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Abstract. Given a skew-symmetric real n× n matrix Θ, we consider the universal envelop-
ing C∗-algebra CARΘ of the ∗-algebra generated by a1, . . . , an subject to the relations

a∗i ai + aia
∗

i = 1,

a∗i aj = e2πiΘi,j aja
∗

i ,

aiaj = e−2πiΘi,jajai.

We prove that CARΘ has a C(Kn)-structure, where Kn = [0, 1
2
]n is the hypercube, and

describe the fibers. We classify irreducible representations of CARΘ in terms of irreducible
representations of a higher-dimensional noncommutative torus. We prove that, for a given
irrational skew-symmetric Θ1, there are only finitely many Θ2 such that CARΘ1

≃ CARΘ2
.

Namely, CARΘ1
≃ CARΘ2

implies (Θ1)ij = ±(Θ2)σ(i,j) mod Z for a bijection σ of the set

{(i, j) | i < j, i, j = 1, . . . , n}. For n = 2, we give a full classification: CARθ1 ≃ CARθ2 if and
only if θ1 = ±θ2 mod Z.

1. Introduction

One of the most well-studied examples of noncommutative manifolds are
the noncommutative tori, see [12]. Given a real skew-symmetric n× n matrix
Θ = (Θi,j), the noncommutative torus C(Tn

Θ) is defined as the universal C∗-
algebra generated by n unitaries u1, . . . , un subject to the relations

uiuj = e−2πiΘi,jujui.

The problem of classification of C(Tn
Θ) up to C∗-isomorphism has been

solved in [8] in the case when Θ is irrational. In particular, in the case n = 2,
identifying Θ with Θ1,2 = θ, we have

C(T2
θ1) ≃ C(T2

θ2) if and only if θ1 = ±θ2 mod Z.

For rational Θ, the classification is given in [2].
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In this paper, we study the universal enveloping C∗-algebra CARΘ of the
∗-algebra generated by a1, . . . , an subject to the relations

a∗i ai + aia
∗
i = 1,

a∗i aj = e2πiΘi,jaja
∗
i ,

aiaj = e−2πiΘi,jajai.

The representation theory of CARΘ was studied in [10], and it appeared to
be related to representation theory of a noncommutative torus. In this paper,
we in particular explain and reprove the result by showing that CARΘ has
a C(Kn)-structure for Kn = [0, 1

2 ]
n with fibers being isomorphic to matrix

algebras over crossed products of noncommutative tori by finite groups. The
description of CARΘ as a “noncommutative fiber bundle” allows us to establish
a result about classification CARΘ up to isomorphism for irrational Θ which
was the main motivation to pursue our study of the object.

Noncommutative tori have been playing a role of a training ground for test-
ing various ideas in noncommutative geometry and topology. Such questions as
classification up to C∗-isomorphism, classification of projective modules, clas-
sification up to Morita equivalence, construction of Dirac operators, study of
quantum metric structures, construction of pseudodifferential calculi, study of
index theory, generalizations of the notion of curvature and many others have
been studied for C(Tn

Θ). Because of the simplicity of the algebraic definition of
CARΘ and the existence of a noncommutative fiber bundle structure on CARΘ

with the fibers resembling noncommutative tori, it is natural to ask the same
questions about its structure as for C(Tn

Θ). In this paper, we are interested
in the noncommutative topology of CARΘ, in particular, the classification of
CARΘ. We prove that CARθ1 ≃ CARθ2 for irrational θ1, θ2 and n= 2 if and only
if θ1 = ±θ2 mod Z. Moreover, for general n and irrational Θ1, Θ2, we prove
that CARΘ1 ≃ CARΘ2 implies that (Θ1)i,j = ±(Θ2)σ(i,j) mod Z for a bijection
σ of the set {(i, j) | i < j, i, j = 1, . . . , n}.

The general idea for our analysis of CARΘ is to express it as Rieffel deforma-
tion of n tensor copies of CAR1—the one-dimensional CAR-algebra, the struc-
ture of which is well-understood: it is a C([0, 1

2 ])-C
∗-algebra with well-known

fibers. Then we use the fact that Rieffel deformation of a C0(X)-C∗-algebra
also has a C0(X)-structure with fibers which are Rieffel deformations of the
fibers of the undeformed C∗-algebra.

The structure of the article is the following. In Sections 2 and 3, we recall
some relevant facts from the theory of C0(X)-C∗-algebras and Rieffel defor-
mations. In Section 4, we prove isomorphisms between Rieffel deformations
of matrix algebras over a C∗-algebra A and matrix algebras over Rieffel de-
formations of A. Although this result has been known in the literature, here
we construct an explicit isomorphism, which will be used in further sections.
In Section 5, we show that the C∗-algebra CARΘ is isomorphic to Rieffel de-
formation of CAR⊗n

1 . In Section 6, we give an analysis of CAR1—we describe
its representation theory, show that it has a C([0, 1

2 ])-structure and describe

Münster Journal of Mathematics Vol. 14 (2021), 559–583



Classification of irrational Θ-deformed CAR C∗-algebras 561

fibers with respect to this structure. In Section 7, we transfer the described
structural features of CAR1 first to CAR

⊗n
1 and then to its Rieffel deformation,

that allows us to obtain an alternative proof for classification of irreducible
representations of CARΘ (Theorem 7.5). In Section 8, we further exploit the
noncommutative fiber bundle structure of CARΘ and prove the classification
result (Theorem 8.8, Corollary 8.9).

We believe that the C∗-algebra CARΘ is a nice rich object to study other
questions of noncommutative geometry, and this will be pursued elsewhere.

2. C0(X)-structure on C∗-algebras

Let X be a locally compact Hausdorff space, and let C0(X) be the C∗-
algebra of continuous functions on X that vanish at infinity. For a C∗-algebra
A, write M(A) to denote its multiplier algebra; let Z(A) be its center. Further-
more, C0(X, A) will stand for the algebra of A-valued continuous functions
on X that vanish at infinity.

Definition 2.1. A C0(X)-structure on a C∗-algebra A is a monomorphism

Φ : C0(X) → Z(M(A))

such that the ideal Φ(C0(X)) · A is dense in A. In this case, we say that A is
a C0(X)-C∗-algebra.

Let A be a C0(X)-C∗-algebra. For x ∈ X , consider the closed ideal

IΦx = span{Φ(f) · a, a ∈ A, f ∈ C0(X) such that f(x) = 0}.
The fiber AΦ(x) of A over x is defined as AΦ(x) = A/IΦx , and the canonical
quotient map evΦx : A → AΦ(x) will be called the evaluation map at x. When
C0(X)-structure Φ is evident from the context, we will simply write Ix, A(x)
and evx; we shall often write a(x) instead of evx(a); it is also common to
suppress mention of Φ and simply write f · a instead of Φ(f) · a.

Let G be a locally compact group, and let α : G → Aut(A) be a continuous
(with respect to point norm topology) group homomorphism, which we call an
action of G on A; thus (A,G, α) is a C∗-dynamical system.

Definition 2.2. Let A be a C0(X)-C∗-algebra. We say that α is fiberwise if

αg(f · a) = f · (αg(a)), g ∈ G, a ∈ A, f ∈ C0(X).

If an action α is fiberwise, then it induces an action αx of G on A(x) for
every x ∈ X by letting αx

g(a(x)) = αg(a)(x), a ∈ A, g ∈ G.

3. Rieffel deformation

We turn now to Rieffel’s deformation [11], that will be essential for our
consideration, and recall main constructions needed for the paper.

Given a C∗-dynamical system (A,Rn, α), let A∞ denote the set of all a ∈ A
such that t 7→ αt(a) is a C∞-function. It is a dense ∗-subalgebra of A. Let
Θ be a real skew-symmetric n× n-matrix. To define Rieffel deformation, one
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keeps the involution unchanged and introduces on A∞ the product defined by
oscillatory integrals

a ·Θ b :=

∫

Rn

∫

Rn

αΘ(x)(a)αy(b)e
2πi〈x,y〉 dx dy,

where 〈x, y〉 is the inner product on Rn. The ∗-algebra (A∞, ·Θ) admits a C∗-
completion AΘ in a C∗-norm, defined by Hilbert module techniques. The ac-
tion α leaves A∞ invariant and extends to the action αΘ on the C∗-algebra AΘ.
More generally, any equivariant ∗-homomorphism f between C∗-algebras A
and B with actions αA and αB of Rn respectively (i.e. f(αA

x (a)) = αB
x (f(a)),

a ∈A, x ∈Rn) can be lifted to a ∗-homomorphism fΘ :AΘ →BΘ, which is also
equivariant. We refer the reader to [11] for these and other details concerning
the construction. Through this section, we will keep notation α for the action
that defines the Rieffel deformation.

The procedure of Rieffel deformation is invertible; the next statement follows
from [7, Lem. 3.5].

Proposition 3.1. The identity mapping extends to a ∗-isomorphism

id : A → (AΘ)−Θ.

In nice situations, Rieffel deformation of a C0(X)-algebra is also a C0(X)-
algebra.

Proposition 3.2 ([1, Prop. 4.4]). Let α be a fiberwise action of Rn on
a C0(X)-C∗-algebra A. Then the Rieffel deformation AΘ possesses a C0(X)-
structure such that (AΘ)(x) ≃ (A(x))Θ, x ∈ X.

We will need to know how crossed product C∗-algebras are transformed
under Rieffel deformation.

Given a C∗-dynamical system (A,G,σ), write A⋊σ G for the corresponding
full or reduced crossed product C∗-algebra [14], and denote by Aσ the set of
fixed points of A, i.e.

Aσ = {a ∈ A | σg(a) = a for every g ∈ G}.
If α is an action of Rn on A such that

(1) σg(αt(a)) = αt(σg(a)) for all g ∈ G, t ∈ Rn, a ∈ A,

then α extends to an action on A⋊σ G by letting

αt(f)(g) = αt(f(g)), f ∈ Cc(G,A).

The next proposition identifies Rieffel deformations of Aσ and A⋊σ G.

Proposition 3.3. Let (A, G, σ) be a C∗-dynamical system, and let α be an
Rn-action on A which satisfies (1) and hence extends to the Rn-action on
A⋊σ G as above. Let Θ be a real skew-symmetric n× n matrix. Then (a, g) ∈
(AΘ, G) 7→ (σg)

Θ(a) ∈ AΘ defines an action σΘ of G on AΘ such that

(Aσ)Θ ≃ (AΘ)σ
Θ

and (A⋊σ G)Θ ≃ (AΘ)⋊σΘ G.

Münster Journal of Mathematics Vol. 14 (2021), 559–583
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Proof. The identity maps (Aσ)Θ → (AΘ)σ
Θ

and (A⋊σ G)Θ → (AΘ)⋊σΘ G give
the isomorphisms. The only nontrivial thing is to show the homomorphism
property in the second case. Let f, g ∈ Cc(G) ⊙ A∞, the algebraic tensor
product of Cc(G) and A∞. One has that f , g are smooth elements of A⋊σ G,
and writing the deformed product as convolution ∗Θ, we obtain

(f ∗Θ g)(s) =

∫

Rn

∫

Rn

∫

G

αΘ(x)(f)(t)σt(αy(g)(t
−1s))e2πi〈x,y〉 dt dx dy

=

∫

G

∫

Rn

∫

Rn

αΘ(x)(f(t))αy(σt(g(t
−1s)))e2πi〈x,y〉 dx dy dt

=

∫

G

f(t) ·Θ σt(g(t
−1s)) dt,

where the latter is the convolution determined by (AΘ, σΘ, G). �

In this paper, we will be interested in periodic actions of Rn, i.e. we as-

sume that α is an action of Tn. Given a character χ ∈ T̂n ≃ Zn, consider the
associated spectral subspace

Aχ = {a ∈ A | αz(a) = χ(z)a for every z ∈ Tn}.
Then

A = span
⋃

χ∈Zn

Aχ

and Aχ1 · Aχ2 ⊂ Aχ1+χ2 , A∗
χ = A−χ; hence Aχ, χ ∈ Zn, can be treated as

homogeneous components of the induced Zn-grading on A.

For p = (p1, . . . , pn) ∈ Zn ≃ T̂n, we will write χp for the character of Tn

given by χp(z) = zp1

1 . . . zpn
n , z = (z1, . . . , zn), and write Ap instead of Aχp

.
For the action of Tn, one has an explicit formula for the deformed product

of homogeneous elements.

Proposition 3.4 ([11, Prop. 2.22]). Suppose A is a C∗-algebra with a Tn-
action. Assume that a ∈Ap, b∈Aq for p, q ∈ Zn. Then a ·Θ b= e2πi〈Θ(p),q〉a · b.

Consider a C∗-dynamical system (A,Tn, α) and its covariant representation
(π, U) on a Hilbert space H, i.e. π(αz(a)) = Uzπ(a)U

∗
z , a ∈ A, z ∈ Tn. For

p ∈ Zn, consider the spectral space

Hp = {h ∈ H | Uzh = χp(z)h for all z ∈ Tn}.
Then H =

⊕
p∈Zn Hp (see [14]).

The next result describes a procedure how to lift the representation π of A
to a representation of its Rieffel deformation.

Proposition 3.5 ([3, Thm. 2.8]). Let (π, U) be a covariant representation of
(A,Tn, α) on a Hilbert space H. Then πΘ, given by

πΘ(a)ξ = e2πi〈Θ(p),q〉π(a)ξ,

for ξ ∈ Hq, a ∈ Ap, p, q ∈ Zn, extends to a ∗-representation of AΘ. Moreover,
πΘ is faithful if and only if π is faithful.

Münster Journal of Mathematics Vol. 14 (2021), 559–583
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Remark 3.6. Notice that if the action of Rn on A⊗B is given by α= id⊗αB ,
where αB is an Rn action on B, then (A⊗B)Θ ≃ A⊗BΘ.

We have also the following invariance ofK-groups under Rieffel deformation.

Proposition 3.7 ([7, Thm. 3.13]). For a C∗-algebra A, one has

K0(AΘ) = K0(A) and K1(AΘ) = K1(A).

4. Rieffel deformation of Mn(A)

In the sequel, we will need to work with Rieffel deformations of matrix
algebras over a C∗-algebra A, which we will describe in this section.

Suppose Tk acts on Cn by unitaries Uz, z ∈ Tk, i.e. z 7→ Uz is a strongly
continuous representation of Tk on Cn. It induces an action of Tk on Mn given
by αz(X)ξ = UzXU∗

z ξ, z ∈ Tk, X ∈ Mn, ξ ∈ Cn; thus (Mn, T
k, α) is a C∗-

dynamical system and (id, U) is its covariant representation on Cn, where id
is the identity representation of Mn when the latter is identified with B(Cn).
These actions define Zk-gradings on Cn and Mn as in Section 3. The following
lemma is a direct consequence of Proposition 3.5.

Lemma 4.1. Let Θ be a real skew-symmetric k × k matrix, and let Ψ :MΘ
n →

Mn be given by
Ψ(a)ξ = e2πi〈Θ(p),q〉aξ,

where a ∈ Mn is homogeneous of order p ∈ Zk and ξ ∈ Cn is homogeneous of
order q ∈ Zk. Then Ψ is an equivariant ∗-isomorphism from (MΘ

n ,Tk, αΘ) to
(Mn,T

k, α).

Let (A,Tm,αA) be a C∗-dynamical system, and consider the action of Tk+m

on Mn ⊗A given by X ⊗ a 7→ αz1(X)⊗ αA
z2(a), (z1, z2) ∈ Tk × Tm, X ∈ Mn,

a ∈ A.
Let Θ be a real skew-symmetric matrix of size k+m, and consider its block

partition

Θ =

(
Θ1,1 Θ1,2

Θ2,1 Θ2,2

)
, where Θ1,1 ∈ Mk and Θ2,2 ∈ Mm.

For p ∈ Zm, set

ωl(p) = e2πi〈Θ2,1(ǫl),p〉 ∈ T, l = 1, . . . , k,

ω(p) = (ω1(p), . . . , ωk(p)) ∈ Tk;

here {ǫl}kl=1 is the standard orthonormal basis of Rk. Each ωl : Z
m → T is

clearly a character, and hence ω(p1 + p2) = ω(p1)ω(p2), p1, p2 ∈ Zm.

Theorem 4.2. Let Θ∈Mk+m and (Mn ⊗A,Tk+m,α⊗αA) be as above. Then

(Mn ⊗A)Θ ≃ Mn ⊗AΘ2,2 ,

with the isomorphism given by

Φ(X ⊗ a) = αω(−q)(Ψ(X))Uω(−2q) ⊗ a,

for X ∈Mn, a∈A homogeneous of order q ∈Zm and Ψ as defined in Lemma 4.1

Münster Journal of Mathematics Vol. 14 (2021), 559–583
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Proof. Let (π, V ) be a faithful covariant representation of (A,Tm, αA) on H.
Then (id⊗ π, U ⊗ V ) is a faithful covariant representation of

(Mn ⊗A,Tk+m, α⊗ αA)

on Cn ⊗H. Let (id⊗ π)Θ : (Mn ⊗A)Θ →B(Cn ⊗H) and πΘ2,2 :AΘ2,2 →B(H)
be the ∗-representations defined as in Proposition 3.5.

As (id⊗ π)Θ and id⊗ πΘ2,2 are faithful representations of (Mn ⊗ A)Θ and
Mn ⊗AΘ2,2 respectively, to prove the theorem, it is enough to show that there
exists a unitary operator W ∈ B(Cn ⊗H) such that

(2) W ∗(id⊗ π)Θ(X ⊗ a)W = id⊗ πΘ2,2 (Φ(X ⊗ a))

for all X ∈ Mn, a ∈ Ap and p ∈ Zm; here Ap is the homogeneous component
of order p with respect to (A,Tm, αA).

Recall the gradings on Mn and A which are determined by (Mn, T
k, α)

and (A, Tm, αA) respectively and the gradings on Cn and H determined by
the representations (Uz) and (Vz) of T

k and Tm respectively. Let X ∈Mn and
a ∈ A be homogeneous of order p ∈ Zk and q ∈ Zm respectively, and let ξ1 ∈Cn

and ξ2 ∈ H be homogeneous of order p1 ∈ Zk and q1 ∈ Zm. Then X ⊗ a is
homogeneous of order (p,q)∈Zk ×Zm with respect to (Mn ⊗A,Tk+m,α⊗αA),
and ξ1 ⊗ ξ2 is homogeneous of order (r, s) ∈ Zk ×Zm with respect to (Uz ⊗ Vz).
Furthermore, αz(X) = χp(z)X and Uzξ1 = χp1(z)ξ1. Set b =

(p
q

)
and c =

(
r
s

)
.

Then, by Proposition 3.5, we have

(id⊗ π)Θ(X ⊗ a)(ξ1 ⊗ ξ2)

= e2πi〈Θ(b),c〉Xξ1 ⊗ π(a)ξ2

= e2πi〈Θ1,1p,r〉e2πi〈Θ2,2q,s〉e2πi〈Θ2,1p,s〉e2πi〈Θ1,2q,r〉Xξ1 ⊗ π(a)ξ2

= e2πi〈Θ2,1p,s〉e−2πi〈Θ2,1r,q〉Ψ(X)ξ1 ⊗ πΘ2,2(a)ξ2

= χp(ω(s))χr(ω(−q))Ψ(X)ξ1 ⊗ πΘ2,2 (a)ξ2

= αω(s)(Ψ(X))Uω(−q)ξ1 ⊗ πΘ2,2(a)ξ2.

Let W be a linear map defined on span{ξ ⊗ η | ξ ∈ Cn, η ∈ Hs, s ∈ Zm} ⊂
Cn ⊗H by letting

W (ξ ⊗ η) = Uω(q)ξ ⊗ η, ξ ∈ Cn, η ∈ Hq.

Any vector ζ in the span can be written as
∑l

i=1 ξi ⊗ ηi, where ξi ∈ Cn and

{ηi}li=1 is an orthonormal set in H such that ηi ∈Hqi , qi ∈ Zm (qi can be equal
for different i). We have

〈Wζ,Wζ〉 =
〈

l∑

i=1

Uω(qi)ξi ⊗ ηi,
l∑

i=1

Uω(qi)ξi ⊗ ηi

〉

=

l∑

i=1

〈Uω(qi)ξi, Uω(qi)ξi〉〈ηi, ηi〉 =
l∑

i=1

〈ξi, ξi〉〈ηi, ηi〉 = 〈ζ, ζ〉;

Münster Journal of Mathematics Vol. 14 (2021), 559–583
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hence W can be extended to an isometry on Cn ⊗ H; as the range of W is
dense in Cn ⊗H, it is a unitary operator.

It is left to see that W satisfies (2). For X , a, ξ1, ξ2 as above, we have

W ∗(id⊗ π)Θ(X ⊗ a)W (ξ1 ⊗ ξ2)

= W ∗(id⊗ π)Θ(X ⊗ a)(Uω(s)ξ1 ⊗ ξ2)

= W ∗(αω(s)(Ψ(X))Uω(−q)Uω(s)ξ1 ⊗ πΘ2,2 (a)ξ2
)

= U∗
ω(s+q)αω(s)(Ψ(X))Uω(−q)Uω(s)ξ1 ⊗ πΘ2,2(a)ξ2

= Uω(−q)Ψ(X)Uω(−q)ξ1 ⊗ πΘ2,2(a)ξ2

= αω(−q)(Ψ(X))Uω(−2q)ξ1 ⊗ πΘ2,2 (a)ξ2

= id⊗ πΘ2,2 (Φ(X ⊗ a))(ξ1 ⊗ ξ2).

The result now follows by density arguments. �

We remark that the statements holds true if Mn is replaced by a subalgebra
C of Mn such that αz(C) = C for all z ∈ Tk.

5. CARΘ as Rieffel deformation

In this section, we will show that our main object CARΘ can be seen as
Rieffel deformation of a higher-dimensional CAR algebra. Recall that the
one-dimensional algebra of canonical anti-commutation relations (CAR) is the
∗-algebra C〈a, a∗ | a∗a+ aa∗ = 1〉. We will denote its universal enveloping C∗-
algebra by CAR1; the latter algebra exists and is isomorphic to a C∗-subalgebra
of the C∗-algebra of all continuous functions on the unit disk {z | |z| ≤ 1}
with values in M2, see e.g. [9, Thm. 2.2]. Its other realization, which will be
convenient for our purpose, will be described in the next section. The higher-
dimensional CAR C∗-algebra is given by the tensor product CAR⊗n

1 . Note that
CAR1 is nuclear, and hence we do not need to specify the C∗-tensor product
of its copies.

The C∗-algebra CAR1 has a natural action of T given by

(3) αw(a) = wa, w ∈ T,

where a is the generator of CAR1. This T-action will be always assumed on
CAR1 without mentioning it. It induces the action α⊗n of Tn on the tensor
product CAR

⊗n
1 which we also fix through the paper. For this action, each

generator ãi := 1⊗(i−1) ⊗ a⊗ 1⊗(n−i) is homogeneous of order δi ∈ Zn, where
(δi)k = δi,k is the Kronecker delta.

Fix now a real skew-symmetric matrix Θ= (Θi,j)
n
i,j=1, and recall that CARΘ

is the universal C∗-algebra generated by a1, . . . , an subject to the relations

a∗i ai + aia
∗
i = 1,

a∗i aj = e2πiΘi,jaja
∗
i ,

aiaj = e−2πiΘi,jajai.

Münster Journal of Mathematics Vol. 14 (2021), 559–583
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We have the following isomorphism between CARΘ and a Rieffel deformation
of CAR⊗n

1 .

Theorem 5.1. Let Θ be a real skew-symmetric n× n matrix. Then

CARΘ ≃ (CAR⊗n
1 )

Θ
2 .

Proof. Consider

ϕ : CARΘ → (CAR⊗n
1 )

Θ
2 , ϕ(ai) = 1⊗(i−1) ⊗ a⊗ 1⊗(n−i) := ãi, i = 1, . . . , n.

We shall see first that ϕ extends to a well-defined ∗-homomorphism. As ãk and
ã∗k are homogeneous of order δk and −δk ∈ Zn respectively, by Proposition 3.4,

ϕ(ak) ·Θ
2
ϕ(ak)

∗ = e−πi〈Θ(ǫk),ǫk〉ãkã
∗
k

= 1⊗(k−1) ⊗ aa∗ ⊗ 1⊗(n−k) = ϕ(aka
∗
k).

Similarly, ϕ(ak)
∗ ·Θ

2
ϕ(ak) = ϕ(a∗kak), and hence ϕ(ak)

∗ ·Θ
2
ϕ(ak) + ϕ(ak) ·Θ

2

ϕ(ak)
∗ = 1.

If k < m, then

ϕ(ak) ·Θ
2
ϕ(am) = eπi〈Θ(ǫk),ǫm〉ãkãm

= e−πiΘk,m1⊗(k−1) ⊗ a⊗ 1⊗(m−k−1) ⊗ a⊗ 1⊗(n−m),

ϕ(am) ·Θ
2
ϕ(ak) = eπi〈Θ(ǫm),ǫk〉ãmãk

= eπiΘk,m1⊗(k−1) ⊗ a⊗ 1⊗m−k−1 ⊗ a⊗ 1⊗(n−m).

Thus

ϕ(ak) ·Θ2 ϕ(am) = e−2πiΘk,mϕ(am) ·Θ
2
ϕ(ak).

Similar calculations give

ϕ(ak)
∗ ·Θ

2
ϕ(am) = e2πiΘk,mϕ(am) ·Θ

2
ϕ(ak)

∗,

so ϕ extends to a ∗-homomorphism, and ϕ is surjective as the ∗-algebra gen-

erated by ãi, i = 1, . . . , n, is dense in (CAR⊗n
1 )

Θ
2 .

Also, CARΘ has a natural Tn-action determined by

αw(ai) = wiai, w = (w1, . . . , wn) ∈ Tn,

and hence we can talk about its Rieffel deformation (CARΘ)
−Θ

2 . As above, for
ãk ∈ CAR

⊗n
1 , k = 1, . . . , n, consider the map

Ψ : CAR⊗n
1 → (CARΘ)

−Θ
2 , Ψ(ãk) = ak, k = 1, . . . , n.

As ak and a∗k ∈ CARΘ are homogeneous of order δk and −δk ∈ Zn respectively,
as above, we obtain that

Ψ(ãk) ·−Θ
2
Ψ(ãm) = eπiΘk,makam = e−πiΘk,mamak = Ψ(ãm) ·−Θ

2
Ψ(ãk).

In a similar way, we get Ψ(ãk)
∗ ·−Θ

2
Ψ(ãm) = Ψ(ãm) ·−Θ

2
Ψ(ãk)

∗, m 6= k, and
Ψ(ãk)

∗ ·−Θ
2
Ψ(ãk) + Ψ(ãk) ·−Θ

2
Ψ(ãk)

∗ = 1. Thus Ψ extends to a ∗-homomor-
phism. It is clearly surjective. Moreover, one has the following commutative
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diagram:

(CARΘ)
−Θ

2 ((CAR⊗n
1 )

Θ
2 )−

Θ
2 .

CAR
⊗n
1

ϕ−Θ
2

Ψ
id

Since Ψ is surjective, ϕ−Θ
2 is injective. Therefore, by Proposition 3.5, ϕ is

injective too. �

6. The C∗-algebra CAR1

In this section, we recall the representation theory of the one-dimensional
CAR ∗-algebra and describe its universal envelopingC∗-algebra as a subalgebra
of C([0, 1

2 ],M2(C(T))), showing that it has a C([0, 1
2 ])-structure and that the

action α of T on CAR1 defined by (3) is fiberwise.

6.1. Representation theory of CAR1. We will use the following classifica-
tion of irreducible representations of CAR up to unitary equivalence:
• 2-dimensional:

πx,ϕ(a) = eiϕ
(

0
√
x√

1− x 0

)
, x ∈

[
0,

1

2

)
, ϕ ∈ [0, π),

• 1-dimensional:

ρϕ(a) =
eiϕ√
2
, ϕ ∈ [0, 2π).

Remark 6.2. These representations are unitary equivalent to the representa-
tions given in [9]. We note also that

πx,ϕ(a) = W ∗πx,ϕ−π(a)W,

x ∈
[
0,

1

2

)
, ϕ ∈ [π, 2π), where W =

(
1 0
0 −1

)
,

π0,1(a) = W (ϕ)∗π0,ϕ(a)W (ϕ), ϕ ∈ [π, 2π), where W (ϕ) =

(
1 0
0 eiϕ

)
,

π 1
2 ,ϕ

(a) =
eiϕ√
2

(
0 1
1 0

)
= V

eiϕ√
2

(
1 0
0 −1

)
V ∗, where V =

1√
2

(
1 1
1 −1

)
.

Hence any one-dimensional irreducible representation can be obtained by de-
composing π 1

2 ,ϕ
, ϕ ∈ [0, π), into irreducible ones. Also one has

π 1
2 ,ϕ

= Wπ 1
2 ,ϕ+πW

∗, ϕ ∈ [0, π).

6.3. Spatial picture of CAR1. In order to describe the universal enveloping
C∗-algebra CAR1, we recall the following version of the Stone–Weierstrass–
Glimm theorem, see e.g. [6, Thm. 1.4], [13, Sec. 3].
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Theorem 6.4. Let Y be a compact Hausdorff space, and let A ⊆ B be sub-
algebras of C(Y,Mn). For every pair (y1, y2) of points in Y , define A(y1, y2)
as

A(y1, y2) := {(f(y1), f(y2)) ∈ Mn ×Mn | f ∈ A},
and similarly B(y1, y2). Then

A = B ⇐⇒ A(y1, y2) = B(y1, y2) for all y1, y2 ∈ Y.

For representations π1, π2 of a ∗-algebra A on Hilbert spaces H(π1) and
H(π2) respectively, we write Hom(π1,π2) for the space of intertwining operators

Hom(π1, π2) = {c ∈ B(H(π2),H(π1)) | π1(a)c = cπ2(a), a ∈ A}.
We remark that Hom(π1, π2) = {0} if and only if π1, π2 are disjoint, i.e. π1, π2

do not have unitary equivalent sub-representations.
For a ∗-algebra A ⊂ B(H), we denote by A′ its commutant, i.e.

A′ = {c ∈ B(H) | ca = ac, a ∈ A}.
Let also W (z) =

(
1 0
0 z

)
, z ∈ T, and retain the unitaries W and V from the

previous subsection; in particular, W = W (−1). Write D2 ⊂ M2 for the sub-
algebra of diagonal matrices.

Let h : CAR1 → C([0, 1
2 ], M2(C(T))) be a ∗-homomorphism given on the

generator a ∈ CAR1 by

(4) h(a)(x)(z) = z

(
0

√
x√

1− x 0

)
, x ∈

[
0,

1

2

]
, z ∈ T.

The next proposition gives a desired realization of CAR1.

Proposition 6.5. CAR1 is isomorphic to the C∗-algebra

B =
{
f ∈ C

([
0,

1

2

]
,M2(C(T))

) ∣∣∣(5)

f(x)(z) = Wf(x)(−z)W ∗ for all x ∈
(
0,

1

2

)
,

f(0)(z) = W (z)f(0)(1)W ∗(z), f
(1
2

)
∈ V (D2 ⊗ C(T))V ∗,

f
(1
2

)
(z) = Wf

(1
2

)
(−z)W ∗ for all z ∈ T

}
,

with the map h which implements the ∗-isomorphism.

Proof. Set A = CAR1. Observe first that h(a)(x)(z) = πx,ϕ(a) for z = eiϕ;
hence h extends to a ∗-homomorphism of CAR1. Moreover, it is easy to see
that the image h(A) is in B. It follows from the classification of irreducible
representations of A that h : A → B given by (4) is an isometry. Hence it
is sufficient to see that h is surjective. Considering B as a C∗-subalgebra
of C([0, 1

2 ] × T, M2), by Theorem 6.4, it is enough to show that, for pairs

(x1, x2) ∈ [0, 12 ]
2 and (z1, z2) ∈ T2, h(A)((x1, z1), (x2, z2)) = B((x1, z1), (x2, z2)).
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We will follow the same scheme as in [9, Thm. 2.2] and prove the equality of
the commutants

h(A)((x1, z1), (x2, z2))
′ = B((x1, z1), (x2, z2))

′.

For the notation simplicity, we will write πx,z instead of πx,ϕ if z = eiϕ.
Consider the equivalence relation on [0, 12 ]× T defined as follows:

(x1, z1) ∼ (x2, z2) if either x1 = x2 and z1 = ±z2 or x1 = x2 = 0,

and note that πx1,z1 and πx2,z2 are disjoint, and hence Hom(πx1,z1 ,πx2,z2) = {0}
when (x1, z1) 6∼ (x2, z2). Therefore, assuming (x1, z1) 6∼ (x2, z2), we obtain that

h(A)((x1, z1), (x2, z2))
′ = h(A)((x1, z1))

′ ⊕ h(A)((x2, z2))
′.

As h(A) ⊂ B, we have B((x1, z1), (x2, z2))
′ = B((x1, z1))

′ ⊕ B((x2, z2))
′.

If x1 = x2 = 0, then πxi,zi(b) = W (zi)π0,1(b)W (zi)
∗, b ∈ A, and one easily

gets that

h(A)((x1, z1), (x2, z2))
′ = {(Λij) | W (zi)ΛijW (zj)

∗ ∈ π0,1(A)′, i, j = 1, 2},
B((x1, z1), (x2, z2))

′ = {(Λij) | W (zi)ΛijW (zj)
∗ ∈ B((0, 1))′, i, j = 1, 2}.

If x1 = x2 and z1 = −z2, similarly, we obtain that

h(A)((x1, z1), (x2, z2))
′ = {(Λij) | Λi1,W

∗Λ1jW ∈ πx1,z1(A)′, i, j = 1, 2},
B((x1, z1), (x2, z2))

′ = {(Λij) | Λi1,W
∗Λ1jW ∈ B((x1, z1))

′, i, j = 1, 2}.
If x1 = x2 and z1 = z2, then

h(A)((x1, z1), (x2, z2))
′ = (I ⊗ h(A)((x1, z1)))

′ = M2 ⊗ (h(A)((x1, z1)))
′

and similarly B((x1, z1), (x2, z2))
′ = M2 ⊗ (B((x1, z1)))

′. Therefore, to prove
the statement, it is enough to see that

(6) πx,z(A)′ ⊂ B((x, z))′

for any (x, z) ∈ [0, 12 ]× T.

We consider two cases: x 6= 1
2 and x = 1

2 .

Case 1: x 6= 1
2 . In this case, πx,z is irreducible, and hence πx,z(A)′ = CI2; the

inclusion (6) holds trivially.

Case 2: x = 1
2 . In this case, we have C ∈ πx,z(A)′ if and only if V ∗CV ∈ D,

where D is the subalgebra of the diagonal matrices. It follows from the defini-
tion of B that any such C is in B(12 , z). This completes the proof. �

6.6. CAR1 as a fixed point subalgebra. It will be useful to see CAR1 as
a fixed point subalgebra of a larger C∗-subalgebra of C([0, 12 ],M2(C(T))) with
a Z2-action defined on it.

Given a C∗-algebra A, the C∗-algebra C(T,A) has a natural T-action which
will be always denoted by β:

βw(f)(z) = f(wz), f ∈ C(T,A), z ∈ T, w ∈ T.

Considering Z2 as the subgroup {1,−1} of T, we shall denote by β also the
restriction of it to Z2.
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We keep the notation of Subsection 6.3 and consider the C∗-algebra

C =
{
f ∈ C

([
0,

1

2

]
,M2(C(T))

) ∣∣∣ f(0)(z) = W (z)f(0)(1)W ∗(z),

f
(1
2

)
∈ V (D2 ⊗ C(T))V ∗ for all z ∈ T

}
.

Let σ be the action of Z2 on M2(C(T)) ≃ M2 ⊗ C(T) given by

σw = Ad(W (w)) ⊗ βw, w ∈ Z2,

where we write Ad(v) for the inner automorphism T 7→ vTv∗ of M2. Let Σ be
the action of Z2 on C given by

Σw(f)(x) = σw(f(x)), f ∈ C, w ∈ Z2.

Theorem 6.7. Let B be the C∗-algebra given by (5). Then B ≃ CΣ.

Proof. The only condition to be checked is that the 0-fiber is stable under Σ:

Σ−1(f)(0)(z) = W (−1)f(0)(−z)W (−1)∗

= W (−1)W (−z)f(0)(1)W (−z)∗W (−1)∗

= W (z)f(0)(1)W (z)∗ = f(0)(z). �

6.8. C([0, 1

2
])-structure on CAR1. Let B be as in Proposition 6.5. Since

CAR1 ≃B, it has a C([0, 12 ])-structure induced by the naturalC([0, 12 ])-structure
on B given by

(7) Φ(g)(f)(x) = g(x)f(x), g ∈ C
([

0,
1

2

])
, f ∈ B,

so that CAR1(x) ≃ B(x) with the isomorphism defined by b(x) 7→ h(b)(x),
b ∈ CAR1, x ∈ [0, 1

2 ].

We next identify the fibers CAR1(x), x ∈ [0, 1
2 ]. We note first that, with

β as in the previous subsection, we have that w 7→ β(w)(f)(x) := (βw(f(x)),
f ∈ C([0, 1

2 ], M2(C(T))), w ∈ T, is a fiberwise action of T. Moreover, the
isomorphism h of Proposition 6.5 is equivariant in the sense that

h(αw(b))(x) = βw(h(b)(x)), b ∈ CAR1, w ∈ T, x ∈
[
0,

1

2

]
.

In particular, it implies that α is fiberwise with the induced action αx on
CAR1(x) given by αx

w(a(x)) = wa(x), where a is the generator of CAR1.
Let C(T) ⋊β Z2 be the crossed product C∗-algebra corresponding to the

dynamical system (C(T), β,Z2). It is the universal C∗-algebra generated by
unitaries u and v satisfying the relations uv = −vu, v2 = 1; the action β of T
on C(T), βw(f)(z) = f(wz), w, z ∈ T, induces a T-action τ on C(T) ⋊β Z2,
given by τw(u) = wu and τw(v) = v, w ∈ T.

In what follows, it will be convenient to use the generators of Clifford alge-
bra. We recall that the Clifford C∗-algebra Cl2 is

Cl2 = C∗(e | e2 = 0, ee∗ + e∗e = 1).

Clearly, M2 ≃ Cl2, where the isomorphism is given by
(
0 0
1 0

)
7→ e.
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Theorem 6.9. One has the following isomorphisms of fibers of CAR1:

CAR1(0) ≃ M2 ≃ Cl2, ψ0 : h(a)(0) 7→
(
0 0
1 0

)
7→ e,

CAR1(x) ≃ C(T)⋊β Z2,

ψx : h(a)(x) 7→ u

2

(
(
√
1− x+

√
x)1 + (

√
1− x−

√
x)v

)
, 0 < x <

1

2
,

CAR1

(1
2

)
≃ C(T), ψ 1

2
: h(a)

(1
2

)
(z) 7→ 1√

2
z.

Moreover, the isomorphisms are T-equivariant when M2, C(T) ⋊β Z2, C(T)
are equipped with the T-action given by

w y T = W (w)TW (w)∗, T ∈ M2,

w y T = τw(T ), T ∈ C(T)⋊β Z2,

w y f = βw(f), f ∈ C(T).

Proof. For x ∈ (0, 1
2 ), by Theorem 6.7, we have

CAR1(x) ≃ (CΣ)(x) ≃ (C(x))σ = M2(C(T))σ ,

with the natural C([0, 1
2 ])-structure on C given as in (7). By the duality the-

orem (see e.g. [14, Sec. 7.1]), M2 ⊗ C(T) ≃ (C(T) ⋊β Z2) ⋊β̂ Z2, where β̂

is the dual action of Ẑ2 ≃ Z2 on C(T) ⋊β Z2; the double dual action
ˆ̂
β on

(C(T)⋊β Z2)⋊β̂ Z2) is carried by the isomorphism into β̃ on M2 ⊗C(T) given

by β̃w = Ad(W (w)) ⊗ βw = σw, w ∈ Z2 (w 7→ W (w) is unitary equivalent to
the left regular representation of Z2); hence, using the fixed point theorem, we
obtain

M2(C(T))σ ≃ ((C(T) ⋊β Z2)⋊β̂ Z2)
ˆ̂
β ≃ C(T) ⋊β Z2.

In particular, the isomorphism maps the generators u and v of C(T) ⋊β Z2 to
z
(
0 1
1 0

)
and

(
1 0
0 −1

)
in M2(C(T))σ respectively, and from which one can easily see

that the element u
2 ((

√
1− x+

√
x)1 + (

√
1− x−√

x)v) maps to z
( 0

√
x√

1−x 0

)
.

If x = 0, then

CAR1(0) ≃ {f ∈ M2(C(T)) | f(z) = W (z)f(1)W (z)∗, z ∈ T} ≃ M2(C),

with the isomorphism given by f 7→ f(1).
For x = 1

2 , one has the isomorphism C(12 ) ≃ C(T) ⊕ C(T) given by φ : f 7→
V ∗fV , where V = 1√

2

(
1 1
1 −1

)
. Let X =

(
0 1
1 0

)
, and let σ̃ be the action of Z2 on

M2(C(T)) given by

σ̃(f)(z) = Xf(−z)X∗, z ∈ T.

Then

φ(σ(f)) = σ̃(φ(f)), f ∈ M2(C(T)).

Notice that σ̃ acts on C(T) ⊕ C(T) as

σ̃(f, g)(z) = (g, f)(−z), z ∈ T.
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Hence

CAR1

(1
2

)
≃ (C(T)⊕ C(T))σ̃ ≃ C(T).

The formula for ψ 1
2
can be easily derived. That the isomorphisms are T-equi-

variant is straight-forward. �

Remark 6.10. In what follows, we shall also use the isomorphism CAR1(0) ≃
M2 given by h(a)(0) 7→

(
0 1
0 0

)
. The isomorphism is T-equivariant when M2 is

given the T-action w y T = W (w)∗TW (w), T ∈ M2, w ∈ T.

7. CARΘ as C(Kn)-algebra and its fibers

Let Kn = [0, 12 ]
n. We shall now use our knowledge about CAR1 to describe

a C(Kn)-structure on CARΘ and the corresponding fibers. For this, we will use
the fact that CARΘ is a Rieffel deformation of the tensor product of n copies
of CAR1 (Theorem 5.1). The result will allow us in particular to obtain a clas-
sification of all irreducible representations of CARΘ providing an alternative
proof of [10, Thm. 3].

Let Θ be a real skew-symmetric n × n matrix, and let α be the action
of T on CAR1 given by (3). Since α is fiberwise with respect to the C([0, 1

2 ])-
structure on CAR1, we get an action on CAR1(x). Similarly, α⊗n is fiberwise
with respect to the natural C(Kn)-structure on CAR

⊗n
1 . Thus, by Theorem 5.1

and Proposition 3.2, one has the following statement.

Proposition 7.1. There exists a C(Kn)-structure on CARΘ such that

CARΘ(x) ≃ (CAR⊗n
1 (x))

Θ
2 .

Next we shall give a more explicit description of the fibers.
Given x = (x1, . . . , xn) ∈ Kn, let

Lx = {i ∈ Nn | xi = 0},

Mx =
{
i ∈ Nn

∣∣∣ 0 < xi <
1

2

}
,

Rx =
{
i ∈ Nn

∣∣∣ xi =
1

2

}
.

For S = {S(1), . . . , S(m)} ⊂ {1, . . . , n}, we let ΘS be the m×m matrix such
that (ΘS)i,j = ΘS(i),S(j). For a set Y , we write Y S = {(ai)i∈S | ai ∈ Y }. If

Y is a group, then so is Y S with respect to coordinate-wise multiplication;
similarly, Y S is a Hilbert space if so is Y with natural linear operations and
scalar product on it. Set

ClS = C∗(ei, i ∈ S | e2i = 0, eie
∗
i + e∗i ei = 1, eiej = ejei) ≃ Cl

⊗|S|
2

and write C(TS
ΘS

) for the non-commutative torus:

C∗(uk, k ∈ S | ukul = e−2πiΘk,luluk, uku
∗
k = u∗

kuk = 1).

If S = {1, . . . , n}, we write simply Cl2n and C(Tn
Θ); if n= 2, identifying Θ with

θ := Θ1,2 ∈ R, we denote the non-commutative torus by C(T2
θ).
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For x ∈ Kn, let β
x
Θ be the action of ZMx

2 on C(TMx⊔Rx

ΘMx⊔Rx
) given by

βx
Θ(ω)(ul) = ωlul, l ∈ Mx, and βx

Θ(ω)(ul) = ul, l ∈ Rx,

for ω = (ωk)k∈Mx
∈ Z

Mx

2 . Then

C(TMx⊔Rx

ΘMx⊔Rx
)⋊βx

Θ
Z
Mx

2

is generated by ui, i ∈ Mx ⊔ Rx, which satisfy the relations in C(TMx⊔Rx

ΘMx⊔Rx
),

and by selfadjoint unitaries vi, i ∈ Mx, such that

vivj = vjvi and v∗i ujvi = βx
Θ(ω

i)(uj),

i ∈ Mx, j ∈ Mx ⊔Rx, where ωi
i = −1 and ωi

k = 1 otherwise.

Proposition 7.2. Let x = (x1, . . . , xn) ∈ Kn. Then

CARΘ(x) ≃ ClLx
⊗ C(TMx⊔Rx

ΘMx⊔Rx
)⋊βx

Θ
Z
Mx

2 .

The isomorphism is given by

hx
Θ(ai(x)) =

∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)ei ⊗ 1, i ∈ Lx,

hx
Θ(ai(x)) =

∏

k∈Lx

(eke
∗
k + e2πiΘi,ke∗kek)

⊗ ui

2

(
(
√
1− xi +

√
xi) + (

√
1− xi −

√
xi)vi

)
, i ∈ Mx,

hx
Θ(ai(x)) =

∏

k∈Lx

(eke
∗
k + e2πiΘi,ke∗kek)⊗

ui√
2
, i ∈ Rx.

Proof. By Proposition 7.1, we have

CARΘ(x) ≃ (CAR⊗n
1 (x))

Θ
2 ≃

(
n⊗

i=1

CAR1(xi)

)Θ
2

.

By Theorem 6.9,

CARΘ(x) ≃
(
ClLx

⊗ (C(TMx )⋊β Z
Mx

2 )⊗ C(TRx)
)Θ

2 ,

where the action of TLx⊔Mx⊔Rx , which determines the latter Rieffel defor-
mation, is given by the corresponding product of T-actions on Cl2 ≃ M2,
C(T) ⋊β Z2 and C(T) given in Remark 6.10 (for the action on M2) and
Theorem 6.9. Identify ClLx

with
⊗

k∈Lx
M2 through ek 7→

⊗
l∈Lx

al, where

ak =
(
0 1
0 0

)
and al = I2 otherwise. The action TLx on ClLx

, given by

αLx
: (zi)i∈Lx

y ei = ziei,

is implemented by the unitary representation (Uz) of T
Lx on (C2)Lx given by

Uz

(⊗

i∈Lx

(
ξ1i
ξ2i

))
=

⊗

x∈Lx

(
ξ1i
ziξ

2
i

)
, z = (zi)i∈Lx

∈ TLx .

By Theorem 4.2 and the remark after it, we have

CARΘ(x) ≃ ClLx
⊗
(
(C(TMx )⋊β ZMx

2 )⊗ C(TRx)
)ΘMx⊔Rx

2 .
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Since β̃ := β ⊗ id : Z2
Mx⊔Rx → Aut(C(TMx ) ⊗ C(TRx)) commutes with the

action that defines the Rieffel deformation, by Remark 3.6 and Proposition 3.3,
we have

CARΘ(x) ≃ ClLx
⊗
(
C(TMx⊔Rx)⋊β̃ Z

Mx

2

)ΘMx⊔Rx
2

≃ ClLx
⊗
(
C(TMx⊔Rx)

)ΘMx⊔Rx
2 ⋊βx

Θ
ZMx

2

≃ ClLx
⊗
(
C(TMx⊔Rx

ΘMx⊔Rx
)⋊βx

Θ
Z
Mx

2

)
.

To see the formulas, recall the maps Φ and Ψ from Section 4. If i ∈ Lx, then

hx
Θ(ai(x)) = Φ(ei ⊗ 1) = Ψ(ei)⊗ 1.

Let ξ ∈ (C2)Lx be homogeneous of order q = (bi)i∈Lx
with bi ∈ {0,−1}, i.e.

ξ =
⊗

i∈Lx
fbi , where

{
f0 =

(
1
0

)
, f−1 =

(
0
1

)}
is the standard basis in C2. If

bk = −1, then e∗kek(ξ) = ξ, eke
∗
k(ξ) = 0. Since ej is homogeneous of order

p = δj ∈ ZLx , one has

Ψ(ei)ξ = e2πi〈ΘLx (δi)/2,q〉eiξ = e2πi
∑

k∈Lx

1
2Θk,ibkeiξ

=
∏

k:bk=−1

e−πiΘk,ieiξ =
∏

k∈Lx

(eke
∗
k + e−πiΘk,ie∗kek)eiξ.

Let i ∈ Rx. Since ui is homogeneous of order δi ∈ ZMx⊔Rx , by Theorem 4.2,

hx
Θ(ai(x)) = (αLx

)ω(−δi)(Ψ(1))Uω(−2δi) ⊗
1√
2
ui = Uω(−2δi) ⊗

1√
2
ui.

Notice that

Uz =
∏

k∈Lx

(eke
∗
k + zke

∗
kek), z = (zi)i∈Lx

,

and ωj(−δi) = e−2πiΘi,j . Thus

hx
Θ(ai(x)) =

∏

k∈Lx

(eke
∗
k + e2πiΘi,ke∗kek)⊗

1√
2
ui.

If i ∈ Mx, then similar calculations give

hx
Θ(ai(x)) =

∏

k∈Lx

(eke
∗
k + e2πiΘi,ke∗kek)

⊗ ui

2

(
(
√
1− xi +

√
xi) + (

√
1− xi −

√
xi)vi

)
. �

Now, having a description of fibers of CARΘ, we can classify all irreducible
representations of CARΘ. The following lemma reduces the procedure to the
classification of irreducible representations of the fibers.

Lemma 7.3 ([14, Prop. C.5]). Suppose a C∗-algebra A is equipped with a
C0(X)-structure. Then any irreducible representation of A factors through an
irreducible representation of a fiber A(x) for some x ∈ X.
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Lemma 7.3 and Proposition 7.2 reduce the classification of all irreducible
representations of CARΘ to that of the C∗-algebra Cl2k ⊗ C(Tn+m

Θ ) ⋊βΘ Zn
2 .

We will next derive explicit formulas reducing further the classification to the
classification of irreducible representations of a non-commutative torus.

As in the proof of Proposition 7.2, we write ei for the image of ei ∈ ClS
in

⊗
k∈S M2 for S = Lx and S = Mx, x ∈ [0, 1

2 ]
Mx , i.e. ei =

⊗
k∈S ak with

ai =
(
0 1
0 0

)
and ak = I2 otherwise.

Lemma 7.4. Any irreducible representation of CARΘ is unitary equivalent
to a subrepresentation of the representation ρx ◦ evx, x = (xi)i∈Mx

∈ [0, 1
2 ]

Mx ,
evx : CARΘ → CARΘ(x), a 7→ a(x) and ρx is the representation of CARΘ(x) on
(
⊗

k∈Lx
C2)⊗ (

⊗
k∈Mx

C2)⊗H given by

(8)

ρx(ai(x)) =
∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)ei ⊗ 1⊗ 1H , i ∈ Lx,

ρx(ai(x)) =
∏

k∈Lx

(eke
∗
k + e2πiΘi,ke∗kek)

⊗ (
√
xiei +

√
1− xie

∗
i )⊗ ui, i ∈ Mx,

ρx(ai(x)) =
∏

k∈Lx

(eke
∗
k + e2πiΘi,ke∗kek)⊗ 1⊗ 1√

2
ui, i ∈ Rx.

where {ui | i ∈ Mx ⊔ Rx} is an irreducible representation of C(TMx⊔Rx

ΘMx⊔Rx
) on

the Hilbert space H.

Proof. Proposition 7.2 and the duality arguments for crossed products as in
the proof of Theorem 6.9 give

CARΘ(x) ≃ ClLx
⊗
(
M2|Mx| ⊗ C(TMx⊔Rx

ΘMx⊔Rx
)
)β̃ΘMx⊔Rx

⊂
(⊗

k∈Lx

M2

)
⊗
( ⊗

k∈Mx

M2

)
⊗ C(TMx⊔Rx

ΘMx⊔Rx
),

where β̃ΘMx⊔Rx
is defined by

β̃ΘMx⊔Rx
(w) = Ad(W (wi))

⊗|Mx| ⊗ βx
Θ(w), w = (wi)i∈Mx

∈ Z
Mx

2 .

The imbedding is given by (8) with (ui)i∈Mx⊔Rx
the generators of C(TMx⊔Rx

ΘMx⊔Rx
).

As any irreducible representation of
(⊗

k∈Lx

M2

)
⊗
( ⊗

k∈Mx

M2

)
⊗ C(TMx⊔Rx

ΘMx⊔Rx
)

is unitary equivalent to id⊗ id⊗ π, where π is a representation of C(TMx⊔Rx

ΘMx⊔Rx
),

the statement now follows from [5, Prop. 2.10.2]. �

The next result was proved in [10], but here we present its alternative proof
that uses essentially a new approach employing C(Kn)-structure of CARΘ. The
representations in the list below are unitary equivalent to those given in [10,
Thm. 3].
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Theorem 7.5. Any irreducible representation of CARΘ is unitary equivalent
to a representation τx, x ∈ [0, 12 ]

Mx , given on (
⊗

k∈Lx
C2)⊗ (

⊗
k∈Mx

C2)⊗H
by

τx(ai) =
∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)ei ⊗ 1⊗ 1H , i ∈ Lx,

τx(ai) =
∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)

⊗
(( ∏

k∈Mx,k<i

(e∗kek + e2πiΘi,keke
∗
k)⊗ 1H

)

×
(√

xi

∏

k∈Mx,k≥i

(e∗kek + e4πiΘi,keke
∗
k)ei ⊗ vi

+
√
1− xie

∗
i ⊗ 1H

))
, i ∈ Mx,

τx(ai) =
∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)

⊗
∏

k∈Mx

(e∗kek + e2πiΘi,keke
∗
k)⊗

vi√
2
, i ∈ Rx.

where (vi)i∈Mx⊔Rx
defines an irreducible representation of C(TMx⊔Rx

Σ ) on H,
where

Σi,j =





4Θi,j, i, j ∈ Mx,

2Θi,j, (i, j) or (j, i) ∈ Mx ×Rx,

Θi,j , i, j ∈ Rx.

Moreover, two such irreducible representations τx and τy are unitary equivalent
if and only if x = y and the corresponding representations of C(TMx⊔Rx

Σ ) are
unitary equivalent.

Proof. Recall the representation ρx from Lemma 7.4, and consider the unitary
operators on (

⊗
k∈Lx

C2)⊗ (
⊗

k∈Mx
C2)⊗H given by

Vk = 1⊗ (eke
∗
k ⊗ 1 + e∗kek ⊗ uk), k ∈ Mx.

Set V = Vi1 . . . Vi|Mx|
, where Mx = {i1, . . . , i|Mx|} and ik < il if k < l. Then

V ρx(ai)V
∗ = ρx(ai) =

∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)ei ⊗ 1⊗ 1H , i ∈ Lx,

V ρx(ai)V
∗ =

∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)

⊗
(( ∏

k∈Mx,k<i

(e∗kek + e2πiΘi,keke
∗
k)⊗ 1H

)

×
(√

xi

∏

k∈Mx,k≥i

(e∗kek + e4πiΘi,keke
∗
k)ei ⊗ u2

i

+
√
1− xie

∗
i ⊗ 1H

))
, i ∈ Mx,

V ρx(ai)V
∗ =

∏

k∈Lx

(eke
∗
k + eπiΘi,ke∗kek)

⊗
∏

k∈Mx

(e∗kek + e2πiΘi,keke
∗
k)⊗

1H√
2
, i ∈ Rx.
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It is easy to see that the family {u2
i | i ∈Mx} ∪ {ui | i ∈Rx} forms a representa-

tion of C(TMx⊔Rx

Σ ). Moreover, any such family with vi instead of u2
i , i ∈ Mx,

and vi instead of ui, i ∈ Rx, where (vi)i∈Mx⊔Rx
defines a representation of

C(TMx⊔Rx

Σ ), is a representation of CARΘ.
Fix x ∈ [0, 12 ]

Mx , and let C be an operator intertwining the representations
corresponding to families V = (vi)i∈Mx⊔Rx

and W = (wi)i∈Mx⊔Rx
acting on

HV and HW respectively. Denote them by τV and τW respectively; we have
CτV(a) = τW(a)C, a ∈ CARΘ, i.e. C ∈ Hom(τV, τW). In particular,

(9) CτV(a
∗
i ai) = τW(a∗i ai)C, i ∈ Lx ⊔Mx ⊔Rx.

We have

(10) τV(a
∗
i ai) =





e∗i ei ⊗ 1⊗ 1HV
, i ∈ Lx,

1⊗ ((1− xi)eie
∗
i + xie

∗
i ei)⊗ 1HV

, i ∈ Mx,

1⊗ 1⊗ 1HV
, i ∈ Rx.

Therefore, it is easy to see that (9) implies that C =
∑

i pi ⊗ Ci, where pi =∏
k∈Lx⊔Mx

qik with

qik ∈ {eke∗k, e∗kek}k∈Lx⊔Mx
⊂

⊗

k∈Lx⊔Mx

M2

(
=

(⊗

k∈Lx

M2

)
⊗
( ⊗

k∈Mx

M2

))
,

Ci ∈B(HV,HW); the summation is over all possible products pi=
∏

k∈Lx⊔Mx
qik.

The condition CτV(ak) = τW(ak)C for k ∈ Lx is equivalent to
∑

i

αi,kpiek ⊗ Ci =
∑

i

αi,kekpi ⊗ Ci

for some nonzero αi,k. As

piek =

{
0 if qik = e∗kek,

ekpσk(i) if qik = eke
∗
k,

here qσk(i)
k = e∗kek if qik = eke

∗
k and vice versa, and qσk(i)

j = qij otherwise (i.e.

we swap the projection qik to the other possible value for the kth factor), we
obtain Ci = Cσk(i) for all k ∈ Lx. Similarly, the condition CτV(ak) = τW(ak)C
for k ∈ Mx implies first that Ci = Cσk(i), k ∈ Mx, giving now that all Ci’s are
equal; call the common value C′ and get C = 1 ⊗ C′. Then we obtain that
C′vk = wkC

′ for all k ∈ Mx. The condition CτV(ak) = τW(ak)C for k ∈ Rx

gives C′vk =wkC
′. Therefore, we have a bijection Hom(τV, τW)→Hom(V,W),

1 ⊗ C 7→ C. From this, it easily follows that τV is irreducible if and only if V
defines an irreducible representation C(TMx⊔Rx

Σ ).
That τx and τy are not unitary equivalent for x 6= y follows from the fact

that the spectrum of τx(a
∗
i ai) is in {1, xi, 1− xi} if i ∈ Mx, see (10). �

8. Classification of CARΘ

This section contains the main result of the paper and concerns the clas-
sification of CARΘ up to isomorphism. To obtain the result, we will employ
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another C(K)-structure coming from the center of CARΘ and relate it to the
C([0, 1

2 ])-structure on the algebra. We will then use K-theoretical arguments
applied to the fibers to derive the result.

Let Θ1 and Θ2 be skew-symmetric real n×nmatrices. Suppose ϕ :CARΘ1 →
CARΘ2 is an isomorphism. It induces an isomorphism of the centers and
a homeomorphism α : specZ(CARΘ2) → specZ(CARΘ1) of their Gelfand spec-
trum. Let ZΘi

= specZ(CARΘi
), i= 1,2. We have a natural C(ZΘi

)-structure
on CARΘi

given by the inverse of the Gelfand transform ĝ 7→ g, g ∈ Z(CARΘi
),

i = 1, 2: Φi(ĝ) · a = ga, a ∈ CARΘi
. Letting

IΘz = {ga | a ∈ CARΘ, ĝ(z) = 0}, z ∈ ZΘ,

we have the following commutative diagram:

0 IΘ1

α(z) CARΘ1 CARΘ1(α(z)) 0

0 IΘ2
z CARΘ2 CARΘ2(z) 0,

ϕ|
I
Θ1
α(z)

ϕ

which gives the isomorphisms CARΘ1(α(z)) ≃ CARΘ2(z) for every z ∈ ZΘ2 .
The C(Kn)-structure on CARΘ induces an injective homomorphism from

C(Kn) to C(ZΘ) and hence a canonical continuous surjection π : ZΘ → Kn.
We also have for all z ∈ ZΘ that Iπ(z) is an ideal in IΘz and hence

CARΘ(z) ≃ CARΘ/I
Θ
z ≃ (CARΘ/Iπ(z))/(I

Θ
z /Iπ(z))

so that CARΘ(z) is a quotient of CARΘ(π(z)).

Definition 8.1. Recall Lx, Mx and Rx, x ∈ Kn, from Section 7, and for each
z ∈ ZΘ, define the face signature to be face(z) = (|Lπ(z)|, |Mπ(z)|, |Rπ(z)|).
Definition 8.2. We say that a real skew-symmetric n × n matrix Θ is irra-
tional if, whenever p ∈ Zn satisfies e2πi〈p,Θ(q)〉 = 1 for all q ∈ Zn, then p = 0.

We note that some authors choose to call such Θ non-degenerate, see e.g. [8].
We now give a description of the fibers of CARΘ over ZΘ using the above con-
nection with C(Kn)-structure and the description of fibers given in Proposi-
tion 7.2.

Let Θ be an irrational skew-symmetric n× n-matrix. For z ∈ ZΘ, set x =
π(z) ∈ Kn and l = |Lx|, m = |Mx|, r = |Rx|. The description splits in the
following four cases.
(i) If m+ r ≥ 2, then CARΘ(x)≃ Cl2l ⊗C(Tm+r

ΘMx⊔Rx
)⋊βx

Θ
Zm
2 . Since ΘMx⊔Rx

is irrational, Z(CARΘ(x)) ≃ C. From this, one can easily derive that
Iπ(z) = IΘz and hence

CARΘ(z) ≃ Cl2l ⊗ C(Tm+r
ΘMx⊔Rx

)⋊βx
Θ
Zm
2 .

(ii) If l = n− 1, m = 1, then CARΘ(z) is a quotient of CARΘ(x) ≃ Cl2n−2 ⊗
C(T)⋊βx

Θ
Z2. As C(T)⋊β Z2 ≃M2(C(T)) (see e.g. [4, Prop. 3.4]), we have

CARΘ(x)≃ Cl2n ⊗C(T) with all quotients being of the form Cl2n ⊗C(K)
for some closed subset K ⊂ T.
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(iii) If l = n − 1, r = 1, then CARΘ(z) is a quotient of CARΘ(x) ≃ Cl2n−2 ⊗
C(T). All such quotients have the form Cl2n−2 ⊗C(K) for a closed subset
K ⊂ T.

(iv) If l = n, then CARΘ(x) ≃ Cl2n ≃ CARΘ(z).
To prove the main result, we need the following auxiliary lemmas.

Lemma 8.3. Let Θ be irrational and σ ∈ Aut(C(Tn
Θ)), given by σ(u1) = −u1,

σ(uk) = uk, k > 1. Then

C(Tn
Θ)

σ ≃ C(Tn
Θ(1)),

where Θ
(1)
i,j = 2Θi,j if either i or j = 1 and Θ

(1)
i,j = Θi,j otherwise.

Proof. We note first that C(Tn
Θ)

σ = {x + σ(x) | x ∈ C(Tn
Θ)} from which it

is easy to see using approximation arguments that C(Tn
Θ)

σ equals the C∗-
subalgebra C∗(u2

1, u2, . . . , un), generated by u2
1, u2, . . . , un. Furthermore, the

map u1 7→ u2
1, uk 7→ uk, k > 1, extends to a surjective ∗-homomorphism from

C(Tn
Θ(1) ) to C∗(u2

1, u2, . . . , un). The statement now follows from the simplicity
of C(Tn

Θ(1)), see e.g. [8, Thm. 1.9]. �

For a skew-symmetric real matrix Θ of size n = m+ r, let Σ be given by

Σi,j =





4Θi,j , i, j ≤ m,

2Θi,j , either i ≤ m or j ≤ m,

Θi,j , i, j > m.

Define βΘ : Zm
2 → Aut(C(Tm+r

Θ )) by

βΘ(ω)(uk) =

{
ωkuk, k ≤ m,

uk, k > m,

where ω = (ω1, . . . , ωm).

Lemma 8.4. Let Θ, Σ and βΘ be as above. Then

C(Tm+r
Θ )⋊βΘ Zm

2 ≃ Cl2m ⊗ C(Tm+r
Σ ).

Proof. Let first m = 1 and write σ for βΘ. The arguments as in Theorem 6.9
show that

C(T1+r
Θ )⋊σ Z2 ≃ (M2(C(T1+r

Θ )))σ̃ ,

where σ̃ = AdW ⊗ σ and W =
(
1 0
0 −1

)
. Furthermore, if U =

(
0 1
u1 0

)
, then

UM2(C(T1+r
Θ ))σ̃U∗ = M2(C(T1+r

Θ )σ),

as

M2(C(T1+r
Θ ))σ̃ =

{[
A B
C D

] ∣∣∣∣ A,D ∈ C(T1+r
Θ )σ, B, C ∈ C(T1+r

Θ )σ(−1)

}
,

where Aσ(−1) = {a ∈ A | σ(a) = −a}. This together with Lemma 8.3 yields
the statement for m = 1. To see it for general m, we note first that

C(Tm+r
Θ )⋊βΘ Zm

2 ≃ (C(T
1+(m−1+r)
Θ )⋊σ Z2)⋊β′

Θ
Zm−1
2
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which together with the previous result and simple calculations gives

C(Tm+r
Θ )⋊βΘ Zm

2 ≃ Cl2 ⊗ C(Tm+r
Θ(1) )⋊β

(1)
Θ

Zm−1
2 ,

where Θ(1) is as in Lemma 8.3, β′
Θ acts as βΘ on C(T

1+(m−1+r)
Θ ) and iden-

tically on the generator of Z2, and β
(1)
Θ : Zm−1

2 → Aut(C(Tm+r
Θ(1) ) is given by

β
(1)
Θ (ω)(ui) = ωiui if 2 ≤ i ≤ m and β

(1)
Θ (ω)(u1) = u1 for ω = (ω2, . . . , ωm).

The statement now follows by the successive application of the above argu-
ment. �

Lemma 8.5. For z ∈ ZΘ, set m = |Mπ(z)| and r = |Rπ(z)|. If m+ r > 1 and
Θ is irrational, then

K0(CARΘ(z)) ≃ Z2m+r−1

.

Proof. If m+ r > 1, then

CARΘ(z) ≃ Cl2l ⊗ C(Tm+r
ΘMx⊔Rx

)⋊βx
Θ
Zm
2 ,

and by Lemma 8.4, CARΘ(z)≃ Cl2l+2m ⊗C(Tm+r
Σ ). Thus, by Proposition 3.7,

K0(CARΘ(z)) ≃ K0(C(Tm+r
Σ )) ≃ K0(C(Tm+r)) ≃ Z2m+r−1

. �

Lemma 8.6. Let θ1, θ2, θ3 ∈ R \Q. The C∗-algebras

Cl2n−4 ⊗ C(T2
θ1), Cl2n−4 ⊗ C(T2

θ2)⋊β1 Z2, Cl2n−4 ⊗ C(T2
θ3 )⋊(β1×β2) Z

2
2

are mutually nonisomorphic.

Proof. It is known that C(T2
θ) and

⊗
k∈S Mn(k) ⊗C(T2

θ) are C
∗-algebras with

unique normalized trace which we denote by tr. By a result of Rieffel ([12,
Thm. 1.2, Prop. 1.3]), tr(P(Mn ⊗C(T2

θ))) = n−1(Z+ θZ) ∩ [0, 1], where P(A)
is the set of projections of A. Therefore,

tr(P(Cl2n−4 ⊗ C(T2
θ1 ))) =

1

2n−2
tr(P(C(T2

θ1)))

=
1

2n−2
(Z+ θ1Z) ∩ [0, 1],

tr(P(Cl2n−4 ⊗ C(T2
θ2)⋊β1 Z2))

Lem. 8.4
= tr(P(Cl2n−2 ⊗ C(T2

2θ2))

=
1

2n−1
(Z+ 2θ2Z) ∩ [0, 1],

tr(P(Cl2n−4 ⊗ C(T2
θ3)⋊(β1×β2) Z

2
2))

Lem. 8.4
= tr(P(Cl2n ⊗ C(T2

4θ3)))

=
1

2n
(Z+ 4θ3Z) ∩ [0, 1],

showing that the C∗-algebras Cl2n−4 ⊗C(T2
θ1
), Cl2n−4 ⊗ (C(T2

θ2
)⋊β1 Z2) and

Cl2n−4 ⊗ (C(T2
θ3
)⋊(β1×β2) Z

2
2) are mutually nonisomorphic. �

Lemma 8.7. Let Θ1 and Θ2 be irrational skew-symmetric n× n matrices, and
let ϕ :CARΘ1 →CARΘ2 be an isomorphism with the induced homeomorphism α :
ZΘ2 →ZΘ1 . If z ∈ZΘ2 satisfies face(z)= (n− 2,0,2), then face(z)= face(α(z)).
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Proof. We observe first that if z ∈ ZΘ is such that m= |Mπ(z)| and r = |Rπ(z)|
satisfy m+ r≤ 1, then z is either of type (ii), (iii) or (iv), and hence CARΘ(z) is
a C∗-algebra of the form Mn(C(X)), which is either finite-dimensional or non-
simple, while if m + r > 1, then CARΘ(z) is infinite-dimensional and simple.
From this, we can conclude that if Θ1 and Θ2 are irrational, then |Mπ(α(z))|+
|Rπ(α(z))| ≤ 1 when |Mπ(z)|+ |Rπ(z)| ≤ 1. Therefore, if face(z) = (n− 2, 0, 2),
then |Mπ(α(z))|+ |Rπ(α(z))| is necessarily larger than 1, and by Lemma 8.5 must
be exactly 2. This gives that the possible values of face(α(z)) are (n− 2, 0, 2),
(n− 2,1,1) and (n− 2,2,0). Hence, as CARΘ1(α(z))≃ CARΘ2(z), to prove the
statement, it is enough to see that CARΘ(z) are nonisomorphic for different z
with (m,r) ∈ {(0,2), (1,1), (2,0)}. But for (m,r) = (0,2), (1,1), (2,0), CARΘ(z)
is isomorphic to

Cl2n−4 ⊗ C(T2
θ), Cl2n−4 ⊗ C(T2

θ)⋊β1 Z2, Cl2n−4 ⊗ C(T2
θ)⋊(β1×β2) Z

2
2

respectively. Thus Lemma 8.5 concludes the proof. �

A matrix P = (pi,j)
n
i,j=1 ∈Mn is called a signed permutation matrix if there

exists (σ, b) ∈ Sn × {0, 1}n such that pi,j = (−1)biδj,σ(i). We are now ready to
prove our main results.

Theorem 8.8. Let Θ1 and Θ2 be irrational n× n-matrices.
(i) If P is a signed permutation matrix, Θ1 =PΘ2P

t implies CARΘ1 ≃CARΘ2 .
(ii) If CARΘ1 ≃ CARΘ2 , then (Θ2)i,j = ±(Θ1)σ(i,j) mod Z for a bijection σ of

the set {(i, j) | i < j, i, j = 1, . . . , n}.

Proof. (i) If P is a signed permutation matrix which corresponds to a signed
permutation (σ, b) ∈ Sn × {1,∗}n, then the corresponding isomorphism is given
by ψP (ai) = abiσ(i).

(ii) Let z be the unique element of ZΘ2 such that π(z) = 1
2 (δi + δj), i < j.

Since face(z) = (n− 2,0,2), by Lemma 8.7, face(α(z)) = (n− 2,0,2) and hence
α(z) = 1

2 (δk + δl), where (k, l) = σ(i, j) for a bijection σ of the set {(i, j) | i < j,
i, j = 1, . . . , n}. Thus
CARΘ2(z) ≃ Cl2n−4 ⊗ C(T2

(Θ2)i,j
) ≃ CARΘ1(α(z)) ≃ Cl2n−4 ⊗ C(T2

(Θ1)σ(i,j)
),

and by [12, Thm. 3], (Θ2)i,j = ±(Θ1)σ(i,j) mod Z. �

For θ ∈ R, write simply CARθ for CARΘ if n = 2 and Θ1,2 = θ. In this case,
we have the full classification similar to the classification of two-dimensional
non-commutative tori.

Corollary 8.9. If θ1, θ2 are irrational numbers, then CARθ1 ≃ CARθ2 if and
only if θ1 = ±θ2 mod Z.
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[1] F. Belmonte and M. Măntoiu, Covariant fields of C∗-algebras under Rieffel deformation,
SIGMA Symmetry Integrability Geom. Methods Appl. 8 (2012), Paper 091, 12 pp.
MR3007268

[2] B. Brenken, A classification of some noncommutative tori, Rocky Mountain J. Math.
20 (1990), no. 2, 389–397. MR1065837

[3] D. Buchholz, G. Lechner, and S. J. Summers, Warped convolutions, Rieffel deformations
and the construction of quantum field theories, Comm. Math. Phys. 304 (2011), no. 1,
95–123. MR2793931

[4] M.-D. Choi and F. Latrémolière, C∗-crossed-products by an order-two automorphism,
Canad. Math. Bull. 53 (2010), no. 1, 37–50. MR2583209

[5] J. Dixmier, C∗-algebras, translated from the French by Francis Jellett, North-Holland
Math. Libr., 15, North-Holland Publishing Co., Amsterdam, 1977. MR0458185

[6] J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961),
233–280. MR0164248

[7] P. Kasprzak, Rieffel deformation via crossed products, J. Funct. Anal. 257 (2009), no. 5,
1288–1332. MR2541270

[8] N. C. Phillips, Every simple higher dimensional noncommutative torus is an AT algebra,
arXiv:math/0609783v1 [math.OA] (2006).

[9] D. Proskurin, Y. Savchuk, and L. Turowska, On C∗-algebras generated by some defor-
mations of CAR relations, in Noncommutative geometry and representation theory in

mathematical physics, 297–312, Contemp. Math., 391, American Mathematical Society,
Providence, RI, 2005. MR2184031

[10] D. P. Proskurin and K. M. Sukretnyi, On ∗-representations of deformations of canonical
anticommutation relations, Ukrainian Math. J. 62 (2010), no. 2, 227–240; translated
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