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Abstract. We discuss the relative K-theory for a C∗-algebra A, together with a C∗-sub-
algebra A′ ⊆ A. The relative group is denoted Ki(A′;A), i= 0,1, and is due to Karoubi. We
present a situation where two pairs A′ ⊆ A and B′ ⊆ B are related so that there is a natural
isomorphism between their respective relative K-theories. We also discuss applications to
the case where A and B are C∗-algebras of a pair of locally compact, Hausdorff topological
groupoids, with Haar systems.

1. Introduction

The goal of this paper is the computation of K-theory groups of the reduced
C∗-algebras of groupoids, meaning locally compact, Hausdorff groupoids with
a Haar system. To be more specific, we will be concerned with a pair of
groupoids which are related in some way so that one reduced C∗-algebra is
a C∗-subalgebra of the other. Our results allow computation of the relative
K-theory of this pair. We refer the reader to the following standard references:
for C∗-algebras, the book by G.K. Pedersen [10], for K-theory, the books by
B. Blackadar [2] and M. Rørdam, F. Larsen and N. Laustsen [17] and, for
groupoids, the books by J. Renault [16] and D. P. Williams [19].

Results along this line have already been obtained in [13, 14], but under
very restrictive hypotheses. In particular, the groupoids there are principal
and étale. Moreover, the relation between the pair of groupoids is very limited.
Our aim here is to extend the generality of these results. At the same time, we
give a much simpler, more conceptual description of the isomorphism between
relative groups, which is our main objective.

Since the theory of groupoid C∗-algebras becomes rather technical quite
quickly, we will devote this section to a discussion of the principal ingredients in
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the paper along with a couple of rather simple examples which nicely illustrate
some of the main ideas.

Our first key ingredient is the notion of relative K-theory. Given a C∗-alge-
bra A and a C∗-subalgebra A′, Karoubi [7] defined relative groups Ki(A

′;A),
i = 0, 1. We will review his definition (at least for i = 0) in the next section.
(This can be defined for any ∗-homomorphism α : A′ → A. We will not need
the definition in this generality, but we refer the reader to [5] for more details.)
A key consequence is the existence of a six-term exact sequence

K0(A
′;A)

ν
// K0(A

′)
i∗

// K0(A)

µ

��

K1(A)

µ

OO

K1(A
′)

i∗
oo K1(A

′;A),ν
oo

where i denotes the inclusion map.
Our main results may be described as excision, meaning that the relative

K-theory of a pair A′ ⊆ A depends only on A − A′. Of course, if A′, A are
topological spaces, A−A′ makes perfect sense as a topological space, but this
does not make so much sense for C∗-algebras. In that setting, a nice first
example of excision is the following: suppose that A′ is a closed two-sided
ideal in A; then Ki(A

′;A) ∼= Ki+1(A/A
′), where A/A′ is the usual quotient

C∗-algebra.
Let us re-state that result in a way which will be useful for comparison

later. Suppose that A, B, C are C∗-algebras and α : A → C, β : B → C are
∗-homomorphisms. If α(A) = β(B), then the fact that the kernels are ideals
implies that

K∗(ker(α);A) ∼= K∗(α(A)) = K∗(β(B)) ∼= K∗(ker(β);B).

Our main results will be concerned with replacing ∗-homomorphisms in this
statement with bounded ∗-derivations. At this point, we merely note that the
kernel of a bounded ∗-derivation is a C∗-subalgebra, although not an ideal.

Let us give a very easy example using commutative C∗-algebras. Let X be
any compact, Hausdorff space. Choose two distinct points y1, y2 in X , and let
X ′ be the quotient space obtained by identifying them, and let π : X → X ′ be
the quotient map. This means that π induces an injection of C(X ′) in C(X).
Alternately, we can write

C(X ′) = {f ∈ C(X) | f(y1) = f(y2)}.

These two algebras differ only at the points Y = {y1, y2} in X , or at
Y ′ = {[y1]} in X ′. We have the diagram

0 // C0(X − Y ) // C(X) // C(Y ) // 0

0 // C0(X
′ − Y ′) //

=

OO

C(X ′) //

⊆

OO

C(Y ′) //

⊆

OO

0
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which is commutative and has exact rows. There is an associated six-term exact
sequence involving the three relative K-groups, and since, in one of them, the
inclusion is actually an equality, that relative group is zero. We conclude that
there is an isomorphism

Ki(C(X ′);C(X)) ∼= Ki(C(Y ′);C(Y )), i = 0, 1.

The latter group is rather easy to compute using the exact sequence above.
This computation can also be regarded as an excision result. While consid-

ering this example, let us see how the notion of ∗-derivation can be useful. As-
suming that X is separable, let us choose a countable dense subset Y ⊂ Z ⊂X .
There is an obvious representation of C(X) on ℓ2(Z) and a slightly less obvious
one of C(Y ), which is zero on ℓ2(Z − Y ). Let F be the selfadjoint operator
which is the identity on ℓ2(Z − Y ) and such that Fξ(yi) = ξ(y3−i) for i = 1, 2
and ξ in ℓ2(Z). Also, let δ(a) = i[F, a] for any bounded operator a on ℓ2(Z).
Observe that δ is a bounded ∗-derivation with

ker(δ) ∩ C(X) = C(X ′),

ker(δ) ∩ C(Y ) = C(Y ′),

δ(C(X)) = δ(C(Y )).

Put in this way, the excision result above now looks similar to the earlier result
on the kernels of ∗-homomorphisms.

We now look at another example, which has many similarities with the last,
but displays some important new features. Let X = {0, 1}N, X ′ = [0, 1] and
π : X → X ′ be defined by

π(x) =

∞∑

n=1

xn2
−n

for x = (xn)
∞
n=1 in X = {0, 1}N. This can also be described as the restriction

of the devil’s staircase to the Cantor ternary set. It is also known less formally
as base-2 expansion of real numbers.

We let Y ′ = {k2−n | n ≥ 1, 0 < k < 2n} and Y = π−1(Y ′). It is a rather
simple matter to check that π is one-to-one on X − Y and is two-to-one on Y .
In fact, for y′ in Y ′, π−1{y′} consists of two points (x1, x2, . . . , xn, 1, 0, 0, . . .)
and (x1, x2, . . . , xn, 0, 1, 1, . . .). At this point, the situation is very much like
our last example. The significant difference is that Y and Y ′ are no longer
closed, and the diagram we had above is no longer available.

The solution here is to introduce new topologies on Y ⊆ X and Y ′ ⊆ [0, 1]
which are finer than the relative topologies from X and [0, 1], respectively,
in which they are locally compact (and still Hausdorff). In this case, the
obvious choice is the discrete topologies. Let us continue the development
with derivations we had in the earlier case. We represent C(X) and C0(Y ) as
multiplication operators on ℓ2(Y ) (noting that Y is conveniently dense in X).
Observe that C(X) acts as multipliers of C0(Y ). This is a result of the fact
that, for any f in C(X), its restriction to Y will remain continuous in any finer
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topology. Further, define F to be the operator Fξ(y) = ξ(ȳ), where ȳ is the
unique point in Y with π(ȳ) = π(y) and ȳ 6= y. Again, define δ(a) = i[F, a] for
any bounded operator on ℓ2(Y ). It is a simple matter to check that

ker(δ) ∩ C(X) = C(X ′),

ker(δ) ∩C0(Y ) = C0(Y
′),

δ(C(X)) = δ(C0(Y )).

In this situation, the conclusion that

Ki(C(X ′);C(X)) ∼= Ki(C0(Y
′);C0(Y )), i = 0, 1,

follows from our main result, Theorem 3.4.
The key feature in this last example, which differs from the first we gave,

is the idea that the subset where the two algebras of functions differ must be
endowed with a new, finer topology. At the same time, we are interested in
groupoid C∗-algebras, and the issue of endowing a subgroupoid with a new
finer topology so that the original algebra acts as multipliers of the smaller
one is a considerable technical one.

The two examples we have listed above are part of a general class which
we refer to as “factor groupoids”. We develop the theory in some generality
in Section 7. The idea, avoiding many technical issues, is to take a surjective
morphism of groupoids π :G→G′. Under some hypotheses, we show that this
induces an inclusion C∗

r (G
′)⊆C∗

r (G). We then consider H ⊆G and H ′ ⊆G′ to
be the subgroupoids where the map π fails to be one-to-one. Under a number
of technical hypotheses, we first show that H and H ′ may be given new, finer
topologies and prove that we have

K∗(C
∗
r (G

′);C∗
r (G)) ∼= K∗(C

∗
r (H

′);C∗
r (H)),

the latter being significantly simpler to compute in many examples.
The other situation which is considered in Section 6 is one we refer to as

“subgroupoids”. Here, we suppose that G is a groupoid and G0 ⊆ G′ ⊆ G is
an open subgroupoid. Again, we have an inclusion C∗

r (G
′) ⊆ C∗(G). In this

situation, we introduce H ⊆ G and H ′ ⊆ G′ as the subgroupoids where the
groupoids G and G′ differ. Again, under a number of technical hypotheses, we
first show that H and H ′ may be given new, finer topologies and prove that
we have

K∗(C
∗
r (G

′);C∗
r (G)) ∼= K∗(C

∗
r (H

′);C∗
r (H)),

the latter again being significantly simpler to compute in many examples.
Let us mention that if the groupoids are all amenable, then the Baum–

Connes conjecture holds [18]. It seems likely that a proof of our results could
be given by using this and conventional excision results in topology. We believe
there is some virtue in working with the C∗-algebras themselves. In particular,
this is preferable for doing the computations in most applications.

Let us briefly mention some applications of the results. In some cases, these
will follow from the earlier paper [14].
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For the subgroupoid situation, the simplest example of this are the so-called
orbit-breaking subalgebrasAY ⊆C(X)⋉Z, first introduced in [12]. Indeed, we
give a considerable generalization of this construction at the end of Section 6
in Theorem 6.18 and Corollary 6.19.

Another application was given in [15]. The main question is, given some K-
theory data, can one construct an étale groupoid whose associated C∗-algebra
falls in the Elliott classification scheme and has the given K-theory groups.
In this case, assuming the K-zero group is a simple, acyclic dimension group,
K-one is torsion-free, one begins with G′ as the AF-equivalence relation with
that K-zero group and constructsG′ ⊆G so thatK0(G

∗(G)) remains the same,
while K1(C

∗(G)) becomes the desired K-one group.
The subgroupoid results are also used in [4] for similar purposes, including

the case of nonzero real rank C∗-algebras.
In [3], examples were given of non-homogeneous extensions of minimal Can-

tor Z-actions. The K-theory of these extensions can be computed in specific
examples [6], using the factor groupoid situation. Additionally, [6] considers
quotients which may be constructed rather analogously to the extensions given
in [15].

Finally, we mention work in progress with Rodrigo Treviño. This is based on
work of Lindsey and Treviño [8] which begins with a bi-infinite ordered Bratteli
diagram and constructs from it a flat surface with vertical foliation. Typically,
the surface is infinite genus. The foliation C∗-algebra is actually a subalgebra
of the AF-algebra associated with the Bratteli diagram. In fact, their groupoids
can be related by a two-step process through a third groupoid. The first step
is that the intermediate groupoid is a factor of the AF-equivalence relation.
The second is that the foliation groupoid is a subgroupoid of the intermediate
groupoid. An interesting consequence of these K-theory computations is that
if the K-zero group of the Bratteli diagram is not finitely generated, then the
surface is necessarily infinite genus.

The paper is organized as follows. The next section outlines basic facts
about relative K-theory for C∗-algebras. Section 3 is our excision result. It
is stated in considerable generality for derivations between C∗-algebras. Its
proof is rather long and technical, so it appears separately in Section 4.

In Section 5, we turn to the rather general question: given a groupoid G and
a subgroupoid H ⊆ G, endowed with a finer topology, what conditions ensure
that the reduced groupoid C∗-algebra of G acts as multipliers of that of H?

In Section 6, we combine the excision results of Section 3 and those of
Section 5 to consider the situation of an open subgroupoid. In Section 7, we
do the same for the situation of a factor groupoid.

2. Relative K-theory

In this section, we discuss a relative K-theory for C∗-algebras introduced
by Karoubi [7]. Most of the basic ideas are already in [7], but we will add to
them slightly.
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The idea is to consider a C∗-algebra A, together with a C∗-subalgebra
A′ ⊆ A, and to define a relative group for the pair, denoted K0(A

′;A). Let us
mention that this definition has a generalization to the case where ϕ :A′ →A is
a ∗-homomorphism, but we need only consider the case when ϕ is the inclusion
map. More information can be found in [7, 5].

We also remark that there is a definition of a second relative groupK1(A
′;A)

(perhaps it would be more accurate to say a sequence of relative groups satis-
fying Bott periodicity). Our results hold for these groups as well, but we will
not need that for our applications. Again, we refer the reader to [5] for more
information.

Let A be a unital C∗-algebra. As usual, for n ≥ 1, we let Mn(A) be the
n× n-matrices over A, regarded as a C∗-algebra. We use the usual (nonunital)
inclusions Mn(A) ⊆ Mn+1(A) for all n ≥ 1, and let M(A) denote the union,
regarded as a normed ∗-algebra. It is convenient to regard the elements of A
as matrices, indexed by the positive integers, with only finitely many nonzero
entries. We also let P(A) denote the set of all projections (selfadjoint idem-
potents) in M(A).

We consider the category whose objects are the elements of P(A). If p and
q are in P(A), then the morphisms from p to q are the elements of qM(A)p.
Composition of morphisms is given by their product, and the element p is the
identity morphism from p to itself. We denote this category by P(A). It is
an additive category in an obvious sense. Moreover, each set of morphisms is
actually a Banach space in an obvious way, and P(A) is a Banach category
[7, Def. II.2.1 and II.2.6]. Then K0(A) is defined to be the K-theory of this
category, as in [7, Sec. II.1]. (Some caution must be used: a homotopy of
morphisms in this category takes place inside a single qM(A)p, which is slightly
different from a homotopy inside M(A).)

We let Ã denote the unitization of A. In the case that the C∗-algebra A is
not unital, K0(A) is defined as the kernel of the map induced from the usual
homomorphism from Ã to C. Conveniently, this conclusion also holds for unital
C∗-algebras.

Every element of Ã can be written as a sum of a complex multiple of the
unit and an element of A. If a is in Ã, we let ȧ denote the complex number
involved. We extend this notation to elements a in matrices over Ã so that ȧ
is a complex matrix of the same size.

We now suppose that A is a C∗-algebra and A′ is a C∗-subalgebra. To
define a relative group, we follow the ideas of [7], using ϕ : P(A′)→P(A) being
the inclusion map, but make some minor alterations. First, we would like to
include nonunital A and A′, so we consider the obvious unital inclusion of Ã′

in Ã. Second, we will suppress this map in our notation. We consider triples
(p, q, a), where p and q are objects in P(Ã′) and a is an invertible morphism
from p to q in P(Ã). Specifically, if p is in M(Ã′) and q is in M(Ã′), then a
is in qM(Ã)p and there is b in pM(Ã)q such that ab = q and ba = p. We let
Γ(A′;A) denote the set of all such triples. Although it is likely to raise a storm
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of controversy, we note that 0 is an invertible morphism from {0} to {0}, so
(0, 0, 0) is in Γ(A′;A).

We say two such triples (p, q, a) and (p′, q′, a′) are isomorphic if there are
isomorphisms c from p to p′ and d from q to q′ in P(Ã′) such that da = a′c. In
this situation, we also say they are isomorphic via c, d. In particular, if (p, q, a)
is in Γ(A′;A) and a lies in M(Ã′), then (p, q, a) is isomorphic to (q, q, q) via
the pair a, q.

Let us briefly mention that there are some small difficulties in taking direct
sums of elements of M(A): if the elements are regarded as a ∈ Mm(A) and
b ∈ Mn(A), then a ⊕ b ∈ Mm+n(A). This is not quite consistent with the
identification of elements of Mn(A) with those in Mn+1(A). On the other
hand, the result a ⊕ b is well-defined up to isomorphism as above, and this
ambiguity will not cause any confusion.

A triple (p, q, a) is elementary if p = q and a is homotopic to p within the
automorphisms of p in P(Ã). If, in addition, a is actually a unitary in pM(Ã)p,
then there exists a homotopy from p to a within the unitaries. We also make
the observation that (p, p, a) is elementary if and only if a is obtained as an
invertible element of the C∗-algebra

{f ∈ C([0, 1], pM(Ã)p) | f(0) ∈ Cp},

when evaluated at 1.
Finally, we introduce an equivalence relation ∼ on Γ(A′; A) as follows.

Two triples (p, q, a) ∼ (p′, q′, a′) if there are elementary triples (p1, p1, a1) and
(p2, p2, a2) such that

(p, q, a)⊕ (p1, p1, a1) = (p⊕ p1, q ⊕ p1, a⊕ a1)

is isomorphic to (p′, q′, a′)⊕ (p2, p2, a2). Clearly, isomorphic triples are equiv-
alent, and any elementary triple is equivalent to (0, 0, 0).

We define K0(A
′;A) as the set of equivalence classes of the elements of

Γ(A′;A) in relation ∼. We denote the equivalence class of (p, q, a) by [p, q, a].
It is a simple matter to check that

[p, q, a] + [p′, q′, a′] = [p+ p′, q + q′, a+ a′],

for (p, q, a), (p′, q′, a′) in Γ(A′;A) with pp′ = qq′ = 0, is a well-defined binary
operation. Alternately, we could define

[p, q, a] + [p′, q′, a′] = [p⊕ p′, q ⊕ q′, a⊕ a′].

The element [0,0,0] is the identity, and any element [p, q, a] has inverse [q, p, b],
where b satisfies ab = q, ba = p. Hence, K0(A

′;A) is a group.
Suppose that π : A → B is any ∗-homomorphism between two C∗-algebras

and A′ ⊆ A, B′ ⊆ B are two subalgebras satisfying π(A′) ⊆ B′. Then we may
extend π to a unital map from Ã to B̃ and to matrices over Ã, and it follows
that π induces a group homomorphism π∗ : K0(A

′;A) → K0(B
′;B).

We will not give a proof of the following result, but refer the reader to [5,
Thm. 2.1].
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Theorem 2.1. Let A be a C∗-algebra, and let A′ be a subalgebra. There is an
exact sequence

K1(A
′)

i∗
// K1(A)

µ
// K0(A

′;A)
ν

// K0(A
′)

i∗
// K0(A),

where i :A′ →A denotes the inclusion map, µ([u]1) = [1n,1n,u], for any unitary
u in Mn(Ã) and ν[p, q, a] = [p]0 − [q]0, for any (p, q, a) in Γ(A′;A).

As an immediate consequence, we note that, in the special cases, µ :K1(A)→
K0(0, A) is an isomorphism, while K0(A;A) = 0.

Example 2.2. Let H be a Hilbert space, and let N be a closed subspace
with N⊥ its orthogonal complement. Assume that N 6= 0,H. We consider
A = K(H), the C∗-algebra of compact operators on H, and A′ = K(N ) ⊕
K(N⊥). From the short exact sequence in Theorem 2.1 and from the well-
known result that K0(K(H)) ∼= Z, via the usual trace, and K1(K(H)) ∼= 0,
we see that K0(A

′;A) is isomorphic to the kernel of the map i∗, which con-
sists of pairs ([p]0 − [p′]0, [q]0 − [q′]0), where p, p′ are finite rank projections
on subspaces of N , q, q′ are finite rank projections on subspaces of N⊥ and
Rank(p) − Rank(p′) = Rank(q′) − Rank(q). Associating to such an element
Rank(p)− Rank(p′) is an isomorphism from this subgroup to Z.

We can give a useful classification of many elements in the relative group
as follows. Suppose S, S′ are finite rank operators on H with S(N ) ⊆ N⊥,
S(N⊥) = 0 and S′(N ) = 0, S′(N⊥)⊆N . Define P,Q,P ′,Q′ as the projections
onto the initial space of S, the range of S, the initial space of S′ and the range
of S′, respectively. Then (P + P ′, Q + Q′, S + S′) determines an element of
Γ(A′;A). The composition of the map ν with the isomorphism described above
sends the class of this element to

Rank(P )− Rank(P ′) = Rank(S)− Rank(S′).

We want to establish a few simple properties of the triples under consider-
ation. We refer the reader to [5, Prop. 3.3] for a proof of the following.

Proposition 2.3. Let A be a C∗-algebra, and let A′ be a C∗-subalgebra of A.
(i) If (p, q, a) is in Γ(A′;A) and a lies in M(Ã′), then [p, q, a] = 0.
(ii) If a(t), 0 ≤ t ≤ 1, is a continuous path of invertible elements in qM(Ã)p

with p, q in M(Ã′), for all 0 ≤ t ≤ 1, then [p, q, a(0)] = [p, q, a(1)].
(iii) Every element of Γ(A′;A) is equivalent to one of the form (1m, q, a), where

a is a partial isometry with a∗a = 1m, aa∗ = q and ȧ = q̇ = 1m. We refer
to such an element as being in standard form.

(iv) For (1m, q, a) in Γ(A′;A) in standard form, [1m, q, a] = 0 if and only if
there exists n≥ 1 and elementary triples (1n,1n, a1) and (1m+n,1m+n, a2)
in standard form such that a2(a⊕ a1)

∗ is in M(Ã′).
(v) If (p, q, a), (p′, q′, b) are in Γ(A′;A) and satisfy q = p′, then

[p, q, a] + [p′, q′, b] = [p, q′, ba].

(vi) If (p, q, a) is in Γ(A′, A), then −[p, q, a] = [q, p, a∗].
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As a final item for this section, we need a result that links relative groups
for a pair of short exact sequences. This will be used in a key way in the next
section in defining our excision map.

Theorem 2.4. Let

0 // A
π

// C
ρ

// D // 0

0 // A′

⊆

π
// C′ ρ

//

⊆

D //

=

0

be a commutative diagram with exact rows. Then the natural map

π∗ : K0(A
′;A) → K0(C

′;C)

is an isomorphism.

This is a consequence of a more general result which begins with a diagram
like the one above, but without the equality on the right, and shows there
is a six-term exact sequence of relative groups. We refer the reader to [5,
Thm. 2.2]. Our conclusion follows from this and the fact that K∗(D;D) = 0
(which follows from [5, Thm. 2.1]).

Remark 2.5. Let us make a few concluding remarks on the subject of relative
K-theory. First of all, there is also a relative group K1(A

′;A). Without going
into many details, one considers triples (p, a, g), where p is a projection in Ã′,
a is an invertible in pM(Ã′)p and g(t), 0 ≤ t ≤ 1, is a continuous path of
invertibles in pM(Ã)p with b(0) = p, b(1) = a. We refer the reader to [5] for
more details. The only important result for us here is that

K1(A
′;A) ∼= K0(C0(R)⊗A′;C0(R)⊗A),

in a natural way so that all of our results here for the relative K0-group pass
to the relative K1-group as well. Of course, the exact sequence of Theorem 2.1
actually becomes a six-term exact sequence.

Furthermore, the setting of relative K-theory in [5] considers a ∗-homo-
morphism ϕ : A′ → A and defines a relative group for the map, K0(ϕ). Our
situation is simply the special case of the inclusion map.

There is an alternate approach to relative K-theory, which is to define
K0(A

′;A) to be the K-zero group of the mapping cylinder

{f : [0, 1] → A | f continuous, f(0) = 0, f(1) ∈ A′}.

This actually gives the same answer (see [5]). However, it is not really useful
for us; while our excision map can be defined in quite general terms, we really
need Karoubi’s description of the cycles in order to prove it is an isomorphism.

3. Excision: the main result

We begin with the following result, which is a minor variant of a well-known
fact. The important part of the set-up is that we do not suppose that either
C∗-algebra is acting non-degenerately.
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Proposition 3.1. Let H be a Hilbert space. If A,B ⊆ B(H) are C∗-algebras
and AB ⊆ A, then A + B is a C∗-algebra, A is a closed two-sided ideal in
A+B and the quotient is isomorphic to B/A ∩B.

Proof. It is clear that A+B is a ∗-subalgebra of B(H) and that A is a closed,
two-sided ideal. We will show that A + B is closed, and the proof will be
complete.

Let N be the closure of AH. The condition that AB ⊆ A means that N is
invariant under B. Hence, writing H = N ⊕N⊥, each element b of B may be
written as b|N ⊕ b|N⊥ . As A acts non-degenerately on N , b|N lies in M(A),
the multiplier algebra of A, for every b in B. We regard M(A) as a subalgebra
of B(N ).

Let q : M(A) → M(A)/A be the quotient map, and let

θ : (M(A)⊕ 0) +B → M(A)/A⊕ B(N⊥)

be the map sending c to q(c|N ) ⊕ c|N⊥ . Since this is a ∗-homomorphism, it
is continuous and θ(B) is closed. We note that A + B = θ−1(θ(B)) is closed
also. �

We will assume throughout this section that A and B are related as above,
and we let i : A → A+B and j : B → A+B denote the two inclusion maps.

Theorem 3.2. Let A,B ⊆ B(H) be C∗-algebras with AB ⊆ A.
Let E be a Banach A + B-bimodule which is also a C∗-algebra, and let

δ : A+B → E be a bounded ∗-derivation satisfying δ(B) ⊆ δ(A).
Then

0 // A
i

// A+B // (A+B)/A // 0

0 // ker(δ) ∩A

⊆

i
// ker(δ) //

⊆

(A+B)/A //

=

0

is a commutative diagram with exact rows. In consequence,

i∗ : K(ker(δ) ∩ A;A) → K(ker(δ);A+B)

is an isomorphism and

α = (i∗)
−1 ◦ j∗ : K(ker(δ) ∩B;B) → K(ker(δ) ∩ A;A).

is a homomorphism.

Proof. Exactness of the top row follows from Proposition 3.1, and commuta-
tivity is obvious. Exactness of the bottom row is easy except in showing that
the map from ker(δ) is surjective. It is clear that any element of (A + B)/A
can be represented as b + A, with b in B. By hypothesis, there exists a in A
with δ(a) = δ(b). It follows that b− a is in ker(δ) and its image in (A+B)/A
is simply b +A. The rest follows from Theorem 2.2. �
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Let us consider a special case of interest, just to see that the hypotheses are
quite general and that the map α is nontrivial. Let B be any C∗-algebra, and
suppose that (π,H, F ) is a Fredholm module for B: that is, H is a separable
Hilbert space, π : B →B(H) is a representation of B on H and F is a bounded
linear operator on H such that

π(b)(F − F ∗), π(b)(F 2 − 1), [π(b), F ] = π(b)F − Fπ(b)

are all compact for any b in B. We assume the slightly stronger conditions that
F = F ∗, F 2 = 1 and, for simplicity, that B and π are unital. Let P = 1

2 (F + 1),
which is a selfadjoint projection.

Such a Fredholm module induces a natural homomorphism from K1(B) to
the integers, which sends [u]1, where u is a unitary in Mn(B), to

Ind((1n ⊗ P )(idn ⊗ π)(u)|Cn⊗PH),

where Ind denotes Fredholm index. We denote this map by Ind for simplicity.
We can apply Theorem 3.2 in this situation as follows. Let A = K(H), use

π(B) as the C∗-algebra B in Theorem 3.2, E = B(H), which is obviously an
A+ π(B) bimodule, and define

δ(x) = i[x, F ], x ∈ A+ π(B).

It is a simple matter to see that

ker(δ) ∩ A = K(PH)⊕K((I − P )H),

and the relative group K0(ker(δ) ∩ A;A) ∼= Z has already been computed in
Example 2.2.

Theorem 3.3. Let B be a unital C∗-algebra, and let (π,H, F ) be a Fredholm
module for B with H separable, F = F ∗, F 2 = I, F 6= ±I and π unital. With
E, δ,A,A′, P as above, the following diagram is commutative:

K1(B)

µ◦π

��

Ind
// Z

K0(ker(δ) ∩ π(B);π(B))
α

// K0(ker(δ) ∩A;A),

∼=

OO

where µ is as in Theorem 2.1, α is as in Theorem 3.2 and the vertical arrow
on the right is the isomorphism described in Example 2.2.

Proof. For simplicity, we consider a unitary u in B, instead of Mn(B) for
some n. Let P1, P2, P3, P4 be the orthogonal projections of H onto each of the
following four subspaces:

PH ∩ π(u)∗PH, PH ∩ π(u)∗(I − P )H,

(I − P )H ∩ π(u)∗(I − P )H, (I − P )H ∩ π(u)∗PH.

As π(u) is unitary, P1 + P2 + P3 + P4 = I. The projections P2 and P4 are both
finite rank from the Fredholm module condition, and the index of Pπ(u)|PH

is simply dim(P2H)− dim(P4H). Also, let Qi = π(u)Piπ(u)
∗, 1 ≤ i ≤ 4.

Münster Journal of Mathematics Vol. 14 (2021), 349–402



360 Ian F. Putnam

Letting j∗ be as in Theorem 3.2, j∗ ◦ µ ◦ π[u]1 is represented by the class of
(I, I, π(u)) in Γ(ker(δ), π(B) +A). It follows that

[I, I, π(u)] = [P1 + P3, Q1 +Q3, π(u)(P1 + P3)]

+ [P2 + P4, Q2 +Q4, π(u)(P2 + P4)].

On the other hand, π(u)(P1 + P3) commutes with P and hence is in ker(δ), so
[P1 + P3, Q1 +Q3, π(b)(P1 + P3)] = 0. We have

α ◦ µ ◦ π([u]1) = i−1
∗ ◦ j ◦ µ ◦ π([u]1) = [P2 + P4, Q2 +Q4, π(u)(P2 + P4)],

and the isomorphism of Example 2.2 (using H+ = PH) maps this to

rank(π(u)P2)− rank(π(u)P4) = dim(P2H)− dim(P4H). �

We will continue to assume throughout that A,B,δ,E are as in Theorem 3.2.
Our main goal is to provide extra conditions under which the map α is actually
an isomorphism.

Theorem 3.4. Let A,B,E, δ be as in 3.2. Suppose that A has a dense ∗-sub-
algebra, A satisfying the following.
C1 There is a constant K ≥ 0 such that, for every a in A, there is a′ in

ker(δ) ∩A such that ‖a− a′‖ ≤ K‖δ(a)‖.
C2 For every a1, . . . , aI in A, there are 0≤ e ≤ 1 in M(A) and b1, . . . , bI in B

such that
(a) ai = eai = aie = ebi = bie,
(b) δ(bi) = δ(ai)
for all 1 ≤ i ≤ I.

Then δ(A) = δ(B) is closed, and the map α of Theorem 3.2 is an isomorphism.

All of our later applications will be to groupoid C∗-algebras. In such cases,
the dense ∗-subalgebras of continuous compactly supported functions on the
groupoid will form the ∗-subalgebra, A.

Let us remark that it seems reasonable to conjecture that one could replace
conditions C1 and C2 of Theorem 3.4 with the hypothesis that δ(A) = δ(B) is
closed. It certainly makes for a cleaner result. On the other hand, if one wants
to verify this condition in the case of groupoid C∗-algebras, then employing C1
and C2 to do this (and using the dense subalgebras of continuous compactly
supported functions) is not an unreasonable route.

We comment that the relation between the statement of the result and
its applications is rather similar to the first isomorphism theorem for groups.
That statement is, given a surjective group homomorphism α : G → H , the
map induces an isomorphism between the quotient group G/ker(α) and H .
In most applications, however, one is not given α, G and H , but rather G
and a normal subgroup N and then tries to cook up an α and H such that
N = ker(α), so that one may identify G/N with the (hopefully) more familiar
group H . Our applications usually involve starting with B′ ⊆ B and trying
to cook up δ, A and E so as to apply Theorem 3.4 and with B′ = B ∩ ker(δ).
The hope, in this case, is that A ∩ ker(δ) ⊆ A is simpler than B′ ⊆ B.
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4. The proof

This section is devoted to a proof of Theorem 3.4. We start by expanding
on condition C1. We remark that, informally, this means that almost being
in ker(T ) (Tx is small) implies nearly being in ker(T ) (near an element in
ker(T )). The following result is quite standard, and we omit the proof.

Proposition 4.1. Let T :X → Y be a bounded linear map between two Banach
spaces. The following are equivalent.
(i) T (X) is closed in Y .
(ii) There is a constant K ≥ 1 such that, for every x in X, there is x′ in

ker(T ) such that ‖x− x′‖ ≤ K‖Tx‖.
(iii) There is a dense linear subspace X ⊆ X and a constant K ≥ 1 such that,

for every x in X , there is x′ in ker(T ) such that ‖x− x′‖ ≤ K‖Tx‖.

Observe that our condition C1 is stronger than the third condition above
because C1 requires a′ to be in ker(δ) ∩ A, and not simply in ker(δ).

An immediate nice consequence is the following.

Lemma 4.2. If A is a dense subalgebra of A satisfying condition C1 of Theo-
rem 3.4 and there is a dense ∗-subalgebra B in B such that δ(B) ⊆ δ(A), then
we have δ(B) ⊆ δ(A).

Proof. It follows from C1 and Proposition 4.1 that the extension of δ to A has
closed range. As δ is bounded and B is dense in B, we are done. �

As we will need to deal with elements of the relative K-groups, it will
be useful to have the following, which considers the unitization of algebras,
matrices over algebras and the cones over algebras.

Proposition 4.3. Suppose that A,B,E, δ be as in Theorem 3.2 and A satisfy
conditions C1 and C2 of Theorem 3.4.
(i) If we define δ : Ã+B → E by

δ(λ + a+ b) = δ(a+ b), a ∈ A, b ∈ B, λ ∈ C,

then δ is a bounded ∗-derivation and δ(B̃) ⊆ δ(Ã).
(ii) For any integer n≥ 1, Mn(A),Mn(B),Mn(E), idMn

⊗ δ satisfy the condi-
tions of Theorem 3.2 and Mn(A) satisfy conditions C1 (although K may
depend on n) and C2 of Theorem 3.4. Moreover, the e of condition C2
may be chosen to be of the form 1n ⊗ e, where e is in M(A).

(iii) C0(0, 1]⊗A,C0(0, 1]⊗B,C0(0, 1]⊗ E, idC0(0,1] ⊗ δ satisfy the conditions
of Theorem 3.2. In addition, let Cc(0, 1]⊙A denote the algebraic tensor
product of the continuous, compactly supported functions on (0,1] with A.
That is, it consists of all functions of the form

f(t) =
I∑

i=1

fi(t)ai,
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where f1. . . . , fI are in Cc(0,1] and a1, . . . , aI are in A. Then Cc(0,1]⊙A
is a dense ∗-subalgebra of C0(0, 1]⊗ A which satisfies conditions C1 and
C2 of Theorem 3.4.

Proof. The first part is trivial, and we omit the proof. For the second part,
the proof of C1 is trivial.

Let us sketch the proof of C2 for the second part. If we are given a collection
of m elements of Mn(A), their individual entries provide n2m elements of A.
If we select an appropriate e and n2m elements of B, it is fairly easy to check
that 1n ⊗ e and the corresponding m elements of Mn(B) satisfy the desired
conclusion.

We now consider the third part, beginning with C1. Let

f(t) =

I∑

i=1

fi(t)ai

be in Cc(0, 1]⊙A. If (1⊗ δ)(f) = 0, then we are done. Otherwise, let 0 < ǫ =
‖(1 ⊗ δ)(f)‖. We may choose N sufficiently large so that ‖f(s) − f(t)‖ < ǫ
whenever |s− t| < N−1. Also, choose N sufficiently large so that f(t) = 0 for
all 0 ≤ t ≤ N−1. For each 1 ≤ n ≤ N , let gn be the function which is 0 on
[0, (n − 1)/N ] ∪ [(n + 1)N, 1], 1 at n/N , and linear on ((n − 1)/N, n/N) and
(n/N, (n+ 1)/N). Let

g(t) =

N∑

n=1

gn(t)f(n/N), t ∈ [0, 1].

It is an easy computation to see that ‖g − f‖ < ǫ. For 2 ≤ n ≤N , we may find
a′n in A ∩ ker(δ) with

‖a′n − f(n/N)‖ ≤ K‖δ(f(n/N))‖ ≤ K‖1⊗ δ(f)‖, 1 ≤ n ≤ N.

We note that f(1/N) = 0 and so set a′1 = 0. Then define f ′(t) =
∑N

n=1 gn(t)a
′
n.

It is clear that f ′ is in ker(1⊗ δ) and also

‖f − f ′‖ ≤ ‖f − g‖+ ‖g − f ′‖ ≤ ‖(1⊗ δ)(f)‖ +
N∑

n=1

gn(t)‖f(n/N)− a′n‖

≤ ‖(1⊗ δ)(f)‖ +
N∑

n=1

gn(t)K‖1⊗ δ(f)‖

≤ (K + 1)‖(1⊗ δ)(f)‖.

This completes the proof of C1.
For C2, if we have a finite collection of functions f (1), . . . , f (I) in Cc(0,1]⊙A,

we may write all of them in the form f (i)(t) =
∑J

j=1 f
(i)
j (t)aj for all 1 ≤ i ≤ I,

simply by using all the possible elements of A involved in each and using
f (i)
j = 0 as needed.

We then choose bj , 1 ≤ j ≤ J , e as in C2 for A. As each f (i)
j is compactly

supported, we may find 0 < ǫ such that each is zero on [0, ǫ]. Let g(t) be the
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continuous function that is zero on [0, ǫ/2], 1 on [ǫ,1] and linear on [ǫ/2, ǫ]. It is

now easy to see that the set of elements
∑J

j=1 f
(i)
j bj and e(t) = g(t)e satisfy

the desired conclusion. �

Lemma 4.4. Suppose a, b, e are elements of a C∗-algebra satisfying e∗ = e,

a = ae = ea = be = eb

and δ is a ∗-derivation on that C∗-algebra with δ(a) = δ(b). It follows that,
for any continuous function f on the positive real numbers with f(0) = 0, we
have δ(bf(b∗b)) = δ(af(a∗a)). In addition, for any continuous function f on
the positive real numbers and complex numbers λ, µ, we have

δ((λ+ b)f((µ+ b)∗(µ+ b))) = δ((λ+ a)f((µ+ b)∗(µ+ b)))

= δ((λ+ a)f((µ+ a)∗(µ+ a))),

δ((λ+ b)f((µ+ b)(µ+ b)∗)) = δ((λ+ a)f((µ+ b)(µ+ b)∗))

= δ((λ+ a)f((µ+ a)(µ+ a)∗)).

Proof. We observe from the hypotheses on b, e that ab = aeb = aea = a2.
Similar equations hold using a and b∗. It follows that any polynomial in
a, b, a∗, b∗ is unchanged if we replace all b, b∗ by a, a∗, provided each term
in the sum has at least one a or a∗. We also note that δ(a)b = δ(ab)− aδ(b) =
δ(a2) − aδ(a) = aδ(a), so the same type of statement holds for polynomials
involving δ(a), δ(a)∗, a, a∗, b, b∗, δ(b), δ(b)∗, provided each term in the sum has
at least one of a, a∗, δ(a), δ(a)∗.

From these observations and the Leibnitz rule, it follows that if f(t) is any
polynomial with 0 constant term, we have bf(b∗b) = af(a∗a). For a continuous
functions f with f(0) = 0, by finding a sequence of polynomials that converge
uniformly to f(t), the same conclusion follows.

The conclusions are done in a similar fashion. �

Proposition 4.5. If A,B, δ,E satisfy conditions C1 and C2 of Theorem 3.4,
then δ(B) = δ(A) is closed.

Proof. First, we claim that if a is any element of A, then there is b in B with
δ(b) = δ(a) and ‖b‖ ≤ ‖a‖. To see this, first select b in B and e in M(A) as in
condition C2. Let f : [0,∞) → R be the continuous function

f(t) =

{
1, 0 ≤ t ≤ ‖a‖2,

t−1/2‖a‖, ‖a‖2 < t.

Then, using Lemma 4.4, we have

‖bf(b∗b)‖ = ‖f(b∗b)b∗bf(b∗b)‖1/2 = ‖tf(t)2‖1/2∞ = ‖a‖.

It also follows from Lemma 4.4 that

δ(bf(b∗b)) = δ(af(a∗a)) = δ(a).
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We know that δ(B) ⊆ δ(A). To prove the reverse inclusion, let a be in A.
With a0 = 0, inductively choose an, n ≥ 1, in A such that

‖(a− a0 − · · · − an−1)− an‖ ≤ 2−n‖a‖

and

‖an‖ ≤ ‖a− a0 − · · · − an−1‖.

For each n, we may find bn in B with δ(bn) = δ(an) and ‖bn‖ ≤ ‖an‖. The
series b=

∑
n bn is then convergent in B and δ(b) = δ(a) by continuity of δ. �

As a final preliminary step, we observe the following important consequence
of the fact that δ(A) is closed.

Lemma 4.6. Suppose that δ : A → E is a bounded ∗-derivation with closed
range. For each n ≥ 1, there is ǫn > 0 such that if a is a partial isometry in
Mn(Ã), a∗a = p, aa∗ = q with δ(p) = δ(q) = 0 and ‖δ(a)‖ < ǫn, then there
are partial isometries a1, a2 in Mn(Ã) with a∗1a1 = a2a

∗
2 = a∗2a2 = p, a = a1a2,

δ(a2) = 0 and (q, q, a1) is elementary.

Proof. A standard argument using functional calculus (see, for example, [17,
Prop. 2.2.4]) proves that there is ǫ0 > 0 such that if c is a partial isometry in
any C∗-algebra C and d is any other element of C with ‖c− d‖ < ǫ0, then dd∗

is invertible in cc∗Ccc∗ and ‖d(d∗d)−1/2 − c‖ < 1.
Let K be the constant associated with δ :Mn(Ã)→Mn(E) in condition C1,

and set ǫn = K−1ǫ0, as above.
Given a, p, q as in the statement, we may find a3 in qMn(Ã)p with δ(a3) = 0

and ‖a3 − a‖<Kǫn. Let a2 = a3(a
∗
3a3)

−1/2 and a1 = aa∗2. All of the conclusions
are immediate except that (q, q, a1) is elementary. To see this, we first observe
that

‖a1 − q‖ = ‖aa∗2 − aa∗‖ ≤ ‖a2 − a‖ < 1.

It follows that a1 is homotopic to q in the invertibles of qMn(Ã)q. �

Lemma 4.7. Assume that A,B, δ, E satisfy conditions C1 and C2 of Theo-
rem 3.4. Let (1m, q, a) be in standard form in Γ(A ∩ ker(δ);A), and assume
that a is in Mn(Ã). Given ǫ > 0, there exists a partial isometry b in M2n(B̃)
with δ(b∗b) = 0, bb∗ = 1m and ‖δ(ab)‖ < ǫ.

Proof. We let ‖δ‖ be the norm of δ : Mn(A+B) → Mn(E). We also let K be
a constant such that C1 holds, for both δ :M2n(Ã)→M2n(E) and δ :M2n(B̃)→
M2n(E), making use of Proposition 4.3, Theorem 4.5 and Proposition 4.1.

Let ǫ′ > 0 be such that

‖δ‖[(8Kǫ′)1/2 + 4Kǫ′ + 7ǫ′] < ǫ

and so that Kǫ′ < 1/2.
We find a1 in Mn(A) such that ‖a− 1m − a1‖< ǫ′ and ‖1m + a1‖ ≤ ‖a‖= 1.

It follows that

‖(1m + a1)
∗(1m + a1)− 1m‖, ‖(1m + a1)(1m + a1)

∗ − q‖ ≤ 2ǫ′.
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If we replace a1 by a1 · 1m, the same estimate still holds, and so we may assume
that a11m = a1.

We use condition C2 to find b1 in Mn(B) and e in Mn(M(A)), commuting
with 1m, with

a1 = a1e = ea1 = b1e = eb1, δ(a1) = δ(b1).

By replacing b1 with b11m, we may assume that b11m = b1.
Let

f(t) =

{
1, t ≤ 1,

t−1/2, t ≥ 1,

and b2 = (1m + b1)f((1m + b1)
∗(1m + b1)). It is clear that b2 is in Mn(B̃),

b21m = b2 and ‖c‖ ≤ 1. It follows that

b3 =

[
b∗2 (1m − b∗2b2)

1/2

0 0

]

is in M2n(B̃) and satisfies b3b
∗
3 = 1m.

We define the partial isometry

ab3 =

[
ab∗2 a(1m − b∗2b2)

1/2

0 0

]
.

First, we note

‖δ(ab3)‖ ≤ ‖δ((1m + a1)b3)‖+ ‖δ‖‖a− (1m + a1)‖

≤ ‖δ((1m + a1)b3)‖+ ‖δ‖ǫ′.

To deal with the first of the two terms, we make extensive use of Lemma 4.4.
We compute

‖δ((1m + a1)b
∗
2)‖ = ‖δ(1m + a1)b

∗
2 + (1m + a1)δ(b2)

∗‖

= ‖δ(1m + a1)f((1m + b1)
∗(1m + b1))(1m + b1)

∗

+ (1m + a1)δ(a1)
∗‖

= ‖δ(1m + a1)f((1m + a1)
∗(1m + a1))(1m + a1)

∗

+ (1m + a1)δ(a1)
∗‖

= ‖δ((1m + a1)
∗(1m + a1))‖ ≤ ‖δ‖2ǫ′.

Finally, letting h(t) = (1− tf(t)2)1/2, as 0 ≤ 1m + a∗1(1m + a1) ≤ 1,

‖h((1m + a1)
∗(1m + a1))‖ = ‖1m − (1m + a1)

∗(1m + a1)‖ ≤ 2ǫ′.
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We also have

δ((1m + a1)(1m − b∗2b2)
1/2) = δ(1m + a1)(1m − b∗2b2)

1/2

+ (1m + a1)δ((1m − b∗2b2)
1/2)

= δ(1m + a1)h((1m + b1)
∗(1k + b1))

+ (1m + a1)δ(h(1m + b1)
∗(1m + b1))

= δ(a1)h((1m + a1)
∗(1m + a1))

+ (1m + a1)δ(h((1m + a1)
∗(1m + a1)))

Together, we conclude that

‖δ((1m + a1)(1m − b∗2b2)
1/2)‖ ≤ ‖δ‖4ǫ′.

Putting this together implies that

‖δ(ab3)‖ ≤ ‖δ‖2ǫ′ + ‖δ‖4ǫ′ + ‖δ‖ǫ′ = 7‖δ‖ǫ′.

At this point, the only property lacking for b3 is that δ(b∗3b3) may not be
zero. Let p′ = b∗3b3. We have

‖δ(p′)‖ = ‖δ((ab3)
∗(ab3))‖ ≤ 2‖δ(ab3)‖ ≤ ǫ′.

So we may find b4 in M2n(B̃) with δ(b4) = 0 and ‖b4 − p′‖ ≤ Kǫ′. We may
also assume that b4 is selfadjoint. By [17, Lem. 2.2.3], the spectrum of b4
is contained in [−Kǫ′, Kǫ′] ∪ [1 −Kǫ′, 1 +Kǫ′]. As Kǫ′ < 1/2, we have that
p = χ(1/2,∞)(b4) is a projection in M2n(B̃) ∩ ker(δ) and ‖p − p′‖ ≤ 2Kǫ′. It
follows from routine estimates that we may find a partial isometry b5 inM2n(B̃)
such that b5b

∗
5 = p′ and b∗5b5 = p and ‖b5 − p‖ ≤ (8Kǫ′)1/2 + 4Kǫ′. From this,

it follows that
‖δ(b5)‖ ≤ ‖δ‖[(8Kǫ′)1/2 + 4Kǫ′].

Letting b = b3b5 now satisfies all the desired properties. �

Lemma 4.8. Suppose that (1m, q, a) in Γ(A ∩ ker(δ);A) is in standard form
and that ǫ > 0. Then there exist (1m, p, b) in Γ(B ∩ ker(δ);B) also in standard
form and (q, q, ã) in Γ(A ∩ ker(δ);A), elementary with a∗a = aa∗ = q such that
(1m, q, ãa) is isomorphic to (1m, q′, b) in Γ(ker(δ), A+B) via 1m, b(ãa)∗.

Proof. By Lemma 4.7, we may find a partial isometry b in M2n(B̃) with
bb∗ = 1m, p = b∗b in ker(δ) and ‖δ(ab)‖ < ǫ4n.

Let ρ : Ã+B → Ã+B/A denote the quotient map. As we observed in the
proof of Theorem 3.2, we have ρ(B̃) = ρ(ker(δ)). Hence, we may find c in
M2n(ker(δ)) such that ρ(c) = ρ(ab) and ‖c‖ ≤ ‖ab‖ ≤ 1.

It follows that

c′ =

[
qc (q − qcc∗q)1/2

0 0

]

is in M4n(ker(δ)), c
′c′∗ = q and ρ(c′) = ρ(ab). Hence, c′∗ab is a partial isometry.

Let p′ denote its initial projection, which is also in M4n(ker(δ)). Moreover, we
have

ρ(c′∗ab) = ρ(c′)∗ρ(ab) = ρ(ab)∗ρ(ab) = ρ(p) = ṗ,
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as p is in Mn(Ã ∩ ker(δ)). This means that c′∗ab is in M4n(Ã); let us denote
it by a1. We have a∗1a1 = b∗a∗c′c′∗ab = p and a1a

∗
1 = q. Therefore, (p, q, ab) is

isomorphic to (p′, q, a1) via c′, q. Using the fact c′ is in ker(δ), we have

‖δ(a1)‖ = ‖δ(c′∗ab)‖ = ‖c′∗δ(ab)‖ < ǫ4n.

It now follows from Lemma 4.6 that a1 = a2a3, with a∗2a2 = a3a
∗
3 = a∗3a3 = p,

q1 = a2a
∗
2, δ(a2) = 0 and (p, p, a3) elementary. It follows that

a = aba∗1a1b
∗ = (aba∗1)a2a3b

∗

and hence

(aba∗1a2)a
∗
3(aba

∗
1a2)

∗a = (aba∗1a2)b
∗.

Observe that ã = (aba∗1a2)a
∗
3(aba

∗
1a2)

∗ is also elementary and (1m, q′, ãa) is
isomorphic to (1m, p, b∗) via 1m, b∗a∗ã∗. �

We are now ready to prove Theorem 3.4. We begin with surjectivity. Let
(1m, q, a) be in Γ(ker(δ) ∩A;A), and assume it is in standard form and that a
is in Mn(Ã). We apply Lemma 4.6 to the map δ :A+B →E to obtain ǫ2n. By
Lemma 4.7, we may find a partial isometry b in M2n(B̃) such that δ(b∗b) = 0,
bb∗ = 1m and ‖δ(ab)‖ < ǫ2n. Let p = b∗b. From Proposition 2.3, we know that

[1m, q, a] + [p, 1m, b] = [p, q, ab].

By Lemma 4.6, we may write ab = c1c2, where c1, c2 are partial isometries in
M2n(Ã+B) with δ(c2) = 0 and (q, q, c1) elementary. It follows that (p, q, ab)
is isomorphic to (q, q, c1) via c2, q, and hence it represents the zero element of
K0(ker(δ);A+B). It follows from Theorem 3.2 that α[1m, p, b∗] = [1m, q, a].

We now turn to the issue in injectivity. In view of Theorem 3.2, it suffices to
prove that the map from K0(B ∩ ker(δ);B) to K0(ker(δ), A+ B) is injective.
Let (1m, q, b) be an element of Γ(ker(δ) ∩B;B) which is in standard form and b
is in Mn(B̃) and such that its class in K0(ker(δ), A+B) is zero. From Propo-
sition 2.3, there exist (1k, 1k, c1) and (1k+m, 1k+m, c2) which are elementary
and in standard form such that c2(b⊕ c1)

∗ is in ker(δ).
As c1, c2 are elementary, we may find a partial isometry c1(t) in

M2k((C0(0, 1]⊗ (A+B))∼)

such that (1k, 1k, c1(t)) is in standard form in

Γ(ker(1C0(0,1] ⊗ δ) ∩ C0(0, 1]⊗ (A+B);C0(0, 1]⊗ (A+B)).

We may also find c2(t) in an analog way in M2(k+m)(C0(0, 1]⊗ (A+B))∼).
By part (iii) of Proposition 4.3, we know that conditions C1 and C2 also

hold for C0(0, 1]⊗ A and C0(0, 1] ⊗ B. We apply Lemma 2.3 to find partial
isometries a1(t) in M2k((C0(0,1]⊗A)∼) and a2(t) in M2(k+m)((C0(0,1]⊗A)∼)
such that

δ(a1c
∗
1) = δ(a2c

∗
2) = 0, a∗1a1 = 1k, a∗2a2 = 1k+l.

Note that aia
∗
i = (aic

∗
i )(aic

∗
i )

∗ is in ker(δ).
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With ǫ = ǫ4(k+m)/2, we now appeal to Lemma 4.7 to find

b1(t) in M4k((C0(0, 1]⊗B)∼),

b2(t) in M4(k+m)((C0(0, 1]⊗B)∼)

such that

(1⊗ δ)(bi(t)
∗bi(t)) = 0,

b1(t)b1(t)
∗ = 1k,

b2(t)b2(t)
∗ = 1k+m,

‖(1⊗ δ)(ai(t)bi(t))‖ < ǫ.

Now, there is a small problem in that b1(t)
∗b1(t) may not be constant in t.

But it is a continuous path of projections in M4k(ker(δ)∩B) which begins at 1k
at t = 0. Hence, we may find a continuous path of partial isometries b3(t) in
M4k(ker(δ) ∩B) with b3(t) = 1k, b3(t)b3(t)

∗ = b1(t)
∗b1(t), b3(t)

∗b3(t) = 1k. By
replacing b1(t) by b1(t)b3(t), we may assume b1(t)

∗b1(t) = 1k for all t, without
changing the other properties of b1(t). We do the same for b2(t).

It follows that if we define b1 = b1(1), b2 = b2(1), then (1k, 1k, b1) and
(1k+m, 1k+m, b2) are elementary in Γ(ker(δ) ∩B;B). Moreover, we can write

b∗2(b ⊕ b∗1)
∗ = b∗2(b

∗ ⊕ b1)

= b∗2a
∗
2a2c

∗
2c2(b

∗ ⊕ c∗1c1a
∗
1a1b1)

= (a2b2)
∗(a2c

∗
2)c2(b

∗ ⊕ c∗1)(1m ⊕ (c1a
∗
1))(a1b1).

Observe that the terms are grouped so that each group is in the kernel of δ,
except the first and last, a2b2, a1b1. It follows that

‖δ(b∗2(b⊕ b∗1)
∗)‖ < 2ǫ.

By Lemma 4.6, we may find partial isometries b4, b5 in M(B̃) such that

b∗2(b⊕ b∗1)
∗ = b4b5,

δ(b5) = 0 and (1k+m, 1k+m, b4) is elementary. It follows that (1m ⊕ 1k, q ⊕ 1k,
b ⊕ b1) is isomorphic to (1k+m, 1k+m, b∗4b

∗
2) via 1k+m, b5 As the latter is ele-

mentary, it follows that [1m, q, b] = 0 in K0(ker(δ) ∩B;B).

5. Groupoid C∗-algebras

We are interested in applying our excision result to various groupoid C∗-
algebras. The first question which arises, even before we get to some of the
more subtle hypotheses, is when the C∗-algebra of one groupoid lies in the
multiplier of another. This issue is the focus of this section. We refer the
reader to [16, 19] as standard references on groupoids and their C∗-algebras.

The question for us will reduce to the following: suppose that G is a locally
compact, Hausdorff groupoid with a Haar system and H is a subgroupoid of G,
endowed with its own locally compact, Hausdorff topology which is finer than
the relative topology of G. Under what circumstances can we conclude that
C∗

r (G) lies in the multiplier algebra of C∗
r (H)?
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If this situation does not seem intuitive, let us provide some justification.
The first is that it arises quite naturally as we will show in the next two
sections. Secondly, let us offer the following fairly simple example, which is
a special case.

It is well-known that the category of unital, commutative C∗-algebras is
isomorphic to that of compact, Hausdorff spaces with continuous maps. If we
enlarge this to include nonunital commutative C∗-algebras, we replace “com-
pact” by “locally compact” and also require the maps to be proper. On the
other hand, there is an alternative (less categorical) possibility. Suppose that
X, Y are locally compact, Hausdorff spaces and α : Y → X is simply contin-
uous. Then α induces a ∗-homomorphism ρ from C0(X) to the algebra of
continuous bounded functions on Y , which is multiplier algebra of C0(Y ). The
point is that, for f in C0(X), while f ◦ α may not be compactly supported,
it is continuous, and its product with any compactly supported function on Y
will be compactly supported and continuous.

If we additionally assume that α is injective, then we can simply identify
α(Y ) with its image in X , which we will simply denote Y . But the map α
induces a topology on Y which is possibly finer than the relative topology
from X . The map ρ we described above is now simply the restriction of func-
tions from X to Y . If we consider X and Y with the co-trivial groupoid
structures (that is, the equivalence relation which is equality), then this is ex-
actly the situation we outlined above and we have a positive answer to our
question. In general, of course, more hypotheses are needed.

We first discuss the structure and relations in the setting of H ⊆ G, but
at the end of the section, we will provide some constructions for obtaining
H from G which are inspired by the seminal work of Muhly, Renault and
Williams [9].

Let us begin by setting out some standard notation for groupoids and group-
oid C∗-algebras.

Let G be a groupoid. That is, there is a set of composable pairs, G2 ⊆G×G
with a product from G2 to G. We assume this is associative, as in [16]. It will
sometimes be convenient to denote the product map as µG from G2 to G. The
units of G are denoted by G0 and the range and source maps rG, sG : G→ G0,
rG(g) = gg−1, sG(g) = g−1g for all g in G. When no confusion can arise, we
will drop the subscripts. We let Gu = r−1

G {u}, Gu = s−1
G {u} for each u in G0.

A subset X of G0 is called G-invariant if, whenever g is in G with rG(g) in X ,
then sG(g) is also in X .

We also assume that G is a topological groupoid; that is, it has a topol-
ogy TG in which the inverse and product are continuous. Moreover, we assume
throughout that it is second countable, locally compact and Hausdorff.

Recall the definition of a Haar system for G: for each u in G0, there is
a measure νu on Gu with full support and such that the function

u →

∫

Gu

f(x) dνu(x)
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is continuous for every f in Cc(G), the continuous compactly supported func-
tions on G. We also assume that ν is left-invariant in the sense that, for any
g in G and f in Cc(G), we have

∫

Gs(x)

f(xy) dνs(x)(y) =

∫

Gr(x)

f(y) dνr(x)(y).

The following result is well-known, but worth recording here.

Lemma 5.1. Let G be a locally compact, Hausdorff groupoid. The following
are equivalent.
(i) The map rG : G → G0 is open.
(ii) The map sG : G → G0 is open.
(iii) The product map µG : G2 → G is open.
If the groupoid has a Haar system, then all three conditions are satisfied.

Proof. The equivalence of the first two follows from the facts that x → x−1 is
a homeomorphism and r(x−1) = s(x).

Let us assume the first condition holds and prove the third. Let (x, y) be
in G2, x ∈ U , y ∈ V , open, and suppose that µ(U × V ∩G2) is not open. Then
there exists a sequence zk converging to xy which is not in µ(U × V ∩ G2).
Choose a decreasing sequence of open sets, Ul, l ≥ 1, contained in U and with
intersection {x}. Since r is open, r(Ul) is open and contains r(x), which is the
limit of the sequence r(zk), as r is continuous. Hence, for each l, we may find kl
and xl in Ul such that r(xl) = r(zkl

). Hence, the sequence xl is converging to x,
and x−1

l zkl
is converging to x−1(xy) = y. So, for l sufficiently large, x−1

l zkl
is

in V , and hence zkl
= xl(x

−1
l zkl

) is in µ(U × V ∩G2), a contradiction.
The third condition implies the first on general topological grounds.
The last statement is [16, Prop. 2.4, Chap. 2]. �

We now begin to consider the situation we outlined of H ⊆G. The following
is an extension result that will be needed shortly.

Lemma 5.2. Let (G,TG) and (H,TH) be locally compact, Hausdorff topological
groupoids and that νu, u ∈ G0, is a Haar system for G. Assume that H is
a subgroupoid of G such that the topology TH is finer than the relative topology
on H of TG and that, for every u in H0, Hu = Gu and the relative topologies
from TH and TG agree on this set.

Let Y ⊆ H be a subset which is closed in both topologies and such that
the two topologies agree on this set. Let K ⊆ H0 be compact, M ≥ 1, and
suppose that a :H → CM is continuous, compactly supported and r(supp(a)) ∪
s(supp(a)) ⊆ K. Then there exists b : G → CM continuous and compactly
supported such that b(x) = a(x) for all x in Y ∪ r−1(K) ∪ s−1(K).

Proof. Let U = {x ∈ H | a(x) 6= 0}. It follows that U is compact in H , hence
also in G, and the two topologies agree on this set. As Y and U are closed in
both H and G, the two topologies agree on Y ∪ U .

Let X = r−1(K) ∪ s−1(K), which is closed in G.
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We define b(x) = a(x) for all x in U ∪ Y , and we define b(x) = 0 for all x
in X − U . First, observe that this is well-defined, for if x is in X − U , then
a(x) = 0. Secondly, both of these sets are closed in G. Thirdly, b(x) is contin-
uous on both: on the first because the two relative topologies agree there and
on the second because it is constant there. Finally, the support of b(x) is con-
tained in U , which is precompact. Hence, by the Tietze extension theorem [11,
Prop. 1.5.8]), b may be extended to a continuous function of compact support
on G.

It is clear that b(x) = a(x) for any x in Y . Now, suppose that r(x) is in K.
If x is in U , then b(x) = a(x) by definition. If x is not in U , then a(x) = 0 by
the hypothesis on U , while b(x) = 0 as x is in X − U . The case for s(x) ∈ K
is similar. �

Theorem 5.3. Let (G,TG) and (H,TH) be locally compact, Hausdorff topolog-
ical groupoids, and suppose that νu, u ∈ G0, is a Haar system for G. Assume
that H is a subgroupoid of G such that the topology TH is finer than the relative
topology on H of TG and that, for every u in H0, Hu = Gu and the relative
topologies from TH and TG agree on this set.

Then the following are equivalent.
(i) The map r : H → H0 is open (in TH).
(ii) The map s : H → H0 is open (in TH).
(iii) νu, u ∈ H0, is a Haar system for H.

Proof. The first two conditions are clearly equivalent since r(x−1) = s(x) and
x → x−1 is a homeomorphism. The third condition implies the first from
Lemma 5.1 or [16, Prop. 2.4, Chap. 2].

It remains for us to prove that the first condition implies the third. First,
it is clear from the fact that the two topologies agree on all sets Hu = Gu that
the measures are well-defined, have the desired support and are left-invariant.
It remains for us to verify the continuity property.

Let h be any continuous function of compact support on H . Let

U = {x ∈ H | h(x) 6= 0}.

Its closure U is compact in H and so is K = r(U)∪ s(U). We apply Lemma 5.2
to find g in Cc(G) such that g(x) = h(x) for all x with r(x) or s(x) in K.

We consider the function I(u) =
∫
Hu h(x) dνu(x) defined on H0 and show

it is continuous. We appeal to the same general topology result as in the last
proof. First, on the set r(U ), it agrees with the function J(u)=

∫
Gu g(x) dν

u(x).
As νu is a Haar system, this function is continuous on G0 in the topology TG,
and so its restriction to r(U ) is continuous in the topology TH . Secondly, on
the set H0 \ r(U), it is clearly 0, which is continuous in any topology. These
two sets cover H0. The first is closed as we observed above that it is com-
pact. The second is closed since U is open and our hypothesis is that r is an
open map. �

Münster Journal of Mathematics Vol. 14 (2021), 349–402



372 Ian F. Putnam

We consider the left regular representation of G, λG. For each unit u in G0,
we define the measure νu on Gu by νu(E) = νu(E−1) for any Borel set E in Gu.
We let L2(Gu, νu) be the corresponding Hilbert space and define (with a slight
abuse of notation) L2(G, ν) =

⊕
u∈G0 L2(Gu, νu). It is worth noting that the

elements can be seen as functions on G. For each f in Cc(G) and u in G0, we
define the operator λu(f) on L2(Gu, νu),

(λu(f)ξ)(x) =

∫

y∈Gu

f(xy−1)ξ(y)σ(xy−1, y) dνu(y),

for f in Cc(G), ξ in L2(G,ν) and x in Gu. We also let λG(f) be
⊕

u∈G0 λu(f).

We let λH denote the left regular representation ofH on L2(H,ν). From the
fact that, for every unit u, Gu = Hu, and assuming they have the same topol-
ogyG and inH , the Hilbert space L2(H,ν) is a closed subspace of L2(G,ν). We
use this inclusion implicitly. Furthermore, we can regard the operators λH(f),
f ∈ Cc(H), and also those in the operator-norm closure of these as being de-
fined on L2(G, ν) by setting them to be zero on the orthogonal complement
of L2(H, ν).

Theorem 5.4. Let (G,TG) be a locally compact, Hausdorff topological groupoid
with Haar system νu, u ∈ G0, and 2-cocycle σ. Let H ⊆ G be a subgroupoid
with a topology TH in which it is also locally compact and Hausdorff. Suppose
that
(a) H0 ⊆ G0 is G-invariant,
(b) the topology TH is finer than the relative topology of TG on H,
(c) for every u in H0, the topologies TG, TH agree on Hu =Gu and Gu =Hu,
(d) νu, u ∈ H0, is a Haar system for H.

Then the following hold.
(i) For each f in Cc(G) and g in Cc(H), the functions

(fg)(x) =

∫

Hu

f(y)g(y−1x)σ(y, y−1x) dνu(y),

(gf)(x) =

∫

Hu

g(y)f(y−1x)σ(y, y−1x) dνu(y)

are well-defined and in Cc(H).
(ii) For each f, g as above, we have

λG(f)λH(g) = λH(fg),

λH(g)λG(f) = λH(gf).

(iii) This defines a map sending f in Cc(G) to ρ(f) in M(Cc(H)) which extends
to a ∗-homomorphism from C∗

r (G,σ) to M(C∗
r (H,σ)) which is injective if

and only if H0 is dense in G0.

We will not give the proof which is really quite straight-forward.
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It is observed in [16, Rem. (iii), p. 59, and Prop. 1.14] that there is a natural
way that Cc(H

0) acts as multipliers of Cc(H):

(ef)(x) = e(r(x))f(x), (fe)(x) = f(x)e(s(x))

for each f in Cc(H), e in Cc(H
0) and x in H . In our case here, this repre-

sentation of Cc(H) interacts with Cc(G) in a particularly nice way. Observe
that the two formulas above make sense equally well if e is in Cc(H

0) and f is
in Cc(G), the results being functions on H , and it is easy to see that they are
both continuous and have compact support.

There remains one technical issue in this construction. Suppose that f is
a continuous function of compact support onH . Let us suppose for the moment
that H is closed in G (which is rarely the case). Then the Tietze extension

theorem guarantees the existence of a continuous function f̃ on G such that
f̃ |H = f . It is a more subtle question to ask if f̃ may be chosen so that the

norm ‖f̃‖r can be controlled in some way by ‖f‖r, independently of f .
This is true if we replace the reduced C∗-norm by the uniform norm. The

proof is quite standard, but it will be helpful to examine it, as we will do in
a moment.

As we noted, H itself is usually not closed in G, and it is necessary for us
to restrict our attention to subsets of H which are closed in G, which usually
rules out H itself.

Definition 5.5. Let (G,TG) be a locally compact, Hausdorff topological group-
oid with Haar system νu, u∈G0, and 2-cocycle σ. Let H ⊆G be a subgroupoid
with a topology TH , in which it is also locally compact and Hausdorff.

For any C ≥ 1, we say that a set X ⊆ H which is closed in G (and hence
also in H) has the C-extension property if, for any f in Cc(H) with support

in X , there exists f̃ in Cc(G) such that f̃ |X = f |X and ‖f̃‖r ≤ C‖f‖r.

Let us just check that the property holds (with C = 1) if we use the uniform
norm instead of the reduced C∗-norm.

Let X be a subset of H which is closed in G. Let f be in Cc(H) with
support in X . Consider X ∪ {∞} as a closed subset of G ∪ {∞}, the one-
point compactification of G. Extending f |X to be zero at ∞, this function
is continuous on X , with the topology from G, and we may apply the Tietze
extension theorem to find f̃ , a continuous function of G ∪ {∞} which agrees
with f on X and is zero at ∞. It is a simple matter to check that this can be
modified so that f̃ is actually compactly supported.

It remains to worry about the norm of the extension. Define the function
h(t) to be 1 for t in the interval [0,‖f‖2], and ‖f‖−1t−1/2 for t > ‖f‖2. It is an

easy exercise to check that f̃h(f̃∗f̃) satisfies all the desired properties. Notice

that h(f̃∗f̃) exists in the unitization C(G ∪ {∞}).
It is worth asking why this same argument does not suffice for general

groupoids. The answer is that h(f̃∗f̃) exists in the unitization of C∗
r (G) but

not necessarily in the unitization of Cc(G), and the element f̃h(f̃∗f̃) exists in
C∗

r (G) but not necessarily in Cc(G).

Münster Journal of Mathematics Vol. 14 (2021), 349–402



374 Ian F. Putnam

Now, we could replace the function h above by some polynomial which
approximates our given h, and our final element would indeed lie in Cc(G),

but then we cannot be sure of the condition f̃ |X = f |X .
It follows then that, in the case thatH andG are co-trivial,G=G0, H =H0,

where the two norms agree, this holds. In generality, it seems to be a subtle
issue, although it does hold in many cases of interest.

Let us just observe the following positive result in a very special case.

Proposition 5.6. Let G, H be as in Definition 5.5, and assume that H is
closed in G. Then G−H is also a locally compact groupoid with Haar system.
Assume we have a short exact sequence

0 → C∗
r (G−H) → C∗

r (G) → C∗
r (H) → 0.

(See [16, 1] for further discussion.) Then H has the C-extension property for
any C > 1.

Proof. Let the quotient map from C∗
r (G) to C∗

r (H) be denoted by ρ. Let f be
in Cc(H). It is a consequence of the Tietze extension theorem that we may
find g in Cc(G) with ρ(g) = g|H = f . It follows that

‖f‖r = inf{‖f + b‖r | b ∈ C∗
r (G−H)}.

The desired conclusion follows for any C > 1 from the fact that Cc(G−H) is
dense in C∗

r (G−H). �

I do not know if the converse holds (the C-extension property implies ex-
actness), but this does suggest that the property is linked with amenability/
exactness in some way.

Our next task is to provide a fairly general way of constructing groupoids
H ⊆ G from G. This follows ideas of Muhly, Renault and Williams [9].

Let (G,TG) be a locally compact, Hausdorff topological groupoid with Haar
system νu, u ∈ G0, and 2-cocycle σ. Suppose that Y is a closed subset of G0.
We can form

GY
Y = {g ∈ G | r(g), s(g) ∈ Y },

which is obviously a closed subgroupoid of G with unit space Y . It also acts
on the left of

GY = {g ∈ G | r(g) ∈ Y }.

Observe that this action is free in the sense that g · x = x for g in GY
Y and x

in GY with s(g) = r(x) only if g is a unit. It is also proper in the sense that
the map sending (g, x) in GY

Y ×GY with s(g) = r(x) to (gx, x) in GY ×GY is
a proper map.

We define

H̃ = {(x, y) ∈ GY ×GY | r(x) = r(y)},

which is equipped with an action of GY
Y by g(x, y) = (gx, gy) for (x, y) in H

and g in GY
Y with s(g) = r(x) = r(y). This action is also free and proper.
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Theorem 5.7. Let (G,TG) be a locally compact, Hausdorff topological groupoid
with Haar system νu, u ∈ G0, and a 2-cocycle σ. Suppose that Y is a closed
subset of G0 such that r, s : GY

Y → Y are open. If we define

H = {x−1y | (x, y) ∈ H̃},

and endow it with the quotient topology from the map sending (x, y) in H̃
to x−1y, then it satisfies the hypotheses of Theorem 5.4. In addition, GY is
a GY

Y −H-equivalence bimodule.

We will not give a proof of this result. Most of it follows the techniques
of [9] or is quite straight-forward. We would like to examine a special case
where G is a transformation groupoid.

Suppose that X is a locally compact Hausdorff space and Γ is a locally
compact Hausdorff topological group which acts on X by homeomorphisms on
the right: that is, there is a map sending (x, γ) in X × Γ to xγ in X which is
continuous and satisfies (xγ)γ′ = x(γγ′) for all x in X , γ, γ′ in Γ.

Let G be the associated transformation groupoid: G = X ⋊ Γ, which is
simply X × Γ as a set with product given by (x1, γ1)(x2, γ2) = (x1, γ1γ2) if
x1 · γ1 = x2 and inverse (x,γ)−1 =(x · γ,γ−1). The unit space is G0 =X ×{eΓ}.
For notational convenience, we will usually write this as simply X . It is given
the product topology. It has a Haar system by transferring the Haar measure
from Γ to G(x,e) = {x} × Γ in the obvious way for any x in X .

We remark that, in this example, the reduced groupoid C∗-algebra C∗
r (G)

coincides with the reduced crossed product algebra C0(X)⋊r Γ.

Definition 5.8. Suppose that X is a locally compact Hausdorff space and Γ
is a locally compact, Hausdorff topological group which acts on X by homeo-
morphisms If Y is a closed subset of X , we say that Y is Γ-semi-invariant if,
for every γ in Γ, either Y γ = Y or Y γ ∩ Y is empty. In this case, we denote
by ΓY the set of γ for which the first condition holds.

Notice that this includes the case Y γ ∩ Y = ∅ for all γ 6= e. Observe that
ΓY is clearly a subgroup of Γ. Also, notice that, for any γ in Γ, the set Y γ
depends only on the right coset ΓY γ.

The following is an easy consequence of the definitions, and we will not give
a proof.

Theorem 5.9. Suppose that X is a locally compact Hausdorff space and Γ is
a locally compact Hausdorff topological group which acts on X by homeomor-
phisms. Suppose that Y is a closed Γ-semi-invariant subset such that ΓY \ Γ
is discrete. Then ΓY is open in Γ. Moreover, GY

Y
∼= Y ⋊ ΓY , where the latter

is regarded as a transformation groupoid and the maps r, s : GY
Y → Y are open.

If H is groupoid given in Theorem 5.7, then the unit space of H is

H0 =
⋃

ΓY γ∈ΓY \Γ

Y γ
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and has the inductive limit topology. With this identification, H is isomorphic
to the transformation group

( ⋃

ΓY γ∈ΓY \Γ

Y γ
)
⋊ Γ.

These examples seem to be more accessible for the extension property men-
tioned earlier. While the following deals with a couple of specific closed subsets
of H , it would seem the techniques of proof could be applied more generally,
and we will do so in future sections.

Theorem 5.10. Let X be a locally compact Hausdorff space, and let Γ be
a locally compact Hausdorff topological group acting on X by homeomorphisms.
Suppose that Y is a closed Γ-semi-invariant subset of X. Suppose that ΓY \ Γ
is discrete. Let H be as in Theorem 5.7.

If there is a short exact sequence

0 → C0(X − Y )⋊r ΓY → C0(X)⋊r ΓY → C0(Y )⋊r ΓY → 0,

then the closed sets GY ,G
Y ⊆H have the extension property of Definition 5.5.

We will not give a proof. First, we will not need the result. Secondly, the
proof is very similar to the one given for the last item in Theorem 6.18.

6. Application to subgroupoids

In this section, we consider a groupoid G and open subgroupoid G′ and give
conditions under which our excision theorem can be applied to the reduced
groupoid C∗-algebra B = C∗

r (G) and a C∗-subalgebra B′ = C∗
r (G

′).
We assume that G is a locally compact, Hausdorff, second countable group-

oid with Haar system νu, u ∈ G0, and 2-cocycle σ. We suppose that G0 ⊆
G′ ⊆ G is a subgroupoid (using the same algebraic operations) and is open
in G. This means that the unit space of G′ coincides with that of G. The
following is an easy result, and we omit the proof.

Theorem 6.1. Let G be a locally compact, Hausdorff topological groupoid with
Haar system νu, u ∈ G0, and suppose G0 ⊆ G′ ⊆ G is an open subgroupoid.
(i) The system of measures νu|Gu∩G′ , u ∈ G0, is a Haar system for G′.
(ii) The inclusion Cc(G

′) ⊆ Cc(G) obtained by extending functions to be zero
on G−G′ extends to an inclusion of C∗-algebras, C∗

r (G
′, σ) ⊆ C∗

r (G, σ).

Let us define a notational convention: if A⊆G is any subset of a groupoidG,
A2 = A×A ∩G2 and An, n ≥ 3, is defined in an analog way.

We state the following result for convenience. The proof is trivial, and we
omit it.

Lemma 6.2. For an open subgroupoid G0 ⊆ G′ ⊆ G, we have
(i) ∆ = G−G′ is closed in G,
(ii) ∆ = ∆−1,
(iii) ∆G′, G′∆ ⊆ ∆,
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(iv) ∆2 = (∆×∆) ∩G2 is closed in G2,
(v) ∆2 ∩ µ−1(G′) is open in ∆2.

We now want to construct a new pair of groupoids, H ′ ⊆ H . If u is any
unit of G, the set s(Gu) is G-invariant and the restriction of G to this set is
a transitive groupoid [16, Def. 1.1]. Of course, this restriction may be disas-
trous, topologically. Our new groupoids will be the restrictions of G and G′ to
all sets s(Gu) where they differ. In other words, all s(Gu) where u is in r(∆).
At least intuitively, any relative theory of G′ ⊆ G should be the same as that
for H ′ ⊆ H . The first difficulty lies in the issue of putting suitable topologies
on H ′ and H . In fact, there is a canonical way to do this, but we will need
certain technical conditions to proceed further.

To facilitate this, let us name some of the topologies involved. We let S be
the topology on G and SA be the relative topology on any subset A of G.

Definition 6.3. We say the inclusion G0 ⊆ G′ ⊆ G is regular if the map
r : ∆ → r(∆) is open, when the image is given the quotient topology. We let
R be the quotient topology on r(∆).

Lemma 6.4. Let G0 ⊆ G′ ⊆ G be an open subgroupoid. If the inclusion is
regular, then ∆2 ∩ µ−1(G′) is closed in ∆2.

Proof. Suppose that (xi, yi), i≥ 1, is a sequence in ∆2 ∩ µ−1(G′) converging to
(x, y), which is in ∆2, as ∆ is closed. Suppose that xy is in ∆. We may choose
a decreasing sequence of open subsets in G, Un, n ≥ 1, which intersect to xy.
Then Un ∩∆ is an open set in ∆ and, as our inclusion is regular, r(Un ∩∆) is
open in R. As xi ∈∆, i≥ 1, is converging to x, r(xi), i≥ 1, in the topology R.
So, for each n≥ 1, we may find xin such that r(xin ) is in r(Un ∩∆). So we may
find zn in Un ∩∆ with r(zn) = r(xin ). The sequence z−1

n xinyin is in ∆G′ = ∆
and converges to (xy)−1xy which is in G0 ⊆ G′. This contradicts G′ being
open. �

Definition 6.5. Assume that G0 ⊆ G′ ⊆ G is an open subgroupoid and that
the inclusion is regular. Define

H ′ = µ(∆2 ∩ µ−1(G′)) ⊆ G′.

We endow H ′ with the quotient topology from the map

µ : ∆2 ∩ µ−1(G′) → H ′

which we denote by T ′.

We observe the following for future purposes.

Lemma 6.6. With H ′ as defined in Definition 6.5, we have
(i) x in G′ is in H ′ if and only if r(x) is in r(∆),
(ii) H ′ is a subgroupoid of G′,
(iii) the unit space of H ′ is r(∆).
Moreover, the topology on the unit space given in Definition 6.5 agrees with
the quotient topology of r : ∆ → r(∆). That is, we have T ′

(H′)0 = R.
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Proof. For the first part, it is clear that

r(H ′) = r ◦ µ(∆2 ∩ µ−1(G′)) ⊆ r ◦ µ(∆2) ⊆ r(∆).

On the other hand, if x is in ∆, then (x, x−1) is in ∆2 and also µ−1(G′) and
r(x) = µ(x,x−1). The second and third statements follow easily from the first.

The final part relies on the following basic topological fact: if X is a topo-
logical space, f : X → Y is a surjection and Y is given the quotient topology,
then, for any Z ⊆ Y , the relative topology from Y agrees with the quotient
topology from f : f−1(Z) → Z. In our case, we use X = ∆2 ∩ µ−1(G′), f = µ,
H ′ = Y and Z = (H ′)0 along with the observation that the map sending x in ∆
to (x, x−1) is a homeomorphism from ∆ to µ−1((H ′)0. �

Theorem 6.7. Assume that G0 ⊆G′ ⊆G is an open subgroupoid and that the
inclusion is regular. Let H ′, T ′ be as in Definition 6.5.
(i) The topology T ′ on H ′ is finer than SH′ , the relative topology from G.
(ii) H ′ is topological groupoid.
(iii) H ′ is locally compact.
(iv) H ′ is Hausdorff.
(v) For each u in (H ′)0 = H ′ ∩G0, we have

Gu ∩H ′ = Gu ∩G′, Gu ∩H ′ = Gu ∩G′,

and the relative topologies from T ′and S are the same on each of these
sets.

(vi) The system of measures νu|Gu∩G′ , u ∈ (H ′)0, is a Haar system for H ′.

Proof. The first statement follows immediately from the fact that the map µ
is continuous and the definition of the quotient topology.

Let us consider the set ∆4 ∩ µ−1(G′)× µ−1(G′) and the map

(µ2 × id)(w, x, y, z) = (wxy, z)

defined on this set. First, we observe that wx is in G′, and so wxy is again
in ∆. We also note that wxyz = (wx)(yz) is in G′, and so we have

µ2 × id : ∆4 ∩ µ−1(G′)× µ−1(G′) → ∆2 ∩ µ−1(G′).

Moreover, we have a commutative diagram

∆4 ∩ µ−1(G′)× µ−1(G′)

µ×µ

��

µ2×id

// ∆2 ∩ µ−1(G′)

µ

��

(H ′)2
µH′

// H ′.

To verify µH′ is continuous, we must take an open set U in H ′ and see that
µ−1
H′ (U) is open in (H ′)2. To see that, we must see that (µ× µ)−1(µH′ )−1(U))

is open. From the commutativity of the diagram, we have

(µ× µ)−1(µH′ )−1(U)) = (µ2 × id)−1(µ−1(U)).
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The set µ−1(U) is open due to the definition of the topology on H ′, and
(µ2 × id)−1(µ−1(U)) is open because µ2 × id is continuous. The continuity
of the inverse in the new topology is obvious from the fact that µ(gh)−1 =
µ(h−1, g−1).

Let us proveH ′ is locally compact. Let h be in H ′, so it is in G′, and we may
write h= gg′ with g,g′ in ∆. As µ is open and G′ is open, we may find open sets
g ⊆U , g′ ⊆U ′, each with compact closure, such that µ(U ×U ′ ∩G2) is an open
set in G′. It follows fairly easily that µ(U ×U ′ ∩∆2) is an open set in H ′. Let
us verify its closure is compact. Let hn, n≥ 1, be any sequence. It follows that,
for every n, we can find gn in U ∩∆ and g′n in U ′ ∩∆ with gng

′
n = hn. As U and

u′ have compact closures, we may pass to a subsequence such that (gni
, g′ni

)
is converging. From Lemma 6.4, the limit of this subsequence must also lie in
µ−1(G′) ∩∆2. It follows then that hn has a subsequence converging in H ′.

The topology on H ′ is Hausdorff since it is finer than the usual topology,
which is Hausdorff.

For the fifth part, the containment Gu ∩ H ′ ⊆ Gu ∩ G′ is obvious since
H ′ ⊆ G′. For the reverse containment, let g be in Gu ∩G′. The fact that u is
in H ′ means that u = hh−1 for some h in ∆. We have g = ug = (hkh−1)g =
h(h−1g), which is in H ′ since h−1g is in ∆G′ ⊆ ∆.

As we know that the topology for H ′ is finer than that for G′, to see they
are equal, it suffices for us to take a sequence gn in (G′)u converging to g in the
topology of G′ and show it also converges in the topology for H ′. We simply
write gn = ugn = h(h−1gn), with h as above. It suffices now to observe that h,
h−1gn and h−1g are in ∆, and (h, h−1gn) converges to (h, h−1g) in G2. This
implies their images under µ converge in the quotient topology as desired.

For the last part, using Theorem 5.3, it suffices to prove that rH′ :H ′ → (H ′)0

is open. Let x be in H ′, and let U be a set in T ′ containing x. This means x
is in G′, while x = yz, with y, z in ∆. It also means that

µ−1(U) ∩∆2 ∩ µ−1(G′) = V ∩∆2µ−1(G′)

for some open set V in G2. We have (x,y) is in V ∩µ−1(G′), and so we may find
open sets W,Z in G with s(W ) = r(Z) such that W × Z ∩G2 ⊆ V ∩ µ−1(G′).
It follows from regularity and Lemma 6.6 that r(W ∩ ∆) is an open subset
of (H ′)0. We claim that it is contained in r(U). If u = r(w) for some w in
W ∩∆, then r(w) = r(wz) for some (w,z) in G2 ∩W ×Z ⊆ V . The fact that w
is in ∆ while wz is in G′ means that z is in ∆ also. Hence, (w,z) is in ∆2 ∩ V =
µ−1(U)∩∆2 ∩µ−1(G′), wz is in U and u= r(w) = r(wz)∈ r(U), as desired. �

Theorem 6.8. Assume that G0 ⊆G′ ⊆G is an open subgroupoid and that the
inclusion is regular. With H ′ as in Definition 6.5, we define H =H ′ ∪∆. We
endow H with the disjoint union topology; that is, both H ′ and ∆ are clopen.
We denote this topology by T so that TH′ = T ′ and T∆ = S∆.
(i) The topology T on H is finer than the relative topology from G.
(ii) H is topological groupoid.
(iii) H is locally compact.
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(iv) H is Hausdorff
(v) For each u in H0 = H ∩G0, we have

Gu ∩H = Gu, Gu ∩H = Gu,

and the relative topologies from H and G are the same on each of these
sets.

(vi) Then the systems of measures νu, u ∈ H0, is a Haar system for H.

Proof. The first, third and fourth parts follow easily from their counterparts
in Theorem 6.7. For the second part, the continuity of inverses is clear. As ∆
is clopen, it suffices to check the continuity of products on H ′ ×H ′, H ′ ×∆,
∆ ×H ′ and ∆ ×∆ separately. The first is done. The second and third both
have range in ∆, and the continuity follows from that of the product in G,
together with the fact that the topology on H ′ is finer than that of G. For the
last case, we use the fact that Lemma 6.4 implies that

∆2 = ∆2 ∩ µ−1(G′) ∪ (∆2 −∆2 ∩ µ−1(G′))

are clopen. On the first set, continuity follows from Theorem 6.7; the second
just uses the continuity in G.

For the proof of the fifth part, we can write Gu = (G′)u ∪ (∆ ∩ Gu), and
the result follows from Theorem 6.7.

The last part follows from the last part of Theorem 6.7 and Lemmas 6.4
and 6.6. �

We remark that the groupoids (G, S) and (H, T ) satisfy all hypotheses of
Theorem 5.4, and the conclusions hold.

We turn now to the regular representations of C∗
r (G, σ) and C∗

r (H, σ) on
L2(G, ν). We let p be the projection operator on L2(G, ν) whose range is
L2(G′, ν). That is, for ξ in L2(G, ν) and g in G, pξ(g) = ξ(g) for g in G′ and
pξ(g) = 0 for g in ∆.

We let E denote the C∗-algebra B(L2(G, ν)) and define δ : C∗
r (H, σ) +

C∗
r (G, σ) → E by δ(x) = i[x, p] = i(xp − px) for x in C∗

r (H, σ) + C∗
r (G, σ).

It is clear that δ is a completely contractive ∗-derivation.
We let χ∆ be the function on G which is 1 on ∆ and 0 on G′. It is neither

continuous, nor compactly supported, but will be useful, as follows.

Lemma 6.9. The following statements hold.
(i) For any function a in Cc(H), the function χ∆a (meaning the pointwise

product) is in Cc(H) and (1− χ∆)a is in Cc(H
′).

(ii) For any function a in Cc(H), we have

pa(1− p) = p(χ∆a),

(1− p)ap = (χ∆a)p,

δ(a) = δ(χ∆a),

pap = p((1− χ∆)a),

pap = ((1− χ∆)a)p.
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(iii) For any function b in Cc(G), the function χ∆b (meaning the pointwise
product) is in Cc(H).

(iv) For any function b in Cc(G), we have

pb(1− p) = p(χ∆b),

(1− p)bp = (χ∆b)p,

δ(b) = δ(χ∆b).

Proof. The first part follows from the fact that ∆ is both closed and open in H
and H ′ is the complement of ∆ in H .

For the first equation of the second part, let ξ be a function in L2(G, ν).
From the definition of p, (pa(1− p)ξ)(g) = (p(χ∆)aξ)(g) = 0 if g is in ∆. Now,
let g be in G′, and we compute

(pa(1− p)ξ)(g) = (apξ)(g)

=

∫

h∈Gr(g)

a(gh−1)((1 − p)ξ)(h)σ(gh−1, h) dνs(g)(h).

Now, ((1 − p)ξ)(h) is nonzero only if h is in ∆. As g is in G′, this means that
gh−1 must be in ∆ as well. For such values of gh−1, a(gh−1) = (χ∆a)(gh

−1),
and we have

(pa(1 − p)ξ)(g) =

∫

h∈Gs(g)

a(gh−1)((1− p)ξ)(h)σ(gh−1, h) dνs(g)(h)

=

∫

h∈Gs(g)∩∆

a(gh−1)((1 − p)ξ)(h)σ(gh−1, h) dνs(g)(h)

=

∫

h∈Gs(g)∩∆

(χ∆a)(gh
−1)ξ(h)σ(gh−1, h) dνs(g)(h)

=

∫

h∈Gs(g)

(χ∆a)(gh
−1)ξ(h)σ(gh−1, h) dνs(g)(h)

= ((χ∆a)ξ)(g).

The second equation is obtained by taking adjoints of both sides of the first
(with a∗ replacing a). For the third equation, we compute, using the first two
equations,

δ(χ∆a) = i(χ∆ap− pχ∆a)

= i((1− p)ap− pa(1− p))

= i(ap− pa) = δ(a).

For the fifth equation, it follows from the first that

pap = pa− p(χ∆a) = p((1− χ∆)a),

as desired. The sixth is done similarly.
The third part follows from the fact that ∆ has the same topology in H

as it does in G, and that ∆ is a clopen subset of H . So the function χ∆b is
a continuous function of compact support on H .
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The proofs of the last part are exactly the same as the first three parts of
the second part, and we omit the details. �

Lemma 6.10. If b is in Cc(G, σ), then δ(b) ∈ δ(Cc(H,σ)).

Proof. This follows at once from part (iii) and the last equation in part (iv) of
Lemma 6.9. �

Finally, we need a reasonable extension of the notion of finite index from
groups to groupoids to obtain condition C1 of Theorem 3.4.

Definition 6.11. Let G0 ⊆ G′ ⊆ G be an open subgroupoid. We say it has
finite index if there is a constant K ≥ 1 such that, for any u in G0, there is
a finite subset F ⊆ Gu with #F ≤ K and Gu = G′F .

We remark that if G′ ⊆ G is of finite index, then H ′ ⊆ H , as defined in
Definition 6.5 and Theorem 6.8, is also of finite index, as it is a purely algebraic
condition.

Lemma 6.12. Let H0 ⊆ H ′ ⊆ H be an open subgroupoid of finite index. If
K is as in the definition and p is the projection of L2(H, ν) onto L2(H ′, ν)
(Definition 6.11), then, for every a in C∗

r (H,σ), we have ‖a‖ ≤ K‖pa‖.

Proof. Let us fix a unit u in H0 and restrict our attention to L2(Gu, νu). Let
F ⊆ Hu be a subset of at most K elements such that FH ′ = Hu. We may
assume that this set is minimal so that f1f

−1
2 is not in H ′ for f1 6= f2 in F .

For each f in F , the map sending h in Hu to hf−1 in Hr(f) induces a unitary

operator Uf : L2(Hr(f), νr(f)) → L2(Hu, νu). This unitary operator conjugates

the part of the left regular representation of C∗
r (H,σ) on L2(Hu, νu) onto that

on L2(Hr(f), νr(f)). For convenience, we denote these two Hilbert spaces by
Hu and Hr(f), respectively. Define pf = UfpU

∗
f . It is an easy computation to

check that the condition that H ′F = Hu implies that
∑

f∈F pf is the identity

operator on L2(Hu, νu). Hence, we have

‖a|Hu
‖ =

∥∥∥
∑

f∈F

pfa|Hu

∥∥∥ ≤
∑

f∈F

‖pfa|Hu
‖

=
∑

f∈F

‖UfpU
∗
f a|Hu

‖

=
∑

f∈F

‖pU∗
f aUf |Hs(f)

‖

=
∑

f∈F

‖pa|Hs(f)
‖ ≤ K‖pa‖.

Taking the supremum over all u completes the proof. �

Corollary 6.13. If G0 ⊆ G′ ⊆ G is an open subgroupoid and the inclusion is
regular and of finite index, then the ∗-algebra Cc(H) satisfies condition C1 of
Theorem 3.4.
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Proof. Let a be in Cc(H), and define a′ = (1 − χ∆)a which is in Cc(H
′) by

Lemma 6.9. We have

δ(a) = i(ap− pa) = i((1 − p)ap− pa(1− p)).

The first of these terms maps pL2(G, ν) to (1− p)L2(G, ν) and the second the
other way. It follows then that

K‖δ(a)‖ = Kmax{‖(1− p)ap‖, ‖pa(1− p)‖}

= max{K‖(χ∆a)p‖,K‖p(χ∆a)‖}

≥ ‖χ∆a‖ = ‖a− a′‖. �

Lemma 6.14. If G0 ⊆ G′ ⊆ G is an open subgroupoid and the inclusion is
regular, then the ∗-algebra Cc(H) satisfies condition C2 of Theorem 3.4.

Proof. Let a1, . . . , aM be in Cc(H). Define a = (a1, . . . , aM ). Let

U = {x ∈ H | a(x) 6= 0}

so that U is compact in H . It follows that r(U ) ∪ s(U) is compact in H0. We
can find e :H0 → [0,1] which is continuous, identically one on r(U) ∪ s(U) and
has support contained in the compact set K ⊆ H0.

We apply Lemma 5.2 with K, a as above and Y = ∆ to each to obtain
b = (b1, . . . , bM ).

Then we have

δ(bm) = χδbm = χδam = δ(am),

from parts (ii) and (iv) of Lemma 6.9 for 1 ≤ m ≤ M .
We claim that am = eam for all 1 ≤ m ≤ M . For any x in H , we have

(eam)(x) = e(r(x))am(x). If x is not in U , then am(x) = 0 = e(r(x))am(x).
On the other hand, if x is in U , then r(x) is in r(supp(a)), and so e(r(x)) = 1.

Finally, we claim that eam(x) = ebm(x) for all x in H . If r(x) is in K, this
follows from the fact that am(x) = bm(x) for such x. On the other hand, if
r(x) is not in K, then em(x) = 0.

The proof that am = ame = bme is done in a similar way. �

What remains at this point is to verify that C∗
r (H,σ) ∩ ker(δ) = C∗

r (H
′, σ)

and C∗
r (G, σ) ∩ ker(δ) = C∗

r (G
′, σ). The first is relatively simple.

Theorem 6.15. If G0 ⊆ G′ ⊆ G is an open subgroupoid and the inclusion is
regular and of finite index, then

C∗
r (H,σ) ∩ ker(δ) = C∗

r (H
′, σ).

Proof. The containment C∗
r (H, σ) ∩ ker(δ) ⊇ C∗

r (H
′, σ) follows at once from

part (ii) of Lemma 6.9 and the continuity of δ. For the reverse inclusion, let a
be any element of C∗

r (H, σ) ∩ ker(δ). We may select a sequence an, n ≥ 1, in
Cc(H). As δ(a) = 0, we know δ(an), n ≥ 1, converges to 0. By Corollary 6.13,
for each n, we may find a′n in Cc(H

′) such that ‖an − a′n‖ ≤ K‖δ(an)‖, so a′n
also converges to a. �
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The second equality is more subtle, and we prove it only under some addi-
tional hypotheses. It would follow if we knew that A = Cc(G) satisfied condi-
tion C1 of Theorem 3.4, using exactly the same argument as above.

Lemma 6.16. Assume that G is a locally compact, Hausdorff groupoid with
Haar system νu, u ∈ G0, σ is a 2-cocycle on G and that G0 ⊆ G′ ⊂ G is
a regular, open subgroupoid of finite index with K as in the definition. If a is
in Cc(∆) ⊆ Cc(H), then ‖a‖ ≤ K‖δ(a)‖.

Proof. It follows from part (ii) of Lemma 6.9 that pa = p(χ∆a) = pa(1 − p)
and that ap = (χ∆a)p = (1− p)ap. We have

δ(a) = iap− ipa = (1− p)iap− pia(1− p).

Thus δ(a) is the sum of two operators, one which is zero on (1− p)H and has
range in (1 − p)H and the other which is zero on pH and has range in pH.
It follows that

‖δ(a)‖ = max{‖(1− p)iap‖, ‖pia(1− p)‖}

= max{‖ap‖, ‖pa‖} = max{‖pa∗‖, ‖pa‖}

≤ max{K‖a∗‖,K‖a‖} = K‖a‖. �

Theorem 6.17. Assume that G is a locally compact, Hausdorff groupoid with
Haar system νu, u ∈ G0, σ is a 2-cocycle on G and that G0 ⊆ G′ ⊂ G is
a regular, open subgroupoid of finite index. If the closed set ∆ = G − G′ has
the C-extension property of Definition 5.5 for some C ≥ 1, then

C∗
r (G, σ) ∩ ker(δ) = C∗

r (G
′, σ).

Proof. The containment C∗
r (G, σ) ∩ ker(δ) ⊇ C∗

r (G
′, σ) follows at once from

part (iv) of Lemma 6.9 and the continuity of δ. For the reverse inclusion, let b
be any element of C∗

r (G, σ) ∩ ker(δ). We may select a sequence bn, n ≥ 1, in
Cc(G). As δ(b) = 0, we know δ(bn), n ≥ 1, converges to 0. From part (ii) of
Lemma 6.10 above, χ∆bn lies in Cc(∆) ⊆ Cc(H), and from part (iv) of the
same lemma, δ(χ∆bn) = δ(bn). As ∆ satisfies the C-extension property, for
every n, we may find cn in Cc(G) with

cn|∆ = χ∆bn|∆ = bn|∆

and

‖cn‖ ≤ C‖χ∆bn‖ ≤ CK‖δ(χ∆bn)‖ ≤ CK‖δ(bn)‖.

It follows that ‖cn‖ tends to zero as n tends to infinity, so bn − cn also con-
verges to b. These functions are in Cc(G) and vanish on ∆, so they can be
approximated by functions in Cc(G

′). �

We finish this section with a specific construction which generalizes the orbit
splitting groupoids, first introduced in [12]. The group of integers still plays
an important role. This has seen a number of applications.

Suppose that the locally compact Hausdorff space X has an action by
homeomorphisms of the locally compact Hausdorff group Γ. Also, suppose
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that Y ⊆ X is semi-invariant in the sense of Definition 5.8. We further sup-
pose that ΓY is a normal subgroup of Γ and that the quotient group Γ/ΓY is
isomorphic to Z. Let us denote the quotient map from Γ to Z by ζ.

We notice that Theorem 5.9 applies immediately to this situation. But we
can go further to find an open subgroupoid.

Theorem 6.18. Let Γ,X,Y, ζ be as above, and let G=X ⋊Γ be the associated
transformation groupoid. Define

∆ = {(yγ1, γ
−1
1 γ2), (yγ2, γ

−1
2 γ1) | y ∈ Y, γ1, γ2 ∈ Γ, ζ(γ1) ≤ 0, ζ(γ2) > 0}

Then we have the following.
(i) G′ = G−∆ is an open subgroupoid.
(ii) The inclusion G0 ⊆ G′ ⊆ G is regular and of finite index.
(iii) If H and H ′ are the groupoids of Definition 6.5 and Theorem 6.8, then

H ∼= (Y ⋊ ΓY )× (Z ⋊ Z)

(the latter is the co-trivial groupoid), while

H ′ ∼= (Y ⋊ ΓY )× (Z− ⋊ Z− ∪ Z+ ⋊ Z+),

where Z+ = {1, 2, 3, . . .} and Z− = {0,−1,−2, . . .}.
(iv) If there is a short exact sequence

0 → C0(X − Y )⋊r ΓY → C0(X)⋊r ΓY → C0(Y )⋊r ΓY → 0,

then the closed set ∆ has the C-extension property for any C > 1.

Proof. Let us choose a in Γ with ζ(a) = 1.
First observe that Y γ = Y aζ(γ) for every γ in Γ. It follows that we may

write

∆ =
( ⋃

i≤0, j>0

Y ai × ζ−1{i+ j}
)
∪
( ⋃

i>0, j≤0

Y ai × ζ−1{j − i}
)
.

The sets on the right are pairwise disjoint, and each is clopen in G. It follows
that ∆ is closed, so G′ is open. It is a simple computation to check that G′ is
a subgroupoid.

For the second point, it is easy to check from the equation above that

r(∆) =
⋃

i∈Z

Y ai,

and that each of the sets Y ai is clopen in the quotient topology. In addition, the
restriction of r to a set of the form Y ai × γ is actually a homeomorphism to Y ai,
and in particular, r is open, so the inclusion is regular. It also follows that the
map sending yai to (y, i) is a homeomorphism between r(∆) and Y × Z.

We check that the inclusion is of finite index. If (x, e) is any unit in G
and x /∈ r(∆), then we may use F = {(x, e)} in Definition 6.11. On the
other hand, if (x, e) = (yai, e) for some y in Y and integer i, letting F =
{(yai, e), (ya−i+1, a2i−1)} satisfies Gu = G′

uF (the essential point being that
i ≤ 0 if and only if −i+ 1 > 0).
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As for the descriptions of H ′ and H , recall that (yai, γ) and (y′ai
′

, γ′) are

composable if and only if yaiγ = y′ai
′

. If this occurs, then i + ζ(γ) = i′ and

y′ = aiγa−i′ . We know also that if i ≤ 0, then i′ = i+ ζ(γ) > 0, while if i > 0,
then i′ = i+ ζ(γ) ≤ 0. It follows then that

∆2 ∩ µ−1(G′) =
⋃

(i,γ,γ′)

⋃

y∈Y

((yai, γ), (yaiγ, γ′)),

where the union is over y in Y and triples (i,γ,γ′) with either i≤ 0, i+ ζ(γ)> 0,
i+ ζ(γ)+ ζ(γ′)≤ 0 or i > 0, i+ ζ(γ)≤ 0, i+ ζ(γ)+ ζ(γ′)> 0. If we just take the
union over Y , these sets are pairwise disjoint, clopen and each is homeomorphic
to Y .

As a set, we can write

H ′ = {(yai, γ) | y ∈ Y, i, i+ ζ(γ) ≤ 0, or i, i+ ζ(γ) > 0},

and the isomorphism of (iii) sends (yai, γ) to ((y, a−iγai+ζ(γ)), (i, i + ζ(γ))).
We omit the topological details. This is extended to H by mapping (yai, γ)
in ∆ to ((y, a−iγai+ζ(γ)), (i, i+ ζ(γ))).

We turn our attention to the last part. Observe that, for any n≥ 2, the sets

∆n =

0⋃

i=1−n

n⋃

j=1

(Y ai × ζ−1{j − i} ∪ Y ajζ−1 × {i− j})

are all in ∆. Moreover, they are increasing with n, and each is clopen (in ∆
and hence also in H). Therefore, it suffices for us to consider a continuous
function f with compact support in ∆n for some fixed n. Let us denote Yn =⋃n

i=1−n Y ai, which we identify with r(∆n) = s(∆n).

In fact, ∆n is a clopen subset of the groupoid GYn

Yn
=HYn

Yn
, and by simply re-

stricting the function, we can regard f as being in Cc(G
Yn

Yn
), and its norm there

coincides with its norm in C∗
r (H).

As the sets Y ai, i ∈ Z, are pairwise disjoint, we may choose an open set
Y ⊆ U ⊆ X such that the sets Ual, 1− 3n ≤ l ≤ 3n, are pairwise disjoint also.

The set U will not necessarily be ΓY -invariant. In addition, U ∩Uai

may be
nonempty for some i 6= 0. However, we may consider the reductions (X × Γ)UU
and (X × ΓY )

U
U . Their associated C∗-algebras are hereditary subalgebras of

C0(X)⋊r Γ and C0(X)⋊r ΓY , respectively.
We define V =

⋃n
i=1−n Uai and, identifying V with V × {e} in G0,

G(V ) = GV
V ∩X × ζ−1{1− 2n, . . . , 2n− 1}.

This is an open subset of the groupoid GV
V . We claim that it is also a groupoid.

Suppose that (x, γ) is in G(V ). Then, for some 1− n ≤ i ≤ n, x is in Uai and
1 − 2n ≤ ζ(γ) ≤ 2n − 1. In addition, s(x, γ) = (xγ, e) is in V . On the other
hand, xγ is in Uai+ζ(γ) and 1 − 3n ≤ i + ζ(γ) ≤ 3n − 1. As these sets are
pairwise disjoint and only in V if 1 − 2n ≤ i + ζ(γ) ≤ 2n − 1, we know that
this inequality must hold.
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The left regular representation of C∗(G) also extends to a representation of
the bounded Borel functions on G0 as well as to a unitary representation of the
group Γ (see [16]). It is a simple matter to check that χUaiai = aiχU , and for
any g in Cc(G(V )), 1−n≤ i, j ≤ n, a−jχUajgχUaiai is in Cc((X ×ΓY )

U
U ). This

defines an isomorphism (we will not write it explicitly) between C∗
r (G(V )) and

M2n(C
∗
r ((X ×ΓY )

U
U )) (the matrix entries are indexed by the set {1−n, . . . ,n}).

For simplicity, let us denote X × ΓY by L.
The set Yn is a closed invariant subset of the unit space of G(V ), and we

have a quotient map from C∗
r (G(V )) to C∗

r (G
Yn

Yn
). This yields the following

commutative diagram:

C∗
r (G(V )) //

��

C∗
r (G

Yn

Yn
)

��

M2n(C
∗
r (G

U
U ))

// M2n(C
∗
r (G

Y
Y )),

and the vertical map on the right is also an isomorphism.
We now invoke our hypothesis to extend this diagram to

C∗
r (G(V )) //

��

C∗
r (G

Yn

Yn
)

��

// 0

M2n(C
∗
r (L

U
U ))

//

��

M2n(C
∗
r (L

Y
Y ))

��

// 0

M2n(C0(X)⋊r ΓY ) // M2n(C0(Y )⋊r ΓY ) // 0.

We now take our function f lying in Cc(H), whose support is in ∆n, and as-
sume that f is nonzero. We can regard this as an element of M2n(Cc(Y ⋊ ΓY ),

and we may lift it to an element f̃ in M2n(Cc(X ⋊ ΓY ). From our hypothesis,
we know that

‖f‖r = inf{‖f̃ + g‖r | g ∈ Cc((X − Y )× ΓY )},

and so if C > 1, we may choose g so that ‖f̃ + g‖r ≤ C‖f‖r. It remains to get
this function back into M2n(C

∗
r (L

U
U )). As we noted above, this is a hereditary

subalgebra of M2n(Cc(X ⋊ ΓY )), and we can multiply on both sides by a func-
tion bounded between 0 and 1, identically 1 in Yn and supported in V . �

Corollary 6.19. With X,Γ, Y, ζ as above, if there is a short exact sequence

0 → C0(X − Y )⋊r ΓY → C0(X)⋊r ΓY → C0(Y )⋊r ΓY → 0,

then

K∗(C
∗
r (G

′);C0(X)⋊r Γ) ∼= K∗(C0(Y )⋊r ΓY ).
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7. Application to factor groupoids

In this section, we again have two groupoids G,G′. We assume that each
is locally compact and Hausdorff. In addition, we assume that G has a Haar
system, λu

G, u ∈ G0, and G′ has a Haar system λu
G′ , u ∈ (G′)0. Finally, we

assume that σ is a 2-cocycle on G and that σ′ is a 2-cocycle on G′.
We assume that there is a map π :G→G′ satisfying the following conditions,

which we refer to as our standing hypotheses on π : G → G′:
(i) π is continuous,
(ii) π is surjective,
(iii) π is proper,
(iv) π is a morphism of groupoids,
(v) for every u in G, π|Gu : Gu → (G′)π(u) is a homeomorphism,

(vi) for every u in G and Borel set E in Gu, we have λu
G(E) = λ

π(u)
G′ (π(E)),

(vii) for all (s, t) in G2, we have σ(s, t) = σ′(π(s), π(t)).
We will assume this holds throughout this section.

Example 7.1. As an example, consider the case where Γ is a locally compact,
Hausdorff topological group acting continuously on compact Hausdorff spaces
X and X ′. If π :X →X ′ is a continuous, Γ-invariant surjection, then π × idΓ :
X ⋊ Γ → X ′ ⋊ Γ satisfies the desired conditions.

The proof of the following result is straight-forward, and we omit it.

Theorem 7.2. The map sending b in Cc(G
′) to b ◦ π in Cc(G) extends to an

injective ∗-homomorphism, also denoted π, from C∗
r (G

′, σ) to C∗
r (G, σ).

It will be convenient (though probably not necessary) for us to assume that
dG is a metric on G giving rise to its topology. By simply replacing dG by the
function

max{dG(x, y), dG(x
−1, y−1), dG(r(x), r(y)), dG(s(x), s(y))},

we may assume that the map x → x−1 is an isometry and that r, s are con-
tractions.

We will let G(x, r) denote the ball centered at x ∈ G of radius r > 0. In
addition, if A ⊆ G is any subset, we let

G(A, r) = {x ∈ X | for some y ∈ A, d(x, y) < r}

for r > 0.
We will then use the same notation dG for the Hausdorff metric on the

compact subsets of G:

dG(E,F ) = inf{ǫ > 0 | F ⊆ G(E, ǫ), E ⊆ G(F, ǫ)}

for E,F ⊆ G compact. We will use the notation

diamG(E) = sup{dG(x, y) | x, y ∈ E}

for E ⊆ G compact. We will also assume for convenience that G′ is second
countable.
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The following is an obvious consequence of the third and fourth conditions,
but we find it convenient to state explicitly.

Lemma 7.3. Let π : G → G′ satisfy the standing assumptions listed at the
beginning of this section. For every x in G, we have

#π−1{x} = #π−1{r(x)} = #π−1{s(x)}.

The following technical result will also be useful later.

Lemma 7.4. Suppose the sequence x′
k converges to x′ in G′. Then

lim
k

diamG(π
−1{x′

k}) = 0

if and only if

lim
k

diamG(π
−1{r(x′

k)}) = 0.

Proof. Let X ′ consist of the sequence x′
k, along with its limit point x′. This is

evidently a compact subset of G′. Hence, r(X ′) is also compact in G′, while
X = π−1(X ′) and r(X) are compact in G as π is proper.

AsX is compact, r is uniformly continuous onX , and the “only if” direction
follows at once. Conversely, suppose the first condition fails: then there exist
subsequences xk, yk in G with π(xk) = x′

k = π(yk), limk xk = x 6= y = limk yk
and limk r(xk) = limk r(yk). Then we have

r(x) = r(lim
k

xk) = lim
k

r(xk) = lim
k

r(yk) = r(lim
k

yk) = r(y).

On the other hand, we also have

π(x) = π(lim
k

xk) = lim
k

π(xk) = x′ = lim
k

π(yk) = π(lim
k

yk) = π(y).

Thus x,y are in Gr(x) with π(x) = π(y). By the fourth condition of our standing
hypotheses, this means x = y, a contradiction. �

As a final preliminary topological result, we have the following.

Lemma 7.5. Given x′ in G′ and ǫ > 0, there is an open set x′ ∈ U ′ ⊆G′ such
that π−1(U ′) ⊆ G(π−1{x′}, ǫ).

Proof. If the conclusion is false, then we may find a sequence x′
k, k ≥ 1, con-

verging to x′, and a sequence xk, k ≥ 1, with π(xk) = x′
k for all k ≥ 1 such that

xk is not in G(π−1{x′}, ǫ). The sequence x′
k, k ≥ 1, along with x′ forms a com-

pact set in G′. As π is proper, its preimage is also compact in G. So we may
find a subsequence xkl

, l ≥ 1, converging to some x in G. As G(π−1{x′}, ǫ) is
open, x is also not in this set. But by continuity of π, π(x) = liml π(xkl

) = x′.
This is a contradiction. �

We want to focus our attention on the parts of G and G′ where they are
actually different; that is, where π is not injective.
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Definition 7.6. Let π : G → G′ satisfy the standing hypotheses. We define

H ′ = {x′ ∈ G′ | #π−1{x′} > 1}

and H = π−1(H ′).

We endow H ′ with the metric

dH′(x′, y′) = dG(π
−1{x′}, π−1{y′})

for x′, y′ in H ′, and H with the metric

dH(x, y) = dG(x, y) + dH′ (π(x), π(y))

for x, y in H .
To obtain our excision result, we will need a hypothesis on our map π. It

implies the continuity of the fibers of π, but in a weak sense.

Definition 7.7. Let π : G→ G′ satisfy the standing hypotheses. We say that
π is regular if, for every x′ in H ′ and ǫ > 0, there is an open set x′ ∈ U ′ ⊆ G′

such that if y′ is in U ′, then either

dG(π
−1{x′}, π−1{y′}) < ǫ or diamG(π

−1{y′}) < ǫ.

In view of Lemma 7.5, we may also assume the conclusion there also holds
for U ′. We remark that if ǫ < 3−1 diamG(π

−1{x′}), the two conditions are
mutually exclusive.

Proposition 7.8. The topologies on H ′ and H from the metrics dH′ and dH
are finer, respectively, than the relative topologies from G′ and G.

Proof. Let s′ be in H ′, and let U be an open set in G′ containing it. Choose
any s in π−1{s′}. As π is continuous, there is ǫ > 0 such that π(G(s, ǫ)) ⊆ U .
We claim that H ′(s′, ǫ) ⊆ U ∩H ′. If t′ is in H ′(s′, ǫ), then it is clearly in H ′.
Moreover, we know dG(π

−1{s′}, π−1{t′}) < ǫ. It follows that there is t with
π(t) = t′ and dG(s, t)< ǫ. It follows that t′ = π(t) is in U . Hence, the topology
from dH′ is finer than the relative topology from G′.

The fact that, for all x, y in H ,

dG(x, y) ≤ dH′(π(x), π(y)) + dG(x, y) = dH(x, y)

immediately implies the desired conclusion for H . �

Theorem 7.9. Suppose that π : G → G′ is regular. Then H ′ and H, with the
metrics dH′ and dH , are locally compact, Hausdorff topological groupoids and
π : H → H ′ is an open, continuous, proper morphism of groupoids.

Proof. We begin with H ′. It follows from Lemma 7.3 that either x′, r(x′) and
s(x′) are all in H ′, or none are. It follows that H ′ is a subgroupoid of G′.

Next, we show that H ′ is locally compact. Let x′ be in H ′. Let

ǫ = 2−1 diamG π−1{x′}.

Observe that if y′ is any element of H ′ within ǫ of x′, then diamG(π
−1{y})> ǫ.

Select x′ ∈ U ⊆ G′ open, as in Definition 7.7. As G′ is locally compact, we
may assume that U has compact closure. Finally, select ǫ > ǫ′ > 0 such that
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π(G(π−1{x′}, ǫ′) ⊆ U . We claim that the dH′ -ball around x′ of radius ǫ′

has compact closure. Let x′
k be any sequence in this ball. The fact that

dH′ (x′, x′
k) < ǫ′ means that π−1{x′

k} is contained in G(π−1{x′}, ǫ′), and so
x′
k is in U . As U has compact closure, we may pass to a subsequence which

converges to y′ in G′. We claim this sequence also converges to y′ in dH′ . Let
δ > 0 be given. Without loss of generality, assume δ < ǫ. We now apply our
regularity hypothesis to y′ to find an open set y′ ∈ W ⊆ G′ such that, for all
z′ in W , either

dG(π
−1{y′}, π−1{z′}) < δ or diamG(π

−1{z′}) < δ.

As our subsequence of x′
k converges to y′ in the usual topology, we may find

K such that x′
k is in W for all k ≥K. Since our subsequence is taken from the

dH′ -ball, we know that diamG(π
−1{x′

k}) ≥ ǫ > δ. This eliminates the second
possibility above, and hence we have dH′ (x′

k, y
′) < δ for k ≥ K.

Every metric space is Hausdorff.
As dG is preserved under inverses, so is dH′ . We must now check that

the product on H ′ is continuous in dH . Suppose that (x′
k, y

′
k) is a sequence

converging to (x′, y′) in (H ′)2. We again let X ′ be this sequence, together
with its limit point. As G2 is closed in G × G, X = (π × π)−1(X ′) ∩ G2 is
compact in G2. The product map on X is continuous, and it follows that it is
continuous on the compact subsets of X , equipped with the Hausdorff metric.
The continuity of the product on H ′ follows from this.

We now turn our attention to H . As π ◦ r = r ◦ π, π ◦ r = r ◦ π, an element
x in G is in H if and only if r(x) is in H , if and only if s(x) is in H . It follows
that H is a groupoid.

We observe first that, for any x, y in G, we have

dH′ (π(x), π(y)) ≤ dH′(π(x), π(y)) + dG(x, y) = dH(x, y),

so the map π is contractive and hence continuous.
We show that H is locally compact in dH . Let x be in H . We may find

ǫ > 0 such that H ′(π(x), ǫ) has compact closure. We claim the same is true
of H(x, ǫ). Let xk be any sequence in H(x, ǫ). It follows from the definition
of dH that π(xk) is in H ′(π(x), ǫ). Hence, we may pass to a subsequence such
that π(xk) is converging to x′. We use the same trick again: let X denote the
preimage of the subsequence and its limit point under π, which is compact and
contains xk. Now, we can further extract a subsequence where the xk converge
in the usual topology of G, also. It then follows from the definition of dH that
this subsequence is also converging in dH . Again, a metric space is Hausdorff.

To check that the product in H is continuous in the metric dH , it suffices
to observe the definition of the metric dH and the facts that the product is
continuous in dG, π is continuous and the product in H ′ is continuous in dH′ .
The inverse is isometric in dH : this follows from the fact that taking inverses
is isometric in both dG and dH′ .

Let us show that π is continuous. Let x be in H and ǫ > 0. With-
out loss of generality, assume that ǫ < 3−1 diamG(π(x)). There is an open
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set U ′ in G′ containing π(x) such that, for all x′ in U ′, diamG(x
′) < ǫ or

dG(π
−1{x′}, π−1{π(x)}) < ǫ. As the topology on H ′ from the metric dH′ is

finer than the relative topology from G′, we may find ǫ/2 > δ > 0 such that
H ′(π(x), δ) ⊆ U ′. Now, suppose that x′ is in H ′(π(x), δ). It follows that
dG(π

−1{x′}, π−1{π(x)}) < δ < ǫ/2, implying that we may find y in H with
π(y) = x′ and dG(y, x) < δ. It follows that dH(x, y) < ǫ, and this completes
the proof.

The last thing for us to check is that π is proper. Let K ′ ⊆H ′ be any subset
which is compact in dH′ . Then it is compact in the topology of H as well, and
hence K = π−1(K ′) is compact in G. Now, let xk, k ≥ 1 be any sequence in K.
It follows that there is a subsequence which is converging in dG. There is
a further subsequence such that π(xk) is converging in dH′ . This subsequence
converges from the definition of dH . �

Theorem 7.10. Suppose that π : G → G′ is regular.
(i) The groupoids G′ and H ′ satisfy the hypothesis of Theorem 5.4.
(ii) The groupoids G and H satisfy the hypothesis of Theorem 5.4.
(iii) For every u in H0, the map π : Hu → (H ′)π(u) is a homeomorphism.

Proof. We begin with G′ and H ′. We have already seen G′-invariance as
a consequence of Lemma 7.1. The second condition is the conclusion of Propo-
sition 7.8.

Let us now fix u′ in H ′ and verify that the relative topology from G′ on
(G′)u

′

= (H ′)u
′

is finer than the topology of dH′ . Fix s′ in H ′ with r(s′) = u′,

and let ǫ > 0. We want to find an open set U in (G′)u
′

such that U ⊆H ′(s′, ǫ).
It is a fairly easy result in topology that there exists an open set V containing s′

such that, for every t′ in V , π−1{t′} ⊆ G(π−1{s′}, ǫ). The collection of sets
G(s, ǫ/2), s ∈ π−1{s′}, forms an open cover of π−1{s′}. As π is proper, we
extract a finite subcover corresponding to points s1, . . . , sK in π−1{s′}. As π
is assumed to be a homeomorphism when restricted to each Gr(si), each of the
sets π(G(sk, ǫ/2) ∩Gr(sk) is an open subset of (G′)u

′

. We define

U = V ∩

( K⋂

k=1

π(G(sk, ǫ/2) ∩Gr(sk))

)
,

which is an open set in (G′)u
′

containing s′. We claim that U is contained in
the dH′ -ball of radius ǫ around s′. Let t′ be in U . As U ⊆ V , we have π−1{t′} ⊆
G(π−1{s′}, ǫ). For the other inclusion, for any s in π−1{s′}, we know that s
is in G(sk, ǫ/2) for some k. We also know that t′ is in π(G(sk, ǫ/2) ∩ Gr(sk)),
so we may find t in G(sk, ǫ/2) with π(t) = t′. From the triangle inequality, we
have dG(t, s) < ǫ.

Finally, to check that fourth property, we must verify that r : H ′ → (H ′)0

is open in dH′ . Let x′ be in H ′ and ǫ0 > 0. As G′ is locally compact,
we may find an open set x′ ∈ U0 ⊆ G′ with compact closure. It follows
that π−1(U0) is also compact and contains π−1{x′}. As rG is uniformly
continuous on the compact set π−1(U0), we may find ǫ0 > ǫ > 0 such that,
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for any y, z ∈ π−1(U0) with dG(y, z) < ǫ, it follows that dG(rG(y), rG(z)) <
3−1 diamG(π

−1{rG′(x′)}). Now, we may use our hypothesis of regularity
to find an open set x′ ∈ U ⊆ U0 such that, for all y′ in U , we have either
dG(π

−1{y′},π−1{x′})<ǫ or diamG(π
−1{y′})<ǫ. We use the fact that rG′ is an

open map to find an open set rG′(x′) ∈ V ∩ (G′)u ⊆ rG′(U). Finally, we choose
0 < δ < 3−1 diamG(π

−1{rG′(x′)}) such that G(π−1{rG′(x′)}, δ) ⊆ π−1(V ). We
claim that

H ′(rG′(x′), δ) ∩ (H ′)u ⊆ rG′(H ′(x′, ǫ)) ⊆ rG′(H ′(x′, ǫ0)).

Let u′ be in the leftmost set. From our choice of δ, π−1{u′} is contained in
π−1(V ), so u′ is in V ∩ (G′)u, which, in turn, is contained in rG′(U). Hence,
we know that u′ = rG′(y′), with y′ in U . It follows from the choice of U
that either dG(π

−1{y′}, π−1{x′}) < ǫ or diamG(π
−1{y′}) < ǫ. In the former

case, it follows from the definition of dH′ that y′ is in H ′(x′, ǫ), and we are
done. In the latter case, as y′ is in U ⊆ U0, we have diamG(rG(π

−1{y′})) <
3−1 diamG(π

−1{rG′(x′)}). As rG(π
−1{y′}) = π−1{rG′(y′)} = π−1{u′}, this

contradicts the hypothesis that

dH′ (u′, rG′(x′)) < δ < 3−1 diamG(π
−1{rG′(x′)}).

We turn to G and H . The first two conditions follow from Lemma 7.1 and
Proposition 7.8. For the third part, let S denote the usual topology on G′.
Fix a unit u in H0. We know that the relative topology S|H′ and the metric
topology from dH′ agree on (H ′)π(u). On the other hand, π induces a homeo-
morphism between Hu with the metric topology from dG and (H ′)π(u) with
the relative topology S|H′ . Together, these imply that π is a homeomorphism
between the metric spaces (Hu, dG) and ((H ′)π(u), dH′ ). It follows immediately
that the metrics dG and dH induce the same topology on Hu. At the same
time, we see that π : (Hu, dH) → ((H ′)π(u), dH′ ) is a homeomorphism.

Finally, to check the last condition of Theorem 5.4, we must see that
r : H → H0 is open. If this fails, then there is an x in G, an ǫ > 0 and
a sequence uk, k ≥ 1 in H0 converging to r(x) in dH , while uk /∈ H(x, ǫ),
k ≥ 1. By continuity, π(uk), k ≥ 1 converges to π(r(x)) in dH′ . We know that
rG′ : H ′ → (H ′)0, so we may find y′k, k ≥ 1, in H with rG(y

′
k) = π(uk), k ≥ 1,

converging to π(x). From our standing hypotheses and Lemma 7.3, for every
k ≥ 1, we may find yk in H with π(yk) = y′k, k ≥ 1, and rG(yk) = uk, k ≥ 1.
The sequence yk, k ≥ 1, lies in π−1{y′k, π(x) | k ≥ 1}, which is compact since π
is proper (from dH to dH′). By passing to a subsequence, we may assume yk,
k ≥ 1, converging to some y. On one hand, we have

π(y) = lim
k

π(yk) = lim
k

y′k = π(x),

and on the other,

rG(y) = lim
k

rG(yk) = lim
k

uk = rG(x).
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From our standing hypotheses, this implies that x = y. So, for some k suffi-
ciently large, yk is in H(x, ǫ) and uk = rG(yk), a contradiction. This completes
the proof. �

Our next task is to find a sequence of approximants to G, which we will use
in constructing our subalgebra A within Cc(G). For each n ≥ 1, we define an
equivalence relation ∼n on G as follows. For x in G, we set

[x]n =

{
{x}, diamG(π

−1{π(x)}) > n−1,

π−1{x}, diamG(π
−1{π(x)}) ≤ n−1.

Observe that each ∼n-equivalence class is compact. We let Gn be the quotient
space G/∼n which we equip with the quotient topology. We let qn : G → Gn

denote quotient map, and since [x]n ⊇ [x]n+1, we let pn : Gn → Gn−1 be the
obvious quotient map for n ≥ 2, and we let q′n : Gn → G′ be the map sending
[x]n to π(x). All of these maps are clearly continuous.

It will also be convenient for us to define

H ′
n = {x ∈ G′ | diamG(π

−1{x}) > n−1} ⊆ H ′ and Hn = π−1(H ′
n) ⊆ H

for all n ≥ 1.

Lemma 7.11. The following statements hold.
(i) Each space Gn is locally compact.
(ii) Each space Gn is Hausdorff.

(iii) The space G is the inverse limit of G1
p2
←− G2

p3
←− · · · .

(iv) Each set Hn is open in H.
(v) The closure of Hn in G is contained in H.
(vi) H1 ⊆ H2 ⊆ · · · , and the union is H.

Proof. The first part follows easily from the following observation: if U ′ ⊆ G′

is open with compact closure, then by the continuity of q′n, (q
′
n)

−1(U ′) is open
and is contained in qn(π

−1(U ′)), which is compact.
The second part follows quite easily from the following fact: if U ⊆ G is an

open set, then Un = {[z]n | [z]n ⊆ U} is open in Gn. To prove this, we need to
show that (qn)

−1(Un) = {z ∈ G | [z]n ⊆ U} is open in G.
Let z be in (qn)

−1(Un). As [z]n is compact, we may find ǫ > 0 such that
G([z]n, ǫ) ⊆ U . We consider two cases. First, suppose that [z]n = π−1{π(z)}.
We appeal to Lemma 7.5 to find an open set π(z) ∈ U ′ ⊆ G′ such that

π−1(U ′) ⊆ G(π−1{π(z)}, ǫ) ⊆ U.

Then z ∈ π−1(U ′) is open in G, and if x is in π−1(U ′), then we have

[x]n ⊆ π−1{π(x)} ⊆ G(π−1{π(z)}, ǫ) ⊆ U,

so π−1(U ′) ⊆ (qn)
−1(Un).

The second case is [z]n = {z}. It follows from the definition of [z]n that
diamG(π

−1{π(z)}) > n−1. Now, we find an open set π(z) ∈ U ′ ⊆ G′ satisfying
the regularity condition at π(z) for

ǫ′ < 2−1(diamG(π
−1{π(z)})− n−1).
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We also require that ǫ′ < 2−1ǫ. Then z ∈ π−1(U ′) ∩ G(z, ǫ′), which is open
in G. We claim this set is contained in (qn)

−1(Un). Suppose x is in G(z, ǫ′)
with π(x) in U ′. We need to show that [x]n ⊆ U . The case [x]n = {x} is easy
as x is in G(z, ǫ′) ⊆ G(z, ǫ) ⊆ U . In the case [x]n = π−1{π(x)}, we then know
that diamG(π

−1{π(x)}) ≤ n−1. From this, we see that

dG(π
−1{π(x)}, π−1{π(z)}) ≥ 2−1(diamG(π

−1{π(z)})− diamG(π
−1{π(x)}))

> ǫ′.

It follows from the regularity condition and the fact that π(x) is in U ′ that
diamG(π

−1{π(x)}) ≤ ǫ′. Then we have

dG(π
−1{π(x)}, z) ≤ diamG(π

−1{π(x)}) + dG(x, z) < 2ǫ′ < ǫ.

The desired conclusion follows.
We now prove that Hn is open in H . In fact, this follows if we show that H ′

n

is open inH ′. Let x be inH ′
n. Choose ǫ > 0 so that diamG(π

−1{x})>n−1 +3ǫ.
If y is in H ′ with dh(x, y) < ǫ, then dG(π

−1{x}, π−1{y}) < ǫ, and it follows
that

diamG(π
−1{y}) ≥ diamG(π

−1{x})− 2ǫ > n−1.

Hence, y is in H ′
n.

Now, suppose x in G is in the closure ofHn. We will show that π(x) is in H ′.
Every neighborhood of π(x) contains a point x′ with diamG(π

−1{x′}) > n−1.
On the other hand, if π(x) is not in H ′, then π−1{x} is a single point. In this
case, Lemma 7.5 implies that there is an open set U ′ containing π(x) such that
diam(π−1(U ′)) is arbitrarily small. This would be a contradiction.

The last statement is obvious. �

We now begin the task of establishing the conditions needed to apply The-
orem 3.4. We will use B = C∗

r (G) and A = C∗
r (H). We will define a Hilbert

space with representations of these C∗-algebras and a bounded ∗-derivation δ
as in Theorem 3.2. We will show these satisfy the hypotheses on Theorem 3.4
and that, under some conditions, C∗

r (G) ∩ ker(δ) = C∗
r (G

′), C∗
r (H) ∩ ker(δ) =

C∗
r (H

′). The first part is to find a Hilbert space with actions of both C∗
r (G)

and C∗
r (H). We assume throughout that π satisfies the standing hypothesis

and is regular.
We define

G×π G = {(x, y) ∈ G×G | π(x) = π(y)},

the fibered product of G with itself over π. This is actually a groupoid in
an obvious fashion. We will not need that fact, but it does influence our
notation. It receives the relative topology from the product. We denote the
map sending (x, y) in G ×π G to π(x) = π(y) in G′ by π. For u, v in G0

with π(u) = π(v), we let (G ×π G)(u,v) = {(x, y) ∈ Gu × Gv | π(x) = π(y)}.
There is an analog definition for (G ×π G)(u,v). It follows from the standing

hypothesis that π|(G×πG)(u,v) is a homeomorphism to (G′)π(u). We let ν(u,v)
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be the measure νπ(u) pulled back by this map. There is an analog definition
of ν(u,v). We represent Cc(G) on the Hilbert space L2((G×π G)(u,v), ν(u,v)) by

(bξ)(x, y) =

∫

(r(w),r(z))=(r(x),r(y))

b(w)ξ(w−1x, z−1y) dν(r(x),r(y))(w, z)

for b in Cc(G), ξ in L2((G ×π G)(u,v), ν(u,v)) and (x, y) in (G ×π G)(u,v) It is
obvious that this is unitarily equivalent to the left regular representation of
Cc(G) on L2(Gu, νu) and hence extends to all of C∗

r (G). Let us also remark at
this point that if x, y,w, z are in G with r(w) = r(x), r(y) = r(z), π(w) = π(z),
π(x) = π(y), then σ(w, w−1x) = σ′(π(w), π(w)−1π(x)) = σ(z, z−1y) as a con-
sequence of the last part of our standard hypothesis.

We define our Hilbert space

H =
⊕

(u,v)∈G0×πG0

L2((G×π G)(u,v), ν(u,v)).

We also observe that all of the preceding discussion applies equally well to
the groupoidH , provided u,v are inH , which is implied by the condition u 6= v.
If u, v are not in H , we simply represent Cc(H) on L2((G×π G)(u,v), ν(u,v)) as
the zero representation.

Observe that the operator (Fξ)(x, y) = ξ(y, x) is a unitary from

L2((G ×π G)(u,v), ν(u,v)) to L2((G×π G)(v,u), ν(v,u)).

In the case u = v, it is the identity. We denote its extension to H by F also.
Observe that F 2 = I, F = F ∗. We we define δ(a) = i[a, F ] = i(aF − Fa) for
all a in C∗

r (G) + C∗
r (H).

It is probably worth recording the following fact. Its proof is trivial, and we
omit it.

Lemma 7.12. Let (u, v) be in G ×π G, let ξ be in L2((G ×π G)(v,u), ν(v,u)),
and let b be in either Cc(G) or Cc(H). We have

δ(b)ξ(x, y) = i

∫
(b(w) − b(z))ξ(z−1y, w−1x)σ(w,w−1x) dν(r(x),r(y))(w, z)

for (x,y) in (G×π G)(v,u), where the integral is over (w,z)∈ (G×π G)(r(x),r(y)).

Lemma 7.13. If b is in Cc(Gn)⊆Cc(G) for some n≥ 1, then δ(b)∈ δ(Cc(H)).

Proof. We regard b as a function on G, constant on the ∼n-equivalence classes.
Let K be a compact set in G such that b is zero off K, and define

X = {x ∈ H ∩ π−1(π(K)) | diamG π−1{π(x)} ≥ n−1}.

First, we claim thatX is compact inH . If xk, k≥ 1, is any sequence inX , then,
as K is compact and also π−1(π(K)), it has a subsequence which converges to
some x in K in the metric dG. It also follows that diamG π−1{π(xk)} ≥ n−1

for every k, and so diamG π−1{π(x)} ≥ n−1 as well. This implies that x is
in H . It also follows from the fact that π is regular that π−1{π(xk)} converges
to π−1{π(x)}, and hence xk, k ≥ 1, converges to x in dH .
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Let U ′ be an open set in G′, which contains π(X), and its closure is compact.
We may find e : H ′ → [0, 1] in Cc(H) such that e(x′) = 1 for x′ ∈ π(X) and
e(x′) = 0 for x′ /∈ U ′. Then, for any x in H , we define a(x) = b(x)e(π(x)).
This function clearly has compact support. To see it is continuous, it suffices
to observe that it is nonzero only on π−1(U ′), which is compact in H , and as
the inclusion map is continuous, it is also compact in G, and the two relative
topologies agree there.

It remains to prove δ(b) = δ(a). From the formula provided by Lemma 7.12,
it suffices for us to prove that b(z)− b(w) = a(z)− a(w) for all (w,z) in G×π G
(where we interpret b to be zero off of H). If w, z are not in H , then w = z,
and the conclusion holds. Next, let us suppose that diamG π−1{π(w)} ≤ n−1.
As b is in Cc(Gn), it follows that b(w) = b(z), and then we have a(w) =
b(w)e(π(w)) = b(z)e(π(z)) = a(z), and the conclusion holds. Now, let us as-
sume that diamG π−1{π(w)} > n−1. If w is not in π−1(π(K)), then w is not
in K, so b(w) = 0. But this also means that z is not in π−1(π(K)), so b(z) = 0
as well. Again, we have a(w) = a(z) = 0. Finally, we are left with the case
that w and z are both in X . It follows that

a(z)− a(w) = b(z)e(π(z))− b(w)e(π(w)) = b(z) · 1− b(w) · 1 = b(z)− b(w),

as e(x′) = 1 for x′ in π(X). �

The hypothesis of the next result is not particularly strong. We know that
the space H ′ has been given a topology in which the fibers of the map π
vary continuously. This hypothesis ensures the existence on measures on these
fibers, also varying continuous.

Proposition 7.14. We say that π is measure regular if there is a continuous
function µ : (H ′)0 →M(H0), the set of Borel probability measures on H0 with
the weak-* topology such that,
(i) for any u′ in (H ′)0, the support of µ(u′) is contained in π−1{u′},
(ii) for any x′ in H ′ and Borel subset E of π−1{x′},

µ(rH′ (x′))(rH(E)) = µ(sH′(x′))(sH(E)),

In this case, the ∗-algebra Cc(H) satisfies condition C1 of Theorem 3.4. More-
over, we have δ(C∗

r (G, σ)) ⊆ δ(C∗
r (H,σ)).

Proof. For simplicity, we will ignore the cocycle. Let a be any element of
Cc(H), and define

a′(x′) =

∫

π−1{rH′ (x′)}

a(x) dµ(rH′ (x′))(x)

for any x′ in H ′.
It is clearly in Cc(H

′). Fix a pair of units in H0, (u, v) with π(u) = π(v).
Let Wv denote the canonical unitary between

L2(Gu, νu) and L2((G×π G)(u,v), ν(u,v))

induced by the projection onto the first factor.
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It follows from Lemma 7.12 that∫

v

W ∗
v (a− FaF )Wv dµ(u)(v) = a− a′.

The conclusion then follows from the fact that µ(u) is a probability measure
and ‖a− FaF‖r = ‖δ(a)‖r.

For the last statement, we know that δ(Cc(G)) is contained in δ(Cc(H)).
As δ is continuous, δ(C∗

r (G, σ)) is contained in the closure of δ(Cc(H)) which
is δ(C∗

r (H,σ)) as a consequence of C1. �

Proposition 7.15. If π is regular and there is a continuous morphism of
groupoids µ : H ′ → H such that π ◦ µ = idH′ , then π is measure regular.

Proof. We define a function, also denoted by µ, from (H ′)0 to M(H0) by
setting µ(u′) to be point mass at µ(u′), for u′ in (H ′)0. The hypotheses of
Proposition 7.14 are obviously satisfied. �

A main case of interest is when these fibers are actually finite. One should
consider the hypotheses in this case to be analog to those of the condition of
finite index (Definition 6.11) in the subgroupoid case.

Proposition 7.16. If π : G → G′ is regular and there is a positive integer
N ≥ 2 such that, for each x′ in H ′, #π−1{x′} = N , then π is measure regular.

Proof. We define a function, also denoted by µ, from (H ′)0 to M(H0) by
setting

µ(u′) = N−1
∑

u∈π−1{u′}

µu,

where µu denotes point mass at u, for u′ in (H ′)0. The hypotheses of Propo-
sition 7.14 are obviously satisfied. �

Lemma 7.17. Suppose that π : G → G′ is regular. The ∗-algebra Cc(H) sat-
isfies condition C2 of Theorem 3.4.

Proof. Let a1, . . . , aI be in Cc(H). We may find a compact set K ⊆ H such
that all are zero off of K. By the last two parts of Lemma 7.11, there is
some n with K ⊆ Hn. We may apply the Tietze extension theorem to each
function ai, restricted to the closure of Hn in G, to find bi in Cc(Gn) such that
bi|Hn

= ai|Hn
. We also regard these functions as being in Cc(G) as well.

As Hn is open, r(Hn) ∪ s(Hn) is open in H0 and contains r(K) ∪ s(K), so
we may find e, a function in Cc(H

0), which is identically 1 on r(K) ∪ s(K)
and zero outside r(Hn) ∪ s(Hn). It is now routine to check these satisfy the
properties in C2. �

Corollary 7.18. If π : G → G′ is a factor map satisfying the standing hy-
potheses and is regular and measure regular, then

K∗(ker(δ) ∩ C∗
r (G, σ);C∗

r (G, σ)) ∼= K∗(C
∗
r (H

′, σ);C∗
r (H,σ)).

We would now like to replace ker(δ) ∩ C∗
r (G, σ) with C∗

r (G
′, σ).
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Theorem 7.19. Assume that π is both regular and measure regular. If the clo-
sure of the sets Hn ⊆H, n ≥ 1, in G, denoted Cl(Hn), satisfy the C-extension
property for some C ≥ 1, then we have

C∗
r (G, σ) ∩ ker(δ) = C∗

r (G
′, σ).

Proof. The containment ⊇ is clear from Lemma 7.12 and the fact that δ is
continuous. For the converse, if b is in C∗

r (G, σ) and δ(b) = 0, then we may
find a sequence bn, n ≥ 1, in Cc(G) converging to b. In view of part (iii) of
Lemma 7.11 (and after doing some reindexing), we may assume that bn is
in Gn for all n. It follows from Lemma 7.13 that there exist an, n ≥ 1, in
Cc(H) with δ(bn) = δ(an). By Proposition 7.14, we know that condition C1 of
Theorem 3.4 holds. By adding an element of Cc(H

′), we may assume that

‖an‖r ≤ K‖δ(an)‖r = K‖δ(bn)‖r.

First, the condition that δ(bn) = δ(an) implies that bn|H = an. Let Kn be
a compact subset of H containing the support of an. The sets Hk, k ≥ 1, are an
open cover ofH , so we may find kn ≥ n such that Hkn

contains Kn ∪ s(Kn). In
addition, the function sending x in H to diamG(π

−1{π(x)}) is continuous and
positive; hence it is bounded below on any compact set. It follows then that we
may also choose kn so that diamG(π

−1{π(x)}) > k−1
n for all x in Kn ∪ s(Kn).

We use the extension property for Cl(Hkn
) to find c in Cc(G) such that

cn|Hkn
= an|kn

and ‖cn‖r ≤ C‖an‖r.
As bn − cn is in Cc(G −Gkn

), we may find a compact set Ln ⊆ H −Hkn

such that the support of δ(bn − cn) is in Ln. We claim that π(s(Ln)) is disjoint
from π(s(Kn)). Recall that kn was chosen so that diamG(π

−1{π(x)}) > k−1
n

for all x in s(Kn). If x is in Ln, then diamG(π
−1{π(x)}) ≤ l−1

n < k−1
n . The

fact that s is a contraction implies that the same conclusion holds for s(x).
This establishes the claim.

We let hn : (G′)0 → [0, 1] be a continuous, compactly supported function
which is identically one on π(s(Kn)) and identically zero on π(s(Ln)). We
next claim that bn − cnhn is in Cc(G

′). It suffices to check that

0 = δ(bn − cnhn) = δ(bn)− δ(cn)hn,

as hn is in Cc((G
′)0). The function on the right is clearly supported inKn ∪Ln.

As hn = 1 on π(s(Kn)), we have

(δ(bn)− δ(cn)hn)|Kn
= δ(bn)|Kn

− δ(cn)|Kn
= δ(bn − cn)|Kn

= 0,

as Kn ⊆ Hkn
where bn and cn agree. On the other hand, we also know that

hn is zero on π(s(Ln)), so

(δ(bn)− δ(cn)hn)|Ln
= δ(bn)|Ln

− 0 = 0

since Ln ⊆ Hln −Hkn
.

Finally, we have

‖cnhn‖r ≤ ‖cn‖r ≤ C‖an‖r ≤ CK‖δ(bn)‖r

which tends to zero. Hence, bn − cnhn is in Cc(G
′) and also converges to b. �
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We will finish by giving some special examples of factor maps where all of
our hypotheses are satisfied.

We assume that X is a locally compact metric space with an action by
the locally compact metric group Γ by homeomorphisms. We suppose that
Y is a Γ-semi-invariant set (in the sense of Definition 5.8) and that ΓY \ Γ is
discrete. Let us also suppose that, for any ǫ > 0, the set

{ΓY γ ∈ ΓY \ Γ | diamX(Y γ) > ǫ}

is finite.
We define the space X ′ as the quotient of X which identifies each set Y γ,

γ ∈ Γ, to a single point. We let π denote the quotient map π : X → X ′. From
the hypotheses on the set Y and on ΓY , X

′ is locally compact and Hausdorff.
There is an obvious action of Γ on X ′ by homeomorphisms, and we have
a factor map, which we also denote by π from G = X ⋊ Γ to G′ = X ′ ⋊ Γ.

Theorem 7.20. Let X,Γ, Y be as above and satisfy the hypotheses there. Let
H,H ′ be the groupoids of Definition 7.6. The following hold.
(i) We have C∗

r (H
′) ∼= C0(ΓY \ Γ) ⋊r Γ and hence is Morita equivalent to

C∗
r (ΓY ), while

C∗
r (H) ∼= C0

( ⋃

ΓY γ∈ΓY \Γ

Y γ
)
⋊r Γ

and hence is Morita equivalent to C0(Y )⋊r ΓY .
(ii) The factor map π is regular (see Definition 7.7).
(iii) If the action of ΓY on Y admits an invariant probability measure, then π

is measure regular.
(iv) If there is a short exact sequence

0 → C0(X − Y )⋊r ΓY → C0(X)⋊r ΓY → C0(Y )⋊r ΓY → 0,

then each of the closed sets Cl(Hn) ⊆ H has the C-extension property for
any C ≥ 1.

Proof. The descriptions of H ′ ∼= ΓY \ Γ⋊ Γ and H = C0(Y × ΓY \ Γ)⋊ Γ are
immediate from the definitions. The other parts of the first part follow from
[16, Ex. 2.4].

To prove the factor map is regular, we use the sum metric

dG((x, γ), (x
′, γ′)) = dX(x, x′) + dΓ(γ, γ

′),

where dX , dΓ are metrics on X and Γ, respectively. Let us verify regularity.
Let ǫ > 0 and (π(Y γ1), γ2) in H ′ be given. There are only finitely many
sets of the form Y γ with diameter less than ǫ, so we may choose π(Y γ1) ⊆
U , an open set in X ′ which is disjoint from the images of these other than
π(Y γ1), which is a finite set in X ′. Letting U ′ = U × ΓY γ2, there is only point
in U ′ with diameter of the preimage greater than ǫ, which is the single point
π(Y γ1)× ΓY γ2, and the desired conclusion is trivial.
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Let µ be a ΓY -invariant measure on Y . It is a simple matter to check that
µ(Y γ)(E) = µ(Eγ−1) for γ ∈ Γ, E ⊆ Y γ is a well-defined function from (H ′)0

to M(H0) satisfying he conditions of Proposition 7.14, so π is measure regular.
The proof of the last statement is very similar to that of Theorem 6.18, and

we omit the details. �

Corollary 7.21. Let X, Γ, Y be as above and satisfy the hypotheses there.
Assume that the action of ΓY on Y admits an invariant probability measure
and that there is a short exact sequence

0 → C0(X − Y )⋊r ΓY → C0(X)⋊r ΓY → C0(Y )⋊r ΓY ,→ 0.

Then

K∗(C0(X
′)⋊r Γ;C0(X)⋊r Γ) ∼= K∗(C

∗
r (ΓY );C0(Y )⋊r ΓY ).
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