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Abstract

Usually, the description of tangent spaces to the Teichmueller space T (Σg) of a (closed)
Riemann surface Σg of genus g ≥ 2

(
whichwe can identify with the quotient spaceH2/Γg

of the upper half plane H2 by a discrete cocompact subgroup Γg of PSL(2,R)
)
comes in

two different flavours: the space of holomorphic quadratic differentials on Σg which are
holomorphic sections of the tensor square of the canonical line bundle of Σg and the first
cohomology group H1(Γg; g) of the fundamental group Γg of Σg with coefficients in the
vector space g of Killing vector fields on H2 (or on D), a.k.a the Lie algebra of PSL(2,R).
This thesis is concerned with connecting the above-mentioned descriptions using the
notion of a harmonic vector field on the upper half plane H2 (equivalently, on D) that takes
inspiration from the theory of harmonic maps between compact hyperbolic Riemann
surfaces.
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Introduction

In Riemann surface theory, Teichmueller theory, and the theory of moduli spaces, on the
one hand, we benefit a lot from cross-pollination of techniques coming from sometimes
disparate fields like topology, complex analysis, algebraic geometry, and arithmetic
geometry. However, on the other hand, passing from one structure/definition to another
is quite often an arduous task, making the use of different techniques simultaneously
rather tricky.

Incase of a closed Riemann surface Σg of genus g ≥ 2, to make a smooth transition
from complex structures (see Definition 1.2.1) to hyperbolic structures (see Definition 1.2.9),
we need the Uniformization theorem; from the lens of the Korn-Lichtenstein theorem
we watch metamorphosis of almost complex structures (see Definition 1.2.2) into complex
structures. Usually, the problems even get worse when passing from a single Riemann
surface to either the parametrization space T (Σg) - famously known as the Teichmueller
space of Σg - parameterizing hyperbolic structures/complex structures/almost complex
structures on Σg or the bundles of Riemann surfaces. As alreadymentioned, this problem
is not only confined to structures but it is also valid when it comes to connecting different
definitions and different descriptions of a mathematical object in Teichmueller theory.
For instance, the description of the Teichmueller space T (Σg) of a closed oriented surface
Σg of genus g ≥ 2 enjoys a multifaceted viewpoint, i.e., we can view T (Σg) as

• the quotient space of the space C(Σg) of complex structures on Σg by the action
of the group Diff+

0 (Σg) of orientation preserving diffeomorphisms on Σg that are
isotopic to the identity (see [63]);

• the quotient space of Hom0(Γg,PSL(2,R)) by the action of the Lie group PSL(2,R),
where Γg is the fundamental group of Σg and Hom0(Γg,PSL(2,R)) is the space
of homomorphisms Γg −→ PSL(2,R) which describe a discrete and cocompact
action of Γg on H2.

The above-mentioned viewpoints are brought together in one-to-one correspondence
by the parametrized Uniformization Theorem. In the literature, T (Σg) is also defined
as a connected component of the representation variety Hom(Γg,PSL(2,R))/PSL(2,R)
(see [22], [23], [45]). In its own right, this description is a great motivation to study the
Teichmueller space T (Σg) in detail, this thesis will not discuss it further.

vi
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Other than the Teichmueller space T (Σg), there are many examples of spaces in Teich-
mueller theory that enjoy a kaleidoscopic picture. One famous example is tangent spaces
to the Teichmueller space T (Σg). Tangent spaces to the Teichmüller space T (Σg) are best
described using the theory of infinitesimal deformations. The main slogan of the theory is
to deform a point in the Teichmueller space T (Σg) be it

• a homomorphism ρ representing [ρ] ∈ Hom0(Γg,PSL(2,R))/PSL(2,R);

• or a complex structure on Σg

with respect to a (real) parameter t and then analyze the local structure of the correspond-
ing spaces. Recall the Taylor expansion of a smooth function f (on a smooth manifold
M ) around a point x ∈M . The first order derivative at x provides good information of f .
In the same way, certain cohomology groups provide basic and satisfactory information
on deformations of a homomorphism ρ ∈ Hom0(Γg,PSL(2,R)). Formally speaking,
deformation of a homomorphism ρ ∈ Hom0(Γg,PSL(2,R)) has the following meaning:
we take a curve of maps ρt where ρ0 = ρ is a homomorphism, and ask for (infinitesimal)
conditions which ensure that this curve ρt satisfies the homomorphism condition

ρt(γ1γ2) = ρt(γ1)ρt(γ2), ∀γ1, γ2 ∈ Γg.

Solving dρt
dt

∣∣
t=0

up to the first order determines a 1-cocycle with values in the vector
space of Killing vector fields on H2, a.k.a the Lie algebra g of PSL(2,R). As a result,
TρHom0(Γg,PSL(2,R)) is nothing but the space of g-valued 1-cocycles Z1(Γg; gAdρ).
Next, by considering “trivial” deformations ρt of ρ given by conjugation via elements
of PSL(2,R) and solving the above-mentioned homomorphism condition up to the
first-order determines a 1-coboundary c ∈ B1(Γg; gAdρ). Hence,

T[ρ]Hom0(Γg,PSL(2,R))/PSL(2,R) ∼= H1(Γg; gAdρ).

Therefore, H1(Γg; gAdρ) serves as the cohomological description of tangent spaces to the
Teichmueller space T (Σg). The space of infinitesimal deformations of a complex structure
on Σg is parametrized by the space HQD(Σg) of holomorphic quadratic differentials on Σg

(see [36] and [47]), where a holomorphic quadratic differential is a holomorphic section
of QΣg , the tensor square of the canonical line bundle KΣg of Σg. Hence, the analytic
description of tangent spaces to the Teichmueller space T (Σg) is given by HQD(Σg). For
precise descriptions, see Section 1.3 in Chapter 1.

So, themain aim of this thesis is to construct explicit maps from HQD(Σg) toH1(Γg, gAdρ)
and vice-versa, i.e.,

HQD(Σg)
? // H1(Γg, gAdρ)
?

oo (1)

Now, we can ask ourselves the following question: what recipes are we going to use in
the construction of maps from HQD(Σg) to H1(Γg, gAdρ) and vice-versa?

Since the inception of Teichmueller’s theorems, the use of quasiconformal maps in classical
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Teichmueller theory is prevalent. However, in this thesis, we don’t focus much on
quasiconformal maps. We take an unconventional road that minimizes energy to connect
the above-mentioned descriptions of tangent spaces to the Teichmueller space T (Σg).
Our essential recipe will be the notion of a harmonic vector field on the upper half plane
H2 or the Poincaré disk D in constructing maps from HQD(Σg) toH1(Γg, gAdρ) and vice-
versa.

The notion of a harmonic vector field on H2 (or on D) takes inspiration from the definition
(see Definition 2.1.4) of a harmonic map φ : Σ1 −→ Σ2 between Riemann surfaces equipped
with conformal metrics. Harmonic maps are critical points of the energy functional

E(φ) =

∫
Σ1

‖dφ‖2dµ,

where ‖ · ‖ is the Hilbert-Schmidt norm and dµ is the measure on Σ1 determined by
the Riemannian metric on Σ1. The integrand is also known as the energy density (see
(2.4)). Equivalently, harmonic maps satisfy the Euler-Lagrange partial differential equations
associated with the energy functional (see (2.3)). These PDEs are non-linear and elliptic.
Harmonic maps exist in the homotopy class of any diffeomorphism when the target
surface is equipped with a strictly negatively curved metric, and are unique ([12], [27]).
Harmonic maps are related to holomorphic quadratic differentials intimately, hence play
an important role in Teichmueller theory. This relation arises from the fact that

a diffeomorphism φ : (Σ1, σ) −→ (Σ2, ρ) between two Riemann surfaces
equipped with conformal metrics is harmonic iff the quadratic differential
(φ∗ρ)(2,0) on the source surface Σ1 is holomorphic (see Example 2.1.10 and
[32, Lemma 1.1]). F

The use of harmonic maps in Teichmueller theory goes all the way back to Gerstenhaber
and Rauch’s program (see [20] and [53]) to prove Teichmueller’s Theorems using har-
monic maps. In order to state our main results, we need to define a harmonic vector field
on the upper half plane H2 or the Poincaré disk D: let U be an open subset ofM , where
M is either the upper half plane H2 or the Poincaré disk D. Let {φt}t∈[0,ε) be a smooth
family of smooth maps

φt : U −→M

where φ0 is the inclusion. Then ξ = dφt
dt |t=0 is a vector field on U .

Definition 0.0.1 (Definition 2.2.1). The vector field ξ on U is harmonic if there exists a
smooth family of smooth maps {φt : U −→M}t∈[0,ε) which satisfies the following:

1. φ0 is the inclusion map,

2. dφt
dt

∣∣∣
t=0

= ξ,

3. ∀x ∈ U :
d

dt

∣∣∣
t=0

τ(φt)(x) = 0 , where τ is the tension field (see Definition 2.1.2).
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An infinitesimal version of (F) is given by the following:

Proposition 0.0.2 (Proposition 2.2.4). A smooth vector field ξ on H2 or on D is harmonic iff(
LξgH2

)(2,0) or
(
LξgD

)(2,0) is holomorphic.

Our first main theorem is based on the above Proposition and the fact that a holomorphic
vector field on U ⊂ H2 is a harmonic vector field on U ⊂ H2.

Theorem 0.0.3 (Theorem 2.2.7). Let HOL denote the sheaf of holomorphic vector fields on
H2, HARM denote the sheaf of harmonic vector fields on H2 and HQD denote the sheaf of
holomorphic quadratic differentials on H2. Then the following sequence of sheaves

HOL α // HARM β // HQD (2)

is a short exact sequence of sheaves on H2. In (2), α is the inclusion map and β is given by the
formula in Proposition 0.0.2.

Remark 0.0.4. Theorem 0.0.3 is also valid if we replace H2 with D.

Our next main Theorem is about proving the global surjectivity of the map β in (2) in
Theorem 0.0.3.

Theorem 0.0.5 (Theorem 2.2.13 + Theorem 2.2.19). Let q = f(z)dz2 be a holomorphic
quadratic differential on H2. Suppose that q satisfies the following boundedness conditions

1. q is bounded in the hyperbolic metric gH2 , i.e.,

‖q‖gH2 = |f(z)|‖dz2‖gH2 ≤ D,

where ‖dz2‖gH2 = =(z)2 and D is a positive real number.

2. The first and second covariant derivative of q w.r.t ∇, the linear connection on T ∗H2 ⊗C
T ∗H2, are bounded in the hyperbolic metric gH2 .

Then there exists a harmonic vector field ξreg on H2 such that β(ξreg) = q, where β is introduced
in Theorem 0.0.3. An explicit formula is

ξreg(z) = lim
c→∞

(
ξc(z)−

(
ξc(ι) +

∂ξc
∂z

∣∣∣∣
z=ι

· (z − ι)
))

,

where
ξc(z) =

(∫ c

y∗(z)
ιζ2f(z̄ + 2ιζ)dζ

)
η(z)
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and c is a positive real number. The harmonic vector field ξreg transformed from H2 to the open
unit disc D by the Cayley transform C extends to a continuous vector field, say χ, on D defined
as follows:

χ(C(z)) =


C∗(ξ

reg(z)) z ∈ H2

C∗(ξ
reg(z)) z ∈ ∂H2 \ {∞}

0 z = {∞}

where C∗(ξreg(z)) is the pushforward of ξreg(z) by the Cayley transform C.

Remark 0.0.6. We have introduced a simple terminology reg short for “regularisation”
to characterise our required harmonic vector field.

Remark 0.0.7. The global surjectivity of the map β in Theorem 0.0.3 is proven indepen-
dently by S. Wolpert in [70, Section 2]. See the beginning of Subsection 2.2.1 in Chapter
2.

Chapter 2 is dedicated to proving Proposition 0.0.2, Theorem 0.0.3 and Theorem 0.0.5. It
also discusses the main advantages of the method which is used in Chapter 2 in proving
Theorem 0.0.5 over Scott Wolpert’s method.

Theorem 0.0.5 implies that the coboundary δχ

χ 7−→
(
γ 7−→ χ(γ)γ−1 − χ

)
, ∀γ ∈ Γ

where Γ is a discrete cocompact subgroup of Isom+(D), defines a 1-cocycle with values
in the vector space HOL of holomorphic vector fields on D. Note that we view χ as a
0-cocycle with values in the vector space of harmonic vector fields on D.

In Chapter 3, we ensure that we get an explicit map from the vector space of Γ-invariant
holomorphic quadratic differentials HQD(D,Γ) on D to H1(Γ; g) by using the theory of
L2-vector fields on S1. One of the main actors in Chapter 3 is the notion of a tangential
L2-vector field on S1 (see Definition 3.1.2 and Example 3.1.3). Themain upshots of Chapter
3 are the following results:

Theorem 0.0.8 (Theorem 3.1.4 + Theorem 3.1.5). Given a holomorphic quadratic differential
q = fdz2 on the Poincaré disk D which satisfies the following boundedness conditions:

1. q is bounded in the hyperbolic metric on D, i.e.,

‖q‖gD ≤ D,

where D is a positive real number.

2. The first and the second covariant derivative of q w.r.t the linear connection on T ∗D⊗CT
∗D

are bounded in gD.
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Then there exists a harmonic vector field χ on D which admits an L2-extension to the closed unit
disk D such that (LχgD)(2,0) = q. Moreover, the restriction of that extension to the boundary
circle S1 is tangential and χ is unique upto the addition of holomorphic vector fields on D which
extend tangentially to the boundary circle S1. Also, χ is unique upto the addition of the vector
space g of Killing vector fields on D.

Corollary 0.0.9 (Corollary 3.1.6). Let Γ denote a subgroup of Isom+(D), where Isom+(D) is
the group of orientation preserving isometries of D. If q = fdz2 and χ are related as in Theorem
0.0.8 and if in addition to (1) and (2) in Theorem 0.0.8, q is Γ-invariant, i.e.,

f(γ(z))γ′(z)2 = f(z), ∀γ ∈ Γ, z ∈ D,

then δχ defined by
γ 7−→ χ(γ)γ′−1 − χ, ∀γ ∈ Γ

is a 1-cocycle c for the groupΓwith coefficients in the Lie algebra g of Isom+(D) and its cohomology
class [c] depends only on q.

Corollary 0.0.10 (Corollary 3.1.8). Let Γ be a discrete cocompact subgroup of Isom+(D). Then
we have an injective mapping

Φ : HQD(D,Γ) −→ H1(Γ; g)

q 7−→ [c],

where HQD(D,Γ) denotes the vector space of Γ-invariant holomorphic quadratic differentials on
D and c = δχ.

Chapter 4 is dedicated to constructing a map in the other direction in (1), i.e., from the
cohomological description of tangent spaces to the analytic description

H1(Γ; g)
? // HQD(D,Γ),

where Γ denotes a discrete cocompact subgroup of PSU(1, 1) and g denotes the Lie
algebra of PSU(1, 1). Given any 1-cocycle c representing [c] ∈ H1(Γ; g), we first construct
a smooth vector field ψ on D such that δψ = c and ψ admits an L2-extension to the closed
unit disk Dwhose restriction to the boundary circle S1 is tangential. This construction
relies on the existence of a Γ-invariant partition of unity on D. See Section 4.1 in Chapter
4.

Lemma 0.0.11 (Lemma 4.1.1). There exists a smooth function ϕ on D such that

1. 0 ≤ ϕ ≤ 1.

2. For each z ∈ D, there is a neighborhood U of z and a finite subset S of Γ such that ϕ = 0
on γ(U) for every γ ∈ Γ− S.
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3.
∑

γ∈Γ ϕ(γ(z)) = 1 on D.

Remark 0.0.12. We suspect that Lemma 0.0.11 is a simpler version of results on Kleinian
groups (see [37]).

Lemma 0.0.13 (Lemma 4.1.3 + Corollary 4.1.7). Given any [c] ∈ H1(Γ; g) we set

ψ(z) = −
∑
γ∈Γ

ϕ(γ(z))cγ(z), z ∈ D,

where ϕ is introduced in Lemma 0.0.11. ψ is a C∞-vector field on D such that δψ = c. Moreover,
ψ admits a unique L2-extension to the closed unit disk D whose restriction ψ] to the boundary
circle S1 is tangential.

Remark 0.0.14. The above-mentioned construction of a vector field on the boundary
circle S1 from a cocycle c representing [c] ∈ H1(Γ; g) is in the spirit of universal Teichmueller
theory. See [17], [19], [40], [41], [44] for more details.

For the construction of ψ in Lemma 0.0.13 we can either use the Γ-invariant partition
of unity method or the difficult theory of Chapter 2 and Chapter 3 which produces a
harmonic solution. Lemma 0.0.13 is valid for all of these but the construction of an
L2-extension of ψ to D relies on the existence of harmonic vector fields. Therefore, it is
worth asking the following:

Problem 0.0.15 (Problem 4.4.1). Is there a more direct way of proving Lemma 0.0.13 which
does not take harmonicity into account?

The final results of this thesis are based on the reincarnation (see Subsection 4.2.1) and
adaptation of the Poisson integral formula in the case of continuous tangential vector
fields on S1. First, we construct a harmonic vector field on the open unit disk D from a
continuous tangential vector fieldX on S1. Note that a continuous tangential vector field
X on S1 can be written as X = fY where f is a real-valued continuous function on S1

and Y is the norm 1 tangential vector field on S1 given by z 7−→ ιz.

Theorem 0.0.16 (Theorem 4.2.11 + Lemma 4.2.15). Let SC0(TS1) be the Banach space of
(tangential) continuous vector fields on S1 and SC0(TD) be the space of continuous vector fields
on the open disk D. A linear map

F : SC0(TS1) −→ SC0(TD)

is given by the normalized convolution

F(X) = f ∗ K,

where K is the Poisson Kernel vector field given by

K(z) =
ι(1− |z|2)3

|1− z̄|2 · (1− z̄)2
.
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Moreover, F(X) is a harmonic vector field on the open unit disk D, and F(X) and X make up a
continuous vector field on the the closed unit disk D.

We adapt Theorem 0.0.16 in the case of tangential L2-vector fields on S1 as follows:

Corollary 0.0.17 (Corollary 4.2.16). For an L2-tangential vector field X on S1, X is an L2-
boundary extension of the smooth vector field F(X) on the open unit disk D.

Remark 0.0.18. We suspect that Corollary 0.0.17 is an infinitesimal version of the problem
of finding harmonic extensions of quasiconformal maps (from S1 to itself) to the open
unit disk D or the upper half plane H2. See [26] for more details.

We have not shown that there exists a unique harmonic extension of a tangential
L2-vector field X on S1 to the closed unit disk D. And this brings us to our second open
problem:

Problem 0.0.19 (Problem 4.4.2). Given a tangential L2-vector field X on the boundary circle
S1, does there exist a unique harmonic extension to the closed unit disk D?

From Theorem 0.0.16 and Corollary 0.0.17, we get the following result:

Theorem 0.0.20 (Theorem 4.3.1). Let Γ be a discrete cocompact subgroup of PSU(1, 1). For
every cocycle c representing a cohomology class [c] ∈ H1(Γ; g), there exists a smooth vector field
ψ on the open unit disk D such that c = δψ. Moreover, any such ψ admits an L2-extension to D
whose restriction ψ] to the boundary circle S1 is tangential. There exists a homomorphism

Ψ : H1(Γ; g) −→ HQD(D,Γ)

[c] 7−→
(
LF(ψ])gD

)(2,0)
,

where the map F is introduced in Theorem 0.0.16 and F(ψ]) is a harmonic vector field on the
open disk D.

Corollary 0.0.21 (Corollary 4.3.2).

Φ ◦ Ψ = Id,

where Φ is defined in Corollary 0.0.10 and Ψ is defined in Theorem 0.0.20.
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Chapter 1

Preliminaries

Throughout this chapter we denote a closed oriented surface of genus g ≥ 2 by Σg. The
main goal of this chapter is to gather some necessary results, prove that the Teichmueller
space T (Σg) is a 6g−6 dimensional manifold using techniques from differential topology,
and discuss briefly about tangent spaces to the Teichmueller space. We have attempted
to follow a coherent narrative.

1.1 Some facts from hyperbolic geometry

The upper half plane H2 with the metric gH2 = dx2+dy2

y2 and the Poincaré disk D with the
metric gD = 4dx2+dy2

(1−(x2+y2))2 are the common models for the hyperbolic plane. Semicircles
and half lines orthogonal to R are the geodesics in the upper half plane model H2. In
the Poincaré disk model D, if two points z1 and z2 are on the same diameter then the
geodesic from z1 to z2 is the Euclidean line segment joining them, otherwise the geodesic
is the arc of circle, orthogonal to S1. Both H2 and D have curvature −1 w.r.t gH2 and gD.
Both gH2 and gD are invariant under

Aut(H2) = {f ∈ Aut(C)|f(H2) = H2},

where Aut(C) is the automorphism group of the Riemann sphere C, and

Aut(D) = {f ∈ Aut(C)|f(D) = D}.

Note that
Aut(H2) ∼= PSL(2,R) ∼= Isom+(H2),

where Isom+(H2) is the group of orientation preserving isometries of H2. Every element
of Isom+(H2) has a form γ(z) = az+b

cz+d ,where a, b, c, d ∈ Rwith ad− bc = 1. We classify
elements of PSL(2,R) based on an extremal problem on hyperbolic translation length as
follows: for every γ ∈ PSL(2,R) except the identity element, set

α(γ) = inf
z∈H2

dH2(z, γ(z)),

where dH2(−,−) denotes the hyperbolic distance, then

1
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1. γ is elliptic if α(γ) = 0 and there exists a point z ∈ H2 with α(γ) = dH2(z, γ(z)). In
other words, z is a fixed point of γ;

2. γ is parabolic if α(γ) = 0 but there exists no point z ∈ H2 with α(γ) = dH2(z, γ(z));

3. γ is hyperbolic if α(γ) > 0 and there exists a point z ∈ H2 with α(γ) = dH2(z, γ(z)).

Since H2 is isometric to D, normal forms of above elements are given as follows:

1. Any elliptic element is conjugate to a rotation z 7−→ λz in Aut(D), for some λ with
|λ| = 1;

2. Any parabolic element is conjugate to either z 7−→ z+1 or to z 7−→ z−1 in Aut(H2),
and these maps are not conjugate to each other;

3. Any hyperbolic element is conjugate to z 7−→ λz in Aut(H2), where λ > 1.

Since elements of PSL(2,R) havematrix representations, they are also classified by trace,
i.e., for a non-identity γ ∈ PSL(2,R) the following holds:

1. γ is parabolic iff trace2(γ) = 4;

2. γ is elliptic iff 0 5 trace2(γ) < 4;

3. γ is hyperbolic iff trace2(γ) > 4.

[6], [9], [16], [24], [31], [38], [50], [52], [54], [58], [60], [62], [64], and [71] as well articles of
[5], [28], and [59] are great references to absorb different flavours of hyperbolic geometry.

1.2 The Teichmüller space, a kaleidoscopic view

Understanding and generalizing a ‘mathematical structure’ on a ‘mathematical object’
is an important concept in every discipline of pure mathematics. In (Riemann) surface
theory the study of conformal structure, complex structure, and almost complex structure on
Σg has received much attention. We begin by giving an overview of the above-mentioned
structures on Σg and also emphasize the interplay between them.

Definition 1.2.1 (Complex structure). A complex structure J on Σg is an equivalence class
of complex atlases, where two atlases, say, {Ui, fi} and {Vi, gi} are equivalent iff their
union forms a new complex atlas.

Definition 1.2.2 (Almost complex structure). An almost complex structure onΣg is a smooth
bundle endomorphism J : TΣg −→ TΣg such that

1. ∀x ∈ Σg : J2
x = −Ix,

2. ∀ nonzero v ∈ TxΣg : (v, Jx(v)) is an oriented basis for TxΣg.
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Equivalently, an almost complex structure is a smooth section of the fiber bundle

GL(Σg)×GL+(2,R2) GL+(2,R2)/GL(1,C1) −→ Σg.

GL(1,C) is the multiplicative group of non-zero complex numbers embedded in the
group GL+(2,R2) of the real 2× 2 matrices with positive determinant.

Definition 1.2.3 (Conformal structure). A conformal structure onΣg is an equivalence class
of Riemannian metrics on Σg where two Riemannian metrics h1 and h2 are equivalent if
the following holds

h1 = e2uh2,

where u is a real valued C∞-function on Σg.

We denote the set of almost complex structures on Σg byA(Σg) and the set of complex
structures on Σg by C(Σg). A(Σg) is endowed with the C∞-topology and is clearly con-
tractible because the homogeneous space GL+(2,R2)/GL(1,C1) is contractible. Getting
an almost complex structure on Σg from a complex structure on Σg is obvious but the
question of whether Σg admits a complex structure whose underlying almost complex
structure is the given one is answered by the Newlander-Nirenberg theorem. Here is the
precise formulation:

Theorem 1.2.4 (Korn-Lichtenstein Theorem [8], [49]). There is an obvious (forgetful) map

Ξ : C(Σg) −→ A(Σg)

c 3 (U ⊂ Σg, φ) 7−→
(
Jφ(x) := dφ−1

x Ĵdφx, x ∈ U, Ĵ :=

[
0 −1
1 0

])
which is a bijection.

Remark 1.2.5. Jφ is independent of the choice of φ in the description of the map Ξ above.

Let Diff+(Σg) be the topological group of all orientation preserving diffeomorphisms
of Σg and let Diff+

0 (Σg) be the open subgroup of those orientation preserving diffeomor-
phisms which are homotopic to the identity. The group Diff+(Σg) and Diff+

0 (Σg) acts on
A(Σg) by

(f∗J)x := (dfx)−1Jf(x)dfx; f ∈ Diff+(Σg).

The above action makes the bijective map C(Σg) −→ A(Σg) in Theorem 1.2.4 Diff+(Σg)-
equivariant. Futhermore, we call a Riemannian metric h on Σg with an almost complex
structure J conformal if J is orthogonal w.r.t h. From the Uniformization theorem,
Σg is biholomorphically equivalent to the quotient space H2/Γ, where Γ is a group of
holomorphic automorphisms of H2 acting freely and properly discontinuously and is
identified with a discrete subgroup of PSL(2,R), i.e., a Fuchsian group. In other words,
in any conformal class of Riemannian metrics on Σg, there exists a unique Riemannian
metric of constant curvature −1. In summary, almost complex structures, complex
structures, conformal structures, and Riemannian metrics of constant curvature −1 are
equivalent notions for Σg.
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1.2.1 Classical definition

We choose a basepoint x0 ∈ Σg. The fundamental group π1(Σg, x0) is generated by the ho-
motopy classes [a1], [b1], . . . , [ag], [bg] induced from simple closed curves a1, b1, . . . , ag, bg
with base point x0 satisfying the following relation: [[a1], [b1]] · · · [[ag], [bg]] = 1, where
1 is the unit element. We denote the fundamental group π1(Σg, x0) by Γg. By abuse of
notation, we denote the generators of Γg by a1, b1, . . . , ag, bg satisfying the fundamental
relation [a1, b1] · · · [ag, bg] = 1. From the Uniformization theorem, Γg is isomorphic to a
discrete cocompact subgroup of PSL(2,R). Before giving the classical definition of the
Teichmueller space, we describe elements of Γg.

Proposition 1.2.6 ([35]). Every non-identity element of Γg is hyperbolic.

Proof We prove the proposition by contradiction. Assume that γ ∈ Γg − {1} is either
parabolic or elliptic. Note that Γg acts freely on H2 and hence cannot have elliptic
elements. Now, assume that γ ∈ Γg − { 1} is a parabolic element. Since every parabolic
element of PSL(2,R) is conjugate in PSL(2,R) to either z 7−→ z + 1 or z 7−→ z − 1 (see
Subsection 1.1), we work with γ(z) = z + 1 for the rest of the proof. Let a be a positive
real number. Let us denote the image of the segment joining ιa to γ(ιa) by the projection
map p : H2 −→ H2/Γg by Ca. We note that Ca is a closed curve. See Figure 1.1 below.

ιa2 γ(ιa2)
ιa3 γ(ιa3)

ιa4 γ(ιa4)

ιa1 γ(ιa1)

Figure 1.1: Line segments joining ιai to γ(ιai)

Recall the Poincaré metric on H2 induces a hyperbolic metric on the compact surface
H2/Γg. Let l(Ca) be the hyperbolic length of Ca w.r.t to a hyperbolic metric on H2/Γg.
We have one-to-one correspondence between the free homotopy classes of closed curves
on the compact surface H2/Γg and the set of conjugacy classes in the fundamental group
π1(H2/Γg). So we could view Ca as an element of the fundamental group π1(H2/Γg). Ca
is null-homotopic because for a sequence of positive numbers {ai}∞i=1, l(Cai) −→ 0 as
i −→∞. In order to get a contradiction we have to show that Ca is not null-homotopic as
an element of the fundamental group π1(H2/Γg) ' Γg. It’s obvious because we started
with a non-identity element γ ∈ Γg. �
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Lemma 1.2.7 ([29], [30]). Let γ1, γ2 ∈ PSL(2,R) − {1} be hyperbolic, where 1 denotes the
identity element of PSL(2,R). Let Fix(γ1) and Fix(γ2) be the set of fixed points of γ1 and γ2,
where the set of fixed points of an element γ ∈ PSL(2,R) − {1} is the set of all z ∈ R ∪ {∞}
satisfying γ(z) = z. Then γ1 and γ2 commute iff they have atleast one common fixed point, i.e.,

z ∈ Fix(γ1) ∩ Fix(γ2) 6= ∅.

Remark 1.2.8. We denote the centralizer of Γg in PSL(2,R) by CΓgPSL(2,R). From
Lemma 1.2.7, it is easy to see that CΓgPSL(2,R) is trivial. Here is an argument: from
Lemma 1.2.7, γ1 and γ2 are noncommuting iff Fix(γ1) ∩ Fix(γ2) = ∅. Now, let’s assume
that γ ∈ PSL(2,R) commutes with γ1 and γ2. Then γ fixes the axis of γ1 and γ2, since
γ(Axγi) = Axγγiγ

−1 = Axγi, for i = 1, 2. Thus γmaps Fix(γi), i = 1, 2 to itself. However
we cannot conclude that γ(z) = z, z ∈ Fix(γi), i = 1, 2. We have two possibilities:

1. γ is hyperbolic with the same axis as of γ1 and γ2.

2. γ is elliptic of order 2, i.e., γ interchanges the fixed points of γ1 and γ2. And
γγiγ

−1 = γ−1
i .

We can exclude both the possibilities because according to (1), γ has 4 fixed points, hence
a contradiction. And from (2), γ /∈ CΓgPSL(2,R). Hence, CΓgPSL(2,R) is trivial.

Definition 1.2.9. The Teichmüller space of Σg is defined as the space of equivalence
classes of marked hyperbolic surfaces. By a marked hyperbolic surface we mean a pair (S, φ)
where S is a hyperbolic surface, i.e., a closed oriented surface of genus g ≥ 2 endowed
with a fixed hyperbolic metric (a Riemannian metric of constant sectional curvature -1)
and φ : Σg −→ S is an orientation preserving diffeomorphism. Equivalence relation is
defined as follows:

(S, φ) ∼ (S′, ψ),

if there exists an isometry h : S −→ S′ such that ψ is isotopic to h ◦ φ. We denote the
Teichmüller space of Σg by T (Σg).

Remark 1.2.10. Note that there is a glitch in the above definition as we have not intro-
duced a topology on the Teichmüller space T (Σg). There is a notion of the Teichmueller
metric which gives a topology on T (Σg). See [14] and [30] for a complete understanding.

1.2.2 T (Σg) as a representation variety

Let Γ be a finitely generated group andG be a connected Lie group. The most interesting
case for us is when Γ = Γg and G = Isom+(H2) ∼= PSL(2,R). Let Hom(Γ, G) denote
the space of all homomorphisms Γ −→ Gwith the compact-open topology. The space
Hom(Γ, G) has the structure of an algebraic variety which can be described as follows:
Let a1, . . . , an denote the generators and R1, . . . , Rr, . . . the corresponding relators in a
presentation of Γ. Note that G can be described as a closed subgroup of GL(k,R) for
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some large k. Therefore, we can think of G as a real algebraic subgroup of GL(k,R). The
representation variety Hom(Γ, G) is isomorphic to the algebraic subvariety (in Gn)

{(g1, . . . , gn) ∈ Gn|R1(g1, . . . , gn) = e, . . . , Rr(g1, . . . , gn) = e, . . .},

where e is the identity element in G. The isomorphism type of the variety Hom(Γ, G)
does not depend on the choice of the presentation of Γ (see [34], [43]). Note that the
spaces Hom(Γ, G) are not generally manifolds. The natural symmetries of the space
Hom(Γ, G) come from the action of Aut(Γ)×Aut(G) where the action is described as: if
γ ∈ Aut(Γ) and α ∈ Aut(G), then ρ(γ,α) ∈ Hom(Γ, G) is defined as:

ρ(γ,α)(x) = (α ◦ ρ ◦ γ−1)(x).

We will be mainly concerned with the quotient space of Hom(Γ, G) by Inn(G) which will
be denoted by Hom(Γ, G)/G. Note that Inn(G) does not act freely on Hom(Γ, G) in some
cases. The isotropy group of a point ρ ∈ Hom(Γ, G) is the centralizer CG(ρ) in Inn(G)
and Inn(G) acts freely on Hom(Γ, G) if CG(ρ) is trivial for all ρ ∈ Hom(Γ, G). In the
case of our interest, i.e., when Γ = Γg and G = PSL(2,R), we overcome this pathology
(see Remark 1.2.8). The quotient space Hom(Γ, G)/G is not generally a Hausdorff space
unless G is a compact Lie group.
Definition 1.2.11.

HomDF(Γ, G) := {ρ ∈ Hom(Γ, G)|ρ is injective with discrete image},
Hom0(Γ, G) := {ρ ∈ HomDF(Γ, G)|G/ρ(Γ) is compact}.

Remark 1.2.12. It is clear that Hom0(Γ, G) ⊂ HomDF(Γ, G) ⊂ Hom(Γ, G). Hom0(Γ, G) is
an open subset of Hom(Γ, G) [66], [67].
Definition 1.2.13. The Teichmueller space T (Σg) of Σg is (also) defined as the quotient
space Hom0(Γg,PSL(2,R))/PSL(2,R), where Hom0(Γg,PSL(2,R)) is defined in Defini-
tion 1.2.11.

The above definition will be the main definition of the Teichmueller space in this
thesis. Now, we prove the following general fact using techniques from differential
topology:
Proposition 1.2.14. Hom0(Γg,PSL(2,R))/PSL(2,R) has a preferred structure of smooth man-
ifold of dimension 6g − 6.

Proof: We prove the statement in the following steps:

Step I: Here we prove that Hom0(Γg,PSL(2,R)) is a smooth manifold of dimension
6g − 3. Since a homomorphism ρ : Γg −→ PSL(2,R) is determined by choosing the 2g
images ρ(ai), ρ(bi), 1 ≤ i ≤ g, there is a natural inclusion of Hom(Γg,PSL(2,R)) into the
direct product PSL(2,R)2g of 2g copies of PSL(2,R). Consider the following map

R : PSL(2,R)2g −→ PSL(2,R)

given by
R(A1, B1, . . . , Ag, Bg) = A1B1A

−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g . (1.1)
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Claim: We assume that A1 and B1 are noncommuting hyperbolic elements. Then the
differential of R at (A1, B1, . . . , Ag, Bg) ∈ PSL(2,R)2g is surjective.

Proof of the Claim: By precomposing the map R given in (1.1) with the map

PSL(2,R)× PSL(2,R) −→ PSL(2,R)2g

(A,B) 7−→ (A,B, 1, . . . , 1), we get a map

PSL(2,R)× PSL(2,R) −→ PSL(2,R)

given by
(A,B) 7−→ ABA−1B−1. (1.2)

We denote this composite map by R as well. Therefore, proving the above-mentioned
claim amounts to proving the following statement: Let g denote the Lie algebra of
PSL(2,R). If A and B are noncommuting hyperbolic elements, then the differential of
the map R given in (1.2)

dR(A,B) : T(A,B)(PSL(2,R)× PSL(2,R)) −→ TR(A,B)PSL(2,R) (1.3)

is surjective. For the calculation of the differential dR(A,B) we can replace PSL(2,R)
with SL(2,R). A simple calculation shows that

TASL(2,R) = A · gl(2,R),

where gl(2,R) is the Lie algebra of SL(2,R), equivalently, the tangent space at the identity.
From this discussion on tangent spaces, we can write (1.3) as

dR(A,B) : Agl(2,R)×Bgl(2,R) −→ R(A,B)gl(2,R). (1.4)

Now, we prove the surjectivity of themap given by (1.4). First, we calculate the differential
of R at (A,B). Let u, v ∈ gl(2,R). For t→ 0, we have

R(A exp tu,B exp tv)−R(A,B) ≈ A(I + tu)B(I + tv)(I − tu)A−1(I − tv)B−1 −ABA−1B−1

≈ (A+Atu)(B +Btv)(A−1 − tuA−1)(B−1 − tvB−1)−ABA−1B−1

≈ (AB +ABtv +AtuB)(A−1B−1 −A−1tvB−1 − tuA−1B−1)

−ABA−1B−1

≈ ABA−1B−1 −ABA−1tvB−1 −ABtuA−1B−1 +ABtvA−1B−1

+AtuBA−1B−1 −ABA−1B−1

≈ −ABA−1tvB−1 −ABtuA−1B−1 +ABtvA−1B−1 +AtuBA−1B−1

≈ AB
(
−A−1tvA− tu+ tv +B−1tuB

)
A−1B−1.

(1.5)
Recall that the adjoint representation Ad of SL(2,R) on gl(2,R) is defined by

(AdA)w := A−1wA, w ∈ gl(2,R).
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Therefore, the differential dR(A,B) : Agl(2,R)×Bgl(2,R) −→ R(A,B)gl(2,R) is given
by the following:

(Au,Bv) 7−→ AB
(
(AdB)u− u+ v − (AdA)v

)
A−1B−1, u, v ∈ gl(2,R). (1.6)

It is enough to show that the map gl(2,R)× gl(2,R) −→ gl(2,R) given by

(u, v) 7−→ (AdB)u− u+ v − (AdA)v, u, v ∈ gl(2,R) (1.7)

is surjective.

Proof of surjectivity of the map given in (1.7) : Note that SL(2,R) preserves a non-
degenerate bilinear form on its Lie algebra gl(2,R). Moreover, PSL(2,R) embeds into
the isometry group of the Killing form on gl(2,R). So, we think of B as an element of
one parameter subgroup generated by b ∈ gl(2,R) of the isometry group of the Killing
form on gl(2,R). The image of the linear map u 7−→ (AdB)u− u from gl(2,R) to itself
is precisely the 2-dimensional subspace of gl(2,R) which is perpendicular (in the sense
of the Killing form) to b. Similarly, the image of the linear map v 7−→ v − (AdA)v from
gl(2,R) to itself is precisely the 2-dimensional subspace of gl(2,R) which is perpendicular
(in the sense of Killing form) to a ∈ gl(2,R). Since we have chosen A and B such that
they are noncommuting hyperbolic elements, a and b are linearly independent in gl(2,R).
The reader can also verify these two statements in coordinates, i.e., by making choices for
B (and A respectively), u (and v respectively) and plugging these into u 7−→ (AdB)u− u
and v 7−→ v − (AdA)v. Therefore, the map gl(2,R)× gl(2,R) −→ gl(2,R) given in (1.7)
is surjective. �

Wedenote the subset ofPSL(2,R)2g consisting of elementsA1, B1, . . . , Ag, Bg such that
A1, B1 are noncommuting hyperbolic elements byW . SinceW is open in PSL(2,R)2g,
hence W is a manifold of dimension 6g. From the above-mentioned claim, 1 is a reg-
ular value of the restriction map R|W : W −→ PSL(2,R). In fact, every value of
the map R|W is a regular value. Hence, R|−1

W (1) is a submanifold of W of dimension
6g − 3. Note that R|−1

W (1) is nothing but Hom(Γg,PSL(2,R)) ∩W . From Remark 1.2.12,
we know that Hom0(Γg,PSL(2,R)) is an open subset of Hom(Γg,PSL(2,R)), therefore,
Hom0(Γg,PSL(2,R)) is a 6g − 3 dimensional smooth manifold.

Step II: In this step, we study the action of PSL(2,R) on Hom0(Γg,PSL(2,R)). Given
g ∈ PSL(2,R) and ρ ∈ Hom0(Γg,PSL(2,R)), we define ρg : Γg −→ PSL(2,R) by setting

ρg(γ) = gρ(γ)g−1, ∀γ ∈ Γg. (1.8)

The map (g, ρ) 7−→ ρg is a continuous action of PSL(2,R) on Hom0(Γg,PSL(2,R)). We
want to show that the action is free and that the orbit space of this action is again a
smooth manifold. Consider the following map

ψ1 : Hom0(Γg,PSL(2,R)) −→ Conf3(∂H2),
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ρ 7−→ (z1, z2, z3)

where Conf3(∂H2) is the space of ordered configurations of distinct 3 points in the
boundary ∂H2. In the above map, z1, z2 are attractive and repelling fixed points of A1, i.e.,

lim
n→∞

An1 (z) = z1, ∀z ∈ H2, lim
n→−∞

An1 (z) = z2, ∀z ∈ H2,

and z3 is the attractive fixed point of B1. Moreover, the group PSL(2,R) acts sharply
transitively on ordered triples in ∂H2, we can also think of ψ1 as a map

ψ1 : Hom0(Γg,PSL(2,R)) −→ PSL(2,R).

Note that we have identified PSL(2,R) with Conf3(∂H2) by the map g 7−→ g · (0, 1,∞).
Observe that ψ1 is a PSL(2,R)-equivariant map, i.e.,

ψ1(g · ρ) = g · ψ1(ρ), ∀g ∈ PSL(2,R),

where the action on the LHS is by conjugation and the action on the RHS is by left-
multiplication. In other words, if we change ρ by conjugating it by an element g ∈
PSL(2,R), the three distinct points z1, z2, z3 in ∂H2 are also transformed by the same
element g ∈ PSL(2,R). The only thing we have to show now is that ψ1 is differentiable.
Here is an argument: Hom0(Γg,PSL(2,R)) is also a closed subset of PSL(2,R)2g. Now,
ψ1 extends to a small open neighborhood U of Hom0(Γg,PSL(2,R)) in PSL(2,R)2g. We
know that an element ρ ∈ Hom0(Γg,PSL(2,R)) is determined by hyperbolic elements
(A1, B1, . . . , Ag, Bg) ∈ PSL(2,R)2g satisfying the relation [A1, B1] · · · [Ag, Bg] = 1. Since
the set of hyperbolic elements form an open subset of PSL(2,R) (see Subsection 1.1), then
an open neighborhoodU ⊆ PSL(2,R)2g ofHom0(Γg,PSL(2,R)) also contains hyperbolic
elements A′1, B′1, . . . , A′g, B′g which may not satisfy [A′1, B

′
1] · · · [A′g, B′g] = 1. The upshot

is ψ1 is smooth because it is the restriction of a map defined on an open neighborhood U
of Hom0(Γg,PSL(2,R)) which is obviously smooth. PSL(2,R)-equivariance of ψ1 makes
immediately clear that ψ1 is everywhere regular. Therefore, ψ−1

1 (1) is a submanifold
of codimension 3 of Hom0(Γg,PSL(2,R)). We denote ψ−1

1 (1) by Z. Tying it all together,
the action of PSL(2,R) on Hom0(Γg,PSL(2,R)) admits a transversal, i.e., there exists a
submanifoldZ ofHom0(Γg,PSL(2,R)) of codimension 3 such that the action ofPSL(2,R)
gives us a diffeomorphism

ψ2 : PSL(2,R)× Z −→ Hom0(Γg,PSL(2,R))

ψ2(g, z) = gzg−1.

Therefore, the orbit space Hom0(Γg,PSL(2,R))/PSL(2,R) is diffeomorphic to Z. �

Remark 1.2.15. Note that a different choice of generators for Γg will give the same
structure of smooth manifold on Hom0(Γg,PSL(2,R))/PSL(2,R).

Remark 1.2.16. Wewere only made aware of Earle and Eells’ paper [11], where they only
give a sketch proof of Step 1 at the end of this thesis research. Many thanks to Johannes
Ebert.
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1.3 Tangent spaces to the Teichmüller space

1.3.1 Cohomological description

Let Γ be a finitely generated group and G be a connected Lie group with Lie algebra g.
We can obtain a (linear) action of Γ on g by fixing a homomorphism ρ0 : Γ −→ G and
composing ρ0 with the adjoint representation ofG and hence make g a kΓ-module where
k = R or C. We denote gwith the above-mentioned Γ-module structure by gAdρ0 . A map
c : Γ −→ g is called a 1-cocycle if

c(γ1γ2) = c(γ1) + Ad(ρ0(γ1))c(γ2), ∀γ1, γ2 ∈ Γ. (1.9)

c is a 1-coboundary if it has the following form

c(γ) = u−Ad(ρ0(γ))u (1.10)

for some u ∈ g. The (real vector) space of 1-cocycles is denoted by Z1(Γ; gAdρ0) and the
(real vector) space of 1-coboundaries is denoted by B1(Γ; gAdρ0). Their quotient is the
group cohomology

H1(Γ; gAdρ0) = Z1(Γ; gAdρ0)/B1(Γ; gAdρ0).

WhenΓ = π1(M) for a topological spaceM ,H1(Γ; gAdρ0) can be identifiedwithH1(M ; gAdρ0),
the first cohomology ofM with coefficients in the local system given by gAdρ0 . For more
details on group cohomology, the reader is referred to [7]. We are interested in the case
when Γ = Γg, G = PSL(2,R), and g is the Lie algebra of PSL(2,R).
Proposition 1.3.1 ([43, Theorem2.6], [51, ChapterVI]). T[ρ0]Hom0(Γg,PSL(2,R))/PSL(2,R) ∼=
H1(Γg; gAdρ0).

Proof We construct a linear map

Ψ : T[ρ0]Hom0(Γg,PSL(2,R))/PSL(2,R) −→ H1(Γg; gAdρ0)

as follows: to the first order, a curve of maps (ρt)t∈[0,ε) in Hom0(Γg,PSL(2,R)) through
the point ρ0 depending smoothly on the real parameter t is described as:

ρt(γ) = exp
(
tc(γ) +O(t2)

)
ρ0(γ), ∀γ ∈ Γg.

The infinitesimal condition for ρt to be a homomorphism is given as:

ρt(γ1γ2) = (e+ tcγ1γ2 +O(t2))ρ0(γ1γ2)

= ρ0(γ1γ2) + tcγ1γ2ρ0(γ1γ2) +O(t2)

=
(
ρ0(γ1) + tcγ1ρ0(γ1)

)(
ρ0(γ2) + tcγ2ρ0(γ2)

)
+O(t2)

= ρ0(γ1γ2) + t
(
ρ0(γ1)cγ2ρ0(γ2) + cγ1ρ0(γ1)ρ0(γ2)

)
+O(t2)

= ρ0(γ1γ2) + t
(
ρ0(γ1)cγ2 + cγ1ρ0(γ1)

)
ρ0(γ2) +O(t2)

= ρ0(γ1γ2) + t
(
ρ0(γ1)cγ2ρ0(γ1)−1ρ0(γ1) + cγ1ρ0(γ1)

)
ρ0(γ2) +O(t2)

= ρ0(γ1γ2) + t
(
ρ0(γ1)cγ2ρ0(γ1)−1 + cγ1

)
ρ0(γ1)ρ0(γ2) +O(t2)

= ρ0(γ1γ2) + t
(
Ad(ρ0(γ1))cγ2 + cγ1

)
ρ0(γ1γ2) +O(t2).
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From the above equation, notice that

cγ1γ2 = Ad(ρ0(γ1))cγ2 + cγ1 .

Therefore, we define Ψ
(
d
dtρt|t=0

)
to be the cocycle c ∈ Z1(Γg; gAdρ0). We show next

that Ψ is injective. Suppose that the cocycle c determined by ρt is a coboundary, i.e.,
c(γ) = u − Ad(ρ0(γ))u for some u ∈ g (see (1.10)). Then the curve ρt(γ) = gtρ0(γ)g−1

t

induced by a path gt = e+ tu+O(t2), u ∈ g is tangent at t = 0 to the orbit PSL(2,R)ρ0 for
all γ ∈ Γg. Moreover, Ψ is surjective because of the fact that dimH1(Γg; gAdρ0) = 6g − 6.
The fact follows from a non-trivial result (see [21]) that given a connected Lie group G
and ρ0 ∈ Hom(Γg, G),

dimZ1(Γg; gAdρ0) = (2g − 1)dimG+ dimCG(ρ(Γg)),

where CG(ρ(Γg)) denotes the the centralizer of ρ(Γg) in G and

dimB1(Γg; gAdρ0) = dimG− dimCG(ρ(Γg)).

For the case of our interest, i.e., when G = PSL(2,R), CG(ρ(Γg)) is trivial (see Remark
1.2.8). Therefore,

dimZ1(Γg; gAdρ0) = (2g − 1)dimG = 6g − 3, dimB1(Γg; gAdρ0) = dimG = 3.

�

Remark 1.3.2. Note that ρ0 ∈ Hom0(Γg,PSL(2,R)) can be lifted to a homomorphism
ρ̃0 : Γg −→ SL(2,R) because the Euler class e(ρ0) of the oriented S1-bundle associated
to ρ0 equals twice the Euler number of R2-bundle associated to ρ̃0, i.e., e(ρ0) = 2g − 2.
See [46, Appendix C] for more details. As a result, in the above proof, the expressions of
ρt(γ1γ2) and gt are justified.

1.3.2 Analytic description: Holomorphic quadratic differentials

LetKΣg be the canonical line bundle, that is, the line bundle over Σg such that the fiber
Kx over any point x ∈ Σg is the complex cotangent space T ∗xΣg to Σg at x. LetQΣg be the
tensor square of the canonical line bundleKΣg . The bundle QΣg and its sections provide
a glimpse into one of the important aspects of the Teichmueller theory.

Definition 1.3.3. A holomorphic quadratic differential on Σg is a holomorphic section
of QΣg .

We will denote a holomorphic quadratic differential on Σg by q. Locally, q on Σg as
specified in any atlas {(Ui, zi)} can be described as fi(zi)dz2

i , where each fi is a holomor-
phic function on Ui of Σg and dz2

i := dzi ⊗ dzi is a section of QΣg . Let’s denote the space
of holomorphic quadratic differentials on Σg by HQD(Σg). SinceKΣg has degree 2g − 2,
the Riemann-Roch formula (see [15]) implies that

dim(HQD(Σg)) = deg(QΣg)− g + 1 = 3g − 3.
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Note that the bundleQΣg appears in a splitting of the bundle S2(TΣg) of (real) symmetric
bilinear forms on TΣg. This splitting is described as follows: one summand is the 1-
dimensional real vector subbundle spanned by the everywhere nonzero section of the
hyperbolic metric g on Σg. The other summand is the image of the bundle of quadratic
differentials under the following embedding:

ψ : homC(TΣg ⊗C TΣg,C) −→ S2(TΣg) (1.11)

where ψ(q) is the real part of q, viewed as a (family) of symmetric R-bilinear forms. This
subbundle is the trace-free summand by definition. It is a 2-dimensional subbundle of
a 3-dimensional (real) vector bundle which comes with a structure of 1-dimensional
complex vector bundle. We illustrate the above splitting as follows:

Example 1.3.4. Let U be an open subset of Cwith the complex structure induced from C.
Then TU is identified with a trivial bundleC×U −→ U and therefore, homC(TU ⊗CTU)
is also identified with a trivial bundle C×U −→ U . Therefore, quadratic differentials on
U whether holomorphic or not, are identified with complex valued functions on U . For
such a function f , we get

ψ(f)(z) =

[
<(f(z)) −=(f(z))
−=(f(z)) −<(f(z))

]
,

where ψ is the map given in (1.11). This is very easy to check. The preferred ordered
basis of TzU ∼= C as a real vector space is {1, ι}. If f(z) = x+ yι then <(1 · f(z) · 1) = x,
<(ι · f(z) · ι) = −x, <(1 · f(z) · ι) = −y.

From the above discussion, it follows automatically that a holomorphic quadratic
differential q on Σg gives a one parameter family {g(t)}t∈[0,ε) of deformations of g on Σg

such that g(0) = g and dg(t)
dt

∣∣
t=0

= ψ(q). In other words, for t close to 0, g(t) = g + tψ(q).
We view g(t) as a curve in the space M of Riemannian metrics on Σg. Recall that
a Riemannian metric on Σg determines an almost complex structure J on Σg which
further determines a complex structure on Σg. This is due to the Korn-Lichtenstein
theorem (Theorem 1.2.4). Consequently, we get a one parameter family of complex
curves {Σt

g}t∈[0,ε). From the “Uniformization theorem”, each of these complex curves in
the family {Σt

g}t∈[0,ε) has a preferred hyperbolic metric. Hence, we view {Σt
g}t∈[0,ε) as a

smooth curve in the Teichmueller space Hom0(Γg,PSL(2,R))/PSL(2,R) such that

dΣt
g

dt

∣∣∣∣
t=0

∈ T[ρ0]Hom0(Γg,PSL(2,R))/PSL(2,R).

In summary, we have a linearmap fromHQD(Σg) to T[ρ0]Hom0(Γg,PSL(2,R))/PSL(2,R).
The injectivity of this linear map follows from [55], [69]. Furthermore, this map is a bijec-
tive linearmapbecause the dimension ofHQD(Σg) andT[ρ0]Hom0(Γg,PSL(2,R))/PSL(2,R)
(as real vector spaces) is same.



Chapter 2

Explicit expressions of harmonic
vector fields on H2

2.1 Harmonic maps

Conventions: All manifolds are finite dimensional, connected, and Riemannian of class
C∞, unless otherwise stated. All vector bundles and their sections are smooth, unless
otherwise specified. Now we review some basic notions from the theory of harmonic
maps. We make an effort to do our computations coordinate free first and then in
coordinates. The reader is referred to the textbook [32] for proofs and much more details
on harmonic maps. Other references on harmonic maps include [13], [42], [56], and [68].
Let (M, g) and (N,h) bem and n dimensional manifolds with the Levi-Civita connections
∇g and ∇h, respectively. Let φ : M −→ N be a smooth map. The differential

dφ ∈ Γ(M,T ∗M ⊗ φ−1TN)

can be viewed as a φ−1(TN)-valued 1-form onM , i.e., dφ ∈ A 1(φ−1(TN)). Before we
define the notion of a harmonic map, observe the following:

1. There exists a unique connection, φ−1∇h, induced by φ on φ−1(TN). Note that
φ−1(TN) is a vector bundle onM defined by φ.

2. The bundle T ∗M⊗φ−1TN has a connection∇, naturally induced by∇g and φ−1∇h.
Definition 2.1.1. ∇dφ ∈ Γ(M,⊗2T ∗M ⊗ φ−1TN) is called the second fundamental form of
φ.
Definition 2.1.2. Trace(∇dφ) ∈ Γ(M,φ−1TN) is called the tension field of φ. It is usually
denoted by τ(φ).
Definition 2.1.3. φ is said to be totally geodesic if ∇dφ = 0.
Definition 2.1.4. φ is said to be harmonic if

τ(φ) = 0. (2.1)

We call τ the Eells-Sampson Laplacian.

13
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In co-ordinate form: By taking coordinate charts, the second fundamental form of φ at
x = (x1, . . . , xm) ∈ U ⊂M can be represented as:

(∇dφ)αij(x) =
∂2φα

∂xi∂xj
(x)− Γkij

∂φα

∂xk
(x) + Υα

βγ(φ(x))
∂φβ

∂xi
(x)

∂φγ

∂xj
(x), (2.2)

where Γkij , Υα
βγ denote the Christoffel symbols of∇g and∇h. Note that we have used the

Einstein-Summation convention in (2.2). In coordinate charts,

τα(φ)(x) = gij
(
∇(dφ)α(x)

)
,

where gij denotes the inverse of the metric tensor gij . (2.1) in co-ordinate form can be
expressed as:

m∑
i,j=1

gij

(
∂2φα

∂xi∂xj
−

m∑
k=1

Γkij(x)
∂φα

∂xk
+

n∑
β,γ=1

Υα
βγ(φ(x))

∂φβ

∂xi
∂φγ

∂xj

)
= 0, 1 ≤ α ≤ n. (2.3)

Note that in (2.3), the term
m∑

i,j=1

gij
(
∂2φα

∂xi∂xj
−

m∑
k=1

Γkij
∂φα

∂xk

)
is the Laplace-Beltrami operator onM , a contribution of∇g in T ∗M and the other term

m∑
i,j=1

gij
( n∑
β,γ=1

Υα
βγ(φ(x))

∂φβ

∂xi
∂φγ

∂xj

)
which is a non-linear term containing the Christoffel symbols of ∇h is a contribution of
φ−1∇h in φ−1TN . (2.3) is the Euler-Lagrange equation for the energy E of φwhich can be
defined under some conditions, for example whenM is compact, as:

E(φ) =

∫
M
e(φ)dµg,

where dµg denotes the measure onM induced by g and e(φ) is the energy density of φ.
The energy density e(φ) of φ is defined by

e(φ)(x) =
1

2
‖dφ(x)‖2 =

1

2
trace(φ∗h)(x),

where ‖dφ(x)‖ is the Hilbert-Schmidt norm of the differential map

dφ(x) : TxM −→ Tφ(x)N.

The energy density e(φ) of φ has the following expression in local coordinates

e(φ) =
1

2
gij(x)hβγ(φ)

dφβ

dxi
dφγ

dxj
, x ∈M. (2.4)

WhenM is compact, we can define φ to be a harmonic map if it’s a critical point of E.
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Remark 2.1.5. Harmonic maps are critical points of the energy functional and hence
should not be seen as energy minimizers. Below we give the formulation of the energy
extremal problem in the case of harmonic maps:
Given a smooth map φ : (M, g) −→ (N,h), let

E∗[φ] = inf{E(φ′) : φ′ = smooth, φ′ is homotopic to φ}

A smooth map φ such that E(φ) = E∗[φ] is called an energy minimizer. For the existence
and the uniqueness of energy minimizers when the target manifold is equipped with a
strictly negatively curved metric, see [12], [27].

Now, if we have two complex manifolds Σ1 and Σ2 for M and N , and on these
manifolds, we have conformal metrics,

σ(z)2dzdz̄ = σ(z)2(dx2 + dy2) (z = x+ ιy)

and
ρ(u)2dudū = ρ(u)2(du2

1 + du2
2) (u = u1 + ιu2)

then the Laplace-Beltrami operator on Σ1 is given by 1
σ(z)2

∂
∂z

∂
∂z̄ . According to J. Jost (see

[32, Chapter 1]), (2.3) in these coordinates takes the form

1

σ(z)2
φzz̄ +

1

σ(z)2

2ρφ
ρ
φzφz̄ = 0, (2.5)

where a subscript denotes a partial derivative and ρφ denotes the Wirtinger derivative
of ρ at the point φ(z). Therefore, a conformal map between Riemann surfaces with
conformal metrics is harmonic. From (2.5), we can see that in the case of a smooth
map φ : (Σ1, σ(z)2dzdz̄) −→ (Σ2, ρ(u)2dudū) between Riemann surfaces with conformal
Riemannian metrics, the Riemannian metric on Σ1 is not needed to decide whether φ is
harmonic but the Riemannian metric on Σ2 matters. More generally, it is also true for a
smooth map from a Riemann surface to a Riemannian manifold. In summary, we see
harmonic maps as a very efficient tool to compare the Riemannian metric structure of
Σ2 to the conformal structure of Σ1. Next we discuss some basic examples of harmonic
maps.

Example 2.1.6. Totally geodesic maps are harmonic. Clear from Definition (2.1.3).

Example 2.1.7. The identity map (M, g) −→ (M, g) is harmonic.

Example 2.1.8. LetM = S1 and N is compact without boundary, then every homotopy
class of maps ofM into N contains a closed geodesic, hence a harmonic map.

To discuss the next two examples we will make a small investment in algebra which
will lead us to consider natural quantities: Recall Definition 1.2.2. Extending an almost
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complex structure J : TΣg −→ TΣg on Σg to the complexified tangent bundle (TΣg)
c :=

TΣg⊗RC amounts to having a decomposition of the complexified tangent space (TxΣg)
c

at each x ∈ Σg into (TxΣg)
(1,0) and (TxΣg)

(0,1) corresponding to eigenvalues ι and −ι.
That is,

(TxΣg)
(1,0) = {v ∈ (TxΣg)

c|Jv = ιv}, (TxΣg)
(0,1) = {v ∈ (TxΣg)

c|Jv = −ιv}.

(TxΣg)
(1,0) and (TxΣg)

(0,1) are called holomorphic and antiholomorphic tangent spaces,
spanned by

∂

∂z
=

1

2

(
∂

∂x
− ι ∂

∂y

)
,

∂

∂z̄
=

1

2

(
∂

∂x
+ ι

∂

∂y

)
,

where z = x + ιy. In a similar fashion, we can complexify the dual tangent bundle
T ∗Σg and again, for every x ∈ Σg, we can decompose (T ∗xΣg)

c into its ±ι eigenspaces -
(T ∗xΣg)

(1,0) and (T ∗xΣg)
(0,1). (T ∗xΣg)

(1,0) and (T ∗xΣg)
(0,1) are spanned by

dz = dx+ ιdy, dz̄ = dx− ιdy

respectively. Using the above decompositions, we can then decompose complexified
tensor bundles and hence sections of tensor bundles. Most importantly, wewill consider a
symmetric tensor s in the complexification of the bundle T ∗Σg⊗T ∗Σg. Note that s can be
written in terms of dz2 := dz⊗dz, dz̄2 := dz̄⊗dz̄, and |dz2| := 1

2(dz⊗dz̄+dz̄⊗dz). Tensors
that have only (2, 0) part can be written locally as fdz2 for some locally defined complex
valued function f and are famously known as quadratic differentials (see Subsection
1.3.2).

Example 2.1.9. WhenM = Ω ⊂ Rn and N = R, then the harmonic map equations are
the harmonic function equations, i.e.,

∆φ = 0.

IfM is a surface with a complex structure and N = R, then in the complex language the
Laplace equation can be written as:

4
∂

∂z̄

∂

∂z
φ = 0.

Let’s try to observe something really important by rewriting the above equation as
follows:

∂

∂z̄

(
∂

∂z
φ

)
= 0. (2.6)

We can also write (2.6) in more fancy way as follows:

∂̄
(
(dφ)(1,0)

)
= 0,

where the object in the parentheses is a “holomorphic object” (if and only if the equation
holds). In other words, tied to the harmonicity of a map φ on a surface (with a complex
structure) is a “holomorphic object” which is a holomorphic 1-form in the present case.
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Example 2.1.10. A diffeomorphism φ : (Σ1, σ(z)2dzdz̄) −→ (Σ2, ρ(u)2dudū) is harmonic
iff (2, 0)-part of the pullback metric φ∗(ρ(u)2dudū) is holomorphic. This can be seen as
follows: we denote the conformal metric ρ(u)2dudū on Σ2 by h. The pullback of h by φ
has the following local expression:

φ∗(h) = (φ∗(h))(2,0) + (φ∗(h))(1,1) + (φ∗(h))(0,2)

= 〈φ∗∂z, φ∗∂z〉hdz2 +
(
‖φ∗∂z‖2h + ‖φ∗∂z̄‖2h

)
σ2(z)dzdz̄ + 〈φ∗∂z̄, φ∗∂z̄〉hdz̄2.

(2.7)

Note that in the first equality we used the complex eigenspace decomposition

φ∗(h) = (φ∗(h))(2,0) + (φ∗(h))(1,1) + (φ∗(h))(0,2)

under the action of J on TΣg. Also,

〈φ∗∂z, φ∗∂z〉hdz2 = h
(∂φ
∂z
,
∂φ

∂z

)
dz2

=

(
h
(∂φ
∂x
,
∂φ

∂x

)
− h
(∂φ
∂y
,
∂φ

∂y

)
− 2ιh

(∂φ
∂x
,
∂φ

∂y

))
dz2

=
(
|φx|2 − |φy|2 − 2ιh(φx, φy)

)
dz2

= 4ρ2φzφ̄zdz
2

(2.8)

and (
‖φ∗∂z‖2h + ‖φ∗∂z̄‖2h

)
σ2(z) = e(φ), (2.9)

the energy density of φ, expressed locally in (2.4). Now, (2.7) has the following form
using the simplified expressions in (2.8) and (2.9)

φ∗(h) = 4ρ2φzφ̄zdz
2 + e(φ)dzdz̄ + 4ρ2φzφ̄zdz2

Now, from [32, Lemma 1.1], it is easy to see that

∂z̄((φ
∗(h))(2,0)) = ∂z̄(4ρ

2φzφ̄zdz
2)

= ρ2
(
φ̄z τ̃(φ) + φz τ̃(φ)

)
,

where τ̃(φ) = φzz̄ +
2ρφ
ρ φzφz̄ . Therefore, ∂z̄((φ

∗(h))(2,0)) = 0 when φ is harmonic, i.e.,
when τ(φ) = 0 (see (2.5)) and hence τ̃(φ) = 0. We denote (φ∗(h))(2,0) by q. Conversely, if
q is holomorphic, i.e.,

φ̄zτ(φ) + φzτ(φ) = 0

and if τ(φ) 6= 0 at a point p ∈ Σ1, this would imply |φz| = |φ̄z| = |φz̄| and hence the
Jacobian at p is zero which contradicts the fact that the Jacobian is non zero everywhere
since φ is a diffeomorphism. Furthermore, q ≡ 0 iff φ is conformal.

Example 2.1.11. The only holomorphic quadratic differential q on S2 is identically zero.
This follows from the following: first we write the holomorphic quadratic differential q
as fdz2 using a complex coordinate z ∈ C, obtained from the streographic projection of
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the sphere minus the south pole. We also get another complex coordinate w = 1/z using
the streographic projection of the sphere minus the north pole. In these coordinates,
q = f/w4dw2. We can easily deduce that f is a bounded holomorphic function on C and
hence constant by the Liouville theorem. Since f −→ 0 as z −→∞, that constant must
be zero. Combining the above result with Example 2.1.10, we have: every non-constant
harmonic map from S2 to an arbitrary Riemannian manifold N is conformal.

2.2 The notion of a harmonic vector field

We introduce the notion of a harmonic vector field on a Riemannian manifoldM which is
regarded as the infinitesimal generator of local harmonic diffeomorphisms. Note that
some sources use the term harmonic vector field to mean vector fields which have harmonic
associated 1-form [72] and vector fields as sections of the tangent bundle with lift metrics
[48]. Let U be an open subset of a Riemannian manifoldM . Let {φt}t∈[0,ε) be a smooth
family of smooth maps

φt : U −→M

where φ0 is the inclusion. Then ξ = dφt
dt |t=0 is a vector field on U .

Definition 2.2.1. The vector field ξ on U is harmonic if there exists a smooth family of
smooth maps {φt : U −→M}t∈[0,ε) which satisfies the following:

1. φ0 is the inclusion map,

2. dφt
dt

∣∣∣
t=0

= ξ,

3. ∀x ∈ U :
d

dt

∣∣∣
t=0

τ(φt)(x) = 0 .

Remark 2.2.2. Given ξ we can always find the family {φt}t∈[0,ε] satisfying (1) and (2) in
Definition 2.2.1.

Remark 2.2.3. The choice of {φt}t∈[0,ε) is unimportant in (3) in Definition 2.2.1.

Here τ is the Eells-Sampson Laplacian which has been introduced in (2.1). Condition 3 in
Definition 2.2.1 can be expressed in co-ordinate form as:

d

dt

∣∣∣∣
t=0

(
m∑

i,j=1

gij(x)

(
∂2φαt
∂xi∂xj

−
m∑
k=1

Γkij(x)
∂φαt
∂xk

+
m∑

β,γ=1

Γαβγ(φt(x))
∂φβt
∂xi

∂φγt
∂xj

))
= 0, 1 ≤ α ≤ m.

(2.10)
Now, for each 1 ≤ i ≤ m, ∇t ∂φt∂xi

= ∇i ∂φt∂t . Therefore, (2.10) becomes

m∑
i,j=1

gij(x)

(
∂2

∂xi∂xj

(
dφαt
dt

∣∣∣∣
t=0

)
−

m∑
k=1

Γkij(x)
∂

∂xk

(
dφαt
dt

∣∣∣∣
t=0

)
+

m∑
β,γ=1

d

dt

∣∣∣∣
t=0

(
Γαβγ(φt(x))

∂φβt
∂xi

∂φγt
∂xj

))
= 0,
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where 1 ≤ α ≤ m. Since ξα =
dφαt
dt

∣∣
t=0

, we have

m∑
i,j=1

gij(x)

(
∂2ξα

∂xi∂xj
−

m∑
k=1

Γkij(x)
∂ξα

∂xk
+

m∑
β,γ=1

((
Γαβγ

)′
(φ0(x)) · ξ

)
∂φβ0
∂xi

∂φγ0
∂xj

+Γαβγ(φ0(x))

(
∂ξβ

∂xi
∂φγ0
∂xj

+
∂φβ0
∂xi

∂ξγ

∂xj

))
= 0,

(2.11)

where 1 ≤ α ≤ m and
(
Γαβγ

)′ denotes the derivative of Γαβγ . Since φ0 : U −→ M is the
inclusion map, we rewrite (2.11):
m∑

i,j=1

gij(x)

(
∂2ξα

∂xi∂xj
−

m∑
k=1

Γkij(x)
∂ξα

∂xk
+

m∑
β,γ=1

((
Γαβγ

)′
(x)·ξ

)
δβiδγj+Γαβγ(x)

(
∂ξβ

∂xi
δγj+δβi

∂ξγ

∂xj

))
= 0,

(2.12)
where 1 ≤ α ≤ m, ∂φ

γ
0

∂xj
= δγj and

∂φβ0
∂xi

= δβi.

We now assume thatM is H2 with the standard hyperbolic metric gH2 , coordinatized as
an open subset of C. Rewriting (2.12), we get

2∑
i,j=1

gijH2(x)

(
∂2ξα

∂xi∂xj
−

2∑
k=1

Γkij(x)
∂ξα

∂xk
+

2∑
β,γ=1

((
Γαβγ

)′
(x)·ξ

)
δβiδγj+

2∑
β,γ=1

Γαβγ(x)

(
∂ξβ

∂xi
δγj+δβi

∂ξγ

∂xj

))
= 0,

(2.13)
where 1 ≤ α ≤ 2. The Christoffel symbols Γ1

11, Γ1
22, Γ2

12 and Γ2
21 for gH2 vanish. Also

g11
H2 = g22

H2 = y2 and g12
H2 = g21

H2 = 0. Hence (2.13) simplifies to:

y2∂
2ξα

∂2x
+ y2∂

2ξα

∂2y
−
(
y2Γ2

11

∂ξα

∂y
+ y2Γ2

22

∂ξα

∂y

)
+ y2

((
Γα11

)′
(x) · ξ

)
+ y2

((
Γα22

)′
(x) · ξ

)
+y2

(
Γα11

(
∂ξ1

∂x
+
∂ξ1

∂x

)
+ Γα12

(
0 +

∂ξ2

∂x

)
+ Γα21

(
∂ξ2

∂x
+ 0

))
+y2

(
Γα12

(
∂ξ1

∂y
+ 0

)
+ Γα21

(
0 +

∂ξ1

∂y

)
+ Γα22

(
∂ξ2

∂y
+
∂ξ2

∂y

))
= 0; 1 ≤ α ≤ 2.

(2.14)

The other Christoffel symbols for gH2 are given as follows:

Γ1
12 = Γ1

21 = Γ2
22 = −1

y
, Γ2

11 =
1

y
.

Substituting these values into (2.14), we obtain the following two equations which de-
scribe the conditions for ξ to be a harmonic vector field on U :

ξ1
xx + ξ1

yy −
2

y
(ξ2
x + ξ1

y) = 0 (2.15)
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ξ2
xx + ξ2

yy +
2

y
(ξ1
x − ξ2

y) = 0 (2.16)

If the flow (φt) and the vector field ξ are related as above, then we can describe φt up to
the first order in terms of ξ using the standard coordinates in H2 ⊂ C:

φt(p) ≈ p+ tξ(p)

(for p ∈ U and sufficiently small t). We define a family of Riemannian metrics on U as
follows:

t 7−→ ρt = φ∗tgH2 (2.17)
More precisely the map in (2.17) can be viewed as

t 7−→ (Dφt : TpU −→ Tφt(p)H
2)∗gH2 (2.18)

(2.18) to the first order can be expressed as follows:

t 7−→ (Id + t · dξ : TpU −→ Tφt(p)H
2)∗gH2 ,

where dξ is the derivative of ξ (where ξ is viewed as a smooth map C −→ C) at p, and it
is an R-linear map. Using the first order approximation, ρt is given as:

ρt ≈ (Id + t · dξ)T (gH2 + tg′H2(ξ)(Id + t · dξ)
≈ gH2 + t · dξTgH2 + tg′H2(ξ) + t · dξgH2

≈ gH2 + (t · dξT + t · dξ)gH2 + tg′H2(ξ)

In the above expression, dξT denotes the transpose of dξ when written in the local
coordinates. Calculating

dρt
dt

∣∣∣
t=0

gives us a section of S2(TU), the vector bundle of (real) symmetric bilinear forms on TU
and this is denoted by LξgH2 , the Lie derivative of gH2 w.r.t ξ. Therefore,

LξgH2 = (dξT + dξ)gH2 + g′H2(ξ) (2.19)

in our preferred coordinates. Now, to obtain a local expression for LξgH2 ∈ Γ(S2(TU)),
we represent dξ by the following matrix

dξ =

[
ξ1
x ξ1

y

ξ2
x ξ2

y

]
Using the above expression for dξ, the right-hand side of (2.19) can be represented as

LξgH2 =
1

y2

[
2ξ1
x ξ1

y + ξ2
x

ξ2
x + ξ1

y 2ξ2
y

]
+

[
−2

(ξ2)3 0

0 −2
(ξ2)3

]

=
1

y2

[
ξ1
x − ξ2

y ξ1
y + ξ2

x

ξ1
y + ξ2

x ξ2
y − ξ1

x

]
︸ ︷︷ ︸

TF

+
1

y2

[
ξ1
x + ξ2

y 0

0 ξ1
x + ξ2

y

]
+

[
−2

(ξ2)3 0

0 −2
(ξ2)3

]
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Recall from Subsection 1.3.2 that the bundle S2(TU) of (real) symmetric bilinear forms on
TU splits into 1-dimensional real vector subbundle spanned by the everywhere nonzero
section gH2 and the image of the embedding (recall (1.11))

ψ : homC(TU ⊗C TU,C) −→ S2(TU),

where ψ(q) is the real part of q = fdz2. In particular, ψ
(
(LξgH2)(2,0)

)
is the real part of

(LξgH2)(2,0). Using the above splitting it is straightforward to check that the trace-free
component of LξgH2 is ψ

(
(LξgH2)(2,0)

)
= ψ(fdz2) where f(z) = TF11 − ιTF12. Notice

that
f(z) = TF11 + ιTF12 =

2

y2

∂ξ

∂z̄
=

−8

(z − z̄)2

∂ξ

∂z̄
. (2.20)

Furthermore, (2.20) is equivalent (upto to a constant factor) to the following potential
equation (see Appendix A) described by S. Wolpert in his paper [70]

f(z) =
1

(z − z̄)2

∂ξ

∂z̄
. (2.21)

Moreover, (2.15) and (2.16) are precisely the conditions that the corresponding quadratic
differential (LξgH2)(2,0) is holomorphic, i.e., f is holomorphic. Therefore, we can sum-
marize our discussion as follows:

Proposition 2.2.4. ξ is a harmonic vector field on U iff the quadratic differential (LξgH2)(2,0)

associated with it is holomorphic. In the standard coordinates, (LξgH2)(2,0) = fdz2 where
f(z) = −8

(z−z̄)2
∂ξ
∂z̄ .

Remark 2.2.5. Proposition 2.2.4 is an infinitesimal version of Lemma 1.1 in [32] and
Example 2.1.10. In fact the statement in [32] is more general since it applies to harmonic
maps between oriented 2-dimensional Riemannian manifolds.

Corollary 2.2.6. Every holomorphic vector field on U is harmonic.

Proof Let ξ be a holomorphic vector field on U . Then LξgH2 in (2.19) has diagonal form
and therefore (LξgH2)(2,0), the trace-free part of LξgH2 , is zero. �

2.2.1 Constructing harmonic vector fields on U ⊆ H2

Theorem 2.2.7. LetHOL denote the sheaf of holomorphic vector fields on H2,HARM denote
the sheaf of harmonic vector fields on H2 and HQD denote the sheaf of holomorphic quadratic
differentials on H2. Then the following sequence of sheaves

HOL α // HARM β // HQD (2.22)

is a short exact sequence of sheaves on H2. In (2.22), α is the inclusion map and β is given by the
formula in Proposition 2.2.4.
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Before we prove Theorem 2.2.7, we discuss the following result by S. Wolpert [70, Section
2]: let η be the vector field onH2 given by η(z) = (1, 0) everywhere. Given a holomorphic
quadratic differential q = f(z)dz2 on H2, there exists a global solution ξ of the potential
equation ∂ξ

∂z̄ = (z − z̄)2f(z) (see (2.21)) and an explicit formula for ξ is given as:

ξ(z) =

(∫ z

w
(z̄ − ζ)2f(ζ)dζ

)
η(z), (2.23)

where w ∈ H2 is fixed and ζ, z ∈ H2. The formula for ξ in (2.23) is path independent
since the integrand is holomorphic.

Proof of Theorem 2.2.7: Exactness at the termHARM in (2.22) follows from Theorem
2.2.4 andCorollary 2.2.6. Now, Let q = f(z)dz2 be defined in a neighborhood V ofw ∈ H2,
where w ∈ H2 is fixed. To prove the local surjectivity of β we have to get a solution for
a harmonic vector field ξ whose associated holomorphic quadratic differential is q in
a possibly smaller neighborhood U ⊂ V of w. It is clear that (2.23) gives the required
solution for ξ upto a constant factor. �

Corollary 2.2.8. If a sequence of harmonic vector fields defined on an open set U inH2 converges
uniformly on compact subsets of U , and if all of them determine the same holomorphic quadratic
differential q on U , then the limit vector field is again harmonic and still determines the same
holomorphic quadratic differential q on U .

We will now describe a more pedestrian approach to finding harmonic vector fields
with prescribed holomorphic quadratic differential. This has certain advantages over
Wolpert’s formula, as we will see in Subsection 2.2.2. First, we give an explicit expres-
sion for a harmonic vector field on U ⊂ H2 whose associated holomorphic quadratic
differential q is given.

Lemma 2.2.9. Let U be an open subset of H2 with the usual hyperbolic metric. Let η be the
vector field on U given by η(z) = (1, 0) everywhere: vectors parallel to the real axis, pointing left
to right, of euclidean length 1. Let f be a holomorphic function on U . The quadratic differential q
associated to the vector field ξ = ynfη is represented as:

q = −nιyn−3fdz2, n ≥ 3. (2.24)

Proof We use the recipe in Proposition 2.2.4 to prove the Lemma. And it suffices to
prove for n = 3. From (2.20), we have

∂ξ

∂z̄
=

∂

∂z̄
(y3f) =

∂

∂z̄

(
(z − z̄)3

−8ι
f

)
=

3(z − z̄)2

8ι
f =

3ι(z − z̄)2

−8
f =

(z − z̄)2

−8
(−3ιf̄),

so that q = −3ιf̄dz2.
�
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Using Lemma 2.2.9, we can find an explicit expression for a harmonic vector field ξ
on H2 whose associated holomorphic quadratic differential is

q = zndz2(n ≥ 0)

using the obvious expression zn = (z + 2ιy)n =
∑n

k=0

(
n
k

)
(2ιy)n−kz̄k.

Lemma 2.2.10. An explicit expression for a harmonic vector field ξ on H2 whose associated
holomorphic quadratic differential is q = f(z)dz2, where f(z) = zn, for some n ≥ 0 (a
holomorphic function on H2), is given as:

ξ(z) =

(
n∑
k=0

(
n

k

)
(−2)(−2ι)n−k−1

n− k + 3
yn−k+3zk

)
η(z)

=

(
n∑
k=0

(
n

k

)
(−2)(−2ι)n−k−1

(∫ y

0
ζn−k+2dζ

)
zk

)
η(z)

=

(∫ y

0

( n∑
k=0

(
n

k

)
(−2)(−2ι)n−k−1ζn−k+2zk

)
dζ

)
η(z)

=

(∫ =(z)

0
−ιζ2(z − 2ιζ)ndζ

)
η(z)

Lemma 2.2.11. An explicit expression for a harmonic vector field ξ on U ⊂ H2 whose asso-
ciated holomorphic quadratic differential is q = f(z)dz2, where f(z) = (z − a)n(n ≥ 0) is a
holomorphic function on U ⊂ H2 and a ∈ H2 fixed, is given as:

ξ(z) =

(
n∑
k=0

(
n

k

)
(−ā)n−k

(∫ =(z)

0
−ιζ2(z − 2ιζ)kdζ

))
η(z)

=

(∫ =(z)

0
−ιζ2

( n∑
k=0

(
n

k

)
(−ā)n−k(z − 2ιζ)k

)
dζ

)
η(z)

=

(∫ =(z)

0
−ιζ2

(
z − ā− 2ιζ

)n
dζ

)
η(z)

=

(∫ =(z)

0
−ιζ2f(z̄ + 2ιζ)dζ

)
η(z).

(2.25)

Another Proof of Theorem 2.2.7: Exactness at the termHARM in (2.22) follows from
Theorem 2.2.4 and Corollary 2.2.6. Let q = f(z)dz2 be defined in a neighborhood V
of a ∈ H2, where a ∈ H2 is fixed. To prove the local surjectivity of β we have to get a
solution for a harmonic vector field whose associated holomophic quadratic differential
is q in a possibly smaller neighborhood U ⊂ V of a. Note that we can’t use the expression
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in (2.25). As ζ runs from 0 to =(z), f(z̄ + 2ιζ) does not even make sense when ζ = 0. We
try the following

ξc(z) =

(∫ =(z)

c
−ιζ2f(z̄ + 2ιζ)dζ

)
η(z), (2.26)

where c is any positive real number.

Figure 2.1: The expression for ξc(ι) defined along the hyperbolic line joining ι and c

But there is a caveat: as ζ runs from c to =(z), f(z̄ + 2ιζ) may not be defined on the
upper half plane since we are assuming that f is defined only on V ⊂ H2. By making
the best possible choice of cwhich is =(a) in this case, we get the required solution as
follows

ξ=(a)(z) =

(∫ =(a)

=(z)
ιζ2f(z̄ + 2ιζ)dζ

)
η(z), (2.27)

defined on
U = {z ∈ V |z̄ + 2ιt ∈ V forall t ∈ [=(z),=(a)]}.

Evaluating the expression in (2.27) at a, we get

ξ=(a)(a) =

(∫ =(a)

=(a)
ιζ2f(ā+ 2ιζ)dζ

)
η(a)

= 0.

�

Remark 2.2.12. Let q be a quadratic differential which is defined everywhere on H2 and
is bounded in the hyperbolic metric gH2 , i.e.,

‖q‖gH2 = |f(z)|‖dz2‖gH2 ≤ D,

where ‖dz2‖gH2 = =(z)2 and D is a positive real number. Note that ξc in (2.26) has a
continuous extension on R. In other words, for z such that =(z) = 0, we define

ξc(z) = lim
ε→0

(∫ c

ε
ιζ2f(z + 2ιζ)dζ

)
η(z). (2.28)
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To prove that the above limit exists, we use the Cauchy criterion of convergence of
improper integrals, ∣∣∣∣ ∫ ε2

ε1

ιζ2f(z̄ + 2ιζ)dζ

∣∣∣∣ ≤ ∫ ε2

ε1

ζ2 D

4ζ2
dζ

=
D

4
(ε2 − ε1).

From the above estimate, it is clear that the limit in (2.28) exists.

Theorem 2.2.13. Let q = f(z)dz2 be a holomorphic quadratic differential on H2. Suppose that
q satisfies the following boundedness conditions

1. q is bounded in the hyperbolic metric gH2 , i.e.

‖q‖gH2 = |f(z)|‖dz2‖gH2 ≤ D, (2.29)

where ‖dz2‖gH2 = =(z)2 and D is a positive real number.

2. The first and second covariant derivative of q w.r.t the linear connection ∇ on T ∗H2 ⊗C
T ∗H2, are bounded in the hyperbolic metric gH2 .

Then there exists a harmonic vector field ξreg on H2 such that β(ξreg) = q, where β is introduced
in Theorem 2.2.7. An explicit formula is

ξreg(z) = lim
c→∞

(
ξc(z)−

(
ξc(ι) +

∂ξc
∂z

∣∣∣∣
z=ι

· (z − ι)
))

, (2.30)

where

ξc(z) =

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ

)
η(z)

and c is a positive real number.

Remark 2.2.14. We have introduced a simple terminology reg short for “regularisation”
to characterise our required harmonic vector field.

Remark 2.2.15. The boundedness conditions on q in the above theorem are satisfied if q
is invariant under the action of a discrete cocompact subgroup Γ of PSL(2,R), i.e.,

f(γ(z))γ′(z)2 = f(z), z ∈ H2, ∀γ ∈ Γ.

Remark 2.2.16. In Theorem 2.2.13, ∇ is a first order linear differential operator

A 0(H2, T ∗H2 ⊗C T
∗H2) −→ A 1(H2, T ∗H2 ⊗C T

∗H2),

where on the L.H.S. we have sections of the vector bundle T ∗H2 ⊗C T
∗H2 −→ H2 and

on the R.H.S we have the space of T ∗H2 ⊗C T
∗H2-valued 1-forms, i.e., sections of the
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vector bundle hom(TH2, T ∗H2⊗C T
∗H2). Recall that the Levi-Civita connection∇ of the

hyperbolic plane can be extended complex linearly to the complexification of the tangent
and cotangent bundles - (TH2)c and (T ∗H2)c - of the plane and their tensor products,
and then decomposed as

∇ = ∇ ∂
∂z
⊕∇ ∂

∂z̄
.

Recall the discussion just before Example 2.1.9. We view ∂
∂z and ∂

∂z̄ as sections of the
complexified tangent bundle (TH2)c, and dz and dz̄ as sections of the complexified
cotangent bundle (T ∗H2)c. Furthermore, dz

(
∂
∂z

)
= 1 and dz

(
∂
∂z̄

)
= 0. For example,

applied to functions f : H2 −→ C, we have∇ ∂
∂z
f = fzdz and∇ ∂

∂z̄
f = fz̄dz̄. Now, for the

hyperbolic plane with the hyperbolic metric gH2 = ρ2dzdz̄, where ρ(z) = 1/=(z), we get
the following:

∇ ∂

∂z
=

2ρz
ρ
dz ⊗ ∂

∂z
, ∇dz = dz ⊗∇ ∂

∂z
dz = −2ρz

ρ
dz ⊗ dz

∇ ∂
∂z̄

∂

∂z
= 0, ∇ ∂

∂z

∂

∂z
=

2ρz
ρ

∂

∂z
.

(2.31)

Equations in (2.31) are taken from [39]. To get boundedness conditions on fz and fzz
from boundedness conditions on q and on the first and second covariant derivative of
q = fdz2, i.e.,

‖q‖gH2 ≤ D
‖∇q‖gH2 ≤ D1

‖∇2q‖gH2 ≤ D2,

(2.32)

D1 and D2 are positive real numbers, we need to compute ∇q and ∇2q. Consider the
first covariant derivative of q w.r.t ∇:

∇fdz2 = ∇(f)dz2 + f∇(dz ⊗ dz)

= fzdz
3 + fz̄dz̄ ⊗ dz2 + f(∇dz ⊗ dz + dz ⊗∇dz)

= fzdz
3 + 0 + f · −4ρz

ρ
dz3,

(2.33)

where the last equality follows from (2.31) and the fact that f is a holomorphic function.
From (2.33), we have

‖fzdz3 + f · −4ρz
ρ
dz3‖gH2 ≤ D1

which implies

|fz| ≤
K1

=(z)3
, (2.34)
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whereK1 is a positive constant that depends upon the bounds for f . Now, using (2.31)
and (2.33) consider the second covariant derivative of q w.r.t ∇:

∇
(
fzdz

3 + f · −4ρz
ρ
dz3
)

= ∇fzdz3 + fz∇(dz ⊗ dz ⊗ dz) +∇f · −4ρz
ρ
dz3

− f · ∇
(

4ρz
ρ

)
dz3 + f · −4ρz

ρ
∇(dz ⊗ dz ⊗ dz)

= fzzdz
4 + fzz̄dz̄ ⊗ dz3 + fz · −

6ρz
ρ
dz4 + fz · −

4ρz
ρ
dz4

+ fz̄ · −
4ρz
ρ
dz̄ ⊗ dz3 − f · ρ2dz4 + f · 4ρz

ρ
· 6ρz
ρ
dz4

= fzzdz
4 + 0 + fz · −

6ρz
ρ
dz4 + fz · −

4ρz
ρ
dz4 + 0

− f · ρ2dz4 + f · 24ρ2
z

ρ2
dz4

= fzzdz
4 + fz · −

10ρz
ρ

dz4 − f · ρ2dz4 + f · 24ρ2
z

ρ2
dz4.

(2.35)
From (2.35), the second covariant derivative of q being bounded in the hyperbolic metric
implies the following:

|fzz| ≤
K2

=(z)4
, (2.36)

whereK2 is a positive constant that depends upon the bounds for f and fz .

Before we begin with the proof of Theorem 2.2.13 which establishes the global surjec-
tivity of β in Theorem 2.2.7, we discuss the following abortive attempts to get a (global)
harmonic vector field on the whole upper half plane H2.

Remark 2.2.17. Assume that q is bounded in the hyperbolic metric, i.e.

‖q‖gH2 = |f(z)|‖dz2‖gH2 ≤ D,

where D is a positive real number. We try to define

ξ(z) =

(∫ ∞
=(z)

ιζ2f(z̄ + 2ιζ)dζ

)
η(z) = lim

c→∞

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ

)
η(z), (2.37)

hoping that the above limit exists. In this case, we say that the improper integral in
(2.37) converges and its value is that of the limit. From the above mentioned boundedness
condition on q we get the following

|f(z)| ≤ D

=(z)2
, ∀z ∈ H2. (2.38)

From the Cauchy criterion of convergence of improper integrals, the improper integral∫ ∞
=(z)

ιζ2f(z̄ + 2ιζ)dζ
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in (2.37) converges iff for every ε > 0 there is aK ≥ =(z) so that for allA,B ≥ K we have∫ B

A
ιζ2f(z̄ + 2ιζ)dζ

 < ε.

Using (2.38), we have∫ B

A
ιζ2f(z̄ + 2ιζ)dζ

 ≤ ∫ B

A
ζ2
f(z̄ + 2ιζ)

dζ
≤
∫ B

A

Dζ2

(2ζ −=(z))2
dζ

(2.39)

Now, we assume that A ≥ =(z). Then the denomiator (2ζ − =(z))2 in the second
inequality in (2.39) is atleast as big as ζ2. Rewriting (2.39), we get∫ B

A
ιζ2f(z̄ + 2ιζ)dζ

 ≤ ∫ B

A

Dζ2

ζ2
dζ

=

∫ B

A
Ddζ

= D(B −A).

From the above estimate, there is no conclusion that limit in (2.37) exists.

Remark 2.2.18. Assume that both q and its first covariant derivative w.r.t∇ are bounded
in the hyperbolic metric gH2 . From Remark 2.2.16 and (2.34), the covariant derivative of
q (w.r.t ∇) being bounded in the hyperbolic metric gH2 implies the following:

|fz| ≤
K1

=(z)3
, (2.40)

where fz denotes the first complex derivative of f , f being a holomorphic function on
H2. We try to define

ξ(z) = lim
c→∞

(ξc(z)− ξc(ι)) (2.41)

hoping that the above limit exists. We view ξc(ι) as the zeroth order Taylor approximation
of ξc(z) at z = ι. Moreover, ξc(ι) is a constant vector field, hence a holomorphic vector
field, depending on c. Note that the expression in (2.41) resembles the idea of Weierstrass
in constructing the Weierstrass P-function. Naively speaking, we want to compare the
integral along a vertical hyperbolic lineL1 joining some point z to z̄+2ιcwith the integral
along a vertical hyperbolic line L2 joining ι to (2c− 1)ι. Infact, L1 and L2 are asymptotic
lines in the hyperbolic plane H2. Let’s first spell out the expression ξc(z)− ξc(ι) on the
R.H.S of (2.41).
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Case I: 2c ≥ 1 ≥ =(z)

ξc(z)− ξc(ι) =

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ −

∫ c

1
ιζ2f(ῑ+ 2ιζ)dζ

)
η(z)

=

(∫ 1

=(z)
ιζ2f(z̄ + 2ιζ)dζ +

∫ c

1
ιζ2f(z̄ + 2ιζ)dζ −

∫ c

1
ιζ2f(ῑ+ 2ιζ)dζ

)
η(z)

=

(∫ c

1
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)

)
dζ︸ ︷︷ ︸

Ic

−
∫ =(z)

1
ιζ2f(z̄ + 2ιζ)dζ

)
η(z)

(2.42)

Case II: 2c ≥ =(z) ≥ 1

ξc(z)− ξc(ι) =

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ −

∫ c

1
ιζ2f(ῑ+ 2ιζ)dζ

)
η(z)

=

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ −

∫ =(z)

1
ιζ2f(ῑ+ 2ιζ)dζ −

∫ c

=(z)
ιζ2f(ῑ+ 2ιζ)dζ

)
η(z)

=

(∫ c

=(z)
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)

)
dζ︸ ︷︷ ︸

IIc

−
∫ =(z)

1
ιζ2f(ῑ+ 2ιζ)dζ

)
η(z)

(2.43)

Since
∫ =(z)

1 ιζ2f(z̄ + 2ιζ)dζ and
∫ =(z)

1 ιζ2f(ῑ+ 2ιζ)dζ on the R.H.S of (2.42) and (2.43) are
independent of cwe only work with Ic and IIc to determine whether the limit in (2.41)
exists or not. Now if A,B ≥ c, we have

IB − IA =

∫ B

A
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)

)
dζ, (2.44)

and
IIB − IIA =

∫ B

A
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)

)
dζ. (2.45)

Using (2.40), we have the following estimate for (2.44) and (2.45)∫ B

A
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)

)
dζ

 ≤ ∫ B

A
ζ2 · K1

(2ζ −=(z))3
· |z̄ − ῑ|dζ, (2.46)

where the inequality in (2.46) follows from (2.40). Now, we assume that A ≥ =(z). Then
the denomiator (2ζ −=(z))3 in the inequality in (2.46) is atleast as big as ζ3. Rewriting
(2.46), we get∫ B

A
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)

)
dζ

 ≤ |z̄ − ῑ| ∫ B

A
ζ2 · K1

ζ3
dζ

= |z̄ − ῑ| ·K1 log

(
B

A

)
.
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Observe that the attempt in (2.41) is much better than the attempt in (2.37). But it does
not serve our purpose.

Proof of Theorem 2.2.13: Recall (2.36). To begin with we note that the second bound-
edness condition on q can be translated as follows:

|fzz| ≤
K2

=(z)4
, ∀z ∈ H2, (2.47)

where fzz denote the second complex derivative of f , f being a holomorphic function
on H2. To prove that ξreg(z) converges we use the Cauchy criterion of convergence of
improper integrals which has been stated in Remark 2.2.17. We notice that

ξc(ι) +
∂ξc
∂z

∣∣∣∣
z=ι

· (z − ι)

in (2.30) is the holomorphic part of the first order Taylor approximation of ξc(z) at z = ι.
Let’s denote it by T hol

1,ι (ξc(z)). Also, ∂ξc∂z
∣∣
z=ι

is nothing complicated but a complex number
because ξ′c(z)|z=ι as an R-linear map from C to C can be written uniquely as a sum of a C-
linear map and a C-conjugate linear map. Let’s denote the integrand ιζ2f(z̄ + 2ιζ) in the
expression of ξc(z) by F (ζ, z). As both F (ζ, z) and its partial derivatives are continuous
in ζ and z, we can express ξ′c(z)|z=ι using the Leibniz rule as follows:

ξ′c(z)|z=ι =

(
− ι=(z)2f(z̄ + 2ι=(z)) · =′(z) +

∫ c

=(z)
ιζ2

(
∂

∂z
f(z̄ + 2ιζ)dz +

∂

∂z̄
f(z̄ + 2ιζ)dz̄

)
dζ

)∣∣∣∣
z=ι

=

(
− ι=(z)2f(z) · =′(z) +

∫ c

=(z)
ιζ2 ∂

∂z
f(z̄ + 2ιζ)dζ

)∣∣∣∣
z=ι

= −ιf(ι) · =′(z)|z=ι︸ ︷︷ ︸
K

+

(∫ c

=(z)
ιζ2 ∂

∂z
f(z̄ + 2ιζ)dζ

)∣∣∣∣
z=ι

(2.48)
where the second equality in (2.48) follows from the fact that f is a holomorphic function,
hence we get

∂

∂z̄
f(z̄ + 2ιζ) =

(
∂

∂z
f(z̄ + 2ιζ)

)
= 0.

Note that we have omitted dz in ∂
∂zf(z̄ + 2ιζ)dz because dz as a linear map can be viewed

as the 2×2 identity matrix. Since the summand ιf(ι) ·=′(z)|z=ι in (2.48) does not depend
on c, therefore it does not hurt to drop it in the expression of T hol

1,ι (ξc(z)) for convergence
investigation. We will denote the corrected term by Ψc(z). Using (2.48), Ψc(z) can be
written as:

Ψc(z) =

(∫ c

1
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

)
η(z). (2.49)
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Then
ξreg(z) = lim

c→∞

(
ξc(z)−Ψc(z)−K

)
. (2.50)

Let’s first spell out the expression ξc(z)−Ψc(z).

Case I: 2c ≥ 1 ≥ =(z)

ξc(z)−Ψc(z) =

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ

−
∫ c

1
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

)
η(z)

=

(∫ 1

=(z)
ιζ2f(z̄ + 2ιζ)dζ +

∫ c

1
ιζ2f(z̄ + 2ιζ)dζ

−
∫ c

1
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

)
η(z)

=

(∫ c

1
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)−

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ︸ ︷︷ ︸

Ic

−
∫ =(z)

1
ιζ2f(z̄ + 2ιζ)dζ

)
η(z).

(2.51)

Case II: 2c ≥ =(z) ≥ 1

ξc(z)−Ψc(z) =

(∫ c

=(z)
ιζ2f(z̄ + 2ιζ)dζ

−
∫ =(z)

1
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

−
∫ c

=(z)
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

)
η(z)

=

(∫ c

=(z)
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)−

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ︸ ︷︷ ︸

IIc

−
∫ =(z)

1
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

)
η(z).

(2.52)
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Since the integrals ∫ =(z)

1
ιζ2f(z̄ + 2ιζ)dζ

and ∫ =(z)

1
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ

in R.H.S of (2.51) and (2.52) are independent of c, we work with Ic and IIc in (2.51) and
(2.52) to prove the convergence of ξreg. Now if A,B ≥ c, we have

IB − IA =

∫ B

A
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)−

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ,

and

IIB − IIA =

∫ B

A
ιζ2

(
f(z̄ + 2ιζ)− f(ῑ+ 2ιζ)−

(
∂

∂z
f(z̄ + 2ιζ)

)∣∣∣∣
z=ι

· (z − ι)
)
dζ.

Using the Remainder Estimation Theorem for f , we have

|IB − IA| = |IIB − IIA| ≤
∫ B

A
ζ2 ·maxw|f (2)(w)| · |(z̄ + 2ιζ)− (ῑ+ 2ιζ)|2dζ, (2.53)

where w is varying on the line segment connecting z̄ + 2ιζ and ῑ + 2ιζ. We assume
A,B > =(z). Using (2.47), we rewrite (2.53) as follows:

|IB − IA| = |IIB − IIA| ≤
∫ B

A
ζ2 ·maxw

K2

(=(w))4
· |z̄ − ῑ|2dζ

≤ |z̄ − ῑ|2
∫ B

A
ζ2 · K2

(2ζ −=(z))4
dζ

(2.54)

Also, the denomiator (2ζ−=(z))4 is atleast as big as ζ4. As a result (2.54) has the following
form:

|IB − IA| = |IIB − IIA| ≤ |z̄ − ῑ|2
∫ B

A
ζ2 · K2

ζ4
dζ

= |z̄ − ῑ|2 · K2

4

(
− 1

B
+

1

A

)
.

(2.55)

These estimates show that ξreg is a well defined vector field. But they also show that ξreg is
locally a uniform limit of harmonic vector fields which determine the same holomorphic
quadratic differential. Therefore, ξreg is a harmonic vector field by Corollary 2.2.8. �

2.2.2 Extending harmonic vector fields on H2 to the boundary circle S1

We refer to the extended real axis R := R∪{∞} as the boundary at infinity ofH2. We are
using the unit disc model so that we have a well defined notion of the tangent space at
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the point {∞} ∈ ∂H2 as there is a natural 1-1 correspondence between ∂D and ∂H2. The
starting point is to compare the length of a vector v ∈ TzH2 for some z ∈ H2 (measured in
the Euclideanmetric) with the length of the pushforward of v (measured in the Euclidean
metric) by a conformal map between H2 and D. Consider the Cayley transformation

C(z) =
z − ι
z + ι

(2.56)

mapping the upper half plane model of H2 to the unit disc model D of H2. We have

|dCz(v)| = |v|
|z|2

, ∀v ∈ TzH2. (2.57)

Theorem 2.2.19. The harmonic vector field ξreg in Theorem 2.2.13, transformed from H2 to the
open unit disc D ⊂ C by the Cayley transform C given by (2.56) extends to a continuous vector
field, say χ, on D defined as follows:

χ(C(z)) =


C∗(ξ

reg(z)) z ∈ H2

C∗(ξ
reg(z)) z ∈ ∂H2 \ {∞}

0 z = {∞}
(2.58)

where C∗(ξreg(z)) is the pushforward of ξreg(z) by the Cayley transform C.

Before we prove Theorem 2.2.19, we discuss the one and only disadvantage of
Wolpert’s formula (2.23) in the following remark:

Remark 2.2.20. Recall Wolpert’s global solution ξ (see (2.23)) for the potential equation
(2.21). Given that q = fdz2 is bounded in the hyperbolic metric gH2 , i.e., |f(z)| ≤ D

=(z)2

whereD is a positive constant, ξ extends to the real line R. This can be seen as follows: f
is not defined for z such that =(z) = 0. So the integral in (2.23) is an improper integral,
so for z such that =(z) = 0, we define

ξ(z) = lim
ε→0

((∫ z+ιε

w
(z + ιε− ζ)2f(ζ)dζ

)
η(z)

)
.

The above limit exists, as can be seen by taking w to be ι and using |f(z)| ≤ D
=(z)2 . We

have no reason to believe that ξ extends to the point {∞} in the boundary R∪{∞}. Here
is an argument: for the sake of convenience, we choose the line segment from w = ι to
z = cι as the path of integration in the expression of ξ, where c > 1 is a positive real
number. Then,

ξ(cι) =

∫ cι

ι
(cι− ζ)2f(ζ)dζ.
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Therefore,

|ξ(cι)| ≤ D
∫ cι

ι

|cι− ζ|2

=(ζ)2
dζ

= D

∫ cι

ι

|cι− ζ|2

=(ζ)2
dζ

≤ D · |cι− ι| ·maxζ
|cι− ζ|2

=(ζ)2
,

where ζ is varying on the line segment from ι to cι. From the above estimate, it is clear
that ξ is O(|z|3) at the point {∞} in the boundary R ∪ {∞}.

Proof of Theorem 2.2.19: Recall Remark 2.2.12. For z such that =(z) = 0, the definition
of ξreg makes perfectly good sense because the convergence of the improper integral
in the expression of ξreg for z such that =(z) = 0 follows from the conditions given in
(2.38), (2.40), and (2.47). Now, we claim that for a sequence {zn} of points in H2 such that
|zn| → ∞, where | · | denotes the absolute value

lim
|zn|→∞

|C∗(ξreg(zn))| = 0, (2.59)

where |C∗(ξreg(z))| denotes the length of the pushforward of ξreg(z) measured in the
Euclidean metric. Using (2.57), we rewrite (2.59) as follows

lim
|zn|→∞

|ξreg(zn)|
|zn|2

= 0. (2.60)

The main idea is to split the integral
∫ c

0 ιζ
2f(zn + 2ιζ)dζ at height h such that h = |zn|

and estimate the resulting integrals in different ways. Using (2.48), (2.49), and (2.50), our
expression for ξreg(zn) takes the following form:

ξreg(zn) = ξh(zn)−
(
ξh(ι) +

∂ξh
∂z

∣∣∣∣
z=ι

· (zn − ι)
)

︸ ︷︷ ︸
ξreg
1 (zn)

+ lim
c→∞

(
ξh,c(zn)−Ψh,c(zn)−K

)
︸ ︷︷ ︸

ξreg
2 (zn)

,

where

ξh(zn) =

(∫ h

0
ιζ2f(zn + 2ιζ)dζ

)
η(zn), ξh,c(zn) =

(∫ c

h
ιζ2f(zn + 2ιζ)dζ

)
η(zn),

ξh(ι) =

(∫ h

1
ιζ2f(ῑ+ 2ιζ)dζ

)
η(ι),

∂ξh
∂z

∣∣∣∣
z=ι

=

(∫ h

1
ιζ2

(
∂

∂z
f(zn + 2ιζ)

)∣∣∣∣
z=ι

dζ

)
η(ι),

Ψh,c(zn) =

(∫ c

h
ιζ2

(
f(ῑ+ 2ιζ) +

(
∂

∂z
f(zn + 2ιζ)

)∣∣∣∣
z=ι

· (zn − ι)
)
dζ

)
η(zn).
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Note that we have treated h = |zn| as a constant independent of zn. Using (2.34), (2.36),
and (2.38), each individual term - ξh(zn), ξh(ι) and ∂ξh

∂z |z=ι · (zn − ι) - in the expression of
ξreg

1 (zn) satisfies the following inequalities when estimated in the Poincare metric gH2 :

|ξh(zn)| ≤ D

4
|zn|,

|ξh(ι)| ≤ D

4
|zn|,∂ξh∂z ∣∣z=ι · (zn − ι)

 ≤ K1

8
|zn|.

At this point (2.57) comes in handy and show us immediately that C∗(ξreg
1 (zn))→ 0 as

|zn| → ∞. From the estimate given in (2.55) in the proof of Theorem 2.2.13 we have
C∗(ξ

reg
2 (zn))→ 0 as |zn| → ∞. �



Chapter 3

Going from the analytic description
to the cohomological description

3.1 Vector fields on D and S1

We will denote the Hilbert space of measurable functions f on S1 such that∫
S1

|f(x)|2dx < +∞

modulo the equivalence relation of almost-everywhere equality by L2(S1). We are not
going to prove the completeness ofL2(S1). Themain idea to prove completeness ofL2(S1)
is that a Cauchy sequence of L2-functions has a subsequence that converges pointwise
off a set of measure 0. There is a different definition of L2(S1), namely the completion of
C0(S1), the space of continuous C-valued functions on S1, with respect to the norm

‖f‖ :=
1√
2π

(∫
S1

|f(z)|2dz
)1/2

(3.1)

The Fourier basis elements are the exponential functions ψk(z) := zk for z ∈ S1. The
exponential functions {ψk|k ∈ Z} form an orthonormal set in L2(S1). But it’s not clear
immediately that they form an orthonormal Hilbert basis (see [4]). From orthonormality,
the Fourier coefficients ak ∈ C of f are the inner products

ak = 〈f, ψk〉 =
1

2π

∫
S1

f(z)ψk(z)dz.

The Fourier expansion of f ∈ L2(S1) is

f(z) =
∑
k∈Z

akψk(z)

36
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where the equality means convergence of the partial sums to f in the L2-norm, or

lim
N→∞

1√
2π

∫
S1

∣∣∣∣ N∑
k=−N

akψk(z)− f(z)

∣∣∣∣2dz = 0.

The convenient algebraic property of ψk is that the basis is multiplicative. And multipli-
cation of functions corresponds to the convolution of Fourier series; this is actually obvious
in our context since

ψk · ψl = ψk+l. (3.2)

From now on we will denote L2(S1) by H. There is an orthogonal sum splitting H =
H1 ⊕H2 whereH1 is the closure of the span of {ψk|k < 0} and consequently,H2 is the
closure of the span of {ψk|k ≥ 0}. An element ofH2, say

f :=
∑
k≥0

akfk

has a canonical extension to a function (in the L2-sense) defined on the unit disk D in C
by the formula

z 7−→
∑
k≥0

akz
k.

This is in fact a convergent power series in the open unit disk D, so defines a holomorphic
function on the open unit disk D in C. So we should seeH2 as the linear subspace ofH
consisting of those L2-functions on S1 which extend holomorphically to the open unit
disk D in C. Equivalently, think ofH2 as the complex vector space of L2-vector fields on
S1 which extend holomorphically to the open unit disk, i.e.

H2 = {X : S1 −→ R2|X isL2, X(z) ∈ TzR2 ∼= R2 ∼= C, ∀z ∈ S1},

where the norm on X is taken in the sense of (3.1).

Remark 3.1.1. A smooth or continuous vector fieldX on the open unit disk D has an L2-
extension to the closed disk D if the following holds: for every ε > 0, we get a continuous
vector field Xε on S1

1−ε, a circle of radius 1− ε (which can be identified canonically with
S1 by streching), by restricting X to S1

1−ε. Now, letting ε→ 0, we get a sequence {Xε} in
the Hilbert space of L2-vector fields on the boundary circle S1. And if {Xε} converges to
a L2-vector field on the boundary circle S1, then X has an L2- extension to the closed
disk D.

Definition 3.1.2. A vector field on S1 with values inR2 orC is called tangential if it makes
S1 flows into itself.

We denote the space of tangential vector fields on S1 by Xtangential(S1). It is a real
vector space. To get more insight, consider the following example:
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Example 3.1.3. Consider the following complex-valued vector field on S1:

X(x, y) = −y ∂
∂x

+ x
∂

∂y
.

In complex coordinates, we express X as X(z) = ιz. It is clear that X is a tangential
vector field on S1 since

σ(t, (x, y)) = (x cos t− y sin t, x sin t+ y cos t)

is a flow generated by X and the flow through (x, y) is a circle whose centre is at origin.
Clearly, σ(t, (x, y)) = (x, y) if t = 2nπ, n ∈ Z. See L.H.S of Figure 3.1.

Figure 3.1: An example of a tangential vector field on S1

Note that the above example is only one solution of tangential vector fields on S1.
But we get all other solutions by multiplying X in Example 3.1.3 with any real valued
function on S1. Note that vector fields can be multiplied with functions. For simplicity,
we think of multiplication of L2-vector fields on S1 with real valued functions on S1 as
multiplication of functions with functions.

Recall that we have expressed an L2-function f on S1 with values in C as
∑

k∈Z akψk. It’s
a routine exercise in Fourier analysis to show that f is real valued iff ak = a−k for all k.
Therefore the corresponding (real) Fourier expansion of f is

f(x) =
1

2
a′0 +

∞∑
k=1

a′k cos(kx) + b′k sin(kx),

where a′k = ak + a−k and b′k = ι(ak − a−k). So, the real-valued functions

{1, cos(kx), sin(kx)|k = 1, 2, 3, . . .}

also form an orthogonal basis of the spaceH, since

cos(kx) =
exp(ιkx) + exp(−ιkx)

2
=
zk + z−k

2
,
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sin(kx) =
exp(ιkx)− exp(−ιkx)

2ι
=
zk − z−k

2ι
.

Using (3.2), i.e., the fact that the Fourier transform of the product of functions is the convo-
lution of the Fourier transforms, we have the following real Hilbert basis of Xtangential(S1):{

ιz,
ιz1+k + ιz1−k

2
,
z1+k − z1−k

2

∣∣∣∣k = 1, 2, 3, . . .

}
. (3.3)

Also, Killing vector fields on D are the infinitesimal generators of isometries of D, hence
Killing vector fields on D are tangential vector fields on S1. We will denote the three di-
mensional real vector space whose elements are Killing vector fields on S1 by XKilling(S1).

Theorem 3.1.4. We have

1. Xtangential(S1) ∩H2 = XKilling(S1).

2. Xtangential(S1) +H2 is the vector space of all L2-vector fields on S1.

Proof (1). As any complex vector space has an underlying real vector space so the real
Hilbert basis of the spaceH2 is given as

{zk, ιzk|k ≥ 0}.

The basis for Xtangential(S1) is given by (3.3). Assume X ∈ Xtangential(S1) ∩ H2. Then
X =

∑
k≥0 akz

k + bkiz
k and X = a′0ιz +

∑
k≥1 a

′
k
ιz1+k+ιz1−k

2 + b′k
z1+k−z1−k

2 . Since

∑
k≥0

akz
k + bkiz

k = a′0ιz +
∑
k≥1

a′k
ιz1+k + ιz1−k

2
+ b′k

z1+k − z1−k

2
,

comparing the coefficients of zk and ιzk in each expression, we obtain a′0 = b1, b2 =

b0 =
a′1
2 , a2 =

b′1
2 = −a0, and all other coefficients are zero. Therefore, X is a linear

combination with real coefficients of ιz, z2−1
2 , and ιz2+ι

2 Note that ιz, z2−1
2 , and ιz2+ι

2 are
linearly independent. Hence the vector spaceXtangential(S1)∩H2 is a 3-dimensional space
which is nothing but XKilling(S1).

(2) A real Hilbert basis of the space of L2-vector fields on S1 is given by {zk, ιzk|k ∈ Z}.
Then it is very easy to see that

X(z)−

(( ∑
k∈{2,3,...}

b1−k
(
ιz1+k + ιz1−k))− ∑

k∈{2,3,...}

a1−k
(
z1+k − z1−k))

= a0 + b0ι+ a1z + b1ιz + a2z
2 + b2ιz

2 + (a3 + a−1)z3 + (b3 − b−1)ιz3 + · · · ,

where X(z) =
∑

k∈Z akz
k + bkιz

k, z ∈ S1. Therefore, X = X1 + X2, where X1 ∈
Xtangential(S1) and X2 ∈ H2. �



40 3 Going from the analytic description to the cohomological description

Before we state conclusions of this chapter we introduce some notions and conventions:

1. LetM be a Γ-module, where Γ is a subgroup of PSU(1, 1). A map c : Γ −→M is
called a cocycle if

cγ1◦γ2 = γ∗2cγ1 + cγ2 , γ1, γ2 ∈ Γ,

cγ stands for c(γ), ∗ denotes the action of Γ onM. Ifm ∈M, its coboundary δm is
the cocycle

γ 7−→ γ∗m−m, γ ∈ Γ. (3.4)

The first cohomology group H1(Γ;M) is the quotient Z1(Γ;M)/B1(Γ;M).

2. The most important cases of M from the viewpoint of this thesis are

(a) S∞(TD), the vector space of smooth vector fields on D. Γ acts on S∞(TD) in
the following manner

γ∗F = F (γ)γ′−1, γ ∈ Γ, F ∈ S∞(TD). (3.5)

(b) HOL, the vector space of holomorphic vector fields on D. Γ acts on HOL in
the same manner as in (3.5).

(c) g, the vector space of Killing vector fields on D. Note that we have already
dealt with this case in Section 1.3.1 in Chapter 1.3.

3. Note that
g ⊂ HOL ⊂ S∞(TD).

Recall Subsection 2.2 in Chapter 2. Given a holomorphic quadratic differential q on D
which satisfies boundedness conditions, namely, q is bounded in the hyperbolic metric
gD of D, and the first and the second covariant derivative of q w.r.t the linear connection
on T ∗D⊗C T

∗D are bounded in gD, we obtain a harmonic vector field χ on D that extends
continuously on the boundary circle S1 such that (LχgD)(2,0) = q. Note that χ is not
necessarily tangential to the boundary circle S1. We will denote the restriction of χ to S1

by χ|S1 . Using Theorem 3.1.4 (2), we can write χ|S1 as χ1 + χ2, where χ1 ∈ Xtangential(S1)
and χ2 ∈ H2. Since χ is a harmonic vector field on D whose associated holomorphic
quadratic differential is q, then the holomorphic quadratic differential associated with the
vector field χ1 is the same q. Because the holomorphic quadratic differential associated
with χ2 is zero. Notice that in the expression of χ1 = χ − χ2 we are working with the
holomorphic extension of χ2 to the open unit disk D. Now, the coboundary of χ, i.e.,

δχ(γ) = χ(γ)γ′−1 − χ, ∀γ ∈ Γ

is a cocycle with values in HOL because of the Γ-invariance of q. But our goal is to get a
cocycle with values in g, where g is the Lie algebra of Isom+(D). Using Theorem 3.1.4
(1), we can easily see that for every γ ∈ Γ, δ(χ1)(γ) ∈ Xtangential(S1) ∩H2 and therefore
we get a cocycle in XKilling(S1) ∼= g. We summarize our discussion as
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Theorem 3.1.5. Given a holomorphic quadratic differential q = fdz2 on the Poincaré disk D
which satisfies the following boundedness conditions:

1. q is bounded in the hyperbolic metric on D, i.e.,

‖q‖gD ≤ D,

where D is a positive real number.

2. The first and the second covariant derivative of q w.r.t the linear connection on T ∗D⊗CT
∗D

are bounded in gD.

Then there exists a harmonic vector field χ on D which L2-extends to the closed disk D such that
(LχgD)(2,0) = q. Moreover, the restriction of that extension to the boundary circle S1 is tangential
and χ is unique upto the addition of holomorphic vector fields on D which extend tangentially to
the boundary circle S1. From Theorem 3.1.4 (1), χ is unique upto the addition of the vector space
g of Killing vector fields on D.

Corollary 3.1.6. Let Γ denote a subgroup of Isom+(D) where Isom+(D) is the group of orien-
tation preserving isometries of D. If q = fdz2 and χ are related as in Theorem 3.1.5 and if in
addition to (1) and (2) in Theorem 3.1.5, q is Γ-invariant, i.e.,

f(γ(z))γ′(z)2 = f(z), ∀γ ∈ Γ, z ∈ D,

then δχ defined by
γ 7−→ χ(γ)γ′−1 − χ, ∀γ ∈ Γ

is a 1-cocycle cwith coefficients in theΓ-module g - the Lie algebra of Isom+(D) and its cohomology
class [c] depends only on q.

Proof From Theorem 3.1.5, we know that χ is unique upto the addition of Killing vector
fields on D, hence for every γ ∈ Γ, δχ(γ) is a holomorphic vector field which extends
tangentially to the boundary circle S1. Therefore, for every γ ∈ Γ, δχ(γ) ∈ g. Recall that
we have for every γ ∈ Γ, c(γ) = χ(γ)

γ′ − χ. Since χ is well-defined upto addition of a
Killing vector field X on D, it follows that c is well defined upto addition of δX . Hence,
the cohomology class [c] of c is well defined. �

Remark 3.1.7. In Corollary 3.1.6, we view χ as a 0-cochain with values in the vector
space of harmonic vector fields on D.

Corollary 3.1.8. Let Γ in Corollary 3.1.6 be a discrete cocompact subgroup of Isom+(D). Then
we have an injective mapping

Φ : HQD(D,Γ) −→ H1(Γ; g)

q 7−→ [c],
(3.6)

where HQD(D,Γ) denotes the vector space of Γ-invariant holomorphic quadratic differentials on
D and c = δχ.
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Proof We assume that Φ(q) = [c] = 0. Then, there exists an element X ∈ g such that
c = δ(X). By setting Y = χ−X we notice that the holomorphic quadratic differential
associated to Y is q, and δY = 0, i.e., Y is invariant under the action of Γ. Therefore, Y
can be viewed as a harmonic vector field on the the surface D/Γ. From [10, Proposition
4.2], on a two dimensional compact orientable Riemannian manifold without boundary,
a harmonic vector field is a conformal vector field. Therefore, q ≡ 0. �



Chapter 4

Going from the cohomological
description to the analytic
description

4.1 Γ-invariant partition of unity on D

Recall that a partition of unity subordinate to an open covering {Ui} of a manifoldM is
a collection {ϕi} of non-negative smooth functions such that

1. supp(ϕi) ⊂ Ui.

2. Each p ∈M has a neighborhood that intersects with only finitely many supp(ϕi).

3.
∑
ϕi = 1.

Let Γ be a discrete cocompact subgroup of PSU(1, 1) where PSU(1, 1) denotes the group
of orientation preserving isometries of D. Below we give the existence of a Γ-invariant
partition of unity on D.

Lemma 4.1.1. There exists a smooth function ϕ on D such that

1. 0 ≤ ϕ ≤ 1.

2. For each z ∈ D, there is a neighborhood U of z and a finite subset S of Γ such that ϕ = 0
on γ(U) for every γ ∈ Γ− S.

3.
∑

γ∈Γ ϕ(γ(z)) = 1 on D.

Proof We choose an open covering {Ui}i∈I of the closed surface D/Γ where each Ui
is simply connected and a smooth partition of unity {αi} subordinate to the covering

43
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{Ui}i∈I . For each Ui, we choose a single component Vi of π−1(Ui) where π : D −→ D/Γ
is the projection map, and set

φi(z) =

{
αi(π(z)), z ∈ Vi
0, z ∈ D− Vi.

Note that the mapping π restricted to each component of π−1(Ui) is a one-to-one covering.
It’s clear that φi ∈ C∞(D), and that φ =

∑
i φi(z), z ∈ D has the required properties. �

Remark 4.1.2. We suspect that Lemma 4.1.1 is a simpler version of results on Kleinian
groups (see [37]).

To go from the cohomological description of tangent spaces (to the Teichmueller space) to
the analytic descriptionwhich is given by the space of holomorphic quadratic differentials
on Σg, we first construct a tangential vector field on the circle S1 (recall Section 3.1 from
Chapter 3) from a cocycle c representing a cohomology class [c] ∈ H1(Γ; g), where g is
the Lie algebra of the group of orientation preserving isometries of D. We use Lemma
4.1.1 to get the following: given any [c] ∈ H1(Γ; g) we set

ψ(z) = −
∑
γ∈Γ

ϕ(γ(z))cγ(z), z ∈ D.

Lemma 4.1.3 ([37]). ψ is a C∞-vector field on D such that for A ∈ Γ, z ∈ D,

(A∗ψ)(z)− ψ(z) = cA(z). (4.1)

Proof Recall (3.5). Consider the L.H.S of (4.1) in the Lemma, we have

(A∗ψ)(z)− ψ(z) = −
∑
γ∈Γ

(
ϕ(γ(Az))cγ(Az)A′(z)−1 − ϕ(γ(z))cγ(z)

)

= −
∑
γ∈Γ

(
ϕ(γ(Az))

(
cγ◦A(z)− cA(z)

)
− ϕ(γ(z))cγ(z)

)
=
∑
γ∈Γ

ϕ(γ(Az))cA(z) = cA(z).

The second equality in the above equation follows from the fact that c is a cocycle.
Therefore,

δψ = c.

�

Remark 4.1.4. Let S∞(TD) denote the vector space of C∞-vector fields on D. From
Lemma 4.1.3, we have H1(Γ;S∞(TD)) = {0}.
Corollary 4.1.5. If HOL is the vector space of holomorphic vector fields on D, then for every
cocycle c representing a cohomology class [c] ∈ H1(Γ; HOL), there is a ψ ∈ S∞(TD) such that

c = δψ.
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Proof The injection of HOL into S∞(TD) induces a mapping

H1(Γ; HOL) −→ H1(Γ;S∞(TD)).

�

Remark 4.1.6. Corollary 4.1.5 is true if we replace HOL by the vector space of Killing
vector fields g on D because of g ⊂ HOL ⊂ S∞(TH2).

Let c be a 1-cocycle with values in the vector space g of Killing vector fields on D.
From Chapter 2 and Chapter 3 we know that there exists a harmonic vector field χ with
a tangential L2-extension on the boundary circle S1 such that δχ = c. From Lemma
4.1.3, Corollary 4.1.5, and Remark 4.1.6, we get another 0-cochain ψ in S∞(TD) such that
δψ = c. Therefore, χ−ψ is a 0-cocycle in S∞(TD) and χ−ψ is invariant under the action
of Γ, i.e.,

(χ− ψ) = γ∗(χ− ψ)

=
(
(χ− ψ)(γ)

)
γ′−1, ∀γ ∈ Γ.

(4.2)

Hence, χ− ψ is bounded in the hyperbolic metric on D.

Corollary 4.1.7. ψ admits an L2-extension to the closed unit disk D whose restriction ψ] to the
boundary circle S1 is tangential.

Remark 4.1.8. Note that in Corollary 4.1.7 such an extension is unique and it depends
only on c, not on the choice of ϕ in Lemma 4.1.1.

4.2 The Poisson map adapted to vector fields

To get a vector field which is harmonic on the interior of D from a tangential vector field
on S1, we first give the reincarnation of the Poisson integral formula and then adapt it to the
case of vector fields. Recall that the Dirichlet problem asks for finding a harmonic function
F on the disk D given a continous function f on the boundary circle S1 such that they
together make a continous function on the closed disk D. The Poisson integral map is an
important tool to solve the Dirichlet problem:

F (reιθ) =
1

2π

∫ 2π

0
f(eιφ)

1− r2

1 + r2 − 2r cos(θ − φ)
dφ. (4.3)

The term 1−r2

1+r2−2r cos(θ−φ)
is called the Poisson Kernel and denoted byK. When z = reιθ

and w = eιφ, we have

K(w, z) =
|w|2 − |z|2

|w − z|2
= <

(
w + z

w − z

)
. (4.4)
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Note thatK(w, z) is defined for 0 ≤ |z| < |w| ≤ 1. We assume that |w| = 1, then

K(w, z) =
1− |z|2

|1− zw̄|2
,

since |w − z| = |ww̄ − zw̄| = |1− zw̄|. Therefore,

1− |z|2

|1− zw̄|2
=

1− zz̄
(1− zw̄)(1− z̄w)

=

∞∑
n=0

z̄nwn +

∞∑
n=1

znw̄n.

So,

K(eιφ, reιθ) =

∞∑
n=−∞

r|n|eιn(φ−θ) = Kr(φ− θ).

It is obvious thatK is a positive function of w and z. So, (4.3) can also be written as

F (reιθ) =
1

2π

∫ 2π

0
Kr(θ − φ)f(eιφ),

where Kr(θ − φ) = Kr(φ − θ). Before we give the reincarnation of (4.3) we set some
conventions and state some necessary facts. The group SU(1, 1) is the set of matrices

SU(1, 1) =

{[
a b
b̄ ā

]
∈ GL(2,C)

∣∣|a|2 − |b|2 = 1

}
,

with groupmultiplication given by matrix multiplication. Note that the group SU(1, 1) is
isomorphic to the group SL(2,R) of 2× 2 real matrices with determinant 1. We identify
the circle group SO(2) with the subgroup of SU(1, 1) given by

SO(2) =

{[
exp (ιθ) 0

0 exp (−ιθ)

] ∣∣∣∣ θ ∈ [0, 2π)

}
.

Recall that Aut(D), the orientation preserving isometries of the Poincaré disk D with the
hyperbolic metric gD, is identified with

PSU(1, 1) = SU(1, 1)/{±Id}

because every γ ∈ PSU(1, 1) acts on D by the following formula

γ(z) =
az + b

b̄z + ā
, γ =

[
a b
b̄ ā

]
, |a|2 − |b|2 = 1, ∀z ∈ D.

4.2.1 Reincarnation of the Poisson integral formula

We denote the space of continuous functions on the circle S1 by C0(S1) and the space of
continuous functions on the open unit disk D by C0(D). To construct and characterise
the Poisson map
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P : C0(S1) −→ C0(D)

given in (4.3) which is continuous w.r.t to the topology of uniform convergence on both
the source and the target space, we first observe that P (f)(0) is nothing but the normalised
Haar integral1

1

2π

∫
S1

f.

By convention, integral of the constant function 1 over S1 is 2π. Therefore, P (f)(0) is
linear, positive, continous, and invariant under the circle group. To obtain the expression
for P (f)(z), z ∈ D, we use the transitivity of the action of PSU(1, 1) on the open unit
disk D, i.e., P (f)(z) = P (f)(γ(0)) for some γ ∈ PSU(1, 1) such that γ(0) = z. Moreover,

P (f)(z) = P (f)(γ(0)) = P (f · γ)(0) =
1

2π

∫
S1

f · γ, (4.5)

where the second equality follows from the fact that the Poisson map P is PSU(1, 1)-
equivariant, i.e., P (f · γ) = P (f) · γ, for all γ ∈ PSU(1, 1) and all f ∈ C0(S1), where ·
denotes the action of PSU(1, 1) on C0(S1) and C0(D) by pre-composition. The condition
can also be understood as the following commutative diagram:

C0(S1)
P //

γ·
��

C0(D)

γ·
��

C0(S1)
P // C0(D)

The PSU(1, 1)-equivariance of the Poisson map follows from the uniqueness of solutions
to the Dirichlet problem for Laplace’s equation, i.e., for a given f ∈ C0(S1), the Dirichlet
problem for Laplace’s equation

∆F = 0 on D
F = f on S1

has atmost one solution F ∈ C2(D) ∩ C1(D). Transforming f ∈ C0(S1) by an element
γ ∈ PSU(1, 1) gives us a new harmonic extension F1 of f · γ on D. From the weak
maximum principle applied to the harmonic function F ◦ γ − F1, we have F ◦ γ − F1 ≤
maxS1(F ◦ γ − F1) = 0. Thus, F ◦ γ ≤ F1 on D. Similarly, we get F1 ≤ F ◦ γ. Therefore,
F ◦γ and F1 coincide. Note that the last equality in (4.5) follows from the fact that P (f)(0)
is the Haar integral. P (f)(z) is well-defined, i.e., it does not depend on γ ∈ PSU(1, 1)

1Let G denote a locally compact group. The real vector space of the real valued continuous functions
on G with compact support is denoted by Cc(G). The set of nonnegative functions in Cc(G) is denoted
by C+

c (G). A continuous linear functional I : Cc(G) −→ R is called a Haar integral if the following hold:
1) if f ∈ C+

c (G), then I(f) ≥ 0, 2) if g ∈ G and f ∈ Cc(G), then I(gf) = I(f), 3) there exists a function
f ∈ C+

c (G)with I(f) > 0. Note that for r > 0, rI is again a Haar integral. For more information, see [33],
[61].
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and is unique upto a positive scaling factor because if we take z to be the origin again,
then the stabilizer subgroup of PSU(1, 1) w.r.t to the origin is the circle group SO(2) and
the Haar integral is invariant under rotations. We list the following properties which are
satisfied by P :

1. P is linear,

2. P is continous,

3. P is PSU(1, 1)-equivariant.

Proposition 4.2.1. Given a point z ∈ D, the map w 7−→ w+z
wz̄+1 is a hyperbolic isometry that

sends the origin to the point z.

Proof We check that indeed γ(0) = z. Let γ(z) = w+z
wz̄+1 , and let γ(w) = f(w) + ιg(w).

By differentiating, we get dγ(w)
dw = 1−|z|2

(wz̄+1)2 . Observe that

df(w)2 + dg(w)2 = (df(w) + ιdg(w))(df(w)− ιdg(w)) = dγ(w)dγ(w).

Therefore,

2
√
df(w)2+dg(w)2

1−f(w)2−g(w)2 =
2
√
dγ(w)dγ(w)

1−|γ(w)|2 =
2

√
dγ(w)
dw

dw
dγ(w)

dw
dw

1−|γ(w)|2 =
2

√
(1−|z|2)2

(wz̄+1)2(w̄z+1)2

1−|γ(w)|2
√
dx2 + dy2.

Simplifying 1− |γ(w)|2 further, we get

2
√

(1−|z|2)2

(wz̄+1)2(w̄z+1)2

1− |γ(w)|2
=

2

1− |w|2
.

Therefore, γ is a hyperbolic isometry. The final and remaining thing is to check that
γ maps D to itself. Suppose that |w| < 1. We want to show that | w+z

wz̄+1 | < 1. This
is equivalent to showing that |w + z| < |wz̄ + 1|. Furthermore, it is enough to show
that (w + z)(w̄ + z̄) < (wz̄ + 1)(w̄z + 1), or equivalently, ww̄ + zz̄ < ww̄zz̄ + 1, or
(1− ww̄)(1− zz̄) > 0, which is true since 1− ww̄ and 1− zz̄ are both positive. �

We summarize our discussion as follows:

Proposition 4.2.2. Every continuous linear map F : C0(S1) −→ C0(D) which is PSU(1, 1)-
equivariant is a scalar multiple of the continous linear map P : C0(S1) −→ C0(D) given by the
following formula

P (f)(z) =
1

2π

∫
S1

f · γ,

where γ ∈ PSU(1, 1) is given in Proposition 4.2.1 such that γ(0) = z and f ∈ C0(S1).
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Remark 4.2.3. Alternatively, we can construct such a linear map F : C0(S1) −→ C0(D)
in Proposition 4.2.2 by plugging the Dirac distribution δ at the point 1 ∈ S1 into the
formula for P instead of a continous function f on the circle S1. We adopt the view that
δ is the limit of step functions {ε−1gε} where gε is the characteristic function of an arc of
length ε centered at 1 ∈ S1. Therefore, we define δ · γ = γ∗δ to be the Dirac distribution
at the point γ−1(1) times

∣∣(γ′(γ−1(1))
)−1∣∣. This suggests

F (δ)(z) =
1

2π

∫
S1

δ · γ,

where γ(0) = z and the explicit form of γ is given by Proposition 4.2.1. Using γ(w) =
w+z
wz̄+1 , we see that

2π ·
(
F (δ)(z)

)
=
∣∣(γ′(γ−1(1))

)−1∣∣ =
1− |z|2

|1− z̄|2
=

1− |z|2

|1− z|2
.

We denote the real valued (positive) function z 7−→ 1−|z|2
|1−z|2 defined on D for 0 ≤ |z| < 1

byK. The intuition is F (δ) = K
2π and therefore, we define

F (f) = f ∗K, (4.6)

where f ∈ C0(S1) and K(z) = 1−|z|2
|1−z|2 , and ∗ denotes the convolution2 of K and f . To

show the PSU(1, 1)-equivariance, we first note that every element A ∈ PSU(1, 1) has a
unique expression A = BC where B ∈ SO(2) and C is in the two-dimensional subgroup
StabPSU(1,1)(1) of PSU(1, 1) consisting of all elements which fix the element 1 in the
boundary circle S1. Also, StabPSU(1,1)(1) acts transitively on D. The general form of
elements γ of the group StabPSU(1,1)(1) is given by the following:

γ(z) =
az + b

b̄z + ā
, |a|2 − |b|2 = 1, a+ b = a+ b. (4.7)

Hence, showing the PSU(1, 1)-equivariance of F is equivalent to showing the SO(2)-
equivariance and StabPSU(1,1)(1)-equivariance of F . It is easy to see that F in (4.6) is
SO(2)-equivariant. To show the StabPSU(1,1)(1)-equivariance of F in (4.6), we claim that

2The convolution of K and f is defined as: (f ∗K)(z) := 1
2π

∫
S1 f(w)K(zw−1)dw.
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γ∗K = cK, where c is a positive constant and γ ∈ StabPSU(1,1)(1). We have

K(γ(z)) =
1− |γ(z)|2

|1− γ(z)|2
=

1− γ(z)γ(z)(
1− γ(z)

)(
1− γ(z)

)
=

1− az+b
b̄z+ā

· āz̄+b̄bz̄+a(
1− az+b

b̄z+ā

)
·
(

1− āz̄+b̄
bz̄+a

) =
1− |a|

2|z|2+azb̄+bāz̄+|b|2
|b|2|z|2+azb̄+bāz̄+|a|2(

(b−ā)z̄−(b̄−a)
bz̄+a

)(
(b̄−a)z−(b−ā)

b̄z+ā

)
=

1− |z|2

(bz̄ + a)(b̄z + ā)
·

((
b− ā

)2 · ∣∣1− z̄∣∣2
(bz̄ + a)(b̄z + ā)

)−1

=
1− |z|2(

b− ā
)2 · ∣∣1− z̄∣∣2

=
γ′(1)−1

(
1− |z|2

)∣∣1− z̄∣∣2 = γ′(1)−1K(z),

where γ′(1) =
(
b̄+ ā

)−2. Note thatK is the real part of a holomorphic function, hence
harmonic. Therefore, F (f) is also harmonic.

Corollary 4.2.4. The map F in (4.6) is the Poisson map given in (4.3). Hence, the map P in
Proposition 4.2.2 lands in the vector space of harmonic functions on the open unit disk D.

Let SC0(TS1) be the Banach space of (tangential) continuous vector fields on S1 and
SC0(TD) be the space of continuous vector fields on the open disk D. We want to mimick
the reincarnation of the Poisson map in the case of vector fields.

Proposition 4.2.5. Every continuous and SO(2)-equivariant linear functional Λ from the real
Banach space of continous tangential vector fields on S1 to C has the following form:

Λ(X) =

(∫
S1

X

)
· v,

where X is a tangential vector field on S1 and v ∈ C.

Proposition 4.2.6. Every continous linear map

F : SC0(TS1) −→ SC0(TD)

which is equivariant under the action of PSU(1, 1) is a scalar multiple of the continous linear
map

P : SC0(TS1) −→ SC0(TD)

given by the following formula

P(X)(z) = P(X)(γ(0)) = γ′(0) ·
(
P(γ∗X)(0)

)
= γ′(0) ·

(
1

2π

∫
S1

γ∗X

)
, (4.8)

for some γ ∈ PSU(1, 1) such that γ(0) = z.
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Remark 4.2.7. The third equality in the expression of P(X)(z) in (4.8) follows from
Proposition 4.2.5.
Remark 4.2.8. The scalar in Proposition 4.2.6 can be any complex number. Also, note that
P(X)(0) ∈ T0D and the second equality in (4.8) follows from the PSU(1, 1)-equivariance
of P , i.e.,

P(γ∗X) = γ∗(P(X)), ∀γ ∈ PSU(1, 1),

where γ∗X = X(γ)γ′−1, γ ∈ PSU(1, 1), X ∈ SC0(TS1).
Remark 4.2.9. We can also construct such a linear map

F : SC0(TS1) −→ SC0(TD)

in Proposition 4.2.6 by plugging the Dirac vector field δ in the formula for P instead of
a tangential vector field X on the circle S1. We adopt the view that δ is the limit of
vector fields {ε−1gε}where gε is the norm 1 (positively oriented) tangential vector field
supported on an arc of length ε centered at 1 ∈ S1. Therefore, we have

F(δ)(z) = F(δ)(γ(0)) = γ′(0) ·
(
F
(
γ∗δ
)
(0)
)

= γ′(0) ·
(

1

2π

∫
S1

γ∗δ

)
, (4.9)

where γ(0) = z and the explicit form of γ is given by Proposition 4.2.1. (4.9) is further
simplified to

2π ·
(
F(δ)(z)

)
= γ′(0) ·

(
ι ·
∣∣(γ′(γ−1(1))

)−1∣∣ · (γ′(γ−1(1))
)−1
)
. (4.10)

Observe that the factor
∣∣(γ′(γ−1(1))

)−1∣∣ accounts for the streching of the arc length when
we pull back the Dirac vector field under γ and the factor

(
γ′(γ−1(1))

)−1 accounts for
the streching of vectors. Using γ(w) = w+z

wz̄+1 , the expression

γ′(0) ·
(
ι ·
∣∣(γ′(γ−1(1))

)−1∣∣ · (γ′(γ−1(1))
)−1
)

in (4.10) simplifies to
ι(1− |z|2)3

|1− z̄|2 · (1− z̄)2
. (4.11)

We call the vector field given by (4.11) the Poisson kernel vector field and denote it by K.
By definition F(δ) = 1

2πK. Let X be a tangential vector field on the boundary circle S1

of the form fY where f is a real-valued continuous function on the boundary and Y is
the norm 1 tangential vector field on S1 given by z 7−→ ιz. From the above discussion, a
vector field F(X) on D is given by the convolution of the Poisson Kernel vector field K
with a given function f on S1, i.e.,

F(X) = f ∗K. (4.12)
Proposition 4.2.10. The map F in (4.12) satisfies the conditions of the map F in Proposition
4.2.6.

Before we prove Proposition 4.2.10, we state and prove the following:
Theorem 4.2.11. The Poisson Kernel vector field K given by (4.11) in Remark 4.10 is harmonic
at every point z ∈ D.
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Proof Recall Theorem 2.2.4 in Section 2.2 in Chapter 2 where we show that a vector
field ξ on D is harmonic iff the quadratic differential (LξgD)(2,0) associated with it is
holomorphic. We first prove that K is harmonic at the origin in D. We write the Taylor
approximation of K up to the second order at the origin as follows:

K(z) =
ι(1− |z|2)3

|1− z̄|2 · (1− z̄)2

=
ι(1− |z|2)3

(1− z̄)(1− z̄)(1− z̄)2

= ι(1− |z|2)3(1− z̄)−3(1− z)−1

≈ ι(1− 3|z|2)(1 + z̄ + z̄2)3(1 + z + z2)

≈ ι(1− 3|z|2)(1 + 3z̄ + 3z̄2 + 3z̄2)(1 + z + z2)

≈ ι(1 + 3z̄ + 6z̄2 − 3|z|2)(1 + z + z2)

≈ ι(1 + 3z̄ + 6z̄2 − 3|z|2 + z + 3|z|2 + z2)

= ι(1 + z + 3z̄ + z2 + 6z̄2)

= ι
(
1 + (x+ ιy) + 3(x− ιy) + x2 − y2 + 2ιxy + 6(x2 − y2)− 12ιxy

)
= ι(1 + 4x− 2ιy + 7x2 − 7y2 − 10ιxy)

= (2y + 10xy, 1 + 4x+ 7x2 − 7y2).

(4.13)

Note that the metric gD at the origin does not change. Following the criteria for har-
monicity of a vector field from Section 2.2 in Chapter 2, we notice that the quadratic
differential q associated to K is given as (6ι− 24ιz)dz2. The function f(z) = 6ι− 24ιz is
holomorphic. Hence, K is harmonic at the origin in D. Now, we claim that the vector
field Kwhen transformed using elements γ ∈ PSU(1, 1) which fix the element 1 in the
boundary circle S1, changes only by multiplying it by a non-zero real constant.

Proof of the claim: Recall the general form of elements γ of the group PSU(1, 1) which
fix the element 1 in the boundary circle S1 given by (4.7) in Remark 4.2.3. Now, γ acts on
K in the usual way:

γ∗K = K(γ(z))γ′(z)−1

=
ι
(
1− |γ(z)|2

)3∣∣1− γ(z)
∣∣2 · (1− γ(z)

)2 · γ′(z)−1.
(4.14)
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Using (4.7), the numerator and the denominator of the term ι
(

1−|γ(z)|2
)3∣∣1−γ(z)

∣∣2·(1−γ(z)
)2 in the

RHS of (4.14) are explicitly written as:

ι
(
1− |γ(z)|2

)3
= ι

(
1− γ(z)γ(z)

)3

= ι

(
1− az + b

b̄z + ā
· āz̄ + b̄

bz̄ + a

)3

= ι

(
1− |a|

2|z|2 + azb̄+ bāz̄ + |b|2

|b|2|z|2 + azb̄+ bāz̄ + |a|2

)3

= ι

(
1− |z|2

|b|2|z|2 + azb̄+ bāz̄ + |a|2

)3

=
ι
(
1− |z|2

)3(
(b̄z + ā)(bz̄ + a)

)3

(4.15)

and∣∣1− γ(z)
∣∣2 · (1− γ(z)

)2
=
(
1− γ(z)

)(
1− γ(z)

)
·
(
1− γ(z)

)2
=
(
1− γ(z)

)(
1− γ(z)

)
·
(
1− γ(z)

)2
=

(
(b− ā)z̄ − (b̄− a)

bz̄ + a

)(
(b̄− a)z − (b− ā)

b̄z + ā

)(
(b− ā)z̄ − (b̄− a)

bz̄ + a

)2

=

(
b− ā

)2 · ∣∣1− z̄∣∣2
(bz̄ + a)(b̄z + ā)

·
(
b− ā

)2(
1− z̄

)2(
bz̄ + a

)2
=

(
b− ā

)4∣∣1− z̄∣∣2(1− z̄)2
(bz̄ + a)3(b̄z + ā)

,

(4.16)

where in the last two equalities in (4.16) we have used the fact that b − ā is real, i.e.,
b− ā = b̄− a. Also, γ′(z)−1 =

(
b̄z + ā

)2. Using (4.15) and (4.16), the explicit form of the
RHS of (4.14) is

ι
(
1− |γ(z)|2

)3∣∣1− γ(z)
∣∣2 · (1− γ(z)

)2 · γ′(z)−1 =
ι
(
1− |z|2

)3
(bz̄ + a)3(b̄z + ā)(

(b̄z + ā)(bz̄ + a)
)3(

b− ā
)4∣∣1− z̄∣∣2(1− z̄)2 · (b̄z + ā

)2
=

1(
b− ā

)4 · ι(1− |z|2)3

|1− z̄|2 · (1− z̄)2

=
1(

b− ā
)4K(z) = (γ′(1))−2K(z).

As mentioned in Remark 4.2.3, every element A ∈ PSU(1, 1) has a unique expression
A = BC where B ∈ SO(2) and C is in the two-dimensional subgroup StabPSU(1,1)(1)
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of PSU(1, 1) consisting of all elements which fix the element 1 in the boundary circle
S1. Therefore, K is StabPSU(1,1)(1)-invariant up to multiplication by real scalars. Note
that the harmonicity of a vector field on the open unit disk D is preserved by conformal
automorphisms of D. Hence, K is harmonic everywhere on the open unit disk D. �

Remark 4.2.12. StabPSU(1,1)(1)-invariance of K up to multiplication by real scalars suf-
fices to ensure that K is harmonic on the open unit disk D because StabPSU(1,1)(1) acts
transitively on the open unit disk D.

Remark 4.2.13. Since the Poisson Kernel vector fieldK is harmonic, F(X) given by (4.12)
is also harmonic on D, where X is a tangential vector field on S1.

Proof of Proposition 4.2.10 : ThemapF , given by (4.12), is clearlyPSU(1, 1)-equivariant.
It follows from StabPSU(1,1)(1)-invariance of K up to multiplication by real scalars (see
Proof of Proposition 4.2.11). Hence, it immediately follows that F satisfies all the condi-
tions stated in Proposition 4.2.6. �

Corollary 4.2.14. The mapF , given by (4.12), is same as the map P in Proposition 4.2.6. Hence,
the map P in Proposition 4.2.6 lands in the vector space of harmonic vector fields on the open
unit disk D.

Lemma 4.2.15. For a continuous tangential vector field X on S1, F(X) and X together make
up a continuous vector field on the closed unit disk D.

Proof [Sketch] For every ε > 0, we get a continuous vector fieldK1−ε on S1 by composing
Kwith the map z 7−→ (1− ε)z. We first notice that

K1−ε(z) =
ι
(
1− |(1− ε)z|2

)3(
1− (1− ε)z̄

)3 · (1− (1− ε)z
) , (4.17)

where |z| = 1. Simplifying (4.17), we get

K1−ε(z) ≈ ι8ε3z3(
1− (1− ε)z

)
·
(
z − (1− ε)

)3 , (4.18)

where we used the fact that z̄ = z−1. We put 1− ε = s in (4.18) and get

K1−ε(z) ≈ ι8ε3z3

(1− sz) · (z − s)3
.

Let λz = |z − (1− ε)|. Notice that

|K1−ε(z)| ≤ 8

ε
. (4.19)
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The estimate in (4.19) is independent of z. And now, let us try to make an upper bound
for |K1−ε(z)| which is dependent on z. The following estimate for |K1−ε(z)| ensures that
K1−ε is ’very small’ outside the arc of length

√
2ε centered at 1.

|K1−ε(z)| ≤ 8ε3

λ4
z

. (4.20)

(4.19) and (4.20) have following two consequences:

1. ifX = fY , where f is a real-valued continuous function on S1 and Y is the norm 1
continous tangential vector field on S1, we will have

(f ∗K1−ε)(z) ≈ f(z) ·
(

1

2π

∫
S1

K1−ε

)
, z ∈ S1. (4.21)

Therefore, it is enough to show that

lim
ε→0

(
1

2π

∫
S1

K1−ε

)
= ι.

2. we may replace the ordinary Haar integral by the complex path integral at the
price of dividing by ι.

Therefore,

lim
ε→0

(
1

2πι

∫
S1

ι8ε3z3(
1− sz

)
·
(
z − s

)3dz
)

= lim
ε→0

(
ι8ε3

2πι

∫
S1

z3(
1− sz

)
·
(
z − s

)3dz
)

= lim
ε→0

(
ι8ε3

2πι

(
2πι · Res(f, s)

))
,

(4.22)

where f(z) = z3

(1−sz)·(z−s)3 , and

Res(f, s) =
6s− 12s3 + 8s5 − 2s7

2(1− s2)4
=

4ε+ 2ε2 + 2ε3 − 30ε4 + 34ε5 − 14ε6 + 2ε7

2
(
16ε4 − 32ε5 + 20ε6 − 8ε7 + ε8

) .

Rewriting (4.22), we get

lim
ε→0

(
ι8ε3

2πι

(
2πι · Res(f, s)

))
= lim

ε→0

(
8ι · 4ε+ 2ε2 + 2ε3 − 30ε4 + 34ε5 − 14ε6 + 2ε7

2
(
16ε− 32ε2 + 20ε3 − 8ε4 + ε5

) )

= 4ι

(
lim
ε→0

4ε+ 2ε2 + 2ε3 − 30ε4 + 34ε5 − 14ε6 + 2ε7

16ε− 32ε2 + 20ε3 − 8ε4 + ε5

)
= ι.

�

Corollary 4.2.16. For an L2-tangential vector field X on S1, X is an L2-boundary extension of
the smooth vector field F(X) on the open unit disk D.
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Proof Notice that in the proof of Lemma 4.2.15, we showed that

lim
ε→0

K1−ε = 2πδ.

Hence, Corollary 4.2.16 follows from Lemma 4.2.15 and [57, Proposition 5.4]. �

Remark 4.2.17. We suspect that Corollary 4.2.16 is an infinitesimal version of the problem
of finding harmonic extensions of quasiconformal maps (from S1 to itself) to the open
unit disk D or the upper half plane H2. See [26] for more details.

4.3 A detailed map from H1(Γ; g) to HQD(D,Γ)

In this section, we summarize the main consequences of Section 4.1 and Section 4.2.

Theorem 4.3.1. Let Γ be a discrete cocompact subgroup of PSU(1, 1). For every cocycle c
representing a cohomology class [c] ∈ H1(Γ; g), there exists a smooth vector field ψ on the
open unit disk D such that c = δψ. Moreover, any such ψ admits an L2-extension to D whose
restriction ψ] to the boundary circle S1 is tangential. There exists a homomorphism

Ψ : H1(Γ; g) −→ HQD(D,Γ)

[c] 7−→
(
LF(ψ])gD

)(2,0)
,

(4.23)

where the map F is introduced in (4.12) and F(ψ]) is a harmonic vector field on the open disk D.

Corollary 4.3.2.
Φ ◦ Ψ = Id,

where the map Φ is constructed in (3.6) (see Corollary 3.1.8) and the map Ψ in (4.23) (see Theorem
4.3.1).

Proof [Sketch] Recall from Corollary 4.1.7 (and Section 4.1) that given a cocycle c
representing a cohomology class [c] ∈ H1(Γ; g), there exists a smooth vector field ψ
on the open unit disk D such that c = δψ and ψ admits a unique L2-extension to D.
We denote the restriction of that extension to the boundary circle S1 by ψ], and ψ] is
tangential. Note that δψ] = c], where c] is a 1-cocycle (determined by c) with values in
the vector space of Killing vector fields on S1. The map F maps Killing vector fields on
S1 to Killing vector fields on the open unit disk D. Therefore, it is clear that δF(ψ]) = c
and F(δψ](γ)) = c](γ), for every γ ∈ Γ.

�

4.4 Open Problems

In this section, we state the following non-exhaustive list of open problems based on this
chapter:
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From Corollary 4.1.7 we know that given a cocycle c representing a cohomology class
[c] ∈ H1(Γ; g), there exists a smooth vector field ψ on the open unit disk D such that
c = δψ and ψ admits a unique L2-extension to the closed unit disk Dwhose restriction
ψ] to the boundary circle S1 is tangential. For the construction of ψ we can either use the
Γ-invariant partition of unity method or the difficult theory of Chapter 2 and Chapter
3 which produces a harmonic solution. Corollary 4.1.7 is valid for all of these but the
construction of an L2-extension of ψ to D relies on the existence of harmonic vector fields.

Problem 4.4.1. Is there a more direct way of proving Corollary 4.1.7 which does not take har-
monicity into account?

In Subsection 4.2.1, we have not shown that there exists a unique harmonic extension of a
tangential L2-vector field X on S1 to the closed unit disk D.

Problem 4.4.2. Given a tangential L2-vector field X on the boundary circle S1, does there exist
a unique harmonic extension to the closed unit disk D?





Appendix A

The genesis of the potential
equation Fz̄ = (z − z̄)2φ(z)

A.1 A swift introduction to Beltrami differentials

Let (V, JV ), (W,JW ) be complex vector spaces which we treat as real vector spaces with
linear operators JV and JW such that J2

V = J2
W = −Id. A R-linear map

f : (V, JV ) −→ (W,JW )

can be written uniquely as a sum of C-linear map f1 and C-antilinear map f2, i.e.,

f1 ◦ JV = JW ◦ f1, f2 ◦ JV = −JW ◦ f2.

Definition A.1.1. Given an invertible R-linear map which is orientation preserving

f : (V, JV ) −→ (W,JW )

of complex vector spaces, the Beltrami form of f is the map

µ(f) := f−1
1 ◦ f2 ∈ EndR((V, JV )). (A.1)

Remark A.1.2. µ(f) anticommutes with JV .

Now, we will restrict our discussion to one dimensional complex vector spaces. Any
R-linear map f : (C, ι) −→ (C, ι) can be written as f(z) = az + bz̄, a, b, z ∈ C. Here
f1(z) = az and f2(z) = bz̄. From [29, Exercise 4.8.5, Chapter 4], we have

‖f‖2

detf
=
|f1|+ |f2|
|f1| − |f2|

,

where ‖·‖denotes the operator normon the vector space ofR-linearmaps (C, ι) −→ (C, ι),
and | · | denotes the operator norm on the vector space of C-linear maps (C, ι) −→
(C, ι) and C-antilinear maps (C, ι) −→ (C, ι). Moreover, if |a| > |b|, then the map f is

59



60 A The genesis of the potential equation Fz̄ = (z − z̄)2φ(z)

orientation-preserving. Hence, it immediately follows that ‖µ(f)‖ < 1. The space of all
Beltrami forms on (C, ι) is defined as follows:

Bel(C) := {µ ∈ EndR(C)|∃c ∈ C, |c| < 1, µ(z) = cz̄}.

Now, we ask the following question: given µ ∈ Bel(C), how do we find an orientation
preserving f : C −→ C with µ(f) = µ? The equation µ(f) = µ is famously known
as the Beltrami equation. The most sophisticated answer to the above question is that f
solves µ(f) = µ iff f maps an ellipse in Cwhose ratio of the major to the minor axis is
1+‖µ‖
1−‖µ‖ to a circle in C. Let’s discuss how the above discussion translates to the case of
Riemann surfaces X and Y and an orientation preserving C1 map f : X −→ Y between
them. Note that df(x) : TxX −→ Tf(x)Y can be written as a sum of a C-linear map and
a C-antilinear map. For example, when f : U ⊂ C −→ C, we have df = df (1,0) + df (0,1)

(see the discussion just before Example 2.1.9), where df (1,0) = ∂f
∂z dz and df

(0,1) = ∂f
∂z̄ dz̄.

For a function f : X −→ C,

µ(f) = (df (1,0))−1 ◦ df (0,1). (A.2)

Compare (A.2) it with (A.1) given in Definition A.1.1. µ(f) is an antilinear bundle map
TX −→ TX .

Definition A.1.3. A smooth Beltrami differential on X is a smooth antilinear bundle map
µ : TX −→ TX .

Remark A.1.4. We can think of a Beltrami differential µ as a smooth section of the bundle
T ∗X ⊗C TX .

A.2 Filling in the gap

Let Σg be given as H2/Γ where Γ is a discrete-cocompact subgroup of PSL(2,R). Given
a Γ-invariant Beltrami differential µ on H2 with ‖µ‖ < 1, there exists a smooth map
f : H2 −→ H2 such that fz̄ = µfz (see [1], [2], [3], [29], [30]). For t real and small, {f tµ}
denotes the family of smooth maps determined by the Beltrami differential tµ. Then the
deformation vector field

F :=
d

dt
f tµ|t=0

on H2 satisfies the famous potential equation

Fz̄
dz̄

dz
= µ.

Let TΣg denote the holomorphic tangent bundle of Σg. Recall Definition A.1.3 and
Remark A.1.4. A Beltrami differential µ can be thought of as a smooth differential form
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on Σg of type (0, 1) with values in the bundle TΣg. In classical Teichmueller theory, we
have the following short exact sequence of sheaves:

0 // SHol

(
TΣg

) i // S(TΣg)
∂
∂z̄ // BEL // 0 (A.3)

where

SHol

(
TΣg

)
is the sheaf of holomorphic sections of TΣgonΣg,

S(TΣg)is the sheaf of smooth sections ofTΣg,

BEL is the sheaf of (smooth) Beltrami differentials onΣg.

Clearly, i is the inclusion map. Locally, a smooth section of TΣg can be written as fi ∂∂zi ,
where fi is a smooth function. Applying ∂

∂z̄ on fi ∂∂zi gives us a Beltrami differential
∂fi
∂z̄ dz̄i ⊗

∂
∂zi

. This definition of ∂
∂z̄ is independent of the choice of coordinates. Note that

(A.3) is a special case of a more general construction
(
called the Dolbeault resolution of

the sheaf SHol

(
TΣg

))
by Dolbeault. See [65, Chapter 4] for more details. In particular,

the map ∂
∂z̄ in (A.3) contributes to a long exact sequence in sheaf cohomology. Therefore,

we have
H1
(
Σg;SHol

(
TΣg

)) ∼= H0(Σg;BEL)

∂H0
(
Σg;S

(
TΣg

)) .
It is a well known fact that for Σg with a hyperbolic metric, a cohomology class in

H0(Σg;BEL)

∂H0
(
Σg;S

(
TΣg

))
has a unique representative known as a harmonic Beltrami differential, i.e., a Beltrami
differential which is annihilated by the appropriate Laplacian (see [65, Chapter 5]). In
the famous potential equation

Fz̄ = (z − z̄)2f(z),

µ = (z − z̄)2f(z)
dz̄

dz
(A.4)

is a harmonic Beltrami differential if f is holomorphic.

For H2, we have the following sequence:

0 // SHol

(
TH2

) i // S
(
TH2

) ∂
∂z̄ // BEL // 0 (A.5)

In (A.5), BEL is the sheaf of smooth Beltrami differentials on H2. Note that the short
exact sequence given by (2.22) in Thereom 2.2.7, i.e.,

0 // HOL α // HARM β // HQD // 0 (A.6)
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is similar to the one given by (A.5). In (A.6), HOL is the sheaf of holomorphic vector
fields on H2,HARM is the sheaf of harmonic vector fields on H2 andHQD is the sheaf
of holomorphic quadratic differentials on H2. So, the gap is following:

Question A.2.1. How do (A.5) and (A.6) relate?

The following diagram fills the gap:

0 // HOL α // HARM� _
%1

��

β // HQD
%2

��

// 0

0 // SHol

(
TH2

) i // S
(
TH2

) ∂
∂z̄ // BEL // 0

(A.7)

In (A.7), %1 is clearly the inclusion map because a harmonic vector field onH2 is a smooth
vector field. And, %2 is defined as:

%2(q) =
g−1
H2

2
q̄,

where q is a holomorphic quadratic differential on H2. Note that %2(q) is a harmonic
Beltrami differential (see (A.4)) on H2. Moreover, %2 has a coordinate independent
meaning. Here is an argument: recall that a Riemannian metric on an almost complex
manifoldM is the real part of a unique Hermitian metric onM . Therefore, a Riemannian
metric onM determines an isomorphism

TM −→ T ∗M.

That in turn determines an isomorphism

Hom(TM, TM) −→ Hom(TM, T ∗M).

Note that Hom(TM, T ∗M) = Hom(TM, T ∗M). Therefore, the bundle of Beltrami differ-
etials on H2 is isomorphic to the bundle of quadratic differentials on H2.
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