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ABSTRACT Traffic monitoring is key to modern city planning. However, the costs associated with

monitoring devices limit the large-scale deployment of existing traffic monitoring systems. In this article,

we propose and evaluate an algorithm to automatically count the number of vehicles that have passed

through a low-cost system for traffic monitoring. The system uses deviations in the Wi-Fi signals strength

to predict the presence of a vehicle on the road and its type (car, bus). The study further systematically

compares six analytical techniques for the classification of detected vehicles. The methods were tested

with data from three road scenarios in the city of Münster, Germany. Vehicle classification accuracy

ranged from 83% up to 100% in our study. We also observed that a higher Wi-Fi frequency (5 GHz) was

superior to the 2.4 GHz for improving the overall vehicle detection and the results of the classification

algorithms. The results suggest that the Wi-Fi-based techniques proposed in this study are promising for

cost-efficient traffic monitoring in cities in a privacy-preserving manner.

INDEX TERMS Low-cost, machine learning, road traffic monitoring, smart cities, vehicle classification,

vehicle counting, Wi-Fi.

I. INTRODUCTION

W ITH the growing population and traffic in urban

areas, there is a need to efficiently organize and

improve road traffic. Numerous concerns exist when the road

traffic is not efficiently planned, such as increased traffic

jams, high gasoline consumption, air pollution, noise pol-

lution [1], [2], [3]. Scarce management of traffic flow may

result in extended waiting times at traffic lights or in con-

gestion that influences the gasoline consumption as well as

the drivers’ mood and behavior. Access to timely, reliable

traffic data with high spatial coverage of cities can help to

minimize or address these problems. Information about the

speed and direction of a vehicle or the number of vehicles

that use specific roads can be useful to enhance and redirect

the traffic flow. This data can further be helpful for more

complex spatiotemporal models to infer harmful noise lev-

els or air pollution in cities. Additional applications areas

of timely and high-granular traffic data include road safety,
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traffic control systems, statistics, economic development and

federal reporting, which could also benefit significantly from

increased data availability.

Despite these potential benefits of timely, high-granular

traffic monitoring data, the costs associated with installing

and maintaining existing techniques for traffic monitoring

(e.g., inductive loop detectors, video analysis) limit their

large-scale deployment. For instance, inductive loops cost at

least 5.000e.1 The Georgia Department of Transportation

has stated in a report that the installation of a Continuous

Counting Stations (CSS) on a two-lane roadway costs

approximately $25.000 and can go up to $80.000 [4]. There

is thus a need for low-cost techniques that produce reli-

able traffic data. Along these lines, Gupta et al. [5] recently

proposed an approach for traffic monitoring, which uses

Wi-Fi signals to detect vehicles. Their approach was low-

cost (they indicated a cost of less than $50 for it), and they

reported promising results for vehicle classification using

1. https://ct-technologyinfo.com/2020/11/09/traffic-detection-systems/
(last accessed: July 31, 2021).
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Wi-Fi signals. Nonetheless, their work had a few limitations.

First, the vehicle counting strategy used led to multiple false

positives. It is desirable to avoid these false positive as much

as possible, so that vehicle classification is done on relevant

entities instead of noise. Second, the scenario of multiple

vehicles passing at the same time was not covered. Third,

their work reported that the k-nearest neighbor (kNN) tech-

nique used led to good classification accuracies, but it is

unclear if other models would have performed better. These

limitations are addressed in this work, with a focus on the

following four research questions.

1) How to automatize the counting of vehicles on the road

based on deviations of wireless signals? The emphasis

here is on increasing the precision of vehicle counting

strategies.

2) What are the respective merits of different types of sig-

nals (5GHz vs 2.4GHz) for detection and classification

endeavours?

3) How to automatically classify the type of vehicles

based on deflections of wireless signals? Here, the

aim is to systematically compare several models for

the classification tasks.

4) To which extent do models learned from a road envi-

ronment can be applied to other road environments?

This question touches on the generalization of the

models. ‘Other road environments’ here can denote

the same road at another time (in which case we talk

about temporal generalization) or an entirely new road

(in which case we talk about spatial generalization).

The key contributions of this article include (i) an algo-

rithm for automated counting of the vehicles based on Wi-Fi

signal; (ii) a comparative evaluation of the 2.4GHz and 5GHz

signals for vehicle counting and classification, and (iii) a

comparative evaluation of different classification algorithms

to analyse Wi-Fi signals. The rest of the paper is organized

in the following sections. Section II gives a brief overview

of the related work, followed by Section III that describes

the methods used during the work. The performances of six

analytical approaches used to classify the types of vehicle

are described in Section IV. A discussion of the results and

their implications in presented in Section V before Section VI

concludes the article.

II. RELATED WORK

Gupta et al. [5] proposed a grouping of traffic monitoring

techniques into five classes: intrusive devices, non-intrusive

devices, off-roadways devices, sensor combinations devices,

and relatively low-cost devices. Related work in these

categories in briefly reviewed in this section.

Intrusive devices: These devices are permanently installed

into the pavement. They have high accuracy, but high

installation and maintenance costs as well. Inductive loops,

magnetic detectors, micro-loop probes, pneumatic road tubes,

piezoelectric, and other weigh-in-motion sensors are exam-

ples of intrusive devices. Barbagli et al. [6] described the

disruption of the traffic during the installation and repair as

a huge drawback of intrusive devices along with increased

costs for their installation. They state that “as a result, those

solutions are not suitable for large-scale deployment and

hence are restricted to small scale applications” [6].

Non-intrusive devices: These devices are “more reliable

and cost-effective” [6] than the intrusive devices. Examples

of these include: technologies such as video image process-

ing, microwave radar, laser radar, passive infrared, ultrasonic,

passive acoustic array, in which devices are mounted over-

head on roadways or roadsides (see [5]). Recently, Asiain

and Antolín [7] developed a Low Power Wide Area Network

(LPWAN) based system for detecting traffic flow. However,

like intrusive devices, most non-intrusive devices also have

the downside of being expensive, energy intensive as well

as being affected by the environment (e.g., they are prone

to errors when environmental conditions like weather or

daytime change, see [6]).

Off-roadway devices: These devices use remote sensing

techniques for traffic monitoring. These techniques include

aircraft and satellite monitoring as well as tracking phones

or using probes within the vehicles. They are cheap and

easy to deploy and offer a high spatial resolution but raise

privacy concerns. Chourasia et al. [8] proposed Wi-Fi-based

road-side sniffers to examine signals broadcasted by smart-

phones available inside vehicles to estimate traffic stats of

road segments. Hoogendoorn et al. [9] conducted a study

where they used grayscale imagery, which was recorded by

a camera mounted on a helicopter. The study draw “insight

into the behavior of drivers during· · · congestion, and to

develop and test theories and models describing congested

driving behavior”. The assembly could detect and track 98%

of the vehicle positions and their dimensions—the spatial

resolution of 22cm and a temporal resolution of 8.6 Hertz.

Overall, the outcome of their study suggests that the weather

had a significant impact on the quality of the data collected.

Also, the helicopter was affected by the wind strength, which

also influenced the image quality. Another study conducted

by Schreuder et al. [10] found a drop of reliability in the

data from 98% of cars that were detected to 90% “after the

weather conditions worsened.”

The approach to counting vehicles with the help of probes

uses Global Positioning System (GPS) signals to track the

vehicles also belongs to the off-roadways devices class. The

benefit of the system is that it can be easily applied to

existing cars with GPS sensors and works with high accu-

racy. However, the obvious downside to this approach is

the privacy concerns that come with it. Even with anony-

mous data collection, data mining algorithms have been

shown to find out where the individuals live (see [11]).

Nanthawichit et al. [12] proposed a method for treating probe

vehicle data together with fixed detector data in order to esti-

mate the traffic state variables of traffic volume, space mean

speed, and density using a macroscopic model along with

the Kalman filtering technique (KFT). The model combines

data collected by probe vehicles and conventional data in a

microscopic traffic flow model. The KFT was used to handle
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the inconsistencies of data collected by the probe vehicles.

The researchers also had some experimental results on traf-

fic prediction, which confirm “that the proposed method can

provide reasonable estimation not only for traffic states but

also, [· · · ], travel time can be effectively estimated and pre-

dicted” [12]. Recently, Ryan et al. [13] and Byun et al. [14]

proposed the application of unmanned aerial vehicle (UAV)

for estimating road traffic and vehicle speed automatically

by analyzing video feed using machine learning approaches

like deep neural network.

Sensor combination devices: These devices try to com-

bine multiple traffic monitoring techniques such as passive

infrared with ultrasound and Doppler microwave radar to

enhance their overall accuracy. Even though they result in

higher accuracy, these combinations are often highly com-

plex to install, making it challenging to deploy them for high

spatial coverage data collection processes.

Relatively low-cost devices: Examples of systems men-

tioned in Gupta et al. [5] belonging to this category were

continuous-wave radar, computer vision low-cost sensors,

and radio-wave technologies. Some of their disadvantages

include the need for specialized hardware and procedures,

limited computation capability for large data set analysis and

privacy concerns. Forren and Jaarsma [15] proposed a low-

cost system by using acoustic sensors to monitor the traffic.

The study used microphones to count vehicles by analyzing

their tire noise. Sen [16] investigated traffic monitoring of

non-lane chaotic traffic using the noisiness and excessive

use of vehicle honks. The author used the noise level, the

number of honks, and their duration to check for congested

roads. Two microphones were used along the road to mea-

sure the noise variation over time and distance. The system

was able to detect different traffic conditions in real-time.

However, it was also acknowledged in the study that the

honking depends on the driver’s behavior and that chaotic

traffic jams result in many loud honks, but sometimes the

road users also queued up in a traffic jam, which resulted

in a quiet but still congested traffic situation. More recently,

Kochláň et al. [17] proposed a low-cost vision-based traffic

monitoring system using Raspberry pi and a high defini-

tion camera connected to a car battery in conjunction with

a step-down transformer and an antenna to send the data

to a remote server. The authors did not state the overall

cost of the system. They reported that the system had a low

power consumption because it was able to run on a single

car battery for over one week. The computer vision algo-

rithms were able to detect 95.7% and classify 93.2% of the

vehicles. Ryan et al. [13] also proposed the computer vision-

based approach assisted with small unmanned aerial systems

(sUAS) to capture detailed data for collecting vehicle data.

A novel approach based on dedicated short-range com-

munications (DSRC) signals to measure and classify traffic

demand was introduced by Tulay and Koksal [18]. The

DSRC is a method where vehicles communicate with other

vehicles without the driver knowing the communication. This

has the advantage that no wired infrastructure is needed to

deploy the system. They used a static transmitter on a road-

side, which captured the signals of bypassing cars and were

able to distinguish different traffic intensities with an accu-

racy of 96.3% and 87.6% [18]. Another approach that uses a

Microwave Doppler Radar Sensor connected to a Raspberry

PI 3 Model B was proposed by Czyz̈ewski et al. [19]. Their

algorithm results were compared to a pneumatic tube count-

ing system deployed on the same road. The study achieved

an accuracy of 90% for vehicle counting, stating that it would

be sufficient to use this approach to collect traffic statistics.

One problem that the authors acknowledge was the diffi-

culty of detecting vehicles with a high velocity (greater than

100km/h).

The Wi-Fi channel state information (CSI) was used in a

field study conducted by Zhang et al. [20], Won et al. [21]

to detect bypassing vehicles. To access the CSI particular

chipsets and firmware are necessary, which was not avail-

able in the generation of the Raspberry PI which was used

during this study. Furthermore this study’s focus is on com-

paring the difference between the two different frequencies

and the comparison of the different classification algorithms.

The CSI is also used for human indoor gesture detection.

They achieved an “average detection accuracy of 99.4%

and an average classification accuracy of 91.1%.” When

a vehicle passes, the system detects peaks with the stan-

dard outlier detection technique using CNN. Homchan and

Aswakul [22] further proposed the Wi-Fi packet measure-

ment based approach for vehicular traffic monitoring using

software-defined mesh network.

Summary: Overall, many efforts are underway to develop

novel methods to count and classify traffic in a transport

system. The central objective has been to reduce the cost

of an individual counting station to allow a large-scale

deployment by using existing infrastructures or cheap sen-

sor technology. Our work is in line with this objective. In

particular, as mentioned in Section I, we extend and address

several limitations of Gupta et al. [5] to develop a more

automated and reliable Wi-Fi based approach for vehicle

detection and classification.

III. METHOD

This section presents an overview of the data and methods

used in the study.

A. DATA COLLECTION SCENARIOS

The focus of this study was on investigating the performance

of the system in urban areas, and three road types that are

common in German cities were chosen to provide a realis-

tic test setting. The first type is the one-way roads, where

vehicles are only allowed to drive on one lane and in one

direction. The second type is a road with two lanes and

the vehicles driving in one direction, and the third type is

the roads with two lanes where the vehicles drive in both

directions. The speed limits of all scenarios are 50 km/h.

Highways were excluded at this point for safety reasons. The

measurements took place in November and December 2020
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in the city of Münster (North Rhine-Westphalia, Germany).

The data collection activities were approved by the city coun-

cil of Münster, and necessitated the deployment of additional

traffic signs to ensure the safety of the drivers. The three

scenarios are now described in detail.

Scenario 1 - The one-way street: For this scenario, the

Austermannstraße was chosen. It is a busy road in the

city, with cars and busses as the most common vehicle

types passing. The two units of the hardware system were

placed approximately 6 meters apart across the road. Two

measurements were collected from this road on 16.12.2020

and 17.12.2020. The first-day measurement started at 16:00

and ended at 19:00 with weather conditions of 9◦C,

cloudy and 87% relative humidity 1015 hPa. The second-

day measurement started at 16:30 and ended at 19:30 with

weather conditions of 10◦C, cloudy, 79%, and 1021 hPa.

The sunset time for the first measurement was at 16:17 and

for the second at 16:18.

Scenario 2 - Two lanes one direction: Here, the

Corrensstraße was chosen. It is a large but not a busy

road in front of a university building. The most common

vehicle types using this road were cars and busses. The

hardware units were approximately 11 meters apart across

the road. Three measurements were collected on 19.11.2020

(16:15-17:30), 24.11.2020 (17:00-18:00) and 25.11.2021

(17:20-18:40). The sunset times for the measurements were

at 16:32, 16:26 and 16:25, respectively. One noteworthy

observation for this particular scenario was that few busses

drove extremely slowly through the system because the hard-

ware installation was located in proximity to a bus stop, and

as the busses started, they needed some time to accelerate.

The weather conditions for the first measurement were 2◦C,

cloudy, 85% relative humidity and 1027 hPa; the second

measurement 0◦C, cloudy, 90% and 1020 hPa, and for the

third measurement, the conditions were 5◦C, cloudy, 82%

relative humidity and 1018 hPa.

Scenario 3 - Two lanes two directions: The third sce-

nario with two lanes and two directions was located at

the Mendelstraße with a distance between the two parts

of the installation by approximately 10 meters across the

road. The two most frequent vehicle classes over this road

were cars and busses with the possibility of two cars pass-

ing at the same time. Two measurements with 2.5 hours

length were collected on 08.12.2020 (starting 16:00) and

09.12.2020 (starting 16:20). The sunset times for both mea-

surements were at 16:17. The weather conditions for the

first measurement were 1◦C, foggy, 97% relative humidity

and 1006 hPa and for the second 0◦C, foggy, 100% and

1010 hPa.

B. DATA COLLECTION APPROACH

1) SENDER AND RECEIVER

The data was collected using a system extended and much

improved from [5]. A key novelty here was the addition

of the 5 GHz frequency. The sending unit consists of

FIGURE 1. Graphical representation of the installed system and its working (Icons

made by Freepik.com).

FIGURE 2. A picture of the system’s sending unit. The different hardware

components (Router, laser pointer, camera and power supply) are labeled.

multiple elements which are portrayed in Figure 2. A “TP-

Link WLAN-Router model Archer C7 AC1750” was used,

which uses the dual band frequencies 2.4 GHz and 5 GHz.

The SSIDs of the router was separated into the 2.4 GHz

and 5 GHz frequencies to allow the receiver to distinguish

between the two signals. The Receiver, which is displayed

in Figure 3 consists of a Raspberry Pi 3 B, two USB WI-FI

dongles, two dual band directional antennas and a light sen-

sor. The graphical representation of whole the installation is

illustrated in Figure 1 and the annotated configuration of the

installation is presented in Figure 2 and 3.

The signal strength of the frequencies was measured in

decibel (dB). The setup helped us capture the interruptions

in the signal caused by vehicle driving between the sender

and the receiver on the road.

In contrast to systems discussed in the previous section,

our prototype can be installed within a couple of hours with-

out stopping or distracting the traffic flow on the road. To

install the system, the two units need to be placed on opposite

sides of the road. As the hardware system can be accessed

and restarted without interfering with the traffic, detecting

errors and restarting the system can be performed remotely.
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FIGURE 3. A picture of the receiving unit of the system. The different hardware

components (directional antennas, Raspberry Pi, light sensor, camera and power

supply) are labeled.

As it consists of multiple components, defective parts can

be replaced individually with no effect on traffic flow, mak-

ing it more promising in terms of easy maintenance and

cost-effectiveness. Considering the safety approvals required

before installation and the fact that the data collection can

only be initiated with some programming skills, the system

in the current state is not suitable for citizen science ini-

tiatives. The approximate cost of the installation was 200e,

which is a lot cheaper than the state of the art monitoring

systems [4] or even newer approaches [21].

2) GROUND TRUTH

A laser tripwire system was used to collect ground truth

data about vehicles passing or not, and when. In addition,

the types of vehicle passing were recorded through cameras

mounted on the ground (max 20 cm above the ground). That

way, only the wheels of the cars were recorded to ensure

that no personal data about the drivers was collected. This

was a mandatory requirement by the local authorities. The

video data were subsequently manually annotated with the

class of vehicle passing to generate the ground truth data.

A subsequence of the data is shown in Figure 4. In the

visualization, an extract of the different collected time series

is shown for the time that a car drove by the system. In both

frequencies a noticeable drop in signal strength is visible.

Corresponding to the signal drop, the laser was interrupted,

which can be seen in Figure 4 (Bottom). The system, which

recorded 10 datapoints per second picked up three datapoints

of the disrupted laser, which correspond to 3 datapointts

(middle) and 4 datapoints (top).

C. VEHICLE COUNTING APPROACH

As mentioned in Section I, one of the aim of this work is to

reduce noise during the vehicle detection task. In previous

FIGURE 4. Visualization of the change in signal strength in dB when a car drives

through the system. Top: 2.4 GHz signal strength; Middle: 5 GHz signal strength;

Bottom: Laser Value (0 = The laser is not interrupted, 1 = The Laser is interrupted).

work [5], peaks were used to execute the detection of vehi-

cles. A peak starts when the Wi-Fi signal strength drops

more than a given threshold and ends when it recovers to

the starting dB value also within the threshold. A peak has

a time window, i.e., the duration between its start and end.

As the main idea of Gupta et al. [5]’s method was to use

the point in time the signal recovers (i.e., returns to its value

before deflection) as an indicator for the end of a peak, their

approach is called recovery-based method to peak extraction

at this point. The threshold of 2dB was used for peak detec-

tion in [5] and that value was also used in this work while

implementing the recovery-based approach as a baseline for

comparison. One weakness of the recovery-based approach
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is its limited ability to detect more complex patterns in sig-

nals. For example, in some cases when a bus passes the

system, the signal strength recovers momentary and goes

down again, causing the algorithm to detect two different

busses instead of one.

To enhance the threshold method and make it more robust

to fluctuations, we use a new method called median-based

peak extraction. We begin by first computing the median

of the time series, which we then use as a reference value.

In addition a 3 data point time window was also used to

allow the detection of more complex patterns in the signal

stream. By this new approach new peaks are identified when

the mean of the signal strength within the windows differs

more than 1.5 dB to the median. The peak ends when the

mean of the signal strength of the three data points recovers

back within the 1.5 dB. The threshold of 1.5 dB was chosen

after multiple iterations during the data analysis. Table 1

shows the results across all three scenarios. Note that the

detection algorithm does not perform any classification at

this stage. Since the outcomes of the extraction step are

the input values for the classification methods, the detection

algorithm determines the maximum vehicle count that can

potentially be classified. The assignment of the classes of

vehicles to the peaks has been done manually to generate the

data in this table. As the table illustrates, the median-based

peak extraction allowed a more complex and robust peak

extraction and is more resilient to noise detection across

scenarios. Nonetheless, it might still be prone to noise error

when the idle signal strength changes or a vehicle stands

for a long time between the sensors. In all three scenarios,

the median-based approach has reduced the number of NaV

(false positive) dramatically, leading to substantial improve-

ments in the precision and overall F-score, especially when

applied to 5GHz signals.

D. VEHICLE CLASSIFICATION TECHNIQUES

Once the peaks were extracted from the frequencies with the

new approach discussed above, a classification of the peaks

was intended. The goal here is to find out the type of vehi-

cle that led to the disturbance in the Wi-Fi signal. In order

to accomplish the classification process different algorithms

were used and compared. Initially, the classification algo-

rithm k-nearest neighbor classifier utilized in the previous

work by [5] was implemented and used as a comparison

baseline. Afterwards different preprocessing techniques were

applied to the data and various parameters for the kNN were

investigated. In addition, a Random Forest classifier was used

to classify the peaks. Ultimately, a new approach using the

matrix profile was implemented in our study for the vehicle

classification. A brief description of each method, as well

as the rationale for their choice is presented next.

1) K-NEAREST NEIGHBOR

K-nearest neighbor is a “simple but effective” [23] classifica-

tion method, suitable as a basis of comparison for following

classification algorithms because it “should be one of the

TABLE 1. Comparison of the peak extraction methods: Nav = Not a vehicle indicates

a false positive.

first choices for a classification study when there is little or

no prior knowledge about the distribution of the data” [24].

This classification method which is a supervised machine
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learning technique [25] learns by simply storing the training

samples and their features. The classification is then based

on the Euclidean distance between the training and test sam-

ples [24]. For each sample that will be classified the method

computes the Euclidean distances between the testing sam-

ple and all the training samples. The “k” samples that have

the least distance to the tested sample then determine the

predicted class based on a majority voting [26].

In a first step, the peaks have been extracted from the

two frequencies (see Section III-C). From these peaks the

amplitude and the length of the peak define the features

which, were used to classify the vehicles. These features are

the same that were used in previous work [5]. The ampli-

tude is determined by the maximum deflection of the signal

strength during the peak. The length of the system indi-

cates how long the signal needed to recover to its standard

strength. The resulting data is then split into 70% training

data and 30% testing data and the kNN is trained and the

test data is classified. After testing the values 3, 5 and 7

for “k”, the value 3 was chosen because it resulted in the

highest accuracy.

To enhance this method further, firstly, an additional pre-

processing step was conducted by applying feature scaling to

the input data. The different features were normalized which

can impact the overall accuracy of the kNN. The standardiza-

tion method from scikit-learn’s preprocessing package [27]

was used to perform this step. Secondly the Euclidean

Distance (ED) of the peak was added as a third feature for

the kNN algorithm for classification. The ED was computed

by adding up the distances between each of the datapoints

of a peak.

Since there was a greater amount of cars compared to the

other vehicle classes passing the sensors during the measure-

ment, an oversampling technique was also used to improve

the accuracy of the kNN even further. Chawla et al. [28]

stated that a class imbalance is present when the number

of instances of the different classes are not approximately

equal. This class imbalance problem results in wrong

detection of the dominant class which in this case are

cars [29]. The fact other vehicle classes occur less often

corresponds to the explanation by Chawla et al. [28] that

“real-world data sets are predominately composed of “nor-

mal” examples with only a small percentage of “abnormal”

or “interesting” examples” [29]. The Synthetic Minority

Oversampling Technique (SMOTE) provided by the python

package “imblearn.over_sampling” [30] was used to calcu-

late the additional samples of the minority classes. Only

classes with a minimum instance occurrence of 4 were

included. Tests with the oversampling technique did not

result in significant improvements, and are not reported in

this article.

2) RANDOM FOREST

Random forest is a supervised machine learning classifica-

tion and regression method that uses a divide and conquer

approach [31]. Multiple classifiers are used to achieve a

robust classification. The number of classifiers, which are

decision trees in the case of random forest, decide the accu-

racy and computation time for the algorithm. More trees lead

to more computation time [32]. For each new instance, the

individual trees vote on a class, and the decision is then based

on the majority of votes [33]. Previous work [34] reported

that random forest models perform well on a wide variety of

classification problems. The fact that many weak classifiers

most of the time perform better than a single classifier [35],

and that this method, in contrast to the kNN is efficient and

able to “operate quickly over larger datasets” [33] is the

reason that we chose to utilize it for our study.

In our study, the random forest used the same input data as

the new kNN approach to make a comparison possible. First,

the peaks for both frequencies are extracted using the new

counting method. The used features are the peaks duration,

maximum amplitude, and Euclidean distance. The features

were also normalized. The dataset was then split into the

same training and testing data using the same random seed,

which was used for the kNN classification to generate mean-

ingful results. The scikit-learn’s random forest classifier was

then used with 100 trees. Increasing the trees further up to

512 did not change the accuracy of the classification.

3) MATRIX PROFILE

The matrix profile technique was proposed in 2016 by

Yeh et al. [36] and is based on the all-pairs-similarity-search.

This method, also known as similarity join, retrieves the

nearest neighbors for each object in a data collection. In

the context of time series analysis, the method can be used

to identify patterns or outliers. Yeh et al. [36] created a

“simple, fast, parallelizable and parameter-free” algorithm

called Scalable Time series Anytime Matrix Profile (STAMP)

which uses the concept of the matrix profile. Their algorithm

was, at the time of publishing in 2016, the fastest to detect

motifs and anomalies in a time series. We found this tech-

nique to be relevant and worth of exploration in this study, as

Wi-Fi-based signals can be modeled as time series. To utilize

the matrix profile, the first step is to count the peaks in the

time series. A peak in the context of the matrix profile would

be defined as a discord or anomaly. However, multiple peaks

with similar patterns occur within the time series which is

the reason why the algorithm is not able to detect them as

an anomaly. This is called the “twin freak problem” [37].

This problem was investigated by He et al. [37] suggesting

that the algorithm “fails to identify rare subsequences when

it occurs more than once in the time series.”

Due to the “twin freak problem,” the matrix profile can-

not simply be used for the peak extraction and classification.

Therefore a different approach was used in our study. The

python library “STUMPY” [38] provides different algorithms

for motif and discord detection using the concept of the

matrix profile. The initial step is to split the data into a

training set which was chosen to be 70% of the data and

a testing set with the remaining 30%. Next, the new peak

extraction was used on the testing dataset, and a distance
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FIGURE 5. Matrix profile clustering approach. The signal strength of the 5 GHz frequency is visualized in blue. The vehicle class shown in red indicate 3 cars (left) with a class

of and a bus (right) with a class of 2. The clustering algorithm found 7 different clusters from the votes.

profile to the training dataset for each peak was computed,

which is basically an all-pairs-similarity-search. In this dis-

tance profile, the global minimum is then sought-after. The

result is the index of the most similar subsequence in the

training dataset to the extracted peak. If a class was anno-

tated within the length of subsequence, it was assigned to

be the predicted class for the particular peak.

To make the detection more robust not only the global

minimum of the distance profile was chosen, but also the

three lowest minima in the testing set were used in conjunc-

tion with a majority voting. With the previously explained

approach using the counting method in conjunction with the

pattern search, a major advantage of using the matrix pro-

file is left out. All the previous methods need a counting

step and a classification step. The matrix profile provides

the possibility to combine those steps. A first attempt uti-

lizing this advantage but avoiding the “twin freak problem”

is proposed in the following text.

The aim was to first use a manual extraction of peaks from

the training dataset. This extraction uses the same technique

that was used to find the ground truth of vehicles. Therefore,

no further changes had to be made to the data and the

extraction is not prone to errors except the ones that were

made during the data annotation or sensor errors. For each

manual extracted peak the distance profile to the testing

dataset is then computed. Thereafter all local minima were

extracted from the distance profile. For each minima, a vote

with the extracted peak’s class and the distance profiles value

at that specific index is assigned to the same index on the

testing dataset. All votes then form a cluster on the testing

dataset. A Density-Based Spatial Clustering (DBSCAN) was

used for robustness and to ignore some outliers. Each cluster

contains the votes of classes and has to be assigned to one

peak (see Figure 5).

4) SUMMARY

In summary, six algorithms were compared during the study:

• kNN (baseline): kNN without any preprocessing using

the peaks duration and maximum amplitude as features;

• kNN (normalization): kNN baseline with duration and

amplitude as features, both normalized;

• kNN (ED+normalization): kNN baseline with ampli-

tude, duration, and Euclidean distance as a third feature

added. All three features were normalized;

• Random Forest (ED+normalization): random forest

with amplitude, duration, and Euclidean distance as

features, all three normalized;

• Matrix profile 1: STUMPY Fast Pattern Search for

each peak. The global minimum was chosen to for the

classification.

• Matrix profile 2: STUMPY Fast Pattern Search for

each peak. Three lowest minimum where chosen in

conjunction with a majority voting for the classification.

E. GENERALIZABILITY

Ferguson [39] summarizes generalizability as the combina-

tion of internal and external validity of the findings. Validity

is a criteria for the quality of results and can be separated

into internal and external validity. To interpret the results

of an experiment, internal validity is necessary. However,

the “external validity pertains to the generalizability of the
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TABLE 2. Accuracy results of the different classification methods for the measurement at the 08.12.2020 at the Mendelstraße.

treatment effect to other populations, settings, treatment

variables, or measurement variables” [39].

Generalizability in the context of the proposed system

has multiple dimensions. Based on Ferguson’s [39] defini-

tion, hardware and software generalizability are desirable in

the different scenarios or settings. Also, different measure-

ment variables like weather conditions could be investigated

regarding generalizability. For the system to allow a large

scale deployment generalizability is also important. For the

generalizability of our proposed system, we tested it in

three different road environments. An additional step was to

investigate the generalizability of the different counting and

classification models. Temporal and spatial generalizability

were tested. Temporal generalizability relates to whether the

counting and classification methods and their parameters

apply to the same scenario but at a different time, or if

an adjustment to the parameters or learning data is needed

for a new measurement. The spatial generalizability related

to whether or not the counting and classification methods

and models can be used in other, entirely different road

scenarios.

To test generalizability, first the training data from the

16.12.2020 at the Austermannstraße was used to train the

models of the classification methods. Then testing data from

the 17.12.2020 at the Austermannstraße was classified (tem-

poral generalizability). For the spatial generalizability, the

training data from the Mendelstraße and the testing data

from the Austermannstraße were used. The Mendelstraße is

the two lane street and the three vehicle classes car, bus and

two cars at the same time occur. On the Austermannstraße

which has only one lane, only cars and busses occurred. This

test generalizes the counting and classification methods spa-

tially because the training and testing data were collected

in different locations with a different distance between the

sensors, different numbers of lanes for each scenario as well

as having different vehicle classes appearing.

IV. RESULTS

Tables 2 to 6 show the results. The support values in the

tables indicate the amount of instances that were tested for

each method.

A. MENDELSTRAβββE

This scenario, which had two lanes two directions, had two

separate measurements of about 3 hours each. Two notewor-

thy observations are that the distance between the sensors

was smaller and that some cars slowed down significantly

after seeing the traffic warning signs. In total 1416 cars and

6 busses were counted. The results are shown in Table 2.

Mendelstraße - 08.12.2020: A first measurement at the

Mendelstraße was conducted on 08.12.2020. A few obser-

vations from the table is that the overall accuracies of the

machine learning approaches classifying the 5 GHz peaks

are almost 10% higher than the 2.4 GHz classifications.

Regarding the classification techniques, the normalization

did not improve classification accuracies over the baseline

(quite unexpectedly). The use of the Euclidean distance

increased the accuracy for the 2.4 GHz slightly, but not for
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TABLE 3. Accuracy results of the different classification methods for the measurement at the 09.12.2020 at the Mendelstraße.

the 5 GHz. The accuracies of both matrix profile techniques

were much lower, compared to the previous models.

Mendelstraße - 09.12.2020: A second measurement at the

Mendelstraße was conducted on 09.12.2020. The results of

classification methods are shown in Table 3. Again, the

5 GHz frequency counted more cars, and the classifica-

tion accuracy is higher in all cases. The highest overall

accuracy was scored by the kNN with normalized feature

values with the 5 GHz frequency with 0.88725. Furthermore,

the amount of 2 cars again were very low, and none was

detected. The feature normalization decreased the accuracy

of the kNN algorithm for 2.4 GHz but improved it for 5GHz.

After adding the peaks Euclidean distance, the accuracy was

increased for 2.4 GHz but decreased for 5GHz. The random

forest had similar results to the kNN classification with a

slight improvement in 2.4 GHz. This time, the matrix pro-

file results were closer to the machine learning results with

0.67619 for 2.4 GHz and 0.82581 for 5 GHz.

B. AUSTERMANNSTRAβββE

The next scenario, which was a one way street had two

separate measurements of approximately three-hour long

each. Two observations worth mentioning are that the dis-

tance between the sensors was smaller and that some

cars slowed down significantly after seeing the traffic

warning signs. In total, 1306 cars and 18 busses were

counted.

Austermannstraße - 16.12.2020: The results of the first

measurement at the Austermannstraße are shown in Table 4.

Higher accuracy than the previous two-lane street can be

seen, with the enhanced kNN method even scoring 100%

accuracy in the 5 GHz peaks. The number of counted

cars for both frequencies this time was the same, but the

2.4 GHz frequency had more NaV peaks extracted. In the

2.4 GHz frequency, no bus was detected compared to the

2 correctly detected bus instances in the higher frequency.

This time the normalization improved the accuracy for the

kNN, and the Euclidean distance also increased the accu-

racy of the 2.4 GHz classification. The random forest became

slightly worse compared to the kNN baseline in 2.4 GHz

and the same accuracy for 5 GHz. The matrix profile’s over-

all accuracies were again worse than the machine learning

approaches. For the 5 GHz peaks, the accuracy of the method

got closer to the previous methods, with the improved

matrix profiling version scoring 0.96226. However, in the

2.4 GHz frequency, the majority voting system decreased

the accuracy.

Austermannstraße - 17.12.2020: The results of the clas-

sification methods for the second measurement at the

Austermannstraße can be found in Table 5. Similar to the

first measurement’s results in Table 4 the difference in peak

extraction of the frequencies are visible. The lower frequency

693 peaks without a vehicle class were extracted compared

to zero at the higher frequency. Furthermore, 8 cars and

6 busses, which the 2.4 GHz frequency did not measure,

were perceived in the higher frequency. The best accu-

racy was achieved with the kNN method in combination

with the feature normalization with 0.99061. The baseline

algorithms overall accuracy was 0.97648 for 2.4 GHz and

0.98592 for 5 GHz. Normalizing the data decreased the result

for the lower frequency but increased it for the 5 GHz.

This time adding the peaks Euclidean distance to the input

feature increased both frequencies accuracies. The random

forest classifier worked best for the 2.4 GHz peaks and

was especially good for bus detection. The enhanced matrix

profiling classification scored 0.98889 on the 5 GHz peaks
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TABLE 4. Accuracy results of the different classification methods for the measurement at the 16.12.2020 at the Austermannstraße.

TABLE 5. Accuracy results of the different classification methods for the measurement at the 17.12.2020 at the Austermannstraße.

bypassing the baseline algorithms accuracy with similar

vehicle instances.

C. CORRENSSTRAβββE

The measurements at the Corrensstraße on the 19. 24. and 25.

of November in 2020 were chronologically the first ones and

had different problems during data collection and analysis.

Overall only 320 cars and 35 busses were counted due to a

low traffic density. For the analysis, the number of instances

are split into three different measurements resulting in a

very low number of vehicles per measurement, making the

results not very meaningful. Therefore, only the results of

the first measurement on 19.11.2020 are shown in Table 6.

The first problem, which occurred, was a signal loss in the

2.4 GHz frequency. The Wi-Fi disconnected multiple times

for a brief period of time. Another problem was the location

of the setup, which was next to a bus station. This resulted in

a huge variation of duration that the busses needed to drive

by the system. The results of the three measurements also

exhibit better counting capability in the 5 GHz frequency.
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TABLE 6. Accuracy results of the different classification methods for the measurement at the 19.11.2020 at the Corrensstraße.

TABLE 7. Models’ generalizability performances.

The overall accuracies in all methods were much lower,

ranging from 0.47863 to 0.97917.

D. TEMPORAL AND SPATIAL GENERALIZABILITY

The results of the model generalizability are shown in

Table 7. Only the kNN (ED+normalization) and the matrix

profile 2 models were tested for generalizability at this point,

because they led to the best results overall (Tables 2 to 6).

The temporal generalizability was tested by extracting the

peaks from the first measurement at the Austermannstraße

and using them as the training data for the classifica-

tions. Then the peaks from the second measurement at the

Austermannstraße were extracted and used as testing data.

For the kNN and random forest algorithm, both frequencies

could get a classification accuracy between 0.96190 and

0.96750 for 2.4 GHz and 0.97806 to 0.98276 for 5 GHz.

The enhanced matrix profiling approach was able to score

an overall accuracy of 0.97753 using the higher frequency.

For spatial generalizability testing, data from Mendelstraße

was used, and the peaks from Austermannstraße were tested.

A significant drop in accuracy ranging from 6% to 10% is

noticeable for the two machine learning approaches. The

enhanced matrix profiling method, however, was able to

score 0.97753 accuracy.

V. DISCUSSION

The research questions are now revisited, before we discuss

implications and limitations.

A. REVISITING THE RESEARCH QUESTIONS

1) HOW TO AUTOMATIZE THE COUNTING OF VEHICLES

ON THE ROAD BASED ON DEVIATIONS OF WIRELESS

SIGNALS?

The results of the peak extraction algorithms show that peaks,

which do not correspond to a vehicle type, are counted and

passed to the classification algorithm. Because the NaVs (i.e.,

false positives) are also passed to the classification meth-

ods, it is desirable to avoid them as much as possible. The

median-based approach suggested and implemented in this

work reduced the amount of irrelevant peaks extracted in the

three scenarios both for the 2.4 GHz and 5 GHz signals by

several orders of magnitude (Table 1). A median-based peak

extraction is thus more effective for vehicle counting than

a recovery-based approach and is an important step towards

automated Wi-Fi-based vehicle counting. In particular, it is

more robust to noise, and this means greater efficiency for

the Wi-Fi based traffic monitoring approach as a whole.

2) WHAT ARE THE RESPECTIVE MERITS OF DIFFERENT

TYPES OF SIGNALS (5GHZ VS 2.4GHZ) FOR DETECTION

AND CLASSIFICATION ENDEAVOURS?

The results have shown that the higher Wi-Fi frequency

(5 GHz) was superior to the 2.4 GHz, improving the overall
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amount of counted vehicles as well as the results of the

classification algorithms. Furthermore, the higher frequency

shows greater robustness in urban areas. For the detection of

multiple vehicles passing the system simultaneously, the pre-

liminary results indicate that this was not possible. However,

the low amount of occurrences do not allow a final conclu-

sion in that regard. The advantages of the 2.4 GHz is to have

provided slightly better accuracy results, when it comes to

the spatial generalizability of two models (kNN and random

forest).

3) HOW TO AUTOMATICALLY CLASSIFY THE TYPE OF

VEHICLES CONSIDERING THE SHIFT OF PATTERNS IN

WIRELESS SIGNALS?

The first lesson learned from Tables 2 to 6 is that the use

of kNN along with normalization and Euclidean distance

as a feature performed best for vehicle classification using

the 2.4 GHz signal. This technique consistently performed

best across scenarios. For the classification using the 5 GHz

signal, the results are more inconclusive as no method con-

sistently provided the highest accuracy value across scenario.

kNN techniques seem to have a slight advantage, but the ran-

dom forest approach has provided largely comparable results.

A second lesson from the tables is that distance between the

sensors seem to matters. The accuracy results obtained at the

Austermanstrasse, which is a one-lane street, are typically

about 10% higher than the results in the other scenarios.

This suggests that the shorter the distance, the better the

results, but the impact of distance on the accuracy results is

a matter that needs to be more systematically investigated

in future work. A surprising observation from the tables,

though, is that accuracy values of classifiers may differ by

some order of magnitude (about 5-7%) in a given scenario

(i.e., Mendelstrasse). It is unclear why this has been the case,

given that the two measurements were only 24 hours apart,

with relatively similar conditions (see Section III-A). This

too, needs a more systematic investigation in future work. A

third lesson, is that matrix profiling techniques have some

potential, especially using in conjunction with the 5GHz

frequencies. How to make them more robust across scenar-

ios and signal frequencies is an interesting issue for further

work.

Fourth, the choice of the location matters. Overall, the

Correnstrasse led to lower accuracy values, compared to

other scenarios. There were two possible reasons for this.

The first one, already mentioned, was the fact that the system

was installed next to a bus station. Therefore the busses that

stopped at the station were picked up by the system during

acceleration. In contrast to the busses that did not stop at the

station, the duration of the peaks was a lot longer, making

classification very difficult. Second, this scenario was located

in a more populated area than the previous ones. Thus, there

was a higher number of devices using the 2.4 GHz frequency,

leading to the signal being possibly more disturbed (there

were even signal losses during the data collection process

for the 2.4 GHz channel).

At last, it must be mentioned that the scope of all observa-

tions made in this subsection is limited to the classification

of cars and busses. There were too few instances of multiple

vehicles passing at the same time in the data collected to

offer solid conclusions of the merits of the techniques on 2

cars. The best vehicle classification accuracies in the scenar-

ios ranged from 83.4% to 99.8% (2.4 GHz) and from 78.6%

to 100% (5 GHz). The received signal strength was used

in this study to derive the amplitudes used as features (see

Figure 4), but CSI provides more information than received

signal strength (see [40]). It is thus likely that using CSI as

the basis for the classification could improve the accuracies

even further, but this remains to be tested empirically.

4) TO WHICH EXTENT DO MODELS LEARNED FROM A

ROAD ENVIRONMENT CAN BE APPLIED TO OTHER

ROAD ENVIRONMENTS?

When a trained model on one scenario was used to classify

data from the same scenario at a different point in time, the

accuracy values were comparable (Table 7). Thus, model

reuse within scenarios is possible and sensible. However,

when a trained model on one scenario was used to classify

peaks from another scenario, the accuracy of the method

was significantly reduced. This suggests that reuse of models

across different scenarios comes with the cost of accuracy, or

put differently that each model needs to be trained separately

for every different road scenario. Even the enhanced matrix

profiling method was able to score 0.97753 accuracy, which

would be a reasonable classification accuracy for a traffic

monitoring system. However, it had the downside of not

offering consistent results in the internal validity, which is

also necessary for generalizability.

B. IMPLICATIONS

Overall, the proposed traffic monitoring system fulfills many

desirable requirements. The desirable characteristics men-

tioned in Barbagli et al. [6] are the capability of large-scale

deployment, being passive and operating at low power, being

cheap, easy to install and maintain. A large-scale deployment

was not tested in this work; nonetheless, a few comments

can be made about regarding this. The main hurdle for a

large-scale traffic monitoring deployment is the high cost

of an individual monitoring device. The proposed system

being low cost is a first step in the direction of a large-scale

deployment. The fact that the proposed approach is using

Wi-Fi signals and not interfering with the traffic, as well

as having the possibility to detect the traffic automatically,

makes it a passive system. The power consumption of the

setup was not quantified in this work; however, it was able

to operate during multiple hours with a car and motorcycle

battery. The amount of power consumption can therefore be

compared to the approach of Kochláň et al. [17] who indi-

cated that their system is operating at low power due to the

fact that a car battery is enough to satisfy its energy needs.

Furthermore, the system was installed in under one hour
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for each measurement without stopping the traffic, demon-

strating how easy it is to install. In addition, Wi-Fi signals

are not influenced by the day-night cycles and operate in

many different weather conditions. The accuracies obtained

for the temporal generalizability suggest that in the absence

of more recent models, models trained on previous data may

still provide useful results. Models trained on two lanes, two

directions data can also be used for one-lane, one direction

streets, but at the cost of a decrease in accuracy.

C. LIMITATIONS

The analysis is subject to multiple limitations as a result

of a dependency chain. First of all, the peak extraction

is limited to the actual raw data that is collected by the

system. If no signal change is recorded on either frequency

although a vehicle passed the system, a peak extraction is

not possible. Furthermore, the classification is limited to the

outcomes of the peak extraction. Two extraction methods

were compared during the work. Both methods have differ-

ent parameters, which have to be tuned for each scenario.

One input feature for the machine learning approach is the

duration that a vehicle spends between the two system’s

units. This means it is strongly influenced by the driver’s

behavior. This became clear when some vehicles drove very

slowly at the Austermannstraße because the driver saw the

traffic signs as well as at the Corrensstraße where some

busses had to accelerate after stopping at a bus station. It

follows that the vehicles’ speed and length has to be taken

into account. During this work all streets had a speed limit

of 50km/h. Data visualization during the analysis showed

that some short cars as well as cars exceeding the speed

limit were not picked up by the system. Increasing the tem-

poral resolution of the data collection could help mitigate

this issue. The results also showed the limits of using the

2.4 GHz frequency. In total, the lower frequency picked up

less cars and had problems with signal loss, which could be

traced back to the amount of devices using it in a city. Also,

the number of vehicles passing through the streets used in the

scenario is arguably relatively small, and could be increased

through data collection in non-residential areas. Finally, the

manual data annotation, which was labor intensive, limited

the amount of vehicles that could be used during the data

analysis. This also led to an under representation of certain

vehicle types.

VI. CONCLUSION AND FUTURE WORK

This work has deployed a low-cost, Wi-Fi-based system for

traffic data monitoring in three different urban scenarios. It

then introduced and thoroughly evaluated a new algorithm

for the automatic counting of vehicles (car, busses). The work

also evaluated the performance of different models for the

classification of vehicles (car, busses). Using normalization

and three features (amplitude, duration, Euclidean distance)

have helped to improve the accuracy over the baseline used

in previous work. Our results also suggest that a trained

model can be used to classify data collected about the same

road, but at a different point in time.

There are a few directions for future work that can be men-

tioned. First, as mentioned above, it would be interesting

to investigate the impact of spatial distance on the accu-

racy results more systematically. Also, the impact of noise

(e.g., competing signals on the 2.4 GHz frequency) could be

looked into more closely. In addition, the study outcomes can

be well utilized in consideration with work of [41], improv-

ing public transport systems in cities. Developing over the

work of [42], the present study could be extended to evalu-

ate the speed of the vehicles on the road. Finally, the matrix

profiling technique has shown promise. The density-based

clustering algorithm DBSCAN was able to detect clusters

of votes for individual cars but had problems combining the

votes for busses. In future work, a method for deciding on

a cluster’s class needs to be implemented. Furthermore, the

problem that multiple clusters are detected within the time

window of a longer vehicle presents interesting challenges

for future work.
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