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Abstract

We construct so-called preperfectoid spaces XP°(r) and XPf(r, s) based on the
character variety X and define a "preperfectoid version" of the Robba ring Ry (%P')
as well as associated rings of bounded functions 52(%perf) and Sz’gl(%perf) based

on these spaces. We show that base change from étale ¢-modules over 52 (xpert) to
étale p-modules over Ry (XP°) is an equivalence of categories. We also discuss the
construction of the preperfectoid open unit disk and of the associated Robba ring.

Wir konstruieren sogenannte priperfektoide Raume XP (r) und %P (r, 5) basierend
auf der Charaktervarietdt X und definieren eine "praperfektoide Version" des Robba-
Rings sowie assoziierte Ringe beschrénkter Funktionen Ez(f{perf) und Ez’gl(%perf)
basierenden auf diesen Rdumen. Wir zeigen, dass Basiswechsel von étalen ¢-
Moduln iiber 52 (xperf) zu étalen p-Modulen iiber Ry (XP°) eine Kategorieniquiv-
alenz ist. Wir diskutieren auflerdem die Konstruktion der praperfektoiden offenen
Einheitskreisscheibe und des assoziierten Robba-Rings.
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Introduction

Let L be a finite extension of Q, with ring of integers o7, and absolute Galois group
G1. Considering a Lubin-Tate formal group LT for a uniformizer m € L, we obtain
an infinite Galois extension L, of L by adjoining the torsion points of LT. The
Galois group of Lo /L is denoted by I' = Gal(Loo /L), and is isomorphic to o] via
a natural group isomorphism xz, : I' — o] .

The Robba ring R (2B) over the open unit disk B,;, over L is the ring of formal
power series ;.7 a; 1" with coefficients in L which converge on an open annulus
with outer radius 1 and an inner radius 7 < 1. We also have the subring E}L(SB) of
those series in R (B) with bounded coefficients. We have an action of or, \ {0} on
the rings Rz (B) and 52(58) which is given by the endomorphisms of LT. In this
way, we obtain a notion of (¢, I')-modules over these rings. There are equivalences
of categories between L-linear continuous representations of G, and certain (¢, T')-
modules over 52(53), and between L-linear L-analytic representations of G and
certain L-analytic (¢, I")-modules over R (B) (see [28] and [5]).

Let K/L be complete. Consider the open unit disk B g, over Q,, with its Z, \ {0}-
action. It is naturally isomorphic to the space of locally Q,-analytic characters on
Z, via the bijection z € B(K) — (K, : a — (1+2)*) on K-points. In the paper [35],
the authors construct a rigid-analytic variety X whose K-points parametrize locally
L-analytic K-valued characters or, — K*. The varieties 8 and X are not isomor-
phic, but they become isomorphic after base change to C,. The rings R (X) and
52{ (X) are defined. They carry an action of or, \ {0} which comes from an oy, \ {0}-
action on the rigid-analytic variety X. The isomorphism X,c, = B¢, leads to
an isomorphism Rc,(X) = R¢,(B). Moreover, there is a "standard" action of G,
on these rings such that R¢,(B)% = R.(B) and a "twisted" action of G, such
that R, (B)%2* = Ry (X). In [6], the theory of (¢,I')-modules over these rings
is developed. Using the isomorphism R¢,(X) = R¢,(B) and the G -actions, one
can compare (¢, I')-modules over Rz (X) and Ry (B). It turns out that there is an
equivalence of categories between the category of L-analytic (¢, I')-modules over
R (B) and the category of L-analytic (¢, ')-modules over Rp(X).

The main idea of this project was to transport the space X into the world of
perfectoid spaces. We construct preadic spaces XP°™ (r) whose K-points are locally
analytic K-valued characters L — K>, and define rings R (XP°) and 6’;{(.’{perf)
which obtain an action of or, \ {0}. Then we think about ¢-modules and (¢, I")-
modules over these rings.

In the first chapter, we summarize facts about Huber rings and Huber pairs as well



Contents

as about preadic and adic spaces. We explain basic constructions for use in the
following chapters. Moreover, we briefly explain certain aspects of the theory of
perfectoid and preperfectoid spaces.

In the second chapter, we give an overview over the construction of X as well
as the isomorphism X,c, = B,c,. Then we explain the construction of the rings
R (%) and EL(%).

In the third chapter, we discuss in detail the construction of the open and closed
preperfectiod unit disks. The open unit disk B/, has a covering by affinoids B(r) /x
which are closed disk of radius 7 < 1. We construct Tate rings O (B8P (7)) by
forming the inductive limit over the rings O (B (r'/9")) where the transition maps
are given by the action of m. We show that these rings are stably uniform and
therefore define adic spaces BP(r) in such a way that there are open immersions
ppert () C BPerf(s) for r < 5. Glueing of the spaces BP™ (r) gives the preperfectoid
reps. perfectoid open unit disk.

Similarly, we construct rings O (B8P (r1,r)) which come from affinoid annuli
B(r1,72)/K- We obtain the ring R (BP) which is the union of the rings

Ry (BPH)r .= @(OK(‘Bperf(rl,rg)) where the maps in the projective limit are
given by restriction maps. Since the latter rings are projective limits of Banach
spaces and therefore Fréchet spaces, we may endow RK(SBperf) with the locally
convex inductive limit topology. We define a continuous action of or, \ {0} on
RK(%perf)‘

Another way to construct preperfectoid and perfectoid Robba rings over the unit
disk is via certain completions of Witt vectors over the tilt K° of a perfectoid K.
This approach can be found in the papers [3] or [27]. We explain it and discuss
how both constructions are related.

In the fourth chapter, we introduce the Tate rings O (XP°™ (r)) and O (XPe (11, 12)).
The variety X has an open covering by affinoids X(r) which over C, become iso-
morphic to closed disks B(s),c,. Moreover, there are affinoids X(r1, r2) which over
C, are isomorphic to affinoid annuli. The rings O (XP°™(r)) and O (XP(r1,72))

are obtained by forming the inductive limit of the rings O (X(r'/?")) respective

OK(}:(’I"%/ P r;/ b l)) where the transitions maps are given by the action of p. This
leads to preperfectoid spaces XP°(r) and XP®f(ry,ry). We then imitate the con-
struction of R (X) to construct the ring R (XPe™) as the inductive limit of Fréchet
spaces @OK(%perf(rl, r2)). We discuss its topological properties. Moreover, we

construct the ring of bounded functions 8}((.’{1""&) and define a norm ||-||; on it. We
define an action of oy, \ {0} on these rings. We show that there are isomorphisms
Re, (Xprf) = Re, (BPeh) and ] (xpert) = £ (BPert),

Originally the goal was to construct a preperfectoid character variety ¥Pf which
would be obtained by glueing together the spaces XP°f(r). Unfortunately, this
turned out to be an unexpected difficult problem due to topological issues. The
rings O (XPe(r)) are uniform by construction (i.e. the power-bounded elements
O (2P (1))° are a ring of definition), but we do not know whether they are stably
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uniform, i.e. whether all rational localizations remain uniform. This implies that we
do not know whether XP¢f(7) C XPf(5) is an open immersion of preadic spaces. If
these rings were stably uniform, this problem disappeared, and we would obtain an
adic space XP°f. We explain at the end of Chapter 4 how a conjecture of Kedlaya
and Hansen ([21]) implies this result.

In the fifth chapter, we discuss p-modules over the rings constructed in the fourth
chapter. We start with some general statements about ¢-modules over a ring R, i.e.
finite projective R-modules M with a semilinear action of ¢ such that the linearized
map R ®pg,, M — M is an isomorphism. Then we prove the main theorem

Theorem. The base change functor from étale p-modules over S}L((%perf) to étale
¢-modules over Ry (XP'!) is an equivalence of categories.

We discuss the relation between @-modules over Ry (X) and Ry (XPe!). Then
we look at (¢,T')-modules over Ry (XP°™). Unfortunately, we cannot define a
base change functor from (¢,I')-modules over 5;((%perf) to (¢,I')-modules over
R (XP°) since we do not know whether the induced of -action is continuous. We
discuss the arising problems and explain certain cases in which such a functor exists.

Notation

Rings are commutative with 1. If K is a nonarchimedean field, then we denote
its ring of integers by ox. We fix a prime p and an algebraic closure leg of Qp.
Let C, denote its completion. Let L be a finite extension of Q, in C, with ring of
integers o7, and a fixed prime element 7 = 77, € oy, and residue field k = oy, /7. Let
d = [L : Qp] and e be the ramification index of L/Q,. We assume that the absolute
value | - | on C, is normalized by [p| = p~L.

Let A be a perfect k-algebra. We denote by W (A)y, the ramified Witt vectors
over A. The Witt polynomials are denoted by ®,, for n > 0, i.e.

B (X0, oo, Xns1) = XO 47X 4+ 17X,

We denote the Teichmiiller map A — W (A) by 7 and the Witt vector Frobenius
by Fr. Moreover, we denote by V' the Verschiebung V' : W(A), — W(A)L, and
denote by V,,,(A)r, the image of V™ for m > 1.






1 Adic spaces

Adic spaces have been introduced by Roland Huber in his papers [22] and [23]. This
chapter gives a brief overview of the theory of adic spaces and collects some results
for later use. We mainly follow the presentation in [41] and [7], see also [29].

1.1 Huber rings and Huber pairs

In this section, we introduce Huber rings and Huber pairs.

Let A be a topological ring.

Definition 1.1. 1. A is called adic if there is an ideal I C A such that (I")nen
s a fundamental system of neighbourhoods of 0 in A. The ideal I is called an
ideal of definition.

2. A is called a Huber ring if there is an open adic subring Ag C A with finitely
generated ideal of definition I. We call Ag a ring of definition.

If A is a Huber ring with ring of definition Ag and ideal of definition I, we say
that (Ao, I) is a pair of definition of A. Since Ayg C A is open, the ideals (I")nen
of Agy are a fundamental system of neighbourhoods of 0 for A.

For a subset T'C A and n > 1 we write
T(n) = {tl oty ’tl, I Ay T}.

Definition 1.2. 1. We call a subset T' C A bounded if for every neighbourhood
U of 0 in A there is a neighbourhood V' of 0 in A such that the set
{vt|v e V,t € T} is contained in U.

2. A subset T C A is power-bounded if the set U,>, T'(n) is bounded.
3. A subset T C A is topologically nilpotent if for every neighbourhood U of 0
in A, there is an nyg > 1 such that T'(n) C U for all n > ny.

An element a € A is called power-bounded if {a} is power-bounded, i.e. if
{a"|n > 1} is bounded. It is called topologically nilpotent if {a} is topologically
nilpotent.

We use the following notation for the set of power-bounded resp. topologically
nilpotent elements:

A° :={a € Ala is power-bounded}, and
A°° :={a € Al a is topologically nilpotent}.
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Remark 1.3. Let A be a Huber ring. A subring of A is a ring of definition if and
only if it is open and bounded ([29, Lemma II.1.1.7]). The set of power-bounded
elements A° of A is the union of all rings of definition of A. It is an integrally closed
subring containing A°° which is a radical ideal of A° ([29, Proposition I1.1.2.4]).

All Huber rings occurring in this work belong to the following type of Huber
rings:

Definition 1.4. A Huber ring A is called a Tate ring if A has a topologically
nilpotent element t which is a unit in A.

We always assume that t € Ay (by changing to " for big enough n if t ¢ Ay).
The sets (t" Ag)nen form a fundamental system of neighbourhoods of 0.

Remark 1.5. Let f : A — B a continuous ring homomorphism between Tate rings
A and B. For any topologically nilpotent unit ¢ € A, the element f(t) € B is a
topologically nilpotent unit as well. Let Ag respective By be rings of definition of A
resp. B. Then A} := Ay N f~1(By) is a ring of definition of A since it is open and
bounded in A. If Bj denotes the subring of B generated by f(Ap) and By, then
By C B and f(t)"Bj, C By for sufficiently big n, so B(, is open and bounded in B
and therefore a ring of definition.

A convenient feature of Tate rings is that they are seminormed rings:

Lemma 1.6. If A is a Tate ring with topologically nilpotent unit t, then A is a
seminormed ring with the submultiplicative seminorm

|a| := 2M(MELita€A0) for 4 e A, where 27 := 0.

Proof. Let a,b € A. We have |a + b| < max(|a|, |b]) and |a + b| = max(|al, |b]) if
la| # |b]. We have |0| = 0. This shows that | - | is a seminorm which is clearly
submultiplicative. Since

t"Ag ={a € Alla] <27},

the given topology on A and the topology induced by |- | have equal neighbourhood
systems of 0, and therefore they coincide. O

Conversely, every semi-normed ring (A, |- |) with topologically nilpotent unit ¢ is
a Tate ring with ring of definition {a € A||a| < 1}.

Remark 1.7. If A is a Tate ring with topologically nilpotent unit ¢, then we have
A= Ap[l/t].

Proof. The ideals (t"),n € N, in Ay form a fundamental system of neighbourhoods
of 0 for the topology on A. If a € A is any element, then multiplication with a is
continuous. Thus t"a € Ay for sufficiently large n and hence a € Ap[1/t]. O



1.1 Huber rings and Huber pairs

The next step in defining adic spaces is to consider Huber rings together with a
so-called ring of integral elements:

Definition 1.8. 1. A Huber pair is a pair (A, AT), where A is a Huber ring
and AT C A° is an open subring of A that is integrally closed in A. Then AT
1s called a ring of integral elements of A.

2. A morphism of Huber pairs (A, A*) — (B, B") is a continuous ring homo-
morphism f : A — B such that f(AT) C BY. It is called adic if there are
rings of definition Ay and By of A and B and an ideal of definition I C Ag
such that f(Ao) € By and f(I)By is an ideal of definition of By.

Definition 1.9. If (A, A") is a Huber pair with A Tate, we say that (A, A1) is a
Tate-Huber pair.

Example 1.10. Let L C K C C,, be complete. If A is a affinoid K-algebra (i.e. a
quotient of some Tate algebra K(T1,...,T,)) which is reduced, then A is a Huber
ring with ring of definition A° and ideal of definition (7). The pair (A4, A°) is a
Tate-Huber pair.

Remark 1.11. Any morphism of Tate-Huber pairs (4, A*) — (B, B) is adic.

Proof. See [41, Proposition 6.25]. O

1.1.1 Completion of a Huber pair

We define the completion of a Huber ring and of a Huber pair. We mainly follow
the presentation in [29]. Firstly, we recall some definitions and facts from general
topological algebra.

Definition 1.12. 1. Let X be a set. A filter on X is a nonempty collection of
subsets F of X which is stable under finite intersections and such that A € F
and A C B implies B € F where A and B are subsets of X .

2. If X is a topological space and x € X is an element, then x is o limit of a
filter F on X if every neighbourhood of x is in F.

A topological space X is Hausdorff if and only if every filter has at most one
limit. If X is a metric space, then every sequence (z,)nen has an associated filter
consisting of the sets A C X such that there is an ng € N with x,, € A for all n >
ng.

Definition 1.13. Let G be an abelian topological group.

1. A filter F on G is called a Cauchy filter if for every neighbourhood of zero U,
there is a V € F such that x —y € U for all x,y € V.

2. G is called complete if it is Hausdorff and if every Cauchy filter has a limit.
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For every abelian topological group G there is a complete abelian topological
group G and a map ¢ : G — G which fulfils the following universal property: For
every complete abelian topological group H and every continuous homomorphism
[ : G — H, there is a unique continuous map f G — H such that f ot = f. Then
(G t) is unique up to unique isomorphism. We call G the completion of G. The
analogous statements for topological rings are true. If GG is a metric space, then a
sequence in G is a Cauchy sequence if and only if the associated filter is a Cauchy
filter.

Lemma 1.14. Let Ag be a ring and I a finitely generated ideal of Ag. Let M be an
Ag-module. Set M := lim M/I"M. We denote by v : M — M the canonical map.
Then the abelian group M is Hausdorff and complete for the (1 )M topology. More-
over, for every n > 1, the map v induces an isomorphism M /I"M — M/L( )" M.

Proof. See [1, Tag 05GG]. O

If Ag is an adic ring with finitely generated ideal of definition I, then ;1?) =
l’&ln Ap/I™ is the completion of Ay. This does not depend on the choice of the ideal
of definition. To complete a general Huber ring, we look at the following lemma:

Lemma 1.15 (Huber) Let A be a Huber ring with ring of definition Ag and ideal
of definition I. Set A= L A/I™ (as abelian groups; I is the ideal in Ay, not in
A).

1. The canonical map ;1\0 — Ais injective (so we may identify ;1\0 with its image
inA).

2. The diagram

Ag A
A— > A
s cocartesian.

3. We endow A A with the unique topology such that Aisa topological group and
such that Ao is an open subgroup. Then Aisa complete topological group.

4. There is a unique multiplication on A which makes the canonical map A — A
continuous, and A is a topological ring.

5. A is a Huber ring, ;1\0 is a ring of definition of /Al, and I - ;1\0 is an ideal of
definition of Ag. The canonical map A — A is adic. Moreover, the canonical
map Ao ®a, A — A is an isomorphism.

Proof. 1. This follows from the facts that for every n, the map Ag/I" — A/I"
is injective, and that taking projective limits is left exact.
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2. Denote by ¢ : A — A the canonical map. We show t(A) N Ay = 1(Ag). Let
a € A be an element such that ((a) € Agy. Then for every n > 1 there is a
b, € Ag such that a € b, + I"™. This means that «a is in the closure of Ag in
A. But since Ag is an open subgroup of A, it is also closed, so a € Ag. The
other inclusion is clear.

3. The existence and uniqueness of the topology follow from [10, Chapter I11, §1.2
Proposition 1]. Then A is Hausdorff since Ag is a Hausdorff neighbourhood
of 0. Let F be a Cauchy filter on A. Note that F does not contain () since A
is Hausdorff. There is an ' € F such that z —y € ;ﬂ) for all z,y € F. Choose
an element zg € F. We define a Cauchy filter Fy on ;1\0 by declaring G € Fy
if and only if zog+ G € F. Note that Fy is not empty since F' — g € Fy. Since
XO is complete, there is a limit a of Fy, and hence a + x¢ is a limit of F.

4. Ap is dense in ;15. Therefore A is dense in A. This implies the uniqueness of
the multiplication. The existence follows from [10, Chapter III, §6, 5].

5. See [22, Lemma 1.6].

Definition 1.16. The Huber ring A is the completion of A.

If A is Tate, then A is a seminormed ring (Lemma 1.6) and its completion coin-
cides with the completion of A as a seminormed ring.

Lemma 1.17. Let G be a topological group and G its completion. Denote by
t: G — G the canonical map. Then

H — «(H) (the closure of «(H) in @),
) ol

defines a bijection between open subgroups of G and open subgroups of G.

Proof. The closure (H) of «(H) C G is canonically isomorphic to the completion
H ([10, Chapter II, §3, 9]). We have ker. = {0} and +(G) is dense in G. Let
H be an open, hence closed subgroup of G. Then H contains ker: and we have
H = " (u(H). On the other hand, if H’ is an open subgroup of G, then H' N (G)
is dense in H'. It follows that H’ is the closure of t(:=1(H")). O

Proposition 1.18 (Huber). Let A be a Huber ring. Under the bijection of the
previous lemma, the following open subgroups correspond to each other:

1. A° and (A)°,
2. A% and (A)*°

3. rings of definition of A and rings of definition of /Al,
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4. rings of integral elements of A and rings of integral elements of A.
Proof. Let 1: A — A denote the canonical map.

1. Lemma 1.18 implies that a subset F C A is bounded if and only of ((E) C
A is bounded after Lemma 1.17, and hence :1((A4)°) C A°. This implies
(A)° C A°. ‘On the other hand, we have ((A°) C (A)° C A°. Therefore (A)°
is dense in A°. As (A)° is open in A, it is closed, so A° = (A)°.

2. By Lemma 1.18, an element a € A is topologically nilpotent if and only if
t(a) € A is topologically nilpotent. The argument is then analogue to 1.

3. Let H be an open subgroup of A which correspondents to H' C A under the
bijection in Lemma 1.18. Then, using the density of ¢«(H) in H" and that +(A)
is a subring of ﬁ, we see that H is a ring if and only if H’ is a ring. We already
know that H is bounded if and only if «(H) is bounded. Therefore H is a
ring of definition if H' is. On the other hand, let H be a bounded subring of
A. Then ((H) is bounded. We can find an open bounded subgroup U C H'.
We then have H' = (H) + U because ((H) is dense in H'. Therefore H' is
bounded.

4. We have already shwon that K C A° if and only if H C (A)°. Let H be an
open subgroup of A which correspondents to H' C A under the bijection in
Lemma 1.18. Assume that H is an open and integrally closed subring of A.
We show that H’ is integrally closed in A. Let b € A be integral over H'.
Then there are elements ag, ..., ap_1 € A such that b+ any 10" 1. 4ag =0.
We find a b € A such that b— +(b) € H', and dy_1, ..., dp € H such that

(b + a1 0" 4+ ag) — (b)) + (a0 + .+ u(dp)) € H'.

This implies " + a,;_10" ' + ... + 4y € H. But H is integrally closed over A
and hence we have b € H. Then b = (b— (b)) +¢(b) € H'. On the other hand,
let H' be an open and integrally closed subring of A IfzeAis integral over
H, then «(z) is integral over H', hence «(z) € H' and x € H. Hence H is
integrally closed.

O]

Corollary 1.19. If AT C A is a ring of integral elements, then the closure AF of
of the image of AT in A is a ring of integral elements of A.

Definition 1.20. Let (A, AT) be a Huber pair. The pair (A, A)" = (A, A%) is a
Huber pair called the completion of (A4, A™).

10



1.1 Huber rings and Huber pairs

1.1.2 Localization of a Huber pair

Let A be a Huber ring with pair of definition (Ao, I) andlet O # T = {t1,....,t;m} C A
be a finite subset such that T - A is open in A and let s € A be an element. Note
that if A is a Tate ring, then T - A is open in A if and only if T generates the unit
ideal in A. Consider the localization S7'A = A[s7!] of A at S = {1,s,s2,...}. We
set

t tm _
D= Aol ] C Al

i.e. D is the subring of A[s™!] generated by Ay and %,,%"} We define a

topology on A[s~!] by taking the sets (I"D),eny C D as a fundamental system of
neighbourhoods of 0. We denote the resulting topological ring by A(%)

Definition 1.21. Let 0 # T = {t1,....,tm} C A be a finite subset such that T - A is
open in A and s € A. Then A(%) is a Huber ring with pair of definition (D,ID).
The completion of A(L) is denoted by A(L).

In A(%) resp. A(%), the elements %,i = 1,...,m are now power-bounded. The
canonical maps ¢ : A — A(L) resp. $: A — A(L) are continuous and univer-
sal with respect to all continuous morphisms f : A — B of Huber rings (resp.
complete Huber rings) such that f(s) is invertible in B and such that the set

{]}((t;)) |i =1,...,m} is power-bounded in B. This means that for every Huber ring

(resp. complete Huber ring) and for every continuous ring map f : A — B such that
f(s) is invertible in B and such that the set {J}((t;)) |i =1,...,m} is power-bounded
in B, there is a unique continuous ring map g : A(L) — B (resp. g : A(L) — B)
such that f =goy (resp. f =go Q).

Note that A(L) = A(T22), so we can always assume s € T

Definition 1.22. Let (A, AT) be a Huber pair. Let ) # T = {t1,....t;m} C A be a
finite subset such that T-A is openin A and s € A. Let A(%)+ be the integral closure
of AT, ..., tm] in A(%) The pair (A(%),A(%)‘*‘) is a Huber pair. Its completion
is denoted by (A(L), A(L)"). We call (A(L), A(L)T) a rational localization of
(A, AT).

The canonical map of Huber pairs (A4, AT) — (A(L), A(L)*) resp. (4,AT) —

S S
(A<§>, A<%>+) is adic. It is universal for maps of Huber pairs (resp. complete Huber

pairs) f: (A, AT) — (B, BT) such that f(s) is invertible in B, and % € Bt for
1=1,...,m.

Remark 1.23. Let L € K C C, be complete and let A be an affinoid al-
gebra over K. We have the Tate-Huber pair (A4,A4°). If T' = {t,...,t,} and
s are as in Definition 1.21, then the integral closure in A(T/s) of A°(T/s) =
m-completion of A°[t1/s, ..., t,/s] is equal to A(T'/s)°. This can be seen as follows

11



1 Adic spaces

(see lecture 12 of Brian Conrads notes [17]): The completed localization A(T'/s) is
isomorphic to the quotient

A<T1, e Tn>/(sn - ti)

of a relative Tate algebra A(T7, ..., T},). The power-bounded elements of A(T1, ..., T),)
are given by A°(Ti,...,T,,). Then the map A°(T1,...,T,,) — A(T'/s)° is integral
which follows from the finiteness of A(T7,...,T,) — A(T/s) and [31, 6.3.5/ The-
orem 1]. But A°(Th,...,T,,) — A(T/s)° factors through A°(T'/s), so the map
A°(T/s) — A(T/s)° is integral as well. The integral closure of A°(T'/s) in A(%)
coincides with A(L)*. It follows that A(L)*t = A(L)e.

S

1.1.3 Tensor products

Let (A, AT),(B,B"),(C,C%) be Huber pairs and let f : (C,CT) — (4,A"),q :
(C,C*) — (B, B") be adic morphisms. Assume that f(Cy) C Ay and g(Cy) C By
for the resp. rings of definition. Then we can regard the tensor product A ®¢c B
as a Huber ring with ring of definition D := image of Ay ®¢, By in A ®¢ B, and
ideal of definition I D where [ is an ideal of definition of Cy. Let (A ®¢c B)™' be the
integral closure of the image of A™ ®c+ B* in A®c B. Then (A®c B, (A®c B)*1)
is a Huber pair.

If the Huber pairs (4, A"),(B,B"),(C,C") are Tate and if t € C is a topo-
logically nilpotent unit, then f(¢) € A is a topologically nilpotent unit, too. The
tensor product (A®¢, B, (A ®c B)1) is again a Tate-Huber pair with topologi-
cally nilpotent unit f(¢) ® 1. The tensor product seminorm on A ®¢c B coming
from the seminorms on A and B as in Lemma 1.6 coincides with the seminorm on
A ®c B as in Lemma 1.6. This is because an element ), z; ® y; € A ®¢ B lies in
(f(t)y®1)™- D for n > 0 if and only if it has a presentation Y, x; ® y} such that
i@y, € (f(t)®1)"- D for all i.

Let K be a nonarchimedean field and let K'/K be complete. Let A be a reduced
affinoid algebra over K. The algebra Ags := AR@x K’ (where the completion is
taken with respect to the tensor product norm coming from the supremum norm
on A and the norm on K') is an affinoid algebra over K’ which is again reduced (16,
Lemma 3.3.1(1)]). The canonical map A — Ag- is an isometry for the supremum
norm on both sides because both are the only complete power-multiplicative norms
on A resp. Ak (see [31, Lemma 3.8.3/3 and Thm. 6.2.4/1]). The tensor product
norm on Ay is equivalent to the supremum norm, but they may not coincide.
The corresponding Tate-Huber pair (A, A°) gives rise to a Tate-Huber pair
(A®kg K',(A®k K')T) as in the previous remark.

Denote the image of A°®,, ok in A®x K’ by D. The topology on Ak as a Huber
ring coincides with the topology induced by the tensor product norm. Moreover,
the integral closure of the image of AO®OKOK/ in A is equal to A%, (which are
the elements with supremum norm < 1). This can be seen as follows (see lecture
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1.1 Huber rings and Huber pairs

12 of Brian Conrad’s notes [17]):

If A=1T, = K(Ty,...,T,) is a Tate algebra, then the power-bounded elements are
ox (T, ..., ). The power-bounded elements of T}, @ x K’ are given by ox: (T1, ..., Ty,) =
Tf;@oKoK/ and the claim follows directly. If A is a quotient of T}, then A/ is a
quotient of T,@x K’, and the quotient map T,®x K’ — Ay is finite and hence
integral. Then the map TS®,, 0k — A% is integral ([31, 6.3.5/ Theorem 1]). We
have a commutative diagram

1, Qo 0K — 1, ®ox 0K

| |

A°By, 0k A5,

The map T @oKoK/ — AY. is integral. Then the map AO®OKOK/ — Af. is inte-
gral as well [1, Tag 02JM]. The completion of (A @k K, (A @k K')") is given by
(Agr, A%)).

1.1.4 Uniformity

Definition 1.24. 1. We say that a Huber ring A is uniform if the set of power-
bounded elements A° is bounded.

2. A is stably uniform if A<%> is uniform for every T C A, s € A as in Definition
1.21.

Remark 1.25. For a uniform Huber ring A, the power-bounded elements A° are
a ring of definition because A° is open and bounded.

Definition 1.26. We call a Huber pair (A, AT) uniform (stably uniform) if A is
uniform (stably uniform). This is independent of the choice of the A™T.

Lemma 1.27. A Huber ring is uniform if and only if its completion is uniform.
Similarly, a Huber pair is uniform if and only if its completion is uniform.

Proof. This follows from Lemma 1.18. O

Lemma 1.28. Let A be a Tate ring which is a Banach algebra over a complete
nonarchimedean field K, and let K' be a field extension of K which is complete.
Put Ay = ARkK'. Then A is stably uniform if Ay is stably uniform. The
converse does not hold.

Proof. This is Remark 2.8.12 in [27]. O

Lemma 1.29. A Tate-Huber pair (A, A%) is uniform if and only if AT is a ring
of definition.

13
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Proof. Let t € A be a topologically nilpotent unit. We have tA° C A°°. Note that
A°° C AT as for every a € A°° there is an n such that @™ € AT and hence a € AT
by integral closeness. This means tA° C A°° C AT C A°. Therefore A° is bounded
if and only if AT is bounded. O

Remark 1.30. A reduced affinoid algebra is stably uniform.

Proof. Every reduced affinoid algebra is uniform ([31, Theorem 6.2.4/1]), and a
rational localization of a reduced affinoid algebra is again reduced ([31, Corollary
7.3.2/10]). O

Let (A, A™) be a Tate-Huber pair with topologically nilpotent unit ¢ € A. The
sets t" AT, n € N form a set of subgroups of (A, +) which fulfil the following condi-
tions

1. thAT CHPAT NEMAT if m <,
2. for all z € A and all n € N there is an m such that t™x C t"AT,
3. we have t"At - {"AT C " AT,

Therefore there is a unique topology on A such that the t" AT, n € N form a funda-
mental system of neighbourhoods of 0 and such that A is a topological ring ([10, III,
§6.3]). We define the uniformization (A, A}) of (A, AT) to be (A, A") but with
the topology for which t" A", n € N is a fundamental system of neighbourhoods of
zero. This makes AT a ring of definition. The Tate-Huber pair (A, A;}) is uniform
(Lemma 1.29).

In the following we describe uniform Tate-Huber pairs purely algebraically (see
[7, Chapter 7, 7.2.6]). We write Tate for the category of Tate-Huber pairs and
Tate, for its full subcategory of uniform Tate-Huber pairs.

The inclusion Tate, — Tate has a left adjoint

L : Tate — Tate,,
(A, A7) = L(A, A7),

where L(A, AT) = (Ay, A}). We regard Tate,, as a localization of Tate. The functor
L inverts all maps (A, AT) — (B, B™) which define bijections A* = B*.

Let Tate,q be the category of pairs (R, I) where R is a commutative ring, I C R is
the radical of an ideal generated by a non zero divisor x, and R is integrally closed
in R[1/z]. A morphism (R,I) — (S,J) in this category is a map f : R — S such
that Rad(f([)S) = J where Rad(f([)S) is the radical of f(I)S. We have a functor
Tate — Tateqg, (A, AT) — (A1, A°°). It restricts to a functor Tate, — Tate,,.
On the other hand, given a pair (R, ) € Tateq, with a generator (up to radicals)
x of I, we can form a Tate-Huber pair (R[1/z], R) with couple of definition (R, x).
This defines a functor Tate,;, — Tate, which is quasi-inverse to the functor Tate, —
Malg-

14



1.1 Huber rings and Huber pairs

Remark 1.31. We have an equivalence of categories Tate, = Tate,,.

Remark 1.32. Let (A, A™) be a uniform Tate-Huber pair with topologlcally nilpo-
tent unit ¢ € A. The completion of (A, A*) is computed as (A+[1 /t], A+), where
AT is the t-adic completion of AT, and (A+, t) is a pair of definition.

Proof. At is the closure of AT in AT [1/t] and the completion of A is equal to
A*[1/t]. To see that At is integrally closed in A*[1/t], see Proposition 1.18. [

We briefly explain uniformity from the viewpoint of semi-normed rings.

Definition 1.33. Let A be a semi-normed ring with semi-norm |- |. Then the
spectral semi-norm is defined as |a|spec 1= limy, 00 [a"|/™,a € A.

This is a power-multiplicative semi-norm on A and we have |- |spec < |- | (see [31,

1.3.2/1)).

Let (A, AT) be a Tate-Huber pair with topologically nilpotent unit ¢ € A. Let
|| be a semi-norm on A which induces the given topology of the Huber ring A (e.g.
the semi-norm defined in Lemma 1.6). Then the topology on the uniformization A,
which has the sets t" AT as a neighbourhood basis of 0 is equal to the one induced
by the spectral semi-norm | - |spe. coming from the semi-norm |- | on A. This can
be seen as follows: The topology induced by | - |spec is given by the neighbourhood
basis of 0 consisting of {a € A||a|spec < €} for € > 0. For this topology, AT
is open and bounded: Every b € AT is power-bounded in the original topology
on A, then b is power-bounded in the topology induced by | - |spec, i.¢ we have
AT C {a € A|la|spec < 1}. This shows that AT is bounded for | - |spec. We find
an 0 < € < 1 such that {a € A||a] < e} C AT because AT is open in the original
topology on A. Let a € A such that |a|spec < /2. Then for big n, we have
la"[/™ < g, so |a"| < ¢ and hence a™ € A, and by integral closeness, we have
a € AT, This shows that AT is open in the topology induced by | - |spec. It follows
that we may regard (A, A") with the topology induced by | - |spec as a Tate-Huber
pair such that A" is a ring of definition. It then coincides with the uniformization
(Au, A). N

Regarding the completion (;1;, AY), note that A, is equal to the /cgmpletion of

A for the spectral seminorm coming from the seminorm on A, and A is equal to
the closure of the image of A} in A,. Note that the uniform completion (i.e. the
completion with respect to the spectral seminorm) of A is equal to the uniform
completion of A.

Lemma 1.34 (Definition 2.8.1 (and Errata) of [27]). Let A be a Banach ring
with norm | - | and such that there is a topologically nilpotent unit z € A such
that|z| - |z~ = 1. Then the following conditions are equivalent:

1. The norm on A is equivalent (in the sense of [27, Definition 2.1.1]) to some
power-multiplicative norm.

15
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2. There is a ¢ > 0 such that |a®| > c|a|® for all a € A.

3. The norm on A is equivalent (in the sense of [27, Definition 2.1.1]) to its
spectral semi-norm, i.e. the semi-norm |a|spec = limy o0 ]a"!l/”, acA.

4. The power-bounded elements A° are bounded.
The lemma applies especially if A is a Banach algebra over a nonarchimedean

field.

1.2 Adic spaces

1.2.1 The valuation spectrum of a Huber pair

Definition 1.35. Let A be a topological ring and I' a totally ordered abelian group
(written multiplicatively).

1. A valuation on A is a map
s A= TU{o},
such that
01 =0, [1] =1, |ab| = |af - [b], and |a + b < max{lal, [b]}.
for all a,b e A.

2. The valuation | - | is continuous if the set {a € Al|a| < v} is open in A for
all v €T

3. If | | is another valuation on A, then |-| and |-|" are called equivalent if for
all a,b € A we have

lal > [b] < |al" > [b]'.
Every valuation |-| on A determines a prime ideal p, := |-|~(0) of A (the support

of | -|) and an integral domain A/p, with fraction field x(p,).

Definition 1.36. Let (A, A") be a Huber pair. We define Spa(A, A1) to be the

set consisting of all equivalence classes of continuous valuations |-| on A such that
If| <1 forall feAt.

For elements f € A and = € Spa(A, AT) we often write |f(x)| instead of z(f).
Let f,g € A. We define a topology on Spa(A, AT) by taking the sets

{z € Spa(4, A7) | [f(z)| < lg(x)| # 0}

as basic open subsets.
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Theorem 1.37 (Huber). Let (A, A%) be a Huber pair. Then X := Spa(A,A™)
is a spectral space (i.e. Spa(A, AT) = Spec(R) for some ring R). A basis of the
topology consisting of open quasi-compact subsets is given by the subsets

X(2) = o e X | Vi€ T||i(w)] < [s(x)| # 0},

with s € A and T C A as in Definition 1.21. We call these subsets rational subsets.
Finite intersections of rational subsets are again rational subsets.

Let f: (A, AT) — (B, B") be a map of Huber pairs. By composition, we get a
well defined continuous map Spa(f) : Spa(B, B*) — Spa(A4, AT). If f is adic, then
the preimage under Spa(f) of a rational subset of Spa(A, A1) is a rational subset
of Spa(B, B™).

Proposition 1.38. Let (A, A") be a Huber pair. The canonical map
Spa(A, AT) — Spa(A, AT)
is a homeomorphism. It identifies rational subsets.

Proof. This is Proposition 3.9 in [22].
]

Lemma 1.39. Let (A, A") be a Huber pair and T C A,s € A as in Definition
1.21. Set X = Spa(A, A™1).
T

1. The canonical map v : (A, A*) — (A(L), A(L)T) induces an open immersion
of topological spaces Spa(A<Z>,A<%>+) — X with image X(%) Under this
map, rational subsets in X () correspond to rational subsets in X that are
contained in X(%)

2. For every continuous map f : (A, AT) — (B, B%) to a complete Huber pair
(B, B%) such that Spa(f) : Spa(B, BT) — Spa(A, A™) factors through X(%),
there is a unique continuous map g : A(%) — B such that go v = f, and we
have g(A(%)*‘) C BT.

3. LetT' C A and s’ € A be another finite set and element as in Definition 1.21.
If X(Z—,/) - X(%), then there is a um’qt{w continuous map h : A<%> — A(%)
such that /' = h o, where J/ : A — A(L:) is the canonical map.

Proof. See [29, Proposition I11.6.1.1]. O

Corollary 1.40. Let T, 7" C A and s,s' € A as in Definition 1.21. If X(%) =
X(Z—,,), then there is a canonical isomorphism of Huber pairs (A(L), A(T)+) —

ALY A(TVY)) such that the diagram

S S

17
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commutes.
Now we want to define a presheaf on Spa (A, AT).

Definition 1.41. Let (A, A") be a Huber pair, and let X = Spa(A, AT). We define
a presheaf Ox on X with values in the category of complete topological rings in the
following way

e if X DU = X(L) is a rational subset, then Ox(U) := A(

» |~

)

e if VC X is any open subset, then
Ox(V)= lm  Ox(U),

V CU rational
where U ranges over the rational subsets which are contained in V', and Ox (V)

has the projective limit topology. The restriction maps are given by Lemma
1.39.

Definition 1.42. In the situation of the previous definition, we define a sub-
presheaf (9;2 of Ox by setting

Ox ={f € Ox(U)||f(2)| < 1Vx € U}

for an open subset U C X.

This is a presheaf of complete topological rings as well. Note that if X (%) is a

rational subset, then

T T

=), A(=)T).
), A())

(Ox(X(1)), OF (X(1)) = (A

T
S
(A, A*).

Especially we have (Ox(X), 0% (X)) =

Let f7: (A, A1) = (B, Bt) be a map of Huber pairs, set X = Spa(A4, A*) and
Y = Spa(B, B*), and let f = Spa(f®) : Y — X be the induced map. If U C X and
V C Y are rational subsets such that f(V) C U, then we have a continuous ring
map Ox (U) — Oy (V) because of Lemma 1.39. If U C X is any open subset, then
we have a map 3 : Ox(U) — Oy (f~1(U)) which defines a map of presheaves such
that (’); is sent to f*O}t.

For a point x € Spa(A, AT) we let
Oxe:= lm Ox(U)= lim Ox(U)

zeU open z€U rational
be the stalk at z (in the category of rings). We deduce from Lemma 1.39 that for
every rational subset U > z the valuation = : A — I';, U {0} extends uniquely to a
continuous valuation v : Ox(U) — I'; U {0}. We pass to the inductive limit and
get a valuation v, : Ox , — I'; U{0}. One can show that for f € Ox(U) such that
| f(z)| # 0 the image of f in Ox, is a unit, and therefore Ox , is a local ring whose
maximal ideal is the support of v,.
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Definition 1.43. We define a category VP"® whose objects X = (|X|, Ox,{Va}2e|x])
are triples of

1. a topological space |X|,

2. a presheaf Ox of complete topological rings such that the stalk Ox , is a local
ring for every point x € |X|,

3. for every x € | X| an equivalence class v, of valuations on Ox , whose support
is the mazimal ideal of Ox ;.

A morphism f : X — Y in VP is a pair (f, ) where f : | X| — |Y| is a continuous
map and f° : Oy — f.Ox is a morphism of presheaves of topological rings such that
for every x € |X| the induced ring map f° : Oy, f(x) = Oxz fulfils vy = vy 0 2.

If X = (|X|,Ox,{Vz}ze|x|) is an object in VP"* and |U| C [X| is an open subset,
then (|U|, Oxv, (Vz)zev) is again an object in VP"°.

Definition 1.44. An open immersion in VP is a morphism

(f, ) X = (1X],0x, {t}aeix)) = Y = (IY], Oy, {#}acpy)

such that f : |X| — |Y| is a homeomorphism onto an open subset |U| C |Y| and
the induced morphism (| X[, Ox, {v}zex(}) = (U], Oy, {¥}aci)}) is an isomor-
phism.

Remark 1.45. Let (A, AT) be a Huber pair and T, s as in Definition 1.21. Then
the canonical map Spa(A(L), A(Z)*) — Spa(A, A1) is an open immersion.
Definition 1.46 (See Remark/Definition 8.10 in [41]). An affinoid pre-adic space
is an object of VP™® that is isomorphic to Spa(A, AT) for a Huber pair (A, AT).
Let X be an object in VP such that there is an open covering (U;); such that
(Ui, Ox\u;> (Va)zejuy)) is an affinoid pre-adic space. We call an open subset |U| C
| X[ an open affinoid subspace if (|U|, Ox |, (Vz)zev)) s an affinoid pre-adic space.
Then the sets |U| where U is an open affinoid subspace form a basis of the topology
of | X|. If the presheaf Ox is adapted to the basis of open affinoid subspaces (i.e. if
the restrictions Ox (V) — Ox(U) for V. C |X| open, U an open affinoid subspace,
and U C 'V give an isomorphism Ox (V) = lim, Ox(U)), we call X a pre-adic
space. The category of pre-adic spaces is the full subcategroy of V"¢ consisting of
pre-adic spaces.

If (A, A") is a Huber pair, then Spa(A4, A™) is an affinoid pre-adic space. Let
X be a pre-adic space. As for affinoid pre-adic spaces, we define OF = {f €
Ox(U)||f(x)] < lfor all z € U} for every open subset |U| C |X|, endowed with
the subspace topology from Ox (U). This is a sub-presheaf of topological rings of
Ox. For every z € | X| denote by (9}@ the stalk of OF at .
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Lemma 1.47. Let X and Y be pre-adic spaces. Let (f, f’) : (X,0x) — (Y, Oy)
be a pair such that f : X — Y is continuous and such that f° : Oy — f.Ox is a
local map of presheaves of topological rings. Then (f, fb) is @ morphism in VP"¢ if
and only if the following conditions are satisfied:

1. P(OF) € £.(0%).

2. The induced morphism O; — f*(’)} is a local morphism of presheaves of
TIngs.

Proof. See [41, Lemma 8.14]. O

Let V be the full subcategory of VP"¢ consisting of those objects (X, Ox, (vz)zex)
of VP™¢ such that Ox is a sheaf of topological rings.

Definition 1.48. 1. A Huber pair (A, A") is called sheafy if Ogya(a,a+) is a
sheaf of topological rings.

2. An affinoid adic space is an object in V which is isomorphic to Spa(A, A1)
for a (sheafy) Huber pair (A, AT).

3. An adic space is an object (|X|, Ox, (vz)ze|x|) of V such that there is an open
covering (U;)ier of X such that (|Ui|, Oy, (va)ze|u,|) is a affinoid adic space
foralli e 1.

Remark 1.49. We have a functor (A, AT) — Spa(4,A") from the category
of sheafy Huber pairs to the category of adic spaces. The functor (A4, A") —
Spa(A, AT) from the category of complete sheafy Huber pairs to the category of
adic spaces is fully faithful.

Proposition 1.50. The canonical map Spa(;l, EJF) — Spa(A, A1) is an isomor-
phism of (pre-)adic spaces.

Proof. This follows from Lemma 1.5 in [23]. O

In general, it is not easy to determine whether a given Huber pair is sheafy.
However, there are some conditions which ensure sheafiness:

An affinoid pre-adic space X = Spa(A4, A1) is called stably uniform if A is stably
uniform, that it, for every rational subset U C X, the ring Ox (U) is uniform. (This
is independent of the A™.)

Theorem 1.51 (Buzzard-Verberkmoes, Mihara). If A is stably uniform, then
(A, AT) is sheafy.

Proof. This is Theorem 7 in [12]. O
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1.2 Adic spaces

1.2.2 The functor rx from rigid-analytic spaces to adic spaces

Adic spaces can be considered as a generalization of rigid-analytic spaces. Let K be
a complete nonarchimedean field. If A is an affinoid K-algebra, then Sp(A) denotes
the associated affinoid rigid-analytic space (see e.g. [8]). In Huber’s book [24, 1.1.]
a functor

ri : {Rigid analytic spaces over Sp(K)} — {Adic spaces over Spa(K,ox)}

from the category of rigid analytic spaces over Sp(K) to the category of adic spaces
over Spa (K, ox) with the following properties is constructed:

1. If X = Sp(A) is an affinoid rigid analytic space, then rx(X) = Spa(A4, A°).
2. If f: X — Y is an open immersion of rigid analytic spaces, then
rr(f)  re(X) = re(Y)
is an open immersion of adic spaces.

3. A family {X;};cr of admissible open subsets of a rigid analytic space X is an
admissible covering of X if and only if r(X) = J;c; r(X;) is an open covering.

4. rg is fully faithful.
If X is a rigid analytic space over K, we write rx(X) = X2,
Remark 1.52. Let A and B be affinoid K-algebras and
f: X =Sp(A) - Y =Sp(B)
be a map between rigid-analytic spaces over (K,ox). We have Tate-Huber pairs

(A, A°) and (B, B°) over K. The corresponding map f” : (B, B°) — (A, A°) is adic.

If U C Y is a rational subset, then the preimage f~!(U) C X is a rational subset
as well. More precisely, if U = Y(%), then

- (1) (1)
'v)y=X =Sp(4 :
The analogous statement is true for rx(f) : X2d — Y24 (here we use that A( }}b,,((f)) )° =

A(J;,((Z)) )T as in Remark 1.23), and we see that
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1 Adic spaces

According to the Gerritzen-Grauert theorem (see e.g. [8, 3.3, Theorem 20]) every
affinoid subdomain of an affinoid K-space is a finite union of rational subsets.
Let U = U3 U...UU, CY now be an affinoid subdomain which is the union of
rational subsets U1, ..., U,. This is an admissible covering of U, as well as f~!(U;)U
..U f71(U,) is an admissible covering of f~1(U), therefore we have rg(U) =
rr(Un) U ..ri(Uy) and 7 (f~HU)) = r(f71(U1) U ... Urk (f~1(Uy,)). Then

7 rr(U) U .. Urg(U))

N reO) U Urg(f)H re(Un))
FTHU) U Urk(F7H(U)

YUy u..u i)

1))

re(f)  re(U)) = rk

I
<

K

|
<

K

I
<

K

(
(
— rie(
(
(

1.2.3 Fibre products of adic spaces

Definition 1.53. Let f: X — Y be a map of adic spaces.

(i) f is called adic if for every x € X there are open affinoid neighbourhoods
U of x and V of f(x) such that f(U) C V and such that the induced map
Oy (V) = Ox(U) is adic.

(i) f is called locally of weakly finite type if for every x € X there are open
affinoid subspaces U and V' of X resp. Y such that x € U, f(U) C V', and the
induced morphism of Huber rings Oy (V) — Ox(U) is of topologically finite
type.

(iii) f is called locally of finite type if for every x € X there are open affinoid sub-
spaces U and V' of X resp. Y such that x € U, f(U) C V', and the morphism
(Oy(V),0{(V)) — (Ox(U),0%(U)) of Huber pairs is of topologically finite
type.

Proposition 1.54. Let f : X — Z and g : Y — Z be morphisms of adic spaces.
The fibre product X xz Y of f and g in the category of adic spaces exists in the
following cases:

1. f is locally of finite type,
2. f is locally of weakly finite type and g is adic.

Proof. Proposition 1.2.2 in [24]. O

In the second case, and if Z = Spa(C,C"), X = Spa(A, A"),Y = Spa(B,B™)
are affinoid, the space X x 7 Y is given by Spa(A®¢B, (A®cB)™).
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1.2 Adic spaces

1.2.4 Inductive limits of uniform Tate-Huber pairs

In general, when forming the inductive limit of a system of Tate rings in the category
of rings, there is no obvious topology which makes it into a Tate ring. Therefore
we restrict ourselves to the case of uniform Tate rings resp. uniform Tate-Huber
pairs. Then we can always take the power-bounded elements are ring of definition.

Proposition 1.55 (See Chapter 7, 7.4.10 in [7]). Let (A;, A )icr be a filtered
inductive system of uniform Tate-Huber pairs with maps @;j : Ay — A for j > 1.

1. The inductive limit (A, A*) of (A, Al )icr exists in the category of uniform
Tate-Huber pairs. The A is identified as liﬂie] A; and the A is identified as
+

hﬂiel A;", computed in the category of rings.

2. The natural map |Spa(A4, AT)| — lim, |Spa(A;, Af)| is a homeomorphism.
Moreover, each rational subset of |Spa(A, AT)| is pulled back from a rational
subset of |Spa(A;, Af)| for some i € I.

Proof. We may assume that I has a minimal element ¢35. We choose a topolog-
ical nilpotent unit t € A;-g. Each A C A; is a ring of definition with ideal of
definition (¢) where ¢ denotes by abuse of notation the image of ¢ under the map
A;y — A;. Weset A = hﬂz‘e I A;. We view A as a Huber ring with ring of definition
AT = lim, A; and ideal of definition (¢). Then (A, AT) is uniform because the
ring of integral elements AT is by definition a ring of definition.

We show that (A, AT) is in fact the inductive of (A;, 4] )ier in the category of
uniform Tate-Huber pairs. Let f; : (4;, A7) — (B, B") be a compatible system of
maps with (B, BT) being a uniform Tate-Huber pair. Then there is a unique map
f:A— Bwith f(AT) C BT in the category of rings. Since B is uniform, B* is a
ring of definition for B. We have f~'(t"B*) D t" AT, so f is continuous. Therefore
we get an continuous map (A4, A") — (B, BT) of uniform Tate-Huber pairs. It is
clearly unique.

We have a valuation ring R, C k(p,) for every point z € Spa(A, A*). Then
(k(pz), Ry) is a uniform Tate-Huber pair for the valuation topology on x(pz).
The point x determines and is determined by a map (A, AT) — (k(pz), Ry) of
Tate-Huber pairs (see [7, Proposition 7.3.7]), and it also determines points z; €
Spa(A;, A}) together with maps (A;, A7) — (k(ps,), Ra;). Then (k(py), Ry) =
ling, (£(pa,), Ry,) as uniform Tate-Huber pairs. We see that

Spa(A, A7) — @Spa(Ai, AF)
el
is a continuous bijection. Since A = hﬂie s A; as rings, the defining open subsets

Spa(A, A*)(%) with f,g € A arise via pullback from Spa(4;, A]"). O

Remark 1.56. Let (A;, A;-F)ie[ and (A, AT) be as in the previous proposition, and
for each ¢ denote by «a; : A; — A the canonical map. As mentioned in Remark
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1 Adic spaces

1.6 the topology on A as a Huber ring is induced by the seminorm on A given by
|z| = 2WIMEZ " 2EAT) for o ¢ A and similarly for the A;. This seminorm on A coin-
cides with the inductive limit seminorm coming from the seminorms on the A; (see
9inf(n€Z; t”xieA;L).

Definition 6.7 in the Appendix) which is given by inf;_; vica ()

In the situation of the previous proposition we now assume additionally that all
A; are stably uniform. Let s,7T be as in Definition 1.21 and consider the rational
localization (A(%), A(%)Jr) We may assume that s € T'. We then have the following
lemma:

Lemma 1.57. Let (A;, Aj)iel be an inductive system of stably uniform Tate-Huber
pairs with maps @i; « A; — Aj for j > i. Denote by (A, AT) its inductive limit
in the category of uniform Tate-Huber pairs. Then (A(%)u,A<€>;f) is the t-adic
completion of the inductive limit of rational localizations of the (A;, Aj)

Conversely, if we consider a rational localization (Ai0<%s>’Ai0<gs 1) of (Ai, Af)
for an ig, then the completed inductive limit of the induced inductive system is given
(A(LYyy, A(LYE) (where T and s are the images of Ty, and s;, in A).

s

Proof. Let iy € I such that we can choose a preimage zy,;, € A;, for every
xzp € T = {z1,...,x,} and a preimage s;, € A;, of s, and such that the xy,
generate the unit ideal in A;,. Let Tj, be the (finite) set consisting of the zy;,. We
choose a topologically nilpotent unit ¢ € A;,.
Denote the image of Tj, respective s;, under the map y;,; in A; by T; = {x14, ..., Tn i}
respective s; for ¢ > ig. Note that T; generates the unit ideal in A; for all i > i,
hence we have uniform Tate-Huber pairs (AZ(Z—Z), Az(%)ﬂ We have induced con-
tinuous maps
Pij Ai(z) — Aj(&%
S 5;
which fulfil ¢;;(A; (L 1)T) C A ( )Jr The (A; (—1), Az(f—z)ﬂ together with the maps
pi; for i,5 > g form an inductive system in the category of uniform Tate-Huber
pairs.
We have an isomorphism of (abstract) rings

ol A( ) = lim Ay, = A= 4,
1>10 1210
as inductive limits commute with localizations. Moreover, we have
. T1,i Tni x1 T
lim A [, . 2 = AT [—, ... ).
ling A[=25, 0 =] [

As forming inductive limits commutes with taking the integral closure, the image of

lgqpl (Ay(L ) ) under fis A(L)T, i.e. the integral closure of AT[ZL, ... L] in A(L).
We obtain an isomorphism
(i (A (1)), Rad(0))) = (A() " Rad (1))

1>10
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1.2 Adic spaces
in the category Tate,;, (see Remark 1.31). Therefore we get an isomorphism

(A ) ACD D 2 (lim A(S),lsg A,

>0 Si 1>10
of uniform Tate-Huber pairs. Passing to the completions gives an isomorphism
T T — T, — T;
- i - el (2t
(A< >U7 A< s >u) - (hng’LOAZ( S; )7113,5‘22'0‘42( Si) )
The latter is isomorphic to (@Dio ( L), lg Sio < ) ). Therefore

T T — T T.
+) o (7 asiANNT U\
Conversely, if we have a rational localization A;, (%) of some A;,, then we denote
iQ

the image of T;, and s;, in A by T respective s, and with the same reasoning as
before we get an isomorphism

(i, , A B A 2 (AL A,
]

Remark 1.58. Assume now that all A; are stably uniform and that the limit
lim, _, A; is also stably uniform (so that we do not need to uniformize as in the

previous lemma).

Let U = Spa(A4, AT)(L) C Spa(A, A*) be a rational subset which arises via pull-
back from U;, C Spa(AZO,A ), and let U; C Spa(A;, A]) be the preimage of Uy,
under the map Spa(A;, A;") — Spa(A;,, A;g) which is a rational subset (since it is
a preimage of a rational subset under an adic map). We have

OSpa(A,A+) (U) = @izio OSpa(Ai,A;") (U’)

as topological rings because of Lemma 1.57. If V C U is another rational subset of
Spa(A, A*) with preimage V; C Spa(A;A;"), the diagram

Ogpa(a;,ah)(Ui) — Ospa(Aj,Aj)(Uj)

res l l res

OSpa(Ai7A:r)(W) - OSpa(Aj,Aj)(‘/j)

commutes for all j > ¢ > ig. By passing to the inductive limit and then to the
completion (by continuity), we get maps

res : lg i>i0 Spa Z,Aj)(U’L') — hﬂiZiOOSpa(Ai,Aj)(‘/;%
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1 Adic spaces

so we get a presheaf U — @izio OSpa( A Aj)(Ui) on the basis of rational subsets of
|Spa(A, AT)|. One checks that the following diagram commutes:

OSpa(l‘Li‘“) () @izio Ospa(Ai:Af) (i)

res i res

Ospa(a,a+)(V) — @izm Ospa(a; A7) (Vi)

We see that U — @izm OSpa( AL Aj)(Ui) is a presheaf of complete topological rings
on the basis of rational subsets which coincides with the sheaf Og,,(4,4+) on the
basis of rational subsets. Therefore it is a sheaf on the basis of rational subsets
and extends uniquely to a sheaf on |Spa(A4, A™)| (see [1, 6.30]). It is isomorphic to

Ogpa(a,a+)-
1.3 Preperfectoid and perfectoid spaces

In this section we give a brief overview of the theory of perfectoid and preperfectoid
spaces. Perfectoid spaces were introduced by Scholze in [36]. The main sources for
this section are [36], [34], and [27]. See also [30] and [43].

1.3.1 Perfectoid fields

Definition 1.59. A nonarchimedean field of residue characteristic p is called per-
fectoid if

(i) the absolute value | -| on K is not discrete,
(ii) K is complete,
(iii) the Frobenius on ox /(p) is surjective.

Remark 1.60. Every element of the value group of a perfectoid field K is a p-th
power.

Proof. This is Remark 1.4.3 in [34]. O

Let L C K C C, be a perfectoid field. We construct the tilt K > of K which is
a perfectoid field of characteristic p. Let myg denote the maximal ideal of 0. We
choose an element w € myg such that |w| > |r|. We define

OR» = l'&no;d(w).
()

This is a perfect k-algebra.
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1.3 Preperfectoid and perfectoid spaces

Let @ = (ap,a1,...) € og». Choose an a; € ox such that o; = a; mod (w)

i+1 1 .
for i > 0. We have af,; = a; mod (w) and hence a?jl = a! mod (@w1) by (a

generalization of) [34, Lemma 1.1.1]. We form the limit

g
%

ot := lim a7 € oK.

1—00

We get a well defined multiplicative map

O — 0K,
a— al,
which fulfils of mod (@) = ap.
Lemma 1.61. We have a multiplicative bijection
imox — o,
()4
(ap,ai,...) — (ap mod (w),a; mod (w),...).

In particular, oy is independent of the choice of w.
Proof. This is Lemma 1.4.5 in [34]. O

Lemma 1.62. The map

|- |p : 0g» = R>o,

o |af]
is a monarchimedean absolute value. We have

1. ok | = [ogesy;

2. aogy C Pogs if and only if |af, < |B], for a, 5 € ok ;
3. My = {a € o |||, < 1} is the unique mazimal ideal in oy ;
4. let @ € o be any element such that |@’|, = |w|, then the projection
map which sends (g, ...) to ag induces an isomorphism of rings oy /(w”) =
ok /(w). We have oy /My = o /mi.
Proof. This is Lemma 1.4.6 in [34]. O
We now fix an element @’ € ogs such that |@’|, = |ow|. We deduce from the

previous lemma that oy, is an integral domain, and that every element in its field
of fractions K” can be written as (55)" for a € 0g» and n > 0. We can extend |- |,
by multiplicativity to K°. The the value groups of K and K’ coincide, and o b 18
the ring of integers of K” for |- |,.
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1 Adic spaces

Proposition 1.63. K’ is a perfect and complete nonarchimedean field of charac-
teristic p. It is called the tilt of K.

Proof. This is Proposition 1.4.7 in [34]. O
Example 1.64. C, is a perfectoid field. Its tilt (Czb? is algebraically closed.

Lemma 1.65. If L C K C C, is complete with dense value group such that for
an element w € K we have |p| < |w| < 1 and (ox/(w))? = ox/(w), then K is
perfectoid.

Proof. This is Lemma 1.4.11 in [34]. O

A complete nonarchimedean field of characteristic p is perfectoid if and only if it
is perfect.

Theorem 1.66 (Scholze). Let L C K C C, be a perfectoid field.

(i) Let K' be a finite extension of K. Then K' (with its natural topology as a
finite-dimensional K -vector space) is a perfectoid field.

(ii) Let K° be the tilt of K. The tilting functor K' — (K')* induces an equivalence
of categories between the category of finite extensions of K and the category
of finite extensions of K. This equivalence preserves degrees.

Proof. This is Theorem 3.7 in [36] O

1.3.2 Perfectoid Tate rings and perfectoid spaces

In the following let K be a perfectoid field and let w € mg with || > |p|. We fix
an element @’ € K’ such that |w| = |@”],.

Definition 1.67. A Tate ring A over K is called perfectoid if it is complete and
uniform, and if the Frobenius A°/(w) — A°/(w) is surjective.

Remark 1.68. Let A be a perfectoid Tate ring over K. The Frobenius A°/(p) —
A°/(p) is surjective if and only if the Frobenius A°/(w) — A°/(w) is surjective.

Proof. It (A°/(p))? = A°/(p), then also (A/(w))? = A°/(p). Suppose we have
(A°/(w))P = A°/(w). Let w; € K be an element such that |w|'/? < |wy| < 1.
Then wA°® C wlA° and then (A°/(w)))? = A°/(w}). Let # € A°. Then we
inductively find elements (y,), and (z,), in A° such that

— P p
T =Yg+ wiT1

_ D p
T =1 +wix2

_ P
Ty, = Yb + W] Tny1
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1.3 Preperfectoid and perfectoid spaces

We see hat there are elements (z,), in A° such that

x=zP+ wﬁo(nH)an mod (p) for any n > 0.

But as we have |w§)(n+1)| < |p| and hence (wlf(n—i_l)) C (p) for sufficiently large n,
we see that (A°/(p))? = A°/(p). O

Tilting for perfectoid Tate rings works in much the same way as for perfectoid
fields:

Definition 1.69. Let A be a perfectoid Tate ring over K. We define

bo . 7. o
A= lim A°/(w)

TP

and give it the inverse limit topology.

It is a topological og»-algebra. Set A” = A"[1/w’]. This is a perfectoid K°-
algebra. We call it the tilt of A. We have a well-defined multiplicative map

A 5 A°,

qi

ag mod (w),a; mod (w),... — of := lim a!
( ;

1—00
which fulfils of = agi mod (). There is an isomorphism
lim A° — A”,
x—xP

(ag,ai,...) — (ap mod (w),a; mod (w),...)
of multiplicative monoids.

Definition 1.70. Let (A, AT) be a Tate-Huber pair over (K,or) (i.e. there is a
map (K,ox) — (A, AT)). Then (A, A") is called perfectoid if A is a perfectoid
Tate ring.

Let (A, AT) be a perfectoid Tate-Huber pair. There is a bijection between the
set of rings of integral elements of A and the set of rings of integral elements of A°.
The bijection is given by At — At where A*t = fm AT,

Theorem 1.71 (Scholze). There is an equivalence of categories between perfectoid
K -algebras and perfectoid K’-algebras.

Proof. Theorem 5.2 in [36] O]

Theorem 1.72 (Scholze). Let (A, AT) be a perfectoid Tate-Huber pair over (K, ok ),
and let X = Spa(A, A*) with associated presheaves Ox and O%. Let (A”, A°F) be
the tilt of A, and X” = Spa(A°, A"1).
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1 Adic spaces

1. We have a homeomorphism | X| = |X"|, given by mapping x € X to the val-
uation 2> € X° defined by |f(2")| = |fH(z)|. This homeomorphism identifies
rational subsets.

2. For any rational subset U C X with tilt U” C X°, the complete Tate-Huber
pair (Ox(U), 0% (U)) is perfectoid, with tilt ((’)Xb(Ub),(’);b(Ub)).

3. The presheaves Ox and O, are sheaves.
Proof. Theorem 6.3 in [36]. O

Definition 1.73. An affinoid perfectoid space over a perfectoid field K is an adic
space Spa(A, A1) for some perfectoid Tate-Huber pair (A, AT) over (K,ox). A
perfectoid space over K is an adic space over K which is locally isomorphic to an
affinoid perfectoid space. Morphisms of perfectoid spaces are morphisms of adic
spaces.

Tilting gives a functor X +— X’ from perfectoid spaces over K to perfectoid
spaces over K b,

1.3.3 Preperfectoid algebras and spaces

We have the following definition which is a variant of the definitions 2.3.4 and 2.3.9
in [37].

Definition 1.74. 1. Let L € K C C, be a perfectoid field and let X be a
(pre-)adic space over Spa(K,ox). Then X is called preperfectoid if there
is a covering of X by open affinoid spaces U; = Spa(Ai,Aj) C X such that
(/Alw,flju) is a perfectoid Tate-Huber pair over (K,or), where we take the
uniform completion, i.e. the completion with respect to the topology on Aj;
giving Af the m-adic topology.

2. Let X = Spa(A, A") for a Tate-Huber pair (A, AT) over (L,or). Then X is
L-preperfectoid if there is a perfectoid field L C K C C, such that the uniform
completion ((ARLK )y, (AR K))" is perfectoid, so Spa(((ARLK )y, (ARLK)F)
s a perfectoid space.

3. Let X be a (pre-)adic space over Spa(L,or). Then X is called L-preperfectoid
if there is an open covering (U;); of X and a perfectoid field L C K C C,
such that U; = Spa(A;, Af) for a Tate-Huber pair (A;, A]) over (L,or) and
the uniform completion (A;RLK )y, (A;@LK))" is perfectoid for every i.

Remark 1.75. In [27] and [30], the authors use a different definition of preperfec-
toidness. There, a Banach algebra A over Q, is said to be preperfectoid if there
is a perfectoid K/Q), such that A@QPK is perfectoid. The main difference is that
in this definition the topology coming from the tensor product is required to be
uniform so that one does not need to uniformize it. It proves to be too restrictive
for our purpose. However, it ensures sheafiness.
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Proposition 1.76. Let (A, A") be a Tate-Huber pair over (L,or). Assume that
there is a perfectoid field K over L such that AR K is perfectoid. Then (A, A1) is
stably uniform and therefore sheafy.

Proof. For L = Q,, this is Proposition 6.3.3 in [43]. Let L C K C C, be a
perfectoid field such that A’ = A®p K is perfectoid. We want to show that (A, AT)
is stably uniform. Then it is sheafy by Theorem 1.51. Set X = Spa(A, A") and let
X' = Spa(A’, A’"), A" being the integral closure of AT®,, 05 in A’. Let U C X
be a rational subset, and let V' be its preimage under the map X’ — X. It is also a
rational subset. We then have Ox/(V) = Ox (U)®,, ox and Ox (U) is a topological
subring of Ox/ (V).

Ox/ (V) is perfectoid because A’ is perfectoid, and hence it is uniform. Therefore we
can take the power-bounded elements Ox/(V)° as a ring of definition. If { € A is a
topologically nilpotent unit, then it is a topologically nilpotent unit in Ox (U) and
Ox/ (V) as well, and t"(Ox/(V)°NOx (U)) for n > 0 is a basis of neighbourhoods of
0in Ox(U). Then Ox/(V)°NOx(U) is open and bounded in Ox (U) and therefore
a ring of definition. Thus it is contained in Ox (U)°. Since Ox (U)° C Ox/(V)°, we
conclude that Ox (U)° = Ox(U)NOx:(V)° which is bounded in Ox (U). Therefore
Ox (U) is uniform. O
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2 The character variety

Remember that L C C, is a finite extension of Q, of degree d with ring of integers
or, and uniformizer 77, = 7. Let L C K C C, be a complete intermediate field.
In this chapter, we summarize the construction of the rigid-analytic character vari-
ety X and of the corresponding Robba ring R (X) as developed in [35] and [6]. Let
A be an affinoid algebra over K. If the base extension Ac, := A®kC, is reduced,
then A is reduced as well, and the map A — Ac, is isometric for the supremum
norm (see [31, Lemma 3.8.3/3 and Theorem 6.2.4/1]).

If X is a rigid-analytic variety over K, then we denote by O (X)" the elements
f € Ok (X) which are bounded, i.e. for which there is a constant C' such that
|f(z)| < C for all x € X(C,).

2.1 The character variety X

We denote by G = oy, the additive group oy, viewed as a locally L-analytic group.
Let G be the locally @p-analytic group obtained from G via restriction of scalars.
Furthermore, let @(K ) resp. Go(K ) denote the group of K-valued locally analytic
characters of G resp. Gy, i.e. group homomorphisms G — K* resp. Gy — K*
which are locally given by a power series.

Denote by B; the rigid Qp-analytic open unit disk around 1 € Q,. We have a
bijection

B1(K) ®z, Homgz, (o1, Zp) — Go(K), (2.1)
2® B Xaps(9) = zﬁ(g), (2.2)

where we define 2% := 3, 54 () (2 — 1)" for z € B (K) and a € Z,. Set
X =B, ®Zp Homzp(oL, Zp).

This is a rigid-analytic group variety which is (noncanonically) isomorphic to a d-
dimensional open unit polydisk. On the level of K-points we have Xo(K) = Go(K).
In this sense X "represents’ the character group Go. It is shown in [35] that one can
define a one-dimensional rigid-analytic variety X which "represents’ the character
group G. This variety X is constructed via explicit equations as a subvariety of Xg.
Namely, if ¢1,...,%4 is a Zy-basis of o, then X is defined by the equations

(B(ts) —ti - B(1)) -log(z) =0 forl <i<d.
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2 The character variety

Let B1, ..., B4 be the basis of Homgz, (o1, Zy) dual to t1,...,t4. Identifying Xo with
B¢, we get an identification of X with

1 .
{(#1,..:y24) € %?/L| E B(1)log(z;) = ;log(zi) for 1 <i<d}
J 7
li .
={(z1,..,24) € %‘f/L| log(z;) = Elog(zl) for 1 <i < dj}.

Restriction of functions gives a surjective ring homomorphism Ok (%y) — Ok (X)
which restricts to an injective ring homomorphism O (%0)" — Ok (X)* between
the rings of bounded functions (see [6, Lemma 1.15] for the injectivity of the latter
map).

We denote by B the rigid Q,-analytic open unit disk around 0 € Q,. For any
r € (0,1) N p@ we denote by B1(r) resp. B(r) the Q,-affinoid disk of radius r
around 1, resp. 0. We put

X(r) =XN(B1(r) ®z, Homzp(oL,Zp))/L.
This is an affinoid subgroup of X.
Lemma 2.1. For any r € (O,p_P%l) Np? the map
B(r) — X(r)
Yy = Xy(9) := exp(gy)
is an isomorphism of L-affinoid groups.

Proof. This is Lemma 1.16 in [6]. O

2.2 The isomorphism X,c, = B,
2.2.1 Brief overwiev of Lubin-Tate theory
For a detailed presentation of Lubin-Tate theory see e.g. [34].

Definition 2.2. A (one-dimensional) commutative formal group law over oy, is a
formal power series F' € or[| X, Y] in two variables such that

1. F(X,Y) =X+ Y+ terms of higher degree,
2. P(X,F(Y,2)) = F(F(X,Y),Z),
3. F(X,Y) = F(Y,X),

4. there is a unique formal power series tp(X) € Xor[|X|] such that F(X,1p(X)) =

0.
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2.2 The isomorphism X,c, = B ¢,

We have F(X,0) = X and F(0,Y) =Y. A homomorphism of formal group laws
h : F — G over oy, is a formal power series h € Xop[|X]|] such that h(F(X,Y)) =
G(h(X),h(Y)). For any formal group laws F' and G over or, the set of homomor-
phisms Hom,, (F, G) is an abelian group with addition hj +hg := G(h1(X), ho(X)).
The abelian group End,, (F') of endomorphisms of F'is a ring under the multipli-
cation f o g.

Now let (X)) € or[|X]|] be a Frobenius power series for m, i.e.

@(X) = 71X + terms of higher degree,
o(X)=X? mod mor[| X]|].

Proposition 2.3. For any Frobenius power series ¢ for m, there is a unique formal
group law F,(X,Y) with coefficients in or such that ¢ € End,, (F,). We call it
the Lubin-Tate formal group law of ¢. Moreover, if ¢ is another Frobenius power
series for m, then for every a € or, there is a unique [al, . € op[|X|] such that
[a]pw(X) =aX + higher terms,
polalpy = laly 0¥

Such an [a)y. is a homomorphism Fy — F,.

Let ¢ be a Frobenius power series for 7. By taking [a], := [a],, we obtain a
unique injective group homomorphism

o1, — EndoL (F80)7
a+— [a]y(X) = aX + terms of higher order

such that [7],(X) = p(X).
If ¢ is another Frobenius power series for m, then there is an isomorphism of formal
groups F,, = Fy. In fact, every u € o] gives an isomorphism of formal groups [u] .

Let L C K C C, be a complete intermediate field. The set B(K) = {z €
K||z| < 1} with the addition 21 +p, 22 := F,(21, 22) is an abelian group. Any
endomorphism h : F, — F, defines a group homomorphism (B(K),+r,) —
(B(K),+F,),z = h(z). We define an or-module structure on (B(K),+r,) by
(a,z) — [a]y,(2), 2 € B(K),a € or.

Every u € of defines a module isomorphism

[ulgp = (BIK), +r,) = (BK), +F,)-

2.2.2 The LT-isomorphism

In the following,we fix a Frobenius power series ¢ for 7 and write [-] = [],. Denote
by LT the corresponding Lubin-Tate formal group law. By identifying LT with
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2 The character variety

the open unit disk B, over L, we view the rigid variety B, as an or-module
object; we get a global coordinate T' on LT', and the action of of, on By, is via
(a, z) — [a](2). In particular, we get an action of the multiplicative monoid oy, \ {0}
on B;. For r € (0,1) NpY, the L-affinoid disk B(r),;, is an oz-submodule object
of B /L-

Remark 2.4. We may assume that, up to isomorphism, the action of 7 is given
by [7](z) = 7z + 2.

Let F, be the set of [1"]-torsion points of B(L9). Consider the o7-module

T := l&l(}—n)

[7],n
This is the Tate module of LT. It is a free or-module of rank one. The ac-

tion of Gal(L%/L) on T = yLn[W] ., Jn is given by a continuous character xpr :

Gal(L9 /L) — o} . Let T' be the Tate module of the p-divisible group dual to LT.
By Lubin-Tate theory, this is again a free or-module of rank one, and the Galois
action on T is given by the continuous character 7 := Xeye * XZ%, where ¢y is the
cyclotomic character.

By Cartier duality, we can identify 7" with the group of homomorphisms of formal
groups over oc, from LT to the formal multiplicative group. We get a natural
pairing

() : T" ®o,, B(Cp) — B1(Cy),

which is invariant for the Galois and the or-action. Fix a generator t{, of the or-
module T".

Theorem 2.5 (Schneider, Teitelbaum). There is an isomorphism
k:Be, = X,

of rigid varieties over C,.
Proof. This is Theorem 3.6 in [35]. O

On Cp-points, this isomorphism is given by

B(Cp) — X(Cp) = @(Cp)a
2= k() = (t0, [9](2))-

Corollary 2.6. The ring Oc,(X) is isomorphic to the ring Oc,(°B).
Definition 2.7. Put w := pt/ela-D-1/(=1) gnd

Ry, = p@n [p=v/elamt) pl/ela=IN/a™y  for > 0,

So := Row = p¥n [p~ VeV =) =1/ =1y € @ [p=2/ (=) =1/ (=) 4pq

Sy = é/pn for n > 0.
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2.2 The isomorphism X,c, = B ¢,

The R, as well as the .S,, are pairwise disjoint and any sequence (ry,)p>0 with r,, €
R, respective (sp)n>0 with s, € S, converges to 1. We have an order preserving
bijection

Sn — Ry,
5 1 gL/ =1/
for n > 0.
Lemma 2.8. (i) For any r € p? such that p?/¢@=1) < r < 1 we have
(7] 7Y(B(r)) = BEYY)  and  [p] (B(r)) = BV),

and in this situation, the map [7™] : B(r'/P") — B(r) is a finite étale affinoid
map forn € N.

(ii) For any r € p2 such that p~?/ P~V < r < 1 we have
X(r'/?) = {x € X| x" € X(r)},

and in this situation the map p™ : X(r'/?") — X(r),x — x?" is a finite étale
affinoid map for n € N.

Proof. This is Lemma 3.2 and 3.3 in [35]. O
Proposition 2.9. The restriction of the isomorphism in Theorem 2.5,
K ’B(sl/p<d71>nw_1/pdn)/(cp - X(s)/c,
is a rigid analytic isomorphism for n >0 and s € S,,.
Proof. This is [6, Proposition 1.20]. O

For every n € N and r € Ry we have commutative diagrams

B e, — (W) )

wi ipn

B(r)c, — X(rw)c,

where the horizontal maps are rigid isomorphisms.
If n > 1, then we write By, := B(p~1/e(a=Da"" ") and X, := X(p~(1+e/=1)/ep™),
Then B,, and X,, corresponded to each other under the above bijection.

Proposition 2.9 implies that the rings Og(X(s)) for s € S, and Ok (X) are
integral domains. On Ok (X(s)) we have the supremum norm

[1£1lx(s) = sup(f (x))-

X€X(s)(Cp)
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2 The character variety

The multiplicativity of the supremum norm || - H%(Sl/p(dq)nw_l/pdn on

)
(’)@p(%(sl/p(d_l)nw_l/pdn)) implies that ||-[|x(s) is multiplicative as well. The power-
bounded elements of Ok (X(s)) are given by

O%(X(s)) = OF'(X(s)) = {f € OX()) | If ||x(s) < 1}-

Then (O (X(s)), OI%I (X(s))) is a uniform Tate-Huber pair with ideal of definition
(m) and topologically nilpotent unit 7.

2.2.3 The action of oy \ {0}

Let a € or. The map a + ag on G is locally L-analytic. This induces an action
of the multiplicative monoid or, \ {0} on the vector space of locally analytic func-
tions C**(G, K) C C*(Go, K). It is given by f +— a*(f)(g) := f(ag). For every
character Y € G(K) respective Y € Go(K), the function a*(x) is also a charac-
ter in G(K) respective Go(K). Therefore we have an action of o7, on the groups
G(K) and Go(K). Under the bijection 2.1, this action correspondents to the action
on Homg, (or,Zy,) defined by f > a*(f)(g) := f(ag) for f € Homgz,(or,Zy). We
see that the action on G(K) respective Go(K) comes from an op-action on the
rigid analytic varieties X respective Xo. It respects the affinoids X(r). We obtain
an or, \ {O}-action on the rings Og(X) and Ok (X(r)) which we will denote by
(a, f) = au().

Note that the isomorphism « : B/C, — X/C, is equivariant for the op-action,
because we have ry(;) = a*(k) for any a € o,z € B(C,). This implies that the
isomorphism Oc, (X) = Oc, (°B) is equivariant for the oy, \ {0}-action as well.

We often denote the action of m € or, \ {0} by .

Remark 2.10. The action of 7 induces a surjection ¢ : X(C,) — X(Cp) on Cp-
points.

Proof. We may assume that the action of = on B(C,) is given by [7](z) = 7z + 29
for z € B(C,) (Remark 2.4). Then we see that ¢ : B(C,) — B(C,) is surjective.
We deduce with Theorem 2.5 that ¢ : X(C,) — X(C,) is surjective as well. O

Remark 2.11. For any r € p@ such that p~?/®—1) < < 1, the map
Pl s Ox(X(r) = Ok(X(r!/7))
is isometric for the supremum norms | - [|x(,1/,n) respective || - [|x(.).-

Proof. Since p” is equal to a power of ¢ times an automorphism, it is surjective on
X(C,). Therefore we see with Lemma 2.8 that the map

P X(P)(C,) = 2(r)(Cy)
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2.3 The Robba rings Rk (B) and Rk (X)

is surjective as well, and we have
Ifllxy = sup  [f(z)]
zeX(r)(Cp)

= sup  [f(p"(2))|

2€X(r1/7")(Cy)
= [|p% (Nl x /ey

2.3 The Robba rings R (B) and Rk (X)

The complement of an affinoid domain in an affinoid rigid-analytic space is an
admissible open subset. That means that for any » > ro € (0,1) N p¥ we have
admissible open subsets B(r) \ B(rg) in B(r). We have an admissible covering
{B(r)}, of B, so a subset S of B is admissible open if and only if S N B(r) is
admissible open in B(r) for all r. Therefore B \ B(r) is an admissible open subset
of B and we can form the ring O (B \ B(r)) and the ring Ok (B \ B(r))*?. We
define the Robba ring over B over K as

Ric(B) i= | Ox (8 \ B(r).

This is the ring of all formal power series f(T) = >, cz anT™, a, € K which con-
verge on (B \ B(r))(Cp) for some r > 0 (depending on f). The of -action on B
respects B(r) and hence B\B(r), and therefore we have an action of 0] on Rx (B).
Moreover, since [7](Ox (B \ B(r))) € Ok (B \ B(r'/?)) (Lemma 2.8), we have an
action of the full multiplicative monoid or, \ {0} on Rk (‘B).

We also define the ring
£l (B) == JOg (B \ B(r)™.
T
By the maximum modulus principle, the ring (’)K(’B)bd is the ring of all formal
power series f(T) = 3, ey anT", an € K such that sup,,~lan| < oo, and we have
£l = sup.ew(c,) 1 f(2)| = sup,>qlan].

Similarly, the ring O (B \ B(r))* consists of formal power series 3, 7 a,T™ with
bounded coefficients which converge for r < |z| < 1. We define a norm || - ||; on
S;((%) by setting || f|[1 = lim,—1 || f||@\(r). This is a multiplicative norm and we
have || f|l1 = sup,ez |an| if f =3, czanT™.

Likewise we define the Robba ring over X as

Ri (%) :=J Ok (X\ X(r))
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2 The character variety

and

E(X) == Or(X\ X(r))"

Next, we want to describe the rings O (X\ X(r)) as projective limits of affinoids.
In the following all radii will be understood to lie in (0,1) N p@. Denote by By (r)
the open Qp-affinoid disk of radius r around 1. Similarly, denote by B(r)~ the open
disk of radius r around 0. We define the subsets

Xo(r) :=B1(r) ®z, Homzp(oL, Zy),
X, (r) == B (r) ®z, Homgz, (oL, Zy),
Xo(r1,72) := Xo(ra) \ Xy (r1) for 11 <o

of Xy. Note that Xo(r) and X, () are admissible open subsets. We also define the
affinoid subdomains

%((]i)(rlﬂ"g) = {1' € :{O(TQ) | ‘Zl(x)‘ = 7‘1} < %O(TQ)

for ¢ = 1,...,d with z; being coordinate functions on Xy. Then

%0(7“1, 7”2) = U %éz) (?”1, 7“2).

As a finite union of affinoid subdomains, X (r1,72) is admissible open in X (r2) and
hence in %o ([31, Cor. 9.1.4/4]). As described in [6, 2.1], we have an admissible
covering

%0 \%0(7‘0) = U 360(7‘1,’/“2).

ro<ri<rs<l
Now we put

XT(r)=XnXy(r)L and
X(r1,7m2) i =XN %O(Tl,rg)/L =X(re) \ X(r1)".

Then X(ri,r2) is a finite union of affinoid subdomains and admissible open in
X(r2). We have

OK(}:\:{(’I“())) = @ OK(%(Tl,TQ)).

ro<ri<rao<l

Since X and hence each X(r) are connected, smooth, and one-dimensional rigid-
analytic varieties, finite unions of affinoid subdomains in X(r) are again affinoid
subdomains. In particular each O (X(ri,72)) is a K-affinoid algebra which is a
Banach algebra with respect to the supremum norm.
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2.3 The Robba rings Rk (B) and Rk (X)

Remark 2.12. Let p~(+e/0-1)/ep™ « o < g9 < 1 with s1 = (wrl)l/pn € S, and
S9 = (wrg)l/pm € S, for some r1,79 € Ry and m > n. Note that

xi(sl) = U5<51:£(3) = Us<s1,s€5nx(s)'

By Theorem 2.5 we have

X~ (51)/(Cp = Us<sl,565n}:(3)/(cp
=U, e cp B e,

)

=B (1) ¢

.
. . . . 1/¢°™ 1/q¢°™
This implies that X(s1, s2) is isomorphic to B(r’" ,ry’" )
we have

over C,. Especially

O(Cp (}:(81, 52)) = O(Cp (%(Ti/qen’ r;/qm))'

The ring Ri(X) = lim Ok (X \ X,) is the inductive limit of the Fréchet spaces
Ok (X\ X,,). We endow R (X) with the locally convex final topology with respect
to the inclusions Ok (X \ X,,) = R (X), that is the locally convex inductive limit
topology.

Proposition 2.13. 1. Rx(X) is a regular inductive limit.
2. Ri(X) is Hausdorff, complete, nuclear, and reflexive.
Proof. Proposition 2.6 and Proposition 2.7 in [6]. O
Writing Rg (B) = lim_ Ok (B \ B,,), the isomorphism in Theorem 2.5 gives an
isomorphism Rc, (B) = Rc,(X).

2.3.1 The twisted Galois action

Set G = Gal(K™/K). On Oc,(B) we have the standard Galois action defined
by

Gg X O(Cp(%) — Ocp(%),
(o,f = ZaiTi) = O f = Za(ai)Ti

i
and the twisted Galois action

Gk x Oc,(B) — Oc,(B),
(0.f = Zaz‘Ti) = 7= (TN (o))

-1
where T = Xcye - X
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2 The character variety

Proposition 2.14. We have

Oc, (B)FE* = Ok (X)

P

Proof. See the discussion after Remark 1.22 in [6] or [35, Corollary 3.8]. O

Remark 2.15. Let r1 € R, for some n and ry € U,;>,, Bm. The twisted Galois
action is well-defined on Oc, (%B(r1,2)) because the action of every element a € of
preserves B(ry,r2). It follows similarly to the above proposition that

Oc, (B(r1,72)) %" = Ok (X(a1, az))
for certain radii aq, as.

We have an isomorphism Oc, (X\X,) = Oc, (B \B,). It restricts to an isometric
isomorphism between the resp. rings of bounded functions. The twisted Galois
action is well defined on Oc, (B \ B,). Moreover the standard Galois action on
Oc, (X \ X;) corresponds to the twisted Galois action on Oc, (%5 \ B,). We may
pass to the inductive limit and define the twisted and standard Galois action on
Re, (X) = Re,(B). Then R (X) = Re, (B)“%*. We may restrict both actions to
to Eép (%) = Sg:p(%). On 5}}(‘3) we already defined the || ||;-norm. Similarly, since

|| - Hx\%(m) <|I- Hx\f(m) if ro > 71 for any 71,72 € (0,1) N pQ, we may define
1Al = Y 112

for f € 5;[((.'{) The identification Egjp (%) = Egjp(%) and the twisted Galois action
are isometric for || - [|;. Since || - ||1 is a multiplicative norm on 5}{(%), this is also
the case for 5;((%) We denote by Ex(B) reps. Ex(X) the completion of 5}{(‘3)
and EJ(X) for || - |1

2.3.2 The monoid action on Rx(X)

Every element u € o] preserves X(r) and X(ri,r2). It also preserves the ad-
missible open subset X \ X(r). Therefore the action of o] extends to the rings
Ok (X\ X(r)) and Ok (X \ X(r))*. Moreover, every u € o} acts isometrically on
Ok (X(r), O (X(r1,79), and O (X \ X(r))* (in the respective supremum norm).
Set 5}5§1(%) ={f e 5;2(36) [Iflli < 1}. The action of o] extends to the rings
RK(%),&’;(’SI(%),(‘:;((%), and (being isometric in the || - [[;-norm) to Ex(X).

Lemma 2.16. For any r € [p~/¢" Y@= 1)npQ and ry € Sy, € Umn>n Sm with
r9 > 11, the o] -action on the rings Ok (X \ X(r)) and Ok (X(r1,72)) is continuous.

Proof. Lemma 2.10 and text after Lemma 2.18 in [6]. O

To obtain an action of the full monoid oz, \{0} on the rings R (X), SIT{ (%), Ekgl (%),
and i (X) we need the following lemma:
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Lemma 2.17. For any r € [p~?/®=D 1) N p? we have
(77) "N (X X(r) 2 X\ X(r'7),
Proof. Lemma 2.11 in [6] O

We conclude that the action of 7 extends to the rings RK(%),é';f((f{),E;r(’gl(f{),
and Ex(X).

Lemma 2.18. The or, \ {0}-action on Rk (X) is continuous.

Proof. Lemma 2.12 in [6] O

Similarly, the o, \ {0}-action on Rx(8) is continuous.
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3 The Robba ring over B!

In this chapter we introduce the perfectoid and the preperfectoid unit disk and
explain the construction of the Robba ring over the perfectoid and the preperfectoid
unit disk. In the following, let L C K C C, be a complete intermediate field.

3.1 The perfectoid unit disk

Let K(T') be the Tate algebra over K in one variable. We have the K-algebra
homomorphism

¢ K(T) — K(T),
T o1 +T1.

Consider the open unit disk B, with the action of 7 as in Chapter 2. If we
assume that the chosen Lubin-Tate formal group law is the special one, i.e. that
the action of 7 on B is given by [7](2) = 7z + 29, then 7 acts on the closed unit
disk B /i as well and the corresponding map on Ok (%B) = K(T) is given by ¢.

The pair (K(T),0x(T)) is a uniform Tate-Huber pair with pair of definition
(ox(T),(m)). Since ¢ : K(T) — K(T) is continuous and fulfils p(ox(T")) C ox(T),
it defines a morphism of Tate-Huber pairs. We have an inductive system of Tate-
Huber pairs

(K(T), 0 (T)) 5 (K(T),0r(T)) 5 ... & (K(T), 05 (T)) % ...

We form the inductive limit (h_r)n(pK <T>’hﬂw ok (T)) in the category of uniform
Tate-Huber pairs as in Proposition 1.55. We complete it and get a complete uniform
Tate-Huber pair

(lim KA(T),lim 0w (T?)).
Proposition 3.1. If K is perfectoid, then @@K(T> is a perfectoid K-algebra.

Proof. Uniformity is given by construction. Note that the subring of power-bounded
elements is liﬂ@O;&T ). We show that every element in @¢0K<T> has a p-th root

modulo (p). We only need to consider the dense subset hﬂw ok (T). Moreover,

it is enough to consider a finite sum > ;_a,7"™ which lies in a copy of ox (T") in
hﬂ@ ok (T). Since K is perfectoid, taking the the g-th power on ox /() is surjective.
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3 The Robba ring over B8Pt

Therefore we need to ensure that the image of T' € ox (T in hﬂw ok (T) has a ¢-th
root in hgl@ ok (T) modulo (7). The map

@ = mod (m) : ox (T)/(7) = o (T)/ ()

is equal to the map induced by 7" mod (7) + T¢ mod (7)) on ox(T)/(rw), so
by passing to the inductive limit and noting that inductive limits commute with
quotients, we see that the image of 7" has a ¢-th root in (ligso o (T))/(m). This

implies that taking the ¢-th power is surjective on @¢0K<T>/ (). It follows that

taking the p-th power is surjective on @WOK<T>/(7T). With Remark 1.68 we see
that taking the p-th power on

(I ox(T))/(p) = (limy_oxc(T))/(p)
is surjective as well. ]

So, if K is perfectoid, the Tate-Huber pair (@@K(T%@wo[((Tﬁ is perfectoid
and the associated affinoid adic space is a perfectoid space, namely the closed
perfectoid unit disk over K:

Definition 3.2. Let K be perfectoid. The perfectoid space
JE— rf /"\ /"\
B = Spa(lim _K(T),ling_ox(T))
is the closed perfectoid unit disk over K.

Remark 3.3. Denote by ¢ the K-algebra map ¢ : K(T') — K(T'),T — T1. Instead
of Definition 3.2, one can define the perfectoid Tate algebra as the m-adic comple-
tion of li_n>1q K(T), and the perfectoid unit disk as Spa(@qK(T}, @qu (T)). But
in our case, we choose to use ¢ to match the definition of the closed perfectoid unit
disk with the definition of the open unit disk later in this chapter.

If K is a perfectoid field, then @qlf (T') is a perfectoid K-algebra. This can
be seen with the same arguments as in the proof of Proposition 3.1. The tilts of

@ng (T') and @qK (T') coincide since both rings coincide modulo 7. In fact, we
have

T b b T b

(lim K(T))" = (lig K(T))" = lim K*(T).
Hence l/i_ng\wK (T') and @q[( (T") are isomorphic (Theorem 1.71).

The map ¢ : K(T') — K(T) is an isometry for the supremum norm || - [ on
K(T) because the corresponding map B(C,) — B(C,),z — 29 + nz on C,-points
is surjective. We equip li_rr}@ K(T) with the inductive limit norm coming from
the supremum norm || - || on each K(T) as defined in Definition 6.7 in the Ap-
pendix. The topology induced by this norm coincides with the m-adic topology on
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ligso K(T), i.e. the topology of hﬂw K(T) as a Huber ring. We extend the norm

to the completion li/g\soK (T"). We denote this norm by || - ”gperf. Then @CPK (T)
with || - ||%perf is a normed K-vector space. Let f € ligw K(T) with preimage f;,
in the ip-th copy of K(T') under the canonical map K(T) — hﬂwK<T>' Then
[ fllggpere = [1.fio - This is because the transition maps ¢ : K(T') — K(T) in the

inductive limit are isometries. Next, we want to describe the elements of l/ig\cpK (T)
explicitly.

In the following, let (V.|| -||) be a normed vector space over K and I an index
set of at most countable cardinality.

Definition 3.4. 1. A topological generating system of V' over K is a set {v; }icr
of elements of V' such that each v € V' can be written as a convergent series

V= Zcivi, c € K.

el

2. If the sequence {c;}ier is uniquely determined by v, then {v;}icr is called a
Schauder basis of V' over K.

Remark 3.5 (see 2.6.1 in [31]). Fix an element p in the value group of K with
p > 1. For each v € V' \ {0} we can find a ¢ € K* such that 1 < ||cv|| < p. Hence,
given a basis of V', we can always pass to a basis {v; };er of V such that 1 < ||v;|| < p
for all 7 € I. We call such a set bounded.

Definition 3.6 (2.6.1/3 in [31]). Let v be a positive real number. A bounded family
{vitier of V- with v; # 0 for all i € I is called a-cartesian if

max{||avil|} < ol Y aivi|
el iel

for every linear combination ) ;. a;v; such that a; = 0 for all but finitely many 1.

Proposition 3.7. Set T; := image of the i-th copy of T € K(T) in lign@_ K(T)
for i € N. The K-vector space @¢K<T> has a Schauder basis consisting of the
elements Tf’ with i, j; € N such that q 1 j; for i > 0. Moreover, if

f= Y T elm K(T)

i20,5:>0

is any element, we have

I fllgrt = mac{la i}
74

47



3 The Robba ring over B8Pt

Proof. To avoid confusion, we write ¢; : K(T;) — K(T;) for the map K(T;) —
K(T;),T; = T + «T; on the i-th copy of K(T') in the inductive limit, i.e. ¢;(T})
denotes the polynomial 77T; + T} and similarly for powers of T; and ;.

Firstly, we show that the set consisting of the TZJZ with 7, j; € N such that ¢ 1 j;
for i > 0 is a-cartesian for o = 1. We have || T} [lgpert = 1, hence the set consisting

of the lez is bounded. In hﬂ@ K(T), we have the equalities

T; = T{ , + 7Ti1 = pis1(Tit1), and generally T; = = (T;,) forn > 1,i <n.
We write
T} = oy (T = T+ Rag,,
where R; ;. is a polynomial in 7}, such that ||R; j, ||gperf < ||, note that ||Tl]’ ||§perf =
|‘Tgn—iji||§perf = 1. For a finite sum
> aiT) e lim K(T),
0<i<n,0<5,<m ®
we have
I 2 @l =1 > aigen (T3 ligeen
0<i<n,0<j;<m Osisn,0<jism

=1 > @M+ Rig) g

0<i<n,0<j;<m

Note that j;g" % = j,,¢"~" implies i = i’ and then j!, = j; because of the condition
on ¢ and j;. Then computing

o _
I Y a T e =l Y @ TE g
0<i<n,0<j;<m 0<i<n,0<j;<m
in the n-th copy K(T,) using the Maximum Modulus Principle gives
g1 - n—i
I > T g = max{flai g, T ) = max{laig,[}-
0<i<n,0<j;<m i 4.

This implies

I Z ai,jiTyziqn4||§Pe'f > || Z aq"jiRi’jiH%perf,
0<i<n,0<5;<m 0<i<n,0<5,<m
and hence
I > i@+ Rig)llgees =11 Y0 @i TiT [lgees
0<i<n,0<j;<m 0<i<n,0<j;<m

= max{|a;, [}

JT

= max{||a; ;, T}"[|pert }-
474
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3.1 The perfectoid unit disk

We see that the set consisting of the Tiji, q 17 if i > 0, is a-cartesian for o = 1.
Note that this implies that it is linearly independent.

The set A consisting of finite sums > <;<, 0<ji<m ai ;TP q t jiif i > 0, is a
K-subspace of @wK (T) of countable dimension with a basis consisting of the

Tl.ji, qtjiif i > 0. We claim that these sums are dense in @‘pK(T) For this, we

show that A contains all powers of T; for every i € N. Note that T = T;_y — 7'T;.
Let n € N and write

n
T = (T~ T)" = 3 (Z) TE - n T,
k=0

The last term in this sum is 7;* ;. For k < n, we compute

TF TP F = (T + aTy)> - 1"

kN gl k—tk—t —k
<>Tiq'7r T

l

(?) 7T]<;_lTiql+k—l+n—k

<7lf> rhlpai=tn,

If ¢ divides n — [, then write n — [ = aq for an integer a. Then a < n — [ and
gl—1l4+n=q(l+a) <q(l+n—1)=qgn. If ¢ does not divide n — [, then g does not
divide gl — I +mn. All in all, we can write 7" as a sum of terms which are either of
the form T 1, or of the form T/™ such that ¢ does not divide m, or of the form T
such that m < n. By repeating this process, we arrive after finitely many steps at
a sum of the desired form, i.e. a sum which lies in A.

Therefore A is dense in hﬂap K(T), and hence is dense in @wK (T') as well. The

Il
M= LM I

l

I
o

Tiji’q {1 ji if i > 0 form a topological generating system of li@;[( (T'). Then [31,
2.7.2/3] shows that the set consisting of the TZJZ with i, j; € N such that ¢ 1 j; for
i > 0 is a Schauder basls fof\h%“@K (T).

If f=50j500i5T € hng(T) is any element, then any sequence of partial

sums converges to f ([31, 1.1.8/ Proposition 2]), and therefore there is an m and
an n such that

gt =1l Y ais TP goes
0<i<n,0<5;<m

= . i
B Oglgg}ggjzfm{ual’]’b,‘z—; ‘ ||§perf}

B izrﬁ?féo{”%iﬂ” Iggper -
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3 The Robba ring over B8Pt

O]

Remark 3.8. Let K be perfectoid and let (K(T><%>,K<T><%>+) be a rational
localization of K(T'), U is a finite set generating the unit ideal in K(T) and s €
K(T). We have induced inductive systems

and

Note that ¢™(U) still generates the unit ideal in K(T') for all n. Then the m-adic
completion of the inductive limit in the category of uniform Tate-Huber pairs is
isomorphic to the rational localization
ST U, U,
(i, (K (1)), T (K (T))(2))
of (@¢K<T>’ @WK(Tﬁ) (where we denote by U and s the image of U C K(T)
and s € K(T) in hﬂw K(T) by abuse of notation). This follows from Lemma

1.57 (note that hgl@K (T") and therefore also hgw K (T) are stably uniform because

hﬂ¢K (T') is perfectoid). Moreover, the m-adic completion hgw(K (T))(%) is a

S
perfectoid K-algebra because it comes from a rational localization of the perfectoid

(@@K(T%@WK(TW) (see Lemma 1.72).

3.1.1 The preperfectoid closed unit disk

If we apply the above construction to (L(T'), or(T)), we get the uniform Tate-Huber
pair (@¢L<T>,@¢0L(T>).

E;;i?:;;?:aziméet K be perfectoid. Then hg(pL(T)@LK = hg(pK(T> is a

Proof. We have an isometric isomorphism (for the tensor product resp. inductive
limit norms)

(i L(T)@LK = lim (L(T)8LK)

(Corollary 6.14 in the appendix, we take the completions with respect to these
norms). Moreover, we have an isometric isomorphism L(T)®;K = K(T) for the
tensor product resp. supremum norm ([8, Appendix B, Proposition 5]). This gives
an isomorphism

@(pL(T}@L K= @@Km.

The latter is a perfectoid K-algebra as we have already seen. O
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3.1 The perfectoid unit disk

Together with Proposition 1.76 this shows that (ﬁg\‘pL(T>7 @¢0L(T>) is sheafy.
We define the closed preperfectoid unit disk over L to be the corresponding affinoid
adic space:

perf FY FY
BI = Spa(hﬂwL<T), hﬂ(pOL(T)).
Corollary 3.10. gzerf is an L-preperfectoid space.

3.1.2 The preperfectoid open unit disk

Next, we explain the construction of the open perfectoid and preperfectoid unit
disk as in [42, 2.2] respective [33]. The open disks are not affinoid but are instead
obtained by glueing together affinoid disks of radius r < 1.

We briefly recall the definition of a formal scheme and the adic generic fibre, as
in [8, Chapter 7].

Definition 3.11. Let A be a complete adic ring with ideal of definition I. We
define the formal spectrum Spf(A) as the set of all open prime ideals p C A. Then
Spf(A) is canonically identified with Spec(A/I) C Spec(A) (as sets).

The Zariski topology on Spec(A) induces a topology on Spf(A). Let f € A. If
D(f) denotes the open subset of Spf(A) where f does not vanish, then

D(f) = A(f ") = lim(A/I"[f )

defines a sheaf Oge4) of topological rings on the category of subsets D(f) C
Spf(A) for f € A which extends to the category of all Zariski open subsets of
Spf(A). The set Spf(A) together with the sheaf Ogpp4) forms a locally ringed
space (Spf(A), Ogpe(a)) which is called the affine formal scheme of A (and denoted
by Spf(A)). A formal scheme is a locally ringed space which is locally isomorphic
to an affine formal scheme.

Now let A be an og-algebra which is complete with respect to the topology
induced by a finitely generated ideal. Then we have A = A° and (A, A) is a Huber
pair over (ox,o0x). The generic point of Spa(ox,ox) is n = Spa(K, ok ), and the
adic generic fibre of Spf(A) is (Spa(A4, A)), = (Spa(A4, A)) \ {7 = 0}.

Lemma 3.12 (Lemma 2.2.1 in [42]). The adic generic fibre of Spf(A) has a cover
by rational subsets Spa(A, A)(fi/m, ..., fn/7) where (fi,..., fn) Tuns through tuples
of elements generating an ideal of definition of A.

Proof. Let f1,..., fn € A elements which generate an ideal of definition if A. Then
for every x € (Spa(A4, A)) \ {m =0} and each i =0, ...,n we have

|fi(x)™ =0 if m — oc.
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3 The Robba ring over B8Pt

Then there is an N > 1 such that

[fi@) < |m(x)] # 0,

and we conclude z € Spa(A, A)(f{ /7, ..., fN /7). Note that (f{,..., ) is open
since it contains (fi, ..., fn)" V. O

Definition 3.13. The adic open unit disk over L is the adic generic fibre of
Spf (o [[T1])-

The adic open unit disk has a cover by rational subsets of the form
Un = Spa(or[|T]], o [[T)({T", 7} /m) = {a € Spa(or [| T[], or [|T[}) | IT"(x)| < [m(z)| # 0}

for n > 1. Set A, := or[|T|)[T™/7]. Then (A,[1/7], A}) is a Tate-Huber pair,
where A is the integral closure of A, in A,[1/7]. The completion (A,[1/7], A})
coincides with

(L{TN(T™ /), LT /) 7) = (OL(B(r)), OL(B(r))°), 7 = ||/,

We have U,, = Spa(AAn[l /7], Ai). The adic open unit disk is therefore the union of
closed disks of radius |x|'/™ for n > 1.

In the following we fix a Frobenius power series ¢ € or[|T|] for 7. We have an
inductive system of rings

orl|IT)] 5 o |T] 5 ... Zo[|T|] 5 ...
To construct the preperfectoid open adic unit disk over L, we set
Ry := limor[[T7],
©
and denote by Ry, be the (, T)-adic completion of Ry. Then (Rp, Rr) and (Rr,Rr)
are Huber pairs with ring of definition Ry resp. Ry and ideal of definition (m,T).
Lemma 3.14 (cf. Remark 1.3 in [33]). Ry, is m-adically complete and Hausdorff.

Proof. The ring Ry, is Hausdorff for the (m, T')-adic topology, and we have
N Re € (. T)" Bs, = {0},
n n

Hence Ry, is Hausdorff for the m-adic topology.

For completeness, let (a;)ieny € }?iL be a Cauchy sequence for the m-adic topology,
then (a;)ien is also a Cauchy sequence for the (w,T)-adic topology which has a
(m,T)-adic limit a € Rz. We claim that a is the 7-adic limit of (a;);cn. We replace
the original sequence by a subsequence such that

Qi+l — G € ﬂiRL for any 7 > 0.
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3.1 The perfectoid unit disk

Let aj41 —a; = wiz; for z; € EL. For j > 0 we compute

Wit — @i = (Qigj — Qipj—1) + ... + (Giy1 — a7)

= ﬁi(wj_lziﬂ,l + o Tz T+ 2).
Set ;. ; = ﬂjflziﬂ,l + ...+ 7211 + z;- Then we have
Yij — Yim = wj_lzzurj_l + o+ 7" 2ipm € Ry
for j > m. Hence the sequence (y; j)jen has a (7, T)-adic limit ;. Then we compute
a—a; = jli}rgo(aiﬂ —a;) = 7t Jlg]élo Yij = mly; € Wi]?EL,
which shows that a; — a in the m-adic topology. O

Remark 3.15 (Remark 2.1 in [33]). Ry is a flat op-algebra.

Proof. Let f,g € or[|T|]. If Tf = mg, then f € 7o[|T|] and g € Tor[|T|]. This is
still true in Ry, which can be checked using the defining properties of a Frobenius
power series. We consider the following commutative diagram

0—— Kn+1 —_— RL/(TF”+1,T"+1) L> RL/(TF”+1,T”+1) L) RL/<7T,Tn+1) ——0

lo ipr im lpr

0 Kn R./(x", T") — " R /(z",T") —~——~ Ry /(7,T") — 0

where K, K,+1 are the kernels of the multiplication by 7. Passing to the projective
limit, we get an exact sequence

0 lim Ry /(x", T") % lim Ry /(x", T") — lim Ry /(m, T") 0.

This is because countable projective systems with zero transition maps have zero
projective limits and zero l'gll—term (Mittag-Leffler). Note that Ry, = lim Rp/(m™,T™).
We have

lim Ry /(m, T") = lim(Ry /7R )/(T") = Y (lim K[| T[]) /(T™))-

n n n

We get the short exact sequence

0= Ry, 5 R, — lim(lim K{IT[))/(T™)) = 0.

an
We see that EL is m-torsion free and therefore flat over oy,. O

Definition 3.16. The preperfectoid open unit disk ‘Bzerf over L is the adic generic
fibre of Spf(Ry).
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3 The Robba ring over B8Pt

To describe %;ierf explicitly, set

mn

T
R, = Rp|

s

| = R[X]/(T" - 7X)

for n > 1, i.e. the subalgebra of Rp[1/m] generated by Z-. Then Ry ,[1/7] is
a Huber ring with pair of definition (Rf,, (7))!. We have the Tate-Huber pair
(Rpn[l/7], Rzn) with topologically nilpotent unit 7 where Rin = Rp(T"/m)" is
the integral closure of Ry, ,, in Ry, ,[1/7]. We form the completion (I/%L,n[l/ﬂ'], JTEJLrn)

Lemma 3.17. (RLm[l/ﬂ,R;n) and (§L7n[1/7r],f2£n) are uniform Tate-Huber
pairs.

Proof. We only have to consider (Ry,[1/7], Rf ) since a Tate-Huber pair is uni-
form if and only if its completion is uniform (Lémma 1.27). Tt is enough to show
that R} . is a ring of definition (Lemma 1.29). Since R} , is open, we only have to
show that it is bounded. _ 7

Note that we have op[|T|][T™ /x] = or[|T|)[¢*(T™)/x] as rings for every i € N.
Then, as rings, we compute

Ry, = Ri[T" /7]
= (lim o [|TH[T™ /7]
©

= lim (o | T |l (T") /)
©,
= lim(or [T [T /).

Py
Since taking integral closures commutes with taking inductive limits, the abstract
ring R} . is given by the inductive limit of the integral closure o [|T|](T™¢" /7)T of
op|| T[T /=] in op[|T|][T™ /x][1/x], i.e. we have

Ry}, = (lim oL [|T[)(T" /m)*
®

= lim (oL [|TI)(T"" /m)*).
©,2

Set 7 := |7|'/™. The ring oL||T|(T™ /) C OL(B(r'/7))<! consists of elements
g € Op(B(r/)) with ||g||%(r1/qi) < 1 where H'”%(Tl/qi) denotes the supremum norm
on Op(B(rl/1)). Let g = SrsoarTh € or[|T(T /x)t C OL(B(rY/1)) be an
element such that ’

117y = stp{lagl ]/} < [,
keN

'The ideal in Rz generated by T™ is not open, but the ideal (7,T™) is open in Ry. In writing
Rr[T" /7], we suppress the fraction /7 = 1. We have Rr,n[l/n] = Rp(U/x) for U = (T™, ).
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3.1 The perfectoid unit disk

If k < ng’, then

lag| < ’ ]L7/Tn|ql| = ‘ﬂ-’(nqi_k)/nqi <1
™

and hence a;,T* € or[|T|]. If k > ng’, then write

k e k—ng' _(2nq'—k)/ng*
apl” = —— T T - u

for w(2nd'=k)/nd" 4, ¢ oc,; and we have | Th—na" 7 (2ng' —k)/ng’ 'U”%(Tl/qi) < |ml.
If ||7r(2”q1*k)/”ql 'u||%(T1/qi) > 1, we may repeat this. By iterating this process we

eventually arrive in the case ng' > k. This shows that every monomial a;T* can

be written as apT% = (L--)Jk f;, for some ji and fj, € or[|T|]. Note that the
coefficients aj, are bounded and that the f;, converge to 0 for || - H%(rl/qi) and hence

in the (m,T)-adic topology on or[|T|]. Therefore we find an m such that we can
write

m ani )
9= (—)y;
=0 T

with g; € or[|T'|]. We conclude that g € o[|T|][T"9" /x]. This shows that
mor[[T)(T"7 /m)* C o |TI[T™ /]
for every i. Passing to the limit, we see that
Wszn C Rrnp-
Hence Rzn is bounded. O

Now we look at the rings }?iL,n from a slightly different angle. Let L C K C C,,
be a complete intermediate field. Let r = |w|'/™ where @ € K is a topologically
nilpotent unit and such that r € p@ N [p*q/ e(g—1) 1). For the rest of this section,

we always assume that radii r are of this form (unless stated otherwise). Consider
the Tate-Huber pairs (O (B(r'/1")), O (B(r'/1"))) for any i € N, where

OF(B(r/7)) = Ok (B(r /7)< = (£ € O(BE)) | [ fllggyrrary < 1)

are the power-bounded elements. Here || - ) s the supremum norm of

||%(r1/qi
Ok (B(r'/4)). The ring O (B(r/7)) is reduced, hence _((QK(‘B(Tl/qi)), O}(%(rl/qi)))
is stably uniform (Remark 1.30). Note that O (B(r'/4")) = K(T)(T™" /w).

We have inductive systems of rings

Ok (B(r) 5 O (BErY1) 5 . 5 0k(BrY")) S Ox(BEY1 ")) 5 ..
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3 The Robba ring over B8Pt

and

OL(B(r) 5 0LBE1) 5 . B 0B S 0B/ S .

Set
O (BP(r) := lim O (B(r'/7)),  and
©
O (BP (1)) := lim OF(B(r1/7)).

N

S

Then (O (BPE(r)), O (BP (1)) is the inductive limit of the inductive system
consisting of the maps

Y (OK(%(Tl/qi)7O;(%(Tl/qi)) N ((,)K(%(Tl/qiﬂ)7 O}(%(rl/qiﬂ))

for every ¢ in the category of uniform Tate-Huber pairs as in Proposition 1.55. We
denote by O} (BP°(r)) the completion of O} (BP°(r)). Then

Ok (B (1)) := O (BP(r)) D5 (ypert 1y Orc (BP (1))

is the completion of O (BPE (1)), and (O (BP (1)), O (BP(r))) is a complete
uniform Tate-Huber pair.

The ring Ok (BP (1)) carries the inductive limit seminorm coming from the
supremum norms on the Ok (B(r/9")). It is a norm since the transition map

P Or(BEHT)) — Ox(BET))

is an isometry for every ¢ (Lemma 2.8). Denote the continuous extension of this
norm to Ok (BP(r)) by || - [|sgpere(ry- The norm topology coincides with the topol-

ogy of Ok (BPe(r)) as a Huber ring.

Remark 3.18. Sometimes it is convenient to assume that the ¢ is given by
o(T) = 7T + T19, i.e. the chosen Lubin-Tate group law is the special one. If 1
is another Frobenius power series for 7, then there is an isomorphism of formal
groups [1]y., @ F, — Fy. If we want to discriminate between different choices of
the Frobenius power series, then we write T, resp. T}, for the global coordinates,
and moreover ]?EL#, and EL,w or Ok (BP (1)), and O (BPe (7)), for the respec-
tive constructions with ¢ resp. 1.

There is a continuous (for the (7, T)-adic topology) isomorphism of rings

W o[ Toll = ok [[Tyl],
T, + Ty + higher degree terms in or[|Ty|].
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3.1 The perfectoid unit disk

with continuous inverse [1],, ;. This extends to a homeomorphism between lig(p or[|Ty]
and lim ’ ok[|Ty|] and to a homeomorphism between the respective completions.

Furthermore, the power series [1], , gives an isometric (for the supremum norm)
isomorphism

Ok (B(r))y = Ok (B(r))y

which respects the or, \ {0} action on both sides. This isomorphism extends to an
isometric isomorphism

O (BP(r))y — O (BP (1))
Lemma 3.19. Let K'/K be complete. The Tate-Huber pair
(O (B (1) Sk K/, (Ok (B (1)) Bk K') )
is uniform.

Proof. We have to show that O (BP (1))@ K’ is uniform. It is enough to think
about the dense subset O (BPf (1)) ® ¢ K’ because uniformity is preserved under
completion (Lemma 1.27). Let (Ox (BP*(r)) @k K')* be the integral closure of
the image of @}(%perf(r)) Do 07 in O (BP (1)) @ K'. We show that

(O (BP (1) @ KT C Im(OL(BP (1) @0y 050 — O (BP(r)) @i K').

We start with a general observation. Let s < 1 and consider the affinoid algebra
Ok (B(s))Ox K’ = Ok/(B(s)) with supremum norm || - [|g(s). The integral closure
of the image of Ok (B(s))S'Ro, 0K in Ok (B(s))@xK' is given by the power-
bounded elements

(OL(B(5))@xK')° = O (B(s))=! = O (B(5))°-

Let f = 3, fi ®ci € Og(B(s)) @k K’ such that |fllae) < [7]. Write f; =
Sk ar, T*. The image of f under the isomorphism O (B(s))@x K’ = O (B(s))
is f =3, (T* -, ag,ci). Then

I llscoy = mact| Y an il < I
%

We find an n € N such that |7"¢;| < 1 for all (finitely many) 7. Then let ko be large
enough such that ||akiTkH‘B(s) < |m|™ for all i and k > ko. We write

ko
F=Y 0 aT @) +> (Y anTh ).
k=0

7 = 1 k>ko
:Ifl :;f2
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3 The Robba ring over B8Pt

Regarding the second summand, we write
Z Z ap, TF @ ¢;) = Z Z 7" ap, TP @ 7" - ;) € Ok (B(5)S! Qo 0k

i k>ko i k>ko

The first summand f; = Z’Z‘):O > ar,c;T* consists of finitely many terms 3", ag, c;T*.

Set by, = >, ar, ;-

For every by, we find a minimal jj, € Z such that |bgm/*| < 1. Then |bpm/—1| > 1

and |bg77%| > |7|. On the other hand we have |by|s® = |bpmkw7%|s* < |x|. Hence
|9k 5% < ||/|bpmik| < 1.

We have f1 =3 k>0 bk . w3k Tk We see that fi correspondents to

ko
S n kTR @ bprdt € Ok (B(s))=! @oy 0k,
k=0

and conclude that
(O (B(s)) @x K')* C Im(Ok (B(s))=! @0y oc, = Ox(B(s)) @k Cp)
where (O (B(s)) @ K')T is the integral closure of the image of O (B(s))<! ®o,
or' in Og(B(s)) @k K'. This implies
)

(O (B (1)) @k K')" C Im(OF (B (1)) @0y 0k —+ Or (B (r)) @k K')

by applying the computation to s = r1/¢' 4 for every i and passing to the limit.
O

Corollary 3.20. We have an isomorphism of Tate-Huber pairs
(Or(BP () @K K, (Ok (BP™ (1) @x K') ) = (O (BP (1)), Of (B2 (r))).
Proof. As abstract rings, we have isomorphisms
(lim O (B(r/7))) @5 K' = lim (O (B(r!/7")) @ K')
, o
and
(lim O (B(rH/1)=") @ K')* 2 limg Ok (B(rH/ 1) =" w0y K'Y
‘ ®y
With Remark 1.31 this gives an isomorphism between the respective (uniform)
Tate-Huber pairs. Then passing to the m-adic completion and using that ,
Ok (B(r'/1))@xK' = O (B(r!/7)) and (O (B(r'/ 7))@ K')T 2= O (B(r1/7))=!
(see the section about tensor products in the first chapter) gives isomorphisms
(O (B (r)@rK')" = O, (BP (1))

and

Ok (B (1)@ K’ = O (BP (1)),
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3.1 The perfectoid unit disk

Lemma 3.21. Let K'/K be perfectoid. The K'-algebra O (BP (r))@xK' is
perfectoid.

Proof. It (T) = «T + T, then (’)K(%peer)QA@KK' = O+ (BP(r)) is a rational
localization of the perfectoid K’ algebra ligl(pK "(T) (see Remark 3.8) and hence

perfectoid. Otherwise, use the isomorphism O/ (BP(r)), = O/ (BP(r))y. O

From the viewpoint of normed rings, Lemma 3.19 implies that the tensor product
norm on O (BP (1))@ x K’ is equivalent to the norm |- [[agpert () 01 O (BP(r)).
This can be seen as follows: The tensor product norm on O (BP (1))@ K’ is
equal to the completion of the inductive limit norm on ligw((’)K(%(Tl/qz)) @K K')

coming from the tensor product norms [|-[| ,.1/4i) ;®|| on the O (B(rY") ok K’
(Lemma 6.13). We denote this norm for the moment by ||-||gper () x ®|-|. For every
1, the tensor product norm on (’)K(_%(rl/ qi))@@KK " is equivalent to the supremum
norm || - H%(rl/qi)7K, on O (B(r'/4")). However, they do not need to be equal.
Therefore [|-[|gpere () x @[+ | is not automatically equivalent to the norm |- ||ggpers (), 7
on O/ (BPe(r)). But in the proof of Lemma 3.19 we have seen that for every i
we have

TOR/ (BT )= C Im(Ok (B9 Sy, 060 — Ok (B(r'/9)& K K")).

This implies that

‘71.2‘ . H . H%(rl/qi),K X ’ . | S H . HsB('r'l/qi),K"

On the other hand, we have || - |’%(r1/qi)7K, < - H%(Tl/qi)’K ® | - | by the theory of
affinoid algebras (see e.g. [8, Chapter 3.2, Proposition 9]). Loosely speaking, the
tensor product norms on the Ok (B(r'/?))@x K’ are equivalent to the respective
supremum norms in an uniform way for every i. This implies the equivalence of
| [lagpere, s on Oer (BP(r)) and. || - |ggpert(ry 1 @ | - | on O (BP (1)) @i K’ and
on the resp. completions.

For K = L and r = |7|"/",n > 1 we have an embedding of rings with dense
image
Rial1/7] = lnn(o, [TT™ /a])[1/7] = Op(BPr(r)) = lim O, (B(r/7)),
©, P,
and

R}, =l (o [|T)(T" /m)*) < OF (87 (r)) = lim O (B(r'/))=".
©,2 ©,

Passing to the completion leads to isomorphisms
Rpn[l/m] = OL(B"(r), and R}, = Of (B> (r)).

Note that the (7, T)-adic topology on Ry, is the m-adic one since (7", T™) is con-
tained in (7) (and of course (7) is contained in (m,T)).
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3 The Robba ring over B8Pt

Corollary 3.22. The spaces Spa(Ry,,[1/7], ]?iLn) are L-preperfectoid.
Lemma 3.23. We have open immersions

Spa(Rpn[1/7), RE,) = Spa(Rrns1[1/7], R, 1)
forn >1.

Proof. We show that Spa(Ry, »[1/7], ]:’,}fn) is a rational subset of Spa(Ry, n11[1/7], ]?’LEHH).
Then the lemma follows from Remark 1.45. Set r = |7|'/" and ' = |x|"/"*!. Note

that O (B(r'/7)) = OL(B((r)1/")){T2) and O (B(r/2)) < = OL(B((r')/2"))(Te)*

™

for every i. Using Lemma 1.57 and noting that Op(BP°(r')) is stably uniform
(Proposition 1.76), we have

R n[1/7] = OL(BP (1))
=Ty OL(B(r'/")

"
T

=l (OL(B(() 7))
= (i, OB ).

Likewise, we have OF (BPe(r)) = O (BP (') (T /7)) F. O

Glueing the Spa(}AELm[l/ﬂ], }AZL,TL) together along these open immersions, we ob-
tain the preperfectoid open adic unit disk:

B = lim Spa(Rpn[1/7), Rp.n)

n>1

over L.

For general complete L C K C C,, we set R = lig@ ox[|T|] and denote by Ry

its (m,T)-adic completion. Likewise, we define }A%Kn and %%erf in the same way as
for K = L. Then we have

Ricnll/7] = O (BP(r)).
Definition 3.24. Let K be perfectoid. Set r = |7T|1/”, n > 1. The space
B (r) == Spa(Ryu[1/7], RE;.,,)
is the perfectoid disk of radius r inside of %I;(erf.

If o(T') = 7T +T1, then for any n, ’B%erf(r) is a rational subset of the closed disk

perf . . f perf
B . Therefore we have an open immersion 85" « BL".
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3.1 The perfectoid unit disk

Remark 3.25. Note that we have an isomorphism of rings

lim o [|T]] ©o,, ox = lim(oL[|T|] @0, 0x)-
® @

On both sides, the topology is given by taking the ideals (T'® 1,1 ® 7)" as a
neighbourhood basis of 0. Completing gives a topological isomorphism

RL®0L0K = Rp.

Proposition 3.26. Assume that r > p~9¢4=Y) and that o is given by p(T) =
'l +T1. Set

T; := image of T € OK(%(rl/qi)) in O (BP(r)) = @(’)K(%(Tl/qi»
©,1

fori € N. The K -vector space O (BP (1)) = @w Z,(’)K(’Bperf(rl/pi)) has a Schauder
basis consisting of the elements TZJZ with i, 7; € N such that q 1 j; fori > 0.

Proof. The proof is basically the same as the proof of Proposition 3.7, but uses
that ||WT||%(T1/qi) < ||T‘JH%(T1/¢-) in the supremum norm on O (B(r'/4")) for i > 0,
hence we need the condition on r. Again, we write ¢;(T;) for the polynomial #T;+T}
and similarly for powers of T; and ¢;.

For a finite sum Y <<y, 0<ji<m @i.5; T} We write

> a; T} = > ai g on (T3

0<i<n,0<j;<m 0<i<n,0<j;<m
The latter sum lies in the image of O (B(r'/9")) in Ok (BP(r)). We write
o (T = T3 + Ry,
We claim that ||T£iqn7i||%perf(r) > || Ry ji || ggpers () and hence

T |goert (ry = lon™ (T3 |agpert(ry = T 7 lagpert (-

We can compute this in O (B(r'/?")). Generally, let s > 7. Then we have
the map ¢ : Ok (B(s)) — Ox(B(s/1")) for every m. This is an isometry
which follows from Lemma 2.8. Since [|T97" g /0y = s971/9 > |x|, we have
1T 170y > 7T llgg(s1ay-  Write o(T%) = (a7 + T9)* = T* + R. Then we
have HquH%(Sl/q) > |[Rllg(s1/ay - Furthermore, if we already know that ¢™(T) =
T9" + R' with [ Bl s1/amy < ||Tqm||53(s1/qm), then "t T) = (T?" + R') =
©(T?")+p(R'), and together with the previous computation it follows that we may
write (7)) = 77" 4 R with [|R”|| g1 /m 1) < [T [l /qm+1)- Moreover,
we also have " tH(T*) = (T9""" 4 R")F = TF™"" 4 R with ||R,//H%(sl/qm+l) <

| Tka™ ! ||%(81/qm+1). This proves the claim (take s = r1/4').,
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3 The Robba ring over B8Pt

Hence

igi Ly llgpert () = i (TR
> T > e (T

0<i<n,0<5;<m 0<i<n,0<j;,<m

s M=
=1 > @i T ey

0<i<n,0<j;<m

k3

+ R j;) lsgwert (7

S an—1

= max{|la;;, Ty |lgeers(r) )
= max{|la;j, 0" " (T7") lwert(r) }

= max{Ha@g‘iTiﬁH%Pcrf(r)}'

We have HTij"H%perf(r) = 74/ We multiply each T/ with a suitable b;j, € K
such that 1 < ||bi’ji1—:iji||%perf(r) < C where C € K is a fixed constant. Then the

set consisting of the bi,jiTiji is bounded. The above computation then shows that
this set is a-cartesian for &« = 1. Then the rest of the proof goes through as in
Proposition 3.7. O

In the situation of Remark 3.18, we cannot compute a Schauder basis for O (BP° (1)),
as in Lemma 3.26, but, using the isometric isomorphism between O (BP(r)),,
and Ok (BP(r)), (Remark 3.18), we still find a Schauder basis consisting of ele-
ments in ligw or[|Ty|].

Remark 3.27. Let r = |7|Y/™ n > 1. We have an injection ox[|T]] < O (B (/1))
for each ¢ which commutes with ¢, and hence a map

R = lim o [|T|] = O (BP(r)) = lim O (B(r'/7)).
¥ 0,1

Remember that on O (BP (1)) we have the norm ||- [|gpers (y Which is the inductive

limit norm coming from the supremum norms on the O (5B (r!/ qi)). The restriction

of the norm || - [|gperr() to Ry defines a topology on Rx which coincides with the
(m,T)-adic one. This can be seen as follows:
The sets

T (OF(BP (1)) = {f € Ok (B (1)) | || fllgperery < [7]™}
form a neighbourhood basis of 0. We obviously have
(m, T)" C 7™ (O (B (1)) N Ric

for £ > mn. Now use the notation 7; and 1" = T an in Proposition 3.26. Let i € N
be fixed and

f = ZakTZk e OKHTZH - OK(%(rl/q’)) C @K(%perf(r))
k>0
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3.2 The Robba ring Ry (BPY)

be an element such that || f||gperr(;) < |72|. Note that T/ lies in (7, T) for large m
which can be seen by writing T/ = T;_1 + nT;% which lies in the ideal (7, Tj—1) (s0
that we arrive in (m,T) for m > ¢'). Therefore we only have to consider finitely
many terms a;T%. We have |ay| (/9 )% < |7?| for each k. This means that either
ay € mog, or k > ¢* which both implies that akTik € (m,T). Thus

(0% (B (r)) N Rk C (m,T).
Completion then gives an isometric embedding

Ric = O (B> (r)).

In particular, EK is an integral domain.

3.2 The Robba ring R (BP)

3.2.1 The Robba ring defined geometrically for B>

We cannot define the Robba ring over %%erf in exactly the same way as over ‘B

since we are working over adic spaces instead of rigid-analytic spaces. The subsets

BE\ BE () cannot be open for any 0 < r < 1 since BE(r) is open and B

is connected.

Lemma 3.28. Let 1,5 € p¥ N (p*Q/e(q*I),l) and r1 < ro. The preimage of
B(r1,m2)(Cp) = {2z € Cp||z] € [r1,m2]} in B(Cp) under ¢ is %(r}/q,r;/q)((cp) =
{z €Cy lol € /", ).

Proof. We may assume @(z) = 29 + w2z. Let z be an element with |z| = t%/7 €
[r}/q,r;/q]. Since by assumption ¢ > p~%/¢@=1)  we have |z|?7 = ¢t(a=D/q > p=1/e =
||, and therefore

|p(2)] = |mz + 29|
=|rz+2z-297Y

= |29 =t

On the other hand, let z € B(C,) be an element with |p(z)| =t € [r1,ro]. If
|7z| = | 29|, then we have |297!| = || = p~ /¢ and |z| = p~'/¢@~ D and hence

|p(2)] = |z + 21|
= max{|mz|, [27]}

=[]

20r T = T;—1 + wT; + 7 - higher terms if the chosen group law is not the special one.
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3 The Robba ring over B8Pt

since otherwise t = |p(2)| < |2|9 = p~9/¢@=1) which contradicts the assumption
on the radii. If |7z| # |29, then |29] > |rz| since otherwise |29~} < |n| and
2| < |m|Y/(a=1) = p=1/ela=1) and therefore

t = |x||z| < p~ Ve . pH/elaml) = pma/ela—1),

We see that in any case |¢(z)| = |27 = t and therefore |z| = t1/? € [T%/q, r;/q]. O
Note that if r; = |ew|'/™ and ry = |w]|'/" for a topologically nilpotent unit w € K,

then we have

T?’L
Ok (B(r1,72)) = K(T) (—, )
and if o = 7, then
/g 1/g'\y _ ™ LI A
Ok (B(ry?,ry'")) = K(T){ - >qui> = K(T')( - »Soi(T>m>
— {Z aiTi ] Zaizi converges for z € [T}/qla T;/ql]}-

€L €L

For the rest of this chapter, we assume that all radii like 71,79, $1, S2, 79 lie in
pen (p~9/ela= 1),

Let r1 < ro. Lemma 3.28 implies that for any ¢ € N we have maps of uniform
Tate-Huber pairs

0 (OB 1)), Ok (B(r™  ry/P )< =
7+1 7+1 7+1 i+1
(OrBEP ")), 0k (BT P )=,

We get an inductive system of uniform Tate-Huber pairs and set

O (B (11, 72)) = limy O (B(ry/?,15/*"))
©,

and

O (BP (11, 1)) = lim O (B(ry/” /7)) <!
P,

Then (O (BP (11, 73)), O (BP (11, 73))) is the inductive limit in the category
of uniform Tate-Huber pairs. Denote by O (BP°(ry,r3)) the m-adic completion
of OF(BP (11, 15)). Then

OK(%perf (Tla 7‘2)) = O}; (%Perf(rl’ T'Q)) ®(§;(%perf(’r‘1,’r‘2)) (;jK(%perf (le TZ))
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3.2 The Robba ring Ry (BPY)

is the completion of O (BP (r1,79)), and (O (BP (1, 72)), OF (BP (11, 12)) is
a complete uniform Tate-Huber pair. Set

‘B%erf(rl, r9) 1= Spa((’)K(%perf(rl, r9)), O;(‘Bperf(rl, r2))).
Later we will see that BP(ry,75) is an adic space.
If r1, 79, 81, 82 such that 7 < s1 < s9 < r9, then we have continuous restrictions
res : O (B(r/? r3/T)) = Ok (B(s/, 53/T))
for any ¢. Since they commute with ¢, we extend them first to restrictions
res : @K(‘Bperf(T17T2)) — @K(‘Bperf(sh 52)),
and then by continuity to
res : O (BPE(ry, 7)) = O (BP (51, 52)).

Since the restriction O (BP(r1,79)) — O (BP(t1,13)) coincides with the com-

position of the restrictions O (BP (r1,72)) = O (BP (51, 52)) = Ok (BP (1, 12))

if r] <s1 <t <ty <59 <719 we just write res without reference to the exact radii.
Next, we introduce a norm on the rings O (BP (11, 73)).

Lemma 3.29. For cvery i the map
1 i 1 i 1 i+1 1 i+1
@ O (B ,15/")) = Ox(B(r/™ /"))

i i i1 i1
is an isometry for the supremum norms on OK(EB(T}/(] ,T%/q )) respective OK(%(ri/q ,r;/q ).

Proof. We may assume ¢(z) = 27+ 7z, 2 € B(Cp). The map ¢ : B(C,) — B(C,)
is surjective. Let f € O (B(r/9",s1/9")). We use Lemma 3.28 to compute

||f”$(rl/qi751/qi) = sup ’f(w)|
€D/ 51/ (Cy)

= sup [ (o))

z€p=1(B(r1/a" s1/4")(Cp))

= H‘P(f)H%(r1/qi+1751/qi+1).
O

Definition 3.30. We denote by ||-||gperr(y, 1) the continuous extension to O (BP (11, 79))

1,72

of the inductive limit seminorm on O (BP (ry,1ry)) = ligw(’);((%(r}/qi,r%/qi))

coming from the supremum norms on the OK(SB(ri/ql,r;/ql)),
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3 The Robba ring over B8Pt

It is actually a norm because the transition maps ¢ in the inductive limit are
isometries thanks to the previous lemma. It induces the m-adic topology for which
the 7O (BPe (r1,79)) form a neighbourhood basis of 0. Note that we can com-

pute the norm of an element f € O (BP (11, 5)) on a preimage in some OK(%(ri/qi, ré/qi)).
In the setting of Remark 3.18, we have isometric isomorphisms
O (B (r1,72))p — O (B (11, 72) ).
Remark 3.31. Let rq,r9,% such that v <t < ry. We have the restriction map
res : O (B(r1,1r2)) = O (B(t,1)).

The ring Ok (B(t,t)) has the supremum norm || - [|g3(,¢) Which can be computed as
1|ty = sup;(|aj|t?) if f =3 ez a;T7 € O (B(t,t)) and which is multiplicative.
Similarly, we define a multiplicative seminorm || - ||; on O (B8P (71, 75)) by setting

- lle = [ - lgwertz,e) © res

where res : O (BP (11, 79)) — Ok (BP(¢,1)) is the restriction. Let f € O (BP (11, 75))

with preimage fi, = ez a;T7 in OK(SB(T%/qZO,r%/qZO)) under the canonical map

OK(%(ri/in,r;/in)) — O (BP (11 ry)) for some ig. We have

1 £1l: = sup(|a;[t7/9°).
JEZL

For a general f € O (BPf(r,ry)) which is the limit of a sequence (fi)ren in
Ok (B2 (r1,72)) the sequence (|| fil|:)ken converges, and we have || f[l; = limy o0 || f |-
Note that we can make a similar definition for the rings O (BP*f(r)). For an ele-
ment f € O (BP(¢)) we have | fllgperey = 1 £11¢

Now we show that the restriction is injective, so || - ||+ actually is a norm. In
the following, write R, := p~7/¢l=1) for r € Q@>0. Note that R, — 1 from
below if » — 0 from above. Also note that every s € (0,1) can be written as
R, (with 7 = —log,(s) - e(¢ — 1)/q). The following two lemmas are a variant of
[27, Lemma 4.2.3] and [27, Lemma 5.2.5]. Note that if 0 < r < 1, then R, lies in
pQ N [p—fl/e(q—l)7 1).

Lemma 3.32. Let f € O (B8P (R,,, R,,)) for 0 <11 <19 < 1. The function

[r1,72] = RU{—00},
t > log(|| flr,)

fort € [r1,79] is continuous and convex.
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3.2 The Robba ring Ry (BPY)

Proof. If f € O (BP*(R,,, R,,)) with preimage of the form
fig = a;T7 € Ok (B(RT", RY{™))
for a j € Z, then the function

t— log(]aj\Rg/qio) =log(|a;|) +t- 10g(p—(¢I/e(q—1))~j/qi0>

is affine and hence convex. If f has a preimage of the form f;, = >°" ajTj €

) ) j=—m
(’)K(%(R%qu%q 0)), n,m € N, we have

I = e (a7 0,
i.e. the function ¢ — log(|| f||g,) is the maximum of finitely many affine functions,
and hence it is convex. Such finite sums are dense in O (B (R,,, R,,)), so for
a general f € O (BP(R,,, R,,)) which is the limit of a sequence of such finite
sums (fi)ren in O (BP(R,,, R,,)), the function ¢ — log(|| f||,) is the pointwise

limit of a sequence (¢ — log(|| fx||r,)ken of convex functions and therefore convex.

To show continuity, we see that by a similar argument that the function
[7”1,7“2] — Rzmt = HfHRt

is continuous if f has a preimage of the form f;, = 3" a;T7 € O K(SB(RiQ/ a0 Ril/ @ )

=—m

for n,m € N. For a general f = h_II}lk fx which is %he limit of a sequence of such
finite sums in O (BP(R,,, R,,)), note that the sequence (t — || fillr,)ren con-
verges uniformly to the function [r1,72] — R>0,t — || f||r,, because for every ¢ > 0
we find an ko such that max(|[f — fkl|g,,, [|f — frllr,., ) < e for all k > ko, so that
| f — frllr, <€ and hence ||| f||r, — || fxllr.| < € for all k > ko and t € [ry,72].

Then the function [r1,re] - RU{—o0},t — log(||f||r,) is the composition of con-
tinuous functions and therefore continuous. O

Lemma 3.33. For 0 < ry < s1 < sy <19 <1, the restriction map
res: O (BP(R,,, R,)) = O (BP*(R,,, Ry,))

1s injective.

Proof. If || f||r,, = 0 for some to € [r1,72], then we have limy_, log(|| f[[r,) = —oo.
We conclude with the previous lemma that || f||z, = 0 for all ¢ € [rq,r2] and hence
f=0. O

Lemma 3.34. We have

[ f lwert ry gy = max{|[ fllr, [ fllrn} = sup {11}

te[rl,rg}

In particular, || - |[qgpers(y, v,y @8 power-multiplicative.
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3 The Robba ring over B8Pt

Proof. For f € @K(%perf(n, r9)) the statement is true by the maximum modulus
principle. For general f which is the limit of of a sequence (fx)ren in O (BP (r1,732)),
we have

HfH‘Bperf(T'l,Tg) = kll_{l;.lo ”fk”%perf(rl’TQ)
= Jim max{|fillr,. || fillrs }
—00
= max{ lim || fx[lr,, Hm [ fillr}
k—00 k—00
= max{|[|f [, [}

In addition, we have || f||gpert(r, ) > ||l for all £ € [r1, r2] which proves the second
equality. ]

Remark 3.35. The C,-points of SBFI’(erf(rl, r9) are
BP (11, 72)(Cp) = Hom((Ok (BP" (r1,72)), OF (B2 (r1,73)), (Cp, oc,))
= Hom(lim(Ok (B(ry/” /")), Of (B, 75/")). (Cpy 0c,))
X

= lim Hom (O (B(ry/" . ry")), 03 (B(r" . ry/")). (€ 0c,))
©,i

= lm ()", ;") (C,)
©,1

= {z € C |||y € [r1,m2]}-

The last bijection sends an element (zg,z1,...) € T&nm%(r}/pi,r;/pi)((cp) to (zo
mod (7),z1 mod (7),...) € ocs - Note that |(z0 mod (7), 21 mod (m),...)|, € [r1,72].

To see that it is a bijection, note that if z = 2’ mod (7) for elements z, 2" € oc,,
then ¢'(2) = ¢*(2') mod (7*!) which follows from [34, Lemma 1.1.1] and the defin-
ing properties of ¢. If (20, 21, ...) and (2, 21, ...) are elements in lim . ’B(r}/pl, r;/pz)((Cp)
such that z; = z; mod (7) for all i, then we have z; = ¢ (ziy;) = ¢/ (2],;) = 2
mod (7/*1) for all j, hence z; = z;. Therefore the map in question is injective.
On the other hand, we define a right inverse similarly to the proof of [34, Lemma
1.4.5]. Let (o, a1, ...) € ocy and choose representatives a; € oc, for the a;. Then
the sequence (¢'(a;))ien converges because we have a; = af ; = p(a;11) mod (m)
and hence ¢'(a;) = '™ (a;11) mod (71h) for all i. We have lim; o ¢*(a;) = ag
mod (7). The limit is independent of the choices of the representatives a; since
we have a; = a} mod (7) for another choices of representatives a}, and hence
©'(a;) = ¢'(al) mod (7**1). The right inverse is then given by (ap,aq,...) —
(lim; 00 0% (a;), lim; 00 ©*(ai11),...). Note that after [34, Lemma 1.4.5] we find

representatives a; for the a; such that af,; = a; and |ag| = |af, € [r1,r2], so
that |a;1;| € [r‘lfﬂ,rgm] which implies |¢*(a;4;)| = |ag;j\ and lim;_,0 ¢*(ais;) €

J J
B(r” ") (C,).
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Remark 3.36. Let K be perfectoid. Consider the groupAC:‘o(K ) of K-valued
locally-analytic characters Zg — K with the action of p, p* : Go(K) — Go(K), x —

X(p-). Then we have a bijection between the projective limit l'&np* GO(K) and the
K-valued locally analytic characters Qg — K* where (x0,Xx1,.--) € l'&lp* Go(K)
is sent to the character z = 1/p’ - a + x;(a), a € Zg. The inverse map sends a
character x : Q¢ — K* to the element (xo, x1,-..) € l'glp* Go(K) where y; : 73—
K>,z — x(z/p"). Moreover, since Go(K) is isomorphic to a d-dimensional open
unit disk around 1 € Q,, the projective limit T&lp* Go(K) = @p* BY(K) is equal
to the open unit disk B¢(K®) = {(z1,...,za) € (K*)?||1 — 2, < 1} by the same
argument as in the previous remark. Note that if z = (29, 21, ...) € LiLnZHZq K~ K",

then |z — 1, = | lim; 00 (2 — 1)7| < 1 if and only if |2; — 1| < 1 for all i.

Lemma 3.37. We have an isometric isomorphism

lim O (B(r{/*",73/7")) = O (P (11, 7)) = limg O (B(ry/ ", 75/ ")
[p}/i ©,

Proof. We have p = urn® for a unit u € or,. Write A; = C’)K(%(r}/qz,r;/ql)), then
we have commutative diagrams®

7] A, [u] A, [x] A [7] ) [] A [u] A ﬂ>
l[u]—ti/eJ l[u]—L(i+1)/c£[u]—t<i+1)/ej i[u]—L(i+e)/eJlM—L(i+e+1)/eJ
[7] A (7] A [7] [7] A id_ 4 [7]
7 7 1+1 i+e ite > ...

id

where ¢ = ne is a multiple of e. The inductive limit of the upper row is equal

to lig[p]i(’);{(%(r}/qei,r;/qei)) and the inductive limit of the lower row is equal

to liglv ; (’)K(‘B(ri/ qi,r;/ qi)). All vertical maps are isomorphisms. This gives the

desired isomorphism which is an isometry since all the maps [u]_[i/ < are isometric.
O

Proposition 3.38. Let K'/K be complete. The Tate-Huber pair
(O (BP (r1,79)) Ok K, (O (B (r1, 7)) O K') )
is uniform.

Proof. The arguments in the proof of Lemma 3.19 work for negative powers of T'
as well, so we can write f = 3" o axT* = 2k>0 arT* + <o arT* and repeat the
proof. O

3Here, |z] denotes the integer part of = € Q.
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3 The Robba ring over B8Pt

Corollary 3.39. We have an isomorphism of Tate-Huber pairs

(O (B (11, 72)) B K, (O (BP (r1,72)) B K') 1)
> (Ok: (BP (r1,12)), OF (BP (11, 72)).

Proof. This follows in the same way as in the proof of Corollary 3.20. O

Corollary 3.40. Let K' be a field over K which is perfectoid. The algebra
O (BP (ry, 1) )&k K is perfectoid.

Proof. This follows in the same way as in the proof of Lemma 3.21, namely be-
cause O (BP(ry, rg)@KK’ >~ O (BP (r1,72)) is a rational localization of the
perfectoid K'-algebra liﬂ@K’ (T) it (T') = nT + T19, and by using an isomor-
phism O/ (BP (r1,79)), =& O (BPE(r1,73))y for a general Frobenius power
series 1. 0

It follows that O (BP(r1, ) is stably uniform, and B2 (ry, ) is an adic
space.

Corollary 3.41. The adic space %Izerf(rl, r9) = Spa(OL (BP(r1,12)), OF (BP (11, 72))
is L-preperfectoid.

Definition 3.42. Fiz a radius ro € p% N [p_q/e(q_l), 1). Set

RK(%perf)T’() P m (’)K(%Perf(m,TQ))

ro<ri<ro<l

where the maps in the projective limit are the restrictions. The ring

RK(%Perf) — hg RK(%perf)ro
0<ro<1

is the Robba ring for BP (over K).

It follows from Lemma 3.33 that the transition maps in the inductive limit are
injective. Both O (BP™ (r1, 7)) and Ry (BPe)70 are topological K-algebras: The
algebras O (BPf (11, 13)) are Banach algebras. The algebras R x (BP°)"0 are pro-
jective limits of Banach algebras and hence Fréchet algebras. Then Ry (BP) is
an locally inductive limit of Fréchet spaces, and we endow it with the locally convex
inductive limit topology.

We have an isometric (for the supremum norm) embedding

~

1/¢¢ 1/¢* 1/¢¢ 1/q 1/¢¢ 1/¢°
O (Br/",ry/")) = O, (Br'",1y/")) = Ox(B/" ,ry/")EKC,
for any 7 € N. This extends to an isometric embedding
Ok (BP (11, 19)) < Oc, (B (r1,72)) = O (B (71, 72)) B C,

(see Corollary 3.39 for the equality).
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3.2 The Robba ring Ry (BPY)

Lemma 3.43. Let ... — V, — ... = Vi be a sequence of locally conver K -vector
spaces and 'V := mn V,, its projective limit. Assume that V,, is Hausdorff and that
the transition maps Vy41 — Vi, have dense image for every n. Then we have

VOKCy = lim(Va@xCp).
neN

Proof. See [6, Lemma 2.4] and the comment directly after the proof. O

Lemma 3.44. For any r € p2 N [p_‘I/e(q_l), 1), we have an isomorphism of topo-
logical Tings

R(Cp (inerf)r ~ RL(%perf)r(gLCp.
(Here, R (BP) '@, C, has the projective tensor product topology.)

Proof. We show that the restrictions maps res : O (BP (r1,72)) — O (BP (51, 52))
for r1 < s1 < s9 < 19 have dense image. Then we can use the previous lemma.
As in the proof of [6, Proposition 2.1] one shows that the restrictions

res: OL(B(ry/",1y/")) = OL(B(s1/" 55/"))
have dense image for all ¢ > 0. Then the restrictions

ves : lim O (B(r/",r}/")) = lim OL(B(s1", 53/))
X P

have dense image, and the same stays true after passing to the completions. ]
Remark 3.45. In the setting of Remark 3.18, the isometric isomorphisms
O (B (r1,72))p — O (B (r1,72))
extend to isomorphisms
RK(%perf); — RK(%perf)fp
and

RK(%perf)go — RK(%perf)¢.

3.2.2 The Robba ring as certain completions of Witt vectors

In this section, we explain another approach to define the Robba ring over BPe,
The main sources are [4], based on [15] and [3], and [34] as well as [27]. See also
[39, Kapitel 3].
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3 The Robba ring over B8Pt

Let F, be the set of m"-torsion points of B(L9) and L, := L(F,). Then L, /L
is a totally ramified extension of L of degree (¢ — 1)¢" ! ([34, Proposition 1.3.12]).
We let Lo be the field

Loo = | Ln

n>1

and let Lo be its completion.
Proposition 3.46. L., is a perfectoid field.
Proof. This is Proposition 1.4.12 in [34]. O

Consider the or-module

T :=

5

(Fo) = lim(F D7 T ).

™

It is a free or-module of rank one. In [34, Chapter 1.4] a well-defined map
L: T — Ot
(Yn)nz1— (0,51 mod (7),...,yn mod (7),...)

is constructed. Fix a generator ¢ of T and write w := «(t) € o;, . We have
|wl, = |7]9/(¢=1) ([34, Lemma 1.4.14]). There is a well defined k-algebra map

KIITI) = o,
F(T) = f(w),
which extends to an embedding of fields
k(T)) — IA/ZO.

Denote the image of this map by E, by og, the ring of integers of E;, and by
mg, = wog, the maximal ideal of og,. Set

Mg, = ®gl(mEL) - W(OEL)L,
where ®9 : W(EL)r = Er, Y ;50 7' 7(2i) — 20. In [34, Chapter 2.1], a map
{} : MEL — MEL

a— {a} := lim ([1] o Fr 1) (a)

1— 00

is defined which has the following properties:

Lemma 3.47. For any o € Mg, we have
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3.2 The Robba ring Ry (BPY)
1. {a} is the unique element in Mg, which satisfies {a} = a mod Vi(og, )1
and [r](a) = Fr({a}).
2. {a} = {7(®o(a))}

3. [b]({a}) = {[bl()} for any b € or.
Proof. Lemma 2.1.11 in [34]. O

We then consider the composition
Ty - ME, l) MEL {—; MEL-
This leads to an element w, := 7,(w) € W((C;) 1, which fulfils
T(w) =w, mod ()
and which is invertible in W((C;) L

Remark 3.48. The construction of {-} and the previous lemma work for any E}J/ ¢
as well. Therefore we can consider the elements w; := {7(w!/?)} € I\\/JIE1 /i fori >0
L

(then wy = wy,). We have
Fr(w) = [r)(wi) = wi-1.
On W (L’ )1, we have the G p-action
G x W(L) — W(L2)L,
(o, Z?TZT(.Zl)) — Z?TiT(Jb(.Ti))

b

where o® : L’ — L’ (ap mod (r),a; mod (x),...) — (c(ag) mod (n),0(ay)

mod (7),...). This action is continuous for the weak topology (see Remark 2.1.14
in [34]). It induces an action of I' = I'y, := Gal(Loo/L). We have an isomorphism
of topological groups xz, : I' — o7 .

Lemma 3.49. For any v € I' we have
Y(wi) = Dxe()(wi)-
Proof. For wy = w,, this is [34, Lemma 2.1.15]. Then we have

Fr(y(w)) =y (Fr(w))
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3 The Robba ring over B8Pt

Then we use that F'r is injective and see that v(w1) = [x1(7)](w1). Repeating this
computation shows that v(w;) = [xz(7)](w;) for any ¢ > 0. O

If L C K CC, is a perfectoid field and r > 0, then we define
WK = (> w'r(a;) € W) | ['||2if; = 0}
i>0
Lemma 3.50. W" (Kb)L s a ring on which we have a complete multiplicative norm
||, := sup{|7ri||xl-\;} for x = Zﬂ'iT(l'Z') € WT(Kb)L
iEN =0

which extends multiplicatively to WT(Kb)L[%].
Proof. As in [27, Proposition 5.1.2]. O

We set

WHE"), = | W (K")L.

r>0

Remark 3.51. The m-adic completion of WT(K”)y is equal to W (K”),, since they
are equal modulo 7* for all i € N.
Definition 3.52. We write A := W(C;)L, Ap =W(Lb)r, and AT = WT(@;)L as
well as ATL = WTH(L,)L. Moreover, we define B = AL Bt =AML B, = AL[L),
and BE = ATL[%]

We also have the rings A" := ng(C;)L, and A}{ = ng(Kb)L of elements
T =3 50m7(7;) in WT((C;)L resp. W7 (K®)r, such that ||| < 1 for all i. We
write AJET = W;l(ﬁboo)L

Lemma 3.53. The rings AT and A}’(r are complete for the topology induced by
- I
Proof. As in [4, Lemma 21.5], see also [39, Lemma 3.8]. O

Definition 3.54. For0 < s < r, we define RI®"(K) as the completion ofWT(Kb)L[%]
with respect to the norm max{|- |.,|-|s}, and

RY(K) = lim REI(K),

0<s<r
which we give the Fréchet topology. For K = Lo, we write Ry = R"(L2).

Remark 3.55. On R’ (K) we have the multiplicative norm ||, z = Siso T (i) —
maxien{ |7 ||z} }-

Definition 3.56. We define R(K) := lim R"(K) with the locally convex induc-
tive limit topology. Write R := R(Cp) and Ry, := R(L,).
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3.2 The Robba ring Ry (BPY)

3.2.3 The weak topology on A

The ring A, carries the weak topology which has a basis of neighbourhoods con-
sisting of the sets

T W (L)L + wgW (op, ).

The weak topology is Hausdorff and complete (see [34, Remark 1.5.2]. We define
the weak topology on ATL and ATL’T as the subspace topology inherited from the
weak topology on Aj.

3.2.4 Connection between the two constructions

Lemma 3.57. We have an isomorphism of oy -algebras
Ry = W(Oﬁboo)L'
Proof. Set
wj 1= {T(wl/qi)} € MElL/qi for i > 0.
We have
Fr(wit1) = [7](wit1) = wi,

where Fr is the Witt vector Frobenius. We get a compatible system of embeddings

T—w;
oL T]) "= W(ogyie1)r
T [](T) QT
or[|T]]

Tow W(OEi/qi>L.
Passing to the inductive limit we get an embedding
Ry — W(OEIL)erf)L - W(Oigo)fr
The weak topology on W(OLEC)L is the (m,wp)-adic one. Moreover, W(o]iboo) is

complete for the weak topology (see [34, Remark 1.5.2]). Therefore this embedding
extends to a ring homomorphism

RL — W(OEZO)L,

which is the identity modulo 7 (see Proposition 1.4.17 in [34]).
Both sides are m-adically complete (see Lemma 3.14 for Ry), hence, using [34,
Corollary 1.1.24], we get an isomorphism

Ry~ W(op, )i
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3 The Robba ring over B8Pt

The map in Lemma 3.57 is a homeomorphism with respect to the weak topology
on W(o;, )r and the (m,T)-adic topology on Ry since it identifies (7", w;;) and
(7™, T™).

Lemma 3.58. Let r > 0. If & = Y ;5o m'7(a;) € A}’{ is an element with |zol, = 1

and |7||z;|l <1 fori > 1, then x is a unit in A}{.

Proof. By substituting x with x/7(z) we may assume that o = 1. Then we have
x =1+ z with |z], < 1. We then have ! = ), 5,(—z)" which converges in A}’{T
because A}’(r is complete (Lemma 3.53). O

Proposition 3.59. Ifr < (¢ —1)/q then wy/T(w) is a unit in A}’(r.
Proof. The proof is from [39, Lemma 3.10]. We have

Wy = (@'} (Fr~"(r(w))) mod 7Ti+1W<0zb )L
If we write w, = > ;5 7i7(a;) then the «; are given by a power series in wi™’
without constant term and with coefficients in o;, . We have |agl,/|w|, = 1. For

i >1 we have |og|, < [w? ‘|, =p~7 " /ela=1) and
oy |w]y < p T T ppa/elaml) — =T —a)/ela=1) < pia/ela=1),

This implies |7||a;|T/|w|’ < 1 for i > 1 and hence w,/7(w) € Al". Lemma 3.58
p b/ 19l ¢ K

shows that it is a unit in ATI’(T. O]

Remark 3.60 (cf. Lemma 2.18 in [4]). Let 0 < 7 < 1 be of the form (¢ —1)/qn

for an n > 1. Every element y € AET can be written as y = 345 yk(ﬂ/w&q_l)/qr)k

where yp € W(o;, )r and yx — 0 if £ — oo in the weak topology.

Proof. Let Y5 m'7(z;) € AET. Then |7'||z;|l < 1 and |7*||z;|] — 0 for i — .

Then we write
7

Z ﬂir(xz-) = Z W . T(w(qfl)/qr)i ().

i>0 i>0
The 7(w@ /). 7(z;) lie in W(o;, )r and go to 0 for i — oo. Therefore it is
enough to show that 7/7(w(@1/9) can be written in this form. For this, write

F(w@ /) = D/ with 2 = Sis1 ™ 7(B;) for B € 0j, . Then

1Bil, < w7, < 1,
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3.2 The Robba ring Ry (BPY)

and in W (L)1, we have

™ ™

T(w(q—l)/qr) B wg(oq_l)/w — 5

w&q—l)/qf -
u)s(aq—l)/qr ' u)Q(pq—l)/qr B

z
s 1

CL)S(Dq—l)/qv“ 1

B z/w&q—l)/qr

s 1

u)S(Dq—l)/qr 1— W/wg(oq—l)/qr !

where 2/ = z/7 € (m,7(w/9)) C W(0;, )1. Then

1
1— ﬂ./wg(oqfl)/qr .

= (D (1)

k>0

and (2')¥ — 0 if k — oo in the weak topology. Then set yy, := (2/)*~! and write

™

- r . (g=1)/ar\k
F(wle=D/ary ];yk (m/wg )"

Lemma 3.61. Let 0 < s < r be elements of the form (¢ —1)/qn. Let

RE — (o € RET| max{|a],, |z} < 1}

be the ring of integers of 7~€[LS’T] for maz{| - |»,| - |s}. Then 7~2[LS’T]’W is the m-adic
completion of

r(wla-D/as) -
Wilop, e s ’ T(w(q—l)/qr)]'
Proof. We have W (o, )L[T(w(q:)/qs), T(w@fl)/qr)] - ﬁ%’r]’int since
Vs T ™
max{‘q—(w(qfl)/qr) I ‘T(w(qfl)/qr) s} = ‘T(w(qfl)/qr) [»=1 and
(a—1)/qs (g—1)/qs (g—1)/qs
7(w T(w 7(w
e (ACRR I TACSEC R T S G R T

T T
On the other hand, if # = Y% wir(z;) € W7 (L2)1[1/7] is a finite sum such that
max(|z|s, [z[,) < 1, then we find elements u; € 0;, such that z; = 1/w(q*1)"/q’” U

if i > 0, and z; = w@ V¥ ., if i < 0. Here we use |w|, = |7]|%/9~'. Then we write

{M'T(ui) for i >0

(g—1)/gsyi .
M . T(uz) for 1 < O
™

mir(z;) =
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3 The Robba ring over B8Pt

; L. (g—1)/qs .
Therefore 7'7(x;) lies in W(o;, )L[T(w(qfl)/qr)’ Tl qwl )] for every i. These sums
are dense in 7~€[L5’T]’int. Note that the norm topology on 7~2[LS’T] has a basis of fun-

damental neighbourhoods of 0 consisting of 7™ - 7~€[LS’T] ntogg passing to the m-adic
completion gives the result.
O

Note that we have ﬁ[LS’T] = ﬁ%’r]’int[l/w]. Remember that R, = p~9/¢(4~1) for
0 < r <1 and that R, — 1 from below if » — 0 from above.

Remark 3.62. Write ; = |7|'/™ and 7o = |7|'/" for m,n > 1. Set

™ 7
T Tm

Rimn = Ri[ | =R [X,Y]/(n X —T", T"Y — 7, XY —=T"™)

and consider the Huber pair
(RL,m,n[]‘/ﬂ-]’ Rz7n7m)

where Rzn m is the integral closure of Rr, . in Rr mn[1/7]. Let (RLymyn[l/w], ﬁzm n)
o)

be the completion®. With similar arguments as in Lemma 3.17 we see that (Rz, .. [1/7], ]%Lm%n

is uniform. We have an isomorphism

(Rpmn[1/7), R}, ) 22 (OL(BP (11, 12)), OF (B (11, 79))

Ln,m
of Tate-Huber pairs (with similar arguments as in the case of ELH)

Lemma 3.63. Let s = (¢ —1)/qn < r = (¢ —1)/qgqm where m,n > 1 are integers.
Then we have a topological isomorphism 7~€[LS’T] >~ O (BP*(R,, R,)) which comes
from the isomorphism W(o;, )1 = RL.

Proof. By Lemma 3.61 we have

WD)
T ’ T(w(q—l)/qr)]'

ﬁ%’r}’im = m-adic completion of W(o;, )r|

It follows from Remark 3.60 that A}[f is contained in the m-adic completion of

wig—/ae At 58,7 int) .
W0, )L™, —7n7s)-We also have A;" C R, The element w,,/7(w) is

a unit in AET (Remark 3.59) and hence is a unit in the aforementioned rings. This

implies that 7~€[Lr’s’mt] coincide with the m-adic completion of
(¢—1)/qs
Yo

W (o0, )o[*5—=—, 5= Thering Or(BP(R,, Ry)) is isomorphic to the com-

pletion of Ry [T~ = ][1/#] (Remark 3.62). Since the isomorphism W(oj, )1 & Ry

T ITm
sends 1" to w,, we get the desired isomorphism by inverting , and it is continuous

and open. 0

“This is just the rational localization of (EL, EL) for U = {r?, T™x, T™*" rT"} and s = nT™.

78



3.2 The Robba ring Ry (BPY)

Corollary 3.64. We have a topological isomorphism Ry = R (BPT).

Note that this only applies over L. The ring R (BPT) is not R(K) but the
base change of Ry (BP) to K.

Proposition 3.65 (cf. Proposition 4.2 in [18]). Let x € W (o}, )1, correspond to
f € Ry, under the isomorphism of Lemma 3.57. Then we have |z|, = ||f| s, -

Proof. We adapt the proof of Proposition 4.2 in [18]. Let f = Y5 qaT" €
ligw op[|T|] with a; € o = W(F)p. Write a; = 3>,5o7"7(a;y,) for certain

ain € Fy. We have || f||r, = supi{ain/ q]} for some j depending on the equiv-
alence class of f in the inductive limit.
On the other hand, write x = 3"~ 7'7(z;) € W (0}, )r. Reducing modulo 7 shows

that g =), az-,ow; and

7(zo)|r = |wol] =  sup  {RY7}.

i, with a; 070

If we set fo = >_; T(i0)T?, then we have |7(z¢)|r = || fo||r. Let 2’ := 2 — 7(x0) and
f" = f — fo. We have

|zl = sup{|7(zo)lr, ']}, [IfIIr, = sup{llfollr., I/"]l-}-

The element corresponding to z’ is f' = f — 7(z¢), but we have

1o = 7(zo)llr, < [lfollr.,

therefore || f||r, = sup(||follr,, ||f'||r,.). Now we divide 2’ and f’ by 7 and continue
recursively to get |z|, = || f||g, .

A general f # 0 which is the limit of a sequence (f;)ien, fi € ligcp or[|T|], for
the (m,T)-adic topology converges m-adically in O (BP(s1,s9)) for any s; <
R, < s9 < 1, and we have ||f||gr, = hﬂz Il fillr.. The corresponding sequence
(x:)i € W(o in )z converges to an element x which corresponds to f, and we have

2], = liny, |l = limy, || illz, = (£l =

Lemma 3.66. Let 0 < s < r be elements of the form (q—1)/qn. Let x € ﬁ%’ﬂ cor-
respond to f € Or(BP(R,., R,)). Then we have maz(|x|, |z|s) = max{|| flr,, | fllz.}-

Proof. This follows from the previous lemma and the fact that the norms |- |,
| “|ss |l ||&,., and || - ||r, are multiplicative. O

Lemma 3.67 (sce Lemma 4.2.3 in [27]). Forz € R"(K), the function t — log(|x|;)
is continuous and convex on (0,r].
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3 The Robba ring over B8Pt

Proof. For & = w7 (x;) for some i € Z and x; € L’ we have
t = log(n'|asl;) = log(n') +t - log(|ail;)

which is an affine function and therefore continuous and convex. If x is a finite sum
of such terms, the function is the maximum of finitely many affine functions and
therefore convex and continuous. Now such finite sums are dense in R (K) and the
lemma follows. 0

Remark 3.68. By copying the proof of the previous lemma, one can deduce that
for z € R["*(K), the function t — log(|z|¢) is continuous and convex on [r, s].

Lemma 3.69 (s~ee Lemma 5.2.5 in [27]). For 0 < 11 < 51 < s9 < 1y < 1, the
restriction map RV (K) — RIV2(K) is injective.

Proof. The previous Remark 3.68 implies that if |x|; = 0 for some t € [r1,72], then
|z|; = 0 for all ¢ € [rq,r], and therefore x = 0. O

3.3 The monoid action

We define an action of oy \ {0} on O (BP(ry,75)). Remember hat we assume
that all radii like r1, 73 lie in p@ N (p~¥/c=Y) 1)

Let r1 < r9. The o] -action on (’)K(%(ri/ql, r;/qz)) for i € N induces an oj -action
on O (BP (11, 79)) in the following way: Let f € O (BP (11, ry)) an element

with preimage f;, € (’)K(‘B(r}/ qzo,r;/ qlo) under the canonical map

i : O (BT r110Y) 2 O (B (1, 1)),

Then we define [u](f) := ai,([u](fiy)) € Ok (BP* (r1,72)) for u € o). This is well
defined since the transition maps ¢ in the inductive limit commute with [u]. We
pass to the completion Ok (BP(r1,72)) to get an o) -action on Ok (BPE(r1,79))
which is isometric for the norm || - [|gpert(y, ). It extends to the rings R (Bpert)ro
and Ry (BPer).

To get an action of the full multiplicative monoid oy, \ {0}, we need to define the
action of m which we denote by . We define it by first defining the map

0 @K(%perf(rh ra)) — @K(%perf(ri/q’ 7’;/(1))

on the dense subsets O (BP (r1,13)) C O (BP (11, 73)) and (”V)K(‘Bperf(ri/q, r;/q)) C
OK(%perf(r%/q, r;/q)) to be the map coming from the maps
1 i 1 1 1 i+1 1 i4+1
@ O (Br/" 1)) = Ox(B(r/" /")),
Then we extend ¢ continuously to the map

0+ Ok (B (r1,72)) — O (B (/9 1)/ 7).
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Remark 3.70. The map
@1 Ox(BP (1, r2)) = O (B (11", 1y/"))
is isometric.

Furthermore, we can pass to the projective limit since ¢ commutes with the
restriction maps, and get a continuous map

Q- RK(%perf)r N RK(%perf)rl/q’
and ¢ : R (BP) — Ry (BPef).

Lemma 3.71. The o} -action on the algebras O (BP (r1,72)), R (BP0, and
R (BP) is continuous.

Proof. The maps [u] and ¢ are continuous on the algebras in question. Thanks to
the Banach-Steinhaus theorem we only have to show that the orbit maps o] —
Ok (B (r1,72)) respective of — RK(‘B_perf)’"_O respective o) — Ry (BPT) are
continuous. The o} -action on (’)K(%(ri/ 7 ré/ ql)) is continuous (Proposition 2.17
in [6]). Let f € Og(BP (1, ry)) with preimage f;, € (’)K(%(ri/qm,r;/qlo)) under
the canonical map a;, : OK(%(T%/(]ZO , r%/qzo)) — O (BP (1, r5)). Then the orbit
map py corresponding to f is the composition of the continuous maps

0% = O (BT r11°Y) 5 O (B2 (11, 12)) — Ok (BP™ (11, 72)).

Now let f € O (BP (11, 75)) be a general element. Let U, (x) C O (BP (11, 19))
be the open ball around z € O (BP (11, 79)) with radius . We find an element
fi, € OK(%(T}/Q’LO,T';/QZO)) such that [|f — aig(fig)llgpert(r, rp) < €/2. Note that
every u € o) acts isometrically on O (BP*!(r1,73)). Then the preimage of U ()
under the orbit map p; is equal to the preimage of U.(x) under Peiy (fi) since we
have

[l = [ul(vig (fio)llmpest (ry ) < € & [l = [u] () [lspert (7 ,r) < €

for all u € of. This implies that the orbit map py : of — Og(BP(r1,r2)) is
continuous.

Now consider R g (BP0 = yLnro<r1§m<1 O (BP (11, 79)). Let f € Ry (BPf)ro

and denote by f,, ., the image of f under the map R (BP0 — O (BP (11, 1))
We have a commutative diagram

Oz rs R (%perf)m

m /

OK(SBperf(Tl, 7‘2)).
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3 The Robba ring over B8Pt

This shows that ps : 0f — R (BP0 is continuous.
Let f € Ry (BPF). There is an r such that f € Ry (BP!)". The map

pf o] — RK(%perf)
then factors through the continuous map
of — Ry (BPH”
u > [u](f)
and the inclusion R (BP)" — Ry (BP), and is thus continuous. O

Remark 3.72. We see with Lemma 3.49 that the so-defined oz—action on ﬁL
correspondents to the I'-action in Witt vectors under the isomorphism in Lemma
3.57. In particular it is continuous for the (m,7")-adic topology.

The restricted map ¢ : Ry — Ry, correspondents to Fr : Wi(oj, ) — W(o;, )L

3.4 Rings of bounded functions

Remember that we assume that all occurring radii lie in p@ N (p_‘Y/ e(g=1) 1). Let
7o be fixed and let f € Ry (BP0, For rg < r; < 53 < 59 < ry < 1, the norms
|+ [lgpert (ry rgy @nd || - [|gpert(s, 5,y for f are defined to be the resp. norms of the
projection of f to the resp. rings, similarly we define ||f||; to be [[res(f)l[qgpers(s s
for rg < t. We have

L llgpert 4,2y 2 1S llgmert (s,,)
We say that f is bounded if there is a constant C such that
[ fllsgpert(ry gy < € forall g <71 <rp < 1.
Definition 3.73. We define
Ry (BPeh)robd .— [ f € Ry (BP0 | f is bounded }.
and

g;r(<%perf) — hg RK(EBperf)r’bd C RK(%perf).

r—1

Lemma 3.74. An element f € Ry (BP0 C Ry (BPe) lies in 5}L<(‘Bperf) if and
only if there is an ro < s < 1 such that {||f|l»|s <r < 1} is bounded.

Proof. If {||f|l»|s < r < 1} is bounded for such an s, then there is a constant C
such that || f||, < C for all s <r < 1. Therefore we have

[ fllgpert(s,ry = max{ || fls, [ fll-} < C
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3.4 Rings of bounded functions

for all s < r < 1. This means f € Ry (BP)% If on the other hand, f €
S}L((%perf), then there is an 7o such that f € Ry (BPe)700 and we have a constant
C such that

1 F llgpert () = WX fllrrs [ fllr2) < €

for r1,7m9 € (r9,1). Then ||f||, < C for rp < s <r < 1 for any s > ro. O

Fix r > ro. We have ||f|rs; < || fllrse if 7 < s1 < s3. Therefore we can define a
norm

1t 5= T 1 lgerr

for f € 5;((%perf). Moreover, since || f
seminorm

s1 < || fllr1 for r < s, we can define a

111 = oo [

for f € 5;((%perf).
Lemma 3.75. The function || - |1 is a multiplicative seminorm on 5;((%perf).
Proof. We have

Hle = }ﬂ(l% ||f”%P°rf(r,s))

= lim (lim ( Sllp]{”f”t}))

r—1 s—1 te]

= lLim (lim (max{[| f{|-, || f[ls})

= 1im |1,

where we use Lemma 3.34. The norms || f||s are multiplicative, hence its limit for
s — 1 is also multiplicative. ]

Set
EREH Bty = {f € R (B || fIh < 1.

We have 5;((%perf) = E}L(’Sl(%perf)[l/ﬂ]. Note that the action of o] and the map
¢ on Ry (BPT) restrict to an action of of and a map ¢ on 5}((%perf) and on
S}L(’Sl(%perf). We finally define £x(BP) to be the completion of S}} with respect
to ||+ -
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3 The Robba ring over B8Pt

We have an isometric injection OK(‘B(T}/ql, r;/ql)) < Ok (BP (r,r9)) for every

¢ € N which sends an element f € (’)K(%(r%/ qi,r;/ qi)) to its equivalence class in
O (BP (11, 13)) C O (BP™(r1,72)). This induces an injection

Ok(B\BEY") = lim  Og(B(ri,m)) = Re(B*) = lim  Ox(BP(ry, ).

rl/at <p<ro<1 r<ri<ra<l

To simplify notation we often identify OK(%\‘B(Tl/qi)) with its image in R g (BP)",
and similarly for (’)K(%(Ti/ql,ré/qz)) — O (BP(r1,12)).

Lemma 3.76. Suppose that o(T) = 7T + T9. Every f € Ry (BPH)" can be
written uniquely as f = f++ f~ where fT is the limit of a sequence (f;")ien, f;T €
Ok (B \ B(r/1)) C Ry (BP)" such that each fi¥, regarded as an element of
Ok (B \ B(r'/7)), can be written as

1= 3 anT" € Ok (B\B(HT)),
n>0
and f~ is the limit of a sequence (f; )ien, f; € O (B \ %(Tl/qi)) C Ry (Brertyr
such that each f;, regarded as an element of O (B \ B(r'/1)), can be written as

7= a,T" € O (B\ B(rV)).

n<0

Moreover, || f]ls = max{|[f+]ls, [ f~ls} forr < s.

Proof. The subset
@ OK(%perf(Tl,’l“Q))

r<ri<re<l

is dense in Ry (BPe!)". This is because for every f € Ry (BP)" and for every
r<ry <rg,and € > 0, we find an 79 € N and an element

fio € Ok (B(r 7" ry/7")) C O (BP (r1, 79))

such that || fi, — f/[qgpers( < ¢. We can moreover assume that fi, = Sk a,T"

r1,12)

. . . . . 1/q'0 1/q%
is a finite sum since such finite sums are dense in (’)K(’B(rl/ ! ,r2/ 7). Then

fio € Ox(BABE™) = m  Ox(Bry/" ry/™)
r<ri<ra<l
C  lim  Og(BP(r1,72)).
r<ri<ra<l
Note that Hfio - f“%perf(sl,sQ) < Hfio - f”%perf(rhrg) if ry <81 < 859 < ro. Therefore

we find a sequence (f;);en in gn @K(‘Bperf(rl, r9)) which converges to f

r<ri<ro<l
in the Fréchet topology on Ry (BP)". We may assume that

fie m o Ox(BEY,ry/")) = OK(B\BEVT))

r<r’'<s<l1
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3.4 Rings of bounded functions

for every i. Every f; can be written as f; = f;" + f; as described in the statement of
the lemma. If f; = f;—}—f; and fi, = f;i + f, for k > j, then fe —f; € R (BPert)r
is the image of the element

i — M) € Ok (B \ B(r1/1))

in Ry (BP)". The element f, — cpk_j(f;) € Ok (B \ B(r'/7)) is of the form
S <o anT™ since we have®

7T
T—l
p(T™) = WT+T,] Z; syt

i.e.  sends negative powers of T to a series with only negative powers of T.
Similarly, f;f — ff has a preimage of the form >, a,T" € Ok (B\B(r1/4")). Let

r < 5. We compute || fi— flls = | fi (1) gt gosat, i One(B(sV/*, 51/))

as follows
e = Fills = Wf5 + f = 17 = 17 lls
= 1fif + ") = fo = U g st et
= maX{Hf]j— + gpk_j(f;_)H%(Sl/qk?sl/qky ka;_ + Sok_j(fj_)H%(sl/qk7sl/qk)}
= max{|| ;7 = [ lls, 1f5 — f7 s}

This shows that (f;");en and (f; )ien are Cauchy sequences for the norms
| - |ls,” < s <1 and hence (using Lemma 3.34) converge in the Fréchet topology of
R (BPH). We set

fT = lim fi+v and [~ = lim f;".
1— 00

1—00

Then f = f* + f~. Moreover, we have

I1f1ls = T JI5F + 17
1—00
= lim max{|/; [, 17 ls}
= masc{ Tim ;7 o, 1715}
= mac{| s, 15}

5We have

o~ ((k+1)a—k) |7T|k _ (aqfl . w*l)*k .o,

Thus the sum converges for a > p~*/¢~Y Moreover,
—m)k 1)krktt
q _
(T* +T) Z Toinak =1 +Z qu k + Z T(k+1>q =L
k>0 k>0 k>0
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3 The Robba ring over B8Pt

If f = g™+ g is another decomposition where g™ is the limit of a sequence (gz+ )ieN
and ¢~ is the limit of a sequence (g; )ien of the described form, then the sequence
(f¥ + f7 — (9 + 97 ))ien converges to zero in the norms || - ||s for r < s < 1. But
since we have

1£5+ 17 = (o + 90 )lls = max{|l i — gi"lls, I — g5 lls},

the sequences (f;" — g; )ien and (f;” — g; )ien converge to zero as well. Hence we
have ff =gt and f~ =g O

Note that in the situation of Lemma 3.76, we have || f~||s, < ||f 7 |ls, and || fT s, <
I/t |ls, for 7 < s1 < s9 < 1. Moreover, every element of the form f = f~ lies in
S}L((SBperf) and the norm || f~||; is defined. The sequence (f; ); converges to f~ in
the || - |[1-norm. On the other hand, every f* can be regarded as an element in
O (BP (1)) for any r € p2 N (p~¥/ele=1 1),

Remark 3.77. If we choose another Frobenius power series 1, then we cannot
expect part 1 of the lemma to still hold true. But we can use the isomorphism
[1]y,, to obtain two Cauchy sequences (h;)ien and (g;)ien with limits A and g such
that (h; + gi)ien converges to f and such that ||g;||, decreases if r — 1 and ||h;]|,
increases if r — 1 for every r, and || f||, = max{||g||,, || 2]}

Corollary 3.78. If f € £ (BPert) 1= €51 (BPert) N R (BP)”, then there is
a sequence (fi)ien, fi € Og (B \ ‘B(rl/ql)) such that each f; € 5;(51(%‘)6&)) and
(fi)ien converges to f in Ry (BPert)r.

Proof. Suppose that ¢(T') = 7T + T?. Then we can use Lemma 3.76 and obtain a
decomposition f = f* 4 f~ as described there.

First assume that f = f~ = lim; ,o f; . We have || f7|ls, < ||f7||s; if s2 > s1. We
also note that ||f~||1 < ||f|ls for all r < s < 1.

If || f~||1 = 0, then for every € > 0 we find an so such that || f7||s = limen || f; ||s < €
if s < s < 1. This implies || f; ||s < e for large 7. Hence || f; |1 <1 for large 1.
Assume now that || f~|l1 # 0. Then ||f7|ls > 0for r < s < 1. Fixanr <s; <1

We find an ig such that
I = sy < WM < M Mlsss

hence || f; |ls; = || f " |ls; for @ > 9. Then also ||f; |ls, = ||f ™ ||s, for s > s1 and
i > ip by the same argument. We see that ||f7||s = ||f; ||s for all s7 < s <1 and
i > 19 and hence ||f || = || f; |1 for i > ig. Therefore || f|[1 < 1 implies || f; |1 <1
for ¢ > io.

If f = f*, we note that f* can be regarded as an element in O (BP(s)) for
r < s < 1. The rings O (BP(s)) have compatible Schauder bases described in
Lemma 3.26. We write f* =37 . axj, T)* as in Lemma 3.26. Then set

+ . J
fi = Z ak,j, Ti"-

k<i,ji
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3.4 Rings of bounded functions

We have

- k
£ 15 = max{|ay, [s+/9 }.
ka]k

There is a constant C' such that ||fT||s < C for r < s < 1 (Lemma 3.74), this
implies that |ay j, | < C as well for all &, j,. We compute

+ _ .
T

— 1 | gIn/d"
fimg supd g, s}
= sup{|ay;, |} < 1.
k,Jk

Therefore || f;" |1 = supj<; j, {|aj,|} <1 and hence f;" € E}Lfl(%perf) for all ¢ € N.
If now f = f* + f~, then we have

1£1ls = max{|lf " ls, 1f [l }

for all r < s < 1 after Lemma 3.76. Hence
£l = ;ig%(max{llfﬂ\s? 17 1ls}) < 1.

This and the fact that || fT]s increase for s — 1 imply || f1|ls <1forallr < s <1,
hence || f*]|1 < 1. Then also ||f~||1 <1 since otherwise || f~|ls > 1forallr < s <1
because ||f7||s decreases for s — 1, which contradicts ||f]; < 1 because of the
above equality.

If ¢ is another Frobenius power series, then [1]y , gives an isomorphism
Ric(BP), = Ry (B2,
which restricts to an isomorphism
ER (B, = £ (P

Noting that Ox (B \ ‘B(rl/qi))p is isomorphic to O (B \ %(rl/qi)M for each i via
(1], as well, the lemma follows from the previous discussion. O

Lemma 3.79. The seminorm || - ||1 is a norm.

Proof. Again, we only need to consider the case o(T) =T+ 7T. Let 0 < r < 1. If
f=fteRg(BPrhErbd then | f| g, is increasing as R, — 1. Therefore || f|1 =0
implies ||f||g, = 0 and hence f = 0. On the other hand, if f = f~, then f is
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3 The Robba ring over B8Pt

the limit of a sequence of elements f; = >, ga,T" € O (B \ ‘B(Ri/qi)) which
converge for T'= 1. Fix 7’ > r. We get a function

[0,7"] = R U oo,

t = log(|lf~ [|r,)-
As in the proof of Lemma 3.32 one shows that this is a continuous and convex
function. Thus ||f~ ||y = 0 implies ||f~||s = 0 for R < s < 1 and hence f~ = 0.

It f = f* 4 f~, then |[flly = limyy (max{|[f*|ls, [/ [|s}) = O implies || f*]s — 0
and ||f7|ls =+ 0for s > 1,50 ff =0and f~ =0. O

Lemma 3.80. We have E}E’Sl(%perf) - ATL under the isomorphism in Corollary
3.64.
Proof. Let 0 <r < 1. Let

f e gzaﬁl(%perf)Rr — gz7§1(53perf) N RL(;Bperf)Rr‘

We find a sequence (f;);en such that each f; lies in the image of O (B '\ ’B(R%/qi))
in Rp,(BPeH)fr is bounded, and fulfils || f;||; < 1, and which converges to f for the
Fréchet topology on Ry (BPeH) e (Corollary 3.78). We write fi = 3,,cz anT" €

O (B \ B( ;/ql))bd. Then we have sup,,{|an|} < 1. We see that the image of f;
under the isomorphism in Corollary 3.64 lies in Ws(ﬁio) 1, for any s < r. Moreover,
the image of the sequence (f;)ien converges in W*(L” )y, in the |- |s+norm (because
the f; converge for || - ||z, and Lemma 3.66), and its limit is the image of f which
then lies in ATL O

The ring 5£’§1(£Bperf) therefore carries a weak topology which is defined as the
subspace topology coming from ATL CA;L.

Consider the ring oc, ®o, W (L’,)r. We define a topology on oc, ®or, W(L);
by taking the sets

Un = oc, @0y, (7"W(L2)1 + wiW (05 )1)

as a neighbourhood basis of 0. This coincides with the usual topology on the tensor
product as in [1, Tag 0AMU] since we have

7rnO(Cp ®0L W([A/ZO)L C Una
and hence
Up = ("0, @0, W(LA)1 + (0c, @0y (7" W (L)1 + wiW (07, )1))-

Then we form the completion

oc, o, W(L2) 1 = limoc, /7" oc, @0, W(L2) L/ ("W (L)1 + wipW (0g, )1)-
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3.4 Rings of bounded functions

Since oc, is a flat or-module, we have an inclusion
oc, ®o, W(op, ) = oc, ®o, W(L2)L- (3.1)

Remember that £k = or/(7) is the residue field of L. We have an injective map
between k-modules

(02, B0, W (055 )0)/ () = 02, /(7) @4 0, < 00, /(1) @1 Ly, = (08, @0, W(E2)1)/ ().
This implies that the preimage of 7(oc, ®o, W (L)1) under 3.1 is given by
W(OCP ®0L W(Oi?x,)[’)'

Since W (L’ )1, and by flat base change also oc, Qo W (L) are m-torsion free,
the same is true with 7 replaced by n"™ for every n. Let

S @ (n"f; +wikgi) € og, @ (AW (L)L + WiW (07, )r)
for elements ¢; € oc,, fi € W(IAJZO)L,gZ- € W (o}, )z such that

Y@ (mfi twlg) = ;@ g € oc, o, W(op, )L

oo

for elements c;- IS o(cp,g;- IS W(oﬁboo)L. Then 3 ¢; ® wiigi € oc, Ro,, W(Oﬁ?}o)L, SO

Yo fi=) G®g;— ) ci®wpgi € oc, Qo W(og, )L
Together with the previous observation we see that
Zci ®@n"f; € m"(oc, oy, W(Oﬁgo)L)-
This implies
Un N (oc, ®o, W0, )1) = oc, ® (7"W(op, o +wiW(op, o) =t Va

for every n which we may take as a neighbourhood basis of 0 of oc, ®,, W (0, )L
with the same argument as above. Then the maps

(OCP Ror, W(Oﬁboo)L)/Vn — (OCp ®or, W(f’léo)L)/Un
are injective for every n. Completion then yields an injection
0c, B0, W (05 )1 — 00,80, W (LX),
where both sides have the projective limit topology.

Now consider ﬁ(cp[l /T =U,,T _mﬁ(cp with the inductive limit topology. Note
that 7" is not a zero divisor in R, since it is not a zero divisor in Og, (BP*(r))
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3 The Robba ring over B8Pt

for any r and we have an embedding }?l(cp — Og, (B (r)) (Remark 3.27). We use
the notation T' = Ty and T; and ¢; as in Remark 3.27%. Note that with 1/T we also
have the elements 1/7;. This can be seen by writing

0i(T;) = Ty(m + Tff1 + terms of higher order),
i.e. T; divides Lpi(TZ-).AThen the inverse of T; is given by the inverse of T;_1 = ;(T;)

times an element in Rc,.

Let Rc,[1/T)" be the m-adic completion of Re,[1/T]. Note that Re,[1/T]" is
Hausdorff for the topology which has Wn}/%(cp[l JTN + T"ECP as basic open subsets.
We claim that we have maps

gé;gl(%perf) s ECPD/T]/\ — O(Cpé\@oLW(f’Zo)L'

Again we may assume ¢o(T) = T? + 7T. Let f € Sg:fl(%perf)’" = Eg:’fl(‘Bperf) N
R@p(%perf)r. Let (f)ien, (f7 )ien two sequences as in Corollary 3.78 such that

)

(fi¥ + 7 )ien converges to f in R@p(%perf)r and such that f;", fi € E(E;Sl(%perf)
for every i. Then f;r € E(Cp for every i, and the sequence converges for the
(m,T)-adic topology in Rc,. On the other hand, we may assume that the f;” =
Yoma T e (’)Cp(%\%(rl/qi)) are finite sums. Then the f; lie in ECP[I/T] and
converge m-adically in ﬁ(cp [1/T)". This gives a well-defined injection 5%’51 (Bpert)
Re, [1/T)".

We have an isomorphism
0(Cp®oLRL = R(Cp-

The isomorphism from Lemma 3.57 shows that oc,®o, W (07, )1, = }A?,(cp. Then
we have a map

Re, [1/T] = (00,80, W(0g, )r)[1/we] < 02, @0, W (L)L

Passing to the m-adic completion (note that OCP®0LW(ﬁbOO) 1, is m-adically complete
by the same argument as in Lemma 3.14) then gives a map

Re, [1/T" < og, @0, W (L2
We then have maps

ELEH(BPT) o ELEN (B 5 og, B0, W(LL) 1

Note that image of the sequence (f;"+f; )ien € S}L(’Sl (BPerf) converges in oc, ®,, W(L2);
for the weak topology.

5This notation is, of course, also possible if the given Frobenius power series is not the special
one.
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3.4 Rings of bounded functions

Definition 3.81. The weak topology on S}fl(%perf) is the initial topology with
respect to this map.

Remark 3.82. If we write cS‘;r<’§1(%13‘31”f)"r for the subring of Ekgl(%perf) which
consists of the elements of the form fT, then the weak topology has a neighbourhood
basis of 0 consisting of the sets

et ety 4+ Tre RSt (mret) T

The o] -action as well as the map ¢ restrict to Ekgl(%perf). The map ¢ is contin-
uous for the weak topology. This follows from the continuity of the corresponding
map

id ® Fr: oc,®0, W(L2) 1 — 0c,®0, W (L2

Lemma 3.83. Let R be a ring and M, N two linearly topologized topological R-
modules. Let G be a profinite group which acts continuously on M and N. Then
the diagonal action of G on M @ N is continuous.

Proof. Exercise 3.1.9 in [34]. O
Lemma 3.84. The o} -action on E}L(’SI(SBperf) is continuous for the weak topology.

Proof. The previous lemma shows that the oj -action is continuous on oc, R0 LW(IALZO) L
This implies the continuity of the o} -action on 5;((58perf)§1 because the map
E}L(’Sl(inerf) — o(cp@@oLW(lA/boo)L is o} -equivariant. O

We define the weak topology on Ekgl(‘l%perf)r as the subspace topology from
ELSH(BPert). We endow &) (BPT) = (U, o 7 "ELSY(BP) with the inductive
limit topology.

Lemma 3.85. The inclusions S}L(’Sl(‘Bperf)’” — R (BP and 5}}’§1(%perf) —
R (BP) are not continuous (where Ry (BP)" resp. Ry (BP) have the Fréchet

resp. the locally convex inductive limit topology and E}L(’Sl(%perfy resp. Skgl(%perf)
carry the weak topology).

Proof. Firstly, let ¢ > 0, v > r, and U = {f € R(B*)"|||f|l» < €} which
is an open subset of Ry (BPe)r. If Ekgl(%perf)r — Ry (BP" was contin-
uous, then the preimage of U in Ekgl(%perf)r would contain a set of the form
(erehst(mpert) 4 T"S}Lfl(%p“f)ﬂ N S}Légl(%pcrf)T. But since we always find an
element f € w"é‘}fl(%mrfy such that [|f||,» > ¢ (take for example f = 7" -T~™
for large m), this is not possible.

We show similarly that the inclusion E;rggl(%perf) — R (BP) is not continuous.
Choose a decreasing sequence (g,,),, of real numbers ¢, > 0 which converges to zero,

and let (r,), and (s,)n be two increasing sequences such that 0 < r, < s, < 1. Set
Un = {f € Re(BP")™ ||| flls, < éen}. Then U :=3, U, C Ry (BPT) is an open
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3 The Robba ring over B8Pt

set. For any k, there is an m such that the element 77 ~™ does not lie in the preim-
age of U in Skgl(%perf). This is because we find an ng such that &,, < |7*| and we
can choose m large enough such that we have [7*T~™|,. > ¢, forn =1,...,n9. We
have ||[7*T~™|, > ||[#*T~™|; = |7*| for any r, hence ||[7*T ™|, > &, for n > ng
as well. Hence the preimage of U in S;(’Sl(%pcrf) does not contain a set of the form
anethsl (%perf) + T"E}L(’Sl (%perf)—i-_

O
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4 Construction of Ry (XP)

Let L € K C C, be a complete nonarchimedean field. We construct a preperfectoid
version of the varieties X(r) which we denote by XPf(r). Based on that we will
construct a "preperfectoid" version of the Robba ring over X.

4.1 Construction of XP(r)

Let r € Sy, for some n (Definition 2.7). The affinoid subdomains X(r) C X from the
first chapter form an open covering of X. The K-algebra O (X(r)) is a reduced
affinoid Tate algebra. We have a Tate-Huber pair (O (X(r)), Ok (X(r))=!) where

Ok (X(r)=" = Ok (X(r))° = {f € O (X(") | |fllx() < 1}

are the power-bounded elements of O (X(r)), and (O (X(r)), Ok (X(r))=!) is sta-
bly uniform (Remark 1.30). For ¢ € N, the action of p,

P s O (X(rP)) = O (X(rH/7")),

is isometric for the supremum norms || - Hx(rl /vy TEspective Il X(r1/r (Remark
2.11). In particular p, is continuous and satisfies

pe(OK(X(r7))=1) C Ok (X(rMP 7)) <1,
We have inductive systems of rings
O (X)) B O (X" B . B 0k (X)) B Ox (BEr/7 ")) B
and
Or (X)) B O (X7 DS B Op (R(rYP)S B O (x (/P )1 B L
Set
Ok (X7 (1)) := lim O (X(r/7")),  and

O (27 (r)) = lim O (X(r/7))=".

p*7i

Then (@K(%perf(r)),@}(Z{perf(r)) is the inductive limit of the inductive system
consisting of the maps

P s (O (XYY, Ok (X(r7)SY) = (O (X(VP™), Ok (X(r/7)=Y)

for every i in the category of uniform Tate-Huber pairs as in Proposition 1.55. Its
pair of definition is (O (XPei(r)), (7)).
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Remark 4.1. OL(XP(r)) = Og (P (r))°, ie. OF(XP(r)) consists of the
power-bounded elements of O (XP (r)).

Proof. Let f € O (XP(r))° be power-bounded. Then any preimage f;, € Ok (X(r'/P"))
of f under the canonical map O (X(r'/7°)) — Ok (%P (r)) is power-bounded
since the transitions maps p, in the inductive limit are isometric. Therefore f;, €
Ok (X(r'/?))=! and hence f € OF(XP(r)). On the other hand, every element

of (’j}(%perf(r)) clearly is power-bounded. O

We denote by O (2P (1)) the m-adic completion of O (XP(r)) = O (2P (r))°
and set

OK(%Perf(T.)) — O}i-((xperf(r)) ®@;(xperf(r)) @K(:{Perf<r))
which is the completion of O (XPf (7). Then (O (XP (1)), OF(xPeri(r))) is the
completion of (O (X (1)), OF (2P (r))). Tt is again a uniform Tate-Huber pair.
Remark 4.2. We have O (XP°(r)) = OF (XP(r))[1/7].

Proof. OF(XP(r)) is a ring of definition. The element 7 € OF(XP(r)) is
a topologically nilpotent unit in O (XPf(r)), hence we have O (XPe(r))
OF(xPt(r))[1/7] because of Remark 1.7.

Ol

We consider the inductive limit seminorm on O (%perf(r)) = ligp ; ) K(%(rl/ pi))
Hx(rl/pi) on each Ox(X(r/P)). It is a

norm on O (XP(r)). This is because the transition maps p, : O (X(r1/?")) —
Ok (X(rY/P"")) are isometric with respect to the supremum norms for every i (Re-
mark 2.11). Note that this norm induces the topology on O (XPef(r)) as a Huber
ring. Passing to the completion O (XPe(r)) gives us a norm on O (XP(r))
which induces the topology on O (XP°f(r)) as a Huber ring and which we denote
by || - [|xpers(py- It is multiplicative because the norms || - /iy are multiplicative

coming from the supremum norms || -

e,
(see the explanation after Proposition 2.9). For f € Ok (XP*(r)), we have

£ llzpert(ry = 11 fio | o
where f;, € Ok (.’{(rl/pio )) is a preimage of f under the canonical map (’)K(.’f(rl/pio)) —
O (xP (1)),

Remark 4.3. If we regard the Tate rings O (X(r'/P")) as normed rings using
the norm defined in Remark 1.6 and form the (completion of the) inductive limit
seminorm coming from these norms, then the induced topology on O (XPe(r))
resp. O (%P (r)) coincides with the topology on O (XP*(r)) resp. O (XPe (1))
as Huber rings as well.

Definition 4.4. We define the preadic space %I;frf(r) := Spa(O (XP(r)), OF (XPei(r))).
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4.1 Construction of XP°(r)

Lemma 4.5. We have an isometric isomorphism of Banach algebras
Oc, (X (r)) 2 Oc, (B (a))

for a certain radius a (if r € Sy, then a € R,,).

Proof. If a > p~%/¢@=1) then
[P (B0 = Blat/)

for every i € N (Lemma 2.8). We have an isometric isomorphism Oc, (X(ri/7")) =

(’)@p(%(al/qﬂ)) (Proposition 2.9) for every i € N. Moreover, for every ¢ € N the
diagram

Oc, (X(r/7")) —" O, (B(a/1"))

.| s

Oc, (X(r1/7"™")) —> Oc, (B(at/1M))

commutes. This gives an isometric isomorphism

O, (X7 () = lim O, (X(r/7")) = O, (B7(a)) = ling Oc,, (B(a'/7")).

P 9i P+ 71'

The latter is isometrically isomorphic to lig@i(’)@p(%(al/ qi)) (which can be seen

as in the proof of Lemma 3.37). Passing to the completion gives an isometric
isomorphism

Oc, (X" (r)) = Oc, (B (a)).

Proposition 4.6. %%erf(r) is an L-preperfectoid space.

Proof. We show that the uniform completion of O (XP*f(r))®,C, is perfectoid.
Firstly consider the algebra Op (XP(r))&/C, with the tensor product norm. Since
the tensor product norm is compatible with the inductive limit norm (Lemma 6.13),
we have

OL(x(r)B1.Cp = limy (OL(X(r7))ELC))

where on the right hand side we take the completion with respect to the inductive
limit norm coming from the tensor product norms on the Or(X(r'/?"))&;C,. The
induced spectral norm coming from the tensor product norm on Or,(X(r'/?"))&xC, =

(’)(cp(.’{(rl/pi)) coincides with the supremum norm on (’)@p(.’{(rl/pi)) for each ¢
because both are complete power-multiplicative norms which then coincide ([31,
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4 Construction of Ry (¥PT)

Lemma 3.8.3/3 and Theorem 6.2.4/1]). It follows that the spectral seminorm com-
ing from the seminorm on lg (OL(%(rl/pZ))@)L(Cp) coincides with the norm on

C’)Cp (xPerf(1)). This implies that the uniform completion of Op(XP(r))®.C, is
isomorphic to O¢, (XP*"(r)) which is isomorphic to Oc, (BP* (a)) as in Lemma 4.5.
But the latter is perfectoid (Lemma 3.21 and Corollary 3.20).

O

Remark 4.7. We have

X5 ()| = lm m [Spa(Ok (X(r'/7"), OF (X (/7))

for the underlying topological spaces (Proposition 1.55 and Proposition 1.38).

Proposition 4.8. The K-points of %I;(erf(r) are the K-valued locally analytic char-
acters x of L such that |x(g) — 1| <r for all g € of,.

Proof. We have X(r) = Xo(r) N X, and an isomorphism of rigid varieties

B1(r) ®z, HomZp(oL, ZLp) — Xo(r),
2@ B (g 2P,

Therefore the K-points of X(r) are the locally analytic characters x : o — K*
such that

Ix(g9) =1l <r georL
Let (xo0, x1,---) € Liinp* Z.%(7“1/%’1)(](). We define a character
x:L— K,
1/p’ oL 3 @ — xi(p' - x).

Now remember that r > p~?/P~1 If y : L — K* is a character such that X|o, takes
values in B1(r), i.e. x|, € X(r)(K), then we get a character

Xlop (1/p") 101, = K™,
x = x(z/p)

which fulfils x,, (1/p-)? = X|o, and hence takes values in B, (r/?) (Lemma 2.8).
By repeating this argument we get an element

(Xlog» Xjor, (1/P "), Xjoy, (1/D% ), ...) € L% ri/rh)

This gives a bijection between l'&np* ; X(r¥/?")(K) and the K-valued locally analytic

characters x on L with |x(g) — 1| <r for g € of.
O
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4.2 A preperfectoid version of R (X)

4.1.1 The monoid action on X% (r)

To define an of, \ {0}-action on O (XP(r)), we start with defining an of, \ {0}-
action on the dense subset O (XP°(r)) = ligp ZA(’)K(.’a’€(fr*1/7’l)) of O (XP(r)).

Let a € or \ {0} and f € O (XPf(r)). Then set
a*(f) = aio(a*(fio))v
where f;, is a preimage of f under the canonical map
tig : Ok (X(r'/7)) = Ok (X7 (1)),

This is well defined because the action of an element a € o, \ {0} on O(X(r!/?"))
commutes with the transition maps in the inductive limit p, : Ox (X(r'/?")) —
Ok (X(r'/P™ ).

The resulting map

ax : O (XP (1)) — O (XP (1))
is continuous and by passing to the completion O (XPf(r)) we get a continuous
map

as : O (XP (1)) = Ok (XPE(r)).

We have a.,(OF(XP(r))) C OF(XP(r)), hence a. defines a morphism of Tate-
Huber pairs. We get a corresponding map a* : X2 () — X2 () between preadic
spaces.

4.2 A preperfectoid version of Ry (X)

We start with constructing rings O (XP°™ (rq, r9)) analogue to the rings O (XPe(r)),
but with the rings Ok (X(r1,72)) instead of O (X(r)).

Throughout the rest of this chapter, we assume that all radii which occur in re-
lation to X (as in Ok (X(r1,72)) or Ok (XPeE(r))) like 71,79 (or 81,52 etc.) fulfil
pf(He/(p*l))/epn <ry <ry <1, withr €S, and r2 € U,,,;>,, Sm (see Definition
2.7), and a single radius (like r) is assumed to lie in some S,,, unless stated otherwise.

The O (X(r1,72))) are reduced affinoid Tate algebras (over K). Every Og (X(r1,72))
is stably uniform (Remark 1.30). Hence we have stably uniform Tate-Huber pairs
(Ok (X(r1,72)), Ok (X(r1,m2)=).

Lemma 4.9. If z € By with |2? — 1| > p /=D then |(z — 1)P| = |2P — 1].
Proof. Let z =z + 1, then
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4 Construction of Ry (¥PT)

since |(?)a*| = p~tz|* for 0 < k < p. If [z] < p~/®P~D then
maX0<k<p(P71|x|ka ‘$p|) < maX0<k<p(P71P7k/(pil)uPip/(pil))
< max(p~lp~ V= pp/(p=1)y
_ p—p/(p—l),
since pilpfl/(pfl) — pf(pfl)/(pfl)pfl/(pfl) — pfp/(pfl)_
But this contradicts |2 — 1| > p?/®=1) 5o |z| > p~/®=1), Then

pt - falt < pT | < faf?

for 0 < k < p since p~! = p~®P=V/P=1) < |z|P~1. Therefore 2P — 1| = |2P| =
|(z — 1)P|. O
Lemma 4.10. The preimage of X(r1,r2) under p* : X — X is %(r}/p,r;/p).

Proof. If z € By with |27 — 1| > p~P/(P=D then |(z — 1)P| = |2P — 1| (Lemma 4.9).
Write

BEO (11, 79) = {(@1, oy 2a) € BY(ra) | s — 1] > 1},
then
(") (B (1, 2) = {(@1, - 2a) € BY " (1) — 1 > r1 andp* (z) € B (r2))
={(z1,...,za) € BY| |20 — 1| > ryand p*(z) € B (r2)}
_ ‘Bf’(i) (Ti/p, T;/p)'
Identifying %f’(i) with %(()i), we see that
(") (3% (1 r2)) = %0 () 7ry").
We conclude that the preimage of X (r1,r2) = U %g) (r1,r2) under p* is X (ri/p, r;/p)
because we have (p*)_l(.’{((]i) (ri,m)) = .’{(()i) (ri/p, r;/p) for every ¢ and therefore

(") (Xo(r1,m2)) = Xo(ri/”,m3"").
Then we have (p*) ! (X(r1,72)) = (p) " (Xo(r1,72) N X) = X017, 7y/"). 0

Alternatively, one can compute

(P~ (X (r1,r2)) = ()T (X (r2) \ X7 (1)) = () TN (X(r2) \ [ X(r))
=) @)\ U ) &)

r<ri

=2\ U x0r)

r<ri/p

= %(r%/p,r%/p).
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4.2 A preperfectoid version of R (X)

We get a map
P : O (X(r1,72)) = O (X(ry/", /7).

Remember that after base change to Cp, X(r1,72) /c, 1s isomorphic to some an-
nulus B (a1, az2),c, (Remark 2.12).

Lemma 4.11. For every i € N, the action of p,
1 7 1 7 1 741 1 7+1
pe: Ox(X(ry" /")) = Ok(@(™ 1)
is isometric for the supremum norm and therefore injective.

Proof. After base change to Cp,, X(rq,72) and X (r}/ P r%/ Py are isomorphic to affinoid
annuli B¢, (a1, az) and %Cp(ai/qe,aé/qe). The map p* : B(C,) — B(C,) on Cp-
points is surjective. Since the action of p commutes with the isomorphism k :
B¢, — Xc,, the map p* : X(Cp) — X(C,) on C,-points is surjective as well. With
Remark 4.10, we see that

p*: X(rP, /") (Cy) = X(r1,72)(Cy)

is surjective. Therefore p, : O (X(r1,72)) — (’)K(.’{(r%/p, r;/p)) is isometric for the
supremum norm. ]

The pairs ((’)K(%(ri/pz, r;/pz)), OK(%(ri/pl,r%/pz))gl) for i € N together with the
maps p, form an inductive system in the category of uniform Tate algebras. We
form its inductive limit by setting

Ox (X7 (11, 72)) = lim Ok (X(r 1/, 1",

p*ﬂ‘

and

O (xP (14, 1r3)) 1= lim OX(ry/,y/") =,

P« »i

We get a uniform Tate-Huber pair (O (P (11, 72)), O (XP (r1,73))). We define
OF (%P (r1,79)) to be the 7-adic completion of O (XP*(r1,75)). Then

OK(%Perf(m’ r9)) 1= @K(xperf(rl,Tg)) ®@}(%perf(hm2)) O}(%Perf(rl,,@)).
is the completion of Qg (XP (r1,75)). Again, we have
O (XPH (11, 72)) = O (XP (1, m2))[1/ 7]

because of Remark 1.7.
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4 Construction of Ry (¥PT)

Next, we define a norm on O (%P (ry,75)). Consider the inductive limit semi-

norm on O (XPf(r1,75)) coming from the supremum norms || - H%(Tl/pi J1/pty OB
1 "2

the (’)K(%(ri/pz,r;/pz)). Since the transition maps p, in the inductive limit are

isometric for the supremum norms || - Hx( VTN (Lemma 4.11), the seminorm is
"y

a norm. It induces the topology on O (XPf(r1,79)) as a Huber ring. We pass to
the completion O (XPef(r1,75)) and denote the resulting norm by || - | pers

For an element f € O (X (11, r5)) we have

r1,r2)"

HfH%PCrf('rl,'rQ) = Hfio”x(T}/pio 7T;/;ﬂo)

for a preimage fi, of f € O (%P (r1, 7)) under the canonical map
QG OK(%(ri/piO,r;/pio)) — O (XP (r1, 7).

The norm || - || gperr(y, 1) is power-multiplicative because the norms || - Hx( i /ety
’ 7‘1 ,7’2
are power-multiplicative for every i. Note that we have an isometric embedding

Ok (X" (r1,19)) — Oc, (XP°™ (11, 72)) which comes from the isometric embeddings
OK(%(TVPZ, T;/pl)) — Ocp(f{(ri/pl,v“%/pl)) for every i.

Lemma 4.12. We have an isometric isomorphism of Banach algebras
Oc, (X7 (r1,72)) = Oc, (B> (a1, a2))

for certain radii a1,a2. If r1 € S, and ro € | S, then a1 € R, and ag €

UmZn Rm

m>n

Proof. We have an isomorphism (’)Cp(%(r}/pi,r;/pi)) = (’)@p(’B(ai/qa,a;/qei)) for
every i € N and radii a1, as as in Remark 2.12. We have

_ 1/q¢* 1/qg€% 1/qe(i+1) 1/ge(i+1)
) (B ay/ 7)) = B(a)/ T a0y

for every i € N which follows from Lemma 3.28. Moreover, the diagram

Oc, (X(r/", ry/"")) Oc, (B(a}/"",ay/"™))

.| o

1/pitl  1/pitl 1/ge(i+1) 1/ge(i+1)
Oc, (X(r" /")) —=Oc, (B a3/ "))

commutes and the horizontal maps are isometric isomorphisms. This gives an
isometric isomorphism

@CP(%Perf(T‘hTz)) = hﬂ@(cp(%(ri/pljré/p’)) ~ O(Cp<%perf(a1’ ag)) _ hgo(cp(%(a%/qm, a;/qel)),

p*vi p*vl
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4.2 A preperfectoid version of R (X)

The latter is isometrically isomorphic to lig@ . Oc, (‘B(ai/ql, aé/qz)) (Lemma 3.37).
Passing to the completion gives an isometric isomorphism

Oc, (XP" (r1,12)) = Oc, (B (a1, az)).
OJ

Proposition 4.13. The preadic space Spa(Op(XPei(r1,19)), OF (XPe(ry,79)) s
L-preperfectoid.

Proof. This follows by the same arguments as in Proposition 4.6. O

Let 1 < 851 < s9 < ro with 71 € 5,,,79,51,89 € Umz” Sm (after the general

assumption on the radii). Then we have restriction maps
1/pt  1/p* 1/pt  1/p*
res - O (X(r/”,ry™)) = Oxe(X(5y", 55/7))
which are injective. This is because there are radii a; < b; < bs < as such that the

diagram

Ok (X(r” 1y/")) —= O, (X(1" . 1y/")) —== Oc, (B(ay/ ™", a) )

res l i res \L res

Ore(X(sy"", 55/7)) —= Oc, (X513 —= 0c, (BOY,1/*))

commutes, and the horizontal maps are isometric inclusions resp. isomorphisms,
and the map res : Ocp(%(ai/qm, a;/qm)) — O@p(%(bi/qm, b;/qm)) is injective. Since
the restriction commutes with p., we can pass to the inductive limit and get a
continuous restriction map

res : @K(%perf(rl,rg)) — @K(%perf(sl, 592)).
Passing to the completions gives a continuous restriction map
res : O (XP (11, r9)) = O (XP (51, 52)).

(Since the restriction Ok (X(r1,72)) — Ok (XP(t1,15)) coincides with the compo-
sition of the restrictions O (XP (11, 79)) — O (XP (51, 89)) — O (XP (11, 12))
if r; <s1 <t; <ty < sy <1y we just write res without reference to the radii.)

Fix a radius rg € S,,. The rings (’)K(%perf(rl, r9)) for ro < r; < ry together with
the restriction maps form a projective system. We form their projective limit

RK(xperf)ro = ]&n OK(%Perf(rth)).

ro<ri<re<l

If sg < rg, we have continuous restriction maps

res : RK(%perf)SO — RK(%perf)”’.
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4 Construction of Ry (¥PT)

Lemma 4.14. For every rq € S, there is an ag € R, such that we have an
isomorphism

R(Cp (%perf)ro ~ R(Cp (%perf)ao )

Proof. Let r1 < s1 < s9 < 19. There are radii a1 < by < by < a9 such that the
diagram

Oc, (X(r™ 1)) — O, (B(a)"" a3/ "))

res i \L res

Oc, (X(s1/"",sy/"")) —= Oc, (B(bY*",6y/7"))

P

commutes and the horizontal arrows are isomorphisms for every ¢ € N. This follows
from Remark 2.12. This gives rise to a commutative diagram

O(Cp (:{perf(rh 7”2)) . O(Cp (;Bperf(ah a2))

res \L i res

Oc, (XP" (51, 59)) — Oc,, (B (b1, b))

where the horizontal arrows are the isomorphisms from Lemma 4.12, and the lemma,
follows. o

Definition 4.15. Forn € N set
RK(%perf) o RK(%perf)p—(l“'e/(r’—l))/eza"
n = .
We define the "preperfectoid” Robba ring over K as

RK(%perf) = MERK(%perf)n-

If we set
Re, (BPIT),, = Re, (pertyr /0
P D 5

then we have an isomorphism Rc, (xpert),, =~ ch(%perf)n. Over C,, the Robba
ring over X¥P! is isomorphic to the Robba ring over BP°f ie. we have

R(Cp (:{perf) o~ R(Cp (%perf)‘
Proposition 4.16. Let vy < s1 < sy < 1r9. The restriction map
res: (’)K(%perf(rl,rg)) — (DK(%perf(sl, $2))

1S injective.
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4.2 A preperfectoid version of R (X)

Proof. There are radii a; < b; < by < as such that the diagram

OK(}:perf(Tl’ 7"2)) . Ocp(%perf(ﬁ, 7"2)) i> O(Cp (%Perf(al, ag))

res \L \L res i res
~

Ok (X2 (51, 52)) —— Oc, (XP" (51, 82)) — Oc, (B (b, b2))

commutes, and the horizontal maps are isometric inclusions resp. isomorphisms.
Therefore it is enough to show that

res : Ocp(%perf(al, az)) — OCP(%perf(bl, b2))
is injective. But this is Lemma 3.33. O
Corollary 4.17. Let sg < ro. The restriction map
res: T\’,K(%perf)so — RK(%perf)m
18 injective.

Proof. This follows from the previous proposition and the fact that projective limits
are left exact. O

The K-algebras O (XPf(ry,75)) are Banach algebras. Therefore the rings
Ry (xperfyro = Wm O (XP°™(ry,r9)) are the projective limits of Banach

algebras and hence Fréchet algebras. The ring RK(%perf) is an inductive limit
of Fréchet algebras. We endow R (XPf) with the locally convex inductive limit
topology. Over C,, the isomorphisms R@p(aeperfy & R@p(%perf)“ and Rc, (xperf) =~
Re, (BPT) are topological.

Lemma 4.18. Let r; < 51 < 89 < 1r9. The restriction maps
res : O (XP(ry, 1)) = O (XP (51, 59))
have dense image.
Proof. According to the proof of Proposition 2.1 in [6] the restriction maps
res : OK(%(ri/pi,r;/pi)) — OK(%(S}/pi,sé/pi))

have dense image for every i. If f lies in @K(f{perf(sl,SQ)), then a preimage f;,
under the canonical map

1 i0 1 i0 o
(07 OK(%(Sl/p 782/p )) — OK(:{perf(Sl, 82))
can be approximated by elements in the image of the restriction map

res OK(%(T}MO T%/pio)) - OK(%(sypio,sé/pio)).
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4 Construction of Ry (¥PT)

The images of these elements under the map «;, approximate f. We see that the
restriction maps

@K(%perf(rh 7'2)) — @K(:{perf(sl, 32))
have dense image. Passing to the completions finishes the proof. O

Proposition 4.19. Ry (XPe!) is Hausdorff.

Proof. We have a continuous inclusion
RK (%perf) SN R(Cp (%perf) ~ R(Cp (%perf).

Therefore it is enough to show that R, (BPT) is Hausdorff. Let ng € N and
f,9 € R, (BP),, € Re, (BP) be two distinct elements. We may assume that
o(T) =TI+ 7T. Write f = f~ + ft and g =g~ + g* as in Lemma 3.76. Choose
an rg > p~/e@=14"  Then set

c:=max{||f* — g o, I/~ — 9 1}

Choose elements s,, such that p_l/e(q_l)qe(nﬂ) > s, > p Vela=1)a™ for every n > ny
and define

Uy = {f € Re, (B, ||| fllsn < ¢/2}, and
Vo= {g € R, (B* )| g5, < c/2}.

These are open subsets of Rg, (BPT),. Then in Rg,(BP) we have the open
subsets

U:=f+ Z Up, resp. V:i=g+ Z V.

n>ng n>ng

Assume that U NV is not empty, i.e. there are elements f,, € Uy, and g,, € U,
J J
such that

f+fn1 ++fnl :g+gs’1 "i_"i_gn;C
Then we apply Lemma 3.76 to the f,, and 9, tO obtain a decomposition f,, =

f;; + fn, and g,y = gZ,‘ +g,,- The uniqueness in Lemma 3.76 implies

+ ot ot + _ ot +
P9t =tutt =9y ++gy, and
=9 = 1?1+-~+f1:z_97:'1+"-+9;;€'
This implies either

o R e S T

foy + oot Fy = G+ g 1 =
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4.3 Rings of bounded functions

We show that both cases are not possible. We have

1 nillsn, = max{llfif s, s 1 lls, } < /2

after Lemma 3.76 and hence [ £,/ s, < ¢/2 as well as || f,.|ls,, < ¢/2. Note that
the f, can be regarded as elements in Og, (BP(rg)) so that the norm || - ||, is
defined for every f;:_. Since rg < s, for every ¢ we have

£ Mo < 1 llsi < /2

for all i = 1,...,1. Of course we also have ||g’,[l,, < ¢/2 for i = 1,...,k with the
same arguments. Therefore the first case is not possible.

The second case is impossible for a similar reason. Note that the norm || - ||; is
defined for every f, and that we have

[l < i llsn, < /2

for i = 1,...,1. Analogously we have ||g /|| < c/2 for all i = 1,...,k, and hence the

second case is impossible. Therefore V' and U are disjunct open sets in RCP(‘Bperf)
which separate f and g. O

Lemma 4.20. (i) The inclusion
O (X(r1,m2)) = O (XP (11, 1r9))
18 continuous.
(ii) The inclusion O (X \ X,) = Rx (XP°™),, is continuous.
(i4i) The inclusion Ry (X) — Ry (XP) is continuous.

Proof. Part (i) follows from the fact that the inclusion is isometric, (ii) follows from
(7). For (iii), we have to show that the composition

Ok (X\ X,) = Ri(X) = Ry (xPeh)

is continuous in Ok (X \ X,,) (see [11, II, 4, Prop. 5]). This follows from (ii) since
Ok (X\ X,) = Ri (X factors through Ry (XP°™),, — Ry (XPef). -

4.3 Rings of bounded functions

Let 1o <1y < s1 <53 <rg with 79 € Sp, 71,72, 51,52 € Up>p Sm (after the general
assumption on the radii) and f € Ry (XP)’0. The norms ||f|| xpert () o) A1
[ fllxpert (s, 5,) ave defined using the projections R (XPerhyro — O (2P (11, 79))
and Ry (XP)0 — O (XP (51, 59)). We have

||f||%Perf(r1,7“2) > HfH%perf(sl,SQ)'
We say that f is bounded if there is a constant C such that

[ fllxpert(ry ) <€ forall mo <rp <o

105



4 Construction of Ry (¥PT)

Definition 4.21. We define
Ry (xPeryrobd .— [ € Ry (2P0 | f is bounded }.
and

g}'{(%perf) — hﬂ RK(%perf)T,bd C R(xperf).

r—1

Let ry > rg and f € Ef(XPT). We set || fllry1 = lim || fllzper(r, ). Since
Il llro,t <+ |l 1 for 71 < ra, we can define the seminorm

1111 = ling || £l
r—1

for f € 5}((3€Perf).
Remark 4.22. We have
Ele(xveh) = el=H(xreh) (1 /7]
with
ERE Pty = {f € (xR ||| £l < 1}
perf) o

Remark 4.23. The seminorm || - [|; is a norm. The isomorphism Rc, (B
R, (XP'T) restricts to an isomorphism

g(;f:p (%Perf) ~ 5<Jép (%perf) _

It is isometric for the || - ||;-norm on both sides and therefore restricts to an isomor-
phism ggjfl(%perf) ~ gg:fl(%perf).

Proof. The isomorphism Rg, (BP)* = Re, (XPF)" from Lemma 4.14 restricts to
an isomorphism R, (BPoT)abd = Re (xPerf)nbd This follows from Lemma 4.12
which moreover implies that the isomorphism is isometric for the || - ||1-(semi)norm
on both sides. Since || - ||; is a norm on Egjp(%perf) (Lemma 3.79), the same is true

for || - [} on & (xPert). O

Let f € Og(XP(ry,ry)) and t € Umsn Sm with 71 <t < rp. We define a
norm || |l := [[res(f) | xperr(1s) analogue to Remark 3.31. Then, using the isometric
embedding

OK(:{perf(Tl,TQ)) N Ocp(:{perf(T‘l,TZ)) ~ OCP(%Perf(al,(Zz))

for certain radii a1, as (see Lemma 4.12) and that the isomorphism commutes with
restrictions on both sides, we note that the isomorphism is isometric for || - [|; on
Oc, (XP (11, r9)) and || - ||q on O, (BP (a1, az)) for a certain a € [a1, az]. We see
that

I Wpert gy = 0@ - [l - [l }

as in Lemma 3.34.
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4.4 The monoid action

Lemma 4.24. Let f € S}L((%perf). Then we have

1f1lx = Lim [| f[],-

r—1

The norm || - ||1 is multiplicative.

Proof. We have an isometric embedding O (XP°f(rg, 7)) — Oc, (XP (rg, r)). There-
fore we have an isomteric (for |- ||r,,1) embedding R g (XPerf)ro-bd — R (xperfyrobd,

and an isometric embedding (for || - ||1) 5;((%perf) — (S}Tcp (xPef). Then we can use

the isometric isomorphism S(Ef:p (xperf) = S(Ep(%perf), and the lemma follows from
the above observation and Lemma 3.75. O

We finally define Ex(XPe!) as the completion of Sk(%perf) with respect to || - ||1.

Lemma 4.25. An element f € Ry (XPe)0 C Ry (XP) lies in S;r((.’{perf) if and
only if there is an ro < s < 1 such that {||f||; | s <7 < 1} is bounded.

Proof. This follows in same way as in the proof of Lemma 3.74. O

The rings S}L((%perf) and E}L((%perf)r = R (X n 5}{(%perf) carry the re-
spective subspace topologies inherited from Ry (XPe!) respective Ry (XPe)" (cf.
Definition 5.1.3 in [27]).

4.3.1 The weak topology on &£);=!(xrer)

We have an embedding of rings

R (e s 11 (o) 2 L5 (7)< o0, B0, W(ERe )1
The last ring in the row has a weak topology defined in chapter 3. We define the
weak topology on é’;r(’gl(.’{perf) to be the subspace topology w.r.t to this embedding.
4.4 The monoid action

4.4.1 The monoid action on R (XPe?)

We define an action of of \ {0} on Ry (XP!). The action of @ € o} on the
rings Of (X(r1,72)) is isometric for the supremum norm || - [lx(y, ry)- Let f €

@K(f{perf(r1,r2)) = lignp ioK(%(ri/pi7r;/pi)> and a € o . We define an o} -action
on @K(%perf(ﬁ, r9)) by setting

(@, f) = ig(ax(fio)),

for a preimage f;, of f under the canonical map

iyt O (X7 r3P)) o O (2P (1, 12)).
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4 Construction of Ry (¥PT)

This is well defined because the action of an element a € o] on (’)K(%(ri/pi, r;/pi))

commutes with the transition maps in the inductive limit
1 7 1 7 1 741 1 i+1
pe: Ok ") = Ok, ry/")

It gives a continuous endomorphism of O (XP*(r1,79)) for every a € o} . Passing
to the completion then gives a continuous endomorphism a, of O (XP (1, ry))
which is isometric for || || gpers(., ,)- We get an o -action on O (XPe(rq,79)). The
maps a, commute with the restrictions

res : O (XP (11, m2)) = O (XP (51, 59))

for r1 < s1 < s9 < 1o, and hence extend to the rings RK(%perf)TO and then to
RK (%perf) — hﬂn RK(:{perf)n-

Lemma 4.26. The o} -action on O (XP(ry,r3)) is continuous.

Proof. Each element a € o} acts by a continuous ring homomorphism on O K (XP (11, 19)).
It follows from the discussion under Lemma 2.18 in [6] that the orbit maps

pr:of = O (X(r1,72)),
a > ax(f)

for f € Og(X(r1,72)) are continuous. Let f € @K(%perf(rl,rg)) with preimage f;,
under the map oy, : OK(}Z(T%/]’ZO,T;/I)IO)) — Ok (XP(r1,79)) for some ig. Then
the orbit map

ps:of = Ok(XP(ry,12)),

a— ax(f)
is continuous since it is the composition of a — a. f;,, ai,, and the completion map
Ok (XP(r1,72)) = O (X*" (r1,72)),

which are continuous. If f is the limit of a Cauchy sequence in O (XP (1, 1y)),
then consider the open ball

Us(2) = {g € Ok (X7 (r1,72)) | & = gllzpert(sy o) < €}
around some z € O (XP (r1,79)). Let f;, € O (XP(r, 7)) such that

If— fz‘onperf(Tl’TQ) < e/2.

Then we have

||:L‘ - a*(fio)H.'{Perf(m,rz) <egw= ”ﬂj - a*(f)”xperf(m,m) <e€
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4.4 The monoid action

(since [l (F) = au(f)llxrert ragy = I1f = Fiollreri(ryray < 2/2), and hence
P;l(Ue(x)) = Pzi (Ue())

which is open. According to the nonarchimedean Banach-Steinhaus theorem (see
(32, Proposition 6.15]) this shows the continuity of the o} -action on O (XP° (11, 72)).
O

Lemma 4.27. The o} -action on Ry (XP)" is continuous.

Proof. Again, it is enough to show that the orbit maps
pf o] — Ry (xPerhyr

for f € Ry (XP)" are continuous since Ry (XPf)" is barrelled. But this follows
from the above lemma. O

Lemma 4.28. The o} -action on R (XP) is continuous.

Proof. As an inductive limit of Fréchet spaces, Ry (XP) is barrelled, so we can
use the nonarchimedean Banach-Steinhaus theorem and show that the orbit maps

pr:of — Ry (XP)

for f € Ry (XPT) are continuous. But this follows from the previous lemma
because the map ps factors through R (X" for some r and the canonical map
R (XPH)" — Ry (XPe™) is continuous. O

Remark 4.29. It follows from the construction of the of-action and the o} -
equivariance of the isomorphism B¢, = X /¢, that the isomorphism

Oc, (XP(r,19)) = Oc, (BP* (a1, az)) from Lemma 4.12 is o} -equivariant. The
same is true for the isomorphisms R¢, (XP!)" = R, (BP)* and Re, (XPT) =
R(Cp (%perf)‘

To get an action of the full monoid oz, \ {0} on Rx (XP°), we need the following
lemma:
Lemma 4.30. (i) For any r € [p~?/®=1 1) N pQ we have (7*)~1 (X \ X(r)) D
X\ X(ri/p).

(ii) Letry,ro € [p~P/ =1 1)"pQ such that ry > ri/p. We have (%) 1 (X(r1,72)) 2
%(ri/p,rg), and hence (7*)~Y(U, X(r1,7)) D U, %(r%/p, T)).

Proof. (i) This is Lemma 2.11 in [6].

(ii) Let z € X(Ti/pﬂ“g). Then z € U __ 1/s %(Ti/p,r) =N, _,1/» X\ X(r) which
means 7°(x) € (., X\ X(r) = Ur_zrl1 X(ry,r) after (i). On the other hand,
we have z € X(ry) and therefore also 7*(z) € X(r2). Hence 7*(x) € X(r2) N
Ursr, X(ry,7r) = X(r1,m2).

O
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4 Construction of Ry (¥PT)
Let ro > r}/p, 1e€N and f € OK(%(ri/pi,r;/pi)). Then
m(f) € O (@) &, 1™)),

i1 i
and we have the restriction res(m.(f)) € OK(%(’I"%/]) ,r%/p )) because of Lemma
4.30. We have commutative diagrams

7 7 T Y\ — 7 7 res 7+1 7
Or(X(r™ /") O () HE (", ry/"))) Or(X(r"" )™

iy - -

741 7+1 T *\— 741 7+1 741
Or(X(r™ 1)~ O ()1 (X (1P 1y

) 2= Ox(x(r” "))
Therefore we can pass to the inductive limit and define a continuous map
o+ Ok (X2 (11, 79)) = O (X2 (177 79)),
and by passing to the completions
P (’)K(Z{perf(rl,rg)) — (’)K(.’{perf(ri/p,rz)).
Since this map ¢ commutes with the restriction maps, we get a continuous map

0 Jim Ok (X (r1,79)) — Jim Ok (X7 (177 13)).

T0<T1<T2<1’Ti/p<72 7‘0<T1<r2<1,7’}/p<7"2

Since we have topological isomorphisms (continuous bijective linear maps which
are then open because of the Open Mapping Theorem)

@1 O (XP (11, 19)) — Ry (Pt and
7’0<7‘1<T2<1,T1/p<7'2

. perf /. 1/p perf ri/p

Jim Ok (XP¥ ("7, 12)) = R (XP)"0

ro<ri<ra<l,ri/P<ro
this leads to continuous maps
o RK(xperf)r N RK(xperf)rl/p‘
Especially we have a map
¢ Ric(XP),, — R (KP4
This leads to a well-defined map

p: Ric(XP) = Ry (XPT).
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4.4 The monoid action

To see that the last map is continuous, note that the composition
R (:{perf)n 5 RK(:{perf) BN RK(%perf)
is continuous since it is equal to the composition
R (XPh),, 25 Ry (XP), 01 > Ry (XPH).
Then use [11, II, 4, Prop. 5].

Note that we have u.(¢"(f)) = ¢"(u(f)) for all w € of,n € N, and f €
R (XPef). We get a continuous action of o, \ {0} on Ry (XPeT).

Remark 4.31. The isomorphism R, (XP°) = R¢, (BP) is equivariant for the
action of or, \ {0} on both sides. This follows from the or, \ {0}-equivariance of the
isomorphism X,¢, = B ¢, and the construction of the of, \ {0}-action on the rings.

We already noted this for the o -action. We look in detail at the action of 7 : Let

r < ri/ P < ry and let a,ay, as the corresponding radii as in Remark 2.12. Then we

have commutative diagrams

7 7 T *\— 7 7 res 7+1 7
Oc, (X(r/" /")) Oc, ((7*) (X (r}" /")) Oc, (X(r"" ry/")

: - -

1/gc% 1/g%% Tx KN — 1/g%% 1/gct res 1/ge(i+1) 1/g%%
Oc, (B, a5/ ")) = Oc, (7)1 (B(a" 0y 7)) === O, (B(ay/" 0y "))
which lead to a commutative diagram

Oc, (XP (ry, r9)) — 2> Og, (XPL (117, 13))

l% |=

resow

O(Cp (%perf(ah a2)) _—F O(Cp <%perf(a}/qe’ a2))
and then to
R(Cp (xperf)r *90> R(Cp (xperf)rl/p

lg |=

Re (%perf)a resosapRC (%perf)al/qe'
P P

But for an element f € R, (BP)* C Re, (BP), the elements o(f) € ch(%perf)al/q

and res(¢(f)) € RCP(SBperf)al/qe coincide in the inductive limit R¢, (BPT), so that
the diagram

R(Cp (xperf) ¥ 5 RCP (%perf)

lg ig

RCP (inerf> 4"0> R(Cp (%perf)
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4 Construction of Ry (¥PT)

commutes.
Proposition 4.32. The action of © on Ry (XP) is bijective.

Proof. Firstly, we show that the map
pe : Oxc (X2 (r1,12)) = O (X2 (r7,1y/7))

which comes from the maps p, : OK(%(ri/pl,r;/pz)) — OK(%((ri/p)l/pi, (r%/p)l/pi)
is bijective. It is injective since it is an isometry (this follows from Lemma 4.11).
To show surjectivity, let f € @K(%perf(ri/ b ,r;/ 7)) be an element with preimage
fio € OK(X((ri/p)l/pio, (r%/p)l/pio)) under the canonical map

iy - O (X ()P (ry/")117)) = Oxe (20 ()7, r3/")
for some 49 € N. Then the image of f;, in O (XPf(r1,r5)) under the map
Ol s Ox(X(™ ")) = Orc (X7 (11, 2))

is a preimage of f under p. since we have p.(aj ,1(fiy)) = igr1(p«(fis)) = f-
Passing to completions, we see that

D : OK(:{perf(ﬁ,TQ)) N OK(}:perf(r%/P’r;/P))
is bijective.
The induced map on the projective limits
Té/p

RK(%perf)ro — @ OK(%perf(Tl,T‘z)) N RK(%perf)

ro<ri<ro<l

= lim Ok (XP" (ry,13))

ré/p<r1 <re<1
is bijective. It follows that
Py RK(fperf) N RK(%perf)

is bijective. This map py : R (XPF) — Ry (XP°) is equal to a power of ¢ times
an automorphism. This is because we have m°u = p for a unit u € o;. Then the
maps

Uy © gOe : RK(xperf)r - RK(%perf)rl/Pe
and
res o py 'RK(%Perf)r — RK(%perf)rl/pe

agree which implies that p, and u, o ©® agree on the inductive limit Rz (XP°) (but
only there, otherwise the radii are not compatible).
We conclude that

0 R (XP) = Ry (XPT)

is bijective. O
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4.4 The monoid action

Remark 4.33. The inverse map ¢ : Ry (XPT) — R (XPe) is equal to u, op;?
and thus we may regard it as a map

gOie . RK(%perf)r N RK(xperf)rp

forallr € S,,n>1.

4.4.2 The monoid action on £ (X)) and &}, (xref)<!

By construction, the map ¢ : Ry (¥PF) — Ry (XP) restricts to a map
@ : é}(%perf) — é}(%perf).

Furthermore, we have [[¢o(f)[[,1/51 < [ flr1 for any f € 5;((%perf). This implies

le(F)ll < ||f]l1 so that ¢ restricts to a map
o g}'éﬁl(:{perf) N g}éﬁl(:{perf)‘

The action of o] restricts to an action on the rings Ek(%perf), é}(%perf)r =

5}( (P R g (P and 5;(51 (xPert), If we endow these rings with the subspace
topologies inherited from the larger rings Ry (XP°™) and Ry (XPe)", the action is
continuous.

Lemma 4.34 (Lemma 3.1.1 in [19]). Let V' be a topological K -vector space and G
a topological group which acts on V via linear endomorphisms. Then the action is
continuous if and only if it satisfies the following:

1. for each v € V, the orbit map G — V., g — gv is continuous,
2. for each g € G, the map V — V,v — guv is continuous,

3. the map G XV — V,(g,v) — gv is continuous at (e,0) € G XV (wheree € G
denotes the identity element).

Proposition 4.35. Endow 5;((%perf)r C Ry (XPeHY with the subspace topology,
and S}L((%perf) = lim S]T((%Perf)’” with the locally convex inductive limit topology.

Then the o7 -action on S;((.’{pcrf) is continuous for this topology.

Proof. The first and second condition of the above lemma are fulfilled. We have to
show that that action is continuous at (1,0). Let U C 5}(($perf) be a neighbourhood

of 0. We may assume that U =}, U, for neighbourhoods of zero U, C S}L{(%perf)r
which are of the form

U-={f¢€ Sﬁ(f{perf)r || f]ls < &, for finitely many s € (r,1)}

for some g, > 0 since sets of this form form a defining family of lattices for the
topology on S}{(.’{perf)r, see [32, §5 A, and Proposition 4.3]. Then o} x U is in the
preimage of U since we have u,(U,) = U, for every r (as the action is isometric). [
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4 Construction of Ry (¥PT)

Remark 4.36. The o} -action on E;Q’Sl(%perf) is continuous for the weak topology.

Proof. The o -action on ngl(%perf) & Sé’pgl(%perf) is continuous for the weak

topology, and the weak topology on €k§1(%perf) is the subspace topology coming
from Séfl(ffperf). O

It is also possible to endow the rings S}L(’Sl(%perf)’" = Ekgl(f{perf) N Ry (xpert)r
with the subspace topology from Ry (XPf)". Then the union Ekgl(xperf) —

ligr E}L(’Sl(%perf)r has the inductive limit topology. Since o} is locally compact,
we have a homeomorphism

0; x @gkﬁl(xperf)r ) hﬂ(of « gk§1<:{perf)r).

By passing to the limit, this shows that the o -action on E}L{’Sl(%perf) is continuous
for this topology as well since

Oz > 5}{7S1(%perf)r - 5}[{,S1(%perf)r

is continuous.

4.5 Towards a preperfectoid character variety

In the rigid analytic world, the X(r) form an open covering of the character variety
X. It would be desirable to form an adic preperfectoid character variety by glueing
together the preadic spaces XP°™ (r). But we do not know wether

O (V) = Ogpert (V)

x5 () (s)
for s < r and a rational subset V' C %F[’(erf(r) is an isomorphism of topological rings.
If one could show that the ring O (XP°™(r)) are stably uniform, then this would be
the case. But this turns out to be a quite difficult problem, as it is often the case
in the adic world. In their preprint [21], Hansen and Kedlaya developed several
notions for Huber rings which imply stable uniformity and behave (or are expected
to behave) better under several constructions such as étale extensions or profinite
étale extensions. In this section, we explain a conjecture from [21] and discuss how

it implies the existence of a preperfectoid character variety.

Let A be a complete Tate ring with ring of definition Ay and ideal of definition I.
We say that an Ag-module M is torsion if every element of M is killed by a power
of I. We say that M is uniformly torsion if M is killed by a power of I. If M is
chosen from a set {M;};c; and M is killed by some power of I which can be chosen
independently of j, we will say that M is j-uniformly torsion. In the following, all
Huber rings and Huber pairs are assumed to be complete and Tate.
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Definition 4.37. Let (A, A™) be a Huber pair. The v-topology on X = Spa(A, A™T)
is the Grothendieck topology whose objects are preadic spaces (in the sense of [21])
over Spa(A, A™), and where a family of morphisms {fi : Ui — X }ier is a covering if
every quasicompact open subset of X is contained in the image of some quasicompact
open subset of [1;c; Ui, We denote by Spa(A, A1), the resulting site which carries
natural presheafs O and O .

Definition 4.38. 1. A Tate-Huber pair (A, A™) with topologically nilpotent unit

3.

t € A* is plus-sheafy if the A*-modules coker(A™ /t" At — H°(Spa(4, A1), Ot /t"))
and ker(AT /t"AT — HO(Spa(A, A1), OT/t")) are n-uniformly torsion, and

for each positive integer i, the A*-modules H'(Spa(A, AT), OF /t") are n-
uniformly torsion.

Let (A, AT) be a Huber pair in which p is topologically nilpotent. We define the
v-completion (A, A*) to be the Huber pair with A = H°(Spa(A, AT),, ©0) and
At = HO(Spa(A, A1), O1). A Huber pair (A, A1) is said to be v-complete
if the natural map (A, AT) — (A, A1) is an isomorphism.

A Huber ring A over Q, is diamantine if A is plus-sheafy and v-complete.

According to [2, Theorem, Folgerung 3] every smooth affinoid algebra over a
nonarchimedean field is plus-sheafy (cf. Remark 6.16 in [21]).

Lemma 4.39 (Lemma 11.9 in [21]). Diamantine Huber rings are stably uniform.

Theorem 4.40. Let A be a reduced (hence uniform) affinoid algebra over a nonar-
chimedean field of mized characteristics. Then the following conditions are equiva-

lent:
1. The ring A is seminormal (i.e. A is reduced and if x,y € A fulfil 23 = 32,
then there is an s € A with s> =z and s> = y).
2. The ring A is v-complete.
3. The A°-module H'(Spa(A, A°), OF) is uniformly torsion.
Proof. Theorem 10.3 in [21]. O

Lemma 4.41. A reduced smooth affinoid algebra over a nonarchimedean field of
mized characteristic is diamantine. In particular, Og (X(r)) and Og(X(r1,72)) are
diamantine.

Proof. According to [21, Theorem 11.18], any smooth affinoid algebra over a nonar-
chimedean field is diamantine. The varieties X and hence X(r) and X(r1,r2) are
smooth ([35, text before Lemma 2.4]). O

Definition 4.42. A map A — B of uniform Huber rings is profinite étale of B is
the completion of an inductive limit of subalgebras which are finite étale over A.
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4 Construction of Ry (¥PT)

Conjecture 4.43 (Hansen, Kedlaya). Let A be a diamantine Huber ring. Then
for any profinite étale map A — B, B is also diamantine.

The maps O (X(r)) — O (XP°™ (1)) and O (X(r1,72)) = O (XP (11, 75)) are
profinite étale. Together with Lemma 4.41 Conjecture 4.43 implies the following

Conjecture 4.44. The Tate-Huber pairs (O (XPe(r)), OF (XP(r))) and
(O (XPE (11, 79)), O (XP (11, 79))) are stably uniform.

We now discuss how the conjecture implies the existence of the preperfectoid
character variety. Firstly, we need the following lemma:

Lemma 4.45. Let (X, a;j)ijen and (Y, Bij)ijen two projective systems of topo-
logical spaces with projective limits X and Y, and assume that we have open maps
fi: X; =Y, for all i such that the diagrams

X, fi Y,

ai+1,iT Tﬁz‘ﬂ,i

Xiv1 —=Yin
fit1

are commutative for all i. Assume moreover that if fi(x;) = Biy1,i(Yit1) for x; €
Xi and yip1 € Yiy1, then there is an x4 € Xip1 with oy i(xip1) = x; and
fix1(xit1) = yit1. Then the induced map f: X — Y is open.

Proof. For iy € N denote by pry ; : X — Xj, resp. pry; :Y — Y, the projection
on X;, resp. Yj,. Let pr}liO(U) C X be an open subset where U C Xj, is open,
then we claim that

Floryl, (U) = prys (Fio(U) CY

which is open: The inclusion f (pr)_(,lio(U)) C pr{/;o( fio(U)) is clear. On the other
hand, if y = (yo, ..., Yig, ---) € pr{,}o(fio(U)) then

/8i0+1,i0 (yi0+1) = Yip = fio (ﬂfio)

for some z;, € U and we find an x;,4+1 € Xj,+1 with i +1(zip+1) = xi, and
fio+1(Zig+1) = Yip+1. Inductively we find elements x; € X such that x = (..., z;,...) €
pr;, (U) and f(z) = y. O

Remark 4.46. The diagram in Lemma 4.45 is called ezact in [14, (2.1)]. Lemma
4.45 is (a weaker version of) [14, Theorem 3.29].

Proposition 4.47. If Conjecture 4.4/ holds true, then the map X%erf(r) — f{%erf(s)
is an open immersion of adic spaces for r < s,.
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Proof. The rigid-analytic space X(r'/P") is an affinoid subdomain of X(s'/?") for all
i € N. Therefore we have open immersions X(r'/?") < %(s'/P") for i € N, which
commute with the transition maps p.. Since open immersions are preserved under
the functor rp from rigid-analytic spaces to adic spaces (see 1.2.2), we have open
immersions ¢; : X(r'/?")2d < %(s1/7")3d of adic spaces for all i € N. We identify the
image of ¢; with Z{(rl/p?ad. . ‘
The induced map XV (r)| = lim, |X(r1/P )| = lim, | X (s1/P")2d| = |%r}(erf(s)| co-
incides with the map induced by the map %%erf(r) — %%erf(s) coming from the
restriction O (XPe(s)) — O (XPe(r)).

We get an injective map of topological spaces

erf . i\ a . i\ a erf
L | X ()] = 1£1|3€(T1/p) I @\35(81/”) U= XK (s)]-

We consider the commutative diagram

() (s )

e e B {C L i

Let z € |X(r/P")2d| with z = p*(y) for some y € |X(s/?""")2|. By Lemma 2.8
and Remark 1.52 we have |X(r1/P""")ad| = (p*)*1(|3€(r1/pi)ad\) and hence y €
X (/P = () (X (/P )ad]) C x(sY/P7)2d]. We can apply Lemma 4.45
and see that |X2(r)| < | X% (s)| is open.

For every i we have an isomorphism O%(rl /iy = 036(51 /oy (/P Let
f f
V C xR (r)] € 1XET ()]

be a rational subset. By identifying the rational subsets of ]%%erf(r)] and Jim, X (r1/P")ad]
as in Proposition 1.38 we can assume that V' is pulled back from a rational subset
Vi, C |X(r/P?)2d| for some ig. We get induced isomorphisms of topological rings

O V) — O:{;I)(erf(s) I:{perf(r) (V)

et () v

as both can be computed as the completed inductive limits of the Ox(rl /pi)(Vi)
respective Ox(sl/pi)lx(rl/pi)(%) with V; being the preimage of V;, under the map

|3€(r1/pi)ad| — |.’£(r1/pi°)ad| (see Remark 1.58). Here we use the conjecture. Note
that this isomorphism identifies O (V) and OF, (V).

X () X5 ()RR ()
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4 Construction of Ry (¥PT)

If U C V is another rational subset, the following diagram commutes

Ogrert () (V) == Ogpert 1 gpert (1 (V)

res i J/ res

Osegert () (U) — Ot ) gt () (U)

since the corresponding diagrams

Oag(rl/pi)(vi) - Ox(s”x(rl/pi)(vi)

res l i res

Oxrrroty (U) = Oty (T0)

commute. We get an isomorphism of sheaves of topological rings (’)xpcrf@ —
K

O

which induces an isomorphism O, ~ OF . Then
P R TR ()R ()

Lemma 1.47 shows that we get an isomorphism of adic spaces (X} rf(r), Ox%erf (r)) =

(X5 (r), 0

x5 () |20 ()

X (@l () -

If Conjecture 4.44 holds true, we can glue together the spaces %E’erf(r) and define
the adic space

erf . erf
xb :zh&l%i’ (r).

This would be a preperfectoid space in the sense of Definition 1.74.

In the following, let s1 < r; < 7o < s3 < 1. In the same way as desribed
before Proposition 4.47, the maps %(ri/pl,r%/pz) — %(r;/pz) and %(ri/pl,r;/pb) —

%(s}/pl, s;/pl) induce maps i{r;(erf(rl, re) — %F;?rf(rg) and :f%erf(rl, re) — %I;(erf(sl, S9).

Proposition 4.48. If Conjecture 4.44 holds true, then the Z{I;(erf(rl, re) — %I}frf(rg)
and .’{%erf(rl, ro) — .’{g{erf(sl, S9) are open immersions.

Proof. Ad X2 (r1, ry) — X% (ry): We have open immersions f{(ri/pz,r;/pl) C
.’{(r%/ P’} of rigid-analytic spaces for all i since X(ry,79) is an affinoid subdomain of
X(r1). Asin the proof of Proposition 4.47 we get an open immersion of adic spaces

%ad(ri/’p” T;/pl) N %ad(ré/pl),
and therefore, by passing to the limits, an injective map of the topological spaces

125 (1, )| < [ (o),
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4.5 Towards a preperfectoid character variety

which coincides with the map induced by the map X2 (11, 79) g — X2 (ry) defined
above. Again, we have commutative diagrams

(7)) ("))

B B

1 741 1 741 1 7+1
N A . e

If © € |%(ri/pi,7“;/pi)ad\ such that p*(y) = z for some y € |%(T;/pi+l)ad|, then we
have y € |X(ri/®" piP ad| = ()12 (P rPYad)) (by Lemma 4.10 and
Remark 1.52). Again, we can apply Lemma 4.45 and see that the we have an open
. . perf perf .

immersion |X}. " (r1,72)| = | X} (r2)| of topological spaces.

Ad %}I)(Grf(rlﬂh) — %I;(erf(sl, s2): We note that

X(r1,7m2) C X(51, 52),

and that we have open immersions open immersions %(ri/pz, r;/pl) — %(si/pz, sé/pl)

of rigid-analytic spaces for all i since X(r1,72) is an affinoid subdomain of X(s1, s2).

As in the proof of Proposition 4.47 we get an open immersion of adic spaces
(" P o X)),

and therefore, by passing to the limits, an injective map of topological spaces

1/pt  1/pt 1/pt 1/pt
‘xperf(Tl/p 7,r2/17 )| N ‘%perf(sl/P ,82/17 )|,

which coincides with the map induced by the map X% (r1,79) — X0 (s, 52)
defined above. Again, we have commutative diagrams

7 ia 171 ia
X (/P /P e X (s1/7 537y

1
’%(Tl yT'g

)ad| . |:{(81/Pi+1 S;/Piﬂ)ad’

)

i @ 141 i+1
If z € \%(T%/p ,r;/p 32| such that p*(y) = 2 for some y € |%(si/p+ ,s;/p )24,

41 2 7 7
then we have y € [X2d(ri/®"" P3P = (o)) 112 (Y, 1Y/ )2d)) (Lemma 4.10
and Remark 1.52). Again, we can apply Lemma 4.45 and see that the we have an
open immersion | X2 (11, 75)| < | X2 (51, 59)| of topological spaces.

The proof of the statement about the structure sheaves is basically the same as
in the proof of Proposition 4.47. O

119






5 (¢,I')-Modules

5.1 Generalities about -modules

Let R be a ring with an endomorphism ¢. In the following, the tensor product
R ®p,, M denotes the usual tensor product, but with R regarded as a right R-
module via .

Definition 5.1. A p-module over R is a finitely generated projective R-module M
which carries a semilinear action of ¢ denoted by par such that the R-linear map

P R@py M — M,
Jfem— foy(m)

is bijective.

We define the category of p-modules over R whose objects are p-modules over R
and the morphisms are R-module homomorphisms « : M — N between p-modules
M and N such that

PN O =0 P).

We denote by Hom, (M, N) the set of all such morphisms between M and N.

Lemma 5.2 (see 1.1.4 in [20]). Let M be a @-module. If ¢ : R — R is bijective,
then ppr: M — M is bijective if and only if tplm :R®p,e M — M is bijective.

Proof. If ¢ : R — R is bijective, then we have r @ m = 1 ® ¢~ !(r)m for r € R and
m € M, hence every element in R ®p , M has a unique representation 1 ® m for
some m € M. This gives a bijection between M and R ®p , M.

Assume <p“" is bijective. Then js is surjective since for every m € M we find
elements m; € M and r; € R such that

m = goﬂ@” Zn ®m;) = ZrigoM(mi)

_Z@M lrz mz QOM ZSO 7"2 mz

It is injective since @pr(m) = 0 implies ¢47(1 ® m) = 0 and then 1 ® m = 0 which
in turn implies m = 0 (using the bijection described above). On the other hand,
bijectivity of (s clearly implies surjectivity, and, using the above bijection, also
injectivity of golm O
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5 (¢,T')-Modules

Lemma 5.3 (see Lemma 1.5.2 in [27]). Let M be a @p-module over R. Then there
is a finite free R-module F' equipped with a semilinear p-action @p such that

R®RV¢F—>F,
r®@m— rop(m)

is an isomorphism (i.e. F is a p-module), and a p-equivariant surjection F' — M.

Proof. Let vy, ..., v, be generators of M and R — M the corresponding surjection.
Let gplm R®R,, M — M be the given isomorphism and let a;;, b;; € R be elements
such that

n

Pl @ vy) Zazﬂ)z, (P51 (v)) = Zbij(l ® v;)

i=1

for j =1,...,n. Set A = (a;j), B = (bi;), and write

o = G (D) T w0) = ol Zka L&) =2 aigbjwti

We see that the columns of C := AB — 1 lie in the kernel N = ker(R" — M). Let

D be the block matrix fll g) We compute det(D) = det(AB — C) =1 (see [38,

Theorem 3]). Therefore D is invertible over R and we define an isomorphism
D:R® Rp F—F

for F':= R™ @ R". This isomorphism carries R ®g, (N ® R") into N @ R", and
hence we obtain a p-equivariant surjection F' — M which factors through the
chosen surjection R" — M. 0

Corollary 5.4 (see Corollary 1.5.3 in [27]). Let M be a p-module over R. Then
there exists another p-module N over R such that M & N is a free module over R.

Proof. Let F' be a p-module such that the underlying R-module is free and such
that there is a p-equivariant surjection F' — M as in the previous lemma. Put
N =ker(F — M). We have F' = M & N since M is projective, and N is the kernel
of the projector F' — F which factors through M. Denote by ¢ : N — M & N the
canonical inclusion and by pr: M & N — N the projection onto N. We define

¢n(n) = pr(er(u(n)))
for n € N. Then we have the following commutative diagram

lin

R®py, N2> N

iid@b PI"T

R®R’@F?F
PF
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5.1 Generalities about p-modules

Note that id ® + : R®gr, N — R ®pg, I is injective and R ®pg, N is a direct
summand of R ®g, F' ([9, Chapter II, §3.7, Corollary 5 to Proposition 7]). Since

lin lin

" carries R ®g, N to N, this implies the injectivity of ¢R7*. For surjectivity,
let n € Nand 2 = > ;1 ® (mi,n;) € R®R, (M & N) = R®pg, F such that
O (2) = 1(n) = (0,n). Then we have

(0,n) = ZriﬂpF(mum)

(2

= ZH(SOM(W),”;)?

(2

for some n € N, and hence

(0,mn — Zmn;) = (ZrigpM(mi),O) EMNNCF

which implies 0 = Y, riponr(m;) = golﬁl(zz r; ® m;). Then ‘Zi ri @ m; = 0 and
> ;Ti ®n; is a preimage of n under goﬁ(,”. We conclude that go{,(,” :R®Rrpe N — N is
an isomorphism. O

Remark 5.5. If N and M are ¢-modules over R, then the direct sum M @& N is a
w-module over R via

omMeN - MBEN — M B N,
(m,n) = (eam(m), pn(n)).
This clearly defines a ¢-linear map. We have
R®R, (M®N)= (R®R,%0M) & (R®R,S0N)7
and conclude that the linearized map Lp%/?@ n s an isomorphism.

We say that a p-module is free if its underlying R-module is free.

Lemma 5.6. The category of ¢-modules over R has tensor products, duals, and
internal homs.

Proof. Let M and N be two ¢-modules over R. The tensor product M ®pr N is
finitely generated projective over R. We define

omegN - M Qr N — M @ N
men— o(m)® p(n).

We have an isomorphism of R-modules

R®p, (M@ N) = (RORrye M) ®r (R®Rp N)
ro(men)—r(lem)® (1len),
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5 (¢,T')-Modules

and the linearized map
Pifen : ROrg (M @rN) = (R®ry M) ®r (R@pye N) = M ®p N

is an isomorphism.
The dual module M* := Hompg(M, R) is finitely generated projective over R. Define

Mr s MT — M*
@ @™ o (idp ® @) o (2§f)
We identify Hompg (M, R) with
Hompg(R ®pr,, M, R ®g,, R) = Homp(M, R ®r,, R)
via """ and golm Then we have
ohie : R@p,, Homp(M, R) — Hompg(M, R ®p,, R)
f®am [m— fa(m)].

Since M is finitely generated projective and therefore a direct summand of a finite
free R-module, we can reduce the bijectivity of the above map first to the case of
a finite free module and then to the case M = R (as R-modules) where it is clear.
Furthermore, we have an isomorphism of R-modules

Hompg(M,R) ® g N — Homp(M, N)

a@nr—n-«

(see [1, Tag ODVB]J), so we may regard Hompg(M, N) as a p-module over R, too.
The map ¢ is given by

PHomp(M,N) (@) = O 0 (iId ® a) o (9h) "

This is because for n € N,a € Homg(M, R), and m € M with preimage Y, f; ®
m; € R®R,, M under gplm we have

PHom (M, 1) (@) (M) - o (1) = " ([ ® a () " (m)) - o (n)
= """ Zfz a(my)) - ¢ (1@ n)

= Zfigo a(m;)) - o5 (1 @ n)
= Zs@’m (fip(a(ms)) @ n)

= so%" wa a(mi)) @n)

— A0S e n-atm)

= P @n - alehy) ™ (m)
= @l o (id@n - a) o (¢h7) L (m)
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5.1 Generalities about p-modules
If M is a p-module over R, we denote by M¥ the elements of M which are fixed
by .
Remark 5.7. We have
Hom, (M, N) = Homg(M, N)?,

i.e. the R-module homomorphisms « : M — N which fulfil @ o ¢pr = ¢y o« are
exactly the R-module homomorphisms M — N which are fixed by the action of ¢
on Homp(M, N).

Proof. Let a € Homg(M, N). We have p4" o (id ® a) o (¢4")~1 = o if and only if
gp%"o(id@@) = ozogoﬂ\i/}1 which is equivalent to « being a morphism of ¢-modules. [

Lemma 5.8. Let S be another ring with an endomorphism pg : S — S and a -
equivariant ring map R — S. Let M be a p-module over R. Then the base change
S ®r M is a p-module over S with

¢S®M:S®RM—>S®RM
s@m > o(s) @ p(m).

Proof. Clearly S ®r M is a finitely generated projective S-module. We have an
isomorphism of S-modules

S ®s,(SOrRM) = S®r (R®QRr,, M),
51 ®82@m =s1p(s2) @ (1@m) — s10(s2) ® 1 @ m.

The linearized map
Pt S s, (SOrRM)=S®p (ROpye M) — S®@p M
is an isomorphism. O
Remark 5.9. We have
S ®r Homp(M, N) = Homg(S ®r M,S ®r N)
as p-modules.
Proof. Since M is finitely generated projective, the canonical map

S ®r HOH]R(M,N) — HOHIR(M,S QR N)
s®a— [m— s®a(m)]
is an isomorphism ([1, Tag 0DVB]). Moreover, Hompg(M, S ®r N) is canonically

isomorphic to Homg(S ®r M, S®gr N) via [m — s@ a(m)] — [1l@m — s®@ a(m)].
We have to check that the isomorphism is compatible with the ¢ on both sides. Let
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5 (¢,T')-Modules

s®a € S®rHomg(M, N) and m € M with preimage 3, f; ® m; under ¢47, then
we compute

5(s) ® P o (Id ® a) o (phf) " (m)
s(s) ® o (id® a)(Z fi®m;)

©5(8) @ PHomp(M,N) () (M) =

= s w%”Zfz@amz))
= ps(s) ® Zfz(PN m;))
=Y fiSOS®RN(5 ® a(m;))

= L v o (id® (s @ a)) o (i) (m)
= ‘*PHoms(S®RM,S®RN)([1 RXT s O{(l‘)])(l ® m)

O

We usually consider p-modules M over a topological ring R. In this case, M
has a canonical topology, namely the quotient topology with respect to a surjection
R™ — M. Note that the resulting topology is independent of the choice of the
surjection. If R is a locally convex K-algebra which is barrelled, then M is barrelled
as well. If ¢ : R — R is continuous, then the semilinear map @y : M — M is
automatically continuous:

Lemma 5.10. Let ¢ : R — S be a continuous map between topological rings, and
let M and N be finitely generated R resp. S-modules. Let o : M — N be any
W-linear map. Then o is continuous for the canonical topologies on M and N.

Proof. This is [6, Remark 2.20]. O

5.2 p-modules over the Robba rings

We look at ¢-modules over the previously constructed rings R (XPe), E;r((%perf),

and Ekgl(%perf). The ¢ is given by the action of 7. We assume that every radius
which occurs in relation to BP (i.e. as in Ry (BP)™) lies in R,, for some n, and
that every radius which occurs in relation to XP* (i.e. as in R (XPe)") lies in S,
for some n.

Definition 5.11. Let R be one of the rings Ry (XPt) or Si((fperf). A p-module
over R is étale if it arises via base change from a @-module over Eksl(%perf).

Let 7 € S,. We write Ry (X)" = Og(X \ X(r)), £ (XPh) = Ry (xpert)r
£l (xPer) and likewise Ef (X)" = R (X)" N EL(X).
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5.2 p-modules over the Robba rings

Definition 5.12. Let R be one of the rings R (XP'), S;( (xpPert) Ry (X), or SIT((.’{)
A @-module M over R" is a finitely generated projective R"-module with a -
semilinear continuous map ppr : M — R ®prr M such that

R @prp M — R @pe M
is an isomorphism.
Remark 5.13. If M is a ¢-module over Ek(fperf)’", then the base change

RK (%perf)r ® M

5;{ (xpcrf)r
is a p-module over Ry (XPe)". This is because we have

er T / er T
R ()™ @ vrtyr o (Ric (PN @t s

(RK(%perf)rl/P ®RK(3€PC“)T,W RK(:{perf)r) ®

y M) =

M
S}L{ (xpcrf)'r I

and the linearized map ¢'" : RK(%perf)Tl/p ®RK(3gperf)r7@RK(f{perf)r — Rk (%perf)rl/p
is an isomorphism.

Now we consider the base change of étale p-modules over EL (xpert) to étale -
modules over Ry (XPf). We have an injection M = 5;((%perf) ® M —

Ric(xPe) @

S}L{ (xperf)

€] (xpert) M via flatness.

Proposition 5.14. Let M be an étale p-module over S}L((%perf). Then we have

(Ric(XP) @ M)? = M?

€I< (xperf)

Proof. Let M be an étale ¢p-module over 8}((%perf) which arises from a ¢-module
My over S}L(’Sl(%perf). We have

M = & (2P © M.

g;f(agl (%pcrf)

Firstly, we reduce to the case that My and hence M is a free module. Let Ny be a
¢-module over é’kgl(%perf) such that Py = My @ Ny is a free Skgl(%perf)—module
(Lemma 5.4). Then we define a p-module structure on Py by setting

vp, : Po= My ® No — My & Ny
(m,n) = (par,(m), Ny (n))-

This defines a ¢-module over Ekgl(%perf) (Remark 5.5). Write

N = g}{(%perf) ®5T,§l(xperf) NO
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Then M is a direct summand of the free S;( (xPerf)-module

P = g}((:{perf) ®£T,§1(xperf) PO

= (5;((%perf) Qgt,<1(xpert) My) & (5}}(%perf) Qgt,<1(xperf) No),
=M =N

and the (p-action on P is given by

ep(f @m,g@n) — (¢(f) ® pmy(m),¢(g) @ eny(n))
for (f@m,g®n) € M @ N. We have P? = M¥ @& N¥ and similarly
(Rk (xperf) ®g;{(}:perf) P)? = (R (%perf) ®g};(xperf) M)?® (R (%perf) ®g}< (xperf) N)?.
Assume that we have shown the lemma for P. Then
(RE(XP™) D) gty P)? = (Ric(BP) @0 (M & N))?
— (RK(%perf) ®g}((xperf) M)%O @ (RK(xperf) ®g;{(3perf) N)‘P
— MSO fast NS@’

hence (Rx (%P ® el M)¥ = M¥. Therefore we may assume that M is free
K

(xperf)
and comes from a free p-module M, over S}L(’Sl(.’{perf).

Choose a basis ey, ..., e, for My and let A = (gi5)i; € Matnxn(é'}}’gl(%perf)) be
the matrix in this basis corresponding to ¢y, i.e. we have

(V) = Ap(v)

for v € My. Now consider R x (%P ® et (xperf)M which is isomorphic to R i (¥P°F)"
K

as Ry (XP)-modules. We want to show that if v = (v1, ...,v,)t € Ry (XPeH™ ful-
fils

v = Ap(v),
then v € E}((}:perf)".

We reduce to the case K = C,. Assume that we have shown the lemma for
K = Cp. Then we can use the inclusion R (XP*")" C R¢, (XPf)" and note that

ngp (xperf) N R (xPet) = S}L{(%perf) to obtain the lemma for general K.
We have an isomorphism R, (XP) = R (BPeT) which restricts to Sglp (xperfy
E&p(%perf) and Egz’fl(.'{perf) = é’é’fl(%perf), and which is p-equivariant (Remarks

4.23 and 4.31). Therefore we may compute everything over BPf and we regard
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5.2 p-modules over the Robba rings

the matrix A as well as the vector v as elements in Matnm(é'éfl(%perf)) resp.
R(Cp (sBperf)‘

The entries g;; of the matrix A fulfil ||g;;|l1 < 1. Let so be a radius such that
v; € R, (BP)% and g;; € S(Ep(%perf)s‘) for all 4, j and v = Ap(v) in Rg, (BPT)%,
We reduce to the case that there is an s’ such that ||g;j||s < 1forall sp < s’ <s < 1.
Choose an s’ such that sy < s/ < 1. The element

z=p(T)-T" e &l (B>

fulfils ||z||ss < 1, so multiplying A with a suitable power 2" of z gives a matrix 2z A
with entries [|2™g;j]|s < 1. Write

Mg = (2"gi5) T + (2" gij)”

as in Lemma 3.76. Then we have [|z™g;;lls = max{||(z™gi;)"[ls, [[(z™gi;) " [|s} for
all so < s < 1. The sequence ||(2™g;;)"||s is monotonously increasing if s — 1 while
the sequence |[(2™g;5)” ||s is monotonously falling if s — 1. Since ||z g;j||s — 1 for
s — 1, we see that [|2™g;j||s < 1 implies [|2™g;;|ls <1 forall & <s < 1.

We have

v=Ap)ev- T =2"Ap(v-T7™),

i.e. v is fixed by s if and only if v-T~™ is fixed by the semilinear map given by
2™ A. If the element v - T~ lies in Eép(%perf)”, then there is an s{, such that the

set {max;{|lvi - T~™||s}|s( < s < 1} is bounded (Lemma 3.74). But since we have

[[vils
17m)s"

[[oi - T7™[|s =

this implies that {max;{||vi|[s}|sy < s < 1} is bounded as well and hence v €

Sép(%perf)(Lemma 3.74). We see that v lies in Sép(‘Bperf) if and only if v - T7™

lies in chp(%perf). Hence we can always change to a matrix 2 A with the desired
property without changing the claim.

Now assume that ||g;;[|ls <1 for s’ < s < 1 and all g;;. The equality v = Ap(v)
implies

n
max {[loilsa} = lrg%{llj;gijw(vj)lsuq}

< max{|lgijll/a} - max{llo(vi)lla}

< max {[le(vill1/a} = max {Jlvills}
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Here we use Remark 3.70 for the last equality. We see that ||v;]| 1/ < max;{]|vills}
for i = 1,...,n. Iterating the process shows that

[Vill g1q < max{[|vgls}

for all k € N. Therefore {max; ||v;||s|s’ < s < 1} is bounded and v € Sép(%perf)”.
O

For free ¢-modules over R (8) the analogous result can be found in [25, Propo-
sition 1.2.6].

Theorem 5.15. The base change functor from étale p-modules over E}((f{perf) to
étale p-modules over RK(%perf) s an equivalence of categories.

Proof. The functor is essentially surjective by definition. For fully faithfulness, we
compute

HOIHSD (RK(%perf) ®€L(%perf) M, RK(%perf) ®g;((xperf) N)
= (HomRK(}:Perf) (RK (xperf) ®g;{(xperf) M7 RK (%perf) ®5L(Z{perf) N))‘P

= (R (xP" ® Hom (M, N))¥

g;{(xperf)
g;{(%perf) (M7 N)QO
= Hom, (M, N).

g;{ (xperf)

= Hom

Here, the first and the last equality are Remark 5.7, the second equality is Remark
5.9. For the third equality, use the previous proposition. O

Lemma 5.16. Let M be a p-module over Ry (XP%f). Then there is an ro € Sy,
for some m and a p-module M™ over Ry (XP)™0 such that

Ric(XP) @, (xpertyro M0 = M
as w-modules.

Proof. We adapt the first part of the proof of [6, Proposition 2.24]. Let M be
a p-module over RK(%perf). Since M is finitely generated projective, we find an
n > 1 and a projector IT : Ry (XPef)" — M. The matrix IT has entries in some
R (P s0 we may define M" := TI((R g (XPF)")") which is a finitely generated
projective Ry (XPf)"-module. Since M™ is finitely generated, we have o (M") C
M™ for some r < ¢/. This implies

1/p

en(M™) C M"

since any set of generators of M" also generates M " We then have the linearized
map

11/p

11/ /
RK(%perf)T g ®RK(%perf)Tl,¢ MT — Mr
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which is an isomorphism after base change to Rz (XPf). The cokernel of this
map is finitely generated and hence vanishes after enlarging r’. Then the map is
surjective and splits by projectivity of the modules. Therefore its kernel is finitely
generated as well and vanishes after further enlarging r’. Therefore we have an rg
such that

RK(%perf)rl/p ®RK(xperf)'r7<p MT — Mrl/p

is an isomorphism for all ro < r < 1.
O

Proposition 5.17. Let r € S, be any radius. For any free p-module M over
R (XP), there is a p-module M™ over R (XP™)" such that R (XP) @5 (xpertyr
M" =M.

Proof. Remember that ¢ : Ry (XP) — Ry (XP) is invertible (Lemma 4.32).
Let v1,...,v, € M be a basis of M, and let A € Ry (XPeH)"*" denote the matrix
of s in this basis. Then A is invertible. We may assume that A and A~! have
entries in R (XPeH)70 for some 7 and that vy, ...,v,, € M. For r > 1y, we define
M to be the base change of M to Ry (XPert)r.

On the other hand, to get the smaller radii, we use the matrix U := ¢~ 1(A7!) as
base change matrix to obtain another basis of M. The matrix of ¢,s in this basis
is given by

Ut Ap(U) = ¢ H(A)AA™ = o7 1(A).

Iterating this process gives a basis v1,...,v), of M such that the matrix of s in
this basis is given by ¢ ¢(A) which has entries in Rz (XP)0 (Remark 4.33) and
is invertible over R (XP)"0. We define M"0 to be the free R (XPe)"0-module

/

with basis v], ..., v),. O

In the following we write

Rc (X9 1= lim O (XP (1, 7)),

p_(1+5/(17_1))/epn <ri Sr2<1

and

'fzK(:{perf) _ h3 ffzK(%perf)n'

Let f € Ry (XP") be any element. Assume f € Ry (XP*T),, for some n € N and
write

f=(fos f1,eees fs ) € lim O (X (r1,72)).

p—(1+e/(p=1))/er™ < <ro<1
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5 (¢,T')-Modules

Then we find an ip such that each fj has a preimage in (’)K(%(r%mio,r;/pio)) for
the resp. radii r1,7r3. This is because if an element g € (’)K(%perf(sl,SQ)) has a
a7 s)

preimage g, € O (X( under the canonical map

O (X(sH7°, sYP)) =5 O (XP (51, 52)).

and has a preimage ¢’ in @K(f{perf(rl, r2)) under the restriction map for r; < s3 <
s2 < 12, then g has a preimage in C’)K(%(r}/pzo,r;/pm)) under the canonical map
Or (X (/7 ry/P™)) = O (X2 (r1, 79)).

This can be seen directly for K = C, because then the rings in question are iso-
morphic to affinoid annuli, and for general K one can use Remark 2.15.

Now let g € Ok (%P (r, 7)) with preimage g;, € OK(%(ri/pm,r;/pm)),ig > 0.
The the map p. sends g to an element p.(g) € @K(%perf(ri/p,r;/p)). But this ele-
ment p,(g) has a preimage p.(gi,) € OK(%((T}/p)?/pio, (r;/p)l/pio)) which is equal to
the image of the element g;, € OK(.’{(ri/pZO,r;/plo)) in @K(f{perf(ri/p,r;/p)). This
implies that by perpetually applying p. (namely iy times) we eventually arrive at
an element in @K(%perf(r}/plo,r%/plo)) with preimage in OK(%(ri/plo,r;/pzo)).
This shows that for any element f € Ry (XPT) there is an n € N such that
p(f) € Ry (%), or similarly, an n' = en € N such that ¢ (f) € Ry (X).

Proposition 5.18. The category of p-modules over ﬁK(%perf) s equivalent to the
category of p-modules over Ry (X) via base change.

Proof. To show essential surjectivity, let M first be a free p-module over R K (XPert),
and let vy, ..., v, be a basis of M. Denote by A the matrix of ¢; corresponding to
this basis.

According to the discussion above we find an r and an ig € N such that A has

entries in @T<T1<r2<l(oK(%(Ti/pio7T%/pio))) — Or(x\ Z{(rl/PiO)).
We need to find an invertible matrix

U € Maty xn (R (7))

such that U=t Ap(U) € Mat,xn(Ri(X)). For this, note that A is invertible and
that A~1Ap(A) = ¢(A) has entries in O (X \ X(r/P°™")). In the next step, we
take p(A) as base change matrix and obtain ¢(A~1)p(A)p?(A) = ¢*(A). Iterating
this process gives a matrix

U := p¢(A)

with the desired property. We write U = (u;;);; and then take v; =, UijV; as a
basis for a ¢-module My over Ri(X).

For a general p-module M over ﬁK(%perf), apply Lemma 5.4 to obtain a -
module N such that F' = M @ N is a free R (XPf)-module, and set

YMoN = M D YN
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as in Remark 5.5. We obtain a free p-module Fy over R (X) such that
’[VQK(:{Perf) ®RK(x) Fo=F

and pr = pQpp,. Let vy, ..., v, be a basis of Fp, then <p]1%0 (v1), .-y @lf;o (vp,) is another
basis of Fy for any k. Then 1@, (v1), ..., 1®¢}, (vn) is a basis of ﬁK(%perf)Q@RK(x)
Fy. We have a g-equivariant projector Il : F' — F with image M and kernel N.
Write
T1@wv) =Y fj, ®vj € Rx(XP) @, (x) Fo,
J

for certain f;, € R (XP"), then we have

Thus, by choosing k big enough and then using 1 ® 90’};0 (vi),i =1,...,n as a basis,
we can ensure that all p*(f;,) lie in R (X) and that II restricts to a p-equivariant
projector Iy : Fy — Fy. Its image II(Fy) =: My is a finite projective Ry (X)-
module because it is a direct summand of Fy. We have Fy = My & Ny where
Ny := ker(Ilp) € N. We have the sections tpg, : My — Fp and tpr : M — F such
that tar, = tar)ar,- We have an inclusion

My — ﬁK(%perf) ®RK(%) My — ﬁK(%perf) ®RK(%) Fy =2 F,

where the second arrow is given by id ® ty,, and is injective because My is a direct
summand of Fy (]9, Chapter II, §3.7, Corollary 5 to Proposition 7]). We have a
commutative diagram

R (XPert) QR (x) Mo ——M

id®LMO \L LLM

7?K(3€Perf) QR (x) Fo ——=F
where the upper horizontal map is given by f ® m — fm. This map is surjective,
and, because the other maps in the diagram are injective, also injective, so that we

have an isomorphism M = Ry (XPer) @R (x) Mo. We define

VM, - M() — M(),
z = Wpr (i (@) = Wy (@ (eay (2)))
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for x € My C M = ﬁK(j{Perf) QR (x) Mo. Then we have oy = ¢ ® ppr,. The

linearized map @% is surjective since apl}g is surjective. Note that we have

7él((xperf) D73 e (xPert), M = 7éK(%perf) Q7% e (xPert) (ﬁK(xperf) QR (x) Mo)

— ﬁK(:{perf) OR e (%), M,

©p

and an injective map Rk (X) @ . (x),, Mo — R (Pert) QR 4 (%), Mo because My is
flat. Then go% is injective since it is equal to 4! restricvted t0 Rk (X) @R e (2),0 Mo-
We see that My is a p-module over Ry (¥) and M = R (¥P°F) QR (x) Mo as ¢-

modules.

To show fully faithfulness, we again assume that M is a free ¢-module over
R (%) of rank m. We show that (R g (XPeT) O (x) M)? = M¥?. Denote by A the
matrix of ¢ ® @y in a basis of Ry (XPerT) @R (x) M, we may assume that A has
entries in Ry (X). If v € (R (XPer) R (x) M)?, then

v = Ap(v).

Iteration leads to

v = Ap(A)..o"(A)g" (v)

for any n. This implies v € Rg(X)™. For a general p-module M, we find a ¢-
module M such that M & N is a free Ri(X)-module. Then M & N becomes a
¢-module via prren(m,n) = (par(m), on(n)). We conclude (R (XPerf) QR e (%)
M)¥ = M¥ as in the proof of Proposition 5.14. Then we see that the base change
functor is fully faithful as in the proof of Theorem 5.15. O

The base extension from @-modules over Ry (¥) to p-modules over Ry (XPeT)
is probably not essential surjective since this is likely not the case over BP°f. See
[26, Remark 7.9] for a possible counterexample over BPe,

If M is a finite projective module over Ry (XP),,, we can find a finite projective
module My over Ry (XP),, such that Ry (XPeT), @ My = M (see [27, Lemma
2.2.13]). The problem is the g-action which does not necessarily restrict to an
action over the smaller ring Ry (X).

5.3 (p,I)-Modules over BP*f and Xre

In this section, we define (¢, I')-modules over the previous discussed rings. We first
impose topologies on the rings as follows:

Definition 5.19. 1. The rings S}L((%perf) C R (XP) resp. EIT((%) C Ri(X%X)
carry the subspace topology coming from the rings R (%P resp. Ry (X).
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5.3 (¢,T)-Modules over 8Pt and xpert

2. The rings Sk(fperf)r C Ry (XPeH)" resp. S}}(%)" C Ri(X)" carry the sub-
space topology coming from the rings Ry (XPH)" resp. Ry (X)".

3. The rings S}(’Sl(%perf) resp. Ekgl(%) carry the weak topology.

Definition 5.20. A (¢,T)-module over
R € {Rc(X7T), Ric(X), £} (XPH), (%), £~ (27), €5 ()}

is a p-module over R which carries a semilinear continuous o} -action which com-
mutes with .

A morphism of (¢,I')-modules M and N is a morphism of the underlying -
modules which commutes with the o} -action. We denote the set of the morphisms
by Homg, (M, N).

Definition 5.21. Let R € {Ry(XPe), L (xperf) eL=1(xrerh) Ry (%), EL (%)}
Letr € Sp. A (p,I')-module M over R" is a o-module M over R" which carries a
semilinear continuous (for the canonical topology) of -action which commutes with

©Y.

If a (¢,I')-module M over R arises via base change from a (¢, I')-module over R"
for a radius r, we say that M has a model over R".

Remark 5.22. If R = Ri(X), then for every (¢,I')-module M over R there is
an r < 1 such that M arises via base change from a (¢, I')-module M" over R".
This follows from [6, Proposition 2.24] which implies that we can descend every
(p,T')-module over Ri(X) to a (¢,I')-module over Ry (X)" for some 7.

Definition 5.23. A (p,T)-module over Ry (XP°™) resp. Ek(%perf) is called étale
if its underlying p-module is étale.

Let M be a (p,T')-module over 5}}(%perf). It is unclear whether the base change to
R (XPe) with the induced action of  and o is a (¢, T')-module over R x (XPe).
Of course, we can define a p-module R (XPe) Bt (gpesty M with an action of o} .

K
But we do not know whether this action is continuous (the ¢-action is automatically
continuous). If M has a model, the situation is better:

Lemma 5.24. Let M be a (¢,I')-module over Ek(%perf) for which there is an r

such that M has a model over S}L((f{perf)r. Then base change yields a (p,I")-module

R (XPef) ®g;r<(xperf) M over Ry (XpPe),

Proof. Write M = Sk(%perf) ® M™ for a model M" of M. Then we have

g;{ (xperf)r

RK(xperf) ® M RK<:{perf) ®g}((3€pcrf) (E,'k (%Perf) ®5;r<(xpcrf)r M’")

= RK(:{perf) ®RK(:{perf)r (RK(:{perf)r ®£}L<(xperf)r MT)

S}L{ (%pcrf)
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5 (¢,T')-Modules
This isomorphism is equivariant under the action of o;. We show that the orbit
maps

0; s RK(xperf)r ® . M

g;r((xperf)
are continuous. For this, fix m € M", f € Rk (XP®")" and note that the map
0f — R (XPH x M7,
u > (us(f),u(m))
is continuous since it is the composition of the continuous maps
0f = 0f X 0f = R (XPH x M,

u— (u,u),

(u1,ug) = ((u1)«(f), ua(m)).

For n € N we have a commutative diagram

R}((xperf)r X (RK(xperf)ryL - (RK(:{perfy)n

T_

RK(:{perf)r % (5}[{(:{perf)7’)n - (RK(%perf)r)n

where the vertical maps and the upper horizontal map are continuous. Therefore
the lower horizontal map is continuous as well. We have an open projection pr :
Ei((fperf)” — M. Then consider the commutative diagram

 (Ek(xetyry

RK(:{perf)r > (g;{(:{perf)r)n _® . (RK(%perf)r)n ~ RK(%perf)r ®g}((%pcrf)

idxpr iid@pr
R (XPT)" x M”

RK(%perf)r ® MT

g;{ (xpcrf)'r

where the vertical maps are open. Together with the continuity of the upper hori-
zontal map this implies that the canonical map

® : RK(%perf)r <« M — RK(%perf)r QM

is continuous. Then the orbit map of an element f ® m is the composition of
continuous maps

0f = 0f x 0f = Ri(XP)" x M" — Ry (XP)" @ M,

and hence continuous. For a general element ), f; ® m;, the orbit map is a sum of
continuous maps and therefore continuous.
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Now think about R g (XPef)s @R  (xPerfyr (R (xpertyr D (pertyr M) for s > 7.

Arguing as above, but with M" replaced by R (XPert)” ®et (xpertyr M" and base
K

changing from R (XPF)" to Ry (XPf)* we see that the orbit maps

0f = Ric(XP)* @ (xmerty (Ric(XPT) 0,1 ey, M)

are continuous. Then we use the continuous inclusions

R (B)* @t apentyy M7 = Ric () @t pnty M = R (XP) @t ety M

(%perf) (xperf)

for any s > r to see that the orbit maps

of = R (XP) @ M

g}( (xpcrf)

are continuous. This implies that o} acts continuously on Ry (XP*f) ® M

gT (xperf)
because of the Banach-Steinhaus theorem and Lemma 5.10. "
O

Unfortunately we cannot expect the multiplication on RK(%perf) to be jointly

continuous, only separately continuous, so this proof does not work if we replace
R (XY with Ry (xPerT).
Every (¢, I')-module over R (X) has a model ([6, Proposition 2.24]). But the proof
of this proposition relies on the fact that Rx(X) is a compactoid inductive limit.
But this does not seem to be the case for Ry (XP°!). The problem is again the
continuity of the o -action.

Proposition 5.25. The base change functor — @ (xpest) R (X)) from étale
K

(¢, T')-modules over 5;((36perf) with model to étale (,T)-modules over Ry (XPeT)
is fully faithful.
Proof. Let

& € Hom,, r(Ri (X7) & M, R (XP") @ N)

SI( (xperf) g}’((:{perf)

be a morphism of (¢, I')-modules. We find a morphism of the underlying ¢-modules
a € Hom, (M, N) such that & = o ® id which follows from Theorem 5.15. Then «
is already a morphism of (¢, I')-modules since
a(u(m)®1) = (a®id)(u(m)® 1)
=u((a®id)(m®1))
= u(a(m) ®1),

and hence
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5 (¢,T')-Modules

for u € of and m € M. This implies a(u(m)) = u(a(m)) because N is a flat
S;( (xPerf)-module. Therefore the map

Hom%F(M7 N) - Hom@,F(M ®g}‘{ RK(%pcrf)a N @5;{ RK(%pcrf))

(%perf) (xperf)

is surjective. It is also injective since this is true for the map between morphisms
of the underlying ¢-modules. O
Example 5.26. Let § : L* — L* be a continuous character. We define M5 :=
R (XPe) - e5 with ¢(es) = 6(7) - e5 and u(es) = 6(u) - s if u € o .

Lemma 5.27. M; is a (¢, T')-module over Ry (XPe).

Proof. Mjs is a p-module over Ry (XP). The continuity of the o} -action follows
by writing it as the composition of the continuous maps

0F X Ry (XP) — L% x Ry (%P,
(u, f) = (6(u), f), and
LX x RK(%perf) (xperf)
(a, f)

b—>af
[

Lemma 5.28. Let 6 : L* — L* be a continuous character which takes values in
or. Then Ms is an étale (p,I")-module.

Proof. Define Mj := Ekgl(%perf)-e(; with p(es) = 0(m)-es and u(es) = d(u)-es. The
continuity of the o} -action follows similarly as above. Then Mj is a (¢, I')-module

over gkél(f{perf) such that Mg = R (XPert )®51,g1(xperf) M;5 as (¢,T')-modules. O
K

We do not know if there is a base change functor from (¢, I')-modules over
Ekgl(%perf) (with the weak topology) to R (XP), even if we only regard mod-

ules with model. The inclusion Ekgl(%perf)r < Ry (XPH)" likely is not continuous
because this is the case over BPf so the proof of Lemma 5.24 does not work.

Lemma 5.29. Rg(X) = limg Ok(X\ X,,) is a regular inductive limit (i.e. each
bounded subset U C Ry (X) is contained in some O (X\X,,) and is bounded there).

Proof. This is [6][Proposition 2.6 i.]. O

Proposition 5.30. Let M be a (p,I")-module over 5;((%) such that the underlying
S;{(.’f)—module is free. Then M has a model over some E;r((.’{)r.

Proof. Let n be the rank of M. Denote by M™ the ¢-module over E;Q(%)TO which
comes from repeating the proof of Lemma 5.16 for 5;((1{) and applying it to the
underlying ¢-module of M. Note that M = (5;[< (X)™)™. Any orbit map

pm 0] = M
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for m € M is continuous, so, o] being compact, its image py, (0} ) is compact and in
particular bounded in M. Then py,(05) € M C Ry (X) @, (x)M is bounded as well
K
and hence contained in Ry (X)" Rt (xpert)To M™ =2 (R (X)")" foran rg < r < 1
K
and bounded there according to the previous lemma. Since 5}((%)" N (Rr(X)")™
is contained in (5;((%)5)”, we have

pm(0F) € EL(R)’ @ rypg M = M°

for s > r. We may apply this to the finitely many generators of M™ and assume
that o] preserves M*® for s > r. Note that the continuous inclusion of py, (o} ) C M*
is a homeomorphism onto its image in M. This is because we have a commutative
diagram

Ri(X)* ®S}}(3€)S M?* —— Rk (X) ®8}}(3€)S M?

| T

M?® M

where the vertical maps are a homeomorphism onto their image (the rings in the
lower row carry the subspace topology from the rings in the upper row). The set
pm(0r) € R (%) Dt ()0 M? is bounded and hence compactoid ([6, Proposition
2.5]), and the inclusion Ry (X)* ®et ()0 M — Rg(X) Dt (2)e M* defines a home-
omorphism onto its image in Rx (X) Det (2)e M? (see [13, Corollary 3.8.39]). Then

the inclusion M* — M defines a homeomorphism of p,, (0] ) onto its image in M
as well.

This shows that the orbit maps o] — M? are continuous. Arguing as in the proof
of Lemma 5.24 we see that this implies the continuity of the orbit maps

Oz — Ri(X)* ®g}((3g)s M.

But over R (X)® we can use the Banach-Steinhaus theorem since R (X)* ® (2)*
K
M? is barrelled. Together wit Lemma 5.10 this implies the continuity of

OZ X Ry (X)* ®£}}(3€)S M?® — Rg(%X)* ®SI((3€)S M?,
which then implies the continuity of
of x M® — M?®

because M* C R (X)® ®qt . M* and hence 0] x M* C o] X Rg(X)* @pt pyo M*
Ex (%) Ex (%)
carry the subspace topology. O

Corollary 5.31. The base change functor from the category of free (¢,I')-modules
over 5}2(%) to the category of free (¢,T')-modules over Ry (X) is fully faithful.
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6 Appendix

6.1 Seminormed groups, rings and modules

We collect several facts about seminormed groups and rings as in [31, Chapter 1.1,
1.2].

Definition 6.1. e A seminormed group is a pair (G,|| - ||) consisting of an
abelian group G and a function || - || : G — Rxq satisfying ||0]] = 0, and
lg = Rll < max({lg], |[2]]) for all g,h € G.

o A seminorm on a ring R is a seminorm || -||g on the underlying group (R,+)
such that ||1||g = 1 and ||zy||lr < ||z||rllyllr- A ring (R,| - ||r) with a fized

seminorm || - ||r is called a seminormed ring.
e A seminormed module module M over a seminormed ring (R, | - ||r) s an
R-module with a seminorm || - ||ar on the underlying group (M,+) such that

lem||ar < ||z||g|lm||ar for all x € R and m € M.

Definition 6.2. A homomorphism f : M — N between two seminormed groups
is called bounded if there is a constant C such that || f(m)||n < C|m|ar for all
me M. If C =1, then f is called non-expansive.

Note that every bounded homomorphism between seminormed groups is contin-
uous for the topology induced by the seminorm.

Completions

Definition 6.3. A seminormed group (G, || - ||) is called complete if every Cauchy
sequence in G has a limit in G.

Definition 6.4. Let (G, | - ||) be a seminormed group. A pair (G,i) is called com-
pletion of G if the following holds:

(i) G is a complete normed group.
(i) i : G — G is an isometric homomorphism.
(iii) i(G) is dense in G.

Proposition 6.5. Fach seminormed group admits a completion.

141



6 Appendix

Proposition 6.6. Let G and H be seminormed groups, let (@,z) respective (ﬁ,j)
be a completion of G respective H, and let ¢ : G — H be a continuous group
homomorphism.

(i) There is a unique group homomorphism @ : G — H such that the diagram
s commutative.

(ii) If ¢ is bounded, then ¢ is bounded with the same bound. If ¢ is an isometry,
then so is @.

(iii) If G = H,(G,i) = (H,j), and if @ is the identity, then also @ is the identity.
If F is a seminormed group with a completion (F,l) and ¢ : F — G is a

continuous group homomorphism, then o = @ o 1.

It follows that completions are uniquely determined up to isometric isomor-
phisms. Therefore we speak of the completion G of a seminormed group G.

Inductive limits

Definition 6.7. Let (Gi,|| - |li)icr be an inductive system of seminormed groups
with non-expansive transition maps. Let G :=li el G, be the inductive limit with
fi + Gi = G being the canonical maps. We endow G with the inductive limit
seminorm given by

HgH = 1nfz€17gzef171(g)”gl“l
This is the mazimal seminorm making the f; non-expansive. Therefore (G, || - ||)
is the inductive limit of (G, | - ||i)icr in the category of seminormed groups with

non-expansive homomorphisms.

Lemma 6.8. Let (Gy, || - ||i)ier be an inductive system of seminormed groups with
non-erpansive transition maps. Let G := li_n:;ie[ G be the inductive limit. Then we
have a morphism

l,i—H}G" - @iel(éi)
1€

whi.ch coinc'id.es with th.e completion map hgiel G; — @ielGi' Therefore we have
an isometric isomorphism

limy, ., (G:) = ling, G-
Proof. Let 1; : G; — G; be the completion map for every ¢. We get an induced
map ¢ : ligie s G; — ligiG s G; which is an isometry since all ¢; are isometric. By
composing with the completion map ligie s Gi — @ie I@i we get an isometric map

hﬂie ; G; — @ie[éi’ The image of this map is dense. Therefore it fulfils the
conditions of Definition 6.4. ]
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Tensor products

Definition 6.9. Let R be a normed ring and M, N two seminormed R-modules.
The tensor product M ®@r N with the tensor product seminorm

|z|@ = inf(maxij=1 _,|zi| - |vi]), z2€ M ®RgN,

where the infimum is taken over all possible representations
'

ZIZJ/‘i@yi, xi € M,y; € N.
i=1

Remark 6.10. The tensor product seminorm |- |g is the maximal seminorm such
that the bilinear map ¢ : M x N — M ®4 N is non-expansive, i.e. satisfies

[¢(z,y)leo < |z| - |y|-
Definition 6.11. We define M&rN as the (separated) completion of M @p N.
The seminormed R-module M&gN is called the completed tensor product of M
and N over R.

Lemma 6.12. Let M, N be two semi-normed R-modules, then we have an isometric
isomorphism

M&rN = M&gN.
Proof. As in [31, Proposition 2.1.7/4]. O

We denote by @ié IMi the separated completion of liglie s M; with respect to
the inductive limit seminorm.

Lemma 6.13. Filtered inductive limits of seminormed modules are compatible with
tensor products of seminormed modules.

Proof. This is Lemma 2.2.12 in [40]. O
Corollary 6.14. Let (M, || - [li)icr be a filtered system of seminormed R-modules,
(M, || - ||ar) its completed colimit, and (N, || - ||n) a seminormed R-module. Then

we have an induced filtered system (M;®N); of seminormed A-modules and an
isometric isomorphism

M&pN =1y, _ (M;@gN).

Especially we have M= @ielﬂi'
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Proof. The previous lemma, and the fact that tensor products commute with in-
ductive limits in the category of R-modules give us an isometric isomorphism

M®RN§11£(M¢ ®r N)
el

of seminormed R-modules. By passing to the completions we get an isometric
isomorphism

M&pN =Tim _ (M; @p N).
The map

v lim(M; ®p N) — lig(MZ@N)
el i€l

induced by the completion maps

Li: M;®p N — M;@N
is an isometry. We show that its image is dense: If = € hﬂie I(MZ@N ), then let
7, € M;,®N be a preimage under the canonical map M;,®N — hglz(Ml(@N) for

some %g. The image of the completion map ¢;, : M;, ® N — MZ-O@N is dense,
therefore for any € > 0 we find a y;, € M;, ® N with

o) — i Ly, 5y < <
Let y be the image of y;, in ligrlig(Mi ® N), then «(y) is the image of ¢;,(yi,) in
ligqiel(Mz@N), and we have

1w) = =y oy < Doiolio) = Tiollag v <=

This shows the density of the image of . We see that @i(Mi®RN) = @Z(MZ@QN),
and together with Lemma 6.12 we get
Z/\Z@)Rﬁ &= M@RN = @zEI(Ml KRR N) = @zEI(MlQ@RN)
0

Lemma 6.15. Let (A;, fi;) and (B, g;) be two inductive systems of seminormed
rings. Assume that we have isomorphisms of rings h; : A; — B; such that the
diagrams

fi
A —— A

hli lhi_‘—l

B; —> Bit1

commute for all i. Then hﬂf el A = liggv ; B; as rings. If the h; are isometric,
then this isomorphism is isometric for the inductive limit seminorm.
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Proof. The maps h; give rise to an isomorphism A : hﬂ -z‘Ai = hﬂg. iBi' If all
h; are isometric, the same is true for A which follows from the definition of the
inductive limit seminorm. ]

6.2 Locally convex vector spaces

The main source is [32]. Let V' be topological K-vector space.

Definition 6.16. A lattice L in V is an or-submodule such that for any v € V
there is a nonzero a € K* such that av € L.

Let (Lj); be a nonempty family of lattices in V' such that
1. for any j € J and any a € K* there is a k € J such that L;, C aL;,
2. for any two ¢,j € J there is a k € J such that L C L; N L;.

Then the convex subsets v + L; for v € V form a basis of a topology on V. This
topology is then called the locally convex topology on V defined by the family (L;);.
For any v € V the convex subsets v + L; form a fundamental system of open and
closed neighbourhoods of v in this topology.

Definition 6.17. A locally convex vector space over K is a K-vector space equipped
with a locally convex topology.

If V is a locally convex K-vector space, then addition and scalar multiplication
are continuous.

Let (V3,)n, be a family of locally convex K-vector spaces together with linear maps
fn V. — Vi, The coarsest topology for which all the maps fj are continuous is
called the initial topology on V with respect to the family (fp)y. This is a locally
convex topology. It can be defined by all lattices which are finite intersections of
lattices (f; '(Ln;))n; where (Lp;); is a defining family of lattices for the topology
on V},. Examples include the subspace topology, the projective limit topology.

In contrast, let (V4), be a family of locally convex K-vector spaces with linear
maps fr : Vi, — V. There is a unique finest locally convex topology on V for which
all fj are continuous. It is called the locally convez final topology on V. In general
it is strictly coarser than the finest topology which makes all f; continuous.

Lemma 6.18. Assume V' has the locally convex final topology with respect to a
family of linear maps fr, : Vi, = V. Then:

1. A K-linear map f :V — W into another locally convex K -vextor space W is
continuous if and only if all the maps

fofh:Vh—>W

are continuous;
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2. Assume that the topology on Vi, is defined by the family of lattices (Jn;);cr(n)
and that we have V=73, ci fn(Vh), then the topology on V is defined by the

family of lattices {3 pep frn(Lnjny)|J(h) € J(h)}.
Proof. Lemma 5.1 in [32]. O

Proposition 6.19. For a Hausdorff locally conver K -vector space V' the following
assertions are equivalent:

1. V is metrizable;

2. the topology on V' can be defined by a translation invariant metric which fulfils
the strict triangle equation;

3. the topology on V' can be defined by a countable family of lattices;
4. the topology on V' can be defined by a countable family of seminorms.
Proof. Proposition 8.1 in [32]. O

Definition 6.20. A locally convexr vector space V over K is called a K-Fréchet
space if V' is metrizable and complete.

Definition 6.21. A locally convex vector space V is called barrelled if every closed
lattice in V 1is open.

Example 6.22. 1. Fréchet spaces are barrelled.

2. Let the topology on V' be the locally convex final topology with respect to a
family of linear maps fp : V), — V. If all the V}, are barrelled, then so is V.

Definition 6.23. A subset H C Hompg (V, W) is equicontinuous if for any open
lattice M C W there is an open lattice L C'V such that f(L) C M for every f € H.

Proposition 6.24 (Open mapping theorem). Let V' be a Fréchet space. If f : V —
W is a continuous linear surjection onto a Hausdorff and barrelled locally convex
K -vector space W, then f is open.

Proof. Proposition 8.6 in [32]. O

Theorem 6.25 (Banach-Steinhaus). If V' is barrelled then any bounded subset
H C Ls(V,W) is equicontinuous.

Corollary 6.26. Let V be barrelled and G be a locally compact topological group
such that G acts on V. Then this action is continuous if and only if it is separately
continuous.
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