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Abstract

This work is about the question of how mathematics may aid in the understanding and
treatment of malignant brain tumors called glioblastoma multiforme (GBM). We present
two independent approaches to this research question.
Firstly, we investigated how a priori information on the diffusive properties of the human
brain measured by diffusion tensor imaging (DTI) may be leveraged for the numerical
simulation of GBM tumor models. To investigate how to best utilize this data set, we
incorporate a matrix Hölder mean into a vertex-centered finite volume method. We found
that the choice of Hölder parameter α for the matrix mean can influence the numerical
error significantly. We were able to identify the optimal Hölder parameter for our appli-
cation (α → 0) resulting in a log-Euclidian matrix interpolation. We numerically compare
our results to those of the industry-standard MPFA-O method (Aavatsmark, 2002). The
Hölder finite volume method (HFVM) with the log-Euclidian matrix interpolation outper-
formed the MPFA-O method in all nontrivial testcases we investigated. This parameterized
discretization scheme can be easily adjusted via the Hölder parameter. This is especially
relevant in those cases, where the available resolution of the underlying data sets is fixed
and the diffusivity field is strongly inhomogeneous. In these cases numerical grid refinement
has limited benefits. The convergence of the method has been established numerically via
inhomogeneous and anisotropic manufactured solutions.
The second contribution focuses on the modeling perspective. We derive a nonlinear
penalty term for the 1D Fisher-KPP equation which allows the formulation of a stationary
PDE problem to estimate the tumor invasion. This stationary formulation is perfectly
aligned with datasets available at the time of diagnosis and makes quantifiable predictions
that may aid medical treatment. We investigate the applicability first in simple artificial
test settings. We then present results on two real 3D patient datasets. The 3D results allow
direct comparison of its predictions with the medical treatment planning volumes (GTV,
PTV, CTV). The results suggest that the stationalization procedure could provide medical
practitioners with previously unavailable information for treatment radius delineation.
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Zusammenfassung

In dieser Arbeit wird die Frage thematisiert, wie mathematische Methoden und Model-
lierung bei der korrekten Vorhersage und der Behandlung von Glioblastoma Multiforme
helfen könnten. Es werden zwei unabhängige Ansätze eingeführt um diesem Ziel näher zu
kommen.
Erstens beschreiben wir ein knotenzentriertes Finite-Volumen-Verfahren mit Matrix-Hölder-
Mittel (HFVM). Die Verwendung des Hölder Mittels erlaubt es a priori Informationen über
die zugrunde liegenden Materialeigenschaften direkt in die numerische Diskretisierung ein-
fließen zu lassen. Die Konvergenz und die Diskretisierungsfehler dieser Methode wurden
numerisch untersucht. Die numerischen Tests legen nahe, dass ein Matrix-Hölder-Mittel
von α → 0, welches in einer Log-Euklidischen Matrix interpolation resultiert, für den Fall
der numerischen Tumorsimulation die besten Ergebnisse erzielt. Im Vergleich mit der in
der Praxis viel verwendeten MPFA-O Methode, zeigt sich die HFVM in allen von uns be-
rücksichtigten Fällen überlegen.
Der zweite Beitrag ist ein approximativer Modellierungsansatz, welcher es erlaubt das In-
vasionsprofil der Tumorzelldichte stationär zu berechnen. Diese Stationalisierung kann an-
hand von der eindimensionalen Fisher-KPP Gleichung motiviert werden. Wir präsentieren
ausführliche numerische Tests welche die Anwendbarkeit auf kompliziertere Tumormodelle
untersuchen. Die Ergebnisse legen nahe, dass der Stationalisierungsansatz in Anbetracht
der schwierigen Parametrisierung und Validierung der Vorwärtsmodelle einen wichtigen
Beitrag leisten könnte. Die Ergebnisse der stationären Problemformulierung enthalten qua-
litative Informationen welche direkt für die medizinische Therapie verwendet werden kön-
nen.
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1 Introduction

Glioblastoma multiforme (GBM) is a brain tumor that results from mutations of glia cells
of the central nervous system (CNS). The prognosis for patients with GBM is quite poor,
even with modern treatment techniques and imaging equipment. Cheo et al. (2017) ana-
lyzed the outcomes of 107 GBM patients in Singapore and found a median survival of 15.1
months and two-year survival rate of 23.5%. However, patients surviving for two years
are not in the clear. The 10 year survival of patients with GBM was found to be 0.71%
(Tykocki and Eltayeb, 2018).
The word multiforme describes the fact that its invasive profile can have a branched struc-
ture resulting in complicated tumor geometries. Also, the tumor shapes vary significantly
between patients. This inhomogeneous shape, which extents outside of the tumor re-
gion visible on medical images, is a strong impediment towards effectively treating GBM
(Painter and Hillen, 2013). The common treatments of GBM are radiotherapy (RT), gross
tumor resection (GTR) as well as chemotherapy (TMZ). The Radiotherapy and resection
both rely on the ability to delineate between healthy brain tissue that should be left in-
tact and the tumorous tissue which should be removed or radiated. Due to the diffusive
nature of the tumor cells this distinction is quite hard. Tumor cells have been histologi-
cally cultivated from healthy appearing tissue as far as 4 cm away from the bulk of the
tumor (Silbergeld and Chicoine, 1997). Mathematical models have been developed to gain
a deeper understanding of the invasion dynamics and to accurately predict further tumor
invasion. Due to inter-patient differences and missing time series data sets these goals
remain unreached.
To give a detailed introduction into this topic we first describe the medical perspective in
Section 1.1 where we cover the aspects most important to this work. The medical per-
spective is important to understand the real world problems of mathematical modeling of
GBM and what our results may contribute.
We give an introduction to the mathematical view of the problem and the numerical meth-
ods in Sections 1.2 and 1.5. We limit the scope to PDE forward models, multiscale modeling
and one stationary approach. We conclude the introduction by the outline of the rest of
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1 Introduction

the work in Section 1.6.

1.1 Medical perspective

The initial diagnosis is mostly based on computer tomography (CT) or magnetic resonance
imaging (MRI). Depending on the location and size of the tumor, the symptoms include:
persistent headaches, double or blurred vision, vomiting, loss of appetite, changes in mood
and personality, changes in ability to think and learn, the onset of seizures and speech
difficulty of gradual onset (of Neurological Surgeons , AANS; Chamberlain and Kormanik,
1998). The misattribution of these symptoms often delays the record of computer tomog-
raphy (CT) or magnetic resonance imaging (MRI) scans, and therefore correct diagnosis
and any targeted treatments.
When the tumors are diagnosed, their average diameter is already about 4 cm to 5 cm
(Chamberlain and Kormanik, 1998). Generally, the GBM treatment methods following
the diagnosis are palliative in nature, with the intent of prolonging survival and improving
the quality of life of the patients (Chamberlain and Kormanik, 1998). Nonetheless, some
progress has been made in recent years. The survival rates for 1 year and 3 years after
diagnosis improved from 20.7% and 4.4% in 1999/2000 to 40.0% and 10.3% in 2009/2010
(deSouza et al., 2016).

1.1.1 Diagnostic techniques

We now shortly introduce the two imaging modalities, which we will rely on later in the
document, and clearly explain what information they offer.

Diffusion Tensor Imaging (DTI)

Diffusion tensor imaging (DTI) is a noninvasive imaging technique developed since the
1990s. The DTI modality allows the measurement of approximate water diffusion tensors
at any given location within the brain (Basser et al., 1994; Basser, 1995). To reconstruct
the full tensors, a series of measurements is taken. In each of the measurements the
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1 Introduction

displacement of magnetizable water molecules in one spatial direction is captured. This
displacement allows to reconstruct the approximate diffusivity in the measured direction.
From the combination of many of those measurements it is possible to reconstruct the full
water diffusion tensor Dw(x) ∈ R3×3 in each measurement voxel with a typcial resolution
of about 1-2 mm. For details of the measurement sequence and the reconstruction we refer
to (Basser et al., 1994; Alexander et al., 2007; Atlas, 2009).
Most importantly, the DTI modality allows to capture not only the information entailed
in a conventional MRI scan, but also indicates directional information indicating the lo-
cation and orientation of fibres and directed tissue within the body. The water diffusion
is comparatively strong in the direction parallel to the fibre orientation and weak in the
perpendicular direction. It is known that the transport of tumorous glia cells happens
primarily along these tracts, which makes the DTI data sets invaluable for making patient-
based predictions both by medical practitioners and numerical modeling (Jbabdi et al.,
2005; Engwer et al., 2015). For high enough resolutions, the increased anisotropy in white
matter regions is clearly visible in DTI scans and makes it possible to distinguish different
tissue types by properties like the fractional anisotropy (FA, see (2.33)) or the mean dif-
fusivity of the measured tensors (Alexander et al., 2007; Özarslan et al., 2005). The DTI
imaging modality is used in clinical practice for preoperative planning. It is used to locate
the white matter tracts adjacent to the bulk tumor and their state of degradation. GBM
causes both a distinct increase in mean diffusivity and a decrease in fractional anisotropy
(FA) (Mekkaoui et al., 2016). The degradation of the anisotropy by the tumor bulk is
clearly visible in Figure 1 (right).

Medical Segmentation of GBM (SEG)

A medical segmentation (SEG) is the automatic or manual selection of tissue volumes of
different types. In the context of glioblastomas, the segmentation labels the extent of the
predominantly tumorous tissue types next to the healthy tissue types (Simi and Joseph,
2015). Due to the diffusive nature of the tumor progression the correct classification at
any given position is not trivial. There are several stages of tumor progression resulting
in different imaging footprints, such as regions of active growth versus regions which are
already necrotic. Segmenting tumors on medical images manually for operation and radio-
therapy planning is still common practice in many treatment centers.
Recently, there have been advances in automatic multimodal brain tumor segmentation
(Porz et al., 2014). The novelty in this regard is that the introduced software combines

3



1 Introduction

information from four different MRI modalities to generate a segmentation: T1, T1-Gd
(contrast agent), T2 and FLAIR. The four modalities each emphasize different tissue types.
For example, the T1-weighted images can be used to effectively distinguish between grey
and white matter regions. If additional contrast agents (e.g., gadolinium) are given to
the patient the contrast between the blood vessels and the sorrounding tissue is increased
(Kalpathy-Cramer et al., 2014). The importance lies in the full automation, making the
procedure comparable between institutions (and practitioners), which is an important pre-
requisite for further studies. A direct comparison of the manual segmentation of two
medical practitioners and the automated segmentation via the software BraTumIA was
performed in Porz et al. (2014) with promising results. The segmentation data sets used
in this work have all been generated by this software. A comprehensive comparison of
different automated algorithms can be found in (Simi and Joseph, 2015).
From a numerical standpoint, the 3D segmentation data sets can be considered as a tissue
labeling in the form of integer values assigned to each voxel indicating its tissue com-
partment. The tissue compartments and the approximate volumetric tumor cell density
assigned to them are listed in Table 1. We will make use of the information contained
in the medical segmentations in Section 6.2. There, we assume a visibility threshold of
16% following Swanson et al. (2008). This threshold simply means that we assume the
outer surface of the segmented volumes to have about 16% volumetric tumor density. An
example of a medical segmentation with color code is shown in Figure 1 (left). We will
introduce the modeling approaches utilizing DTI data sets shortly.

SEG Tissue type Volumetric tumor density

-1 Invalid 0.0

0 Background 0.0

1 Cerebral spinal fluid 0.0

2 Gray matter 0.0

3 White matter 0.0

4 Necrotic 0.16

5 Edema 0.16

6 Non-enhancing 0.8

7 Enhancing 1.0

Table 1: Integer labels and assumed tumor densities of the segmented tissue compart-
ments. Enhancement refers to whether the tissue shows increased signal when contrast
agent (gadolinum) is given to the patient. A volumetric tumor density of 100% indicates
that the brain tissue entirely consists of tumorous tissue.
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1 Introduction

Figure 1: Axial slices (z = 0.05 m) of a patient diagnosed with GBM (data set #31). The
tumor is visible in the upper right of the two slices. Left: Medical segmentation (SEG).
Tissue types and approximate tumor volume percentage are listed in Table 1. Right:
Fractional anisotropy (FA), see Equation (2.27). Regions with high FA indicate the white
matter tracts. The reduction of anisotropy caused by the tumor is clearly visible in the
upper right of the FA image.

1.1.2 Treatment techniques

Once the GBM diagnosis is established and medical images of the tumor are available,
a combination of three treatment techniques is usually employed. These techniques are
gross tumor resection of the bulk tumor in the form of operation, followed by radiotherapy
with additional adjuvant temozolomide chemotherapy (Stupp et al., 2005). This standard
treatment is also called the Stupp regimen (Nishikawa, 2010).

Gross tumor resection (GTR)

The objectives of the tumor resection are firstly to reduce the mass effect of the bulk on the
rest of the brain and secondly, to further specify the diagnosis via biopsy of the removed
tissue. Thirdly the aim is to remove the whole tumor if possible (Chamberlain and Kor-
manik, 1998). When the tumor volume includes important functional regions of the brain,
the medical practitioner is faced with the choice of how much tissue to resect and how much
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1 Introduction

to leave in place. Removal of too much tissue risks the reduction of cognitive function,
while resection of too little tissue is connected with the near-certainty of reoccurence. From
the patient’s perspective this choice can mean improved quality of life for a shorter time or
vice versa. The recommended extent of resection has been studied extensively with results
advising generous resection. Lacroix et al. (2001) performed a multivariate analysis of 416
patients, investigating which treatment variants improved patient outcomes. They were
motivated by the fact that previously the amount of resection was categorized very roughly
into ’gross total resection’, ’subtotal resection’, ’partial resection’, and ’biopsy sampling’.
As a result, the classification into these categories was quite arbitrary. After analysis of
their data set they found that the percentage of resection of the visible tumor had signif-
icant influence on the median survival. Resection of 98% or more resulted in a median
survival of 13 months whereas the resection of less than 98% resulted in 8.8 months median
survival. Ultimately, they recommend that maximal resection should be performed, but
not at the expense of neurological function.
The clinical guidelines from the European Society for Medical Oncology (ESMO) similarly
state that ’Surgery to the extent feasible is the first therapeutic intervention for all ma-
lignant glioma’ (Stupp et al., 2014). What exactly that feasible extent is, is ultimately a
judgment call from the handling practitioner. A recent review on the surgical state of the
art was done by (Guzman et al., 2017).
There have also been attempts to model the effect of resection radius computationally.
Hathout et al. (2016) studied the effect of the size of tumor resection in silico. Their nu-
merical model is a Fisher-KPP equation with additional terms modeling the treatments.
Their results indicate an increased survival time for total resection, and no prolonged sur-
vival time for partial or subtotal resection. In accordance with clinical experience, gliomas
also appear incurable in these numerical models. This is the case no matter how extensive
the resection is chosen due to the diffusive nature of the tumor cells(Hatzikirou et al., 2005;
Swanson et al., 2003).

Radiotherapy (RT)

In radiation therapy high-energy x-rays or other ionizing radiation is applied to regions of
the brain with the intent to destroy tumorous tissue. There are different approaches in
choosing the treatment radii and intensities. The University of Texas M. D. Anderson
Cancer Center (MDACC) recommends to use the following definitions of treatment radii
(Chang et al., 2007).
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Definition 1.1.1 (Treatment volumes)

• GTV: Gross Tumor Volume: bulk tumor visible on medical images

• CTV: Clinical Target Volume: treatment radius for RT: GTV + margin (≈ 2cm)

• PTV: Planning Target Volume: CTV + safety margin (≈ 0− 5mm).

Radiation therapy based on these volumes will lead to treatment plans that do not include
the peritumoral edema. A different approach is recommended by the Radiation Therapy
Oncology Group (RTOG). They state that the radiation intensity to the peritumoral edema
+ 2 cm should be 46 Gy and to a central boost field (GTV + 2.5 cm) 60 Gy. Depending
on the size of the edema, the second variant leads to a much greater target volume for
the radiation treatment (Nelson et al., 1993; Chang et al., 2007). Both of the suggested
treatment radii are only rough recommendations which do not take into account the rel-
ative importance of the different brain regions. In practice, medical practitioners deviate
from these blunt recommendations to prevent radiation damage to the most important
functional regions of the brain.
Similarly to the spatial extent of the treatment there are different approaches to the in-
tensity of the irradiation. The accepted standard of care is adjuvant radiotherapy after
resection for a total dose of 50.4 Gy (28 × 1.8 Gy). Higher dosages did not improve overall
survival, at least for lower grade gliomas (Karim et al., 1996; Stupp et al., 2014). Medical
practitioners may deviate from this on a patient by patient basis. There is no established
standard procedure for elderly patients. Initial studies indicated that for elderly patients
the adverse effects of strong irradiative treatment outweighed the benefits (Nishikawa,
2010).
Nishikawa (2010) also state that: ’Because of the highly invasive nature of GBM, however
high the irradiated dose is, the effect of radiotherapy would be limited as the irradiated field
is restricted to the enhanced lesion.’ In other words, due to the highly diffusive cells, it is
not to be expected that all tumorous cells at the re-occurrence sites are effectively killed by
radiotherapy, at least not without destroying significant amounts of predominantly healthy
cells as well. Similarly to the situation of resective treatment, the handling medical prac-
titioner has to make the judgment call of how much radiation should be administered and
where.
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Chemotherapy (TMZ)

In chemotherapy the patient is treated with a chemical compound intravenously or orally
in the hopes of triggering the death of tumor cells. The best chemotherapy agent for
GBM found to date is temozolomide (TMZ). The treatment of patients during and after
radiotherapy has been found to improve the survival rates over both 2 and 5 year spans.
Temozolomide’s approval by the U.S. food and drug administration was primarily the result
of a pivotal clinical trial conducted by Stupp et al. (2009). For glioblastoma, combined
modality therapy with TMZ and radiotherapy remains the standard of care (Stupp et al.,
2014). A recommended treatment circle is a daily dose during radiotherapy and a monthly
recurring treatment of 5 days over half a year as adjuvant treatment after radiotherapy
(Stupp et al., 2014). The frequency of severe adverse events of the TMZ treatment is less
than 10% (Nishikawa, 2010). Contrary to radiotherapy and resection this chemotherapy is
not reliant on exact localization of the tumor.

1.2 Mathematical forward modeling of GBM

The mathematical modeling of glioblastoma multiforme has been extensive. The ap-
proaches vary from cellular automata and extensions to lattice-gas cellular automata over
agent based models and even evolutionary game theory (Alfonso et al., 2017). The system-
atic review of all modeling approaches would be outside of the scope of this work and we
will focus on exemplary forward models in the form of partial differential equations (PDE),
and also mention one stationary approach. For a wider overview, we refer the reader to
the excellent reviews by Hatzikirou et al. (2005), Harpold et al. (2007), Tracqui (2009) and
Alfonso et al. (2017).
The PDE forward models describe the dynamic of the macroscopic tumor density u(x, t) :

Rd × T → R over time. The models differ by their inclusion or exclusion of anisotropic
effects, by chemotactical or haptotactical drift terms, by whether they include terms de-
scribing therapy and by their choice of growth characteristic, e.g., exponential growth,
logistic growth etc. In the following, we will further focus on three aspects of forward
models, isotropic, anisotropic and models derived from multiscale aproaches. These as-
pects are nonexlusive in the sense that models may fall into multiple of these categories.
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Isotropic models

Swanson et al. (2000) presented an isotropic diffusion-reaction tumor model with exponen-
tial growth term ∂u

∂t = ∇(D(x)∇u)+ρu, where u(x, t) : Rd×T → R is a tumor cell density
D(x) : R3 → R an isotropic scalar diffusion coefficient and ρ ∈ R a proliferation rate. They
used a binary segmentation of the brain to map grey and white matter regions to two con-
stant isotropic diffusivities. This procedure does not take into account the directionality
of the white matter tracts, but has the advantage that the necessary information can be
reconstructed from T1/T2-MRI alone. This modeling approach marked an important first
step in modeling GBM.
Similarly, Tracqui et al. (1995) used an isotropic diffusion model ∂u

∂t = D∆u+ ρu−K(t)u

with exponential growth and a step function K(t), modeling the effect of chemotherapy
on the tumor. They derived the homogeneous diffusion parameter and growth rates via a
best-fit with computer tomography data (Tracqui et al., 1995).

Anisotropic models

One of the first models that made direct use of DTI information was that of Jbabdi et al.
(2005). There, the dynamic is modeled via a combination of anisotropic Fickian diffu-
sion ∇ · (D(x)∇u(x)) and an exponential proliferation term. The novelty was that they
used patient DTI data sets to reconstruct the inhomogeneous anisotropic diffusivity field
D(x) : R3 → R3×3. This exponential growth term is unrealistic for long simulation times,
but may be appropriate for the early stages of the progression. Later, Swanson et al.
(2011) presented a comparatively complex model which investigates the influences of hy-
poxia, necrosis and angiogenesis on the invasion of GBM. They modeled the dynamics of
the tumor not by a single reaction-diffusion equation, but by a system of coupled PDEs.
They were able to numerically reproduce effects like hypoxia and necrosis which are readily
observed in patients.
One modeling challenge of the anisotropic models is the linkage of the DTI data sets, which
represent measurements of the local water diffusivity Dw(x) : R

3 → R3×3, to the effective
diffusivity of the tumor cells Dt(x) : R3 → R3×3. This problem was already identified
in the earlier work by Jbabdi et al. (2005). The size difference of water molecules and
tumorous glia cells is about three orders of magnitude. Given this size difference, it is a
modeling problem in itself to derive the permeability of glia cells in the biological tissue
from the permeability of water molecules. Jbabdi et al. (2005) state that the anisotropy of
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the water diffusivity tensors gained from DTI data sets has to be increased to reproduce
the medical observations. Even if some form of proportionality seems plausible, there are
no rigorous ways to link these diffusivity values that could be motivated by the underly-
ing physics. A very similar modeling problem appears in the attempt to use DTI tensor
information to reconstruct the electric conductivity of brain tissue in electro- and magne-
toencephalography source analysis (Vorwerk et al., 2014).
Two important reconstructions are the peanut distribution described in (Hillen, 2006), and
the bimodal von-Mises-Distribution (Painter and Hillen, 2013). The practicability of both
of them was investigated in Hunt (2018) where they eventually chose the peanut distribu-
tion. We follow their example and also use the peanut reconstruction in the model (4.7a),
see Equation (4.8a). The main qualitative difference in the two reconstructions is, that the
von-Mises reconstruction introduces a new parameter κ ∈ R, which influences the effective
anisotropy of the resulting tumor diffusion tensors, and therefore all subsequent numerical
simulations. As of now, there is no reasonable way to estimate this parameter from either
medical imaging or biomedical arguments. The peanut distribution is not reliant on such
an additional parameter.

Multiscale modeling

Multiscale modeling refers to the practice of utilizing knowledge on the behaviour of indi-
vidual cells on the microscopic scale, and deriving meso- or macroscopic evolution equations
from them. The mathematical challenges are similar to the problems arising in statisti-
cal mechanics, but with the increased complexity of ’cell-particles’ actively moving and
changing directions. Important foundations for the biological application of the Boltz-
mann equation were laid by (Hillen, 2006; Painter and Hillen, 2013). We introduce the
model by Engwer et al. (2015) as that is later used in the document and name important
other contributions to multiscale modeling.
In (Engwer et al., 2015) and other similar multiscale models, the cell population is de-
scribed by a (phase-space) density function p(x, v, t, y) : Rd × Rd × R × R → R. This
probability density describes the likelihood of finding a cell at location x with speed v and
internal state y at any time t. In this particular model, the internal state y represents the
number of surface receptors which are bound to the extracellular matrix. The inclusion of
other internal dynamics is possible (Erban and Othmer, 2005). The kinetic equation

∂p

∂t
= −∇x(vp)−∇y(G(y)p)− λ(y)p+ λ(y)

∫︂
V
κ(x, v, v′)p(v′)dv′
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describes the dynamics of how the phase space density changes over time. The probability
density is affected by advection of cells in the direction of v via −∇x(vp). Also the ve-
locities of the cells change with the turning rate λ(y). This is expressed by cells changing
orientation away from v via the term −λ(y)p and cells changing orientation into v from
v′ expressed by the integral term. Within the integral is the turning operator κ(x, v, v′)

expressing how exactly the changes in velocity are modeled. In the case of non-animate gas
dynamics, this kernel is isotropic, homogeneous and given by the physics of colliding gas
particles changing velocity. For the application of GBM modeling the environmental cues
influencing the cell migration like the orientations of the tissue (DTI) or acidity gradients
(chemotaxis) can be encoded in appropriate kernels κ(x, v, v′). In Engwer et al. (2015)
the turning kernel was modeled to be κ(x, v, v′) = q(v′)

sn−1 with a peanut distribution linking
q(v′) to the water diffusion tensor as given by the DTI data sets. The cells are more likely
to change their direction along the tissue orientation resulting in macroscopic drift terms
terms. For the detailed derivation of the macroscopic PDE upscaling techniques we refer
to the original publication and (Hillen and Painter, 2013), where they are introduced in
detail.
The model (Engwer et al., 2015) was extended by including proliferative effects in (Engwer
et al., 2016). Hunt and Surulescu (2017) extended the model further by adding terms
modeling the effects of chemotherapy, radiotherapy and resection. Another variant of mul-
tiscale modeling is to numerically solve the kinetic equations directly without deriving fully
macroscopic equations. This approach was taken in (Corbin et al., 2018) and offers even
more modeling flexibility at the cost of severely increased numerical cost.
The publication Corbin et al. (2020) to which we contributed the numerical implementation
and results, describes an even more elaborate multiscale model. It includes macroscopic
PDEs for a tumor cell density u ∈ R, for a local acidity concentration h ∈ R, the percent-
age of intact tissue Q ∈ R and the necrotic density n ∈ R, as well as the coupling between
these quantities. The model was implemented in DUNE-glio (See Section 5). The numer-
ical simulations showed a necrotic core at the center of the tumor bulk, where the tumor
cells die from high acidity and lack of nutrients. They also showed the active chemotactic
repulsion of the tumor cells away from the high acidity regions in the center, as well as
the degradation of tissue density Q due to the acid. The model incorporates a total of
four superimposed advective fields influencing the tumor cell density. It is one of the most
complex multiscale models we are aware of and gives unique insight into the possible inner
workings of the infiltration process (Corbin et al., 2020).
Multiscale modeling in this elaboration is performed under the working assumption, that
the correct parameterization of the equations will be available, and that there will be some
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way to define proper initial conditions for forward simulations. Even though the model is
plausible in its predictions, it is currently unclear how initial conditions for the acidity field
h, the tissue density Q and the necrotic field n should be estimated from medical data.
There is also no reliable way to estimate the diffusivity of the acidity field h.

1.3 Problems and challenges of the PDE models

Even though numerous PDE forward models have been published, it has proven very
difficult to validate or falsify them against experimental data. We now present the most
important obstacles to GBM model validation.

Data set availability

So far there are no time-series of untreated patient DTI data sets of high grade gliomas.
The only notable exception are Stensjøen et al. (2015), who gathered 106 T1-Gd MRI data
sets from patients aged 26-83 years and measured the growth characteristics of the tumors.
The time between the preoperative scans was at least 2 weeks for all considered patients.
They found large variations in growth rates between patients. Also, they found that the
growth for larger tumors seems to be slower than for smaller tumors. The mean volume
doubling time was 29.8 days and the mean radial expansion velocity was 29.8 mm/year.
Unfortunately, DTI data sets were not collected.
For a conclusive quantitative comparison between PDE forward models and actual GBM
progression, a large and representative set of periodically repeated medical scans (MRI +
DTI + SEG) would be needed, without the interference of therapeutic effects on the tumor
growth. Gathering such a data set would imply to deprive the subjects of live-prolonging
treatment, while burdening them with regular medical scans. The ethical impossibility
of gathering such a data set is obvious. Indicative of this is also that even the authors
of Stensjøen et al. (2015) themselves recommend that treatment should not be delayed
after diagnosis, while following that same recommendation would have made their own
survey impossible. Figure 2 illustrates a theoretically ideal and a realistic sequence of
measurements for the validation of GBM models.

Naturally, there are more data sets available of patients who were treated. If these data
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Figure 2: Top: ideal data set sequence for the validation of GBM forward models consist-
ing of regular medical imaging without any treatment. Bottom: realistic data set sequence
consisting of preoperative DTI followed by tumor resection (GTR), radiotherapy (RT),
chemotherapy (CT/TMZ) with possible follow-up MRI scans.

sets were used for validation, then the effects of the treatments had to be modeled and
validated alongside the underlying tumor models. For large tumors, these effects would
include the mechanical deformations of the brain during growth and following the resection.
One would not be able to assume that the preoperative DTI scans correctly represent the
state of the patient brains after surgery. Also, since it is the outspoken goal of chemo- and
radiotherapy to change the growth dynamics of the tumor, the correct parameterization of
the growth terms before and during treatment is further hindered.

Validation attempts

DTI and segmentation data sets at one point in time, mostly the preoperative scans, are
readily available. The glioMath data set presented in Section 6.1 is such an example.
Several attempts were made to conduct numerical simulations with these preoperative
data sets. We discuss two (numerical) experimental setups in detail, which are both based
on DTI and segmentation data sets.

Ab initio setup

In this approach the location and initial cell density distribution u0(x) : R
3 → R is guessed

within an available DTI data set of either a healthy subject, or a patient taken at the
time of diagnosis. For the healthy subject, one may inspect the predictions made by the
underlying model and parameterization, and observe whether the effects envisioned within
the modeling phase materialize as intended. For the healthy subject, there naturally is no
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way to tell how close the model prediction is to real tumor dynamics.
For the DTI scan taken of a patient at diagnosis, one has to assume that the diffusivity

Figure 3: Ab initio numerical setup. Left: 2D schematic of skull with enclosed segmented
tumor (grey) and location of a line plot. Right: Tumor density over a line through the
tumor. Grey areas indicate the medical segmentation regions. The outer density distribu-
tion indicates an underlying real tumor distribution at the time of imaging t1. The initial
tumor density distribution at t0 is guessed within the existing tumor region, and a forward
simulation is conducted.

within the tumor mass was massively affected by the tumor during its growth. This
reduction of anisotropy is visible in the upper right of Figure 1. Guessing the initial tumor
distribution within this already degraded tissue may not be an optimal approach (Jbabdi
et al., 2005; Swan et al., 2018). If the parameters are then determined to best fit the
extent visible at diagnosis, strong over- or underestimation of the model parameters is to
be expected. Within this setting, the interpretability of the simulated time is difficult as
the (degraded) diffusivity field from the time of diagnosis is used for forward simulations
up until the time of diagnosis. There is no precise way to estimate the time between
carciogenesis and diagnosis.

Postdiagnostic setup

Since medical segmentations of the tumor mass can be derived from MRI/DTI images, one
may try to use them as initial tumor density distributions, and conduct numerical sim-
ulations to predict further development. In this setup the evolution in the tumor center
is mostly complete and the important growth dynamics will occur outside of the strongly
degraded tissue. This approach is better aligned with the available data sets but also not
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without drawbacks.
The problem with this setup is, that the diagnostic scan is rapidly followed by gross tumor

Figure 4: Postdiagnostic numerical setup. Left: 2D schematic of skull with enclosed
segmented tumor (grey) and level sets of the density solution outside of the segmentation
(dotted lines). The diagonal line indicates the line plot. Right: Tumor density over
a line through the bulk. Grey areas indicate the medical segmentation regions. If the
medical segmentation at the time of diagnosis t0 is to be taken as initial condition, then
a forward simulation would only reach the real underlying tumor profile at t1, thereby
underestimating the actual extend of the tumor.

resection combined with radio- and chemotherapy which alter the geometry of the tissue
and the growth dynamics significantly. This is by all means intended behavior, but also
implies that these forward simulations may not offer any useful comparison if the complex-
ities of the therapeutic effects are not modeled on top of the natural tumor growth. The
segmentation information is thresholded in the sense that we may assume that only those
regions with a tumor cell density higher than a certain value will be segmented correctly.
If this segmentation is naively used as an initial condition, then we would assign a stepped
density profile with sharp gradients at the start of the simulation (Fig. 4). Starting a sim-
ulation of the diffusive tumor models from such a sharp stepped initial condition will lead
to very high fluxes in the first timesteps. We again find that the simulated time would not
be interpretable, as we know that the initial condition is lagging behind the real underlying
tumor distribution due to the thresholding.
Assuming, for the sake of argument, that a correct initial distribution would be available.
Then, a classic PDE forward simulation starting at the time of diagnosis, predicting the
uninterrupted growth, would carry no practical information from the treatment perspec-
tive. The medically relevant information would be the full initial density distribution itself.
A better estimation of this initial tumor distribution would enable more accurate targeting
by treatment techniques such as resection or radiotherapy.
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1.4 Stationary modeling of GBM

There have been attempts to model the invasion of GBM in a stationary way based on data
sets from only one point in time. This approach aims at correctly predicting the state of
tumor invasion at diagnosis, especially outside of the visible region. In the two publications
Konukoglu et al. (2006) and Konukoglu et al. (2010) the authors proposed to estimate the
extent of tumor invasion via traveling time formulations resulting in anisotropic eikonal
equations. In this formulation, the principal variable T (x) ∈ R describes the time at which
the tumor progression has reached the location x ∈ Rd. A simple isotropic eikonal problem
is given by

F
√︂

(∇T )TD∇T = 1 ∀x ∈ Ωb, (1.1)

T (x) = T0 ∀x ∈ Γ, (1.2)

with a parameter F ∈ R and a diffusivity D ∈ R and may be solved by a fast-marching
algorithm (Konukoglu et al., 2007). Here, Ωb denotes the whole brain and Γ the tumor
outline given by the medical images. The stationary problem is augmented with the side
condition (1.2) of the tumor delimiter visible on the medical images. Level sets of the solu-
tion to the eikonal problem formulation (1.1) can then be interpreted as the approximate
front location after a given time T > T0. This mathematical approach is quite different to
the (multiscale) PDE modeling and also the stationalization we will present, but has been
used to address the same problems of data availability and lack of parameterization.

1.5 Existing numerical approaches

In this work, we will present a parameterized finite volume discretization for anisotropic
diffusion problems. To put our results into context and convey the possible advantages we
now give a short overview of other discretization approaches for this class of problems.
Among the commonly used discretizations for anisotropic diffusion are the mimetic finite
difference method presented by Lipnikov et al. (2014). In this approach, the discrete oper-
ators are constructed to mimic conservation laws, symmetry of the continuous differential
operators and other properties. It is also algebraically asserted that the resulting operators
conform to identities of vector- and tensor calculus. The discretization has been success-
fully applied to tumor models in (Hunt, 2018).
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Another viable discretization is the discontinuous Galerkin method (Reed and Hill, 1973).
In this finite element approach the polynomial trial functions may be discontinuous at cell
boundaries. Here, similarly to finite volume methods, a flux integral is evaluated at the
cell boundaries. The choice of a correct flux approximation at the cell boundaries and their
discontinuities have been discussed in (Arnold et al., 2000).
In addition, there are numerous discretization schemes in the family of finite volume meth-
ods for anisotropic diffusion problems. Their main differences lie in the choice of control
volume construction, the choice of flux discretization through the surfaces of these control
volumes and the quadrature point locations on them. We recommend the reviews given by
Barth et al. (2017) and Droniou (2014). Within the finite volume method family, the mul-
tipoint flux approximation (MPFA) methods have been successfully applied to discretize
Equation (3.1) on orthogonal and non-orthogonal grids and for diffusivity fields which are
not ’K-aligned’, i.e., where the principal axes of the diffusivity tensors are not aligned with
the grid faces. The MPFA method family offers increased precision at the cost of a wider
total stencil size compared to two point flux approximations. One special method is the so
called O-method, named after the O-shaped region of the involved degrees of freedom in its
flux reconstruction. The method is discretely mass preserving (Aavatsmark et al., 1996;
Aavatsmark, 2002; Aavatsmark et al., 2007). The MPFA-O method has been described as
the industry standard method in reservoir simulation (Klausen and Winther, 2006). We
will present it in more detail in Section 2.7, as we will directly compare our discretization
to it in Section 3.4.
The most extensive quantitative comparison of existing numerical methods for anisotropic
diffusion (see Eq. (3.1)), that we are aware of, are the benchmarks by (Herbin and Hubert,
2008) and (Eymard et al., 2011). In these publications up to 20 different discretizations
were tested and compared for precision and performance. The families of numerical dis-
cretizations that were considered include cell-centered finite volume schemes, the discontin-
uous Galerkin schemes, finite element discretizations and even lattice Boltzmann methods.
The authors state that: ’schemes are not so easy to classify, and some schemes are known
to be identical in special cases’ (Herbin and Hubert, 2008). In light of our initial research
question, it is therefore a non-trivial question which numerical discretization method is
most suited to the simulation of GBM on real data sets. The Hölder finite volume method
which we will present later in the document is an attempt to optimize anisotropic finite
volume methods like the MPFA-O method for our use case.
The 2D benchmark (Herbin and Hubert, 2008) makes use of manufactured solutions of
varying complexity to measure the accuracy of the numerical methods. The tests presented
in Section 3.4 are inspired by their experimental setup but are significantly extended.

17



1 Introduction

1.6 Outline

This work is divided into 7 Sections. Following this introductory section we will define all
necessary notations in Section 2. We introduce the PDE model class of fully anisotropic
advection diffusion reaction equations (FAAD). Also all necessary mathematical prelim-
inaries for the definition of the Hölder finite volume method are defined, as well as the
numerical setup for its convergence tests. For these convergence tests we define param-
eterized manufactured solutions. Also, we summarize the MPFA-O method in order to
compare both methods.
In Section 3 the problem of diffusivity averaging for anisotropic inhomogeneous diffusion
is described. Subsequently, the scalar and matrix Hölder mean are presented which are
then incorporated into the numerical discretization. Then, the full parameterized residual
expression of the method is presented. A brief overview of our implementation in the soft-
ware module DUNE-glio is given before numerical convergence tests are presented. These
convergence tests make use of parameterized manufactured solutions which allow the in-
vestigation of different aspects of the method. For the subsequent numerical computations
in two and three dimensions we used the Hölder finite volume method.
In Section 4, a stationary modeling approach is presented. This approach is independent
of the choice of numerical discretization. We derive a nonlinear penalty term via the one-
dimensional Fisher-KPP equation that allows us to formulate a stationary problem that
is consistent with imaging data available from only one point in time. We establish the
applicability to more complex models by increasing the model complexity step by step and
validating that the approximation remains justified via comparisons to forward simulations
gradient statistics.
Afterwards, we give a quick overview of the implementation module DUNE-glio in Section
5. There, we state some of its design decisions and an overview of its current capabilities.
In Section 6 we present numerical results for the stationalized problem using two real
3D patient data sets. We present a conservative parameterization that results in tumor
delineations that reproduce medical recommendations. We then compare these to a pa-
rameterization with stronger advective components to illustrate the possible advantages
that the method may offer to medical practitioners.
We conclude the work by discussing both the Hölder finite volume method and the sta-
tionary modeling approach in Section 7. We also give an outlook on avenues of further
improvement.
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2.1 Notations

d ∈ N The considered dimension of a problem

Ω ⊂ Rd simulation domain

Ωb ⊂ Rd simply connected convex domain

bounded by the brain’s surface

Ωi Internal volume given by the tumor visible on DTI/MRI

which is possibly non-convex and not connected (metastases)

x ∈ Rd Spatial coordinate, dimension d given by context

t0 ≤ t ≤ te ∈ R Time variable

T = [t0, te] ⊂ R The considered time interval in forward simulations.

u(x, t) ∈ C2 : Ωb × T → R Time dependent scalar tumor density field

us(x) ∈ C2 : Ωb → R Stationary scalar tumor density field

Dw(x) : R
d → Rd×d Water diffusion tensor field (given by DTI)

Dt(x) : R
d → Rd×d Tumor diffusion tensor field

x̃ ∈ Rd Nondimensionalized spatial coordinate

t̃0 < t̃ < t̃e ∈ R Nondimensionalized time variables

Nv ∈ N Associated degrees of freedom within a (primal) grid cell

Th Primary grid tesselation of Ωb

Xh Dual grid tesselation of Ωb

Np ∈ N Total number of primary grid cells

Nd ∈ N Total number of dual grid cells

Qk Space spanned by monomials xαi with multiindex α ≤ k
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Hk(Ωb) Sobolev space of L2 functions with weak derivatives

defined up to k ∈ N
Ns ∈ N Subinterfaces within one primal grid cell (2D: 4, 3D: 12)

Nθ ∈ N Subvolumes within one primal grid cell (2D: 4, 3D: 8)

θi ∈ Θ subvolume within τj ∈ Th
si ∈ S subinterface within τj ∈ Th

2.2 Fully anisotropic advection diffusion reaction equations

The PDE model class considered in this work is that of fully anisotropic advection diffusion
reaction equations (FAAD). They describe the progression of a scalar time dependent tumor
density field u(x, t) ∈ C2 : Ωb×T → R. We now introduce this model class, and will present
three specializations in Section 4. The equation is stated in a general form to emphasize
the similarities of many tumor forward models. We focus on those models that can be
expressed as follows:

Definition 2.2.1 (Fully anisotropic advection diffusion reaction equation)
Let Ωb ⊂ Rd be a bounded domain (brain), T = [t0, te] ⊂ R and u(x, t) : Ωb × T → R the
volumetric tumor density. For an arbitrary x ∈ Ωb we denote by D(x) : Rd → Rd×d the
diffusion tensor, by b(x) : Ωb → Rd the advective field, by g(x) : Ωb → R the initial tumor
density profile at initial time t0 ∈ R and by f(u(x, t)) : R → R the reaction term. For
given D(x), b(x), g(x) we seek the tumor density u(x, t) so that

∂u(x, t)

∂t
= ∇ · ((D(x)∇u(x, t)) + b(x)u(x, t))

+ f(u(x, t)) ∀ (x, t) ∈ Ωb × T, (2.1a)

0 = (D(x)∇u(x, t) + b(x)u(x, t)) · n, ∀ (x, t) ∈ ∂Ωb × T, (2.1b)

u(x, t0) = g(x) ∀ x ∈ Ωb. (2.1c)

where n denotes the normal vector at the outer surface.
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We use this notation because many forward models can be expressed in this form, and
merely differ in their definition of the diffusivity field D(x) and the modeled advective
effects within b(x). A classical solution to (2.1a) would require f(u), g(x), b(x) and D(x)

to be known and sufficiently smooth. In our case the advective fields and the diffusvitiy
field are reconstructed from discrete data sets, and consequently we look for weak solutions
of the continuous problem. Throughout this document, we will discuss three specializations
of Equation (2.1a) in more detail (see Section 4).

2.2.1 Péclet number

The Péclet number Pe is relevant in the classification of transport problems and relates the
relative strength of diffusion and advection against each other. A high local Péclet number
indicates that a problem is advection-dominated whereas a low Péclet number indicates
that a problem is diffusion-dominated. It may be used to allow better comparisons between
models which consider different advective effects.

Definition 2.2.2 (Péclet number)
Let b(x) ∈ Rd be the local advective field, |D(x)|F the Frobenius norm of the local diffusivity
and h ∈ R a characteristic length (cell size). Then we define the local Péclet number

Pe(x) =
|b(x)|h
|D(x)|F

. (2.2)

In Section 6 this quantity is used to compare stationary results for two model parameteri-
zations which lead to high-Péclet and a low-Péclet number scenarios.

2.3 Variational formulation

We now formulate the problem of finding a solution to the FAAD equation (2.1a) in a
variational setting. We recall the FAAD equation as

∂u(x, t)

∂t
= ∇ · ((D(x)∇u(x, t)) + b(x)u(x, t)) + f(u(x, t)),
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where the advective fields defined by the particular models are encased in b(x) and the
reaction terms within f(u(x, t)). We multiply by a piecewise constant test function v ∈ L2,
and integrate over a domain Ω ⊂ Rd to obtain

d

dt

∫︂
Ω
uv dx =

∫︂
Ω

(︂
∇ · ((D∇u) + bu) + f(u)

)︂
v dx. (2.3)

We introduce the following notation for the spatial residual given by the right hand side
as

rs(u, v) =

∫︂
Ω

(︂
∇ · ((D∇u) + bu) + f(u)

)︂
v dx. (2.4)

We integrate (2.3) over a small time interval h ∈ R via endpoint rule (implicit Euler),

⟨ut+h, v⟩ = ⟨ut, v⟩+ h rs(ut+h, v), (2.5)

where the two involved time steps are notated in superscript. We introduce the spatio-
temporal residual

rst(ut+h, v) = −⟨ut+h, v⟩+ ⟨ut, v⟩+ hrs(ut+h). (2.6)

The weak problem for the forward model can now be stated as: find ut+h such that

rst(ut+h, v) = 0, (2.7)

i.e., that the spatio-temporal residual is minimized. As the reaction term f(u) is generally
nonlinear, the numerical solution can not be calculated directly but has to be approximated
iteratively. In discretized form, the problem may be solved in a weak sense to arbitrary
precision via classical Newton iteration until |rst| < ϵ with ϵ ≪ 1. Hereinafter we will
omit discussion of the temporal residual form and only state how the spatial residual
contribution is calculated in Section 3. There, we will seek the discrete weak solution
uh ∈ H1.

2.4 Finite-dimensional space and grid

We will now introduce a primary and secondary grid subdividing the simulation domain
Ωb ⊂ Rd as well as the finite-dimensional spaces. The symbols introduced here will be used
in the definition of the Hölder finite volume method in Section 3. We define the following
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nonoverlapping partition

Definition 2.4.1 (Primal grid)
Let Np ∈ N be the total number of cells subdividing Ωb ⊂ Rd, we then define the set of
primal grid cells

Th(Ωb) = {τ1, ... , τNp} Np ∈ N, (2.8a)

τi ⊆ Ωb for 1 ≤ i ≤ Np, (2.8b)

τi ∩ τj = ∅ for i ̸= j, (2.8c)

Ωb =

Np⋃︂
i=1

τ i. (2.8d)

We will refer to any τi ∈ Th as a primal or primary grid cell. Within this document we
assume convex quadrialateral hexahedral elements τi, each connecting four vertices in 2D
and eight vertices in 3D.
Additionally, we define a second nonoverlapping hexahedral partition of Ωb. These dual
grid cells are constructed from the primal grid by joining the barycenter of any primal grid
cell with the centers of its respective faces and edges, i.e., a median dual control volume
construction. We chose the barycenter for construction as it is always within the primal
grid cell.

Definition 2.4.2 (Dual grid)
Let Th(Ωb) be a primal grid tesselation of the domain Ωb ⊂ Rd, then the dual grid is given
by Nd ∈ N cells χ which are constructed via median dual control volume construction, i.e.,
the connection of the primary cell barycenters with face and edge midpoints

Xh(Ωb) = {χ1, ... , χNd
} Nd ∈ N, (2.9a)

χj ⊆ Ω for 1 ≤ j ≤ Nd, (2.9b)

χj ∩ χi = ∅ for i ̸= j, (2.9c)

Ω =

Nd⋃︂
j=1

χj . (2.9d)

We will refer to any χi ∈ Xh as a dual grid cell. A schematic of the two grids is presented in
Figure 5. Further, we define the skeleton of the dual grid. This skeleton can be subdivided
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Figure 5: Schematic representation of unstructured primal grid cells (black lines), and
their induced dual grid cells (grey area, dashed lines), created by joining the primal grid
cell centers (grey dots) with the primal grid face centers. The degrees of freedom are
associated with the vertices of the primal grid (black dots). Later, the finite volume fluxes
will be discretized over the surface enclosing each dual grid cell while assembly is expressed
over primary grid cells.

into subinterfaces.

Definition 2.4.3 (Dual grid skeleton)
Let f be the shared interface of any adjacent pair of dual grid cells in Xh. We then define
the internal skeleton of the dual grid as

Γ = {fi,j = ∂χi ∩ ∂χj | χi, χj ∈ Xh; i ̸= j; |fi,j | > 0}. (2.10)

Further, we denote the subset of Γ which lies within a primal grid cell τi ∈ Th as

Γi = Γ ∩ τi (2.11)

We now define subinterfaces within the primal grid cells. These subinterfaces are each part
of the skeleton of the dual grid. Any internal dual grid cell is fully encased by a certain
number of subinterfaces (2D: 8, 3D: 24). We can define the subinterfaces as

Definition 2.4.4 (Subinterfaces)
For a primal grid cell τj ∈ Th, and the faces fk,l connecting χk, χl ∈ Xh we define its
Ns ∈ N subinterfaces as si ∈ S, where

S = {fk,l ∩ τj ̸= ∅; k ̸= l}. (2.12a)
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In two-dimensional quadrilateral grids there are Ns = 4 subinterfaces within each primal
grid cell, in three dimensions we find Ns = 12. Each subinterface connects two adjacent
dual grid cells and is part of the dual-grid skeleton Γ (see Eq. (2.11)). Consequently, any
integration over Γ may be expressed as the sum of integrations over all subinterfaces si ∈ S.
We will make use of this in Section 3 to express residual contributions from the perspective
of any given primary grid cell. In two dimensions and quadrilateral grid geometry there
are four subinterfaces within any primary grid cell τi ∈ Th, as illustrated in Figure 6 and
twelve subinterfaces within a hexaedral 3D cell.
Similarly to the definition of the subinterfaces subdividing the dual grid’s surface, we define
subvolumes subdividing its volume. The subvolumes are each given by the overlap of a
primary and dual grid cell.

Definition 2.4.5 (Subvolumes)
For a primal grid cell τj ∈ Th we define its subvolumes as θk ∈ Θ, where

Θ = {χk ∩ τj ̸= ∅|χk ∈ Xh, }. (2.13a)

These subvolumes θk lie within τj and are each associated with one corner degree of freedom.
In two dimensions we find four subvolumes making up a primal grid cell, in three dimensions
there are eight subvolumes. An example of subinterfaces and subvolumes within a primal
grid cell is depicted in Figure 6.

Figure 6: Illustration of four subinterfaces sk ∈ S and four subvolumes θi ∈ Θ lying
within a primal grid cell τj ∈ Th. The primal grid cell is again shown with black lines,
while the borders of the dual grid cell are shown in dashed lines.

We will later use the subinterfaces si ∈ S and subvolumes θk ∈ Θ to express the surface
and volume integrals within the Hölder finite volume method (Section 3). We now state
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the discrete function space and bases used later in the document. Let

Qd
k = span

{︂
Πd

i=1 xαi
i : 0 ≤ αi ≤ k, for i = 1, ..., d

}︂
(2.14)

be a space of polynomials. Here, x = (x1, .., xd)
T and α = α1, ..., αd is a multiindex. We

define the space of piecewise d-linear functions

Uh = {v ∈ C0(Ω) : ∀τi ∈ Th : v|τi ∈ Qd
1} (2.15)

on the primal grid, and the space of piecewise constant functions on the dual grid

Vh = {w ∈ L2(Ω) : ∀χi ∈ Xh : w|χi = const}. (2.16)

We define the Lagrange base for Uh with Nd as the total number of degrees of freedom,
and Nv as the number of associated vertex degrees of freedom as

Φ = {ϕ1, ..., ϕNd
} ⊂ Uh, ∀τj ∈ Th (2.17a)

Nv∑︂
i=1

ϕi(x) = 1 ∀x ∈ τj , (2.17b)

ϕi(xk) = δi,k for every (primal) vertex position: xk, k ∈ {1, ..., Nv} (2.17c)

Each base function ϕi is associated with one vertex of the primary grid. We may then
approximate a continuous scalar function u(x) : Ωb → R and its gradient via this finite-
dimensional base

uh(x) =

Nd∑︂
i=1

uiϕi(x) ∀x ∈ Ωb, (2.18)

and

∇uh =

Nd∑︂
i=1

ui(∇ϕi(x)) ∀x ∈ Ωb, (2.19)

where ui ∈ R are the local degrees of freedom associated with the primary grid vertices.

Remark 2.4.1 In finite volume methods which approximate the primary variable via a
piecewise constant base, the gradient at the control volume surfaces is ill-defined, and often
approximated in an ad-hoc fashion. Since we use a Lagrange base defined on the primary
grid and control volumes given by the dual grid, the full gradient can easily be evaluated.
In our formulation the gradient approximation (2.19) is used at the subinterfaces which
encase the control volume (Figure 7).
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In addition to the Lagrange base defined above, we define a set of base functions which
are piecewise constant on the dual grid cells as

Ξ = {ξ1, ..., ξNd
} ∈ Vh (2.20a)

ξi(x) =

⎧⎪⎪⎨⎪⎪⎩1 if x ∈ χi, i ∈ {1, ..., Nd}

0 else.

(2.20b)

We then define the piecewise constant test function vh(x) ∈ Vh as

vh(x) =

Nd∑︂
i=1

ξi (2.21)

Figure 7: One-dimensional schematic of the finite-dimensional approximation of an ex-
emplary function (dashed) by a d-linear base (top) on primal grid cells, i.e. τi ∈ Th, and a
piecewise constant base (bottom) on dual grid cells, i.e. χj ∈ Xh. One important property
of this setup is, that the gradient of the d-linear Q1-base, defined on the primal grid, is
continuous at the subvolume interfaces (subinterfaces), where the flux integral is evaluated.
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2.5 Matrix expressions

We now define some expressions regarding symmetric positive definite matrices, which are
used later in the document. We define matrix exponentiation and logarithms, the powers
of invertible matrices and how we generate scattered diffusivity fields for numerical tests.
We also define the fractional anisotropy.

2.5.1 Matrix exponential and logarithm

When we introduce the matrix Hölder mean we will make use of matrix exponentials
defined as follows.

Definition 2.5.1 (Matrix exponential)
Let A ∈ Rd×d be a symmetric positive definite matrix. We then define the matrix exponen-
tial

exp(A) =
∞∑︂
i=1

Ai

i!
. (2.22)

Details on this definition can be found in (Hall, 2015). The corresponding matrix logarithm
is given by

Definition 2.5.2 (Matrix logarithm)
Let A ∈ Rd×d be a symmetric positive definite matrix. We then define the matrix logarithm

log(A) =

∞∑︂
i=1

(−1)i+1 (A− 1d)i
i

. (2.23)

2.5.2 Powers of a matrix

We define the power of a symmetric positive definite and therefore invertible matrix A ∈
Rd×d, with α ∈ R via its diagonalization A = TDT−1 as

Aα = T Dα T−1 (2.24)
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An efficient implementation of the matrix exponentiation, the logarithm and a diagonal-
ization are available in the armadillo C++ software library (Sanderson and Curtin., 2016;
Sanderson and Curtin, 2018).

2.5.3 Artificial inhomogeneous diffusion

In Section 4.5.2 we introduce numerical test cases in 1D and 2D with randomly perturbed
isotropic diffusion coefficients Dβ(x) ∈ Rd×d. We define the diffusion matrices as

Dβ = 1d δ
1
d , (2.25)

with δ ∈ R being a uniformly distributed random value: δ = unif(1 − β, 1 + β). Here,
d ∈ N is the spatial dimension. The exponent 1

d is chosen to allow comparisons between
the isotropic homogeneous case and the randomized case by assuring that the average of
the determinants of the diffusive medium are close to unity for every realization of the
random field:

det(Dβ) ≈ 1 ∀d ∈ N. (2.26)

We only compare homogeneous and inhomogeneous cases with identical grid resolution.
We evaluate the random inhomogeneous diffusion at the primal grid vertices. The diffu-
sivity within one dual grid cell is therefore statistically independent from any neighbor.

2.5.4 Fractional anisotropy

The fractional anisotropy (FA) is a skalar value describing how anisotropic a given sym-
metric positive definite matrix is. We follow the definitions from the literature (Basser and
Pierpaoli (2011); Painter and Hillen (2013)).

Definition 2.5.3 (Fractional anisotropy)
Let Dw ∈ R3×3 be a symmetric positive definite matrix (water diffusion), then the local
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fractional anisotropy FA(Dw) ∈ [0, 1] is given by

FA(Dw) =

⌜⃓⃓⃓
⎷1

2

⎛⎝3− tr

(︄(︃
Dw

tr(Dw)

)︃2
)︄−1

⎞⎠. (2.27)

Here, FA(Dw) = 0 would correspond to an isotropic case, and FA(Dw) = 1 would describe
a completely anisotropic diffusivity Dw.

2.6 Manufactured solutions

For the numerical tests of the Hölder finite volume method we will make use of the method
of manufactured solutions (MMS). For these tests we solve a stationary inhomogeneous
anisotropic diffusion problem ∇ · (Da(x)∇u(x)) = f(x) in two dimensions. The general
idea of the MMS is to choose an analytical expression for a solution u(x) : R2 → R

and the diffusivity field Da(x) : R2 → R2×2 to then derive the necessary source term
f(x) : R2 → R analytically. The approach is useful to validate codebases for proper
convergence and accuracy. In our case it serves the two-fold purpose of firstly validating
that the inhomogeneous anisotropic diffusive fluxes were correctly discretized and secondly
as a means of investigating the effect of different matrix Hölder means.
The chosen solution u(x) does not necessarily have to be physically plausible to serve
in code validation (Roache, 2001). Since our focus lies on inhomogeneous anisotropic
diffusion, we construct a spatially varying analytic diffusion field Da(x). The diffusivity
field presented here is comparatively complex. This complexity is necessary to capture
those aspects of the numerical discretization which are nontrivial. These aspects are for
example the rapid spatial changes in diffusivity Da(x) with regard to total amplitude
(determinant), and with respect to direction of the strongest eigenvector, i.e., the principal
direction of the diffusivity. The solution and the diffusivity field are parameterized in a way
that allows us to conveniently inspect these corner cases. We now define all necessary terms
and provide a complete list of parameters in Table 3. An example plot of one particular
configuration used in Section 3.4.4 is given in Figure 17.
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2.6.1 Analytical solution

We now define the analytical solution ua(x) : [0, 1]
2 → R. It is constructed to be zero at

the border to allow for simple homogeneous Dirichlet boundary conditions

ua(x) = cu sin(2π pu x0) sin(2π pu x1), with x ∈ [0, 1]2; cu, pu ∈ R. (2.28)

We employ a comparatively simple solution form for u(x) because the interest lies pri-
marily in the correct interpolation of the diffusivity field and not so much in the gradient
discretization.

2.6.2 Analytical diffusivity field

We construct the diffusion matrix field Da(x) : [0, 1]
2 → R2×2 by first setting a diagonal

matrix with spatially varying components a(x), b(x) : [0, 1]2 → R. Then this diagonal
matrix is turned at each point in space by a rotating angle β(x) : [0, 1]2 → [0, 2π] via the
rotation matrix T(β(x)) ∈ R2×2

a(x) = axx(1.1 + sin(2πpdx0)) with axx, pd ∈ R, (2.29)

b(x) = ayy(1.1 + sin(2πpdx1)) with ayy, pd ∈ R, (2.30)

β(x) =
π

2
sin(2πpβx

4
0) sin(2πpβx

4
1) with pβ ∈ R. (2.31)

The rotation matrix is given by

T(β(x)) =

⎛⎝cos(β(x)) − sin(β(x))

sin(β(x)) cos(β(x))

⎞⎠ . (2.32)

The diffusion matrix field thus becomes

Da(x) = T(β(x))

⎛⎝a(x) 0

0 b(x)

⎞⎠T−1(β(x)). (2.33)

Inserting above relations into ∇ · (Da(x)∇u(x)) provides the induced source term

f(x) = ∇ · (D(x)∇ua(x)) ∈ R. (2.34)
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The expanded form of f(x) can be derived analytically due to the use of easily differentiable
trigonometric functions. Validation with a CAD system (MATLAB, 2016) was performed.
The reaction term f(x) can be evaluated analytically, i.e. not via the d-linear base, as
both ua(x) and D(x) are given.
For any chosen amplitude parameter cu ∈ R, any diffusion coefficients axx, byy ∈ R and
any whole number of periods pu for rotating the diffusivity field pβ ∈ R the above solution
strictly abides the Dirichlet boundary conditions and allows us to test the generated finite
volume methods for any measure of anisotropy, inhomogeneity and gradient amplitude.
We provide a full list of parameters in Table 3. In the numerical tests in Section 3.4 we
varied pd and pβ , and the diagonal entries axx and ayy. A visual representation of the
manufactured solution is given in Figure 17.

Parameter Effect on solution Da(x)ua(x)

pu = 0.5 periods of u(x)

pd ∈ R periods of a(x), b(x)

pβ ∈ R periods of angle β

cu = 103 amplitude factor for ua(x)

axx ∈ R base amplitude for Dxx

ayy ∈ R base amplitude for Dyy

Table 3: Full set of parameters of the manufactured solution. Those that are constant
throughout this manuscript are only defined here, variations in pd, pβ, axx and ayy are
stated in Section 3.4.

2.6.3 Error definition

In Section 3 we will present a Hölder finite volume method, which has a free parameter.
We will numerically investigate the convergence of different Hölder methods and compare
it to other numerical discretizations. For this,we define the considered global error as

Definition 2.6.1 (Global L2-errors)
Let ua(x) : Ω → R be an analytical solution, and uh(x) the numerical approximation to it.
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We then denote the global L2-error as

∥ua − uh∥L2(Ω) =

⌜⃓⃓⎷ Np∑︂
i=1

∫︂
τi

(ua − uh)2dx. (2.35a)

At this point we do not specify the particular base of uh as we will later compare multiple
different discretization methods.

2.7 The MPFA-O method

We now present the two-dimensional MPFA-O method as described in (Aavatsmark, 2002).
It will serve as a reference to better contextualize the construction and the performance of
the HFVM presented later in the document.
The MPFA-O method is a finite volume method where each primary grid cell is associated
with one degree of freedom. To discretize the flux across the primary grids surface, an
O-shaped interaction region is defined which overlaps the primary grid cell. For structured
hexahedral grids this interaction region is given by a dual grid cell overlapping a corner
of a primary grid cell. For any of these interaction regions the MPFA-O defines how to
derive a local transmissibility matrix T ∈ R4×4 which allows the calculation of the flux
densities f ∈ R4 at the four subinterfaces lying within the interaction region. It is derived
for each interaction region algebraically by setting up a small local system expressing two
necessary conditions. Firstly, the fluxes have to be symmetric at the outer corner points
of the subinterfaces. This property assures the discrete mass preservation of the method.
Secondly, the density itself has to be continuous at the subinterface corner points and has
to be consistent with the degree of freedom at the center of the primary grid cells. This
implies that within the four subvolumes making up an interaction region the density is
given by a linear function. We will now shortly present how the flux is reconstructed with
this method. A 2D primary grid cell and one of its interaction regions is shown in Figure 8.
For the construction we define the four corner degrees of freedom of the interaction region
as z = (z1, z2, z3, z4)

T ∈ R4, the continuity points of the density as z = (z1, z2, z3, z4)
T , and

the material diffusivities as Di ∈ Rd×d . The subinterface values zi are merely intermediate
variables helping in the construction and are eliminated later. For the four subinterfaces
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Figure 8: 2D interaction region of the MPFA-O method (dashed). The black lines indicate
the primary grid associated with one degree of freedom z1 and diffusivity D1 ∈ R2×2. The
dashed area indicates the interaction region for the subinterface marked in grey. The point
where continuity of potential z1 is demanded is marked with a green dot.

indicated in Figure 8 the equal fluxes from both sides of the subinterfaces are

D1,11(z1 − z1) +D1,12(z4 − z1) = D2,11(z2 − z1) +D2,12(z2 − z2),

D2,22(z2 − z2) +D2,21(z2 − z1) = D3,22(z3 − z2) +D3,21(z3 − z3),

D3,11(z3 − z3) +D3,12(z3 − z2) = D4,11(z3 − z4) +D4,12(z4 − z4),

D4,22(z4 − z4) +D4,21(z3 − z4) = D1,22(z4 − z1) +D1,21(z1 − z1),

(2.36)

where the first line corresponds to the grey subinterface indicated in Figure 8. The first
index of D indicates the associated corner of the interaction region, the other two indicate
the matrix entries.
The system of equations (2.36) can be written in more concise form with the vectors of
interface and corner values z and z and the four matrices A,B,C,D ∈ R4×4 (Aavatsmark,
2002). The four subinterfaces fluxes f ∈ R4 can then be written as

f = Cz −Dz. (2.37)

The system can also be rewritten to

Az = Bz. (2.38)
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With this notation, the interface values z can be eliminated and the transmissibility matrix
can be expressed algebraically as

T = (CA−1B−D). (2.39)

The matrix T ∈ R4×4 then results in the four subinterface fluxes when applied to the four
unknowns z of the interaction regions,

f = Tz. (2.40)

The total flux into a primary grid cell is given by the sum over the subfluxes making up
its interface. The transmissibility matrices of all interaction regions can be precomputed
given that the grid geometry and and diffusivity field is constant. The reconstruction of
the fluxes only requires a matrix vector product to produce the local fluxes during runtime
which makes this method quite performant.
One disadvantage of this method is that the construction hides the implied assumptions
on the effective diffusivity within the interaction region. They are not considered and
stated separately, but in conjunction. In other words, the MPFA-O method makes no
interpretable statement on the effective anisotropic diffusivity field within the interaction
region. In Section 3 we will present a vertex-centered finite volume method that shares
the advantages of the MPFA-O and extends it in this regard.
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Within this section we present a vertex-centered finite volume method for the FAAD model
class introduced in Equation (2.1a). The discretization uses a matrix Hölder mean for the
diffusive flux approximation. The proposed Hölder mean allows to evaluate the interpo-
lated diffusion matrices anywhere within the discretization cells. The resulting numerical
discretization is parameterized by a scalar value α ∈ R which determines the behavior of
the diffusivity interpolation and consequently the numerical results.
The question we sought to answer was that of which Hölder parameter α and therefore
which matrix interpolation is optimal for the numerical simulation of tumor models. Al-
though the very concrete application of PDE tumor models on DTI data sets was our
focus, the question of the most accurate matrix interpolation is also relevant in other dis-
cretization schemes and applications.
For brevity we will refer to the discretization as the Hölder finite volume method (HFVM).
The presented method is of Petrov-Galerkin type with a d-linear Lagrange ansatz space
and a piecewise constant test space. The effects of different choices of matrix interpolation
were investigated via the method of manufactured solutions (MMS), described in Section
2.6.
We begin by motivating the question of the appropriate scalar mean in a simple TPFA
setting in 3.1. In Section 3.2 we then define the scalar Hölder means to formalize our nota-
tion before we extend it to the matrix Hölder mean and define the necessary weights. The
combination of the weights and the averages allows explicit expressions of how the diffu-
sivity fields may be evaluated in between datapoints, everywhere within the discretization
cells. We then present the discretized spatial residual of the Hölder finite volume method
in Section 3.3. Finally, we present results of our numerical investigation of the method in
Section 3.4. We investigated the effect of the Hölder parameter α ∈ R for four different
underlying diffusivity fields.
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3.1 Problem description

For the numerical simulation of GBM, one may use patient DTI data sets which express
the approximate water diffusion tensors at any voxel within a given data set. The discrete
data sets approximate the real underlying inhomogeneous anisotropic permeability fields.
From this water diffusivity field, one may reconstruct the approximate diffusion of the
tumor cells: Dt(x) ∈ Rd×d.
The discretization of anisotropic inhomogeneous diffusion processes on real world data
sets poses challenges in the numerical treatment because the underlying data sets may
include jumps in diffusivity spanning many orders of magnitude. Another aspect is that the
preferred direction of diffusivity may change rapidly from datapoint to datapoint. Omitting
advective and reactive terms in Equation (2.1a), we focus our problem description on the
anisotropic diffusion of the tumor density. The governing equation is given by Fick’s first
and second law.

Definition 3.1.1 (Fick’s diffusive flux law)
Let u(x, t) : Ωb × T → R be a tumor density and D(x) : Ωb → Rd×d the diffusive material
properties, then Fick’s combined first and second law state that

∂u(x, t)

∂t
= ∇ · (D(x)∇u(x, t)). (3.1)

The underlying question is how this diffusive flux is best discretized with finite data set
resolutions, where purely numerical grid refinement can not be expected to produce more
precise results. Finite volume discretizations can be derived by multiplying Equation (3.1)
with a piecewise constant test function v, integrating over small control volumes τi and
re-expressing the volume integral of the right hand side as a surface integral via the Gauss
theorem

d

dt

∫︂
τi

u(x, t)v dx =

∮︂
∂τi

(D(x)∇u(x, t))v · n dS. (3.2)

In polygonal conforming grids, the right hand side can be further divided down into a sum
of integrals over simple geometric surfaces. The simplest of such flux reconstructions is
the two point flux approximation (TPFA). In this construction a piecewise constant base
is chosen to approximate the density within each cell τi ∈ Th. The TPFA flux expression
can be analytically derived by first demanding, that the flux density constructed has to
be consistent at the adjacent cell’s boundary and secondly, that the density has to be
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3 The Hölder finite volume method

Figure 9: Schematic of a flux discretization based on the TPFA method between two cells
A, B with diffusion coefficients Da, Db ∈ R and densities ua, ub ∈ R. In the TPFA method
the material properties are modeled to be constant within a cell resulting in a discontinuity
at the interface (grey dot), for which different averages are possible.

continuous at that interface. To give a direct example of this we define two adjacent cells
A,B with degrees of freedom ua, ub ∈ R, scalar diffusivities Da, Db ∈ R and a shared
tumor density value u ∈ R at their interface (see Fig. 9). We demand consistency of the
flux densities f = D(x)∇u(x, t) at the interface, so that

fA→B = fB→A, (3.3)

where fA→B denotes the flux approximation from cell A ∈ τh to cell B ∈ τh. The flux
approximation from both sides then reads

Da
u− ua

h
2

= −Db
u− ub

h
2

. (3.4)

From this equation the density value at the interface can be calculated as

u =
Daua +Dbub
Da +Db

(3.5)

and after re-insertion of (3.5) into (3.4) one finds that the flux density has to be

fA→B =
2

D−1
a +D−1

b⏞ ⏟⏟ ⏞
harmonic average

ub − ua
h⏞ ⏟⏟ ⏞

discrete gradient

, (3.6)

where we identified the diffusivity average at the interface and a canonical gradient dis-
cretization. In this basic example, the contributions to the flux integral (3.2) are discretized
by a midpoint rule at each interface, taking a canonical gradient discretization at the inter-
face midpoints and using a harmonic average of the diffusivities of the two adjacent cells.
The harmonic average will force the flux to zero if any of the two material diffusivities
Da, Db is impermeable. This average is known to be superior to an arithmetic mean of
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the two diffusivities, especially in the presence of strong discontinuities (Droniou, 2014).
The question of whether this choice is optimal is discussed in (Liu and Ma, 2004). The
flux is also symmetric by construction. Because of this symmetry, the resulting numerical
method will be discretely mass preserving. This two-point flux approximation is sufficient,
as long as the diffusive properties are isotropic so that the diffusion coefficients associated
with the cells are scalars.
However, if the underlying material is anisotropic, the diffusive properties have to be ex-
pressed by a diffusivity matrix D(x) ∈ Rd×d with possibly off-diagonal entries. In this
case, we may find two different anisotropic materials on both sides of a connecting face
and it is not obvious how the flux across a control volume surface ought to be constructed.
The presented two-point gradient discretization approximates the gradient in the direction
perpendicular to the cell surface. If D(x) includes off-diagonal entries, the gradient ampli-
tude parallel to the cell surface needs to be defined to calculate all contributors to the flux
density D(x)∇u(x, t). The two point gradient approximation accross the interface would
lead to a flux discretization which, in the worst case, disregards these off-diagonal entries
completely. Further, it is not clear which choice of average between the two diffusivity
matrices is an appropriate choice at the interface.
The problem of the gradient discretization can be solved by including more degrees of free-
dom from the neighboring cells into the gradient reconstruction, hence the name multipoint
flux approximation (MPFA). The question of the appropriate matrix averaging method in
the flux reconstruction is more involved and is the subject of the numerical investigations
we present shortly.

3.2 Diffusivity averaging

We will now reformulate assumptions that are made in the diffusivity averaging in a more
general framework. We begin by formulating the harmonic average of the TPFA method
in the language of Riemann manifolds. We rely in large parts on the results of (Moakher,
2005; Dryden et al., 2009), who studied different matrix means in depth. The notation via
Riemann manifolds is overly complex in the TPFA homogeneous cases, but allows us to
extend the formulation directly to inhomogeneous and anisotropic media.
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3 The Hölder finite volume method

3.2.1 Scalar averaging in flux discretizations

In the following, a scalar framework for averaging diffusivities within discretization cells is
presented. We assume that the diffusivities are given at the vertices of the primary grid
Th, and present an expression how to calculate meaningful approximations in between data
points.

Definition 3.2.1 (Scalar Hölder mean)
For a given set of scalar vertex diffusivities D = {D1, ..., DNv} with Di ∈ R+ and Nv ∈ N
as the number of vertices of cell τj ∈ Th, we define the scalar Hölder mean value Dα(x) ∈ R
at any x ∈ τj with the scalar weights wi(x) : R

d → R as

Dα(x) =

(︄
argmin

D′

Nv∑︂
i=1

wi(x) dα(D
′, Di)

2

)︄ 1
α

=

(︄
Nv∑︂
i=1

wi(x)D
α
i

)︄ 1
α

, (3.7a)

dα(a, b) = |aα − bα| with α ∈ R; a, b ∈ R+, (3.7b)
Nv∑︂
i=1

wi(x) = 1 , ∀x ∈ τj . (3.7c)

Expression (3.7a) selects that representative Dα(x) ∈ R+ which minimizes the sum of
distances given by the metric dα(·, ·) from the set of vertex diffusivities (Dryden et al.,
2009). One of the main practical advantages of the Hölder means is, that this minimum
can be directly computed everywhere within the primary grid cell τj . The Hölder parame-
ter α ∈ R controls the exact distance metric and therefore also the resulting average value.
Here, wi(x) : R

d → R are the scalar weights of the contributors which we define shortly.
This framework is not strictly necessary in simple low dimensional cases, but will provide
more context when we extend it to SPD matrices and higher dimensions in Section 3.2.2.
The distance metric dα(·, ·) is the generalization of the standard Euclidean distance. Ex-
pression (3.7a) generalizes many ways to average a number of scalar values with given
weights. For certain values of α ∈ R the Hölder mean coincides with well known means in

41



3 The Hölder finite volume method

the following way:

minimum: α → −∞ Dα = min(w1D1, ..., wNvDNv), (3.8a)

harmonic mean: α = −1 Dα =

(︄
Nv∑︂
i

wi

Di

)︄−1

, (3.8b)

log-Euclidic mean: α → 0 Dα = e

(︁Nv∑︁
i
wi ln(Di)

)︁
with wi =

1

Nv
, (3.8c)

geometric mean: α = 0 Dα =

Nv∏︂
i=1

Dwi
i , with wi =

1

Nv
, (3.8d)

arithmetic mean: α = 1 Dα =

Nv∑︂
i=1

wiDi, with wi =
1

Nv
, (3.8e)

maximum: α → ∞ Dα = max(w1D1, ..., wNvDNv). (3.8f)

Here Nv is the number of contributing vertex values Di ∈ D. We added the log-Euclidian
mean, which is equivalent to the geometric mean for later reference (Crawley, 2014). The
scalar Hölder mean satisfies the following inequality.

Remark 3.2.1 (Power mean inequality)
For a given set of vertex diffusivities D = {D1, ..., DNv}, the two Hölder means Dα with
α = a, b follow the power mean inequality

min(D) ≤ Da ≤ Db ≤ max(D), with a, b ∈ R; a < b (3.9)

For a proof of this inequality in the scalar case we refer to (Bullen, 2003). The stated
inequality has direct implications for the flux discretizations, as the concrete choice of α
may result in systematic over- or underestimation of the diffusivity at the control volume
surfaces and thereby the flux integrals. This effect is most relevant where we expect strong
fluctuations of diffusivity including regions of diminishing diffusivity. Figure 10 shows a
schematic of what effect the parameter α has on the interpolated diffusivities in-between
3 exemplary datapoints. Here, the interpolation results from employing linear weights
w(x) in between any two datapoints and calculating the mean accordingly. For negative
values of α the flux is effectively suppressed in case one of the two contributors Di is small.
This case is visible in the right side of Figure 10. With this notation, we may rephrase
the result from (Aavatsmark, 2002) and state that a good choice of diffusivity mean in
isotropic TPFA finite volume methods is the Hölder mean with α = −1, i.e. the harmonic

42



3 The Hölder finite volume method

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

x[arb]

0

1

2

3

4

5
D
α

(x
)

α = 2.0

α = 1.0

α = 1.0e− 5

α = −1.0

α = −2.0

Figure 10: 1D schematic of scalar Hölder diffusivity interpolation Dα(x) for different
Hölder parameters between the datapoints D(0) = 2, D(1) = 5 and D(2) = 10−2 shown
as black dots. Vertical black lines mark midpoints between datapoints at which the flux is
often integrated. We employ linear weights w(x) in between any two datapoints. The influ-
ence of the choice of α ∈ R is especially pronounced where one contributor Di diminishes
as seen on the right hand side.

mean given in Equation (3.8b).

3.2.2 Matrix Hölder mean

In the case where the diffusivity field is a set of symmetric positive definite (SPD) matri-
ces, we can use an extention of the scalar Hölder mean (3.7a) to matrices. Introducing
the manifold of symmetric n×n SPD matrices Sym+(n) with the Frobenius inner product
⟨A,B⟩ = tr(ATB) and the induced norm ||A||F =

√︁
⟨A,A⟩ we now define the corre-

sponding Hölder mean in analogy to Definition (3.2.1). We follow the notation of (Dryden
et al., 2009; Bhagwat and Subramanian, 1978), where the following mean is introduced as
’power-euclidian’.

Definition 3.2.2 (Matrix Hölder mean)
For a given set of vertex diffusivities D = {D1, ..., ,DNv} with Di ∈ Sym+(d) of cell τj ∈ Th
we define the matrix Hölder mean Dα(x) : R

d → Rd×d at any x ∈ τj with the scalar weights
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wi(x) : R
d → R as

Dα(x) = argmin
D′

(︄
Nv∑︂
i=1

wi(x)dα(D
′,mathbfDi)

2

)︄ 1
α

=

(︄
Nv∑︂
i=1

wi(x)D
α
i

)︄ 1
α

, (3.10a)

dα(A,B) = ||Aα −Bα||F , ∀ A,B ∈ Sym+(d), (3.10b)
Nv∑︂
i=1

wi(x) = 1. (3.10c)

The matrix Hölder mean again selects that matrix Dα that minimizes the sum of the dis-
tances dα to the contributors Di ∈ D. We defined the matrix power in Equation (2.24).
Dryden et al. (2009) state that the matrix Hölder mean becomes more resistant to outliers
for small positive α, while the influence of outliers is increased for α ≫ 0. For the special
case of α = 1 we find the component-wise linear interpolation that is used in many pro-
duction codes. However, this choice is problematic, because the arithmetic matrix mean
is known to have a swelling effect where the determinant of the interpolant can be larger
than the determinants of the other contributors (Arsigny et al., 2007). When the interpo-
lated matrices are associated with covariance matrices, as is the case for diffusion matrices
describing brownian motion, then the swelling of the determinant would correspond to an
unphysical increase in total dispersion (Arsigny et al., 2007). For α = −1 we find, analo-
gously to the scalar case, a mean that diminishes whenever the Frobenius norm of one of
the contributing Di is zero. For α → 0 it is known that the Hölder mean approaches the
log-Euclidian mean (Dryden et al., 2009). It is defined as follows.

Definition 3.2.3 (Log-Euclidian mean)
For a given set of vertex diffusivities D = {D1, ...,DNv} and Di ∈ Sym+(n) of cell τj ∈ Th
we define the matrix Hölder-mean value Dα(x) ∈ Rd×d at any x ∈ τj with the scalar
weights wi(x) ∈ R as

Dα = exp

(︄
argmin

D′

Nv∑︂
i=1

widLog(D
′,Di)

2

)︄
= exp

(︄
Nv∑︂
i=1

wi ln(Di)

)︄
, (3.11)

dLog(A,B) = || ln(A)− ln(B)||F (3.12)

The above definition uses matrix-exponentiation and matrix-logarithm, which we defined
in (2.22) and (2.23) (Dryden et al., 2009; Bhagwat and Subramanian, 1978; Audenaert and
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Hiai, 2013). There is some discussion in the literature whether the mean for α → 0, i.e.,
the log-Euclidian mean can be seen as the extension of the scalar geometric mean and what
properties a matrix-geometric mean should have (Moakher, 2006; Arsigny et al., 2007). It
was also investigated by Arsigny et al. (2007) which mean might be appropriate for the
reconstruction of DTI data sets. They suggest to use a log-Euclidian interpolation.
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Figure 11: Visualization of the Fractional Anisotropy (FA) and determinant of Hölder-
interpolated matrices along three datapoints, with linear weights. The three matrices are:
D(0) = ( 5 0

0 1 ) ,D(1) = ( 1 0
0 5 ) ,D(2) = ( 0.1 0

0 0.5 ). Vertical black lines mark midpoints between
datapoints at which the flux is often integrated. The sample matrices are rotated between
the first and the second datapoint, and linearly scaled in amplitude between the second
and the third. A swelling of the determinant is visible for α > 0 between datapoints 1 and
2.

Definition of weights

In order to make use of the general form of the introduced Hölder means, the weights
wi(x) ∈ R used in equations (3.10a, 3.11) need to be specified. We assume that the
diffusion matrices are given at the nodes of the primal grid cells. We choose the weights
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Figure 12: Quadrilateral and simplical element with degrees of freedom (black dots)
resting on the edges, dashed lines indicate dual grid subinterfaces connecting the center of
mass (grey dots) with the primal grids interface midpoints. The small dots indicate two
sample subinterface midpoints s̄1 ∈ Rd where the diffusion matrix Dα(x) may be evaluated
for subflux discretization.

to be the evaluation of the d-linear basis functions for the given data points introduced
in Equation (2.17a). In our case of a hexahedral grid this is the canonical Q1 Lagrange
base.

Definition 3.2.4 (Hölder weights)
Let Di ∈ D be a contributor in the Hölder mean Dα(x) with x ∈ τj (3.10a). We then define
the corresponding weight as the evaluation of the Lagrange base function ϕi(x) : R

d → R

as defined in Equation (2.17a).

wi(x) = ϕi(x). ∀x ∈ τj , i = 1, ..., Nv (3.13)

The interpolation is later evaluated at the subinterface midpoints but evaluation at any
other point within the cells would lead to reasonable interpolants. Figure 12 illustrates
how the Hölder mean may be evaluated at the subinterface midpoints within the primary
grid cell. The choice wi(x) = ϕi(x) is suitable, as it provides for the weights at the data
points to be 1 (see Eq. (2.17c)) and also ensures that the sum of the weights equal one
irrespective of where the Hölder mean is evaluated within the primal cell (see Eq. (2.17b)).
It therefore provides a geometrically intuitive weight in the area between the data points.
These arguments can be generalized to 3D as well as tetrahedral cell geometries.
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3.3 Hölder finite volume method

We will now derive the fully discretized approximation to the spatial residual rs(u, v)

introduced in Equation (2.4). We recall that the test function v ∈ Vh is piecewise constant
on each dual grid cell and begin by subdividing the global residual integration over the
dual grid tesselation,

rs(u, v) =

Nd∑︂
i=1

(︃
v

∫︂
χi

∇ ·
(︁
(D ∇u) + bu

)︁
dx+

∫︂
χi

f(u)v dx

)︃
, (3.14)

where we pulled v ∈ Vh out of the integral. We apply the Gauss theorem for the flux terms
to express them as a surface integral

rs(u, v) =

Nd∑︂
i=1

∮︂
∂χi

(︁
(D ∇u) + bu

)︁
v · n dS +

∫︂
χi

f(u)v dx, (3.15)

where n denotes the outer unit normal. The application of the Gauss theorem over the
dual grid cells χi indicates the finite volume character of this method. We shortly define
symmetric fluxes over the surfaces of the dual grid cells via the subinterfaces, and therefore
may expect discrete mass conservation for the discretization of the diffusive and advective
terms assuming ∇ · b(x) = 0.
Since we may rearrange the summation of the global residual, we will collect all residual
contributions of a single primal grid cell τk ∈ Th and denote them by rsk(u, v). This
notation will slightly obfuscate how the discrete mass conservation is achieved. In this
notation, the control volumes encased by the dual grid surfaces are not as obvious as in
notations of other finite volume methods. However, this notation is more expressive than
maintaining summation over contributions from both tesselations, and is closer to the
actual implementation. The residuum contribution from a primary grid cell is given by

rsk(u, v) =

∫︂
Γk

(︁
(D ∇u) + bu

)︁
v · n dS +

∫︂
τk

f(u)v dx. (3.16)

The flux integral is no longer encasing a full dual grid cell surface (control volume) as
we now integrate over the dual grid skeleton Γk overlapping the primal grid, defined in
Equation (2.11). This is without detriment. We break the integrals into even smaller
parts by summing the flux integrals over all subinterfaces si ∈ S within τk and the volume
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integrals over all subvolumes θj ∈ Θ,

rsk(u, v) =

Ns∑︂
i=1

∫︂
si

(︁
D ∇u) + bu

)︁
v · n dS +

Nθ∑︂
j=1

∫︂
θj

f(u)v dx. (3.17)

Here Ns, Nθ are the number of subinterfaces and subvolumes within τk. We recall the
piecewise d-linear approximation of the tumor density uh(x) =

∑︁Nd
l=1 ulϕl(x) on the primary

grid from Equation (2.18) and the piecewise constant representation of the test function
vh(x) =

∑︁Nd
m=1 ξm(x) on the dual grid. We now express (3.17) via theses finite dimensional

bases (see Eqs. (2.18,2.19)).

rsk(uh, vh) =

Ns∑︂
i=1

Nv∑︂
l=1

Nv∑︂
m=1

∫︂
si

(D(x) (zl∇ϕl(x))) + b(x)zlϕl(x)
)︁
ξm(x) · n dS

+

Nθ∑︂
j=1

Nv∑︂
m=1

∫︂
θj

f

(︄
Nv∑︂
l=1

zlϕl(x)

)︄
ξm(x) dx. (3.18)

Here, the new summation iterates over all local base functions ϕl(x), ξm(x). We now use
a midpoint rule to integrate the flux on the subinterfaces, i.e., evaluate both the diffusion
tensor and the gradient at the subinterface midpoints s̄i with the subinterface area of
|As|. We use a Gauss quadrature rule with quadrature points xk and weights w′

k on the
subvolumes θ of volume |θ| for the volume terms. To not complicate the notation further
we assume that all subvolumes and subinterfaces are of equal size. Finally, we make use of
the matrix Hölder mean Dα(s̄i) to estimate the diffusivity tensor field at the quadrature
points.

rsk(uh, vh) =

Ns∑︂
i=1

Nv∑︂
l=1

Nv∑︂
m=1

(︁
(Dα(s̄i) (zl ∇ϕl(s̄i))) + b(x)zlϕl(s̄i)

)︁
ξm(s̄i) · n |As| (3.19)

+

Nv∑︂
m=1

Nv∑︂
k=1

f

(︄
Nv∑︂
l=1

zlϕl(xk)

)︄
w′
kξm(xk) |θ|.

Remark 3.3.1 Special attention has to be paid to the sign of the subinterface normals. In
the actual assembly of the numerical residual vector one should take care to implement the
normals as outward pointing from the perspective of the subvolume which is assembled.
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3.4 Numerical convergence results

The presented HFVM method was numerically investigated to study the effect of the Hölder
parameter α ∈ R. We employed the technique of manufactured solutions as introduced in
Section 2.6. We now present the convergence results of the HFVM in comparison to the
MPFA-O method and a conforming finite element method (CFEM) for selected parameter-
izations of the manufactured solution. The MPFA-O method was described in Section 2.7.
The CFEM method uses a Q2

1 Lagrange base on the primary grid. In our numerical setup,
the finite element method evaluated the underlying diffusivity field analytically and should
be seen as a gold standard and not a fair competitor. For the test with inhomogeneous
isotropic diffusion and the one with homogeneous anisotropic diffusion perfect second order
convergence was observed, for all schemes we implemented. The considered parameteriza-
tions of the manufactured solution each focus on one particular aspect of difficulty of the
underlying data set. For the sake of conciseness, we omit the simplest case of homogeneous
isotropic diffusion as it does not present additional information. The simulations were con-
ducted on a square domain discretized with a quadrilateral mesh, which is successively
refined from 322 to 10242 cells. We present the L2-errors (2.6.1) plotted against the mesh
size h ∈ R. Table 4 gives an overview of the four considered test cases.

Homogeneous Isotropic Description Section

✗ ✓ diffusivity varies in amplitude 3.4.1

✓ ✗ hom. directional preference 3.4.2

✗ ✗ rotating directional preference 3.4.3

✗ ✗ fully inhomogeneous 3.4.4

Table 4: Overview of the considered test cases in the following sections. The test most
relevant to the tumor simulation is the one in Section 3.4.3, where the dominant direction
of diffusion rotates much like within curved fiber bundles.

We want to draw special attention to the case presented in Section 3.4.3, where the dif-
fusivity stays constant in its Frobenius norm and determinant, but the preferred direction
of diffusive transport is rotating. Within the human brain there are white matter tracts
consisting of fiber bundles. Within these bundles we may expect that the diffusivity in
the fiber directions and the perpendicular directions remains mostly constant in space,
but the orientation of these white matter tracts may change. It is known that glia-cells,
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and therefore also the cancer cells, migrate predominantly along these tracts (Giesexs and
Westphal, 1996; Gritsenko et al., 2012; Engwer et al., 2015, 2016). For the simulation
of GBM it is therefore most important how well a chosen numerical method responds to
underlying diffusivity fields of this kind. We chose that value of α which performed best
within this numerical test for all subsequent two and three dimensional GBM simulations.
We now present the convergence results for the four different parameterizations of the
manufactured solution.

3.4.1 Inhomogeneous isotropic case (eigenvalue)

In this test we consider an isotropic inhomogeneous diffusion field Da(x) which simply
varies in the eigenvalues of the permeability (inhomogeneous) throughout the domain, but
has no preferred direction (isotropic). In this simple case, a TPFA discretization would still
produce reasonable results as there are no off-diagonal entries within the diffusion tensor
field.

Parameter Value

pd 2

pβ 0

axx 10−10

ayy 10−10

Table 5: Altered parameters of the manufactured solution defined in Section 2.6 for the
inhomogeneous isotropic test case. The fixed parameters were listed in Table 3.

Figure 13 shows the L2-error of different numerical discretizations for the manufactured so-
lution at successively reduced cell spacings. A linear and a quadratic function are provided
for orientation. The log-Euclidian Hölder interpolation produces slightly better results
than other Hölder methods and the MPFA-O method. The CFEM and DG method use
the analytical diffusivity field (gold standard). All implemented methods show perfect
second order convergence.
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Figure 13: Inhomogeneous isotropic case (eigenvalue variation): convergence of global L2-
error over grid spacing h. Expected convergence order 2 is observed for all discretization
methods. We denote the Hölder interpolation with α → 0 with ’logE’. The grid resolution
sufficiently resolves the manufactured solution and diffusivity throughout all refinements.
The CFEM and discontinuous galerkin (DG) discretizations use analytic evaluations of
Da(x)

With a simple solution parameterization as this, the test is essentially a convergence test
that indicates correct implementation of the discretizations within the DUNE-glio module,
as described in Section 5. The altered parameterization for the manufactured solution can
be found in Table 5.

3.4.2 Homogeneous anisotropic case

In this numerical test, the diffusivity field of the manufactured solution is anisotropic in
the sense that the diffusivity is two orders of magnitude higher in horizontal direction
(axx = 10−10) than in vertical direction (ay = 10−12), but is still ’K-aligned ’, i.e. the
eigenvectors of the diffusivity matrices are aligned with the grid geometry. The altered
parameters can be found in Table 6.
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Figure 14: Homogeneous anisotropic case: convergence of global error over grid spacing
h. HFVM-alpha methods are identical as no spatial variance exists in D(x) and therefore
all matrix Hölder means result in equivalent interpolations. Expected convergence order
2 is observed for all discretization methods. The grid resolution sufficiently resolves the
manufactured solution and diffusivity throughout all refinements.

Parameter Value

pd 0

pβ 0

axx 10−10

ayy 10−12

Table 6: Altered parameters of the manufactured solution defined in Section 2.6 for the
homogeneous anisotropic test case. The fixed parameters were listed in Table 3.

Figure 14 again presents the errors over the grid spacings. In this test case the CFEM
discretization performs similarly to the finite volume methods (HFVM, MPFA-O) as no
advantage is gained by analytical evaluation of Da at the quadrature points. In this corner
case, all Hölder methods produce identical results.

52



3 The Hölder finite volume method

3.4.3 Inhomogeneus anisotropic case (rotation)

In this test, we rotate the diffusivity field throughout the domain, while its principal axis
amplitudes remain constant (axx = 10−10, ayy = 10−12). Since the diffusivity field is
merely rotated, the determinant and the fractional anisotropy remain constant throughout
the domain. In this test, we observe drastically different errors for the different Hölder
matrix interpolations.

Figure 15: Inhomogeneous anisotropic case (rotation): convergence of global error over
grid spacing h. Expected convergence order 2 is observed for all discretization methods in
the well-resolved cases. The grid resolution sufficiently resolves the manufactured solution
and diffusivity at approximately h < 0.01. The particular choice of Hölder average has a
significant effect on the absolute errors.

Parameter Value

pd 0

pβ 6

axx 10−10

ayy 10−12

Table 7: Parameters of the manufactured solution defined in Section 2.6 for the inhomo-
geneous anisotropic (rotation) test case.
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3 The Hölder finite volume method

The CFEM method we use as gold standard performs orders of magnitudes better than
the methods using the matrix interpolation due to its analytical evaluation of Da(x). The
Hölder method with α = 1 with its arithmetic mean performs well in the under resolved
domain but shows only linear convergence rates at the highest refinements. The good
performance in the underresolved cases might be due to coincidence.
In comparison to the two earlier tests Figure 15 shows increased absolute errors. The
test shows that the Hölder method with α = −1, which is the analog to the harmonic
mean performs worse than the MPFA-O method. We also see that the log-Euclidian mean
(α → 0) performs consistently better than the MPFA-O method.

3.4.4 Inhomogeneus anisotropic case (combined)

In this test the diffusivity field is inhomogeneous and anisotropic, and we combined the
effects of spatially varying eigenvalues and rotations of the diffusivity field. A visual rep-
resentation of the solution ua(x) and several properties of the constructed diffusivity field
Da(x) can be found in Figure 17.

Figure 16: Inhomogeneus anisotropic case (combined): convergence of global error over
grid spacing h. A convergence order between one and two is observed for the HFVM
and the MPFA-O method. The log-Euclidian interpolation consistently outperforms the
MFPA-O method .
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3 The Hölder finite volume method

Figure 16 shows similar results to the testcase with pure rotation indicating that the
numerical error seems to be primarily due to the rotation of the principal axes of the
diffusivity. We again find that the Hölder method with the log-Euclidian interpolation
(α → 0) produces best results, while the interpolation for α = 1 shows significantly higher
errors.

Parameter Value

pd 4

pβ 6

axx 10−10

ayy 10−12

Table 8: Parameters of the manufactured solution defined in Section 2.6 for the inhomo-
geneous anisotropic test case.

3.5 Conclusion

We used the method of manufactured solutions, to firstly (numerically) establish conver-
gence and correct implementation of the considered discretizations schemes and secondly
to optimize the HFVM method for our use case. We used the a priori information that
the tumor cells migrate predominantly along white matter fiber tracks within the brain to
optimize the method.
As a result we found that the Hölder finite volume method with the log-Euclidian interpo-
lation (α → 0) is firstly the appropriate choice for our use case, and secondly outperforms
the industry standard MPFA-O method in all considered cases. Hölder methods with α ≥ 1

suffer from the swelling effect as visible in the left side of Figure 11 and also showed unfa-
vorable error scaling in the well resolved cases (see Figures 15, 16). It should be remarked
that for the presented results, we let the conforming finite element method (CFEM) eval-
uate the diffusivity field analytically to serve as a gold standard that should be considered
a lower error bound. Without this advantage the CFEM discretization performs similar
to the MPFA/HFVM methods, but would be inappropriate when significant advective
effects are included in the tumor models. All following two and three dimensional numer-
ical results presented in this document have been calculated by the HFVM method with
log-Euclidian interpolation (α → 0).
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3 The Hölder finite volume method

Figure 17: Visual representation of the manufactured solution properties for the spa-
tial domain [0, 1]2 with combined rotation and scaling (see Table 3). The parameterized
manufactured solution, once implemented, allows to investigate different aspects of the
diffusivity field influencing the numerical errors, simply by changing its parameterization.
Top left: Frobenius norm of the diffusion field Da(x). Top right: analytical reaction term
f(x) calculated from the given fields ua(x) and Da(x) (2.28, 2.33). The spatial variance of
the reaction term increases towards the top right of the domain. Middle left: Fractional
anisotropy (Eq. (2.27)) of the diffusion field. Middle right: rotation angle of the diffusion
field. Bottom Left: analytical solution ua(x). Bottom right: absolute error field for the
HFVM with α → 0,i.e, log-Euclidian interpolation.
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4 Stationalization

In the introductory Section 1.3 we discussed some of the challenges of bringing numerical
modeling in tune with the available data sets. In this section we present a stationalization
approach which allows us to make use of knowledge gained from the forward tumor mod-
eling and reconcile it with the available data.
We begin by introducing three PDE forward models in Section 4.1. These are specializa-
tions of the general class of anisotropic diffusion advection reaction equations defined in
Equation (2.1a). The three models can be seen as extensions of the simple Fisher-KPP
equation with increasing complexity. We will later use them to investigate how well the
stationalization performs for more and more complex tumor models.
We introduce a stationalization procedure in Section 4.2, which allows the approximation
of the most likely state of an advancing tumor front outside of the region visible on medical
images. We do this by deriving a nonlinear penalty term which allows the reconstruction
of the infinite time limit of the Fisher-KPP equation, i.e., the shape of the propagating
front. This penalty term approximates the advection term resulting from a transformation
into the comoving frame in which the propagating invasion front has stationary solutions.
We use that part of the tumor that is visible on the medical images as a pinning side
condition in the stationary problem formulation. This stationary problem formulation is
better aligned with data sets captured solely at the time of diagnosis.
We present the stationalized counterparts to the three forward models in Section 4.3. We
then state how we investigated the applicability of the stationalization in 4.4. These tests
are set up to determine whether or not the stationalization remains a viable approximation
to the tumor front in the presence of anisotropy and advective terms. In Section 4.5 we
present the results of the numerical investigation.
This part of the document contains previous work on the subject from the publication
Engwer and Wenske (2021). The derivation via the limit solution of the Fischer equation
is reproduced from there, and the subsequent numerical tests are set up similarly with
some extensions.
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4 Stationalization

4.1 Forward tumor models

We now state the three specializations of the anisotropic advection diffusion equation
(2.1a). We first state the well studied Fisher-KPP equation. We then define a myopic
diffusion model that incorporates inhomogeneous diffusion and myopic drift terms. Finally
we state a tumor model which includes inhomogeneous diffusion, the myopic drift terms
as well as haptotactic effects (Engwer et al., 2015, 2016). These three models belong to
the group of anisotropic advection diffusion reaction equations and differ merely in their
definition of advective effects or recognition of anisotropy.

4.1.1 1D Fisher-Kolmogorov-Petrovsky-Piscounov equation

The simplest variant of Equation (2.1a) which is still interpretable as a tumor model is
the one-dimensional Fisher-KPP equation. In it the material properties are assumed to
be isotropic and homogeneous and no advective effects are included. The Fisher equa-
tion is a special case of the more general Kolmogorov-Petrovsky-Piscounov (KPP) model
(Kolmogoroff et al., 1988; Fischer, 1937). The model combines a diffusive term, which
may be interpreted as a passive spread of the cells due to a random walk, and a logistic
proliferation term, as often encountered in biological contexts.

Definition 4.1.1 (1D Fisher-Kolmogorov-Petrovsky-Piscounov Equation)
Let x ∈ R be spatial coordinate, t ∈ T = [t0, te] ⊂ R a temporal coordinate, u(x, t) :

R×T → R a tumor density, ρ ∈ R the logistic growth rate and D ∈ R a scalar homogeneous
diffusion constant. In the one-dimensional Fisher-KPP equation we seek u(x, t) so that

∂u(x, t)

∂t
= D∆u(x, t) + ρu(x, t)(1− u(x, t)) ∀ (x, t) ∈ R× T. (4.1)

Many tumor models can be seen as extensions of this prototype diffusion reaction equation.
It is also used to describe other propagating fronts, e.g., in the context of chemical reactions,
or wildfire modeling.
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4 Stationalization

Properties of the Fisher-KPP equation

We will now reproduce some of the facts that are known about the one-dimensional Fisher-
KPP equation. For the initial conditions

lim
x→−∞

u(x, t0) = 1, lim
x→∞

u(x, t0) = 0,

the Fisher equation allows traveling wave solutions (Kolmogoroff et al., 1988). These
solutions converge over asymptotically long timescales to a wave front which is constant
in shape, moving laterally with a globally constant limit velocity v ∈ R.
For large times t, the temporal dynamics are dominated by lateral advection, and scarcely
by changes of the invasion profiles shape. The formation of these traveling fronts happens
quite rapidly, with only miniscule corrections to its shape at larger times. We will later
make use of precisely this property.
In higher spatial dimensions, the Fisher-KPP equation has related sigmoid-like traveling
wave solutions with spherically shaped expansion.
There are also less obvious stable wave front patterns in higher dimensions (Brazhnik and
Tyson, 1999). One of them describes a v-shaped waveform propagating through the two-
dimensional medium, which can be interpreted as two straight wave fronts collapsing into
each other at a given angle. Observed in the direction of a bisecting line, this combined
wave front is indeed stationary at certain speeds. There also exist spatially oscillating front
shapes, but these profiles are only possible for the extension of u(x) out of the relevant range
u ∈ (0, 1) (Brazhnik and Tyson, 1999). We focus on cases where the wave propagation
occurs as a radial expansion from a centered mass.

Nondimensionalization

We will use a nondimensionalized formulation of the Fisher-KPP equation to make our
statements more general with regard to the parameter ranges of the diffusivity D ∈ R and
the growth parameter ρ ∈ R. We do this only for the derivation of the penalty term and
return to dimensional form in the numerical tests when we investigate spatially varying
diffusivity fields that are generated or given by datasets.
Since the long-term behavior of the one-dimensional Fisher equation equals a simple lateral
movement, it is possible to state Equation (4.1) in equivalent form by introducing the
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4 Stationalization

dimensionless variables

t̃ = ρt, (4.2)

x̃ =

√︃
ρ

D
x− ṽt̃, (4.3)

ṽ =
1√
ρD

v . (4.4)

The transformation of the spatial coordinate can be understood as a scaled comoving
reference frame, where v ∈ R is the limit propagation speed. Seen from this co-moving
reference frame, the wavefront will not move laterally. Over a long period of time the wave
front will converge to its limit shape, which we are seeking to reconstruct. After insertion
of the new parameters, we find the nondimensionalized formulation

Definition 4.1.2 (1D Comoving Fisher-Kolmogorov-Petrovsky-Piscounov equa-
tion) Let x̃ ∈ R be a nondimensional spatial coordinate, t̃ ∈ T̃ = [t̃0, t̃e] temporal cordi-
nates, u(x̃, t̃) : R × T̃ → R a tumor density and ṽ ∈ R the limit propagation speed. We
seek u(x̃, t̃) so that

∂u(x̃, t̃)

∂t̃
= ∆u(x̃, t̃) + u(x̃, t̃)(1− u(x̃, t̃)) + ṽ∇u(x̃, t̃)⏞ ⏟⏟ ⏞

stationalization

(4.5)

The advective term ṽ∇u(x̃, t̃) stems from the coordinate transformation into the comoving
frame. We will use the comoving Fisher-KPP equation to derive a stationary problem
formulation in Section 4.2.

4.1.2 Myopic forward model

The next step up in complexity from the Fisher-KPP model is the following anisotropic
tumor model which includes the effects of inhomogeneous anisotropic diffusion and a (my-
opic) drift term that is a macroscopic effect of the biased random walk of the individual
cells. For details on this we refer to (Hillen and Painter, 2013). The model is again a
specialization of the FAAD Equation (2.1a) with the advection field b(x) = ∇·D(x) given
by the tensor divergence (see Painter and Hillen (2018); Hillen and Painter (2013)).

60



4 Stationalization

Definition 4.1.3 (Myopic forward model)
Let Ωb ⊂ Rd be a bounded domain (brain). For x ∈ Ωb and t ∈ T = [t0, te] as spatial and
temporal coordinates we again describe the diffusive material properties by D(x) ∈ Rd×d.
We seek the tumor density profile u(x, t) : R× T → R for which

∂u(x, t)

∂t
= ∇ · (D(x)∇u(x, t) + (∇ ·D(x))u(x, t))

+ ρu(x, t)(1− u(x, t)) ∀ (x, t) ∈ Ωb × T, (4.6a)

0 = (D(x)∇u(x, t) + (∇ ·D(x))u(x, t)) · n, ∀ (x, t) ∈ ∂Ωb × T, (4.6b)

u(x, t0) = g(x) ∀ x ∈ Ωb. (4.6c)

(4.6d)

The myopic diffusion has been identified as superior in the description of cell dynam-
ics compared to the common Fickian diffusion term ∇ · (D(x)∇u(x, t)). The introduced
drift term allows for structure formation like local maxima at places where cells aggregate
(Painter and Hillen, 2018). We will use this tumor model to investigate the applicability of
the stationalization in the presence of anisotropic diffusion and weak advective effects.

4.1.3 Haptotactic tumor model

As a representative for more complex forward tumor models we use the model developed
in Engwer et al. (2015, 2016), including a logistic proliferation term. It is one example
of the multiscale modeling approach. Both the anisotropic diffusion terms as well as the
haptotactic effects can be traced back to microscopic assumptions made for the individual
tumor cells.

Definition 4.1.4 (Haptotactic forward model)
Let Ωb ⊂ Rd be a bounded domain (brain), x ∈ Ωb be spatial coordinate, t ∈ T = [t0, te] a
temporal coordinate and u(x, t) : Ωb × T → R a tumor density. Further, let Dt(x) ∈ Rd×d

be the tumor diffusion tensor reconstructed from the water diffusion tensor Dw(x) ∈ Rd×d,
b(x) ∈ Rd the advective field defined shortly and g(x) ∈ R the initial tumor density. The
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model by Engwer et al. (2015, 2016) is then given by

∂u(x, t)

∂t
= ∇ · (Dt(x)∇u(x, t)) +∇ · (b(x)u(x, t))

+ ρu(x, t)(1− u(x, t)) ∀ (x, t) ∈ Ωb × T, (4.7a)

0 = (Dt(x)∇u(x, t) + (∇ ·Dt(x))u(x, t)) · n, ∀ (x, t) ∈ ∂Ωb × T, (4.7b)

u(x, t0) = g(x) ∀ x ∈ Ωb. (4.7c)

Where the contributing terms are

Dt(x) =
s2

λ0(d+ 2)

(︃
1+ 2

Dw(x)

trDw(x)

)︃
, (4.8a)

b(x) = v(x)− g(A(x))Dt(x)∇A(x), (4.8b)

v(x) =
2s2

λ0(n+ 2)

(︃∇ ·Dw(x)

trDw(x)
− Dw(x) · ∇ trDw(x)

(trDw(x))2

)︃
, (4.8c)

g(A(x)) =
λ1f

′(A(x))

(k+A(x) + k− + λ0)
, (4.8d)

f ′(A) =
k+k−R0

k+A(x)
, (4.8e)

A(x) = FA(Dw(x)) (4.8f)

The above model contains parameters s, λ0, λ1, k
+, k−, R0 ∈ R from the microscopic scale,

that are carried through the upscaling into the macroscopic model. For some of these
parameters it is possible to define reasonable bounds from in-vitro experiments. The water
diffusion tensors Dw(x) are given by the DTI datasets. Engwer et al. (2015) modeled
the receptor binding availability to be proportional to the fractional anisotropy (FA) of
the tissue (see Eq. (2.27)). The resulting haptotactic advective field is proportional to
∇FA(x), which has the effect that tumor density is transported towards regions of high
anisotropy which in our case are the white matter tracts of the brain. This haptotactic
advection is the main contributor to the observed heterogeneity in this model, with the
myopic drift term diminishing in comparison.
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4.2 Stationalization of Fisher-KPP equation in 1D

Earlier we introduced a comoving formulation of the Fisher Equation (4.5). For large times
t̃ the rate of change ∂u(x̃,t̃)

∂t̃
within Equation (4.5) will tend to zero, and the solution will be

effectively stationary. The limit speed of the traveling wave solutions has been derived to
be v = 2

√
ρD, and in nondimensional coordinates ṽ = 2 (Kolmogoroff et al., 1988). Within

this formulation appears an advective term ṽ∇u(x̃, t̃) which results from the coordinate
transformation into the comoving frame. It can be understood as counteracting the lateral
movement of the propagating front (Ablowitz and Zeppetella, 1979; Kolmogoroff et al.,
1988). We will refer to this advective term and its approximations as the stationalization
term.

Remark 4.2.1 In the original publication by Kolmogoroff et al. (1988) it is stated that
there are solutions for speeds higher than ṽ. This fact is due to the reaction term acting
independently of the local environment. For the limit of diminishing diffusion, the reaction
term alone can induce very high traveling wave speeds for initial conditions which are close
to horizontal. For initial conditions with compact support, which is the relevant case here,
the speed tends to 2

√
Dρ as time goes to infinity (Kolmogoroff et al., 1988). In the context

of glioma invasion only the very rapid spatial decay of tumor density is relevant and we
expect no extended density distributions as initial conditions.

We will now propose an alternative form of that term, which is exact only in the infinite
time limit. We do this via an analytical limit solution us(x̃) : R → R of the comoving
Fisher-KPP equation (4.5). With this analytical solution us(x̃) we calculate an analytical
expression for ∇us(x̃). We then express this gradient in terms of the amplitude of us(x̃).
This is possible because the solution is invertible in the relevant range us(x̃) ∈ (0, 1). The
resulting expression p(·) = ṽ(∇us(x̃))(·) : R→ R is a mapping from the amplitude of the
limit solution us(x̃) to its gradient. With this, we may express the problem of finding the
stationary limit solution us in the following way,

0 = ∆us + us(1− us)− p(us)⏞ ⏟⏟ ⏞
stationalization

. (4.9)

We will now derive the approximation p(us(x̃)) : R → R to the advection term within
Equation (4.5) via the analytical solution stated by Ablowitz and Zeppetella (1979). For
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long time scales and no boundary conditions, a comoving wave form can be given in explicit
form for the special wave speed of ṽ = 5√

6
,

us(x̃) =
1(︂

1 + exp
(︂

x̃√
6

)︂)︂2 . (4.10)

We call the analytical limit profile (4.10) the equilibrated wave-form or limit solution
(Ablowitz and Zeppetella, 1979). A stationalization term p(us) can be directly derived
from it. The gradient of the analytical solution (4.10) is

∇us(x̃) =
−
√︂

2
3 exp

(︂
x̃√
6

)︂
(︂
1 + exp

(︂
x̃√
6

)︂)︂3 . (4.11)

The inverse of the analytical solution in the range us ∈ (0, 1) is given by

x̃(us) =
√
6 ln

(︂ 1√
us

− 1
)︂
. (4.12)

and represents the mapping from a given amplitude us ∈ R to the corresponding position
x̃ ∈ R within the limit solutions profile (4.10). Substituting the inverse (4.12) into the
gradient expression (4.11) yields an analytical term for (∇us)(us)

∇us(us) =

√︃
2

3
(1−√

us)us, (4.13)

This term is only dependent on the local amplitude of us(x) providing the gradient of the
wave fronts profile upon evaluation. We can state a closed form for the stationalization
term

p(us) = |ṽ|
√︃

2

3
(1−√

us)us,

where we used the absolute value of ṽ to not be dependent on the direction of the traveling
front. We have essentially calculated a nonlinear penalty term, which is only dependent
on the local amplitude, and not the local gradient and has the same effect on the solution
as the advective term in the comoving formulation in Equation (4.5). For this simple
one-dimensional and homogeneous case the problem of finding the limit solution to the
comoving Fisher-KPP equation (4.5) can be formulated either with p(us) as a penalty
term, or the advective term −ṽ∇us(x).

Remark 4.2.2 The strict equivalence between p(us) and the stationalizing term −ṽ∇us(x)
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only holds for the limit case t → ∞, initial conditions that lead to the solution given by
Ablowitz and Zeppetella (1979) and ṽ = 5√

6
, in which the analytical solution is known and

in absence of boundary conditions, i.e., Ω ≡ R. In all other cases it should be considered
an approximation.

Although this formulation is only strictly equivalent in case of a completely equilibrated
wave form, we will use the derived penalty term p(us(x)) as an approximation allowing us
to define stationary wave-pinning type models. In higher dimensions, the transformation
into a comoving frame, and an unambiguous inversion pose nontrivial challenges.
The Fisher-KPP equation is one representative out of a family of KPP-type equations
which combine a diffusive term with a nonlinear reaction term f(u). The reaction term is
often chosen in a manner so that it dynamically connects two fixed points of amplitude:
f(0) = 0, f(1) = 0 and f(u) > 0 for u ∈ (0, 1). Although an exact analytical description
of the limit solutions proves difficult, the rough characteristic of propagating fronts found
in nature (combustion, bacterial growth etc.) is often s-shaped (sigmoid). The gradient
distribution of any sigmoid-like traveling wave front will have a simple shape, very similar
to p(us). For any sigmoidal wave-form |∇u| will be zero for u = 0 and u = 1 and of higher
amplitude for 0 < u < 1. The underlying idea of the stationalization procedure is, that the
gradient distribution |∇u|(u), and therefore the penalty term necessary to calculate the
stationary wave front, may be approximated to a good degree of accuracy even for those
cases where an analytical solution is not at hand.
It was proven by (Huang, 2008), that all (planar or nonplanar) traveling wave front solu-
tions to the Fisher equation are stable, given that the perturbations have compact supports.
The shape of the wave front is therefore robust in the sense that a profile which is flatter
than the limit solution would approach the analytically predicted one from below due to
the nonlinear growth terms, and a profile, which is steeper than the limit shape, will flatten
through diffusion. The stability result carries over to the stability of the predicted gradi-
ent distribution. The general shape of the gradient profile (∇us)(us) is robust in the sense
that the gradient distribution of a profile which is flatter than the limit solution would
approach the analytically predicted one from below due to the exponential growth terms
and a profile which is steeper than the limit shape will flatten through diffusion. It is this
stability that may make the stationalization a viable approach for more elaborate tumor
models.
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4.3 Stationalized tumor models

We now define stationary problems with the help of the penalty term derived in the pre-
vious section. We define the problems within a finite domain and they are intended to
approximate the tumor progression at finite times. The assumptions of an infinite domain
and t → ∞ which we used to derive the term are not given anymore (see Remark 4.2.2).
There is one more component to formulating the stationary formulations. The limit solu-
tion to the comoving formulation given in Equation (4.10) is not unique. With us(x̃) as an
limit solution to (4.5) any laterally shifted profile us(x̃ − δ), with a constant offset δ ∈ R
is also a solution to (4.5). That implies that in order to define the approximative problem
formulations to estimate the tumor density additional side conditions are necessary.
We now define the stationary models which correspond to the forward models we introduced
in Equations (4.1 ,4.6, 4.7a). We define the stationary Fisher model in nondimensionalized
form, and the other two models which incorporate inhomogeneous diffusion fields in di-
mensional form. Since the infinite time assumption is not valid anymore, the value v ∈ R
should be considered a free penalty parameter in these models.

Definition 4.3.1 (1D Stationary Fisher model)
Let Ωb ⊂ R be the one-dimensional domain (brain), and x̃ ∈ Ωb a spatial coordinate.
Within Ωb we define a smaller enclosed domain Ωi ⊂ Ωb representing the border of the
visible tumor on the medical images. We then seek the tumor density profile us(x̃) : R→ R

for which

0 = ∆us(x̃) + us(x̃)(1− us(x̃))⏞ ⏟⏟ ⏞
tumor model prototype

− |ṽ|
√︃

2

3
(1−

√︁
us(x̃))us(x̃)⏞ ⏟⏟ ⏞

stationalization

∀x̃ ∈ Ωb,

(4.14a)

∇us(x̃) · n = 0 ∀x̃ ∈ ∂Ωb,

(4.14b)

us(x̃) = 0.16 ∀x̃ ∈ ∂Ωi.

(4.14c)

At the border of the visible tumor ∂Ωi we imposed an internal Dirichlet boundary con-
dition, assuming that the visibility threshold of the tumor is at 16% volumetric tumor
density (Swanson et al., 2008). The additional boundary at ∂Ωi is used to localize the
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stationary solutions.
The two stationary formulations (4.15a, 4.7a) of the myopic- and the haptotactic for-
ward models given in Equations (4.6a) and (4.7a) are modeled analogously to the above.
They are modeled by adding the stationalizing penalty term p(us), setting the temporal
derivative to zero and imposing the internal Dirichlet constraints at the visibility threshold.

Definition 4.3.2 (Myopic stationary model)
Let Ωb ⊂ Rd be a bounded domain (brain) with Ωi ⊂ Ωb a smaller enclosed domain (tumor),
x ∈ Ωb a spatial coordinate, D(x) : Rd → Rd×d a diffusivity field, ρ ∈ R a growth rate and
v ∈ R the penalty parameter. We then seek the tumor density us(x) : R

d → R for which

0 = ∇ · ((D(x)∇us(x)) + (∇ ·D(x))us(x))

+ ρus(x)(1− us(x))− |v| ρ
√︃

2

3

(︂
1−

√︁
us(x)

)︂
us(x) ∀x ∈ Ωb, (4.15a)

0 = (D(x)∇us(x) + (∇ ·D(x))us(x)) · n, ∀x ∈ ∂Ωb, (4.15b)

us(x) = 0.16 ∀x ∈ ∂Ωi. (4.15c)

Here, ∂Ωi is the visibility border of the tumor on the medical images, and Ωi the tumor
volume. The stationary myopic model includes the effects of anisotropic diffusion and
myopic drift just as in the forward model. They were also investigated in Engwer and
Wenske (2021).

Definition 4.3.3 (Haptotactic stationary model)
Let Ωb ⊂ Rd be a bounded domain (brain) with Ωi ⊂ Ωb a smaller enclosed domain (tumor),
x ∈ Ωb a spatial coordinate, Dt(x) : Rd → Rd×d the tumor diffusivity field reconstructed
from the medical data (see Eq. (4.8a)), ρ ∈ R a growth rate and v ∈ R the penalty
parameter. We then seek the tumor density us(x) : R

d → R for which

0 = ∇ · (Dt(x)∇us(x) + b(x)us(x))

+ ρus(x)(1− us(x))− |v|ρ
√︃

2

3

(︂
1−

√︁
us(x)

)︂
us(x) ∀x ∈ Ωb, (4.16a)

0 = (Dt(x)∇us(x) + b(x)us(x)) · n, ∀x ∈ ∂Ωb, (4.16b)

us(x) = 0.16 ∀x ∈ ∂Ωi. (4.16c)
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4.3.1 Notes on uniqueness

The limit solutions to the forward Fisher-KPP equation (4.1) allow for traveling wave so-
lutions moving in both the positive and negative direction. In the stationalized (comoving)
formulation we find a similar situation.
Since we use an internally constrained surface given by the visible tumor surface, we may ex-
pect two possible solutions to the comoving formulation (4.5) or its approximation (4.14a).
The first stationary solution corresponds to a traveling wave which moves outwards from
the tumor center, at that point in time where it satisfies the Dirichlet constraint (see Eqs.
(4.16c, 4.15c, 4.14c)). This solution is the relevant one for the given application. We call
this the outwards moving solution branch (OMS). The second possible solution corresponds
to a traveling wave moving into the constrained region, i.e., the inwards moving solution
(IMS). This solution branch is irrelevant to tumor growth modeling. The stationary solu-
tions of the two branches are sketched in the left side of Figure 18. When considering the

Figure 18: Left: schematic of outward and inward moving solutions (OMS, IMS), both
fulfilling the internal Dirichlet constraints (black dots) at the visibility threshold at u =

0.16. Right: plot of combined reactive terms, i.e.: us(1 − us) −
√︂

2
3(1 − √

us)us). The
penalizing regime is indicated in gray. The visibility threshold is within the penalizing
regime.

effective reaction term consisting of the logistic growth combined with the penalty term
(Figure 18), we find that it has a penalizing regime for 0 < u < 4

9 and a growth regime for
4
9 < u < 1.
Any diffusive process transports mass from regions of high concentration to those with lower
concentration. The combined reaction term sketched in the r.h.s. of Figure 18 counteracts
this process. The visibility threshold, and therefore the internal dirichlet constraints, lie
within the penalizing regime. In order to select the OMS solution branch, which is the rel-
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evant one for the medical case, we supply the Newton iteration of the variational problem
(2.4) with initial guesses us(x) ≪ 1,∀x /∈ Ωi which are well within the purely penalizing
regime, so that the newton iteration converges to the outward moving solution reliably.

4.4 Numerical methods

In order to test the validity of the stationalization approach, a series of numerical ex-
periments was conducted. We will now describe their setup and the error quantization
before presenting the results. In these tests the solutions to the forward and the stationary
problems are compared. The numerical setup of these comparisons follow three steps:

1. The forward simulations are started from a small Gaussian initial condition up to a
given time and represent the tumor growth predicted by the forward model.

2. Then, the forward solution is used to mimic the thresholded information of the med-
ical images by defining a level set on the forward solution as the internal Dirichlet
constraint for the stationalized problem formulations.

3. Then, the corresponding stationary problem is solved and compared against the
predictions of the forward model.

In Section 4.5 we will investigate the stationalization via direct comparison. Given a
(forward) reference solution u(x, t) and a stationary approximation us(x) within Ωb ⊂ Rd

(brain) and a threshold (level set) value θ ∈ R we define two domains A and B as

A = {x ∈ Ωb|u(x, t) ≥ θ}, B = {x ∈ Ωb|us(x) ≥ θ}.

The medically relevant information is the spatial discrepancy between two level set surfaces
(∂A, ∂B) of these density profiles. One possible measure for this error is the symmetric
difference |A ⊕ B|, as depicted in Figure 19. It describes those volumes, which are either
included in A but not in B, or vice versa. That way, both over- and underestimations
of the approximation us(x) are represented. The symmetric difference is, however, not
comparable between 1D, 2D and 3D simulations.
The most expressive information in the medical context is the distance between the two
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Figure 19: Left: Symmetric difference region between the two level sets |A ⊕ B|: gray
regions. Right: localized sketch of the symmetric difference region, the surface of the level
set volume |∂A| and the approximate distance between the two level sets LB.

level sets. We therefore introduce the global characteristic level set distance.

Definition 4.4.1 (Global characteristic level set distance)
For a given level set value θ ∈ R, we define the characteristic level set distance between ∂A

and ∂B as
LB :=

|A⊕B|
|∂A| .

It quantifies the average distance between the two level sets. Assuming a spherical reference
geometry for A we can approximate this expression in the following way. Given the radius
rA of a reference sphere, LB simplifies to

L1d
B =

|A⊕B|
2

, L2d
B =

|A⊕B|
2πrA

and L3d
B =

|A⊕B|
4πr2A

. (4.17)

We will state this error for the numerical 2D and 3D examples where forward simulations
are compared to stationary simulations.
The presented tests increase in complexity from the 1D homogeneous Fisher-KPP Equa-
tion and its stationalization in Section 4.5.1 to the 2D inhomogeneous test case with the
myopic diffusion model in Section 4.5.3. Subsequently, an investigation of the gradient
profiles in both 1D and 2D is presented in Section 4.5.4. There, we directly compare the
penalty term with the observed gradient statistics. Finally, we present comparisons be-
tween forward simulations and stationary approximations on a healthy patient dataset in
Section 4.5.5. We present the application to real patient data sets separately in Section 6
where the internal constraints are given directly by the medical segmentation.
We want to stress that the stationalization approach is independent of the choice of nu-
merical discretization method. No significant differences of the results were observed when
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other numerical schemes were used (MPFA-O, CFEM, HFVM). For the 1D examples we
used a conforming finite element discretization with piecewise linear base functions. For
the 2D and 3D examples, we used the Hölder finite volume method as introduced in Section
3, with the log-Euclidian matrix interpolation (α → 0).
The temporal discretization was an implicit Euler method for all tests conducted. The
grid resolutions and initial conditions are stated next to the examples.

4.5 Numerical results

The following numerical results represent an investigation of the applicability of the sta-
tionalization. For this purpose we set up 1D comparisons for both homogeneous and
inhomogeneus media in Sections 4.5.1 and 4.5.2. We then present 2D results of the myopic
forward and stationary model to investigate whether the stationary approximations retain
sufficiently precise for inhomogeneous media and in higher dimensions (see Section 4.5.3).
This testcase is also easily reproducible for other researchers. We investigate the validity
of the stationalization term approximation via gradient statistics in Section 4.5.4. Finally
we show a direct comparison of 3D results on a data set of a healthy subject for the hap-
totactic tumor model (see Eq. (4.7a)). Similar tests were conducted with a conforming
finite element discretization for Engwer and Wenske (2021).

4.5.1 1D homogeneous Fisher-KPP equation

We now present 1D simulations for the homogeneous Fisher-KPP equation and its station-
alized counterpart. The numerical test is set up as follows. We begin a forward simulation
of the Equation (4.1) from a Gaussian initial condition imitating carciogenesis. We chose
D = 1 and ρ = 1 so that we may directly compare the forward results to those of the
nondimensionalized stationary formulation. We conduct the forward simulation imitating
the tumor growth phase. In this growth phase the tumor grows outward forming a propa-
gating front. We then use the result of the forward simulation after a given time te = 20

to define the pinning side condition stated in Equation (4.14c) for the stationalized Fisher-
KPP formulation (4.14a). The side condition is found by assuming a visibility threshold
of u(x, te) ≥ 0.16. With this side condition, the stationalized problem with ṽ = v = 5√

6
is

solved to approximate the underlying tumor distribution. Figure 20 illustrates the numer-
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ical setup and the result.
In the top plot of Figure 20 we see the Gaussian initial condition at x = 50. From this

Figure 20: Top: forward simulations of the homogeneous Fisher-KPP equation (D =
1, ρ = 1), and the stationalized formulation given in Equation (4.14a) with ṽ = v = 5√

6
.

At te = 20 the internal pinning side condition for the stationalized formulation is set at
the locations where u(x, te) = 0.16 (black dots). Bottom: zoom of the forward simulations
profile (lower left rectangle in upper plot), which would not be visible in a thresholded
imaging modality, and the stationalized approximation to it. The two profiles show near
perfect agreement.

central peak the tumor grows outward over time. One important observation is, that the
rough shape of the tumor invasion front is formed rapidly. This implies that the difference
between the finite time wave front and the limit profile is small even early in the tumor
progression.
The bottom part of Figure 20 shows the left part of the forward solution which is out-
side of the presumed imaging threshold (u(x, t) < 0.16) in detail. The assumed visibility
threshold is marked by a dashed horizontal line. The profile below this threshold would
not be visible on the medical images but is that information which is most important in
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the treatment planning. The solution to the stationary problem formulation and that of
the forward solution show near perfect agreement. The remaining difference between the
two could be further diminished by altering the penalty parameter v.
The one-dimensional Fisher equation is not suited to predict tumors in real patients. We
continue by presenting how the stationalization works in the presence of inhomogeneous
diffusion.

4.5.2 1D myopic testcase

We now present results for a testcase similar to the previous one, with the important dis-
tinction that we include myopic drift and diffusion effects. The forward model is given by
Equation (4.6a) and the stationary model by Equation (4.15a). We assume a pseudoran-
dom diffusivity field Dβ(x) ∈ R as defined in Equation (2.25). We again start the forward
simulation from a centered Gaussian initial condition.
The top of Figure 21 indicates the three states of the forward simulation. The grey back-
ground profile shows the local diffusivity perturbations. The bottom of Figure 21 shows
the final state of the forward simulation, as well as the stationary approximation to it.
Both the forward and the stationary result show local perturbations away from a smooth
sigmoidal front shape. The effect of statistical scattering of the diffusive properties on the
macroscopic front speed is non-trivial. In cases that include anisotropic diffusion, we no
longer know the limit speed exactly, and the penalty parameter v has to be chosen man-
ually. The results give an indication of the effect that diffusivity perturbations of realistic
data sets have on the stationary solution. The diffusivity field in this example is only
locally perturbed. In the next section we will present results with more long-range changes
in diffusivity.

4.5.3 2D myopic diffusion model

To investigate if the stationalization may remain applicable for more complex situations,
we set up a two-dimensional testcase. We numerically solve the 2D myopic tumor model
given in Equation (4.6). The setup follows the same steps as in Section 4.5.1, but now the
diffusivity field D(x) is inhomogeneous, leading to contributions of the myopic advection

73



4 Stationalization

Figure 21: Top: Forward simulations of the anisotropic myopic tumor model (ρ = 1,
Dβ as defined in Equation (2.25), β = 0.2) at different time points and the solution
to the stationalized formulation given in Equation (4.15a) with v = 5√

6
. At t = 20 the

internal pinning side condition for the stationalized formulation is set at the locations where
u(x) = 0.16 (black dots). Bottom: Zoom of the forward simulations profile, which would
not be visible in a thresholded imaging modality, and the stationalized approximation to
it. The two profiles show perturbations from the varying local diffusivity field.

terms. We set the diffusivity distribution for the simulation box to

D(x) = 12

(︃
1.0 + sin

(︃
3π

Lx
x1

)︃
0.9

)︃
, (4.18)

with Lx = 100 and use the growth parameter ρ = 1. This diffusivity field effectively
seperates the domain into a region with low diffusivity (center) and two regions with high
diffusivity (left and right). This can be thought of as artificial adjacent grey and white mat-
ter regions. The simulation domain is given by x ∈ [0, 100]2 and discretized into 200× 200

control volumes. We again start the forward simulation from a small Gaussian initial con-
dition at the center. After the growth phase at t = 20, we use the forward solution to set
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the internal boundary condition for the stationalized formulation of the myopic model (see
Eq. (4.15a)). The solution of the forward model and the stationalized model (v = 5√

6
) is

presented in Figure 22. Figure 22 compares the forward solution and its level sets to the

Figure 22: Level sets on both the forward and the stationary solution are set at
u(x, te), us(x) = 0.16, 10−2, 10−3. Top left: forward simulation of the myopic tumor model
4.6 from small Gaussian initial condition at t = 20. Top right: line plot through the
initial condition and the diagonal elements Dxx of the diffusivity field D(x), see Equation
(4.18). Bottom left: solution to the stationary problem formulation with identical level
sets. Bottom right: absolute error field of the stationary solution.

stationalized approximation visually. The general shape of the invasion profile predicted
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by the forward model is correctly reproduced. In vertical direction through the location of
the initial condition the predicted invasion extent is small, correspondingly in horizontal
direction the invasive profile is larger. The stationalization therefore correctly produces
an extended profile in those regions where the diffusivity is increased and a diminished
intrusion where the diffusivity is low. This is a key property. If the stationalization should
be applied to models with additional advective or diffusive effects, then the predicted de-
viation of the level sets will show correct extension or retraction, at least qualitatively.

4.5.4 Investigation of gradient statistics

In the derivation of the stationary models, we assumed that the gradient distribution of
the front profiles may be approximated to a good degree of accuracy. To verify this,
we investigate the quality of the approximation by directly comparing the analytically
predicted gradient distribution of the Fisher-KPP Equation (see Eq. (4.13)) with the
observed gradient amplitudes of our numerical forward simulations.
Figure 23 shows the observed gradient amplitudes of the forward simulations |∇u(u)| (grey)
next to the one assumed in the penalty term |∇us(us)| (yellow). The results show that for
the 1D homogeneous Fisher equation, the gradient statistic indeed approaches the predicted
limit over time (top). In the middle of Figure 23 it is also visible that the influence of
short-range inhomogeneity is limited to small deviations away from the correctly predicted
baseline.
We also present the measurement of the absolute gradient along a horizontal and vertical
line through the 2D solution presented earlier in Figure 22. In that numerical setup, the
deviations in diffusivity were more long-range than in the 1D examples. The interpretation
of these gradient statistic for the inhomogeneous 2D example is a bit more involved. The
horizontal measurement is from the left border of the domain into the center of the initial
condition. The vertical measurement was taken from the bottom of the domain to the
center. The horizontal and vertical line are marked in white in Figure 22.
For the vertical measurement we see in Figure 23 that the derived gradient of the limit
solution is considerably smaller in amplitude than the observed gradient, resulting in a
comparatively strong overestimation of simulated tumor density along this path. This
error can be directly observed at the two locations (50, 35) and (50, 65) in the error plot
within Figure 22. For the horizontal measurement we find that the derived gradient serves
a better approximation, resulting in only miniscule errors in this direction.
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Figure 23: Top: Gradient distribution at three states of the 1D homogeneous numerical
example (Fisher equation) from Section 4.5.1. The gradient distribution approaches the
predicted curve given in Equation (4.13) as time increases (arrow). Middle: Final distri-
bution (t = 20) for 1D simulations of the myopic diffusion model as given in Section 4.5.2
with different amounts of diffusive scattering (β = 0.2, 0.1, see Equation (2.25)). Bottom:
gradient statistics along a vertical and a horizontal line through the 2D density profile of
the 2D myopic test case from Section 4.5.3. The two lines along which the gradients were
measured are indicated in the top left of Figure 22.

In this setting we have not optimized the penalty parameter. A simple adjustment of
the parameter v ∈ R could improve the approximation further. The presentation of the
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gradient statistic for the 2D testcase illustrates that the choice of a globally constant
penalty parameter v becomes nontrivial as soon as spatially varying effective front speeds
are expected.
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4.5.5 3D comparison of forward and stationary solutions

We now present direct comparisons of forward simulations of the haptotactic model from
Equation (4.7a) with its stationalized counterpart (4.16a). The model includes ansiotropic
inhomogeneous diffusion and haptotactic advective effects. The simulations are conducted
on a data set of a healthy subject (camino) which is publicly available (Cook et al., 2006).
In this setup, we artificially set the locations of carciogenesis and simulate the invasions up

Figure 24: Axial slice of the dataset of a healthy subject (camino), with fractional
anisotropy (FA) shading (Cook et al., 2006). Positions of small Gaussian peaks (initial
conditions) for the comparison of forward and stationary simulations are marked with
black crosses: Frontal: (0.11 m, 0.08 m, 0.05 m), Posterior: (0.11 m, 0.14 m, 0.05 m), Left:
(0.08 m, 0.11 m, 0.05 m), Right: (0.14 m, 0.11 m, 0.05 m)

until a certain time te = 30d. At this end time we obtain the internal constraints necessary
for the calculation of the stationary simulations by taking level sets of u(x, te) = 0.16 on
the forward solutions. We then solve the stationary problem formulations and compare
how well the stationary solutions correspond to the forward profiles. Figure 24 shows the
chosen locations of carciogenesis of the four separate simulations. We quantify the errors
via the characteristic level set distance introduced in Equation (4.17). The errors can
be interpreted as the average distance between the level sets on the forward simulations
and the level sets on the stationary simulations. These results may illustrate that the
stationalization provides good estimates on the state of the forward simulations even for
more elaborate models.
It should be stressed that the tests may not give any insights on the validity of the tumor
model itself. They merely quantify how well the stationalization performs against the
forward model predictions.
The parameters that we use for the forward and stationary simulation are listed in Table
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Parameter Value

s 1e-6 [ms ]

ρ 8.44e-7 [1s ]

R0 1e3

λ0 0.1 [1s ]

λ1 1e-3 [1s ]

k+ 0.1 [1s ]

k− 0.1 [1s ]

v 5√
6

Table 9: Parameters used for the 3D stationary simulations of model (4.16a) resulting in
a low effective Péclet number Pe ≈ 0.1.

9. The average Péclet number throughout the brain for the chosen parameterization is
approximately Pe ≈ 0.1, indicating that the problem is diffusion dominated (see Eq.
(2.2)).
Figure 25 presents level sets on the final states of the four forward solutions and their
corresponding stationary solutions. The forward level sets u(x, te) = 0.16, 10−2, 10−3 are
marked in green and the level sets on the stationary solutions are marked in red. The
background is given by the fractional anisotropy (FA) defined in Equation (2.27). The
indicated grid has a spacing of 1 cm. For this parameterization which results in low
effective Péclet number, we find near-perfect agreement between the level sets on the
forward solution and the level sets on the stationary solutions. It is also visible that the
extensions of the predicted tumor profile into regions of high anisotropy (dark) are shared
between both formulations. The chosen end time of te = 30d seems to be sufficiently large
for the infiltration fronts to build up.
The average level set distances of these four simulations are indicated in Figure 26. It
shows the characteristic level set distance LB for many possible level set values. In any
practical application, only those level set values are relevant that reproduce the treatment
radius of approximately 1.5 - 2 cm. The grey region indicates our chosen range of level
sets. For these simulations, we have not systematically optimized the penalty parameter.
Doing so might lower the errors further. The observed LB error is largest for the simulation
started from the frontal Gaussian peak, possibly due to the high anisotropy in that region.
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Figure 25: Comparison of level sets on forward solutions (u(x, te) = 0.16, 10−2, 10−3)
shown in green and corresponding stationary solutions (us(x) = 0.16, 10−2, 10−3) shown
in red. The background is given by the fractional anisotropy, color coded as in Figure 24.
The indicated grid spacing is 1 cm. Four separate simulations were conducted with initial
conditions in different positions (see Fig. 24). Top left: Final state of simulation with
frontal initial condition. Top right: posterior initial condition. Bottom left : left initial
condition. Bottom right : right initial condition.

81



4 Stationalization

Figure 26: Logarithmic plot of the characteristic level set errors LB as defined in Equation
(4.17) for the four simulations presented in Figure 25. The grey region spans the two outer
level set values used in this work of 10−3 and 10−2. The error LB should be interpreted
as the expected distance between the level sets on the stationary solution to identical level
sets on the forward simulations.
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module

Throughout the glioMath project, we developed the software module DUNE-glio within the
distributed and unified numerics environment (DUNE) (Blatt et al., 2016). The codebase
was used to produce the numerical results for Engwer and Wenske (2021), Corbin et al.
(2020) and this document. One of the initial goals of the glioMath Project was to validate
or falsify PDE tumor models with real patient data sets. The software project DUNE-
glio was conceived to optimize for this use case. We now give a short overview over its
capabilities, and the design decisions that were made in its implementation.

5.1 Features of DUNE-glio

The initial goal of validating forward models via medical dataset was considerably extended
during the project. DUNE-glio is currently capable of:

• Reading DTI and SEG data sets from medical data formats (e.g., .nii, .dcm)

• Conducting forward simulations of PDE tumor models on real patient data sets

• Easy extension with new tumor models or numerical methods

• Switching between or comparing of different discretization schemes (MPFA, CFEM,
DG, HFVM)

• Switching between implicit and explicit time-stepping schemes of different orders
(e.g., implicit/explicit Euler, Runge Kutta methods (PDELab))
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• Conducting stationary simulations as presented in Section 4

• Conducting automated comparisons between forward- and stationary formulations,
as presented in Section 4.5.5

• Exporting simulation results back to medical data formats (.nii/.dcm)

• Conducting automated parameter and grid refinement studies via the Study<...>

class

• Numerical verification of all implemented discretizations via time-dependent analyt-
ical solutions (e.g., comoving Gaussian diffusion kernel).

• Numerical verification of all implemented discretizations via stationary manufactured
solutions, as presented in Section 3.4.

5.2 Software architecture

We now describe some design decisions that were made in the layout of the module. We
limited our implementation to structured grids, as the medical data sets were available in
structured voxel-based file formats. Since a typical data sets total number of voxels is ap-
proximately 1-5 million, a performant implementation was necessary. We made extensive
use of static polymorphism via template programming. Also, the code is parallelized via
functionality from DUNE-PDELab and the template solver library DUNE-istl.
The implementation of numerical methods was held modular in the sense that new dis-
cretizations can be easily added to the project, and one may conveniently switch between
them to compare results. Similarly the implementation is separated into templated model-
classes to allow more models to be implemented as soon as they are published. The
interfaces of the numeric implementation classes (LocalOperator) and the classes defining
the tumor model (ModelCore) have also been extended to systems of coupled PDE’s for
Corbin et al. (2020). Figure 27 provides an incomplete diagram of the most important
classes within the module.

The DUNE-glio module is config-controlled via two external config files that need to be
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Figure 27: Schematic of the most important components of the DUNE-glio software
module. The study class is templated with one of three simulation types, which themselves
are templated by the used numerical discretization and the underlying physics (tumor)
model. The DataProvider handles the the medical data set input (DTI, SEG), and the
OutputManager handles the functionality of writing different file formats (.vtk , .nii).

provided as command line arguments. The first configuration file (simConfig) includes all
information necessary to parameterize the tumor models, to state the intended simulation
time and step-width, configure the solvers and select which output fields should be written.
The second config (dataConfig) includes information on the underlying medical data set
, e.g., total dimensions, voxel sizes and selected slice for 2D simulations.
The top-most class is the class Study<SimType>, templated with one of three simula-
tion types. The Study<SimType> class offers the possibility to run parameter studies
on model parameters, to successively refine the grid for convergence tests, or do sim-
ple forward runs or stationary simulations. The three currently implemented simula-
tion types are a classical forward run (ForwardSimulation<LOP, ...>), a single sta-
tionary simulation (StationarySimulation<LOP, ...>) and a comparison of the two
(ForwardStationaryComparison<LOP,...>). Here, the template parameter LOP repre-
sents the local assembly procedure defining the numerical method (LocalOperator) . This
numerical implementation is held separate from the tumor model definition (ModelCore) ,
to allow further extension with new models or discretizations. A class (DataProvider<...,
...>) allows easy switching from real patient data set scenarios to the numerous test cases
with artificial underlying data. We will give a brief overview of the necessary preprocessing
steps in Section 6.1.
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The program layout, as just presented, allows to conveniently set up numerical experiments
by providing the necessary components as template parameters. The following short exam-
ple shows how a study may be set up, for a forward simulation, using the HFVM method
and the haptotactic tumor model (EHK15Model, see (Engwer et al., 2015, 2016)).

1 // Define numerical discretization type (LocalOperator) and tumor model:
2 using HFVM_EHK15_LOP = HFVM_LOP <QKFEM1 ,EHK15Model ,L2Op ,GridType >;
3 // Define simulation type to be conducted:
4 using HFVM_EHK15_SIM = ForwardSimulation <EHK15Model ,MBE ,DataProvider ,Grid

,1>;
5 // Create study object:
6 Study <HFVM_EHK15_SIM > study1(simConfigPath , dataConfigPath , mpiHelper);
7 //Start
8 study1.doStudy ();

Dependencies

Many of these features are made possible by the inclusion of existing software packages.
DUNE-glio uses the DUNE-grid module as a structured grid implementation (yasp-grid)
(Bastian et al., 2008b,a). The module uses the assembler and the Newton implemen-
tation of the DUNE-PDELab module, as well as the constraints interface which was
slightly extended to allow internal volume Dirichlet constraints (Bastian et al., 2010).
The solver library DUNE-istl was used to allow convenient switching between parallel iter-
ative solvers (Blatt and Bastian, 2007). Further we used components of DUNE-common,
DUNE-geometry and DUNE-typetree.
There are some necessary external dependencies. We used the library ITK (McCormick
et al., 2014), to allow handling of the medical data formats (.nii). For the implementation
regarding the matrix Hölder mean and the log-Euclidian mean, we used the C++ template
library armadillo for convenient matrix exponentiation and matrix-logarithms (Sander-
son and Curtin., 2016; Sanderson and Curtin, 2018). We also used parts of the Boost

C++ template libraries (Schling, 2011).
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In this section, we present 3D results for the stationalized haptotactic model given in
Equation (4.16a) on two real patient data sets. The results serve as a template of how the
stationalization can be used in medical practice at the time of diagnosis.
First, the necessary pipeline to leverage the medical data set as well as the glioMath data
set itself will be presented (Section 6.1). After this, numerical results for a parameteriza-
tion with a low effective Péclet number will be presented in Section 6.2. The level set on
the results for this low-Péclet parameterization effectively reproduce the current medical
treatment recommendations of treating a fixed size radius. They illustrate how automated
assistance in the treatment radius planning which is based on PDE models may look like.
In Section 6.3 these results are compared with solutions for an altered parameterization
with higher effective Péclet-Number. This direct comparison indicates what effect increas-
ingly strong advective effects have on the prediction radii of the level sets. It also proves
that the stationalization approach could offer new qualitative information to medical prac-
titioners that extends the current recommendations.

6.1 The glioMath data set

The data sets for the glioMath project were kindly provided by the Klinik für Strahlen-
therapie und Radioonkologie (Universitätsklinikum des Saarlandes) in the course of the
glioMath project (Surulescu, 2016). They were selected from a large pool of patient data
by Sven Knobe. The data set consists of 15 patient DTI scans and their corresponding
medical segmentations that were automatically generated (see Section 1.1). They allow to
run forward simulations in both the ab initio and the post-diagnostic setting mentioned in
Section 1.3 and are fully accessible to the DUNE-glio module. The data sets also allow for
calculations of the stationary approximations. Table 10 indicates the data set labels, their
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sizes via total number of voxels as well as the volume of the segmented tumor. The total
number of voxels includes the background outside of the brain.

Data set Voxel Tumorous seg. volume [cm3]

#3 2236520 200.5

#5 1905396 40.3

#8 2083770 174.1

#12 1702362 96.9

#14 1286775 140.1

#17 1085952 105.6

#21 1298830 69.8

#22 1974357 117.3

#25 2442600 53.3

#29 5293746 122.1

#31 3691464 113.7

#37 2314656 226.3

#40 2027718 219.1

#42 2039512 34.4

#43 1428546 51.6

Table 10: The glioMath data set consisting of 15 pairs of DTI and corresponding segmen-
tation data. Gender and age of subjects is unknown.

6.1.1 Data preparation

The resolutions of the raw MRI data sets from which the segmentations are derived, are
typically higher than the resolutions of the raw DTI data sets. The reason for this is that
the time necessary to take a DTI data set is significantly longer than for a single MRI scan.
Within the medical data sets there are metadata fields describing additional information.
These data fields can include the handling practitioner, the institution, dates and time,
information on the scan sequence, the image resolutions and most importantly information
on the machine coordinate system and the offset of the scanned region. However, many
of the metadata entries are anonymized. Each DTI data sets consist of 12 low resolution
MRI scans, each measuring the approximately water diffusivity in one spatial direction.
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For these data sets great care has to be taken that the information describing the orienta-
tions (’b-vectors’) in which each of the 12 or 16 individual scans are taken is correct and
fits the machine coordinate system. Out of this raw data, the best fit approximation for
the local water diffusion tensor is reconstructed. We made use of the software camino for
the purpose of DTI reconstruction (Cook et al., 2006). Unfortunately, the bounding boxes
of the measured domains, as well as the data set resolutions generally do not match from
patient to patient, or between the two modalities. This resulted in considerable effort to
preprocess the raw data into useful formats. To bring the DTI and segmentation data sets
onto grids with equal resolution the DTI and segmentation data sets were interpolated
individually onto an equally spaced grid. We made heavy use of the C++ library ITK (Mc-
Cormick et al., 2014) to read, write and rescale the medical data formats. After this step,
the segmentation data was registered with the DTI data sets and not vice versa to not
disturb the relationship between the DTI grid orientation and the measurement orienta-
tions (’b-vectors’) used in the DTI reconstruction. After the reconstruction both the DTI
data sets and the segmentation information are aligned and on equal grid spacings. We
used the software Slicer (Kikinis R., 2014) for 3D visualization and, more importantly, the
linear registration of any two medical data sets. Slicer offers the functionality to register
two data sets residing in different grid orientations and resolutions with each other. This
makes it possible to find, save and exchange the relative coordinate transformations so that
the numerical simulation results are useful to the medical practitioners. In practice it was
important to replicate the data orientation and file formats originally used by the medical
institution. The transformations mapping the numerical results back to the coordinate
system used by the project partners are part of the glioMath data set.
The numbering of the data sets is non-consecutive. This is because in the selection process
several data sets had to be excluded from the set. The reasons for exclusion were stated by
our project partners to be prevalent imaging artifacts or missing segmentation information.
The preprocessing differed slightly for each pair of DTI + SEG, but it can be grouped into
roughly five steps. For each step, the software that was used is indicated.

1. Interpolation of raw data (DTI + SEG) onto equal resolutions: ITK, (McCormick
et al., 2014).

2. Reconstruction of the water diffusion tensors from raw images: camino, (Cook et al.,
2006).
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3. Alignment of medical segmentation with reconstructed DTI data set: Amide, (Loen-
ing and Gambhir, 2003).

4. Cropping the background of aligned DTI and segmentation data sets : Amide, (Loen-
ing and Gambhir, 2003).

5. Reconstruction of the transformation necessary to map numerical results back to
segmentation machine coordinates: Slicer, (Kikinis R., 2014).

In the glioMath dataset, we provide all preprocessed anonymized files with individual notes
on how each of them was reconstructed. As of now, the resulting DTI + SEG combinations
are all readable by the DUNE-glio module and accessible for numerical simulations.

6.2 Numerical results

We now present numerical results on two real patient data sets. To keep the presentation
concise, we chose two data sets with good resolution and reconstruction quality (#29,
#31), and discuss them in detail. For these simulations, we set up a domain with the grid
spacings and the dimensions of the medical data sets (DTI, SEG). Here, the simulation
domain Ωb is the brain with no-flux boundary conditions at the outer brain border. We
use the tumor surface of the medical segmentations as the internal Dirichlet side condition
(Eq. (4.16c)) for the stationary simulation and calculate the solution to the stationalized
haptotactic model (4.16a) directly. For these simulations we used the parameters from
Table 9. No forward simulations are conducted here, for the reasons stated in Section 1.3.
It is assumed that the outer extent of the medical segmentations represents the visibility
threshold. As an internal Dirichlet constraint we assign the approximate tumor density
values of the different segmented tissue types (see Table 1). To visually present the tumor
density at the border and outside of the segmentation, we indicate three level sets on the
solution at us(x) = 0.16 (blue), us(x) = 10−2 (red) and us(x) = 10−3 (green), so that
the innermost level set indicates the Dirichlet constraint in most cases, and the outer two
level sets may be interpreted as suggested treatment radii (CTV as defined in Section 1.1).
The rare cases where the internal Dirichlet constraint and the level set at us(x) = 0.16 do
not align will be discussed in Section 7.2. The two sample results of the data sets #29
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and #31 are shown in Figures 28,29, 30 and 31 . We selected two data sets with good
resolution and reconstruction quality, as we mainly want to present the capabilities of the
stationalization method, and not make any statements about the whole cohort. Figure 28

Figure 28: 3D frontal top down view of data sets #29 (left) and #31 (right) with level sets
on the numerical solution to the stationalized problem formulation (4.16a) with parameters
from Table 9. The axial and frontal planes indicate the medical segmentation as defined
in Table 1. For better visibility we show only two level sets at us(x) = 0.16 (blue) and
us(x) = 10−3 (green). Data set #31 contains distinct metastatic volumes that are not
connected. Indicated scale is in meters.

presents 3D level sets on the stationary solutions for two data sets in a frontal view. The
two flat surfaces cutting through the tumor volume are the axial plane and a frontal plane
indicating the tumor segmentation data. For visibility reasons we only show two level set
surfaces. The blue inner level set us(x) = 0.16 describes the surface enclosing Ωi where
we assigned Dirichlet conditions. The green level set us(x) = 10−3 has a smooth surface
encircling the bulk tumor. In the 3D view of data set #31 on the right it is visible that
the outer level set encloses both the primary tumor volume, as well as a secondary metas-
tasis in the foreground. This indicates that the stationalization for this low-Péclet number
parameterization is robust even for quite eccentric tumor geometries. We will discuss the
increased modelling error for small metastatic cases in Section 7.2.
Figure 29 shows 2D axial slices through the simulated tumors. In these 2D representa-
tions we show three level sets. The innermost blue level set again indicates the internal
constraint, and the red us(x) = 10−2 and green us(x) = 10−3 level sets indicate the di-
minishing tumor cell density away from the bulk. For the chosen set of parameters, the
invasion radius indicated by the level sets is quite smooth. Our particular choice of level
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Figure 29: Axial view of the medical segmentation (gray), level sets at the internal con-
straint us(x) = 0.16 (blue), at us(x) = 10−2 (red) and at us(x) = 10−3 (green). The
volume encircled by the level sets approximately reproduces the 2 cm radius used in med-
ical practice (Chang et al., 2007). Left: patient #29. Right: patient #31, the medical
segmentation includes distinct metastases which are not connected.

set values is somewhat arbitrary but helps to asses the relative risk of tumor progression.
Contrary to the forward scenarios, the information they provide can be interpreted. They
mark the locations at which the stationalized tumor model formulations predict a partic-
ular volumetric tumor cell density at the time of diagnosis, so in our case that location
where 1% and 1‰ of the volume is filled with tumorous cells.
On the left side of Figure 29 showing data set #29 one may observe that the level sets touch
the outer boundary of the brain. Here, no gain is to be expected in advising the treat-
ments but it is assuring that there are no artifacts at the boundary of the brain. It is also
visible that the segmentation classifies a high density region (Enhancing, Non-Enhancing)
up until the border of the bulk tumor.

In the right side of Figure 30 one may observe how distinct metastatic tumor volumes
influence the stationary solution. The effects of a metastasis lying exactly within this slice
(right) and closely below the slice are visible (middle). In situations like this the internal
surface ∂Ωi is not connected, and the Dirichlet constraints have to be applied accordingly.
In the frontal view of the results presented in Figure 31 one may observe how strongly any
two tumors may differ. While the center of the tumor bulk in data set #29 has a distinct
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Figure 30: Sagittal view of the medical segmentation (gray), level sets at the internal
constraint us(x) = 0.16 (blue), at usx) = 10−2 (red), us(x) = 10−3 (green). Left: results
for patient #29. Right: results for patient #31, where the medical segmentation includes
a distinct metastasis which is not connected to the bulk.

core of tumorous tissue segmented as enhancing or non-enhancing, the center of the bulk
of the tumor visible in data set #31 shows a clear necrotic core. The results presented here
were calculated for a parameterization which resulted in comparatively weak advective
effects.
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Figure 31: Frontal view of the medical segmentation (gray), together with level sets at
the internal constraint us(x) = 0.16 (blue), at us(x) = 10−2 (red) and at us(x) = 10−3

(green). Left: stationary Simulation results for patient #29, at the right side of the tumor,
the density assigned via the segmentation is higher than the assumed visibility threshold
resulting in an extension of the blue level set. The volume encircled by the level sets mostly
reproduces the 2 cm radius used in medical practice. Right: results for patient #31

6.3 Comparison via Péclet numbers

The results from Section 6.2 indicated relatively smooth level set surfaces surrounding the
tumor and the level set predictions were similar to those recommended to the medical
practitioners (1.5 - 2 cm radius). To present how the stationalization could actually of-
fer improved recommendations compared to the current practice we now present a direct
comparison using a parameterization that is changed towards a higher influence of the
haptotactic and myopic advective terms.
We will critically discuss the applicability of the stationalization in the presence of signifi-
cant advection in Section 7.2. We again show results from data sets #29 and #31 as there
the resolution and DTI reconstruction quality is of high quality, and the effects are most
visible. The parameterization for the case with higher effective Péclet number is listed in
Table 11. For the simulation with low effective Péclet number we reuse the parameters
from Table 9. A direct comparison of the two results is presented in Figure 32 where
the level sets on the solution to the problem with a low-Péclet number parameterization
(us(x) = 10−2 and us(x) = 10−3) are shown in white. Here the innermost level set has a
higher value with the outer one having the lower one. The level sets on the high-Péclet
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parameter value

s 1e-6 [ms ]

ρ 8.44e-7 [1s ]

R0 5e3

λ0 0.1 [1s ]

λ1 1e-2 [1s ]

k+ 0.1 [1s ]

k− 0.1 [1s ]

v 5√
6

Table 11: Parameters used for the 3D stationary simulations of model (4.16a) resulting
in an effective Péclet number Pe ≈ 1.

number solution of same values are presented in black. The level set us(x) = 0.16 marking
the shared internal constraint is marked in blue. By comparing the inner black and white
suggested radii we may observe the additional information the stationalization can offer.
Wherever the black lines overextend the more conservative white configuration the treat-
ment radii could be extended, and more importantly, wherever the black lines lie inside of
it, tissue might be spared the destructive effects of treatment. The same holds true for the
black and white level sets of lower amplitude lying more distant from the tumor core.
An important result in this regard is, that the retraction or the extension recommended
by the level sets is plausible, even though the derivation of the penalty term did not in-
clude them. When comparing the results for the two parameterizations, we see that the
high-Péclet level sets recommend extension of the treatment radius in regions with high
fractional anisotropy like white-matter tracts, and also recommend retraction of the treat-
ment radius where the diffusivity and FA is reduced (e.g., gray matter). These results
seem to prove that the stationalization may offer qualitative information to the medical
practitioner even if we overextended our initial assumptions.
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Figure 32: Top: axial slices of data sets #29 (z = 0.089 m, left), #31 (z = 0.06 m, right).
The coloring indicates the local fractional anisotropy (FA), see Equation (2.27). Level
sets us(x) = 10−2 and us(x) = 10−3 of the low Péclet number parameterization (Table 9)
(white) and the high Péclet number parameterization (Table 11) (black), as well as the
internal constraint (blue) are overlayed. Bottom: Zoomed view of smaller regions with the
two level sets. The stronger the influence of the advective terms of the haptotactic model,
the more pronounced are the extensions and retractions of the treatment radii suggested
by the level sets.
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In this work we addressed the research question of how mathematical modeling and nu-
merical simulations may aid in the treatment of GBM. In the following we discuss the two
approaches we presented. Following the order of the document, we first discuss the Hölder
finite volume method and formulate directions of possible further research in Section 7.1.
We discuss the stationalization procedure, its applicability and shortcomings in Section 7.2
and also suggest avenues of further improvement for the stationalisation procedure.

7.1 Hölder finite volume method

7.1.1 Discussion

We introduced the generalized matrix Hölder mean into the flux discretization of a vertex-
centered finite volume method and investigated which Hölder parameter α ∈ R is optimal
for our use case of GBM modeling. The vertex-centered finite volume construction was
mostly canonical with the main novelty being the inclusion of the matrix Hölder means.
For the numerical investigation of the method we used parameterized manufactured solu-
tions which allowed the measurement of how the spatial variance of the diffusivity field
influences the numerical precision of the resulting schemes. The results suggest that the
choice of average has significant impact on the accuracy of the solution, depending on the
underlying diffusion tensor field. The convergence plot of the combined inhomogeneous
anisotropic case (Fig. 16) indicates that in certain situations the error may be reduced by
orders of magnitudes by simply adjusting the Hölder parameter α. The convergence results
for the manufactured solutions show that the Hölder method with α → 0 resulting in a log-
Euclidian matrix interpolation outperforms the industry standard MPFA-O method in all
nontrivial test cases we investigated. In direct comparison the HFVM method also offers
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other advantages over the MPFA-O method. The MFPA-O method is essentially bound to
grids with solely hexahedral or tetrahedral elements which are not mixed with other cell
geometries. In a mesh with mixed elements, the construction of the interaction region and
consequently the setup of the local system of equations would be severely complicated. In
that case many special combinations of adjacency would have to be considered.
The Hölder finite volume method does not have these restrictions. The only prerequisite
for a correct flux reconstruction within any primal grid cell is that the diffusivity matrices
are known at the corner points of a local Lagrange base. That means that the presented
method of estimating Dα(x) can be used directly in conforming finite element methods
as well as discontinuous galerkin methods. No information from the neighboring cells is
needed. This allows for simple integration of the matrix Hölder average into software imple-
mentations that already use a cell-based assembly. The matrix Hölder mean is essentially
independent of the particular discretization strategy. Since the Hölder averaging of the
diffusion matrices leads to reasonable flux densities at any point within a primary cell the
incorporation into cut-cell type discretizations should also be straight forward. Contrary
to the MPFA-O method, the HFVM makes explicit statements about the intepolated dif-
fusivity field, making it more suitable for further analysis.
We also see advantages from the more pragmatic perspective of software engineering. The
Hölder averaging of Dα(x) can be encapsulated into a single templated C++ method taking
three arguments. These are the scalar Hölder parameter α , one variable length C++ con-
tainer with the contributing matrices Di and one with their weights given by the base
evaluations. It may therefore be added to existing codebases without significant changes
to the software architecture. No extra work is needed for changing the dimension of the
interpolation from 2D to 3D, or switching from hexahedral to tetrahedral geometries.
The numerical cost of the presented method is of same order as the MPFA-O method. In
the MPFA-O method a local system is solved for every interaction region. In the HFVM
one has to evaluate the matrix mean at the flux quadrature points, which generally entails
the calculation of matrix exponentials. As an exception to the rule we find that for α = 1,
i.e., the arithmetic mean between the matrix components, no matrix exponentiation has
to be performed. The effective stencil size is identical in both methods (2D: 9 row entries,
3D: 27 row entries). All Hölder averaging may be conducted in advance of time-dependent
simulations given that the material properties and grid geometry do not change. The im-
plementation of the matrix Hölder mean is comparatively simple as many linear algebra
libraries provide efficient eigendecompositions.

The presented HFVM method includes important corner cases in a single framework. Even
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if the question of the appropriate mean can be answered in the scalar diffusivity case, the
straightforward extension of the harmonic mean to higher dimensions (α = −1) does not
provide optimal results. The results suggest that contrary to intuition the method with a
Hölder parameter of α = −1 does not perform well. For the d-linear weights we chose, a
Hölder mean with α < 0 suppresses all subfluxes within a voxel as soon as one contributing
diffusion matrix has a diminishing Frobenius norm.
On the other hand, we confirmed the swelling effect for α ≥ 1 (see Fig. 11) where the
determinant of the interpolated diffusion matrices swells in between the given datapoints.
We have consitently observed the best performance of the HFVM for α → 0. This resulted
in our choice of the log-Euclidian interpolation as given in Equation (3.11).
Some shortcomings of our numerical set up need to be pointed out. One problem of the
manufactured solutions method is that the construction of analytical test cases with dis-
crete steps in diffusivity is hard. We were able to construct analytical solutions for the
imposed diffusivity field because we used smooth and easily differentiable trigonometric
functions (see Section 2.6). If the diffusivity field had discontinuities, then the recon-
struction of the necessary reaction term would be further impeded. Eigestad and Klausen
(2005) claim to have found a radial analytical solution where homogeneous blocks of dif-
fering isotropic diffusivity touch. A numerical test based on such a solution could be
beneficial in the choice of the optimal Hölder parameter for other numerical applications.
In such a setup the HFVM could be investigated for cases with discontinuities that are not
covered by our tests. The stated solution in Eigestad and Klausen (2005) however does
not describe anisotropy. Analytical solutions of discontinuous diffusivity fields that are
also anisotropic have not been identified to the best of our knowledge. Consequently, it is
questionable whether the inhomogeneous anisotropic manufactured solutions presented in
this document and the conclusions made based on them are truly representative of all real
world cases. We therefore refrain from making any general optimality statement for the
log-Euclidian interpolation but want to conclude that it outperforms the MPFA-O method
and other Hölder interpolations for smooth underlying diffusivity fields. At this point we
also make no statements about the stability regions of the two methods.

7.1.2 Outlook

Intuitively, one might expect that since the choice of the harmonic average is so common
in the isototropic TPFA discretizations, the optimal choice for the matrix Hölder mean
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should be that of α = −1. In our construction this choice would lead to the total suppres-
sion of all subfluxes within a cell, as soon as one corner diffusivity vanishes. This could be
overcome by modeling a piecewise constant weight function w(x) instead of the d-linear
version we chose earlier. With such a weight function, only the diffusivites of the vertices
closest to a subinterface would contribute and not all vertex diffusivities of a given primary
discretization cell.
In the testcases presented in this document the Hölder parameter was always set globally.
There should be room for improvement when the Hölder parameter is adjusted locally to
reflect a priori knowledge of a certain part of the simulation domain. In some applications
it is known a priori that the underlying diffusivity field can be modeled as smooth and
relatively homogeneous in some regions of the domain, while it is expected to have strong
inhomogeneities at some internal interfaces. Examples of this could be a diffusing chemical
passing through a sudden jump between two otherwise homogeneous materials or liquid
flow through cracked rocks. In a geological setting where the interest lies in fluid flow close
to an impermeable layer (groundwater flow), one may employ a restrictive α = −1 method
at these interfaces. In a case where the diffusive coefficients vary comparatively slowly, we
may choose a α ≥ 0 method.
It should be possible to codify these assumptions into a local function α(x). Doing that
would allow for maximum use of a-priori information on the simulation domain.
In our use case, it should be possible to adjust the parameter wherever jumps in segmen-
tation label occur, so that the method is more robust in those regions of strongly varying
diffusivity. There should also be no danger of loss of convergence since for finite α the
mean will still be between the minimum and maximum of the set of diffusion matrices and
should therefore converge to the same solution upon dataset refinement.

7.2 Stationalization

7.2.1 Discussion

We derived a nonlinear penalty term for the 1D Fisher-KPP equation, that allows to calcu-
late a limit wavefront at the location of pinning constraints. Since this derivation was done
in nondimensionalized form it is valid for all reasonable ratios of diffusivity and growth
rate.

100



7 Discussion and outlook

We extended the stationalization to an anisotropic model to investigate its applicability
for non-homogeneous media. The results presented in this work as well as in (Engwer and
Wenske, 2021) strongly suggest that the stationalizations derived by our method might
provide good approximations even in these inhomogeneous anisotropic cases. We com-
pared the prediction of a recent tumor forward model including haptotactic effects with its
stationalized formulation on a data set of a healthy subject and established that the errors
are acceptable (Lb < 2 mm ). Finally, we presented numerical results on real 3D patient
data sets. We first presented results for two real patients for a low-Péclet parameteriza-
tion. These results indicate that as a first step the method may be used to reproduce the
marking of a 2 cm treatment radius.
One important aspect is, that the indicated radius can be calculated automatically from
the medical data, is reproducible and does not suffer from human or institutional biases.
We also presented a comparison with results for a parameterization with higher effective
Péclet number that suggested how the stationalization may be used to advise retraction or
extention of the treatment radius. This qualitative information is currently not available
in medical practice.
For the numerical simulation of forward PDE models for GBM, many intermediate states
have to be calculated to make a prediction on the final state of tumor invasion. If one
were to use the forward model to make actual predictions in a medical case, then the
stepwidth would have to be chosen sufficiently small, so that the cumulative error arising
throughout the sum of the steps remained justifiable. This constraint on the timestep,
which depends on the tumor model, its parameterization and data set resolution could
make the calculations prohibitively expensive to run on consumer hardware. The fact that
for the stationalized problem formulation only one solution has to be calculated makes
the procedure orders of magnitude cheaper in computation. This means that treatment
radius recommendations can be made within minutes on a consumer hardware vs. several
hours on a research cluster. This performance advantage could have significant impact on
possible clinical studies or subsequent application.
Even if the presented form of stationalization is well aligned with the available data, we
want to discuss some of the shortcomings of the procedure. In the presented stationalization
approach we made maximal use of the information encoded in the medical segmentation.
This information is invaluable, but may itself introduce inconsistencies. A rough estimate
of the tumor volume percentage attributed to the different compartments is listed in Table
1. This attribution may lead to the following situation. In the case of tissue segmented as
non-enhancing or enhancing we assign the densities 0.8 or 1.0. If these segmented volumes
touch the outer surface of the bulk tumor and are not encircled by edema (density: 0.16),
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then we have assigned the outer visibility surface with a density value much higher than the
previously assumed visibility threshold of us(x) = 0.16. In that case we may still calculate
a solution to the stationalized problem formulations, but their predictions will result in
the level set surface of the visibility threshold outside of the internal Dirichlet boundary
condition. This would mean that the stationalized problem formulation will place the vis-
ibility threshold outside of its internal constraint, which we previously assumed to be the
visibility threshold.
This inconsistency can almost certainly be attributed to malperformance of the automatic
segmentation algorithms in conjunction with the limited imaging resolution. It seems un-
likely to have discrete steps in tumor density from 0.8 to below 0.16 within real patients.
A sample of this artifact is visible in the frontal slice of the tumor bulk in Figure 31. Here,
the innermost blue level set represents the internal constraint at the tumor border, and
the outer a the level set us(x) = 0.16 of the numerical solution.
We presented a comparison between solutions for two different problem formulations in
Section 6. Increasing the influence of advective effects allowed us to make qualitative pre-
dictions about where the treatment radius might be retracted or extended. At this point
we can not quantify how large the advective effects can be before the predictions become
invalid. We expect bifurcations leading to more solution branches than the OMS/IMS
discussed in Section 4.3.1 when the advective amplitudes are increased even further. The
reason for this is that the advective fields b(x) ∈ Rd in many of the multiscale models are
not solenoidal, i.e., ∇ · b(x) ̸= 0. If the vector fields exhibit sources with ∇ · b(x) > 0 then
the advection alone may allow new localized peaks of tumor density next to the trivial
solution. The lack of the solenoidal property is also problematic outside of the context of
the presetned stationalization, as without it the vector fields spuriously destroy or create
tumor mass even in absence of reaction terms. The problem is intrinsic to the tumor mod-
els, and can not be remedied by the numerical discretization. We therefore advise caution
when extending the procedure to advection dominated parameterizations and models.

7.2.2 Outlook

Our primary focus in this work was to investigate the viability of the stationary approxi-
mations of the tumor densities outside of the visible center. So far all numerical tests we
conducted for low-Péclet parameterizations indicated that the resulting errors are reason-
able, i.e., Lb ≤ 2 mm.
With the applicability established, the logical next step seems to be to firstly compare the
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predictions of more models against each other and secondly, to directly compare the de-
lineation of treatment radii gained from the level sets with those that are used in medical
practice. The presented approach allows to calculate numerical results that are inter-
pretable as an expected tumor density distribution outside of the visible region at the time
of diagnosis. This is exactly the information that the treatment recommendations of the
medical institutions encapsulate in their recommended 2 cm treatment radii. It would be
interesting to receive feedback from medical doctors about this new approach. In the future
it might be possible to advise medical treatment on an automated patient-by-patient basis
via the presented methods. All the necessary computational steps have been established
as a proof-of-concept.
In our stationary numerical simulations, we have set the penalty parameter v ∈ R to a
globally constant value. It may be possible to produce even better reconstructions of the
forward profile when adjusting this penalty depending on the local diffusivity D(x). Since
we expect the invasion to be faster in regions of high diffusivity, the penalty parameter
could be adjusted accordingly. We have not conducted tests in this direction, but believe
that such an extension may be beneficial.
We have presented the stationalization in the context of tumor invasion but it might be
applicable in other fields as well. The problems most closely related are other invasive tu-
mors like liver or lung cancer. The possible applications are essentially all those problems
that can be modeled via the Fisher-KPP equations and include some form of thresholded
imaging data, examples of which are bacterial growth, invasive species, chemical reactions
(combustion) and wildfire modeling.
In the introduction we mentioned a series of publications on the stationary modeling of
brain tumors (Konukoglu et al., 2006, 2010, 2007). Their mathematical approach via
anisotropic eikonal equations was quite different from our forward modeling, but not less
promising. So far, we were not able to reproduce their results due to the necessity of
another numeric implementation. However, it should be quite interesting to compare their
approach to the one we presented. It might also be fruitful to investigate the differences
and commonalities of these two approaches from a purely mathematical perspective.
The limit wavespeed of the analytical solution used to derive the analytical penalty term
is ṽ = 5√

6
. For the inhomogeneous cases the question of an optimal penalty, i.e. one

that minimizes the distance of the stationalized solution and the real underlying tumor
density distribution, is not straightforward. This is because the effect of the anisotropic
inhomogeneous diffusion on the limit wave speed is nontrivial. So far, we have not made
systematic efforts to optimize the penalty parameter on a case-by-case basis but the errors
we presented could be reduced further by optimizing the penalty parameter v to minimize
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the level set errors LB.
One of the assumptions that makes the stationalization viable is that we assume that the
tumor invasion front is close to equilibrium. When that is the case the gradient statistic
will be close to that one which we may derive from the Fisher-KPP equation. Considering
the two small metastases outside of the bulk tumor visible in Figure 30, we have to admit
that for these small volumes this condition is probably not met. Strictly speaking, we may
not assume that the front shape has reached its quasi-stationary sigmoidal form for small
and isolated metastases and therefore must assume that for them the predictions will have
increased systematic error.
One of the underlying effects delaying the convergence to the limit propagation speed
is due to curvature. The radial part of the Laplace operator in spherical coordinates is
∆r =

∂2

∂2r
+ 2

r
∂
∂r . The second term can only be neglected for large radii r which in the case

of radial expansion correspond to large times t. The problem was addressed by Konukoglu
et al. (2010). They improved the estimation of the front speed from the constant limit value
v = 2

√
Dρ by including a time dependent correction term v(t) = 2

√
Dρ − 3

2t

√︂
D
ρ . The

inclusion of such a correction into the stationalization should be straightforward. However,
this correction would reintroduce the problem of having to quantify the elapsed time since
carciogenesis, one of the problems which motivated our stationary modeling in the first
place.
In future studies, it should be possible to establish practical bounds for the applicability
of the stationalization in the presence of advection. We expect that the procedure will
give good results if the advective fields within the models are comparatively small but ex-
pect some form of breakdown for completely advection-dominated cases. In the derivation
of the penalty term we implicitly assumed that the tumor front shape is approximately
sigmoidal. For advection dominated problems the assumption may break down. These
practical bounds of applicability could essentially come down to an upper bound for the
effective Péclet number of any given model and parameterization.
The cohort study done by Stensjøen et al. (2015) indicated that the observed growth
rate is slower for larger tumors than it is for smaller ones. They interpreted this result
in favor of a Gompertz growth law fg(u) = −ρu ln(u) describing the tumor growth rate
which is different to the logistic one f(u) = ρu(1 − u) we used in this document. The
different growth terms for tumor models are discussed in (Patel and Hathout, 2017). We
see no argument why a similar stationalization should not be possible for tumor mod-
els with this growth law. The reason for this is that the Gompertzian reaction term
has the properties demanded of the Fisher-KPP model class with limit solutions, i.e.,
f ′(0) ≥ 0, f(u) > 0∀x ∈ (0, 1), f(1) = 0. The theoretical results for the Fisher-KPP equa-
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tions predict a limit solution of constant speed. If the tumor models show invasion profiles
that stay constant in shape, then the necessary penalty term should also be accessible
for derivation or numerical estimation. Unfortunately, we are not aware of any analytical
solutions for the Fisher-KPP equation with Gompertzian reaction term that would allow
the analytical derivation of the penalty. However this should be no obstacle to numerically
measure the analogous penalty term. To do this one would only need to record the ob-
served gradient distribution of the limit shape for a Gompertzian model at large simulation
times.
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A Appendix

A.1 Reproduction of numerical results

Most of the numerical tests we presented were set up so that they are easily reproducible for
other researchers. We provide the output data of our numerical tests in the supplementary
material. The numerical investigation of the Hölder method via the manufactured solutions
and the 1D, 2D and 3D examples (see Section 4.5) can also be reproduced. Only the 3D
comparisons of Section 6 require the full glioMath dataset. In the supplementary material
we provide a working version of DUNE-glio, the configuration files (.ini) that were used
to generate all numerical results and a digital copy of this document.

To reproduce the numerical results, do the following:

1. Open the supplementary material.

2. Retrieve all dependencies (see Section 5). The DUNE dependencies (major version
2.7) can be loaded with a provided bash script (load_dune_dependencies.sh).

3. Build DUNE-glio via the provided scripts ( release_compile.sh ) or via the DUNE
build system. For a more recent version, retrieve a copy of DUNE-glio from https:

//zivgitlab.uni-muenster.de/ag-engwer/dune-glio and consult the documen-
tation and the readme files therein for build instructions. The CMake build system
should automatically produce multiple executables corresponding to our numerical
examples.

4. Run the executable corresponding to the given numerical test while providing the
config-file and a data-config file as command line arguments.
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A Appendix

It is also possible to start the simulations consecutively via a provided bash script run.sh
within the build folder.
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