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Abstract. We give a characterization à la Obata for certain families of Kähler manifolds.
These results are in the same line as other extensions of the well-known Obata rigidity
theorem from [16], like for instance the generalizations in [17, 18]. Moreover, we give a com-
plete description of the so-called Kähler doubly-warped product structures whose underlying
metric is Einstein.

1. Introduction

This paper is the first of two papers devoted to the classification of complete
Kähler manifolds carrying a real-valued function u whose Hessian is blue in
particular black J-invariant and has pointwise at most two eigenvalues and one
of them has as eigenvector the gradient of u. In this first paper, we consider
the case where u has no critical point, and in [9], we treat the critical case, for
which further constructions are needed. Before stating our main result, let us
review some previous results that motivate our study.

In [16, Thm., p. 614], it is shown that the only complete Riemannian mani-
fold (Mn, g) carrying a real-valued function u whose Hessian satisfies ∇2u =
−u Id is the round sphere. This result, known as the Obata theorem, has been
generalized on Kähler manifolds in several papers such as [13, 17, 18]. Namely,
in [17, Thm. 3], the authors proved that a complete Kähler manifold (M2n, g,J)
is biholomorphically isometric to CPn with holomorphic sectional curvature 1
if and only if there exists a function u whose Hessian has at most two eigen-
values, namely −u+1

2 and −u and where ∇u is an associated eigenvector (see
also [13, Thm., p. 614] for a weaker version). In [18, Thm. 1], G. Santhanam
proved that, given a function u on a complete Kähler manifold (M2n, g, J)
whose Hessian has the eigenvalues u and u+1

2 and where ∇u and J∇u are
both eigenvectors associated to u, then the manifold M is either isometric to
the complex hyperbolic space CHn of constant sectional curvature −1, or it is
diffeomorphic to the normal bundle of some 2-codimensional totally geodesic
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submanifold M0 of M such that the fiber over each point in M0 is isometric to
the hyperbolic plane H2 of constant curvature −1.

The main result of this paper is the following.

Theorem 1.1. Let (M̃2n, g̃, J̃) be a connected complete Kähler manifold of
real dimension 2n≥ 4 carrying a function u∈C∞(M̃,R) without critical points
which satisfies the following three conditions:

• its Hessian ∇̃2u is J̃-invariant;

• its gradient ∇̃u is a pointwise eigenvector of ∇̃2u with some eigenvalue λ;

• the subbunble {∇̃u, J̃∇̃u}⊥ → M̃ is a pointwise eigenspace of ∇̃2u with
some eigenvalue µ.

Then the following claims hold true.
(i) If µ vanishes at one point of M̃ , then µ vanishes identically on M̃ and the

triple (M̃2n, g̃, J̃) is locally biholomorphically isometric to (Rt × Rs × Σ,
dt2 ⊕ ρ2(t) ds2 ⊕ gΣ) for some Kähler manifold (Σ2n−2, gΣ) and ρ(t) :=

|∇̃u|(t, s, x), where (Rt × Rs × Σ, dt2 ⊕ ρ(t)2 ds2 ⊕ gΣ) is endowed with
the complex structure that is naturally induced by the complex structure of
(Σ2n−2, gΣ).

(ii) If µ does not vanish at any point of M̃ , then we distinguish the following
two cases.
(a) If n > 2, then up to changing u into au + b with a, b ∈ R, a 6= 0, the

function u may be assumed to be positive and the Kähler manifold
(M̃2n, g̃, J̃) is biholomorphically isometric to a doubly-warped product

(
R×M2n−1, dt2 ⊕ ρ(t)2(ρ′(t)2ĝξ̂ ⊕ ĝξ̂⊥)

)
,

where M is a level hypersurface of u, the triple (M2n−1, ĝ, ξ̂) is Sasaki

and ρ(t) =
√
u(t, x) for any (t, x) ∈ R×M .

(b)If n = 2, then up to changing u into au + c with a, b ∈ R, a 6= 0, the
function u must be positive and the Kähler manifold (M̃2n, g̃, J̃) is
biholomorphically isometric to a doubly-warped product (R × M2n−1,

dt2 ⊕ ρ(t)2(ρ′(t)2ĝξ̂ ⊕ ĝξ̂⊥)), where M is a level hypersurface of u, the

triple (M2n−1, ĝ, ξ̂) is a minimal Riemannian flow that is basic confor-

mally Sasaki and ρ(t) =
√
u(t, x) for any (t, x) ∈ R×M .

Moreover, in this case (µ 6= 0), we have that

λ ◦ F (t, x) =
∂2(u ◦ F )

∂t2
(t, x) and µ =

|∇̃u|2
2u

.

Note that there is one assumption missing in [9, Thm. 2], namely that the

orthogonal complement of {∇̃u, J̃∇̃u} is a pointwise eigenspace of ∇̃2u.
The assumptions of Theorem 1.1 are related to various other well studied

situations. First, it is easy to check that the condition of a J̃-invariant Hessian
∇̃2u is equivalent to the condition that K := −J̃∇̃u is a Hamiltonian Killing
vector field with moment map u, i.e. we have LK J̃ = 0 = LK g̃ and K y ω = du,
where ω denotes the Kähler form of (M̃, g̃, J̃).
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Next, the condition that the gradient ∇̃u is a pointwise eigenvector of the
Hessian of u, say for some eigenvalue λ, is equivalent to the equation dx=2λdu,
where x is the length function x = |K|2. In particular, dx ∧ du = 0, and x has
to be a function of u. Then the local S1-action generated by K is rigid in the
sense of V. Apostolov et al. (cp. [1]).

Our main result is also related to the work of A. Derdzinski and G. Maschler
in [8], where they studied the question whether a given Kähler metric is confor-
mal to an Einstein metric. As a necessary condition for the conformal factor u,

they obtained that J̃∇̃u has to be a Killing vector field and an eigenvector of
the Hessian of u and of the Ricci tensor. They called such functions special
Kähler–Ricci potentials.

Another equivalent way of formulating the assumptions of Theorem 1.1 is
in terms of the distribution D+ spanned by K and JK. It turns out that
equivalently this distribution has to be totally geodesic, holomorphic and con-
formal. The last condition follows from the assumption that the Hessian of u
has at most two eigenvalues. Then our metric g̃ is locally of Calabi type, and
there is a local classification due to S. Chiossi and P.-A. Nagy in [7]. From this
point of view, it becomes clear that our manifolds are also ambi-Kähler, i.e.
switching the sign of the complex structure J̃ along the distribution D+ de-
fines a new integrable complex structure I such that (u−2g, I) is again Kähler.
We recall that there is a classification of compact ambi-Kähler manifolds in
the work of F. Madani, A. Moroianu and M. Pilca in [12]. Moreover, uω+ is
a Hamiltonian 2-form of rank 1, where ω+ is the restriction of the Kähler form
to D+. Manifolds admitting Hamiltonian 2-forms are studied in a series of
papers of V. Apostolov et al. including a global classification in the compact
case (cp. [1, 2]). Independently, the assumptions of Theorem 1.1 can be refor-
mulated in terms of so-called c-projectively equivalent Kähler metrics which
have been locally described in [5, Thm. 1.6].

In contrast to the results mentioned so far, our main theorem gives a global
description of the manifold without the additional compactness assumption. In
fact, as a result, the underlying manifold in Theorem 1.1 cannot be compact.

The idea of the proof of Theorem 1.1 consists in identifying the manifold
M̃ with I ×M , where M denotes a level hypersurface of u, via the flow of the
normalized gradient

ν :=
∇̃u

|∇̃u|
∈ Γ(TM̃),

which is geodesic. We show that the vector field ξ := −J̃ν defines a minimal
Riemannian flow on (M, g̃|T∗M⊗T∗M ), whose O’Neill tensor coincides with the
complex structure J̃ , up to some factor depending on the eigenvalue µ.

Conversely, given any Kähler doubly-warped product (see Lemma 2.4 for the
existence of such a structure) of the form (I ×M2n−1, dt2 ⊕ ρ2((ρ′)2ĝξ̂ ⊕ ĝξ̂⊥)),

where I ⊂ R, ρ, ρ′ : I → R are positive functions and (M, ĝ = ĝξ̂ ⊕ ĝξ̂⊥ , ξ̂)
is Sasaki, a direct computation shows that the function u := ρ2 satisfies the
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second-order PDE

∇̃2u = ∇̃2u(ν, ν) · (ν♭ ⊗ ν + ξ♭ ⊗ ξ) +
|∇̃u|2
2u

Id{ξ,ν}⊥ ,

where

∇̃u := gradM̃g̃ (u), ∇̃2u := HessM̃g̃ (u), ν :=
∇̃u

|∇̃u|
and ξ := −J̃ν.

Hence, the Hessian of u has two eigenvalues that coincide with λ and µ in The-
orem 1.1. Note that the function ρ itself has no J̃-invariant Hessian, whereas
ρ2 does, that is why we consider ρ2.

The paper is organized as follows. In Section 2, we review some basic facts
on doubly-warped products and characterize those which are Kähler. We recall
that these structures were first introduced by Baier in his master thesis [3],
in order to compute the Dirac spectrum of the complex hyperbolic space. In
Section 3, we provide the proof of the main theorem. In the last section of the
paper, we investigate when the metric of a Kähler doubly-warped product is
Einstein and discuss the solutions of the differential equation that the warping
function ρ has to satisfy. In the sequel, we will see that, when u has no
critical points, this equation suffices to reconstruct the doubly warped product
structure on M̃ .

2. Kähler doubly-warped products

In this section, we recall some basic facts on doubly-warped products. We
characterize among these manifolds those which are Kähler and provide the
necessary integrability conditions. We refer to [10] for more details.

Let M be a manifold and consider the product [10, Lem. 3.1]

(M̃ := I ×M, g̃ := β dt2 ⊕ gt),

where I ⊂ R is an open interval, gt is a smooth 1-parameter family of Rie-
mannian metrics on M and β ∈ C∞(I ×M,R×

+). We can easily see that the
Koszul formula implies the following identities for all X,Y ∈ Γ(π∗

2TM), where
π2 : M̃ → M denotes the projection on the second factor:

(1)

∇̃∂t
∂t = −1

2
gradgt(β(t, · )) +

1

2β

∂β

∂t
∂t,

∇̃∂t
X =

∂X

∂t
+

1

2
g−1
t

∂gt

∂t
(X, · ) + 1

2β

∂β

∂x
(X)∂t,

∇̃X∂t =
1

2
g−1
t

∂gt

∂t
(X, · ) + 1

2β

∂β

∂x
(X)∂t,

∇̃XY = ∇Mt

X Y − 1

2β

∂gt

∂t
(X,Y )∂t,

where ∂X
∂t = [∂t,X ] and ∇Mt is the Levi–Civita covariant derivative of (M,gt).

From now on, we assume ξ̂ to be a unit Killing vector field; in other words,
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(M, ĝ, ξ̂) is a so-called minimal Riemannian flow. For more details on Rie-
mannian flows, we refer to [6]. In this case, we have an orthogonal splitting

TM = R · ξ̂ ⊕ ξ̂⊥, and the normal bundle Q := ξ̂⊥ of the flow admits a so-
called transversal Levi–Civita connection, denoted by ∇̂, which is defined for
all X ∈ Γ(TM) and Z ∈ Γ(Q) as follows, cp. [19]:

∇̂XZ :=

{
[ξ̂, Z]Q if X = ξ̂,

(∇M̂
X Z)Q if X ∈ Γ(Q),

where ( · )Q denotes the ĝ-orthogonal projection TM → Q and ∇M̂ denotes

the Levi–Civita covariant derivative of (M, ĝ). The connection ∇̂ is compat-
ible with the induced metric ĝξ̂⊥ on the bundle Q, and its curvature van-

ishes along ξ̂. Recall also that a minimal Riemannian flow is characterized

by the fact that the tensor ĥ := ∇M̂ ξ̂, known as the O’Neill tensor [15], sat-

isfies ĥ(ξ̂) = 0 and is a skew-symmetric endomorphism field on Q equal to

ĝ(ĥ(Y ), Z) = − 1
2 ĝ([Y, Z], ξ̂) for any Y, Z ∈ Γ(Q).

We consider in the following the general Ansatz

(2) gt := ρ(t)2(σ(t)2ĝξ̂ ⊕ k(t, x)2ĝξ̂⊥),

where ρ, σ : I → (0,∞) and k : I ×M → (0,∞) are a priori arbitrary smooth
positive functions, and we define on the manifold M̃ = I ×M the Riemannian
metric g̃ := dt2 ⊕ gt. In the next lemma, we make the Levi–Civita connection

∇̃ of (M̃, g̃) explicit and express it in terms of the transversal Levi–Civita

connection ∇̂.

Lemma 2.1. Let (M̃, g̃) := (I ×M,dt2 ⊕ ρ(t)2(σ(t)2ĝξ̂ ⊕ k(t, x)2ĝξ̂⊥)), where

(M, ĝ, ξ̂) is a minimal Riemannian flow. Then, for all Z, Z ′ ∈ Γ(π∗
2Q), the

following identities hold:

∇̃∂t
∂t = 0, ∇̃∂t

ξ = 0, ∇̃∂tZ =
∂Z

∂t
+

1

ρk
· ∂(ρk)

∂t
Z,

∇̃ξ∂t =
(ρσ)′

ρσ
ξ, ∇̃ξξ = − (ρσ)′

ρσ
∂t, ∇̃ξZ = ∇̂ξZ +

ξ(k)

k
Z +

σ

ρk2
ĥZ,

∇̃Z∂t =
1

ρk
· ∂(ρk)

∂t
Z, ∇̃Zξ =

ξ(k)

k
Z +

σ

ρk2
ĥZ,

∇̃ZZ
′ = ∇̂ZZ

′ + Z(ln(k))Z ′ + Z ′(ln(k))Z − g̃(Z,Z ′) grad∇̂(ln(k))

− ξ(ln(k))g̃(Z,Z ′)ξ − σ

ρk2
g̃(ĥZ, Z ′)ξ − ∂ ln(ρk)

∂t
g̃(Z,Z ′)∂t,

where ĥ := ∇M̂ ξ̂ ∈ Γ(End(Q)) denotes the O’Neill tensor as above, ξ := 1
ρσ ξ̂,

and grad∇̂ f := (∇M̂f)Q for every function f .

Proof. Since β is chosen to be equal to 1, the first identity in (1) becomes

∇̃∂t
∂t = 0, and the other three identities imply that, for all X,Y ∈ Γ(π∗

2TM),
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the following relations hold:

∇̃∂t
X =

∂X

∂t
+

1

2
g−1
t

∂gt

∂t
(X, · ),

∇̃X∂t =
1

2
g−1
t

∂gt

∂t
(X, · ),

∇̃XY = ∇Mt

X Y − 1

2

∂gt

∂t
(X,Y )∂t,

with ∂gt
∂t

= 2(ρσ)′(t)(ρσ)(t)ĝξ̂ + 2∂(ρk)
∂t

(t, x)(ρ(t)k(t, x))ĝξ̂⊥ and hence

g−1
t

∂gt

∂t
(X, · ) = 2

(ρσ)′

ρσ
ĝ(X, ξ̂)ξ̂ ⊕ 2

ρk
· ∂(ρk)

∂t
X⊥

= 2
(ρσ)′

ρσ
g̃(X, ξ)ξ ⊕ 2

ρk
· ∂(ρk)

∂t
X⊥,

where ξ = 1
ρσ

ξ̂ and X = ĝ(X, ξ̂)ξ̂ +X⊥, with X⊥ ∈ Γ(π∗
2Q). Note that the

vector field ξ has unit length with respect to the metric g̃. Thus, we obtain
the following identities:

∇̃∂t
∂t = 0,

∇̃∂t
X =

∂X

∂t
+

(ρσ)′

ρσ
g̃(X, ξ)ξ ⊕ 1

ρk
· ∂(ρk)

∂t
X⊥,

∇̃X∂t =
(ρσ)′

ρσ
g̃(X, ξ)ξ ⊕ 1

ρk
· ∂(ρk)

∂t
X⊥,

∇̃XY = ∇Mt

X Y −
( (ρσ)′

ρσ
g̃(X, ξ)g̃(Y, ξ) +

1

ρk
· ∂(ρk)

∂t
g̃(X⊥, Y ⊥)

)
∂t.

Now, we need to compute ∇Mt

X Y in a more precise way according to the com-
ponents X and Y in the orthogonal splitting TM = R · ξ ⊕ Q. Recall the
Koszul formula, valid for any X,Y, Z ∈ Γ(TM),

gt(∇Mt

X Y, Z) =
1

2
{X(gt(Y, Z)) + Y (gt(Z,X))− Z(gt(X,Y ))(3)

+ gt([X,Y ], Z)− gt([Y, Z], X) + gt([Z,X ], Y )}.

First, we consider the case when Y = ξ. For X = ξ, we have gt(∇Mt

ξ ξ, ξ) = 0

and, for every Z ∈ Γ(Q),

gt(∇Mt

ξ ξ, Z) = −gt([ξ, Z], ξ) = −ĝ([ξ̂, Z], ξ̂) = ĝ(Z,∇M̂
ξ̂ ξ̂︸ ︷︷ ︸
0

) = 0

so that ∇Mt

ξ ξ = 0. For X = Z ∈ Γ(Q), we have gt(∇Mt

Z ξ, ξ) = 0 and, for every

Z ′ ∈ Γ(Q),

gt(∇Mt

Z ξ, Z ′) =
1

2
{Z(gt(ξ, Z

′)) + ξ(gt(Z
′, Z))− Z ′(gt(Z, ξ))

+ gt([Z, ξ], Z
′)− gt([ξ, Z

′], Z) + gt([Z
′, Z], ξ)}
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=
1

2

(
ξ((ρk)2ĝ(Z,Z ′))− (ρk)2

ρσ
ĝ([ξ̂, Z], Z ′)

− (ρk)2

ρσ
ĝ([ξ̂, Z ′], Z) + (ρσ)ĝ([Z ′, Z], ξ̂)

)

=
(ρk)2

2ρσ

(
ξ̂(ĝ(Z,Z ′))− ĝ([ξ̂, Z], Z ′)− ĝ([ξ̂, Z ′], Z)

)

+
ξ(k)

k
gt(Z,Z

′) + ρσĝ(∇M̂
Z ξ̂, Z ′)

=
ξ(k)

k
gt(Z,Z

′) +
σ

ρk2
gt(ĥZ, Z

′)

so that ∇Mt

Z ξ = ξ(k)
k

Z + σ
ρk2 ĥZ. In the last equality, we used the fact that

ξ̂ is a Killing vector field with respect to the metric ĝ. Let us now choose
Y = Z ′ ∈ Γ(Q) and compute as follows:

∇Mt

ξ Z ′ = ∇Mt

Z′ ξ − [Z ′, ξ]

=
ξ(k)

k
Z ′ +

σ

ρk2
ĥZ ′ +

1

ρσ
[ξ̂, Z ′]

=
ξ(k)

k
Z ′ +

σ

ρk2
ĥZ ′ +

1

ρσ
[ξ̂, Z ′]Q +

1

ρσ
ĝ([ξ̂, Z ′], ξ̂)︸ ︷︷ ︸

0

ξ̂

=
ξ(k)

k
Z ′ +

σ

ρk2
ĥZ ′ + ∇̂ξZ

′.

On the other hand, for every Z ∈ Γ(Q), we have

gt(∇Mt

Z Z ′, ξ) = −gt(∇Mt

Z ξ, Z ′) = −ξ(k)

k
gt(Z,Z

′)− σ

ρk2
gt(ĥZ, Z

′),

and for any Z ′′ ∈ Γ(Q), we compute

gt(∇Mt

Z Z ′, Z ′′) =
1

2
{Z(gt(Z

′, Z ′′)) + Z ′(gt(Z
′′, Z))− Z ′′(gt(Z,Z

′))

+ gt([Z,Z
′], Z ′′)− gt([Z

′, Z ′′], Z) + gt([Z
′′, Z], Z ′)}

=
1

2
{Z((ρk)2ĝ(Z ′, Z ′′)) + Z ′((ρk)2ĝ(Z ′′, Z))

− Z ′′((ρk)2ĝ(Z,Z ′)) + (ρk)2ĝ([Z,Z ′], Z ′′)

− (ρk)2ĝ([Z ′, Z ′′], Z) + (ρk)2ĝ([Z ′′, Z], Z ′)}
= ρ2Z(k)kĝ(Z ′, Z ′′) + ρ2Z ′(k)kĝ(Z ′′, Z)

− ρ2Z ′′(k)kĝ(Z,Z ′) + (ρk)2ĝ(∇M̂
Z Z ′, Z ′′)

=
Z(k)

k
gt(Z

′, Z ′′) +
Z ′(k)

k
gt(Z

′′, Z)

− Z ′′(k)

k
gt(Z,Z

′) + gt(∇̂ZZ
′, Z ′′).

This finishes the proof of the lemma. �
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Let us now recall some standard definitions. On a Riemannian flow (M,ĝ, ξ̂),

a function f is said to be basic if ξ̂(f) = 0, i.e. the function f depends only on
the transversal variables. A transversal Kähler structure J on a Riemannian
flow is defined as an almost-Hermitian structure J : Γ(Q) → Γ(Q), which is
parallel with respect to the transversal Levi–Civita connection. The following
lemma will be useful when considering basic transversal conformal changes of
the metric on a Riemannian flow. Indeed, we will show that, for any confor-
mal change of the transverse metric by a basic function, the flow will be still
Riemannian.

Lemma 2.2. Let (M, ĝ, ξ̂) be a connected minimal Riemannian flow, and let

f ∈ C∞(M, R) be a basic function. Then (M, g := ĝξ̂ ⊕ e2f · ĝξ̂⊥ , ξ := ξ̂) is

a minimal Riemannian flow, whose O’Neill tensor is given by h = e−2f ĥ and
whose Levi–Civita connection satisfies, for all X ∈ Γ(TM) and Z ∈ Γ(Q),

∇XZ = ∇̂XZ +XQ(f)Z + Z(f)XQ − ĝ(X,Z)∇̂f,

where ∇̂f := grad∇̂ f is the pointwise projection of the ĝ-gradient of f onto Q.

Moreover, if J is a transversal Kähler structure on (M, ĝ, ξ̂), then J remains
a transversal Kähler structure on (M,g, ξ) if and only if either rk(Q) = 2 or f

is constant.

Proof. First, we make use of the Koszul formula (3) to show that, for any
Z ∈ Γ(Q), we have

g(∇M
ξ ξ, Z) = −g([ξ, Z], ξ) = −ĝ([ξ̂, Z], ξ̂) = ĝ(∇M̂

ξ̂ ξ̂, Z) = 0.

Moreover, the Lie derivative of the transverse conformal metric in the direction

vector field ξ̂ is equal to

Lξ(e
2f · ĝξ̂⊥) = e2fξ(f)ĝξ̂⊥ + e2fLξ(ĝξ̂⊥) = 0

since f is assumed to be a basic function. In particular, this shows that ξ is
a unit Killing vector field with respect to the metric g, and therefore (M,g, ξ)

is a minimal Riemannian flow. The relation between ∇ and ∇̂ is proven as
in the usual case by the uniqueness of a compatible transversal torsion-free
connection. To compare the corresponding O’Neill tensors, we just compute
for any Y, Z ∈ Γ(Q) as follows:

g(hY, Z) = −1

2
gξ([Y, Z], ξ) = −1

2
ĝξ̂([Y, Z], ξ̂) = ĝ(ĥY, Z) = e−2fg(ĥY, Z).

Let J be a transversal Kähler structure on (M, ĝ, ξ̂). Then J remains an
almost-Hermitian structure on Q and∇J =0 if and only if, for all Z,Z ′ ∈ Γ(Q),
the following equality holds:

Z(f)JZ ′ + JZ ′(f)Z − g(Z, JZ ′)∇̂f = Z(f)JZ ′ + Z ′(f)JZ − g(Z,Z ′)J∇̂f,

which is equivalent to

Z ′(f)JZ − JZ ′(f)Z + g(Z, JZ ′)∇̂f − g(Z,Z ′)J∇̂f = 0.
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In case rk(Q) = 2, this identity is trivially satisfied for all Z,Z ′ ∈ Γ(Q), whereas

for rk(Q) > 2, it is satisfied if and only if ∇̂f = 0, that is, f is constant. This
concludes the proof of Lemma 2.2. �

Remark 2.3. Note that if we rescale the vector field ξ̂ by some positive num-
ber, that is, we consider the metric g := α2ĝξ̂ ⊕ ĝξ̂⊥ for some positive α, then

(M,g, ξ := 1
α ξ̂) is still a minimal Riemannian flow with O’Neill tensor h = αĥ.

Let (M, ĝ, ξ̂) be a minimal Riemannian flow, and assume the existence of

a transversal Kähler structure J on Q= ξ̂⊥. We consider the almost-Hermitian
structure J̃ on M̃ = I ×M defined by setting

(4) J̃(∂t) := − 1

ρσ
ξ̂, J̃

( 1

ρσ
ξ̂
)
:= ∂t and J̃ |

{ξ̂,∂t}
⊥
:= J,

where ρ,σ,k are the coefficients of the metric in (2). Similarly to [10, Lem. 3.4],
we want to characterize in the next lemma those functions ρ, σ, k for which

(M̃2n, g̃, J̃) is Kähler, that is, for which ∇̃J̃ = 0 holds on M̃ . Note in particular
that M has odd dimension equal to 2n− 1.

Lemma 2.4. Let

(M̃, g̃) :=
(
I ×M,dt2 ⊕ ρ(t)2(σ(t)2ĝξ̂ ⊕ k(t, x)2ĝξ̂⊥)

)

be a doubly-warped product, where (M, ĝ, ξ̂) is a minimal Riemannian flow and
ρ, σ : I → R×

+, as well as k : I ×M → R×
+, are smooth positive functions. Let

ξ := 1
ρσ

ξ̂ and ĥ := ∇M̂ ξ̂. Furthermore, we assume (M, ĝ, ξ̂) carries a transver-
sal Kähler structure J , and we define the almost-Hermitian structure J̃ on M̃

via (4). Then the following statements hold true.

(i) The structure (M̃2n, g̃, J̃) is Kähler if and only if ξ̂(k) = 0, ĥ=− k
σ
· ∂(ρk)

∂t
J

and, if n > 2, grad∇̂(k) = 0 (and thus the function k only depends on t

if M is connected). In this case, there exists a basic function C on M ,
which is constant if n > 2, such that ∂(ρk)2

∂t
= 2ρσC.

(ii) If ĥ vanishes at a point (for n> 2) or vanishes identically (for n= 2), then
(M̃2n, g̃, J̃) is Kähler if and only if it is locally isometric to a Kähler prod-
uct (Rt × Rs × Σ, dt2 ⊕ ρ2(t) ds2 ⊕ gΣ) for some Kähler manifold (Σ, gΣ)
and some positive function ρ on I (that plays the role of ρσ).

(iii) If (M̃2n, g̃, J̃) is Kähler, ĥ 6= 0 on M and k only depends on t, then, up

to rescaling ξ̂, turning t into −t or setting ρ := ρk, as well as σ := σ
k
, we

have ρ′ = σ on I and k = 1, hence ĥ = −J on M . In particular, (M, ĝ, ξ̂)
is Sasaki.

(iv) If (M̃2n, g̃, J̃) is Kähler, ĥ 6= 0 on M and k is of the form k(t, x) =

k1(t)k2(x) (hence n= 2), then, up to turning t into −t, rescaling ξ̂, setting
ρ := ρk1, as well as σ := σ

k1
, we may assume that k1 = 1 and there ex-

ists a basic positive function C on M such that ρ′ = σ on I and k2 =
√
C,

hence ĥ=−C · J on M . In particular, (M3, g := ĝξ̂ ⊕C · ĝξ̂⊥ , ξ̂) is Sasaki.
In this case, we call (M, ĝ, ξ̂) basic conformally Sasaki.
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Proof. (i) We first compute ∇̃J̃ using Lemma 2.1. We keep the same notation
as in the proof of Lemma 2.1. Let Z,Z ′ ∈ Γ(π∗

2Q) be arbitrary sections. First,

∇̃∂t
(J̃∂t)− J̃(∇̃∂t

∂t) = −∇̃∂t
ξ + 0 = 0

as well as ∇̃∂t
(J̃ξ)− J̃(∇̃∂t

ξ) = 0. Moreover,

∇̃∂t
(J̃Z)− J̃(∇̃∂t

Z) =
∂JZ

∂t
+

1

ρk
· ∂(ρk)

∂t
JZ − J̃

(∂Z
∂t

+
1

ρk
· ∂(ρk)

∂t
Z
)

=
[ ∂

∂t
, J

]
Z = 0,

showing that ∇̃∂t
J̃ = 0. Now, differentiating in the direction of ξ, we first

obtain

∇̃ξ(J̃∂t)− J̃(∇̃ξ∂t) = −∇̃ξξ −
(ρσ)′

ρσ
J̃ξ = 0

as well as ∇̃ξ(J̃ξ)− J̃(∇̃ξξ) = 0. Furthermore, using ∇̂J = 0,

∇̃ξ(J̃Z)− J̃(∇̃ξZ) = ∇̂ξ(JZ) +
ξ(k)

k
JZ +

σ

ρk2
ĥJZ

− J̃
(
∇̂ξZ +

ξ(k)

k
Z +

σ

ρk2
ĥZ

)

=
σ

ρk2
[ĥ, J ]Z.

Thus, ∇̃ξJ̃ = 0 if and only if [ĥ, J ] = 0 on M . It remains to look at differenti-
ation in transversal directions,

∇̃Z(J̃∂t)− J̃(∇̃Z∂t) = −∇̃Zξ − J̃
( 1

ρk
· ∂(ρk)

∂t
Z
)

= −ξ(k)

k
Z − σ

ρk2
ĥZ − 1

ρk
· ∂(ρk)

∂t
JZ;

in particular, we have (∇̃Z J̃)∂t = 0 for all Z ∈ Γ(π∗
2Q) if and only if ξ(k) = 0

and ĥ = − k
σ
· ∂ρk

∂t
J ; note that the latter condition implies [ĥ, J ] = 0. Similarly,

∇̃Z(J̃ ξ)− J̃(∇̃Zξ) =
1

ρk
· ∂(ρk)

∂t
Z − J̃

(ξ(k)
k

Z +
σ

ρk2
ĥZ

)

= −ξ(k)

k
JZ +

1

ρk
· ∂(ρk)

∂t
Z − σ

ρk2
JĥZ,

so (∇̃Z J̃)ξ = 0 for all Z ∈ Γ(π∗
2Q) if and only if ξ(k) = 0 and ĥ = − k

σ · ∂(ρk)
∂t J ,

which is precisely what we had before. Last but not least, assuming the latter
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conditions are fulfilled, we obtain

∇̃Z(J̃Z
′)− J̃(∇̃ZZ

′) = ∇̂Z(JZ
′) + Z(ln(k))JZ ′ + JZ ′(ln(k))Z

− g̃(Z, JZ ′) grad∇̂(ln(k))− ξ(ln(k))g̃(Z, JZ ′)ξ

− σ

ρk2
g̃(ĥZ, JZ ′)ξ − ∂ ln(ρk)

∂t
g̃(Z, JZ ′)∂t

− J(∇̂ZZ
′)− Z(ln(k))JZ ′ − Z ′(ln(k))JZ

+ g̃(Z,Z ′)J(grad∇̂(ln(k))) + ξ(ln(k))g̃(Z,Z ′)∂t

+
σ

ρk2
g̃(ĥZ, Z ′)∂t −

∂ ln(ρk)

∂t
g̃(Z,Z ′)ξ

= JZ ′(ln(k))Z − Z ′(ln(k))JZ + g̃(JZ,Z ′) grad∇̂(ln(k))

+ g̃(Z,Z ′)J(grad∇̂(ln(k))).

We now want to know when the right-hand side of the last identity vanishes.
In case 2n− 2 = 2, i.e. n = 2, it trivially vanishes pointwise for all Z,Z ′ ∈ Q.
In case n > 2, assuming grad∇̂(ln(k)) to be nonzero at a point, we may chose
for instance Z ∈ Q such that Z, JZ, grad∇̂(ln(k)), J(grad∇̂(ln(k))) are linearly
independent, in which case, it can be deduced from the vanishing of all terms in
the right-hand side of the last identity that g̃(JZ,Z ′) = 0 for all Z ′ ∈ Q, which
is a contradiction; thus grad∇̂(ln(k)) must vanish identically for n > 2. To sum

up, we have shown that ∇̃J̃ = 0 on M̃ if and only if ξ(k) = 0, ĥ = − k
σ
· ∂ρk

∂t
J

and, if n > 2, grad∇̂(k) = 0—and hence k only depends on t if M is connected.

(ii) If ĥ=0 at a point if n> 2 or identically if n=2 and if (M̃, g̃, J̃) is Kähler,

then, by (i), ĥ must vanish identically and the following identity ∂(ρk)
∂t

= 0
holds. Hence, ρk is a function depending only on x, ρ(t)k(t, x) = D(x). If
n > 2, as k depends only on t as we have already shown, then D is constant,
and in this case, we have g̃ = dt2 ⊕ ρ2(t)σ2(t)ĝξ̂ ⊕D2ĝξ̂⊥ . Rescaling ĝξ̂⊥ and

replacing ρσ by ρ, we obtain the desired product form. If n = 2, then D may

be nonconstant, but ξ̂(D) = 0, and in this case, (Σ, gΣ) is a surface (hence any
Hermitian metric on Σ is already Kähler).

(iii) If k only depends on t and (M̃, g̃, J̃) is Kähler, then we may assume,

up to replacing ρ by ρk and σ by σ
k
, that k = 1. Since neither ĥ nor J depend

on t, there exists a constant C such that ρ′

σ
= C. If C = 0, then ĥ = 0 and

we are back in case (ii). If C 6= 0, then, up to rescaling ξ̂, we may assume
that C = ±1 and, up to turning t into −t, that C = 1. Then ρ′ = σ on I, and

ĥ = −J on M .
(iv) In case k is not necessarily constant in x (and thus n = 2), there exists

a function C on M , which must be basic since both ĥ and J are, such that
k
σ
· ∂ρk

∂t
= C, that is, ∂(ρk)2

∂t
= 2ρσ · C on M̃ . This is equivalent to

(ρ(t)k(t, x))2 − (ρ(0)k(0, x))2 = 2C(x) ·
∫ t

0

ρ(s)σ(s) ds for all (t, x) ∈ I ×M.
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This shows that k2 is the sum of two functions that are products of a function
of t with a function of x; still k must not be itself in product form. In case k

is of the form k(t, x) = k1(t)k2(x), then we may assume as above that k1 = 1
(up to changing ρ and σ by multiplying ρ by k1 and σ by 1

k1
). The identity

∂(ρk2)
2

∂t
= 2ρσ · C yields ρ′k22 = σ · C. If ρ′ vanishes at one point, then C must

vanish identically, and then ĥ = 0, which is again case (ii). Otherwise, up to
turning t into −t, we may assume ρ′ > 0 on I, from which k2(x)

2 = σ
ρ′ (t) ·C(x)

follows; in particular, ρ′

σ
is constant. Up to rescaling ξ̂, we may assume that

ρ′ = σ on I, from which k2(x)
2 = C(x) follows for all x ∈ M (showing on the

way that C must be positive) and therefore k2 =
√
C. The last claim follows

from Lemma 2.2. This concludes the proof of Lemma 2.4. �

Remark 2.5. The product form assumed for the function k in Lemma 2.4 (iv),
is fulfilled in the case where we apply this result; see Theorem 1.1.

We end this section by characterizing the completeness of doubly-warped
products. We will consider the case when grad∇̂ k= 0 (or k = 1, up to rescaling
the metric) in the expression (2) of the metric since these cases naturally arise
in our classification results (see Theorems 4.1 and 1.1).

Lemma 2.6. Let (M̃, g̃) := (I ×M, dt2 ⊕ ρ(t)2(σ(t)2 ĝξ̂ ⊕ ĝξ̂⊥)) be a doubly-
warped product. Then (M̃, g̃) is complete if and only if (M, ĝ) is complete
and I = R.

Proof. The proof follows that of the analog result for warped products [4,
Lem. 7.2]. Assume (M̃, g̃) to be complete. Then (M, ĝ) must be complete
because it is a closed subset of M̃ and the metrics gt := ρ(t)2(σ(t)2ĝξ̂ ⊕ ĝξ̂⊥)
and ĝ are equivalent for any fixed t. Moreover, because the integral curves
of ∂t are geodesics, according to (1), then I = R must hold. Conversely, as-
sume (M, ĝ) to be complete and I =R. Let ((tn, xn))n be any Cauchy sequence
in (M̃, g̃); then, because the distance between projected R-components is any-
way smaller than the distance associated to g̃, the sequence (tn)n must be
a Cauchy sequence in R and therefore must converge to some T ∈ R. But
since, furthermore, the sequence (tn)n must be bounded, so must be the coef-
ficients ρ(tn), σ(tn) of the metric gtn independently of n; therefore all (gtn)n
are uniformly equivalent to ĝ. As a consequence, the sequence (xn)n must be
a Cauchy sequence on (M, ĝ) and therefore must converge to some x ∈ M .
Because, again, (gtn)n are uniformly equivalent to ĝ, the sequence ((tn, xn))n
must converge to (T, x) ∈ M̃ , which concludes the proof. �

3. Proof of the main result

In this section, we give the proof of Theorem 1.1.

Proof. Let ν := ∇̃u

|∇̃u| ∈ Γ(TM̃) and ξ := −J̃ν. By assumption,

∇̃2u = λ · (ν♭ ⊗ ν ⊕ ξ♭ ⊗ ξ) + µ · Id{ξ,ν}⊥
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on M̃ for smooth real-valued functions λ, µ on M̃ . Fix any value u0 of u, and
let M := u−1({u0}), which is a real hypersurface of M̃ with induced metric
g := g̃|M . Since by assumption ∇̃u is a pointwise eigenvector for ∇̃2u, the
vector field ν is actually geodesic on (M̃, g̃), and Proposition A.1 shows that
the map F : R×M → M̃ , given by the flow of ν, is a diffeomorphism pulling
g̃ back onto dt2 ⊕ gt, where gt := (Ft)

∗g|TM×TM
is a smooth one-parameter-

family of Riemannian metrics on M that we next determine more precisely. In
the proof of Proposition A.1, we show that f := u ◦ F only depends on t. Let

t0 be such that f(t0) = (u ◦ F )(t0) = u0. Moreover, we have f ′(t) = |∇̃u|F (t,x)

and, since ν is geodesic, f ′′(t) = λ ◦ F (t, x). Therefore, as [ξ, ν] = λ

|∇̃u|ξ, which

can be shown by a straight-forward computation, we have

∂

∂s
((Fs)∗ξ)Ft0

(x)|s=t =
(
(Ft)∗

( λ

|∇̃u|
ξ
))

Ft0
(x)

=
λ

|∇̃u|
◦ F−t(Ft0(x)) · ((Ft)∗ξ)Ft0

(x)

=
λ

|∇̃u|
◦ F−t+t0(x) · ((Ft)∗ξ)Ft0

(x)

=
f ′′(−t+ t0)

f ′(−t+ t0)
· ((Ft)∗ξ)Ft0

(x).

Integrating, we obtain

((Ft)∗ξ)Ft0
(x) = exp

(∫ t

0

f ′′(−s+ t0)

f ′(−s+ t0)
ds

)
· ξ(Ft0 (x))(5)

= exp

(∫ t−t0

−t0

f ′′(−s′)

f ′(−s′)
ds′

)
· ξ(Ft0 (x)), where s′ := s− t0

=
f ′(t0)

f ′(t0 − t)
ξ(Ft0 (x)).

In particular, this leads to (F ∗
t g̃)(ξ, ξ) =

f ′(t)2

f ′(0)2 . On the other hand, we have,

for all X,Y ∈ TM ,

(Lν g̃)(X,Y ) = 2g̃(∇̃Xν, Y ) =
2

|∇̃u|
∇̃2u(X,Y )

=
2

|∇̃u|
((λ− µ)g̃(X, ξ)g̃(Y, ξ) + µg̃(X,Y )).

Hence, as in Proposition A.1, we get for all X,Y ∈ {ξ, ν}⊥ that

∂

∂s
F ∗
s g̃(X,Y )|s=t

=
2

f ′(t)
µ ◦ F (t, x) · (F ∗

t g̃)(X,Y );

in particular, after integrating, we find

(F ∗
t g̃)(X,Y ) = exp

(
2

∫ t

0

µ ◦ F (s, x)

f ′(s)
ds

)
· g̃(X,Y ).
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Therefore,

(6) F ∗
t g̃ = dt2 ⊕ (f ′)2(t)

(f ′)2(0)
gξ ⊕ exp

(
2

∫ t

0

µ ◦ F (s, x)

f ′(s)
ds

)
gξ⊥ ,

where we recall that g is the induced metric g = g̃|M and g = gξ ⊕ gξ⊥ . We
check now that (M, g, ξ) is a minimal Riemannian flow. Firstly, since, for all
X ∈ TM̃ ,

(7) ∇̃Xν =
1

|∇̃u|
(∇̃2

Xu− g(∇̃2
Xu, ν)ν) =

1

|∇̃u|
(∇̃2

Xu− λg(X, ν)ν),

we have

∇̃ξξ = ∇̃J̃ν J̃ν = J̃(∇̃J̃νν) = − 1

|∇̃u|
∇̃2

νu = − λ

|∇̃u|
ν

and hence ∇M
ξ ξ = 0. Secondly, for all X ∈ TM ∩ ξ⊥, we have

(8) ∇M
X ξ = ∇̃Xξ + g(∇̃Xν, ξ)︸ ︷︷ ︸

0

ν = −J̃(∇̃Xν) = − µ

|∇̃u|
J̃X.

Thus, ∇Mξ is skew symmetric and vanishes on ξ; therefore (M, g, ξ) is a min-
imal Riemannian flow, and its O’Neill tensor is given by h = − µ

|∇̃u| J̃ . In the
following, we denote by ∇ the transversal Levi–Civita connection of the flow.
Hence, both connections are related by ∇ξZ = ∇M

ξ Z − ∇M
Z ξ and ∇Z′Z =

∇M
Z′Z + g(∇M

Z′ξ, Z)ξ for all sections Z,Z ′ of Q := {ξ, ν}⊥ → M . As for J := J̃

on Q, we have, for every Z ∈ Γ(Q),

∇ξ(JZ) = ∇̃ξ(J̃Z) + g(∇̃ξν, JZ)︸ ︷︷ ︸
0

ν −∇M
JZξ

= J̃(∇̃ξZ)−∇M
JZξ

= J̃(∇̃ξZ −∇M
Z ξ) since [∇Mξ, J ] = 0

= J̃(∇M
ξ Z −∇M

Z ξ) since g(∇̃ξZ, ν) = 0

= J(∇ξZ)

and, for all Z ′ ∈ Q,

∇Z′(JZ) = ∇̃Z′(J̃Z) + g(∇̃Z′ν, JZ)ν + g(∇M
Z′ξ, JZ)ξ

= J̃(∇̃Z′Z) +
µ

|∇̃u|
g(Z ′, JZ)ν − µ

|∇̃u|
g(JZ ′, JZ)ξ

= J̃
(
∇̃Z′Z +

µ

|∇̃u|
g(Z ′, Z)ν − µ

|∇̃u|
g(JZ ′, Z)ξ

)

= J(∇Z′Z).

Therefore, ∇J = 0, and hence J defines a transversal Kähler structure on
(M, g, ξ).
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In the following, we show that the pullback of the almost complex structure
F ∗J̃ on R×M maps ξ onto ∂t, ∂t onto −ξ and coincides with J on Q. For all
(t, x) ∈ R×M and X ∈ R⊕ TxM , we have

(F ∗J̃)(t,x)(X) = (d(t,x)F )−1 ◦ J̃F (t,x) ◦ (d(t,x)F )(X).

For X = ∂t, we have

(F ∗J̃)(t,x)(∂t) = (d(t,x)F )−1 ◦ J̃F (t,x) ◦ (d(t,x)F )(∂t)

= (d(t,x)F )−1 ◦ J̃F (t,x)(∂t)

= −(d(t,x)F )−1(ξF (t,x))

= −(F−t∗ξ)x

(5)
= −f ′(0)

f ′(t)
ξx = −ξ(t,x)

as well as

(F ∗J̃)(t,x)(ξ(t,x)) = (d(t,x)F )−1 ◦ J̃F (t,x) ◦ (d(t,x)F )(ξ(t,x))

=
f ′(0)

f ′(t)
(d(t,x)F )−1 ◦ J̃F (t,x)((d(t,x)F )(ξx))

=
f ′(0)

f ′(t)
(d(t,x)F )−1 ◦ J̃F (t,x)((Ft∗ξ)Ft(x))

(5)
=

f ′(0)

f ′(t)
(d(t,x)F )−1 ◦ J̃F (t,x)

( f ′(t)

f ′(0)
· ξF (t,x)

)

= (d(t,x)F )−1(∂t) = ∂t.

To show that (F ∗J̃)|Q = J , we compute the Lie derivative of J̃ in ν-direction;
for every X ∈ TM̃ ,

(Lν J̃)X = [ν, J̃X ]− J̃ [ν,X ] = J̃(∇̃νX)− ∇̃J̃Xν − J̃ [ν,X ] = J̃∇̃Xν − ∇̃J̃Xν

(7)
=

1

|∇̃u|

(
J̃∇̃2

Xu− λg(X, ν)J̃ν
)
− 1

|∇̃u|
(∇̃2

J̃Xu− λg(J̃X, ν)ν)

=
λ

|∇̃u|
· (g(X, ν)ξ + g(X, ξ)ν);

therefore, Lν J̃ = λ

|∇̃u| · (ν
♭ ⊗ ξ + ξ♭ ⊗ ν). Now, for any (t, x) ∈ R × M and

Z ∈ TxM ∩ ξ̂⊥,

∂

∂s
(F ∗

s J̃)(Zx)|s=t
=

∂

∂s
(F ∗

s J̃)|s=t
(Zx) = (Lν J̃)(dxFt(Zx)) = 0

because Ft preserves Q. We deduce that (F ∗
t J̃)(Zx) = J̃x(Zx) = JZx; therefore

(F ∗J̃)|Q = J , as claimed.
Summing up, we have shown that, on the product manifold I × M , the

metric F ∗
t g̃ is determined by (6) and the complex structure F ∗

t J̃ has the form
as in (4). Moreover, the manifold (I ×M,F ∗

t g̃, F
∗J̃) is Kähler, and the triple

(M, g, ξ) is a minimal Riemannian flow equipped with a transversal Kähler
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structure J = J̃ . Recall that g = gξ ⊕ gξ⊥ is the induced metric g̃|M . In the
following, we will apply Lemma 2.4 in order to obtain the classification result.

We begin with the case when n > 2. We write F ∗
t g̃ as a doubly-warped

product in the following way:

F ∗
t g̃ = dt2 ⊕ ρ2(t)(σ2(t)gξ ⊕ k2(t, x)gξ⊥),

where ρ, σ, k are positive smooth functions that satisfy the system




ρ2(t)σ2(t) =
(f ′)2(t)

(f ′)2(0)
,

ρ2(t)k2(t, x) = exp

(
2

∫ t

0

µ ◦ F (s, x)

f ′(s)
ds

)

for all (t, x) ∈ R×M . Therefore, as the hypotheses of Lemma 2.4 are fulfilled

for the flow (M, ĝ, ξ̂) with ĝ = g and ξ̂ = ξ, we get the following cases.
To show (i), we assume that µ vanishes at one point of M̃ . Then, according

to (8), also h vanishes at that point. Lemma 2.4 (ii) then implies that h, and
thus also µ, vanishes identically. In this case, up to replacing ρk by 1 and ρσ by
ρ, we obtain from the above system that ρ= f ′

f ′(0) . Furthermore, up to replacing
u by 1

f ′(0)u which does not change the statement of the theorem, we can assume

that f ′(0) = 1. Thus, we obtain ρ = f ′, that is, ρ(t) = |∇̃u| ◦ F (t, x) for all
(t, x) ∈ R×M and the triple (M̃2n, g̃, J̃) is locally biholomorphically isometric
to (Rt × Rs × Σ, dt2 ⊕ ρ2(t) ds2 ⊕ gΣ) for some Kähler manifold (Σ2n−2, gΣ)
and some positive function ρ. Note that the eigenvalues λ and µ may be equal

(to 0), which corresponds to the trivial case when ∇̃u is a parallel vector field
on M̃ .

To show (ii) (a), we assume that µ does not vanish at any point of M̃ . In
this case, it follows from Lemma 2.4 (i) that the function k only depends on t

so that (t, x) 7→ µ ◦ F (t, x) only depends on t as well. Setting ρ := ρk as well as
σ := σ

k
, we can assume that k ≡ 1. Furthermore, Lemma 2.4 (iii) implies after

rescaling ξ and turning t into −t (which amounts to changing u into −u) that
ρ′ = σ and thus h = −J on M . Hence, the first equation in the above system
allows to get

(ρρ′)2 =
( f ′

f ′(0)

)2

, that is ρρ′ =
f ′

f ′(0)
,

or equivalently ρ2(t) − ρ2(0) = 2
f ′(0) (f(t) − f(0)) for all t ∈ R. Thus, up to

replacing u by 2
f ′(0) (u − u0) + ρ2(0), which does not affect the assumptions

on u, we may assume that f ′(0) = 2 and f(0) = ρ(0)2 = 1; in particular, we

obtain ρ2 = f and thus ρ =
√
f =

√
u ◦ F . We also deduce that

λ ◦ F (t, x) = ∇̃2u(ν, ν) ◦ F (t, x) = f ′′(t),

µ ◦ F (t, x) =
f ′(t)ρ′(t)

ρ(t)
=

(f ′)2(t)

2f(t)
=

|∇̃u|2
2u

◦ F (t, x).
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Now, we consider the case when n = 2. When µ vanishes identically, then,
as before the triple (M̃2n, g̃, J̃) is locally biholomorphically isometric to

(Rt × Rs × Σ, dt2 ⊕ ρ2(t) ds2 ⊕ gΣ)

for some surface (Σ2, gΣ) and some positive function ρ. In the following, we
consider the case when µ does not vanish identically on M̃ . Let x0 ∈ M̃ be
a point where µ(x0) 6= 0. Up to changing the regular value u0 of u, we may
assume that x0 ∈ M = u−1({u0}). This time, we write ĝξ⊥ := 1

β(x)2 · gξ⊥ for

some positive basic function β that will be later determined. From Lemma 2.2,

the triple (M, ĝ := gξ ⊕ 1
β(x)2 · gξ⊥ , ξ̂ := ξ) is still a minimal Riemannian flow

and, as n = 2, is also endowed with the same transversal complex structure

J = J̃ . Now we apply Lemma 2.4 to the flow (M, ĝ, ξ̂) and put F ∗
t g̃ under the

form dt2 ⊕ ρ(t)2(σ(t)2 ĝξ ⊕ k(t, x)2ĝξ⊥), where ρ, σ, k satisfy

(9)





ρ2(t)σ2(t) =
(f ′)2(t)

(f ′)2(0)
,

ρ2(t)k2(t, x) = β2(x) · exp
(
2

∫ t

0

µ ◦ F (s, x)

f ′(s)
ds

)
.

Lemma 2.4 (i) implies the existence of a basic function C on M such that
∂(ρk)2

∂t
= 2ρσC; in particular,

ρ2(t)k2(t, x)− ρ2(0)k2(0, x) = 2C(x) ·
∫ t

0

ρ(s)σ(s) ds for all (t, x) ∈ R×M.

But
∫ t

0
ρ(s)σ(s) ds = f(t)−f(0)

f ′(0) by the first identity of (9) so that

ρ2(t)k2(t, x)− ρ2(0)k2(0, x)(10)

= 2C(x) · f(t)− f(0)

f ′(0)
for all (t, x) ∈ R×M.

Another consequence of (9) is that µ and C have the same sign everywhere;

we have the identity
∫ t

0
µ◦F (s,x)

f ′(s) ds = ln(ρ(t)k(t, x)) − ln(β(x)), from which we

deduce that

µ ◦ F (t, x) = f ′(t) · 1

2(ρk)2
· ∂(ρk)

2

∂t
(t, x)

=
f ′(t)(ρσ)(t)

(ρk)(t, x)2
· C(x) with

f ′(t)(ρσ)(t)

(ρk)(t, x)2
> 0

as we recall that f ′(t) = |∇̃u|F (t,x). Therefore, we deduce that C(x0) 6= 0 be-
cause of µ(x0) 6= 0. Note in particular that f (or, equivalently, u) is necessarily
bounded below or above by identity (10); indeed, as (ρ(t)k(t, x0))

2 > 0, we get

f(t) ≥ f(0)− (ρ(0)k(0, x0))
2f ′(0)

2C(x0)
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if C(x0) > 0 and, if C(x0) < 0, we have

f(t) ≤ f(0)− (ρ(0)k(0, x0))
2f ′(0)

2C(x0)
for all t ∈ R.

Hence, up to changing u into −u± c for some c ∈ R, we may assume that

u0 = f(0) =
(ρ(0)k(0, x0))

2f ′(0)

2C(x0)
and f > 0.

As in this case C(x0) > 0, hence C > 0 on some nonempty open neighborhood
U of x0 in M . Therefore, we may set

β(x) :=

√
2C(x)f(0)

f ′(0)
for all x ∈ U.

Since (ρ(0)k(0, x))2 = β(x)2 from the second identity in (9) evaluated at t= 0,

then (10) implies that (ρ(t)k(t,x))2 = 2C(x) f(t)
f ′(0) ; in particular, k is in product

form. Again, Lemma 2.4 (iii) together with a possible further rescaling of ξ and
a change of u into 2

f ′(0)u yields the splitting result in (ii) (b) on U . Furthermore,

as above, we have µ = |∇̃u|2
2u on R × U . Now we show that the closed and

nonempty subset of M̃ where |∇̃u|2 = 2µu is also open. Indeed, if |∇̃u|2 = 2µu
is satisfied at some point (t, z) ∈ R×M , then, since we know that u > 0 on M̃ ,
we also know that µ(z) > 0 and thus C(z) > 0 because sgn(C) = sgn(µ), and
therefore C > 0 on some open connected neighborhood V of z in M . Repeating
on V the argument performed on U , we obtain that |∇̃u|2 = 2µu on R × V .
This implies that |∇̃u|2 = 2µu holds on M̃ by connectedness. This concludes
the proof of Theorem 1.1. �

Remark 3.1. Notice that, under the assumptions of Theorem 1.1 and in case
µ 6= 0, the Hessian of u satisfies

∇̃2u = ∇̃2u(ν, ν) · (ν♭ ⊗ ν + ξ♭ ⊗ ξ) +
|∇̃u|2
2u

Id{ξ,ν}⊥ .

In particular, the two eigenvalues λ and µ cannot be equal in that case. Namely,
assuming by contradiction that λ = µ, then we know from Theorem 1.1 that
without loss of generality u can be assumed to be positive on M̃ . Then it follows
from the above established identities that f ′′(t) = f ′(t)2

2f(t) for all t ∈ R, where
f(t) := u ◦ F (t, x) for all (t, x) ∈ R×M as in Theorem 1.1. Thus, 2 f ′′

f ′ = f ′

f
,

which further yields 2 ln f ′ = ln f + const. We obtain (f ′)2 = cf for some
positive constant c and therefore f(t) = (at+ b)2 for some real constants a, b.
But, because of u > 0 everywhere, the coefficient a must vanish, and therefore
f and hence u must be constant, contradicting the fact that µ 6= 0. Note that
the above computations show that λ = µ 6= 0 is still possible locally on M̃ .

Corollary 3.2. Let (M̃2n, g, J) be a complete Kähler manifold admitting
a function u ∈ C∞(M̃,R×

+) with

• |∇̃u| = 2u,

• ∇̃2u = 2u(ξ♭ ⊗ ξ + ν♭ ⊗ ν + IdTM̃ ).
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Then (M̃2n, g, J) is biholomorphically isometric to a manifold of the form

(R×M2n−1, dt2 ⊕ e2t(e2tĝξ̂ ⊕ ĝξ̂⊥)), where (M2n−1, ĝ, ξ̂) is Sasaki.

Proof. Note that, by assumption, u has no critical point (because of the first

condition and u > 0 everywhere), ∇̃2u has pointwise two eigenvalues, 4u and

2u with ker(∇̃2u − 4u Id) = Span(∇̃u, J∇̃u). By Theorem 1.1—that applies
since by assumption |∇̃u|2

2u = 2u—it suffices to notice that f(t) := u(F (t, x))

satisfies f(t) = f(0)e2t. But this obviously follows from the identities f ′(t) =

|∇̃u|(F (t, x)) = 2u(F (t, x)) = 2f(t). Choosing M := u−1({f(0)}), we see that
we may choose f(t) = e2t and conclude with Theorem 1.1. �

Example 3.3. The generalized Taub-NUTmetrics of Iwai–Katayama on C2 as
described in [14, Ex. 2.2] are Ricci-flat doubly-warped product Kähler metrics
and therefore are a particular case of our description in Section 4.

4. Kähler–Einstein doubly-warped products

The purpose of this section is to give a characterization of the Kähler doubly-

warped products of the form (M̃ = I ×M2n−1, g̃ := dt2 ⊕ ρ2((ρ′)2ĝξ̂ ⊕ ĝξ̂⊥), J̃),
whose underlying metric g̃ is Einstein. Recall first that (M, ĝ, ξ̂) is a minimal
Riemannian flow endowed with a complex structure J and that the complex
structure J̃ on M̃ is always the one given by (4). According to Lemma 2.4 (i),
and since here k = 1 and σ = ρ′, the complex structure J̃ is Kähler on M̃ , and

we have ĥ = −J ; hence (M, ĝ, ξ̂) is a Sasakian manifold. We will show in the
sequel that the Einstein condition on (M̃, g̃) is equivalent to (M, ĝ, ξ̂) being
η-Einstein and ρ satisfying an ODE of order 3. Depending on the sign of the
Einstein constant, we will provide solutions of this ODE that in some cases
might not be complete.

In the following, we will compute the Ricci curvature of (M̃, g̃) in terms
of the transversal Ricci curvature which is associated to the transversal Levi–
Civita connection ∇̂, by using the formulas in Lemma 2.1. For this, we denote
by (ej)1≤j≤2n−1 a local orthonormal basis of TM with respect to the metric gt
with e2n−1 = ξ = 1

ρρ′ ξ̂. Then, with our convention, R̃X,Y = [∇̃X , ∇̃Y ]− ∇̃[X,Y ]

for all X,Y , we compute

g̃(R̃∂t,ξξ, ∂t) = −g̃(R̃∂t,ξ∂t, ξ)

= −g̃(∇̃∂t
∇̃ξ∂t, ξ) + g̃(∇̃ξ ∇̃∂t

∂t︸ ︷︷ ︸
0

, ξ) + g̃(∇̃[∂t,ξ]∂t, ξ)

= −g̃
(
∇̃∂t

((ρρ′)′
ρρ′

ξ
)
, ξ
)
− (ρρ′)′

ρρ′
g̃(∇̃ξ∂t, ξ)

= −
((ρρ′)′

ρρ′

)′
g̃(ξ, ξ)︸ ︷︷ ︸

1

− (ρρ′)′

ρρ′
g̃(∇̃∂t

ξ, ξ)︸ ︷︷ ︸
0

−
((ρρ′)′

ρρ′

)2

g̃(ξ, ξ)

= − (ρρ′)′′

ρρ′
,
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and for every j ∈ {1, . . . , 2n− 2}, we similarly compute

g̃(R̃∂t,ejej , ∂t) = −ρ′′

ρ
g̃(ej , ej).

Therefore,

r̃ic(∂t, ∂t) = −(2n− 2)
ρ′′

ρ
− (ρρ′)′′

ρρ′
= −(2n+ 1)

ρ′′

ρ
− ρ′′′

ρ′
.

Note that, because (M̃, g̃, J̃) is Kähler, we also have by J̃-invariance of the
Ricci-curvature that r̃ic(ξ, ξ) = r̃ic(∂t, ∂t), as well as r̃ic(ξ, ∂t) = 0. For every
Z ∈ {ξ, ∂t}⊥, we now compute r̃ic(Z, ∂t). Indeed,

g̃(R̃Z,ej ej , ∂t) = −g̃(R̃Z,ej∂t, ej)

= −g̃(∇̃Z∇̃ej∂t, ej) + g̃(∇̃ej ∇̃Z∂t, ej) + g̃(∇̃[Z,ej ]∂t, ej)

= −ρ′

ρ
g̃(∇̃Zej , ej)︸ ︷︷ ︸

0

+
ρ′

ρ
g̃(∇̃ejZ, ej) + g̃(∇̃[Z,ej ]Q∂t, ej)

− 2g̃([Z, ej ], ξ) g̃(∇̃ξ∂t, ej)︸ ︷︷ ︸
0

=
ρ′

ρ
g̃([ej , Z], ej) +

ρ′

ρ
g̃([Z, ej ], ej) = 0,

and similarly, we obtain g̃(R̃Z,ξξ, ∂t) = 0 so that r̃ic(Z, ∂t) = 0. Consequently,
by the J̃-invariance of Ricci-curvature, we also have r̃ic(Z, ξ) = 0. The last
term to be computed is r̃ic(Z, Z) for any Z. Similarly to above, we find
g̃(R̃Z,∂t

∂t, Z) = g̃(R̃Z,ξξ,Z) = − ρ′′

ρ
g̃(Z,Z). In order to compute the remaining

curvature term, we take for simplification ej and Z to be parallel with respect

to the connection ∇̂ at some point x (in this case [Z, ej]x = −2ĝ(ĥZ, ej)ξ̂x, so
it is collinear to ξ̂x). Then, as ĥ = −J , we have, at the point x,

g̃(R̃Z,ej ej, Z) = g̃(∇̃Z∇̃ej ej , Z)− g̃(∇̃ej ∇̃Zej, Z)− g̃(∇̃[Z,ej ]ej , Z)

= g̃
(
∇̃Z

(
∇̂ej ej −

ρ′

ρ
g̃(ej , ej)∂t

)
, Z

)

− g̃
(
∇̃ej

(
∇̂Zej +

ρ′

ρ
g̃(JZ, ej)ξ −

ρ′

ρ
g̃(Z, ej)∂t

)
, Z

)

− g̃([Z, ej ], ξ)g̃(∇̃ξej , Z)

= g̃(∇̂Z∇̂ej ej , Z)−
(ρ′
ρ

)2

g̃(Z,Z)− g̃(∇̂ej ∇̂Zej , Z)

−
(ρ′
ρ

)2

g̃(JZ, ej)
2 +

(ρ′
ρ

)2

g̃(Z, ej)
2 − 2(

ρ′

ρ
)2g̃(Jej , Z)2

= g̃(R∇̂
Z,ej

ej , Z) +
(ρ′
ρ

)2

(g̃(Z, ej)
2 − g̃(Z,Z)− 3g̃(JZ, ej)

2).
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For the last identity, recall that R∇̂
Z,Z′ = [∇̂Z , ∇̂Z′ ]− ∇̂[Z,Z′] for all Z,Z

′ ∈Q=

{ξ, ∂t}⊥. Finally, we deduce that

r̃ic(Z,Z) =

2n−2∑

j=1

(
g̃(R∇̂

Z,ej
ej , Z) +

(ρ′
ρ

)2

(g̃(Z, ej)
2 − g̃(Z,Z)− 3g̃(JZ, ej)

2)
)

− 2
ρ′′

ρ
g̃(Z,Z)

= ric∇̂(Z,Z)− 2
(ρρ′′ + n(ρ′)2

ρ2

)
g̃(Z,Z).

To sum up, the (1, 1)-Ricci-tensor of (M̃, g̃) is given pointwise by

R̃ic = −
((2n+ 1)ρ′′

ρ
+

ρ′′′

ρ′

)
· (dt⊗ ∂t ⊕ ξ♭ ⊗ ξ)

⊕
( 1

ρ2
Ric∇̂ − 2

(ρρ′′ + n(ρ′)2

ρ2

)
· Id{ξ,∂t}⊥

)
.

In particular, the manifold (I × M2n−1, dt2 ⊕ ρ2((ρ′)2ĝξ̂ ⊕ ĝξ̂⊥)) is Kähler–
Einstein if and only if there exists a constant C ∈ R, which is equal to S̃cal

2n ,
such that





−(2n+ 1)
ρ′′

ρ
− ρ′′′

ρ′
= C,

1

ρ2
Ric∇̂ − 2

(ρρ′′ + n(ρ′)2

ρ2

)
· Id{ξ,∂t}⊥ = C · Id{ξ,∂t}⊥ ,

that is, such that

(11)

{
ρρ′′′ = −(2n+ 1)ρ′ρ′′ − Cρρ′,

Ric∇̂ =
(
2(ρρ′′ + n(ρ′)2) + Cρ2

)
· Id{ξ,∂t}⊥ .

Note that, by the first equation, the factor 2(ρρ′′ + n(ρ′)2) + Cρ2 = 2c is con-
stant on I (its first derivative is twice the difference between left- and right-
hand sides of the first equation). This shows, in particular, that the mani-
fold (M, ĝ, ξ̂) is transversally Einstein, and therefore it is η-Einstein, as it
is Sasakian. Notice also that c is an integration constant, which is equal to
ScalQ

4(n−1) .

To solve this ODE, we consider the change of variables z := (ρ′)2 + ερ2,

where ε denotes the sign of S̃cal = 2nC, i.e. it is defined as follows:

ε :=





−1 if C < 0,

0 if C = 0,

1 if C > 0.
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After rescaling the metric in such a way that C = 2(n + 1)ε, the derivative
z′ = 2ρ′ρ′′ + 2ερρ′ can be computed as follows:

z′ = 2ρ′
( c

ρ
− C

2
ρ− n

(ρ′)2

ρ
+ ερ

)

= 2ρ′
( c

ρ
− εnρ− n

(ρ′)2

ρ

)
= 2c

ρ′

ρ
− 2n

ρ′

ρ
z.

Solving this linear first-order ODE in z, we obtain

z =
c

n
+Dρ−2n

for some constant D ∈ R. In turn, this leads to the following nonlinear first-
order ODE in ρ since we recall that ρ′ > 0:

(12) ρ′ =

√
−ερ2 +Dρ−2n +

c

n
.

In the following, we assume ρ to be defined at t = 0 with ρ(0) > 0. In order
to study the solution of this ODE, we distinguish three cases, according to the
sign of the constant D, as follows.

(1) If D = 0, then equation (12) can either be solved explicitly or it admits
no solution, depending on the sign of ε.

If ε = −1, i.e. if S̃cal is negative, then the ODE (12) becomes ρ′ =
√
ρ2 + c

n

and it always admits an explicit maximal solution, which is given as follows,
according to the sign of c, i.e. the sign of transversal scalar curvature ScalQ.
• If c < 0, then ρ(t) =

√
− c

n · cosh(t+ arg cosh(ρ(0)
√
−n

c )) solves the ODE
(12) on the maximal interval Imax = ]− arg cosh(ρ(0)

√
−n

c
),∞[. For es-

tablishing this maximal interval of definition, we use the fact that both
functions ρ and ρ′ must be positive.

• If c = 0, then ρ(t) = ρ(0) · et solves the ODE (12) on R.
• If c > 0, then ρ(t) =

√
c
n sinh(t + arg sinh(ρ(0)

√
n
c )) solves the ODE (12)

on the interval Imax = ]− arg sinh(ρ(0)
√

n
c
),∞[.

If ε = 0, i.e. if S̃cal vanishes, then the ODE (12) becomes ρ′ =
√

c
n . Hence,

it has no solution if c ≤ 0. However, for c > 0, the function ρ(t) = t
√

c
n + ρ(0)

solves the ODE on R, but ρ is positive only on Imax = ]−
√

n
c
ρ(0),∞[.

If ε = 1, i.e. if S̃cal is positive, then the ODE (12) becomes ρ′ =
√

c
n − ρ2.

Hence, it has no solution with positive derivative if c≤ 0. For c> 0, the function
ρ(t) =

√
c
n sin(t+arcsin(ρ(0)

√
n
c )) solves the equation on the maximal interval

Imax = ]− arcsin(ρ(0)
√

n
c
), π

2 − arcsin(ρ(0)
√

n
c
)[.

(2) If D < 0, then we consider the function

f : ]0,∞[ → R, f(x) := −εx2 +Dx−2n +
c

n
,

whose derivative is given by f ′(x) = −2x(ε + nDx−2n−2) for all x > 0. Ac-
cording again to the sign of ε, we distinguish the following three subcases.

If ε = −1, then f ′(x) > 0, for all x > 0, so the function f is increasing on
]0,∞[ with limx→0+ f(x) = −∞ and limx→∞ f(x) = ∞. Hence, there exists
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a unique ρ0 ∈ ]0,∞[ with f(x) < 0 for 0 < x < ρ0, f(ρ0) = 0 and f(x) > 0 for
x > ρ0. Necessarily, the solution ρ satisfies ρ ≥ ρ0, and actually ρ > ρ0 unless
ρ is constant, which is excluded because ρ′ is positive everywhere. Integrating
from 0 to some positive t, we obtain

∫ ρ(t)

ρ(0)

dρ√
ρ2 +Dρ−2n + c

n

= t.

Since
1√
f(x)

∼ρ0

1√
f ′(ρ0) · (x − ρ0)

,

the solution ρ runs backward to ρ0 in finite time. On the other hand, because
of 1√

f(x)
∼∞

1
x
, the solution ρ becomes infinite only in infinite time. Summing

up, we conclude that, in this case, the maximal solution ρ of the ODE (12)
is defined on some time interval of the form Imax = ]t0,∞[, where t0 < 0,
and fulfils limt→t+

0
ρ(t) = ρ0, limt→∞ ρ(t) = ∞ and limt→t+

0
ρ′(t) = 0 because

f(ρ0) = 0.
If ε = 0, then f ′(x) = −2nDx−2n−1 > 0 for all x > 0, so the function f is

increasing with limx→0+ f(x) = −∞ and limx→∞ f(x) = c
n
. Hence, if c ≤ 0,

there is no solution of the ODE (12). If c > 0, then there exists a unique ρ0
with f(x) < 0 for 0 < x < ρ0, f(ρ0) = 0 and f(x) > 0 for x > ρ0. The same
argument as in the previous case shows the solution ρ necessarily satisfies
ρ > ρ0. Integrating again from 0 to some positive t, we obtain

∫ ρ(t)

ρ(0)

dρ√
Dρ−2n + c

n

= t.

Since
1√
f(x)

∼ρ0

1√
f ′(ρ0) · (x − ρ0)

,

the solution ρ runs backward to ρ0 in finite time. Summing up, we conclude
that, in this case, the maximal solution ρ of the ODE (12) is defined on some
time interval of the form ]t0,∞[, where t0 < 0, and fulfils limt→t+

0
ρ(t) = ρ0,

limt→∞ ρ(t) = ∞ and limt→t+
0
ρ′(t) = 0.

If ε = 1, then f defined above attains its maximum at ρ0 = (−nD)
1

2n+2 ,
where the function takes the value f(ρ0) =

c
n
− n+1

n
(−nD)

1
n+1 . This leads us to

consider the following subcases, according to the sign of f(ρ0), or equivalently,
according to the value of c, as follows.

• If c ≤ (n + 1)(−nD)
1

n+1 , then f(x) ≤ f(ρ0) ≤ 0; hence, in this case, the
ODE (12) has no solution with positive derivative.

• If c > (n+ 1)(−nD)
1

n+1 , then there exist ρ1, ρ2 such that 0 < ρ1 < ρ0 < ρ2
and f(ρ1) = f(ρ2) = 0, which implies that, in this case, the solution ρ of
the ODE (12) is bounded as follows: ρ1 < ρ(t) < ρ2. Integrating again
from 0 to some positive t, we obtain

∫ ρ(t)

ρ(0)

dρ√
−x2 +Dρ−2n + c

n

= t.
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Since
1√
f(x)

∼ρ1

1√
f ′(ρ1) · (x− ρ1)

,

the solution ρ runs backward to ρ1 in finite time. Similarly, since

1√
f(x)

∼ρ2

1√
f ′(ρ2) · (x− ρ2)

,

the solution ρ runs to ρ2 in finite time. Summing up, we conclude that, in
this case, the maximal solution ρ of the ODE (12) is defined on some
time interval of the form Imax = ]t1, t2[, where t1 < 0 < t2, and fulfils
limt→t+

1
ρ(t) = ρ1 and limt→t−

2
ρ(t) = ρ2 .

(3) If D > 0, then one may proceed similarly to the analysis in case (2), also
by remarking that the function −f(x) = εx2 −Dx−2n − c

n is the same as in
case (2), as −D < 0.

Summing up, we have shown the following result.

Theorem 4.1. Let (M̃2n,g)= (I ×M2n−1,dt2 ⊕ ρ2((ρ′)2gξ̂ ⊕ gξ̂⊥)) be a Kähler
doubly-warped product, where I is an open interval containing 0, ρ, ρ′ : I → R

are positive functions and (M, ĝ, ξ̂) is Sasaki. Then the following assertions
hold.
(i) The manifold (M̃2n, g) is an Einstein manifold with Einstein constant

2(n+1)ε, where ε ∈ {−1,0,1}, if and only if there exist constants c,D ∈R

such that 



ρ′ =

√
−ερ2 +Dρ−2n +

c

n
,

Ric∇̂ = 2c · IdQ,

where Q := {ξ, ν}⊥ and ∇̂ denotes the transverse connection on Q.
(ii) In each of the two cases D = 0, ε = −1 and c = 0, or D > 0, ε = −1,

c = −(n + 1)(nD)
1

n+1 and ρ(0) > (nD)
1

2n+2 , there exists a solution ρ of

the ODE ρ′ =
√
ρ2 +Dρ−2n + c

n which is defined on R. For any other

values of c, D and ε, there exists a solution ρ of ρ′ =
√
ρ2 −Dρ−2n + c

n

defined on a maximal interval Imax ( R around 0.

Appendix A

Let us recall here some general facts on warped product structures induced
by smooth functions. The local version of the following can be found in the
beautiful paper [11]; see in particular [11, Sec. D]. In the following proposition,
the Levi–Civita connection of (Mn, g) is denoted by ∇ (and so differently from
the Kähler setting, where ∇ denotes the natural connection on the transverse
distribution on (M, g, ξ)).

Proposition A.1. Let (Mn, g) be a connected complete Riemannian mani-
fold. Assume that some u ∈ C∞(M,R) has no critical point on Mn and satis-
fies ∇2u(∇u) = λ∇u for some λ ∈ C∞(M,R). Then the manifold (Mn, g) is
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isometric to (R×Σ, dt2 ⊕ gt), where Σ is a level hypersurface of u and (gt)t∈R

is a one-parameter-family of Riemannian metrics on Σ.

Proof. Fix u0 ∈ u(M), and let Σ := u−1({u0}) ⊂ M . By assumption, Σ is
a smooth hypersurface in M . Consider the map F : R × Σ → M given by
the flow of ν, i.e. f(t, x) := F ν

t (x) for all (t, x) ∈ R × Σ. Note that the flow
(Ft)t = (F ν

t )t is well-defined on R since ν is a bounded vector field on the
complete Riemannian manifold (Mn, g). We show that F provides the desired
isometry.

First, F is a local diffeomorphism; for any (t, x) ∈ R × Σ and (T, X) ∈
R× TxΣ, one has

d(t,x)F (T,X) = T
∂F

∂t
(t, x) + dxF

ν
t (X)

= TνF (t,x) + dxF
ν
t (X)

= TdxF
ν
t (νx) + dxF

ν
t (X) since (F ν

t )∗ν = ν

= dxF
ν
t (Tνx +X)

so that d(t,x)F (T,X) = 0 if and only if T = 0 and X = 0 (for F ν
t : M → M is

a diffeomorphism). This shows the invertibility of d(t,x)F and hence that F is
a local diffeomorphism.

In particular, F (R×Σ) is open in M . But this also implies that F (R×Σ) is
closed in M , for one may define the equivalence relation ∼ on M via x, y ∈M ,
x ∼ y if and only if there exists a û ∈ u(M) such that x, y ∈ F (R× u−1({û})),
where F is defined by the flow of ν (starting this time from the hypersur-
face u−1({û}) of M). By the preceding argument, each equivalence class is
open in M and hence also closed in M . Since M is connected, this yields
F (R×Σ) =M , i.e. F is surjective. The injectivity of F follows easily from the
fact that, for any x ∈ Σ, the function fx := u ◦ F (·, x) : R→ R is monotonously
increasing, for it is smooth with f ′

x(t) = |∇u|F (t,x) > 0 for all t ∈ R; if F (t, x) =
F (t′, x′) for some (t, x), (t′, x′) ∈ R × Σ, then the points F (t, x) and F (t′, x′)
lie on the same integral curve of ν, but by the injectivity of fx, that curve in-
tersects Σ only in x; hence x = x′, and again by the injectivity of fx, it follows
t = t′. On the whole, F is a diffeomorphism. In particular, Σ itself must be
connected.

We now look at the pullback metric F ∗g on R × Σ. Obviously, we have
(F ∗g)( ∂

∂t ,
∂
∂t ) = 1 since ν is a unit vector field. Moreover, as noticed in [18,

Prop. 2], because ∇u is a pointwise eigenvector for ∇2u, the vector field ν =
∇u
|∇u| is geodesic. This has the important consequence for the splitting of the
metric that, for any (t, x) ∈ R× Σ and X ∈ TxΣ, we have

(F ∗g)(t,x)(
∂

∂t
,X) = gF (t,x)(νF (t,x), dxFt(X))

= gF (t,x)(dxF
ν
t (νx), dxFt(X)) = (F ν

t )
∗g(νx, X),

where
∂

∂s
(F ∗

s g)(νx, X)|s=t
= (Lνg)((Ft)∗ν, (Ft)∗X)F (t,x) = (Lνg)(ν, (Ft)∗X)F (t,x).
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But, for all X ∈ TM ,

(Lνg)(ν,X) = g(∇νν,X) + g(∇Xν, ν) = 0

by the fact that ν is geodesic of constant length. Therefore,

∂

∂s
(F ∗

s g)(νx, X)|s=t
= 0 for all t ∈ R,

and thus (F ∗
t g)(νx, X) = (F ∗

0 g)(νx, X) = g(νx, X) = 0 for all (t, x) ∈ R × Σ.
This proves the splitting F ∗g = dt2 ⊕ gt, where gt := (Ft)

∗g|TΣ×TΣ
. We note an

important consequence of the splitting F ∗g = dt2 ⊕ gt, namely that the flow
(F ν

t )t preserves the level hypersurfaces of u, or equivalently, that the function
fx = u ◦F (·,x) defined above actually does not depend on x. Given any further
y ∈ Σ, consider any smooth curve c : [0,1]→ Σ with c(0) = x and c(1) = y. For
a fixed t ∈ R, look at the smooth function h(s) := u ◦ F (t, c(s)), s ∈ [0, 1]. Its
first derivative is given by

h′(s) = gF (t,c(s))(∇u, dc(s)Ft(ċ(s)))

= |∇u|F (t,c(s))gF (t,c(s))(νF (t,c(s)), dc(s)Ft(ċ(s)))

= |∇u|F (t,c(s))(F
∗
t g)(νc(s), ċ(s)) = 0

so that h is constant, and hence h(0) = u(F (t, x)) = h(1) = u(F (t, y)), i.e.
fx(t) = fy(t). This concludes the proof. �
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Université de Lorraine, CNRS, IECL,
F-57000 Metz, France
E-mail: nicolas.ginoux@univ-lorraine.fr

Georges Habib
Lebanese University, Department of Mathematics,
P.O. Box 90656 Fanar-Matn, Lebanon
E-mail: ghabib@ul.edu.lb

Mihaela Pilca
Fakultät für Mathematik, Universität Regensburg,
Universitätstr. 31, 93051 Regensburg, Germany
E-mail: mihaela.pilca@mathematik.uni-regensburg.de

Uwe Semmelmann
Universität Stuttgart,
Pfaffenwaldring 57, 70569 Stuttgart, Germany
E-mail: uwe.semmelmann@mathematik.uni-stuttgart.de

Münster Journal of Mathematics Vol. 14 (2021), 295–321


