
Münster J. of Math. 14 (2021), 283–293 Münster Journal of Mathematics
DOI 10.17879/06089651315
urn:nbn:de:hbz:6-06089653277

c© Münster J. of Math. 2021

Norm equivalences and ideals

of composition algebras

Holger P. Petersson

(Communicated by Linus Kramer)

Ottmar Loos zum Gedächtnis

Abstract. We show that linear bijections between quaternion algebras over a commutative
ring preserving norms and identity elements are basically the same as isomorphisms or anti-
isomorphisms. We also show that one-sided ideals of octonion algebras over a commutative
ring are extended from the base.

1. Introduction

By a composition algebra over a commutative ring k we mean a non-as-
sociative k-algebra C with the following properties: C is finitely generated
projective as a k-module, contains an identity element, and is equipped with
a quadratic form nC : C → k (the norm), uniquely determined by the condi-
tion that it is non-singular (see Subsection 2.2 below for the definition) and
permits composition: nC(1C) = 1 and nC(xy) = nC(x)nC(y) for all x, y ∈ C.
The rank of a composition algebra (provided it has one) is known to be one of
the numbers r = 1,2,4,8. More precisely, C ∼= k for r = 1, C is a commutative
associative quadratic étale algebra for r = 2, an associative but not commuta-
tive quaternion algebra for r = 4, and an alternative but neither commutative
nor associative octonion (or Cayley) algebra for r = 8. Octonion algebras,
in particular, derive much of their importance from their intimate connection
with the exceptional groups of type G2; we refer to Gille–Neher [10] for details.

Over a field or, more generally, a semi-local ring, composition algebras are
well understood. By [28, Cor. 22.16] (or [29, Thm. 1.6.2] in the field case), they
can all be obtained from a (repeated) application of the Cayley–Dickson con-
struction [23, § 6], and thanks to Witt cancellation of quadratic forms (Baeza
[3, III, Cor. (4.3)]), they are classified by their norms: two composition al-
gebras over a semi-local ring are isomorphic if and only if their norms are
equivalent (Petersson–Racine [28, Thm. 26.7]); see [29, Thm. 1.7.1] for the
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field case. Unfortunately, however, if the base ring is arbitrary, these nice and
useful properties are no longer valid. In fact, there exist octonion algebras
that as quadratic spaces are either indecomposable themselves or, if the base
ring contains 1

2 , their subspaces of trace-zero elements are. In any event, they
cannot be realized by the Cayley–Dickson construction, the most interesting
examples of this kind being provided by the Dickson–Coxeter octonions living
on the E8-lattice over the integers [6, 5, 26], and by the constructions of Knus–
Parimala–Sridharan [18, Thm. (7.7)] over the polynomial ring in two variables
with coefficients in an appropriate field of characteristic not two; for a simpli-
fication of this construction, see Thakur [30]. Moreover, Gille [9, Thm. 3.3]
has exhibited examples of octonion algebras that have isometric norms but fail
to be isomorphic; see also Alsaody–Gille [2, Cor. 6.7] for a characterization of
octonion algebras with equivalent norms in terms of isotopes in the sense of
McCrimmon [22]. On the positive side, there is a theorem of Knus–Paques [17,
Thm. (3.10)] (with precursors due to Knus–Ojanguren [15, Proof of Prop. 2.1]
and Knus–Ojanguren–Sridharan [16, Prop. 4.4] excluding low characteristics),
which implies that quaternion algebras over any commutative ring are always
classified by their norms. For a refinement of this result, see Knus [12, V,
Cor. (4.3.2)].

Our aim in this paper is twofold. On the one hand, we will be concerned
with an explicit version of the Knus–Paques theorem. More specifically, we
show that unit preserving isometries of quaternion algebras over any com-
mutative ring are basically the same as isomorphisms or anti-isomorphisms
(Theorem 3.2). This result, which is well-known to hold over fields (Knus–
Merkurjev–Rost–Tignol [13, VIII, Ex. 2]), yields the Knus–Paques theorem
at once (Corollary 3.3). On the other hand, we will investigate the (one- or
two-sided) ideal structure of composition algebras. Our main result (Theo-
rem 4.1) extends earlier ones due to Mahler [21], Van der Blij–Springer [31],
and Allcock [1] from the Dickson–Coxeter octonions over the integers to ar-
bitrary composition algebras and implies among other things that one-sided
ideals of any octonion algebra over any commutative ring are always extended
from the base; this fact is all the more remarkable since the analogous result
for quaternion or quadratic étale algebras breaks down even if the base ring
is an algebraically closed field. What we have shown may also be expressed
by saying that octonion algebras over a commutative ring are arithmetically
simple in the sense of Legrand [19]. The paper concludes with an application
of Theorem 4.1 to the nilradical of a composition algebra (Corollary 4.3).

The methods we employ to establish our results are quite elementary, relying
only on properties of finitely generated projective modules and composition
algebras that are basically standard.

2. Terminology and known results

2.1. Notation. Let k be a commutative ring remaining fixed throughout this
paper. We denote by Spec(k) the prime spectrum of k, i.e., the totality of
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prime ideals in k equipped with the Zariski topology. Recall that a basis for
this topology is furnished by the principal open sets D(f), f ∈ k, which consist
of all prime ideals in k not containing f . For p ∈ Spec(k), we denote by kp the
local ring of k at p, with maximal ideal pp and residue field κ(p) = kp/pp =
Quot(k/p). The category of unital commutative associative k-algebras will
be denoted by k-alg, its morphisms being k-algebra homomorphisms taking
1 into 1. If M is a (left) k-module, then its base change or scalar extension
from k to R ∈ k-alg will be denoted by MR := M ⊗ R, unadorned tensor
products always being taken over k, ditto for (non-associative) algebras instead
of modules. For p ∈ Spec(k), we abbreviate Mp := Mkp

, M(p) := Mκ(p).

2.2. Quadratic forms. LetM be a k-module and q :M → k a quadratic form,
so q is homogeneous of degree 2 and the map M ×M → k, (x, y) 7→ q(x, y) :=
q(x + y)− q(x) − q(y) is (symmetric) bilinear, called the bilinearization of q.
We say that q is non-singular ifM is finitely generated projective and the linear
map from M to its dual canonically induced by the bilinearization of q is an
isomorphism. The property of a quadratic form to be non-singular is stable
under base change, so if q : M → k is a non-singular quadratic form over k, its
scalar extension qR : MR → R is a non-singular quadratic form over R for any
R ∈ k-alg.

2.3. Basic properties of composition algebras. Recall that a composition
algebra over k is a (non-associative) k-algebra C that is unital (i.e., contains
an identity element), finitely generated projective as a k-module, and equipped
with its norm nC : C → k, a non-singular quadratic form permitting composi-
tion:

nC(1C) = 1, nC(xy) = nC(x)nC(y) (x, y ∈ C).

Note that the non-singularity condition prevents the base ring from being
counted as a composition algebra unless it contains 1

2 . In order to avoid this
awkward phenomenon, the notion of a composition algebra has to be modified;
rather than insisting that the norm be non-singular, one should merely require
that it be separable in the sense of Loos [20, 3.2]. This approach has been
worked out in [28, Chap. 4], with a summary given in [27, § 4]. It should also
be noted that what we call non-singular (resp. separable) quadratic forms are
called regular (resp. non-singular) ones in [2].

Now let C be a composition algebra over k. Referring to [12, V, (7.1)],
[23, 24] for details, we collect a few properties of C that will be used frequently
later on.

(a) C is alternative, so its associator [x, y, z] := (xy)z − x(yz) is alternating
in x, y, z ∈ C. Hence the expression xyx is unambiguous and the Moufang
identities hold.

(1) x(y(xz)) = (xyx)z, (xy)(zx) = x(yz)x, ((zx)y)x = z(xyx).

Writing

tC : C → k, x 7→ tC(x) := nC(1C , x)
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for the trace of C (a linear form) and

ιC : C → C, x 7→ x̄ := tC(x)1C − x

for its conjugation (an algebra involution), the following identities hold for all
x, y, z ∈ C:

x2 = tC(x)x − nC(x)1C ,(2)

xx̄ = nC(x)1C = x̄x,(3)

nC(x, ȳ) = tC(x)tC(y)− nC(x, y) = tC(xy).(4)

In particular, we conclude from (3) that x is invertible in C if and only if nC(x)
is invertible in k, in which case x−1 = nC(x)

−1x̄. The set of invertible elements
in C (resp. k) will be denoted by C× (resp. k×).

(b) Composition algebras are stable under base change; CR is a composition
algebra over R for any R ∈ k-alg, the norm of CR being the R-quadratic
extension of the norm of C.

(c) The trace tC is an associative linear form in the sense that tC([x, y]) =
tC([x, y, z]) = 0 for all x, y, z ∈ C, where [x, y] := xy − yx is the commutator
of x and y.

(d) 1C ∈ C is unimodular in the sense that some linear form λ : C → k has
λ(1C) = 1, making C a faithful k-module and k1C a free k-module of rank 1.

(e) If C has rank r > 2, then C is central in the sense that its center, i.e.,

Cent(C) := {x ∈ C | [x,C] = [x,C,C] = {0}},

satisfies Cent(C) = k1C . Similarly, if C is an octonion algebra, then C is
nuclear in the sense that its nucleus, i.e.,

Nuc(C) := {x ∈ C | [x,C,C] = {0}},

satisfies Nuc(C) = k1C (see [2, Lem. 2.8]).

2.4. The Cayley–Dickson construction. Let B be an associative compo-
sition algebra over k and µ ∈ k an invertible element. Then the k-algebra C
defined on the direct sum B ⊕ Bj of two copies of B as a k-module by the
multiplication

(5) (u1 ⊕ v1j)(u2 ⊕ v2j) = (u1u2 + µv̄2v1)⊕ (v2u1 + v1ū2)j

for ui, vi ∈ B, i = 1,2, is a composition algebra whose unit element, norm, and
conjugation for u, v ∈ B are respectively given by

(6) 1C = 1B ⊕ 0 · j, nC(u ⊕ vj) = nB(u)− µnB(v), u⊕ vj = ū⊕ (−vj)

in terms of the corresponding data for B. We write C =: Cay(B,µ) and call it
the composition algebra arising from B,µ by the Cayley–Dickson construction.
The assignment u 7→ u⊕ 0 · j gives an embedding, i.e., an injective homomor-
phism of unital k-algebras, allowing us to identify B ⊆C as a unital subalgebra.
We then have u+ vj = u⊕ vj for all u, v ∈ B, and B⊥ = Bj is the orthogonal
complement of B in C relative to the bilinearized norm. By (6) and Subsec-
tion 2.3 (a), therefore, j ∈ B⊥ is invertible in C.
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Conversely, let C be a composition algebra over k and B ⊂ C a proper
composition subalgebra. Then B is associative, and for any l ∈ B⊥ ∩ C×

(which always exists if k is a semi-local ring), the inclusion B →֒C has a unique
extension to an embedding from the Cayley–Dickson construction Cay(B, µ),
µ := −nC(l) ∈ k×, into C that sends j to l. This embedding is an isomorphism
provided C,B have rank r, r

2 , respectively.

3. Unital norm equivalences

3.1. The Knus–Paques theorem. Let B,B′ be quaternion algebras over k.
Using the theory of Clifford algebras, Knus–Paques [17, Thm. (3.10)] have
shown that B and B′ are isomorphic if and only if, for some β ∈ k×, the
quadratic forms βnB and nB′ are isometric. In the present paper, we give this
equivalence an explicit form. More specifically, calling an isometry from nB

to nB′ that preserves identity elements a unital norm equivalence, and guided
by [13, VIII, Ex. 2], we will establish the following result.

Theorem 3.2. Let B,B′ be quaternion algebras over k. A map f : B → B′

is a unital norm equivalence if and only if there exists a decomposition k =
k+ ⊕ k− of k as a direct sum of ideals such that the induced decompositions

B = B+ ⊕B−, B± := Bk±
, B′ = B′

+ ⊕B′
−, B′

± := B′
k±

,(7)

f = f+ ⊕ f−, f± := fk±

make f+ : B+ → B′
+ an isomorphism of quaternion algebras over k+ and f− :

B− → B′
− an anti-isomorphism of quaternion algebras over k−.

Proof. If such a decomposition exists, f is clearly a unital norm equivalence.
Conversely, let this be so. We put X := Spec(k) and conclude that the subsets

X+ := {p ∈ X | fp : Bp → B′
p is an isomorphism},

X− := {p ∈ X | fp : Bp → B′
p is an anti-isomorphism}

of X are Zariski-open (since B is finitely generated as a k-module, so the
conditions imposed on X± may be characterized by finitely many equations)
and disjoint (since quaternion algebras are not commutative). Suppose we can
show that they cover X . Then Bourbaki [4, II, § 4, Prop. 15] yields a complete
orthogonal system (ε+, ε−) of idempotents in k satisfying X± =D(ε±). Now it
suffices to put k± = kε±, which implies for any p± ∈ Spec(k±) that p := p± ⊕
k∓ ∈D(ε±) makes f±p±

=(fp)k±p±
an isomorphism in case of the plus-sign and

an anti-isomorphism in case of the minus-sign. Hence f+ is an isomorphism
and f− is an anti-isomorphism.

We are thus reduced to showing X = X+ ∪X−. Equivalently, we may as-
sume that k is a local ring and must show that f is either an isomorphism
or an anti-isomorphism. Writing m for the maximal ideal of k, the quater-
nion algebra B(m) over the field κ(m) contains a quadratic étale subalgebra
generated by an element of trace 1, which in turn lifts to a quadratic étale sub-
algebra D = k[u] ⊆ B for some trace-one element u ∈ B. Since units, norms,
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and traces are preserved by f , so are squares (by (2)), and we conclude that
D′ := f(D) = k[u′], u′ := f(u), is a quadratic étale subalgebra of B′, making
f |D :D→D′ an isomorphism. Now apply Subsection 2.4 to reach B from D by
means of the Cayley–Dickson construction; there exists a unit µ ∈ k× such that
the inclusion D →֒ B extends to an identification B = Cay(D, µ) = D ⊕Dj,

j ∈ D⊥, nB(j) = −µ. Moreover, setting j′ := f(j) ∈ D′⊥ ⊆ B′, we obtain
nB′(j′) = −µ and conclude that f |D extends to an isomorphism g : B → B′

satisfying g(j) = j′. Hence f1 := g−1 ◦ f : B → B is a unital norm equiva-
lence inducing the identity on D and satisfying f1(j) = j. Since f1 stabilizes
D⊥ = Dj, we find a k-linear bijection ϕ : D → D such that f1(vj) = ϕ(v)j for
all v ∈ D. Then ϕ(1D) = 1D, and since nB permits composition, ϕ leaves nD

invariant and is thus a unital norm equivalence of D, hence an automorphism.
By [12, III, Lem. (4.1.1)], therefore, we are left with the following cases.

Case 1. ϕ = 1D. Then f1 = 1B, and f = g : B → B′ is an isomorphism.
Case 2. ϕ = ιD. One checks easily that the reflection in D (Jacobson

[11, p. 12]), i.e., the map ψ : B → B defined by ψ(v + wj) := v − wj for all
v, w ∈ D, is an automorphism satisfying f1 = ψ ◦ Int(j) ◦ ιB , where Int(j)
stands for the inner automorphism x 7→ jxj−1 of B affected by j. Hence
f = g ◦ ψ ◦ Int(j) ◦ ιB : B → B′ is an anti-isomorphism. �

Corollary 3.3 (Knus–Paques [17, Thm. (3.10)]). For quaternion algebras
B,B′ over k, the following conditions are equivalent.
(i) B and B′ are isomorphic.
(ii) B and B′ are norm-equivalent, i.e., their norms are isometric.
(iii) B and B′ are norm-similar, i.e., there exists a scalar β ∈ k× such that

βnB and nB′ are isometric.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) being obvious, it remains to establish
the implication (iii)⇒ (i), so let us assume for some β ∈ k× that g :B→B′ is an
isometry from βnB to nB′ . Then u := g−1(1B′)∈B has nB(u) = β−1 and hence
is invertible. Thus, since nB permits composition, the assignment x 7→ g(ux)
defines a unital norm equivalence f : B → B′, and we obtain a decomposition
k = k+ ⊕ k− as a direct sum of ideals such that the induced decompositions (7)
enjoy the properties spelled out in Theorem 3.2. Hence f+ ⊕ (f− ◦ ιB) :B →B′

is an isomorphism of quaternion algebras. �

3.4. Remarks. (a) Another proof of Theorem 6 using group schemes may be
found in a forthcoming monograph by Gille–Neher [10]. A scheme-theoretic
proof of Corollary 3.3 is due to Gille [9, Thm. 2.4].

(b) It is easy to see that a unital norm equivalence between quadratic étale
algebras is an isomorphism. More precisely, given a unital norm equivalence
f : D → D′ of quadratic étale algebras, and arguing as in the proof of The-
orem 3.2, one obtains decompositions as in the theorem such that f+ = 1D+

is the identity of D+ and f− = ιD−
is the conjugation of D−. This result is

well-known [12, III, Prop. (4.1.2)].
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(c) At the other extreme, Theorem 3.2 breaks down for octonion algebras,
even if the base ring is an algebraically closed field. In order to illuminate
this well-known phenomenon, we refer to McCrimmon’s notion of isotopy [22],
a special case of which may be described as follows.

Let C be an octonion algebra over k, an arbitrary commutative ring. For
p ∈ C×, the k-module C together with the multiplication (xp−1)(py) is again
an octonion algebra over k, denoted by Cp and called the p-isotope of C; it
has the same identity element, norm, trace, and conjugation as C. For another
invertible element q ∈ C×, the Moufang identities (1) imply (Cp)q = Cpq, and
using Subsection 2.3 (e), one checks that Cp = Cq if and only if q = αp for
some α ∈ k×. Now suppose B ⊆ C is a quaternion subalgebra, and let p ∈ B×.
Then C =B ⊕B⊥ as k-modules, and localizing if necessary, a straight-forward
verification shows that f : C

∼
→ Cp, f(u+ v) := p−1up+ v for u ∈ B, v ∈ B⊥

is an isomorphism. In particular, f is a unital norm equivalence but not an
automorphism of C unless p ∈ k1C . It follows from Gille [9, Thm. 3.3] and
Alsaody–Gille [2, Cor. 6.7] that, if C is split and k is chosen judiciously, some
p∈C× has Cp ≇C. Such a p, therefore, cannot be embedded into a quaternion
subalgebra of C, in stark contrast to the general situation over fields (Springer–
Veldkamp [29, Prop. 1.6.4]).

The preceding examples are in some sense typical; it follows from the prin-
ciple of triality [29, Thm. 3.2.1] combined with the formalism of [25] that, if k
is a field, any rotation (resp. reflection) of the quadratic space (C, nC) fixing
the identity element is an isomorphism (resp. anti-isomorphism) from C to Cp

for some p ∈ C×. Whether the same conclusion holds over any commutative
ring seems to be an open problem.

4. One-sided ideals

In order to put our approach to ideals of octonion algebras in perspective, it
seems appropriate to discuss them in the broader context of arbitrary composi-
tion algebras. We begin by distinguishing three types of ideals in a composition
algebra C: the general type, i.e., one-sided ideals, the middle ground, i.e., arbi-
trary two-sided ideals, and the special type, i.e., ideals of (C, ιC) as an algebra
with involution, equivalently, ideals stable under conjugation.

The final result of this paper basically says that, if C has rank r > 1, all its
ideals of the right type are extended from the base ring provided as r increases
so does the generality of the type. More precisely, we can prove the following.

Theorem 4.1. Let C be a composition algebra of rank r > 1 over k and identify
k = k1C ⊆ C canonically via Subsection 2.3 (d). Then the assignment a 7→ aC
defines an inclusion-preserving bijection from the ideals of k to
(i) the one-sided ideals of C for r = 8,
(ii) the two-sided ideals of C for r = 4,
(iii) the ideals of (C, ιC) as an algebra with involution for r = 2.
The inverse of this map is given by the assignment I 7→ I ∩ k.

Münster Journal of Mathematics Vol. 14 (2021), 283–293
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Proof. We proceed in several steps by proving the following intermediate as-
sertions.

1o. For r=8, i.e., if C is an octonion algebra, its one-sided ideals are two-sided
ones. In order to see this, let I ⊆ C be a one-sided ideal. Replacing I by Ī if
necessary, we may assume that I is a right ideal in C. Since the assertion is
local on k, we may further assume that k is a local ring. From Subsection 2.4,
we conclude C =Cay(B,µ) =B⊕Bj for some quaternion algebra B over k and
some invertible scalar µ ∈ k. For l = 1, 2, let πl : C → B be the l-th projection
defined by x = π1(x) + π2(x)j for x ∈ C. Then Il := πl(I) is a k-submodule
of B satisfying I ⊆ I1 ⊕ I2j. From (5), we deduce

(u+ vj)w = uw + (vw̄)j, (u + vj)(wj) = µw̄v + (wu)j

for all u, v, w ∈ B. Assuming u + vj ∈ I, the first equation shows that Il is
a right ideal in B, while the second one gives BI2 ⊆ I1, BI1 ⊆ I2. Hence
I1 = 1BI1 ⊆ I2 = 1BI2 ⊆ I1, so I0 := I1 = I2 is a two-sided ideal in B such that
I ⊆ I0 ⊕ I0j. Now let u, v, w1, w2 ∈ B, and assume again u + vj ∈ I. Then I
contains the quantity

((u+ vj)w1)w2 − (u+ vj)(w2w1) = uw1w2 + (vw̄1w̄2)j

− u(w2w1)− (vw2w1)j

= u[w1, w2].

Let m be the maximal ideal of k, and let κ := k/m be its residue field. Since
[B(m),B(m)], being the space of trace-zero elements in the quaternion algebra
B(m) over the field κ, contains invertible elements, so does [B, B], and we
conclude u, v ∈ I. Thus I = I0 ⊕ I0j is a two-sided ideal in C.

2o. Let I be a two-sided ideal in C. Then I ∩ k = {0} implies I = {0} provided
r > 2 or I is stable under conjugation. Suppose first I is stable under conjuga-
tion, and let x ∈ I. Then tC(x) = x+ x̄ ∈ I ∩ k = {0}. But I ⊆ C is an ideal,
so xz̄ ∈ I for all z ∈ C, and from (4), we conclude nC(x, z) = tC(xz̄) = 0, hence
x = 0 by non-singularity.

Next consider the case r > 2. Since I ∩ Ī ⊆ C is a two-sided ideal stable
under conjugation and satisfying I ∩ Ī ∩ k ⊆ I ∩ k = {0}, the previous case
yields I ∩ Ī = {0}. Now let x ∈ I be nonzero. Then x̄ = tC(x) − x does not
belong to I, forcing tC(x) 6= 0. Thus the linear map tC : I → k is injective.
From Subsection 2.3 (c), we deduce the relations

tC([x, y]) = tC([x, y, z]) = 0

for y, z ∈ C, which therefore imply [x, y] = [x, y, z] = 0, so x belongs to the
center of C, which by Subsection 2.3 (e) is k. Hence I ⊆ I ∩ k = {0}, which
proves our claim.

3o. There is a k-submodule M ⊆ C such that

(8) C = k ⊕M
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and (aC)∩ k = a for all ideals a⊆ k. Indeed, the first part follows immediately
from 1C being unimodular (cp. Subsection 2.3 (d)) and implies (aC) ∩ k =
(a⊕ aM) ∩ k = a. Thus 3o holds.

It remains to establish the following assertion.

4o. Let I be a two-sided ideal in C, and assume r > 2 or that I is stable under
conjugation. Then I = (I ∩ k)C. The right-hand side being contained in the
left, it suffices to show

(9) I ⊆ (I ∩ k)C.

Setting a := I ∩ k, we pass to the base change k′ := k/a ∈ k-alg and consider
the composition algebra C′ := C ⊗ k′ = C/aC over k′, denote by I ′ = I/aC
the image of I under the canonical map x 7→ x′ from C to C′, and claim that
a′ := I ′ ∩ k′ = {0}. To see this, we first note that (8) implies

C′ = k′ ⊕M ′, M ′ := M ⊗ k′ = M/aM.

Given α1 ∈ a′ ⊆ I ′, we can therefore find elements ξ ∈ k, y ∈ M satisfying
x := ξ + y ∈ I and x′ = α1. This yields ξ

′ = α1, y
′ = 0, hence y ∈ aM ⊆ aC ⊆ I

and ξ = x− y ∈ I ∩ k = a. But then α1 = ξ′ = 0, and we have arrived at the
desired conclusion a′ = {0}. Now 2o implies I ′ = {0}, hence I ⊆ aC, as claimed
in (9). Thus the proof of 4o is complete. �

Corollary 4.2. Let C be a composition algebra over k. Then the assignments

a 7→ aC, I 7→ I ∩ k

define inclusion-preserving inverse bijections between the ideals of k and the
ideals of C that are stable under conjugation.

Proof. k splits into the direct sum of ideals ki, 0 ≤ i ≤ 3, such that Ci := Cki

is a composition algebra of rank 2i over ki for all i. Applying Theorem 4.1 to
Ci for i > 0 (the theorem being trivial for i = 0), the assertion follows. �

Corollary 4.3. Let C be a composition algebra over k. Then the nilradicals
of C (as an alternative algebra) and of k are related by the formula

Nil(C) = Nil(k) · C.

Proof. Since Nil(C) ∩ k, being a nilideal in k, is contained in Nil(k) and Nil(C)
itself is stable under conjugation, Corollary 4.2 implies Nil(C) ⊆ Nil(k) · C.
Conversely, since finitely generated nilideals of a commutative ring are nilpo-
tent, one checks that Nil(k) · C is a nilideal of C and hence contained in
Nil(C). �

4.4. Concluding remarks. (a) Since, by [12, III, Thm. (5.1.1)], quaternion
algebras are Azumaya algebras, part (ii) of Theorem 4.1 is not new [14, III,
Corollaire 5.2]. Neither is part (iii) since, as Erhard Neher has pointed out
to me, a quadratic étale D over k by [12, V, (4.1)] is a Galois extension with
Galois group the constant group scheme Z/2Z, so the assertion follows from
Ford [8, 12.2.2 (7)].
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(b) Part (i) of Theorem 4.1 breaks down for quaternion algebras since even
the split quaternions (of 2× 2-matrices with entries in k) allow one-sided ideals
not extended from the base ring. Similarly, part (ii) breaks down for quadratic
étale algebras since even the split one (direct sum of two copies of k) allows
(two-sided) ideals not extended from k.

(c) Step 1o in our proof of Theorem 4.1 is devoted to showing that one-
sided ideals of octonion algebras are, in fact, two-sided. After localizing, we
do so by appealing to the Cayley–Dickson construction. This seems to be in
keeping with the final remark 6.10 of [23] and also relates to an earlier result
of Erdmann [7, Korollar 1 of Satz 7], who showed over fields of characteristic
not 2 that algebras arising from the base field by a more than twofold iteration
of the Cayley–Dickson construction fail to admit nontrivial one-sided ideals.

Acknowledgments. The author is greatly indebted to Michel Racine and,
particularly, to Erhard Neher for useful comments on an earlier version of the
paper.
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