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Abstract. We classify ∗-homomorphisms from nuclear C∗-algebras into uniform tracial
sequence algebras of nuclear Z-stable C∗-algebras via tracial data.

Introduction

Over the last 10 years, the application of von Neumann techniques has been
a major theme in the structure theory of simple nuclear C∗-algebras through
the pioneering work of Matui and Sato [17, 18]. A starting point for a num-
ber of these applications is the following well-known consequence of Connes’
revolutionary work on the characterisation of hyperfinite von Neumann alge-
bras [9]: maps from a separable nuclear C∗-algebra A into Rω (the ultrapower
of the hyperfinite II1 factor) are classified up to unitary equivalence by the
trace they induce on A (see for example [7, Prop. 2.1]). Most recently, this
result played a key role in Schafhauser’s breakthrough new approach to the
classification of monotracial separable nuclear C∗-algebras which absorb the
universal uniformly hyperfinite algebra tensorially [21].

For a nuclear C∗-algebra B with a unique trace, Connes’ theorem allows us
to view Rω as a tracial ultrapower of B. When B has multiple traces, a some-
what different reduced product construction is needed in order to be able to
handle them all uniformly. This led to the uniform tracial ultrapower Bω , for-
malised in [6]. This, and its precursor in terms of ultraproducts of W ∗-bundles
[3, 19], has been a crucial tool in recent developments. In particular, in our
recent joint work with Winter [6], we introduced a new tool—complemented
partitions of unity (CPoU)—for studying these ultraproducts and used this to
show that Jiang–Su stability and finite nuclear dimension are equivalent in the
Toms–Winter conjecture [6, Thm. A].
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ment (JC), EPSRC grant EP/R025061/2 (SE, SW), an NSERC discovery grant (AT).
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The principal purpose of this paper is to use the new techniques in [6]
to classify maps from separable nuclear C∗-algebras into uniform tracial se-
quence algebras of Z-stable nuclear C∗-algebras, analogous to the consequence
of Connes’ result for maps into Rω. In the theorem which follows, the uniform
tracial sequence algebra B∞ associated to B is the C∗-algebra of bounded se-
quences in B, modulo those converging to zero uniformly over all trace norms.
So classifying maps from A to B∞ up to unitary equivalence is a way of encod-
ing a classification of uniform trace norm approximately multiplicative maps
from A into B up to approximate unitary equivalence in uniform trace norm.

Theorem A. Let A be a separable nuclear C∗-algebra, and let B be a separable

nuclear Z-stable C∗-algebra with T (B) compact and non-empty. Then, for any

continuous affine function α : T (B∞)→ T (A), there exists a ∗-homomorphism

φ : A→B∞ which induces α. Moreover, φ is unique up to unitary equivalence.

Just as the classification of embeddings from separable nuclear C∗-algebras
into Rω is vital in [21], Theorem A will form the starting point of the forthcom-
ing joint work of Carrión, Gabe, Schafhauser, and the last two named authors,
which will give an abstract approach to the classification of simple separable
unital nuclear Jiang–Su stable C∗-algebras satisfying the UCT [8]. Our reason
for setting up Theorem A with the uniform trace norm sequence algebra B∞

as opposed to the uniform tracial ultrapower Bω is so it can be applied exactly
as written in [8].1

The role of nuclearity and Z-stability of B in Theorem A is to obtain CPoU
from [6, Thm. I]—the main technical result of that work. Although the defin-
ing property of CPoU is in the form of the existence of certain partitions of
unity for trace spaces, its principal consequence is a local to global tracial type-
satisfaction process for B∞. In less fancy language, this means that if (suit-
able) properties hold approximately in trace in each tracial GNS-representation
of B∞, then they hold exactly in B∞. This gives B∞ a von Neumann algebra-
like flavor (though it is certainly not a von Neumann algebra). Theorem A
is obtained in this fashion; we glue together the classification of maps from
separable nuclear C∗-algebras into finite von Neumann algebras from Connes’
theorem over all traces using CPoU.

We also record in Proposition 2.1, another, somewhat easier, application
of CPoU for use in [8], which showcases another von Neumann algebra-like
property: every unitary in B∞ is an exponential.

1. Preliminaries

Let B be a C∗-algebra. We let T (B) denote the set of tracial states (which
we abbreviate as “traces”) on B. For τ ∈ T (B), we define the associated
2-semi-norm on B by

(1.1) ‖b‖2,τ :=
√

τ(|b|2).

1One can obtain an ultrapower version of Theorem A by working with an ultrapower Bω

in place of the sequence algebra B∞ throughout the paper.
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We let πτ :B →B(Hτ ) be the GNS representation associated to τ and continue
to use ‖ · ‖2,τ to denote the induced 2-norm on πτ (B)′′.

Define the uniform tracial sequence algebra

(1.2) B∞ := ℓ∞(B)/{(bn)
∞
n=1 | lim

n→∞
sup

τ∈T (B)

‖bn‖2,τ = 0}.

We will typically use representative sequences in ℓ∞(B) to denote elements
of B∞.

The ultraproduct versions of these sequence algebras are obtained using
a free ultrafilter ω ∈ βN \ N in place of ∞, and many of their basic properties
are the same. For example, when B is separable and T (B) is non-empty and
compact, B∞ is unital, with the unit represented by an approximate unit
(en)

∞
n=1 for B in just the same way as the ultrapower version of this result [6,

Prop. 1.11].
Given a sequence (τn)

∞
n=1 in T (B) and a free ultrafilter ω, define the asso-

ciated limit trace τ : B∞ → C by

(1.3) τ((bn)
∞
n=1) := lim

n→ω
τn(bn).

We let T∞(B) denote the set of all limit traces on B∞.
On B∞, one has a uniform 2-norm2 ‖ · ‖2,T∞(B) given by

(1.4) ‖b‖2,T∞(B) := sup
τ∈T∞(B)

‖b‖2,τ , b ∈ B∞.

More explicitly, for b = (bn)
∞
n=1 ∈ B∞, one has

(1.5) ‖b‖2,T∞(B) = lim sup
n

sup
τ∈T (B)

‖bn‖2,τ .

In this paper, we will frequently use Kirchberg’s ǫ-test, which appears as
[15, Lem. A.1]. However, we need a slightly different version, as we work with
“sequence algebras” rather than ultrapowers; we state here the version we need
and remark that the proof is nearly identical to that of [15, Lem. A.1].

Lemma 1.1 (Kirchberg’s ǫ-test [15]). Let (Xn)
∞
n=1 be a sequence of non-empty

sets, and for k, n ∈ N, let f (k)
n : Xn → [0,∞] be a function. Define functions

f (k) : X1 ×X2 × · · · → [0,∞] by

(1.6) f (k)(x1, x2, . . . ) := lim sup
n

f (k)
n (xn).

If, for every ǫ > 0 and k0 ∈ N, there exists x ∈ X1 × X2 × · · · such that

f (k)(x) < ǫ for k = 1, . . . , k0, then there exists y ∈ X1 ×X2 × · · · such that

f (k)(y) = 0 for all k ∈ N.

We next record a useful fact, which is a direct consequence of Cuntz and
Pedersen’s investigation of traces on C∗-algebras [10, Prop. 2.7] and the fact
that the weak∗-continuous functionals on the dual of a Banach space corre-
spond precisely to elements of the Banach space.

2To see it is a norm, use (1.5).
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Proposition 1.2 (Cuntz–Pedersen). Let A be a C∗-algebra and f : T (A)→ R

a continuous affine function. Then there is a self-adjoint element a ∈ A such

that

(1.7) τ(a) = f(τ), τ ∈ T (A).

In this paper, we will be using CPoU as a property of the uniform tracial
sequence algebra B∞. In [6, Def. 3.1], CPoU was originally defined as a prop-
erty of the uniform tracial ultrapower Bω, but standard methods allow it to
be rephrased as a local property of B instead; see [6, Prop. 3.2]. The same
methods allow it to be rephrased as a property of B∞, analogous to the orig-
inal definition for Bω , as recorded in the lemma below. For the purposes of
this paper, one can take this as the definition of CPoU.

Lemma 1.3. Let B be a separable C∗-algebra with T (B) non-empty and com-

pact. If B has CPoU, then, for any ‖ · ‖2,T∞(B)-separable subset S of B∞, any

δ > 0, and any a1, . . . , ak ∈ (B∞)+ satisfying

(1.8) min{τ(a1), . . . , τ(ak)} < δ, τ ∈ T∞(B),

there exist orthogonal projections e1, . . . , ek ∈ B∞ ∩ S′ which sum to 1B∞ such

that

(1.9) τ(aiei) ≤ δτ(ei), i = 1, . . . , k, τ ∈ T∞(B).

We will access CPoU through one of the main technical results of [6], which
we recall below. Note that, for unital C∗-algebras, the tracial state space T (B)
is automatically compact.

Theorem 1.4 ([6, Thm. I]). Let B be a separable, nuclear, Z-stable C∗-algebra

with T (B) compact and non-empty. Then B has CPoU.

2. Results

We start by recording an application of CPoU regarding unitaries in uniform
tracial sequence algebras of Z-stable nuclear C∗-algebras for use in [8].

Proposition 2.1. Let B be a separable C∗-algebra with CPoU and T (B) com-

pact and non-empty. Let S be a ‖ · ‖2,T∞(B)-separable subset of B∞ closed

under taking adjoints. Then every unitary u ∈ B∞ ∩ S′ can be written as an

exponential u = eπih for some self-adjoint h ∈ B∞ ∩ S′ of norm at most 1. In

particular, this holds whenever B is separable, unital, nuclear, and Z-stable

with T (B) 6= ∅.

Proof. The final sentence of the proposition follows from the rest by Theo-
rem 1.4. Fix ǫ > 0. By Kirchberg’s ǫ-test (Lemma 1.1),3 it suffices to prove

3Since S is ‖ · ‖2,T∞(B)-separable, testing that a sequence (bn) ⊂ ℓ∞(B) represents an

element of B∞ ∩ S′ requires only countably many constraints. Indeed, B∞ ∩ S′ = B∞ ∩ S′
0

for any countable ‖ · ‖2,T∞(B)-dense subset S0 ⊂ S, as multiplication is jointly ‖ · ‖2,T∞(B)-

continuous on ‖ · ‖-bounded sets.
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that there exists a self-adjoint h ∈ B∞ ∩ S′ of norm at most 1 such that

(2.1) ‖u− eπih‖2,T∞(B) ≤ ǫ.

For each τ ∈ T (B∞), using Borel functional calculus, there exists a self-adjoint
x ∈ πτ (B

∞ ∩ S′)′′ of norm at most 1 such that πτ (u) = eπix. By the Kaplansky
density theorem, we may approximate x by a self-adjoint contraction in πτ (B

∞ ∩
S′), which can then be lifted to a self-adjoint contraction hτ ∈ B∞ ∩ S′ such
that

(2.2) ‖u− eπihτ ‖2,τ < ǫ.

Set aτ := |u − eπihτ |2 ∈ (B∞)+ so that τ(aτ ) < ǫ2. By continuity and com-
pactness, there exist τ1, . . . , τk ∈ T (B∞) such that, for every τ ∈ T (B∞),

(2.3) min{τ(aτ1), . . . , τ(aτk)} < ǫ2.

Using CPoU as in Lemma 1.3, there exists a partition of unity consisting of
projections p1, . . . , pk ∈ B∞ ∩ {u, hτ1, . . . , hτk}

′ ∩ S′ such that

(2.4) τ(pjaτj ) ≤ ǫ2τ(pj), τ ∈ T∞(B), j = 1, . . . , k.

Set h :=
∑k

j=1 pjhτj ∈ B∞ ∩ S′. Since the pi are orthogonal and commute
with the self-adjoint contractions hτj , this is a self-adjoint contraction. We
note that, for j = 1, . . . , k,

(2.5) pje
πih = pje

πihτj .

Using this, for τ ∈ T∞(B), we compute

τ(|u − eπih|2) =

k
∑

j=1

τ(pj |u− eπih|2) =

k
∑

j=1

τ(pj |u− eπihτj |2)(2.6)

=

k
∑

j=1

τ(pjaj) ≤

k
∑

j=1

ǫ2τ(pj) = ǫ2. �

We next turn to the uniqueness aspect of Theorem A. Recall the by-now
well-known consequence of Connes’ characterisation of hyperfiniteness from [9]
that if A is separable and nuclear and M is a finite von Neumann algebra, then
∗-homomorphisms φ,ψ : A→M are strong∗-approximately unitary equivalent
if and only if τ ◦ φ = τ ◦ ψ for all τ ∈ T (M) (see [7, Prop. 2.1], for example4).

Theorem 2.2. Let A be a separable nuclear C∗-algebra, and let B be a sep-

arable C∗-algebra with CPoU and with T (B) compact and non-empty. If

φ,ψ :A→B∞ are ∗-homomorphisms such that τ ◦ φ= τ ◦ψ for all τ ∈ T (B∞),
then φ and ψ are unitarily equivalent.

4In the statement of [7, Prop. 2.1], the codomain M is required to be countably de-
composable; however, this hypothesis is not needed in the proof. It might also be noted
that, in our application, in the proof of Theorem 2.2, the codomain πτ (B∞)′′ is countably
decomposable as it has a faithful trace.
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Proof. Fix ǫ > 0 and a finite set F ⊂ A. Since A is separable, by using Kirch-
berg’s ǫ-test (Lemma 1.1), it suffices to prove that there is a unitary u ∈ B∞

such that

(2.7) ‖φ(x) − u∗ψ(x)u‖2,T∞(B) ≤ ǫ, x ∈ F .

Set

(2.8) η :=
ǫ

√

|F|
.

Fix, for the moment, a trace τ ∈ T (B∞), and recall that πτ : B∞ → πτ (B
∞)′′

is the corresponding GNS representation. Then, since A is nuclear and πτ ◦ φ,
πτ ◦ ψ : A → πτ (B

∞)′′ agree on the traces of πτ (B
∞)′′, it follows that these

maps are strong∗-approximately unitarily equivalent. By Kaplansky’s density
theorem, the unitaries implementing this can be taken from πτ (B

∞) (as done
in the proof of Proposition 2.1). Since the strong∗-topology is given by ‖ · ‖2,τ
on bounded sets, it follows that there exists a unitary uτ ∈ B∞ such that

(2.9) ‖φ(x) − u∗
τψ(x)uτ‖2,τ < η, x ∈ F .

Set

(2.10) aτ :=
∑

x∈F

|φ(x) − u∗
τψ(x)uτ |

2 ∈ (B∞)+

so that τ(aτ ) < |F|η2 = ǫ2.
By continuity and compactness, there exist τ1, . . . , τk ∈ T (B∞) such that,

for every τ ∈ T (B∞),

(2.11) min{τ(aτ1), . . . , τ(aτk)} < ǫ2.

Using CPoU as in Lemma 1.3, there exist orthogonal projections e1, . . . , ek ∈
B∞ ∩ (ψ(F) ∪ φ(F) ∪ {uτ1 , . . . , uτk})

′ which sum to 1B∞ such that

(2.12) τ(aτiei) ≤ ǫ2τ(ei), τ ∈ T∞(B).

Set

(2.13) u :=

k
∑

i=1

eiuτi .

Since the ei are orthogonal projections summing to 1B∞ and using the fact
that they commute with the unitaries uτj , it follows that u is itself a unitary.
Moreover, for x ∈ F and τ ∈ T∞(B), using the fact that the ei are orthogonal
projections which commute with the uτi, and both φ(x) and ψ(x), we have

(2.14) |φ(x) − u∗ψ(x)u| =
k

∑

i=1

ei|φ(x) − u∗
τiψ(x)uτi |.
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Hence

‖φ(x) − u∗ψ(x)u‖22,τ
(2.14)
=

k
∑

i=1

τ(ei|φ(x) − u∗
τiψ(x)uτi |

2)(2.15)

(2.10)

≤

k
∑

i=1

τ(eiaτi)
(2.12)

≤

k
∑

i=1

ǫ2τ(ei) = ǫ2.

Taking the supremum over all τ ∈ T∞(B), (2.7) follows. �

In order to get our existence result into B∞, we begin with two exis-
tence results into von Neumann algebras; these rely on the quasidiagonality of
amenable traces on cones established in [4], which in turn builds on the earlier
results of [22, 12]. Recall that a trace τ on A is amenable if, given a finite
subset F ⊂ A and ǫ > 0, there is a c.p.c. map φ : A → Mn for some n (φ can
be taken to be unital when A is unital) such that

(2.16) ‖φ(ab)− φ(a)φ(b)‖2,trMn
< ǫ, a, b ∈ F ,

and

(2.17) |trMn
(φ(a)) − τ(a)| < ǫ, a ∈ F .

We write Tam(A) for the set of amenable traces on A. The trace τ is said to
be quasidiagonal if (2.16) can be strengthened to the operator norm estimate
‖φ(ab)− φ(a)φ(b)‖ < ǫ for a ∈ F . We write Tqd(A) for the set of quasidiagonal
traces on A. See [5] for details on these approximation properties.

Lemma 2.3. Let A be a C∗-algebra, let M be a type II1 von Neumann al-

gebra, and let λ ∈ Tam(A). Then, given a finite set F ⊂ A and ǫ > 0, there
exist a finite-dimensional C∗-algebra F , a c.p.c. map θ : A → F , and a unital
∗-homomorphism η : F → M such that

‖θ(a)θ(b)‖ < ǫ for a, b ∈ F satisfying ab = 0,(2.18)

|τ(η ◦ θ(a))− λ(a)| < ǫ for a ∈ F and τ ∈ T (M).(2.19)

Proof. Set G := {id(0,1] ⊗ a ∈ C0((0, 1]) ⊗ A | a ∈ F}. By [4, Prop. 3.2], the
trace δ1 ⊗ λ is quasidiagonal on C0((0, 1]) ⊗ A, where δ1 is the functional of
evaluation at 1 on C0((0, 1]. Thus, there exist a matrix algebra F and a c.p.c.
map φ : C0((0, 1])⊗A → F such that

‖φ(x)φ(y) − φ(xy)‖ < ǫ, x, y ∈ G,

|trF ◦ φ(x) − (δ1 ⊗ λ)(x)| < ǫ, x ∈ G.(2.20)

Define θ : A → F by θ(a) := φ(id(0,1] ⊗ a) so that it immediately follows that
(2.18) is satisfied. As M is type II1, F can be embedded unitally in M. Let
η : F →֒ M be any such embedding. By the uniqueness of the trace on F ,
(2.19) is also satisfied. �

Lemma 2.4. Let A be a C∗-algebra, let M be a type II1 von Neumann algebra,

and let α : T (M) → Tam(A) be affine and continuous. Let F ⊂ Asa be a finite
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set. Then, given ǫ > 0, there exist a finite-dimensional C∗-algebra F , a c.p.c.

map θ : A → F , and a unital ∗-homomorphism η : F → M such that

(2.21) ‖θ(a)θ(b)‖ < ǫ for a, b ∈ F satisfying ab = 0

and

(2.22) |τ(η ◦ θ(a))− α(τ)(a)| < ǫ, a ∈ F , τ ∈ T (M).

Moreover, if, for each a ∈ F , we are given an element ca ∈ Msa satisfying

(2.23) τ(ca) = α(τ)(a), τ ∈ T (M),

then, for each a ∈ F , there exist x(a)
1 , . . . , x(a)

10 , y(a)1 , . . . , y(a)10 ∈ M such that

(2.24)

∥

∥

∥

∥

η ◦ θ(a)− ca −

10
∑

i=1

[x(a)
i , y(a)i ]

∥

∥

∥

∥

< ǫ.

If α(T (M)) ⊂ Tqd(A), then θ can be taken to satisfy

(2.25) ‖θ(a)θ(b)− θ(ab)‖ < ǫ for a, b ∈ F .

Proof. The idea is to glue maps from the previous lemma over the centre
Z(M) of M, in a manner similar to the proof of [4, Lem. 2.5]. As, for a ∈ F ,
the elements ca satisfying (2.23) automatically exist by Proposition 1.2, we
shall use them throughout the proof. Suppose F = {a1, . . . , an}. By the
structure of commutative von Neumann algebras [2, Thm. III.1.5.18], let (X,µ)
be a locally finite measure space such that Z(M) ∼= L∞(X,µ). Let E : M →
L∞(X, µ) be the centre-valued trace on M (see [2, Thm. III.2.5.7]). Choose
natural numbers C ≥ 4 and k such that C > supa∈F‖ca‖ and C/k < ǫ. Set
I := {−Ck + 1, . . . , Ck}n, and for r = (r1, . . . , rn) ∈ I, let pr ∈ L∞(X, µ) be
the characteristic function of the set

(2.26)
{

x ∈ X
∣

∣

∣

rj − 1

k
≤ E(caj

)(x) <
rj
k
, j = 1, . . . , n

}

.

By construction, (pr)r∈I forms a partition of unity consisting of projections,
and, as every trace on M factors though E (see [2, Thm. III.2.5.7 (iv)]),

(2.27) τ(caj
) ≈1/k

∑

r∈I

rj
k
τ(pr), τ ∈ T (M).5

In particular, for any r ∈ I and j = 1, . . . , n, we have

(2.28) α(τ)(aj)
(2.23)
= τ(caj

) ≈1/k
rj
k
, τ ∈ T (prM).

(Note that we implicitly extend τ to M, by setting it to be zero on (1− pr)M,
before we apply α in the previous equation.)

Let I0 := {r ∈ I | pr 6= 0}. For each r ∈ I0, fix σr ∈ T (prM), and set λr :=
α(σr). By Lemma 2.3, applied to prM and λr , there exist a finite-dimen-
sional algebra Fr , a c.p.c. map θr : A → Fr, and a unital ∗-homomorphism
ηr : Fr → prM such that

(2.29) ‖θr(a)θr(b)‖ < ǫ

5To improve the readability of this proof, we write z1 ≈η z2 as shorthand for |z1 − z2| ≤ η.
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for a, b ∈ F satisfying ab = 0, and

(2.30) |τ(ηr ◦ θr(a)) − λr(a)| <
ǫ

2

for a ∈ F and τ ∈ T (prM). Set F :=
⊕

r∈I0
Fr . Define θ : A → F by θ(a) :=

⊕

r∈I0
θr(a) and η : F → M by η((xr)r∈I0) :=

∑

r∈I0
ηr(xr). By construction,

η is a unital ∗-homomorphism and θ satisfies (2.21).
Note that if each λr is quasidiagonal, this can be used directly in place of

Lemma 2.3 in the previous paragraph enabling θr to be chosen (F , ǫ)-approx-
imately multiplicative. Therefore, if α(T (M)) ⊂ Tqd(A), then θ can be taken
to satisfy (2.25).

Fix τ ∈ T (M) for the moment. For each r ∈ I0, set τr :=
τ(pr · )
τ(pr)

∈ T (prM),6

so τ can expressed as the convex combination

(2.31) τ =
∑

r∈I0

τ(pr)τr.

Thus,

τ(η ◦ θ(a)) =
∑

r∈I0

τ(pr)τr(ηr ◦ θr(a))(2.32)

(2.30)
≈ ǫ/2

∑

r∈I0

τ(pr)λr(a)

(2.28)
≈2/k

∑

r∈I0

τ(pr)α(τr)(a)

= α
(

∑

r∈I0

τ(pr)τr

)

(a)

(2.31)
= α(τ)(a)

for all a ∈ F . Since 2
k ≤ C

2k < ǫ
2 and τ ∈ T (M) was arbitrary, this estab-

lishes (2.22).
Now fix a ∈F for the moment, and let us explain why x(a)

i , y(a)i can be found
to satisfy (2.24). Set h :=E(η ◦ θ(a)− ca) ∈L∞(X,µ), which by (2.22) satisfies
‖h‖ ≤ ǫ. Observe that E(η ◦ θ(a)− ca − h) = 0 so that, by [11, Thm. 3.2], there
exist x(a)

1 , . . . , x(a)
10 , y

(a)
1 , . . . , y(a)10 ∈ M such that7

(2.33) η ◦ θ(a) − ca − h =
10
∑

i=1

[x(a)
i , y(a)i ].

Hence,

�(2.34)

∥

∥

∥

∥

η ◦ θ(a)− ca −

10
∑

i=1

[x(a)
i , y(a)i ]

∥

∥

∥

∥

= ‖h‖ < ǫ.

6We can choose τr arbitrarily in case τ(pr) = 0.
7We can also arrange that max1≤i≤10‖x

(a)
i ‖‖y(a)i ‖ ≤ 12 · 12 · ‖η ◦ θ(a)− ca − h‖, but we

do not need to control the norms of these elements on this occasion.
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We now turn to the existence component of Theorem A. For this, we will
need a so-called “no silly traces” result to show that the limit traces on B∞

generate all traces on B∞. For the purposes of Theorem A, we could use
(a sequence algebra version of) the original result of this type, [19, Thm. 8]
for Z-stable exact C∗-algebras B. This gives a no silly traces result for the
C∗-algebra ultraproduct, from which it follows that there are no silly traces
on the uniform tracial ultraproduct (and this is easily modified to sequence
algebras).

However, in Theorem 2.6 below, we prefer not to impose the hypothesis that
B is Z-stable, and instead simply ask that it has CPoU. Correspondingly, we
first show how to obtain a no silly traces result for the uniform tracial sequence
algebra just assuming CPoU. While CPoU is involved to handle possibly non-
Z-stable C∗-algebras, to some extent, the present result is easier than Ozawa’s
[19, Thm. 8] in that we can use the uniform bounds on the number of commu-
tators of a self-adjoint operator in a finite von Neumann algebra which vanishes
in all traces from [11], rather than the more delicate growth rate estimates used
in [19] which are required to eliminate silly traces from the C∗-norm sequence
algebra or ultrapower.

We note also that no silly traces for the tracial product B∞ does not imply
no silly traces for the norm product, as demonstrated by the unique trace
example by Robert (based on earlier examples by Villadsen) in [20, Thm. 1.4].8

Proposition 2.5. Let B be a separable C∗-algebra with T (B) compact and

non-empty and which has CPoU. Then the weak∗-closed convex hull of T∞(B)
is T (B∞).

Proof. Fix a self-adjoint contraction z ∈ B∞. Let δ := supτ∈T∞(B)|τ(z)|. By

[6, Lem. 4.4] (which is extracted from [19, Thm. 8]), it suffices to prove that
supτ∈T (B∞)|τ(z)|= δ. This will be achieved by producing a self-adjoint c ∈B∞

with ‖c‖ ≤ δ and contractions x(1), . . . , x(10), y(1), . . . , y(10) ∈ B∞ such that
z − c = K

∑10
i=1[x

(i), y(i)], where K := 12 · 12(1 + δ).
Choose a representative sequence (zn)

∞
n=1 of self-adjoint contractions for

z ∈ B∞. Then lim supn→∞ supτ∈T (B)|τ(zn)| ≤ δ, and so, by rescaling, we may
assume supτ∈T (B)|τ(zn)| ≤ δ for each n.

Fix n ∈ N for the moment. For each τ ∈ T (B), let πτ be its GNS-rep-
resentation and Mτ := πτ (B)′′. Then supρ∈T (Mτ )|ρ(πτ (zn))| ≤ δ. Letting
c̃n,τ ∈ Mτ be the result of applying the centre-valued trace in Mτ to πτ (zn),
we have ‖c̃n,τ‖ ≤ δ. By [11, Thm. 3.2], there exist contractions x̃(1)

n,τ , . . . , x̃
(10)
n,τ ,

ỹ(1)n,τ , . . . , ỹ
(10)
n,τ ∈ Mτ with πτ (zn) − c̃n = K

∑10
i=1[x̃

(i)
n,τ , ỹ

(i)
n,τ ]. By Kaplansky’s

8Let A be the C∗-algebra from [20, Thm. 1.4] so that condition (iii) (a) from [1, Thm. 3.24]
fails for A. Then no norm ultraproduct of A can have unique trace (by the equivalence of
condition (iii) (a) and the uniqueness of trace on an ultraproduct, which makes up the first
part of the proof of (iii) ⇔ (ii) in [1, Thm. 3.24]; see paragraph 3 of the proof, which notes
this explicitly). Note that A has the Diximer property needed to apply this result by [13]
as it is simple, unital, and has unique trace. Therefore, the norm product A∞ of infinitely
many copies of A has traces which are not in the closed convex hull of the limit traces.
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density theorem, there exists a self-adjoint cn,τ ∈ B with ‖cn,τ‖ ≤ δ and con-
tractions x(1)

n,τ , . . . , x
(10)
n,τ , y(1)n,τ , . . . , y

(10)
n,τ ∈ B with

(2.35)

∥

∥

∥

∥

zn − cn,τ −K

10
∑

i=1

[x(i)
n,τ , y

(i)
n,τ ]

∥

∥

∥

∥

2,τ

< γn,

where γn < 1
n .

Let an,τ := |zn − cn,τ −K
∑10

i=1[x
(i)
n,τ , y

(i)
n,τ ]|

2. By compactness, there exist
τn,1, . . . , τn,kn

such that minρ∈T (B){ρ(an,τn,1
), . . . , ρ(an,τn,kn

)} < γ2
n. As ev-

ery trace in T∞(B) restricts to a trace on B, the same minimum holds over
ρ ∈ T∞(B). Let Sn ⊂ B∞ be the separable subalgebra generated by zn to-
gether with cn,τn,1

, . . . , cn,τn,kn
and the contractions x(1)

n,τn,1
, . . . , x(10)

n,τn,kn
and

y(1)n,τn,1
, . . . , y(10)n,τn,kn

.
By CPoU in the form of Lemma 1.3, there exist pairwise orthogonal projec-

tions en,1, . . . , en,kn
in B∞ ∩ S′

n which sum to 1B∞ and have ρ(an,τn,j
en,j) ≤

γ2
nρ(en,j) for j = 1, . . . , kn and all ρ ∈ T∞(B).
Define

c̃n :=

kn
∑

j=1

cn,τn,j
en,j ∈ B∞,

x̃(i)
n :=

kn
∑

j=1

x(i)
n,τn,j

en,j ∈ B∞,

ỹ(i)n :=

kn
∑

j=1

y(i)n,τn,j
en,j ∈ B∞.

Then ‖c̃n‖ ≤ δ, and all the x̃(i)
n and ỹ(i)n are contractions. Let ρ ∈ T∞(B).

Using the properties of the en,j, we have

(2.36)

∥

∥

∥

∥

zn − c̃n −K

10
∑

i=1

[x̃(i)
n , ỹ(i)n ]

∥

∥

∥

∥

2

2,ρ

= ρ

( kn
∑

j=1

an,τn,j
en,j

)

≤ γ2
n.

Taking norm preserving lifts from B∞ to ℓ∞(B) and then choosing ele-
ments cn, x

(i)
n , y(i)n ∈ B sufficiently far down the representative sequences for

c̃n, x̃
(i)
n , ỹ(i)n ∈ B∞, we have

(2.37) sup
τ∈T (B)

∥

∥

∥

∥

zn − cn −K
10
∑

i=1

[x(i)
n , y(i)n ]

∥

∥

∥

∥

2,τ

≤ γn

and ‖cn‖ ≤ δ. Assembling these into c := (cn)
∞
n=1, x

(i) := (x(i)
n )∞n=1 and y(i) :=

(y(i)n )∞n=1 in B∞ provides the elements demanded in the first paragraph of the
proof. �

We can now give our more general version of the existence aspect of The-
orem A. The condition that A be nuclear is weakened to the condition that
the range of α is contained in the set Tam(A) of amenable traces on A. The
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second part of the following theorem, regarding the form of a representative
sequence for φ, is not needed for Theorem A, but we anticipate it playing a role
in future nuclear dimension computations. Recall that a c.p. map φ : A → B
is said to be order zero if φ(a)φ(b) = 0 for all a, b ∈ A+ with ab = 0; see [24]
for the structure theory of these maps.

Theorem 2.6. Let A be a separable C∗-algebra, and let B be a separable

C∗-algebra with T (B) compact and non-empty which has CPoU and no finite-

dimensional representations. Given a continuous affine function α : T (B∞)→
Tam(A), there exists a ∗-homomorphism φ : A → B∞ such that

(2.38) τ ◦ φ = α(τ), τ ∈ T (B∞).

Moreover, φ can be represented by a sequence (φn)
∞
n=1 of c.p.c. maps A → B

each of which factorises as φn = ψn ◦ θn for a c.p.c. map θn : A → Fn with

Fn finite-dimensional, and a c.p.c. order zero map ψn : Fn → B. The maps

θn can be taken to be approximately order zero, and if the range of α lies

in the quasidiagonal traces on A, the θn can be taken to be approximately

multiplicative.

Proof. We first note that any c.p.c. order zero map φ :A→B∞ satisfying (2.38)
is automatically a ∗-homomorphism. Indeed, let (en)

∞
n=1 be an increasing

approximate unit for A. Then

(2.39) φ(a1)φ(a2) = lim
n→∞

φ(en)φ(a1a2), a1, a2 ∈ A,

as a consequence of [24, Cor. 4.1]. It therefore suffices to prove that

lim
n→∞

φ(en) = 1B∞

in ‖ · ‖2,T∞(B). We compute that

‖1B∞ − φ(en)‖
2
2,T∞(B) ≤ sup

τ∈T (B∞)

τ(|1B∞ − φ(en)|
2)(2.40)

≤ sup
τ∈T (B∞)

τ(1B∞ − φ(en))

≤ sup
τ∈T (B∞)

1− τ(φ(en))

= sup
τ∈T (B∞)

(1− α(τ)(en)) → 0,

as by Dini’s theorem, α(τ)(en) converges to 1 uniformly on T (B∞).
Notice that, due to Proposition 2.5, it is enough to establish equation (2.38)

for limit traces. Fix ǫ > 0 and finite sets F ⊂ A and G ⊂ Asa. We will prove
that there is a finite-dimensional C∗-algebra F , a c.p.c. map θ : A → F , and
a c.p.c. order zero map ψ : F → B∞ such that, for φ = ψ ◦ θ, we have

‖θ(a)θ(b)‖ ≤ ǫ for a, b ∈ F satisfying ab = 0,(2.41)

|τ(φ(a)) − α(τ)(a)| ≤ ǫ for a ∈ G and τ ∈ T∞(B).(2.42)
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In the special case that α(T (B∞)) ⊆ Tqd(A), we will show that we can addi-
tionally replace (2.41) by the stronger condition

(2.43) ‖θ(a)θ(b)− θ(ab)‖ ≤ ǫ, a, b ∈ F .

Once this is achieved, an application of Kirchberg’s ǫ-test (in the form of
Lemma 1.1) can be used to obtain the required φ (and ψn, θn) in a very similar
fashion to [3, Lem. 7.4]. We set this out for the passage from (2.41) and (2.42)
to the required φ such that (θn) are approximately order zero in the next
paragraph. The passage from (2.43) and (2.42) to obtaining a φ such that the
maps (θn)

∞
n=1 are approximately multiplicative is similar (and slightly easier).

For each n, let Xn denote the set of triples (Fn, θn, ψn), where Fn is a finite-
dimensional C∗-algebra Fn, θn :A→Fn is c.p.c., and ψn :Fn →B is c.p.c. order
zero.9 Fix a countable dense subset (xk)

∞
k=1 of Asa. Noting that the collection

of pairs (a, b) in A+ with ab = 0 is a subspace of the separable metric space
A×A, we may also fix a countable dense subset (ak, bk)

∞
k=1 of these orthogonal

pairs. Set X :=
∏∞

n=1 Xn, and define functions f (k)
n : Xn → [0,∞] by

f (k)
n (Fn, θn, ψn) := max

j≤k

(

‖θn(ajbj)‖(2.44)

+ sup
τ∈T (B)

|τ(ψn(θn(xj))) − α(τ(xj))|
)

for (Fn, θn, ψn) ∈ Xn. Given ǫ > 0 and k0 ∈ N, let F := {ak, bk : k ≤ k0}
and G := {xk : k ≤ k0}, and take F, θ, ψ satisfying (2.41) and (2.42). Then ψ

lifts to a sequence (ψ̃n)
∞
n=1 of c.p.c. order zero maps F → B by projectivity

of c.p.c. order zero maps with finite-dimensional domains ([23, Prop. 1.2.4],
which rephrases Loring’s work [16, Thm. 4.9] on projectivity of cones over

finite-dimensional C∗-algebras to this setting). The sequence (F, θ, ψ̃n)
∞
n=1 in

∏∞

n=1 Xn satisfies

(2.45) lim sup
n

f (k)
n (F, θ, ψ̃n) ≤ 2ǫ, k = 1, . . . , k0.

Applying the ǫ-test gives a sequence (Fn, θn, ψn) in
∏∞

n=1 Xn with

(2.46) lim sup
n

f (k)
n (Fn, θn, ψn) = 0, k ∈ N.

Defining φn := ψn ◦ θn and φ : A → B∞ to be the map induced by (φn)
∞
n=1

gives the required φ.
With the ǫ-test in place, we now commence the construction of maps sat-

isfying (2.41) and (2.42). By Proposition 1.2, for each a ∈ G, we may choose
a self-adjoint element ca ∈ B∞ such that

(2.47) τ(ca) = α(τ)(a), τ ∈ T (B∞).

Also, set

(2.48) δ :=
ǫ

√

|G|
.

9Although all the Xn represent the same set, we use the subscript n for direct comparison
with the notation of the ǫ-test.
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We work with the weak∗-closure T∞(B) of T∞(B) which is weak∗-compact.

Fix τ ∈ T∞(B) for the moment. Consider the finite von Neumann algebra
Mτ := πτ (B

∞)′′.
We claim that Mτ is type II1. As T (B) is compact, any approximate unit

(en)
∞
n=1 for B satisfies infρ∈T (B) ρ(en) → 1 by Dini’s theorem. Then

(2.49) inf
ρ∈T∞(B)

ρ(en) = inf
ρ∈T∞(B)

ρ(en) → 1,

and hence τ(en) → 1. Thus, ‖1Mτ
− πτ (en)‖2,τ → 0, and πτ (en) converges

∗-strongly to 1Mτ
. Suppose that Mτ has a non-zero type Ik summand for some

k ∈ N, with corresponding central projection p, so that pMτ has a separating
family of finite-dimensional representations. Since B has no non-zero finite-
dimensional representations, we must have pπτ (B) = 0. On the other hand,
pπτ (en) 6= 0 for sufficiently large n. This contradiction proves the claim.

Let T (πτ ) : T (Mτ)→T (B∞) be the map induced by πτ . By Lemma 2.4 (ap-
plied to the map α ◦ T (πτ ) : T (Mτ )→ Tam(A)), there exist a finite-dimensional
C∗-algebra Fτ , a c.p.c. map θτ : A → Fτ , and a unital ∗-homomorphism ητ :
Fτ → Mτ as well as x(a)

1 , . . . , x(a)
10 , y

(a)
1 , . . . , y(a)10 ∈ Mτ for a ∈ G such that

(2.50) ‖θτ (a)θτ (b)‖ < ǫ for a, b ∈ F satisfying ab = 0

and

(2.51)

∥

∥

∥

∥

ητ ◦ θτ (a)− πτ (ca)−
10
∑

i=1

[x(a)
i , y(a)i ]

∥

∥

∥

∥

< δ for a ∈ G.

By the Kaplansky density theorem, at the cost of replacing the norm esti-
mate in (2.51) by a ‖ ·‖2,τ -estimate, we may assume that the elements x(a)

i , y(a)i

belong to πτ (B
∞), and thus lift to elements x(τ,a)

i , y(τ,a)i ∈ B∞. Using the or-
der zero Kaplansky density theorem [14, Lem. 1.1], we may approximate ητ in
‖ · ‖2,τ by an order zero map Fτ → πτ (B

∞), and then this can be lifted to an
order zero map ψτ : Fτ → B∞ by [23, Prop. 1.2.4]. Starting from (2.51), we
can perform these approximations and lifts so that

(2.52)

∥

∥

∥

∥

ψτ (θτ (a))− ca −

10
∑

i=1

[x(a,τ)
i , y(a,τ)i ]

∥

∥

∥

∥

2,τ

< δ, a ∈ G.

Let us now set

(2.53) sτ :=
∑

a∈G

∣

∣

∣

∣

ψτ (θτ (a))− ca −

10
∑

i=1

[x(a,τ)
i , y(a,τ)i ]

∣

∣

∣

∣

2

∈ (B∞)+

so that, by (2.52), we get τ(sτ ) < |G|δ2 = ǫ2.

By continuity and compactness of T∞(B), there exist τ1, . . . , τk ∈ T∞(B)

such that, for every τ ∈ T∞(B),

(2.54) min{τ(sτ1), . . . , τ(sτk)} < ǫ2.
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Set

S := ψτ1(Fτ1) ∪ · · · ∪ ψτk(Fτk) ∪ {ca : a ∈ G}(2.55)

∪ {x(a,τi)
j , y(a,τi)j | a ∈ G, i = 1, . . . , k, j = 1, . . . , 10},

a separable subset of B∞. Using CPoU as in Lemma 1.3, there exist orthogonal
projections e1, . . . , ek ∈ B∞ ∩ S′ which sum to 1B∞ such that

(2.56) τ(sτiei) ≤ ǫ2τ(ei), τ ∈ T∞(B).

Set F :=
⊕k

i=1 Fτi , and define θ : A → F and ψ : F → B∞ by

(2.57) θ(a) := (θτ1(a), . . . , θτk(a)), a ∈ A,

and

(2.58) ψ(x1, . . . , xk) :=

k
∑

i=1

eiψτi(xi), (x1, . . . , xk) ∈ F.

Then (2.41) is an immediate consequence of (2.50). Since the ei are orthogonal
positive elements commuting with the images of the c.p. order zero maps ψτi , it
follows that ψ is c.p. and order zero. Moreover, ψ is contractive since ψ(1A) ≤
∑k

i=1 ei = 1B∞ .
Finally, for a ∈ G and τ ∈ T∞(B), writing φ = ψ ◦ θ, we compute

|τ(φ(a)) − α(τ)(a)|2(2.59)

(2.47)
= |τ(ψ(θ(a)) − ca)|

2

=

∣

∣

∣

∣

τ

( k
∑

i=1

ei

(

ψτi(θτi(a))− ca −
10
∑

j=1

[x(a,τi)
j , y(a,τi)j ]

))∣

∣

∣

∣

2

≤ τ

( k
∑

i=1

ei

∣

∣

∣

∣

ψτi(θτi(a))− ca −

10
∑

j=1

[x(a,τi)
j , y(a,τi)j ]

∣

∣

∣

∣

2)

≤ τ

( k
∑

i=1

eisτi

)

≤

k
∑

i=1

ǫ2τ(ei) = ǫ2,

where on the third line, we use the fact that the ei make up a pairwise orthog-
onal partition of unity of projections commuting with S. This proves (2.42)
and completes the proof with θn approximately order zero.

When α(T∞(B)) consists of quasidiagonal traces, (2.50) can be replaced
by an (F , ǫ)-approximate multiplicativity condition using the last clause of
Lemma 2.4. The map θ, as defined in (2.57), will then satisfy (2.43), and this
completes the proof with θn approximately multiplicative. �

We end by recording how Theorem A follows as special cases of the existence
and uniqueness results of this section.
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Proof of Theorem A. This is a consequence of Theorems 2.2 and 2.6. The
CPoU hypothesis on B needed in both these theorems is automatic for sepa-
rable nuclear Z-stable C∗-algebras by Theorem 1.4; moreover, Z-stability is
an obstruction to having finite-dimensional representations. The hypothesis
in Theorem 2.6 that α takes values in the amenable traces on A is automatic
as all traces on a nuclear C∗-algebra are amenable, essentially by Connes’
theorem.10 �
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