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ABSTRACT

The limited capacity of visual working memory (vWM) necessitates the efficient

allocation of available resources by prioritizing relevant over irrelevant items. Retro-

cues, which inform about the future relevance of items after encoding has already

finished, can improve the quality of memory representations of the relevant items.

A candidate mechanism of this retro-cueing benefit is lateralization of neural

oscillations in the alpha-band, but its precise role is still debated. The relative

decrease of alpha power contralateral to the relevant items has been interpreted as

supporting inhibition of irrelevant distractors or as supporting maintenance of

relevant items. Here, we aimed at resolving this debate by testing how the magnitude

of alpha-band lateralization affects behavioral performance: does stronger

lateralization improve the precision of the relevant memory or does it reduce the

biasing influence of the irrelevant distractor? We found that it does neither: while the

data showed a clear retro-cue benefit and a biasing influence of non-target items

as well as clear cue-induced alpha-band lateralization, the magnitude of this

lateralization was not correlated with any performance parameter. This finding may

indicate that alpha-band lateralization, which is typically observed in response to

mnemonic cues, indicates an automatic shift of attention that only coincides with,

but is not directly involved in mnemonic prioritization.
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INTRODUCTION
Working memory is the ability to maintain and process information that is no longer

physically present. It acts as the mind’s main work space and is a core element of human

cognition underlying many critical functions (cf., Baddeley, 2015) such as general

intelligence (Conway, Kane & Engle, 2003), attention (Oberauer, 2019), or reading

comprehension (Tighe & Schatschneider, 2016).

Working memory is strictly capacity-limited (Woodman & Fukuda, 2018).

In particular, working memory for visual information (visual working memory, vWM) is

limited to approximately 3–4 items (Luck & Vogel, 1997;Mance & Vogel, 2013). According

to so-called slot models, this limit arises due to a fixed number of discrete slots or

How to cite this article Mössing WA, Busch NA. 2020. Lateralized alpha oscillations are irrelevant for the behavioral retro-cueing benefit

in visual working memory. PeerJ 8:e9398 DOI 10.7717/peerj.9398

Submitted 19 February 2020

Accepted 30 May 2020

Published 23 June 2020

Corresponding author

Wanja A. Mössing,

moessing@wwu.de

Academic editor

Anthony Barnhart

Additional Information and

Declarations can be found on

page 21

DOI 10.7717/peerj.9398

Copyright

2020 Mössing and Busch

Distributed under

Creative Commons CC-BY 4.0



stores, each of which can maintain only one item. Any items exceeding the number of

available slots cannot be represented in vWM. By contrast, resourcemodels (Ma, Husain &

Bays, 2014; Schneegans & Bays, 2016) hold that vWM has a limited processing

resource, which can be flexibly distributed across an arbitrary number of items. The more

items are maintained, the less resources are available per item, reducing the quality of

the items’ representations. While these models disagree on the architecture of vWM and

on the exact cause of capacity limitations, they both highlight that without prioritization of

relevant over irrelevant information, the available capacity may be insufficient for

maintaining all information with the desired quantity or quality.

A common way to manipulate prioritization experimentally is to show an array of

multiple items, and inform participants about which target items are to be encoded using a

visual cue. This prioritization has been shown to enhance vWM performance, as indicated

by better memories for cued targets as compared to non-cued distractor items (Ma,

Husain & Bays, 2014). Cues presented before or simultaneously with the items (so-called

pre- and simu-cues, respectively) help prioritizing relevant information before it is fully

encoded. Surprisingly, even cues presented after the stimuli have disappeared (so-called

retro-cues) improve performance (Griffin & Nobre, 2003; Rerko, Souza & Oberauer, 2014;

for a review, see Souza & Oberauer, 2016). Given that this retroactive improvement

occurs well after all stimuli have been fully encoded, it indicates a shift of vWM resources

to either improve the relevant (Rerko, Souza & Oberauer, 2014) or inhibit/remove the

irrelevant representation(s) (Souza et al., 2014; Lewis-Peacock, Kessler & Oberauer, 2018;

Myers, Stokes & Nobre, 2017). However, the neuronal mechanisms underlying this shift are

not fully understood.

A candidate neuronal mechanism for this shift of vWM resources are occipito-parietal

oscillations in the alpha frequency range (∼7–14 Hz). By convention, an increase in

alpha power is referred to as event-related synchronization, implying that greater power

observed at the scalp is due to more synchronized activity in neuronal populations.

Numerous studies have shown that greater synchronization in the alpha band is related to

physiological, perceptual, and cognitive inhibition or inactivity (Pfurtscheller, 1992;

Klimesch, Sauseng & Hanslmayr, 2007; Sauseng et al., 2009; Jensen & Mazaheri, 2010;

Bonnefond & Jensen, 2012; Händel, Haarmeier & Jensen, 2011; Weisz et al., 2014; Iemi

et al., 2017; Dougherty et al., 2017). Paradoxically, greater WM load—presumably

associated with greater cognitive activity—is also associated with greater alpha

synchronization, which has been explained with a greater need for prioritization and

for inhibiting potentially distracting information (Klimesch et al., 1999; Jensen, 2002;

Busch & Herrmann, 2003; Jokisch & Jensen, 2007). Consistent with this interpretation,

when targets and distractors are presented in different hemifields, alpha synchronizes

during the maintenance interval specifically over the hemisphere processing distractors

and desynchronizes over the hemisphere processing the targets. This lateralization of alpha

power has been observed in studies using both pre-cues and retro-cues (Poch, Campo &

Barnes, 2014; Myers et al., 2015; Clayton, Yeung & Cohen Kadosh, 2018; Bacigalupo &

Luck, 2019; Schroeder, Ball & Busch, 2018). However, a lateralized topography could, in

principle, reflect both: synchronization/inhibition of populations coding irrelevant
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information and desynchronization/excitation of populations coding relevant information

(Noonan et al., 2016; Bacigalupo & Luck, 2019; Foster & Awh, 2019). Moreover, several

studies have reconstructed features of the memorized target from the spatial pattern of

alpha power during the maintenance interval (Sprague & Serences, 2015; Foster et al., 2016;

Ester, Nouri & Rodriguez, 2018; Foster & Awh, 2019). This finding might suggest that

alpha oscillations are involved in the maintenance of the targets rather than in the

inhibition of distractors. In sum, it is currently unclear whether cue-induced lateralization

of alpha power during a vWM maintenance interval is associated with target

representation, distractor inhibition, or both.

The goal of this study was to test whether alpha lateralization during the maintenance

interval is a neuronal mechanism supporting the retro-cueing effect in vWM, and whether

it accomplishes this via facilitation or inhibition. On each trial, we presented two

lateralized items and presented a retro-cue during the maintenance interval, thereby

defining one item as the target and the other as the distractor (Fig. 1). Participants then

reported the orientation of the target item in a continuous delayed estimation task.

Data from this task were analyzed with a modeling approach, yielding parameter estimates

for the precision of the relevant target, for guessing, and for bias induced by the irrelevant

distractor. We predicted that trials with a retro-cue yield more precise memories of

the cued target and less interference with the irrelevant item than trials without a cue.

Moreover, we predicted that the topography of alpha power lateralizes by decreasing

power in the hemisphere contralateral to the cued target. Finally, we tested the relationship

between the magnitude of retro-cue induced alpha lateralization and behavioral

performance: does stronger lateralization facilitate the precision of the relevant memory, or

does it inhibit the biasing influence of the irrelevant memory?

500 ms

Fixation

1000 ms

Encoding

500 ms

1st Delay

1000 ms

Retro-Cue

500 ms

2nd Delay

Response-

Screen…

…

Response

1250 – 1750 ms

Feedback

Figure 1 The task in detail (scale adjusted for illustration). Trials started with central fixation on a

black–white-striped fixation symbol for 500 ms (verified by eyetracking). Then, two lateralized items

(1 black; 1 white) were displayed for 1,000 ms, followed by a first delay interval of 500 ms during which

participants memorized both items. Thereafter, a retro-cue was presented for 1,000 ms on 2/3 of all trials

by changing the color of the fixation symbol entirely to the color of the to-be-remembered target (100%

valid). On the remaining non-cued trials, the regular fixation symbol remained on screen for 1,000 ms.

The cued target (or both items, in case of non-cued trials) had to be maintained for another 500 ms

during a second delay interval. Finally, participants reproduced the orientation of the target indicated by

the response wheel’s color. Full-size DOI: 10.7717/peerj.9398/fig-1
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MATERIALS AND METHODS
We report how we determined our sample size, all data exclusions (if any), all

manipulations, and all measures in the study (“21-word solution”, see Simmons, Nelson &

Simonsohn, 2012).

Participants

Forty participants with normal or corrected-to-normal vision were recruited online and

via campus-wide advertisements, and were compensated for participation with course

credit or money (8 V/h). One participant did not return for a second session and was

therefore excluded from all analyses, leaving 39 participants (25 female; mean age = 24.82

years, SD = 4.76; 26 right eye dominant; 35 right-handed). The study was approved by

the ethics committee of the faculty of psychology and sports science, University of Münster

(#2016-23-NB). All participants gave their written consent to participate. The sample was

determined a priori based on sample sizes in similar studies.

Apparatus

Recordings took place in a medium-lit, sound-proof cabin. Participants placed their heads

on a chin-rest and could adjust the height of the table to be seated comfortably. Stimuli

were generated using Matlab (2016b) (The Mathworks Inc., 2016) and the Psychophysics

Toolbox 3 (Brainard, 1997; Pelli, 1997; Kleiner, Brainard & Pelli, 2007). The experiment

was controlled via a computer running Windows 10, equipped with an Intel Core i5–3330

CPU, a 2 GB Nvidia GeForce GTX 760 GPU, and 8 GB RAM. The experiment was

displayed on a 24″ Viewpixx/EEG LCD Monitor with 120 Hz refresh rate, 1 ms pixel

response time, 95% luminance uniformity, and 1920 × 1080 pixels resolution (www.vpixx.

com). Distance between participant eyes and the monitor was approximately 86 cm.

Participants responded using a wired Logitech RX250 optical USB mouse (www.logi.com).

Stimuli and procedure

All stimuli were presented on a gray background (50 cd/m2). A central black-and-white

fixation symbol (0.6� diameter; 0.1 and 100 cd/m2, respectively; see Thaler et al., 2013)

was displayed throughout the trial, except when it was temporarily replaced by the retro-

cue and during the report task (see below). Target stimuli were two pseudo-randomly

oriented arrows (length: 3.85�, linewidth: 0.2�, headwidth: 0.49�) with a minimum

orientation difference of 10� and a maximum difference of 120�, excluding orientations

along the cardinal axes. Target orientations were pseudo-randomly sampled so that they

were approximately uniformly distributed from 1–360� across trials. One arrow was

presented in each hemifield, centered on the vertical meridian at 5� eccentricity. On each

trial, one arrow was black, the other white. The combination of target color and hemifield

was counterbalanced between participants. That is, for one half of the participants the

left arrow was always black, while for the other half the left arrow was always white

(and vice versa for the right arrow).

Although a higher set size might have increased the retro-cueing benefit, a set size of

only two items (one target, one distractor) was necessitated by the research question: does
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alpha lateralization support the retro-cueing benefit by facilitation of the target or by

inhibition of the distractor? First, precision of target reports must not be limited by

interference from unreported targets. Second, errors must be unequivocally quantified in

terms of attraction or repulsion relative to the distractor, which is impossible with more

than a single distractor.

Participants initiated a trial by fixating on the fixation symbol for 500 ms. Next, the two

target arrows appeared for 1,000 ms. Participants were instructed to always encode both

arrows. The targets were followed by a first delay interval of 500 ms, during which

both target arrows had to be retained. On retro-cue trials, the fixation symbol then turned

into a cue by changing color either to black or white for 1,000 ms, informing participants to

memorize only the arrow of the corresponding color with 100% validity, rendering the

other arrow a distractor. By contrast, on non-cued trials the fixation symbol remained on

screen unchanged for 1,000 ms, requiring participants to keep memorizing both arrows.

The cue’s directionality thus depended on the color association with the target arrows.

The retro-cue was followed by a second delay interval of 500 ms. A comparison of the

EEG before and after cue onset thus reflects the change in vWM caused by the cue. Finally,

participants were tested on an initially blank response wheel on which they had to

reproduce the target orientation by moving a sample arrow with the mouse. The response

wheel’s color matched the color of the to-be-reproduced arrow. To avoid biasing

participants with a pre-defined orientation, the arrow only appeared after an initial

mouse-movement of at least 25 pixels into a desired direction was made. The response

wheel was always presented centrally rather than at the location of the to-be-reported

target, so that EEG lateralization towards the memorized target during the delay interval

was not confounded with attention towards the expected location of an upcoming

stimulus. Responses were self-paced and participants were encouraged to respond as

accurately as possible. Responses were followed by a feedback display, showing the correct

response next to the given response for a duration between 1,250 and 1,750 ms, uniformly

jittered across trials. Figure 1 displays the full sequence of one trial.

Participants completed 576 trials with valid retro-cues (cued side was pseudo-randomized

across trials, 50% for each hemifield). In addition, they completed 288 non-cued trials

without a cue. Cued and non-cued trials were presented in separate blocks of 48 trials each.

Blocks were interleaved with self-paced breaks. A total of 864 trials was split evenly between

two sessions of approximately 90 minutes each.

Eye-tracking

Eye-movements were monitored using a desktop-mounted Eyelink 1000+ infrared based

eye-tracking system (www.sr–research.com) set to 1,000 Hz sampling rate (monocular).

Pupil detection was set to centroid fitting of the dominant eye. The eye-tracker was

(re-)calibrated using a nine-point calibration grid at default locations.

Participants were required to keep fixating on the fixation symbol throughout the trial,

except when they were giving the report and during the feedback interval. To ensure steady

fixation and to avoid ocular artifacts or preferential encoding of one of the targets, a

trial was aborted and repeated at the end of the respective block whenever participants
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blinked or gaze was outside of a 3� radius around the fixation symbol. The eye tracker was

recalibrated at the start of each block and whenever participants lost fixation for more than

3,000 ms.

Analysis of behavioral performance

To analyze the effect of retro-cueing on behavioral performance, responses were quantified

for each trial as a response error: the angular difference between the target orientation and

the reported orientation. In order to test if reports were systematically biased by the

irrelevant distractor stimulus, the signs of the response errors were recoded such that

positive values indicated errors in the direction of the distractor, and negative values

indicated errors in the opposite direction.

The distribution of errors was then fitted with the MemToolbox for Matlab (Suchow

et al., 2013) using a standard mixture model (Zhang & Luck, 2008) with an additional

bias parameter. According to this model, each trial is drawn from a circular normal

distribution when the participant has a memory representation, and drawn from a uniform

distribution otherwise (representing random guessing). The model has three free

parameters: κ, representing the precision of the participant’s memory representations, is

the concentration parameter of the circular normal distribution (inversely related to

dispersion)—the higher this concentration, the more precise the representation in

memory. m is the mean of the Von-Mises distribution; a deviation of m from zero

represents a systematic memory bias towards or away from the orientation of the

distractor. g is the probability of the item not being in memory when tested (i.e., the

proportion of random guesses), which is represented by the height of the uniform

distribution.

The model’s probability density function is thus given by:

f ðx; g;m;kÞ ¼ ðgÞ 1

360
þ ð1� gÞ�ðx;m;kÞ

where Φ is the von Mises density:

�ðx;m; kÞ ¼ ekcosðx�mÞ

360I0ðkÞ0

where I0 is the modified Bessel function of order zero (Fougnie, Suchow & Alvarez, 2012).

Models were fitted for each individual using maximum likelihood estimation (MLE) for

each of the three parameters, separately for the two conditions (no-cue; cue).

EEG acquisition and preprocessing

EEG was recorded with a Biosemi Active Two EEG system with 65 Ag/AgCl electrodes

(www.biosemi.nl), set to 1,024 Hz sampling rate. A total of 64 electrodes were arranged in a

custom made montage with equidistant placement (‘‘Easycap M34’’; www.easycap.de),

which extended to more inferior areas over the occipital lobe than the conventional 10–20

system (e.g., Oostenveld & Praamstra (2001), see comparison in Supplemental Material).

An additional external electrode was placed below the left eye (IO1).
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EEG data were preprocessed using Matlab, R2018a (The Mathworks Inc., 2018) and the

open-source EEGlab toolbox (Delorme &Makeig, 2004) with the EYE-EEG (Dimigen et al.,

2011), Cleanline (Mullen, 2012), and SASICA (Chaumon, Bishop & Busch, 2015)

extensions. Data were resampled to 512 Hz, high-pass filtered at 0.5 Hz, low-pass filtered at

100 Hz, and notch-filtered at 50 Hz. Subsequently, data were re-referenced to a robust

reference (Bigdely-Shamlo et al., 2015). Vertical and horizontal electrooculograms were

derived from two electrodes above and below the left eye, and two electrodes at the

lateral canthi of both eyes, respectively. The EEG data were then co-registered with the

eye-tracking data, using TTL triggers sent simultaneously to both devices (Dimigen et al.,

2011).

The combined data were segmented into epochs from 1,000 ms before target onset until

4,500 ms after target onset. Epochs that were aborted due to eye- or mouse-movements

were rejected and the remaining epochs co-registered with behavioral data. Epochs

with irregular artifacts where automatically detected using a combination of threshold

criterion, maximum slope criterion, joint probability, and kurtosis (see code for specific

values). Regular artifacts were corrected using Independent Component Analysis (ICA).

Artefactual components were automatically pre-selected using the SASICA extension

(Chaumon, Bishop & Busch, 2015) and rejected after an additional manual inspection.

Finally, the data of both sessions were combined into a single dataset per participant.

Data were transformed into the time-frequency domain using complex Morlet wavelets

for 30 logarithmically spaced frequency bands from 2 to 40 Hz with the number of

cycles increasing from 1 to 10 as a function of frequency. To analyze the effect of

retro-cues, the resulting power values were baseline corrected relative to the first delay

interval, that is, 500 ms before cue onset. For each participant, power was transformed to a

dB scale by computing baseline corrected power pwc as:

pwct;f ;i ¼ 10 � log10
pwt;f ;i

bslf ;i

� �

where pwt,f,i is raw power at each time point t, frequency f and trial i, and bslf,i is

power averaged across the baseline interval for each f and i. Thereby, pwc highlights the

relative change elicited by the retro-cue and attenuates effects of earlier stimulation.

All subsequent analyses were performed on pwc.

EEG analysis

Sample level alpha lateralization: cluster based permutation test

Memorization of a lateralized target is expected to induce a lateralized response in the

alpha band following the cue. To test for alpha-band lateralization in the signal averaged

across trials, a non-parametric cluster based permutation test (CBPT;Maris & Oostenveld,

2007) was conducted to test ipsilateral vs. contralateral alpha-band power (i.e., mean

pwc over all trials and 7–14 Hz) for the time interval between retro-cue onset and probe

onset. The CBPT was implemented in FieldTrip (Oostenveld et al., 2011) with 1,000

randomizations and a cluster-level alpha threshold of 0.05. Specifically, a two-tailed

dependent-samples t-test was calculated for each sample (electrode × time).
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Thereafter, temporally adjacent samples which were significant at a = 0.05, and involved at

least two spatially adjacent electrodes, were selected as clusters. For each cluster, a test

statistic was computed by taking the sum of t-values within that cluster (tsum). Thereafter,

condition labels (i.e., ipsi- vs. contralateral) were randomly permuted across samples 1,000

times and clusters were computed in the same manner for each of the 1,000 random

partitions. A null permutation distribution was then generated by taking the maximum

cluster statistic from each of the 1,000 random partitions. A cluster in the real data was

considered significant if its cluster statistic lay below the 2.5th, or above the 97.5th

percentile of this null distribution. This procedure successfully controls the false alarm rate

in multiple comparison problems.

Quantification of lateralization in single trials

Next, we tested how the single-trial strength of lateralization was related to each trial’s

behavioral performance. As single trial data are inherently noisy and individual

participants’ lateralization patterns can differ substantially from the grand average pattern,

each participant’s lateralization was quantified based on their individual lateralization

template using a classification approach.

Specifically, trials were classified based on how well their topographical patterns of alpha

power could predict the cued hemifield. First, each trial’s pwc was averaged over the

alpha-band (7–14 Hz) and the time-window found significant according to the CBPT,

separately for all 64 electrodes (i.e., one topography per trial). A difference topography was

then calculated by subtracting the average of all right-cued trials from the average of all

left-cued trials, representing that participant’s lateralization template. Subsequently,

the correlation of each trial’s topography with that template was computed (see Fig. 2

for a schematic overview). Consequently, single trials showing a topography typical for

left-cued trials will show a negative correlation with the template, while typical right-cued

trials will correlate positively (see Schurger, Marti & Dehaene, 2013, for a similar

approach). To evaluate the consistency of topographies across trials, we tested how

accurately trials could be classified as left-cued or right-cued based on these single-trial

topographical correlations. To this end, a receiver operating characteristic (ROC) curve

analysis was computed using the perfcurve.m function from Matlab’s Statistic Toolbox.

The ROC relates correct and incorrect classification across different classification

thresholds. Importantly, the ROC analysis yielded an optimal cut-off value for each

participant, that is, a topographical correlation value that provided the most accurate

classification. Accordingly, any trials with a correlation higher than this threshold were

classified as “right-cued” and trials with a correlation lower were classified as “left-cued”.

Trials in the no-cue condition were similarly classified, using the probed hemifield instead

of the cued hemifield to determine a trial’s true category. Finally, by comparing the

classified cue condition with the trials’ true condition, trials were then categorized as

showing “consistent lateralization” or “inconsistent lateralization”.

To test if classification accuracy was above chance, the classification was repeated

1,000 times with permuted condition labels. A permutation null distribution was then

generated from the classification accuracies of the 1,000 random partitions. The true
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classification accuracy was then compared to the permutation null distribution of random

accuracy scores to compute a p-value:

p ¼ nk=ntot þ 1

where nk is the number of random accuracies that are higher than the true test accuracy

score, and ntot the number of random partitions.

In sum, this analysis quantifies how well the topography of a single trial matches the

lateralization pattern of all trials. Importantly, this procedure does not require a fixed

selection of electrodes for each participant, based on the grand average topography or on

a priori regions of interest.

Relationship between lateralization and performance

We then analyzed how single-trial lateralization correlated with single-trial behavioral

performance. If lateralization was functionally relevant for vWM maintenance, trials

categorized as having “consistent lateralization” are expected to yield better performance

than those with “inconsistent lateralization”. As a split into just two groups may dilute

statistical power, the sets of “consistent” and “inconsistent” trials were additionally parted

using a set-wise median split on correlation with the template, yielding four groups of

trials: “consistent trials with strong correlation”, “consistent trials with moderate

Figure 2 Classification procedure. (A) Participants’ individual templates were calculated as follows.

First, the time-frequency area of interest was averaged over time and frequency per electrode, yielding

one value per electrode & trial (i.e., one topography per trial). Thereafter, topographies of right-cued and

left-cued trials were separately averaged, producing one topography per condition. Finally, the topo-

graphy for right-cued trials was subtracted from the one for left-cued trials, resulting in a template

topography. (B) Single-trial classification: correlations between all trials’ topographies and the template

topography were calculated, resulting in a single correlation value per trial. Next, a ROC curve was

computed, which yielded an individual optimal cut-off value, that is, a topographical correlation value

that provided the most accurate classification. Finally, trials with a correlation above this threshold were

classified as left-cued, whereas trials with a lower correlation were classified as right-cued.

Full-size DOI: 10.7717/peerj.9398/fig-2
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correlation”, “inconsistent trials with moderate correlation”, and “inconsistent trials with

strong correlation”. Subsequently, standard mixture models were fitted separately for these

four categories, and their parameter estimates were compared between trial classes1.

In addition, we tested whether participants with more “consistent overall lateralization”

performed better than participants with “inconsistent overall lateralization” (Händel,

Haarmeier & Jensen, 2011). Specifically, standard mixture models were fitted separately for

each participant and their parameter estimates were compared using classification

accuracy as a continuous predictor, representing “(in)consistency” of an individual’s

lateralization.

Importantly, comparing mixture model parameter estimates between “consistent”

and “inconsistent” lateralization patterns allowed us to test if lateralization affects the

precision of target representations (κ parameter) or the bias imposed by the distractors

(m parameter).

Furthermore, it is important to demonstrate that both lateralization and behavioral

measures show sufficient across-participants variability, and that this variability is

indicative of reliable inter-individual differences rather than measurement error. To this

end, we computed, separately for each mixture model parameter, the correlation between

the first and second recording session across participants. This analysis showed that

parameter estimates and alpha-band lateralization were variable across participants, and

highly reliable within participants, thereby validating the analysis of correlations between

lateralization and behavior (see Supplemental Information S4 for details).

Statistical inference

Differences in parameter estimates (κ, m, and g) were statistically analyzed using the

R statistical programing language (R Core Team, 2019), with the afex library for

frequentist inference (Singmann et al., 2019), and the BayesFactor library for analogous

Bayesian tests (Morey & Rouder, 2018). Reported p-values are Bonferroni–Holm corrected

for multiple comparisons, where appropriate (Holm, 1979).

To test for an effect of retro-cues on behavioral performance, each parameter estimate

was compared between cued and non-cued trials using separate two-tailed dependent

samples t-tests and two-sample Bayes factors (ttestBF, default
ffiffiffi

2
p

=2 priors; seeMorey &

Rouder, 2011).

To test for an effect of irrelevant distractors on the memories of relevant targets, a

two-tailed one-sample t-test, and a one-sample Bayes factor were computed to assess

whether bias (m) parameter estimates were different from zero.

To test for an effect of single trial lateralization on performance, each parameter

estimate was analyzed with a separate 2 × 4 linear mixed effects model (LMM) with fixed

factors cue (cued, non-cued), and lateralization (“consistent trials with strong correlation”,

“consistent trials with moderate correlation”, “inconsistent trials with moderate

correlation”, “inconsistent trials with strong correlation”), and a random intercept for

ID. Similarly, the effect of participants’ overall lateralization was tested using LMMs with

the fixed factors cue (cued, non-cued), and lateralization (continuous), and a random

intercept for ID. P-values were obtained using Kenward–Rogers approximation.

1 Note that we conducted a similar analy-

sis using a simpler and more “conven-

tional” approach, in which we correlated

participants’ behavioral retro-cue bene-

fits to their alpha-band lateralization,

quantified as the difference between

ipsilateral and contralateral electrodes.

This analysis is reported in Supplemental

Analysis S2.
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For the same designs, Bayes factors for all fixed effects and interactions were computed

against the null hypothesis that no factor, except the random factor id, has an effect—that

is, against the non-informative model parameter ∼ id (generaltestBF, default
ffiffiffi

2
p

=2

priors; see Morey & Rouder, 2011). The resulting Bayes factors can be directly interpreted

as evidence favoring one model over another. Note that the subscripts of reported Bayes

factors are used to indicate the favored model: BF10 favors the alternative hypothesis,

whereas BF01 favors the null hypothesis (i.e., BF01 is simply 1/BF10). A Bayes factor BF10
larger than one for the model parameter ∼ lateralization thus reflects evidence in the data

for a relation of lateralization to that particular standard mixture model parameter,

whereas a Bayes factor BF01 larger than one reflects evidence against that effect.

RESULTS

Behavioral retro-cue effect

Not surprisingly, raw response errors did not differ significantly between retro-cued

and non-cued trials at such a small set size (Md = 0.21, 95% CI [−0.18, 0.60], t(38) = 1.08,

p = 0.286; see Fig. 3A). However, the maximum likelihood estimates (MLEs) of the

mixture model parameters (Fig. 3B) showed that precision κ was significantly higher

for retro-cued trials (Mean difference (Md) = 5.40, 95% CI [3.13, 7.66], t(38) = 4.83,

p < 0.001, d = 0.35). This result is much more likely under the assumption that retro-cues

increase precision (BF10 = 942.09), providing extreme evidence against the null hypothesis

that retro-cues did not influence precision. Guessing g approached zero in both

conditions, reflecting that guessing is rarely necessary at a maximum set size of two

items. Nevertheless, g was significantly higher for no-cue trials (Md = − 0.01,
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2008) within-participants standard errors and the corresponding whiskers are 95% CIs. To test the

strength of a potential response bias, response errors were recoded, such that positive values indicated

errors in the direction of the distractor, and negative values indicated errors in the opposite direction.

(B–D) Distribution of maximum likelihood estimates (MLEs) of the parameters of a Standard Mixture

Model with bias. Error bars indicate 95% Cosineau-Morey CIs.
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95% CI [−0.01, 0.00], t(38) = −3.07, p = 0.012, d = −0.40). This result is about nine times

more likely under the assumption that retro-cues reduce guessing (BF10 = 9.25). Bias m

was significantly above zero (M = 0.41, 95% CI [0.10, 0.72], t(38) = 2.65, p = 0.012, d = 0.42;

BF10 = 3.58), indicating that reported target orientations were systematically biased in the

direction of the irrelevant target. However, this bias did not differ between the two cue

conditions. In fact our data provide moderate evidence in favor of the null hypothesis that

retro-cues did not influence bias (BF01 = 3.91).

Sample level alpha lateralization

After selecting the alpha frequency band (7–14 Hz) as a priori frequency range of interest,

the CBPT revealed a difference between power ipsilateral compared to power contralateral

to the cued target (tsum = 4,301.66, CI [4,301.659, 4,301.663], p < 0.001). Significant

lateralization effects were most pronounced in the time range from 300 to 1,070 ms over

posterior electrodes (Fig. 4). In non-cued trials, no significant difference was found

between electrodes located ipsilateral compared to contralateral relative to the target that

was probed in the upcoming test.

Figure 4 (A) Temporal evolution of alpha-power (7–14 Hz) in non-cued and retro-cued trials. For

retro-cued trials, power is shown separately for ipsi- and contralateral electrodes. Shaded areas are

standard errors. Power is averaged over the electrodes found significant in the cluster based permutation

test (CBPT). The label “cluster/topo” highlights the time interval during which ipsi- and contralateral

power differed significantly (see topography in (C)). (B) Time-frequency resolved difference between

ipsi- and contralateral activity in retro-cued trials (contra – ipsi) for the electrodes highlighted in (C).

The white rectangle highlights the time-frequency region of the significant cluster. (C) Topography of

lateralization in the alpha-band, averaged over the time interval 500–1,000 ms post retro-cue onset.

Highlighted electrodes are part of the significant cluster for at least 50% of this time interval. All displayed

data are averaged across participants. Full-size DOI: 10.7717/peerj.9398/fig-4
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Single trial alpha-based classification

Single trials in the retro-cue condition were classified as cued-left and cued-right based on

their correlation with each participant’s right vs. left difference topography. Classification

accuracy ranged from 0.56 to 0.83 and was, on average, significantly above chance

(M = 0.612, SE = 0.007, p < 0.001).

Relating alpha lateralization and performance

Within participants: single trial fluctuations of alpha power

By contrasting single trials that were correctly and incorrectly classified, we used classifier

predictions as a proxy for “consistent single-trial lateralization” and “inconsistent

single-trial lateralization”, respectively, to test for effects of single-trial alpha-band

lateralization on single-trial behavioral performance. To disentangle the effect of

single-trial lateralization on vWM, we fitted four separate mixture models for “consistent”

and “inconsistent” trials, where each set was additionally split by the median absolute

correlation with the classification template. Figure 5A summarizes the estimated

parameters.

For each mixture model parameter, we computed a 2 × 4 linear mixed effects model

(LMM) with fixed factors cue (cued, non-cued), and lateralization (“consistent trials with
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Distribution of maximum likelihood estimates (MLEs) of the parameters of a Standard Mixture Model
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strong correlation”, “consistent trials with moderate correlation”, “inconsistent trials with

moderate correlation”, “inconsistent trials with strong correlation”). While this analysis

replicated the effect of cueing on precision and guessing, single-trial lateralization had no

effect on any model parameter (see Table 1).

In addition, we computed Bayes factors for the same design. In line with the LMMs,

the precision and guessing MLEs are most likely under a model with just a main effect of

cue (i.e., κ ∼ cue + id; BF10 = 2,050,467 and g ∼ cue + id; BF10 = 3.39). The results are

less likely under any model including the factor lateralization. In fact, all models including

just lateralization as fixed effect (i.e., estimate ∼ lat. + id) perform worse than the null

model (see Table 2), providing evidence in favor of the null hypothesis that single-trial

lateralization did not influence vWM.

Between participants: individual differences in alpha power

By contrasting participants using classification accuracy, we used classification as a proxy

for “lateralization consistency”, ranging from “consistent overall lateralization” to

“inconsistent overall lateralization”, to test for effects of a participant’s overall alpha-band

lateralization on their behavioral performance. To disentangle the effect of individual

overall lateralization on vWM, we fitted separate mixture models for each individual

participant.

Figure 5B illustrates the distribution of parameter estimates across participants, split by

quartiles of classification accuracy. Interestingly, the figure suggests that the retro-cue

benefit for precision κ is marginally higher for participants with higher classification

accuracies. This trend, however, was not statistically significant.

A LMM with factors cue (cued, non-cued), and lateralization (continuous) replicated

the effect of cue on precision and guessing, but showed no effects of lateralization on any

mixture model parameter (see Table 3).

Table 1 Results of linear mixed models with fixed factors cue (cued, non-cued), and lateralization

(“good trials with strong correlation”, “good trials with mild correlation”, “weak trials with mild

correlation”, “weak trials with strong correlation”), and random interecept for ID. P-values are

Bonferroni–Holm corrected for multiple comparisons.

Parameter Effect F df1 df2 pholm

κ Cue 36.06 1 266 <0.0001***

Lateralization 0.02 3 266 >0.99

Lateralization × cue 0.20 3 266 >0.99

g Cue 6.85 1 266 0.03*

Lateralization 0.79 3 266 >0.99

Lateralization × cue 0.62 3 >0.99 >0.99

m Cue 0.48 1 266 0.03*

Lateralization 1.61 3 266 0.57

Lateralization × cue 0.17 3 >0.99 >0.99

Notes:
* p < 0.05.
*** p < 0.001
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In addition, we computed analogous Bayes factors. In line with the LMM results, the

precision and guessing MLEs are most likely under a model with just a main effect of

cue (i.e., g ∼ cue + id; BF10 = 9 and κ ∼ cue + lat. + id; BF10 = 704.76), providing strong

evidence in favor of the alternative hypothesis that the retro-cue reduced guessing and

improved precision. The results are less likely under any model including the factor

lateralization. In fact, all models including just lateralization as fixed effect (i.e., estimate ∼

lat. + id) perform worse than the null model. For bias m, the null model outperformed all

alternative models, similar to the within-participant analysis (see Table 4).

Table 2 Results of Bayes factor analysis with fixed factors cue (cued, non-cued), and lateralization

(“good trials with strong correlation”, “good trials with mild correlation”, “weak trials with mild

correlation”, “weak trials with strong correlation”) against the null model parameter ∼ID, with

ID as random factor. BF10 represents evidence in favor of H1 over H0, whereas BF01 represents evi-

dence in favor of H0 over H1 (i.e., BF01 = 1/BF10).

Parameter Model Bayes factor

κ κ ∼ cue + id BF10 = 2,050,467

κ ∼ lat. + id BF01 = 66.64

κ ∼ cue + lat. + id BF10 = 30,400.29

κ ∼ cue + lat. + cue:lat. + id BF10 = 1,272.554

g g ∼ cue + id BF10 = 3.39

g ∼ lat. + id BF01 = 25.37

g ∼ cue + lat. + id BF01 = 7.66

g ∼ cue + lat. + cue:lat. + id BF01 = 113.08

m m ∼ cue + id BF01 = 6.36

m ∼ lat. + id BF01 = 8.40

m ∼ cue + lat. + id BF01 = 53.77

m ∼ cue + lat. + cue:lat. + id BF01 = 1,357.97

Table 3 Results of linear mixed models with fixed factors cue (cued, non-cued), and lateralization

(continuous, participant-wise accuracy scores), and random intercept for ID. P-values are

Bonferroni–Holm corrected for multiple comparisons.

Parameter Effect F df1 df2 pholm

κ Cue 24.81 1 37 <0.0001***

Lateralization 1.66 1 37 0.63

Lateralization × cue 3.50 1 37 0.21

g Cue 9.20 1 37 0.01*

Lateralization 1.18 1 37 0.84

Lateralization × cue 0.03 1 37 >0.99

m Cue 0.84 1 37 >0.99

Lateralization 0.68 1 37 >0.99

Lateralization × cue 0.86 1 37 >0.99

Notes:
* p < 0.05.
*** p < 0.001.
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DISCUSSION
Previous research has demonstrated that the capacity of visual working memory (vWM) is

strictly limited (Woodman & Fukuda, 2018; Luck & Vogel, 1997; Mance & Vogel, 2013).

This limit makes prioritization of relevant over irrelevant information highly important

for sensible human action and cognition. Cues about the future relevance of items are

therefore highly beneficial for the quality of memory representations during the

maintenance interval and, in turn, for accuracy at test (Ma, Husain & Bays, 2014).

Cues can be presented while target stimuli are still on-screen, thereby prioritizing the

relevant items for encoding through selective attention to their physical locations.

Interestingly, cues can even be presented when the items are no longer physically present,

and thus after encoding has finished. The benefit afforded by such retro-cues demonstrates

that prioritization can be achieved by selective attention to internal memory

representations in addition to external screen locations (Souza & Oberauer, 2016).

A candidate neuronal mechanism for this shift of vWM resources are alpha oscillations:

across many different paradigms, strong alpha power has been associated with a

suppression of neural, perceptual and cognitive processing (Jensen & Mazaheri, 2010;

Clayton, Yeung & Cohen Kadosh, 2018). Moreover, when relevant and irrelevant items are

represented in different hemispheres, the power of alpha oscillations lateralizes such

that power increases over the hemisphere representing the irrelevant information relative

to the hemisphere representing the relevant information (Sauseng et al., 2009). However, it

is largely unknown how exactly this lateralization is involved in prioritization and

whether it is a neuronal correlate of the inhibition of irrelevant items (Myers, Stokes &

Nobre, 2017) or of the preferential encoding of relevant items (Foster & Awh, 2019).

Moreover, only few studies have specifically investigated the role of alpha lateralization

induced by retro-cues for the retro-cueing benefit. Therefore, this study aimed at testing

Table 4 Results of Bayes factor analysis with fixed factors cue (cued, non-cued), and lateralization

(continuous, participant-wise accuracy scores) against the null model parameter ∼ID, with ID as

random factor. BF10 represents evidence in favor of H1 over H0, whereas BF01 represents evidence in

favor of H0 over H1 (i.e., BF01 = 1/BF10).

Parameter Model Bayes factor

κ κ ∼ cue + id BF10 = 704.76

κ ∼ lat. + id BF01 = 1.39

κ ∼ cue + lat. + id BF10 = 605.84

κ ∼ cue + lat. + cue:lat. + id BF10 = 615.50

g g ∼ cue + id BF10 = 9

g ∼ lat. + id BF01 = 1.67

g ∼ cue + lat. + id BF10 = 5.78

g ∼ cue + lat. + cue:lat. + id BF10 = 1.77

m m ∼ cue + id BF01 = 2.94

m ∼ lat. + id BF01 = 1.94

m ∼ cue + lat. + id BF01 = 6

m ∼ cue + lat. + cue:lat. + id BF01 = 12.21
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predictions derived from these opposing views regarding the association between the

magnitude of retro-cue induced alpha lateralization and behavioral performance: while

the former predicts that stronger lateralization improves the precision of the relevant

memory, the latter predicts that stronger lateralization reduces the biasing influence of the

irrelevant memory.

We presented two lateralized items on each trial and presented a retro-cue during

the maintenance interval, thereby defining one item as the target and the other as the

distractor (Fig. 1). Participants then reported the orientation of the target item. Critically,

the retro-cue was purely symbolic (its color indicated the color of the to-be-memorized

item) and the probe stimulus used for the continuous report task was located in the

center of the screen. Thus, any lateralization induced by the retro-cue can be attributed to a

shift of vWM resources towards the internal representation of the cued item, rather than to

an external location on screen or to the anticipated location of a lateralized probe.

Retro-cue benefit and distractor bias

Our behavioral analysis (Fig. 3) showed a clear retro-cue benefit: compared to a control

condition without cues, retro-cues increased the precision of the memorized item and

reduced the proportion of guessing, confirming previous studies on the retro-cue benefit

(Souza & Oberauer, 2016). While a retro-cue benefit for guessing has been more frequently

reported in the literature than a benefit for precision, effects on precision are more

prevalent in studies with small set sizes such as ours. This is possibly due to unreliable

estimation of the precision parameter when performance is low due to high memory load

(cf. Lawrence, 2010; Souza & Oberauer, 2016).

Furthermore, the representation of the relevant item was systematically biased toward

the irrelevant item, although this attraction bias was not affected by the retro-cue.

Several studies have reported a similar attraction bias, whereby the orientation of a

memorized target line was biased towards an irrelevant distractor presented either before

the target (Wildegger et al., 2015) or during the retention interval (Lorenc et al., 2018;

Rademaker et al., 2015). By contrast, several other studies have found a repulsive bias for

line orientation (Blakemore, Carpenter & Georgeson, 1970) and aspect ratio of ellipses

(Sweeny, Grabowecky & Suzuki, 2011) under conditions with minimal memory

requirements. Moreover, Czoschke et al. (2019) found repulsion for the memorized motion

direction of two simultaneously presented random dot kinematograms. This condition

resembles the uncued condition in our study, in which we found the strongest attraction

bias, pointing to an inconsistency between studies. On the other hand, Czoschke et al.

(2019) found attraction when the two stimuli were presented sequentially and the first

stimulus was to be reported. Assuming that participants prioritized the first stimulus

within a sequence, this condition is more consistent with the task and results in the

cued condition in our study. Complicating this picture further, Bae & Luck (2020) found

that the direction in which the reported orientation of one of two successive stimuli is

biased depends on the stimuli’s similarity: while repulsion was found for similar

orientations, attraction was found for dissimilar orientations. Both biases were reduced

when a cue instructed participants to prioritize one of the stimuli. Is it possible that the
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apparent inconsistency between studies is due to a neglect of the items’ (dis)similarity?

While we are not in a position to answer this question for previous studies, we re-analyzed

the behavioral data of the present study by analyzing the memory error for the

reported item as a function of the angular similarity between target and distractor

(see Fig. S3 in supplemental analysis). In contrast to Bae & Luck (2020), our analysis

showed attraction for most magnitudes of target-distractor (dis)similarity, and showed no

evidence for repulsion when target and distractor had similar orientations, resembling

results reported in Wildegger et al. (2015). In sum, it appears that the direction of the bias

exerted by one stimulus on another depends on a host of factors such as the relevant

stimulus feature (random dot motion, line orientation, etc.), stimulus timing (concurrent

or sequential), memory requirements, and whether or not one of the items is prioritized.

Importantly, whatever the determinants of the bias’ direction may be, our results

clearly show that participants were able to use the retro-cue to prioritize memorization of

the relevant item, and that the irrelevant item nonetheless exerted a distractive influence

on that memory representation.

No association between alpha lateralization and retro-cue benefit

The cluster based permutation test revealed a significant lateralization of alpha-band

power following the retro-cue (Fig. 4): power decreased over the contralateral (i.e., target-

processing) hemisphere relative to the ipsilateral (i.e., distractor-processing) hemisphere.

This result replicates previous reports of alpha-band lateralization induced by retro-cues

(Poch, Campo & Barnes, 2014; Van Ede, Niklaus & Nobre, 2017; Van Ede, 2018; Schneider

et al., 2019).

The coincidence of retro-cue induced alpha-band lateralization and the behavioral

retro-cueing benefit has conventionally been interpreted as a causal involvement (Poch,

Campo & Barnes, 2014; Schneider et al., 2019), indicating a “mnemonic role” for alpha

oscillations (Van Ede, 2018; Ester, Nouri & Rodriguez, 2018). This role could be relevant

either for directly coding the memorized information, or for other processes indirectly

facilitating its coding, for example, by changes in the excitatory state of the neuronal

populations tuned to the target location. Such a change from “latent” to “active” storage

might improve feature binding and reduce noise, and thereby improve memory quality of

the target memory (Myers, Stokes & Nobre, 2017). Critically, such interpretations are

mostly based on the comparison of lateralization and behavior across experimental

conditions. However, coincidence is not necessarily indicative of a causal relationship, and

alpha-band lateralization could be just a by-product of the neural processes underlying the

behavioral retro-cueing benefit. While strong evidence for a causal effect of neural

processes on behavior is generally hard to establish without invasive methods, a

prerequisite for a causal link is at least a covariance between lateralization and

behavior. Specifically, fluctuations in the extent of lateralization across trials or across

participants should go along with fluctuations in behavioral performance. However,

only few studies have analyzed the covariation of retro-cue induced lateralization and

performance.
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To test for a relationship between lateralization and performance across trials, we

computed a single-trial measure of lateralization by computing how strongly each trial’s

topographical pattern resembled the participant’s average lateralization pattern (Schurger,

Marti & Dehaene, 2013). This lateralization measure was robust enough to decode the

cued hemifield on a trial-by-trial basis (Fig. 2). However, behavioral performance

(i.e., precision, guessing, and bias) was not significantly better on trials with “consistent”

lateralization compared to trials with “inconsistent” lateralization (Tables 1 and 2) as

shown by both conventional null hypothesis testing and a Bayes factor analysis.

Additionally, we analyzed the relationship between lateralization and performance

across participants. This analysis tested for the possibility that some people might be

more capable than others to adapt the excitatory state of neuronal populations underlying

the relevant memory representation, making them more likely to enjoy the retro-cueing

benefit. To this end, we quantified each participants’ lateralization strength as the

accuracy at which the cued hemifield could be decoded from their topographical pattern.

However, behavioral performance was not significantly better for participants with

“consistent” lateralization compared to participants with “inconsistent” lateralization

(Tables 3 and 4).

While we quantified alpha-band lateralization using a classification-based approach,

most previous studies have quantified lateralization by contrasting ipsilateral vs.

contralateral electrodes. In order to compare our results to more “conventional” analyses,

we also analyzed the correlation between participants’ behavioral retro-cueing benefits and

their average alpha lateralization quantified as the ipsilateral-contralateral difference.

The results were qualitatively very similar to the results of our classification-based

analysis (see Supplemental Analyses S2 for details), showing no correlation between

lateralization and retro-cueing benefit. Moreover, to assure that the classification-based

quantification of alpha lateralization indeed captures more information than more

conventional analyses, we compared classification accuracy using all electrodes with

accuracy using just a limited set of electrodes which is typically used for obtaining the

ipsilateral-contralateral difference. In brief, the comparison confirmed that cue condition

could be classified more accurately based on the set of all electrodes (see Supplemental

Analyses S1 for details), thereby confirming the validity of our classification approach.

In sum, our failure to find an association between alpha-band lateralization and the

retro-cue benefit does not seem to hinge upon any specific analysis procedure.

Our findings are largely consistent with previous studies that analyzed the correlation

between alpha-band lateralization and accuracy. Neither Myers et al. (2015) nor Günseli

et al. (2019) found a significant correlation across participants between alpha-band

lateralization and accuracy. Using a paradigm even more similar to ours, Van Ede,

Niklaus & Nobre (2017) showed only a weak (r ∼ 0.05) but significant correlation between

single-trial contralateral alpha oscillations and response times, but not accuracy. In sum,

although retro-cues clearly induced alpha-band lateralization and simultaneously

improved vWM performance, our results provide evidence against a direct mnemonic role

of alpha lateralization in a retro-cueing paradigm.
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This negative finding is surprising for several reasons. First, an association between

cue-induced lateralization and memory accuracy has at least been implied in several

studies on the retro-cue benefit (Poch, Campo & Barnes, 2014; Van Ede, 2018; Schneider

et al., 2019). Second, correlations between alpha-band power and accuracy have been

observed in other sensory modalities (Spitzer & Blankenburg, 2012; Backer, Binns & Alain,

2015), and using pre-cues instead of retro-cues (Sauseng et al., 2009). Moreover, estimates

of neuronal memory representations can be reconstructed from retro-cue induced

alpha-band power, and these memory reconstructions reflect the behavioral retro-cueing

benefit (Ester, Nouri & Rodriguez, 2018). However, while our results provide strong

statistical evidence against an association between alpha lateralization and the retro-cue

benefit, we acknowledge that these null findings should be interpreted with caution.

While we found no evidence for an association using a variety of analysis strategies,

it is difficult to make any claims about the absence of an association beyond the present

study. Specifically, using a paradigm that yields a stronger behavioral retro-cue benefit or

stronger alpha-band lateralization, and using more sensitive analysis techniques might

reveal such an association after all.

Functional relevance of alpha-band lateralization

We would like to point out that this study was carefully designed to make sure that

lateralization was indeed a result of memory prioritization in response to the retro-cue

(albeit not the mechanism implementing prioritization), and to rule out alternative

interpretations (see Van Ede, 2018). First, the stimulus display was always bilateral, and

lateralization emerged only after retro-cue presentation. Thus, lateralization was not

confounded by lateralized stimulation at encoding. Second, the retro-cue was purely

symbolic: its color indicated the color of the to-be-memorized item. We opted against

arrows as cues, which are asymmetrically shaped and highly overlearned stimuli.

Thus, lateralization was not due to exogenous shifts of attention towards a lateralized point

on the cue’s shape, nor due to automatic attentional orienting to the screen location

pointed to by the cue. Finally, the probe stimulus was always presented at fixation.

Thus, lateralization was not confounded by anticipation of a lateralized probe. In sum,

the design made sure that retro-cue induced lateralization was indeed reflecting the

prioritization of an internal memory representation. That said, a viable interpretation

of our findings, and potentially of previous reports of cue-induced alpha-band

lateralization, is that lateralization reflects merely a by-product of this prioritization with

no direct causal role for memorization.

In line with this interpretation, recent studies have found that alpha-band lateralization

in vWM tasks reflects the deployment of spatial attention rather than memory

maintenance per se (Hakim et al., 2019; Fukuda, Kang & Woodman, 2016). Wang,

Rajsic & Woodman (2019) used pre-cues to indicate the relevant hemifield, and then

presented a sequence of to-be-memorized items. While the contralateral delay activity

(CDA) of the event-related potential increased with each new item, alpha-band

lateralization remained at a constant level, reflecting simply the cued hemifield.
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Günseli et al. (2019) compared valid and uninformative retro-cues. Interestingly,

alpha-band lateralization emerged after retro-cue onset regardless of its validity, unlike the

CDA which was reduced for uninformative cues throughout the maintenance interval.

Moreover, while the magnitude of the CDA was correlated with accuracy, the magnitude

of alpha-band lateralization was not. This indicates that alpha-band lateralization induced

by a retro-cue reflects an automatic deployment of spatial attention to a memory

representation regardless of its task-relevance. Together with our finding that the

extent of alpha-band lateralization is neither correlated with the accuracy of the target

representation nor with the suppression of the distractor’s influence, the findings suggest

that the deployment of attention reflected by retro-cue induced alpha-band lateralization

only coincides with, but is not causally involved in the prioritization yielding the

retro-cueing benefit.

CONCLUSION
Alpha-band lateralization has been suggested as one candidate neuronal mechanism to

support the retro-cueing benefit in visual working memory. Our main objective was to test

whether this support improves the quality of the memorized target or inhibits the

distracting influence of the non-target. We found that it does neither: the data showed a

clear retro-cue benefit and a biasing influence of non-target items as well as clear

cue-induced alpha-band lateralization, but the magnitude of this lateralization was not

correlated with any performance parameter. This finding may indicate that alpha-band

lateralization, which is typically observed in response to mnemonic cues, indicates an

automatic shift of attention that only coincides with, but is not directly involved in

mnemonic prioritization.
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