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Abstract. Simple algebraic groups of type F4 defined over a field k are the full automor-
phism groups of Albert algebras over k. Let A be an Albert algebra over a field k of arbitrary
characteristic whose isotopes are all isomorphic. We prove that Aut(A) is R-trivial, in the
sense of Manin. If k contains cube roots of unity and A is any Albert algebra over k, we
prove that there is an isotope A(v) of A such that Aut(A(v)) is R-trivial.

1. Introduction

This work builds on and subsumes the results from [24]. We recall at this
stage that simple algebraic groups of type F4 defined over a field k are precisely
the full groups of automorphisms of Albert algebras defined over k. In papers
[24, 1], the authors proved (independently) that the automorphism group of
an Albert algebra arising from the first Tits construction is R-trivial, the proof
in [24] being characteristic free.

In this paper, we prove that, for an Albert algebra A over a field k of
arbitrary characteristic whose isotopes are all isomorphic, the algebraic group
Aut(A) is R-trivial. Since, for first Tits construction Albert algebras, all
isotopes are isomorphic (see [15]), results in this paper improve the result
proved in [1, 24].

We remark here that the class of Albert algebras whose isotopes are all
isomorphic strictly contains the class of Albert algebras that are first Tits
constructions (see [15]). The case of reduced Albert algebras which have no
nonzero nilpotents and Albert division algebras in general is work in progress.

The knowledge that a group is R-trivial helps in studying its rationality
properties. Recently, in the papers [25, 2], R-triviality of the structure group
of Albert division algebras was proved, thereby proving the long-standing Tits–
Weiss conjecture for Albert division algebras as well as the Kneser–Tits conjec-
ture for groups of type E78

8,2 and E78
7,1. These groups have the structure group
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of an Albert division algebra as their anisotropic kernel. In [22], we had proved
R-triviality for Aut(A) for pure first Tits construction Albert algebras, while
in [23], R-triviality of the structure group was proved to settle the Tits–Weiss
conjecture for first Tits construction Albert division algebras, as well as re-
duced Albert algebras. In the paper [11], a proof of Kneser–Tits conjecture
for groups of type E66

8,2 is given by proving R-triviality of such groups. The
fundamental result of P. Gille [4] connects the group of R-equivalent points
of an isotropic, simple, simply connected algebraic group with its Whitehead
group, thereby reducing the Kneser–Tits problem to proving R-triviality of the
group or otherwise.

In this paper, we prove that, for an Albert algebra A over a field k of
arbitrary characteristic whose isotopes are all isomorphic, the group Aut(A)
is R-trivial. We get the R-triviality of the group of automorphisms of first
Tits construction Albert algebras as a consequence. If k contains cube roots
of unity and A is any Albert algebra over k, we prove that there exists v ∈ A
such that Aut(A(v)) is R-trivial.

2. Preliminaries

We refer the reader to [13, 20, 7] for basic material on Albert algebras. In
this section, we quickly introduce some notions related to Albert algebras that
are indispensable. All base fields will be assumed to be infinite of arbitrary
characteristic unless specified otherwise.

For what follows, we refer to [18, 17]. Let J be a finite-dimensional vector
space over a field k. A cubic norm structure on J is a triple (N,#, c), N : J → k
is a cubic form called the norm, # : J → J is a quadratic map called the adjoint
and c ∈ J is a base point, called the identity element of the norm structure.
There is an associated trace bilinear form T : J × J → k, and these satisfy some
identities (see [18, 17]).

Let x ∈ J . Define

Ux(y) := T (x, y)x− x# × y, y ∈ J,

where a× b := (a+ b)# − a# − b#, a, b ∈ J . Then, with 1J := c and the endo-
morphisms Ux as U -operators, J is a unital quadratic Jordan algebra (see [9]),
denoted by J(N, c). An element x ∈ J is defined to be invertible if N(x) 6= 0
and x−1 := N(x)−1x#. The structure J(N, c) is a division algebra if Ux is
surjective for all x 6= 0, or equivalently, N(x) 6= 0 for all x 6= 0. Special Jordan
algebras of degree 3 provide important class of examples; we list them below
for our purpose.

Example. Let D be a separable associative algebra over k of degree 3. Let
ND denote its norm and TD the trace. Let # : D → D be the adjoint map.
Then (ND,#,1D) is a cubic norm structure, where 1D is the unit element of D.
This yields a quadratic Jordan algebra structure on D, which we will denote
by D+.
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Let (B, σ) be a separable associative algebra over k with an involution σ
of the second kind (over its center). With the unit element 1 of B and the
restriction of the norm NB of B to (B, σ)+ := {b ∈ B | σ(b) = b}, we obtain
a cubic norm structure and hence a Jordan algebra structure on (B,σ)+ which
is a substructure of B+.

Tits processes and Tits constructions. Let D be a finite-dimensional as-
sociative k-algebra of degree 3 with norm ND and trace TD. Let λ ∈ k×. On
the k-vector space D ⊕D ⊕D, we define a cubic norm structure as below:

1 := (1, 0, 0), N((x, y, z)) := ND(x) + λND(y) + λ−1ND(z)− TD(xyz),

(x, y, z)# := (x# − yz, λ−1z# − xy, λy# − zx).

The Jordan algebra associated to this norm structure is denoted by J(D, λ).
The algebra D+ is a subalgebra of J(D, λ), corresponding to the first sum-
mand. The algebra J(D, λ) is a division algebra if and only if λ /∈ ND(D)
(see [18, § 5.2]). This construction is called the first Tits process arising from
the parameters D and λ.

Let K be a quadratic étale extension of k and B a separable associative
algebra of degree 3 overK with an involution σ overK/k. Let x 7→ x denote the
nontrivial k-automorphism ofK. For an admissible pair (u,µ), i.e., u∈ (B,σ)+
such that NB(u) = µµ for some µ ∈ K×, define a cubic norm structure on the
k-vector space (B, σ)+ ⊕B as follows:

N((b, x)) := NB(b) + TK(µNB(x)) − TB(bxuσ(x)),

(b, x)# := (b# − xuσ(x), µσ(x)#u−1 − bx), 1 := (1B, 0).

The Jordan algebra obtained from this cubic norm structure is denoted by
J(B, σ, u, µ). Note that (B, σ)+ is a subalgebra of J(B, σ, u, µ) through the
first summand. The algebra J(B, σ, u, µ) is a division algebra if and only if µ
is not a norm from B (see [18, § 5.2]). This construction is called the second

Tits process arising from the parameters (B, σ), u and µ.
The Tits process starting with a central simple algebra D and λ ∈ k× yields

the first Tits construction Albert algebra A = J(D, λ) over k. Similarly, in
the Tits process, if we start with a central simple algebra (B, σ) with center
a quadratic étale algebra K over k and an involution σ of the second kind,
u, µ as described above, we get the second Tits construction Albert algebra
A = J(B, σ, u, µ) over k. One knows that all Albert algebras can be obtained
via Tits constructions.

An Albert algebra is a division algebra if and only if its (cubic) norm N is
anisotropic over k (see [7, § 39]). If A = J(B,σ, u, µ) as above, then A⊗k K ∼=
J(B, µ) as K-algebras, where K is the center of B (see [7, § 39.4]).

Let A be an Albert algebra over k. If A arises from the first construction,
but does not arise from the second construction, then we call A a pure first con-
struction Albert algebra. Similarly, pure second construction Albert algebras
are defined as those which do not arise from the first Tits construction.
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For an Albert division algebra A, any subalgebra is either k or a cubic
subfield of A or of the form (B, σ)+ for a degree 3 central simple algebra B
with an involution σ of the second kind over its center K, a quadratic étale
extension of k (see [5, Chap. IX, § 12, Lem. 2], [17]).

Norm similarities, isotopes. Let J be a quadratic Jordan algebra of de-
gree 3 over k and N its norm map. By a norm similarity of J , we mean
a bijective k-linear map f : J → J such that N(f(x)) = ν(f)N(x) for all x ∈ J
and some ν(f) ∈ k×. When k is infinite, the notions of norm similarity and iso-
topy for degree 3 Jordan algebras coincide (see [5, Chap. VI, Thm. 6, Thm. 7]).
Let v ∈ J be invertible. The k-vector space J with the new identity element

1(v) := v−1 and the U -operator defined by U
(v)
x := UxUp is called the v-isotope

of J and is denoted by J (v). For a second Tits process J(B, σ, u, µ) as above
and v ∈ (B, σ)+ invertible, we have J(B, σ, u, µ)(v) ∼= J(B, σv, uv

#, N(v)µ)
(see [13, § 3.11]).

Let J be a degree 3 Jordan algebra over k with norm map N . For a ∈ J , the
U -operator Ua is given by Ua(y) := T (a, y)a− a# × y, y ∈ J . When a ∈ J is
invertible, one knows that Ua is a norm similarity of J ; in fact, for any x ∈ A,
N(Ua(x)) = N(a)2N(x). It also follows that N(x#) = N(x)2.

Albert algebras and algebraic groups. For a k-algebra X and a field ex-
tension L of k, XL will denote the L-algebra X ⊗k L. Let A be an Albert
algebra over k with norm N , and let k be an algebraic closure of k. It is well-
known that the full group of automorphisms Aut(A) := Aut(Ak) is a simple
algebraic group of type F4 defined over k, and all simple groups of type F4

defined over k arise this way. We will denote the group of k-rational points
of Aut(A) by Aut(A), i.e., Aut(A) = Aut(A)(k). It is known that A is a di-
vision algebra if and only if the norm form N of A is anisotropic (see [21,
Thm. 17.6.5]). Albert algebras whose norm form is isotropic over k, i.e., has
a nontrivial zero over k, are called reduced.

The structure group of A is the full group Str(A) of norm similarities of N ,
is a connected reductive group over k, of type E6. We denote by Str(A) the
group of k-rational points Str(A)(k). The automorphism group Aut(A) is the
stabilizer of 1 ∈ A in Str(A).

R-triviality of algebraic groups. Let X be an irreducible variety over
a field k with the set of k-rational points X(k) 6= ∅. We say that x, y ∈ X(k)
are R-equivalent if there exists a sequence x0 = x, x1, . . . , xn = y of points in
X(k) and rational maps fi : A

1
k → X , 1 ≤ i ≤ n, defined over k and regular at

0 and 1, such that fi(0) = xi−1, fi(1) = xi (see [8]).
Let G be a connected algebraic group defined over k. The set of points in

G(k) that are R-equivalent to 1 ∈ G(k) is a normal subgroup of G(k), denoted
by RG(k). The set G(k)/R of R-equivalence classes in G(k) is in a canoni-
cal bijection with G(k)/RG(k) and thus has a natural group structure. We
identify G(k)/R with the group G(k)/RG(k). This group is useful in studying
rationality properties of G.
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Call G R-trivial if G(L)/R= {1} for all field extensions L of k. A variety X
defined over k is defined to be k-rational if X is birationally isomorphic over k
to an affine space. One knows that if G is k-rational, then G is R-trivial
(see [27, Chap. 6, Prop. 2]). Also, owing to the fact that tori of rank at most 2
are rational, one knows that algebraic groups of rank at most 2 are rational.

3. R-triviality results

In this section, we prove results on R-triviality of various groups and also
prove our main theorems. We need a few results from [23] which we recall
below. We remark here that if A is a reduced Albert algebra, then there is an
isotope A(v) of A such that A(v) contains nonzero nilpotents. Hence Aut(A(v))
is a simple abstract group [6, Thm. 14]. Since RAut(A(v))(k) is a normal
subgroup of Aut(A(v))(k) and Aut(A(v)) contains k-rational subgroups, it
follows that Aut(A(v)) is R-trivial. This therefore proves that, for any reduced
Albert algebra A, whose isotopes are all isomorphic, the group Aut(A) is R-
trivial. We record this as the following result.

Proposition 3.1. Let A be a reduced Albert algebra over a field k of arbitrary

characteristic. Then there exists an invertible element v ∈ A such that the

algebraic group Aut(A(v)) is R-trivial.

Corollary 3.2. Let A be a reduced Albert algebra over a field k whose isotopes

are all isomorphic. Then Aut(A) is R-trivial.

Proof. As we discussed above, there exists an isotope A(v) of A which contains
a nonzero nilpotent. For such an isotope, for any field extension M of k, the
algebra A(v) ⊗M = (A ⊗M)(v⊗1) also contains nonzero nilpotents. Since all
isotopes of A are isomorphic, it follows that A contains nonzero nilpotents, and
hence A⊗M contains nonzero nilpotents. Since the group of automorphisms of
a reduced Albert algebra which contain nonzero nilpotents is an abstract simple
group, it follows by the above discussion that Aut(A ⊗M) = RAut(A)(M).
Hence Aut(A) is R-trivial. �

Hence we may assume for the rest of the paper that A is a division Albert
algebra. We need the following result [2, Prop. 3.1].

Proposition 3.3. Let A be an Albert division algebra. Let S ⊂A be a 9-dimen-

sional subalgebra. Then, with the notations as above, Aut(A, S) is rational

over k, hence is R-trivial.

We need [25, Lem. 6.1]; we include it here for convenience.

Lemma 3.4. Let L/k be a cyclic cubic extension, K/k a quadratic étale ex-

tension and ν ∈ K× an element with NK(ν) = 1, and let ∗ : LK → LK be

the nontrivial L-automorphism of LK. Let J denote the Tits process J =
J(LK, ∗, 1, ν). Let ρ be a generator of Gal(L/k). Then ρ extends to an auto-

morphism of J .

We now prove the following theorem.
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Theorem 3.5. Let A be a cyclic Albert division algebra and L⊂A a cyclic cu-

bic subfield. Then there exists v ∈L× such that Aut(A(v)/L)⊂RAut(A(v))(k).

Proof. Let S ⊂ A be a 9-dimensional subalgebra such that L ⊂ S. By [12,
§ 6.4], we may assume S = J(LK,∗, v, ν) for v ∈ L× and ν ∈K× with NL(v) =
NK(ν) = 1. We have

S(v) = J(LK, ∗, vv#, N(v)ν) = J(LK, ∗, 1, ν).

Let ρ be a generator of Gal(L/k).
By Lemma 3.4, ρ extends to an automorphism ρ̃ of S(v). By [23, Prop. 3.2],

ρ̃ extends to an automorphism of A(v), which we denote, abusing notation,
also by ρ̃. By Proposition 3.3, ρ̃ ∈ RAut(A(v), S(v)) ⊂ RAut(A(v))(k). Now
let φ ∈ Aut(A(v)/L). Then ρ̃−1φ /∈ Aut(A(v)/L). By [23, Thm. 4.1], ρ̃−1φ fixes
a cubic subfieldM ⊂A(v) pointwise andM 6=L. The subalgebra S′ = 〈L,M〉 of
A(v) generated by L and M is 9-dimensional and is invariant under ψ := ρ̃−1φ.
Hence, by Proposition 3.3, we have

ψ ∈ Aut(A(v), S′) = RAut(A(v), S′)(k) ⊂ RAut(A(v))(k).

Since ρ̃ ∈RAut(A(v))(k), it follows that φ ∈RAut(A(v))(k). This proves that
Aut(A(v)/L) ⊂ RAut(A(v)(k). �

Corollary 3.6. Let A be a cyclic division algebra over a field k and L ⊂ A
a cyclic cubic subfield. Then there exists v ∈ L× such that Aut(A(v), L) ⊂
RAut(A(v)).

Proof. Let v ∈ L× be such that

Aut(A(v)/L) ⊂ RAut(A(v))(k).

Let φ∈Aut(A(v),L). We may assume that φ |L= ρ 6=1. Then, with ρ̃ as above,
it follows that ρ̃−1φ fixes L pointwise, hence belongs to Aut(A(v)/L) which is
contained in RAut(A(v))(k). Also, ρ̃∈RAut(A(v)) by Proposition 3.3. Hence
it follows that φ ∈ RAut(A(v))(k). �

We need the following result from [25] for our purpose here; we reproduce
the proof for the sake of completeness.

Proposition 3.7 ([25, Thm. 6.4]). Let A be an Albert division algebra over

a field k of arbitrary characteristic. Let M ⊂ A be a cubic subfield, and let SM

denote the set of all 9-dimensional subalgebras of A that contain M . Then the

group Str(A,M) acts on SM .

Proof. Let ψ ∈ Str(A,M) and S ∈ SM be arbitrary. Let φ ∈ Aut(A/S), φ 6= 1.
Then Aφ = S. We have

ψφψ−1(1) = ψ(ψ−1(1)) = 1

since ψ−1(1) ∈ M ⊂ S and φ fixes S pointwise. Hence ψφψ−1 ∈ Aut(A). It
follows also that the fixed point subspace of ψφψ−1 is precisely ψ(S), and hence
ψ(S) is a subalgebra of A of dimension 9 and M = ψ(M) ⊂ ψ(S); therefore
ψ(S) ∈ SM . This completes the proof. �
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Proposition 3.8. Let A be an Albert division algebra over a field k and L⊂A
be a cubic subfield. Let φ ∈Aut(A). Then there exists S ∈ SL and θ ∈ Str(A,S)
such that θφ ∈ Str(A,L).

Proof. Consider the cubic subfield M := φ(L) of A. If M = L, then we have
φ ∈ Aut(A, L) ⊂ Str(A, L), and we are done by taking θ = 1 and S as any
9-dimensional subalgebra with S ∈ SL. So assume that M 6= L. Then S :=
〈L,M〉, the subalgebra of A generated by L andM is necessarily 9-dimensional,
and applying [3, Thm. 5.2.7] to the embeddings φ : L→ S and ι : L→ S, there
exists θ ∈ Str(A, S) and w ∈ L× such that θφ(x) = wx for all x ∈ L×. In
particular, θφ(L) = L. Thus θφ ∈ Str(A,L). �

Proposition 3.9. Let A be a cyclic Albert division algebra over a field k, and
let L ⊂ A be a cyclic cubic subfield. Let S ∈ SL and ψ ∈ Str(A, L). Assume

that S ∼= ψ(S). Then there exists φ ∈ Aut(A,L) such that φ−1ψ ∈ Str(A,S).

Proof. We have S=(B,σ)+ for a degree 3 central division algebraB over a qua-
dratic étale extensionK/k and σ a unitary involution on B. Since ψ ∈ Str(A,L)
and S ∼= ψ(S), it follows that ψ(S) is isomorphic to an isotope of S by an ele-
ment of L×. We may assume, by [18, Prop. 3.8], ψ((B,σ)+)∼=(B,σv)+ for some
v ∈ L with NL(v) = 1 since ψ(L) = L. Hence we have (B,σ)+ ∼= (B,σv)+, and
in particular, the involutions σ and σv on B are conjugate. By [7, Cor. 19.31],
there exist w ∈ (LK)× and λ∈ k× such that v= λww∗, where ∗ is the nontrivial
k-automorphism of K/k, extended L-linearly to an automorphism of LK.

The inclusion L ⊂ (B, σ)+ extends to an isomorphism δ : J(LK, ∗, u, µ) →
(B,σ)+ for a suitable admissible pair (u, µ) ∈ L× ×K× (see [19, § 1.6]. More-
over, L ⊂ (B, σv)+; hence there is an isomorphism

η : J(LK, ∗, u′, µ′) → ψ(S) = (B, σv)+

for suitable (u′, µ′) extending the inclusion L →֒ (B, σv)+. Since δ and η are
identity on L, it follows that J(LK, ∗, u′, µ′) is the v-isotope of J(LK, ∗, u, µ).
Hence, by [18, Prop. 3.9], we may assume (u′, µ′) = (uv#, NL(v)µ). We have
therefore

u′ = uv# = u(λww∗)# = uλ2w#(w#)∗ = uw0w
∗

0 , µ′ = NL(v)µ,

where w0 = λw#. We have an isomorphism (see [18, Prop. 3.7])

φ1 : J(LK,∗, uv#,NL(v)µ) = J(LK,∗, uw0w
∗

0 , µ)→ J(LK,∗, u,NLK(w0)
−1µ).

We have

NLK(w0)NLK(w0) = NLK(λw#)NLK(λw#) = (λ3NLK(w)2)λ3NLK(w)2

= (λ3NLK(w)NLK(w))2 = NL(v)
2 = 1.

By [19, Lem. 4.5], we have w1 ∈ LK with w1w
∗
1 = 1 and NLK(w1) =NLK(w0).

The map
φ2 : J(LK, ∗, u,NLK(w0)

−1µ) → J(LK, ∗, u, µ)

given by φ2((l, x)) = (l, xw−1
1 ) is an isomorphism by [18, Prop. 3.7]. Hence

the composite φ−1
1 φ−1

2 : J(LK, ∗, u, µ) → J(LK, ∗, u′, µ′) is an isomorphism
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which maps L to L. We have therefore the isomorphism φ := η(φ−1
1 φ−1

2 )δ−1 :
S → ψ(S), which satisfies φ(L) = L and φ−1ψ(S) = S, where φ denotes any
extension of φ as above, to an automorphism of A, which is possible by [10, 12].
This completes the proof. �

We need the following intermediate result.

Proposition 3.10. Let A be a cyclic Albert division algebra over a field k of

arbitrary characteristic with f5(A) = 0. Let L ⊂ A be a cubic cyclic subfield,

and assume A contains a second Tits process J(LK, ∗, 1, ν) as a subalgebra.

Then Aut(A) is R-trivial.

Proof. Let ρ be a generator of Gal(L/k), and let ρ̃ denote the extension of ρ
to an automorphism of J(LK, ∗, 1, ν) and its further extension to an automor-
phism of A as well. By Proposition 3.3, ρ̃ ∈ RAut(A)(k).

Now let φ ∈ Aut(A). First assume φ fixes L pointwise. Consider the auto-
morphism ψ := ρ̃φ ∈ Aut(A). Clearly, we have ψ(L) = L and ψ /∈ Aut(A/L).
By [23, Thm. 4.1], there is a cubic subfield M ⊂ A such that ψ fixes M
pointwise. Then M 6= L, and the subalgebra S := 〈L,M〉 of A generated
by L and M is 9-dimensional. Clearly, ψ(S) = S. Hence, by Proposition 3.3,
ψ = ρ̃φ ∈ RAut(A)(k). Since ρ̃ ∈ RAut(A)(k), we have φ ∈ RAut(A)(k).

Now assume φ ∈ Aut(A,L) and φ /∈ Aut(A/L). Without loss of generality,
we assume φ | L = ρ. Then ρ̃−1φ ∈ Aut(A/L) ⊂ RAut(A)(k). It follows that
φ ∈ RAut(A)(k). Finally, assume M := φ(L) 6= L. By Proposition 3.8, there
exist S ∈ SL and θ ∈ Str(A,S) such that θφ ∈ Str(A,L). Hence φ−1θ−1(L) =L.
Let γ := φ−1θ−1. Then γ ∈ Str(A, L), and since θ(S) = S, we have γ(S) =
φ−1(S) ∼= S. By Proposition 3.9, there exists η ∈ Aut(A,L) such that η−1γ ∈
Str(A,S). We therefore have

S = η−1γ(S) = η−1φ−1θ−1(S) = η−1φ−1(S).

Hence η−1φ−1 ∈ Aut(A,S). Since, by Proposition 3.3,

Aut(A,S) ⊂ RAut(A)(k) and η ∈ Aut(A,L) ⊂ RAut(A)(k),

it follows that φ ∈ Aut(A)(k).
Finally, if N is any field extension of k, we have Aut(A)(N) = Aut(A⊗N).

If A ⊗ N is a division algebra, by considering the cyclic subfield L ⊗ N ⊂
A ⊗ N and the Tits process subalgebra J(LNK, ∗, 1, ν) ⊂ A ⊗N , by exactly
the same arguments as above, we get Aut(AN ) ⊂ RAut(A)(N). On the other
hand, when AN is reduced, the hypothesis f5(A) = 0 implies AN has nonzero
nilpotents, and hence the abstract group Aut(AN ) is simple [6, Thm. 14]. Since
Aut(A) has rank 2-subgroups defined over k, it follows RAut(A)(N) 6= {1}.
Hence simplicity implies Aut(AN ) = RAut(A)(N). This completes the proof
that Aut(A) is R-trivial. �

We now proceed to prove our main results.
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Theorem 3.11. Let A be an Albert division algebra over a field k of arbitrary

characteristic whose isotopes are all isomorphic. Then the algebraic group

Aut(A) is R-trivial.

Proof. By [26], since all isotopes of A are isomorphic to A, it follows that A
contains a cyclic cubic subfield L. Also, if Ared denotes the reduced model of A
over k (see [16]), then the hypothesis on A implies Ared contains nonzero nilpo-
tents and f5(A) = 0. By Corollary 3.6, there is v ∈L× such that Aut(A(v),L)⊂
RAut(A(v)). Hence Aut(A,L) ⊂ RAut(A)(k). Let S ⊂ A be a 9-dimensional
subalgebra containing L. We may write S = (B, σ)+ for a suitable degree 3
central division algebra B with a unitary involution over K := Z(B). By
[12, § 6.4], we may assume S = J(LK, ∗, w, ν) for a suitable admissible pair
(w, ν) with NL(w) = NK(ν) = 1. By hypothesis, A(w) ∼= A and A(w) ⊃ S(w).
Also, S(w) = J(LK, ∗, w, ν)(w) ∼= J(LK, ∗, 1, ν). Hence we may assume that
A contains J(LK, ∗, 1, ν) as a subalgebra. Thus A satisfies the hypothesis of
Proposition 3.10, and the result now follows, i.e., Aut(A) is R-trivial. �

Corollary 3.12. Let A be an Albert algebra arising from the first Tits con-

struction. Then Aut(A) is R-trivial.

Proof. A is either split, in which case Aut(A) is split, hence R-trivial, or A
is division and all isotopes of A are isomorphic, by [15]. Hence the theorem
applies to A and Aut(A) is R-trivial. �

When the base field contains cube roots of unity, we can prove a better
result.

Theorem 3.13. Let k be a field of arbitrary characteristic containing cube

roots of unity. Let A be an Albert algebra over k. Then there exists v ∈ A such

that the group Aut(A(v)) is R-trivial.

Proof. Let k and A be as in the hypothesis. When A is reduced, the assertion
is proved in Proposition 3.1, without the assumption on k. So assume that
A is a division algebra. Then there exists w ∈ A such that the isotope A(w)

is cyclic by [26] or [14]. Let L ⊂ A(w) be a cubic cyclic subfield. Then there
exists a 9-dimensional subalgebra S ⊂ A(w) with L ⊂ S. We may assume that
S = (B, σ)+ for a central simple algebra (B, σ) with a unitary involution over
its center K, which is a quadratic étale extension of k. By [19, § 1.6] and [12,
§ 6.4], we can extend the inclusion L ⊂ (B, σ)+ to an isomorphism of the Tits
process J(LK,∗, v1, ν) with (B,σ)+ for some v1 ∈ L with NL(v1) = 1 =NK(ν).
We may therefore assume that the Tits process J(LK,∗, v1, ν)⊂A(w). Passing

further to the v1-isotope of A1 := A(w), we have J(LK, ∗, v1, ν)
(v1) ⊂ A

(v1)
1 , as

v1 ∈ L ⊂ J(LK, ∗, v1, ν). We have

J(LK, ∗, v1, ν)
(v1) ∼= J(LK, ∗, v1v

#
1 , NL(v1)ν) = J(LK, ∗, 1, ν),

using NL(v1) = v1v
#
1 = 1.
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Therefore, J(LK, ∗, 1, ν) ⊂ A
(v1)
1 . By transitivity of isotopes, A

(v1)
1 = A(v)

for some v ∈ A. Hence the Tits process J(LK, ∗, 1, ν) is a subalgebra of A(v).
We next prove that f5(A

(v)) = 0.
We may write J(LK,∗,1, ν) = (C,τ)+ for a suitable degree 3 central division

algebra C with a unitary involution τ over its center. First assume that the
characteristic of k is not 3. Then the hypothesis on k allows a Kummer element
a∈L× with TL(a) =TL(a

2)= 0. Then a3 =: b∈ k×. The involution τa = int(a)τ
on C then is distinguished. We have

(C, τa)+ ∼= (C, τ)
(a)
+ = J(LK, ∗, 1, ν)(a) ∼= J(LK, ∗, a2, bν) ∼= J(LK, ∗, 1, ν).

It follows from this that f5(A
(v)) = 0 (see [7, § 40.7]). Now assume the charac-

teristic of k is 3. Then, by [12, §§ 2.9, 2.10], it follows that τ is a distinguished
involution on C, and since (C, τ)+ ⊂ A(v), again, we have f5(A

(v)) = 0.
We have therefore shown that, under the hypothesis on k, there is v ∈ A

such that J(LK, ∗, 1, ν) ⊂ A(v) and f5(A
(v)) = 0. The result now follows from

Proposition 3.10. �
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