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Abstract: A new software package for the Julia language, CountTimeSeries.jl, is under review, which
provides likelihood based methods for integer-valued time series. The package’s functionalities are
showcased in a simulation study on finite sample properties of Maximum Likelihood (ML) estimation
and three real-life data applications. First, the number of newly infected COVID-19 patients is
predicted. Then, previous findings on the need for overdispersion and zero inflation are reviewed
in an application on animal submissions in New Zealand. Further, information criteria are used for
model selection to investigate patterns in corporate insolvencies in Rhineland-Palatinate. Theoretical
background and implementation details are described, and complete code for all applications is
provided online. The CountTimeSeries package is available at the general Julia package registry.
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1. Introduction

The collection of count data dates back to at least 4000 years ago when the first census
was documented. Nowadays, it still plays an important role in our everyday life as it
occurs in various fields. For instance, it arises in insurance with the number of claims,
in epidemiology where the number of infected patients is recorded, in urban planning
as traffic volume, or in marketing with the number of certain items sold, just to name
a few. During the past decades, researchers have developed methods to gain insight
into the structure of the data and derive conclusions from it. Important frameworks for
such analyses are integer counterparts of the well-known ARMA and GARCH models,
the INARMA model introduced by Alzaid and Al-Osh [1], and the INGARCH model
described, for example, by Ferland et al. [2]. Both models, the INARMA and the INGARCH
model, have been further extended thereafter and are well established. In the following
applications, a software package for the Julia Programming Language (Bezanzon et al. [3])
is used, which provides methods for these two models, CountTimeSeries.jl. After the
Julia language was first published in 2012, the number of users grew remarkably during
past years. On the one hand, it is as easy to learn as an interpreted language like R or
Python, and on the other hand, it is a compiled language which makes its computation time
comparable to C and Fortran. This combination makes Julia attractive for both researchers
and practitioners. The CountTimeSeries package follows the idea of the language itself by
providing a toolbox for count data time series that is simple to use and at the same time
fast enough to allow analyzing large time series or carry out simulation studies. Covering
some important generalization of INARMA and INGARCH models, the package allows to
simulate from them, estimate parameters and conduct inference, assess the model choice,
and compute forecasts.

There is no comparable package in R or Julia that covers the same functionalities. One
important package for count data time series is R’s tscount package, see Liboschik et al. [4].
In contrast to the CountTimeSeries package, it provides residual assessment, calibration
methods, and intervention analysis. However, it does not cover the INARMA framework
at all. Further, it also does not incorporate zero inflation, a model property frequently used
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in count data analysis. The thinning-based INARMA model can be formulated as Hidden
Markov model, as for example discussed by Weiß et al. [5], so that the R packages Hidden-
Markov (Harte [6]), and HMM (Himmelmann [7]) can be used to estimate its parameters.
Both packages have been developed for general HMMs, thus the CountTimeSeries package
offers the advantage of a more convenient usage and similar notation for both frameworks
making it easy to switch between frameworks or compare results between those. As the
name already suggests, count regression was not the goal of the CountTimeSeries package,
but can be used for both a Poisson and a Negative Binomial regression. In R this is provided,
for example, by the pscl package (Jackman [8]) with extensions by Zeileis et al. [9]. tscount
can only be used for (Quasi-)Poisson regression, as it was designed only for Poisson and
Quasi-Poisson INGARCH models.

In Julia, there is no package dealing with INGARCH and INARMA models, but like
in R, there are packages for Hidden Markov models, like HMMBase, see Mouchet [10].

In the remainder of this paper, the CountTimeSeries package is first motivated and
all its functionalities are explained. Then, four applications showcase how the package is
used it practice. The first application deals with the spread of COVID-19 and focuses on
the INGARCH framework and prediction. The second application analyzes the number
of animals which were submitted to a New Zealand health laboratory and suffered from
anorexia or skin lesions. Thinning-based INARMA models are used to shed more light
on a discussion about the need of incorporating conditional overdispersion and zero
inflation for this data set. During the analysis, inference is conducted on parameter
estimates and information criteria used. Application 3 uses data first analyzed by Weiß
and Feld [11] containing the number of corporate insolvencies in Rhineland-Palatinate.
Thereby, the focus lies on the model choice, 54 models with different time trends and
model specifications are fitted and information criteria used to select the best model. It
is discussed whether there are spatial clustering effects in the characteristics of selected
models and if there is a downwards trend in the number of insolvencies. Application 4
waives real data, a simulation study is carried out to assess the finite sample properties
of Maximum Likelihood estimation for a Poisson INGARCH(1, 1). Different methods to
initialize the conditional mean recursion, different parameter values, and different lengths
of time series are compared. The simulation study is conducted in both Julia and R to
compare the estimation time. Finally, Section 7 summarizes results, and gives an outlook
and concludes.

2. The CountTimeSeries Package

When a new software package is developed, its rationale for existence should be
addressed first. In other programming languages, there are many established packages
to model count data time series. Three reasons spoke for the development of a new Julia
package. Despite Julia’s strong growth in popularity during recent years, no package for
count data existed. Methods covered by other programming languages should be provided
for Julia users. The goal was not only to translate functions, but also to create a package
that can be easily extended for other models and alternative estimation methods. Julia’s
multiple dispatch feature allows adding model types and methods to existing functions for
a unified notation. The third reason for the new package is its aforementioned advantages
im terms of computing time. In the following, the general structure of the package is
described in detail.

2.1. INGARCH Framework

By now, the package covers the INGARCH and INARMA framework and some
important generalizations. The former was first described by Ferland et al. [2] as an integer
process {Yt}t∈Z with
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Yt|Ft−1 ∼ Pois(λt)

λt = β0 +
p

∑
i=1

αiYt−i +
q

∑
i=1

βiλt−i
(1)

where Ft denotes the information set available at time t. Alternatively, the conditional
distribution can be replaced by a Negative Binomial distribution with overdispersion
parameter φ > 0 such that the conditional variance becomes Var(Yt|Ft−1) = λt + λ2

t /φ.
Different extensions have proven useful in practice. Currently covered by the Count-

TimeSeries package are additional regressors, a log-linear link function, and zero inflation.
In line with Liboschik et al. [4], regressors can be included in two different ways—as
internal or as external regressors. By adding internal regressors X(I)

t in (1), the conditional
mean becomes

λt = β0 +
p

∑
i=1

αiYt−i +
q

∑
i=1

βiλt−i + η′X(I)
t (2)

To further include external regressors X(E)
t , the conditional mean is defined as

λt = νt + η′X(E)
t

νt = β0 +
p

∑
i=1

αiYt−i +
q

∑
i=1

βiνt−i + ζ ′X(I)
t

(3)

In contrast to external regressors, internal regressors enter the recursive definition of
conditional means. Often, it is not crucial how a regressor is declared by the user. The ap-
proach has been developed by Liboschik et al. [12] to model interventions that affect the
observable process Yt without affecting the underlying dynamics of the mean recursion,
see Liboschik et al. [12].

If one wants to replace the linear link function in above models with a log-linear link,
Equation (3) become

log(λt) = νt + η′X(E)
t

νt = β0 +
p

∑
i=1

αi log(Yt−i + 1) +
q

∑
i=1

βiνt−i + ζ ′X(I)
t

(4)

If zero inflation should be included, only the first line in (1) is changed. Then, given
Ft−1, Yt is assumed to follow a singular distribution at zero with probability ω and to
follow a Poisson (or Negative Binomial) distribution with probability 1− ω. The con-
ditional probability to observe a zero then is P(Yt = 0|Ft−1) = ω + (1− ω) exp{−λt}.
The CountTimeSeries package supports all combinations of these generalizations of the
INGARCH model.

2.2. INARMA Framework

Besides the INGARCH framework, the CountTimeSeries package also covers another
important model class widely used in count data analysis, INARMA models. Alzaid
and Al-Osh [1] introduced an integer counterpart of AR(p) processes based on binomial
thinning, which was then further developed and extended. The simple INAR(1) model is
defined as Yt = Rt + α ◦Yt−1, where Rt is a latent, non-negative, and integer-valued process
often called innovation or immigration process. The thinning operator “◦” is defined for a
constant α ∈ [0, 1] and a non-negative, integer random variable X as α ◦ X = ∑X

i=1 Zi for

X > 0, where Zi
iid∼ Bern(α) and zero if X = 0.

In line with the notation of Weiß et al. [5], a non-negative and integer-valued process
{Yt} follows INARMA(p, q) process if
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Yt = Rt +
q

∑
i=1

βi ◦ Rt−i +
p

∑
i=1

αi ◦Yt−i

Rt ∼ Pois(β0)

(5)

The distribution of Rt can also be chosen as a Negative Binomial distribution with
mean β0 and an overdispersion parameter φ, such that its variance is β0 + β2

0/φ. One way
to include regressors in above model would be to add another additive component Zt to
the first line, whose mean depends on regressors X(E)

t . In the CountTimeSeries package,
the distribution of Zt can be chosen as Poisson or as Negative Binomial. The regressors
included that way are referred to as external regressors, as they do not affect the innovation
process Rt. Another possible inclusion of regressors is implemented as internal regressors
X(I)

t . The Poisson INARMA(p, q) with regressors then becomes

Yt = Rt +
q

∑
i=1

βi ◦ Rt−i +
p

∑
i=1

αi ◦Yt−i + Zt

Rt ∼ Pois
(

β0 + η′X(I)
t

)
Zt ∼ Pois

(
ζ ′X(E)

t

) (6)

Note that the mean of Zt only depends on the regressors and no intercept parameter for
identification. To include zero inflation, the distribution of Rt is altered to be zero with
probability ω and to follow a Poisson with probability 1−ω, see, for example, Aghababaei
Jazi et al. [13]. This approach inflates the probability of Yt to be zero indirectly, in contrast
to the approach for the INGARCH framework. The reason for it is found when taking a
closer look at how the likelihood is computed for an INARMA model. As Yt is composed
of multiple, non-observable parts, the distribution of Yt given past observations is the
result of a convolution. A convolution simplifies from a computational point of view if
possible values for each component are bounded. For the autoregressive part, each result
of a thinning operation is bounded from above by the corresponding past observation.
Including zero inflation as described above preserves the property Rt ≤ Yt, which would
not hold if zero inflation was included in the same way as for INGARCH models.

2.3. Package Structure

The general structure of the package can be divided into four parts: model specifica-
tion, generating data from a model, fitting a model to data, and prediction.

For the specification of a model, object types have been implemented. Starting from
the top, the type CountModel covers every possible model described in the previous section.
Models in the INGARCH or INARMA framework are collected in the types INGARCH and
INARMA, respectively. Subtypes of these two are finally INGARCHModel, INARCHModel and
IIDModel, as well as INARMAModel, INARModel, and INMAModel. This definition of a type
tree allows to implement methods for certain groups of models.

A wrapper function Model() is implemented to specify a model. The user provides
the model framework, INGARCH or INARMA, the distribution, the link function, model
orders p and q, regressors if wanted with an indicator whether they should be treated as
internal or external and whether or not zero inflation should be considered. Default setting
is a simple Poisson IID model. A Negative Binomial INARCH(1) with zero inflation is for
example specified by

Model(distr = "NegativeBinomial", pastObs = 1, zi = true).
To generate artificial data from a model, the specification is paired with parameter

values. This can generally be done in two ways: as a vector of values or as a newly defined
data type parameter, with entries for β0, α, β, η, φ, and ω. Note that in the implementation,
no notational distinction is made between parameters for internal and external regressors.
The two ways of providing parameter values are useful for example during the optimization



Entropy 2021, 23, 666 5 of 22

of the likelihood, which uses the parameter vector, whereas estimation results are more
convenient to handle as the parameter type.

Once a model and parameter values are specified, data are generated with the
simulate() function by calling simulate(T, model, parameter) for a time series of
length T.

Before fitting a model to a time series, settings for the maximization of the likelihood
can be provided. The user can specify initial values and the method for the optimization
routine with the MLESettings() function. The optimization routine can be "NelderMead",
"BFGS", or "LBFGS". If inference in terms of confidence intervals shall be conducted,
the argument ci needs to be set to true. Standard errors are then computed from the
numerical Hessian matrix.

Estimation of parameters is carried out by the fit() function, which takes the time
series, the model, and, if chosen, the settings as input. The likelihood is maximized while
considering constraints on the parameters. Constraints include positivity of conditional
means at any time, proper thinning probabilities and constraints that ensure stability of
the process.

The function parametercheck checks whether parameters are valid whenever calling
the log-likelihood function. If invalid parameters are put in, the log-likelihood function
simply returns negative infinity. This approach is usually unproblematic if starting values
for the optimization are valid and not too close to being invalid.

The fit() function returns an object with estimates, standard errors, log-likelihood for
estimates, and many more. This result object can be forwarded to functions for information
criteria, AIC(), BIC(), and HQIC(), or to the function pit(). Then, the non-randomized
probability integral transform histogram (see Czado et al. [14]) is plotted.

A forecast can be carried out by the predict() function. For models of the INGARCH
framework, two options are available. Predictions can either be deterministic or simulation-
based. In the deterministic approach, conditional means are used as prediction, and if an
observation in the definition of the conditional mean is not observed, it is replaced by its
corresponding prediction. In the simulation-based approach, the time series is continued
many times with random realizations, or chains, following the process. This conveniently
provides prediction intervals as the quantiles of the chains.

Assembling all parts together, this section is closed with an example of a Poisson
INARCH(1). The code to specify the model, simulate a time series of length 500 with
parameters β0 = 3 and α1 = 0.95, fitting and predicting 100 steps into the future with
prediction intervals from 10,000 chains would be

model = Model(pastObs = 1)
y = simulate(500, model, [3, 0.95])[1]
result = fit(y, model)
pred = predict(result, 100, 10000)

3. Application: COVID-19

For the first application, we take a closer look at the spread of COVID-19 in Germany.
The global pandemic has moved disease spread into public focus. Being able to predict the
number of newly infected patients is a cornerstone for policy making and resource planning
in hospitals and medication supply. Many sophisticated models have been developed to
predict the progression of infection rates. In the following, the CountTimeSeries package
is utilized to conduct such predictions with a rather simple INGARCH model and daily
data from German administrative districts. As an example, the application focusses on the
number of new infections in Limburg-Weilburg, which is the district with a population
density closest to the nationwide population density.

Data on infections of contagious, notifiable diseases are collected from the districts
health authorities by the Robert–Koch Institut, see RKI [15]. The data set used in the course
of the following analysis was prepared and published by NPGEO [16]. Besides general
information on districts it contains the daily number of newly reported COVID-19 cases
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for all 401 German administrative districts on the NUTS 3 resolution. The observed time
ranges from 7 January 2020 to 15 March 2021, totaling 434 days.

A first look at the data for the district of Limburg-Weilburg reveals that ~35% of
observations are zero and 9% of observations exceed 50, which underlines the suitability
and importance of a count data model. The excess of zeros in the data is partly explained
by the beginning of the pandemic with only few cases and the rather low counts in general
are due to the fine resolution in both, the time and space domain.

While advanced approaches for disease modeling incorporate many driving factors,
this analysis relies purely on the number of infections in Limburg-Weilburg and its neigh-
boring districts. Demographic factors, holidays and school closings, contact limitations,
introduction of mandatory face masks, and occupancy of hospitals and care facilities are
left out.

3.1. Model

To predict the number of new COVID-19 infections in Limburg-Weilburg, the widely
used INGARCH(1, 1) model with log-linear link is chosen as a starting point. According to
the World Health Organization [17], the incubation time of COVID-19 is on average five to
six days. It is further stated that virus transmission occurred more often from patients with
symptoms in empirical studies. Therefore, and to capture the weekly seasonality pattern
visible in Figure 1, the lag order 7 is included in the model as well.

Figure 1. Autocorrelation function (ACF) of daily new infections in Limburg-Weilburg.

In the time series, the mean count is around 14 whereas the variance is 642. This
marginal overdispersion does not necessarily indicate that a Negative Binomial must
be considered as conditional distribution. The Poisson INGARCH processes with large
dependency, meaning a sum of αi and βi parameters close to one, can exhibit such an
overdispersion. In the following, three different approaches are considered and compared.
Besides a Poisson and a Negative Binomial model, a retrospective estimation of the overdis-
persion parameter after fitting a Poisson model, as, for example, described by Christou
and Fokianos [18], is also considered. Let the sequence λ̂t be the conditional means on the
basis of estimates from a Poisson fit, T the number of observations, and m the number of
parameters. The retrospective estimate of the overdispersion parameter φ is then given by
solving the moment equation
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T

∑
t=1

(Yt − λ̂t)2

λ̂t
(
1 + λ̂t/φ

) = T − m (7)

for φ. The data-generating process is assumed to be a Negative Binomial process, whereas
all parameters apart from φ are estimated by fitting a Poisson model. Therefore, this
approach falls into the class of Quasi-Maximum Likelihood estimation with additional
moment based estimation of φ. In the following, this approach is referred to as a Quasi-
Poisson approach.

Infection counts of neighboring districts from seven days prior are included to ac-
count for potential spillover effects between districts. For each of Limburg-Weilburgs five
neighbouring districts—Lahn-Dill-Kreis, Hochtaunuskreis, Rheingau-Taunus-Kries, Rhein-
Lahn-Kreis, and Westerwaldkreis—and one internal regressor is added. Figure 2 displays
the rolling means of infection counts for all districts under consideration with a window
size of one week. Let Ni,t denote the number of new infections in neighboring district i
at time t. In the same fashion as for the autoregressive part, regressors are included as
log(Ni,t + 1) and collected in Xt. Then, the model to be fitted can be summarized according
to Equation (8) for the Poisson case.

Yt ∼ Pois(λt)

log(λt) = β0 + α1 log(Yt−1 + 1) + α7 log(Yt−7 + 1) + β1 log(λt−1) + ζ ′Xt
(8)

Figure 2. Daily infections in Limburg-Weilburg and Neighbouring Districts—7 day rolling mean.

3.2. Implementation

First step in the Julia implementation from above is to specify the models. With the
regressors collected in matrix X, the Poisson model is created by running

modelPois = Model(model = "INGARCH",
pastObs = [1, 7],
pastMean = 1,
distr = "Poisson",
link = "Log",
external = fill(false, 5),
X = X)
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For the alternative model, the distribution is simply replaced by "NegativeBinomial".
To fit the models to the time series y, settings are chosen as the Nelder–Mead optimization
routine and no inference. Then, the Poisson model is fitted by running

settingPois = MLESetting(y, modelPois, inits, optimizer = "NelderMead",
ci = false)
resultsPois = fit(y, modelPois, settingPois)

and for the Negative Binomial model accordingly. The retrospective estimation of the
overdispersion parameter for the Quasi-Poisson approach is done by QPois(resultsPois).
The function returns an updated results object.

In the last step, simulation-based prediction is performed using the function predict.
For each of the three results, a matrix of new values for regressors is needed and saved as
xNew. Then, the Julia code for a prediction with 10,000 chains is

predict(resultsPois, 7, 10000, xNew)

The application starts with using the first 322 observations until 30 November 2020
for estimation of parameters and predicting the following week. Successively, one further
observation is used for estimation and another prediction performed until the first 420
observations are used for estimation.

3.3. Results

To assess the predictions, a first look reveals only minor visual differences between
Poisson fit and the Quasi-Poisson approach as seen in Figure A1 in the Appendix A. Table 1
summarizes two different accuracy measures and the percentage of observed values which
lie inside the prediction intervals. For every prediction horizon h = 1, 2, . . . , 7, the root
mean squared prediction error (RMSPE) is given. Further, the median absolute prediction
error (MedAPE) is given to account for few large deviations that may influence the RMSPE.
For both measures and all three approaches, one can see that a larger prediction horizon
does not affect the accuracy in a negative way. The predictions even tend to be closer to the
observed values for a larger horizon. The Quasi-Poisson approach is slightly more accurate
compared to the Poisson approach. The absolute difference of prediction and observed
counts is smaller than 10 in ~50% of cases for the two approaches regardless of the horizon.
The Negative Binomial model appears to be less accurate compared to the other two. One
reason for it might be the additional parameter during the maximization of the likelihood.
This might cause a higher uncertainty in the estimation of all parameters and thus a less
precise prediction. The difference between a Poisson model and the Quasi-Poisson can be
seen by the percentage of observations inside the corresponding 95% prediction intervals.
The Poisson case is far away from the desired 95%, prediction intervals are too narrow.
The model simply can not account for the conditional overdispersion present in the data.
The Quasi-Poisson and the Negative Binomial model are able to account for it.

To put these accuracy measures into context, the mean number of new infections
being predicted is around 40. None of the three approaches can be considered very precise.
However, this application showed that the Quasi-Poisson estimation can combine the
advantages of a Poisson model and the Negative Binomial model.

In addition to the prediction results, Table 2 displays estimates, standard errors,
and 95% confidence intervals when considering the complete data set in the estimation.
On the left hand side, standard errors are computed from the Poisson model. The esti-
mate of φ stems from the Quasi-Poisson approach. One can see that both autoregressive
parameters α1 and α7 are significant, whereas the parameter β1 is not. An INARCH model
might be an alternative to the model considered here. The spillover effects are negative
only for the first neighboring district, but not significant. The remaining four are significant
and positive. The same can be found in the Negative Binomial case. In contrast to the
Poisson model, neither the parameter β1 nor both autoregressive parameters α1 and α7
are significant.
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Table 1. Prediction Limburg–Weilburg: Root Mean Squared Prediction Error, Median Absolute
Prediction Error and Percentage of Observations Inside the 95% Prediction Interval.

Criterion Model Prediction Horizon
1 2 3 4 5 6 7

R
M

SP
E Poisson 29.53 30.18 30.11 30.14 28.81 28.07 27.86

Quasi-Poisson 29.53 30.07 30.04 29.98 28.59 27.89 27.71
Negative Binomial 30.95 31.14 30.89 30.86 30.38 29.68 30.09

M
ed

A
PE Poisson 10.14 10.39 10.19 10.27 10.38 10.20 10.03

Quasi-Poisson 10.07 10.22 10.26 10.12 10.28 9.96 9.69
Negative Binomial 12.55 12.43 12.19 12.05 11.71 11.97 11.75

In
si

de
PI Poisson 46.5 46.5 46.5 48.5 50.5 49.5 49.5

Quasi-Poisson 97.0 97.0 97.0 97.0 97.0 97.0 97.0
Negative Binomial 98.0 98.0 99.0 99.0 99.0 99.0 99.0

These findings hint at the existence and importance of including spillover effects in an
epidemiological model. However, they do not prove any causal relationship, as the the
models lack important driving factors of disease transmission. For more reliable results,
a multivariate model or spatiotemporal model with all districts jointly enables to include
spillover effects in both directions and is better suited for such epidemiological applications.

Table 2. Estimation Results, standard errors, and 95% confidence intervals.

(Quasi-)Poisson NegativeBinomial

Estimate Std. Err. Conf. Interval Estimate Std. Err. Conf. Interval

β0 −0.159 0.049 (−0.254,−0.063) −0.540 0.107 (−0.749,−0.330)
α1 0.041 0.018 (0.006, 0.077) 0.115 0.063 (−0.010,0.239)
α7 0.122 0.022 (0.079, 0.165) 0.088 0.080 (−0.068, 0.245)
β1 0.053 0.030 (−0.006, 0.112) 0.005 0.100 (−0.190, 0.200)
ζ1 −0.032 0.015 (−0.061,−0.003) −0.034 0.057 (−0.146, 0.078)
ζ2 0.221 0.027 (0.168, 0.274) 0.252 0.076 (0.103, 0.401)
ζ3 0.314 0.029 (0.257, 0.370) 0.356 0.078 (0.203, 0.509)
ζ4 0.149 0.024 (0.102, 0.196) 0.194 0.084 (0.030, 0.359)
ζ5 0.265 0.024 (0.218, 0.312) 0.317 0.074 (0.172, 0.463)
φ 1.405 1.516 0.164 (1.195, 1.837)

4. Application: Animal Health in New Zealand

Aghababaei Jazi et al. [13] were the first to analyze submissions to animal health
laboratories in New Zealand. The data contain the monthly number of submissions with
anorexia and skin lesions from 2003 to 2009. The authors use a zero inflated Poisson
distribution for the innovations, where the probability of Rt = 0 is inflated by a parameter
ω. For the time series of animal submissions with skin lesions, this zero inflated INAR(1)
process yields a significantly better fit compared to a simple INAR(1).

Mohammadpour et al. [19] argue that the empirical overdispersion in the data cannot
be captured by the Poisson distribution. A test developed by Schweer and Weiß [20] was
applied and reveals that this overdispersion is significant at the 5% level. To incorporate
it, the authors suggest to use either a Negative Binomial distribution or the approach
developed by them.

4.1. Model and Implementation

Figure 3 shows both time series. One can see that counts are rather low, a trend is not
visible and especially for anorexia data, many observations are zero. The autocorrelation
function of both time series in Figure 4 does not speak against a low-order INAR model.
Eight different models are compared for the data, an INAR(1) and an INAR(2) model with
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both a Poisson and a Negative Binomial distribution, and for all of these four once with
and once without zero inflation. Other regressors are left out, making the choice of a link
function dispensable.

Figure 3. Monthly submissions with anorexia or skin lesions.

Figure 4. ACF of time series.

The first step in the analysis is to define the eight models, for example, a Poisson
INAR(1) as

Model(model = "INARMA",
pastObs = 1,
zi = true)

making use of default arguments in the function. If a Negative Binomial shall be chosen,
one simply needs to add distr = "NegativeBinomial". For a model order p = 2, pastObs
= 1 is changed to pastObs = 1:2.

With starting values for optimization saved as a vector inits of type parameter,
the function MLESettings is again used to specify estimation settings as

settings = MLESettings.(fill(dat.Anorexia, 8), models,
optimizer = "NelderMead", ci = true)
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The dot behind a function name indicates that it shall be applied element-wise, in our case
on the vector inits. The output then is a vector of estimation settings. Following that
manner, the results for both time series can be computed all at once by

results = Array{INARMAResults, 2}(undef, (8, 2))
results[:, 1] = fit.(fill(dat.Anorexia, 8), models, settings)
results[:, 2] = fit.(fill(dat.Lesions, 8), models, settings)

If one is now interested in diagnostics, for example, an information criterion, functions can
be applied on this array of results as well. In case of the AIC, the user runs

AIC.(results, 2)

At this point, one needs to keep in mind that information criteria are based on the likelihood.
When computing the likelihood, the number of observations to condition on varies with
the autoregression order. Especially for rather short time series, this property needs to be
accounted for. In the above computation of the AIC, the second argument indicates that
for each model, the contribution of the first two observations to the likelihood are ignored
making information criteria comparable.

4.2. Results

Table 3 summarizes the results of the estimation including zero inflation. Besides esti-
mates, standard errors from the Hessian and the AIC are shown. For parameters β0, α1,
α2, and ω, colors indicate the significance, where dark green refers to significance at the
0.1% level, medium green at 1%, and light green at 5%. The p-value of the overdispersion
parameter φ is ignored, as it can not be zero. In addition, Table A1 in the Appendix A
shows results for all models without zero inflation.

Mohammadpour et al. [19] analyze the data on lesions and find that a Poisson distri-
bution does not capture the overdispersion. The results below confirm these findings in
terms of the AIC. For an INAR(1) and an INAR(2), the Negative Binomial dominates the
Poisson distribution. Moreover, including the lag order p = 2 lowers information criteria
for both distributions and the estimates of α1 are not significant at the 5% level in that case.

Aghababaei Jazi et al. [13] emphasize the benefit of incorporating zero inflation in
the innovation process for the analysis of animal submissions with skin lesions. Only
when considering the Poisson models, this is supported by the highly significant zero
inflation parameter estimates and a lower AIC. However, when a Negative Binomial is
used, the zero inflation parameters are not significant. In fact, dropping zero inflation
for the NB-INAR(2) yields an even lower AIC. The results are similar for Anorexia data,
although estimates of α2 are not significant at 5%, both INAR(2) models have a lower AIC
than the corresponding INAR(1).

In conclusion, this study has confirmed the findings of Mohammadpour et al. [19].
When only looking at first-order INAR models, there is a conditional overdispersion in
the number of animal submissions with skin lesions that cannot be captured by a Poisson
distribution. The findings of Aghababaei Jazi et al. [13] can also been confirmed. In case
of a conditional Poisson distribution, it is useful to include zero inflation. The need for a
zero inflation vanishes in the example when switching to the Negative Binomial. This is
comprehensible, as the probability of a Negative Binomial being zero is larger than the
probability of a Poisson with the same mean being zero. Therefore, switching to a Negative
Binomial also inflates the zero probability. Although this application is only one specific
example, we can draw general conclusions from it: The need to extend a given model
during an application highly depends on the model you start with. When choosing a
model, it can be useful to cover a broader range of potential models to uncover patterns.
Especially for higher-order INARMA type models, the computer intensive evaluation of the
likelihood makes such broad comparisons cumbersome. However, the CountTimeSeries
package provides an efficient implementation of the likelihood and makes such broad
comparisons feasible.
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Table 3. Estimation results with zero inflation: significance highlighting for 5% level (light green), 1%
level (medium green), 0.1% level (dark green), and not significant at the 5% level (grey).

Model β̂0 α̂1 α̂2 φ̂ ω̂ AIC

A
no

re
xi

a

Pois-INAR(1) 2.215 0.338 - - 0.669 183.00
(0.428) (0.074) - - (0.069)

Pois-INAR(2) 2.692 0.249 0.118 - 0.752 179.85
(0.536) (0.090) (0.070) - (0.061)

NB-INAR(1) 1.642 0.310 - 1.278 0.424 182.25
(0.831) (0.077) - (1.766) (0.283)

NB-INAR(2) 2.363 0.225 0.120 2.668 0.630 179.94
(0.794) (0.093) (0.073) (3.561) (0.178)

Le
si

on
s

Pois-INAR(1) 2.042 0.175 - - 0.372 276.26
(0.278) (0.071) - - (0.077)

Pois-INAR(2) 2.055 0.110 0.176 - 0.464 271.32
(0.333) (0.073) (0.073) - (0.089)

NB-INAR(1) 1.344 0.130 - 1.018 0.047 270.60
(0.599) (0.077) - (1.081) (0.242)

NB-INAR(2) 1.252 0.084 0.166 0.920 0.103 267.76
(0.754) (0.076) (0.075) (1.218) (0.313)

5. Application: Corporate Insolvencies in Rhineland-Palatinate

After both model frameworks are introduced, the focus is now put on model choice
and diagnostics. Weiß and Feld [11] were the first to analyze corporate insolvencies
in Rhineland-Palatinate, one of the 16 federal states in Germany. The data were made
available as supplementary material and are used in the scope of the following. Rhineland-
Palatinate consists of 36 administrative districts at the NUTS-3 level: 24 rural districts
and 12 district-free cities. For each of these districts, the monthly number of corporate
insolvencies between 2008 and 2016 is observed. The data are used to investigate whether
there is a downwards trend in insolvency numbers. Röhl and Vogt [21] state that this trend
is especially visible after the financial crisis.

5.1. Models and Implementation

The question whether there was a trend in insolvencies is going to be answered for
each district individually. This enables to descriptively check for regional differences in
insolvency counts. Although insolvencies are presumably influenced by macroeconomic
factors, the only external influence incorporated here is the potential trend. Besides that,
the process is assumed to be self-driven. Looking at the total counts in Figure 5, one can
see the downwards trend starting around 2010, as Röhl and Vogt [21] state. Further, there
seems to be no seasonality pattern in the time series.

Weiß and Feld [11] investigated the model choice considering IID data with and
without a linear trend and either a Poisson or Negative Binomial distribution. Here, we
include IID data and both frameworks, INGARCH and INARMA. Potential orders are
chosen to be (1, 0), (2, 0), (1, 1), and (2, 1) to capture serial correlation if present. Both
distributions, Poisson and Negative Binomial, are incorporated. A trend component may
be omitted, included for the complete range of time, or starting in January 2010. Thereby, all
link functions are chosen to be a log-linear link. That way, negative coefficients of the trend
component are no threat to the restriction of positive conditional means. This sums up to
54 potential models to be estimated for each of the 36 time series. To save computation time,
inference is only conducted for chosen models and not for all 1944 combinations of models
and time series. In the package, standard errors are computed via the numerical Hessian.

After the estimation, information criteria can be computed by running AIC(results),
BIC(results), or HQIC(results). An additional argument dropfirst can be passed to
these functions to suppress the likelihood contributions of first observations. This comes
handy when comparing for example an INARCH(1) and an INARCH(2). Likelihood based
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estimation of these conditions on the first one or two observations respectively. For rather
short time series, this difference might be crucial.

To check if a choice of model is suitable, the non-randomized probability integral
transform (PIT) histogram is used. It was developed by Czado et al. [14] for count data
time series and does not rely on random numbers. The packages function pit produces
a histogram running pit(results, nbins = 10, level = 0.95) that is uniformly dis-
tributed if the model choice is correct. The argument nbins specifies the number of bins and
the argument level can be used to test the uniform distribution at the (1 − level)-level.
If level is put in, lines are drawn in the histogram and if at least one bin exceeds the lines,
the null hypothesis of a uniform distribution is rejected.

In the analysis, potential models are defined and fitted to all 36 time series. Then,
the best model is chosen for each district and verified by the packages diagnostic tool.

Figure 5. Total number of monthly insolvencies in Rhineland-Palatinate.

5.2. Results

In the fitting of 54 models to each of the 36 districts, all optimization procedures
converged. For districts with a marginal underdispersion, all models with a Negative
Binomial distribution have not been fitted. Inference has not been conducted so that results
purely rely on the model selection criterion. Table A2 summarizes the model selection
for all 36 districts together with mean and variance of time series. Many of the models
selected exhibit no serial dependence. In these cases, and as is to be expected, the Negative
Binomial was selected when the variance is clearly larger than the mean.

All selected models have been checked with the non-randomized PIT histogram. None
of the selected models produce a PIT histogram for which the null hypothesis of a uniform
distribution was rejected. Figure 6 shows an example PIT histogram for Trier, where the
dashed lines represent critical values for the height on bins for which, if exceeded, the null
hypothesis would be rejected. The confidence bank is rather wide due to few observations.

The (conditional) distribution is an indicator of how much the insolvency count varies
compared to its mean. Figure A2 in the Appendix A displays the selected distributions
where a clustering of districts with the same distribution is only vaguely recognizable.

A non-zero model order p or q implies a serial dependence besides a potential trend.
In the case at hand, for districts with serial dependence, all estimates indicate that a
larger/smaller number of insolvencies in one month tends to go along with a larger/smaller
number in the month after. One reason for it can be an interconnected economy within
the district, but not necessarily. Macroeconomic factors can also cause such dependence.
Figure 7 displays the selected models orders. One can see that those districts with depen-
dence seem to cluster.
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The selected time trends and the sign of the corresponding coefficient are summarized
in Figure 8. A grey district has no trend component in the selected model, light colors
represent districts with a trend starting in 2010 being selected, and dark colors represent a
selected trend along the complete observed time. Thereby, districts are colored green for a
downwards trend in the insolvency counts and red for an upwards trend.

Only one district, the urban area of Trier, exhibits an upwards trend. Seven districts
do not have a trend in the selected model and the remaining 28 show a downward trend.
Districts in the center of Rhineland-Palatinate and the district far east tend to have a trend
component starting in 2010. A complete trend was chosen more often in the southern
region and the north.

This analysis did not incorporate any macroeconomic variables to explain the in-
solvencies and also no information about the companies being bankrupt, yet it showed
that characteristics in terms of dispersion, autocorrelation and time trend cluster spatially.
The results suggest that there could be an interconnection between districts and that it
would be interesting to conduct the study in a multivariate setting instead of looking at
districts individually.

Figure 6. PIT histogram for Trier.

Figure 7. Selected Model Order.
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Figure 8. Selected Trend: upwards (red) or downwards (green).

6. Simulation Study: Finite Sample ML—Estimation

In many applications, the length of count data time series is rather short. Consistency
and asymptotic normality are proven for Maximum Likelihood estimates of an INGARCH
processes parameters, but a potential finite sample bias is often not addressed.

This last application pursues two goals. On the one hand, finite sample properties of a
Maximum Likelihood estimation are investigated in a simulation study. On the other hand,
the analysis is performed with both the CountTimeSeries package in Julia and the tscount
package in R. Computation time for the estimation is compared between these two.

6.1. Study and Implementation

The general strategy for this study is to generate time series following an INGARCH
process and then estimate its parameters by Maximum Likelihood. The study focusses on
Poisson INGARCH(1, 1) processes with identity link, as it is commonly used in applications.
The general framework covered by the CountTimeSeries package as described in Section 2
thus simplifies to

Yt|Ft−1 ∼ Pois(λt)

λt = β0 + α1Yt−1 + β1λt−1

Every combination of parameters α1, β1 ∈ {0.1, 0.2, . . . , 0.8} with a sum smaller than 1 is
incorporated in this study, which ensures stationarity. The intercept is chosen in such a way
that the marginal mean β0/(1 − α1 − β1) equals 15 for every choice of α1 and β1. Then,
for each set of parameters, a total of 1000 time series of lengths T ∈ {50, 200, 1000} are gen-
erated and its parameters estimated with four slightly different methods. The conditional
mean recursion λt above can be initialized with either the marginal mean, the first observa-
tion or the intercept in the CountTimeSeries package. The fourth possibility, not covered
by both packages, is to treat the initial value of the recursion as additional parameter and
estimate it.

Time series can be generated with the CountTimeSeries package by running

simulate(T, model, truepar)

for a model specification model and parameters truepar. Then, with estimation settings
collected in the object setting, parameters are estimated by
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fit(y, model, setting, initiate = initiate, printResults = false)

The optional argument initiate specifies how the recursion λt is started and the argument
printResults can be set to false to omit that results are printed in the console.

6.2. Results

Figures 9 and 10 display the mean bias of estimates α1 and β1, respectively, and neg-
ative values thereby indicate an estimate smaller than the true value. Note that for a
true value of 0.1, there are eight different parameter combinations aggregated in the bias,
but only one combination for a true value of 0.8 on the x axis due to the stationarity restric-
tion. Initializing the recursion with the marginal mean and the first value appear to yield
similar biases. This is a plausible result, considering that the first observation should equal
the marginal mean on average. Treating the first conditional mean as parameter also gives
similar biases in case of moderate (T = 200) and long (T = 1000) time series. In case of
short time series T = 50, this approach exhibits the largest absolute bias for α1 while at the
same time being the least biased for β1. Initializing the recursion with the intercept seems
to perform poorly especially for the estimate of β1 for larger true values of β1. In general,
the absolute bias should be larger for larger sums of α1 and β1, as the deviation between
intercept and expectation of λ1 is larger.

As to be expected by the consistency of Maximum Likelihood estimates, longer time
series go along with smaller biases. In addition to Figures 9 and 10, Figures A3 and A4 in
the Appendix A show relative biases. Thereby, biases are scaled by the true value of the
parameter to be estimated. It reveals that the estimate α1 exhibits larger relative biases for
smaller true values.

Only considering the first three initialization methods, one single estimation took
around 0.003 s for T = 50, 0.007 s for T = 200 and 0.02 s for T = 1000 on average in
Julia. The initialization method does not affect the computation time while larger values
of α1 + β1 increased the computation time. Using the R package tscount, estimation took
on average 0.11, 0.18 and 0.55 s for the three lengths of time series and thus around
25 times longer.

Figure 9. Mean Bias of α̂1 for T = 50 (solid), T = 200 (dashed), and T = 1000 (dotted).
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Figure 10. Mean Bias of β̂1 for for T = 50 (solid), T = 200 (dashed), and T=1000 (dotted).

Conclusively, this simulation study revealed the importance of a well chosen ini-
tialization method as well as systematic biases for Maximum Likelihood fitting of short
INGARCH(1, 1) time series. Starting the mean recursion with the intercept should be
avoided. Treating the first conditional mean as parameter might be the least restrictive
among the four methods, but as an additional parameter, it might add noise to the estima-
tion of the other parameters. It is recommended to initialize the mean recursion by the
processes marginal mean or the first observed value in case of an INGARCH(1, 1), since
the biases are comparable to the parameter initializer. However, for some processes in the
INGARCH framework, for example an INGARCH(1, 1) with log-linear link, computation
of the marginal mean is computer intensive or must be approximated. Therefore, starting
the recursion with the first observation appears to be a good choice. It is also the default
setting in the CountTimeSeries package.

7. Discussion and Outlook

Three real-life applications and the simulation study were chosen to give a broad
overview on the CountTimeSeries package. All functions of the package have been shown:
specifying a model, generating time series, estimating parameters, using information
criteria, as well as a diagnostic tool and forecasting. In the spirit of the Julia programming
language, the package is easy to learn, covers a broad range of models, and is fast compared
with interpreted languages. It is the first software package that covers both widely used
frameworks, INGARCH and INARMA processes.

Application 1 showed how the CountTimeSeries package can be used to investigate
complex non-stationary time series from epidemiology and compute forecasts. Comparing
prediction accuracy the prediction intervals, it revealed the advantage of the Quasi-Poisson
approach. Application 2 and 3 showed how to fit multiple models to data simultaneously
thanks to element-wise application of functions. In the second application, a contribution
was made to an existing discussion about the need to incorporate zero inflation and
overdispersion in a model for animals with skin lesions in New Zealand. Although the
results of the previous literature have been confirmed, increasing the model order has put
these findings in a different light.

Application 3 used corporate insolvency data to analyze if model choices based
on information criteria cluster spatially. In line with previous literature, a downwards
trend in the number of insolvencies was visible for most districts in Rhineland-Palatinate.
Districts where this trend started in 2010 after the financial crisis appeared to come in
clusters. Similar clustering effects were visible for dispersion characteristics and the order
of dependency.
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The simulation study in the end showed that there is a systematic bias when fitting
an INGARCH(1, 1) model to a rather short time series. Thereby, it was revealed that
one should not initialize the conditional mean recursion by the intercept. In comparison
with R, the Julia package was faster, making broad simulation studies computationally
more feasible.

Although the CountTimeSeries package already covers many important models, some
extensions would be useful supplements. A function to compute the mean, variance,
and ACF of a given model and parameters would first enable to compare empirical mo-
ments and theoretical moments from estimation results. In applications this might reveal
weaknesses in the model choice. Further, such a function could be used to estimate pa-
rameters in a GMM approach. Especially for higher-order INARMA models, likelihood
evaluation is computationally expensive. GMM might enable estimation in acceptable
runtime. For models with no closed form moments, a simulation-based approximation
of moments could be an alternative. If GMM estimation was integrated into the pack-
age, the computation of empirical moments could easily be replaced by robust moment
estimators, like trimmed means, to provide robust estimation techniques.

When dealing with real-life data, extreme observations, not following the usual model,
are commonly found. Other approaches to account for possible extreme observations in-
clude classical M-estimators or the recently published method by Li et al. [22] or approaches
based on the density power divergence, see for example Xiong and Zhu [23].

Another family of models that would enrich the Julia package are models with
bounded counts, see for example Weiß [24]. Examples for the usefulness of such mod-
els include time series or cross sectional data on product ratings or the number of rainy
days in a month. An approach to include zero inflation for such models is discussed by
Möller et al. [25]. As an alternative to zero inflation as presented here, would be hurdle
models to account for a surplus of zeros.

Above extensions match the notation and the current infrastructure of the package and
thus do not need a substantial reconstruction of the package. An inclusion of multivariate
models and spatiotemporal models brings along new challenges for the inclusion in the
Julia package, but would be rewarding for many applications. The COVID-19 application
discussed above is only one example where a multivariate model is useful. Modeling
multiple interacting count data processes jointly is also frequently used in finance, see,
for example, Quoreshi [26].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/e23060666/s1, Julia and R code for all four applications.
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Appendix A

Figure A1. 7 days ahead prediction and observed counts.

Table A1. Estimation results without zero inflation—significance highlighting for 5% level (light
green), 1% level (medium green), 0.1% level (dark green), and not significant at the 5% level (gray).

Model β̂0 α̂1 α̂2 φ̂ AIC

A
no

re
xi

a

Pois-INAR(1) 0.511 0.385 - - 225.05
(0.087) (0.073) - -

Pois-INAR(2) 0.450 0.353 0.098 - 224.70
(0.088) (0.078) (0.072) -

NB-INAR(1) 0.579 0.304 - 0.194 181.64
(0.173) (0.078) - (0.011)

NB-INAR(2) 0.545 0.220 0.118 0.139 180.37
(0.188) (0.096) (0.078) (0.059)

Le
si

on
s

Pois-INAR(1) 1.172 0.173 - - 294.77
(0.146) (0.068) - -

Pois-INAR(2) 0.976 0.145 0.132 - 292.17
(0.153) (0.068) (0.067) -

NB-INAR(1) 1.236 0.128 - 0.839 268.59
(0.217) (0.076) - (0.006)

NB-INAR(2) 1.017 0.084 0.164 0.608 265.85
(0.214) (0.076) (0.075) (0.248)
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Figure A2. Selected distribution.

Figure A3. Mean relative bias of α̂1 for T = 50 (solid), T = 200 (dashed), and T = 1000 (dotted).

Figure A4. Mean relative bias of β̂1 for T = 50 (solid), T = 200 (dashed), and T = 1000 (dotted).
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Table A2. Model choice for each district.

District Mean Var Model Trend

Ahrweiler 3.11 3.39 Pois IID No
Altenkirchen 3.03 5.34 NB-INGARCH(1, 1) Yes
Alzey-Worms 2.76 4.61 NB-INGARCH(2, 1) Yes

Bad Dürckheim 1.88 2.57 NB INARCH(2) Yes
Bad Kreuznach 4.94 5.90 Pois IID Partly

Bernkastell-Wittlich 3.25 4.58 Pois IID Yes
Birkenfeld 2.29 3.22 NB-INARCH(1) Yes

Cochem-Zell 1.29 1.72 NB IID Partly
Donnersbergkreis 1.38 1.86 P-INGARCH(1, 1) Partly

Eifelkr. Bitburg-Prüm 2.03 3.28 NB-IID Partly
Frankenthal, kfr. S. 0.96 1.29 P-INGARCH(1, 1) Partly

Gemersheim 1.71 1.93 Pois IID No
Kaiserslautern, kfr. S. 2.95 4.59 P-INGARCH(2, 1) Yes

Kaiserslautern 2.73 6.03 NB-INGARCH(2, 1) Yes
Koblenz 3.49 4.79 P-INGARCH(1, 1) Partly

Kusel 1.27 1.53 P-INARCH(2) No
Landau i.d.P 0.83 0.91 Pois IID No

Ludwigshafen 3.06 4.73 NB IID Yes
Mainz 4.90 10.62 NB IID Yes

Mainz-Bingen 4.55 8.21 P-INGARCH(2, 1) Partly
Mayen-Koblenz 5.24 6.67 NB-INGARCH(1, 1) Partly
Neustadt a.d.W. 1.06 1.23 P-INGARCH(1, 1) Yes

Neuwied 6.73 11.84 P-INGARCH(2, 1) Yes
Pirmasens 0.94 0.91 Pois IID No

Rhein-Hunsrück-Kreis 2.56 3.07 Pois IID Partly
Rhein-Lahn-Kreis 2.88 3.83 Pois IID Partly
Rhein-Pfalz-Kreis 2.40 2.82 Pois IID Yes

Speyer 1.01 1.04 Pois IID Partly
Südliche Weinstraße 1.76 1.98 Pois IID Yes

Südwestpfalz 1.61 1.87 Pois IID Yes
Trier, kfr. S. 1.87 1.85 Pois IID Yes

Trier-Saarburg 1.46 1.90 NB IID No
Vulkaneifel 1.41 1.70 P-INGARCH(1, 1) Yes
Westerwald 5.30 8.66 NB-INGARCH(1, 1) Yes

Worms 2.94 8.88 NB-INGARCH(1, 1) Yes
Zweibrücken 0.88 1.13 P-INARCH(1) No
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