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Figure 1: User perspective of the experiment while walking to a target and avoiding an obstacle.

ABSTRACT

Virtual Reality (VR) allows users to perform natural movements
such as hand movements, turning the head and natural walking in
virtual environments. While such movements enable seamless natu-
ral interaction, they come with the need for a large tracking space,
particularly in the case of walking. To optimise use of the available
physical space, prediction models for upcoming behavior are helpful.
In this study, we examined whether a user’s eye movements tracked
by current VR hardware can improve such predictions. Eighteen
participants walked through a virtual environment while performing
different tasks, including walking in curved paths, avoiding or ap-
proaching objects, and conducting a search. The recorded position,
orientation, and eye-tracking features from 2.5 s segments of the
data were used to train an LSTM model to predict the user’s position
2.5 s into the future. We found that future positions can be predicted
with an average error of 65 cm. The benefit of eye movement data
depended on the task and environment. In particular, situations with
changes in walking speed benefited from the inclusion of eye data.
We conclude that a model utilizing eye tracking data can improve
VR applications in which path predictions are helpful.
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1 INTRODUCTION

Walking is the most natural and most immersive way of moving
through a virtual environment (VE) [47]. It enhances presence and
allows users to unconsciously acquire spatial knowledge [33, 52].
However, walking creates a set of physical problems for virtual
reality (VR) applications. Collisions with physical walls, objects or
other users in real space need to be prevented at all times. Therefore,
large VEs either require large tracking areas or methods such as
redirected walking (RDW). With methods that estimate intentions or
predict future actions of walking users, RDW and other applications
such as programmable interaction patterns of avatars, automatic,
user behavior based level design could become more effective.

RDW is the subtle and unbeknownst redirection of the user to
change her trajectory in real space while keeping her perception of
movement in virtual space the same. RDW is limited by the user’s
manipulation threshold [46]. If visually presented and physical
walking paths diverge too much, the manipulation is noticed by the
user. Although the detection threshold can be slowly adapted over
time through learning, the general limitation remains [8].

The implementation of RDW requires applying these manipu-
lations automatically using RDW controllers. Scripted steering
controllers have a predefined set of rules based on given informa-
tion about the VE and the physical space [42]. As a result, RDW
manipulations are applied whenever a participant reaches a pre-
defined position. Accordingly, this type of controller needs to be
carefully readjusted whenever the VE or the available physical space
changes. In the past, several methods to automatize this readjust-
ment process have been developed [e.g. 59]. The available virtual
walking paths can generated automatically from the environmental
data [58]. Equipped with predefined probability scores for each
path and a given skeleton map of the virtual and physical space, the
controller then chooses the best manipulation from a predefined set
during walking. Generalized controllers follow a different approach.
Instead of using information about the VE, algorithms such as steer-
to-center, steer-to-orbit, steer to way-points, or steer in figure-eight
patterns are designed to work in any VE by steering users along
specified physical paths [40].

RDW controllers can greatly benefit from predictions or assump-
tions about the upcoming behavior of the user. Given predictions of
the user’s virtual path, manipulations can be applied earlier and with
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a smaller divergence between real and virtual paths. One source for
the prediction in unknown environments can be recurring behavior
patterns. For example, assumptions such as typical walking paths
[25] have proven useful in this context. Besides general assumptions,
predictions of upcoming locomotor activities may also be gained
from observing the user’s prior behavior and actions, such as the tra-
jectory of the user’s path over the immediate past and the orientation
of her head and body during that time.

Another potential source of information is the user’s gaze pattern.
When walking, humans typically use specific gaze strategies to in-
spect their future path, monitor their next target, and avoid obstacles
[18, 22, 49]. Therefore, the pattern of gaze during walking contains
valuable information about the user’s locomotor intentions. Gaze
tracking has recently been incorporated into commercially available
head mounted displays (HMD). Although their current quality does
not match that of research-grade eye trackers [34, 43, 45] it appears
still possible to use gaze information to improve locomotor predic-
tions of VR users [6, 16, 56, 57]. Since gaze behavior depends to
some degree on the task (e.g. obstacle avoidance is different from
walking straight to a target) the usefulness of gaze data for walking
prediction might likewise depend on the situation.

In the present study, we explore how combinations of position,
orientation, and gaze data can be used to predict a user’s future posi-
tion during walking in VR, and how the prediction quality depends
on the different data features and task demands. Our prediction
model uses an artificial neural network for time series prediction,
the Long short-term memory (LSTM) architecture [19], which can
be fitted to the relevant data without prior assumptions and has been
used successfully, for example, for prediction of public pedestrian
traffic [e.g. 2] as well as in RDW [10].

2 RELATED PREVIOUS WORK

2.1 Gaze Behavior During Walking
Eye movements have a tight correlation with other motor action
because we need to move our eye to targets of interest to collect the
visual information we need for good action control [31]. Usually
eye movements to a behavioral target precede any other motor action
[18, 32]. Therefore, they present a rich signal for the estimation
of action intention [3, 6, 16, 56, 57]. However, during walking
this does not mean that people lock their gaze on a future target, for
example a door, at all times. Instead, during walking, eye movements
serve the identification of both targets and obstacles. For example,
walkers often look at the ground in front a few steps ahead for safe
placements of the feet, particularly in uneven terrain [9, 20, 21, 36,
49]. This involves not only a direction of gaze towards the ground
but also a pitch of the head [35]. Before approaching a goal, however,
walkers typically direct their gaze towards the goal [13, 22].

Eye movements are also linked to changes of direction during
walking [22]. When walking in a curve, for example, walkers typi-
cally direct their gaze inward from the curve [17, 26]. Furthermore,
eye movements are involved in deciding between alternative tar-
gets [53, 56] and in searching of targets between distractors [29].
Thus, eye movements during walking depend on task demands [50].
Therefore, during natural behavior, eye movements might provide a
useful, though not straightforward, signal for a user’s intention and
future action that might be extracted in deep learning approaches
for action prediction. Their usefulness is potentially different for
different tasks. For the present investigation we chose three tasks to
cover a set of general locomotor scenarios in which eye movements
likely play a role: searching for a target amongst distractors in a
room, walking along a curved path, and avoiding an obstacle.

2.2 Locomotor Prediction
Different methods for the prediction of future trajectories of users
in VR have been proposed in the past. One approach relies on the
analysis of possible or probable paths in the current environment

[58, 59]. Available virtual walking paths are generated automatically
from the environmental data and probability scores for each path
along with a skeleton map of the virtual and physical space allow,
for example, to choose an optimal manipulation for RDW. This
approach, however, is tied to the specific environment and needs
environmental information.

A different approach focuses on observation of the user’s prior
actions to predict the future trajectory. Zank and Kunz [56] used
eye-tracking data to predict the next locomotion target. In their
experiment, two predefined target positions were presented and the
user was either instructed to go to one of the targets or freely choose
one of them. Based on the chosen targets, they also compared differ-
ent models that use previous movements to calculate probabilities
for the two targets based on assumptions about human walking be-
havior [1, 15, 57] and graph representations of the environment [38].
In particular, in a narrow T-shaped corridor with little open space,
models using eye data were able to provide accurate predictions
earlier than models without eye data. Later in a trial and in cases
with open space, the overall prediction accuracy was higher and
including eye data had no benefit for the prediction at those times.

Gandrud and Interrante [16] also implemented a binary choice
between two walking targets. Users walked along a virtual hallway at
the end of which they had to decide between two targets to approach.
In the experiment they measured head direction, gaze direction and
the position relative to the virtual hallway midline and compared
these three measures for predicting the chosen target. They found
that both head orientation and gaze orientation had the potential to
be useful in predicting a person’s future direction of locomotion.

The use of eye data in these approaches assumes that the gaze
position directly precedes the direction of human walking. Indeed,
there is evidence supporting this notion [7, 22, 31, 51]. However,
since eye movements during walking also depend on task demands
[50] a more complex processing procedure of gaze data could allow
an even better prediction. Moreover, these pioneering previous stud-
ies only distinguished between binary walking decisions. Further
scenarios with less restrictions need to be evaluated to advance the
use of behavioral measures for locomotor predictions.

A promising current approach to predict future positions is the
use of deep learning models. These models can be fitted to the
relevant data without prior assumptions. They have been successful,
for example, with respect to public pedestrian traffic [e.g. 2, 55]
or for the prediction of future gaze directions [12, 14, 23, 24, 54].
With respect to walking prediction, Cho et al. [10] presented a
preliminary study in which they implemented a deep learning model
for locomotion prediction in the context of RDW. They used head
position and orientation to train an LSTM model [19] to predict the
user’s position 100 frames (about 1 second) into the future while
the user navigated a maze. They report that the prediction worked
well for two example users. However, their model is limited to the
pre-defined maze map they used and did not include gaze data.

3 SCOPE OF THIS STUDY

In the present work, we created a scenario in which participants ful-
filled a range of typical VR tasks, including walking in curved paths,
avoiding or approaching objects, and conducting a search. Based
on the walking and gaze data, we trained and evaluated different
indoor path prediction models with an LSTM architecture that had
no information about the used VE. We were especially interested in
whether a user’s eye movements during walking could be a useful
addition to the model. Therefore, we analyzed the stability of the
eye tracking over the duration of the study, described typical data
patterns during different tasks and evaluated under which circum-
stances eye tracking data contributes to a better prediction of future
position.



4 METHODS

4.1 Participants
Eighteen participants (8 female) completed the experiment. The
participants’ age ranged from 20 to 47 years (µ = 27,σ = 6.34).
Participants gave informed written consent and the experimental pro-
cedures were approved by the Ethics Committee of the Department
of Psychology and Sports Science of the University of Muenster.
Apart from the two authors who participated in the experiment (N.S.
and G.B.) participants were naı̈ve to the purpose of the experiment.
Two additional participants we initially acquired had to be excluded
due to failed recordings.

4.2 Materials
The virtual environment was displayed in an HTC Vive Pro Eye with
a resolution of 1440×1600 pixels per eye at a frame rate of 90 Hz
and a nominal field of view of 110 degrees. The experiment was
conducted at the VR laboratory of the Department of Psychology
and Sports Science of the University of Muenster. An area of 6 x 11
m was tracked using 6 Vive Lighthouses 2.0. During the experiment,
all positional tracking data were Kalman filtered. The experiment
was run using Unity3D on an MSI GE63VR 7RF Raider notebook
equipped with an NVIDIA GTX 1070 graphics card. The notebook
was carried in a backpack and supplied with power by a cable from
the ceiling. A Vive tracker was attached to the backpack to record the
body orientation and a Vive controller was used as input device. Eye
tracking data were recorded using the integrated Tobii eye tracker of
the Vive Pro Eye with a nominal accuracy of 0.5–1.1 degrees within
a field of view of 20 degrees at an output frequency of 120 Hz and a
trackable field of view of 110 degrees.

4.3 Eye Tracking Procedure and Questionnaires
At the beginning of the experiment, eye tracking calibration was
done using the calibration method provided by Tobii Software.

In the last decade, eye tracking cameras have been included in
several commercially available VR headsets [11]. Different aspects
like latency, accuracy and precision of eye tracking data in VR
have been evaluated [34]. Under optimal conditions, the HTC Vive
Pro Eye showed eye tracking data delays of around 50 ms and an
accuracy below 1 degree in central, but up to 10 degrees in very
peripheral positions (27 degrees). Eye tracking precision varied
from 1.4 to 3.5 degrees [43, 45]. This makes the Vive Pro Eye
suitable for a rough online estimation of gaze in VR, although it is
not clear how side effects such as slippage through head movements
during natural walking affect the measurements. To evaluate possible
slippage of the HMD on the head and therefore the eye tracking
calibration stability before and after the experiment, 16 participants
did an additional, custom-made, simple calibration procedure with 5
fixation positions before and after the experiment.

The simulator sickness questionnaire [27] (SSQ) was completed
before and after each session. Additionally, the participants com-
pleted the Slater-Usoh-Steed questionnaire for immersion [44] (SUS)
after the session. Both questionnaires were translated into German.
The authors did not participate in the questionnaires.

4.4 Tasks and Virtual Rooms
The virtual environment was divided into three rooms: Search Room
(for an example see Fig. 4a in section 5), Transition Corridor
(example in Fig. 4b) and Obstacle Room (for an example see
Fig. 1) in which all participants did ten trials including different
tasks. To provoke a lot of natural walking in a limited physical
space, Search Room and Obstacle Room were mapped onto the
same physical space in an impossible room scenario [48]. Whenever
a participant moved through the Transition Corridor to the door on
the other side, an entry to the room opened on the other side and
the interior changed. Participants were asked to maintain a natural

walking speed during the experiment while performing the following
instructed tasks.

4.4.1 Search Room - Free Exploration
In the Search Room, participants had to look for a search object
among six identical looking distractor objects. One object was
placed in the center and the others formed a hexagon around it (see
Figure 4a). All objects had a random yaw direction orientation and a
distance of 2 m to their next neighbour objects. Whenever an object
was reached, the participants could test whether this object was the
search object by holding the controller close to it while pressing the
trigger on the back of the controller. The result was signaled by a
red or green light above the object. In addition, a sound was played
if the search object had been found.

During the task, the participants were free to decide which ob-
ject they wanted to go to next and did not know which object was
the search object beforehand. The target position was individually
pseudo-randomized for each participant. After completing the task,
participants walked through the Transition Corridor to the Obstacle
Room.

4.4.2 Transition Corridor - Curved Path
The Transition Corridor connected the two other rooms (see Fig-
ure 4b) and followed a curved path with a radius of 5.5 m. Partici-
pants had to walk through the corridor to pass between the rooms.
Data from the Transition Corridor was obtained to investigate walk-
ing along a curved path. Since the participants went back and forth
between the rooms, ten right curves (Search Room to Obstacle
Room) and nine left curves (Obstacle Room to Search Room) were
recorded for each participant.

4.4.3 Obstacle Room - Straight Path and Obstacle Avoid-
ance

In the Obstacle Room, participants were instructed to walk to a
target object while avoiding an obstacle that might be positioned
along the way. For each 4 m walk, the participants first positioned
themselves on a white field in front of a pole with a red button.
Pushing the button with the controller made the pole and button
disappear, and the target object and the obstacle (a chair) appear.
The task had 4 different conditions: obstacle centered, obstacle 30
cm to the left, obstacle 30 cm to the right and no obstacle. During
each visit to the Obstacle Room, these 4 conditions were run in
pseudo-randomized order. Figure 1 shows the button, the obstacle
and the target at example positions and a typical walking path with
footsteps. Note that in the real experiment, the three objects were
never visible at the same time. The obstacle was placed in the middle
between the button and the target. After selecting the target with the
controller (by pressing the trigger at the back while holding it close
to the target), target and obstacle disappeared and a new red button
appeared at a new location in the room. The participants then went
to the new position and repeated the procedure. After four walks
in each trial, the participants returned to the Search Room via the
Transition Corridor.

4.5 Data
All raw data files are freely available from https://osf.io/b43uv/. For
the analysis, data were sampled at intervals of 50 ms. Periods with
missing data and periods in which the participant remained standing
without any locomotion (threshold = 0.15 m/s) were removed. Such
periods of prolonged standing occurred, for example, when the
participants did not immediately start walking at the beginning of
the experiment. Naturally, the eye tracker missed data whenever the
participant briefly blinked. In this case, missing eye-tracking values
were linearly extrapolated from the data before the blink.

For the prediction model we distinguished three categories of
data:



1. Positional data from the Vive’s infrared tracking system.

2. Orientation angles from the inertial measuring units (IMU).

3. Eye tracking data from the Vive Pro Eye’s eye tracking system.

4.6 Prediction Model
4.6.1 Features and Labels
The model aimed to predict the user’s location in the VR envi-
ronment 2.5 s into the future. Thus, the output of our predic-
tion model was defined as the direction vector from the current
head position (XH

t ,Y H
t ,ZH

t ) to the position 2.5 s into the future
(XH

t+2.5s,Y
H

t+2.5s,Z
H
t+2.5s).

Since our prediction model should be based on user behavior
without information about the environment, it needed to use a coor-
dinate system in a reference-frame attached to the user and not to the
environment. For the present study, we used a head-fixed coordinate
system, which has shown the best results previously (details in [6]).

To set up this coordinate system, we used the average head orien-
tation in the horizontal plane of the input sequence (ΦH

t−i,Θ
H
t−i,Ψ

H
t−i)

to create a fixed reference yaw angle that was used to describe each
input-output-pair. This reference angle, along with its orthogonal
directions in the horizontal and vertical planes, provided the axes of
the head-fixed coordinate system. Thus, the label direction vectors
(~Ft ) were rotated using the reference yaw angle. Lower case letters
are used to express variables in the new coordinate systems. (e.g.
f ,ψ,θ ).

~Ft = (FX
t ,FZ

t ) = (XH
t+2.5s −XH

t ,ZH
t+2.5s −ZH

t )

f x
t = cos(−ΨH
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Z
t

f z
t = sin(−ΨH
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X

t + cos(−ΨH
t−i)F

Z
t

(1)

The index i in these equations represents the different steps in
the input sequence. A total of 7 input features were selected for our
model. First, the current two-dimensional velocity of the head in the
horizontal plane (V X

t−i,V
Z

t−i) was calculated. Height was not used,
as there is no evidence for the relevance of this information with
regard to the direction of motion on a plane. These input velocities
were rotated using the reference yaw angle to convert them to the
head-fixed coordinate system.

vx
t−i = cos(−ΨH

t−i)V
X

t−i − sin(−ΨH
t−i)V

Z
t−i

vz
t−i = sin(−ΨH

t−i)V
X

t−i + cos(−ΨH
t−i)V

Z
t−i

(2)

Second, we added the yaw and pitch angle of the head (ΨH
t ,ΘH

t )
and the direction of eye gaze (ΨE

t ,Θ
E
t ) to the list of the features.

Both features might be informative since humans usually orient their
head to the target and direct their gaze to the floor along the future
locomotor path. Third, we added the body tracker yaw (ΨB

t ), which
was captured by the additional Vive tracker in the subject’s backpack.
This provided the model with information about body orientation.
The reference angles were subtracted from all angles. Before our
final scaling, the angles were set between -180 and 180 degrees, with
zero indicating the reference direction.

ψ
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Figure 2: Comparison of custom eye tracking calibration before (left)
and after (right) the experiment. The five black asterisks represent
the fixation targets. Red crosses show mean fixation positions across
all participants (colored dots) and two standard deviations (ellipses).

The input length was set to 2.5 s (50 samples per input), i.e. the pre-
diction was based on the present data and 2.5 s of past information.

To compensate for possible asymmetries resulting from the archi-
tecture of the VE (e.g. the positioning of the room entrance might
have led the participants to favor right or left curves in the Search
Room), every second data pair was mirrored (left-right).

4.6.2 Processing

The data went through two LSTM layers with 64 hidden units, a
dropout layer (p = 0.3) and a dense output layer for the predicted
coordinates.

We chose adam as the optimizer (learning rate = 0.003) [28]. A
weight decay of 1×10−4 was added to prevent overfitting. The
model was trained for 20 epochs using the mean squared error as the
criterion and a batch size of 64.

To obtain a single comprehensible value for estimating the quality
of the prediction, we computed the mean displacement error (mde)
as the distance between the true value and the prediction. In order to
evaluate the influence of eye-tracking and IMU data, we also created
models without this data to compare them to the main model, which
included all features. The model without IMU data also omitted the
eye-tracking features, because a tracking system equipped with an
eye tracker but without IMU seemed to be an unlikely use case.

We implemented leave-3-out-cross-validation at the group level.
One participant’s data were used as validation data and two par-
ticipants’ data were used as test data. All remaining participants
were used to train the model. The validation data were used for
hyper-parameter optimization. All data were z-standardized with
scalers fitted to the training data.

5 RESULTS

Participants took on average 14 minutes to complete the experiment.

5.1 Evaluation of Eye Tracking Stability

The eye tracking calibration analysis revealed an average Euclidean
eye tracking error of 1.99 degrees before and 2.07 degrees after
the experiment (no significant difference, p > .05, t(15) =−0.31)
across all tested participants. Thus, the overall error stayed small
over the experiment. Within subject tests of fixation positions be-
fore and after revealed a significant mean difference of 1.38 de-
grees (p < 0.001, t(15) = 5.37). Thus, individually, the eye tracking
changed non-systematically by a small amount, probably due to
HMD slippage during natural walking experiment. Centered fixa-
tion positions showed standard deviations up to 1.6 degrees. The
more peripheral fixation targets at ± 15 degrees had standard devia-
tions up to 2.2 degrees (see Fig. 2).



Figure 3: Two examples of 15 seconds of consecutive path pre-
dictions. The gray line depicts the real path that the participant
walked. The blue line shows the path predicted by the model. Pre-
diction at each data point was based on the preceding 2.5 seconds of
movement.

5.2 Overall Quality of Prediction
The full data set contained 156,076 input-output pairs to train the
model. In the 2.5 s labels, the participants travelled an average
distance of 165 cm with a mean walking speed of 0.72 m/s. The
prediction model using all features (position, orientation and gaze)
produced an mde of 66 cm for a 2.5 s prediction. A model using
only position and orientation performed slightly worse with an mde
= 68 cm. A model that used only position data produced an mde =
78 cm. For comparison, a linear regression model considering all
features reached an mde of 93 cm (σ = 8 cm) and an extrapolation
benchmark based on the most recent positions reached an mde of
131 cm (σ = 16 cm). Figure 3 shows examples of predicted paths
from the full model in the Search Room and the Transition Corridor.

Using the testing method proposed by Nadeau and Bengio
[37] for cross-validated data (alpha level = 0.05), the difference
between the LSTM model and the linear model was significant
(t(5) = −11.08, p < 0.001). The Benjamini-Hochberg correction
[4] was used to test the differences between the three LSTM models.
The model using only position data produced significantly larger
error than the model using all features (t(5) = −6.99, p < 0.01)
and the model using only positional and IMU features (t(5) =
−4.92, p < 0.01 ). The model using all features produces signifi-
cantly smaller error than the model using only positional and IMU
data (t(5) =−3.01, p < 0.05). Thus, eye tracking significantly im-
proved prediction quality, even if only by a small amount (2.78%).
Further analysis showed that using a GRU model did not lead to a
significantly better prediction (details in [6]).

5.3 Analysis of the Different Rooms
Next, we compared the prediction performances of the model in the
three rooms to test whether the improvement gained by eye tracking
depends on the task and behavior of the participants.

5.3.1 Search Room

In the Search Room, participants looked for a search object amongst
six distractors. Each object had to be closely approached in order
to check if it was the search object. On average, the participants
walked with a speed of 0.6 m/s and found the search object in the 4th
attempt (σ = 0.6). Typically, after entering the room, participants
walked to the object closest to the entrance and approached one of
the outer objects (either clockwise or anti-clockwise) next. In most
trials, participants then tested the object in the centre, and afterwards
continued with the remaining objects (see Figure 4a).

Table 1: 2.5 s prediction error for different rooms

Test Data

Training
Data

Eye Data Search Corridor Obstacle

All yes 88 cm 68 cm 59 cm
All no 90 cm 68 cm 62 cm
Search yes 84 cm 124 cm 103 cm
Search no 86 cm 120 cm 101 cm
Corridor yes 116 cm 61 cm 103 cm
Corridor no 114 cm 60 cm 97 cm
Obstacle yes 106 cm 106 cm 57 cm
Obstacle no 105 cm 111 cm 59 cm
All* yes 88 cm 75 cm 70 cm

*The number of samples in the Transition Corridor and the Obstacle
Room was artificially lowered to match the number of samples in
the Search Room.

For the model trained with all data, prediction error in the Search
Room was higher than the average error across all rooms (see Ta-
ble 1). One reason could be quantity of training data, since only
14.36 % of the data originated in the Search Room. However, train-
ing the model specifically on the Search Room’s data improved the
prediction only marginally (mde of 84 cm). This suggests that the
lower prediction quality in the Search Room might be related to the
particular task performed, which might be more difficult to predict
than the tasks in the other rooms.

The inclusion of eye data improved the prediction in the Search
Room by a small margin, both in the model trained with all the
data and in the model specifically trained on the Search Room data.
Thus, eye movement data provided a benefit for the prediction in the
search task.

5.3.2 Transition Corridor
In the Transition Corridor, participants had to walk along a curve in
order to proceed from one room to the other. Participants passed the
Transition Corridor at a mean speed of 0.9 m/s.

As the participants went around the curve, they looked towards
the inside of the wall and eventually at the door (see Figure 4b).
Hence, gaze was to the inside of the curve at almost all times.

The full model trained on all data achieved a prediction error of
68 cm in the Transition Corridor (see Table 1). Training a model
specifically on the Transition Corridor data without including data
from the other rooms reduces the error to 61 cm, showing a no-
ticeable advantage. 28.56 % of the full model data came from the
Transition Corridor.

Eye tracking, on the other hand, did not prove useful in the
Transition Corridor. When trained on all data and when trained on
only the Transition Corridor data, the model with eye tracking data
gave even slightly worse results than the model without eye tracking.

5.3.3 Obstacle Room
In the Obstacle Room, participants had to walk to a target object
while avoiding an obstacle along the way (see Figure 1). Participants
moved at an average speed of 0.62 m/s through the obstacle room.
They passed 90 % of all right obstacles on the right and 87 % of all
left obstacles on the left. When the obstacle was placed in the center,
68 % of all obstacles were passed on the right. For the model, this
bias should not matter, since half of the data were mirrored.

Every fourth walk contained no obstacle and participants could
walk straight to the target. Comparing gaze data in these trials to
those trials that contained an obstacle allowed us to look at differ-
ences in the eye movements depending on whether the obstacle



(a)

(b)

Figure 4: Results of the experiments’ three parts (all participants).
(a) Orthographic Projection of the Search Room with its 7 objects.
Each black dot represents a position that one of the participants
occupied in that room. The transparency represents path frequency
(more frequently walked paths are shown darker). The black spot at
the top right shows the entrance to the room. (b) Bird’s eye view of
the Transition Corridor. The black line is the average walking path
of all participants (standard deviation in gray). The blue lines show
the mean viewing direction at the respective position.

Figure 5: Where did participants look in the Obstacle Room? The
colored lines represent the relative prevalence of looking at the target,
ground, wall, or obstacle as participants walked from the buzzer to
the target. Conditions with and without obstacle are indicated by
continuous and dashed lines, respectively. Colored areas between the
lines identify phases in which participants looked to the respective
object more often when the obstacle was absent than when it was
present. Shaded areas indicate phases in which participants looked
to the respective object more often when the obstacle was present
than when it was absent.

was present or not. Figure 5 shows the proportion of gazes (gaze
prevalence) that were directed to the target (blue), obstacle (green),
ground (orange), or walls (pink) as a function of time from the start
of the walk. Conditions with an obstacle are plotted as lines, con-
ditions without an obstacle as dashed lines. The figure shows that,
at the start of the walk, within the first second, participants looked
mostly at the ground. Then, when no obstacle was present, they
looked at the target object and kept their gaze there most of the time.
When an obstacle was present, participants looked less frequently
to the target, partially because they looked at the obstacle, but also
because they looked more often to the ground than when no obstacle
was present. Overall, over the course of walking to the target, our
participants looked progressively more often at the target and less
often at the ground. Right after start, half of all gazes were directed
to the obstacle when an obstacle was present. Gazes to the obstacle
became less frequent after three seconds. At that time, in many trials,
the obstacle had been passed and was no longer visible.

The mde in the Obstacle Room (59 cm) was smaller than the
mean error over all rooms (see Table 1). When the model was trained
specifically on Obstacle Room data, the error was even smaller (57
cm) 57.08 % of the data originated in the Obstacle Room.

The inclusion of eye data provided a small advantage to predic-
tions, both when data from all rooms was used for training and when
only the Obstacle Room was used.

5.3.4 Comparison Between Rooms

When comparing the rooms, the best prediction result was achieved
in the Obstacle Room, followed by the Transition Corridor and the
Search Room. While there were differences in the amount of data
collected in different rooms, the prediction results still hold when
the amount of data were artificially reduced to the same number of
observations in all rooms (see Table 1). Training the model on only
a single room’s data slightly improved the predictions in that room
at the expense of prediction accuracy in the other rooms.

5.4 Dependence of Eye-Tracking Benefit on Locomotor
and Gaze Behavior

Eye movements provided the biggest benefits in the Search and
Obstacle Room. This indicates that task and behaviour can influence
the importance of eye tracking data for the model.

Figure 6a shows the improvement of prediction error for a model
with eye movements compared to a model without eye movements as
a function of the mean acceleration in the 2.5 s input data segment.
Colors indicate the different rooms and transparency shows the
amount of data that was available. Prediction quality improved
when acceleration was larger, most notably in the Obstacle Room.
This shows that eye movements were particularly useful when the
data segment contained high acceleration. Figure 6b shows how the
prediction error varies with the mean acceleration in the 2.5 s data
segment that was to be predicted. Here, prediction quality was best
when the user decelerated in the Obstacle Room. This suggests that
eye movements are most useful for prediction in situations in which
the user is likely to stop, presumably because she is close to the
target. The Search Room and the Transition Corridor did not show
such dependencies. However, in these rooms, large accelerations
and decelerations were less likely to occur, because they were not
part of the typical task-related behavior in this room.

Besides the acceleration in the walking data, gaze data were also
useful to indicate situations in which eye tracking reduces the pre-
diction error. Figure 6c shows the improvement of prediction error
for a model with eye movements compared to a model without eye
movements as a function of the gaze distance in the 2.5 s input data
segment, i.e. the distance to the object at which the user currently
looks. In the Obstacle Room, prediction quality benefits the most
from eye tracking when the gaze target is close. This tendency was
also present in the Search Room but not in the Transition Corridor.



Figure 6: Added value of eye tracking in the model. (a) shows
the model advantage as a function of the acceleration in the input
sequence position data. A 0.25 m/s² long Gaussian rolling window
(standard normal distribution) was used to smooth the data. (b)
shows the model advantage as a function of the acceleration in the
true output paths. The same rolling window was used. (c) shows the
model advantage as a function of the gaze length, i.e. the distance
between the observer and the point where their gaze hits the world,
at the moment of prediction. A 1.25 m long Gaussian rolling window
was used. The transparency of the line colors indicates the number
of observations that factored into each data point.

5.5 Questionnaires
The mean SSQ total simulator sickness increased from 7.48 (σ =
7.70) before the experiment to 20.36 (σ = 34.55) after the experi-
ment. However, mean values around 20 should not be automatically
attributed to a bad simulator in novice VR users [5]. Therefore and
because we did not notice a high occurrence of motion sickness,
when talking to the participants after the experiment, we would
interpret the value increase as a typical result from an experiment
that included a 14 minutes long physical task (walking with a VR
backpack) and was done by novice users. Moreover, such physical
activity has led to increased sweating, which is also represented as a
sickness-symptom in the SSQ.

The results from the SUS questionnaire indicated that the users
perceived the presented VE as immersive. Participants scored an
average of 4.99 (σ = 1.28, min = 2.83, max = 7).

6 DISCUSSION

We investigated whether data obtained from eye tracking devices
in current VR hardware can be used to enhance an LSTM model

of locomotor path prediction for natural walking in VR. The model
predicted future walking positions trained on position, orientation,
and eye tracking data from a free walking scenario, in which users
performed different tasks in differently structured rooms. The full
model produced good predictions that exceeded those of linear re-
gression and simple extrapolation models.

To evaluate the use of eye tracking in this model, we compared
it against models that used only position and orientation, or only
position data for training. The model including eye tracking signifi-
cantly improved prediction compared to those models, albeit only to
a small amount overall. We evaluated the impact of eye tracking data
in the model specifically for the different rooms, tasks, and walking
behaviours. We found eye tracking benefits in search and obstacle
avoidance tasks and especially in situations in which users changed
their walking velocity.

6.1 Quality of Eye Tracking in VR

A prerequisite for the predictive utility of eye data in VR is the qual-
ity and stability of the eye tracker. Different currently available eye
trackers have different temporal resolutions, making them more or
less usable for studies needing temporal accuracy in the millisecond
range [45]. For the present study, temporal accuracy was less critical
since we averaged data over 50 ms intervals and based our prediction
on data segments of 2.5 s. Since locomotor behavior in walking is
usually smooth, a small temporal lag of the eye tracker would not be
detrimental in our prediction scenario. However, during extended
periods of walking, on average 14 minutes in our study, spatial accu-
racy of the eye tracking might deteriorate, for example, if the HMD
slips on the head during user movement.

To check eye tracking quality, we measured fixations to a standard
set of 5 fixation targets before and after the experiment. We evaluated
both the average error before and after the experiment and the within-
subject change of the fixation positions before and after. There was
an average error of 2 degrees in the eye tracking data within our
30 degree field of view, which did not increase significantly after
the experiment. The average within-subject change of the fixation
positions was 1.38 degrees. Therefore, we consider the stability
of the eye tracking suitable for our purpose of measuring general
directions of gaze in walking experiments. While this is encouraging
for the use of eye tracking in VR, we believe that applications
that require eye positions should include such a before-and-after
calibration check.

6.2 Gaze and Locomotor Behavior in VR

Gaze behavior during locomotion in the real world shows certain
characteristics, like looking on the ground in front in cluttered envi-
ronments [9, 36, 41, 49], looking at the target in approach [13, 22],
or looking towards the inside of a curve [17, 26]. The observed
behavior in the different rooms is consistent with these specifics,
suggesting that participants acted naturally in these virtual tasks.

The walking speed in the Transition Corridor was higher than in
the other rooms. This might be explained by a lack of task-relevant
object interaction, which allowed the participants to pass through
quickly. In the Search and Obstacle Rooms, participants walked
more slowly and interacted with objects more deliberately. In the
Obstacle Room, participants glanced more frequently to the ground
in the first three seconds of their way to the target when an obstacle
was present, consistent with looks to the ground in natural behavior
for negotiating a path containing obstacles [9, 36, 41, 49]. As the
obstacle blocked the view towards the target, participants may have
had to look sideways towards their path. Since gaze precedes path
[e.g. 21, 36], it would also be possible that curves to avoid the
obstacle necessitated smaller shifts of the gaze here. In the Search
Room, the systematic search patterns shown in Figure 4a revealed
that short distances were preferred to arbitrary trial and error.



6.3 Use of Eye Tracking for Prediction
Our results show that eye tracking can help estimating future actions.
Gandrud and Interrante [16] previously showed that gaze data are
useful when predicting choice between two potential walking targets
in a VR hallway. Likewise, Zank and Kunz [56] identified eye data as
especially advantageous for binary walking path predictions in long
narrow environments. We expanded their results by following a more
general approach, not limited to binary predictions. This provide
the potential to be applicable to a broader range of environments
and applications. Users were instructed to walk freely in the VE.
Our aim was to predict their future position in space. Therefore, a
direct comparison of the performance of our model to the prediction
methods in those previous papers is not possible with the current
data-set. However, it is possible to compare whether eye tracking
data were a significantly useful addition for the prediction in the
different studies. Eye movements provide useful information when
approaching a target [13, 22]. This fits well with the results of the
binary prediction studies. However, when walking in a curve with no
task, the head orientation is likely to include the same information
as the gaze [17, 26]. Accordingly, gaze provided no benefit for the
model using only data from the Transition Corridor.

In the Obstacle Room, an advantage from the inclusion of eye data
was observed for decelerating paths and paths that were preceded
by accelerated motion. It seems possible that the presence of the
obstacle influenced the motion and gaze patterns in a way that eye
data improved model performance. However, since the obstacle was
only looked at for a short time (see Figure 5), it is not clear if this
alone has caused this effect. The advantage could also be caused
by a change in gaze behavior when stopping in front of the target.
However, the Obstacle Room was the only room where stopping
was part of the task. Therefore, we cannot clearly differentiate if eye
movements were most beneficial for predictions during stop-and-go,
obstacle avoidance or a combination of both tasks.

The link between gaze and locomotor activity in natural behavior
and VR suggests that eye tracking might be useful for predicting
upcoming user actions. The results from our LSTM prediction
model confirm that the addition of eye tracking data can provide a
significant benefit in predicting future walking paths. Overall, the
mde of the best model including gaze data was 66 cm for a 2.5
s prediction. The average distance walked during 2.5 s was 165
cm. It remains to be evaluated in future studies how effective this
prediction is for different applications.

6.4 Possible Application Scenarios
For walking in VR, a particular application scenario is RDW, in
which users are steered along a physical trajectory that differs from
the virtual trajectory in order to optimally use the physical space
available for tracking [42]. In dynamic RDW, one has to decide in
which direction and by how much the user should be redirected at
any given point in time. Knowledge of where the user most likely
intends to go can be advantageous for implementing RDW fast and
effectively [40]. Since our prediction model worked well in different
rooms and tasks and since it only uses data directly from the user,
it can be considered a useful tool for a generalized RDW controller.
Future user studies are needed to evaluate if an RDW controller using
eye tracking data for redirection outperforms previous approaches
regarding the needed number of resets and the user experience in
different physical and VR scenarios.

A very simple way to include our prediction in RDW is to focus
on whether a user, at a particular point in time, should be redirected
leftward or rightward. In such a case, a simple left/right prediction
of the users intent could be sufficient. To quantify the quality of such
a prediction in our model, we took the predicted future positions at
each point in time and subjected them to a simple left/right discrimi-
nation. The results showed that the model could predict whether the
user will turn left or turn right with an accuracy of 84.8 %. A model

explicitly trained to distinguish between left curves and right curves
would likely achieve even better accuracy. Additionally, there might
be some potential for synergistic effects with other methods, such as
following behavior [39] to improve performance even further.

Our method of locomotion prediction might also be useful in
other scenarios. For example, control of non-player characters could
benefit from user prediction to avoid collisions. Moreover, valid
predictions of upcoming behavior could be helpful in determining
the objects and locations where computational resources should be
focused to e.g. increase their responsiveness or level of detail.

An important feature of our method is that it relies exclusively on
egocentric data and does not need information about the environment.
This feature makes the method very versatile. By using inside-out
tracking, head worn IMUs and eye trackers, the data for prediction
can be gathered by sensors worn by the user, not only in VR. For
example, similar models could likely be trained to provide rough
predictions of locomotion intentions in augmented reality scenarios.
Moreover, the anticipation of human actions, such as walking, can
also play a key role in the development of assistive robots [30].

6.5 Limitations
Although we tried to create an experiment with a representative
sample of typical VR walking tasks, our data set is limited to our
selection of rooms and tasks. This could compromise the perfor-
mance of our model in new contexts, as movements associated with
our tasks could be disproportionately represented in the data set.
This effect is already observable in our results, since the models that
limited access to some rooms during training produced worse results
in the other rooms, compared to the full model (see Table 1). While
the overall smaller amount of data might have decreased prediction
accuracy, the discrepancy between known and unknown environ-
ments indicates that the transfer from one of our rooms to the others
has only been successful to a limited extent. This suggests that
performance of our model is likely to drop when used with tasks
that were not included in the training phase. However, even these
higher errors are still in a range far below the distances traveled.
Therefore, we think that our model’s path prediction can be used in
new situations as long as an error of about 1 m in comparison to the
real path is tolerable for the application.

Another limitation is concerned with the predicted variable we
used in our model. Minimizing the error between the real and
the predicted end position of a 2.5 s subset of data gave us valuable
information about the range of mde and the incremental value of gaze
data for the prediction. However, it does not include information on
the deviation between the predicted and the true trajectory during
the walk. Prediction of the full trajectory could be valuable for some
application scenarios and therefore should be considered in extended
path prediction models in the future.

7 CONCLUSION

Eye tracking data from current VR hardware improves deep learning
path prediction for natural walking in VR. Eye tracking benefits
appear especially in situations in which the user interacts with the
virtual environment during locomotion. Including eye-tracking data
while considering the user’s task and behavior is a useful tool for
deep learning path prediction.
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