frameworks and guidelines is further provided with a brief
description of each approach in Section 2.3.1.

2.3.1 �ality Frameworks and Guidelines
In the following, di�erent frameworks and guidelines used to ensure
and assess the quality of business process models or related artifacts
are introduced. The most commonly addressed and mentioned ones
in the literature are presented. A more extensive list of existing
frameworks can be found in [Moo05].

Quality frameworks are of relevance on the one side to assess the
quality of process models, while on the other side, they also de�ne
what quality is expected to consider a good quality process model.
Additionally, quality frameworks can support the de�nition of re-
quirements for inputs in the form of textual process descriptions
used in this work.

Stampers Semiotic Framework [Sta91]

When talking about information and assessing their nature and
their management, semiotics is an often considered �eld. Semiotics
"is the study of sign process (semiosis), which is any form of activity,
conduct, or any process that involves signs, including the production
of meaning" [Cha07].

34

2.3 Quality of Business Process Models

Ta
bl

e
2.

1:
O

ve
rv

ie
w

:M
od

el
�

al
it

y
Fr

am
ew

or
ks

.

T
it
le

A
ut
ho

rs
D
at
e

Gu
id

el
in

es
of

M
od

el
in

g
Be

ck
er

,J
ör

g
an

d
Ro

se
m

an
n,

M
ic

ha
el

an
d

Vo
n

Ut
h-

m
an

n,
Ch

ris
to

ph
20

00

SE
Q

UA
L

Fr
am

ew
or

k
Kr

og
st

ie
,J

oh
n

an
d

Si
nd

re
,G

ut
to

rm
an

d
Jø

rg
en

se
n,

H
åv

ar
d

20
06

SI
Q

Re
ije

rs
,H

aj
o

A
an

d
M

en
dl

in
g,

Ja
n

an
d

Re
ck

er
,J

an
20

10
3Q

M
O

ve
rh

ag
e,

Sv
en

an
d

Bi
rk

m
ei

er
,D

om
in

ik
Q

an
d

Sc
hl

au
de

re
r,

Se
ba

st
ia

n
20

12

CM
Q

F
N

el
so

n,
H

Ja
m

es
an

d
Po

el
s,

G
ee

rt
an

d
G

en
er

o,
M

ar
ce

la
an

d
Pi

at
tin

i,
M

ar
io

20
12

35

2 Process Modeling and Knowledge Management

One of the most used frameworks, which Business Process Model
Quality frameworks build on directly or indirectly, is the semiotic
framework or semiotic ladder by Stamper. The semiotic ladder
is intended as a framework of information systems research and
partly applicable to process modeling as part of information systems
development. Stamper used semiotics and his semiotic ladder as
a framework for information and knowledge in the context of
information systems research.

In [Sta91], the di�erent steps of the framework are described as
shown in Figure 2.3. The steps include:

1. Physical World - Represents the physical properties of signs,
the physical tokens.

2. Empirics - Explores the physical communication towards,
e.g., channel capacity and e�ciency.

3. Syntactics - Refers to the structure and used vocabulary.

4. Semantics - Includes the meaning of as well as the relationship
between a sign and what it refers to.

5. Pragmatics - Is about the usage, the purposeful use of signs.

6. Social World - Refers to the formal and informal norms and
social e�ects.

In this thesis, the framework by Stamper can serve as a bridge
between process model quality and knowledge quality as part of
information systems. As process models serve as knowledge carriers
in a knowledge-oriented context, an assessment based on semiotics

36

2.3 Quality of Business Process Models

can be applied. However, not all parts of the semiotic ladder can
be mapped to this project. The syntax and semantics steps are
especially relevant here, with minor references to pragmatics and
the social world.

Figure 2.3: Semiological Steps between the Physical and the
Social Worlds. Source: based on [Sta91].

Guidelines of Modeling [BRVU00; BPV12]

Modeling business processes can evolve into a di�cult task with
complex and huge process structures. The guidelines for modeling
all the variety of conceptual models were developed over time, such
as in [BRVU00; BRS95], and are applicable to process models. A
process modeling-focused extension of these guidelines is described
by Rosemann in [Ros96].

37

2 Process Modeling and Knowledge Management

The GoM framework by Becker, Rosemann, and Von Uthmann
[BRVU00] includes six general guidelines in total, which describe
properties of well designed models and their languages. The three
basic guidelines include the model’s requirement to be syntactically
and semantically correct and hold relevant information. Also, the
economic e�ciency guideline aims at providing reference mod-
els or tools for modeling. The most relevant optional guideline
requires models to possess a high degree of clarity, enabling the
user to understand these models more quickly. Further guidelines
are related to systems and models of other views, which are not
directly relevant to this thesis’s target implementation.

The six guidelines from [BRVU00; BRS95] include the following
statements that are shown in Figure 2.4:

1. Correctness: Refers to the syntactic and semantic correct-
ness of a model. Syntactical correctness is given when a model
conforms with the meta-model of the used modeling language.
Simultaneously, a model is semantically correct when it is
consistent with the real processes it represents.

2. Economic E�ciency: Involves all other guidelines and can
be seen as a cost-bene�t constraint of the model. The creation
of the model and consistency with the guidelines have to be
feasible and bene�t the involved people.

3. Relevance: The guideline of relevance encourages the cre-
ator of a model to focus on the relevant elements to represent
in a model. A model should be condensed to the relevant and
needed elements to represent. An object in a model can be

38

2.3 Quality of Business Process Models

considered irrelevant if the model loses no information or
meaning after deleting the object.

4. Comparability: Refers to the consistent use of modeling
conventions and rules during a project. Modelers are encour-
aged to model consistently with the, in the modeling project
used, modeling language, connected rules, and conventions to
ensure that models created during the project can be assessed
and compared.

5. Systematic Design: The systematic design emphasizes the
relationship between di�erent models. For example, every
data within a process model needs a corresponding data
model. A common approach is the ARIS-approach, which
includes the systematic layers functions, organization and pro-
cess [SN00]. A meta-model of the used language includes all
the views and is necessary to provide a consistent, systematic
design.

6. Clarity: The guideline of clarity is somewhat subjective but
supports the modeler in creating a readable and understand-
able model. A model should be accessible for other involved
people and thus not include knowledge outside the model
or used modeling language. Layout conventions of modeling
languages or set by the involved stakeholders help ensure a
degree of clarity of created models.

39

2 Process Modeling and Knowledge Management

Figure 2.4: Guidelines of Modeling. Source: based on [BRS95;
BRVU00].

SEQUAL Framework [KSJ06]

SEQUAL is a semiotic framework used to evaluate conceptual mod-
els, which was �rst introduced by [LSS94] and further re�ned over
the years in, e.g., [KLS95; KSJ06]. The Semiotic Quality Model (SE-
QUAL) was created to evaluate all types of conceptual models, while
modi�cations emphasize di�erent kinds of models, such as business
process models [Kro16].

The framework makes use of the similarity between process
modeling and the used natural language to describe the resulting
models to link concepts from linguistics and semiotics to evalu-
ate the model. Conceptual models are considered a representation
of a set of expressions in a language and in consequence can be
evaluated with approaches from linguistics.

The quality aspects described and included in the framework are
the actors that work with the models, their knowledge, their model
interpretations, the modeling language, the domain expressed in
the model, and the modeling goal.

40

2.3 Quality of Business Process Models

Based on [Kro16], di�erent types of quality are described:

� Physical quality: Actor Access

� Empirical quality: Model Externalization

� Syntactic quality: Language Expression

� Semantic quality: Domain of Modeling

� Pragmatic quality: Technical and Actor Interpretation

� Social quality: Social Actors Interpretation

� Deontic Quality: Goal of Modeling

A re�nement of the mentioned types can be seen in Figure 2.5.
It has to be acknowledged that no concrete quality metrics are
de�ned, but rather a conceptual framework described.

SEQUAL was analyzed and considered a widely, accessible, and
variously applied framework in practice by [Moo+02]. This can be
seen in the number of other frameworks that build on the idea of
the SEQUAL framework, such as the 3QM-Framework.

3QM-Framework [OBS12])

The 3QM-Framework is another approach to assess the quality of
a business process model inspired by the SEQUAL-Framework. It
is based on a hierarchical structure with syntactic, semantic, and
pragmatic quality at the next re�ned level below the overall model
quality. In the more detailed levels of the quality hierarchy, nine

41

2 Process Modeling and Knowledge Management

Figure 2.5: The SEQUAL Framework. Source: based on [Kro16].

characteristics are introduced as sub-characteristics of the three
mentioned ones on the above level.

The sub-characteristics include, e.g., correctness, relevance, and
completeness. The nine characteristics are measured by 35 quality
metrics that are de�ned with the respective measurement. Besides,
the authors propose a weighting to the framework’s individual
metrics to adjust the calculation of a single quality metric for a
process model.

42

2.3 Quality of Business Process Models

7 PMG [MRA10]

Another set of guidelines compiled by Mendling, Reijers, and Aalst
distinguishes four categories that revolve around the correctness of
the model, layout, used elements, and the language used to create
the model with regards to a �xed dictionary or de�ned labeling con-
ventions. The 7 Process Modeling Guidelines (7PMG) by Mendling,
Reijers, and Aalst are aligned with the EPC notation but are mostly
applicable to any process modeling toolset. The guidelines mostly
focus on model readability and error reduction. Aside from using
as few elements as possible and minimizing the routing paths, the
7PMG advice avoids using the inclusive OR connector and suggests
strict labeling.

The Seven Process Modeling Guidelines (7PMG) have a similar
purpose than the GoM by Becker, Rosemann, and Von Uthmann, but
introduce a less detailed set of rules that are easier to follow also for
non-expert modelers. The de�ned rules are supposed to in�uence
the modeling style to yield a result with high understandability and
a reduced number of syntactic errors in the model [MRA10].

Consequently, they are covering a narrower scope but are more
applicable through their concrete formulation. Such formulations
are, for example, "use as few elements as possible","use verb-object
activity labels", and "use one start and one end event" [MRA10, p.130].

Further Guidelines and Frameworks

Several other frameworks that are merely combinations of the men-
tioned ones, not applied by a big audience or focus on highly spe-

43

2 Process Modeling and Knowledge Management

cialized scenarios, were not mentioned here due to the mentioned
characteristics.

Nevertheless, these frameworks might provide helpful insights in
a di�erent scenario and should not be neglected. Examples include
the Conceptual Model Quality Framework (CMQF) by Nelson et al.,
the MAQ model [Sad15] or the SIQ framework [RMR10].

2.3.2 �ality Metrics
Considering the introduced frameworks and guidelines and ex-
tending these by existing works, such as [P�18], di�erent quality
metrics can be identi�ed. Even though most of the frameworks and
guidelines are kept at a rather conceptual level, precise de�nitions
of metrics can either be taken from the remaining approaches that
de�ne them or be extracted based on the conceptual description
provided. Considering process model quality on di�erent levels,
similar to Stamper’s semiotic framework and looking at the levels
of pragmatism, semantics, and syntax, it becomes clear that it is
especially for the syntactic quality aspects metrics are either in
place or can be de�ned rather straightforward. The next possible
quanti�cation of quality should be possible over pragmatics. In
this case, the model itself is not necessarily evaluated, but rather
metadata, such as the number of views and references.

Lastly, the initial starting point of the research conducted for this
thesis is the semantic quality of process models. Metrics for these
are scarce and hard to de�ne, as often the content at hand and the
intended or wanted results are hard to generalize and describe. To
come up with objective metrics in this context inherits a signi�cant
complexity, which can be addressed by reducing the interpretation

44

2.3 Quality of Business Process Models

space for the content by adding, e.g., contextual information or
personal feedback. Some metrics might indicate some overlap with
the mentioned levels of quality. Syntactical metrics might have an
indirect impact on related semantic metrics and vice versa. The
interrelation between metrics of di�erent categories has to be kept
in mind for an approach that considers syntactic and semantic
quality for the assessment of the overall model quality.

This thesis aims to address semantic and syntactic quality dimen-
sions of process models via automated model generation and the
inclusion of contextual knowledge. The syntactic quality dimension
is assumed to be covered by an automated generation of a process
model based on a given input, e.g., a data frame that contains the
model description. The placement and arrangement of elements are
made automatically in such an approach, and syntactic metrics such
as edge-crossings, diameter, or overlap are automatically addressed
as a side e�ect of the used generation algorithm.

Nevertheless, just a subset of the syntactic metrics, e.g., as listed
in Table 2.2 is relevant for and in�uenced in the model generation.
An example of syntactic metrics for business process models is
provided in table 2.2. These metrics are the results of a former
thesis, which focused on using syntactic metrics to measure the
quality of process models to calculate progress and rewards in a
gami�cation setting.

Under these circumstances, this thesis focuses on the seman-
tic quality dimension and a process model’s ability to express the
related content wholly and correctly. At the same time, syntac-
tic metrics are paid attention to as a side e�ect of the proposed
approach.

45

2 Process Modeling and Knowledge Management

Table 2.2: List of �ality Metrics in the Horus Gamification
Concept. �ality Metrics are categorized based on
di�erent Characteristics and the Optimization Goals.
Source: based on [Pfl18].

Characteristic Quality Metric Optimization Goal

Readability Edge Crossings HRemove all edge crossings
Readability Edge Bends HUse bend points sparingly
Readability Node Occlusion HRemove node overlaps
Readability Angular Resolution NMaximize angles between leaving arcs
Readability Consistent Flow 1 NArrange elements from top to bottom
Readability Consistent Flow 2 NArrange elements from left to right
Readability Orthogonality N Lay model elements out on a grid
Complexity Size HKeep the size small, split large models up
Complexity Diameter HMinimize the value of this metric
Complexity Density HMinimize the value of this metric
Complexity Connectivity Coe�cient HMinimize the value of this metric
Complexity Avg. Connector Degree HMinimize the value of this metric
Complexity Max. Connector Degree HMinimize the value of this metric
Complexity Connector Mismatch H For each split, model a corresponding join
Complexity Control Flow Complexity H Limit the number of execution paths
Complexity Cyclicity HTry to avoid cycles
Complexity Token Split HTry to avoid AND and OR splits
Complexity Sources and Sinks HUse exactly one start and end element
Completeness Names N Provide names for all elements
Completeness Short Names N Provide short names for all elements
Completeness Descriptions N Provide descriptions for all elements
Completeness Notes N Provide notes for all elements
Completeness Business Rules N Provide business rules for all activities
Completeness Documents N Provide documents for all elements
Completeness KPIs N Provide KPIs for all activities
Completeness Object Types N Provide object types for all object stores
Completeness Re�nements NRe�ne all activities with further details
Completeness Resources N Provide resources for all activities
Completeness Risks N Provide risks for all activities
Completeness Roles N Provide roles for all activities
Completeness Services N Provide services for all activities
Completeness System Components N Provide system comp. for all activities

46

2.4 Knowledge Management via Models

2.4 Knowledge Management via Models
Knowledge Management plays a signi�cant role in consultancies,
such as the business partners PROMATIS and Horus software
GmbH. Knowledge is needed on the one hand for the realization
of projects and on the other hand, as part of products and services.
The scope and quality of the expertise bundled in a Knowledge
Base are of signi�cant relevance for both use cases, and continuous
quality control of the knowledge bases is desired and necessary. The
ambition to outperform competitors has driven companies towards
�nding opportunities to increase their performance. Cost reduc-
tion and the gain of overall e�ciency are necessities to increase
performance.

Business Process Management (BPM), and included BPMod, is
used as a set of instruments to analyze and improve business pro-
cesses across companies [Wes10]. The understanding of processes
in an enterprise and how to enhance them is essential to this man-
agement process. One instrument to visualize and store knowledge,
BPMod, has become a crucial instrument of managing such for
many companies [Ind+09]. Because of this, BPMod from a knowl-
edge management perspective and the understanding of how to
identify and create models of acceptable quality is of high relevance
for the internal organization of companies [KB06]. Many tasks re-
volving around business processes are represented and documented
in mathematics-based formal language or natural language, such as
requirements engineering. There is a tendency to use other, more
expressive techniques, such as process models.

One of the di�culties of BPMod that companies face lies in the
variety of involved people [Ind+09]. Stakeholders of a project in

47

2 Process Modeling and Knowledge Management

the context of BPMod are often rooted in di�erent departments,
�elds, and levels of experience. E�ciently involving all relevant
stakeholders presents itself as a challenging task.

In this chapter, an introduction to Knowledge Management is
given, and the connection between di�erent Knowledge Manage-
ment (KM) characteristics and BPMod as a tool, especially of rele-
vance in a process-oriented KM approach, is explained. The covered
topics are focused with regards to the context of this thesis, includ-
ing the practical use case of the related business partners.

2.4.1 Knowledge Management
Managing knowledge in a company is a complex process. It requires
using appropriate methods and the users’ motivation to apply and
manage knowledge. In the age of modern technology, IT plays a
decisive role alongside methods and motivation. Even if all partici-
pants’ knowledge is documented, the question arises on how this
knowledge can be made tangible and available to everyone. The
solution to this problem is information and communication tech-
nologies. The trend towards information technologies motivates
scientists and software manufacturers to develop knowledge man-
agement systems to manage knowledge more e�ciently [FM04].

In the following subsections, a basic understanding of knowledge
management is provided. First, the di�erentiation of knowledge
types is explained together with related de�nitions. Second, the
goals of knowledge management are presented. Third, existing
frameworks and models are introduced, and key characteristics are
emphasized. Finally, application areas of knowledge management
in an academic and practical context are presented.

48

2.4 Knowledge Management via Models

Basics

In the following the basics of KM are described together with dif-
ferent de�nitions of KM to explain relevant terms. First, a brief
overview of the origin, the history as well as intended goals and
practical relevance of KM are given. Second, a set of used terms is
de�ned to clarify their use in this thesis.

The recent interest in organizational knowledge both within
and between companies leads to an increasing need to manage
knowledge for the company’s bene�t. Recognizing that knowledge
can be a source of sustainable competitive advantage, managers
turn to tools and approaches to identify and leverage collective
knowledge and experience within organizations [VK98]. Knowl-
edge has become a valuable asset in di�erent forms across a broad
spectrum of business areas [DDLB98]. KM is recognized as one
of the critical drivers of organizational performance, competitive-
ness, and pro�tability. Three key components, people, process, and
technology, are considered essential for a successful knowledge
leveraging [Omo15]. In this context, technology is an essential in-
strument of structural knowledge management needed to create
new knowledge. Linking information and communication systems
in organizations can help integrate previously fragmented informa-
tion and knowledge �ows.

These links can, for example, also eliminate barriers to communi-
cation that can occur between di�erent parts or departments of the
company [GMS01]. In literature, di�erent core processes of knowl-
edge management can be found that include creating, storing or
organizing, transferring, and applying knowledge [DP11; AL01] or
de�ning, identifying, acquiring, distributing, using, preserving and

49

2 Process Modeling and Knowledge Management

evaluating knowledge [PRR97]. These processes are often divided
into smaller processes. These imply, e.g., the generation of inter-
nal knowledge, the acquisition of external knowledge, the storage
of knowledge in documents and the storage of routines, and the
updating of knowledge and the transfer of knowledge internally
and externally [AL01]. The di�erent knowledge management activ-
ities are supported by specialized systems, knowledge management
systems, that are specially designed for the di�erent activities and
use cases [DP11]. Beyond the organizational and, in consequence,
economic value, knowledge management takes on a leading role
in the context of innovation. The e�cient management of knowl-
edge is recognized as essential to establish, sustain, and boost an
innovative environment [DP07].

Definitions

A set of terms was established in the �eld of KM of which each
term refers to a speci�c part. As some of these terms are used in
daily language and can be understood in di�erent ways, the most
important terms are brie�y introduced and de�ned.

Knowledge
In literature, di�erent classi�cations of knowledge can be found,
which in their abstract nature, avoid the view on implicit-explicit
dimensions [AL01]. However, for a detailed view on knowledge,
the implicit-explicit knowledge classi�cation of Polanyi [Pol15], as
it is a widely cited and acknowledged classi�cation, is considered
for this thesis. Polanyi classi�cation of implicit-explicit knowledge
categorizes human knowledge into two dimensions - the implicit

50

2.4 Knowledge Management via Models

and explicit dimensions. Explicit knowledge is often described as
codi�ed knowledge and refers to knowledge that can be transferred
in formal, systematic language. Implicit knowledge, on the other
side, has a personal quality, and it is not easy to formalize and com-
municate. Compared to explicit knowledge, implicit knowledge is
deeply rooted in action, engagement, and commitment in a speci�c
context. In this regard, communication between individuals can
be understood as an analogous process aimed at sharing implicit
knowledge to build mutual understanding [Non94]. Besides, im-
plicit knowledge includes both cognitive and technical elements.
The cognitive element refers to an individual’s mental models, such
as mental maps, beliefs, paradigms, and viewpoints. The technical
components consist of real know-how, craftsmanship, and skills
that apply to a speci�c context. An example of implicit knowl-
edge is knowing the best means of convincing a customer to buy a
product [AL01].

In contrast, explicit knowledge is either discrete or digital. Knowl-
edge is recorded in, e.g., historical records in libraries, archives, and
databases and is evaluated sequentially [Non94]. An example of
explicit knowledge is a manual accompanying purchase of elec-
tronic products. The manual contains knowledge about the proper
operation of the product [AL01]. Whether implicit or explicit knowl-
edge is more valuable is, however, still controversial. According
to Polanyi, these two are not binary states of knowledge but in-
terdependent and reinforcing qualities of knowledge. The implicit
knowledge forms the background, which is necessary to develop
and interpret the structure of explicit knowledge [IL99].

Furthermore and in the context of processing available data to-
wards information and then knowledge, a distinction of and the

51

2 Process Modeling and Knowledge Management

relationship between these three terms has to be established. One
visualization of such distinction is often used to explain the rela-
tionships from data over knowledge up to wisdom, as shown in
Figure 2.6.

As it is crucial to understand the di�erence between mentioned
terms three terms of data, information and knowledge are brie�y de-
scribed in the following. A commonly used distinction can be found
in the DIWK-Pyramid, stated in [Row07]. Based on the approach
of Rowley, the three terms can be described as follows.

� Data: Consists of facts and �gures that capture something
speci�c but are not organized and do not provide insights
about any further aspects, such as patterns, context, or re-
lationships between the data. The important term for the
delimitation of data from information and knowledge is "un-
structured", as used in the de�nition of data by in [Thi99].

� Information: To gain information based on data, the aspects
missing in the data have to be present. When data is put into
a context, categorized and condensed, it becomes informa-
tion [DP98]. Acko� described the information as essential
for answering questions that begin with "who, what, where,
when or how many" and thus provides insights about a bigger
picture and is, compared to data, enriched with relevance and
a certain intention [Ack89].

� Knowledge: Contrary to information, knowledge implies
an individual perception as it is considered the result of the
evaluation of newly gained information based on a person’s
previously gained experiences [DP98]. Such evaluation and

52

2.4 Knowledge Management via Models

the ability to establish relationships between new inputs lead
to a person’s knowledge based on the information that a per-
son has acquired. A de�nition by Gamble and Blackwell refers
to knowledge as "a �uid mix of framed experience, values, con-
textual information, expert insight, and grounded intuition that
provides an environment and framework for evaluating and
incorporating new experiences and information. It originates
and is applied in the mind of the knowers"[GB01]. Knowledge
can also be considered to be acquired from a network of
information [JHS01].

Figure 2.6: From Data to Knowledge. Source: based on [Hen74].

Knowledge Base
A knowledge base is by the de�nition found in the Cambridge Dic-
tionary "[...] a collection of information about a particular subject"1.
This collection of information is often structured and organized
towards a speci�c purpose. The methods applied together with
1 See https://dictionary.cambridge.org/dictionary/english/knowledge-base. Last

accessed: 08.12.2020.

53

https://dictionary.cambridge.org/dictionary/english/knowledge-base

2 Process Modeling and Knowledge Management

a knowledge base, most often already integrated into the chosen
technical realization, enable the transformation between data, in-
formation, and knowledge. The set of constructs and methods used
in this work are described together with other design choices in
Section 5.2.3.

An example of a knowledge base can be found when taking a look
at Wikipedia or in the format of wikis that store information and
knowledge. However, knowledge bases can take various formats
depending on purpose and technology used, such as databases,
wikis, or ontologies.

Knowledge Management System
Knowledge Management System (KMS) are a category of informa-
tion systems to manage knowledge and the related organizational
processes following frameworks such as the ones that will be in-
troduced in Section 2.4.1. They are used to support the KM related
process in di�erent ways. Alavi and Leidner refers to three main and
common applications of Knowledge Management System (KMS)
that can be projected to three of the four steps of KM introduced by
Nonaka and Takeuchi [NT95]. While the mentioned support does
not address all process steps involved in a knowledge managing or-
ganization with the same impact, it still facilitates diverse important
tasks, specially included in the externalization and combination
steps from 2.7. Additionally but not as present, KMS can also be
used to, e.g., enhance the establishment of knowledge networks
and cultivating knowledge communities as part of the socialization
step [Rug98]. In this regard, a traditional knowledge management
system enables the storage, distribution, and retrieval of knowledge
in various formats. It is often also de�ned as a knowledge repository.

54

2.4 Knowledge Management via Models

Simultaneously, the recent developments of knowledge manage-
ment systems focus not only on the mentioned tasks but also on the
social component and the connection between knowledge carriers
and knowledge seekers.

Figure 2.7: The SECI Model. Source: based on [NT95].

55

2 Process Modeling and Knowledge Management

Goals

The here described goals are oriented on the later explained knowl-
edge management frameworks. The selected frameworks are con-
sidered to capture the common approaches in academia and practice
to assess knowledge management and structure related processes.
In the following three goals of Knowledge Generation, Knowledge
Storage, and Knowledge Transfer regarding the four main knowledge
activities (creating, storing, transferring, applying) based on [AL01]
and the four phases of the SECI Model by Nonaka [Non94] are
described as the general KM goals. It has to be acknowledged that
the approach by Nonaka mainly focuses on Knowledge Generation.
Even though the model by Nonaka can be seen as the most popular
and most applied one, other approaches describe how to organize
and structure knowledge management, such as those mentioned in
Section 2.4.1.

Knowledge Creation
Under the assumption that ideas are formed in individuals’ minds,
the interaction between individuals takes on an essential role in
the development and generation of knowledge [Non94]. Besides
communication, organizational knowledge creation involves devel-
oping new content or the re�nement of existing content within
the body of implicit and explicit knowledge of organizations. Non-
aka presents four processes of knowledge generation to represent
the �ow of knowledge between individuals: Socialization, exter-
nalization, internalization and combination [Non94]. Socialization
refers to transforming implicit knowledge into new implicit knowl-
edge through social interactions and shared experiences among

56

2.4 Knowledge Management via Models

the organization’s members. Externalization and internalization
involve interactions and transformations between implicit and ex-
plicit knowledge. Externalization is considered to transform implicit
knowledge into new explicit knowledge and the internalization of
new implicit knowledge from explicit knowledge. Finally, combina-
tion implies creating explicit knowledge by merging, categorizing,
reclassifying, and synthesizing existing explicit knowledge [AL01].

Knowledge Storage
Empirical studies have shown that companies generate and acquire
knowledge but can also forget it [ABE90]. Against this background,
knowledge in companies is often recorded in written documents
and then stored and retrieved in the company’s knowledge reposi-
tory in the form of structured information, codi�ed human knowl-
edge, (documented) organizational procedures, processes, and the
implicit knowledge of individuals and networks. These are usu-
ally stored in electronic databases [Tan+98]. Similar to knowledge
generation, storing knowledge is di�erentiated between individual
and collective memory. Individual memory is developed based on
a person’s observations, experiences, and actions [AL01], while
collective memory is how knowledge from the past is linked to cur-
rent business activities. These development factors extend beyond
individual memory to other components, such as organizational
cultures, changes (production processes and work�ows), structures
(formal organizational roles), ecology (physical working environ-
ment), and information archives (both internal and external) [SZ95].
The storage of knowledge helps to reapply practical solutions in
the form of standards and procedures. Such artifacts can help to
avoid surplus organizational resources when replicating previous

57

2 Process Modeling and Knowledge Management

work. Advanced IT storage technologies and sophisticated retrieval
techniques, such as query languages, multimedia databases, and
database management systems, can be e�ective tools for improving
the organization’s memory. These tools increase the speed and
e�ciency at which knowledge can be stored and accessed [AL01].

Knowledge Transfer
A fundamental process of knowledge management in companies is
transferring knowledge to people and places where it is needed and
used. However, this is not a trivial process, as companies often do
not know what they know and how to �nd and access knowledge
within the company [Hub91]. Help is provided by IT-supported
networks, electronic billboards, and discussion groups. These tools
create a forum that enables contact between the person and the
knowledge and allows those who have access to the knowledge to
enter. For example, this can be achieved by asking a question in the
forum and allowing other people to answer the question [AL01].
Another possibility is to provide classi�cations or organizational
knowledge maps in which the respective knowledge can be found.

In comparison, without IT-based support, it is possible to access
the knowledge faster. Often this metadata, the knowledge about
where to �nd speci�c knowledge, is as vital as the actual knowledge
itself [O�97].

In addition, groupware software enables companies to generate
internal knowledge in structured and unstructured formats and
distribute this knowledge in time and space. For example, McKinsey
publishes central project documentation on online platforms to
promote the memory of individuals and create the possibility of
learning company-wide [SZ95].

58

2.4 Knowledge Management via Models

Knowledge Application
The application of available and processed knowledge is at the core
of gaining a competitive advantage through knowledge. Mecha-
nisms that are identi�ed to be essential to integrating knowledge in
an organization’s value-creating processes are, e.g., the introduction
of directives, routines, or a speci�c organization of collaboration in
teams. Such mechanisms aim at di�erent aspects of applying knowl-
edge, such as the transfer of tacit to explicit knowledge to facili-
tate the communication between experts and non-experts [AL01].
Knowledge application can bene�t from the integration into the IT-
landscape and underlying processes, such as in a process-oriented
knowledge management approach.

Knowledge Management Frameworks

To assess and locate the contribution of this thesis in the �eld of
Knowledge Management, di�erent Knowledge Management frame-
works and approaches are investigated. With the help of these,
the approach described in this thesis is later related to the di�er-
ent activities of these frameworks to emphasize where and how
the results of this thesis can provide bene�ts. Several reviews of
knowledge management frameworks, models, approaches, and in-
dustrial cases were already conducted in the past. One review of
theoretical knowledge management frameworks was conducted by
Lai and Chu in [LC00], while another comprehensive overview of
Knowledge Management frameworks can be found in [HJ99].

Another work by Dalkir explores the KM cycle together with (1)
major approaches to knowledge management, e.g., the Zack KM
Cycle [MZ96], the Bukowitz and Williams KM Cycle [BW00], the

59

2 Process Modeling and Knowledge Management

McElroy KM Cycle [McE99], the Wiig KM Cycle [Wii94]), and (2)
major knowledge management models, e.g., the von Krogh and
Roos Model of Organizational Epistemology [VKR95], the Nonaka
and Takeuchi Knowledge Spiral Model [NT95], the Choo Sense-
making KM Model [Cho96b], the Wiig Model for Building and Using
Knowledge [Wii94] and the Boisot I-Space KM Model [Boi98].

With the mentioned approaches and models, the authors explain
the steps of knowledge capturing and codi�cation regarding tacit
and implicit knowledge as well as sharing and applying knowledge
with the focus on objectives, existing approaches, and a discus-
sion of each step. Additionally, the roles of organizational culture
and knowledge management tools are investigated towards their
contribution to the knowledge management steps.

Framework of Knowledge Management Pillars [Wii94]:
The framework of the three knowledge management pillars by Wiig
focuses on the major activities required to successfully manage
knowledge [Wii94]. A visualization of the framework is shown in
Figure 2.8. As shown, the three pillars are based on an understanding
of knowledge creation, manifestation, use, and transfer. Each of
the pillars is a representation of the major activities in knowledge
management:

1. Knowledge Exploration: The �rst pillar represents tasks deal-
ing with exploring and assessing knowledge. As regular tasks,
the survey and categorization of knowledge, the analysis of
knowledge and knowledge-related activities, the elicitation,
codi�cation, and organization of knowledge are mentioned.

60

2.4 Knowledge Management via Models

2. Knowledge Evaluation: The second pillar involves the review
and evaluation of knowledge and knowledge-related activ-
ities. Essential for this pillar is the assessment of available
knowledge towards its value for the organization.

3. Knowledge Governance: The third pillar focuses on the gov-
ernance of knowledge management activities and includes
three main functions: The synthesis of knowledge-related
activities, the handling, use, and control of knowledge, and
the leverage, distribution, and automation of knowledge.

Framework of Knowledge Conversion [Non94]:
The Framework of Knowledge Conversion was introduced �rst
in the year 1994 by Nonaka and focuses on the creation of orga-
nizational knowledge. Under the assumption that organizational
knowledge is created through dialogue and the transformation
between tacit and explicit knowledge, the authors propose four
patterns of converting knowledge between these two knowledge
types as part of a framework that provides an analytical perspective
on knowledge creation.

The four steps of knowledge conversion from [Non94] are shown
in Figure 2.9 and include the steps of Socialisation, the transfer of
tacit knowledge, Externalisation, the articulation and capturing of
tacit knowledge and transformation into explicit knowledge, Com-
bination, the combination of existing explicit knowledge, Internali-
sation, the conversion of explicit knowledge into tacit knowledge.

61

2 Process Modeling and Knowledge Management

Figure 2.8: Pillars of Knowledge Management. Source: based
on [Wii94].

Framework of Core Capabilities and Knowledge
Building [Bar95]:
Barton introduces actions for creating, developing, and growing
the experience and knowledge of an organization into reusable as-
sets and competitive advantage. The framework is built around the
dimensions of the core capabilities shown in Figure 2.10, which or-
ganizations should adjust their actions according to. These include
the skills and knowledge base, technical systems, organizational

62

2.4 Knowledge Management via Models

Figure 2.9: The Four Steps of Knowledge Conversion. Source:
based on [Non94].

systems, as well as values and norms of behavior. However, neglect-
ing and not regularly assessing these capabilities can negatively
a�ect the organization, such as a loss of �exibility.

The framework described in [Bar95] revolves around the concept
of "core technological capability" and includes the following steps:

1. Problem-Solving in the context of the present.

2. Implementing and Integrating in the internal context.

3. Experimenting in the context of the future.

4. Importing Knowledge from an external context.

Model for Organizational Knowledge [And96]:
The work of Andersen focuses on assessing knowledge manage-
ment and providing a benchmark for knowledge management ac-
tivities and outcomes.

63

2 Process Modeling and Knowledge Management

Figure 2.10: The Four Dimensions of Core Capability. Source:
based on [LB92].

The developed tool (KMAT - Knowledge Management Assess-
ment Tool) aims to support organizations to make an initial assess-
ment of how well they manage knowledge. Execution of the KMAT
is supposed to identify shortcomings in an organization’s knowl-
edge management as well as identify aspects that already drive the
di�erent processes of managing knowledge. The KMAT proposes
three so-called enablers ("leadership", "culture", "technology, and
measurement") that can support the development of organizational
knowledge through the analyzed knowledge management process.
All relevant knowledge management activities and enablers are
seen as part of a dynamic system. The process of executing the
KMAT leads the organization to identify the information needs
and address how this information is collected, transformed, and
transferred. An overview of the underlying principle of the KMAT
is shown in Figure 2.11.

64

2.4 Knowledge Management via Models

Figure 2.11: Knowledge Management Assessment Tool. Source:
based on [Cho96b].

Framework of the Knowing Organization [Cho96a]:
Choo focuses his proposed framework around the organization’s
ability to adapt to external changes and promote internal devel-
opment based on the strategic use of information. His model em-
phasizes the role of people and groups within the organization in
creating and sharing knowledge for decision support, developing
new knowledge and capabilities, and making more purposeful and
promising decisions. Di�erent strategies of e�ciently managing
intellectual capital and knowledge are evaluated and related to prac-
tical use cases in [CB02] with the help of this framework. Beyond
the knowledge management processes that aim to create, share,
and preserve knowledge, the framework includes the subsequent
actions resulting from better decision-making.

65

2 Process Modeling and Knowledge Management

Table 2.3: Overview: Knowledge Management Frameworks.

Title Authors Date

Frame of Knowledge Management Pillars Wiig, Karl Martin 1993
Framework of Knowledge Conversion Nonaka, Ikujiro 1994
Framework of Core Capabilities and Knowl-
edge Building

Barton, Dorothy L. 1995

Model for Organizational Knowledge Andersen, Arthur 1996
Framework of the Knowing Organization Choo, Chun Wei 1996

2.4.2 Business Process Models in Knowledge
Management

Knowledge Management incorporates di�erent steps that bene�t
from the means of visualizing knowledge. The accessibility, the
understanding, and technical storage can be improved by choos-
ing visual representation over other representation forms such
as texts. One de�ned approach to combine business processes and
knowledge managing activities is process-oriented knowledge man-
agement, which strongly depends on the included processes and
used artifacts.

Process models and object models, can serve as a backbone of
visualizing knowledge and as the foundation of di�erent other
model types, such as organizational models or technical models.

Process-Oriented Knowledge Management

In this section, process-oriented knowledge management is empha-
sized as one application scenario for this thesis’s results.

66

2.4 Knowledge Management via Models

Process-oriented knowledge management intends to bridge the
gap between two streams of knowledge management: human-
oriented and technology-oriented. This gap is addressed by in-
tegrating resource-based and market-based views and establishing
the organization’s view as a foundation to a process-oriented in
[MR03]. An overview of established concepts and best practices
for KM from a business process-oriented approach used to con-
nect to the process-oriented knowledge management is provided
in [MHV03].

Process-oriented KM shows advantages over traditional KM, such
as orientation on the value chain of an organization, the support of
KMSs through the provision of context and structure, as well as the
design, implementation and integration of KMSs. Process-oriented
KM is supposed to maintain the knowledge within and between
business processes in relation to the knowledge life cycle [MR03]. A
starting point to initiate process-oriented knowledge management
is shown in Figure 2.12. Maier and Remus de�ne in this context key
roles of an exemplary lightweight approach to process-oriented
KMs for di�erent levels:

1. Strategy: Guidance in the design of business and knowledge
processes to address the "core rigidity" problem mentioned
and explained in [LB92]. The "core rigidity" problem refers
to the internal core capabilities as an inhibitor of innovation,
which can be addressed through the inclusion of new and
external sources of knowledge.

2. Content: Extension of the knowledge base by process knowl-
edge that is mainly residing in process models and knowledge
used within processes.

67

2 Process Modeling and Knowledge Management

3. Instruments and Systems: Used instruments and systems in-
clude, for example, content management systems, process
communities, knowledge maps, and best practices, but also
process management tools, such as process modeling. In-
struments for process-oriented KM are related to process
modeling, simulation, monitoring, and controlling.

4. KM organization and processes: Focus on so-called knowledge-
intensive processes that are often core processes along the
value chain and often depend on knowledge to create, e.g., a
product or provide a service.

Figure 2.12: Process-oriented Knowledge Management. Source:
based on [MR03].

KMSs are used to provide the user with task-relevant knowledge
at the related process steps. For the foundation of design and usage
of KMSs, process-oriented enterprise modeling or BPMod can be
used, as processes serve in this scenario as context-providers and
navigational components [RL00].

68

2.4 Knowledge Management via Models

One of the tools used in process-oriented knowledge manage-
ment is BPMod . It is often used as a tool for analysis and docu-
mentation of business processes. In contrast, the knowledge man-
agement activities are used to manage the available workforce’s
know-how, experience, and skills. Both show drawbacks that can
be mitigated through the combination in a process-oriented ap-
proach. This way, associations between business processes and
relevant knowledge can be captured e�ciently. Crucial elements
in the process-orientation are the so-called knowledge carriers, ar-
tifacts containing information, such as documents, graphics, and
models. The connection of knowledge carriers, the carried infor-
mation, the domain, and the related process is supposed to lead to
better integration of both mentioned tools and are at the core of
process-oriented knowledge management. [JHS01].

In speci�c application scenarios, such as, e.g., for small and
medium-sized enterprises (SMEs), process-oriented knowledge man-
agement o�ers potentials, and the integration of knowledge man-
agement core activities in the business process landscape over the
related knowledge domain is seen as an enabler of production and
value creation [KOS15; KOS14]. However, it is to acknowledge that
KM is realized under di�erent conditions depending on the compa-
nies size, business domain, and organization; guidelines, such as
the in the paper presented ProWis, are a recent topic investigated
to support companies in adjusting their business landscape towards
a knowledge-driven and process-integrated organization [KOS15].

One realization of process-oriented knowledge management is
introduced by Woitsch and Karagiannis. They describe a service-
based approach to knowledge management. In this approach, the
knowledge is embedded into the business processes, and these

69

2 Process Modeling and Knowledge Management

processes are modeled, while the KMS is used as a structuring tool
on a "meta-level". Based on the dependency of KM on the used tools,
knowledge-related services are introduced as a provider of KMSs
or KM tools on a conceptual level, independent from underlying
technology [WK05].

A study by Greiner, Böhmann, and Krcmar about the in�u-
ence of organizational environment on the selection of knowledge
management strategies investigates the relationship between busi-
ness and knowledge management strategy and argues that the
selection of knowledge management strategies based on the or-
ganization’s goals, such as for organizations that focus on pro-
cess e�ciency, should focus on codi�cation strategies. In con-
trast, innovation-focused businesses should focus on personalizing
knowledge [GBK07].

For a successful implementation of process-oriented KM, used
instruments have to be assigned to the KM-related activities and the
corresponding processes. Knowledge is made available in a precise
way and provides meaningful support for the user. An essential as-
pect of this integration is the transparency of the included processes.
Together, these structures in knowledge integration can provide
additional value in context to interpret and apply process-relevant
knowledge.

Remus and Schub describes a blueprint for such integration,
which refers to actions that have to be performed on the procedure
model level and on the conceptual model level, such as preparing
the business processes and integrating them in the process-oriented
knowledge management or on a conceptual level being aware of
the process landscape, representing this in a process model or struc-
tured diagram, and using action charts for the integration. Follow-

70

2.4 Knowledge Management via Models

ing the blueprints procedure, process-oriented KM can build on
existing structures, such as quality management or BPM, to handle
the complexity of knowledge integration [RS03].

Application in the Project Context

The context considered in this project and the Horus method of
the business partner are closely related to process-oriented knowl-
edge management approaches. As de�ned in Section 2.4.1 that
introduced the basics of Knowledge Management (KM), knowledge
is often codi�ed to be accessible and e�ciently shared and used.
Furthermore, established procedures for managing knowledge ex-
ist. The representation as a means of communication and transfer
of knowledge is considered signi�cant and a feasible solution for
this exchange. However, in this context, a distinction between data,
knowledge, and information must be kept in mind in the design and
implementation. The representation of information and knowledge
in di�erent forms (codi�cation) is relevant in di�erent knowledge
management-related activities. These activities are included and
described, e.g., in the SECI model [Non94].

As one approach to bridge the gap between knowledge manage-
ment strategies that so far are often either human- or technology-
oriented, process-oriented knowledge management was introduced.
Process-oriented knowledge management activities are supposed
to be integrated into an organization’s process landscape to foster
the access, availability, and generation of knowledge directly in
the relevant process steps. Process modeling, as one tool, is there-
fore essential for the respective processes, but also as means of
representing the related knowledge, especially considering exten-

71

2 Process Modeling and Knowledge Management

sions like the Horus methods, which brings together di�erent kinds
of models. Based on the process-oriented approach to knowledge
management, the di�erent aspects of knowledge management in-
troduced are relevant for this thesis, even though the relationships
are of di�erent kinds. An overview of the main aspects of the intro-
duced frameworks and their project relevance is given in Table 2.4.

With this in mind, the presented approach addresses process
models as a tool in process-oriented knowledge management and
means to automate their generation from another type of knowl-
edge artifact (text). This addresses di�erent aspects of practical use
cases, which were provided by the business partner, with the HBM
as a modeling tool that incorporates the Horus Method as means
to provide a broad overview of the business over processes, data,
and organization.

Next to the automation, a standard can potentially be established
through the generation rules. In consequence, the quality of process
models can be controlled and possibly even increased. Another
potential side e�ect presents the training in process modeling. The
direct and automated translation between text and process model
provides the user with indirect feedback about his description or a
manually created process model.

For the latter, aspects such as automation, social environments,
and codi�cation of knowledge take on an important role. Processes,
their corresponding process models and the automated generation
of these from texts, and thus the externalization and combination
as in [Non94], are present in this context in the form of the process-
oriented knowledge management and leave room for improvement
strategies.

72

2.5 Model Generation and Transformation

This approach addresses the bridge between process- and knowl-
edge-orientation, as also intended by process-oriented knowledge
management, on the one side by focusing on a tool that supports
process-orientated knowledge management by integrating a model
landscape consisting of process models, di�erent data and organi-
zational models, on the other side by providing a way to support
especially the knowledge creation and transformation using process
models and emphasizing the process-knowledge relationship.

2.5 Model Generation and
Transformation

In this section, the fundamentals of model generation and trans-
formation are introduced. In the later steps, the here described
approach of model generation and transformation is of relevance.

In Process Modeling, the search for an automated way of creat-
ing or altering models is present in the recent literature [MVG06].
Intended to save time and e�ort as well as to reduce possible er-
rors during the modeling process, the automatic transformation of
models is used in di�erent areas, e.g., for comparing two models
and assessing their equivalence [NH15]. The complexity of the
used modeling language and included syntax as well as in the used
natural language for labeling and describing process steps are a
challenge in transforming models. In this thesis, the transforma-
tion between modeling languages is not of relevance. However, the
generation of models based on a textual artifact together with the
transformation of models of the same language, which promises a

73

2 Process Modeling and Knowledge Management

T a
bl

e
2.

4:
O

ve
rv

ie
w

:K
no

w
le

dg
e

M
an

ag
em

en
t

in
th

e
Pr

oj
ec

t
C

on
te

xt
.

A
sp

ec
t(
s)

R
ef
er
en

ce
Pr

oj
ec
tR

el
ev

an
ce

Kn
ow

le
dg

eE
xt

er
na

liz
at

io
n

an
d

Co
m

-
bi

na
tio

n
N

on
ak

a
an

d
Ta

ke
uc

hi
Vi

su
al

iz
at

io
n

an
d

St
ru

ct
ur

in
g

of
Kn

ow
le

dg
e

A
ss

es
sm

en
to

fK
no

w
le

dg
e

M
an

ag
e-

m
en

t
A

nd
er

se
n

Q
ua

lit
y

an
d

Ex
pe

ct
at

io
ns

to
w

ar
ds

Kn
ow

le
dg

e
M

an
ag

em
en

t
Kn

ow
le

dg
e-

in
te

ns
iv

e
en

vi
ro

nm
en

t
H

isl
op

,
Bo

su
a,

an
d

H
el

m
s;

Ko
hl

,
O

rt
h,

an
d

St
ei

nh
öf

el

Re
qu

ire
m

en
ts

an
d

Pu
rp

os
eo

fK
no

w
l-

ed
ge

M
an

ag
em

en
ta

nd
A

rte
fa

ct
s

Ro
le

of
Kn

ow
le

dg
eM

an
ag

em
en

tS
ys

-
te

m
s

W
oi

ts
ch

an
d

Ka
ra

-
gi

an
ni

s
Ex

pe
ct

at
io

ns
to

w
ar

ds
a

Kn
ow

le
dg

e
M

an
ag

em
en

tS
ys

te
m

T o
ol

so
fK

no
w

le
dg

e
M

an
ag

em
en

t
Ja

bl
on

sk
i,

H
or

n,
an

d
Sc

hl
un

dt
Pr

oc
es

sM
od

el
in

g
as

a
To

ol
in

KM

Kn
ow

le
dg

e
Ca

rr
ie

rs
Ja

bl
on

sk
i,

H
or

n,
an

d
Sc

hl
un

dt
Kn

ow
le

dg
e-

re
la

te
d

ar
te

fa
ct

s
in

KM
(P

ro
ce

ss
M

od
el

s)
Bu

sin
es

sP
ro

ce
ss

es
in

th
eK

no
w

le
dg

e
Li

fe
Cy

cl
e

M
ai

er
an

d
Re

m
us

In
te

gr
at

io
n

of
Kn

ow
le

dg
e

M
an

ag
e-

m
en

tA
ct

iv
iti

es
in

to
th

eb
us

in
es

sp
ro

-
ce

ss
es

74

2.5 Model Generation and Transformation

less complex scenario, are emphasized. Nevertheless, the transla-
tion and transformation might be relevant for future research and
projects, as they can aim at text-to-model transformation based on
di�erent modeling languages. For instance, in the business partner’s
case, the knowledge base can include models of di�erent kinds.

Model Generation can be based on di�erent kinds of input of
which this thesis focuses on the mentioned textual input. Model
Generation itself is not a new topic and has been investigated for
some time. Especially in �elds such as Process Mining or Data
Mining, models serve as a frequent form of representation of in-
formation. In these cases, automated generation of models such as,
e.g., UML diagrams [JD12] are already paid attention to in di�erent
projects.

However, Model Generation and Transformation are not only
relevant terms in the context of this thesis but also in other concepts,
such as transformation between models, generation from other
inputs as texts, e.g., mentioned UML-diagrams that are generated
from code, or transformation in the form of attributes, e.g., the
placing of elements.

The existing approaches provide helpful insights into known
challenges in model transformation and generation, further inves-
tigated in Section 4.2. Next to the natural language-speci�c and
modeling language-speci�c challenges, these challenges are to ad-
dress in this thesis, and shortcomings of unaddressed challenges
are kept in mind when evaluating the approach.

Model transformation is, as can be seen in the number of in-
tents identi�ed by Amrani et al., used in several di�erent practical
scenarios, aiming at di�erent purposes and dealing with di�erent
challenges and tasks. Amrani et al. introduce a catalog of intents

75

2 Process Modeling and Knowledge Management

that describe the use of model transformation in Model-Driven En-
gineering and the related properties of such intents. Intents include,
e.g., re�nement, abstraction, (meta-)model generation, and reverse
engineering. In this thesis’s context, the intents of model genera-
tion can be found in re�nement and model generation and, to some
degree, in reverse engineering. In [Lúc+16] the work of [Amr+12a;
Amr+12b] gets extended by additional entries to the catalog of the
intention of the model transformation and the consideration to use
these insights in the validation of the transformed model.

One challenge in the transformation and generation of models
is the validation of the new or altered model to ensure that it is
consistent with the target modeling language rules and can be
considered a correct model. Amrani et al. proposes a model valida-
tion approach in the context of model transformation based on a
three-dimensional assessment [Amr+12b]. The dimensions of "the
transformation involved, the properties of interest addressed, and the
formal veri�cation techniques used to establish the properties" are
used to make statements about the validity of a model.

Other approaches already address the automation of model trans-
formation and generation. As the model generation is at the core
of this thesis, the related works in this �eld are further described
in Section 4.1. It is to mention that the later introduced approaches
mainly focus on inputs of imperative nature. In contrast, just a small
number of research projects focus on the automated generation of
models based on declarative speci�cations, e.g., [MMB15].

76

3 Natural Language
Processing

In this chapter, the third main topic of the foundations, namely
Natural Language Processing, is described. A basic understanding
of Natural Language Processing is given together with a description
of used methods and techniques originating from Natural Language
Processing used in the implementation part of this thesis. The
term NLP can nowadays be found in a wide variety of application
areas. As the name implies, the research �eld combines di�erent
techniques in attempts to automatically process, understand, and
generate natural languages trying to match the human spoken and
written language. The �eld of NLP itself considers a variety of sub-
�elds, shown in Figure 3.1, which are summarized under the three
topics Parsing, Semantics Interpretation and Pragmatics.

3.1 Fundamentals
This section provides the fundamentals of Natural Language Pro-
cessing. The section begins with a brief overview of the historical
development and continues with the theoretical foundations found
in Natural Language Processing. Lastly, an impression of tasks

77

3 Natural Language Processing

Figure 3.1: Taxonomy of Natural Language Processing. Source:
based on [Len02].

and challenges that practitioners and researchers face nowadays is
given.

The automatic generation of models is often applied together
with techniques of Natural Language Processing (NLP). NLP is
incorporating a variety of methods used in di�erent application
areas. NLP’s underlying idea builds on the syntactic and semantic
analysis of text or speech and the use of gained information to
accomplish an almost human-like language processing [Lid01]. NLP
as a whole combines linguistics with computer science and includes
di�erent research areas, and is already widely applied in practice.
Application areas include speech recognition, language generation,
and the parsing and interpretation of written text for purposes
such as personal assistants in smartphones, text translation, and
chatbots. Many tools already support natural language processing
in di�erent forms, from packages for single tasks faced in NLP
over whole NLP-toolkits for di�erent programming languages up

78

3.1 Fundamentals

to openly accessible analysis tools, such as the toolset provided by
the Stanford NLP Group1.

While the common understanding and de�nition of what is con-
sidered part of NLP is still openly discussed [Lid01; ID10; Col+11;
BI18], innovation and improvements since the �rst projects in the
early 1930s are present in the di�erent research �elds.

Often, research related to NLP does not use the term itself but
instead uses their distinct notations and de�nitions in their respec-
tive �elds. However, since these research advancements mainly
deal with computerized understanding or generation of natural
languages, they can be included under the umbrella term of NLP.

The analysis, interpretation, and emulation of human languages
is a complex problem, which has gained increased attention over
the last decades, driven by increased computational power and
the ability to employ and use the required algorithms in a feasible
manner. Methods and techniques applied in this area generally need
as much processing power and resources as there are available. It is
only a natural development that the interest in this �eld increased
when both industrial and private computers became a�ordable and
more powerful. The exponential increase in memory and computing
power allows for the calculation of more complex NLP models
and, consequently, better results when it comes to the precision of
interpretation and emulation.

1 See https://nlp.stanford.edu/. Last accessed: 08.12.2020.

79

https://nlp.stanford.edu/

3 Natural Language Processing

3.1.1 Historical Development
To understand the �eld of NLP, a brief overview of the historical
development is given. The past provides an idea about the origins
of NLP and where challenges lie, and which concepts it relates to.
The research �elds NLP connects to are vast, and each of its own
often has a far-reaching history that precedes the use of personal
computers. Thus, NLP roots are manifold, which can be observed
in the methods and techniques used that stem nowadays from or
are inspired by these di�erent �elds.

Already at the beginning of the last century, people have started
to use machines to solve complex tasks that involved human spoken
language. With early experiments in the 1930s, the �rst signi�cant
results were achieved in the 1950s, when the automatic translation
between two languages was enabled using a computer. A remark-
able milestone in this research �eld is the collaboration between
the Georgetown University and IBM that resulted in a running
prototype in 1954 as part of the so-called Georgetown Experiment
[Hut04]. The prototype was already able to translate Russian sen-
tences into English in almost real-time, even though it was far from
what one is used to in the �eld of translators today, as most of the
programmed functions were speci�cally tailored around the used
sentences and words. The processing relied heavily on dictionaries
explicitly crafted for the task at hand. Thus, even though marking
a big step in the automated processing of human language, the
experiment had its shortcomings.

The prototype translator performed best in the translation of
sentences, which included words where rules were implemented
for and present in the dictionary based on its origin in the domain

80

3.1 Fundamentals

of chemistry. The focus on the chemistry domain, the use of basic
sentences, and precisely crafted dictionaries had to be considered
in evaluating the experiment.

Next to this, another problem was the word-by-word translation
approach. As the translator only included the direct surroundings
in the translation of a word and was not considering the complete
sentence and its structure, it had no means to distinguish, e.g.,
similar words that di�er in meaning [NOMC11].

Over the years, new tools and methods were introduced into the
�eld and improved the implemented approaches. Aiming at miti-
gating the most signi�cant problem taken from the Georgetown
Experiment, the use of grammars was introduced to incorporate
the sentence structure in the analysis and enable the mentioned
di�erentiation of similar words based on their position in the sen-
tence structure. Improvements, based on Chomsky’s work and the
Backus-Naur Form (BNF) from 1963, were achieved in the analysis
of ambivalent words and the structure of whole sentences. Lexical-
analyzers and parsers became capable of transforming natural lan-
guage inputs into a machine-readable equivalent [NOMC11].

While overcoming a signi�cant obstacle in the automated trans-
lation between languages, another problem was identi�ed along
with the progressing methods and techniques. Grammars used for
the analysis were manually created, and it was a time-consuming
task to create a representation of a natural language that �t the
purpose of the translator. It was, furthermore, never able to cover
all linguistic constructs [Win72].

While the description of common sentence structures, phrases,
and sentences that were not part of these individual solutions of-
ten lead to signi�cant misinterpretation considering the resulting

81

3 Natural Language Processing

output, the increase of computational power driven by the tech-
nological developments provided rather incidentally mitigation of
this weakness.

Nowadays, techniques are capable of calculating models that rely
on a set of de�ned and �xed rules of the language and enable a
dynamic analysis of languages that considers the mannerism of the
individual language. These techniques often stem from the �eld of
statistics. While the variety of approaches is manifold, they always
use comprehensive models that incorporate information to assess
new input data.

3.1.2 Theoretical Foundations
Natural Language Processing is an umbrella term that is used nowa-
days for a broad spectrum of diverse applications. Aiming at “ac-
complishing human-like language processing” [p.3, [Lid01]], it is
often placed in and seen as a combination of linguistics, computer
science, and cognitive psychology. It is used in areas that focus on
languages as the subject of interest and their manipulation through
computers. Application areas include topics such as text summa-
rizing [Cho03], speech recognition [Web03], and natural language
generation [RD00].

In the approach described in Chapter 5, di�erent tools and tech-
niques stemming from the NLP domain will be utilized to analyze
written language and extract the required information to transform
an input text into a process model.

NLP is driven by developments achieved in di�erent areas and
uses methods from the �elds of statistics, neural networks, arti�cial
intelligence, or rule-based systems. While the early years build

82

3.1 Fundamentals

on static rule-based approaches that required manual and thus
time-consuming con�guration, later approaches of NLP showed
a transition to the use of methods of statistical analysis and the
exploration of rules based on insight gained from this analysis.
Recent developments base their approach on the rapid progress
achieved over the last years, especially in machine learning. Nowa-
days, approaches aim to learn rules to analyze the textual inputs
based on the supervised analysis of available data. One of the most
used techniques is the so-called Word2Vec approach [GL14].

Word2Vec [GL14] is an approach to identify and learn word asso-
ciations from a large corpus of text using a neural network model.
A trained model can detect di�erent linguistic features, such as
synonyms, or can provide additional information, such as sugges-
tions of words for a partial sentence. Words are represented as a
numerical vector and enable their analysis with methods from lin-
ear algebra. Di�erent traits or features are identi�ed and calculated
for the words, and each of these traits represents a dimension in the
vector space. The vectors of words can then be analyzed and com-
pared in the vector space. This analysis can then support identifying
similar words, the prediction of words, or topic extraction.

Word2Vec uses a shallow, two-layer neural network with three
layers of which one is hidden. The neural network is trained to
reconstruct linguistic contexts of words. An instance of a neural
network used in Word2Vec is shown in Figure 3.2. In the example,
the inputs of "King", "Man", and "Woman" are analyzed towards four
traits, and the same color in a column indicates a high similarity in
this trait.

83

3 Natural Language Processing

Figure 3.2: A sample three-layer Neural Network. Source: based
on h�p://jalammar.github.io/illustrated-word2vec/.

Typical practical scenarios that one encounters in the �eld of NLP
can be found in a condensed way with regards to implementing
these in [BKL09] and include:

� Access of Text Corpora and Lexical Resources: A text
corpus represents a large body of text. Corpora are often
designed towards a speci�c domain. Each corpus can be de-
scribed through di�erent statistics before further processing,
such as the average word length, the average sentence length,
or the number of times each word or sign appears (on aver-
age). Such a description of text corpora provides preliminary
information that can support the decision about further pro-
cessing steps [BKL09]. This information is the foundation for
further processing of available texts.

� Processing Raw Text: Most of the accessible sources, nowa-
days available over the Web in high quantities, o�er texts and
can be used to extract corpora. Sources that are often used

84

http://jalammar.github.io/illustrated-word2vec/

3.1 Fundamentals

for practice and research are, e.g., Twitter, di�erent types of
blogs, or simple websites that are crawled. NLP techniques
used here are, for example, tokenization and stemming. The
processed raw text is transformed into an accessible and uni-
form format as preparation for the subsequent analysis and
information extraction steps.

� Categorizing and Tagging: The previously processed text
parts are categorized and annotated with tags according to
di�erent models to further process and enrich the textual
input with additional information. Classifying and tagging
texts and included words are often known as POS tagging.
POS tagging provides additional information about word
classes and lexical categories that can be used in the next steps
to identify and retrieve useful information. NLP techniques
that are used here are, for example sequence labeling (part-
of-speech tagging) or n-gram models [BKL09].

� Extracting Information fromText: The complexity of nat-
ural language makes the analysis of textual inputs and the
extraction of information from these a di�cult task. Next
to the preparation of texts for further processing, the used
information extraction methods are of signi�cance. As the
current state of NLP does not include a general-purpose solu-
tion, questions and information needs must be selected and
clearly de�ned beforehand. The text analysis is thus focused
on a speci�c set of information to extract, such as entities,
linguistic patterns, or connections between words [BKL09].

85

3 Natural Language Processing

� Analyzing Sentence Structure: To deal with the ambigu-
ity in natural language and the almost unlimited number of
possible grammatical constructs of sentences, the analysis of
sentences with the help of the used grammatical rules is used
to improve interpretation [BKL09].

3.1.3 Tasks and Challenges
Research in NLP is conducted towards di�erent tasks that either
directly impact real-world applications, serve as a contribution to
solving parts of a larger problem, or are of exploratory and innova-
tive nature. A general overview of the most commonly addressed
tasks in the current state of research and real-world applications is
provided in the following. While some tasks are considered as Main
Tasks and focus on an independent problem and a larger �eld, a
second category is seen as Techniques that focus on approaches that
are supposed to tackle speci�c (sub-)tasks. The upcoming tasks are
chosen and described with the English language in mind. However,
it is not to neglect that most such tasks and challenges are highly
dependent on the language to process. The di�erence in the word-
corpus, grammar, and pronunciation requires a di�erent approach
to NLP for each individual language or at least language family.
Additionally to the relevant tasks, a comprehensive overview of
challenges faced in NLP can be found in [BW06], which is addressed
in Section 4.2 as part of the problem speci�cation of this thesis.

86

3.1 Fundamentals

Main Tasks
There are di�erent categorizations when it comes to the �eld of
NLP. In this thesis, a general categorization of the tasks is chosen
that includes three main challenges:

� Speech Recognition: Speech Recognition aims to recognize
spoken language and the translation into mostly written text
with the help of computers [Jur00]. However, the translation
of speech into also other forms of representations that can be
interpreted by a machine gained attention over the last years.
It refers to an interdisciplinary �eld of computer science and
linguistics.

� Natural LanguageUnderstanding:As part of NLP natural-
language understanding or interpretation is concerned with
the machine reading comprehension of natural language text
or speech. The understanding of natural language is still con-
sidered an AI-hard problem. Moreover, it takes on a signi�-
cant role in the �eld of human-computer interaction [All95].

� Natural Language Generation: The computer-supported
process of transforming (structured) data into natural lan-
guage is calledNatural Language Generation. Natural-language
generation software is used to automatically produce di�erent
types of natural language documents, e.g., reports, summaries,
or content for websites. The interpretation and information
�ow can be considered to be directed from content to form,
contrary to the understanding of natural language, where the
processing aims at form to content [McD10].

87

3 Natural Language Processing

Next to the three mentioned categories, the tasks can be further
distinguished based on a categorization by Feldman [Fel99]. In the
following, related �elds relevant for this thesis are brie�y explained,
and exemplary techniques from NLP described. The categories are:

� Morphology: The analysis of morphological features that
represent the nature of words. A morphological analysis fo-
cuses on the internal structure of words and explores possible
interpretations. The analysis consists of identifying and split-
ting words and their parts, such as word roots, pre�xes, and
su�xes, which often leads to the comparison and assumed
similarity to syntax. The relevance or presence of morpholog-
ical analysis is dependent on the examined language [HS13].

� Lexical: After pre-processing a textual input, the text is ana-
lyzed by a lexical analyzer. The lexical analyzer splits docu-
ments and sentences into tokens based on their syntax. Un-
necessary tokens are often removed in this process, such as
white spaces. Tokens carry information about the associated
word or sentence part, which aims at further processing. The
additional information enables the transformation of a raw
text into a machine-readable input that can be, e.g., used by
a parser or compiler in a subsequent step [Far95].

� Syntax: The set of rules or principles that describe the struc-
ture of documents, sentences and phrases is considered the
syntax. It refers to the grammatical sense of a sentence and
the corresponding arrangement of the included words. In
NLP, the syntactic analysis can provide insights about the

88

3.1 Fundamentals

alignment of sentences and words with the underlying gram-
mar. Based on the grammatical rules, computer-supported
algorithms can derive meaning from texts.
Typical techniques applied in the �eld of syntax are lemma-
tization, morphological segmentation, word segmentation,
Part-of-speech tagging, parsing, sentence breaking, and stem-
ming. A subset of here relevant techniques is further ex-
plained later on.

� Semantic: Semantics can be distinguished into relational
semantics [RHF02] and lexical semantics [Cru86]. It refers
to the meaning that is carried by a text. The analysis of the
semantic of a textual input is one of the most challenging
aspects in NLP research at the moment. Di�erent computer-
supported algorithms are used to improve the clari�cation of
the conveyed meaning of a sentence and the interpretation
of word and sentence structures [CW14]. Typical tasks in
the �eld of semantics are Named Entity Recognition (NER),
sentiment analysis, terminology extraction, semantic parsing,
and semantic role labeling.

� Discourse:The analysis of the structure of the di�erent types
of textual inputs is used to gain additional insights into the
meaning of a natural language text. This process is called
Discourse in the NLP context and involves activities such
as identi�cation of topics, co-references, text summarizing,
sentiment analysis and machine translation [Jot+19; Fel99].

89

3 Natural Language Processing

Techniques
Di�erent solutions were proposed over the years for the mentioned
NLP tasks. The most relevant techniques in the context of this
thesis are brie�y introduced in the following. The description and
explanations are based on the existing implementations later used
in the transformation approach, mainly originating from [BKL09;
SFCP17], https://spacy.io/ and https://nlp.stanford.edu/.

� Tokenization: Tokens are smaller units a text can be sep-
arated into. A token can be either a word, a character or a
distinct part of words, e.g., in word compositions. The process
of identifying and splitting a sentence into tokens is called
tokenization. Types of tokenization focus on the three men-
tioned elements words, characters, and word-parts [BKL09].

� Morphological analysis or Part-of-speech tagging:With
the annotation of part-of-speech tags, words are classi�ed
based on the role they serve in a sentence. Annotated part-
of-speech tags are often also referred to as word classes or
lexical categories. The set of used tags is dependent on the
intended analysis task and is called a tagset [BKL09]. An ex-
ample of a with part-of-speech tags annotated sentence is
shown in Figure 3.3. The annotated labels show the classi�-
cation of words into categories, such as proper nouns (NNP),
third person present tense verbs (VBZ), singular nouns (NN),
and pronouns (PRP).

� Named Entity Recognition (NER): NER is a technique to
identify and segment entities for additional information ex-
traction. The extracted entities are further categorized into

90

https://spacy.io/
https://nlp.stanford.edu/

3.1 Fundamentals

Figure 3.3: POS-Tagging with StanfordCoreNLP. Source: based
on h�ps://corenlp.run/.

di�erent de�ned classes, e.g., persons, systems, or companies.
Entities found in sequences of words are labeled with the
respective class2.
An example of NER is shown in Figure 3.4, wherein the used
sentence, di�erent entities are identi�ed as either organiza-
tion or location.

Figure 3.4: Named Entity Recognition with AllenNLP. Source:
based on h�ps://demo.allennlp.org/named-entity-
recognition/.

� Word Sense Disambiguation: An open and still investi-
gated problem is about identifying the sense of a word in
a sentence [SFCP17]. Word Sense Disambiguation (WSD) is
viewed as a classi�cation problem. Based on de�ned classes
of distinct senses, a word in a sentence and its possible senses
are analyzed based on the available dictionary, the de�ned

2 See https://nlp.stanford.edu/software/CRF-NER.html. Last accessed:
08.12.2020.

91

https://corenlp.run/
https://demo.allennlp.org/named-entity-recognition/
https://demo.allennlp.org/named-entity-recognition/
https://nlp.stanford.edu/software/CRF-NER.html

3 Natural Language Processing

lexical databases, such as WordNet [Mil95], its grammar, and
the word assigned to one of these sense classes3.
The resulting classi�cation contributes to the performance
of other di�erent NLP techniques, such as coreference reso-
lution, e.g., as shown in Figure 3.8.

� Dependency and Constituency Parsing: Parsing aims at
de�ning the grammatical structure of a sentence. Two types
of parsing used frequently in the context of NLP are depen-
dency parsing and constituency parsing. In dependency pars-
ing, the grammatical structure is de�ned over the description
of each word as a node. Establishing the links between other
nodes depends on using so-called dependency grammar. An
example of dependency grammar and the used tags for la-
beling used for one of the most prominent solutions found
on https://stanfordnlp.github.io/CoreNLP/ can be found in
[DMM08]. On the contrary, Constituency parsing does not
rely on a dependency grammar. Instead, it generates a tree of
the syntactic structure of the corresponding sentence using
a context-free grammar [Jur00].
Examples of constituency parsing and dependency parsing
are shown in Figure 3.5 and Figure 3.6.

� Semantic Role Labeling: The labeling of spans in sentences
with pre-de�ned roles is understood as Semantic Role Labeling.
Identifying semantic roles di�erent parts of a sentence take

3 See http://www.scholarpedia.org/article/Word_sense_disambiguation. Last
accessed: 08.12.2020.

92

https://stanfordnlp.github.io/CoreNLP/
http://www.scholarpedia.org/article/Word_sense_disambiguation

3.1 Fundamentals

Figure 3.5: Constituency Parsing with StanfordCoreNLP. Source:
based on h�ps://stanfordnlp.github.io/CoreNLP/
and h�ps://corenlp.run/.

Figure 3.6: Dependency Parsing with StanfordCoreNLP. Source:
based on h�ps://stanfordnlp.github.io/CoreNLP/
and h�ps://corenlp.run/.

93

https://stanfordnlp.github.io/CoreNLP/
https://corenlp.run/
https://stanfordnlp.github.io/CoreNLP/
https://corenlp.run/

3 Natural Language Processing

in the context of the sentence is a means to answer basic
questions about the meaning of a sentence, such as "who did
what to whom"4.
The primary concern of semantic role labeling is identify-
ing the semantic relationships between a predicate and the
associated participants. The identi�cation is based on a list
of pre-de�ned semantic roles, such as locations or names
[Màr+08].
An example of the identi�cation of two arguments and a
secondary predication as de�ned roles over semantic role
labeling is shown in Figure 3.7.

Figure 3.7: Semantic Role Labeling with StanfordCoreNLP.
Source: based on h�ps://corenlp.run/.

4 See https://demo.allennlp.org/named-entity-recognition/. Last accessed:
08.12.2020.

94

https://corenlp.run/
https://demo.allennlp.org/named-entity-recognition/

3.1 Fundamentals

� Coreference resolution: Expressions that refer to the same
entity are considered coreferences. The identi�cation of such
coreferences is used to add information to the textual input
and especially identify the relationship of words, entities that
are mentioned in di�erent sentences. Coreference resolution
is of signi�cant relevance in di�erent NLP tasks, such as
question answering or information extraction5.
An example of a coreference resolution is shown in Figure 3.8,
where the connection between a mentioned person and a
pronoun in the following sentence is identi�ed.

Figure 3.8: Coreference Annotation with StanfordCoreNLP.
Source: based on h�ps://corenlp.run/.

Table 3.1 provides an overview of common techniques used in
Natural Language Processing (NLP) and the corresponding �eld
of tasks they are categorized into. The relevant techniques for
this thesis are stated together with a set of other widely applied
techniques to establish an overview of the di�erent sub-�elds of
tasks NLP encounters.

5 See https://nlp.stanford.edu/. Last accessed: 08.12.2020.

95

https://corenlp.run/
https://nlp.stanford.edu/

3 Natural Language Processing

Table 3.1: Information Extraction Tasks and Techniques.

Task Technique

Text and Speech Processing Tokenization
Text Segmentation
Text-to-speech

Morphology Lemmatization
Part-of-speech tagging
Stemming

Semantic Name Entity Recognition
Semantic Role Labeling
Word Sense Disambiguation

Syntax Dependency Parsing
Constituency Parsing
Sentence Splitting

Discourse Coreference Resolution
Topic Segmentation and Recognition
Sentiment Analysis
Text Classi�cation

3.2 Examples
To provide a better understanding of the relevance and impact
of NLP, the following section includes di�erent examples of the
practical application of NLP. The section includes six examples,
three from projects originating in academia and three taken from
practical applications.

96

3.2 Examples

3.2.1 Industry
NLP has been embedded into a broad spectrum of (commercial)
solutions up to this day. In the following, three examples of NLP
common industrial application areas are brie�y described to em-
phasize the practical relevance of NLP and the di�erent related
techniques.

Chatbots

One of the industrial realizations of NLP can be found in so-called
chatbots. A chatbot is a, often commercial, software application
used to conduct a written or spoken conversation with a human
counterpart. It builds on the exploration of available data from
knowledge bases and activity logs with the help of NLP techniques.
Companies use these chatbots to provide a direct contact channel
for their customers, patients, and employees without the urge the
invest in human operators [BF17; SA07]. In this regard, chatbots
became most popular in customer service to provide the mentioned
additional or less investment heavy communication channel over,
e.g., the companies website. They are used to provide the customer
with directions, answer pre-de�ned questions and automate tasks
such as collecting relevant data, conducting surveys, or providing
initial guidance to the questions or problem a customer might have.
Consequently, a chatbot is supposed to reduce the time a real person
has to spend on communication with the customer.

97

3 Natural Language Processing

Intelligent Virtual/Personal Assistants

While chatbots have proven their use in a commercial and business
context already, intelligent virtual assistants (IVA) or intelligent
personal assistants (IPA) already found their way into almost each
person’s private environment. The IVA is a software agent that,
based on the individual commands it receives spoken or written,
performs tasks, and provides services to the user [CL18]. Nowadays,
IVA can be found integrated into the most common brands of mo-
bile phones or other devices, such as tablets, laptops, or computers.
Most prominent solutions can be found in the form of assistants
such as Siri from Apple, Alexa from Amazon, or Google Assistant
from Google. Personal assistants in this context enable more com-
fortable use of the device by supporting voice commands via speech
recognition.

Machine Translation

With regards to the historical origin of NLP and the Georgetown
Experiment [Hut04], Machine Translation is still an intensively
investigated �eld. As a sub-�eld of computational linguistics, it
compromises the use of software to translate initially just written,
but nowadays also spoken natural language into another language
[HS92]. Known examples include the Google Translator, which
translates texts between languages and can translate spoken lan-
guage in real-time. An example of the Google Translator is shown
in Figure 3.9, where a translation between the English and German
language is shown. In software designed for an international mar-
ket, translations are often based on such automated translations

98

3.2 Examples

of the original language, even though it often has to be re�ned to
match the language speci�cs on the level of a native speaker.

Figure 3.9: Machine Translation in Google Translate. Source:
based on h�ps://translate.google.com/.

3.2.2 Academia
On the other side, NLP still receives attention from research. In
the following, three examples of academic driven research projects
are described to point out recent topics and show either promising
advancements or present signi�cant problems to overcome and
solve.

Propaganda Detection - Project PropStop

PropStop is a collaborative research project funded by the Ger-
man Federal Ministry for Education and Research (BMBF). The
project aimed at studying hidden propaganda dissemination in
online media to identify and prove accordant attempts6. The inter-
disciplinary project team included researchers from the �elds of
6 See http://www.propstop.de/. Last accessed: 08.12.2020.

99

https://translate.google.com/
http://www.propstop.de/

3 Natural Language Processing

statistics, communication science, IT-security, as well as journalists
and IT-security companies.

Next to the large-scale analysis of propaganda and its character-
istics in an online environment, public opinion statements from
di�erent digital and public platforms were analyzed towards se-
mantic and technical patterns. Insights gained from the analysis
of a vast collection of data were used to improve the detection
of hidden propaganda and to develop mechanisms and technolo-
gies for the identi�cation and veri�cation of (online) propaganda
attacks [Gri+17].

Stanford NLP Group

The Natural Language Processing Group at Stanford University is
a team of scientists that focus on the development of algorithms
that enable computers to process, understand, and generate human
languages. Their work covers fundamental research in �elds such as
computational linguistics over the design of algorithms intended to
solve speci�c language-related tasks up to the practical application
of human language technologies. Tasks and challenges they address
include topics such as sentence understanding, automatic question
answering, machine translation, syntactic parsing and tagging, sen-
timent analysis, and models of text and visual scenes. Furthermore,
they investigate the application of NLP to digital humanities, and
computational social sciences7.

7 See https://nlp.stanford.edu/. Last accessed: 08.12.2020.

100

https://nlp.stanford.edu/

3.3 Related Concepts

PAMBot

The PAMBot8 is based on a project conducted by the Informa-
tion Systems Department of the Westfälische Wilhelms-Universität
(WWU). The project’s goal was to replace the current way of com-
municating information about exams and study regulations in a
more accessible way, including a chatbot that can be used by the
students. The PAMBot is used as an access point for students to
inquiry information about study relevant topics. The project incor-
porated di�erent techniques from the �eld of NLP to understand
textual input given by the user, to analyze the input by identifying
the topic, e.g., the lecture or exam information are requested about,
and to provide an adequate answer. Additionally, the integration
of relevant and available data provided by the university in the
form of the examination dates and descriptions, lecture register,
and student data was crucial to o�er a meaningful data foundation
for the chatbot’s di�erent components.

3.3 Related Concepts
Di�erent other research �elds show similarities with the �eld of
NLP, either by addressing similar problems or using similar ap-
proaches to their solution. As they may share common concepts,
tasks, and challenges, such as the data processed or the algorithms
used, a selection of these �elds is brie�y introduced. Related con-
cepts to NLP are:

8 See https://pambot.uni-muenster.de/. Last accessed: 08.12.2020.

101

https://pambot.uni-muenster.de/

3 Natural Language Processing

1. Information Retrieval and Extraction: Information Re-
trieval explores di�erent sources of information to retrieve
information to provide an answer to a speci�c question. Ques-
tions aim at speci�c information that the user intends to ac-
quire, where the user de�nes "what to search for". A database
query or a search engine are typical examples. Information
is retrieved in a human-understandable form [MSR08]. Infor-
mation Extraction is focused on the automatic extraction of
structured information from machine-readable documents
[App99; MT00] that are of a more generalized nature, e.g.
"Get all mentioned cities from this document". Contrary to
retrieving information, the extraction does not necessarily
provide an understandable response for the human user but
rather focuses on formats for further computer-supported
processing. NLP techniques can be viewed as a means of in-
formation extraction, as they aim at extracting information
from a text. Techniques for the acquisition of these texts, e.g.,
web crawling, belong to the �eld of information retrieval.

2. Text Mining: The computer-supported discovery of infor-
mation and the automatic extraction of this information from
written text is called Text Mining. Next to the identi�cation
and extraction of information, the connection of the extracted
information to form new facts and knowledge is a signi�-
cant contribution [Hea03]. Text Mining uses traditional Data
Mining and analysis methods to process textual inputs for
information extraction [BDF05]. The di�erent methods orig-
inating from Data Mining and Data Analysis have proven
useful in NLP research.

102

3.3 Related Concepts

3. Language Technologies: The topic of Natural Language
Processing (NLP) as the core of this thesis falls together with
Computational Linguistics (CL) and speech technologies un-
der the umbrella term of Language technologies, often also
referred to as human language technologies (HLT). Language
technologies revolve around computer-supported methods
that enable the analysis, production, or modi�cation of hu-
man text and speech. It covers and requires knowledge of
a spectrum of di�erent �elds, such as linguistics and com-
puter science [Usz00]. Investigating the other sub-�elds of
language technologies can provide helpful information to
support progress in the �eld of NLP.

4. Query Generation and Expansion: Query expansion and
generation are processes considered in Information Retrieval
that aim to generate search queries to retrieve information or
extend these with additional terms to improve the retrieval
of information. Additionally, the mismatch or so-called false-
positives acquired by the query can be reduced by the re�ne-
ment through query expansion9. As in NLP the retrieval of
information from textual inputs can be viewed from a query-
based viewpoint; query generation and expansion o�er help-
ful insights in creating information retrieval techniques for
texts.

9 See https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-1.
html, https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-
1.html and [MSR08]. Last accessed: 08.12.2020.

103

https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/query-expansion-1.html

3 Natural Language Processing

3.4 Related Implementations
For the application of NLP methods and techniques, the approach
presented in this thesis utilizes already existing external solutions
for speci�c tasks that are to solve for transforming a textual input
into a process model in the form of a specialized Petri net, a Horus
(Procedure) Model.

The architecture explained in Section 6.2 will employ di�erent
supporting libraries. The requirement and reason for employing
these will be elaborately explained in Chapter 6.

Grammatical information extraction from a text is nowadays
mostly based on machine learning. Di�erent techniques generate
models out of training data that describe the structure of a speci�c
natural language, which in turn can annotate each word in a new
input text with predictions about their word type, role, and depen-
dencies [Col+11]. Creating such a model requires extensive knowl-
edge about linguistics, statistics, and computer science as Manning
and Schütze describe comprehensively in their book [MS99]. These
models usually result from complex statistical operations, requiring
a considerable amount of input text and computation power.

As this thesis focuses on the automatic extraction of Horus Mod-
els as Petri nets from a natural language text, the architecture will
utilize publicly available pre-compiled models to provide annota-
tions onto the input text. Pre-compiled models are provided with
existing solutions, such as SpaCy10, CoreNLP11 or NLTK [LB02] and
are often trained on publicly available data, such as blog entries,

10 See https://spacy.io/. Last accessed: 08.12.2020.
11 See https://stanfordnlp.github.io/CoreNLP/. Last accessed: 08.12.2020.

104

https://spacy.io/
https://stanfordnlp.github.io/CoreNLP/

3.4 Related Implementations

Wikipedia articles or Twitter messages. The accuracy of correctly
performing part-of-speech tagging or dependency parsing for, e.g.,
the pre-trained model of the English language available for SpaCy,
is described as above the percentage of 90.

The main tasks are to extract grammatical and word-based in-
formation from the text and establish connections between words,
phrases, and sentences. To accomplish these tasks, this thesis ex-
ploits a diverse set of tools available with intersecting capabilities.
Table 3.2 provides a small overview of sample information extrac-
tion related software. The table shows the selection of available
too. Further and more specialized or generalized approaches can be
found online of which some �nd application in speci�c sub-tasks.
Most of the available tools are open source, share similar character-
istics, and often include pre-compiled models. They mostly di�er
in their application domain or the speci�c sub-�eld of NLP they
address. No signi�cant qualitative advantages for using any tool
over another were identi�ed throughout this thesis. However, this
might because results depend highly on usage, implementation of
the interfaces, and implementation objectives.

As one of the most used tools in research projects and due to the
support of all structures required, a combination of SpaCy, NLTK,
and CoreNLP will be utilized for this thesis. All three solutions
together provide a portfolio of techniques required to tackle tasks
in the �eld of NLP.

CoreNLP o�ers easy handling and provides a simple to address
API, and is used to acquire constituency trees as well as to anno-
tate coreferences. The constituency parsing enables an alternative
approach to the extraction of phrases. The annotation of corefer-
ences is used in the resolution of coreferences as part of the text

105

3 Natural Language Processing

pre-processing. The Stanford NLP group provides a tool for the
visualization of their di�erent annotations used during the process
of implementing di�erent features12.

Most of the used techniques in this approach stem from the li-
brary SpaCy. The di�erent available operations include sentence
splitting, tokenization, POS-tagging and dependency parsing based
on a set of pre-trained language models. The tokenization, POS-
tagging and sentence splitting are used in the identi�cation of
sentence parts, such as subordinate clauses. Dependency parsing
provides information about the relations between the individual
words and is relevant to extract model elements and their connec-
tions later. Additionally, SpaCy provides a tool for the visualization
of their dependency parsing that is used to support the di�erent
functions provided by the implementation13.

Next to his, the collection of pre-trained models contain a range
of widely spoken languages. Similar to other tools, there are var-
ious lexical tools and interfaces available online. SpaCy o�ers a
set of pre-trained models of the English language. Two of them
are the en_core_web_sm and the en_core_web_lg models. The
�rst is based on a smaller data set, thus faster to load, but still
provides a satisfying level of accuracy. The second is based on a
more extensive data set, requires consequently more time to load,
but has higher accuracy than the �rst model. As both models are
operating with an accuracy level of around 90% for syntax tagging,
they are both acceptable to use in this approach. When run time
is preferred, en_core_web_sm should be used and when accuracy

12 See https://corenlp.run/t. Last accessed: 08.12.2020.
13 See https://explosion.ai/demos/displacy. Last accessed: 08.12.2020.

106

https://corenlp.run/t
https://explosion.ai/demos/displacy

3.4 Related Implementations

is prioritized, en_core_web_lg is the preferred choice. Switching
between models requires the adjustment of a few lines of codes and
thus is possible with minimal e�ort.

The NLTK library covers most of the CoreNLP features but pro-
vides these in a Python environment and enables an easier integra-
tion into the prototype based on Python. Furthermore, NLTK o�ers
the integration of WordNet, which is used to acquire synonyms
of words and perform lemmatization and stemming of words in
certain functions.

107

3 Natural Language Processing

Table 3.2: Information Extraction in existing Solutions.

Name Language Features

NLTK [LB02] Python Stemming and Lemmatizing
Tokenization
Constituency Parsing
Named Entity Recognition
Sentiment Analysis
Text Classi�cation

spaCy Python Sentence Splitting
Tokenization
Part-of-speech Tagging
Dependency Parsing
Visualization

Stanford NLP [DMM08] Multiple Part-of-speech Tagging
Tokenization
Part-of-speech Tagging
Corerfences Resolution
Dependency Parsing
Constituency Parsing
Name Entity Recognition
Word Segmentation

Gensim [ŘS11] Python Topic Modelling
Document Indexing
Similarity Retrieval
Text Summarizing

TextBlob [Lor18] Python Noun Phrase Extraction
Part-of-speech Tagging
Lemmatizing
Sentiment Analysis
Constituency Parsing

108

Part II

Automated Model Creation
from Text

4 Problem Specification
In this chapter, the research gap and the problem addressed in
this thesis are described. Related work is introduced, and aspects
related to the problem are emphasized to provide a localization
of this work among the current research. Then, the challenges of
automatic process model generation from the text are explained.
Lastly, the contribution of this work to the research �eld is stated.

4.1 Related Work
While the automatic analysis of the natural language used in texts
has been researched intensively in the past, its application to process
modeling has experienced a relatively scarce attention until recently.
Five projects are comprehensively described by Riefer, Ternis, and
Thaler in [RTT16], which provides an overview of research projects
that mainly deal with the extraction of BPMN models from texts.
At the same time, other publications address this �eld from a less
modeling language-focused viewpoint.

In the following, the existing approaches dealing with text-to-
model transformation or model-to-text transformation are intro-
duced, followed by publications that address speci�c problems and
challenges of these transformations. The selection of publications

111

4 Problem Speci�cation

is based on the similarity to and their relevance for this work. An
overview of the investigated publications is provided in Table 4.1,
while the relevant topics of touched in the individual publications
are listed in Table 4.2.

4.1.1 Existing Approaches
Di�erent approaches address the task of text-to-model transforma-
tion directly of which some are already summarized and analyzed
in [RTT16]. Similar to Riefer, Ternis, and Thaler related approaches
are described in the following based on three characteristics of
text-to-model transformation approaches, namely Textual Input,
Text Analysis and Model Generation.

Process Model Generation from Natural Language Text
[FMP11]

Friedrich, Mendling, and Puhlmann introduce an automatic ap-
proach to generate BPMN models from natural language text to
tackle the time-consuming step of Business Process Modeling in the
context of Business Process Management. Their approach combines
existing tools from natural language processing and adjusts them
with a suitable anaphora resolution mechanism.

• Text Input
The authors declare the required input as textual without further
speci�cation of the format. The input is restricted by structures
that cannot be processed, such as questions, the sequence of the
described process, which should be sequential and without non-

112

4.1 Related Work

Table 4.1: Overview: Related Work.

Title Authors Date

Processing Natural Language Requirements Ambriola,
Gervasi

1997

Process Discovery from Model and Text Artefacts Ghose, Koliadis,
Chueng

2007

Generating Natural Language Speci�cations from UML
Class Diagrams

Meziane,
Athanasakis,
Ananiadou

2008

Tell us your process: A group storytelling approach to
cooperative process modeling

Santoro,
Borges, Pino

2008

Business Process Mining from Group Stories Goncalves,
Santoro, Baião

2009

Use Cases to Process Speci�cations in Business Process
Modeling Notation

Sinha, Paradkar 2010

Text2Test: Automated inspection of natural language
use cases

Sinha, Sutton Jr.,
Paradkar

2010

Semi-automatic generation of UML models from natural
language requirements

Deeptimahanti
Sanyal

2011

Process Model Generation from Natural Language Text Friedrich,
Mendling,
Puhlmann

2011

Supporting Process Model Validation through Natural
Language Generation

Leopold,
Mendling,
Polyvyanyy

2014

Zur Nutzung von Techniken der Natürlichen Sprachver-
arbeitung für die Bestimmung von Prozessmodellähn-
lichkeiten

Niesen,
Houy

2015

Automatic Process Model Discovery from Textual
Methodologies

Epure,
Martín-Rodilla,
Hug, Deneckère,
Salinesi

2015

WoPeD goes NLP: Conversion between Work�ow Nets
and Natural Language

Freytag,
Allgaier

2018

Assisted Declarative Process Creation from Natural Lan-
guage Descriptions

Lopez,
Marquard,
Muttenthaler,
Stromsted

2019

Extracting Declarative Process Models from Natural
Language

van der Aa,
Di Ciccio,
Leopold,
Reijers

2019

113

4 Problem Speci�cation

sequential references, as well as the point of view of the description,
which should be from the actors perspective.

• Text Analysis
The core of the syntactical analysis is based on the Stanford parser
[DMM08] and the work of the Stanford NLP Group, while the se-
mantical analysis makes use of tools such as WordNet [Mil95] and
FrameNet [BFL98]. They provide their own solution for an anaphora
resolution mechanism and a keyword-based approach to identify
the control �ow of the described model. A detailed overview of the
approach and included text analysis and model generation is shown
in Figure 4.1. Based on a combination of the mentioned tools, refer-
ences are resolved, and actors, verbs, objects, and conjunctions are
extracted from the text. The individual elements are then combined
according to the identi�ed relationships between them.

Figure 4.1: Steps of the Sentence Level Analysis. Source: based
on [FMP11].

114

4.1 Related Work

• Model Generation
The approach is designed towards a subset of the BPMN elements
that can be identi�ed and then generated. First, swim lanes are
created based on the identi�ed actors. Second, activities and events
are created. Third and lastly, the nodes are connected over the
identi�ed control �ow. As a result, a complete BPMN model is
generated. In their evaluation, around 77% of their models were
generated correctly.

Process Discovery from Model and Text Artefacts [GKC07]

Ghose, Koliadis, and Chueng propose a framework, the Rapid Busi-
ness Process Discovery (R-BPD), and prototype tool to query het-
erogeneous information resources and rapidly construct process
models in a process discovery context that are intended to be incre-
mentally adjusted to correctness by an analyst.

• Text Input
The input is declared as a text, but no further details or restrictions
about the format are given. Furthermore, the described approach
should be able to process other existing models of other formats
than BPMN for a model-to-model transformation step and cross-
validate two existing BPMN models.

• Text Analysis
R-BPD makes use of two types of analysis. First, text patterns are
identi�ed that indicate process structures. Second, a text analysis is
performed with the help of the Natural Language Toolkit (NLTK)
[BKL09] from Bird, Klein, and Loper. The analysis using Natural
Language Toolkit (NLTK) builds on POS-tags that are annotated to

115

4 Problem Speci�cation

the text and a syntax tree parsed. The combination of POS-tags and
syntax trees is used to extract activities and objects with the help of
patterns. The control �ow of the described model is identi�ed with
prede�ned keywords that are indicators for relevant text structures.

• Model Generation
Ghose, Koliadis, and Chueng focus on identifying distinct BPMN
model parts rather than generating a complete and sound BPMN
model. Connections between identi�ed model elements are not
generated if not found in the given input.

Business Process Mining from Group Stories [GSB09]

Gonçalves, Santoro, and Baião describe an approach that explores
text mining techniques and natural language interpretation for
the automatic generation of process models to tackle the time-
consuming task of process modeling and improve process mining
approaches by capturing and including information that is not
present in, e.g., event logs in process mining solutions.

• Text Input
The approach in [GSB09] uses the collective narrative technique of
group stories to extract relevant information from people involved
in the corresponding process. Under the assumption that a jointly
written process description is likely to contain more useful infor-
mation than a combination of individually written statements, the
authors focus on such group stories as input. The format of the
input is not further speci�ed.

116

4.1 Related Work

• Text Analysis
The textual input is tokenized, POS-tags are annotated and parsed
by a shallow parser1 to create syntax trees. A restricted set of
BPMN elements are identi�ed over templates based on verb- and
noun-phrases. The elements include activities, actors, actions, and
parameters. The control �ow between elements is identi�ed over
keywords. A semantic analysis regarding synonyms or other se-
mantic characteristics is not performed. The extracted information
is stored based on a variation of the CREWS scenario model and
stores the information based on concepts and their hierarchy.

The steps followed by the authors are shown in Figure 4.2. The
gathering of data about the process as a text is performed using
group stories. The collected stories are then processed with men-
tioned NLPtechniques to extract information and model elements.
Lastly, the extracted elements are combined into a general work�ow
and result in a formal representation of the described process.

• Model Generation
The extracted information is mapped to BPMN models and con-
nected as far as stated in the textual input. Generated models are
not necessarily complete but serve as help for the process mod-
eler or analyst and have to be completed manually in most cases.
Thus, the model generation is not considered fully automated but
semi-automated.

1 "[S]hallow parsing techniques focus on speci�c parts of the text and prede�ned,
handpicked verbs and nouns" [LCM03].

117

4 Problem Speci�cation

Figure 4.2: Process Elicitation. Source: based on [GSB09].

Automatic Process Model Discovery from Textual
Methodologies [Epu+15]

Epure et al. address the problem of mining process models from
unstructured, text-based process descriptions. They build their ap-
proach on natural language processing with a focus on verb se-
mantics. The result is an unsupervised technique named TextPro-
cessMiner that can discover process instance models by mining
activities and their relationships.

• Text Input
The approach described by Epure et al. focuses on a textual descrip-
tion of archaeological methodologies. To simplify the task, only

118

4.1 Related Work

inputs are used that describe a methodology that consists of a single
process instance.

• Text Analysis
At the beginning of the analysis, punctuation and not required
phrases are removed from the textual input. With the help of the
Stanford Parser [Man+14] and the Stanford Tagger in combination
with the NLTK Tagger [LB02], a syntax tree is created from the
reduced text. Afterward, the textual input is analyzed sentence
by sentence. Transitive verbs are identi�ed and extracted using
WordNet [Mil95], and VerbNet [PK04], as they are most likely
to represent activities. The relationship between the activities is
extracted according to keyword-based patterns and domain-speci�c
rules.

• Model Generation
No sound or complete process model is generated in the process. Ac-
tivities and the relationship among these are extracted and together
with the textual representation provided as output. Moreover, a vi-
sual representation of the process model is not created. An example
output is Start -> (ACT 1 || ACT 2) -> ACT 4 -> Stop.

Use Cases to Process Specifications in Business Process
Modeling Notation [SP10]

Sinha and Paradkar present a technique to semi-automatically trans-
form use cases in unstructured textual formats into business pro-
cesses and create a mapping between them to enable the generation
of process model elements.

119

4 Problem Speci�cation

• Text Input
The authors focus on use cases as textual input for their approach to
identify speci�cations in Business Process Models. The applied use
cases consist of a sequence of statements that describes a sequence
of activities. Additionally, conditional statements can be processed
as long as they are associated with the nearest preceding statement.
The input format is otherwise not further speci�ed.

• Text Analysis
Similar to other approaches, the textual input is �rst tokenized, lem-
matized, annotated with part-of-speech tags based on an approach
by Zhang, Damerau, and Johnson [ZDJ02] and parsed by a shallow
parser based on the work of [BN08] [BN08] for a syntax tree. Se-
mantic analysis is performed through an anaphora resolution that
is built on manually created domain-speci�c databases. Keywords
identify the control �ow elements. All gained information is stored
in a use case description meta-model containing a domain model
with actors and related business items and a use case model that
includes actions and actors for every sentence.

• Model Generation
For every actor identi�ed, a swim lane is created. Based on these
swim lanes and corresponding actors, the process model is build
sentence by sentence from the identi�ed process model elements.
The approach supports a limited set of available BPMN elements,
shown in Figure 4.3, and focuses on basic BPMN models. Addition-
ally, to achieve a complete process model as output, a method is
introduced, enabling the automated combination of single process
models.

120

4.1 Related Work

Figure 4.3: Subset of BPMN Elements. Source: based on [SP10].

The implementation of the proposed concept is presented in
[SSJP10]. The authors provide the Text2Test environment that aims
to generate abstract use case models from text and enables the
validation, analysis, and review of the use cases and the respective
models. It enables the automated extraction of use case models from
the textual descriptions of these following a keyword- and template-
based approach to extract use case model elements. Textual inputs
are enriched with semantic and syntactic information. Based on
the attached information, text parts and words are mapped onto
the set of use case model elements. The connection between the
individual elements is identi�ed based on extracted references using
techniques such as syntax tree and anaphora resolution.

121

4 Problem Speci�cation

WoPeD: Conversion between Workflow Nets and Natural
Language [FA18]

WoPeD is an open-source tool for designing business processes with
work�ow nets, an extension of Petri nets2. In [FA18], the authors ex-
tend their software with features that enable the bidirectional trans-
lation between process model and text. The Text2Process module
can translate textual inputs into Petri nets building on an algorithm
proposed by Friedrich, Mendling, and Puhlmann in [FMP11].

• Text Input
The input is required to be plain text without any meta information.
The tool provides a text �eld for the user to provide the description.
Features that support import from other formats, such as XML, are
not mentioned.

• Text Analysis
The foundation of the text analysis is building on the approach
of Friedrich, Mendling, and Puhlmann [FMP11]. First, textual in-
puts are split into sentences and words following the underlying
grammatical rules. Second, a semantic analysis using tools, such
as WordNet3 or FrameNet4, is performed to enrich the text with
information about its linguistic features. The analysis results are
then used to extract actors, actions, and business objects based on
matching structures in the text.

2 See https://woped.dhbw-karlsruhe.de/?page_id=271. Last accessed: 08.12.2020.
3 See https://wordnet.princeton.edu/. Last accessed: 08.12.2020.
4 See https://framenet.icsi.berkeley.edu/fndrupal/. Last accessed: 08.12.2020.

122

https://woped.dhbw-karlsruhe.de/?page_id=271
https://wordnet.princeton.edu/
https://framenet.icsi.berkeley.edu/fndrupal/

4.1 Related Work

• Model Generation
All extracted information is then stored in a meta-model, the so-
called WorldModel, and then translated into the Petri Net Modeling
Language (PNML) to prepare the transformation into a work�ow
net, a type of Petri nets. The placement and arrangement of elements
in the resulting work�ow net have to be done manually in the
work�ow net editor.

Extracting Declarative Process Models from Natural
Language [Aa+19]

As most of the existing approaches focus on the extraction of im-
perative process models from texts, Aa et al. address the extrac-
tion of declarative process models from natural language in their
approach. With the extraction of declarative process models, the
authors expect to capture complex process behaviors e�ectively.
An automated approach is provided, which extracts declarative
process models from text-based on identifying activities and their
interrelations.

• Text Input
The described approach uses constraint descriptions as input. The
constraint description consists of one single sentence. The input
format is shown as a simple plain text but is not further speci�ed
otherwise.

• Text Analysis
The authors use di�erent general-purpose NLP techniques to iden-
tify and assess linguistic patterns. They annotate the textual input
with, e.g., POS-tags or syntactical dependencies. Following, they

123

4 Problem Speci�cation

conduct steps of linguistic processing. The verb in a sentence is
extracted together with the related subject and objects. The ex-
tracted information is then extended by additional speci�ers, such
as negations, modal verbs, or prepositions. Subsequently, adverbial
clauses and coordinating conjunctions are extracted as indicators
for interrelations. Building on the linguistic processing and the
identi�ed semantic components, activities are extracted. Activities
are extracted based on verb-based and noun-based structures. This
extraction of activities makes use of existing approaches described
in [FMP11; And02].

• Model Generation
Building on the results of the text analysis, declarative constraints
are generated based on the extracted activities and their semantic
interrelation. The generation process does not provide a complete
process model nor individual process model parts, but rather declar-
ative constraints as part of a declarative process model.

4.1.2 Related Approaches
In addition to the mentioned approaches of text-to-model, related
projects, especially from the reversed process of model-to-text trans-
formation, o�er further insights into sub-tasks and -challenges of
the text-to-model transformation. The described projects do not
necessarily focus on speci�c model generation but instead on the
extraction of individual elements, such as activities or connected
work�ows. Techniques and methods revolve around the Stanford
Parser, the included NLTK tagger, and are used to derive rules from
the identi�ed syntax and grammatical dependencies.

124

4.1 Related Work

Supporting Process Model Validation through Natural
Language Generation [LMP14]

In their approach, Leopold, Mendling, and Polyvyanyy provides a
process to infer texts from process models with the intermediate
step of creating Petri nets from BPMN models and then text from
these Petri nets. The mapping of Petri nets and text can be used
bidirectionally and thus also to generate Petri nets from texts. The
general architecture is shown in Figure 4.4. In the �rst phase of
Text Planning, linguistic information is extracted and annotated to
the corresponding BPMN process model elements with the help
of tools such as WordNet5 or the Stanford Tagger6 to identify an
initial structure of the intended text. The second phase of Sentence
Planning then uses so-called deep syntactic trees to re�ne the text
composition. The third phase of Realization then focuses on con-
structing the natural language text.

Tell us your process: A group storytelling approach to
cooperative process modeling [SBP08]

Another approach in this category is focused on a speci�c textual
structure in the form of group stories to extend an already existing
approach that combines the technique of group storytelling and
process modeling. Next to the proposed text mining techniques,
additional concepts, such as an ontology or dictionary, are needed
for a precise process model extraction from group stories. The
use of dictionaries and ontologies supports the interpretation by

5 See https://wordnet.princeton.edu/. Last accessed: 08.12.2020.
6 See https://nlp.stanford.edu/software/tagger.shtml. Last accessed: 08.12.2020.

125

https://wordnet.princeton.edu/
https://nlp.stanford.edu/software/tagger.shtml

4 Problem Speci�cation

Figure 4.4: Natural Language Generation System. Source: based
on [LMP14].

providing on the one side a restricted word corpus represented in
the dictionary and, on the other side, a structured representation of
it in an ontology. The results of their analysis produce BPMN-like
work�ow nets.

Semi-automatic generation of UML models from natural
language requirements [DS11]

Deeptimahanti and Sanyal describe a semi-automated approach
to generate UML models from natural language requirements in
a given format. They build upon an intermediate step of creating
use-case diagrams and analysis class models as conceptual models
with the Stanford Parser [DMM08], and WordNet [Mil95] to then
generate the UML model collaboratively. The underlying process ar-
chitecture of their proposed technique of the UML Model Generator
from analysis of Requirements (UMGAR) can be seen in Figure 4.5.
Based on stakeholder requests and normalized requirements, use

126

4.1 Related Work

case models are developed. These are used to generate conceptual
models and design class models. The design class models then lead
to the construction of code.

Figure 4.5: Process Architecture of UMGAR. Source: based
on [DS11].

Processing Natural Language Requirements [AG97]

Ambriola and Gervasi introduce tool named Circe that provides a
web-based environment for natural language requirements gath-
ering, elicitation, selection, and validation. Next to other features,
Circe can extract abstractions from natural language texts, gen-
erate di�erent kinds of models of the systems described in the
requirements documents, and check the validity of these models.
The approach applied to recognize and process natural language

127

4 Problem Speci�cation

includes a combination of canonization and tokenization together
with a rule-based approach that follows a fuzzy logic. The used
fuzzy logic allows for incomplete matching, weighted independence
from the order of the words, multiple matching, and several other
imperfect correspondences and enhances the recognition of the
tool.

Assisted Declarative Process Creation from Natural
Language Descriptions [Lóp+19]

The authors describe an extension of their previously created and in
[Lóp+18] described hybrid modeling tool, the Process Highlighter,
that supports declarative process generation from natural language
descriptions. The Process Highlighter facilitates the manual cre-
ation of Dynamic Response Condition graphs directly from text doc-
uments, supporting non-technical users in adopting declarative
process models. Features include the use of Natural Language Pro-
cessing (NLP) techniques and existing solutions, such as WordNet
[Mil95], to support users in the identi�cation of roles, activities,
and constraints, as well as means to validate the created models
through the automated extraction and provision of text-relevant
information.

Generating Natural Language Specifications from UML
Class Diagrams [MAA08]

Representing a counterpart to this thesis, Meziane, Athanasakis,
and Ananiadou describe an approach to generate textual speci�ca-
tions for Uni�ed Modeling Language (UML) diagrams [MAA08].

128

4.1 Related Work

The authors analyze the natural language used to name or label
components of UML diagrams. Based on the analysis, rules are
extracted from the subset of natural language used within the UML
diagram. Rules are then used to understand and connect UML model
elements’ names and labels to transform these into textual descrip-
tions. Among di�erent tools, WordNet [Mil95] is used to verify
the generated sentences and ensure meaningful and grammatically
correct texts.

Using Natural Language Processing to Determine Model
Similarity [NH15]

Niesen and Houy present a concept that leverages NLP techniques
to make the content of process models accessible and allows a
topic-speci�c similarity comparison of such models. Additionally,
the authors provide a brief literature overview of the state-of-the-
art of Business Process Similarity. The used techniques to access
content residing in textual descriptions include n-grams, POS-tags,
Stemming, Term Frequency–inverse Document Frequency (TF-IDF),
and tokenization.

The processing with NLP techniques is split into three phases:
Preparation, content-related delimitation, and detailed analysis.
First, the model is prepared and enriched with semantic informa-
tion with previously mentioned tokenization and POS-tagging. Es-
pecially the transformation into a vector is described as signi�cant
preparation for later processing. Second, each vector of a model
is placed into a vector space, where the number of dimensions is
de�ned over the number of index terms of the vectors.

129

4 Problem Speci�cation

As a �rst approach to compare model vectors, the authors cal-
culate the distance of two vectors in the vector space and enrich
this calculation with the TF-IDF. The result is a collection of similar
model vectors. Third and last, the as similarly considered model
vectors are used to reduce the number of models that are considered
similar and reduce the search space in a detailed analysis on the
level of the models themselves. The detailed analysis then takes into
consideration not only the meta-data represented in the vectors
but the content included in the model features, such as labels and
descriptions.

4.2 Challenges
This section introduces the project-speci�c challenges that are
critical for the design and implementation of the transformation
approach. The challenges are further categorized into informa-
tion acquisition, language-related, Petri net-speci�c, and modeling
conventions-related challenges.

4.2.1 Information Acquisition
One of the major challenges in creating meaningful process models
includes the extraction of the information that has to be represented.
While collecting and retrieving information from documents, in-
terviews, transcripts, descriptions, or other sources of this nature,
providing this information is a signi�cant task in itself. The dif-
ferences between a subsequent manual or automated modeling
of a process can be considered marginal, given that the required

130

4.2 Challenges

data is available. Following this assumption, the challenges for the
approach presented in this thesis are focused on the extraction of
process model-relevant knowledge from written texts in the En-
glish language. As introduced as a shortcoming to process modeling,
a human modeler may not be fast or precise in many use cases.
However, the modeler has a critical advantage over machines and
software used to interpret texts and models, understanding natural
language and its speci�cs.

The use and understanding of natural language are skills every
human is practicing since birth. Thus, it is, except for domain-
related knowledge, not necessary to explain to an external modeler
how to interpret the English language. An internal lexicon, the
ability to identify connections between words and sentences, ref-
erences, related words, and interpret the meaning of these, can be
seen as an inherent skill set of every modeler. As these actions are
often performed subconsciously, de�ning and explaining how to
accomplish these is di�cult.

In consequence, getting a machine to perform these actions is
an even more di�cult task. A computer uses abstract, precise lan-
guages designed to avoid ambiguity and provide sets of instructions
that clearly de�ne the possible actions to perform based on the
given input. Thus, getting a computer to understand and interpret
natural language is a complex task representing a signi�cant part
of linguistic research. Nonetheless, initial approaches to this topic
are present in research of which one will be used to classify the
found challenges. Liddy proposed the notion of seven linguistic
levels that were introduced in Chapter 3 and which correspond to
distinct levels of understanding of natural language text [Lid01].

131

4 Problem Speci�cation

A machine designed for a speci�c translation problem does not
necessarily have to be able to address all the mentioned levels but
may focus on the levels that are part of the de�ned scope. For
instance, in an approach that aims to translate texts into other
languages or representation forms, the phonology might not be of
relevance.

In the earlier introduced Georgetown Experiment [Hut04], the
prototype did not know the English language nor the Russian lan-
guage on a human-like level. Instead, it remembered all words from
internal storage, the corresponding in�ections, and the connection
between the same words in English and Russian. The extent to
which this prototype captures the seven linguistic levels of Liddy is
challenging to quantify and measure, but based on the prototype’s
capabilities, not all levels are addressed.

When considering analyzing natural language text and trans-
forming gained information into a model, a list of challenges and
solutions can be found in the literature related to this topic. For
instance, Riefer, Ternis, and Thaler [RTT16] distinguish in their
survey mainly the syntactic and semantic analysis. The syntactic
analysis focuses on the underlying grammatical rules and consists
of three parts: Tokenization, Part-of-speech Tagging, and Parsing.
The semantic analysis covers the analysis of the meaning behind the
text, sentence, and word, such as synonyms, references, and roles
inside a text structure. The techniques of both types of analysis
are explained in Section 3.1.3 as part of the foundations of Natu-
ral Language Processing. Next to the other introduced tasks and
techniques, these analysis views are often used as an aggregated
approach to a speci�c linguistic problem.

132

4.2 Challenges

An in-detail explained work using this analysis approach can be
found in [FMP11] and [Aa+19], which are both part of the related
work in Section 4.1.2. As explained earlier, they use four categories,
including the analysis of syntax and semantics, to analyze natural
language texts and extract di�erent kinds of process models. Both
focus on the description order, precedence, and succession and
extract proper actions from the text. The two projects emphasize
issues relevant to the creation of models with chronological prop-
erties, such as having a proper activity order or �nding references.

4.2.2 Language Specifics
A signi�cant number of challenges are rooted in the used language.
In the following, these are stated for the English language as the
chosen language for the transformation approach. However, lan-
guages with similar properties, e.g., due to their common historical
origin, tend to share the same challenges. A change in the used lan-
guage can be feasible when switching between languages sharing
characteristics. This subsection refers to the challenges rooting in
the used English language and challenges in other languages, or lan-
guage family groups are hinted at. Each language inherits distinct
features, such as the used word corpus, the underlying grammatical
rules, or pronunciation. Languages of similar nature and origin
are summarized in language families de�ned over features the lan-
guages share. Hence, each language or language family provided
individual challenges for linguistics and included interpretation,
analysis, and processing. An automated translation of a sentence
into other forms of representation, such as business process models,

133

4 Problem Speci�cation

in consequence, has to be developed based on the chosen language
to translate.

For this approach, the trade-o� between the speci�c analysis of
natural language and identifying a small set of models, elements,
and patterns is essential. The modeling language maps natural lan-
guage to speci�c patterns and templates. Thus, free use of language
makes the precise creation of a model di�cult and adds complexity
due to, e.g., the ambiguity inherent to natural language.

Referring to the seven layers by Liddy [Lid01], the faced language-
related challenges in extracting information from text can be cat-
egorized. Even though not every issue can be directly related to
exactly one layer, they are assigned to the category that �ts them
most.

Additionally, many of the issues are related and use similar con-
cepts. While the following list may not be complete, it incorporates
the main language-related challenges of creating a text-to-model
approach. These challenges are later used to create a concept for
the translation and are brie�y explained.

Morphological 1 – Lemmata:
A lemma is the base form of a word. These are used in di�erent steps
of processing natural language. In modeling processes, elements are
often named in a structured manner and following a de�ned naming
convention, e.g., using a verb in the present or past tense and
active voice. Hence, lemmata can be used to extract a meaningful
evaluation when comparing words or when exploring synonyms
as the various forms may result in a di�erent interpretation of the
lexical service.

134

4.2 Challenges

Morphological 2 – Inflections:
In addition to lemmata, the transformation approach needs to pro-
vide means to recognize in�ections and provide information about
deviating forms. Di�erences in tense, case, voice, or number in-
�uence the model mapping and generation process, especially in
identifying and distinguishing actors and objects. Additionally, iden-
tifying and changing the tense and case of a word is relevant for
the generation of labels for model elements.

Lexical 1 – POS Tags:
Building on M.1 and M.2, textual inputs have to be annotated with
the individual words’ grammatical properties inside the analyzed
sentences. This annotation is performed using so-called part-of-
speech tags, further explained in Section 3.1.3. The complete and
correct annotation of the grammatical properties is essential for the
later identi�cation of, e.g., patterns based on keywords and de�ned
indicators.

Lexical 2 – Synonyms:
To not tend to extensive repetitions when speaking or writing,
humans often use similar words for the same objects. This phe-
nomenon adds complexity to the transformation process as es-
tablishing the connections between di�erent words of the same
meaning is di�cult. Consequently, synonyms of words have to be
considered when referring to domain-related keywords (after, in
parallel, while), objects, actors, and verbs inside the process. A cor-
rect distinction between words with the same meaning and words
of di�erent meaning is crucial to avoid misinterpretation.

135

4 Problem Speci�cation

Syntax 1 – Atomic Process Steps:
The ideal textual input for the automated transformation process
would describe every process step in a separate sentence. An atomic
description of one process step per sentence would facilitate the
model element identi�cation and reduce the possibility of ambiguity.
The main verb, as well as the semantic references to other process
steps, would be clearly de�ned. However, an atomic split of thoughts
is rarely the case in natural language texts. Thus, a procedure has to
be in place to detect the separate process steps. First, the text has to
be split into di�erent sentences. Second, descriptive sentences that
do not necessarily provide information about a process step have to
be handled di�erently from sentences describing processes. Some
sentences may even inherit multiple process steps, and implications
about references from and to sentences with more than one process
step have to be taken into account.

Syntax 2 – Actors and Objects:
Actors and objects are often annotated to the single process steps
in a process model to provide additional information about the
process. Objects are, in general, part of the process steps’ label,
while actors are annotated. Therefore, this approach includes the
extraction of objects and actors from the text to attach them to the
process model and relates to L.1, L.2, and D.1.

Syntax 3 – Additional Information:
In addition to verbs, objects, and subjects mapped onto the core
elements of the process model, the input text can include additional
information about the process. For instance, prepositional phrases
or conditional phrases for exclusive provide information about, e.g.,

136

4.2 Challenges

exclusive splits or inputs and outputs. Both mentioned phrases and
the related constructs enrich the model and are important for the
complete depiction of the process.

Semantics 1 – Word Relations:
Building on the information provided by the POS-tags, the relation-
ship between the single words have to be interpreted and analyzed.
The underlying information about the corresponding process step
is highly dependent on the grammatical reference of a word. A
typical step includes the creation of a syntax tree for a structured
representation of the identi�ed dependencies.

Discourse 1 – Anaphora Resolution:
Next to the analysis of individual sentences and process steps, ref-
erences within the text have to be considered. Anaphora resolution
is considered an integral part of process model translation in sev-
eral already established works [RTT16; FMP11]. Per de�nition, an
anaphora is "the use of a word referring to or replacing a word used
earlier in a sentence, to avoid repetition"7. In this thesis, anaphora
resolution will primarily include the links between pronouns and
their references within the text to clarify, especially actors involved
in the process steps.

Discourse 2 – Further References:
Other references within the text, besides anaphoras, are of rele-
vance for the translation. While references are often declared as a
sub-category of anaphoras in literature, these references to other
process steps are listed explicitly in this thesis as the challenges

7 See https://www.lexico.com/en/de�nition/anaphora. Last accessed: 08.12.2020.

137

https://www.lexico.com/en/definition/anaphora

4 Problem Speci�cation

and meaning di�er in the context of the text-to-model transfor-
mation. In case of a reference to another sentence, which may
indicate a relation between two steps and patterns, such as loops,
the referenced process step has to be identi�ed in the process model.
Other challenges, such as mentioned synonyms in Lexical 2, impact
the analysis of references and, in general, add complexity to the
identi�cation of the right referenced aspect.

Discourse 3 - Control Flow Indicators:
Regarding the previous challenge, one has to consider explicitly de-
scribed sequences and the relations between sentences. A keyword,
such as, e.g., "after", "subsequently", or "before", is used in the text
to clearly de�ne the order of execution.

Discourse 4 - Non-Sequential Descriptions:
Process models are intended to be structured and described sequen-
tial but may split at certain process steps. These splits have to be
identi�ed, mapped to the process elements, and inserted into the
right place in the process model. Identifying the location of such a
split in the process model and where it refers to relies on keywords
that have to be identi�ed beforehand, such as, e.g., "meanwhile"
and "if", as well as prede�ned constructs.

Pragmatics 1 - Implied Sequences:
A textual description may not depict all information about �nal
model explicitly but may have some implicit, hidden information.
For instance, in the description of a sequential process model, pro-
cess steps may be executed one after another without explicitly
stating this in the description. These implicitly stated and assumed

138

4.2 Challenges

sequences have to be identi�ed and connected to the other process
steps.

Pragmatics 2 - Fill Phrases:
With reference to Syntactical 1, phrases may not refer to an atomic
process step and should be handled di�erently or even be ignored.
These phrases may include no valuable information for the process
or references to the process itself, such as the description of the
start or end of it.

Depending on the information carried by the phrase, di�erent
actions have to be performed. Sentences that are not atomic but
include multiple process steps should connect the process steps in
question with the ending place without creating another transition.

4.2.3 Petri Net and Horus Model Specifics
After extracting all the required information from the text, it has
to be mapped to the model elements of the Petri net-based Horus
procedure models. Two properties are considered for the mapping
algorithm:

1. The resulting model must represent the statements from the
input text in a meaningful way. This requirement includes,
additionally, that no information is left out.

2. The mapping is adhering to the syntax and rules of modeling
Horus procedure models that are building on the general
Petri net notation.

Satisfying both properties can be di�cult, as certain information
inherent in the text may not be expressed through the available

139

4 Problem Speci�cation

model elements and patterns. Other modeling languages that pro-
vide a wide range of elements, such as the Business Process Model
and Notation (BPMN), might allow a more detailed representation
of the described business process. When modeling PNs or PN-based
models, the number of model elements is rather small, as the basic
notation introduced in Section 2.2 includes only places, transitions,
and arcs as structural elements. Complex structures have to be de-
scribed in PNs with a limited set of elements available. All relevant
structures, like connectors or events that other modeling languages,
such as the Event-driven Process Chain (EPC) [STA05] or the BPMN
[Whi04] provided, must be represented through the use of only the
available three components in PNs.

Horus procedure models provide some additional capabilities in
this regard, as they include additional elements, such as roles, or
additional structures, such as exclusive choices within activities.
Horus procedure models use an extended set of elements also to
express complex structures and promise a more detailed represen-
tation than Petri nets.

Even though it is a challenge to express all required structures
over a still limited set of elements compared to other process mod-
eling languages, these structures are recurring in models, similar to
often-used phrases in the English language. In consequence, stan-
dardization and the modular de�nition of phrases and structures is
an often pursued goal.

This set includes, on the example of Petri nets, lists of common
patterns, depicting the correct representation of arrangements like
splits, joins, or loops. For Petri nets, a set of widely used patterns is
established [LVD09]. However, it is not exclusive to PNs as patterns
are used in various �elds, such as software engineering, to de�ne

140

4.2 Challenges

and depict recurring structures. Even though these PN patterns are
not considered an o�cial standard, they are commonly referred to
in research and widely applied in practice.

Van der Aalst and Hofstede introduce a set of patterns they
collected over the years while working with PNs. A comprehensive
list of these is available online8 and split into categories, e.g., control-
�ow patterns and exception handling patterns.

A fully functional text-to-model approach should be able to gen-
erate any of these patterns based on a given textual description of
the process. However, complete coverage of all patterns consider-
ing a satisfying precision in the transformation is a complex goal
challenging to achieve.

Examples of regular and basic patterns are provided by multiple
authors, mostly including control-�ow patterns. Control-�ow pat-
terns describe the sequence of activities and are therefore essential
for modeling processes. They are also the initial patterns Van Der
Aalst et al. [VDA+11] introduce in their work and are consequently
utilized in most Petri nets.

De�ning a selected set of patterns serves two purposes in this
approach:

1. Individual patterns, such as "Parallel Split" or "Exclusive
Choice", indicate how to visualize the underlying theoret-
ical concepts. They support the use of the PN notation and
establish a relation between the recurring structures in natu-
ral language texts and the corresponding PN structures.

8 See http://www.work�owpatterns.com/patterns/. Last accessed: 08.12.2020.

141

http://www.workflowpatterns.com/patterns/

4 Problem Speci�cation

2. Splitting the structure of PNs into patterns allows for a mod-
ular, rather atomic design of a parser’s di�erent features.
Keywords and phrases can be used to identify and map indi-
vidual patterns. The components described in Chapter 6 are
designed following this idea.

Encountering a distinct keyword or phrase then enables the
parser to identify and extract distinct patterns. However, the trans-
lation between text and model is not strictly bound to the patterns.
The use of patterns provides instructions on how to translate spe-
ci�c structures found in the process model counterparts’ textual
description.

The di�erent lists of patterns proposed by Van der Aalst and
Hofstede [VH02] or Lohmann, Verbeek, and Dijkman [LVD09] are
not considered complete and there may be cases in which no pattern
is applicable or existent for a given phrase.

As the English language may also inherit characteristics, such as
the size of the word corpus, it is not easy to di�erentiate between
speci�c patterns due to, e.g., ambiguity. In cases that are not clearly
de�ned, design choices or contextual domain knowledge is required
to identify the correct match between text and pattern.

More complex patterns like the “Interleaved Parallel Routing”9 or
Exception Handling Patterns10 require a more in-depth analysis of
multiple sentences and even introduce new elements to the notation.

9 See http://www.work�owpatterns.com/patterns/control/new/wcp40.php. Last
accessed: 08.12.2020.

10 See http://www.work�owpatterns.com/patterns/exception/. Last accessed:
08.12.2020.

142

http://www.workflowpatterns.com/patterns/control/new/wcp40.php
http://www.workflowpatterns.com/patterns/exception/

4.2 Challenges

As a result, a parser used for the transformation would not generate
these patterns if it operates with the standard notation.

These limitations in mind, a selection of patterns to be imple-
mented, are necessary to bene�t from these catalogs. As mentioned,
it is unlikely to implement all patterns in the early stages and
achieve a satisfying performance of the prototype.

Additionally, beforehand introduced aspects of quality of process
models and guidelines to ensure this quality partly also include the
complexity of a model as one measurement. Thus, a model of high
quality should not be too complex, and patterns that add to this
complexity should be avoided. Therefore, the focus of this approach
lies in the most prevalent and essential structures.

4.2.4 Modeling Conventions
In this subsection, challenges due to modeling conventions originat-
ing from frameworks, guidelines, or best practices, such as partly
already mentioned in Section 2.3.1, are described.

In general, models are used to store, visualize, and transfer in-
formation between organizational units or stakeholders. However,
models based on the same information may di�er in size, labeling, or
statement depending on the recipient, viewpoint, or personal opin-
ions. The di�erent people, groups, or organizational units within a
company usually wield di�erent viewpoints when creating mod-
els. While each di�erent version may not be wrong on its own, a
meaningful comparison between two models is more complicated
by each mismatch of elements. The discrepancies are especially
problematic for model validation and, in this context, an automated
text-to-model transformation approach. The model generation and

143

4 Problem Speci�cation

adjustment steps have to ensure a similar quality of the model
compared to manually created models. To reduce the diversity of
models and provide a certain standard in the process of modeling,
guidelines, and frameworks, such as explained in Chapter 2, exist.
These primarily aim at quality assurance and consistency [Leo+13].
However, no guideline is enforced or o�cially standardized, and
various aspects have to be clari�ed while designing a model.

While the di�erent frameworks and guidelines focus on and high-
light aspects of di�erent areas, several categories share similarities
and distinct characteristics are useful to consider when designing
an automated approach for the text-to-model transformation. Sev-
eral such characteristics o�er meaningful guidance in the design of
the text-to-model transformation approach. However, other aspects
found in the literature may not be possible to integrate, as they, e.g.,
require a speci�c domain-related logic.

The models aimed at with this approach and the corresponding
prototype, therefore, should adhere to the following rules:

1. Each piece of information related to a process step available in
the source text will be processed if there exists an element in
the set of model elements designed to hold this information. It
may not exclude any process steps ful�lling this requirement.

2. The resulting models must be designed to be as structured
as possible. Following the fourth guideline of the 7PMG, ev-
ery splitting pattern should have a suitable joining pattern
[MRA10]. Resolving splits only with the corresponding merge
also reduces the risk of creating deadlocks within the model.
An exception is given in the beginning and start of a model,
e.g., if a process can have two end states or start from two

144

4.2 Challenges

di�erent inputs. In contrast to traditional Petri nets, Horus
procedure models can have multiple starts and endings.

3. Each process step should only feature one action. If a process
description requires, e.g., a document to be saved and printed,
two distinct process steps must be generated. Activities are
considered atomic and represent just one action.

4. As the result of the transformation process, the model will
be provided in a machine-readable format, a data frame, or a
corresponding �le. This structured representation can enable
a better validation and assessment of this method and serves
as an input for possible visualization.

5. Most of the introduced frameworks and guidelines mention
naming conventions. The essential constituents of a process
model are the process steps, represented by transitions or
activities. As such, these will carry the central processing
logic and are labeled with their process step representation.
A consistent naming scheme resulted in better readability
and better comparability to other models [MRA10]. Addition-
ally, it automatically eliminates the error-proneness through
naming inconsistencies between modelers and enforces a
standard. In this regard, activities of process steps extracted
from the text will carry present-tense verb-object labels with
optional descriptive elements afterward, for instance, "send
invoice to the customer". This rule is easily applicable in
an automated transformation process whenever verbs and
objects can be extracted from the input.

145

4 Problem Speci�cation

4.3 Contribution
In this section, the potential bene�ts arising in di�erent �elds as
a result of the automation of creating a process model from a tex-
tual input without human interaction are presented. This thesis’s
contribution to the research �eld of automated process model gen-
eration in the context of process-oriented knowledge management
is stated.

Rather than looking at the full automation or complete manual
creation of process models, this approach aims at di�erent degrees
of automation and the reduction of necessary manual human ac-
tions. Thus and even though full automation is the overall goal,
human interaction in speci�c steps is necessary. This approach can
thereby be considered as semi-automated at this stage.

The transformation of textual descriptions into process models
with the help of NLP is rather unexplored at this point, and just a few
publications in the literature address this topic directly. This trans-
formation approach also considers the assessment of the semantic
quality of process models as part of the model adjustment step,
which is in contrast to the rather scarce attention from literature, a
relevant topic for practical tasks for di�erent application �elds and
businesses due to the widely spread and frequent use of process
models as representation form for information and knowledge.

Gained insights from the investigation of existing literature of
this topic as well as related topics are contributing to a deeper
understanding of the relevance of process models in managing
knowledge, the semantic quality of process models, and means to
assess and a�ect these quality aspects over the model generation
and transformation from natural language texts.

146

4.3 Contribution

Building on these insights, a concept to use automated model
transformation to address, among other things, the process model
quality is provided. With the help and the combination of tech-
niques from the explored �elds of Process Modeling, Natural Lan-
guage Processing and Model Transformation and Generation and the
use of an ontology-inspired reference point, the transformation of
textual descriptions of processes into a Horus procedure model that
represents this process is addressed.

This transformation is based on a rule-based system extended by
an adjustment step using an ontology-based concept map, similar
to [KG08], which described an approach to automatically create
UML models from texts with the help of ontologies. By using this
approach, both generated models and manually created models can
be compared. The comparison then supports the evaluation and
adjustment of either the manually created process model or the
textual description in the form of the generated process model.

Lastly, the module contributes to an existing strategy to support
users in creating correct and meaningful process models, including
their attached elements, such as descriptions and related models.
The implementation supports the combination of direct feedback
about syntactic and semantic qualities of a model. It can contribute
to di�erent further activities, such as teaching users the modeling
language or model-oriented thinking.

Regarding the existing and related work done in this �eld, one
major challenge revolves around how to achieve a correct and
precise extraction of model structures and the connection of the
individual elements from the underlying text. The model control
�ow expressed in complex sentence structures is a challenge for
the analysis and transformation. This challenge is addressed by

147

4 Problem Speci�cation

the mentioned rule-based approach that uses pre-de�ned patterns
based on common Petri net patterns and grammatical constructs
to establish a mapping between both. The mapping enables the
identi�cation of model elements and structures residing in parts of
the textual description.

Another relevant challenge lies in the implicitly mentioned knowl-
edge about the described process model, which is di�cult to assess
while analyzing the textual input. An approximate solution for this
is provided in the form of reference to a contextual knowledge
base. The creation of process models in an automated way can be
improved with existing examples that serve as a context used to
recognize implicit information.

Relating this thesis to the �eld of text mining, it can be understood
as providing distinct parts of a Text Mining System, as shown in
Figure 4.6.

While the information feed normally provides unstructured con-
tent from di�erent sources that have to be integrated and mined,
this approach focuses on single-sourced and as simple plain text
provided process descriptions. The intelligent tagging to enrich
the textual input with linguistic information is already provided by
di�erent existing solutions that use pre-trained models for di�erent
languages to enable, e.g., part-of-speech tagging, entity extraction,
dependency analysis. These tools are used for the corresponding
tasks where they �t and extended when required. The Business
Intelligence Suite is responsible for consolidating the information
and analyze the gathered information with a given goal or purpose.
This part is provided through the transformation between text and
process models.

148

4.3 Contribution

Figure 4.6: Transformation Approach compared to a Text Mining
System. Source: based on [BDF05].

Additionally, this work touches but goes beyond the �eld of
process mining. While process mining focuses on extracting in-
formation from systems event log to identify, validate and adjust
business processes, the extraction here is based on textual input
and additional information since a business process incorporates
human activities, which will never be present in logs.

149

4 Problem Speci�cation

Table 4.2: Topics in Related Work.

Publication Topics

[FMP11] •Generating BPMN models from text using a subset of BPMN elements
•Anaphora resolution mechanism
•Keyword-based identi�cation of model control �ow

[GKC07] •Generating parts of BPMN models
•Pattern-based identi�cation of process structures
•POS-Tags and syntax trees to extract activities and objects

[GSB09] •Identi�cation of a subset of BPMN elements
•Syntax tree and noun-/verb-phrases to identify BPMN elements
•Keyword-based identi�cation of model control �ow

[Epu+15] •Sentence by sentence analysis
•Identi�cation of transitive verbs for activity extraction
•Parts of conceptual models are generated

[SP10; SSJP10] •Generating abstract models from use cases
•Keyword-based identi�cation of model control �ow
•Semantic analysis based on anaphora resolution
•Meta-model of extracted information
•Sentence by sentence analysis

[FA18] •Generating work�ow nets from text
•Bidirectional translation between model and text
•Semantic analysis to identify model elements
•Meta-model of extracted information

[Aa+19] •Generating declarative constraints for process models
•Subjects, verbs and objects extracted for the main model elements
•Clauses and phrases to identify model patterns
•Activities extracted from noun- and verb-phrases

[LMP14] •Creating Petri nets from BPMN models extracted from text
•Bidirectional translation between model and text

[SBP08] •Process model extraction based on group stories
•Combination of text structures, ontologies and dictionaries

[DS11] •Semi-automated approach to generate UML diagrams from text
•Automated creation of conceptual model
•Manual and collaborative creation of the UML diagram

[AG97] •Extraction of abstraction of natural language texts
•Generation and validation of di�erent kind of models
•Rule-based approach following fuzzy logic

[Lóp+19] •Declarative process generation from natural language descriptions
•Semantic analysis to identify model elements and constraints

[MAA08] •Generation of textual speci�cation from UML diagrams
•Analysis of model element labels to extract rules for text generation

[NH15] •Vector-based approach to assess similarity between models
•Semantic analysis to enrich vectors with semantic information

150

5 Context Description and
Design

In this chapter, this research project’s context is described, as this
thesis is the result of a cooperation between researchers and practi-
tioners. This cooperation considers a real-world problem motivated
by an industry case that revolves around the use of one modeling
method with a speci�c modeling tool for process-oriented knowl-
edge management. The design of a transformation of textual input
into a process model in the form of a speci�cation of Petri nets
(Horus model) is described. The general concept, the objectives
followed, including the used methods and techniques, the ontology-
based reference point for model adjustments based on contextual
knowledge, and the steps of the transformation approach itself are
explained.

5.1 Horus Method
In this section, the method of internal process-oriented knowledge
management used by the business partner is brie�y introduced.
One main component of their method is their specialization of
Petri nets, the Horus procedure models. Potential extensions of the

151

5 Context Description and Design

current solution are hinted at here while picked up again later in
the outlook given in chapter 7.3.

The Horus method incorporates practices to support a business
process over its whole life cycle. With the �rst idea, over the design,
the implementation, and the ongoing execution, di�erent models
and actions are proposed to support each step [Sch+11].

On the top level, the Horus method consists of four phases that
are further shown in Figure 5.1:

1. Preparation: The phase of preparation includes identifying
the organization’s parts which will be examined, the budget
allocation, the de�nition of a time frame, and the description
of the project goals.

2. Strategy and architecture: The modeling of the business
process, business objects, and organizational structures is the
primary task of this phase to set up a �tting strategy and
architecture.

3. Business process analysis: The simulation and analysis
of the previously modeled concepts is part of the business
process analysis. The analysis focuses on di�erent so-called
"responsibilities" and includes the analysis of (organizational)
structures, procedures, risks, and key �gures.

4. Model usage: Beyond the documentation and modeling of
the business processes, the model usage phase focuses on
the process implementation, process execution, and process
evolution.

152

5.1 Horus Method

Figure 5.1: Horus Method Phases. Source: based on [Sch+11,
p.62].

The Horus Business Modeler focuses on the implementation of
the relevant models used in the Horus method. It provides means
for systematic business process engineering, including the design,
analysis, optimization, and documentation of business activities
[Sch+11]. Additionally, social features enable the tool to be used as
a Social BPM platform. Incorporating a set of features and models
shown in Figure 5.2, the tool is based on three main components:

1. Procedure models are used to represent business process
models in the form of a specialization of Petri nets based on
the utilization of XML as a data structure. They allow for a
structured visualization of business activities and correspond-

153

5 Context Description and Design

Figure 5.2: Horus Perspectives. Source: based on [Sch+11, p.28].

ing object �ows. To deal with the complexity of the numerous
business activities included in an organization process land-
scape, the Horus Business Modeler enables the re�nement of
tasks in more detailed sub-models [Sch+11].

2. Object models represent the objects used in the actual busi-
ness process and the corresponding process model. They
carry information about the used objects and their relation-
ships between each other as well as their connection to the
business activities.

3. As a result of the process models and their associated object
models a process-oriented organization structure can be
derived and modeled as well. Additional models are provided
and can be used to represent other aspects related to busi-
ness activities. For instance, it is possible to describe risks,

154

5.1 Horus Method

roles, employees, business rules, or objectives with the Horus
Business Modeler in di�erent models.

5.1.1 Horus Business Modeler
In this section, the Horus Business Modeler is introduced as a tool to
create the di�erent models used in the Horus method, includes the
Horus procedure models, which are introduced afterward together
with the signi�cant di�erences to regular Petri nets. Stated features
of this model type and the di�erences to regular Petri nets are
relevant for the later design and implementation. An example of a
Horus procedure model is shown in Figure 5.3.

Figure 5.3: Procedure Model created with the HBM.

The Horus software GmbH, the associated Horus method, and as
subsequently the Horus Business Modeler, was established based
on a cooperation of the Institute of Applied Informatics and Formal
Description Methods (AIFB), the Research Center for Information
Technology (FZI), which are both parts of the Karlsruhe Institute
of Technology (KIT), and the PROMATIS software GmbH [Sch+11].

155

5 Context Description and Design

Seeing knowledge as one of the major drivers of competitive ad-
vantages and sustainability, the capability of modeling tools to
support the acquisition and the value-adding use of knowledge is
an important quality criterion for the Horus Business Modeler1.
With these requirements in mind, the Horus Business Modeler was
created as a tool to support the whole life cycle of processes and
their process models. The promotion of participation and inter-
action of members of the entire business community in business
process modeling activities was one of the core intentions behind
the development [Sch+11]. The later introduced features of Social
BPM enable the exchange of knowledge and experience within a
community by utilizing modern capabilities of collaboration and
communication [PV14; PV13]. Participants in such Social BPM com-
munities can exchange, discuss, and analyze process models within
the social network. Furthermore, Social BPM also provides incen-
tives and support for implementing and executing the business
processes by involving the di�erent process stakeholders and the
individual process users to participate in the process development.
This technology-driven communication and collaboration not only
utilize the individual and shared knowledge about the �eld of appli-
cation to improve the business process but also familiarizes them
with alterations of the process to improve the changeability of the
organization2. Other extensions that are the result of the coopera-
tion between PROMATIS, Horus and di�erent universities include
the integration of a gami�cation module to enhance participation
1 See http://www.horus.biz/�leadmin/horus/community/wiki/en/about_horus.

Last accessed: 08.12.2020. Last accessed: 08.12.2020.
2 See http://www.horus.biz/�leadmin/horus/community/wiki/en/social_bpm.

Last accessed: 08.12.2020. Last accessed: 08.12.2020.

156

http://www.horus.biz/fileadmin/horus/community/wiki/en/about_horus
http://www.horus.biz/fileadmin/horus/community/wiki/en/social_bpm

5.2 Concept

and training of users [P�18], a mobile version of the modeling tool
that is location and platform independent [Alp+14] or the use of
the Horus Method to establish a meta modeling platform [Fil+13].

5.1.2 Horus Procedure Models
Horus procedure models are one type of model that can be created
with the Horus Business Modeler. They are based on Petri nets, use
the same elements but are enriched over di�erent extensions. One
of these includes connecting to other models used in the Horus
method, such as data models, role models, organizational charts, or
models representing the system landscape. Roles, organizational
units, and objects are attached to the model’s activities and objects
to provide additional information and reference to the other models.
Another signi�cant extension includes the use of types of activities.
Activities can be regular or extended with exclusive inputs and
outputs. Next to the typical representation of exclusive choices
in Petri nets, as shown in Figure 5.4, the extension of activities
enables the distinction between active choices over the extensions
and passive choices over the use over the regular Petri net pattern.
An example of the representation of active choices and the use of
the extension of activities in the Horus procedure models is shown
in Figure 5.5.

5.2 Concept
This section depicts the concept of the transformation approach.
First, the objectives of the transformation approach are de�ned.

157

5 Context Description and Design

Figure 5.4: Exclusive Choices in a traditional Petri Net. Source:
based on [LVD09].

Figure 5.5: Exclusive Choices in a Horus Procedure Model.

Second, an overview of the used methods and techniques is given.
Third, the idea behind the ontology-based reference point for in-
corporating contextual knowledge in the model adjustment step
is explained. Lastly, the individual steps of the transformation ap-
proach are described.

The concept considers and builds on existing related works, espe-
cially those providing solutions for the individual problems, such as
the coreference and anaphora resolution or use of patterns and tem-
plates described by Friedrich, Mendling, and Puhlmann [FMP11].

Figure 5.6 shows an exemplary textual description and the corre-
sponding Horus procedure model. Both will be used together with
potentially related processes, such as, e.g., a subsequent production
or sales process, in the following to support the explanation of the
transformation steps. The process shown revolves around the check

158

5.2 Concept

of a lead. A lead activity is �rst received via email and then further
checked. If the lead shows recent activities, it is quali�ed for further
processing. Otherwise, it is disquali�ed.

Figure 5.6: Running Example based on the Introduction.

This approach is organized in several steps that are further ex-
plained in Section 5.2.4, where the di�erent features are used to
provide the desired artifact required for further processing. The
individual steps are visualized in Figure 5.7. A plain text is pre-
processed with the help of linguistic analysis, and information is
annotated. Following this, a set of subordinate clauses and relevant
phrases are extracted together with their linguistic features. Then
the extracted features are mapped onto the set of elements used in
Horus procedure models. Lastly, the created model is enriched and
adjusted with contextual knowledge residing in a knowledge base.

159

5 Context Description and Design

Fi
gu

re
5.

7:
Pr

oc
es

s
St

ep
s

of
th

e
Tr

an
sf

or
m

at
io

n
A

pp
ro

ac
h.

160

5.2 Concept

5.2.1 Objectives
This approach aims at three earlier introduced goals, which serve
as objectives for the conceptual de�nition of the transformation
process and the implementation of a proof of concept. While the au-
tomation of the transformation between texts and process models is
the primary goal, a positive impact on the quality of created and ad-
justed process models focusing on their semantic aspects is another
intended outcome. Additionally, the approach is expected to o�er
insights about process modeling that can support inexperienced
process modelers.

Automation

This work’s main objective is to explore, explain, and provide an
automated transformation of natural language texts into process
models. The automation of di�erent steps to create a process model
based on a text should, in consequence, reduce the required manual
e�ort, expertise, and time that have to be put into the creation of a
process model. As previously stated, a fully automated approach
is challenging to achieve. The best-case scenario would require
minimal manual interaction, such as just the manual provision
of a text. As this is the highest possible achievement, working
towards it requires some initial work to focus on distinct and smaller
parts of the wanted solution. Thus, di�erent steps are performed to
approach the problem and the intended solution.

First of all, the scope of the process has to be de�ned to clarify
which speci�c parts of modeling a process are to automate. Sec-
ond, the di�erent process steps and included sub-tasks have to be

161

5 Context Description and Design

identi�ed to structure the problem and search for suitable solutions.
Third, the individual sub-tasks have to be grouped and their priority
de�ned based on the impact of possible automation to the modeling
process.

In this approach, the lack of available and labeled data leads to a
rule-based approach, which would be di�erent if a more extensive
set of labeled data would be available or feasible to create. In such
a case, techniques and methods from the �eld of Machine Learning
could be applied.

The approach o�ers the automation of di�erent essential steps
in the transformation process. These steps are described on a con-
ceptual level and, �rst, implemented in modules independent of
each other. Second, they are combined to reduce human interaction
between the processing steps further.

�ality

Related to the automation of the modeling process, this approach
addresses the quality of process models. With the automatic trans-
formation based on de�ned patterns and rules, the consistency and
quality of the produced model are supposed to be ensured or even
increased compared to manually created models. Furthermore, the
automatic creation of process models should avoid behaviors that
lead to manually created process models with low syntactic quality
expressed in metrics and their measurements seen in Table 2.2.
Process model quality is addressed especially on the syntactic level
over the automation feature and on the semantic level over the
use of contextual knowledge over a reference point to adjust them
manually or automatically created process models accordingly.

162

5.2 Concept

Additionally, the earlier introduced guidelines and an established
understanding for process descriptions, together with de�ned rules
in creating process models, help establish and ensure desired char-
acteristics of the models leading to a higher quality of expression.

Based on the assumption that using a common way of modeling
processes supports the understanding and exchange of information
represented in the models, this elevates the semantic quality of a
process in the context it is located in. The use of the reference point
to access positive examples of process models and their correspond-
ing description provides expectations and points of orientation
when it comes to the wanted level of quality. Quality is thus un-
derstood as completeness, correctness, and consistency with other
related models.

Training

A transparent transformation approach that de�nes and explains
required inputs, performed processing, and the resulting output
provides a suitable foundation for inexperienced process modelers
to enhance their understanding of process modeling.

The means to acquire a process model or its parts from textual
input and being able to retrace model elements back to the cor-
responding text parts clearly show the connection between both
artifacts and how to represent the content both ways.

Consequently, the idea of process modeling over textual descrip-
tions that are automatically transformed into process models can
support the learning process of a user if su�cient transparency
and explanations are provided. Potential support of training can
be provided by communicating and teaching an understanding of

163

5 Context Description and Design

process-oriented thinking and establishing the connection between
model, represented knowledge and knowledge management in an
organization.

Beyond the transformation process, this approach can contribute
to existing approaches, such as Gami�cation of Business Process
Modeling. One approach by P�anzl [P�18] focused on the evalua-
tion of the syntactic quality of Horus procedure models to measure
progress and calculate rewards. Rewards were intended to increase
motivation and participation among the users and provide feedback
about the created process model. This direct feedback provided
an opportunity to understand and train process modeling. Extend-
ing this approach by providing means to make statements about
the semantic quality of process models or recommendations about
their elements can lead to a more extensive evaluation and add to
the gami�ed experience and its impact on training inexperienced
process modelers.

5.2.2 Methods and Techniques
This subsection provides an overview of the methods and tech-
niques used in the transformation, especially from the �eld of NLP,
and their connection to the single transformation steps. Later, these
are realized either by own implementations or by already existing
solutions that are integrated and, if necessary, adjusted.

A broad set of text analysis and processing methods and tech-
niques that are partly implemented are combined in the transforma-
tion approach. The implementation of a prototype is done in Python.
The packages and libraries used are either available in Python or, in
the case of the StanfordCoreNLP module, o�er interfaces and can

164

5.2 Concept

be invoked externally. The tools used show some overlap in their
NLP techniques. Techniques are selected based on their �tness for
the de�ned solution approach to keep the implementation e�ort
for a prototype low initially. The features are selected from the
portfolio of functionalities mainly o�ered by NLTK [LB02], spaCy3

and Stanford NLP [DMM08].
Before taking a closer look at our transformation approach, the

idea of using a concept map as a reference point for facilitating
model transformation in 5.2.3 is introduced. The six steps of the
transformation approach are then explained in 5.2.4. This approach
involves the task of processing the input text, such as tokenization
of the text, splitting into sentences, extraction of model relevant
text elements and structures, as well as annotation of dependencies,
syntactical structures, and co-references.

5.2.3 Reference Point to Contextual Knowledge
Base

A reference point generated from positive examples that already
reside in a knowledge base is used in the last step, the Model Ad-
justment. The reference point in the adjustment part enables the
described approach to include implicit information that cannot be
extracted from the textual description directly. Positive examples
include textual descriptions of processes and their corresponding
process model.

Even though knowledge is already transformed into the represen-
tation of process models, the existing knowledge assessed over the

3 See https://spacy.io/. Last accessed: 08.12.2020.

165

https://spacy.io/

5 Context Description and Design

referenced point has to be provided in a structured and organized
way that combines insights from all the available process models.
Di�erent techniques can be used to assess all available positive
examples and lever the knowledge residing in the process models.

In this context, common techniques are mind maps, knowledge
graphs, knowledge maps, concept maps, and ontologies. While
mind maps, knowledge graphs, and knowledge graphs are some-
what less structured formats, concept maps and ontologies o�er
a more structured view of the represented knowledge. The three
considered forms of representations are knowledge graphs, concept
maps, and ontologies. They are brie�y explained in the following,
and signi�cant di�erences between them are pointed out with a
small recap regarding knowledge bases beforehand.

One general decision revolves around the underlying approach
of representing knowledge. Here, a graph-based approach and two
map-based approaches are investigated. While graph-based ap-
proaches focus almost solely on data, maps also consider the sur-
rounding environment, e.g., people and applications. Graphs are
often used to improve the search for and retrieval of information.
In contrast, maps are used to deal with extensive knowledge bases
and uncover and present the relationships between the included
entities. Constructs such as these can support process modelers or
designers in understanding and analyzing complex processes by
identifying re-usable parts or generalizing content, e.g., reference
processes [Gre+04].

Furthermore, organizing and structuring available information
and knowledge about existing processes and their corresponding
models can serve as a foundation to further solutions, such as

166

5.2 Concept

recommender systems that support the process modeler during the
modeling process [KHO11].

The comparability and interoperability of business process mod-
els at a semantic level are of relevance in this context. To achieve
this, the approach by Hö�erer [Höf07] refers to the concepts of
ontologies and meta-models and introduces a combination of both
to achieve interoperability between business process models.

However, the di�erent ways of representing knowledge are not
exclusive and may �nd application in a combination. For instance, a
knowledge graph can be seen as the result of an applied ontology4.
In the following, methods to structure, organize and represent
knowledge that were partly already introduced in Chapter 2, are
described in the context of the here intended automated model
creation that leverages bene�ts from an existing set of positive and
approved examples of models.

Knowledge Base

As explained earlier in Section 2.4.1, a knowledge base is a struc-
tured and organized collection of information. It follows a fact-
oriented design, while in comparison, an ontology is rather schema-
oriented. The focus lies on the description of the content, with the
highest possible expressiveness. An ontology as a counterpart is on
the other side, focusing on the concepts behind the content, their
interrelations, and attributes.

Managing knowledge residing in knowledge bases often already
makes use of templates and standards to establish the ability to share
4 See enterprise-knowledge.com/whats-the-di�erence-between-an-ontology-

and-a-knowledge-graph/. Last accessed: 08.12.2020.

167

enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/
enterprise-knowledge.com/whats-the-difference-between-an-ontology-and-a-knowledge-graph/

5 Context Description and Design

and re-use the knowledge [NHLT17]. Such templates, or also often
referred to as patterns, can be extracted from existing structural
representation forms of the content, such as process models [KR15].

Ontology

An ontology is considered "a list of concepts and categories in a
subject area that shows the relationships between them"5. It includes
the representation, naming, and de�nition of these concepts and
categories, their properties and relationships between them.

Ontologies include the description of the semantics of informa-
tion and sources and are a key component in the integration of
information as a resource [NCL06]. However, creating and main-
taining ontologies is a time-consuming and challenging task. To
facilitate the use of ontologies, the extraction of information from
other sources is supported through structured and machine un-
derstandable representation formats, such as the Web Ontology
Language (OWL)6.

OWL is a representation form and format to capture and store
ontologies. Especially in the transformation of ontologies into other
representations forms, OWL can help with its structured format.
Graudina and Grundspenkis describe the use of OWL in the context
of creating concept maps based on ontologies. Both represent a
certain domain and use classes, concepts, and the relations between
them. In addition to concept maps, ontologies express additional
information over attributes for classes and their values [GG08].
5 See https://www.oxfordlearnersdictionaries.com/de�nition/english/ontology.

Last accessed: 08.12.2020.
6 See https://www.w3.org/OWL/. Last accessed: 08.12.2020.

168

https://www.oxfordlearnersdictionaries.com/definition/english/ontology
https://www.w3.org/OWL/

5.2 Concept

An ontology resembles, in many ways, a database schema, as
they share fundamental similarities. However, and even though
signi�cant similarities exist, they are two di�erent forms of repre-
senting speci�c content in a formal and structured way, aiming at
di�erent purposes. On the one side, an ontology aims to capture
the investigated domain’s meaning and understanding. A database
schema de�nes the structure by using a formal language [Usc15],
on the other side. The use and combination of both can occur to
assess the domain at hand unmitigated and establish a structured
provision of the contents together with insights about the meaning
they carry.

Furthermore, ontologies �nd application in di�erent �elds, such
as the here relevant topic of NLP. An approach by Körner and
Gelhausen [KG08] describes how to use ontologies in the process of
requirements speci�cation instead of natural language texts. They
propose the use of ontologies to recommend missing elements in
the requirements speci�cation and thus reduce shortcomings of the
process, such as ambiguity.

Ontologies are often used in the creation of knowledge manage-
ment systems. They serve as structural elements in these systems
to establish common grounds to facilitate knowledge creation and
sharing, e.g., through enhanced querying of semantic associations
[FCMP03]. In contrast to, e.g., data models that depict knowledge in
a similar fashion, ontologies are relatively independent from their
speci�c application and consist of rather general knowledge.

An example of an ontology representing content from the domain
of healthcare is shown in Figure 5.8.

169

5 Context Description and Design

Figure 5.8: Example of an Ontology for the Healthcare Domain.
Source: based on [Toc+07].

Concept Map

Concept maps are a widely applied way of representing knowledge
and inherent relationships in a graphical and logical connected
way and can especially be found in the educational context [Nov91;
Nov95; NC06]. They are used in the educational context, e.g., for
topics such as adaptive knowledge assessment to assess each stu-
dent’s individual skills and knowledge level instead of lectures and

170

5.2 Concept

exams. The assessment with the help of concept maps enables an
individual view on the single student [AGG07].

Concept maps consist of concepts understood as regularities
observed in events or objects and their relationships to each other
[NC06]. Concepts are part of a hierarchical structure that places
the most general concepts on the top of the map. Below, all other
concepts correspond to their degree of speci�city. Two distinct
features are essential to concept maps: The mentioned hierarchical
structure and the capability to create queries to search for content
and create entirely new links between concepts.

They can thus be of help in the teaching and learning environ-
ment. However, the construction and maintenance of these is often
performed manually and, consequently, a time-consuming task for
lecturers and teachers. The feasibility of their manual use is there-
fore questionable [ANGS11]. An automated creation would solve
this problem, but this again is a time-consuming and challenging
task to implement a corresponding system.

In another example investigated by Cañas et al. [Cañ+04], con-
cept maps are used as an approach to establish an environment
facilitating the creation and sharing of a common understanding.
Experiments show, however, that the assistance provided to the
user is not signi�cant, and the e�ect of the use of concept maps
has to be assessed and analyzed further to identify circumstances
under which bene�ts can arise.

Concept maps themselves can occur in di�erent types following
di�erent purposes. Thus, they can be linear, circular, a hub or spoke,
a tree or a network [Yin+05].

An example of a concept map showing the key features of con-
cept maps is shown in Figure 5.9. The hierarchical structure and

171

5 Context Description and Design

relationships are clearly visible and show the di�erence to, e.g., the
earlier shown ontology.

Figure 5.9: A Concept Map showing the Key Features of Concept
Maps. Source: based on [NC06].

Knowledge Graph

A knowledge graph describes real-world entities and their relations
to a particular topic or domain. It includes classes and relation-
ships between the individual entities following a schema [Pau17].
Knowledge graphs are based on the graph notation but follow a
relatively free form of semantics, which provides fewer constraints
and less rules compared to other representation forms, such as an
ontology [EW16].

172

5.2 Concept

In comparison to knowledge maps, knowledge graphs focus on
the data at hand rather than the involved actors and their relation-
ships. They are seen as essential to improving search and adding
intelligence to applications and systems, such as chatbots or content-
based systems. At the same time, knowledge maps are focused on
identifying and representing knowledge and its related knowledge
carriers7.

An example of a knowledge graph can be found in the lexical
database of WordNet8, whose contents are structured using a knowl-
edge graph. Figure 5.10 shows a simpli�ed case of a knowledge
graph that shows di�erent entities and their interrelations.

From another viewpoint, one can consider that a knowledge
graph is one possible way an ontology could be represented. An
ontology usually deals with concepts, not instances of concepts.
It incorporates meta-data and the concepts behind the content,
whereas a knowledge graph focuses on the data itself. Using an
ontology to represent the mentioned metadata and populating it
with dynamic facts using a knowledge graph can be a side-by-side
collaborative solution.

Ontology-inspired Reference Point

The individual building blocks of the reference point mentioned
before are connected, and the realization, as part of the transforma-
tion approach, is explained in the following. The reference point
in this approach is realized through an underlying ontology from
7 See http://knowledgemanagementdepot.com/2019/05/31/knowledge-graphs-

vs-knowledge-maps/. Last accessed: 08.12.2020.
8 See https://wordnet.princeton.edu/. Last accessed: 08.12.2020.

173

http://knowledgemanagementdepot.com/2019/05/31/knowledge-graphs-vs-knowledge-maps/
http://knowledgemanagementdepot.com/2019/05/31/knowledge-graphs-vs-knowledge-maps/
https://wordnet.princeton.edu/

5 Context Description and Design

Figure 5.10: Example of a Knowledge Graph. Source: based
on h�ps://www.ontotext.com/knowledgehub/
fundamentals/what-is-a-knowledge-graph/.

which knowledge graphs are generated incorporating information
of di�erent instances that are represented by the individual process
models. The reference point’s three main building blocks are an
ontology, knowledge graph(s), and instances, respectively.
Ontology Backbone: As the underlying representation of the

content that resides in the knowledge base, an ontology is chosen.
As for now, an ontology with the features described earlier and
shown in Figure 5.8 can express more information than actually
required in the current approach.

The ontology’s purpose can be compared to a database schema or
Entity–relationship model (ERM). It is primarily used to describe the

174

https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/

5.2 Concept

relationship between the data present in this scenario. Additionally
to a database schema or an ERM, an ontology provides information
about the meaning of the described object.

The use of an ontology leads to a generalized representation
on a conceptual or meta-level. In consequence, this design choice
is made with the Horus method in mind. As introduced earlier,
the Horus method does not only include process or procedure
models. However, it uses di�erent kinds of models to represent the
di�erent aspects of a process during its life cycle. Thus, keeping
the underlying structure abstract enables integrating other model
types, such as data models, as part of possible future extensions.

Figure 5.11 shows a simpli�ed example of the ontology in the
context of this work. It describes the relationship between the in-
dividual model elements as entities in the ontology similar to a
meta-model. The high level depiction and abstraction enables pos-
sible future extension to other model types and the relationship
between their common entities. The individual entities are repre-
sented by di�erent shapes and labeled accordingly. The elements
of the shown example are:

� Square with sharp edges - Process Description

� Square with round edges - Model

� Circle - Activity

� Pentagon - Object (Input or Output)

� Hexagon - Actor

175

5 Context Description and Design

Figure 5.11: Ontology-based Schema of the Knowledge Base.

Knowledge Graph(s): The actual representation of real data
described over the ontology is realized through knowledge graphs.

The ontology can be represented through one comprehensive
knowledge graph, but more likely will be focused on di�erent
graphs that, e.g., incorporate a subset of the ontology, to focus
on a particular perspective, scope, or problem. Additionally, the
knowledge graph can be seen as a combination of all incorporated
instances and process models. Thus, it can also be disconnected,
which would lead to multiple graphs.

Regarding future extensions, knowledge graphs can include in-
formation that might not be found in the related instances. As
instances can represent the di�erent models used in the Horus

176

5.2 Concept

method, they also use a di�erent subset of the concepts represented
in the underlying ontology.

An example of a knowledge graph based on a small knowledge
base is shown in Figure 5.12. Not only does it describe the relation-
ship at the conceptual level but, in comparison to the underlying
ontology, incorporates the speci�c data, e.g., all activities instead
of just the concept of an activity.

Instances: While knowledge graphs represent a combination
and summary of real data based on the structural de�nitions from
the ontology, Instances are individual and real occurrences of a
combination of the information of a knowledge graph. Two possible
instances of the knowledge graph from Figure 5.12 are shown in
Figure 5.13 and Figure 5.14. Both �gures can be understood as a
speci�c process model residing in the knowledge base, while the
previous knowledge graph can be understood as a combination of
both.

Information Extraction

Based on the created and used ontology-inspired background, the
knowledge graph(s), and the instances, information is extracted
and used to adjust and enhance the corresponding process model.
For the process model and the related textual descriptions, informa-
tion about three main adjustment options are extracted, which are
described next. The options are addressed in the model adjustment
step and can either be applied to an existing model or the model
generated from text. First, the adjustments focus on the existing el-
ements that may have to be changed. Second, elements that are not
present in the model but should, be based on the related knowledge

177

5 Context Description and Design

Fi
gu

re
5.

12
:E

xa
m

pl
e

of
a

K
no

w
le

dg
e

G
ra

ph
ba

se
d

on
Fi

gu
re

5.
11

.

178

5.2 Concept

Fi
gu

re
5.

13
:O

ne
In

st
an

ce
of

th
e

K
no

w
le

dg
e

G
ra

ph
sh

ow
n

in
Fi

gu
re

5.
12

.

179

5 Context Description and Design

Fi
gu

r e
5.

14
:S

ec
on

d
In

st
an

ce
of

th
e

K
no

w
le

dg
e

G
ra

ph
sh

ow
n

in
Fi

gu
re

5.
12

.

180

5.2 Concept

graph and instances, are integrated into the model as far as possible.
Third, elements that are not identi�ed in the reference point, but
are part of the investigated process mode have to be handled as
well.

Adjusting the Existing Elements
The di�erent relationships between the elements used in a Horus
procedure model are analyzed with the help of a subset of the
ontology, corresponding knowledge graphs, and their instances to
adjust the model and the already included elements.

1. The relationship between the Activity and Objects: To
identify patterns based on the relation between verbs as in-
dicators for activities and their related objects as input and
output, the relationship between activities and objects is ana-
lyzed. The connections between activities and inputs as well
as activities and outputs detail for each activity the related
objects required.
This assignment enables identifying an activity’s input and
its output from the relevant knowledge graph either if there
is an object given and its purpose is not clearly stated or if
no object is associated with the activity and has thus to be
identi�ed.
For instance, a model part that is created based on the simple
description of "The accountant prepares the invoice" will be
transformed into an activity "Prepare Invoice" with the input
"Invoice to prepare" and output "Invoice".
Under the assumption that one instance of the creation of
an invoice was already modeled in previous projects and is

181

5 Context Description and Design

part of the knowledge base, insights about the model and the
description at hand can be gained from this reference. Let
the model in the knowledge base consist of the same activity
and output but with the input "Product List".
Now, the recently from text generated model can be adjusted
based on this information. It can be derived that the input of
"Invoice to prepare" as an implicitly generated input can be
replaced with the input "Product List".

2. The relationship betweenActivities andActors:To iden-
tify patterns based on the relationships between roles and
performed actions, an analysis of the relationship between
nouns and verbs is performed. In the knowledge graph, the
relation between activities and roles details for each role
the activities performed. This way, the reference point can
provide information about who performs which activity.
Since the knowledge graph is a collection of knowledge resid-
ing in the knowledge base in form of an ontology, multiple
actors might be identi�ed for an activity. In such a case and
the current version of this approach, the actor and related
activity from the adjusted model are not compared towards
one possible solution. However, rather it is ensured that this
pair is part of a set of pairs found in the knowledge graph.
However, this leaves room for ambiguity, as not one answer
is provided, and no statement is made about which element
of the subset �ts with the analyzed pair of actor and activity.
Considering the previously described example and the model
consisting of an activity "Prepare Invoice" and corresponding

182

5.2 Concept

inputs and outputs. The reference to a related model and
activity in the knowledge base can provide additional infor-
mation about the acting entity. Hence and in this example,
the model stored in the knowledge base has a role attached
to the activity "Prepare Invoice". Consequently, the model at
hand that is processed in the model adjustment step can now
be extended by the role attached to the activity and thus en-
riched with additional information that can be acquired from
information residing in the knowledge base.

3. The relationship between Activities: To identify the con-
trol �ow and the interrelations between the single activities,
the existing instances are analyzed and found structures and
patterns are compared with the provided process model. To
identify patterns in the relationships between activities, the
relationship between activities in texts is investigated. The
relation between activities can be extracted from the knowl-
edge graph and speci�es for each activity the related activities
that are either performed directly beforehand or afterward,
so that common patterns can be identi�ed.
Let there be an extension to the previously described model.
After the activity "Prepare Invoice" there is an activity "Send
Invoice" described. Next to this, the knowledge base, in this
case, includes a process model that describes a process on the
sequentially connected activities "Prepare Invoice", "Check In-
voice" and "Send Invoice". This knowledge base entry indicates
an extension of the model that is adjusted.

183

5 Context Description and Design

The activity "Check Invoice" has now to be inserted in between
the other two activities based on the corresponding entry
from the knowledge base.
However, it still can be the case that the new model described
a process where the activity "Check Invoice" does not happen.
An adjustment of this type is thus to be treated with caution
and requires a human decision to decide for or against the
proposed adjustment.

Enrichment of the Existing Model by Additional Elements
The enrichment of the existing model and extension by additional
elements is based on the analysis of the model’s control �ow and
how the control �ow is described in the knowledge graph and
its instances. A comparison leads to the identi�cation of possible
missing �ows and elements.

Based on the FollowedBy-relationships, activity sequences are
compared, and missing elements are identi�ed. Based on the sim-
ilarity, the missing elements are then either added to the model
or, in case of low similarity and the subsequent assumption that
the created model is of a di�erent kind than the information it is
compared to, the missing elements are ignored.

Reduction of the Existing Model by removing Elements
In some cases, model elements might be removed from the created
model. On the one side, this scenario can occur in the case of dis-
connected model parts and in the case of parts that are not relevant
and do not belong to the process described. On the other side, ele-
ments might not be relevant to mention or should be mentioned as

184

5.2 Concept

a combination with other elements, such as, e.g., two activities that
are in sequence, might be generally described as one activity.

Another scenario in which model elements might get removed
includes the handling of duplicates. While creating the model man-
ually or with this approach in a semi-automated way, di�erences
in the labels or naming of activities, objects, and roles can lead to
elements that have the same meaning but cannot be identi�ed as
such due to inconsistent descriptions.

Assuming an example in the form of the following description
may not be considered a good or precise description in general,
but can occur: A new order is registered. The recent order is then
processed.

In the example, the new order and the recent order refer to the
same object. This matching can be identi�ed over synonym de-
tection but can also be identi�ed as two distinct objects, as word
compositions increase the complexity to compare two terms to-
wards their similarity. Nevertheless, identifying such overlap is
important and should lead to removing one object or merging both
objects, respectively.

Even though the acquired information about the process model’s
domain serves as a positive reference, it cannot be considered a
single point of truth. In case a process model for a completely new
process and sub-�eld inside the domain is created, no or few related
information will be found in the reference point. Consequently,
it would not be correct to discard the whole model since it is not
mentioned in the existing knowledge base but instead has to be
recognized as newly acquired knowledge and treated as such.

185

5 Context Description and Design

5.2.4 Transformation Approach
In this subsection, the transformation approach that is proposed
in this work is described. The di�erent steps of the approach are
explained. Required inputs, used techniques, and expected outputs
are stated. The related work introduced in Section 4.1, and the often-
used keyword- or pattern-based strategies for the identi�cation of
textual structures and corresponding model elements are combined
and adjusted for the purpose of this approach. The explanation
is focused on the conceptual level, while the implementation and
realization of the concept in the form of a proof of concept are
described in Chapter 6. The transformation approach is organized
in �ve parts, shown in Figure 5.7, that include di�erent smaller
steps that come with individual tasks to solve. The �ve parts are:

Text Pre-Processing

Before analyzing and transforming the textual input, some process-
ing steps have to be performed to adjust the input in a suitable
format for the next steps. While texts are often provided with
some additional meta-data, such as headings or bullet points, this
approach focuses solely on the plain text itself. Any structural el-
ements should be removed beforehand, such as, e.g., headings or
bullet points.

After this, the process continues with the plain text reassembling
the input from Fig. 5.6 without any meta or structural information.

"While Marc prepares the invoice, Laura collects all the
products. She then packs the products together with the
invoice for delivery."

186

5.2 Concept

To enable the initial preparation, the additional required infor-
mation is annotated to the text with the help of existing techniques,
such as POS-tagging and syntax trees. This information will further
help the upcoming steps of Linguistic Feature Extraction and Model
Element Mapping.

Beginning with operations on the whole textual input, corefer-
ences and anaphoras are replaced with the help of StanfordNLPs
coreference annotator. With the annotation, referenced pronouns
are identi�ed, such as he, she, him, or her, and replace them with
the entity they refer to. In our example, the "She" from the second
sentence is replaced with the entity "Laura" it refers to.

"While Marc prepares the invoice, Laura collects all the
products. Laura then packs the products together with
the invoice for delivery."

In the next step, the text is split into sentences. The single sen-
tences are then analyzed to identify the main and subordinate
clauses in the respective sentences. Each sentence (S) and subordi-
nate clauses (SBAR) with no further nested sentences or subordinate
clauses are extracted. The syntax tree used for splitting the �rst
sentence of our example is shown in Fig. 5.15.

Linguistic Feature Extraction

In the Linguistic Feature Extraction all the linguistic features re-
quired for the later steps of mapping and generating, such as key-
words and grammatical structures, are extracted. These structures
include:

187

5 Context Description and Design

Figure 5.15: Syntax Tree of the Example Sentence.

Subject-Verb-Object Tuples: For every sentence and phrase
the Subject, Verb, Object (SVO)-tuple is identi�ed over the corre-
sponding POS-tags and their dependencies. Subjects commonly
represent the actor in a sentence and are seen as representations of
the role attached to the related activities. Activities are identi�ed
over the verbs that describe the actions performed. The object or
multiple objects of a sentence represent the object that is processed
in or is the result of an activity. In case passive voice is used in the
textual description, the subject of that sentence is taking on the
role of the object in the corresponding model part. The subject in
the tuple remains empty in this case. This is important for the later
mapping of these tuples to the set of model elements.

188

5.2 Concept

Additionally, the identi�ed verbs are categorized in pre-de�ned
sets of "creating"-verbs and "processing"-verbs to de�ne inputs and
outputs with higher precision. This categorization is especially
relevant if no further objects are de�ned over additional clauses in
the relevant sentence(s) and if the main object of the core sentence
is either an input or output of the described activity.

Figure 5.16 shows an example of the transformation of the sen-
tence "The table is assembled.", including the "creating" verb "assem-
ble", while Figure 5.17 shows an example based on the sentence "We
send the invoice.", including the "processing" verb "send".

Figure 5.16: Inputs and Outputs based on a "creating" Verb.

Figure 5.17: Inputs and Outputs based on a "processing" Verb.

The core sentence and subordinate clauses: Identi�cation
of the main sentence, e.g., as mentioned over a syntax tree and
the constituency label "S" for sentence and the identi�cation of
subordinate clauses, e.g., indicated through the constituency label
"SBAR".

189

5 Context Description and Design

Subordinate clauses are categorized di�erently in literature. At
this stage, a sub-set of subordinate clauses is considered that con-
tains the following clauses:

� Relative clauses: A subordinate clause that is dependent on
another part of a sentence can be expressed through a relative
clause. This clause o�ers information about the relationship
between the di�erent sentences and corresponding model
parts, especially between activities and objects. The identi-
�cation and interpretation of relative clauses are similar to
the other clauses dependent on keywords. For instance, the
words that, which and who hint to an activity or objects that
are connected to the related main sentence and the there
described model part. An example of a relative clause in a
process description would be:
"An accountant approves a payment, that was received."

� Adverbial clauses: Adverbial clauses are a linguistic construct
that holds information about the sequence of the described
process parts. These clauses often add additional information
about the time, place, cause, or purpose of the aspect they
refer to. The di�erent types of information inherent to the
clause are classi�ed with the help of a set of keywords, such
as, e.g., the word before is used to describe the sequence or
the word because is used to describe a condition and thus a
possible split into two branches of the process. An example
of an adverbial clause in a process description would be:
"Before the package is sent, it has to be checked for completion."

190

5.2 Concept

Instead of whole phrases and adverbial clauses, adverbial
modi�ers are single, individual words used to describe the
control �ow of the model parts. These modi�ers are com-
monly used to indicate if a process step is performed before
or after the previously in the description mentioned process.
The keyword before mentioned before that can occur in adver-
bial clauses can in some cases also be used without a further
phrase and thus is understood as a particular keyword with-
out further information about additional elements relevant
for the process. An example of an adverbial modi�er in a
process description would be:
"Afterwards, the logistic department delivers the package."

� Conditional clauses: One of the linguistic constructs used to
identify elements and especially patterns of the described
models are conditional clauses. They are grammatically part
of the adverbial clauses and describe a condition but are
investigated separately due to their descriptions of speci�c
model patterns, namely exclusive choices. An example of a
conditional clause in a process description would be:
"If all products are collected, the warehouse clerk prepares the
package for the delivery."

Prepositional Phrases: These are not considered clauses, but
are similar to verb- or noun-phrases indicated and labeled in the
syntax tree. They often serve as indicators of additional information
about objects in a model, such as the distinct description of inputs
and outputs. They are thus relevant for the creation of activities’

191

5 Context Description and Design

objects. They are extracted over the syntax tree, and objects refer-
enced in the phrase are combined with the referenced verb into a
tuple. The SVO-tuples and PP-tuples are then further merged based
on their syntactical dependencies.

Not all possible linguistic features get extracted, but only the ones
that are in this approach de�ned to be relevant for the mapping
to model elements. Expressions that are not relevant to the later
process model are not extracted and investigated further. Such non-
relevant information and features include, e.g., emotional analysis
or topic modeling via NLP.

The feature list used here is not considered complete and within
the highest degree of detail. Future extensions and further di�er-
entiation between model elements, patterns, and structures might
require further and a more detailed analysis of the linguistic features.
The features were selected based on this project’s requirements
for the described transformation from text into a Horus procedure
model.

Model Element and Pa�ern Mapping

After extracting the linguistic features from the prepared textual
input and providing them in a structured format, a mapping of the
di�erent textual parts and elements of the intended model must be
established. The intended model to create is a specialized Petri net,
a Horus procedure model. This type of model consists of objects,
activities, roles or actors, gateways, e.g., XOR-Input, XOR-Output,
and connections, or the so-called control �ow.

To establish a connection between the linguistic features and
named model elements and structures, rules de�ne how each lin-

192

5.2 Concept

guistic aspect relates to its model counterpart. At this stage, a
rule-based approach provides a relatively static solution. However,
the lack of labeled data in the form of "process description - process
model"-pairs makes the option to train, e.g., a model for classi�ca-
tion, not feasible. De�ning rules for the classi�cation of linguistic
features into the categories of the corresponding model elements
and patterns allows an approach without the availability of training
data.

In a possible future case, in which an extensive set of process
models and their �tting descriptions are available, texts can be la-
beled by their reference to the model part they are representing.
Based on these labeled sets of pairs, a model can be trained that
would be able to automatically map parts of the text onto model el-
ements and structures based on the existing set of labeled examples.
Similar to the previous step, the mapping is performed sentence by
sentence. Consequently, the elements extracted from the linguistic
features of each sentence can be considered parts of a sub-model
of the intended model described in the textual input.

Structures are generated based on activities and their attached
elements, such as objects and roles. The result is structured in the
format of [Activity|Input|Output|Role], and a possible, here simpli-
�ed, output would be, for instance, [Create|Product List,Customer
Data|Invoice|Accountant]. Inputs and outputs are further distin-
guished between inclusive and exclusive objects. A single input or
multiple inputs required together for the next activity are labeled
with AND, while exclusive inputs and outputs are labeled with OR.
The activity labels are generated as a combination of the verb’s
in�nitive and the related object noun. The input and output labels
are de�ned over the object name and depending on input or output

193

5 Context Description and Design

over a combination of object and verb, e.g., object to create or created
object. Splits, such as exclusive choices or parallelism, are identi�ed
using a keyword- and pattern-based approach.

The result for our sample textual input after this step is shown
in Table 5.1 and Table 5.2 on the example of two sentences that are
variations of the earlier introduced running example.

In the following, structures found in a Horus procedure model
and examples of these are shown as they are used in this approach.

Assuming that in a company products are sold, and sales orders
are received as well, the processing of these sales orders has to be
modeled. Figure 5.18 shows an example of a sequence of process
steps that are likely to be performed in a sales process. The excerpt
focuses on the structure of a sequence and does not represent the
whole extend of a possible sales process.

Figure 5.18: Example of a Sequence.

As part of a sales process, a newly received order is often pro-
cessed, and relevant data for further steps are extracted. Figure 5.19
shows an example of parallel execution of di�erent process steps
in this excerpt of a sales process. The step Processing Order leads to
the two outputs of Customer Data and Product List that initiate two
new branches of process steps.

Figure 5.20 shows the exclusive decision of following one of two
branches of process steps based on a decision that is part of the

194

5.2 Concept

Ta
bl

e
5.

1:
Ex

am
pl

e
of

id
en

ti
fie

d
M

od
el

El
em

en
ts

fr
om

th
e

fir
st

Se
nt

en
ce

.

Se
nt
en

ce

A
fte

ra
ne

w
or

de
r,

th
e

or
de

ri
sp

ro
ce

ss
ed

fo
rc

us
to

m
er

da
ta

an
d

th
e

pr
od

uc
tl

ist
.

Li
ng

ui
st
ic

Fe
at
ur

es

SV
O
s:

(-|
pr

oc
es

s|o
rd

er
)

PP
s:

(c
us

to
m

er
da

ta
,p

ro
du

ct
lis

t|p
ro

ce
ss

|o
ut

)
A
dv

C
l:

(n
ew

or
de

r|p
ro

ce
ss

|in
)

El
em

en
t(
s)

(P
ro

ce
ss

O
rd

er
|(N

ew
O

rd
er

,A
N

D)
|(C

us
to

m
er

D
at

a,A
N

D)
,(P

ro
du

ct
Li

st
,A

N
D)

|-)

195

5 Context Description and Design

T a
bl

e
5.

2:
Ex

am
pl

e
of

id
en

ti
fie

d
M

od
el

El
em

en
ts

fr
om

th
e

se
co

nd
Se

nt
en

ce
.

Se
nt
en

ce

Fr
om

th
e

cu
st

om
er

da
ta

th
e

ac
co

un
ta

nt
re

tri
ev

es
th

e
in

vo
ic

e
in

fo
rm

at
io

n.
Li
ng

ui
st
ic

Fe
at
ur

es

SV
O
s:

(a
cc

ou
nt

an
t|r

et
rie

ve
|in

vo
ic

e
in

fo
rm

at
io

n)
PP

s:
(c

us
to

m
er

da
ta

|re
tri

ev
e|i

n)
El
em

en
t(
s)

(R
et

rie
ve

In
vo

ic
e

In
fo

rm
at

io
n|

(C
us

to
m

er
D

at
a,A

N
D)

|
(In

vo
ic

e
In

fo
rm

at
io

n,
A

N
D)

|A
cc

ou
nt

an
t)

196

5.2 Concept

Figure 5.19: Example of a Parallel Split.

activity Check Lead Activity. As part of the initial example shown
in Figure 5.6, a lead is received from an email, and it is checked for
recent activities. Such activities are either identi�ed or not.

Figure 5.20: Example of an Exclusive Choice.

Figure 5.21 shows the synchronization of two previously initiated
branches of process steps. Considering a process in a later stage
of an order process, the two processes of Pick Products and Create
Invoice both have to be completed to complete an order.

Figure 5.22 shows the merge of two previously initiated branches
of process steps. In contrast to parallel execution and synchroniza-

197

5 Context Description and Design

Figure 5.21: Example of a Synchronization.

tion, not both process branches have to be executed. In the shown
excerpt, a lead can be approved either from an existing lead that is
updated or based on a new lead created in the CRM system.

Figure 5.22: Example of a Simple Merge.

Another structure that is often mentioned when discussing pat-
terns in process models is a loop. Even though they represent a
unique structure in these models, they are not explicitly handled
in this approach. Loops are established over the backtracking to a
previous object identi�ed based on the activities and their matching

198

5.2 Concept

inputs and outputs. However, the textual description of such loops
includes additional challenges for the transformation as these often
tend to present a certain ambiguity in their possible interpretation.

Model Generation

The result of the Model Element Mapping often includes discon-
nected model parts that have to be combined into a sound process
model. The resulting data frame provides a set of model elements
and structures for each processed sentence. These now have to
be combined to generate a continuously connected process model.
However, if a �tting process description is provided as an input,
the result can consist of only connected model parts. In such a case,
the step of connecting disconnected model parts becomes obsolete.

In case disconnected model parts are present, the "sub-process-
models" of each sentence have to be combined. The combination
is based on shared inputs and outputs, as the control �ow is indi-
cated over these matching inputs or outputs. Of these objects, the
referenced ones were already identi�ed in the step before

Referring to the example of a parallel split shown in Figure 5.19,
the combination of extracted model elements from the two sen-
tences that were shown in Table 5.1 and Table 5.2 as well as describ-
ing parts of the model excerpt are explained. After the mapping to
model elements and structures, the two sentences can be combined
over the common object Customer Data that is the output of the
activity described in the �rst sentence and at the same time the
input of the activity described in the second sentence. The resulting
model data frame represents a Horus procedure model, as shown
in Figure 5.23.

199

5 Context Description and Design

Figure 5.23: A Data Frame of a Horus Procedure Model.

One crucial challenge occurs when the generated model parts
cannot be connected in the �rst try over the shared inputs and
outputs and cannot be combined into a sound process model. This
can also be the case when objects are similar but cannot be identi�ed
as the same. In such a case, disconnected models are generated,
which can be assumed to be connected based on the fact that they
are described in one textual description. If such cases would lead
to detached model parts in the �nal model, a way to connect these
has to be found. The �rst and most straightforward strategy to
resolve this is to connect the model parts based on their occurrence
sequence in the textual description.

Connecting disconnected model parts with di�erent outputs and
inputs based on their chronological order in the text leads to the
loss of one output or input as just one is taken as a connecting
element between the two sub-models. The question of which object
to keep and which one to drop. In this case, a solution is in place
that is based on a de�ned priority of objects. If an object is explicitly
mentioned in the corresponding text part, it will be preferred over
an implicitly from the related activity derived object. In case both
objects are either explicitly mentioned or implicitly derived, the role

200

5.2 Concept

of the verb the activity is based on is of relevance. If the �rst activity
is a creating activity, the output of this activity is prioritized over the
input of the activity it connects to. However, if the second activity
is a processing activity, this activity’s input should be prioritized.
This priority rule can lead to a con�ict if the �rst activity is creating
while the second activity is processing the individual objects. In
such a case, either both objects are used for the connection, or a
third rule comes into place, which is prioritized as last resolution
strategy outputs over inputs.

Measurements to connect initially disconnected model parts
might require further re�nement in the future. Nevertheless, they
already bene�t from the contextual knowledge that is accessible
through the reference point. Solving disconnections inherits the
danger of losing information or adding wrong information by in-
troducing connections that are not there and not correct. Thus,
the problem is to be treated carefully due to the quickly rising
complexity in more extensive texts and the described processes.

Figure 5.24 shows an example of the connection of two model
parts and the resolution of con�icting objects based on the priority
of explicitly stated objects over implicitly derived objects. In the
example, the object "Customer Data" is explicitly mentioned in the
textual description and is thus favored over the implicitly generated
object "New Customer registered".

Figure 5.25 shows an example of the connection of two model
parts and the resolution of con�icting objects based on the type of
action performed. In the example the activities "Create Delivery"
and "Create Shipment" are both creating activities. In consequence
the object "Delivery Note" is prioritized over the general object
"Shipment to create".

201

5 Context Description and Design

Figure 5.24: Example of a Conflict Resolution based on Object
Occurrence.

Figure 5.25: Example of a Conflict Resolution based on Activity
Types.

Model Adjustment

After the model generation, a reference point is introduced in the
form of an ontology-based knowledge graph consisting of multiple
instances that are described in 5.2.3. Insights can be gained about
the relationships between certain entities via the knowledge graph.
In case an object is missing or cannot be identi�ed as input or
output, a reference to the knowledge graph can be helpful, where
it can be looked up over the referenced activities and objects. If

202

5.2 Concept

no connections are found in the model generation step and model
parts are disconnected, the reference point supports identifying
possible connections. Extracted model elements identi�ed based on
the mapping of text, sentences, and words onto model elements are
compared to the knowledge base entries. If an element is already
found in the knowledge base or similar to one entry, it may be
approved or adjusted according to the knowledge base.

The model adjustment includes a matching process between
the process model, generated or manually created, and the refer-
ence point. However, process model matching, comparison, and
alignment is an open issue with complex challenges that still await
a satisfying solution. Therefore, the focus in this work does not
lie in the realization of this comparison and alignment. The idea
and theoretical concept are de�ned towards a possible application
and expected bene�ts. Nevertheless, the possible adjustment of the
model can be categorized into three categories:

1. Resolution of Objects: In some cases where the process de-
scription does not provide all detailed information about the
described process, the contextual reference point can provide
this information. For instance, a process step is described
simply with "The package is prepared for shipment.". This de-
scription does not state any information about the input to
the activity that is performed but solely desired output. As-
suming this activity is described in more detail, including
a distinct input, already in another previous model that is
part of the knowledge base, additional information might be
available over this reference. Regarding the activity residing
in the knowledge base, the process model at hand can be

203

5 Context Description and Design

adjusted accordingly. While the original sentence would lead
to a model that includes one activity, namely "Prepare Pack-
age", one output "Shipment" and an input "Package to prepare",
the reference point might o�er us the information that this
input was already de�ned as "Ordered Products" in another
model describing the same activity. With this information,
the model can now be adjusted, and the generalized input
can be replaced with the distinct input of "Ordered Products".

2. Establishment of a connected Control Flow: The control
�ow between and the connection of the individual steps of
the process model are established over the connection of
matching inputs and outputs in this approach. In case this
connection cannot be established, and the model consists of
disconnected model parts, the reference can again provide
some helpful information based on previously created models
it enables access to. For each activity, the reference point pro-
vides information about related activities based on sequences
of activities found in previously created models.

3. Extension bymissingActivities:Assessing not only model
parts but the model as a whole with help of the reference point
increases the complexity and computational e�ort required.
It has to be acknowledged that model comparison, align-
ment, and compliance are topics that still state challenges
that are not solved feasibly at this moment. Nevertheless,
the inner structure and sequence of activities of a model is
used and compared against similar models residing in the
knowledge base.

204

5.2 Concept

In case missing structures are identi�ed, these are based on
a probability calculation added to the model or ignored. In
this approach, the comparison and resulting adjustments are
focused on single activities that might be integrated between
two existing activities. The identi�cation and integration of
whole model structures, such as a process branch as part of a
split into parallel or exclusive execution, inherits a complexity
beyond this thesis.
Assuming a description of a process model that states two ac-
tivities and their inputs and outputs correctly and su�ciently
and let these two activities be "Prepare Package" and "Send
Shipment". The description and the corresponding model may
be correctly formulated and transformed but might miss pro-
cess relevant aspects found in similar models found over the
reference point. Imagining that in this case, multiple models
already exist that describe such a process with an additional
activity of "Check Package" that is performed between both
earlier mentioned activities. In such a case, the reference
point provides the information that a crucial element gener-
ally connected to the described two activities is missing and
might have to be added. Consequently, the activity "Check
Package" is inserted into the created model. However, the
decision about such an extension and adjustment of the cre-
ated model is highly dependent on the intention and purpose
of the process. It should require human approval to be per-
formed. Therefore, the adjustment would rather serve as a
recommendation to the modeler than an automatic and inva-
sive change to the model.

205

6 Implementation and
Evaluation

In this chapter, the implementation and the performed evaluation
of a proof of concept are explained. First, the foundations, including
the scope, architecture and key components, are described. Second,
the implemented features and their functionality are presented.
The explanation of features is structured based on the individual
transformation steps as they are described in the concept. Third,
the evaluation and the results are discussed.

The implementation is used as proof of concept for the core
features of the proposed transformation approach. As some tasks
faced in this endeavor are already tackled in di�erent existing
solutions, the implementation’s description focuses on the parts
contributed by this thesis.

The di�erent features that are explained the following, as well
as the corresponding code and the data set of model-description
pairs used for the evaluation can be found in a GitHub repository
and accessed at https://github.com/felixrnolte/PhD_Submission.

207

https://github.com/felixrnolte/PhD_Submission

6 Implementation and Evaluation

6.1 Scope
The implementation is intended as a proof of concept that is in-
dependent of any other tool. Consequently, the intended Horus
procedure models are not generated and displayed in the Horus
Business Modeler but instead provided as data frames that include
all the necessary information to create and import these.

The implementation is done in Python due to the availability of
a broad spectrum of libraries and packages that provide existing
solutions for the set of faced problems in the area of NLP. Addi-
tionally, speci�c solutions are not available in Python, such as the
StanfordCoreNLP suite that is only implemented in Java. These
solutions are integrated using the provided interfaces.

The implemented features focus on the transformation approach
to generate a model from textual input. With the priority put on the
model creation steps, the subsequent model adjustment based on
the reference point is not part of the implementation. This decision
is based on the fact that in-depth knowledge of di�erent �elds is
required to achieve meaningful results. Practical solutions in both
areas are scarce and the corresponding problems addressed are
mostly considered highly complex.

For the visualization and better understanding of di�erent created
artifacts that hold information about the linguistic features of a text,
the individual solutions were accessed and used over web services
and demo environments. Such include the CoreNLP online version1

and the SpaCy Dependency Visualizer2.

1 See http://corenlp.run/. Last accessed: 08.12.2020.
2 See https://explosion.ai/demos/displacy. Last accessed: 08.12.2020.

208

http://corenlp.run/
https://explosion.ai/demos/displacy

6.2 Architecture

6.2 Architecture
In this section, the architecture of the implementation building on
the concept and the described transformation steps is explained.
This explanation includes the general idea of a transformation
pipeline and used artifacts.

6.2.1 Pipeline
The implementation follows the concept of a pipeline that incorpo-
rates features in a modular way and enables the later exchange of
components. This approach can facilitate, e.g., the adjustment to
another language. As for now, just one module for each task and
step is established. For future extensions, e.g., an alternative ap-
proach to anaphora resolution or mapping to additional modeling
languages, the modules for the speci�c a�ected tasks can be ex-
changed without impacting the other modules. This way, multiple
pipelines can get invoked for di�erent languages, models, or used
techniques in the future.

The described, implemented and tested pipeline modules are
provided in an overview in the following and later explained in
further detail. Figure 6.1 shows the visualization of the current
pipeline design.

The di�erent modules of the pipeline are:

1. Anaphora Resolver as part of Pre-Processing. Linguistic Anal-
ysis is performed here already as this is required for the task.
The gained information is annotated and used in the later
modules.

209

6 Implementation and Evaluation

Figure 6.1: Implementation Pipeline.

2. Sentence Splitter as part of Pre-Processing.

3. Phrase Extractor as part of Linguistic Feature Extraction.

4. Keyword Identi�er as part of Linguistic Feature Extraction.

5. Process Extractor as part of Model Element Mapping.

6. Model Generator as part of Model Generation.

The pipeline requires a java-based StanfordCoreNLP server with
the current version 4.2.0 running in the background3.

6.2.2 Input Requirements
The expected input has to ful�ll a set of requirements for our current
approach to work properly. At this stage, the input has to be plain
text without any structural features, such as headings or bullet
points. The text has to be written in English and for the successful
processing correctly formulated. Spelling or grammatical mistakes
can lead to serious misinterpretation during text analysis. Speci�c
text structures, such as activities included in a noun combination,
3 Download Link: https://stanfordnlp.github.io/CoreNLP/download.html. Last

accessed: 08.12.2020.

210

https://stanfordnlp.github.io/CoreNLP/download.html

6.2 Architecture

e.g., the creation of the table, are not included so far. Additionally,
the entire input is analyzed, and any additional information, such
as "Next I will describe(...)", will be processed too. In consequence,
text parts not related to the model per se, such as "The process start
with (...) or "The process ends here", would be identi�ed but add noise
to the �nal model. These statements would lead to identifying and
creating model parts, such as an activity "Start process". The text
should thus focus purely on the process it intends to describe.

All information about the model elements and structures can be
represented in either active or passive voice. Additionally, the set
of possible subordinate clauses includes adverbial clauses of which
conditional clauses are treated individually, and relative clauses.
Subordinate clauses are bound to de�ned sets of keywords, which
include words such as "for", "before", and "based on" at the moment.

6.2.3 Artifacts
Iterating through the di�erent steps of the transformation process
in the di�erent modules, the process input, acquired information,
extracted linguistic features, and the identi�ed model elements and
parts are carried by di�erent artifacts throughout the process.

The input, provided as plain text, is processed as a string. Dif-
ferent libraries available for Python, such as Pandas4, enable the
import of data from di�erent data sources using single functions.
The current implementation imports text from �les either in .txt
or .csv formats and allow the direct de�nition of an input string in
the code itself.

4 See https://pandas.pydata.org/. Last accessed: 08.12.2020.

211

https://pandas.pydata.org/

6 Implementation and Evaluation

Figure 6.2: Object Types and Flow.

Additional information acquired in the Information Enrichment
phase using mainly SpaCy is carried by the so-called Tokens. These
are part of a SpaCy structure similar to a sentence, a Span. Further-
more, a Span is part of a higher organizational unit, the document
Doc. Each of these three SpaCy objects includes information about
linguistic characteristics and is used throughout all transformation
steps.

Extracted linguistic features and model parts identi�ed in the
model element mapping are stored inside data frames handed over
to the next processing step. Information used inside the individual
functions is mostly carried by lists, tuples, and series that are in the
end combined into a data frame.

The �nal result, the model generated, is then provided again in
a data frame that depicts the individual model elements, such as
activities and their associated objects and roles.

A rough depiction of the set of artifacts is shown in Figure 6.2.

212

6.3 Features

6.3 Features
Throughout the transformation and adjustment steps, di�erent se-
lected features de�ned in the concept were implemented. These
features are categorized into the �ve categories that were estab-
lished earlier in the design and concept of this approach of which
the �rst four are part of the transformation approach and imple-
mented in the proof of concept:

1. Natural Language Text Pre-Processing

2. Linguistic Feature Extraction

3. Model Element and Part Mapping

4. Process Model Generation

5. Process Model Adjustment

The description and explanation of the features are supported
by examples that emphasize each step’s individual tasks.

6.3.1 Natural Language Text Pre-Processing
Pre-Processing features are used before the actual transformation
steps to align the textual input with the next steps’ input require-
ments. Furthermore, the textual input is enriched with relevant
information, such as POS-tags.

213

6 Implementation and Evaluation

Input Cleaning

Transform input into plain text and remove structural information,
such as headings or bullet points. Unlike other approaches where
NLP is used, this approach does not include a typical removal of
stop words, as the standard corpus of these includes relevant words
for our approach. However, a limited set of not required or wanted
symbols can be used to check the text and remove any occurrence
of them. A simple plain text is expected in the proof of concept
imported from a .csv or .txt �le or provided directly as a string in
the code. Further integration of other inputs and more extensive
steps of transforming and cleaning data into the required format is,
in the end, a data integration problem that is itself independent of
the transformation approach. In consequence, the individual data
integration steps are not further investigated here.

Input Information Enrichment

The upcoming steps require further information than just the plain
text to perform. Libraries, such as SpaCy, NLTK, and Stanford-
CoreNLP o�er a variety of methods to annotate additional infor-
mation to the text. This approach focuses on SpaCy and the use of
its tokens that include most of the required information already.
However, NLTK and StanfordCoreNLP are used later on for spe-
ci�c information, such as, e.g., to create a speci�c syntax tree of a
sentence. A java-based StanfordCoreNLP server has to be running
simultaneously to enable access over an API.

214

6.3 Features

The information annotated and provided at this stage is part of
the Tokenization of SpaCy and include5:

� token.pos and token.tag - Two di�erent types of POS-tags.

� token.dep - The syntactic dependency relation.

� token.head - The syntactic parent of this token.

� token.lemma - Base form of the token, with no in�ectional
su�xes.

� token.i - The index of the token within the parent document.

� token.span - The sentence span that the token is a part of.

� Di�erent attributes that indicate a certain type of the token,
such as, e.g., a digit over token.is_digit or an url over to-
ken.like_url

Resolving Coreferences and Anaphoras

As one step of processing the textual input previous to the transfor-
mation, the library StanfordCoreNLP and the included coreference
resolution provided by the Stanford NLP Group6 is used. It enables
the identi�cation of coreferences in the text and the replacement
with their �rst occurrence. This information will be important in
the later processing, as roles are identi�ed over subjects and replace
pronouns with the related coreference. Thus, the approach does
not identify "he" or "she" as a role, but rather the referenced entity.
5 See https://spacy.io/api/token. Last accessed: 08.12.2020.
6 See stanfordnlp.github.io/CoreNLP/coref.html. Last accessed: 08.12.2020.

215

https://spacy.io/api/token
stanfordnlp.github.io/CoreNLP/coref.html

6 Implementation and Evaluation

1 def resolve(corenlp_output):
2 for coref in corenlp_output['corefs']:
3 mentions = corenlp_output['corefs'][coref]
4 antecedent = mentions[0]
5 for j in range(1, len(mentions)):
6 mention = mentions[j]
7 if mention['type'] == 'NOMINAL' and

mention['text'] != antecedent['text']:↪→
8 antecedent = mention
9 if mention['type'] == 'PRONOMINAL':

10 target_sentence = mention['sentNum']
11 target_token = mention['startIndex'] - 1
12 corenlp_output['sentences']
13 [target_sentence -

1]['tokens'][target_token]['word'] =
antecedent['text']

↪→
↪→

Listing 6.1: Coreference Resolution.

Listing 6.1 shows a method that is part of the anaphora resolution
using the coreference annotations. For each coreference identi�ed
over the coreference annotations (line 2), the �rst occurrence is
taken as so-called "Antecedent", and this replaces each following
occurrence if it has the type "Pronominal". If an occurrence has the
type "Nominal", it is replacing the �rst occurrence as "Antecedent"
and following coreferences are replaced with this one from that
point on.

Spli�ing Sentences

In this approach, each sentence of an input text is processed individ-
ually. The input requires that the process’s activities are described
atomically and that each sentence generally focuses on one activity.

216

6.3 Features

1 def _get_sentences_spacy(text):
2 sentences = []
3 nlp = spacy.load("en_core_web_sm")
4 doc = nlp(text)
5 for sent in doc.sents:
6 sentences.append(sent.text)
7 return sentences

Listing 6.2: Sentence Spli�ing.

Due to this, in this step, the textual input is split into sentences
with the help of the document structure of SpaCy.

Another module is realized by the same function using the library
Stanza by the Stanford NLP Group7. However, the approach using
Stanza often provides not only splitting into sentences but also iden-
ti�es phrases and subordinate clauses as sentences. Nevertheless, it
can help the translation when considering more complex sentences
in the future that, e.g., also describe more than one process step.

Listing 6.2 shows an excerpt of code used for the sentence split-
ting. First, the SpaCy pipeline with the speci�c English language
model is loaded. Second and based on the SpaCy-speci�c object
document, the individual sentences are extracted from the text and
stored in a list. This extraction happens in order with the sequence
of the sentences as it is present in the input. It is essential to ensure
the order of occurrence for later steps.

7 See https://stanfordnlp.github.io/stanza/. Last accessed: 08.12.2020.

217

https://stanfordnlp.github.io/stanza/

6 Implementation and Evaluation

6.3.2 Linguistic Feature Extraction
In this subsection, features that enable the processing of the individ-
ual sentences are explained. First, subordinate clauses are extracted
from each sentence. Each identi�ed subordinate clause is removed
from the original sentence, and the leftover sentence is used as the
core or main sentence. Second, for each sentence and the included
subordinate clauses, the relevant linguistic features are extracted.

Possible nested structures of subordinate clauses, including fur-
ther clauses, are not considered in this approach due to, on the one
side, computational capacity and feasible runtime, and on the other
side due to assumed and expected characteristics of the textual
inputs. A textual input consisting of multiple nested clauses is not
considered realistic. These would result in sentences that extend
the length and complexity found in the regular and everyday use
of written natural language.

As the phrase extraction and further extraction of linguistic fea-
tures are closely related, they are explained together in the corre-
sponding parts for each sentence structure. However, in the imple-
mentation, these are split into three distinct modules: The Phrase
Extractor, the Keyword Identi�er, and the Model Element Mapping.

Phrases and Features are extracted and provided as a data frame
in which columns represent the di�erent sentence structures. An
example of the header of the resulting data frame is shown in
Table 6.1.

The extraction of linguistic features builds on the analysis of more
detailed linguistic aspects, such as information about individual
words. For this, functions to extract tuples consisting of the subject,
verb, and objects are provided together with functions to analyze

218

6.3 Features

Table 6.1: Output Data Frame Header of the Linguistic Feature
Extraction.

Core Adverbial Conditional Relative

further phrases that hold relevant information, such as prepositional
phrases. These supportive functions are brie�y explained in the
following before the focus is turned back onto the analysis of each
sentence and included subordinate clauses.

Extraction of Subject, Verb and Objects Tuples

The �rst and most relevant function for later steps is the extraction
of SVO-tuples from a sentence, excluding additional phrases8. Under
the assumptions and requirements for this approach, only up to one
subject and one verb are extracted from each sentence part, while
there can be multiple objects. In the case of multiple objects, the
conjunction between both is already carrying valuable information
for the later model mapping. If the conjunction is an "or", this is
already an indication for a later exclusive split. To avoid a loss
of this information, objects are extended here with an attribute
describing their conjunction. For this the values "AND" and "XOR"
are possible. This attribute is attached to all objects identi�ed in
this main sentence or the subordinate clauses.

8 The actual implementation used in this work is based on https://github.com/
peter3125/enhanced-subject-verb-object-extraction.

219

https://github.com/peter3125/enhanced-subject-verb-object-extraction
https://github.com/peter3125/enhanced-subject-verb-object-extraction

6 Implementation and Evaluation

1 (...)
2 svos = []
3 verbs = [tok for tok in tokens if _is_non_aux_verb(tok)]
4 for v in verbs:
5 verb_phrase = ' '.join([item.text for item in

v.subtree])↪→
6 verb_phrase = nlp(verb_phrase) # Tokenization with

Spacy↪→
7 is_pas = _is_passive(verb_phrase)
8 subs, verbNegated = _get_all_subs(v)
9 if len(subs) > 0:

10 (...)
11 v2, objs = _get_all_objs(conjV, is_pas)
12 for sub in subs:
13 for obj in objs:
14 objNegated = _is_negated(obj)
15 if is_pas:
16 svos.append(("",
17 "don't " + v.lemma_ if verbNegated or

objNegated else v.lemma_,↪→
18 to_str(expand(sub, tokens,

visited))))↪→
19 else:
20 svos.append((
21 to_str(expand(sub, tokens, visited)),
22 "don't " + v.lemma_ if verbNegated or

objNegated else v.lemma_,↪→
23 to_str(expand(obj, tokens,

visited))))↪→
24 else:
25 (...)
26 v2, objs = _get_all_objs(conjV, is_pas)
27 for obj in objs:
28 objNegated = _is_negated(obj)
29 if is_pas:
30 svos.append(("",
31 "don't " + v.lemma_ if verbNegated or

objNegated else v.lemma_,↪→
32 ""))
33 else:
34 svos.append(("",
35 "don't " + v.lemma_ if verbNegated or

objNegated else v.lemma_,↪→
36 to_str(expand(obj, tokens, visited))))
37 (...)

Listing 6.3: Extraction of Subject, Verb and Objects.
220

6.3 Features

Listing 6.3 shows an excerpt of the function _get_svos_sent9.
First, all verbs are extracted that are not auxiliary verbs (line 3),
such as in "The invoice was sent". Auxiliary verbs are ignored, and
the verb that relates to it is placed as the main verb of this sentence.
For the following steps, each extracted verb is extended with its
corresponding phrase (line 6). Each Verb Phrase (VP) is then pro-
cessed further. A check for the use of passive or active voice in
the sentence is performed (line 7). After this, all subjects related
to the verb phrase are identi�ed and extracted (line 8). If the list
of subjects is not empty (line 9), all objects relating to the verb
are extracted (line 11). The verb, related subjects, and objects are
combined into the "SVO"-tuple (lines 15-24). In case a negation is
identi�ed (line 13), the verb is added with the additional term of
"don’t to indicate the negation in the tuple. If the list of subjects is
empty, the same steps are performed, but the subject in the tuple is
left empty (lines 32,37).

For the identi�cation of SVO of a sentence, the used voice type is
relevant. In case a sentence is written in active voice, the extraction
matches the annotations provided by the POS-tags and the depen-
dency parser. However, if the sentence is written in passive voice,
the provided information and annotations can be ambiguous. In a
passive sentence, the object is labeled as the subject, and no subject
in the sense of an actor is present. In this case, the (empty) subject
and object in the SVO-tuple are switched (lines 18,23,33,38).

Table 6.2 shows an example of an extracted SVO-tuple from a
sentence.

9 The described function can be found in the folder Helper and in the �le
Subject_Verb_Object_Extract.py

221

6 Implementation and Evaluation

Table 6.2: Extraction of SVO-tuples from a sentence.

Input Sentence:
The accountant sends the invoice

Output - Subject, Verb, Object of the Sentence:
[[(’accountant’, ’send’, ’invoice’)]

Extraction of Prepositional Phrases

Similar to SVO-tuples, prepositional phrases are used to extract
further information about the sentence or subordinate clause. They
are extracted and used to identify objects that serve as input or
output. To distinguish between input and output, a keyword-based
approach is de�ned. While a certain set of words or word combi-
nations indicate an input, such as "with", "from", "based on" and
"out of", another set indicates outputs, such as "for", "towards" or
"into". Objects of prepositional phrases that cannot be categorized
into one of the two categories are then checked for information
about actors over "by" and "through". These categories are de�ned
in the code in sets of words and word combinations indicating the
corresponding type of prepositional phrase.

Listing 6.4 shows an excerpt of the function _get_prep_sent10

used extract the prepositional phrases from the textual input. The
example shows how tokens of a sentence are checked for their
syntactic dependency (lines 2,3). In case a dependency with the label
"prep" (preposition) is found, the sub-tree of this token is extracted
as the linguistic structure of the prepositional phrase (line 4).

10 The described function can be found in the LanguageOperations.py in the
folder Helper.

222

6.3 Features

1 (...)
2 for token in tmp:
3 if token.head.dep_ == "prep" and

token.head.text.lower() != "of":↪→
4 pp = ' '.join([item.text for item in

token.head.subtree])↪→
5 for toki in nlp(pp):
6 if toki.text.lower() == "or":
7 role = "XOR"
8 reference = _get_head_verb(token.head)
9 tmp_pps.append([pp,reference])

10 (...)

Listing 6.4: Extraction of Linguistic Features from a Prepositional
Phrases.

In case multiple objects are identi�ed, their relationship has to be
clari�ed. In this regard, the whole prepositional phrase is checked
for conjunctions (lines 5,6). If the conjunction "or" is found, the
label "XOR" is assigned to clarify that the objects are exclusive.
Otherwise, the standard connection "AND", de�ned previously to
this code excerpt, is kept. An additional condition is checked, which
is shown in Listing 6.5. To decide about the mentioned type of a
clause, the �rst token of that clause is compared (lines 5-11) to the
indication sets (lines 1-3). It is labeled according to the set it belongs
to, and thus one of the types of input, output, or role is assigned.

Table 6.3 shows an example of the extraction of relevant informa-
tion from a prepositional phrase. The preposition "from" indicates
the prepositional phrase and its role as input. The object "product
list" is then stored together with the verb "create" it relates, its role
as "input" and the connection or gateway as "AND". In case of just
one input or output, the gateway is always provided as "AND".

223

6 Implementation and Evaluation

1 INPUT_IND = {'from', 'with', 'on'}
2 OUTPUT_IND = {'as', 'into', 'for','towards','over'}
3 ROLE_IND = {'by', 'through'}
4
5 for token in pp_nlp:
6 if token.text.lower() in INPUT_IND:
7 type = "input"
8 if token.text.lower() in OUTPUT_IND:
9 type = "output"

10 if token.text.lower() in ROLE_IND:
11 type = "role"

Listing 6.5: Extraction of Objectroles from a Prepositional
Phrases.

Table 6.3: Extraction of PP-tuples from a Sentence.

Input Sentence:
The invoice is created from the product list.

Output - Prepositional Phrase Features:
[[’create’, ’product list’, ’input’, ’AND’]]

Extraction of Adverbial Clauses and their Linguistic
Features

The information about the described process residing in the adver-
bial clauses provides insights mainly about process steps’ control
�ow.

Adverbial clauses are extracted either over the corresponding
sub-tree of the syntax tree of the sentence or a set of keywords,
including words such as "before", "after" or "while". Identifying the
set of keywords is necessary since the used tools and models to
create the syntax tree do not provide a su�cient level of precision

224

6.3 Features

in identifying adverbial clauses. This precision can vary between
the di�erent available language models. However, a signi�cant
percentage of misinterpretations regarding adverbial clauses was
observed in tests conducted the implementation.

However, regardless of the approach used to extract the clause,
it and the set of keywords support the identi�cation of patterns
such as parallelism and sequence. The relevant keyword is checked
for its referenced verb to identify the related activity in the core
sentence. With pre-de�ned roles of keywords, the relation between
the adverbial clause’s activity and the core sentence can be identi�ed
in the later step of the Model Element Mapping. Mentioned roles
of keywords include, e.g., the indication of a previous process step
over words, such as "after", or a subsequent process step over words,
such as "before". Table 6.4 shows an example sentence, the extracted
adverbial clause and its linguistic features.

The identi�cation and extraction of adverbial clauses and con-
ditional clauses as sub-category of these, are shown in Listing 6.6.
With the help of the dependency annotation of SpaCy, the depen-
dency "advcl" or the token dependency label "prep" together with
the POS-tag "ADP" identify the adverbial clause (line 2), while
the keyword "if" then further provides identi�cation of the con-
ditional clause (line 5). The tokens sub-tree is then joined into a
combined tree (line 3). Lastly, the clause is removed from the initial
sentence (line 9).

Listing 6.7 shows the function _get_advcl_features11. As fea-
tures between adverbial clauses and included conditional clauses

11 The described function can be found in the Information_Extraction.py in
the folder Linguistic_Feature_Extraction

225

6 Implementation and Evaluation

1 for token in nlp_sent:
2 if token.dep_ == "advcl" or (token.dep_ == "prep" and

token.pos_ == "ADP" and token.text.lower() in
ADVINDS):

↪→
↪→

3 advcl_tmp = ' '.join([item.text for item in
token.subtree])↪→

4 advcl_nlp = nlp(advcl_tmp)
5 if advcl_nlp[0].text.lower() == "if":
6 condcl.append(advcl_tmp)
7 else:
8 advcl.append(advcl_tmp)
9 sent_tmp = sent_tmp.replace(advcl_tmp, "")

Listing 6.6: Extraction of Adverbial and Conditional Clauses.

di�er, they are processed individually. First, the SVO-tuple is ex-
tracted (line 5). Second, prepositional phrases are identi�ed and
extracted (line 6). Third, the role of the adverbial clause is deter-
mined (line 7). Lastly, all three attributes are combined into one list
that is returned (lines 8,9).

1 def _get_advcl_features(df_row):
2 info = []
3 if df_row['Adverbial']:
4 for x in df_row['Adverbial']:
5 svos = _get_svos_sent(x)
6 pps = _get_prep_sent(x)
7 role = _get_adv_role(x)
8 info = [svos,pps,role]
9 return info

Listing 6.7: Extraction of Linguistic Feature from an Adverbial
Clauses.

226

6.3 Features

Table 6.4: Extraction of Linguistic Features from an Adverbial
Clauses.

Input Sentence:
Before Laura sends the invoice for the notice, Marc approves the invoice.

Output - Adverbial Clause Features:
[[(’Laura’, ’send’, ’invoice’)], [[’send’, ’notice’, ’output’, ’AND’]], ’successor’]

In some cases, just a single adverb, an adverbial modi�er, is
stated without using a whole clause. In this case, the adverb will
remain as part of the core sentence as the carried information
directly relate to it and is processed accordingly. However, the
adverb references no longer to activities or objects stated in a clause
but refers to the previously mentioned process. Thus, the previously
mentioned process step outputs are stated as inputs for the currently
investigated process step to establish the connection between both.

Extraction of Conditional Clauses and their Linguistic
Features

Even though part of adverbial clauses, conditional clauses are
treated individually in this approach. They are an indicator of exclu-
sive splits and represent a distinct structure in the intended process
model. Over the keyword, it, exclusive splits related to a previous
process step are identi�ed in the corresponding clauses. With the
help of the POS-tags and the annotation of constituency dependen-
cies, the keywords are identi�ed, and the related clause in the form
of the syntax tree sub-tree are extracted. The extracted phrase is

227

6 Implementation and Evaluation

processed further and checked for objects that have to be added to
the activity from the core sentence.

A conditional clause often describes a condition for the current
sentence’s activity but refers to a previous sentence.

1 def _get_cond_features(df_row):
2 info = []
3 if df_row['Conditional']:
4 for x in df_row['Conditional']:
5 refsvos = _get_svos_sent

(df_row['Core'][0])[0]↪→
6 ref = refsvos[1] + " " + refsvos[2]
7 obj = _get_objects(x)
8 info = [ref,obj]
9 return info

Listing 6.8: Extraction of Linguistic Features from a Conditional
Clauses.

Listing 6.8 includes the function to extract the linguistic features
from an identi�ed conditional clause. First, the SVO-tuple of the core
sentence is extracted to establish the reference to the activity of the
sentence (lines 5,6). Second, all objects from the conditional clause
are extracted (line 7). Third, reference and object(s) are combined
into a list and returned (lines 8,9).

In Table 6.5 an example sentence including a conditional clause
based on the word "if" is shown. In the example, the keyword "if"
relates to the verb "send". The relation between both is identi�ed
by looking at the tokenized version of "if": token.head(). The
verb "send" is then later used to map to the activity of Send Invoice.
The conditional clause "If the check is positive" is then checked for
verbs. If no verbs are present, it is assumed that only objects are

228

6.3 Features

Table 6.5: Extraction of Linguistic Features from a Conditional
Clauses.

Input Sentence:
If the check is positive, the accountant sends the invoice.

Output - Conditional Clause Features:
[’before’, ’send invoice’, ’positive check’, 0]

described over the clause. In the example, an object is extracted
from the clause.

Extraction of Relative Clauses and their Linguistic Features

Relative clauses are another part of the textual input that is extracted
and used for further analysis. Relative clauses contain elements
which interpretation is provided by an antecedent element on which
the clause depends on. Keywords that indicate a relative clause
include terms such as "that", "who", "which" and "whose". The clauses
are identi�ed over the set of keywords. Like the conditional and
adverbial clauses, the keyword’s sub-tree is used to extract the
relative clause. Linguistic features are then identi�ed in the clause,
and information relevant for the transformation is returned.

1 for token in nlp_sent:
2 if token.dep_ == "relcl":
3 relcl_tmp = ' '.join([item.text for item in

token.subtree])↪→
4 relcl.append(relcl_tmp)
5 sent_tmp = sent_tmp.replace(relcl_tmp, "")

Listing 6.9: Extraction of a Relative Clause.

229

6 Implementation and Evaluation

An excerpt of the function _get_phrases_of_sentence12 is
shown in Listing 6.9. First, every token in a sentence is checked for
its dependency earlier annotated through the SpaCy dependency
parser (line 1). If a token with the dependency "relcl", which is
indicating a relative clause, is found (line 2), the sub-tree with the
root of this token is extracted. The labels of all tokens of this sub-tree
are combined again into the relative clause’s textual representation
(line 3). The extracted clause is then appended to a list (line 4), and
the clause is removed from the main sentence (line 5).

The function to extract the linguistic feature from a relative
clause is shown in Listing 6.10. As the relative clause references a
previous or current object, it is assumed that the information also
refers to this object. This is de�ned in a role with the label "before"
(line 5). However, in future extensions, the used tense of a relative
clause must be incorporated to identify references to upcoming
objects. Even though the description of the information about ob-
jects that are not yet mentioned is rather uncommon in process
descriptions, they might occur and be relevant when extending the
use case. Next, the core sentence’s verb is extracted and used as
an indicator for the referenced activity (line 6). The same is done
for the object of the core sentence (line 8). Besides, the SVO-tuple
of the relative clause and the tuple of the prepositional phrase are
acquired (lines 7,9). Lastly, all acquired information is combined
and returned as a list (lines 10,11).

In Table 6.6 an example sentence including a relative clause
based on the word "that" is shown. In the example, the term "before"

12 The described function can be found in the Phrase_Extraction.py in the
folder Linguistic_Feature_Extraction.

230

6.3 Features

1 def _get_relcl_features(df_row):
2 info = []
3 if df_row['Relative']:
4 for x in df_row['Relative']:
5 role = "before"
6 ref_v = _get_svos_sent

(df_row['Core'][0])[0][1]↪→
7 svo = _get_svos_sent(x)
8 ref_o = _get_svos_sent

(df_row['Core'][0])[0][2]↪→
9 pps = _get_prep_sent(x)

10 info = [role, ref_v, svo[0][1], ref_o, pps]
11 return info

Listing 6.10: Extraction of Linguistic Features from a Relative
Clause.

Table 6.6: Extraction of Linguistic Features from a Relative
Clause.

Input Sentence:
Laura sends the invoice that was approved.

Output - Relative Clause Features:
[’before’, [(’Laura’, ’send’, ’invoice’)], ’prepare’, ’invoice’, ([], [])]

indicates the role and that the clause relates to an object previously
mentioned in the process. The verb "send" is later used to map to
the activity of Send Invoice from the core sentence. The keyword
"that" relates to the object "invoice". The word "approve" represents
the activity that was performed with the referenced object "invoice".
In case the relative clause includes any prepositional phrases, these
are stated at the end of the list. As this example does not include
any prepositional phrases, an empty list is added.

231

6 Implementation and Evaluation

1 def _get_core_features(df_row):
2 info = []
3 if df_row['Core']:
4 for x in df_row['Core']:
5 svos = _get_svos_sent(x)
6 pps = _get_prep_sent(x)
7 advmod = _get_advmod_sent(x)
8 info = [svos,pps,advmod]
9 return info

Listing 6.11: Extraction of Linguistic Features from the Core
Sentence.

Extraction of the Core Sentence and its Linguistic Features

The core sentence is considered the initial sentence, excluding all
identi�ed subordinate clauses. Thus, direct extraction of a text string
is not performed. However, the extraction of features is performed
similarly to the procedure performed for the subordinate clauses.

Listing 6.11 shows the function _get_core_features that ex-
tracts all linguistic features fro the leftover core sentence. First, the
SVO-tuple is extracted (line 4), followed by objects from any prepo-
sitional phrases (line 5). The sentence’s sequential role is extracted
then by either an existing adverbial modi�er or without such a
modi�er, considered according to the sentence’s occurrence in the
text (line 7). The sequential role can thus be either "successor" or
"predecessor". Lastly, the gathered tuples are combined into a list
and returned (lines 8,9).

Table 6.7 shows the result of extracting linguistic features from
the core sentence. First, the SVO-tuples is shown. As no entity is
present to replace the pronoun, the subject is stated as "We", the

232

6.3 Features

Table 6.7: Extraction of Linguistic Features from the Core
Sentence.

Input Sentence:
We send the invoice for the payment.

Output - Core Sentence Features:
[[(’We’, ’send’, ’invoice’)], [[’send’, ’payment’, ’output’, ’AND’]], ’successor’]

original subject of the sentence. Second, one object is de�ned in
a prepositional phrase. The object "payment" is an output of the
to the verb "send" related activity. Third, no statement about the
sequence is given in the form, e.g., an adverbial modi�er. Thus,
the sequential order of process steps is assumed and indicated
by the label "successor". Consequently, this sentence represents a
process step that happens after the process step is extracted from
the previous sentence.

6.3.3 Model Element Mapping
After the previous extraction of linguistic features, these features
have to be mapped onto the set of model elements used in a Horus
procedure model. The model elements used in a Horus procedure
model are:

� Activities: In process models and thus in Horus procedure
models, activities represent the performed action in the cor-
responding step and the input’s speci�c processing.

233

6 Implementation and Evaluation

Table 6.8: Output Data Frame Header of the Element Mapping.

Activity Inputs Outputs Role

� Objects: Same as for other process models, objects represent
the artifacts given to an activity as input and created by these
as output.

� Roles: Actions include optional information about the entity
performing them. This information is acquired by attaching
a role to the activity that shows the acting entity.

� Control Flow: The control �ow connects the single elements
and indicates the �ow of objects throughout the process.

� Gateways: An indication of exclusive splits and merges is
realized through attachments to activities. Activities are ex-
tended by a box representing either an exclusive input or
exclusive output.

The linguistic features are mapped to these individual elements
but already combined into a process model part representing a sub-
process including the activity, required inputs and outputs, as well
as attached role. This way, single elements are already combined
into model parts and do not have to be stored with all their relations
to other elements and then combined later. This combination should
reduce the error-rate and loss of precision by avoiding an additional
step of matching and merging artifacts. The resulting output data
frame is structured as shown in Table 6.8.

234

6.3 Features

Di�erent sub-tasks are performed in the individual mapping
steps of which some include the labeling of the generated elements.
The nature of labeling activities, objects, and roles in this approach
is explained brie�y and can then be found later in the di�erent
mapping steps.

Generation of Activities
Activities are identi�ed and based on the main verb of a sentence.
However, the label of such an activity is composed of more than
just the performed action. An activity is commonly described as a
combination of the performed action and the object processed by
this action.

The labeling of activities in process modeling usually follows
one of two standards. The �rst standard de�nes an activity’s label
as a combination of a verb followed by the object, such as "Deliver
package". In contrast, the second standard reverses this sequence.
It uses a label consisting of a noun combination that includes the
object and the noun related to the verb, such as "Package Delivery".
In this approach, the �rst standard is used, as the verb is already
present. The transformation between verb and noun presents an
additional possibility for ambiguity and thus a loss of information.

Another aspect to consider is the handling of noun compounds.
The identi�cation of those is not trivial and had to be de�ned
speci�cally in the implementation. For instance, the object list of
suppliers would be identi�ed in the SVO-tuples just as "list", while "of
suppliers" would generally be recognized as a prepositional phrase.

However, the word "of" was explicitly stated as excluding criteria
in the identi�cation of prepositional phrases. Consequently, these
have to be identi�ed and combined again to refer to the real object

235

6 Implementation and Evaluation

stated in the description. In the rare case that no object is present
in the core sentence, the activity is generated with just the verb
used as a label.

Generation of Inputs and Outputs
The same design choice for labels of activities has to be made for
objects. As objects are not always de�ned precisely but rather are
labeled using a combination of the performed action and the object,
such a combination can be done in two ways again. On the one side,
the object can be labeled over the object followed by the in�ected
verb, e.g., "Invoice sent", or the object follows the in�ected verb, e.g.,
"Sent Invoice".

The design decision made here favored the second option since
the business partner prefers it, and the majority of the acquired
models for the evaluation follow this design. In consequence, this
enables the use of models created by the business partner for testing.

An additional constraint present in the creation of inputs and
outputs and their corresponding labels is given by the type of the
verb. In case the verb is considered a processing verb, the output
at hand is a combination of the performed action and the object.
The verb describing the activity is in�ected and combined with the
object text. For instance, the activity Send Invoice would lead to the
output "Sent Invoice". If the verb is considered a creative verb, the
object at hand is seen as the output and is labeled with the original
object text, e.g., based on an activity "Create shipment" the output
is "Shipment".

236

6.3 Features

Generation of Roles
As part of the extracted SVO-tuples, the subject of each active
sentence is considered the acting entity in the described process step.
Next to the SVO-tuples, actors can be described in prepositional
phrases using keywords, such as by.

In the context of Horus procedure models, these identi�ed actors
are annotated to the activities as so-called roles. The subject from
the SVO-tuple or the stated noun from the prepositional phrase is
taken and associated with the activity according to the shared verb
they relate to.

Support Functions
Next to previously introduced rules or constraints, several functions
are de�ned that directly aim at solving speci�c sub-tasks, such as
transforming objects used in the main functions. These include, for
instance:

� In some cases, especially when a sequential order cannot
be assumed, the activity to which an extracted subordinate
clause relates has to be identi�ed. To accomplish this and
ensure a correct mapping, later on, the verb representing that
activity and which a clause or word relates to has to be iden-
ti�ed. As this relation in the form of the next syntactic parent
of this token is not always pointing to a verb and thus activ-
ity, a recursive function checks for the next higher syntactic
parent until a verb is found that expresses an activity. For
this the function _get_referenced_verb is implemented.
This step is essential for the later mapping and ensuring pos-
sible future extensions by, e.g., non-sequential descriptions of

237

6 Implementation and Evaluation

processes. It is performed during the extraction of linguistic
features. Each clause includes a verb representing an activity
taken from a core sentence that it relates to.

� Some cases require the transformation of plural to singular
nouns. In case the plural of a noun is used, this has to be trans-
formed into the singular form for further use in the earlier
mentioned combination into activity and object labels. This
transformation is performed using the package Inflect13,
which o�ers di�erent functions for the conversion of words,
e.g., also the conversion of digits into written numbers.

� In several tasks, the conjugation of verbs in creating labels has
to be performed. The package mlconjug314 provides di�erent
approaches to conjugate verbs in di�erent languages, includ-
ing English. The conjugation is especially relevant when
creating beforehand described labels for generated objects
that consist of the objects name and the conjugated verb,
such as "Product selected". As in these cases, just the activity
is stated in the text, the verb this activity originates from has
to be conjugated to �t the object label’s requirements.

� The acquisition of synonyms and antonyms of words is pro-
vided by another function. For the list of synonyms and
antonyms of words, the lexical database and Python library of
WordNet15 is used. Antonyms are required when processing
conditional sentences where just one possible outcome in the

13 See https://pypi.org/project/in�ect/. Last accessed: 08.12.2020.
14 See https://pypi.org/project/mlconjug3/. Last accessed: 08.12.2020.
15 See https://wordnet.princeton.edu/. Last accessed: 08.12.2020.

238

https://pypi.org/project/inflect/
https://pypi.org/project/mlconjug3/
https://wordnet.princeton.edu/

6.3 Features

form of an object is stated, and the opposing object has to be
created.
Listing 6.12 shows the function to get the antonym of a word.
First, a check is performed to clarify if the token is negated
in the sentence already (line 3). If that is the case, the token
itself is returned as an antonym (line 24). If the token is not
negated and in case an antonym is required for a word that
is an adjective, WordNet is used to �nd an antonym of this
adjective (lines 8-13). In case antonyms are found, just the
�rst suggested one is selected and returned as an antonym
to provide a single result and not a set of possible results
(lines 12,25). If the word is a verb or no antonyms are found
in the previous case, the original word is used in combination
with the negation "not" (lines 17-21).

Additionally, a set of functions is used that enables the reverse
approach, such as �nding the phrase a token belongs to or �nd-
ing all verbs and objects a particular token refers to. These are
mainly similar to "getters" in standard programming and are not
further explained here as they do not directly contribute to the
transformation approach.

The stated methods and the underlying rules are used to create
the model parts from the model elements identi�ed based on the
linguistics features.

Mapping of the Core Sentence

The extracted features of the core sentence, a SVO-tuple, object-
tuples of optional prepositional phrases, and the position in the

239

6 Implementation and Evaluation

1 def _get_antonym(token):
2 antos = []
3 is_neg = False
4 for left in token.lefts:
5 if left.dep_ == "neg":
6 is_neg = True
7 if is_neg == False:
8 if token.pos_ == "ADJ" or token.pos_ == "NOUN":
9 for syn in wordnet.synsets(token.text):

10 for l in syn.lemmas():
11 if l.antonyms():
12 antos.append (l.antonyms()[0]

.name())↪→
13 antos = list(set(antos))
14 if token.pos_ == "VERB":
15 to_append = "not " + token.text
16 antos .append(to_append)
17 if len(antonyms) == 0:
18 to_append = "not " + token.text
19 antos .append(to_append)
20 else:
21 antos .append(token.text)
22 return antos [0]

Listing 6.12: Acquisition of the Antonym of a Word.

order of process step, are mapped onto the set of model elements. A
core sentence can include information about all relevant elements,
namely activities, objects, and roles. From the SVO-tuple, the verb
in combination with the object is mapped onto the activity, while
either the object or the objects de�ned in prepositional phrases are
taken as inputs and outputs. The type of the verb, "processing" or
"creating" is considered when generating inputs and outputs when
no further objects are de�ned. The subject of the SVO-tuples or the
role de�ned in the prepositional phrase is mapped onto the role or
acting entity of the process.

240

6.3 Features

Listing 6.13 shows an excerpt of the function _map_core16. It is
used to map the extract linguistic features of a core sentence onto
the set of model elements. First, the information gained from the
SVO-tuple is assigned. The verb as the main activity, the object as
the main object, and the role itself (line 2-4). Second, the verb type
is identi�ed for the activity by comparing the verb with a set of
de�ned verbs (lines 6-8). The activity itself is stored together with
the type label in a list for further processing (line 10). Third, as the
main object can consist of multiple objects, e.g., connected by a
conjunction, these have to be identi�ed and split into individual
objects (lines 11-13). If the main object consists of just a single word,
this is kept (lines 14-15).

After processing the SVO-tuple, possible tuples extracted from
prepositional phrases have to be processed. For these, the object
role determines if the stated object is added to the list of inputs,
outputs, or roles (lines 17-24). If no inputs or outputs were de�ned
by prepositional phrases, the object from the SVO-tuple is taken
as input or output, based on the type of the verb (lines 25-31).
Depending on the type of the verb and if the object is used as input
or output, the counterpart has to be generated (lines 27,33-36). In
the end, a list consisting of the activity, the inputs, and outputs, and
the role is returned (lines 37-38).

Table 6.9 shows the output of the linguistic feature mapping onto
model elements for the core sentence. From the verb "send" and the
object "invoice", the activity "send invoice" is generated, which is
labeled based on the set of indication words as "processing". As no

16 The described function can be found in the Mapping.py in the folder
Model_Element_Mapping.

241

6 Implementation and Evaluation

1 svo, pps = tmp[0][0], tmp[1]
2 role = svo[0]
3 main_activity = svo[1]
4 main_object = svo[2]
5 (...)
6 vtype = "processing"
7 if main_activity in CREAT_VERB:
8 vtype = "creating"
9

10 activity = [activity_label,vtype]
11 main_objects, inputs, outputs = [], [], []
12 if len(main_object.split()) > 1:
13 (...)
14 if not main_objects:
15 (...)
16
17 if pps:
18 (...)
19 if pp[2] == "input":
20 inputs.append([pp[1],pp[3],'defined'])
21 elif pp[2] == "output":
22 outputs.append([pp[1],pp[3],'defined'])
23 elif pp[2] == "role":
24 role = pp[2]
25 if not inputs:
26 if activity[1] == 'creating':
27 input = obj[0] + " to " + main_activity
28 inputs.append([input,obj[1],'generated'])
29 else:
30 input = obj[0]
31 inputs.append([input,obj[1],'defined'])
32 if not outputs:
33 if activity[1] == 'creating':
34 (...)
35 else:
36 (...)
37 mapping = (activity,inputs,outputs,role)
38 return mapping

Listing 6.13: Mapping the Core Sentence onto Model Elements.

242

6.3 Features

Table 6.9: Mapping the Core Sentence onto Model Elements.

Input Features:
[[[(accountant, send, invoice)], [], successor],[],[],[]]

Output - Elements:
([’send invoice’, ’processing’], [[’invoice’, ’AND’, ’de�ned’]],
[[’sent invoice’, ’AND’, ’generated’]], ’accountant’)

other prepositional clause was identi�ed, the inputs and outputs
have to be generated based on the SVO-tuple. Hence, because the ac-
tivity is based on a processing verb, the input "invoice" is generated.
Since there is only one object, there cannot be an exclusive choice,
and the label "AND" is assigned to the input. Furthermore, the label
"de�ned" is added to the input additionally, as the input is stated di-
rectly in the text. The output is generated as "sent invoice" and gets
consequently the label "generated". Lastly, the subject "accountant"
of the SVO-tuples is assigned as the role.

Mapping of Conditional Clauses

Conditional clauses include the description of inputs of the cur-
rently investigated activity and at the same time insights about the
outputs of the referenced activity. The stated input object of the
current activity results from a decision made in a previous activity.
Thus it can be assumed that this object is one of multiple possible
outputs of this previous activity. The mapping process extracts
di�erent attributes and elements from the corresponding row and
column in the linguistic feature data frame. First, the type of the
condition that determines if the condition refers to an activity "be-
fore" or "after", is determined. Second, the referenced activity is

243

6 Implementation and Evaluation

generated based on the same SVO-tuple and in the same way as
it was done to map the core sentence. Third, based on the stated
object, at least two conditions, and thus two objects are de�ned.
One object is based on the stated one, while the other represents
the possible counterpart and uses the negated object, the antonym
of the object. Lastly, the index of the row the referenced activity is
residing in is stored for the later combination of all mapping steps.

Listing 6.14 provides an excerpt of the function _map_cond17. As
more than one conditional clause can occur in sequence, a counter
is de�ned previous to the code excerpt to track the initial activity.
Then, the SVO-tuples of the referenced core sentence is taken as
the referenced activity (line 2). The index of the referenced activity
the conditional clause relates to the regarding outputs is extracted
from the features tuple (line 3). Following this step, the adjective or
negation of the object is selected as the adjective to �nd an antonym
for, while the �rst word after the adjective is selected as the noun
as this resembled the typical structure of, e.g., "positive check" or
"declined payment" (line 4-5). Then the two possible options, the
known object label as "syn" and the counterpart as "ant" are de�ned
and generated (lines 6-7). The known object is then stored as input
to the current activity and together with its counterpart as exclusive
outputs for the referenced activity (lines 9-10). The type, inputs,
outputs, and the index to the referenced activity are combined into
a list and returned (line 11-12).

Table 6.10 shows an example of an input in the form of a row
from the feature data frame and the generated output of model

17 The decsribed function can be found in the Mapping.py in the folder
Model_Element_Mapping.

244

6.3 Features

1 (...)
2 refactvitiy_in = tmp[0]
3 xor_ref = tmp[3]
4 adj = nlp(tmp[1])[0]
5 noun = nlp(tmp[1])[1]
6 syn = adj.text + " " + noun.text
7 ant = _get_antonym(adj) + " " + noun.text
8 type = "before"
9 input = [syn,'AND','defined']

10 outputs = [refactvitiy_in,[syn,'XOR','defined'],
[ant,'XOR','generated']]↪→

11 elements = [type,input,outputs,xor_ref]
12 return elements

Listing 6.14: Mapping a Conditional Clause onto Model
Elements.

Table 6.10: Mapping a Conditional Clause onto Model Elements.

Input Features:
[’before’, ’send invoice’, ’positive check’, 0]

Output - Elements:
[’before’, [’send invoice’, [’positive check’, ’AND’, ’de�ned’]], [[’positive check’, ’XOR’, ’de-
�ned’], [’negative check’, ’XOR’, ’generated’]], 0]

elements. First, the type of occurrence is stated with "before". The
object "positive check" is described as input for the activity "send
invoice" as well as combined as outputs together with the object
"negative check". To relate the outputs to an activity, the index of
the referenced activity is attached.

245

6 Implementation and Evaluation

Mapping of Adverbial Clauses

Adverbial clauses provide information about the sequence and con-
nection between two activities, the one stated in the adverbial clause
and the one stated in the core sentence. Thus, the mapping for the
adverbial clause is primarily similar to the mapping performed with
the core sentence. However, the information about the sequence of
these two is then established over adjusting the inputs and outputs,
respectively.

Listing 6.15 shows a code excerpt that deals with the mapping of
linguistic features extracted from adverbial clauses onto the model
elements and parts. The interrelation between adverbial clauses and
other clauses or the core sentence adds complexity to this mapping.

First, all adverbial clauses are selected related to the verb, activity,
respectively, of the activity analyzed. This is again, similar to the
other clauses, achieved over matching the common verb in the
SVO-tuples of both. Second, depending on the label, the adverbial
clause was assigned based on the included keyword. It is declared
as input or output. This assignment relates to adverbial clauses that
solely describe objects. In contrast, the ones describing activities are
assigned the labels of "before" and "after" to indicate the sequence
and if the activity is placed before or after the related main activity.
The di�erent inputs and outputs are later then matched and merged,
respectively.

Listing 6.15 shows an excerpt of the function _map_advcl18.
The adverbial clause features are treated like features from a core
sentence and mapped accordingly (line 4). The results are returned
18 The described function can be found in the Mapping.py in the folder
Model_Element_Mapping.

246

6.3 Features

1 def _map_advcl(row):
2 advfeat = row[1]
3 if advfeat:
4 tmp = _map_core(row)
5 mapping = (advfeat[2],tmp[0],tmp[1],tmp[2],tmp[3])
6 return mapping
7 else:
8 return None

Listing 6.15: Mapping a Adverbial Clause onto Model Elements.

Table 6.11: Mapping a Adverbial Clause onto Model Elements.

Input Features:
[[(’Laura’, ’send’, ’invoice’)], [[’send’, ’notice’, ’output’, ’AND’]], ’successor’]

Output - Elements:
[’successor’, [’send invoice’, ’processing’], [[’invoice’, ’AND’, ’de�ned’]], [[’sent invoice’, ’AND’,
’generated’]], ’Laura’)]

together with the indicator for the sequence and returned as a list
(lines 5,6).

Table 6.11 shows the output of the previous linguistic feature
extraction of an adverbial clause as input for this step and the output
of this step. Similar to the core feature mapping, the SVO-tuple and
tuples of objects from the prepositional phrases are processed. The
resulting activity, inputs, outputs, and roles are then combined with
the adverbial modi�er type. The adverbial modi�er type in the
example is "successor" and indicated that the activity mentioned
in the adverbial clause happens after the activity from the core
sentence.

247

6 Implementation and Evaluation

Mapping of Relative Clauses

Relative clauses mainly state information about objects, roles, and
the control �ow in a model. Information about activities can be
present as well, but are relatively uncommon and often an indicator
for unstructured and complex process descriptions.

The extracted linguistic features from a relative clause thus refer
to objects or roles from the core sentence. They can have a SVO-
tuple and state an activity connected to one of the mentioned objects
or roles from the core sentence. In case no SVO-tuple is part of the
clause, it most likely contains attributes of the referenced object
or role. This object is further mapped onto the adjusted inputs,
outputs, or roles of the activity the referenced object belongs to.

Listing 6.16 shows the function to map relative clauses, their
linguistic features, and the model elements and parts19. First, the
referenced activity is combined from the SVO-tuple (line 4). The
object is then created based on the previous activity by combining
the activity’s in�ected verb with the object label (lines 4-8). The
referenced activity, the new object with the labels "de�ned" and
"AND" are stored in a list and returned (lines 9-10).

In Table 6.12, the output of the mapping is shown based on the
previously extracted linguistic features. The �rst entry, the activity
the object serves as input for, is generated based on the second entry
of the input, the glsacr:svo-tuple. The newly generated object is
stated, which is based on the third entry of the input, the referenced
previous activity.

19 The described function can be found in the Mapping.py in the folder
Model_Element_Mapping.

248

6.3 Features

1 def _map_relcl(row):
2 tmp = row[3]
3 if tmp:
4 refactivity = tmp[1] + " " + tmp[3]
5 obj = default_conjugator.conjugate(tmp[2])

.conjug_info['indicative'] ['indicative
present perfect']['1s']

↪→
↪→

6 + " "
7 + tmp[3]
8 elements = [refactivity, [obj, "defined", "AND"]]
9 return elements

10 else:
11 return None

Listing 6.16: Mapping a Relative Clause onto Model Elements.

Table 6.12: Mapping of a Relative Clause onto Model Elements.

Input Features:
[’before’, [(’Laura’, ’send’, ’invoice’)], ’prepare’, ’invoice’, ([], [])]

Output - Elements:
[’send invoice’, [’prepared invoice’, ’de�ned’, ’AND’]]

Combination of Mapping Results

In the last step of mapping, the resulting features of the individual
sentences and clauses are merged into process parts already.

Directly described and stated model elements are always priori-
tized over objects generated from the implicit information gained
from the core sentence and the corresponding activity. In case ob-
jects are described in subordinate clauses, these are prioritized over
the general object taken from the core sentence. Furthermore, ac-
tivities extracted from adverbial clauses are inserted as additional
rows in the data frame.

249

6 Implementation and Evaluation

Listing 6.17 shows the function model_element_mapping20. The
combination is �rst, and for each row, mapping the individual
sentences and clauses using the previously described functions
(line 3). All elements from the core sentence are initially used as
activity, inputs, outputs, and role (line 5).

In the next step, a check for elements from conditional clauses is
performed (line 6). In a part not shown in this excerpt, the clause’s
input replaces the input taken from the core sentence (line 8). If
elements were extracted from this clause, these are used to adjust
the inputs and outputs accordingly. In case the last row that was
processed already included a conditional clause, the �rst output de-
�ned in the current clause is added to the outputs of the referenced
row (lines 9-11). This way, the referenced row’s outputs are the
stated optional object from the conditional clauses. If no conditional
clause precedes the current one, both outputs, the stated one and
the created counterparts, are used as outputs of the referenced activ-
ity (line 12). After this, elements identi�ed from relative clauses are
processed. In case the relative clause referenced activity matches
the activity from the core sentence, the relative clause’s object is
used as input for the activity(lines 14-16). The set of elements is
then added as a row to the model data frame (line 17).

Lastly, elements from adverbial clauses are integrated. A variable
is de�ned that holds the activity described in such a clause (line 18).
Then and if an adverbial clause is present, the type of the clause is
checked (lines 21,24). In case the type is "precessor", the activity and
corresponding elements are directly added as a row to the model

20 The described function can be found in the Mapping.py in the folder
Model_Element_Mapping.

250

6.3 Features

data frame (lines 22-23). If the label is "successor", the activity and
elements are stored in the earlier de�ned variable (lines 25-26).
Not shown in this excerpt is the �nal processing of the activity
extracted from the core sentence that is, corresponding to the type
of the adverbial clause, either inserted before or after the activity
described in the adverbial clause, or in case no adverbial clause is
present, inserted as row into the data frame.

The output is then represented in a data frame, as shown in
Table 6.8. Each row represents one activity and the corresponding
inputs, outputs, and roles.

6.3.4 Process Model Generation
The generation of a connected and complete process model is the
goal of the Process Model Generation step. The main tasks re-
volve around connecting the extracted model parts with the help
of the identi�ed control �ow and resolving any con�icts that arise
due to mismatches or missing information.

First, all extracted elements that are present in individual lists
or data frames have to be combined. This is performed using the
function _connect_part(model_df), shown in Listing 6.19. This
function merges all extracted linguistic features that relate to each
other. The merging is based on the matching verb or activity. Thus,
all features belonging to a certain activity are combined into one
data frame row to process each activity one by one in the next steps.
The Listing and shown excerpt is further explained later on.

Di�erent scenarios are possible when it comes to connecting
the individual model elements extracted from each sentence. First,
these can be connected over matching inputs and outputs. Second,

251

6 Implementation and Evaluation

these can be connected based on the de�ned priorities introduced
in the concept.

1 (...)
2 for index, row in feature_df.iterrows():
3 core, advcl, cond, relcl = _map_core(row),

_map_advcl(row), _map_cond(row), _map_relcl(row)↪→
4 (...)
5 activity, inputs, outputs, role = core[0], core[1],

core[2], core[3]↪→
6 if cond:
7 for con in cond: (...)
8 if condindi > 0:
9 temp_out = mapping_df.at[ref,"Outputs"]

10 mapping_df.at[ref,"Outputs"] =
[temp_out[0],ref_outputs[1]]↪→

11 else:
12 mapping_df.at[ref,"Outputs"] =

ref_outputs[1:]↪→
13 if relcl:
14 for rel in relcl:
15 if rel[0] == activity[0]:
16 inputs = [rel[1]]
17 mapping_df = mapping_df.append({'ID': id, 'Activity' :

activity, 'Inputs': inputs, 'Outputs': outputs,
'Role': role}, ignore_index=True)

↪→
↪→

18 (...)
19 if advcl:
20 (...)
21 if advcl[0] == "precessor":
22 mapping_df = mapping_df.append("AVERBIAL

ROW")↪→
23 inputs = adv_outputs
24 if advcl[0] == "successor" and core:
25 act_suc = [id+1, adv_activity, outputs,

adv_outputs, adv_role]↪→
26 (...)
27 return mapping_df

Listing 6.17: Combination of Mapping Results into Model Parts.

252

6.3 Features

In the �rst case, no further adjustments have to be made. In
the second case, however, disconnected parts have to be identi�ed.
This identi�cation is performed by checking for each input and
output of an activity if it can also be found in another activity.
If just the input or output is connected to another activity, it is
assumed that this activity is either a starting or ending activity in
the process. If no object of an activity is found in any other activity,
it is considered disconnected. The chronological predecessors and
successors are identi�ed for the disconnected model parts based on
their occurrence in the text.

Listing 6.18 shows a function that checks for a row in a model
data frame if it is disconnected. All Inputs and Outputs of the other
rows are combined into a list (lines 3-8). These inputs and outputs
of the row that is checked are combined into another set (lines 2,10-
17). If an entry in the list of the row, an entry in the list checkset, is
found in the list of the other rows, rowset, the row is connected and
returns the value False as it is checked for disconnection (line 20).
In the opposite case and if an entry is found in the other list, the
row is connected, and the function returns True (line 22). However,
the function is solely checking for disconnected rows but does not
provide any information about whether a connection is correct.

In case disconnected rows are identi�ed, these have to be con-
nected to the rest of the model. As previously mentioned, di�erent
rules and priorities are de�ned to solve any con�icts. Listing 6.19
shows a function that, after the check for disconnected rows (line 4),
provides a straightforward approach to connecting these rows with
another model part. Considering the third priority, a disconnected
part gets connected to the previous model part by replacing the
input with the process step’s output before (lines 8,9). This replace-

253

6 Implementation and Evaluation

1 def _check_disconnect_row(model_df,drow):
2 checkset = []
3 rowset = []
4 rowindex = drow['ID']
5 for x in drow['Inputs']:
6 rowset.append(x[0])
7 for x in drow['Outputs']:
8 rowset.append(x[0])
9 ind = 0

10 for index, row in model_df.iterrows():
11 if ind < len(model_df):
12 if ind != rowindex:
13 for x in row['Inputs']:
14 checkset.append(x[0])
15 for x in row['Outputs']:
16 checkset.append(x[0])
17 ind = ind + 1
18 out = any(check in rowset for check in checkset)
19 if out:
20 disconnected = False
21 else :
22 disconnected = True
23
24 return disconnected

Listing 6.18: Checking a Generated Model for Disconnected
Parts.

ment is done with the assumption that the process is described
sequentially, and thus the model data frame is created accordingly.
However, if the row that has to be connected is the �rst row in
the data frame, it can be assumed that it is the �rst process step
in the represented process model. As such, there is no previous
output that can be replacing the current input. Thus, the output
gets replaced by the input stated in the next row of the data frame
(lines 6,7).

254

6.4 Evaluation

1 def _connect_parts(model_df):
2 df = model_df
3 if len(model_df) > 1:
4 for index, row in df.iterrows():
5 if _check_disconnect_row(model_df,row):
6 if index == 0:
7 df.at[index,'Outputs'] =

df.at[index+1,'Inputs']↪→
8 else:
9 df.at[index,'Inputs'] =

df.at[index-1,'Outputs']↪→
10 return df

Listing 6.19: Connecting Model Parts.

6.4 Evaluation
To evaluate the current state of the proof of concept, tests were con-
ducted. These tests are described in the following, and a preliminary
evaluation of the approach based on a pool of 40 cases is discussed.
All cases are taken from real-world projects and represent processes
from practice. The textual descriptions were formulated with the
earlier stated input requirements in mind.

The evaluation focuses on the correct extraction of the core
model elements and structures mentioned in the input text. Roles
are not part of the set of evaluated model elements at this stage, as
these, compared to the other elements, provide rather additional
information less essential to create a correct process model. The
bottom line of evaluating the approach focuses on creating a sound
and correct process model without losing quality compared to
manual creation. Based on this viewpoint, di�erent questions are
investigated by the evaluation:

255

6 Implementation and Evaluation

� Can the approach identify all implicitly and explicitly in the
text mentioned model elements and parts?

� Can these parts be connected correctly and combined into
the overall process model that is described?

� How do wrongly identi�ed model parts impact the established
transformation process?

Considering these question, tests were conducted as described
in the following. The results are then discussed in Section 6.4.3.

6.4.1 Experimental Setup
The experiment was conducted with students from bachelor and
master program of information systems to obtain model-description
pairs. The students were provided with each a set of process models
taken from the project partner’s knowledge base or other previously
conducted projects and a set of process descriptions. The students
formulated the textual process description for the provided models
and created Horus procedure models from the provided textual
descriptions.

A small set of input requirements was provided and no templates
or sentence building blocks to guide the participants. On the one
side, further restrictions were not as well known and clear as they
are now after the evaluation. On the other side, the small set of
requirements should provide an impression of how the approach
performs in a "free" and less restricted environment. The partici-
pants were familiar with the modeling method and tool, as these are

256

6.4 Evaluation

part of di�erent lectures in both programs. However, they cannot be
considered experts that model processes in this manner regularly.

Feedback was given regarding the results to solve critical issues
that would exclude a pair of model and textual description from
the evaluation, such as violations of the modeling language’s un-
derlying rules. Each textual input was checked for grammatical
correctness and spelling mistakes, as the transformation approach,
especially the used language models, are sensitive to the incor-
rect use of the language. Additionally, all text structures that were
speci�cally excluded were removed. This includes the use of meta-
descriptions, such as "the process starts with" or "the process ends
here".

Data and Measurements

For the evaluation, the original and manually created model is com-
pared to the model data frame produced as the output of the Model
Generation phase. It has to be acknowledged that the connecting
of model parts can include drawbacks, as objects are sometimes
falsely dropped for the sake of connectivity even though they are
required and stated in the description. Thus, a comparison with
the model data frame after the Model Mapping phase might hold
insights about possible information loss or gain.

A set of numbers and measurements is used to assess the trans-
formation approach towards the three mentioned questions. These
include di�erent descriptive numerical indicators of the process de-
scription and the corresponding created model, as well as calculated
measurements.

257

6 Implementation and Evaluation

In total, 40 models and their descriptions were tested. These
included 765 model elements, consisting of 162 activities, 234 ob-
jects, and 396 connections. The average model consists of around
19 elements: 4 activities, 6 objects, and 9 connections. The smallest
considered model consists of 9 elements, while the biggest model
consists of 39 elements.

The collected example process models are taken from di�erent
projects and were created by di�erent people in di�erent contexts.
In consequence, inherit some inconsistencies. These inconsistencies
are considered in the evaluation to ensure a meaningful analysis
even though the example text-pairs are not entirely �tting.

Furthermore, the de�nition of the measurements is essential for
the intended evaluation. In this regard, the following paragraph
brie�y states what is considered correct, incorrect, and missing on
the example of a process description, a manually created model,
and an automatically generated model.

Considering the textual process description "We approve the in-
voice. Then, we send the package for the delivery." and the original
model Figure 6.3, as well as the automatically generated model
shown in Figure 6.4, the selection of correct, missing, and wrong
elements, is explained.

Figure 6.3: Example Test Model for Evaluation.

258

6.4 Evaluation

Figure 6.4: Example Generated Model for Evaluation.

The original and manually created model shows some incon-
sistency in the modeling style, for instance, in labeling the object
"invoice approved". The automated transformation process creates
this object label as "approved Invoice" in the second model due to
the de�ned style of labeling model elements. Nevertheless, it can
be, without a doubt, be assumed that both labels describe the same
entity. In such a case, the generated element "approved Invoice" is
considered correctly generated.

Furthermore, the connection between "Send package" and "sent
Package" would initially be identi�ed as incorrect, as the connection
between them is not found in the generated model. However, the
control �ow resembles one of the manually created models. Thus,
the connections are considered correctly identi�ed, while the object
is considered incorrectly identi�ed.

At the end of the shown process, the object should correctly be
"Delivery". As this is not the case in the generated model, where the
object is labeled as "sent Package", the object "Delivery" is missing,
while the object "sent Package" is considered incorrectly generated.
In this case, the object "sent Package" logically �ts the process but
is not correctly labeled. Thus, the object is considered incorrectly
generated, but the object "Delivery" is not considered missing. The

259

6 Implementation and Evaluation

same rule applies to the labels of activities. For instance, an activity
"send the invoice" would be considered the same as "send invoice".

6.4.2 Summary of Results
The test results of the tests run with the implementation are sum-
marized in the following. To be able to make statements about the
accuracy of the transformation, the evaluation metrics Precision
and Recall were used. These ratios are used for all model elements,
as well as activities, objects, and connections. An overview of the
results is shown in Table 6.13.

Recall =
Correct Elements

Correct Elements + Missing;Elements
(6.1)

Precision =
Correct Elements

Correct Elements + Incorrect Elements
(6.2)

Among the total number of 40 models, 679 out of 744 elements
were correctly identi�ed with a precision of 89,3% and recall of
96,3%. An overview of the results is shown in Table 6.13. Addition-
ally, two subsets of the model were investigated, representing small
and more extensive models.

� Among the 19 models that consist of 18 or more elements,
the identi�cation of elements was achieved with a precision
of 90.4% and recall of 96.1%.

� Among the 21 models that consist of 17 or fewer elements,
the identi�cation of elements was achieved with a precision
of 90.4% and precision of 97.7%.

260

6.4 Evaluation

Table 6.13: Recall and Precision of the evaluated Models.

Metric Value

Total Number of Models 40
Total Number of Elements 765
Total Number of Elements (excl. Connections) 396
Total Number of Activities 162
Total Number of Objects 234
Total Number of Connections 369

Average Number of Elements per Model 19.1
Average Number of Elements per Model (excl. Connections) 9.9
Average Number of Activities per Model 4.1
Average Number of Objects per Model 5.9
Average Number of Connections per Model 9.2

Total Number of correct Elements 679
Total Number of correct Activities 141
Total Number of correct Objects 194
Total Number of correct Connections 344

Total Number of incorrect Elements 81
Total Number of incorrect Activities 17
Total Number of incorrect Objects 46
Total Number of incorrect Connections 18

Total Number of missing Elements 26
Total Number of missing Activities 2
Total Number of missing Objects 11
Total Number of missing Connections 13

Total Recall 0.963
Total Precision 0.893

Total Recall excl. Connections 0.963
Total Precision excl. Connections 0.842

261

6 Implementation and Evaluation

Example Results

Two example outputs of the transformation approach are shown
in the following of which one represents a depicts the successful
transformation. In contrast, the second example points out a current
weakness of the approach.

This �rst example revolves around a process and includes a
loop as a special pattern and construct. The input text and the
generated model are shown in Fig. 6.5. The described process steps
are connected via common input and outputs. While described
independently in the textual description, the activities Check Order
and Open Order can be connected with the help of the matching
inputs and outputs. The common objects Order of the two activities
Check Order and Open Order are then leading to the loop shown in
the �gure.

The second example is shown in Fig. 6.6 and emphasizes one
of the di�culties this approach currently faces, namely the cor-
rect identi�cation of exclusive splits. Exclusive splits are identi�ed
in the text via conditional clauses and the keyword "if" and the
reference to the activity these conditions refer to leaves room for
misinterpretation. This room for misinterpretation is especially the
case when two exclusive splits follow each other. In the textual
input, conditional clauses are identi�ed three times by the "If ..."
structures. As all of these are stated without the interruption of a
sentence without a conditional clause, they are all related to the
�rst sentence. Thus, the third conditional statement is incorrectly
matched to the �rst sentence.

262

6.4 Evaluation

Figure 6.5: Petri Net Generation including a Loop.

Figure 6.6: Incorrect Identification of an Exclusive Split.

6.4.3 Discussion
In this section, the results of the tests are discussed. In the �rst part,
the results are summarized and assessed towards the three earlier
de�ned questions and the implementation’s initial objectives. In
the second part, remarks on the current state of the implementation
are made.

The correct identi�cation of elements, especially activities, shows
a good recall and precision for all models. Contrary to the initial

263

6 Implementation and Evaluation

assumption that more extensive models are more likely to con-
sist of wrong elements or miss in the text described elements, the
transformation approach provides a satisfying recall and precision
for both small and big models. However, investigating the individ-
ual models’ results shed light on the translation di�culties and
where misinterpretations occur. Signi�cant challenges and a higher
error-rate are present in models that incorporate splits, speci�-
cally exclusive splits. The connection between two activities among
sentences and stated conditions is complex and leaves room for
ambiguous descriptions. However, in more extensive and complex
models that include di�erent patterns, such as splits and merges,
the elements of these are often identi�ed correctly but then incor-
rectly connected. Consequently, this leads to the wrong connection
of parts and inevitable to a loss of information. An example of such
a misinterpretation due to ambiguity is shown in Figure 6.6.

Connecting the di�erent model parts and establishing a correct
control �ow thus present additional challenges, and the current
state of the approach leaves room for improvement. The focus lies in
creating a wholly connected model and comes at the price of wrong
connections or losing information from unidenti�ed elements.

Furthermore, while the content is often identi�ed and trans-
formed semantically correct, it shows some smaller di�erences.
For example, in a text, the list of suppliers is mentioned, which is
modeled in the process model as the object suppliers, our approach
identi�es the list of suppliers as an object in the model. It does
not reduce it to just suppliers. Based on the explanation of correct,
incorrect, and missing elements, such di�erences are considered
acceptable as both labels logically represent the same object.

264

6.4 Evaluation

Another di�culty relates to the language of the text input men-
tioned before. Every language provides challenges to the precise
identi�cation of words and their grammatical dependencies. For ex-
ample, the English word "ship" is identi�ed by the most prominent
and available models as a noun instead of a verb, which has impli-
cations on the further processing steps. The word’s implicated use
as either a noun or verb cannot be identi�ed correctly by the used
techniques. Consequently, the models generated from textual input,
including such ambiguous words, can be inaccurate and require
human interaction to con�rm or adjust the generated model.

Considering the application of this approach and the intended
bene�ts for process modelers, it has to be acknowledged that the
mentioned di�culties in the analysis of the chosen language lead
to a limitation of the potential textual input. Nevertheless, the
transformation aims towards a realistic application scenario and
either contributes to this already or provides structures to adjust or
extend the pipeline approach’s modules to ful�ll individual projects’
requirements.

As a consequence of points stated before, models may not be
transformed from text and entirely match the original model. How-
ever, the core elements and contents are identi�ed with a satisfying
recall and precision. The di�culties in connecting the individual
model elements correctly still require human interaction and de-
cision making. The described concept and the implemented proof
of concept, the evaluation of the implemented features, and the
theoretical concept allow statements about the three earlier stated
questions and objectives of this approach. Regarding the three
stated questions that frame the evaluation, insights were gained
that provide some initial answers.

265

6 Implementation and Evaluation

� Can the approach identify all implicitly and explicitly in the
text mentioned model elements and parts?
The high recall shows that a high percentage of described el-
ements are extracted correctly. Implicitly stated elements are
additionally created based on di�erent rules, e.g., the generation
of inputs and outputs based on the verb type or a conditional
clause. The phase of connecting the di�erent model parts and
generating the model can lead to a loss of elements and reduce
the recall.

� Can these parts be connected correctly and combined into
the overall process model that is described?
The Model Generation phase focuses on connecting all parts of
the model that are not yet connected over matching inputs and
outputs. However, and as mentioned, the current generation
includes the risk of connecting elements not as described.

� How do incorrectly identi�ed model parts impact the estab-
lished transformation process?
Model elements that are incorrectly generated, e.g., attached
with a wrong label, but logically �t the description, do not sig-
ni�cantly impact the model and other model elements. On the
contrary, elements that are not logically �tting and are not just
incorrectly labeled often lead to a disturbed control �ow and
related elements.

While the focus was on automating the model creation from the
text, insights about the other two objectives of ensuring model qual-
ity and using this approach in a learning and training environment
were gained.

266

6.4 Evaluation

Automating Model Creation

As stated in the objectives, a fully automated translation is di�-
cult to achieve. However, this approach provides an automation of
crucial steps in creating a process model based on text. The trans-
formation process can identify and extract model elements and
parts, which are ideally combined into a complete process model,
similar to already existing works from Friedrich, Mendling, and
Puhlmann [FMP11], Ghose, Koliadis, and Chueng [GKC07] and
Epure et al. [Epu+15].

Human interaction for con�rmation and adjustment is still bene-
�cial and recommended to acquire satisfying results for more com-
plex models. The transformation approach works well on smaller
and fewer complex models and can transform these without signif-
icant human interaction.

For more extensive and complex models, this approach can pro-
duce a starting point and support the modeling process as model
elements as well as initial connections can be proposed to the pro-
cess modeler.

In Figure 6.7 a textual input in the form of a process description
is shown on the left, while on the right, the corresponding and
automatically generated process model is shown. The activities and
objects described in the textual input are extracted and transferred
into a data frame representing the shown process model. Missing
objects and labels are inferred from the activities in this step.

267

6 Implementation and Evaluation

Figure 6.7: Textual Input and Automatically Generated Process
Model.

Improving Model �ality

Process model quality is often perceived from a subjective viewpoint
and highly dependent on the model’s purpose.

However, recalling the introduced aspects of model quality taken
from the guidelines and frameworks that were introduced in Sec-
tion 2, some implications about the impact of an automated trans-
formation approach on these aspects can be drawn.

Syntactic metrics are in the Horus Business Modeler’s case solved
by the automatic adjustment and are thus just of little interest.
Only aspects such as the extent of the model, e.g., the number of
elements, and the number of distinct patterns, can provide feedback
about the complexity. With bigger models, the corresponding tool’s
adjustment algorithm reaches its limits. On the contrary, semantic
quality aspects of a model or its capability to su�ciently represent

268

6.4 Evaluation

the corresponding process, meaning �rst and foremost completely
and correctly and in a consistent manner, are of high interest.

To be able to make a more sophisticated statement about the
quality of the models, a more extensive data set has to be compared.
Here, the assumption that all elements present in the manually
created model are also in the automatically generated model serves
as orientation in comparing both models. Based on this comparison,
the approach can be assessed towards its ability to achieve at least
the same model quality as the manual creation.

To better understand the quality of models and practical require-
ments, a statement about the de�nition of the quality of models
would have to be acquired from experts. However, this would still
represent subjective opinions depending on the expert to ask as
well as the practical context.

Supporting Training Participants

With the here proposed transformation approach, the connection
between text and process model is automatically provided. The
transformation provides precise and accurate results, which are
important for an e�cient training environment. These results en-
able new process modelers to start from simple textual inputs to
familiarize them with process-oriented methods and process mod-
els. The di�erent artifacts that serve as inputs and outputs for the
distinct processing modules allow the user to follow the creation
process and enable them to observe which text structures certain
elements come from and how textually described structures are
represented in the process model.

269

6 Implementation and Evaluation

Additionally, the modular structure and the di�erent outputs of
each step can be used to explain each processing step individually.
The presentation and explanation of each step’s intermediate results
can focus on explaining distinct aspects, such as the more modeling
relevant parts or the rather NLP and text mining-focused parts.
For instance, the indication of structures found in a text and the
mapping onto model elements provides inexperienced users with
examples of how speci�c text structures and phrases are represented
in a model and establish a connection between and understanding
of both.

Remarks on the Implementation

In this chapter, a proof of concept of the proposed transformation
between textual inputs and process models has been described. The
implementation shows that key aspects of the approach can be
realized with satisfying results under some restrictions.

Although this chapter and the described proof of concept solely
focus on a selected set of features relevant in a speci�c scenario, the
implementation and the results of the evaluation enable an analysis
of the current version and shed light on open potentials and issues.
While future extensions of the approach as a whole are hinted at
in the concluding remarks of this work, potentials and open issues
speci�cally relevant for the implementation are brie�y pointed out
in the following.

First, the textual inputs are expected to ful�ll a set of require-
ments so far to ensure a satisfying precision and recall in the trans-
formation. Ambiguous expressions regarding language or in the
text-model mapping have to be clearly de�ned, and a decision

270

6.4 Evaluation

towards one meaning was made. As for now, a subset of English
grammar and vocabulary can be used in the written process descrip-
tions. Even though entirely unrestricted use of natural language
cannot be considered for the transformation due to its complexity
and naturally inherent ambiguity, the restrictions can be reduced.
The use of a so-called controlled natural language represents a com-
promise in this regard. Standards and joint agreements on the form
of communication and thus also naming, labeling, and structur-
ing documents, models, and other artifacts are already established
to enable precise and unambiguous communication. For instance,
these are used nowadays in military or air-tra�c communications.
Referring to an already de�ned controlled natural language or cre-
ating one speci�cally for this purpose promises a more precise
de�nition of processing rules and, in consequence, can increase the
performance of this approach.

Furthermore, any input will be processed at this stage, regardless
of its correct use of language or respect paid to the input require-
ments. Validation of the input and processing of just validated
inputs is part of an open discussion. On the one side, the consid-
eration that only valid inputs also lead to correct process models
supports the need for a validation mechanism. On the other side,
even incomplete and not correctly stated inputs can be processed,
and parts of models can be extracted. A partial extraction can still
be of use and help the user in the modeling process. A decision
would have to be made in favor of one of the two stated scenarios
when shifting the attention towards the validation of the input.

This approach is constructed for and based on the English lan-
guage. Rules and keywords are selected based on the underlying
English grammar and vocabulary. The described pipeline archi-

271

6 Implementation and Evaluation

tecture enables the exchange of individual modules already but
requires further adjustments to integrate modules using other lan-
guages and language models. However, the adjustment to other
languages is dependent on the language speci�cs, and the degree
of necessary adjustments varies between languages and language
families.

In this regard, the annotation of additional linguistic information
is relying on the mentioned language models. Even though the most
commonly used models provided by groups such as the Stanford
NLP group21 or the software company Explosion22, promise a high
accuracy, e.g., in annotating the correct POS-tags to the text, there
are still between �ve to ten percent of incorrect annotations.

Furthermore, using di�erent models to acquire additional infor-
mation about the textual inputs can hold other bene�ts than the
currently used models provide. For instance, the linguistic feature
extraction and included clause extraction are based on the depen-
dency parser of SpaCy. An alternative approach would be using
the constituency parsing provided by the NLTK library. On the one
side, this alternative might promise higher precision in identifying
subordinate clauses but is missing the dependencies between the
single text parts on the other side. A combination of both is the
topic of several investigation and implementations for some time
now, such as in [RCK13; GŽ12], but still often not provided beyond
a prototype solution. In case a combination of constituency and
dependency parsing into one set of annotations is possible and
feasible, better results can be expected.

21 See https://nlp.stanford.edu/. Last accessed: 08.12.2020.
22 See https://explosion.ai/. Last accessed: 08.12.2020.

272

https://nlp.stanford.edu/
https://explosion.ai/

6.4 Evaluation

A feature introduced in the concept but not included in the
implementation scope is the adjustment of models based on the
reference point to contextual knowledge. This decision was made
based on an initial investigation and tests of simple and prototype
procedures of adjustments. These tests showed a reduction of the
model quality based on a tendency to add wrong elements or remove
elements that should be part of the model.

When considering the implementation, the adjustment process
could be structured similarly to the levels of the evaluation. First, the
adjustment towards model completeness might be a promising step
to provide recommendations about missing or wrongly included
elements. This adjustment could be achieved by combining all labels
of the individual model elements of the initial model as well as the
models from the knowledge base into a list of terms. With this list of
terms, the Term Frequency–inverse Document Frequency (TF-IDF)
can be calculated for each list. Based on the TF-IDF the lists can then
be compared and based on a de�ned threshold, similar models can
be identi�ed. Elements that are present in models considered similar
to the analyzed model can be recommended to add. In contrast,
elements present in the analyzed model but not in similar models
can be recommended to remove.

Nevertheless, an adjustment beyond the described model parts,
e.g., the connections and control �ow between the model elements,
signi�cantly increases complexity. This step would bene�t from
a further investigation of topics, such as model comparison and
alignment.

The implementation of the proof of concept focused on selected
features of the model creation process and the provision of these
features was of the highest priority. However, considering the ap-

273

6 Implementation and Evaluation

plication of this approach in real use cases, further attention has to
be paid to complexity and runtime. The individual model creation
steps and the respective implementation are at this stage not opti-
mized towards their runtime. The next development steps should
focus on the reduction of complexity of the individual used func-
tions. Even though the current stage leaves room for optimization
of single process steps to reduce the complexity, the required nested
loops to, e.g., iterate through the sentences, phrases, and words,
potentially inherit an exponential runtime.

However, the provided input is expected to include just a limited
range of sentences, phrases, and described model elements. This
is based on the expectation of process-oriented descriptions that
describe models that are not contrary to common conventions and
guidelines. Process descriptions thus are describing one model that
typically consists of a limited number of elements. In general, a
�tting size of a process model is assumed when the model consists
of �ve to �fteen activities [KM96]. In this regard, the input is not
limited through the implementation but can be expected to not
exceed a certain size. Consequently, complexity and runtime are
bound by this soft restriction on the input.

274

Part III

Closing Remarks

7 Conclusions
To conclude this thesis, Section 7.1 brie�y recapitulates its under-
lying motivation and provides a concise summary of its most sig-
ni�cant outcomes. Section 7.2 proceeds to discuss the implications
of its results for research and practice. Finally, the most promising
opportunities to continue the work presented in this thesis are laid
out in Section 7.3.

7.1 Summary
This work is based on and motivated by a use case from industry
related to process-oriented Knowledge Management and the use
of process models. Process models are used as knowledge carriers
intended to provide information for and at the distinct processes.
These models are part of the Horus method that incorporates other
model types, such as data models or organizational charts.

A crucial shortcoming of process modeling is it’s time-consuming
nature of it. Often stakeholders have to work together who share dif-
ferent views, and to create process models that capture all relevant
information and are understood by all participants is a challenging
task. Even though current alternatives, such as process mining,
often open discussions about the necessity of process modeling,

277

7 Conclusions

it stays a relevant task, e.g., due to the fact that process models
are carrying knowledge and enable the exchange of knowledge in
di�erent scenarios.

The problem at hand has been speci�ed based on the connection
of the topics Knowledge Management, Business Process Modeling,
and Natural Language Processing. Focus has been put on tackling
the creation of process models by analyzing their textual descrip-
tions and automatically deriving the model and inherent structures
with the help of a rule-based NLP-approach.

One �eld to contribute to a possible solution is NLP, as often
processes are described in user stories or requirements at the be-
ginning of a project, and domain experts tend to write text instead
of creating process models due to their lack of experience in pro-
cess modeling. NLP o�ers a portfolio of techniques that enable the
analysis of texts and text structures for further processing.

The main contribution of this thesis is the provision of an auto-
mated transformation of textual inputs into process models. This
goal has been approached using a set of suitable techniques stem-
ming from the �eld of NLP.

To achieve the intended goal, individual sub-tasks and steps of
such a transformation have been automated to reduce the human
e�ort that has to be put into these steps of modeling a process. The
current implementation of the transformation approach includes a
set of these sub-tasks; however, human interaction is still required
in some parts as misinterpretations are still possible.

Overall, the proposed approach de�nes a process to automatically
generate one type of process models, Horus procedure models,
from natural language texts. The means of analyzing texts were
researched extensively in the past and found their way in various

278

7.2 Implications

application areas. Methods of natural language processing have
been applied to the textual descriptions of processes. The spectrum
of available NLP-tools enables the use of existing solutions for
speci�c tasks that, in most cases, just required minor adjustments.
Building on these solutions, a rule-based system has been speci�ed
to identify patterns in the syntactic structure of texts and map
them to process model elements. The elements are then extracted
as model parts and further combined into one connected process
model.

A �rst evaluation has been conducted based on a set of model-
description pairs gained from the business partners. The results
have shown that the automatic transformation is possible for a
restricted set of models. Identifying complex structures is possible,
but a challenge is still present in the correct connection of identi�ed
model parts. An increase in the complexity of the underlying and
textual described process leads to a lower implementation e�ciency.
Di�erent alternatives for the individual processing modules are
already known and are to explore in the future to receive better
results, e.g., by a combination of approaches.

7.2 Implications
The �ndings presented in this thesis have implications for Business
Process Modeling research, research in the �eld of NLP, Business
Process Modeling practitioners, and vendors of business process
modeling tools. The most signi�cant consequences for these parties
are outlined in the following paragraphs.

279

7 Conclusions

Implications for Business Process Modeling
The task of Business Process Modeling remains a tedious and time-
consuming one but can be facilitated with approaches described
here. Full automation will stay a challenging task due to the nature
of written and spoken natural languages. Additionally, the trans-
lation of textual inputs into a process or any other kind of model
remains highly dependent on the used language and the availability
of pre-trained models required for the di�erent tasks.

Regarding the choice of process modeling language, not only
Horus procedure models or Petri nets are suitable for this kind
of transformation, but also any other modeling language, such as
e.g., BPMN. However, attention has to be paid to the complexity of
transforming text into a process model. Using another modeling
language can increase the number of included modeling elements
and possible structures, such as swim lanes in BPMN. These ele-
ments and structures have to be identi�ed in a textual input and
mapped to the corresponding parts.

With regards to Business Process Modeling as a tool in process-
oriented knowledge management, the automation of process mod-
eling reduces required e�ort, time, and resources that can be re-
distributed to other knowledge-relevant tasks. Furthermore, the
facilitated and improved transformation between representation
forms of knowledge can be bene�cial for exchanging knowledge.
The de�ned strategies for creating labels of activities and objects
enforce labeling standards and promote consistency.

Implications for Natural Language Processing
The majority of the features are highly dependent on the used
pre-trained models. Incorrect annotations can result in low pre-

280

7.2 Implications

cision and, in consequence, incorrect models. However, a set of
publicly available models provide already a good accuracy in their
annotation of POS-tags or the creation of correct syntactical trees.

Nevertheless, the diversity of languages and their distinct indi-
vidual characteristics lead to di�erent sets of challenges for each
language. While some are more suitable for the described approach,
others may even be impossible to incorporate due to their com-
plexity in, e.g., their grammatical structure. The broad spectrum of
Natural Language Analysis and Processing tools that already exist
leave room for further advancement in the automated processing
of texts in the context of Business Process Modeling. Even though a
variety of solutions exists, these have to be adjusted for the distinct
purpose at hand most of the time.

Implications for Practice
Even though automation is not completely achieved, and human
interaction is still required, this thesis takes a step towards poten-
tial solutions that support the modeler in creating a meaningful,
correct, and complete process model. The quality of created models
or at least model parts can match manually created models and can
even be potentially increased by using a reference point and con-
textual knowledge. Additionally, the mentioned standards ensure
that models created with this approach are consistent in charac-
teristics, such as labeling elements. Furthermore, this approach
contributes to systems such as recommender systems for business
process modeling or the reverse approach of the process model to
text transformation.

281

7 Conclusions

Consequently, the integration of this approach as a module in
existing process modeling can extend these tools by an additional
feature that promises meaningful bene�ts.

7.3 Outlook
While the concept and implementation already provide meaningful
insights into automated model generation, several aspects are not
covered within this thesis. The most signi�cant aspects and promis-
ing opportunities for further research and extension of the current
implementation are stated in the following.

Improving the Text Analysis

In the case of a more extensive pre-existing data set of positive
examples, other techniques can support the translation, such as
machine learning approaches or arti�cial neural networks. The
described approach is focused on a rule-based system, but a truly
"intelligent" system requires the mentioned data set.

For a supervised learning approach, one would have to acquire a
data set consisting of models, their descriptions and the mapping
of both. In contrast, for an unsupervised learning approach, the
mapping and underlying rules can be a possible result.

Next to using other techniques, the text analysis can bene�t
from the previously mentioned use of controlled natural language.
A controlled language is a subset of a language, most prominent
English, and is used, e.g., in air tra�c or in the military to reduce
ambiguity in communication. Such a reduction of ambiguity can

282

7.3 Outlook

improve the precision of the text analysis, the identi�cation of text
structures, and consequently the mapping onto model elements.

Extending the Implementation

The implementation at this stage serves as a proof of concept and
does only include one possible option for each module of the trans-
formation pipeline. Potentials and open issues of this speci�c real-
ization are stated in the remarks to the implementation in Chapter 6.

As NLP is a rapidly developing and still intensively researched
topic, new approaches, algorithms, models, and solutions are emerg-
ing or entering a mature state that allows there e�cient use. These
arising solutions and those not incorporated in this implementation
might provide bene�ts over the current modules in this scenario or
be more suitable in a changed setting, such as for a di�erent kind
of language. For instance, the di�erent available language models
could be incorporated as an optional choice in the pipeline to pro-
vide the option to switch between these models and even enable a
comparison of their performance. Ultimately, an improved imple-
mentation aims to achieve higher precision in the identi�cation of
the model described in a text, while on the other side can extend
features, such as the mostly excluded pre-processing steps.

Transferring the Use Case

The use case followed in this thesis can be transferred to other do-
mains. Instead of Business Process Modeling, the included discovery
of processes from textual inputs can be used in other application sce-
narios. These scenarios may include written and spoken language,

283

7 Conclusions

as the latter is in many scenarios already recorded and transformed
into a text in a preparation step.

One potential application scenario was hinted at earlier already
and relates to the model adjustments. Model adjustments may not
have to be performed automatically, as ambiguity in the interpre-
tation requires human interaction to capture the users’ intend.
However, the model adjustment step can still support the process
modeler. By providing recommendations of model elements, a set of
possible solutions can already be provided to the user. Furthermore,
Recommender systems are already part of di�erent modeling tools,
such as in Rapid Miner 1, a tool to create models for Process Mining.

Considering research projects, such as the earlier introduced
PropStop or PAMBot projects, this approach can provide bene�ts
by enabling text mining or process discovery through improving the
detailed identi�cation of the relationship between words, sentences,
and whole texts. In this regard, e.g., the recognition and analysis of
texts for dialogues in chatbots can be improved to enable even more
interactive and realistic communication. In another case, providing
more detailed information about texts originating from, e.g., Twitter
tweets, can improve techniques, such as sentiment analysis, and
contribute to topics such as hate speech detection.

In Process Mining, this approach can potentially provide an
alternative to log-based process mining. Data in textual form as
addition to acquired event-logs can enlarge the data set that can
be mined. Available textual descriptions can provide additional
information not present in the log-based data. Thus, it is worth

1 See https://rapidminer.com/. Last accessed: 08.12.2020.

284

https://rapidminer.com/

7.3 Outlook

exploring a combined approach to improve the next higher task of
process discovery.

Finally, this thesis’s interdisciplinary nature proves to provide
incentives to explore a potential contribution of this approach to
di�erent other scenarios and incorporate insights and results from
other related �elds to achieve better results in the scenario at hand.

285

Bibliography
[Aa+19] Han van der Aa, Claudio Di Ciccio, Henrik Leopold,

and Hajo A. Reijers. “Extracting declarative process
models from natural language”. In: International Con-
ference on Advanced Information Systems Engineering.
Springer. 2019, pp. 365–382.

[Aal98] Wil M.P. Van der Aalst. “The Application of Petri
nets to Work�ow Management”. In: Journal of circuits,
systems, and computers 8.01 (1998), pp. 21–66.

[ABE90] Linda Argote, Sara L. Beckman, and Dennis Epple.
“The persistence and transfer of learning in industrial
settings”. In: Management science 36.2 (1990), pp. 140–
154.

[Ack89] Russell L. Acko�. “From data to wisdom”. In: Journal
of applied systems analysis 16.1 (1989), pp. 3–9.

[AG97] Vincenzo Ambriola and Vincenzo Gervasi. “Process-
ing natural language requirements”. In: Proceedings
12th IEEE International Conference Automated Soft-
ware Engineering. IEEE. 1997, pp. 36–45.

287

Bibliography

[AGG07] Alla Anohina, Vita Graudina, and Janis Grundspenkis.
“Using concept maps in adaptive knowledge assess-
ment”. In: Advances in Information Systems Develop-
ment. Springer, 2007, pp. 469–479.

[AL01] Maryam Alavi and Dorothy E. Leidner. “Knowledge
management and knowledge management systems:
Conceptual foundations and research issues”. In:
Management Information Systems Quarterly (2001),
pp. 107–136.

[All95] James Allen.Natural language understanding. Pearson,
1995.

[Alp+14] Sascha Alpers, Esmahan Eryilmaz, Stefan Hellfeld,
and Andreas Oberweis. “Mobile Modeling Tool Based
on the Horus Method”. In: 2014 International Work-
shop on Advanced Information Systems for Enterprises.
IEEE. 2014, pp. 65–71.

[Amr+12a] Moussa Amrani, Jürgen Dingel, Leen Lambers, Levi
Lúcio, Rick Salay, Gehan Selim, Eugene Syriani, and
Manuel Wimmer. “Towards a model transformation
intent catalog”. In: Proceedings of the First Workshop
on the Analysis of Model Transformations. 2012, pp. 3–
8.

[Amr+12b] Moussa Amrani, Levi Lucio, Gehan Selim, Benoît
Combemale, Jurgen Dingel, Hans Vangheluwe, Yves
Le Traon, and James R Cordy. “A tridimensional ap-
proach for studying the formal veri�cation of model
transformations”. In: 2012 IEEE Fifth International Con-

288

Bibliography

ference on Software Testing, Veri�cation and Validation.
IEEE. 2012, pp. 921–928.

[And02] Ion Androutsopoulos. Exploring Time, Tense and As-
pect in Natural Language Database Interfaces. Vol. 6.
John Benjamins Publishing, 2002.

[And96] Arthu Andersen. “The knowledge management as-
sessment tool: External benchmarking version”. In:
The American Productivity and Quality Center, Winter
(1996).

[ANGS11] Alla Anohina-Naumeca, Janis Grundspenkis, and
Maija Strautmane. “The concept map-based assess-
ment system: functional capabilities, evolution, and
experimental results”. In: International Journal of Con-
tinuing Engineering Education and Life Long Learning
21.4 (2011), pp. 308–327.

[App99] Douglas E. Appelt. “Introduction to information ex-
traction”. In: AI Communications 12.3 (1999), pp. 161–
172.

[Bal08] Helmut Balzert. Lehrbuch der Softwaretechnik: Soft-
waremanagement. Spektrum Akademischer Verlag,
2008.

[Bar95] Dorothy Leonard Barton. Wellsprings of Knowledge:
Building and Sustaining the Sources of Innovation. Har-
vard Business School, 1995.

[BDF05] Moty Ben-Dov and Ronen Feldman. “Text mining and
information extraction”. In: Data Mining and Knowl-
edge Discovery Handbook. Springer, 2005, pp. 801–831.

289

Bibliography

[Ber07] Daniel M. Berry. “Ambiguity in natural language
requirements documents”. In: Monterey Workshop.
Springer. 2007, pp. 1–7.

[BF17] Petter Bae Brandtzaeg and Asbjørn Følstad. “Why
people use chatbots”. In: International Conference on
Internet Science. Springer. 2017, pp. 377–392.

[BFL98] Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
“The berkeley framenet project”. In: 36th Annual Meet-
ing of the Association for Computational Linguistics
and 17th International Conference on Computational
Linguistics, Vol. 1. 1998, pp. 86–90.

[BI18] Taweh Beysolow II. “What Is Natural Language Pro-
cessing?” In: Applied Natural Language Processing
with Python. Springer, 2018, pp. 1–12.

[BKL09] Steven Bird, Ewan Klein, and Edward Loper. Natural
language processing with Python: analyzing text with
the natural language toolkit. " O’Reilly Media, Inc.",
2009.

[BKR13] Jörg Becker, Martin Kugeler, and Michael Rosemann.
Process management: a guide for the design of business
processes. Springer Science & Business Media, 2013.

[BN08] Branimir Boguraev and Mary S. Ne�. “Navigating
through Dense Annotation Spaces.” In: Proceedings
of the Sixth International Conference on Language Re-
sources and Evaluation (LREC’08). 2008.

290

Bibliography

[Boi98] Max H. Boisot. Knowledge assets: Securing competitive
advantage in the information economy. OUP Oxford,
1998.

[BPV12] Jörg Becker, Wolfgang Probandt, and Oliver Vering.
Grundsätze ordnungsmäßiger Modellierung: Konzep-
tion und Praxisbeispiel für ein e�zientes Prozessman-
agement. Springer-Verlag, 2012.

[BRR06] Wilfried Brauer, Wolfgang Reisig, and Grzegorz
Rozenberg. Petri nets: central models and their proper-
ties: advances in petri nets 1986, part I proceedings of
an advanced course bad honnef, 8.–19. September 1986.
Vol. 254. Springer, 2006.

[BRS95] Jörg Becker, Michael Rosemann, and Reinhard
Schütte. “Grundsätze Ordnungsmäßiger Model-
lierung”. In: Wirtschaftsinformatik 37.5 (1995),
pp. 435–445.

[BRVU00] Jörg Becker, Michael Rosemann, and Christoph Von
Uthmann. “Guidelines of Business Process Model-
ing”. In: Business Process Management. Springer, 2000,
pp. 30–49.

[BW00] Wendi R. Bukowitz and Ruth L. Williams. The knowl-
edge management �eldbook. Financial Times/Prentice
Hall, 2000.

[BW06] Madeleine Bates and Ralph M. Weischedel. Challenges
in natural language processing. Cambridge University
Press, 2006.

291

Bibliography

[Cañ+04] A.J. Cañas, J.D. Novak, F.M. González, and L.A. Free-
man. In: Concept Maps: Theory, Methodology, Technol-
ogy, Vol. 1 (2004).

[CB02] Chun Wei Choo and Nick Bontis. The strategic man-
agement of intellectual capital and organizational
knowledge. Oxford University Press on Demand, 2002.

[Cha07] Daniel Chandler. “Semiotics. The Basics”. In: (2007).
[Cho03] Gobinda G. Chowdhury. “Natural language process-

ing”. In: Annual review of information science and tech-
nology 37.1 (2003), pp. 51–89.

[Cho96a] Chun Wei Choo. “An integrated information model
of the organization: The knowing organization”. In:
Retrieved February 10 (1996), p. 2006.

[Cho96b] Chun Wei Choo. “The knowing organization: How
organizations use information to construct meaning,
create knowledge and make decisions”. In: Interna-
tional journal of information management 16.5 (1996),
pp. 329–340.

[CKO92] Bill Curtis, Marc I. Kellner, and Jim Over. “Process
modeling”. In:Communications of the ACM 35.9 (1992),
pp. 75–90.

[CL18] Hyunji Chung and Sangjin Lee. “Intelligent vir-
tual assistant knows your life”. In: arXiv preprint
arXiv:1803.00466 (2018).

292

Bibliography

[Col+11] Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. “Nat-
ural language processing (almost) from scratch”. In:
Journal of machine learning research 12.Aug (2011),
pp. 2493–2537.

[Cru86] David Alan Cruse. Lexical semantics. Cambridge uni-
versity press, 1986.

[CW14] Erik Cambria and Bebo White. “Jumping NLP curves:
A review of natural language processing research”. In:
IEEE Computational intelligence magazine 9.2 (2014),
pp. 48–57.

[Dal17] Kimiz Dalkir. Knowledge management in theory and
practice. MIT press, 2017.

[DDLB98] Thomas H. Davenport, David W. De Long, and
Michael C. Beers. “Successful knowledge manage-
ment projects”. In: Sloan management review 39.2
(1998), pp. 43–57.

[DMM08] Marie-Catherine De Marne�e and Christopher D.
Manning. Stanford typed dependencies manual. Tech.
rep. Technical report, Stanford University, 2008.

[DP07] Marina Du Plessis. “Knowledge management: what
makes complex implementations successful?” In: Jour-
nal of Knowledge management (2007).

[DP11] Kevin C. Desouza and Scott Pacquette. Knowledge
management: An introduction. Neal-Schuman Publish-
ers, 2011.

293

Bibliography

[DP98] Thomas H. Davenport and Laurence Prusak. Working
knowledge: How organizations manage what they know.
Harvard Business Press, 1998.

[DS11] Deva Kumar Deeptimahanti and Ratna Sanyal. “Semi-
automatic generation of UML models from natural
language requirements”. In: Proceedings of the 4th
India Software Engineering Conference. 2011, pp. 165–
174.

[ELS10] Javier Esparza, Martin Leucker, and Maximilian
Schlund. “Learning work�ow petri nets”. In: Interna-
tional Conference on Applications and Theory of Petri
Nets. Springer. 2010, pp. 206–225.

[Epu+15] Elena V. Epure, Patricia Martín-Rodilla, Charlotte
Hug, Rebecca Deneckère, and Camille Salinesi. “Auto-
matic process model discovery from textual method-
ologies”. In: 2015 IEEE 9th International Conference
on Research Challenges in Information Science (RCIS).
IEEE. 2015, pp. 19–30.

[EW16] Lisa Ehrlinger and Wolfram Wöß. “Towards a De�ni-
tion of Knowledge Graphs.” In: SEMANTiCS (Posters,
Demos, SuCCESS) 48 (2016), pp. 1–4.

[FA18] Thomas Freytag and Philip Allgaier. “WoPeD goes
NLP: Conversion between Work�ow Nets and Natural
Language.” In: Proceedings of the Dissertation Award,
Demonstration, and Industrial Track at BPM 2018 co-
located with 16th International Conference on Business
Process Management (BPM 2018). 2018, pp. 101–105.

294

Bibliography

[Far95] James A. Farrell. Compiler Basics. 1995.
[FCMP03] Abílio Fernandes, Ana Maria de C Moura, and Fábio

Porto. “An ontology-based approach for organizing
sharing, and querying knowledge objects on the Web”.
In: 14th International Workshop on Database and Ex-
pert Systems Applications, 2003. Proceedings. IEEE.
2003, pp. 604–609.

[Fel99] Susan Feldman. “NLP meets the Jabberwocky: Natu-
ral language processing in information retrieval”. In:
Online (Weston, CT) 23 (1999), pp. 62–73.

[Fil+13] Hans-Georg Fill, Susan Hickl, Dimitris Karagiannis,
Andreas Oberweis, and Andreas Schoknecht. “A For-
mal Speci�cation of the Horus Modeling Language
Using FDMM.” In: Wirtschaftsinformatik. 2013, p. 73.

[FM04] Joseph M. Firestone and Mark W. McElroy. “Organi-
zational learning and knowledge management: the
relationship”. In: The Learning Organization (2004).

[FMP11] Fabian Friedrich, Jan Mendling, and Frank Puhlmann.
“Process model generation from natural language
text”. In: International Conference on Advanced Infor-
mation Systems Engineering. Springer. 2011, pp. 482–
496.

[GB01] Paul R. Gamble and John Blackwell. Knowledge man-
agement: A state of the art guide. Kogan Page Publish-
ers, 2001.

295

Bibliography

[GBK07] M. E. Greiner, T. Böhmann, and H. Krcmar. “A strategy
for knowledge management”. In: Journal of knowledge
management (2007).

[GG08] Vita Graudina and Janis Grundspenkis. “Concept map
generation from OWL ontologies”. In: Proceedings of
the third international conference on concept mapping,
Tallinn, Estonia and Helsinki, Finland. 2008, pp. 263–
270.

[GKC07] Aditya Ghose, George Koliadis, and Arthur Chueng.
“Process discovery from model and text artefacts”. In:
2007 IEEE Congress on Services (Services 2007). IEEE.
2007, pp. 167–174.

[GL14] Yoav Goldberg and Omer Levy. “word2vec Ex-
plained: deriving Mikolov et al.’s negative-sampling
word-embedding method”. In: arXiv preprint
arXiv:1402.3722 (2014).

[GMS01] Andrew H. Gold, Arvind Malhotra, and Albert H.
Segars. “Knowledge management: An organizational
capabilities perspective”. In: Journal of management
information systems 18.1 (2001), pp. 185–214.

[Gre+04] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri,
and Domenico Saccà. “An ontology-driven process
modeling framework”. In: International Conference on
Database and Expert Systems Applications. Springer.
2004, pp. 13–23.

296

Bibliography

[Gri+17] Christian Grimme, Mike Preuss, Lena Adam, and
Heike Trautmann. “Social bots: Human-like by means
of human control?” In: Big data 5.4 (2017), pp. 279–
293.

[GSB09] J. C. Gonçalves, F. M. Santoro, and F. A. Baião. “Busi-
ness process mining from group stories”. In: 2009 13th
International Conference on Computer Supported Co-
operative Work in Design. IEEE. 2009, pp. 161–166.

[GŽ12] Nathan Green and Zdeněk Žabokrtskỳ. “Hybrid com-
bination of constituency and dependency trees into
an ensemble dependency parser”. In: Proceedings of
the Workshop on Innovative Hybrid Approaches to the
Processing of Textual Data. 2012, pp. 19–26.

[Hav05] Michael Havey. Essential Business Process Modeling.
O’Reilly Media, Inc., 2005.

[HBH18] Donald Hislop, Rachelle Bosua, and Remko Helms.
Knowledge management in organizations: A critical
introduction. Oxford University Press, 2018.

[Hea03] Marti Hearst. “What is text mining”. In: SIMS, UC
Berkeley 5 (2003).

[Hen74] Nicholas L. Henry. “Knowledge management: a new
concern for public administration”. In: Public Admin-
istration Review (1974), pp. 189–196.

[HJ99] Clyde W. Holsapple and Kshiti D. Joshi. “Descrip-
tion and analysis of existing knowledge manage-
ment frameworks”. In: Proceedings of the 32nd Annual

297

Bibliography

Hawaii International Conference on Systems Sciences.
1999. HICSS-32. Abstracts and CD-ROM of Full Papers.
IEEE. 1999.

[Höf07] Peter Hö�erer. “Achieving Business Process Model
Interoperability Using Metamodels and Ontologies.”
In: Proceedings of the Fifteenth European Conference on
Information Systems, ECIS 2007. 2007, pp. 1620–1631.

[HS06] Irit Hadar and Pnina So�er. “Variations in conceptual
modeling: classi�cation and ontological analysis”. In:
Journal of the Association for Information Systems 7.8
(2006), p. 20.

[HS13] Martin Haspelmath and Andrea D Sims. Understand-
ing morphology. Routledge, 2013.

[HS92] William John Hutchins and Harold L. Somers. An in-
troduction to machine translation. Vol. 362. Academic
Press London, 1992.

[HTT00] Christophe Hirel, Bruno Tu�n, and Kishor S. Trivedi.
“Spnp: Stochastic petri nets. version 6.0”. In: Interna-
tional Conference on Modelling Techniques and Tools
for Computer Performance Evaluation. Springer. 2000,
pp. 354–357.

[Hub91] George P. Huber. “Organizational learning: The con-
tributing processes and the literatures”. In: Organiza-
tion science 2.1 (1991), pp. 88–115.

298

Bibliography

[Hut04] William John Hutchins. “The Georgetown-IBM exper-
iment demonstrated in January 1954”. In: Conference
of the Association for Machine Translation in the Amer-
icas. Springer. 2004, pp. 102–114.

[ID10] Nitin Indurkhya and Fred J. Damerau. Handbook of
natural language processing. Vol. 2. CRC Press, 2010.

[IL99] Juhani Iivari and Henry Linger. “Knowledge work as
collaborative work: A situated activity theory view”.
In: Proceedings of the 32nd Annual Hawaii Interna-
tional Conference on Systems Sciences. 1999. HICSS-32.
Abstracts and CD-ROM of Full Papers. IEEE. 1999.

[Ind+09] Marta Indulska, Jan Recker, Michael Rosemann, and
Peter Green. “Business process modeling: Current
issues and future challenges”. In: International Con-
ference on Advanced Information Systems Engineering.
Springer. 2009, pp. 501–514.

[JD12] S.D. Joshi and Dhanraj Deshpande. “Textual require-
ment analysis for UML diagram extraction by using
NLP”. In: International journal of computer applica-
tions 50.8 (2012), pp. 42–46.

[JHS01] Stefan Jablonski, Stefan Horn, and Michael Schlundt.
“Process oriented knowledge management”. In: Pro-
ceedings eleventh international workshop on research
issues in data engineering. document management for
data intensive business and scienti�c applications. ride
2001. IEEE. 2001, pp. 77–84.

299

Bibliography

[Jot+19] Sha�q Joty, Giuseppe Carenini, Raymond Ng, and
Gabriel Murray. “Discourse Analysis and Its Applica-
tions”. In: Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics: Tutorial
Abstracts. 2019, pp. 12–17.

[Jur00] Dan Jurafsky. Speech & language processing. Pearson
Education India, 2000.

[KB06] Brane Kalpič and Peter Bernus. “Business process
modeling through the knowledge management per-
spective”. In: Journal of knowledge management
(2006).

[KG08] Sven J. Körner and Tom Gelhausen. “Improving Auto-
matic Model Creation Using Ontologies.” In: Twenty-
First International Conference on Software Engineering
and Knowledge Engineering (SEKE). 2008, pp. 691–696.

[KHO11] Agnes Koschmider, Thomas Hornung, and Andreas
Oberweis. “Recommendation-based editor for busi-
ness process modeling”. In: Data & Knowledge Engi-
neering 70.6 (2011), pp. 483–503.

[KLS95] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre.
“De�ning quality aspects for conceptual models”. In:
Information System Concepts. Springer, 1995, pp. 216–
231.

[KM96] Nereu F. Kock and Robert J. McQueen. “Product �ow,
breadth and complexity of business processes: An
empirical study of 15 business processes in three or-

300

Bibliography

ganizations”. In: Business Process Re-engineering &
Management Journal (1996).

[KOS14] Holger Kohl, Ronald Orth, and Erik Steinhöfel.
“Process-oriented knowledge management in SMEs”.
In: Proceedings of the 15th European Conference on
Knowledge Management (ECKM). 2014, pp. 563–570.

[KOS15] Holger Kohl, Ronald Orth, and Erik Steinhöfel. “A
Practical Approach to Process-Oriented Knowledge
Management.” In: Electronic Journal of Knowledge
Management 13.1 (2015).

[KR15] Agnes Koschmider and Hajo A. Reijers. “Improving
the process of process modelling by the use of domain
process patterns”. In: Enterprise Information Systems
9.1 (2015), pp. 29–57.

[Kro16] John Krogstie. “Quality of business process models”.
In: Quality in Business Process Modeling. Springer,
2016, pp. 53–102.

[KSJ06] John Krogstie, Guttorm Sindre, and Håvard Jørgensen.
“Process models representing knowledge for action: a
revised quality framework”. In: European Journal of
Information Systems 15.1 (2006), pp. 91–102.

[LB02] Edward Loper and Steven Bird. “NLTK: the natural
language toolkit”. In: arXiv preprint cs/0205028 (2002).

[LB92] Dorothy Leonard-Barton. “Core capabilities and core
rigidities: A paradox in managing new product de-
velopment”. In: Strategic management journal 13.S1
(1992), pp. 111–125.

301

Bibliography

[LC00] Hsiangchu Lai and Tsai-hsin Chu. “Knowledge man-
agement: A review of theoretical frameworks and
industrial cases”. In: Proceedings of the 33rd Annual
Hawaii International Conference on System Sciences.
IEEE. 2000.

[LCM03] Gondy Leroy, Hsinchun Chen, and Jesse D. Martinez.
“A shallow parser based on closed-class words to
capture relations in biomedical text”. In: Journal of
biomedical Informatics 36.3 (2003), pp. 145–158.

[Len02] Anssi Lensu. Computationally intelligent methods for
qualitative data analysis. 23. University of Jyväskylä,
2002.

[Leo+13] Henrik Leopold, Rami-Habib Eid-Sabbagh, Jan
Mendling, Leonardo G. Azevedo, and Fernanda A.
Baião. “Detection of naming convention violations in
process models for di�erent languages”. In: Decision
Support Systems 56 (2013), pp. 310–325.

[Lid01] Elizabeth D. Liddy. “Natural language processing”.
In: Encyclopedia of Library and Information Science
(2001).

[LMP14] Henrik Leopold, Jan Mendling, and Artem
Polyvyanyy. “Supporting process model vali-
dation through natural language generation”. In:
IEEE Transactions on Software Engineering 40.8 (2014),
pp. 818–840.

302

Bibliography

[Lóp+18] Hugo A López, Søren Debois, Thomas T Hildebrandt,
and Morten Marquard. “The Process Highlighter:
From Texts to Declarative Processes and Back.” In:
Proceedings of the Dissertation Award, Demonstration,
and Industrial Track at BPM 2018 co-located with 16th
International Conference on Business Process Manage-
ment (BPM 2018) 2196 (2018), pp. 66–70.

[Lóp+19] H. A. López, M. Marquard, L. Muttenthaler, and
R. Strømsted. “Assisted declarative process creation
from natural language descriptions”. In: 2019 IEEE
23rd International Enterprise Distributed Object Com-
puting Workshop (EDOCW). IEEE. 2019, pp. 96–99.

[Lor18] Steven Loria. “textblob Documentation”. In: Release
0.15 2 (2018).

[LR+11] Marcello La Rosa, Arthur HM Ter Hofstede, Petia
Wohed, Hajo A Reijers, Jan Mendling, and Wil M. P.
van der Aalst. “Managing process model complexity
via concrete syntax modi�cations”. In: IEEE Trans-
actions on Industrial Informatics 7.2 (2011), pp. 255–
265.

[LSS94] Odd Ivar Lindland, Guttorm Sindre, and Arne
Solvberg. “Understanding quality in conceptual mod-
eling”. In: IEEE software 11.2 (1994), pp. 42–49.

[Lúc+16] L. Lúcio, M. Amrani, J. Dingel, L. Lambers, R. Salay, G.
M. K. Selim, E. Syriani, and M. Wimmer. “Model trans-
formation intents and their properties”. In: Software
& systems modeling 15.3 (2016), pp. 647–684.

303

Bibliography

[LVD09] Niels Lohmann, Eric Verbeek, and Remco Dijkman.
“Petri net transformations for business processes–a
survey”. In: Transactions on petri nets and other models
of concurrency II. Springer, 2009, pp. 46–63.

[MAA08] F. Meziane, N. Athanasakis, and S. Ananiadou. “Gener-
ating natural language speci�cations from UML class
diagrams”. In: Requirements Engineering 13.1 (2008),
pp. 1–18.

[Man+14] Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. “The Stanford CoreNLP natural language pro-
cessing toolkit”. In: Proceedings of 52nd annual meet-
ing of the association for computational linguistics: sys-
tem demonstrations. 2014, pp. 55–60.

[Màr+08] Lluís Màrquez, Xavier Carreras, Kenneth C Litkowski,
and Suzanne Stevenson. “Semantic role labeling: an
introduction to the special issue”. In: (2008).

[McD10] David D. McDonald. “Natural Language Generation.”
In: Handbook of Natural Language Processing 2 (2010),
pp. 121–144.

[McE99] Mark W. McElroy. “The knowledge life cycle”. In:
Proceedings of the ICM. Conference on KM. 1999.

[Men08] Jan Mendling. Metrics for process models: empirical
foundations of veri�cation, error prediction, and guide-
lines for correctness. Vol. 6. Springer Science & Busi-
ness Media, 2008.

304

Bibliography

[MHV03] Kai Mertins, Peter Heisig, and Jens Vorbeck. Knowl-
edgemanagement: concepts and best practices. Springer
Science & Business Media, 2003.

[Mil95] George A. Miller. “WordNet: a lexical database for
English”. In: Communications of the ACM 38.11 (1995),
pp. 39–41.

[MMB15] Richard Mrasek, Jutta Mülle, and Klemens Böhm. “Au-
tomatic generation of optimized process models from
declarative speci�cations”. In: International Confer-
ence on Advanced Information Systems Engineering.
Springer. 2015, pp. 382–397.

[Moo+02] Daniel L. Moody, Guttorm Sindre, Terje Brasethvik,
and Arne Sølvberg. “Evaluating the quality of process
models: Empirical testing of a quality framework”.
In: International Conference on Conceptual Modeling.
Springer. 2002, pp. 380–396.

[Moo05] Daniel L. Moody. “Theoretical and practical issues in
evaluating the quality of conceptual models: current
state and future directions”. In: Data & Knowledge
Engineering 55.3 (2005), pp. 243–276.

[MR03] Ronald Maier and Ulrich Remus. “Implementing
process-oriented knowledge management strategies”.
In: Journal of knowledge management (2003).

[MRA10] Jan Mendling, Hajo A Reijers, and Wil M. P. van der
Aalst. “Seven process modeling guidelines (7PMG)”.
In: Information and Software Technology 52.2 (2010),
pp. 127–136.

305

Bibliography

[MS99] Christopher D. Manning and Hinrich Schütze. Foun-
dations of statistical natural language processing. MIT
press, 1999.

[MSR08] C. D. Manning, Hinrich Schütze, and P. Raghavan.
Introduction to information retrieval. Cambridge uni-
versity press, 2008.

[MT00] David Milward and James Thomas. “From informa-
tion retrieval to information extraction”. In: ACL-2000
Workshop on Recent Advances in Natural Language
Processing and Information Retrieval. 2000, pp. 85–97.

[Mur89] Tadao Murata. “Petri nets: Properties, analysis and
applications”. In: Proceedings of the IEEE 77.4 (1989),
pp. 541–580.

[MVG06] Tom Mens and Pieter Van Gorp. “A taxonomy of
model transformation”. In: Electronic Notes in The-
oretical Computer Science 152 (2006), pp. 125–142.

[MZ96] Marc H. Meyer and Michael H. Zack. “The Design
and Development of Information Products”. In: Sloan
Management Review (1996).

[NC06] Joseph D. Novak and Alberto J. Cañas. “The theory
underlying concept maps and how to construct them”.
In: Florida Institute for Human and Machine Cognition
1.1 (2006), pp. 1–31.

[NCL06] Hong-Seok Na, O-Hoon Choi, and Jung-Eun Lim. “A
method for building domain ontologies based on the
transformation of UML models”. In: Fourth Interna-
tional Conference on Software Engineering Research,

306

Bibliography

Management and Applications (SERA’06). IEEE. 2006,
pp. 332–338.

[Nel+12] H. James Nelson, Geert Poels, Marcela Genero, and
Mario Piattini. “A conceptual modeling quality frame-
work”. In: Software Quality Journal 20.1 (2012),
pp. 201–228.

[NH15] Tim Niesen and Constantin Houy. “Zur Nutzung
von Techniken der Natürlichen Sprachverarbeitung
für die Bestimmung von Prozessmodellähnlichkeiten-
Review und Konzeptentwicklung.” In: Wirtschaftsin-
formatik. 2015, pp. 1829–1843.

[NHLT17] Thi Hoa Hue Nguyen, Tuan Phan Hong, and Nhan
Le Thanh. “An ontological approach for organizing a
knowledge base to share and reuse business work�ow
templates”. In: 2017 Seventh International Conference
on Information Science and Technology (ICIST). IEEE.
2017, pp. 271–277.

[NOMC11] Prakash M. Nadkarni, Lucila Ohno-Machado, and
Wendy W. Chapman. “Natural language processing:
an introduction”. In: Journal of the American Medical
Informatics Association 18.5 (2011), pp. 544–551.

[Non94] Ikujiro Nonaka. “A Dynamic Theory of Organiza-
tional Knowledge Creation”. In: Organization science
5.1 (1994), pp. 14–37.

[Nov91] Joseph Novak. “Clarify with concept maps”. In: The
science teacher 58.7 (1991), p. 44.

307

Bibliography

[Nov95] Joseph D. Novak. “Concept mapping to facilitate
teaching and learning”. In: Prospects 25.1 (1995),
pp. 79–86.

[NT95] Ikujiro Nonaka and Hirotaka Takeuchi. The
knowledge-creating company: How Japanese com-
panies create the dynamics of innovation. Oxford
university press, 1995.

[OBS12] Sven Overhage, Dominik Birkmeier, and Sebastian
Schlauderer. “Quality marks, metrics, and measure-
ment procedures for business process models”. In:
Business & Information Systems Engineering 4.5 (2012),
pp. 229–246.

[O�97] Steve O�sey. “Knowledge management: linking peo-
ple to knowledge for bottom line results”. In: Journal
of knowledge management 1.2 (1997), pp. 113–122.

[Omo15] Funmilola Olubunmi Omotayo. “Knowledge Manage-
ment as an important tool in Organisational Manage-
ment: A Review of Literature”. In: Library Philosophy
and Practice 1.2015 (2015), pp. 1–23.

[Pau17] Heiko Paulheim. “Knowledge graph re�nement: A
survey of approaches and evaluation methods”. In:
Semantic web 8.3 (2017), pp. 489–508.

[Pes08] Maja Pesic. “Constraint-based work�ow management
systems: shifting control to users”. In: (2008).

[Pet62] Carl Adam Petri. “Kommunikation mit Automaten”.
In: Ph. D. thesis, University of Bonn (1962).

308

Bibliography

[Pet77] James L. Peterson. “Petri nets”. In: ACM Computing
Surveys (CSUR) 9.3 (1977), pp. 223–252.

[P�18] Nicolas P�anzl. Gami�cation for business process mod-
eling. Verlag readbox publishing GmbH, readbox uni-
press, 2018.

[Pic+11] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling,
and H. A. Reijers. “Imperative versus declarative pro-
cess modeling languages: An empirical investigation”.
In: International Conference on Business Process Man-
agement. Springer. 2011, pp. 383–394.

[PK04] Martha Palmer and K. Loper Kipper. “VerbNet”. In:
The Oxford Handbook of Cognitive Science. 2004.

[Pol15] Michael Polanyi. Personal knowledge: Towards a post-
critical philosophy. University of Chicago Press, 2015.

[PRR97] Gilbert Probst, Ste�en Raub, and Kai Romhardt. Wis-
sen managen. Springer, 1997.

[PV13] Nicolas P�anzl and Gottfried Vossen. “Human-
oriented challenges of social BPM: an overview”. In:
Enterprise Modelling and Information Systems Archi-
tectures (EMISA 2013) (2013).

[PV14] Nicolas P�anzl and Gottfried Vossen. “Challenges of
social business process management”. In: 2014 47th
Hawaii International Conference on System Sciences.
IEEE. 2014, pp. 3868–3877.

309

Bibliography

[RCK13] Xiaona Ren, Xiao Chen, and Chunyu Kit. “Combine
constituent and dependency parsing via reranking”.
In: Twenty-Third International Joint Conference on Ar-
ti�cial Intelligence. 2013.

[RD00] Ehud Reiter and Robert Dale. Building natural lan-
guage generation systems. Cambridge university press,
2000.

[Rei12] Wolfgang Reisig. Petri nets: an introduction. Vol. 4.
Springer Science & Business Media, 2012.

[Rei13] Wolfgang Reisig. Understanding petri nets: modeling
techniques, analysis methods, case studies. Springer,
2013.

[RHF02] B. Rosario, M. A. Hearst, and C. Fillmore. “The descent
of hierarchy, and selection in relational semantics”.
In: Proceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics. Association for
Computational Linguistics. 2002, pp. 247–254.

[RL00] Ulrich Remus and Franz Lehner. “The role of process-
oriented enterprise modeling in designing process-
oriented knowledge management systems”. In: Pro-
ceedings of the AAAI Symposium on Bringing Knowl-
edge to Business Processes. Stanford, CA, USA. 2000,
pp. 30–36.

[RMR10] Hajo A. Reijers, Jan Mendling, and Jan Recker. “Busi-
ness process quality management”. In: Handbook
on Business Process Management 1. Springer, 2010,
pp. 167–185.

310

Bibliography

[Ros96] Michael Rosemann. “Multiperspektivische Informa-
tionsmodellierung auf der Basis der Grundsätze ord-
nungsmäßiger Modellierung”. In: Management &
Computer 4.4 (1996), pp. 219–226.

[Row07] Jennifer Rowley. “The wisdom hierarchy: representa-
tions of the DIKW hierarchy”. In: Journal of informa-
tion science 33.2 (2007), pp. 163–180.

[RS03] Ulrich Remus and Stephan Schub. “A blueprint for
the implementation of process-oriented knowledge
management”. In: Knowledge and Process Management
10.4 (2003), pp. 237–253.

[ŘS11] Radim Řehu̇řek and Petr Sojka. “Gensim—statistical
semantics in python”. In: (2011).

[RTT16] Maximilian Riefer, Simon Felix Ternis, and Tom
Thaler. “Mining Process Models from Natural Lan-
guage Text: A State-of-the-Art Analysis”. In: Tagungs-
band der Multikonferenz Wirtschaftsinformatik. Mul-
tikonferenz Wirtschaftsinformatik (MKWI-16), March
9-11, Illmenau, Germany (2016), pp. 1–12.

[Rug98] Rudy Ruggles. “The state of the notion: knowledge
management in practice”. In: California management
review 40.3 (1998), pp. 80–89.

[SA07] Bayan Abu Shawar and Eric Atwell. “Chatbots: are
they really useful?” In: Zeitschrift für Computerlin-
guistik und Sprachtechnologie (2007), p. 29.

311

Bibliography

[Sad15] Malgorzata Sadowska. “An approach to assessing
the quality of business process models expressed in
BPMN”. In: e-Informatica Software Engineering Jour-
nal 9.1 (2015).

[SBP08] Flávia Maria Santoro, Marcos R.S. Borges, and José
A. Pino. “Tell us your process: A group storytelling
approach to cooperative process modeling”. In: 2008
12th International Conference on Computer Supported
Cooperative Work in Design. IEEE. 2008, pp. 29–34.

[Sch+11] F. Schönthaler, G. Vossen, A. Oberweis, and T. Karle.
Geschäftsprozesse für Business Communities: Model-
lierungssprachen, Methoden, Werkzeuge. Oldenbourg,
2011.

[SFCP17] Josep Sànchez-Ferreres, Josep Carmona, and Lluís
Padró. “Aligning textual and graphical descriptions of
processes through ILP techniques”. In: International
Conference on Advanced Information Systems Engi-
neering. Springer. 2017, pp. 413–427.

[SG+12] Laura Sánchez-González, Félix García, Francisco Ruiz,
and Jan Mendling. “Quality indicators for business
process models from a gateway complexity perspec-
tive”. In: Information and Software Technology 54.11
(2012), pp. 1159–1174.

[SN00] August-Wilhelm Scheer and Markus Nüttgens. “ARIS
Architecture and Reference Models for Business Pro-
cess Management”. In: Business Process Management.
Springer, 2000, pp. 376–389.

312

Bibliography

[SP10] Avik Sinha and Amit Paradkar. “Use cases to process
speci�cations in business process modeling notation”.
In: 2010 IEEE International Conference on Web Services.
IEEE. 2010, pp. 473–480.

[SSJP10] Avik Sinha, Stanley M Sutton Jr, and Amit Paradkar.
“Text2Test: Automated inspection of natural language
use cases”. In: 2010 Third International Conference
on Software Testing, Veri�cation and Validation. IEEE.
2010, pp. 155–164.

[STA05] August-Wilhelm Scheer, Oliver Thomas, and Otmar
Adam. “Process Modeling Using Event-Driven Pro-
cess Chains.” In: Process-aware information systems
119 (2005).

[Sta91] Ronald Stamper. “The semiotic framework for infor-
mation systems research”. In: Information systems re-
search: Contemporary approaches and emergent tradi-
tions (1991), pp. 515–528.

[SZ95] Eric W. Stein and Vladimir Zwass. “Actualizing or-
ganizational memory with information systems”. In:
Information systems research 6.2 (1995), pp. 85–117.

[Tan+98] S. Tan, H.H. Teo, B. Tan, and K.K Wei. “Developing a
preliminary framework for knowledge management
in organizations”. In: AMCIS 1998 Proceedings (1998),
p. 211.

[Thi99] Robert J. Thierauf. Knowledge management systems
for business. Greenwood Publishing Group, 1999.

313

Bibliography

[Toc+07] Eran Toch, Avigdor Gal, Iris Reinhartz-Berger, and
Dov Dori. “A semantic approach to approximate ser-
vice retrieval”. In: ACM Transactions on Internet Tech-
nology (TOIT) 8.1 (2007), pp. 1294148–1294150.

[Usc15] Michael Uschold. “Ontology and database schema:
What’s the di�erence?” In: Applied Ontology 10.3-4
(2015), pp. 243–258.

[Usz00] Hans Uszkoreit. “Language technology a �rst
overview”. In: German Research Center for Arti�cial
Intelligence, Saarbrücken (2000).

[VDA+11] Wil M. P. Van Der Aalst, Kees M. Van Hee, Arthur
H.M. Ter Hofstede, Natalia Sidorova, H.M.W. Verbeek,
Marc Voorhoeve, and Moe Thandar Wynn. “Sound-
ness of work�ow nets: classi�cation, decidability, and
analysis”. In: Formal Aspects of Computing 23.3 (2011),
pp. 333–363.

[VH02] Wil M. P. Van der Aalst and Arthur H.M. ter Hofstede.
“Work�ow patterns: On the expressive power of (petri-
net-based) work�ow languages”. In: Proceedings of the
fourth workshop on the practical use of coloured petri
nets and CPN Tools (CPN 2002). Vol. 560. 2002, pp. 1–
20.

[VK98] Georg Von Krogh. “Care in knowledge creation”. In:
California management review 40.3 (1998), pp. 133–
153.

[VKR95] Georg Von Krogh and Johan Roos. Organizational
epistemology. Springer, 1995.

314

Bibliography

[Web03] Dean Weber. Network interactive user interface using
speech recognition and natural language processing. US
Patent 6,532,444. Google Patents, 2003.

[Wes10] Mathias Weske. Business Process Management: Con-
cepts, Languages, Architectures. Springer Publishing
Company, Incorporated, 2010.

[Whi04] Stephen A. White. “Introduction to BPMN”. In: IBM
Cooperation 2.0 (2004), p. 0.

[Wii94] Karl M. Wiig. Knowledge Management Foundations:
Thinking about Thinking-how People and Organiza-
tions Represent, Create, and Use Knowledge. Schema
Press, Limited, 1994.

[Win72] Terry Winograd. “Understanding natural language”.
In: Cognitive psychology 3.1 (1972), pp. 1–191.

[WK05] Robert Woitsch and Dimitris Karagiannis. “Process
oriented knowledge management: A service based
approach.” In: Journal of Universal Computer Science
11.4 (2005), pp. 565–588.

[Yin+05] Y. Yin, J. Vanides, M.A. Ruiz-Primo, C.C. Ayala, and
R.J. Shavelson. “Comparison of two concept-mapping
techniques: Implications for scoring, interpretation,
and use”. In: Journal of Research in Science Teaching:
The O�cial Journal of the National Association for
Research in Science Teaching 42.2 (2005), pp. 166–184.

315

Bibliography

[ZC06] Ji Zhang and Betty H.C. Cheng. “Model-based devel-
opment of dynamically adaptive software”. In: Pro-
ceedings of the 28th international conference on Soft-
ware engineering. 2006, pp. 371–380.

[ZDJ02] Tong Zhang, Fred Damerau, and David Johnson. “Text
chunking based on a generalization of winnow”. In:
Journal of Machine Learning Research 2.Mar (2002),
pp. 615–637.

[ZZ94] Richard Zurawski and MengChu Zhou. “Petri nets and
industrial applications: A tutorial”. In: IEEE Transac-
tions on industrial electronics 41.6 (1994), pp. 567–583.

316

List of Abbreviations
7PMG Seven Process Modeling Guidelines.

BNF Backus-Naur Form.

BPM Business Process Management.

BPMN Business Process Model and Notation.

BPMod Business Process Modeling.

CL Computational Linguistics.

EPC Event-driven Process Chain.

ERM Entity–relationship model.

GoM Guidelines of Modeling.

HBM Horus Business Modeler.

KM Knowledge Management.

KMS Knowledge Management System.

317

List of Abbreviations

NER Named Entity Recognition.

NLP Natural Language Processing.

NLTK Natural Language Toolkit.

OWL Web Ontology Language.

PN Petri Net.

PNML Petri Net Modeling Language.

POS Part-of-Speech.

PP Prepositional Phrase.

SEQUAL Semiotic Quality Model.

SVO Subject, Verb, Object.

TF-IDF Term Frequency–inverse Document Frequency.

VP Verb Phrase.

WN Work�ow Net.

WSD Word Sense Disambiguation.

WWU Westfälische Wilhelms-Universität.

318

Text to Process Model: Automating
Process Model Creation from Text

Felix Reinold Nolte

The description and visualization of processes and underlying re-
quirements are a core task in IT projects today. The translation of in-
formation between different forms of representation is used to
include these effi ciently in the different steps of a project, e.g., to
describe the as-is and to-be states. However, the transformation of a
process description into the visual representation of a process model
is still a costly and complex task that often comes with an inevita-
ble loss of information. One common challenge to be resolved dur-
ing the process of modeling arises with the diversity of stakehold-
ers involved. To improve the communication between stakeholders,
different techniques of Natural Language Processing (NLP) are com-
bined in this work to analyze the textual descriptions of Petri nets,
in order to enable a transformation of texts into process models. The
performed steps of analysis and transformation are means to ensure
conformance between process models and their textual description.

37,90 €
ISBN 978-3-8405-0256-9

	Contents
	Introduction
	Motivation
	Research Question and Goal
	Thesis Structure

	Foundations
	Process Modeling and Knowledge Management
	Basics of Business Process Modeling
	Business Processes
	Business Process Models
	Business Process Modeling Languages
	Imperative and Declarative Modeling

	Business Modeling with Petri Nets
	Quality of Business Process Models
	Quality Frameworks and Guidelines
	Quality Metrics

	Knowledge Management via Models
	Knowledge Management
	Business Process Modeling in Knowledge Management

	Model Generation and Transformation

	Natural Language Processing
	Fundamentals
	Historical Development
	Theoretical Foundations
	Tasks and Challenges

	Examples
	Industry
	Academia

	Related Concepts
	Related Implementations

	Automated Model Creation from Text
	Problem Specification
	Related Work
	Existing Approaches
	Related Approaches

	Challenges
	Information Acquisition
	Language Specifics
	Petri Net and Horus Model Specifics
	Modeling Conventions

	Contribution

	Context Description and Design
	Horus Method
	Horus Business Modeler
	Horus Procedure Models

	Concept
	Objectives
	Methods and Techniques
	Reference Point to Contextual Knowledge Base
	Transformation Approach

	Implementation and Evaluation
	Scope
	Architecture
	Pipeline
	Input Requirements
	Artifacts

	Features
	Natural Language Text Pre-Processing
	Linguistic Feature Extraction
	Model Element Mapping
	Process Model Generation

	Evaluation
	Experimental Setup
	Summary of Results
	Discussion

	Closing Remarks
	Conclusions
	Summary
	Implications
	Outlook

	Bibliography
	List of Abbreviations

