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Neural mismatch responses have been proposed to rely on different mechanisms, including prediction error- 

related activity and adaptation to frequent stimuli. However, the hierarchical cortical structure of these mecha- 

nisms is unknown. To investigate this question, we recorded hemodynamic responses while participants (N = 54) 
listened to an auditory oddball sequence as well as a suited control condition. In addition to effects in sen- 

sory processing areas (Heschl’s gyrus, superior temporal gyrus (STG)), we found several distinct clusters that 

indexed deviance processing in frontal and parietal regions (anterior cingulate cortex/supplementary motor area 

(ACC/SMA), inferior parietal lobule (IPL), anterior insula (AI), inferior frontal junction (IFJ)). Comparing re- 

sponses to the control stimulus with the deviant and standard enabled us to delineate the contributions of predic- 

tion error- or adaptation-related brain activation, respectively. We observed significant effects of adaptation in 

Heschl’s gyrus, STG and ACC/SMA, while prediction error-related activity was observed in STG, IPL, AI and IFJ. 

Additional dynamic causal modeling confirmed the superiority of a hierarchical processing structure compared 

to a flat structure. Thus, we found that while prediction-error related processes increased with the hierarchical 

level of the brain area, adaptation declined. This suggests that the relative contribution of different mechanisms 

in deviance processing varies across the cortical hierarchy. 
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. Introduction 

Detecting changes in our environment is a cornerstone of percep-

ion. A vast amount of research effort has been put into the investiga-

ion of neural correlates of deviance processing including neuroimag-

ng ( Kim, 2014 ) and electrophysiological approaches ( Näätänen et al.,

011 ; Polich, 2007 ; Stefanics et al., 2014 ), showing increased activity to

eviant stimuli in different variants of oddball designs. Recently, hierar-

hical predictive processing has been put forward as a theoretical under-

inning for these deviance-related effects ( Clark, 2013 ; Garrido et al.,

009b ; Stefanics et al., 2014 ; Winkler and Czigler, 2012 ). From this

oint of view, the increase of neural activation for unexpected rare stim-

li compared to expected frequent ones stems from a process where a

rediction is compared with the actual sensory input. If prediction and

nput do not match, as is the case when a rare – and thus unexpected –

eviant stimulus is presented, a prediction error signal would be elicited.

his prediction error signal would then be propagated upwards in the

ierarchy and compared with the predictions of the next higher level

nd so forth, enabling efficient information processing ( Clark, 2013 ;

tefanics et al., 2014 ). 
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However, while predictive processing offers a compelling explana-

ion for deviance-related effects by means of prediction errors, it is

ot the only process that could be responsible for an observed differ-

nce between rare and frequent stimuli. Stimulus-specific adaptation

SSA) has also been proposed to play an important role during de-

iance processing ( Jääskeläinen et al., 2004 ; May and Tiitinen, 2010 ;

elken, 2014 ). In this theoretical framework, the difference between

are and frequent stimuli stems from habituation of neuronal respon-

iveness to the frequent stimulus, which thus elicits a smaller response

ompared to the non-adapted cells (fresh afferents) activated by the rare

timulus. In other words, deviance responses in typical oddball designs

re not driven by genuine mismatch responses but by altered, i.e., re-

uced responses to the standard stimulus. While most work on SSA re-

ies on electrophysiological studies in anmials, in humans, repetition

uppression (RS) or fMRI adaptation ( Barron et al., 2016 ; Larsson et al.,

016 ) represents a similar paradigm where neural activity after a stimu-

us repetition is reduced ( Auksztulewicz and Friston, 2016 ; Barron et al.,

016 ). Similar to deviance responses in oddball paradigms, mechanisms

elying on neuronal fatigue and predictive coding have been suggested
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o underlie repetition suppression ( Auksztulewicz and Friston, 2016 ;

arron et al., 2016 ). 

At first glance, the prediction error and adaptation account seem op-

osing. However, there is evidence that both processes can be present

n the brain to variable degrees in the same region or at the same time

 Ishishita et al., 2019 ; Laufer et al., 2008 ; Opitz et al., 2005 ; Parras et al.,

017 ). It is also important to note that both adaptation and prediction

an be reconciled in the predictive processing framework ( Garrido et al.,

009b , 2009a ; O’Shea, 2015 ). From this point of view, adaptation could

e considered a lower-level predictive process that contributes through

ynaptic changes to the precision, while higher-level processes evi-

enced by prediction errors define the flow of information between cor-

ical areas ( Garrido et al., 2009b , 2009a ). Thus, from this unified per-

pective, observing adaptation or prediction as a mechanism in MMN

eneration gives important insights on the level and complexity of pro-

essing. One way to delineate the contribution of these two mechanisms

o deviance effects is to compare the responses to deviant and standard

timuli to a control stimulus ( Maess et al., 2007 ; Parras et al., 2017 ;

chröger and Wolff, 1996 ). While standard and deviant stimuli usually

iffer on a physical dimension, e.g., frequency ( Näätänen et al., 2011 ,

007 ), the control stimulus is in most cases physically identical to the

eviant and presented in a multi-standard paradigm where all stimuli

ave the same stimulus probability as the deviant. Comparing the de-

iant with the control thus offers a way to distill prediction error activity

ithout being contaminated by adaptation. Additionally, comparing the

ontrol with the standard stimulus shows adaptation-related activity. 

Using this experimental procedure, there is initial evidence from an

lectrophysiological study in rodents ( Parras et al., 2017 ) that the rela-

ive contribution of prediction error vs. adaptation increases from sub-

ortical areas to primary auditory cortex as well as from primary audi-

ory cortex to the posterior auditory field ( Parras et al., 2021 ). In line

ith these results, two neuroimaging studies specifically targeting the

uditory cortex showed the presence of both mechanisms within Hes-

hl’s gyrus and superior temporal gyrus (STG) with an anterior-posterior

radient in humans ( Laufer et al., 2008 ; Opitz et al., 2005 ). Further-

ore, an electrocorticography (ECoG) study found that temporal areas

ere related to predictable changes, while frontal areas indexed unpre-

ictable changes ( Dürschmid et al., 2016 ). However, to date, there are

o brain imaging studies that investigated the effects of prediction error

s. adaptation across all typical cortical brain areas commonly show-

asing deviance-related effects ( Kiehl et al., 2005 ; Kim, 2014 ). Besides

rimary and secondary auditory cortex, encompassing Heschl’s gyrus

nd STG, several frontal and parietal areas included in ventral and dor-

al attention networks, as well as subcortical areas, reliably show in-

reased activation to deviant vs. standard stimuli ( Kiehl et al., 2005 ;

im, 2014 ). Thus, deviance responses are processed on different hier-

rchical levels traversed during auditory processing from the thalamus

o Heschl’s gyrus and STG and onwards to higher order association cor-

ices ( Li et al., 2019 ; Parras et al., 2017 ). In the context of the current

tudy, we consider subcortical regions and regions linked with sensory

rocessing as possessing a lower hierarchical level and cortical regions

ot directly linked with sensory processing a higher level ( Garrido et al.,

009a , 2008 ; Li et al., 2019 ; Parras et al., 2017 ). 

While the investigation of mechanisms underlying deviance re-

ponses has been researched intensively using electrophysiological

ethods (see, e.g., Ruhnau et al., 2012 ; Wiens et al., 2019 ), the hierar-

hical dimension of deviance processing, i.e., whether and how mecha-

isms vary depending on the cortical region, has not been investigated

et. In order to address this gap, we conducted a high-powered fMRI

tudy (N = 54) using an oddball design with a suited control condi-

ion that allowed to delineate prediction error- and adaptation-related

echanisms in typical areas involved in auditory deviance processing in

umans. Following prior research ( Dürschmid et al., 2016 ; Parras et al.,

017 ), we hypothesized that on lower levels of the cortical hierarchy,

daptation-related activity will be more prominent, while on higher lev-

ls, activity should be driven by prediction errors. 
2 
. Methods 

.1. Participants 

Fifty-nine right-handed participants with normal hearing and no his-

ory of neurological or psychiatric illness took part in the experiment

nd were compensated with €10/h. Four participants had to be ex-
luded due to excessive head movements ( > 3 mm) during recording

nd one participant because of anatomical MRI anomalies. The remain-

ng 54 participants (39 female) were aged from 18 to 33 (M = 23.20,

D = 3.04). The local ethics committee has approved the study and all

rocedures were carried out in accordance with the Helsinki declara-

ion. 

.2. Experimental procedure and stimulus material 

Stimuli consisted of pure sine-tones of 600, 800, 1000, 1200, and

400 Hz. Stimulus duration amounted to 100 ms, including rise/fall

imes of 10 ms. The sound volume was chosen to be easily audible dur-

ng functional sequences but not unpleasantly loud. In oddball blocks,

he 800 and 1200 Hz tones served as deviant and standard counterbal-

nced across participants. The probability of deviant to standard stimuli

as 20:80 and stimulus presentation was pseudorandomized so that no

wo deviants were presented consecutively. In control blocks, all five

one stimuli were presented randomly with a probability of 20% (see

ig. 1 A). Throughout, participants’ task was to respond to target stimuli

f 300 ms duration, which were randomly interspersed in the sequence.

n total, 40 targets were included, the frequency of which conformed to

he stimulus probability of the current block, i.e., all tone frequencies

ould be potential targets. We included this task in order to ensure that

articipants attended to the tone sequence but did not view the deviant

s a target. Interstimulus intervals (ISIs) ranged from 1.04 to 17.25 s

M = 3.01, SD = 2.06) and were derived using optseq2 ( Greve, 2009 ).

our different optseq sequences were computed and randomly assigned

o two runs per participant, creating 12 different sequence combina-

ions. In total, two runs of 250 stimuli (ca. 13 min each) were acquired

nd separated by a short break. One run could start with either an odd-

all or control block, which seamlessly changed to control or oddball

lock in the middle of the run. Whether the participants started with the

ddball or control block was counterbalanced across participants. The

econd run was always presented in reverse order, e.g., if the first run

as oddball-control, the second run was control-oddball. Before starting

he experiment, a short practice block of about 1 min was presented in

rder to accustom the participants to the task. Stimuli in this practice

lock were structured like the experimental block that followed, i.e.,

hey also included brief oddball and control sequences. At all times, a

hite fixation cross was presented on a black screen, and participants

ere asked to fixate during the run. Stimulus presentation and response

ollection were controlled by the software Presentation (version 21.1,

eurobehavioral Systems, Albany, CA). 

.3. Data acquisition and preprocessing 

A 3-Tesla Siemens Magnetom Prisma with a 20-channel Siemens

ead Matrix Coil (Siemens Medical Systems, Erlangen, Germany) was

sed to aquire MRI data. In a first step, we obtained a high-resolution

1-weighted scan with 192 slices for anatomical localization and coreg-

stration (repetition time (TR) = 2130 ms, echo time (TE) = 2.28 ms,

ip angle (FA) = 8°, field of view (FOV) = 256 × 256 mm, voxel

ize = 1 × 1 × 1 mm). A shimming field was applied in order

o minimize magnetic field inhomogeneity. Then, we recorded two

unctional datasets per participant (2 runs) consisting of 353 vol-

mes and 42 slices each by means of a T2 ∗ -weighted echoplanar se-

uence sensitive to blood oxygenation level-dependent (BOLD) contrast

TR = 2300 ms, TE = 30 ms, FA = 90°, FOV = 216 × 216 mm, voxel

ize = 3 × 3 × 3 mm). 



I. Schlossmacher, J. Dilly, I. Protmann et al. NeuroImage 259 (2022) 119445 

Fig. 1. Experimental paradigm and mask for data analysis. (A) Schematic of oddball and control sequence. In the experiment, the frequencies of deviant and 

standard stimulus were counterbalanced across participants. (B) Decomposition of observed responses into prediction error-related and adaptation-related activity. 

(C) Illustration of the mask applied during the cluster-based permutation. Red areas were included in the mask. 
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Preprocessing relied on SPM12 v7771 (Wellcome Department of

ognitive Neurology, London, UK) and the Data Processing & Analysis

f Brain Imaging (DPABI) 4.3 toolbox ( Yan et al., 2016 ) in MATLAB. We

emoved the first five data volumes to account for spin saturation effects.

hen, slice-scan-time correction and realignment using a six-parameter

rigid body) linear transformation was performed. In a next step, we co-

egistered anatomical and functional images and segmented these into

ray matter, white matter and cerebrospinal fluid. Finally, we normal-

zed functional data to Montreal Neurological Institute (MNI) standard

pace using DARTEL ( Ashburner, 2007 ), resampled it to 3 mm isotropic

oxels and spatially smoothed it with an 8 mm full width at half maxi-

um Gaussian kernel. 

.4. Statistical analysis 

A general linear model (GLM) was estimated for each participant in

he first-level analysis. In order to eliminate slow signal drifts, we used

 high-pass filter with a cutoff of 128 seconds. We applied SPM’s pre-

hitening method FAST ( Corbin et al., 2018 ) to model autocorrelations

s recommended by Olszowy et al. (2019) . The GLM design matrix con-

ained the onsets of deviants, standards, and controls. Onsets of controls

ere divided up into two separate predictors. One used the onsets of the

timulus physically identical to the deviant (later compared with the de-

iant and standard); the other modeled the onsets of all other control

timuli. The predictor for the remaining controls as well as predictors for

argets, responses and six head movement parameters were included in

he first-level GLM as nuisance regressors. Onsets were convolved with

 2-gamma hemodynamic response function to model the BOLD signal

hange for each predictor. Contrast images (deviant − standard) of the

eta estimates were created for each participant for the second-level

nalysis. 
3 
In order to isolate mismatch-related activity in the second-level anal-

sis, we used cluster-based permutation (CBP) as implemented in PALM

 Winkler et al., 2014 ). In this approach, t -tests are computed in each

oxel, and then all neighboring t -values that cross a predefined thresh-

ld (voxel-wise 𝛼) are summed up. This sum is referred to as the mass

f a cluster, which is then compared with the distribution of cluster

asses under the null hypothesis derived from random permutations of

he data. CBPs offer a nonparametric statistical test while circumventing

he multiple comparison problem ( Eklund et al., 2016 ). The voxel-wise

amounted to .001, and a cluster was deemed significant with 𝛼 < .05.

he number of permutations was set to 10000. 

In order to maximize the statistical power of the CBP, we opted for

 region-of-interest (ROI) analysis in which we included areas that in-

exed deviance processing in prior studies based on the meta-analytic

esults of Kim (2014) . The following areas of interest were identified and

ncluded in one mask based on the Harvard Oxford Atlas ( Desikan et al.,

006 ): Heschl’s gyrus, superior temporal gyrus (STG), anterior and pos-

erior cingulate cortex (ACC/PCC), supplementary motor area (SMA),

nferior frontal junction (IFJ), inferior parietal lobule (IPL), temporo-

arietal junction (TPJ), insula, thalamus and amygdala (see Fig. 1 C).

reas were chosen to correspond to the modality and task of the current

tudy (auditory and task-irrelevant, see Kim, 2014 for details). Given a

ignificant cluster, averaged betas were extracted from all voxels within

he group-level cluster for deviant, standard and control stimuli, aver-

ged across hemispheres, and z-standardized separately for each region

o account for differences in raw beta values. For clusters comprising

everal distinct regions, in our case, Heschl’s gyrus and STG, we ex-

racted the cluster averages using only the significant voxels that were

ncompassed in the original HOA mask templates. That is, we extracted

he betas for Heschl’s gyrus and STG separately. Then, adaptation-

elated activity was computed as control – standard and prediction

rror-related activity as deviant – control (see Fig. 1 B). These differ-
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nces were then subjected to a 2 × 6 repeated-measures ANOVA with

he factors mechanism (adaptation, prediction error) and region (Hes-

hl’s gyrus, STG, ACC/SMA, IPL, AI, IFJ) to check whether adaptation-

elated and prediction error-related activity varied with brain region.

oth factors vary within subjects and thus represent repeated measures.

iolations of sphericity were corrected using the Greenhouse-Geisser

rocedure and corrected p -values as well as 𝜀̂ –values are reported. Two-

ided t -tests were used to follow up the significant interactions of mech-

nism with brain region. We used Bonferroni correction to correct for

he multiple tests. The 𝛼 level was set to 0.008 for testing prediction and

daptation (6 tests each), respectively, and to 0.01 for comparing the dif-

erence of the mechanisms between one region and the others (5 tests

ach). We additionally report Bayes Factors (BF), with BF 01 denoting

he evidence for the null hypothesis (either prediction error = deviant

control = 0 or adaptation = control – standard = 0) and BF 10 the ev-

dence for the alternative hypothesis (either prediction error = deviant

control ≠ 0 or adaptation = control – standard ≠ 0). We use the con-

entions from Jeffreys (1961) to interpret the results of our Bayesian

nalyses. 

In order to investigate whether the six brain areas found in the main

nalysis were organized in a hierarchical or flat structure, we used

ynamic causal modeling (DCM; Friston et al., 2003 ). The volume-of-

nterest tool included in SPM 12 was used to extract ROI time series

rom the unsmoothed concatenated data. To this end, we built masks

ncluding 8 mm spheres around bilateral group-level peaks. Following

ecommendations by Zeidman et al. (2019a) , we used the first principal

omponent and controlled for the F -contrast using a liberal voxelwise

of 0.1 based on the main effect of oddball vs. standard. Two partici-

ants failed to show activity in all six regions and were excluded from

he analysis. 

For the remaining 52 participants, we defined two DCMs represent-

ng a flat and a hierarchical structure which only differed in the way

he oddball modulated the connections (see Fig. 4 A). We used a DCM

or time series analysis ( Friston et al., 2003 ). For both models, we mod-

led standard, oddball, and control as inputs to Heschl’s gyrus based on

hysiological considerations. We defined a full model with all connec-

ions as baseline (matrix A ) and varied how connections were modulated

y the oddball (matrix B ). For the hierarchical model, we assumed that

eschl’s gyrus mainly connects to STG, and STG to higher-order regions

ike the IFJ (see, e.g., Garrido et al., 2009a , 2008 ). Based on the results

f Li et al. (2019) , the AI could be considered an intermediate node be-

ween STG and IFJ, while the ACC/SMA could be connected to the STG.

hile we did not have specific hypotheses concerning the IPL from pre-

ious research with oddball designs, we would assume that it also repre-

ents a higher level in the processing of deviant sounds maybe also being

onnected to the STG ( Binkofski et al., 2016 ). The alternative model had

 flat design, where Heschl’s gyrus is connected to all other regions. All

ther configurations were left at default values and equal for both mod-

ls. After estimating these DCMs at the participant level, Bayesian model

omparison was performed on the second level using spm_dcm_bmc_peb ,

esting parameter estimates of matrix B ( Zeidman et al., 2019b ). 

.5. Data and code availability statement 

Data and code are available on the Open Science Framework acces-

ible via https://osf.io/eufd6/ . 

. Results 

.1. Behavioral data 

Performance on the duration task was very high, indexed by an av-

rage hit rate of 0.92 (SD = 0.15), an average false-alarm rate of 0.003

SD = 0.007), and an average d’ of 4.59 (SD = 0.77), indicating that

articipants were able to comply with the task easily. Furthermore, per-

ormance did not differ significantly between the oddball and control
4 
equence (hit rate: t (53) = 0.66, p = .51, BF 01 = 5.46; false alarm rate:

 (53) = -0.81, p = .42, BF 01 = 4.95; d’: t (53) = 0.15, p = .89, BF 01 = 6.66).

.2. fMRI data 

.2.1. Main effects of mismatch processing 

The cluster-based permutation revealed bilateral clusters of signif-

cant mismatch processing in the auditory cortex, including STG and

eschl’s gyrus (right: p < .001; left: p < .001), the ACC/SMA (right:

 = .01; left: p = .002), the IFJ (right: p = .003; left: p = .002) and the AI

right: p = .008; left: p = .006). Furthermore, a significant cluster was

ound in the left IPL ( p = .009). Please see Fig. 2 for a visualization of

lusters and beta-values and Table 1 for peak coordinates, t -statistics,

nd number of voxels (k) of the effects. 

.2.2. Mechanisms of mismatch processing 

We found that the contribution of the different mechanisms, i.e.,

daptation (control – standard) and prediction error (deviant – control),

aried depending on the brain region. The repeated-measures ANOVA

n the differential activity indicated a significant main effect of area

 F (5,265) = 2.54, p = .045, 𝜀̂ = 0.75) and a significant interaction of

rea and mechanism ( F (5,265) = 3.28, p = .01, 𝜀̂ = 0.79), while the

ain effect of mechanism did not reach significance ( F (1,53) = 0.03,

 = .86). We found significant adaptation in Heschl’s gyrus ( t (53) = 4.64,

 < .001, BF 10 = 847.85), STG ( t (53) = 4.52, p < .001, BF 10 = 588.07)

nd ACC/SMA ( t (53) = 2.84, p = .006, BF 10 = 5.41), while in the

I ( t (53) = 1.81, p = .08, BF 01 = 1.49), IPL ( t (53) = 1.08, p = .29,

F 01 = 3.90) and IFJ ( t (53) = 1.57, p = .12, BF 01 = 2.14), adaptation did

ot reach significance (see Fig. 3 A). In contrast, we observed prediction

rror-related activity in the STG ( t (53) = 3.02, p = .004, BF 10 = 8.36,),

I ( t (53) = 3.75, p < .001, BF 10 = 57.97), IPL ( t (53) = 2.93, p = .005,

F 10 = 6.67) and IFJ ( t (53) = 3.18, p = .002, BF 10 = 12.42), while no

ignificant prediction error was found in Heschl’s gyrus ( t (53) = 1.39,

 = .17, BF 01 = 2.71) and ACC/SMA ( t (53) = 1.42, p = .16, BF 01 = 2.62).

In order to test how the relative contribution of the mecha-

isms differs between areas, we computed the difference between

daptation-related and prediction error-related activity. Mechanisms in

eschl’s gyrus differed significantly from AI ( t (53) = -3.34, p = .002,

F 10 = 18.75), and IFJ ( t (53) = -2.57, p = .01, BF 10 = 2.89). STG differed

ignificantly from AI ( t (53) = -2.60, p = .01, BF 10 = 3.13). Differences

etween Heschl’s gyrus and IPL ( t (53) = -2.48, p = .02, BF 10 = 2.39) as

ell as STG and IFJ ( t (53) = -2.38, p = .02, BF 10 = 1.95) failed to reach

orrected significance (all other p > .05). See Fig. 3 B for a visualization

f differences between cortical regions. 

.2.3. Dynamic causal modelling 

Results of our DCM analysis can be found in Fig. 4 including param-

ter estimates, model probabilities, and free energy of the models. The

odel probability for the second level was 1 for the hierarchical model

ompared to the flat model. The higher model evidence for the hier-

rchical model is further illustrated by its higher (more positive) free

nergy. 

. Discussion 

In this study, we investigated the contribution of different mecha-

isms to explain increased deviance-related brain activation in humans.

e found a hierarchical increase of the relation of predictive mech-

nisms vs. adaptation from primary auditory cortex across secondary

uditory cortex to higher frontal and parietal regions. 

Our first analytical step, in which we compared oddball and standard

timuli, confirmed deviance-related activation in most of our ROIs. This

ncludes bilateral Heschl’s gyrus and STG, which are commonly linked

o auditory processing. Heschl’s gyrus encompasses the primary audi-

ory cortex ( Costa et al., 2011 ), while the STG is involved in higher-

rder auditory processing ( Binder et al., 2000 ). The effects in both ar-

https://osf.io/eufd6/
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Fig. 2. Auditory mismatch responses in the brain. (A) Clusters found in the cluster-based permutation comparing deviant and standard stimulus. (B) Mean beta values 

extracted from the clusters found. The deviant, standard and control stimulus are displayed. Individual data points represent single subjects. ACC/SMA: anterior 

cingulate cortex/supplementary motor area, AI: anterior insula, IFJ: inferior frontal junction, IPL: inferior parietal lobule, STG: superior temporal gyrus. 

Table 1 

fMRI results of the oddball contrast. ACC/SMA: anterior cingulate cortex/supplementary motor area, AI: anterior insula, IFJ: inferior 

frontal junction, IPL: inferior parietal lobule, STG: superior temporal gyrus. 

Lobe Area Hemisphere Peak MNI coordinates t -statistics k 

x y z max( t ) mean( t ) 

Temporal STG R 63 -18 0 9.51 5.63 286 

L -54 -3 -6 7.80 5.34 264 

Heschl R 51 -9 0 5.87 4.54 90 

L -57 -15 6 6.03 4.68 131 

Frontal IFJ R 45 15 21 5.38 4.25 74 

L -42 9 24 6.94 4.58 83 

ACC/SMA R 6 9 51 4.73 3.85 19 

L -9 6 48 6.04 4.16 57 

Parietal IPL L -39 -39 39 5.10 4.08 41 

Insular AI R 33 24 0 5.68 4.46 42 

L -33 21 0 6.28 4.75 49 
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w  
as have been linked to the modulatory influences of the dorsal atten-

ion network ( Kastner and Ungerleider, 2000 ), as well as preattentive

hange detection ( Näätänen et al., 2007 ). Besides effects in sensory pro-

essing areas, we found several distinct clusters in frontal and parietal

reas as well as the insula. Activations were mainly detected in the

entral attention network, which is involved in orienting attention to

alient events and thus alerting the organism to environmental changes

 Corbetta and Shulman, 2002 ; Sestieri et al., 2012 ). This includes the

I and ACC/SMA ( Eckert et al., 2009 ; Yeo et al., 2011 ), which are also

trongly involved in detecting salient events and initiating task-based at-
5 
ention ( Goulden et al., 2014 ; Menon and Uddin, 2010 ; Shackman et al.,

011 ). Furthermore, we found strong bilateral IFJ activity. The IFJ is

nvolved in the dorsal fronto-parietal network modulating goal-directed

ttention in sensory areas in a top-down fashion ( Kim, 2014 ; Yeo et al.,

011 ), but also in a network activated by unexpected salient environ-

ental changes ( Sestieri et al., 2012 ). This duality fits with the sugges-

ion that the IFJ presents a dynamic region integrating information from

oth dorsal and ventral networks ( Asplund et al., 2010 ). In addition to

hese activations, we also found deviance-related effects in the left IPL,

hich is part of a fronto-parietal control network ( Cole et al., 2013 ;
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Fig. 3. Mechanisms of mismatch generation. (A) Adaptation and prediction in different brain regions. Prediction-error-related activity is computed by substracting 

activity elicited by the control from the deviant. Adaptation-related activity is computed by substracting activity elicited by the standard from the control. Note 

that positive prediction error-related activity is plotted upwards and positive adaptation-related activity is plotted downwards. (B) Relative contribution of the 

mechanisms, negative values correspond to a surplus of adaptation in the corresponding brain area, while positive values correspond to a surplus of prediction error. 

Error bars depict standard errors of the mean. Individual data points represent single subjects. IFJ: inferior frontal junction, AI: anterior insula, ACC/SMA: anterior 

cingulate cortex/supplementary motor area, STG: superior temporal gyrus, IPL: inferior parietal lobule, Asteriks correspond to the t -tests reported in the main text 

with ∗ p < .05, ∗ ∗ p < .01, ∗ ∗ ∗ p < .001. 
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orbetta and Shulman, 2002 ; Yeo et al., 2011 ), probably involved in

ndexing expectancy violations ( O’Connor et al., 2010 ). 

These deviance-related effects could be explained to varying de-

rees by adaptation- and prediction error-related activity. We found

ignificant contributions of adaptation in Heschl’s gyrus in line with

revious research indicating sensory refractoriness effects in this area

 Opitz et al., 2005 ), while contributions of prediction error did not reach

ignificance. However, this does not mean that the primary auditory cor-

ex does not show prediction error-related activation ( Opitz et al., 2005 ),

ut that adaptation is – averaged across the deviance-related cluster –

he primary driver of information processing. This point is further high-

ighted by the fact that we did not observe substantial Bayesian evidence

or the absence of a prediction error effect (null hypothesis: prediction

rror equals zero). In contrast to primary auditory cortex, prediction

rror-related activity was significantly observed in the STG in accor-

ance with previous studies showing an increase of predictive processes

long the auditory processing hierarchy ( Laufer et al., 2008 ; Opitz et al.,

005 ; Parras et al., 2021 , 2017 ). 

Furthermore, in the AI, IFJ and IPL, a significant prediction error

ffect was found, but no significant adaptation effect. However, BFs in

avor of the null hypothesis (adaptation equals zero) indicated substan-

ial evidence only in the IPL, while in the AI and the IFJ, anecdotal

vidence for the null was observed. This suggests that while predic-

ion error is the primary driver of activity, adaptation effects cannot be

uled out with confidence. Nonetheless, the finding of prediction error

s the primary mechanism fits well with studies showing a dominant

ole of these regions during various predictive processes ( Allen et al.,

016 ; Dürschmid et al., 2016 ; Geuter et al., 2017 ; O’Connor et al.,
6 
010 ; Siman-Tov et al., 2019 ). Surprisingly, we found no significant

rediction error-related activity in ACC/SMA, probably due to the task-

rrelevant oddball paradigm chosen here, which considerably differs

rom the paradigms linking ACC to predictive processing ( Alexander and

rown, 2019 ). Furthermore, even though we used a large sample of par-

icipants, a further increase of sample size could probably alter results

or ACC/SMA. 

Comparing the relative contributions of prediction error and adapta-

ion, we observed differences between areas mainly concerned with au-

itory processing and higher-order areas like the AI and IFJ. Thus, while

rediction error is generated in auditory areas like the STG, its contribu-

ion to deviance-related effects increases on higher levels. These results

re in line with the results of Dürschmid and colleagues (2016) , who

ound an increase of predictive processing from temporal to frontal ar-

as. Furthermore, this supposed hierarchical organization fits well with

he results of Li and colleagues (2019) . These authors reconstructed the

emporal evolution of deviance-related responses by combining EEG and

MRI and found the information to flow from auditory cortex via the

nsula to the inferior frontal cortex. Our findings are also in line with

he proposal of hierarchical prediction error processing as a basic prin-

iple in the human brain ( Clark, 2013 ; Heilbron and Chait, 2018 ). In

his framework, auditory cortices are said to form a generative model

f the acoustical environment, which is informed by predictions from

igher level areas ( Heilbron and Chait, 2018 ). We did not observe equal

mounts of prediction error in all regions involved in deviance process-

ng. At first glance, this seems to disagree with predictive coding the-

ries that hypothesize the occurrence of error and prediction units on

ll cortical levels ( Clark, 2013 ; Heilbron and Chait, 2018 ). However, if
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Fig. 4. DCM analysis. (A) Model architecture of the flat model. (B) Model architecture of the hierarchical model. (C) Results of Bayesian model comparison including 

model probabilities of the second-level and free energy. (D) Parameter estimates for the flat and the hierarchical model. Error bars represent 95% credible intervals. 
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daptation is considered as a means of the predictive brain to increase its

recision, these findings can be integrated under the predictive coding

ramework ( Garrido et al., 2009b ). Thus, in accordance with the results

f Parras and colleagues (2021 , 2017 ), we found evidence for a hier-

rchical organization of prediction errors during deviance processing.

urthermore, our DCM analysis further underlined the hierarchical or-

anization of the brain regions that indexed deviance processing. Thus,

he increasing impact of predictive processing along the hierarchical

rganization does not only fit theoretical conceptualizations of the con-

idered cortical nodes but is also empirically reflected in their causal

elationships among each other. 
7 
While our study has many strengths, there are also limitations. In

tudies using electrophysiological measurements, SSA seems to be ob-

erved up to ISIs of 2 s ( Ulanovsky et al., 2003 ). This is substantially

horter than the ISIs we chose here (M = 3 s). However, electrophys-

ological and hemodynamic evidence shows that in humans, deviance

esponses can still be observed using long ISIs of up to 10 s ( Bottcher-

andor and Ullsperger, 1992 ) or, on average, 4 s ( Juckel et al., 2012 ).

urthermore, even in the animal model, adaptation phenomena can be

bserved for ISIs up to 60 s in some cortical regions ( Netser et al., 2011 ).

esides, while it is undisputed that the ISI is an important factor influ-

ncing deviance responses ( Netser et al., 2011 ; Ulanovsky et al., 2003 ;
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arden and Nelken, 2017 ), the observation of differences between de-

iant and standard stimuli in a large number of different cortical re-

ions in the current study speaks against the notion that deviance pro-

essing is completely abolished given ISIs > 2 s. Another difference

etween studies investigating SSA and our study is the irregularity of

SIs, which is often fixed in studies investigating SSA ( Netser et al.,

011 ; Ulanovsky et al., 2003 ). This difference should be taken into ac-

ount when comparing results. Taken together, the current study shows

hat an oddball sequence can be implemented in an event-related fMRI

aradigm with comparably long ISIs. Future studies should try to find

ays to implement shorter or fixed ISIs while still maintaining the ad-

antages of event-related fMRI. 

As a second limitation, the equiprobable control might not have

een the ideal control condition to delineate adaptation effects as con-

rols were not of equal probability compared to the standards in the

ddball sequence. Another control condition like the cascade control

ight have solved this issue by providing a predictable control stimulus

 Ruhnau et al., 2012 ). However, first, while different results might be

xpected from equiprobable and cascade control in theory, empirical ev-

dence suggests that both are equally suited to investigate mechanisms

f change detection ( Parras et al., 2021 , 2017 ; Wiens et al., 2019 ). Sec-

nd, we were interested in how the contributions of several mechanisms

ight change across the auditory processing hierarchy. Importantly,

ven if the control condition was not optimal, changes between differ-

nt cortices should still be meaningful. Third, while treated as equally

redictable, the standard and the cascade control are not equal, as the

ext stimulus in the cascade control can be predicted with a probabil-

ty of 100% while the standard in the oddball sequence cannot. Thus,

hile it is definitely desirable to use a cascade control in future studies,

e think that in the current study, the use of the equiprobable control

till allows us to draw conclusions on different mechanisms of deviance

rocessing. 

A third limitation is that we only investigated mechanisms of de-

iance processing during a condition where oddball stimuli had to be

ttended to but were not targets. This is different from many stud-

es investigating deviance processing during preattentive conditions

 Näätänen et al., 2011 ). While we can only speculate, we would expect

hat a task manipulation that diverts attention away from the oddball

timuli would possibly elicit deviance responses in fewer regions with

ess prominent prediction errors. Following this line of reasoning, mech-

nisms predominantly observed during deviance processing might be

odulated by task settings. Experimentally combining task manipula-

ions with fMRI might help better understand which brain regions vary

n their predominant mechanisms and which do not. Besides, studies on

epetition suppression have shown that the interplay between stimulus

xpectations and repetitions is complex, indicating that the influence of

xpectations on RS is not stable but changes with specific stimuli and

onditions ( Cacciaglia et al., 2019 ; Feuerriegel et al., 2018 ; Kovács et al.,

013 ; Tang et al., 2018 ; Todorovic et al., 2011 ; Utzerath et al., 2017 ).

hus, including different manipulations, e.g., of familiarity or higher-

evel expectations could further help in providing a comprehensive pic-

ure of hierarchical predictive processing in the brain. Furthermore, we

nly investigated the auditory modality. Future studies should also in-

lude other sensory stimulations. Finally, prospective research would

rofit from other analytical approaches for the investigation of different

echanisms of deviance processing. For example, computational mod-

ling could offer a more targeted way to investigate different takes of

he predictive processing account (e.g., Lieder et al., 2013 ). 

. Conclusion 

We observed deviance-related effects in a widespread network of dif-

erent brain regions. The processes predominantly responsible for these

ffects varied depending on the hierarchical level of the brain region. We

etected an increase in prediction error-related activity and a concurrent

ecrease of adaptation-related activity from lower to higher hierarchi-
8 
al areas. These results highlight hierarchical predictive processing in

he human brain. 
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