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Abstract

This thesis sheds new light on the reconstruction of dynamic MR data via variational methods
that regularize with nuclear norms.
On the one hand, we devote ourselves to the classical nuclear norm and discuss its benefits in
connection with the reconstruction of dynamic series that are presumed to consist of highly
correlated frames. In this context we also present how its variational implementation, in
combination with the `1-norm, enables to automatically track cells in MR scans. On the other
hand, we consider the nuclear norm in a broader sense. Concentrating on linear mappings
between non-euclidean vector spaces, we derive a generalized version. Due to its adaptivity,
this opens up new application-oriented possibilities. Focusing on the tasks in dynamic MRI, we
use the more general framework to deduce an approach which incorporates a-priori knowledge
on the occurence of smooth dynamics into the process of reconstruction. In a second part we
then contemplate the above mentioned approaches from a theoretical point of view. Aiming for
continuous variational problems that mimic the infinitely fine temporal and/or spatial resolution
of an MR scanner and represent the discrete ones in an appropriate manner, we address the
study of their Γ-convergence. In doing so, we show that the considered discrete nuclear norms
Γ-converge toward their natural continuous counterparts.
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1
Introduction

In 1952 F. Bloch and E. M. Purcell received the Nobel Prize for ‘their development of new
methods for nuclear magnetic precision measurements and discoveries in connection therewith’.
Their work allowed P. Lauterbur to develop the technique of magnetic resonance imaging (MRI)
[Lauterbur, 1973], which revolutionized the way medical diagnosis are determined today. MRI
is an imaging method to display structure and functionality of soft tissue and organs in the
human body. In contrast to hardened body parts, such as bones, these contain hydrogen nuclei
which, due to their spin, generate an electric field. Exploiting this fact, in MRI a combination
of static and high-frequency magnetic fields allows to excite these atoms. By virtue of their
excitation, the nuclei move in different ways, depending on the local tissue they belong to. This
movement induces an electrical current, and thus allows to acquire measurements from which it
is possible to extrapolate an image depicting the physiological origin. Beyond the generation
of a single static image, this procedure can also be repeated several times to obtain a series of
outcomes. This is called dynamic MRI and serves to image dynamic processes. In the context
of functional MRI, it can for example be applied to study neuronal activity and therefore allows
to characterize and detect brain diseases (see, e.g., [Huettel et al., 2004]). In perfusion MRI
it is used to visually represent and quantify the blood flow in organs (see, e.g., [Petrella and
Provenzale, 2000]). Beyond that, the technique is applied in scenarios where one is interested
in tracking the movement of cells in the human body (see, e.g., [Hemmer et al., 2015; Sánchez
et al., 2012; Masthoff et al., 2019]).
Each of these procedures provides a non-invasive possibility to get full access to anatomical
information. However, all of them feature one major drawback: the process of acquiring raw
data is very time consuming. This is particularly obstructive in the context of dynamic MRI,
since its success strongly depends on the ability to perform measurements in short time frames.
A natural resort to circumvent this obstacle is to perform fewer measurements. In order to
understand how this affects the quality of the involved images, it is instructive to look at the
reconstruction from a mathematical point of view.
Within the modeling assumptions of MRI, it is presumed that the measured data is generated
by a physiological origin. Therefore, in an idealized setting, the process of data acquisition is
commonly expressed by an equation of the form

Ky = x. (1.1)
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1 Introduction

Here, y describes the intensity of the grayscale image, which represents the object under consid-
eration, while x characterizes the measured data. The involved operator K serves to model the
transition from one to the other and, in the present setting, is given as the fourier transform
(see, e.g., [Elster and Burdette, 2001]). As this operator is bijective, equation (1.1) in general
allows to recover the desired image y from data x by applying the inverse of K.
However, as described above, it would be desirable to only perform a reduced amount of
measurements. Hence, if recovering y is still to lead to an image of high resolution, the included
operator needs to be modified in order to account for the absent data. This leads to a version
that does not posses a continuous inverse anymore. Combined with the fact that, in practice,
measurement devices do not work perfectly but generate noisy data, this entails a severe problem:
the recovery of y constitutes an ill-posed inverse problem. This means that inevitable small
measurement errors may lead to large errors in the reconstructed image.
The study of such ill-posed inverse problems is subject to vibrant research, both from an
applied and theoretical point of view (see, e.g., [Groetsch, 1993; Colton et al., 2012; Tikhonov
et al., 1987]). With regards to MRI, a point of emphasize is to compensate the absence of
sufficient data by involving a-priori information on the expected reconstruction. To do so, one
considers a modified problem by either restricting the admissible set of solutions or changing the
reconstruction procedure to favor the anticipated outcome. One way to explicitly implement this
modification is to follow the framework of variational modeling. This relies on the observation
that (under suitable conditions) finding a solution to (1.1) is equivalent to determining the
minimizer of

y 7→ 1

2
‖Ky − x‖2. (1.2)

In comparison to the algebraic approach, the variational one presents two advantages. On the
one hand, it guarantees the existence of solutions. Thus, even if, as a result of measurement
errors, (1.1) does not admit an exact solution, in most cases an approximate one can be found
via (1.2). On the other hand, one can easily manipulate the desired solution, by including an
additional term, that encodes the a-priori knowledge. Mathematically speaking, that means to
consider a modified minimum problem of the form

y 7→ 1

2
‖Ky − x‖2 + αR(y). (1.3)

Here, the additional term R is called regularizer and is used to penalize undesirable properties
of possible solutions. The parameter α > 0 serves to balance the importance of the two terms
involved. In this setting, appropriate choices of R entail the benefit that the reconstruction y
depends continuously on the data x.
In dynamic MRI, respecting that the recorded measurements for different time steps are all
based on the same anatomic structure, one expects that the reconstructed frames of the time
series are highly correlated. Recalling our previous discussion about (1.3), it therefore stands to
reason to include this observation as a-priori knowledge in the reconstruction process. However,
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in order to realize this idea, a suitable regularizer R, favoring this strong linear dependence in
time, has to be defined. Taking into account the expected outcome, one can assert that the
matrix, storing the frames in a vectorized version, has low rank. That means that only few of its
singular values differ from zero, or in other words, it has a sparse singular value decomposition
(SVD). In general, to enforce sparsity of solutions for optimization problems, penalizing the
`1-norm turned out to be a useful tool (see [Tibshirani, 1996]). This stems from the fact that
it is the convex relaxation of the `0-norm (see [Donoho and Elad, 2003]), which measures the
cardinality of non-zero entries and therefore favors sparsity as far as minimization is concerned.
In a similar fashion, aiming for few non-zero singular values, penalizing their `1-norm is a
canonical approach. Using this so-called nuclear norm as a regularizing term has been subject
to investigation in connection with various applications (see [Candès and Recht, 2009; Candès
and Tao, 2005; Recht et al., 2010]). In the framework of dynamic MRI, this idea has been
implemented, for example, with applications to contrast enhanced breast imaging (see [Liang,
2007; Haldar and Liang, 2010]). Beyond that, in [Lingala et al., 2011] and [Zhao et al., 2012] an
adapted approach has been suggested. Here, referring to applications in cardiac perfusion MRI,
the solution is not only expected to be of low rank, but also to have a sparse representation
with respect to a suitable basis. In order to encode those two conditions at the same time,
the regularizer R in (1.3) is chosen as a combination of the nuclear norm and an `1-norm in
the respective basis. A different take on tackling dynamic MRI has been proposed in [Otazo
et al., 2015; Gao et al., 2012]. In these works it is assumed that the desired reconstruction is
the superposition of a low-rank matrix L, modeling the temporally correlated background, and
a sparse component S representing the dynamics of interest. Therefore, the unknown in (1.3)
is postulated to be the sum of L and S, while R penalizes the nuclear norm of L as well as the
`1-norm of S. Here, the validity of the procedure has been demonstrated in connection with
various experiments in MRI including perfusion, time-resolved angiography, and cardiac cine.

Motivated by this rich family of applications, the scope of this thesis is to investigate more
thoroughly the nuclear norm as a regularizer, where we mainly put our focus on its generalization
and the study of its asymptotic analysis.
More precisely, we revisit the aforementioned approaches with regard to the task of tracking
cells in the human body. Since here, the object under consideration separates into an almost
constant background and the small scale dynamics of interest, this assignment can be perfectly
placed in the above class of problems. By performing numerical experiments, we show that
this procedure proves successful for image reconstruction as well as automated cell tracking in
previously reconstructed MR data.
Moreover, based on these results, we study the nuclear norm as a regularization term in a
broader sense. For this purpose, we first of all observe that the SVD of a matrix, which encodes
the time series of images, encapsulates its dynamics and their intensities. Therefore, as in the
case of K = Id (i.e., in the setting of denoising) regularizing with the nuclear norm boils down
to the linear shrinkage of the singular values of A (see [Cai et al., 2010]), minimizing (1.3) selects
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the dominant dynamics. With that in mind, we consider modified SVDs - and thus modified
nuclear norms - to manipulate this selection procedure. To this end, we note that the classical
SVD of a matrix A ∈ Cm×n is based on its interpretation as a linear mapping from (Cn, 〈·, ·〉)
to (Cm, 〈·, ·〉), where 〈·, ·〉 denotes the euclidean scalar product. Hence, to construct a modified
SVD, we endow Cm and Cn with the inner products

〈x1, x2〉C := xH1 Cx2, ∀x1, x2 ∈ Cm and 〈y1, y2〉D := yH1 Dy2, ∀y1, y2 ∈ Cn,

where C ∈ Cm×m and D ∈ Cn×n are Hermitian and positive definite matrices. The resulting
singular values (σC,Dξ )ξ ⊂ R are now obtained as the eigenvalues of the matrix A∗C,DA, where
A∗C,D ∈ Cn×m is the adjoint of A respecting the scalar products 〈·, ·〉C and 〈·, ·〉D. Of course,
since also the corresponding singular vectors are affected by the choice of the matrices C and
D, in the light of the aforementioned, the captured dynamics as well as their magnitudes are
changed. For appropriate choices of C andD, we use the resulting nuclear norm as a penalization
term for (1.3). Contrary to the classical setting, we observe that, in the denoising scenario, this
implementation leads to nonlinear shrinkage of the modified singular values. This also allows
us to draw conclusions about the general problem in (1.3), where R is chosen as the classical
nuclear norm. In particular, the nonlinear effects described above render the reconstruction
unclear for the general problem and suggest that further investigation is needed.
Subsequently, we address the asymptotic behavior of the previously discussed minimization
problems for very fine spatial and/or temporal resolution. This is relevant, because, even when
reverting to efficient algorithms, the reconstruction procedure can be very time consuming as
the degrees of freedom become large. By deriving ‘effective’ continuum problems, we tackle
this question from an analytical point of view. Since these surrogate problems shall be good
approximations of those in question, we resort to techniques of the calculus of variations. More
precisely, we employ the concept of Γ-convergence. This proved to be a powerful tool to study the
asymptotic behavior of sequences of minimization problems, since, together with equi-coercivity,
it ensures the convergence of minimizers (see, e.g., [Braides, 2002]). Identifying the Γ-limit is a
two step procedure: First, it has to be shown that the limit functional is an asymptotic lower
bound; Secondly, one has to make sure that this bound is optimal.
Within this framework, in analogy with (1.3), we here examine

Fµ(A) =
1

2
‖KA−Bµ‖2 + αRµ(A), (1.4)

where µ ∈ N encodes the spatial and temporal dimensions of the matrix A ∈ Rmµ×nµ and the
regularizer Rµ ranges between (weighted) mixed p, q-norms, with p, q > 1, the classical nuclear
norm, and its generalized version. We show that this family of problems satisfies a suitable
notion of equi-coercivity. More specifically, following a semi-discrete approach, we show that for
sequences of matrices (Aµ)µ that satisfy supµ Fµ(Aµ) < +∞, there exist suitable interpolations
(Âµ)µ and an integral operator A such that Âµ converges to A with respect to the weak operator
topology (see Chapter 6 for the precise choice of topology). With respect to this very topology,
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we then show that the Γ-limit of the mixed p, q-norm is given by the Lp,q-norm on the space of
Lp,q-integral operators. Our result is the functional analytic analogue to [Heins, 2014, Thrm. 7.4]
which is based on tools of measure theory. Beyond that, focusing on the classical nuclear norm,
we prove that its Γ-limit is well defined on the space of L2,2-integral operators and, for such
operators, can again be represented as the sum of the singular values. Regarding the generalized
nuclear norm, we consider the spaces (Rmµ , 〈·, ·〉Cµ) and (Rnµ , 〈·, ·〉Dµ). Here, Cµ ∈ Rmµ×mµ and
Dµ ∈ Rnµ×nµ define scalar products, that are equi-continuous and equi-coercive with respect to
the parameter µ. Moreover, we assume that the sequences (C

1/2
µ )µ and (D

1/2
µ )µ (now defined

on L2 via an embedding) strongly converge to limiting operators C1/2 and D1/2, respectively.
Based on these hypotheses, we demonstrate that the generalized nuclear norm regarding Cµ and
Dµ Γ-converges to the sum of generalized singular values characterized via C and D. To do so,
we employ the following two key arguments: First, we relate orthonormal bases of (L2, 〈·, ·〉C),
respectively (L2, 〈·, ·〉D), to the ones of (Rmµ , 〈·, ·〉Cµ), resp. (Rnµ , 〈·, ·〉Dµ), via the embedding
and a Gram-Schmidt argument. Afterwards, we exploit the dual structure of the generalized
nuclear norm to compare the sequence of functionals with the limit.

The thesis is organized as follows. In Chapter 2, we present the mathematical concepts that form
the basis for the analytical part of this work. Chapter 3 gives a short introduction to the theory of
inverse problems and discusses variational approaches to study them. Subsequently, in Chapter
4, we review how these approaches can be implemented in the context of dynamic MRI. To do
so, we first detail the process of data acquisition. Secondly, we define different matrix norms and
convey their relevance with respect to different applications. The numerical treatment of the
resulting minimization problems is discussed in Chapter 5. Additionally, we employ the derived
algorithms to perform computational experiments addressing the aforementioned applications.
Chapter 6 is devoted to the asymptotic analysis of the mixed p, q-norm and the (generalized)
nuclear norm. Finally, we conclude this work by pointing to potential future developments
motivated by the problems considered in Chapters 4 – 6.
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2
Mathematical preliminaries

Before diving into the main part of this thesis we want to start with the brief recall of some
mathematical concepts that will play a relevant role within the subsequent considerations. While
doing so, we especially focus on the aspects which will be important for the analytical part of
this work.

2.1 Function spaces

In order to start, we first of all want to touch upon two kinds of classes of function spaces which
basically can be interpreted as generalizations of the Lp-spaces. However, since these are usually
encountered less frequently, we here want to give a proper definition and point to some useful
properties. To do so we initially turn toward the introduction of the vector-valued counterpart
of the classical Lp-spaces.

Definition 2.1. Let Σ ⊂ Rd be open, n ∈ N and 1 ≤ p ≤ ∞. Then

Lp(Σ;Rn) := {x = (x1, . . . ,xn) |xj ∈ Lp(Σ) ∀j ∈ {1, . . . , n}}

together with

||x||Lp(Σ;Rn) :=

 n∑
j=1

||xj ||2Lp(Σ)

 1
2

defines the normed vector space of all n-tuples of functions in Lp(Σ).

Note that due to its composition of finitely many Lp-spaces we can benefit from a few nice
properties and follow proof ideas that work well on the level of Lebesgue spaces. One of them
leads to the identification of the dual space of Lp(Σ;Rn).

7



2 Mathematical preliminaries

Remark 2.2. Let 1 < p <∞. Similar to the case of regular Lp-spaces, applying the inequalities
of Hölder and Cauchy-Schwarz yields∣∣∣∣∣∣

n∑
j=1

〈xj ,x′j〉Lp(Σ),Lp′ (Σ)

∣∣∣∣∣∣ ≤
n∑
j=1

||xj ||Lp(Σ) ||x′j ||Lp′ (Σ)

≤

 n∑
j=1

||xj ||2Lp(Σ)

 1
2
 n∑
j′=1

||x′j′ ||2Lp′ (Σ)

 1
2

= ||x||Lp(Σ;Rn) ||x′||Lp′ (Σ;Rn)

for x ∈ Lp(Σ;Rn), x′ ∈ Lp
′
(Σ;Rn) and p′ being the conjugate exponent to p. Thus Tx′ :

Lp(Σ;Rn)→ R characterized by

Tx′ : x 7→
n∑
j=1

〈xj ,x′j〉Lp(Σ),Lp′ (Σ;Rn)

is linear and bounded and therefore an element of the dual space to Lp(Σ;Rn) with

||Tx′ || ≤ ||x′||Lp′ (Σ)n . (2.1)

Following the exact same reasoning as in [Dunford and Schwartz, 1988, Chap. IV.8, Thrm. 1] for
the Lp-spaces then leads to the insight that every linear and bounded functional on Lp(Σ;Rn)

is of this form and that the norms in (2.1) even coincide. Consequently Lp
′
(Σ;Rn) can be

identified with the dual space of Lp(Σ;Rn) and the reflexivity of both is manifested.

Based on this reflexivity, also the following property on the weak convergence in Lp(Σ;Rn) can
directly be inferred from its classical counterpart.

Corollary 2.3. The space Lp(Σ;Rn) is weakly sequentially complete.

In addition to that, when defining C∞c (Σ;Rn) likewise, i.e., as the space of n-tuples of functions in
C∞c (Σ), we can easily transfer the well-known density statement to Lp(Σ;Rn).

Corollary 2.4. Let 1 ≤ p <∞. Then, C∞c (Σ;Rn) lies dense in Lp(Σ;Rn).

With that, we want to turn toward an even more generalized version of the classical Lebesgue
spaces introduced in the 1960s by Benedek and Panzone.

Definition 2.5. (cf. [Benedek and Panzone, 1961, Sec. 1])
Let 1 ≤ p, q ≤ ∞ and Σ ⊂ Rd, Ω ⊂ Rd′ . Then, the mixed Lebesgue space Lp,q(Σ × Ω) is

8
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defined as the set of all Lebesgue-measurable functions t : Σ× Ω→ R, with

‖t‖Lp,q(Σ×Ω) :=

(∫
Σ

(∫
Ω
|t(s, r)|q dr

) p
q

ds

) 1
p

<∞.

It was found that also this generalization shares a lot of properties of the Lp-spaces. One of
them concerns the corresponding dual space.

Theorem 2.6. (cf. [Benedek and Panzone, 1961, Sec. 4, Thrm. 1 & Lem. 1])
Let 1 < p, q <∞. Suppose that p′ and q′ denote the conjugate exponents to p and q. Then,
Lp,q(Σ×Ω) is reflexive and its dual space (Lp,q(Σ× Ω))∗ can be identified with Lp′,q′(Σ×Ω).

Beyond that, as was to be expected, also in this case the associated dual norm coincides with
the norm on Lp,q(Σ× Ω).

Theorem 2.7. (cf. [Benedek and Panzone, 1961, Sec. 2, Thrm. 1])
Let 1 ≤ p, q ≤ ∞ and t ∈ Lp,q(Σ× Ω). Then,

‖t‖Lp,q(Σ×Ω) = sup
‖g‖

Lp
′,q′ (Σ×Ω)

=1

∫
Σ×Ω
|tg| d(s, r)

Note that this theorem also implies the continuity of the norm on Lp,q(Σ× Ω) with respect to
the strong topology.

Remark 2.8. With Theorem 2.7 we can directly infer that on Lp,q(Σ × Ω) an analogue of the
Minkowski inequality applies, i.e., for arbitrary functions t, h ∈ Lp,q(Σ× Ω) we have

‖t+ h‖Lp,q(Σ×Ω) ≤ ‖t‖Lp,q(Σ×Ω) + ‖h‖Lp,q(Σ×Ω).

Therefore, we deduce that

‖t− h+ h‖Lp,q ≤ ‖t− h‖Lp,q + ‖h‖Lp,q ⇔ ‖t‖Lp,q − ‖h‖Lp,q ≤ ‖t− h‖Lp,q ,
‖t− h− t‖Lp,q ≤ ‖t− h‖Lp,q + ‖t‖Lp,q ⇔ ‖h‖Lp,q − ‖t‖Lp,q ≤ ‖t− h‖Lp,q ,

and conclude that for arbitrary ε > 0 and functions t, h ∈ Lp,q(Σ×Ω) with ‖t−h‖Lp,q(Σ×Ω) < ε

it can be guaranteed that

| ‖t‖Lp,q(Σ×Ω) − ‖h‖Lp,q(Σ×Ω)| < ε.

Thus, regarding the strong topology the norm on Lp,q(Σ× Ω) is continuous.

Speaking of the strong topology, we do not want to neglect mentioning the behavior of Lp,q(Σ×Ω)

regarding the weak topology.
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Theorem 2.9. (cf. [Benedek and Panzone, 1961, Sec. 5, Thrm. 2])
Let 1 ≤ p, q ≤ ∞. Then, Lp,q(Σ× Ω) is weakly sequentially complete.

Notice that with this statement it is moreover clear that, regarding the weak topology, the norm
on Lp,q(Σ× Ω) obeys a lower semicontinuity.

Remark 2.10. Let (tγ)γ∈N ⊂ Lp,q(Σ× Ω) be a weakly convergent sequence with limit t∗. Then
first of all, due to Theorem 2.9, t∗ ∈ Lp,q(Σ×Ω). Second, we can deduce with Hölder’s inequality
that for all g ∈ Lp′,q′(Σ× Ω) with ‖g‖Lp′,q′ (Σ×Ω) = 1∫

Σ

∫
Ω
|tγg| dr ds ≤ ‖tγ‖Lp,q(Σ×Ω)

applies. Hence, we realize that∣∣∣∣ ∫
Σ×Ω

t∗g d(s, r)

∣∣∣∣ ≤ lim inf
γ→∞

∫
Σ×Ω
|tγg| d(s, r) ≤ lim inf

γ→∞
‖tγ‖Lp,q(Σ×Ω)

and conclude together with Theorem 2.7 that

‖t∗‖Lp,q(Σ×Ω) = sup
‖g‖

Lp
′,q′ (Σ×Ω)

=1

∣∣∣∣ ∫
Σ×Ω

t∗g d(s, r)

∣∣∣∣ ≤ lim inf
γ→∞

‖tγ‖Lp,q(Σ×Ω),

i.e., that the norm on Lp,q(Σ× Ω) is lower semicontinuous with respect to the weak topology.

To conclude this section on function spaces, the last useful statement we want to mention, again,
deals with the density of the space of C∞c functions.

Lemma 2.11. Let 1 ≤ p, q <∞. Then, C∞c (Σ× Ω) lies dense in Lp,q(Σ× Ω).

Proof. Let t ∈ Lp,q(Σ× Ω). Then, we realize that

‖t‖Lp,q(Σ×Ω) =

(∫
Σ

(∫
Ω
|t(s, r)|q dr

) p
q

ds

) 1
p

=

(∫
Σ
‖t(s, · )‖pLq(Ω) ds

) 1
p

,

i.e., strictly speaking Lp,q(Σ × Ω) can be identified with the Bochner space Lp(Σ;Lq(Ω)) (cf.,
e.g., [Hytönen et al., 2016, Def. 1.2.15]). Now, respecting that for these Bochner spaces it
applies that C∞c (Σ;Y) lies dense in Lp(Σ;Y) for Y being a Banach space (cf., e.g., [Hytönen
et al., 2016, Lem. 1.2.31]), and involving that C∞c (Ω) also lies dense in Lq(Ω), we can again
follow with standard arguments that C∞c (Σ× Ω) is dense in Lp,q(Σ× Ω).

2.2 Integral operators

The next concept we want to recall and which is highly correlated with the just introduced
mixed Lebesgue spaces is the one which deals with integral operators and their singular value
decomposition.
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Considering open subsets Σ ⊂ Rd and Ω ⊂ Rd′ and a function t ∈ Lp,q(Σ × Ω), within this
work we are predominantly interested in contemplating integral operators T : Lq

′
(Ω)→ Lp(Σ)

characterized through

(Ty)(s) =

∫
Ω
t(s, r)y(r) dr ∀s ∈ Σ. (2.2)

In this setting we want to call t the integral kernel associated with T . Note that, owing to
Hölder’s inequality and

||Ty||pLp(Σ) =

∫
Σ

∣∣∣∣∫
Ω
t(s, r)y(r) dr

∣∣∣∣p ds

≤
∫

Σ

(∫
Ω
|t(s, r)|q dr

) p
q
(∫

Ω
|y(r)|q′ dr

) p
q′

ds

= ||t||pLp,q(Σ×Ω) ||y||
p

Lq
′ (Ω)

,

operators of this form are linear and bounded and, hence, the convergence of sequences of
integral operators can be understood in the classical sense of operator topologies given to the
space L(Y ,X ).

Definition 2.12. (cf. [Riesz and Sz-Nagy, 1955, §66])
Let X and Y be Banach spaces and (Tγ)γ∈N ⊂ L(Y ,X ) be a sequence of operators. Then,

(i) (Tγ)γ∈N converges in the uniform operator topology toward an operator T : Y → X if

lim
γ→∞

‖Tγ − T‖ = 0,

(ii) (Tγ)γ∈N converges in the strong operator topology toward an operator T : Y → X if

lim
γ→∞

‖Tγy − Ty‖X = 0 ∀y ∈ Y,

(iii) (Tγ)γ∈N converges in the weak operator topology toward an operator T : Y → X if

lim
γ→∞

|f(Tγy)− f(Ty)| = 0 ∀y ∈ Y, ∀f ∈ X ∗.

2.2.1 Singular value decomposition

As we will see in Chapter 6, in this work integral operators of the form (2.2) will become
especially interesting as soon as a so-called singular system can be assigned to them. In order
to enable this, these operators first of all have to be compact.
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Definition 2.13. (cf., e.g., [Brezis, 2010, Def. 6.1])
Let X and Y be Banach spaces. A linear operator T : Y → X is said to be compact if for
every bounded set C ⊂ Y the image T (C) has a compact closure in X .

Notice that compact operators own the unique feature to be able to improve the characteristic
of the convergence of a sequence.

Lemma 2.14. (cf., e.g., [Brezis, 2010, Rem. 6.2])
Let T ∈ L(Y,X ) be compact. Suppose that (yγ)γ∈N converges weakly to y in Y. Then,
(Tyγ)γ∈N converges strongly toward Ty in X .

Coming back to our integral operators we perceive that especially those with kernel t ∈ L2(Σ×Ω)

satisfy the requirements of compactness. This can be realized when approximating t with a
degenerate kernel, i.e.,

t(s, r) ≈ tn(s, r) :=

n∑
j=1

gj(s)hj(r)

for gj(s) :=
∫

Ωnj
t(s, r) dr / |Ωn

j |, hj(r) := χΩnj
(r) with Ω =

⋃̇n

j=1Ωn
j and |Ωn

j | ≤ C
n . Considering

the corresponding sequence of integral operators (Tn)n∈N with kernels (tn)n∈N we can observe
that all of its elements have a finite-dimensional range and thus, due to their boundedness,
are compact. With that, we have found a sequence of compact operators which, with respect
to the uniform operator topology, converges to T and therefore implies its compactness (cf.
[Brezis, 2010, Cor. 6.2]). As a result, we can state that, from this point of view, integral
operators with kernel t ∈ L2(Σ × Ω) qualify for the assignment of a singular system. And in
fact, since the spaces L2(Σ) and L2(Ω) also represent Hilbert spaces this suitability can be
confirmed.

Definition 2.15. (cf., e.g., [Engl, 1997, Def. 7.13])
Let X and Y be Hilbert spaces and T ∈ L(Y,X ) be compact. A sequence (σξ, uξ, vξ)ξ∈N is
called singular system of T , if: σξ > 0 for all ξ ∈ N, (σ2

ξ , uξ)ξ∈N is an eigensystem to TT ∗ and

vξ =
T ∗uξ
‖T ∗uξ‖ for all ξ ∈ N.

Note that within the course of this work we will sometimes also make use of the notation
(σξ(T ))ξ∈N in order to explicitly indicate that the contemplated singular values correspond to
the operator T . Besides, we want to point to the following proposition which illustrates the
characteristic of a singular system in more detail.

Proposition 2.16. (cf. [Engl, 1997, Prop. 7.14])
Let T ∈ L(Y,X ) be a compact operator with associated singular system (σξ, uξ, vξ)ξ∈N. Then,
the following applies:
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(i) For all ξ ∈ N it holds that

T ∗uξ = σξvξ, T vξ = σξuξ,

(ii) (σ2
ξ , vξ)ξ∈N represents an eigensystem to T ∗T ,

(iii) (uξ)ξ∈N and (vξ)ξ∈N are orthonormal bases of ranT , respectively of ranT ∗ = kerT⊥.

Proof. Let T ∈ L(Y,X ) with corresponding singular system (σξ, uξ, vξ)ξ∈N. Then, according to
Definition 2.15 it holds that TT ∗uξ = σ2

ξuξ for all ξ ∈ N. Hence, also T ∗uξ 6= 0 applies and vξ
is well-defined. Moreover, we can compute that

Tvξ =
1√

〈T ∗uξ, T ∗uξ〉
TT ∗uξ =

σ2
ξuξ√

〈uξ, TT ∗uξ〉
=

σ2
ξuξ√

σ2
ξ‖uξ‖2

= σξuξ,

T ∗uξ = vξ‖T ∗uξ‖ = vξ

√
〈uξ, TT ∗uξ〉 = σξvξ.

This, in particular, implies that

T ∗Tvξ = σξT
∗uξ = σ2

ξvξ,

and we can identify (σ2
ξ , vξ)ξ∈N to represent an eigensystem to T ∗T . With that, since eigenvectors

of compact selfadjoint operators always form a orthonormal basis of the closure of its range (cf.
[Engl, 1997, Prop. 2.38]), we can be sure that (uξ)ξ∈N and (vξ)ξ∈N represent orthonormal bases
of ranTT ∗, respectively of ranT ∗T . Now, on the one hand

ranT = T (kerT⊥) = T (ranT ∗) ⊆ T (ranT ∗) = ranTT ∗

and analogously ranT ∗ ⊆ ranT ∗T applies. However, on the other hand obviously also ranTT ∗ ⊆
ranT and ranT ∗T ⊆ ranT ∗ holds true. Consequently, ranT = ranTT ∗ and ranT ∗ = ranT ∗T

and the proposition is proven.

In the preceding paragraph we have thus learned that for p = q = 2 the integral operators in
(2.2) can be equipped with a singular system. Now, to conclude this section, we briefly want to
comment on the impact this system has on their representation.

Lemma 2.17. Let T : L2(Ω)→ L2(Σ) be an integral operator and (σξ, uξ, vξ)ξ∈N denote an
associated singular system. Then, the inducing integral kernel t ∈ L2(Σ×Ω) can be described
by

t(s, r) =
∑
ξ∈N

σξuξ(s)vξ(r) ∀s ∈ Σ, r ∈ Ω.
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Proof. Suppose that T : L2(Ω) → L2(Σ) is an integral operator and (σξ, uξ, vξ)ξ∈N denotes a
corresponding singular system. Then (wφψ)φ,ψ∈N characterized by

wφψ(s, t) := uφ(s)vψ(r) ∀s ∈ Σ, r ∈ Ω

represents a system in L2(Σ× Ω) which in consequence of

〈wφψ, wφ′ψ′〉 =

∫
Σ

∫
Ω
uφ(s)vψ(r)uφ′(s)vψ′(r) dr ds

=

∫
Σ
uφ(s)uφ′(s) ds

∫
Ω
vψ(r)vψ′(r) dr = δφφ′δψψ′

is orthonormal. Perceiving that for all x ∈ ranT⊥, y ∈ L2(Ω)

〈t, xy〉 =

∫
Σ

∫
Ω
t(s, r)x(s)y(r) dr ds =

∫
Σ
x(s)

∫
Ω
t(s, r)y(r) dr ds = 〈x, Ty〉 = 0

and for all x ∈ L2(Σ), y ∈ ranT ∗⊥

〈t, xy〉 = 〈T ∗x, y〉 = 0

applies we can deduce the belonging of t to the subspace of L2(Σ × Ω) which is spanned by
(wφψ)φ,ψ∈N. Hence, t can be described by

t =
∑
φ∈N

∑
ψ∈N
〈t, wφψ〉wφψ

and we conclude together with

〈t, wφψ〉 =

∫
Σ

∫
Ω
t(s, r)uφ(s)vψ(r) dr ds =

∫
Σ
uφ(s)(Tvψ)(s) ds =

∫
Σ
uφσψuψ(s) ds = σψδφψ

that

t(s, r) =
∑
φ∈N

∑
ψ∈N

σψδφψwφψ(s, r) =
∑
ψ∈N

σψuψ(s)vψ(r) ∀s ∈ Σ, r ∈ Ω.

Note that through this representation an integral operator T : L2(Ω)→ L2(Σ) with associated
singular system (σξ, uξ, vξ)ξ∈N can generally be described via

T =
∑
ξ∈N

σξ(vξ ⊗ uξ).
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2.3 Γ-convergence

In the last section of this preliminary chapter we want to focus on the so-called Γ-convergence
of sequences of functionals.
As we will see in the analytical part of this work, when dealing with sequences of functionals,
in a natural way often the question of their limit behavior arises. In Definition 2.12 we have
already seen how the convergence of bounded and linear operators can be understood. However,
especially in the scenario in which one is predominantly interested in the minimizers of the
elements of the contemplated sequence, it may be more suitable to apply a different concept.
Focusing on these minimizers it would be desirable to be able to consider a notion of convergence
which preserves the minimizing structure of the sequence in the sense that the induced sequence
of minimizers converges toward the minimizer of the assigned limit functional. To implement
this idea in the 1970s De Giorgi introduced the concept of Γ-convergence.

Definition 2.18. (cf., e.g., [Braides, 2002, Def. 1.5])
Let X be a metric space and (Fµ)µ∈N with Fµ : X → R be a sequence of functionals. Then,
(Fµ)µ∈N is said to Γ-converge in X to F : X → R if for all x ∈ X the following applies:

(i) lim inf-inequality: For every sequence (xµ)µ∈N converging to x it holds that

F(x) ≤ lim inf
µ→∞

Fµ(xµ),

(ii) Existence of a recovery sequence: There exists a sequence (xµ)µ∈N converging to x such
that

F(x) = lim
µ→∞

Fµ(xµ).

Nevertheless, in order to pursue the above-mentioned goal and obtain a limit functional which
is compatible with the minimizing structure of the sequence, it does not suffice to determine
the Γ-limit. In addition, the following property has to apply.

Definition 2.19. (cf., e.g., [Dal Maso, 1993, Def. 7.6])
A sequence of functionals (Fµ)µ∈N on X is called equi-coercive if for all sequences (xµ)µ∈N ⊂ X ,
which fulfill

sup
µ∈N
Fµ(xµ) <∞,

it holds, up to subsequences, that they converge toward some x ∈ X .

Combining the characteristics of both of these definitions then, in fact, leads to the desired
convergence behavior.
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Theorem 2.20. (cf., e.g., [Braides, 2002, Thrm. 1.21])
Let (Fµ)µ∈N be an equi-coercive sequence of functionals on X which Γ-converges to F . Then,

min
x∈X
F(x) = lim

µ→∞
inf
x∈X
Fµ(x).

Moreover, if (xµ)µ∈N is a precompact sequence such that

lim
µ→∞

Fµ(xµ) = lim
µ→∞

inf
x∈X
Fµ(x),

then every limit of a subsequence of (xµ)µ∈N is a minimum point for F .

Thus, under the assumption of equi-coercivity and Γ-convergence, it can be guaranteed that
minimizers converge toward minimizers. However, note that in Definitions 2.18 and 2.19 we did
not specify the topology on X with respect to which this convergence is to be understood. This,
in general, leaves room for interpretation and allows to adapt the assertion in Theorem 2.20 to
various settings. Though, in order to apply the preceding result, one always has to make sure
that the topologies considered to show equi-coercivity and Γ-convergence coincide. Therefore,
when aiming for a structure-preserving limit, it is advisable to first of all identify the (strongest)
topology rendering the sequence of functionals equi-coercive, before then tackling the proof of
Γ-convergence with respect to this very topology.
A further advice, which in practice often facilitates proving the Γ-convergence of a sequence of
functionals, is concerned with the existence of a recovery sequence.

Remark 2.21. (cf., e.g., [Braides, 2002, Rem. 1.29])
Let the upper Γ-limit of a sequence of functionals (Fµ)µ∈N with Fµ : X → R be defined as

Γ-lim supµFµ(x) := inf

{
lim sup
µ→∞

Fµ(xµ)
∣∣∣ (xµ)µ∈N with xµ

d−→ x ∈ X
}
,

where d−→ denotes the convergence with respect to the topology induced by a metric d. Let
furthermore D ⊆ X lie dense in X with respect to the topology induced by a metric d′ which is
not weaker than the one regarding d, i.e.,

∀x ∈ X ∃ (xγ)γ∈N ⊂ D : xγ
d′−−→ x.

Then, since it can be shown that Γ-lim supµFµ is a lower semicontinuous function (cf., e.g.,
[Braides, 2002, Prop. 1.28]), proving that

Γ-lim supµFµ ≤ F on D

implies that for any x ∈ X there exists a sequence (xγ)γ∈N ⊂ D with xγ
d′−−→ x and

Γ-lim supµFµ(x) ≤ lim inf
γ→∞

(
Γ-lim supµFµ(xγ)

)
≤ lim inf

γ→∞
F(xγ).
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Now, supposing that F was continuous with respect to the topology induced by d, which then
obviously transfers to the one regarding d′, we obtain that

Γ-lim supµFµ ≤ F on X .

Assuming that the lim inf-inequality was already shown, this means that[
∀x ∈ D ∃ (xµ)µ∈N : F(x) = lim

µ→∞
Fµ(xµ)

]
⇔

[
∀x ∈ X ∃ (xµ)µ∈N : F(x) = lim

µ→∞
Fµ(xµ)

]
,

and we have found that it suffices to prove the existence of a recovery sequence on a dense
subset of the original domain X .
Hence, with this insight one can exploit, that in some scenarios it may be easier to switch to a
dense subset when facing the second requirement in Definition 2.18.
Beyond that, when contemplating sequences of composed functionals, it can be beneficial to be
aware of the existence of another different notion of convergence.

Definition 2.22. (cf., e.g., [Dal Maso, 1993, Def. 4.7])
A sequence of functionals (Fµ)µ∈N on X is said to be continuously convergent (in X ) to a
function F : X → R if for all sequences (xµ)µ∈N ⊂ X with limit x

lim
µ→∞

Fµ(xµ) = F(x)

applies.

Obviously, this type of convergence is stronger than the previously defined Γ-convergence.
Therefore, when combining two sequences of functionals, one of them converging in the Γ-sense
and the other in the continuous sense, the logical consequence on their joint convergence behavior
seems to be the following.

Proposition 2.23. (cf. [Dal Maso, 1993, Prop. 6.20])
Let (Eµ)µ∈N and (Fµ)µ∈N be sequences of functionals on X . Suppose that (Eµ)µ∈N is contin-
uously convergent to a function E and that Eµ and E are everywhere finite on X . Then, if
(Fµ)µ∈N Γ-converges to F in X , (Eµ + Fµ)µ∈N Γ-converges to E + F in X .

Consequently, when considering sequences of such composed functionals and perceiving that
the sequence of one of their components is continuously convergent, with respect to the deter-
mination of a Γ-limit one can neglect this part and concentrate on the remainder.

With this, we are now equipped with all technical tools that allow to perform the analysis in
Chapter 6. However, to be able to also follow the preceding chapters, in addition it is necessary
to familiarize with the field of inverse problems. This is what we want to look into in the
following chapter.
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3
Inverse problems and variational

methods

In the previous chapter we gave a quick overview of a few mathematical concepts that will play
a relevant role within the scope of this thesis. However, up to now we omitted to properly
introduce the general theory on which this work is based: the theory of inverse problems.
To do so we briefly want to recall the general setting inverse problems are located in and point
to the associated difficulties regarding their solvability. Discussing some approaches to eliminate
these inconveniences then leads us to the introduction of the concept of regularization. Building
on this we involve the Bayesian modeling of corrupted data and shortly present how to tackle
inverse problems via the application of variational methods.
Since the demonstrations in this chapter will be kept on a fundamental level, we refer the reader
to [Kirsch, 2011] and [Brinkmann, 2019, Chap. 4] for a more detailed discussion.

3.1 Inverse problems

In mathematical imaging an inverse problem is generally understood to be the hunt after the
origin of observed consequences generated by a specified model. In more formal words this
means when considering an operator K between Banach spaces Y and X one is interested in
finding the entity y ∈ Y which through

Ky = x♦ (3.1)

caused the observation of the given element x♦ ∈ X . Throughout this work we want to focus
on linear and bounded operators, i.e., we exclusively contemplate K ∈ L(Y,X ). For problems
of this kind, in 1902, Hadamard developed a guideline to define their so-called well-posedness –
a measure for their exact and reasonable solvability.

Definition 3.1. (cf. [Hadamard, 1902])
Let X and Y be Banach spaces and K : Y → X define a linear and bounded operator. Then,
problems of the form (3.1) are called well-posed as soon as the subsequent conditions are
satisfied for all x♦ ∈ X :
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(i) Existence: there exists a solution y ∈ Y such that Ky = x♦ applies,

(ii) Uniqueness: the solution y is unique,

(iii) Stability: the solution y depends continuously on the input data.

If at least one of these requirements is violated the problem is called ill-posed.

Thus, in order to be able to provide proper solutions, problems of the form (3.1) need to
involve surjective and injective, hence bijective, operators K whose inverse operators K−1 are
continuous. Accordingly, regarding the first two conditions, two main problems may arise: First
of all it may occur that ranK ( X , second the operator K may be given such that kerK 6= {0}.
However, these can be remedied quite easily (cf., e.g., [Engl et al., 1996]). By engaging with an
approximate solution one can agree on introducing the least squares solution of (3.1). Defined
as the element y ∈ Y which minimizes

||Ky − x♦||X

it extends the solution set and therefore allows for a more generalized understanding of solv-
ability. To prevent the occurrence of multiple least squares solutions, which would still violate
Hadamard’s second demand, one can then add a supplementary claim. A very popular one is
the claim for a small norm. Applied to our problem this means that among all least squares
solutions the one with the smallest norm is selected. The resulting element is then commonly
called the minimum norm solution. In order to implement both of these ideas simultaneously,
the definition of a generalized inverse was established.

Definition 3.2. (cf., e.g., [Engl et al., 1996, Def. 2.2])
Let K ∈ L(Y,X ) and K̃ be characterized through K̃ := K|kerK⊥ : kerK⊥ → ranK. Then,
the Moore-Penrose inverse K† of K is defined as the unique linear extension of K̃−1 to
domK† := ranK ⊕ ranK⊥ with kerK† = ranK⊥.

In fact, it can be shown (see, e.g., [Engl et al., 1996, Thrm. 2.5]) that as soon as x♦ ∈ domK†

the minimum norm solution to (3.1) is given by K†x♦. Consequently, the Moore-Penrose
inverse seems to be a promising tool to avoid issues regarding the well-posedness of inverse
problems. Nevertheless, during its construction we neglected the stability problem. This usually
stems from the fact, that most of the considered operators of interest are compact. Recalling
the characterization in Definition 2.13 we realize that all linear and bounded operators K
mapping to a finite-dimensional Banach space X are directly affected by this. In addition,
however, also other relevant operators suffer from this compactness. For example, it can be
demonstrated that this includes all integral operators defined on L2-spaces (see, e.g., [Engl, 1997,
Prop. 2.11]). The explicit problem arising from this property becomes clear in the following
theorem, which deems to be a direct consequence from Riesz’ Lemma (see, e.g., [Rudin, 1991,
Lem. 4.22]).
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3.1 Inverse problems

Theorem 3.3. (cf., e.g., [Lebedev et al., 2003, Thrm. 6.5.4])
Let Y be an infinite-dimensional Banach space and suppose that K ∈ L(Y,X ) is compact.
Then, K can not posses a continuous inverse.

Hence, the consideration of models involving compact operators violates the third condition of
well-posedness. Unfortunately, it is quite easy to prove (see, e.g., [Engl et al., 1996, Prop. 2.7])
that the toxic property in Theorem 3.3 also transfers to the previously introduced Moore-Penrose
inverse K†. Thus, also through this alternative solution approach the just described problem
can not be circumvented.
Beyond that, even when considering models which involve non-compact operators, there exists
a previously concealed feature which restricts the use of the Moore-Penrose inverse: Although
this pseudo inverse is defined on a larger domain than ranK it still does not necessarily cover
all elements in X . A full coverage can only be reached if the range of K is closed, otherwise
there still exist elements x♦ ∈ X for which no minimum norm solution can be found.
With respect to real world problems these two limitations on the use of the Moore-Penrose inverse
represent major drawbacks. This is because, as already insinuated within the introduction of
this work, due to not entirely exact measurements the generated data of most imaging-related
applications is noise-affected. Consequently, it is first of all possible that, in the case of non-
closed ranK, these data do not lie in the domain of K† and no solution can be determined.
On the other hand it is likely that, in the case of discontinuous K†, its application will yield a
solution which is not proportional to the deviation of the noisy data from the exact data, and
thus unusable.
Accordingly, we quickly understand that we have to use other methods to ensure solvability and
the desired stability. In order to address these, from now on we want to consider problems of
the form

Ky = x. (3.2)

Here x ∈ X represents a version of the exact data x♦ which is noisy to the level δ > 0, i.e., for
which ||x− x♦||X ≤ δ applies. To meet the goal of stability, in this setting we would then like
to accept solutions y ∈ Y that fulfill

||Ky − x||X ≤ δ. (3.3)

A very intuitive idea for solving (3.2) was provided by Tikhonov in the 1960s (see [Tikhonov
and Arsenin, 1977] and references therein). It proposed to identify the minimizer of the norm
of the residual under the condition of the boundedness of its own norm, i.e., to solve

arg min
y∈Y
||Ky − x||X subject to ||y||Y ≤ r

for a radius r > 0. Respecting the monotonicity of the norm and its squared version as well as
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introducing a Lagrange multiplier α depending on r, this approach can be translated to solving

arg min
y∈Y

1

2
||Ky − x||2X +

α

2
||y||2Y . (3.4)

Here it is easy to see, that for small α the solution of this minimization problem is indeed a
good estimate for the solution of (3.2). However, in order to meet the demand in (3.3) the exact
choice of this parameter should obviously depend on the given noise level δ.
With this proposal, similar to the concept of the minimum norm solution, Tikhonov’s idea was
to put requirements on the norm of the residual as well as on the norm of the sought-after object
in order to guarantee the existence of a unique solution. Beyond that, due to the constraint
of boundedness on the norm of y, his approach was able to elude the potential discontinuity
the Moore-Penrose inverse was suffering from. Hence, Tikhonov had developed a strategy to
approximate ill-posed inverse problems by well-posed ones and with this introduced the concept
of regularization.

3.2 Variational methods

Through Tikhonov’s approach in (3.4) we have already got an idea how ill-posed inverse problems
can be solved approximately. Here, in order to ensure that the inexact result only deviates in a
reasonable manner from an exact one, we asked the norm of the corresponding residual to be
minimal. Simultaneously, to differentiate between optional solutions which fulfill the desired
closeness in a comparable manner and to bound the set of solutions, we resorted to the claim
of a minimal norm of the solution itself.
Although, in the light of the aforementioned, the objectives pursued by these two criteria seem
plausible, their exact choice appears to be a little bit random. Why should one consider the
norm of the residual as a measure for how well (3.2) is fulfilled? And why should a solution
with minimal natural norm be eligible?
These are the questions that variational modeling is trying to answer. Allowing for alternative
approaches to pursue the just mentioned objectives, it concentrates on the design of non-generic
minimization problems which adapt to the specific circumstances and conditions which surround
the respective inverse problems. Mathematically speaking this means that variational modeling
has made it its business to formulate suitable problems of the form

arg min
y∈Y
Fα(y), (3.5)

where Fα : Y → R := R ∪ {+∞} represents an energy functional which is composed of a
functional Dx : X → R measuring the data fidelity and a regularizing one R : Y → R, i.e.,

Fα(y) := Dx(Ky) + αR(y).

In order to grasp what exactly is meant when speaking about conditions and circumstances and
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to get a sense for how suitable choices for Dx and R could look like, in the following we want to
focus on finite-dimensional inverse problems and interpret their in- and outputs as realizations
of random variables.

3.2.1 Bayesian modeling

When considering inverse problems of the form (3.1), which involve finite-dimensional operators
K̂ : Rn → Rm, it can be beneficial to construe their exact data x♦ and their exact solution y♦,
i.e., the entities that fulfill

K̂y♦ = x♦, (3.6)

as realizations of the random variables X and Y (cf., e.g., [Stuart, 2010]). With respect to the
data this interpretation can be intuitively justified by the emergence of noisy measurements.
From this perspective it also becomes clear that x♦ should not only be seen as an arbitrary
realization of X but beyond that should represent its expected value. The consideration of
the random variable Y becomes meaningful as we take into account that the solution of real
world inverse problems always lies in an anticipated range. When reconstructing the physical
measurements recorded during the tomography of a brain, it is for example a lot more likely
that the result of this inverse problem depicts some kind of general brain structure rather than
a butterfly.
Thus, through the introduction of random variables we allow for a model margin which enables
to incorporate additional information when solving the inverse problem. By choosing how to
model the measurement noise and agreeing on a probability distribution of Y which models the
available a-priori knowledge, we are able to tailor the solution approach of an inverse problem
to its special needs.
To conceive how differently designed random variables affect this procedure explicitly, in the
following we want to contemplate some examples. In doing so, we primarily want to focus on
modeling different noise behaviors.

Gaussian noise

First of all we want to turn toward the case in which the noise introduced through inexact
measurements is assumed to be additive and pointwise normally distributed with zero mean
and variance σ2 > 0. Together with our previous considerations this means that we can
interpret the random variable X as the composition of m subordinate random variables Xi, i ∈
{1, . . . ,m} with Xi ∼ N (x♦i , σ

2). Additionally presuming that these are pairwise independent
and identically distributed, the probability of observing some arbitrary x ∈ Rm then amounts
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to

P (x) := P (X = x) =
m∏
i=1

P (Xi = xi) =
m∏
i=1

exp

(
− (xi−x♦i )2

2σ2

)
√

2πσ
=

exp
(
− ||x−x

♦||2Rm
2σ2

)
√

2πσ
.

Beyond that, for given exact solution y♦ of (3.6) this probability can be specified to

P (x|y♦) := P (X = x|Y = y♦) =
1√
2πσ

exp

(
−‖K̂y

♦ − x‖2Rm
2σ2

)
.

Having these terms at hand and aiming for an approximate solution of the corresponding inverse
problem, an idea from statistics suggests to identify the maximum likelihood (ML) estimator,
i.e., to find ŷ such that observing x is most likely. In other words, this means to determine ŷ
such that

ŷ ∈ arg max
y∈Rn

P (x|y) = arg min
y∈Rn

− logP (x|y) = arg min
y∈Rn

1

2σ2
‖K̂y − x‖2Rm .

Unfortunately, this approach does not seem to be too promising as we regress to finding a least
squares solution, which, recalling the observations in the previous section, could lead to severe
problems.
However, looking from a different stochastic angle a better approach can be achieved. Instead
of aiming for the ML estimator it is beneficial to engage with the search for the maximum
a-posteriori probability (MAP) estimator. Here, trying to determine the element ŷ which most
likely generated the given data x, one addresses the maximization of the conditional probability
P (y|x). Respecting Bayes’ rule, which states that

P (y|x) =
P (x|y)P (x)

P (y)
,

this translates to identifying ŷ such that

ŷ ∈ arg min
y∈Rn

− logP (y|x) = arg min
y∈Rn

− logP (x|y)− logP (y)

= arg min
y∈Rn

1

2σ2
‖K̂y − x‖2Rm − logP (y).

Now assuming that the probability distribution of Y obeys a Gibbs prior [Geman and Geman,
1984], i.e., that

P (y) = c exp(−αR(y))
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for a normalizing constant c > 0 and some parameter α > 0, this expression can be simplified to

ŷ ∈ arg min
y∈Rn

1

2σ2
‖K̂y − x‖2Rm + αR(y). (3.7)

Note that this actually reminds of the formulation in (3.5) and even recovers the Tikhonov
regularization (3.4) for R(y) = ‖y‖2Rn/2. Hence, we have derived a minimization problem
which yields a solution to (3.2) while adapting to the fact that the measured data includes
additive Gaussian noise. Thereby we incorporated the accessible data-driven a-priori knowledge.
Nevertheless, since we neglected modeling the random variable Y , i.e., we did not involve
any additional information regarding the solution set, the regularizing functional R remains
unspecified.

Poisson noise

Similar to the case of additive Gaussian noise, it is also possible to contemplate the scenario
in which the exact data are corrupted by Poisson noise. To do so we need to restrict ourselves
to inverse problems of the form (3.2) whose associated entity x♦ lies in Nm. This for example
is the case when dealing with positron emission tomography, as here during the measurement
process one counts the number of photons in a section of a predefined grid (cf., e.g., [Wernick
and Aarsvold, 2004]). Analogously to our previous considerations we then can interpret the
random variable X as the composition of pairwise independent and identically distributed
random variables Xi, i = {1, . . .m}, which now obey the following conditional distribution:

P (xi|y♦) =
(K̂y♦)xii exp(−(K̂y♦)i)

xi!
.

Note that with this choice we again made sure that the pointwise mean coincides with x♦i =

(K̂y♦)i. Now following the same line of argument as before, in this scenario the MAP estimator
ŷ can be found by examining

ŷ ∈ arg min
y∈Rn

− logP (y|x) = arg min
y∈Rn

− log
m∏
i=1

(K̂y)xii exp(−(K̂y)i)

xi!
− logP (y)

= arg min
y∈Rn

m∑
i=1

(K̂y)i − xi log(K̂y)i + αR(y).

This expression confirms, that modeling the measurement noise implies which data fidelity term
Dx suits the considered inverse problem.

According to these two derivations also a lot of other occuring types of noise allow for the
direct determination of suitable measures for the data discrepancy. To name some of these we
want to mention Gamma noise, Laplace noise and Speckle noise. However, other types exist
whose emergence is more difficult to deal with. For problems involving salt-and-pepper noise
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for example we are not able to identify direct instructions to find their MAP estimator.
Hence, one of the two main tasks in variational modeling is to design adequate data fidelity
terms for noise scenarios which elude the previous implementations. The second one is concerned
with modeling the random variable Y , i.e., with finding ways to incorporate information about
the solution set by defining appropriate regularizing functionals R.

3.2.2 Transition to the infinite-dimensional case

In the previous subsection we had to restrict ourselves to the consideration of finite-dimensional
problems in order to be able to interpret the entities x and y in (3.2) as realizations of random
variables and derive explicit data fidelity terms. This raises the question of how these terms
have to look like when dealing with infinite-dimensional problems.
In fact, there exist several heuristics which justify that transferring the discrete concepts to the
continuous setting is a reasonable approach. The most simple one is probably to argue that
the previous derivation of measures for the data discrepancy only motivates the definition of
specified functionals Dx. Since most devices measure fixed data and no random variable they
just serve as an orientation. For a more detailed discussion about this transition we refer to
[Dashti et al., 2013] and [Helin and Burger, 2015].
Hence, with this short remark we want to put on record that it is common practice to use
the continuous counterparts to the respective derived data fidelity terms when contemplating
infinite-dimensional inverse problems. In the scenario in which signal-independent additive
Gaussian noise with zero mean and variation σ2 is expected this for instance means to examine
the minimization problem

ŷ ∈ arg min
y∈Y

1

2
‖Ky − x‖2X + αR(y).

3.2.3 Example: Sparse signal reconstruction

After understanding how the design of minimization problems can support solving inverse
problems, we now want to illustrate this process with a practical example. To do so we want
to contemplate the scenario in which one is interested in recovering a sparse one-dimensional
signal y♦ ∈ Rn.
For this purpose we presume that we are given the data x ∈ Rn which represent a noisy version
of the convolution of the sought-after signal with a specified kernel. Hence, our interest lies in
deconvolving x, or more precisely, in solving

K̂y♦ = x, (3.8)

with K̂ : Rn → Rn representing the discrete convolution operator. Under the assumption that
the corruption of the measured data was provoked by additive Gaussian noise with zero mean
and variance σ2 = 1, we are convinced by our previous implementations that a minimization
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problem corresponding to (3.8) should involve

Dx(K̂y) =
1

2
‖K̂y − x‖2Rn

as a guarantee for data fidelity. Now to respect the a-priori information given on y♦, i.e.,
incorporating that most of its entries can be expected to equal zero, a first idea could be to
additionally include the so-called `0-norm,

‖y‖0 :=
n∑
j=1

|yj |0 with 00 := 0,

as a regularizing term. And in fact, by counting the number of non-zero entries its incorporation
in the constrained problem

min
y∈Rn

‖y‖0 s. t. K̂y = x (3.9)

is viable. However, involving this pseudo-norm in a minimization problem of the form (3.5),
which then, due to the non-convexity of the `0-norm, could only be solved in a combinatorial
fashion, poses difficulties. In particular, it was shown that problems of this kind are NP-hard
to solve (see, e.g., [Fornasier, 2010]).
In order to overcome this issue, in the 1990s Tibshirani instead proposed to regularize with
the convex relaxation of the `0-norm, namely the `1-norm (cf. [Tibshirani, 1996]). And indeed,
being the largest convex function below the `0-norm, its application, among all `p-norms with
p ≥ 1, penalizes deviations from the trivial signal most. Beyond that, there also exist several
less heuristic reasons justifying this approach. Especially, there was derived a variety of explicit
sufficient conditions ensuring that a solution of (3.9) coincides with the unique solution to

min
y∈Rn

‖y‖1 s. t. K̂y = x.

To name only a few of them, we here want to mention the mutual incoherence property (cf.
[Donoho and Huo, 2001]), the nullspace property (cf. [Cohen et al., 2009]), the exact recovery
condition (cf. [Tropp, 2004]) and the restricted isometry property (cf. [Candès and Tao, 2005]).
Now, returning to our initial deconvolution problem we can conclude from the preceeding
considerations, that in order to solve (3.8) it is a good idea to examine

min
y∈Rn

1

2
‖K̂y − x‖2Rn + α‖y‖1,

which is commonly called the LASSO method.
Note that, outside the application to toy examples, this method is particularly important
in the field of compressed sensing (see [Donoho, 2006; Candès et al., 2006a,b]). Here, one
classically wants to solve a superordinate inverse problem whose solution is assumed to be a
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linear combination of a few basis elements. With access to this dictionary it therefore only
remains to find the coefficients generating the solution. Hence, by transforming the originally
involved operator to work on these parameters itself, a modified inverse problem can be defined.
Due to the presumed sparsity regarding the vector of coefficients, this is then predestinated for
the application of the LASSO method. Via this workaround it is thus possible to reduce the
degrees of freedom corresponding to the original problem and find reasonable solutions although
reverting to a smaller amount of data samples.
To conclude the present example, we furthermore want to point out that, at first glance, its
translation to the infinite-dimensional setting turns out to be much more difficult. Since in
the naturally chosen space of functions, the space L1(Ω), elements with single non-zero values
represent a null set, the regularization with ‖ . ‖L1(Ω) does not seem to be very promising. In
fact, the modeling of such problems requires the transition to the space of finite Radon measures
(see, e.g., [Bredies and Pikkarainen, 2013; Boyer et al., 2017]).

3.2.4 Existence of solutions

Within the course of this chapter we have already learned that defining suitable energy func-
tionals F : Y → R and examining their associated minimization problems of the form (3.5)
can be a good idea to circumvent the difficulties that come with ill-posed inverse problems.
Nevertheless, up to now we neglected discussing what exactly is meant when speaking about
‘suitable’ functionals.
In the light of the aforementioned it stands to reason that this suitability refers to the modeling
aspect, i.e., it denominates the demand for data fidelity and regularizing terms which model the
considered scenario sufficiently well. However, beyond that a very crucial criterion should be
that the selected functional has a minimizer after all.
In the following we want to focus on this latter, more tangible aspect and find properties ensur-
ing its validity. While doing so we define more closely which type of minimization problem is
worth to contemplate when aiming for an approximate solution to problems of the form (3.2).

Thinking of the existence of minimizers of functionals F mapping to R = R ∪ {+∞} a very
first concern relates to the extensional characteristic. If there does not exist any argument
y ∈ Y which generates a function value different from infinity, no minimizer can be determined.
Therefore, in order to eliminate this risk we want to restrict ourselves to considering functions
whose range involves at least one element in R.

Definition 3.4. (cf., e.g., [Ekeland and Temam, 1999, Def. 1.4])
Let F : Y → R be a functional which attains a finite value for at least one argument, i.e.,
there exists y ∈ Y such that F(y) <∞. Then F is called proper.

Additional to the claim of being proper it seems reasonable to prevent that F attains its
minimum at the ‘borders’ of its domain, i.e., for values y ∈ Y with large associated norm. In
order to formalize this idea we want to introduce the concept of coercivity.
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Definition 3.5. (cf., e.g., [Bauschke and Combettes, 2011, Def. 11.11])
A function F : Y → R is said to be coercive, if F (y)→ +∞ as soon as ‖y‖Y → +∞.

Similar to this property the above-mentioned constraint can also be expressed through the
boundedness of the corresponding sublevel sets,

lev≤ξ F := {y ∈ Y|F(y) ≤ ξ}.

In fact, even the following proposition applies.

Proposition 3.6. (cf., e.g., [Bauschke and Combettes, 2011, Prop. 11.12])
A functional F : Y → R is coercive if and only if its sublevel set lev≤ξ F is bounded for any
ξ ∈ R.

Thus, through the introduction of proper and coercive functionals we can already guarantee, that
the considered F has bounded sublevel sets of which at least one is non-empty. Nevertheless, we
still allow the functional to implicitly define minimizing sequences whose limits are not taken.
Since this behavior clearly complicates the determination of a minimizer, we want to suppress
its occurrence by defining the subsequent final characteristic.

Definition 3.7. (cf., e.g., [Ekeland and Temam, 1999, Def. 1.21])
A functional F : Y → R is said to be (sequentially) lower semi-continuous in y ∈ Y if

F(y) ≤ lim inf
γ→∞

F(yγ)

applies for all convergent sequences yγ → y. If this property holds for every y ∈ Y , F is called
(sequentially) lower semi-continuous.

Indeed, additional to our visual intuition, it can also be shown rigorously that the claim for
lower semicontinuity resolves the issue with non-closed sublevel sets.

Lemma 3.8. (cf., e.g., [Bauschke and Combettes, 2011, Lem. 1.36])
For F : Y → R the following two statements are equivalent:

(i) F is lower semicontinuous.

(ii) For all ξ ∈ R, the sublevel set lev≤ξ F is closed in Y.

With this last assertion at hand we finally have an idea of how a guideline ensuring the existence
of minimizers of F could look like. However, we notice that this guideline is not completly
clear yet, since within Definition 3.7 we did not specify the topology with respect to which
the mentioned convergence is to be understood. This leaves room for interpretation and, in
particular, needs us to choose a suitable setting on our own.
While thinking about an appropriate choice, we quickly notice that in general the strong (norm)
topology on Y does not meet our requirements. This is because in infinite dimensions, a
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direct consequence of Riesz’s Lemma [Rudin, 1991, Lem. 4.22] states that here the closed
unit ball is not compact. Hence, it is difficult to find converging sequences. Unfortunately,
also with respect to the weak topology on Y we encounter problems ensuring this general
compactness. Nevertheless, a remedy can be found by considering the following result by
Banach and Alaoglu.

Theorem 3.9. (Banach-Alaoglu) (cf., e.g., [Megginson, 2012])
Suppose that Z is a Banach space and let Y = Z∗ be its dual space. Then, for any constant
c > 0 the ball

Bc := {y ∈ Y | ‖y‖Y ≤ c} ⊂ Y

is compact with respect to the weak* topology.

The statement in this theorem clearly suggests to concentrate on the weak* topology when it
comes to sequential lower semicontinuity. Beyond that, for reflexive Banach spaces Y, i.e., if
Y∗∗ ∼= Y and the weak* and weak topology coincide, even the weak topology can be identified
suitable.
With this insight we are now able to formulate the subsequent concluding existence theo-
rem.

Theorem 3.10. Suppose that Y = Z∗ for a Banach space Z. Furthermore, let F : Y → R
be a proper, weakly* lower semicontinuous and coercive functional. Then, F attains a
minimum in Y.

Proof. Suppose that F is proper. Then, there exists ỹ ∈ Y with F(ỹ) < ∞ and the sublevel
set lev≤F(ỹ)F is well-defined and non-empty. Beyond that, together with the coercivity and
weak* lower semicontinuity of F , Proposition 3.6 and Lemma 3.8 ensure that this sublevel set
is bounded and closed. Now let (yφ)φ∈N ⊂ lev≤F(ỹ)F be a minimizing sequence, i.e.,

lim
φ→∞

F(yφ) = inf
y∈lev≤F(ỹ) F

F(y).

Then, according to the boundedness of lev≤F(ỹ)F and Banach-Alaoglu there exists a weakly*
convergent subsequence (yφψ)ψ∈N ⊆ (yφ)φ∈N whose limit y∗ lies in lev≤F(ỹ)F due to its weak*
sequential closedness. Involving the weak* lower semicontinuity of F further implies, that

inf
y∈levF(ỹ) F

F(y) = lim
ψ→∞

F(yφψ) = lim inf
ψ→∞

F(yφψ) ≥ F(y∗).

Hence, incorporating that F is proper, we can conclude that

F(y∗) = inf
y∈Y

F (y) =: F∗ > −∞

applies, which proves the assertion.
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Having this result at hand it now remains to verify the listed properties on an individual basis,
in order to be sure that a particular, designed minimization problem can be considered qualified
to find an approximate solution to the inverse problem of interest. The overall suitability of a
customized minimization problem, however, still also depends on the less quantifiable modeling
aspect.
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4
Variational methods for dynamic MRI

In the previous chapter we briefly introduced the concept of inverse problems and their connection
to variational methods. In the following, we now want to discuss how we can explicitly utilize
these methods in the context of dynamic MRI. In doing so, we primarily present techniques
for the reconstruction of undersampled MR scans that exploit the high temporal correlation of
dynamic measurements.
To this end, we start the present chapter by highlighting the physical process of measuring an
MR signal. After understanding which kind of output is to be expected when dealing with MRI,
we then give a quick introduction into the specific (ill-posed) inverse problem which underlies the
reconstruction of such measurements. Subsequently, we devote special attention to the definition
of various matrix norms that can be employed to variational regularization and debate their
respective benefits with regard to dynamic MRI. While doing so we also establish a new class
of regularizers, namely the generalized nuclear norm. In a final step we then want to formulate
application-oriented variational problems for the reconstruction of undersampled dynamic MR
data that resort to these matrix norms and discuss the existence of their solutions.

4.1 Dynamic MRI: Physics and methodical limits

4.1.1 The measurement process

When speaking about magnetic resonance imaging (MRI) in a mathematical context we are not
able to avoid mentioning the physical process its measurements are based on. Having to deal
with the reconstruction of its raw data makes us first want to gain a deeper understanding of
how they are acquired. Although a detailed explanation of the fairly complicated measurement
process is beyond the scope of this thesis, we want to give a short simplified introduction to
the main procedure. For more elaborated and complete in-depth information we refer to [Elster
and Burdette, 2001] or [Liang and Lauterbur, 2000].

The signal, which is measured in MRI, is mainly based on hydrogen atomic nuclei and their so-
called nuclear spin. Around its nuclei this spin creates a randomly oriented weak magnetic field
that is equipped with an associated magnetic moment. Through the influence of an external
strong magnetic field B0 these magnetic moments start to lapse into a movement which is
commonly referred to as precession: they randomly wobble around an axis which is aligned
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20 Magnets, Spins, and Resonances

TRACING THE MR SIGNAL1

The build-up of magnetization

A wonder of nature exploited by MRI

External magnetic field

Resulting 

Precessing ensemble of spins

magnetization

The body under the looking glass

Typically, the magnetic field of an MR scanner runs parallel to 
the longitudinal axis of a patient positioned in the magnet 
bore. Let us take a closer look inside a volume element 
(voxel) of the body.

Figure 4.1: Illustration of a voxels spin ensemble during the exposition to the external magnetic
field B0 (image courtesy of [Siemens Healthcare GmbH, 2015]).

with the outer magnetization. Since the global magnetization of a collection of nuclei can be
thought of as the vector sum of all individual magnetic moments, this alignment of all precession
axes enables the detection of a macroscopic magnetic field. While the microscopic transversal
magnetizations still cancel out due to the incoherent precession of the magnetic moments, the
longitudinal magnetizations which are oriented parallel to the external strong magnetization
add up to a weak signal. This situation describes the equilibrium state which serves as the base
of operations with respect to MR measurements. A visualization can be found in Figure 4.1.
In order to generate an MR signal, in this state high-frequency radio pulse waves are emitted
perpendicularly to the magnetic field B0. Approximating the precessing frequency, the so-called
Larmor frequency, these waves stimulate the magnetic moments to lapse into some kind of
excited state. In this excited state the precession of all magnetic moments proceeds in phase
and, as depicted in Figure 4.2, with an altered angle with respect to the direction of the external
magnetic field B0. Consequently, the previous longitudinally oriented global magnetization

Figure 4.2: Illustration of a spin ensemble before (left) and at the end of (right) a 90-degree
pulse (image courtesy of [Siemens Healthcare GmbH, 2015]).
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4.1 Dynamic MRI: Physics and methodical limits

transforms to a precessing transversal one which, due to the generated alternating electricity,
can be measured.
As soon as the emission of the radio frequency waves is suspended, the magnetic moments
gradually return to their lower energy state. During this relaxation now two simultaneously
but independently happening processes can be observed. On the one hand the longitudinal
magnetization is regaining strength, since the magnetic fields created by the nuclear spins
again start to align with B0. On the other hand the magnetic moments increasingly precess
in an incoherent manner, which causes the transversal magnetization to shrink. The former
observation is commonly called T1 relaxation, while the latter bears the name T2 relaxation.
Following this procedure, measurements which are rich in contrast and thus eventually allow to
differentiate between diverse tissues arise because the respective relaxation velocity primarily
depends on the composition and structure of the tissue the nuclei belongs to.
By dint of spatial encoding techniques which, because of their complexity, are not discussed
in detail, these measurements can be assigned to special locations in the frequency domain.
This domain is commonly called k-space. Thus, at the end of an MR scan there is always a
raw complex-valued data matrix whose entries are layer by layer based on the measurements
gathered from the associated slice of the scanned object. However, it should be noted that
there does not exist an one-to-one relation between these single entries and the voxels of the
corresponding slice. Instead, every single entry contains partial information on every voxel of
the considered layer.
In order to transfer this data from the frequency domain into an image that is interpretable for
the human eye the Fourier transform proved to be a useful tool. Interpreting the entries in the
k-space as encodings of frequencies which all together contribute to the visual representation
of the physiological origin suggests to compute the discrete inverse Fourier transform of every
layer.
Indeed, in the context of ‘perfect’ measurements this procedure leads to decent reconstructions.
Though, when dealing with real medical devices we unfortunately can not always act on this
assumption. In practice we rather have to expect data that is incomplete and/or corrupted by
the random Brownian motion of molecules and inaccurate measurements.
In order to, in spite of these corruptions, obtain reconstructions which deviate only in a lim-
ited scope from the hypothetical reconstructions of the exact data, we want to stabilize their
determination with the help of prior information. Recalling the techniques introduced in the
previous chapter it stands to reason to incorporate these within the framework of variational
methods.

4.1.2 The (ill-posed) inverse problem to dynamic MRI

On the basis of the described measurement process and recalling the concepts introduced in
Chapter 3 it is obvious that the reconstruction of the data acquired during an MR scan amounts
to solving an inverse problem. Moreover, we are convinced that in its most simple and general
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4 Variational methods for dynamic MRI

version the corresponding underlying operator equation should read

K̂y = x (4.1)

with K̂ : Cm → Ck characterizing the discrete Fourier transform defined by

(K̂y)k :=
1

m

m∑
j=1

yj exp

(
−2πi

(j − 1)(k − 1)

m

)
. (4.2)

Accordingly, x ∈ Ck can be interpreted as the noisy k-space measurements and y ∈ Cm represents
the sought-after vectorized image consisting of m pixels.
Note that here, espescially in the case in which the sampling of the k-space is based on a
Cartesian grid, the most nearby practice is to choose m = k. With that, the number of pixels
to be reconstructed equals the number of Fourier space measurements and a well-defined linear
system is created.
However, due to the very time-consuming and therefore expensive process of data acquisition,
the reconstruction of MR measurements also qualifies for the application of the concept of
compressed sensing (see, e.g., [Lustig et al., 2007]). As already insinuated in Section 3.2.3, here
the objective is to find solutions to highly under-determined linear systems. Applied to the
problem at hand, this means that reverting to significantly less k-space coefficients one still aims
for the computation of images with high resolution, i.e., it rather holds that m � k. In this
setting, in order to prevent measurements which are redundant with respect to the linear system
and therefore even enhance the under-determined characteristic, it is a lot more important to
guarantee their pairwise incoherence. Thus, one here usually resorts to sampling schemes other
than the Cartesian one. Examples of this include the technique of radial sampling introduced
by Lauterbur (see [Lauterbur, 1973]) and the method of spiral sampling (see, e.g., [Noll et al.,
1995]). Nevertheless, even when dealing with these different sampling schemes typically the
acquired data is retrospectively assigned to positions in an equidistant grid (see, e.g., [O’Sullivan,
1985; Jackson et al., 1991]) and describing the reconstruction process through (4.1) with (4.2)
remains reasonable.
Especially in this latter setting we realize that, in order to reconstruct the data acquired during
an MR scan, we may have to face an ill-posed inverse problem whose (approximate) solving
needs the incorporation of additional information. Respecting the fact that in connection with
MRI deviations introduced during the measurement process are commonly modeled as additive
Gaussian noise with zero mean (see, e.g., [Elster and Burdette, 2001]), a suitable minimization
problem for this task should be the following:

arg min
y∈Cm

1

2
‖K̂y − x‖2Ck + αR(y).

Here α > 0 represents the already introduced regularizing parameter and R a yet to be defined
functional.
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4.1 Dynamic MRI: Physics and methodical limits

Within the further scope of this thesis we, however, predominantly want to concentrate on
the problem we are confronted with when dealing with dynamic MRI. In contrast to the just
described static MRI scenario, we here consider the task of simultaneously reconstructing a
whole series of images. If we again interpret the single images as vectorized entities, which now
are column by column combined in a matrix, the associated inverse problem can be described
through

K̃A = B. (4.3)

In this formulation A ∈ Cm×n represents the time series of n images, which each consist of m
pixels, and B ∈ Ck×n can be understood as the concatenation of the k-space measurements
acquired at the n different points in time. Beyond that, the involved operator K̃ : Cm×n → Ck×n

constitutes a composition of single subordinate operators, which each act on the single columns
of the argument matrix as already defined in (4.2), i.e., for Aj denoting the jth column of matrix
A ∈ Cm×n it holds that

K̃A :=
(
K̂A1 . . . K̂An

)
∈ Ck×n

(cf. [Xiang and Henkelman, 1993]).
Coming back to the issue of time-consuming measurements we have to realize that these hamper
the acquisition of dynamic data even more than it was already the case in the static scenario.
Having to deal with its aftereffects in this setting means to decide between a good spatial or
temporal resolution. If we prioritize the latter, the spatial resolution suffers, because only a
few measurements per frame remain to perform their reconstruction. The other way around,
when aiming for a good spatial resolution we have to consult more data for the reconstruction
of the individual frames, which evidently weakens the temporal resolution. Now, in order to
nevertheless obtain high-resolution results with respect to both, time and space, in this dynamic
setting it is particularly advisable to engage with the concept of compressed sensing. This again
comprises to consider m� k and include additional a-priori knowledge in order to compensate
the lack of spatial information.
Therefore, in analogy to the static case and under the assumption of additive Gaussian noise
with zero mean, it seems to be a good idea to realize the reconstruction in this dynamic setting
by examining the following minimization problem:

arg min
A∈Cm×n

1

2
||K̃A−B||2F + αR(A). (4.4)
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Here ‖ . ‖F indicates the Frobenius norm which, characterized via

‖A‖F :=

∑
i,j

|Aij |2
 1

2

,

represents a matrix analogue to the Euclidean norm on vectors.
With this approach, in contrast to analyzing n individual static minimization problems, we then
have access to a wider range of regularizing functionals R. These can now not only refer to
properties of the individual images but also relate to the whole series. Thereby, it is possible to
exploit the clearly existing relation between the single frames and stabilize their reconstruction
by incorporating this information into the minimization process. In order to explicitly find such
suitable regularizing functionals R, and therefore specify the general variational approach to
the reconstruction of dynamic MR scans in (4.4), we, however, have to become aware of more
concrete attributes assigned to the series of frames to be reconstructed.

4.2 Matrix norms in the context of dynamic MRI

In the previous section we took a physical view on an MR scan and found that, especially in the
context of dynamic MRI, its very time-consuming characteristic represents a major drawback.
Nevertheless, we also discovered that there is hope for remedy: Transforming the associated
inverse problem to an ill-posed one while countervailing with the incorporation of additional
information, promises to find satisfying approximate reconstructions.
To pursue the previously mentioned approach and find appropriate functionals R completing
the variational method in (4.4), in this section we first of all want to introduce some norms,
which operate on matrices and will play a relevant role when incorporating a-priori knowledge
on a series of images. While doing so, we especially want to concentrate on the definition of a
new class of norms, namely the generalized nuclear norm.

4.2.1 Mixed norms

To start this section, let us turn toward a class of matrix norms that we have already encountered
in a special form while applying the Frobenius norm. We already noted, that this matrix norm
can be understood as an analogue to the Euclidean norm, i.e., the `2-norm, on vectors. Now, in
order to universalize this approach, we would like to transfer the concept of general `p-norms
on vectors to matrices. For this purpose one can interpret the rows and columns of a matrix as
vectors and, on them, perform a composition of their respective `p- and `q-norm.

Definition 4.1. (cf., e.g., [Benedek and Panzone, 1961; Samarah et al., 2005])
Let K ∈ {R,C}. Suppose that ω ∈ Rm×n with ωij > 0 for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
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4.2 Matrix norms in the context of dynamic MRI

and p, q ≥ 1. Then, the weighted mixed p, q-norm of A ∈ Km×n is defined via

‖A‖ω;p,q :=

 m∑
i=1

 n∑
j=1

ωij |Aij |q


p
q


1
p

.

If ω = 1, with 1 ∈ Rm×n representing the matrix of ones, the weight-specifying notation can
be dropped, i.e., ‖ . ‖p,q := ‖ . ‖1;p,q.

Note that here, the validity of all three norm criteria directly follows from the respective
properties of the underlying vector norms. Besides, we realize that for p = q = 2 and ω = 1

this mixed norm, in fact, coincides with the already implemented Frobenius norm. Beyond
that, we perceive that, in the special case where p = q = 1 and again ω = 1, applying the
p, q-norm equals the compution of the `1-norm of the vectorized version of the matrix argument.
And indeed, in the further course of this chapter we will see, that in the context of variational
methods this particular mixed norm has to be treated in a similar way as the `1-norm.

4.2.2 Nuclear norm

Another possibility to deduce a matrix norm from the established vector norms, is to contemplate
the singular value decomposition (SVD) of a matrix A = UΣV ∗ ∈ Km×n into a unitary matrix
U ∈ Km×m, a diagonal matrix Σ ∈ Rm×n and the (conjugate) transpose of a unitary matrix
V ∈ Kn×n. Focusing on the resulting vector σ ∈ Rmin(m,n) of non-negative and unique diagonal
entries of Σ, the singularvalues, then allows to identify a norm on A with a common `p-norm on
σ. This results in the definition of the class of Schatten p-norms on matrices (cf., e.g., [Schatten,
2013]).
In the following we will see that, for our purposes, especially the application of the `1-norm on
the singular values of a matrix proves useful. Thus, we here want to highlight the subsequent
characterization.

Definition 4.2. (cf., e.g., [Schatten, 2013])
Let K ∈ {R,C}. Suppose that ω ∈ Rm×n with ωij > 0 for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
and A ∈ Km×n. Let (σξ(ω · A))ξ∈{1,...,min(m,n)} denote the singular values corresponding to
the pointwise product of ω and A. Then, the weighted nuclear norm of A is given by

‖A‖ω;∗ :=

min(m,n)∑
ξ=1

σξ(ω ·A).

If ω = 1, with 1 ∈ Rm×n representing the matrix of ones, the weight-specifying notation can
be dropped, i.e., ‖ . ‖∗ := ‖ . ‖1;∗.

Note that, respecting that the singular values of a matrix A coincide with the square roots of the
eigenvalues corresponding to A∗A, respectively AA∗, we can verify that the above-mentioned
expression indeed represents a norm.
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Lemma 4.3. ‖ . ‖ω;∗ characterized as in Definition 4.2 fulfills all norm criteria.

Proof.

(i) Positive definiteness: Let A ∈ Km×n with ‖A‖ω;∗ = 0. Then all singular values of ω · A
equal zero, which implies that ω ·A = 0. Since ωij > 0 for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}
we therefore get that A = 0.

(ii) Absolute homogeneity: Let σξ′ ≥ 0 be an arbitrary singular value to ω · A ∈ Km×n with
corresponding right-singular vector vξ′ , i.e.,

(ω ·A)∗(ω ·A)vξ′ = σ2
ξ′vξ′ .

Then, for α ∈ K

(ω · αA)∗(ω · αA)vξ′ = |α|2(ω ·A)∗(ω ·A)vξ′ = |α|2σ2
ξ′vξ′

applies and |α|σξ′ can be identified as a singular value to ω · αA. Hence,

‖αA‖ω;∗ =

min(m,n)∑
ξ=1

|α|σξ(ω ·A) = |α| ‖A‖ω;∗.

(iii) Subadditivity: In the 1950s Ky Fan proved that for matrices A,B ∈ Km×n

k∑
ξ=1

σξ(A+B) ≤
k∑
ξ=1

σξ(A) +
k∑
ξ=1

σξ(B)

applies as soon as k ≤ min(m,n) (cf. [Fan, 1951]). This directly implies the subadditivity
of the nuclear norm.

In addition it may be noteworthy that, in Definition 4.2, we can determine even more precisely
how many relevant singular values of A, respectively ω · A, have to be summed up in order
to receive its nuclear norm. Considering that for arbitrary matrices A ∈ Km×n, B ∈ Kn×k,
C ∈ Kl×m with rankB = n and rankC = m it holds that rankAB = rankA = rankCA, we
can infer from the unitarity of matrices U and V , which in both cases implies a full rank, that
rankA = rank Σ. Since the latter, because of the diagonal shape of Σ, obviously coincides with
the number of non-zero singular values, we can conclude, that

‖A‖∗ =
rankA∑
ξ=1

σξ(A).
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4.2 Matrix norms in the context of dynamic MRI

In fact, this connection between the number of non-zero singular values of a matrix and its
rank will be of particular interest in the following section. Remembering that the rank of a
matrix represents its number of linearly independent columns, it points to the fact that also the
singular values are related to this linear independence.

4.2.3 Generalized nuclear norm

For the definition of the previously characterized nuclear norm we were reverting to the singular
values of a matrix A ∈ Km×n to assign a norm to it. While doing so, respecting that these unique
singular values represent the square roots of the eigenvalues to the matrix A∗A, respectively
AA∗, we have to realize that the assigned norm value highly depends on the explicit shape of
A∗. When speaking of an ordinary SVD we usually identify this entity with the (conjugate)
transpose to A, i.e.,

A∗ = AH = ĀT .

Here, the notation making use of the asterisk, which usually indicates adjoint operators, is not
entirely coincidental. In fact, with this definition we implicitly consider the matrix A to represent
a linear function between the Hilbert spaces Kn and Km, both equipped with the standard inner
product, and use its adjoint operator A∗ for the computation of singular values. This insight
raises the question, if it may also be interesting to contemplate some kind of modified singular
values, which result from a different assumption.
Thus, in order to define a modified nuclear norm, henceforth we want to assume that the con-
sidered matrix A represents a linear function between the spaces Kn and Km, which are both
equipped with alternative inner products. To specify these, we state the following characteriza-
tion.

Definition 4.4. Let K ∈ {R,C}. Suppose that B ∈ Km×m is a Hermitian (symmetric)
and positive definite matrix. Then, we define 〈 . , . 〉B : Km ×Km → K via

〈x, y〉B := xHBy.

Note that, because of the properties of B, the just defined sesquilinear (bilinear) form defines an
inner product on Km. Beyond that, it also induces a norm which we want to denote by ‖ . ‖B.
Hence, assuming that C ∈ Km×m and D ∈ Kn×n both fulfill the requirements in Definition
4.4, we can interpret the matrix A ∈ Km×n as a linear function between the Hilbert spaces
(Kn, 〈 . , . 〉D) and (Km, 〈 . , . 〉C). Under this assumption, the (conjugate) transpose to A does
not meet the conditions of an adjoint operator anymore. Rather, it now applies for all x ∈ Km

and y ∈ Kn that

yHAHCx = xHCAy = 〈x,Ay〉C = 〈A∗x, y〉D = xH(A∗)HDy = yHDA∗x,

where the adjoint operator to A is again represented through a matrix. Together with the
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4 Variational methods for dynamic MRI

positive definiteness of D we can therefore conclude, that

A∗ = D−1AHC.

As a consequence from the consideration of alternative Hilbert spaces we can, thus, obviously
determine other eigenvalues and eigenvectors of A∗A, respectively AA∗. And indeed, it is even
possible to define a little bit more precisely how these can be computed. Contemplating the
new corresponding eigenproblem

A∗AvC,Dξ = λC,Dξ vC,Dξ ⇔ D−1AHCAvC,Dξ = λC,Dξ vC,Dξ ⇔ AHCAvC,Dξ = λC,Dξ DvC,Dξ ,

we can observe that, due to the hermiticity and positive definiteness of C and D, by means of
substitution with ṽξ = D

1
2 vC,Dξ(

C
1
2AD−

1
2

)H (
C

1
2AD−

1
2

)
ṽξ = D−

1
2AHCAD−

1
2 ṽξ = λC,Dξ ṽξ (4.5)

holds. Consequently, the generalized singular values of A coincide exactly with the classical
ones of the matrix C

1
2AD−

1
2 . In addition, through (4.5) we can infer that the right-singular

vectors (ṽξ)ξ∈{1,...,min(m,n)} of C
1
2AD−

1
2 characterize the generalized right-singular vectors of

A via vC,Dξ = D−
1
2 ṽξ. Note that this identity ensures, that these vectors are orthonormal to

each other with respect to the inner product induced by D, i.e., they behave according to the
newly introduced structure. The corresponding assertion addressing the generalized left-singular
vectors can be verified following the same line of argument while contemplating the eigenproblem
to AA∗. Hence, defined via uC,Dξ = C−

1
2 ũξ these also preserve the general structure of an SVD

and, identifying UC,D and VC,D as the matrices whose columns represent the respective singular
vectors, in summary we can state that

(VC,D)H DVC,D = I, (UC,D)H CUC,D = I.

However, we should notice that, since in general

VC,DD (VC,D)H 6= I, UC,DC (UC,D)H 6= I

applies, in contrast to the classical SVD the rows of UC,D and VC,D can not assumed to be
orthonormal regarding the inner product induced by C, respectively D. Nevertheless, due to
the consistency of row and column rank, we can be sure that the rows of UC,D and VC,D are
still linearly independent with respect to each other.
All in all the above construction results in the subsequent matrix decomposition.

Proposition 4.5. Let K ∈ {R,C}. Suppose that C ∈ Km×m, D ∈ Kn×n are Hermitian
(symmetric) and positive definite matrices and that A ∈ Km×n. Then, there is a diagonal
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4.2 Matrix norms in the context of dynamic MRI

matrix ΣC,D ∈ Rm×n with diagonal entries σC,Dξ ≥ 0 for ξ ∈ {1, . . . ,min(m,n)} and there
exist matrices UC,D ∈ Km×m, VC,D ∈ Kn×n with

(VC,D)H DVC,D = I, (UC,D)H CUC,D = I,

such that A = UC,DΣC,D (VC,D)H D applies. A decomposition of this type is called the by C
and D induced generalized singular value decomposition and (σC,Dξ )ξ∈{1,...,min(m,n)} are called
the generalized singular values of A.

Proof. In accordance with the previous considerations, the existence of this decomposition
directly follows from the existence of the classical SVD (see, e.g., [Horn and Johnson, 1994,
Thrm. 3.1.1]) of the matrix C

1
2AD−

1
2 . Deducing that

C
1
2AD−

1
2 = ŨΣC,DṼ

H ⇔ A =
(
C−

1
2 Ũ
)

ΣC,D

(
D−

1
2 Ṽ
)H

D

for unitary (orthogonal) matrices Ũ ∈ Km×m, Ṽ ∈ Kn×n leads to canonical candidates which
fulfill the required conditions.

It may be noteworthy that, although we here had to correct the decomposition of A by the
additional incorporation of the matrix D, with this construct we still recover the common matrix
equation

AVC,D = UC,DΣC,D.

Now, coming back to our original idea, based on this generalized SVD we want to define a more
generalized version of the nuclear norm.

Definition 4.6. Let K ∈ {R,C}. Suppose that C ∈ Km×m, D ∈ Kn×n are Hermitian
(symmetric) and positive definite matrices. Furthermore, let ω ∈ Rm×n with ωij > 0 for all
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and A ∈ Km×n. Let (σC,Dξ (ω · A))ξ∈{1,...,min(m,n)} denote the
by C and D induced generalized singular values of the pointwise product of ω and A. Then,
the weighted generalized nuclear norm of A is defined through

‖A‖ω;∗C,D :=

min(m,n)∑
ξ=1

σC,Dξ (ω ·A).

If ω = 1, with 1 ∈ Rm×n representing the matrix of ones, the weight-specifying notation can
be dropped, i.e., ‖ . ‖∗C,D := ‖ . ‖1;∗C,D .

From Lemma 4.3 it follows by very straight-forward arguments that also in this case the
denomination as a norm is justified.
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Lemma 4.7. ‖ . ‖ω;∗C,D characterized as in Definition 4.6 fulfills all norm criteria.

Proof. While the exact same arguments as in the proof of Lemma 4.3 lead to the positive
definiteness and absolute homogeneity of ‖ . ‖ω;∗C,D , to prove its subadditivity we can exploit
that the generalized singular values coincide with the classical ones of C

1
2AD−

1
2 . Profiting

from this relation, the subadditivity of the conventional nuclear norm can be transferred to its
generalized version via

‖A+B‖ω;∗C,D = ‖C 1
2AD−

1
2 + C

1
2BD−

1
2 ‖ω;∗

≤ ‖C 1
2AD−

1
2 ‖ω;∗ + ‖C 1

2BD−
1
2 ‖ω;∗

= ‖A‖ω;∗C,D + ‖B‖ω;∗C,D .

By means of Definition 4.6 we hence defined a new class of norms, which, dependent on matrices
C and D, opens up new possibilities while keeping a reliable connection to the well-studied
standard nuclear norm. As we will see later on, this connection proves extremely useful, when
dealing with the generalized nuclear norm in a numerical context.

4.3 Variational methods for the reconstruction of dynamics

With the norms defined in the previous section we now have all tools at hand to take a closer
look at specifications of the minimization problem in (4.4). More precisely, we are now ready
to contemplate properties of a series of tomographic images and, based on them, derive explicit
regularizing functionals which support the reconstruction of undersampled dynamic MR data.
To do so we especially want to concentrate on the models introduced in [Haldar and Liang,
2010] and [Otazo et al., 2015] and, through the incorporation of the generalized nuclear norm,
find a generalization of the former.

4.3.1 Linear dependence among frames

In order to start establishing a program which is able to face the approximate solving of the
ill-posed inverse problem in (4.3), we first of all want to turn toward the assumption of linearly
dependent frames.
Thinking of the desired solution which should arise from a dynamic tomographic scan, we can
state that, due to the common physical origin, this should consist of a series of images which
share a lot of information and only differ with respect to a few innovations introduced in each
of them. This observation can be translated to a high linear dependence among frames. Now,
being aware of this characteristic, it stands to reason to incorporate this a-priori information
into the reconstruction process and thereby exclude solutions that do not possess this property
in order to reduce the existing degrees of freedom. Recalling the considerations in Section 4.2.2
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we moreover know that, regarding the spatio-temporal matrix representing the sought-after
series, this additional knowledge manifests in a small rank. Hence, thinking of the problem in
(4.4), a canonical choice for a regularizing functional R would be the one which assigns its rank
to a matrix and thus forces the minimization to favor solutions with low rank.
A problem of this form gained a lot of attention under the name the Netflix problem (cf. [ACM
SIGKDD and Netflix, 2007]). Here, one wanted to face the matrix completion problem arising
from fragmentarily filled film rating surveys, i.e., to supplement rating matrices whose columns
were representing individual users and whose rows were constituting single films. Since one was
assuming that the preference or taste of a user is only affected by very few factors and therefore
can be described through the linear combination of only a few other opinions, also here one
wanted to circumvent the ill-posedness of the associated inverse problem by favoring solutions
with highly linear dependent columns, i.e., with low rank.
However, regularizing with the rank of a matrix implicitly corresponds to the regularization
with the `0-norm of the singular values of a matrix. Unfortunately, in Section 3.2.3 we have
already seen that, due to its non-convexity, the incorporation of this `0-norm causes difficulties.
And in fact, also in this highly related case it can be shown, that using the rank-functional as a
regularizer induces an NP-hard problem (cf. [Yue and So, 2016]).
Fortunately, similar to the scenario in which we demanded the sparsity of the argument itself,
there is hope for remedy. Indeed, as before, the relaxation with the `1-norm is the key: Re-
specting that the nuclear norm, i.e., the `1-norm on the singular values, is the tightest convex
relaxation of the matrix rank (cf. [Fazel et al., 2001]), it seems reasonable to identify an asso-
ciated regularizer with this previously defined functional (cf., e.g., [Candès and Recht, 2009;
Recht et al., 2010; Candès and Tao, 2010]). With that, we now explicitly favor the occurrence
of as few non-zero singular values as possible.
Of course, coming back to our original problem, also with respect to dynamical reconstructions
it makes sense to replace the generic regularizer in (4.4) with the nuclear norm, i.e., to consider

arg min
A∈Cm×n

1

2
||K̃A−B||2F + α‖A‖∗. (4.6)

And in fact, from an interpretive point of view, in this setting the application of the nuclear
norm appears to be even more reasonable: Reverting to the concepts of principal component
analysis (PCA) (see, e.g., [Jolliffe, 2002]) we realize that through the SVD of a spatio-temporal
matrix we are essentially identifying the principal dynamics arising in the corresponding series
of images. This becomes particularly clear, when noting that for A ∈ Cm×n with SVD

A = UΣV H

and U = (u1, . . . , um) with (ui)i∈{1,...,m} ⊂ Cm, V = (v1, . . . , vn) with (vj)j∈{1,...,n} ⊂ Cn,
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Figure 4.3: Illustration of the first three left- and right-singular vectors of the spatio-temporal
matrix corresponding to the time series of 100 steps created from stacking a phantom from
the BrainWeb database [Cocosco et al., 1997] and introducing the following artificial dynamics:
lower left corner – dynamic centered in time step 40 and evolving through a Gaussian kernel
with standard deviation λ = 5; upper right corner – dynamic obeying a jump function for time
steps 65–70. Associated singular values: σ1 = 1, σ2 = 0.0075, σ3 = 0.0038.

Σ = diag(σ1, . . . σmin(m,n)) with (σξ)ξ∈{1,...,min(m,n)} ⊂ R+ it holds that

A =

min(m,n)∑
ξ=1

uξσξv
H
ξ .

Here, while the vectors uξ localize the areas which are affected by a certain dynamic, the vectors
vξ represent their temporal evolution. Simultaneously, their magnitude or variance gets specified
through the corresponding singular value σξ. Consequently, assuming that the singular values in
Σ were organized in a descending order, i.e., that σ1 ≥ . . . ≥ σmin(m,n) ≥ 0, the SVD allows to
represent a time series of images as the superposition of orthogonal dynamics assorted according
to their significance and impact. An illustration of this can be found in Figure 4.3. Here,
we can perfectly see, that for the present example the singular vectors corresponding to the
largest singular value represent the more or less constant ‘dynamic’ of the background, which,
compared to both other introduced dynamics, in fact describes the dominant characteristic of
the time series. Besides, we observe that, while the singular vectors associated with the second
largest singular value predominantly depict the smoothly generated dynamic in the lower left
part of the series, the ones corresponding to the third singular value primarily characterize the
non-smooth behavior in the upper right part. However, even though the number of non-zero
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singular values for this example exactly coincides with the number of present dynamics, we also
notice that the SVD does not allow to exactly separate them from each other.
Altogether, coming back to our assumption that the reconstructed image series of a dynamic
tomographic scan should only include very few individual dynamics, it turns out to be even
more advisable to penalize the presence of a lot of non-zero singular values. In fact, we will
see in Chapter 5, that for the solution of problems of the form (4.6) the elimination of small
singular values, i.e., of subordinate dynamics, will play a relevant role.

With this, we have now found various heuristic motivations for the incorporation of a regularizing
nuclear norm. Now, to conclude this subsection we also briefly want to comment on their
mathematical justification, i.e., on the existence of a solution to (4.6).

Lemma 4.8. Let Fα : Cm×n → R be the functional to be minimized in (4.6). Then, Fα
attains a minimum in Cm×n.

Proof. First of all it is obvious that Fα is proper. Second, for a sequence (Aγ)γ∈N ⊂ Cm×n

whose Frobenius (or any other) norm converges toward infinity, we can be sure that due to the
equivalence of all finite norms also (Fα(Aγ))γ∈N reflects this behavior, ensuring the coercivity of
Fα. And lastly, respecting that all norms are continuous and K̃ is defined to be continuous, it
is clear that as a concatenation of these elements also Fα is continuous, i.e., in particular lower
semicontinuous. With that, Theorem 3.10 guarantees the existence of a minimizer in Cm×n.

4.3.2 Superposition of background and dynamics

In the previous subsection we introduced a regularizing technique which, based on the assump-
tion that in the context of dynamic MRI the columns of a spatio-temporal matrix should be
highly linearly dependent, involves the nuclear norm into the minimization problem in (4.4).
Nevertheless, respecting the above-mentioned reflections on the superposition of dynamics, this
approach could also bear a problem: Due to the claim for a too strong linear dependence, small
but significant and worth to image dynamics could be eliminated during the reconstruction
process.
A slightly different approach, therefore, suggests to exploit the presumed superposition of
dynamics in a more explicit way (cf. [Chandrasekaran et al., 2011; Candès et al., 2011; Gao
et al., 2012; Otazo et al., 2015]). If we are reminiscing about the singular values encoding the
significance of the individual dynamics, we are convinced that the largest singular value σ1

of a spatio-temporal matrix representing a tomographic series of frames should, more or less,
be assigned to the background, i.e., to the physiological base. Beyond that, the associated
right-singular vector v1 should only consist of entries that have almost the same value.
With this consideration, it should also be possible to exploit the fact, that the sought-after
reconstruction of the measured data can be separated into a background and some (true)
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dynamics, i.e., to include the a-priori information

A = L+ S.

Here, the matrix L ∈ Cm×n representing the background should be characterized through a low
rank, which can, but not necessarily needs to, equal one in order to also allow periodic dynamics
to be counted as background. On the contrary, the matrix S ∈ Cm×n describing the arising
dynamics should, in comparison with L, contribute much less information to the entire series of
images. This means that, with respect to a certain basis, this entity should be sparse. In the
special case in which it is expected that the dynamics to be observed refer exclusively to a few
voxels, it can even be presumed that S itself is of sparse shape.
Now, in order to explicitly involve this additional knowledge into the process of reconstruction,
we should first of all realize that, strictly speaking, we are now confronted with a slightly modified
inverse problem. Since the matrix A we are looking for is uniquely defined as soon as L and S
are identified, the solution of the present inverse problem now reduces to the determination of
these two components. According to this, we are now contemplating the operator equation

Ǩ

(
L

S

)
= B,

where Ǩ = K̃ ◦ T with T : Cm×n × Cm×n → Cm×n defined through T (L, S) := L+ S, i.e.,

Ǩ : Cm×n × Cm×n T−→ Cm×n K̃−→ Ck×n.

Thus, respecting the considerations in Sections 3.2.3 and 4.3.1 to incorporate the above-
mentioned assumptions on low rank and sparsity, it seems reasonable to, in accordance with
the minimization problem in (4.4), examine the following expression:

arg min
L,S∈Cm×n

1

2
‖K̃(L+ S)−B‖2F + β1‖L‖∗ + β2‖S‖1,1. (4.7)

Notice that, here, we are actually minimizing over the pair (L, S) ∈ Cm×n × Cm×n, and the
regularizer R mentioned in (4.4) is now understood to obey

R : Cm×n × Cm×n → R, R(L, S) = β1‖L‖∗ + β2‖S‖1,1

for new parameters β1, β2 > 0. Simultaneously, the original regularizing parameter α is set to
one.
Moreover, we should note that for the uniqueness, and therefore well-posedness, of a superposi-
tional task like the one in (4.7) a further incoherence condition has to be satisfied. In addition to
the one between the frequency domain (k-space) and the image domain, which is indispensable
for the challenge of compressed sensing, we now also have to make sure to avoid identifiability
issues. To do so, having a concrete application of a minimization problem of the form (4.7) in
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mind we always have to ensure that the component which is identified via its low rank not itself
has a sparse representation and vice versa. However, while in [Chandrasekaran et al., 2011] and
[Candès et al., 2011] this additional incoherence constraint is elaborated on in more detail, by
contemplating a specific scenario this requirement can often be considered fulfilled following a
line of heuristic arguments.

Now, to conclude this subsection, as before, we want to guarantee that our intuitive derivation
is also eligible in a mathematical sense. Hence, we ultimately want to address the existence of
solutions to the minimization problem in (4.7).

Lemma 4.9. Let Fα : Cm×n×Cm×n → R be the functional to be minimized in (4.7). Then,
Fα attains a minimum in Cm×n × Cm×n.

Proof. Since the concatenation of two continuous functions preserves the continuity and a norm
of an element in Cm×n × Cm×n tends to infinity if and only if the sum of any norms of its two
components does so, we are convinced that, due to the same argumentation as in Lemma 4.8,
Fα has a minimum in Cm×n × Cm×n.

4.3.3 Linear dependence favoring smooth dynamics

The reconstruction techniques introduced in the precedent two subsections were both mainly
based on the regularization with the standard nuclear norm. The motivation for this was the
aspiration for a preferably high linear dependence among the frames of a time series, respectively
for a preferably low rank of the associated spatio-temporal matrix. We thus used the nuclear
norm as a convex relaxation of the matrix rank. However, remembering the previously introduced
generalized nuclear norm which is based on the generalized SVD

A = UC,DΣC,D (VC,D)H D,

we realize that the rank of a matrix A likewise coincides with the number of non-zero generalized
singular values. This is essentially because the positive definiteness of matrices always implies
a full rank. With this, having in mind that the matrices UC,D and VC,D can be represented
through UC,D = C−

1
2 Ũ and VC,D = D−

1
2 Ṽ with unitary Ũ and Ṽ (see Section 4.2.3), it is

clear that also UC,D and VC,D have full rank and the rank of A is exclusively characterized
through the shape of the diagonal matrix ΣC,D. This raises the question of whether, for suitable
positive definite and Hermitian matrices C and D, it might also be reasonable to establish the
generalized nuclear norm as a convex relaxation of the matrix rank.
In order to understand more precisely how this could affect the reconstruction process, we again
want to engage with the decomposition of A in more detail. Similar to the classical SVD, also
for the generalized version it applies that a matrix A can always be written as the superposition
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of the outer products of its singular vectors, i.e., that

A = UC,DΣC,D (VC,D)H D =

min(m,n)∑
ξ=1

uC,Dξ σC,Dξ

(
vC,Dξ

)H
D. (4.8)

So, even in this case, reverting to the concepts in PCA, we naturally decompose the given time
series into its observable dynamics. These, again, get graded in their relevance through the
magnitude of their associated singular values σC,Dξ . And in fact, this graduation is exactly the
essential point which, in the context of regularization, distinguishes the generalized SVD from
the classical one. Considering the natural matrix norm, i.e., the one which interprets a matrix
as an operator and subsequently assigns its operator norm, we agree that its explicit behavior
significantly depends on the structures of the vector spaces which were assumed to underlie the
associated image and preimage space. In particular, assuming that these two are the respective
vector spaces induced by C and D results in

‖A‖2 = max
‖y‖D=1

‖Ay‖2C = max
‖y‖D=1

〈y,A∗Ay〉D.

Now, involving that with the C and D induced generalized SVD

A∗AVC,D = VC,DΣ2
C,D ⇔ (VC,D)H DA∗AVC,D = Σ2

C,D

applies, together with the substitution x = (VC,D)HDy we can infer, that

‖A‖2 = max
‖VC,Dx‖D=1

〈VC,Dx,A∗AVC,Dx〉D

= max
‖x‖2=1

xH(VC,D)HDA∗AVC,Dx

= max
‖x‖2=1

min(m,n)∑
ξ=1

(
σC,Dξ

)2
|xξ|2

=
(
σC,D1

)2
.

Hence, by exploiting the identity

‖VC,Dx‖D = xH(VC,D)HDVC,Dx = ‖x‖2

we realize, that, similar to the spectral norm, the natural matrix norm of A can be identified
with its maximum singular value σC,D1 . This insight implies that

max
y 6=0

‖Ay‖C
‖y‖D

= σC,D1 ,

or in general that for every singular value σC,Dξ of A at least one vector ȳ ∈ Cn can be found
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satisfying

‖Aȳ‖C
‖ȳ‖D

= σC,Dξ . (4.9)

Of course, above all, this is true for the in (Cn, 〈 . , . 〉D) normed associated right-singular vectors
vC,Dξ . However, beyond that the assertion in (4.9) is also valid for all non-normed versions
of these vectors. And especially with respect to those it becomes clear, that the generalized
singular values directly depend on the norms assigned to the image and preimage space.
To shed some light on this relation and to understand how this could possibly influence the
reconstruction process, in the following we want to turn toward an explicit example: We want
to commit ourselves to the scenario in which the image space of matrix A is equipped with
the Euclidean norm while the preimage space coincides with the vector space which through
Definition 4.4 is induced by an approximation of the negative Laplacian matrix. In concrete
terms this means that from now on we are presuming that C = Im ∈ Rm×m and for In, L ∈ Rn×n,
ε > 0 we are defining that

D = In − εL with Ljj′ =


−2 if j = j′

1 if |j − j′| = 1

0 else

. (4.10)

Note that at this point the usage of the negative Laplacian matrix itself is not possible since it
does not fulfill the required positive definiteness and thus turns out to be unsuitable to induce
an inner product. Nevertheless, in order to use a matrix with very similar characteristics, we are
able to consider the above-mentioned symmetric and positive definite approximation. Here, it
is obvious that the bigger the parameter ε is chosen the better (but also ‘less positive definite’)
this approximation gets.
Now, coming back to our previous considerations, with this example at hand the insight in (4.9)
indeed becomes more tangible. With respect to the present setting we can now realize that
the norm which appears in the numerator, as in the case of a classical SVD, coincides with the
Euclidean one. However, the one which can be found in the denominator is characterized through
the inner product that, with the help of Definition 4.4, is induced by the just characterized
approximation of the negative Laplacian. According to that we can approximately identify
it with a discretized H1-norm. With that the expression in (4.9) suggests that the singular
values, whose associated vectors ȳ ∈ Cn have a big discretized H1-norm, should be rather small.
Regarding the application in dynamic MRI this for example can be the case as soon as the
singular value of interest is associated with a very non-smooth dynamic. In contrast to this,
smoother dynamics which own a smaller discretized H1-norm should be assigned to comparably
bigger singular values. Beyond that, respecting that for the classical SVD the denominator
in (4.9) includes the Euclidean norm which does not distinguish that much between smooth
and non-smooth signals, with the help of the present generalized SVD it should be possible
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Figure 4.4: Illustration of the first three left- and right-singular vectors corresponding to the
generalized SVD with C = Im and D ∈ Rn×n equaling the identity In minus the approximate
negative Laplacian matrix (see (4.10) with ε = 20), or the inverse of the approximate negative
Laplacian matrix, respectively. Time series underlying the considered spatio-temporal matrix
features two dynamics: lower left corner – dynamic centered in time step 50 and evolving through
a Gaussian kernel with standard deviation λ = 10; upper right corner – dynamic obeying a jump
function for time steps 65–70. Associated singular values can be found in Table 4.1.

to separate these kind of signals more clearly from each other. And indeed, in Figure 4.4
we can observe exactly this behavior. Here, for the singular vectors which emerge from the
classical SVD, i.e., for which in the given example D = In was chosen, due to the temporal
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σ1 σ2 σ3

Identity 1 0.0024 0.0023
Laplace 0.9592 0.0021 0.0011
Inv. Laplace 1.1831 0.0135 0.0027

Table 4.1: Listing of singular values corresponding to the experiment in Figure 4.4.

overlapping of both imposed dynamics, it is hard to individually identify them. In contrast to
that, the generalized SVD for which D approximates the negative Laplacian matrix succeeds
well in this. However, note that, owing to the decomposition in (4.8), in this latter scenario
we do not contemplate the generalized right-singular vectors vC,D1 , vC,D2 , vC,D3 themselves but
their A-reproducing versions DvC,D1 , DvC,D2 , DvC,D3 . With them we are then able to observe
the already presumed favoritism of smooth dynamics: Associated with the second singular
value σC,D2 the continuously constructed dynamic is perceived to be more dominant than the
non-continuous one. In a logical constant way a contrary effect can be noticed when considering
the generalized SVD induced by the inverse of the approximate negative Laplacian matrix. In
this setting, big corresponding norm values are assigned to smoother signals such that these are
eventually associated with smaller singular values.
Having this behavior in mind we can conclude that regularizing with the generalized nuclear
norm, which is based on an approximation of the negative Laplacian, appears to be especially
reasonable as soon as the resulting reconstruction is expected to feature smooth dynamics.
This is because, as already foreshadowed, in Chapter 5 we will see that solving problems of
the form (4.4) involving the classical nuclear norm is decisively based on the elimination of
subordinate dynamics. Hence, transfering this conception to the generalized nuclear norm case,
a more dominant perception of smooth dynamics should result in the preferential removal of
non-smooth signals. A reconstruction emerging from a minimization problem like this should
thus behave rather continuously over time. Note that, following this train of thought, this
approach could also reduce the occurrence of noise due to its usually non-continuous temporal
representation. At the same time, this is also the reason why considering (4.4) including the
generalized nuclear norm based on the inverse of the approximate Laplacian matrix does not
seem to be very beneficial in the context of dynamic imaging.
All in all we can summarize that, when anticipating a reconstruction incorporating smooth
dynamics, it could be advantageous, instead of regularizing with the standard nuclear norm,
to include as a regularizer the generalized nuclear norm induced by C = Im and D ∈ Rn×n

obeying the characterization in (4.10), i.e., to examine

arg min
A∈Cm×n

1

2
‖K̃A−B‖2F + α‖A‖∗C,D . (4.11)

With that, in addition to involving prior knowledge on the linear dependence among the frames
of the time series, we hope to simultaneously impose a smooth temporal evolution of occurring
dynamics. Notice that, equivalently to the reasoning in Lemma 4.8, also here the existence of a
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solution in Cm×n is obviously given.

With the minimization problems introduced in this section we now have some promising ap-
proaches at hand allowing to solve the ill-posed inverse problem to undersampled dynamic
MRI. In order to validate their effectiveness, in the following chapter we want to turn toward
their explicit solving and visualize their influence on the reconstruction process by means of
application-related examples.
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5
Numerical implementation and results

In the previous chapter we were predominantly engaged with the modeling of three different min-
imization problems which, in spite of fragmentary data, are able to yield stable reconstructions
of dynamic MR measurements.
In this chapter we now want to turn toward their numerical solution and test their effectiveness
with respect to explicit reconstruction problems. To do so, we first of all take a quick look
on a general approach which enables to find minimizers to (partially) non-differentiable but in
some sense ‘simple’ functionals, namely the forward-backward splitting, and subsequently derive
corresponding algorithms fitted to the optimization problems described above. Thereafter, we
contemplate three different concrete examples for their application: We start by addressing the
scenario in which one is interested in reconstructing a series of frames which should depict the
motion of very small cells. Subsequently, we realize that the approach in Section 4.3.2 also
qualifies to track these kind of cells in series already reconstructed. To conclude we focus on
the reconstruction of dynamic MR data representing a few smooth dynamics. While doing
so, we are confronted with (temporary) limitations which, however, enable us to uncover some
uncertainties regarding the established regularization with the classical nuclear norm as soon
as a smoothing operator is involved.

5.1 Algorithmic solution

Within the precedent chapter we mainly spoke about the modeling of individual minimization
problems, but neglected how these can be solved in practice. A field that has turned to this issue
and furthermore has developed a precise analysis on the topic is the one of convex optimization.
Since covering the vast findings in this field is clearly beyond the scope of this thesis, for a
detailed discussion on this subject we here only want to refer to the elaborations in [Chambolle
and Pock, 2016] and [Rasch, 2018, Chap. 3]. Beyond that for insights into the related field of
convex analysis we recommend consulting the work of [Bauschke and Combettes, 2011].
However, at this point it shall suffice to revert to a very shortened and heuristic argumentation
in order to deduce a numerical method which is capable of finding solutions to the previously
introduced problems.

A very first intuitive idea to determine the minimizer y∗ ∈ Y of a proper, convex and lower

55



5 Numerical implementation and results

semicontinuous functional F : Y → R is probably to fix a point y0 ∈ Y and from there
iteratively move toward y∗ by following the direction of the negative gradient. Though, in order
to implement this approach in practice, it is first of all necessary to transfer the concept of
differentiability to the present type of functionals.

Definition 5.1. (cf., e.g., [Bauschke and Combettes, 2011, Def. 2.45])
Let F : Y → R be proper. Then, F is said to be Fréchet differentiable in y ∈ Y if there exists
a functional ∇F(y) ∈ L(Y ,R) such that

lim
‖y′‖Y→0

F(y + y′)−F(y)− 〈∇F(y), y′〉
‖y′‖Y

= 0

applies.

Hence, considering a Fréchet differentiable functional F , the above-mentioned intuitive idea
can actually be formalized. For a given step width τ > 0 its realization obeys the fixed-point
iteration

yk+1 = yk − τ∇F(yk). (5.1)

Firstly formulated in the 1840s by Cauchy, this method is called the explicit gradient descent
algorithm (see [Cauchy, 1847]). In spite of its very simple and comprehensible motivation it is,
however, also evident that it features limitations: As soon as the functional to be minimized is
not differentiable, the method in (5.1) is not applicable.
A slightly different approach, which at first glance is as well based on the Fréchet differentiability
of F , but, due to its implicit formulation, promises to behave more stable, is the one of the
implicit gradient descent. For a step width τ > 0 its iterative procedure is given by

yk+1 = yk − τ∇F(yk+1).

This, in due consideration of

yk+1 − yk
τ

+∇F(yk+1) = 0 ⇔ yk+1 = arg min
y∈Y

1

2τ
‖y − yk‖2 + F(y),

implies, that here the iterative steps themselves can be understood as minimization problems
with respect to a (now strictly) convex functional. In 1965 Moreau integrated these minimization
problems into the characterization of an operator.
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Definition 5.2. (cf. [Moreau, 1965])
Let F : Y → R be proper, convex and lower semicontinuous. Then, the proximal operator to
F with stepsize τ > 0 is defined via

proxτF : Y → Y, y 7→ arg min
y′∈Y

1

2τ
‖y′ − y‖2 + F(y′).

Note that the contemplation of this proximal operator is also reasonable for functionals which do
not fulfill the requirements of Fréchet differentiability. In fact, there are some non-differentiable
functionals, which are ‘simple’ enough that their proximal operator has a closed form solution.
As we will see later on, examples for this are the `1-norm and the nuclear norm.
This last remark already gives a vague idea how to proceed in the case of non-differentiable
functionals. And indeed, when dealing with problems that are composed of a differentiable and
a non-differentiable part, i.e., when being interested in solving

arg min
y∈Y
F(y) + E(y) (5.2)

with F Fréchet differentiable and E non-smooth, the proximal operator plays a relevant role. To
see this, we first of all have to realize that here, due to the non-smoothness of E , it is obviously not
possible to apply the method of explicit or implicit gradient descent. Therefore, in this setting
an alternative and weaker notion of differentiability has to be implemented.

Definition 5.3. (cf., e.g., [Bauschke and Combettes, 2011, Def. 16.1])
Let E : Y → R be proper and convex. Then,

∂E(y) := {p ∈ Y | E(y′) ≥ E(y) + 〈p, y′ − y〉 for all y′ ∈ Y}

defines the subdifferential of E at y ∈ Y .

In fact, in analogy to differentiable functionals one can find, that the optimality of an element
y∗ ∈ Y with respect to a proper, convex and lower semicontinuous functional E is given if and
only if the zero element lies in the associated subdifferential, i.e., it holds that

0 ∈ ∂E(y∗) ⇔ y∗ ∈ arg min
y∈Y
E(y) (5.3)

(cf., e.g., [Bauschke and Combettes, 2011, Thrm. 16.2]). Since for Fréchet differentiable func-
tionals F it can be shown that ∂F(y) = {∇F} (cf., e.g., [Bauschke and Combettes, 2011, Prop.
17.26]) this even coincides with the more established version of Fermat’s rule. Incorporating
that furthermore also ∂(F + E)(y) = ∂F(y) + ∂E(y) applies for all y ∈ int domF ∩ int dom E
(cf. [Bauschke and Combettes, 2011, Prop. 6.19, Thrm. 16.37]), for problems of the form (5.2)
this means that optimality is reached in y∗ ∈ Y as soon as

0 ∈ ∇F(y∗) + ∂E(y∗).
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Note that, due to the maximal monotonicity of ∂E and the concomitant well-definedness of
the operator (I + τ∂E)−1 (cf. [Bauschke and Combettes, 2011, Chap. 23]), for any τ > 0 this
formulation can be rewritten to(

1

τ
I + ∂E

)
(y∗) ∈

1

τ
y∗ −∇F(y∗) ⇔ y∗ ∈ (I + τ∂E)−1 (y∗ − τ∇F(y∗)) .

Simultaneously, when applying the optimality condition in (5.3) to the previously introduced
proximal operator one can analogously deduce that

proxτE(y) = y∗ ⇔ y ∈ (I + τE) (y∗)

and we realize that solving the problem in (5.2) is equivalent to finding the fixed point y∗ ∈ Y
of the function

y 7→ proxτE (y − τ∇F(y)) .

Contemplating the corresponding fixed-point iteration, these considerations lead to the algorithm
of forward-backward splitting

yk+1 = proxτE(yk − τ∇F(yk)) (5.4)

[Lions and Mercier, 1979; Combettes and Wajs, 2005]. This now finally enables to concretely
solve problems of the form (5.2) involving a nonsmooth but ‘simple’ operator E .

Now, in order to adapt this algorithm to more explicit scenarios, it solely remains to determine
the Fréchet derivative of the differentiable part and the proximal operator corresponding to
the non-differentiable one. In the following we want to do this for the minimization problems
introduced in Chapter 4.

Regularization with the nuclear norm

When contemplating the functional to be minimized in (4.6) we can immediately determine that
its data fidelity part DB : Cm×n → R satisfies the requirements of Fréchet differentiability and,
thus, can be assigned to the derivative

∇DB(A) = K̃∗(K̃A−B). (5.5)

The regularizing part which includes the nuclear norm, however, evades this concept. Fortunately,
as it was to be hoped after the above-mentioned introduction to the forward-backward splitting
algorithm, the nuclear norm is characterized in a way simple enough to have an analytically
identifiable associated proximal operator.
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Lemma 5.4. (cf. [Cai et al., 2010, Thrm. 2.1])
Let τ > 0 and Tτ : Cm×n → Cm×n be the soft-singular-value-thresholding operator which for
an arbitrary matrix A with SVD A = UΣV H and ξ ∈ {1, . . . ,min(m,n)} is defined via

Tτ (A) := U diag(max(0, σξ − τ))V H .

Then, it applies that

Tτ (A) = arg min
A′∈Cm×n

1

2
‖A′ −A‖2F + τ‖A′‖∗. (5.6)

Proof. In (5.3) we have noted, that for a proper and convex functional a sufficient criterion for
being minimal in some point is the belonging of the zero element to the associated subdifferential.
In the considered scenario this means that the minimum of F(A′) = 1

2‖A′ − A‖2F + τ‖A′‖∗ is
attained in Â ∈ Cm×n if and only if

0 ∈ Â−A+ τ∂‖Â‖∗, (5.7)

where through the findings in [Watson, 1992] and [Lewis, 2003] it is known that

∂‖Â‖∗ = {UV H +W | Â = UΣV H , W ∈ Cm×n, UHW = 0, WV = 0, σmax(W ) ≤ 1}. (5.8)

On the other hand, we can observe that for a decomposition of the SVD of A in

A = U1Σ1V
H

1 + U2Σ2V
H

2 ,

where U1, V1 (respectively U2, V2) represent the singular vectors whose corresponding singular
values are bigger than (respectively smaller than or equal to) τ , it holds that

Tτ (A) = U1(Σ1 − τI)V H
1

and therefore

A− Tτ (A) = τ(U1V
H

1 + τ−1U2Σ2V
H

2 ).

Since in this formulation the maximum singular value of W := τ−1U2Σ2V
H

2 is now obviously
smaller than or equal to 1 and in a natural way also WV = 0 and UHW = 0 are fulfilled, we
can deduce together with (5.8) that A−Tτ (A) ∈ τ∂‖Tτ (A)‖∗. Hence, with (5.7) we can identify
Tτ (A) as a minimizer of F and through the strict convexity of F confirm its uniqueness.

With this we realize that applying the proximal operator associated with a scaled nuclear norm
to a matrix A ∈ Cm×n essentially boils down to the shrinkage or elimination of its singular
values. Thinking of the interpretation of the SVD of spatio-temporal matrices mentioned in
Chapter 4, also from an applied point of view this procedure has its justification: In this scenario,
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while aiming for a low rank solution, i.e., a solution with only a few non-zero singular values,
through the application of the soft-singular-value-thresholding operator we get rid of the less
important, subordinate dynamics and concentrate only on the remaining few influential ones.
In doing so, the scaling parameter τ > 0 controls up to which level dynamics are interpreted to
be subordinate.
Combining this result with the derivative computed in (5.5), the forward-backward splitting
algorithm in (5.4) eventually suggests to solve the minimization problem in (4.6) by defining a
suitable step size τ > 0 and following the fairly simple iterative schemeĀk+1 = Ak − τK̃∗(K̃Ak −B),

Ak+1 = Tτα(Āk+1)
(5.9)

until convergence is reached (cf. [Cai et al., 2010]).

Partial regularization with the nuclear and the 1, 1-norm

Turning toward the minimization problem in (4.7) we realize that its structure is very similar
to the problem just discussed. Reverting to the same kind of data fidelity measure, this parts
Fréchet derivative can be computed accordingly while respecting the twofold dependence on the
argument (L, S) ∈ Cm×n × Cm×n, i.e., here

∇DB(L, S) =
(
K̃∗(K̃(L+ S)−B) , K̃∗(K̃(L+ S)−B)

)
.

Concerning the non-differentiable regularizing part R(L, S) = β1‖L‖∗+β2‖S‖1,1 we again want
to make use of the proximal operator. With respect to the present setting we can actually see
that this falls into two minimizing components which separately operate on both arguments,
i.e.,

proxτR(L, S) =

(
arg minL′∈Cm×n

1
2‖L′ − L‖2F + τβ1‖L′‖∗

arg minS′∈Cm×n
1
2‖S′ − S‖2F + τβ2‖S′‖1,1

)
.

Regarding the first component we already know from the previous subsection how its closed form
solution has to look like. For the second one, however, we first of all only realize its coincidence
with the proximal operator of the scaled 1, 1-norm. Favorably, also for this a representation
specifying its operation can be found analytically.

Lemma 5.5. Let τ > 0 and Sτ : Cm×n → Cm×n be the shrinkage-thresholding operator that
for an arbitrary matrix A is characterized through

Sτ (A)ij := max(0, |Aij | − τ) sgn(Aij).
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5.1 Algorithmic solution

Then, it holds that

Sτ (A) = arg min
A′∈Cm×n

1

2
‖A′ −A‖2F + τ‖A′‖1,1.

Proof. Aiming for a minimizer Â ∈ Cm×n of F(A′) = 1
2‖A′−A‖2F +τ‖A′‖1,1 we first of all notice

that its determination can be done pointwise, meaning that we can compute its components
Âij separately. To do so we again follow (5.3) and consider the optimality condition

0 ∈ Âij −Aij + τ∂|Âij |.

By incorporating that respecting the definition of the subdifferential we can ensure that

p ∈ ∂|Âij | ⇔

p = sgn(Âij), if Âij 6= 0,

|p| ≤ 1, else,

this leaves room for three different cases: To begin with, Âij > 0 can represent a minimizer as
soon as 0 = Âij − Aij + τ is satisfied, i.e., if Âij = Aij − τ > 0. On the other hand, Âij < 0

fulfills the optimality condition as 0 = Âij −Aij − τ , i.e., if Âij = Aij + τ < 0. And lastly, for
Âij = 0 the optimality condition can be met if 0 ∈ Âij −Aij + [−τ, τ ], i.e., as |Aij | ≤ τ . Thus,
combining these scenarios we can summarize that pointwise optimality is reached in Âij if

Âij =

Aij − τ sgn(Aij), |Aij | > τ,

0, |Aij | ≤ τ.

Transferring this result to the entire matrix then proves the assertion.

With this we are now again able to bring together all of our findings to assemble the forward-
backward splitting algorithm tailored to the present minimization problem. In doing so, we
realize that, here, the iterative scheme in (5.4) can be split into separate updates regarding
the two involved components L and S: While with respect to the latter we mainly follow the
iterative shrinkage-thresholding algorithm (ISTA) (cf., e.g., [Chambolle et al., 1998; Daubechies
et al., 2004; Figueiredo and Nowak, 2003]), concerning the former we more or less abide by the
iterative method introduced in the precedent subsection. All in all, for an appropriate choice of
τ > 0 this results in iterating:

L̄k+1 = Lk − τK̃∗(K̃(Lk + Sk)−B),

Lk+1 = Tτβ1(L̄k+1),

S̄k+1 = Sk − τK̃∗(K̃(Lk + Sk)−B),

Sk+1 = Sτβ2(S̄k+1).

(5.10)
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Regularization with the generalized nuclear norm

Focusing on the problem in (4.11) which involves the generalized nuclear norm as a regularizer,
we expect to be able to derive an iterative minimizing scheme by following similar steps as in
the scenario of the classical nuclear norm which we already considered. Hence, we first of all
contemplate the more simple (denoising) problem

arg min
A′∈Cm×n

1

2
‖A′ −A‖2F + τ‖A′‖∗C,D . (5.11)

With regard to this, it then would be desirable to mimic the proof of Lemma 5.4 for a soft-
singular-value-thresholding operator, which now resorts to the generalized SVD. However, before
doing so, we can turn toward the slightly differently defined minimization problem

arg min
A′∈Cm×n

1

2
‖C 1

2 (A′ −A)D−
1
2 ‖2F + τ‖A′‖∗C,D (5.12)

and note that in consideration of (4.5) an equivalent formulation reads

arg min
A′∈Cm×n

1

2
‖C 1

2 (A′ −A)D−
1
2 ‖2F + τ‖C 1

2A′D−
1
2 ‖∗. (5.13)

Moreover, by means of substitution with Ā = C
1
2A′D−

1
2 this can further be rewritten to

arg min
Ā∈Cm×n

1

2
‖Ā− C 1

2AD−
1
2 ‖2F + τ‖Ā‖∗, (5.14)

which strongly reminds of the problem examined in (5.6). And in fact, here, together with the
necessary resubstitution, the associated statement in Lemma 5.4 allows to identify the minimizer
A∗ of (5.12) with

A∗ = C−
1
2Tτ (C

1
2AD−

1
2 )D

1
2 .

Now, again involving our considerations in (4.5) this means that

A∗ = UC,D diag(max(0, σC,Dξ − τ)) (VC,D)HD with A = UC,DΣC,D(VC,D)HD,

i.e., that finding a minimizer to the problem in (5.12) coincides with applying the generalized
soft-singular-value-thresholding operator induced by C and D to the input matrix A. With this
insight we have to realize that, contrary to our expectations, the functional in (5.11) can not
be minimized by the same argument. However, from an interpretative point of view it still is
to be expected, that its exact minimizer behaves in a very similar way. Besides, unlike for the
preceding scenarios, in the present one we are fortunately not obliged to find an exact solution
to (5.11) in order to derive a numerical scheme for solving (4.11). This is because once again
exploiting the characteristic in (4.5) together with the above-mentioned substitution allows us
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to study the equivalent formulation

arg min
Ā∈Cm×n

1

2
‖K̃

(
C−

1
2 ĀD

1
2

)
−B‖2F + α‖Ā‖∗

instead. The contemplation of this problem now makes it possible to, more or less, adopt the
iterative method in (5.9). By adjusting the gradient descent step with respect to the adapted
Fréchet derivative of the data fidelity term

∇DB(Ā) = C−
1
2 K̃∗

(
K̃
(
C−

1
2 ĀD

1
2

)
−B

)
D

1
2 ,

an equivalent reasoning leads to the schemeĀ′k+1 = Āk − τC−
1
2 K̃∗

(
K̃
(
C−

1
2 ĀkD

1
2

)
−B

)
D

1
2 ,

Āk+1 = Tτα(Ā′k+1).
(5.15)

Of course, in order to obtain a solution of the original problem in (4.11), after the convergent
performance of this algorithm we have to make sure to resubstitute the found minimizer Ā∗ via
A∗ = C−

1
2 Ā∗D

1
2 .

5.2 Computational experiments

After the derivation of numerical methods which allow to solve the optimization problems
introduced in Chapter 4, we are now ready to eventually verify their effectiveness. To do so we
apply the above-mentioned algorithms to concrete examples of dynamic MR data and especially
concentrate on the context of neuroimmune cell imaging. However, note that the presented
regularization approaches can also support reconstructions in numerous other examples even
including applications outside the context of dynamic MRI.

5.2.1 Undersampling imposing a superposition of dynamics

To get started, we first of all want to devote ourselves to the reconstruction of undersampled
dynamic MR data which should portray the motion of very small cells in the brain. This becomes
relevant, for instance, when trying to examine the behavior of neuroimmune cells. Already at
an early stage these can draw attention to neuroinflammations in the brain. Therefore, their
observation can serve as a very valuable diagnostic tool for diseases like multiple sclerosis and
Alzheimer’s. Beyond that, the tracking of these cells can be employed to test the effectiveness of
existing therapeutic approaches (see, e.g., [Hemmer et al., 2015; Sánchez et al., 2012; Masthoff
et al., 2019]).
In order to simulate the raw data generated by an MR scan which was performed to identify
these kind of cells, we here once again want to take a slice of the simulated MR phantom from
the BrainWeb database (see [Cocosco et al., 1997]) as a starting point. Through the 20-fold
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Figure 5.1: Comparative illustration of the reconstruction results emerging from the method of
least squares and the presented approach of low rank + sparse regularization with parameters
β1 = 1 and β2 = 0.035. First row: Visualization of the (under-)sampling pattern applied to
the individual time steps; Fifth and sixth row: Isolated illustration of the low rank, respectively
sparse component. PSNR ‘Least Squares’: 18.8738; PSNR ‘Low Rank + Sparse’: 30.1910.
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duplication of this slice we then receive a constant time series of 20 frames. Manipulating this
series by introducing a two pixel sized moving cell to the frames of time steps 5 to 10, this data set
shall represent our ground truth. Based on this we can now extrapolate the corresponding exact
k-space data by applying the Fourier transform. To mimic an undersampled data generation,
we can then choose a sampling scheme which reduces the frequency data to a small fraction. In
order to meet the incoherence condition between the image and frequency domain which was
mentioned in Chapter 4, we here want to choose a golden ratio radial sampling simulating the
scan of 20 spokes per time frame. With that we reduce the original data by approximately 82%.
Further, to imitate the typical occurrence of inexact measurements we additionally introduce
additive Gaussian noise with zero mean and standard deviation λ = 0.035.
With this, the constructed scenario exactly coincides with the one addressed in Section 4.3.2. Ex-
pecting a dynamic reconstruction which features a more or less constant background superposed
by only a very few small moving elements suggests to solve the optimization problem in (4.7).
Note that here the described setting also guarantees the requested incoherence between the low
rank and the sparse component and thus makes them uniquely identifiable. With the help of the
iterative method in (5.10) we are therefore able to compute the desired reconstruction. And in
fact, by depicting the absolute values of the complex-valued result of this algorithmic procedure,
Figure 5.1 confirms our anticipation: In comparison to a simple least squares solution, through
the inclusion of a-priori knowledge on the composition of superimposing components we are
able to achieve a remarkably more detailed reconstruction. While the fragmentary characteristic
of the input data makes it impossible for the least squares reconstruction to feature delicate
contours, the reconstruction stemming from the low rank + sparse approach succeeds well in this.
Although the artificially introduced cell only measured two pixels, here the highly incomplete
data was still sufficient to detect this attribute. Moreover, looking at the isolated illustrations of
the low rank, respectively sparse, component, we recognize that the separation into background
and motion was performed quite accurately. Consequently, with respect to neuroimmune cell
imaging, applying the approach presented in Section 4.3.2 lets us profit from the beneficial side
effect that the specimens of interest are automatically separated from the remainder. Additional
to the improved reconstruction, this even more facilitates the evaluation of an MR scan for the
radiologists and medical specialists.
In summary we can state that in settings like the presented one imposing a superposition
of background and motion by solving (4.7) represents a valid tool for reconstructing highly
undersampled k-space data. Partial regularization with the nuclear norm and the 1, 1-norm here
allows to abbreviate the process of acquisition and/or impose a more dense temporal sampling
without giving up on the quality of the reconstruction.

5.2.2 Tracking of dynamics

As already mentioned in the previous section, in the context of cell tracking, the method in
(4.7) allows for more than only the efficient reconstruction of raw Fourier data. It also enables
to automatically detect the contemplated objects of interest. Since this considerably simplifies
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Figure 5.2: Illustration of the cell tracking results emerging from the presented approach of
low rank + sparse regularization with K = Id and parameters β1 = 0.02 and β2 = 0.00045.
Fourth row: Contour visualization of the non-zero areas of the sparse component with underlying
original data.

the work of physicians, it is advisable to check whether the low rank + sparse approach is also
able to perform an a posteriori detection, i.e., if it is possible to apply the associated algorithm
to data which is already reconstructed.
To do so, we want to turn toward a real dynamic MR sequence depicting neuroimmune cells in a
mouse brain, which was provided to us by the Translational Research Imaging Center (TRIC) of
the University Hospital Münster (see [Masthoff et al., 2019]). Here, the data which was already
reconstructed via an integrated standard procedure, stems from a T2-weighted scan that was
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supported by the in vivo marking of the cells of interest. The full sampling of the brain slice to
be imaged resulted in a time series of 20 frames, each with an acquisition time of approximately
8 min.
In order to apply the approach in (4.7) to this scenario and automatically detect the moving
cells, we first have to make a small adjustment. In doing so, we especially take into account, that
here the main objective of the implementation of this method is no longer the reconstruction of
Fourier data. Thus, since the given data B already lies in the image space, we can choose to
set the involved operator K to identity. However, before now we again consult the algorithmic
scheme in (5.10) to compute the desired separation into background and motion, for this real
data set we first want to make sure, that as little acquisition-induced motion as possible disturbs
the tracking of the cells. Therefore, we primarily perform a very simple rigid image registration
using FAIR (see [Modersitzki, 2009]). With that we can guarantee, that the images of the
present data set are roughly aligned based on the underlying anatomical structure. After this
preliminary step, we then can finally proceed following the iterative method presented in Section
5.1. Its outcome can be found in Figure 5.2.
Here, although the real medical data set forced us to deal with acquisition-induced shadow
artifacts and a background that, despite registration, was not completely static, we can observe
impressively good results. Especially in the contour plot, which highlights the areas captured
by the sparse component, we see that the procedure enabled us to detect many of the small
moving cells. Simultaneously, as to be expected, the low rank component depicts a far more
static version of the background observed in the original data. Hence, exploiting the high linear
dependence among the single frames’ background and the sparse characteristic in space and
time of the fast moving cells once again proved to be successful. Overall, we can thus confirm
that the low rank + sparse approach also suits to retroactively track small cells in dynamic MR
sequences. With that it can significantly support radiologists in the diagnostic evaluation of
such data.

5.2.3 Undersampling imposing the occurrence of few smooth dynamics?

To conclude this chapter of numerical experiments on the reconstruction of dynamic MR data
we lastly want to turn toward the regularization technique which involves the newly introduced
generalized nuclear norm. As already pointed out in Section 4.3.3, tailored to the context of
dynamic MRI we here in particular want to concentrate on the scenario in which the corre-
sponding generalized SVD is induced by C = Im and D approximating the negative Laplacian
matrix. Through this choices we hope that we can gain control over the type of dynamic which
eventually ends up being featured in the computed reconstruction when limiting the rank of our
solution.
In Section 5.1 we were unfortunately not able to explicitly prove that regularizing with the
generalized nuclear norm boils down to a shrinkage of the generalized singular values. Instead,
based on the results regarding the classical nuclear norm in Lemma 5.4, we only anticipated a
similar behavior. This is why, before applying the algorithm derived in (5.15) to the reconstruc-
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tion of raw MR data, we should briefly concentrate on approving our intuition in a numerical
manner. Thus, before anything else, we first want to address the denoising problem in (5.11) for
varying regularization parameters τ > 0. Fortunately, in order to solve this problem numerically,
we can recycle the iterative scheme introduced in (5.15). For this purpose the only thing left
to do is to temporarily set the involved operator K̃ to identity. Following this computation, we
then want to calculate the respective new generalized singular values and corresponding singular
vectors of our solutions in order to be able to check our conjecture. Regarding the latter, we
are particularly interested in the ones representing the temporal evolution, i.e., the generalized
right-singular vectors.
To get started we first want to be able to evaluate the behavior of solutions to (5.11) in a
preferably simple setting. Therefore, we initially focus on a stylized minimal example: The
data A we use is composed of a smooth and a non-smooth dynamic added to a 100 time frames
series of zero images. During this data generation we make sure that, on a spatial basis, both
dynamics can be clearly separated from each other. Moreover, also in a temporal sense we rely
on the distinct differentiation of both signals. This allows us to use the analytically understood
solutions to the problem in (5.6) and their classical SVDs for a comparison. That is because, in
contrast to the experiments depicted in Figure 4.3 and Figure 4.4, the significantly staggered
occurrence of dynamics even enables the classical SVD to feature singular vectors which separate
these signals accurately from each other.
When considering the results of this comparative case along increasing regularization parameters
(see Figure 5.3 (a)), we can observe the expected behavior: Through the linear shrinkage of
both classical singular values the introduced signals, which get identified by the corresponding
singular vectors, decrease in a uniform manner. Here, the prevailing linearity of this descent
can be substantiated in Figure 5.4 (a). Depicting the isolated course of both non-zero singular
values this illustration emphasizes their structure-preserving diminution and demonstrates their
final vanishing behavior for big choices of τ .
Surprisingly, contemplating the same experiment with respect to the generalized nuclear norm
induced by C = Im and D as in (4.10) with ε = 10, we can notice a completely different
shrinking behavior (see Figure 5.3 (b) and Figure 5.4 (b)). While the generalized singular
value corresponding to the smooth dynamic is still shrinking in a linear manner, the one
corresponding to the non-smooth signal experiences a decreasingly strong shrinkage as the
regularizing parameter is increasing. This suggests that the regularization with the generalized
nuclear norm induces a shrinking behavior that is signal-dependent. In the present example,
this has the consequence that also the dominance of the signals (here encoded by the colors
red and blue) switches as the optimization in (5.11) is performed for decreasing τ . First of all,
as derived in Section 4.3.3, through the use of the approximate negative Laplacian the largest
singular value is assigned to the smooth dynamic. However, for parameters bigger than 0.333

this impression is shifting. Depicted through a change of color, in Figure 5.4 (b) we can observe
that from this point on the singular value assigned to the non-smooth dynamic is dominant.
Consulting the illustration in Figure 5.3 (b), this can be explained by the significantly stronger
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Figure 5.3: Illustration of the first (red) and second (blue) singular vectors multiplied with their
associated singular values after solving (5.6) (a), resp. (5.11) (b), with varying regularization
parameter τ ∈ [0, 1], resp. τ ∈ [0.33, 0.35]. Underlying data: Two locally distinguishable
dynamics introduced to a series of 100 images with zero background; first dynamic – Gaussian
kernel over time centered in time frame 30 and with standard deviation λ = 7.5, second dynamic
– jump function for time frames 65-75.
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Figure 5.4: Graphical illustration of the first two singular values corresponding to the experiment
in Figure 5.3.

adherence to this signal. Accordingly, we have to realize that solutions of the denoising problem
in (5.11) act substantially different than the ones resulting from the corresponding problem
which involves the classical nuclear norm. Contrary to our expectations, they do not reliably
preserve the structure of the input data. This is especially astonishing since, respecting the
rewriting options in (5.13) and (5.14), this behavior exactly coincides with the one which can
be observed when applying the established concept in (4.6) to solve the inverse problem

TA = B
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with smoothing operator T . Thus, although we can analytically show that in the denoising
scenario the regularization with the classical nuclear norm leads to a linear shrinkage of the
singular values (see Lemma 5.4), we can not guarantee a similar behavior when a smoothing
forward operator is involved. Contrary to the assumptions which are commonly made, this
suggests that also with respect to other operators it is not necessarily clear how regularizing
with the classical nuclear norm affects the solution process. In any case, it does not seem to be
advisable to extrapolate from the structure preserving shrinkage trend which can be observed
and proven in the denoising context to more general scenarios which involve a true forward
operator. Instead, it would be desirable to investigate more explicitly in order to understand
which kind of dynamic components are primarily considered when determining low-rank solutions
via minimization problems of the form (4.6). In particular, it could be interesting to grasp under
which conditions regularizing with the classical nuclear norm provokes the kind of results which
can for example be observed in the experiments in [Candès and Recht, 2009] and [Recht et al.,
2010].
All in all, on the basis of these results, we have to admit that, even in the simple denoising setting,
regularizing with the generalized nuclear norm behaves contrary to our intuition. Instead, it
unfortunately obeys a scheme which is not tangible for us at the moment. For now, this makes
it particularly impractical to apply the presented reconstruction technique in (4.11). However,
through our studies we were able to uncover that also the well-established method in (4.6)
requires further investigation. Having such investigations on the inclusion of general forward
operators at hand, one could then also resume the reconstruction method introduced in Section
4.3.3.
For the moment, however, it only remains to study this approach from an analytical point of
view. And indeed, this is what we want to look into in the following chapter.
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Within the previous chapters we took a closer look on a selection of norms that operate on
composed matrices and discussed their respective benefits in the context of discrete variational
methods. As representatives of time series of images the consideration of these matrices now
naturally arouses the interest in the asymptotic behavior of the studied functionals. Choosing
finer and finer time steps while imposing a higher and higher image resolution makes us want
to grasp how those functionals act as soon as the dimensions m and n of their domain tend to
infinity.
In this chapter we thus want to figure out how the considered functionals can be translated
to operate on ‘more continuous’ domains. For this purpose we want to employ the concept
of Γ-convergence. As already pointed out in the preliminaries, provided that a sequence of
functionals is equi-coercive, its application guarantees the convergence of minimizers toward
minimizers. Concerning the contemplated setting it therefore promotes the emergence of limit
functionals whose associated minimization problems generate solutions which are close to their
high-dimensional discrete counterparts. In contrast to the application of variational methods to
discrete dynamic problems with very fine temporal and spatial resolutions the determination of
a Γ-limit thus allows for a very convenient analysis.

In order to face the determination of this Γ-limit in the following we first of all will figure
out how a ‘more continuous’ domain can be understood. Moreover, we will find a general
semi-discrete formulation of the previously considered energy functionals that transfers our
discrete comprehension to these continuous spaces as soon as operators can be represented by
a matrix. Subsequently, we will observe that the resulting sequence of functionals depending
on the dimensions m and n is equi-coercive and the involved sequence of data fidelity terms
converges continuously as m and n tend toward infinity. Incorporating the stability of the
Γ-convergence under continuous perturbations (cf. Proposition 2.23) our analysis hence reduces
to the determination of the Γ-limits of the regularizing norms. Concentrating on the special
characteristics of the mixed norm, the nuclear norm and the generalized nuclear norm we
conclude this chapter by examining their individual limit behavior as dimensions increase.
Reassembling these single results we then found continuous counterparts of the previously
introduced discrete variational problems. These maintain the existing minimizing structure and
are therefore ready to be consulted for the efficient approximate solving of high-dimensional
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discrete problems.

6.1 Analytical study of general energy functionals

Before turning to the actual interest of this chapter – the Γ-convergence of the mixed norm, the
nuclear norm and the generalized nuclear norm – we need to implement the yet contemplated
energy functionals in a setting which formally allows for this limit observation. To this end
we want to introduce three different continuous spaces of interest and find semi-discrete repre-
sentations that are able to operate on them but still resort to the discrete concepts. Further,
justifying the subsequent neglection of the data fidelity term, we want to address its continuous
convergence. While doing so we additionally determine the topology with respect to which a
general equi-coercivity can be achieved.

6.1.1 Formal setting

As already insinuated, motivated by our previous achievements in the discrete setting, in this
chapter we strive for a translation of functionals Fα : Rm×n → R of the form

Fα(A) =
1

2
||K̃A−Bm,n||2ω;2,2 + αR(A), (6.1)

with linear and continuous (and therefore compact) operator K̃ : Rm×n → Rm×n and regularizer
R : Rm×n → R with

R(A) ≥ β||A||ω;p,q ∀A ∈ Rm×n (6.2)

for some β > 0, to a setting which in some sense is ‘more continuous’. This gain of continuity
can be understood in three different ways: As a first attempt one could address the transition to
a space-continuous setting in which discrete time intervals are preserved. From an applied point
of view this becomes relevant for example in the context of cardiac MRI. Intending to image
an ever-adapting organ the ECG-supported gating technique, which allows for the collection
of measurements during short periods of cardiac quiescence, proved to be a useful tool. Hence,
while an increasing space-resolution contributes to the precision of this imaging method, sticking
to a special discrete set of time steps is crucial and should be integrated into the limit observation.
From an interpretive point of view the contrary scenario in which one is interested in studying
the behavior of the respective functionals in a time-continuous though space-discrete setting is
less intuitive. Nevertheless, for the sake of completeness we also want to discuss this second
approach of continuity. Obviously, the third option of introducing more continuity to problems
like the one in (6.1) is the observation of their behavior as soon as both, the temporal as well
as the spatial dimension variable, tend to infinity. This then represents the target scenario of
nearly all prevalent dynamic imaging techniques. Taken all together this means that within the
scope of this chapter we are interested in the following three scenarios:

72



6.1 Analytical study of general energy functionals

(I) Continuity in space, i.e. consideration of the dimension pair (mµ, nµ) := (mµ, n) ∈ N× N
with mµ →∞ as µ→∞,

(II) Continuity in time, i.e. consideration of the dimension pair (mµ, nµ) := (m,nµ) ∈ N× N
with nµ →∞ as µ→∞,

(III) Continuity in space and time, i.e. consideration of the dimension pair (mµ, nµ) ∈ N× N
with mµ, nµ →∞ as µ→∞.

In order to put these approaches in more formal words we want to agree on dealing with the open
subsets Σ ⊂ Rd and Ω ⊂ Rd′ . Additionally, respecting the analogy between matrices representing
linear operators which map vectors on vectors and general operators which handle functions,
we can then perceive that the previously mentioned scenarios aim for energy functionals that
are able to operate on a space T , which can be identified with:

(I) Iq,p(Rn,Σ) :=

{
T : Rn → Lp(Σ)

∣∣∣∣(Ty)(s) =

n∑
j=1

yjtj(s) for t ∈ Lp(Σ;Rn)

}
,

(II) Iq,p(Ω,Rm) :=

{
T : Lq

′
(Ω)→ Rm

∣∣∣∣(Ty)i =

∫
Ω
ti(r)y(r) dr for t ∈ Lq(Ω;Rm)

}
,

(III) Iq,p(Ω,Σ) :=

{
T : Lq

′
(Ω)→ Lp(Σ)

∣∣∣∣(Ty)(s) =

∫
Ω
t(s, r)y(r) dr for t ∈ Lp,q(Σ× Ω)

}
.

Note that within all three different definitions the operators are uniquely defined by an associated
element t. In order to refer to this element in the following more easily, regardless of the
considered continuity scenario, we generally want to assume that t ∈ T. Thus, we can understand
T as a placeholder for the spaces Lp(Σ,Rn), Lq(Ω;Rm) and Lp,q(Σ×Ω). Speaking of notations
that will facilitate our further analysis, we also need to mention that, when making statements
which equally apply to all spaces, i.e. to Iq,p(Rn,Σ), Iq,p(Ω,Rm) and Iq,p(Σ,Ω), we want to
use the general notation T to refer to them. Since the case in which p = q = 2 will play a
special role we moreover want to specify this notation by using T2 as soon as p and q are fixed
in that way. Beyond that, concerning the limit behavior we generally want to restrict ourselves
to considering µ → ∞. Thereby we leave it up to the reader to transfer the behavior of µ to
the behavior of the respective pair (mµ, nµ) and the corresponding continuity scenario in (I),
(II) or (III).
With these definitions and notations at hand we first of all find that in all three cases the space
of matrices Rm×n can naturally be embedded into T . Assuming that Σ and Ω are equipped with
partitions Sm = {Σm

1 , . . .Σ
m
m} and On = {Ωn

1 , . . . ,Ω
n
n} which divide them into m, respectively

n, pairwise disjoint subsets that obey

|Σ| =
m∑
i=1

|Σm
i |, |Ω| =

n∑
j=1

|Ωn
j |,

we can specify this embedding via the introduction of the operator E : Rm×n → T .
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Definition 6.1. Let T be identified with the continuous space corresponding to scenario
(I), (II) or (III). Then, depending on the considered scenario, the embedding operator E :

Rm×n → T is defined as

(I) [(EA)(y)](s) :=

n∑
j=1

yj

(
m∑
i=1

AijχΣmi
(s)

)
∀y ∈ Rn, s ∈ Σ,

(II) [(EA)(y)]i :=

∫
Ω

 n∑
j=1

AijχΩnj
(r)

 y(r) dr ∀y ∈ Lq′(Ω), i ∈ {1, . . .m},

(III) [(EA)(y)](s) :=

∫
Ω

 m∑
i=1

n∑
j=1

AijχΣmi
(s)χΩnj

(r)

 y(r) dr ∀y ∈ Lq′(Ω), s ∈ Σ.

With the help of this embedding we now want to consider the sought-after continuous translation
of functionals of the form (6.1) reasonable as soon as their evaluation for discretely representable
operators, i.e. for operators T = EA with A ∈ Rm×n, coincides with Fα(A). Following this
claim we can characterize a functional which naturally lifts our understanding of Fα to a
semi-discrete level. To do so we define Em,nα : T → R via

Em,nα (T ) :=

Fα(A), T = EA for some A ∈ Rm×n,

∞, else.
(6.3)

Trying to minimize this functional over T we thus obtain a series of problems whose elements
are equivalent to the minimization of Fα over the respective space of matrices.

Now the objective of the following is to determine the limit of the resulting sequence of functionals
(Emµ,nµα )µ∈N with respect to the three desired continuity scenarios. In order to maintain the
structure of the single minimization problems we want to pursue this goal using the concepts of
Γ-convergence. Therefore, we start by carefully examining how the operation of Emµ,nµα on its
domain T can be understood. To do so we first of all want to concentrate on the space of all
discretely representable operators, i.e. on

T mµ,nµ :=
{
T ∈ T |T = EA for some A ∈ Rmµ×nµ

}
,

and note the following property.

Remark 6.2. Considering an operator T ∈ T mµ,nµ ⊂ T with T = EA for A ∈ Rmµ×nµ we can
find a norm which resorts exclusively to the structures in T but simultaneously coincides with
the weighted mixed norm of A. In order to characterize this norm more explicitly we want to
cater to the single specifications of T :
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• T = Iq,p(Rn,Σ): In this scenario T is element of T with

t =

(
m∑
i=1

AijχΣmi

)
j=1,...,n

∈ Lp(Σ;Rn).

Hence, due to the pairwise disjointness of the Σm
i and the range of the χΣmi

we can deduce
that for ωij := |Σm

i |
q
p

||A||ω;p,q =

 m∑
i=1

 n∑
j=1

|Σm
i |

q
p |Aij |q


p
q


1
p

=

∫
Σ

m∑
i=1

 n∑
j=1

|Aij |q


p
q

χΣmi
(s) ds


1
p

=

∫
Σ

 n∑
j=1

m∑
i=1

|Aij |qχΣmi
(s)


p
q

ds


1
p

=

∫
Σ

 n∑
j=1

∣∣∣∣∣
m∑
i=1

AijχΣmi
(s)

∣∣∣∣∣
q


p
q

ds


1
p

=

∫
Σ

 n∑
j=1

|tj(s)|q


p
q

ds


1
p

(6.4)

applies.

• T = Iq,p(Ω,Rm): In this scenario T is element of T with

t =

 n∑
j=1

AijχΩnj


i=1,...,m

∈ Lq(Ω;Rm).

Hence, incorporating the disjointness of the Ωn
j we deduce similar to the previous case
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that for ωij := |Ωn
j |

||A||ω;p,q =

 m∑
i=1

∫
Ω

n∑
j=1

|Aij |qχΩnj
(r) dr


p
q


1
p

=

 m∑
i=1

∫
Ω

∣∣∣∣ n∑
j=1

AijχΩnj
(r)

∣∣∣∣qdr


p
q


1
p

=

(
m∑
i=1

||ti||pLq(Ω)

) 1
p

(6.5)

holds true.

• T = Iq,p(Ω,Σ): In this scenario T is element of T with

t =
m∑
i=1

n∑
j=1

AijχΣmi
χΩnj
∈ Lp,q(Σ× Ω).

Hence, as a combination of the previous two cases we analogously validate that

||A||ω;p,q = ||t||Lp,q(Σ×Ω) (6.6)

applies for ωij := |Σm
i |

q
p |Ωn

j |.

Consequently, using the on t ∈ Lp(Σ;Rn), t ∈ Lq(Ω;Rm) or t ∈ Lp,q(Σ × Ω) dependent
expressions in (6.4), (6.5) and (6.6) it is possible to naturally define an operator norm which
turns T mµ,nµ into a normed space.

In the course of this chapter we will see that the candidates derived in Remark 6.2 are also good
choices for a respective norm on the entire extent of T . This is why we also want to introduce
them in a formal way.

Definition 6.3. Let Iq,p(Rn,Σ), Iq,p(Ω,Rm) and Iq,p(Ω,Σ) be defined according to the
scenarios in (I), (II) or (III). Then, through

(I) ||T ||Iq,p(Rn,Σ) :=

∫
Σ

 n∑
j=1

|tj(s)|q


p
q

ds


1
p

,

(II) ||T ||Iq,p(Ω,Rm) :=

(
m∑
i=1

||ti||pLq(Ω)

) 1
p

,

(III) ||T ||Iq,p(Ω,Σ) := ||t||Lp,q(Σ×Ω)
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6.1 Analytical study of general energy functionals

we define the normed spaces
(
Iq,p(Rn,Σ), || . ||Iq,p(Rn,Σ)

)
,
(
Iq,p(Ω,Rm), || . ||Iq,p(Ω,Rm)

)
and(

Iq,p(Ω,Σ), || . ||Iq,p(Ω,Σ)

)
.

Note that, since these norms resort to well-known norms on Rn, Rm, Lp(Σ), Lq(Ω) and Lp,q(Σ×
Ω), their corresponding normed spaces are even complete, i.e. they are Banach spaces. In the
special case in which p = q = 2 we can go even further.

Remark 6.4. Let p = q = 2. Then, we can extend the characterizations in Definition 6.3 via the
introduction of the following inner product:

〈T, L〉T2 := 〈t, `〉T2 .

Through this, (T2, 〈 . , . 〉T2) defines for all three characteristics of T2 a Hilbert space.

With these insights we now want to grasp how the compact operator used in formulation (6.1)
can be extrapolated to operate on a discretely representable operator T ∈ T mµ,nµ . To do so
we first of all need to notice that within the discrete formulation the exact definition of this
operator adapts to the respective dimensions m,n ∈ N. In order to incorporate that in the
present setting we are considering a sequence of functionals for which, depending on the desired
continuity scenario, one or both of these parameters vary, from now on we want to work with
an extended version. Combining all the single definitions, this extended version should then be
able to deal with different sizes of matrices. Therefore, without relabeling, we now assume K̃
to work as an operator between

⋃
µ∈NRmµ×nµ and

⋃
µ∈NRmµ×nµ . Based on this we now want

to find an equivalent definition which operates directly on
⋃
µ∈N T mµ,nµ . With this objective in

mind we characterize K̊ :
⋃
µ∈N T mµ,nµ →

⋃
µ∈N T

mµ,nµ
2 via

K̊T := E(KA).

Interestingly, due to the coincidence of T with the closure of
⋃
µ∈N T mµ,nµ regarding the respec-

tive norm (cf. Definition 6.3) this operator can be continuously extended to T . In the following
we want to presume that K̃ was already chosen in a way such that this expansion K : T → T2

also adopts its compactness.
With the definition of this compact operator we are now able to specify the representation
of Emµ,nµα : T → R with respect to the data fidelity term. Construing Bmµ,nµ ∈ Rmµ×nµ in
formulation (6.1) as the operator EBmµ,nµ ∈ T2 we realize that

Emµ,nµα = DBmµ,nµ + αRmµ,nµ (6.7)

with DBmµ,nµ : T → R, Rmµ,nµ : T → R defined by

DBmµ,nµ (T ) :=
1

2
||KT − EBmµ,nµ ||2T2 (6.8)

Rmµ,nµ(T ) :=

R(A), if T = EA for some A ∈ Rmµ×nµ ,

∞, else.
(6.9)

77



6 Asymptotic behavior

Note that in this representation the dependence of the data fidelity term on the dimensions mµ

and nµ relates exclusively to the operator which is induced by Bmµ,nµ ∈ Rmµ×nµ . In contrast to
the definition in (6.3), neither the norm on T2 nor the compact operator K distinguishes between
operators which can be characterized by a matrix and those that do not own a characterization
like that. As a consequence, DBmµ,nµ is not only able to operate properly on T mµ,nµ , but also
assigns meaningful and finite values to general operators in T .
Within the ensuing subsections we now want to show that, given a sequence (Bmµ,nµ)µ∈N ⊂⋃
µ∈NRmµ×nµ whose corresponding sequence of operators (EBmµ,nµ)µ∈N ⊂ T2 converges in

norm toward an operator B ∈ T2, i.e. for which

lim
µ→∞

||EBmµ,nµ −B||T2 = 0

applies, these values are even meaningful in the context of Γ-convergence and it suffices to
exclusively examine the Γ-limits of the regularizing parts in Emµ,nµα . For this conclusion we
make use of Proposition 2.23: By proving that (DBmµ,nµ )µ∈N is a continuously convergent
sequence of functionals we can guarantee that for its limit DB : T → R

Γ-lim
µ→∞

Emµ,nµα = DB + α Γ-lim
µ→∞

Rmµ,nµ

applies.

6.1.2 Coercivity

Aiming for a Γ-limit that maintains the minimizing structure, i.e. whose minimizer coincides
with the limit of the sequence of minimizers of Emµ,nµα , the topology which allows for the equi-
coercivity of (Emµ,nµα )µ∈N sets the target (cf. Theorem 2.20). Thus, in order to appraise with
respect to which type of topology on T the continuous convergence of (DBmµ,nµ )µ∈N should be
striven for, we first want to discuss this coercivity.

Proposition 6.5. Let (mµ, nµ) and T be defined according to the scenario in (I), (II) or
(III). Suppose that Emµ,nµα : T → R is defined as in (6.7) and that the involved regularizer R
fulfills the constraint in (6.2). Then the sequence of functionals (Emµ,nµα )µ∈N is equi-coercive
with respect to the weak operator topology on T .

Before proving this proposition we first need to understand how the weak convergence of a
sequence of integral operators in T relates to the associated elements in T. Therefore, we
formulate the following lemma.

Lemma 6.6. Suppose that T and T are defined according to the scenario in (I), (II) or (III).
Let furthermore (Tγ)γ∈N ⊂ T be a sequence of integral operators and (tγ)γ∈N ⊂ T be the
sequence of associated elements in T that determine the operator. Then the following two
assertions are equivalent:
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(i) (Tγ)γ∈N converges with respect to the weak operator topology on T ,

(ii) (tγ)γ∈N converges with respect to the weak topology on T.

Since the proof of this lemma varies only very little with respect to the considered space of
integral operators we limit ourselves to exemplifying the equivalence of the weak convergence
in Iq,p(Rn,Σ) and Lp(Σ;Rn). The other two statements can be inferred accordingly.

Proof.

(ii) ⇒ (i)
Let (tγ)γ∈N be a weakly convergent sequence in Lp(Σ;Rn). Then due to Corollary 2.3
there exists t∗ ∈ Lp(Σ;Rn) such that

lim
γ→∞

n∑
j=1

∫
Σ

(tγ)j(s)t
′
j(s) ds =

n∑
j=1

∫
Σ

(t∗)j(s)t
′
j(s) ds

holds for all t′ ∈ Lp′(Σ)n. Hence, we can deduce

lim
γ→∞

∫
Σ

(Tγy)(s)x(s) ds = lim
γ→∞

n∑
j=1

∫
Σ

(tγ)j(s) (yj x(s)) ds =
n∑
j=1

∫
Σ

(t∗)j(s) (yj x(s)) ds

for all y ∈ Rn, x ∈ Lp′(Σ) which implies the weak convergence of (Tγ)γ∈N toward T∗ ∈
Iq,p(Rn,Σ) with

(T∗y)(s) :=
n∑
j=1

yj(t∗)j(s).

(i) ⇒ (ii)
Suppose that (Tγ)γ∈N converges weakly toward T∗ with respect to the operator topology
on Iq,p(Rn,Σ). Then

lim
γ→∞

∫
Σ

n∑
j=1

yj(tγ)j(s)x(s) ds =

∫
Σ

(T∗y)(s)x(s) ds

applies for all y ∈ Rn, x ∈ Lp′(Σ) and the associated sequence (tγ)γ∈N ⊂ Lp(Σ;Rn) is
bounded. Now considering the reflexivity of Lp(Σ;Rn) and applying Banach-Alaoglu it
follows that (tγ)γ∈N has a weakly convergent subsequence (tγξ)ξ∈N whose limit t through
Corollary 2.3 lies again in Lp(Σ;Rn). Following the argumentation in the first part of
the proof this indicates the weak convergence of the implicitly defined subsequence of
corresponding integral operators (Tγξ)ξ∈N toward T ∈ Iq,p(Rn,Σ) with

(Ty)(s) :=

n∑
j=1

yjtj(s).
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Beyond that, respecting the uniqueness of the weak convergence we obtain that T and T∗
coincide and thus T∗ ∈ Iq,p(Rn,Σ).
Now let t∗ ∈ Lp(Σ;Rn) denote the element which defines T∗. Then due to Tγ ⇀ T∗

lim
γ→∞

n∑
j=1

∫
Σ
yj(tγ)j(s)x(s) ds =

n∑
j=1

∫
Σ
yj(t∗)j(s)x(s) ds (6.10)

holds true for all x ∈ Lp
′
(Σ), y ∈ Rn. In particular this statement is valid for y =

ej with j ∈ {1, . . . , n} and all elements x of any basis of Lp′(Σ) whose combination
through (yj x(s))j=1,...,n forms a basis in Lp′(Σ;Rn). Hence, we can infer from (6.10) the
applicability of

lim
γ→∞

n∑
j=1

∫
Σ

(tγ)j(s)(t
′)j(s) ds =

n∑
j=1

∫
Σ

(t∗)j(s)(t
′)j(s) ds

for every element t′ of this basis, which already implies the validity of the statement for
any t′ ∈ Lp′(Σ;Rn).

Note that according to the proof of this lemma the limits T∗ and t∗ of the bijectively related
sequences (Tγ)γ∈N ⊂ Iq,p(Rn,Σ) and (tγ)γ∈N ⊂ Lp(Σ;Rn) also correspond to each other in the
expected way. This limit behavior can of course be transferred to sequences in Iq,p(Ω,Rm) or
Iq,p(Ω,Σ) and their corresponding sequences of defining elements in Lq(Ω;Rm) or Lp,q(Σ× Ω).
With the equivalence of weak convergences at hand we are now able to proof Proposition 6.5.

Proof of Proposition 6.5. Let (Tµ)µ∈N ⊂ T be an arbitrary sequence that fulfills

sup
µ∈N
Emµ,nµα (Tµ) <∞.

Then all elements Tµ of this sequence can be represented by a matrix Amµ,nµ ∈ Rmµ×nµ , and
there exists a constant C > 0, such that

C ≥ Emµ,nµα (Tµ) ∀µ ∈ N.

Respecting that DBmµ,nµ is strictly positive and that the discrete regularizer obeys R ≥ β||.||ω;p,q

we can deduce together with the identities in Remark 6.2 that for all µ ∈ N

C ≥ DBmµ,nµ (Tµ) +R(Amµ,nµ)

≥ β||Tµ||T .

Hence, (Tµ)µ∈N is bounded in norm by C
β . Dependent on the different characteristics of T and

its associated norm we can infer:
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• for T = Iq,p(Rn,Σ) and (Tµ)µ∈N ⊂ Iq,p(Rn,Σ) with corresponding sequence (tµ)µ∈N ⊂
Lp(Σ;Rn) it holds due to the norm equivalence in finite dimensions that there exist
constants C > 0, C̃ > 0 such that for all µ ∈ N

C

β
≥ ||Tµ||Iq,p(Rn,Σ)

=

∫
Σ

 n∑
j=1

|(tµ)j(s)|q


p
q

ds


1
p

≥

∫
Σ

C
 n∑
j=1

|(tµ)j(s)|p
 1

p


p

ds


1
p

= C

 n∑
j=1

||(tµ)j ||pLp(Σ)

 1
p

≥ CC̃||tµ||Lp(Σ;Rn)

• for T = Iq,p(Ω,Rm) and (Tµ)µ∈N ⊂ Iq,p(Ω,Rm) with corresponding sequence (tµ)µ∈N ⊂
Lq(Ω;Rm) it holds due to the norm equivalence in finite dimensions that there exists a
constant Ĉ > 0 such that for all µ ∈ N

C

β
≥ ||Tµ||Iq,p(Ω,Rm) =

(
m∑
i=1

||(tµ)i||pLq(Ω)

) 1
p

≥ Ĉ||tµ||Lq(Ω;Rm).

• for T = Iq,p(Ω,Σ) and (Tµ)µ∈N ⊂ Iq,p(Ω,Σ) with corresponding sequence of integral
kernels (tµ)µ∈N ⊂ Lp,q(Σ× Ω) it immediately holds that for all µ ∈ N

C

β
≥ ||Tµ||Iq,p(Ω,Σ) = ||tµ||Lp,q(Σ×Ω).

Thus, in all three cases the boundedness of (Tµ)µ∈N implies the boundedness of the sequence
of respective associated elements in Lp(Σ;Rn), Lq(Ω;Rm) or Lp,q(Σ× Ω). Taking into account
the reflexivity of these spaces (cf. Remark 2.2, Theorem 2.6) and following Banach-Alaoglu
this in turn induces their convergence, up to subsequences, with respect to the weak topology.
Together with Lemma 6.6 this completes the proof.

6.1.3 Continuity of data fidelity terms

With the confirmed equi-coercivity of (Emµ,nµα )µ∈N with respect to the weak topology on T we
now know in which sense a continuous convergence of (DBmµ,nµ )µ∈N should be understood in
order to strive for a global Γ-limit that maintains the minimizing structure. Hence, we can
verify the following proposition.
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Proposition 6.7. Let (mµ, nµ), T and E be defined according to the scenario in (I), (II)
or (III). Suppose that (Bmµ,nµ)µ∈N ⊂

⋃
µ∈NRmµ×nµ is a sequence of matrices whose sequence

of associated operators (EBmµ,nµ)µ∈N ⊂ T2 converges with respect to the strong topology on
T2 toward B ∈ T2 and let DBmµ,nµ : T → R be defined as in (6.8).
Then (DBmµ,nµ )µ∈N is continuously convergent with respect to the weak topology on T to
DB : T → R with

DB :=
1

2
||KT −B||2T2 .

Proof. Let (Tµ)µ∈N ⊂ T be a weakly convergent sequence with limit T∗ ∈ T . Then, due
to Lemma 2.14 and the compactness of K it follows that (KTµ)µ∈N ⊂ T2 converges with
respect to the strong topology toward KT∗ ∈ T2. Together with the strong convergence of
(EBmµ,nµ)µ∈N ⊂ T2 to B ∈ T2 this directly implies

lim
µ→∞

DBmµ,nµ (Tµ) = lim
µ→∞

1

2
||KTµ − EBmµ,nµ ||2T2 =

1

2
||KT∗ −B||2T2 = DB(T∗).

As already insinuated, this proposition together with the statement in Proposition 2.23 suggests
to neglect the data fidelity terms when considering the Γ-convergence of (Emµ,nµα )µ∈N. As soon
as one can find a Γ-limit for the sequence of regularizers (Rmµ,nµ)µ∈N, this, combined with
DB, represents exactly the Γ-limit of the sequence of interest. Therefore, we want to dedicate
the subsequent section exclusively to the detailed determination of the Γ-limits of regularizing
sequences that involve the norms which were introduced previously in this thesis.

6.2 Γ-convergence of regularizing norms

In the previous section we showed that the sequence of functionals (Emµ,nµα )µ∈N defined in (6.7)
is equi-coercive with respect to the weak topology. Beyond that, referring to the same topology,
we saw that its corresponding sequence of data fidelity terms (DBmµ,nµ )µ∈N is continuously
convergent. Keeping the statements in Theorem 2.20 and Proposition 2.23 in mind we are now
interested in completing the asymptotic analysis of (Emµ,nµα )µ∈N by discussing the Γ-convergence
of the sequence of involved regularizers.
Within the following subsections we therefore want to address the determination of the Γ-limits
of mixed norms, the nuclear norm and the generalized nuclear norm. In order to eventually
profit from the previously mentioned results these limits should all be ascertained with respect
to the weak topology on T . For the sake of comprehensibility, in doing so, we want to renounce
working with placeholders T and T to treat all three continuity approaches at once. Instead,
we want to contemplate the spaces Iq,p(Rn,Σ), Iq,p(Ω,Rm) and Iq,p(Ω,Σ) separately and, in
the case of upcoming similar arguments, only refer to the more extensive explanation.
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6.2 Γ-convergence of regularizing norms

6.2.1 Mixed norms

We start our analysis with the consideration of discrete regularizers that coincide with weighted
mixed norms for values p, q > 1. Harking back to the formulation in (6.1) this means that we
are interested in the case where R : Rm×n → R is defined via

R(A) = ||A||ω;p,q for p, q > 1, ω ∈ Rm×n. (6.11)

This choice obviously fulfills the condition in (6.2) such that the results in Section 6.1 apply.
Being first of all interested in the space-continuous but time-discrete continuity scenario, accord-
ing to (6.9), the definition in (6.11) implies that we need to consider the asymptotic behavior
of the sequence of semi-discrete functionals Rm,np,q : Iq,p(Rn,Σ)→ R which are defined by

Rm,np,q (T ) :=


(∑m

i=1

(∑n
j=1 ωij |Aij |q

) p
q

) 1
p

, if T = EA for some A ∈ Rm×n

∞, else.
(6.12)

For m→∞ this results in the following theorem.

Theorem 6.8. Let p, q > 1. Suppose that (Sm)m∈N is a sequence of partitions of Σ with
the following property:

(#) max
i∈{1,...,m}

diam(Σm
i )

m→∞−−−−→ 0.

Let furthermore ωij := |Σm
i |

q
p for all i ∈ {1, ...,m}, j ∈ {1, ..., n}. Then (Rm,np,q )m∈N Γ-

converges with respect to the weak operator topology on Iq,p(Rn,Σ) for m → ∞ to R∞,np,q :

Iq,p(Rn,Σ)→ R with

R∞,np,q (T ) :=


∫

Σ

 n∑
j=1

|tj(s)|q


p
q

ds


1
p

.

Prior to proving this theorem we want to draw attention to a property that applies to all
discretely representable integral operators.

Remark 6.9. We have already seen in Remark 6.2 that for a matrix A ∈ Rm×n and t =(∑m
i=1AijχΣmi

)
j=1,...,n

∈ Lp(Σ;Rn) the identity

||A||ω;p,q =

∫
Σ

 n∑
j=1

|tj(s)|q


p
q

ds


1
p

holds true as soon as ωij := |Σm
i |

q
p . Applied to the setting in Theorem 6.8 this implies that

the evaluations of Rm,np,q and R∞,np,q at any discretely representable integral operator T = EA
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6 Asymptotic behavior

coincide.

This observation now enables us to prove Theorem 6.8.

Proof of Theorem 6.8.

(1) Lim inf inequality:
Let (Tm)m∈N ⊂ Iq,p(Rn,Σ) be a convergent sequence with respect to the weak operator
topology, i.e. there exists some T∗ such that Tmy ⇀ T∗y ∀y ∈ Rn for m→∞.
According to Lemma 6.6 this implicitly defines the weakly convergent sequence (tm)m∈N

of elements in Lp(Σ;Rn) whose limit t∗ corresponds to T∗. Consequently, T∗ ∈ Iq,p(Rn,Σ)

holds and for lim infm→∞Rm,np,q (Tm) =∞ the inequality is immediately true since

R∞,np,q (T∗) <∞ = lim inf
m→∞

Rm,np,q (Tm).

Hence, let lim infm→∞Rm,np,q (Tm) < ∞. Then there exists a subsequence (Tmφ)φ∈N ⊆
(Tm)m∈N such that

∞ > lim inf
m→∞

Rm,np,q (Tm) = lim
φ→∞

Rmφ,np,q (Tmφ)

which implies

sup
φ∈N
Rmφ,np,q (Tmφ) <∞

and thus the boundedness of the associated subsequence (tmφ)φ∈N ⊆ (tm)m∈N. Taking
into account the reflexivity of Lp(Σ;Rn) (cf. Remark 2.2), with Banach-Alaoglu we can
therefore find a subsubsequence (tmφψ )ψ∈N ⊆ (tmφ)φ∈N ⊆ (tm)m∈N and a t̃ ∈ Lp(Σ;Rn)

such that tmφψ ⇀ t̃ for ψ →∞. This, again due to Lemma 6.6, characterizes the weakly

convergent subsubsequence (Tmφψ )ψ∈N ⊆ (Tmφ)φ∈N ⊆ (Tm)m∈N with limit T̃ ∈ Iq,p(Rn,Σ)

which thanks to the uniqueness of the weak convergence coincides with T∗.
Using the correspondence between (Tmφψ )ψ∈N and (tmφψ )ψ∈N as well as between their
respective limits together with the lower semicontinuity of the norm on Lp(Σ;Rn) (cf.
Remark 2.10) eventually leads to

lim inf
m→∞

Rm,np,q (Tm) = lim
φ→∞

Rmφ,np,q (Tmφ)

= lim
ψ→∞

Rmφψ ,np,q (Tmφψ )

= lim inf
ψ→∞

Rmφψ ,np,q (Tmφψ )

= lim inf
ψ→∞

R∞,np,q (Tmφψ )

≥ R∞,np,q (T∗).

Notice that in the fourth equality we used the observation in Remark 6.9.
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6.2 Γ-convergence of regularizing norms

(2) Existence of a recovery sequence:
Let Iq,pC (Rn,Σ) be the set of all integral operators which are induced by t ∈ C∞c (Σ;Rn),
i.e.

Iq,pC (Rn,Σ) :=

T : Rn → Lp(Σ)

∣∣∣∣ (Ty)(s) =
n∑
j=1

yjtj(s) for t ∈ C∞c (Σ;Rn)

 .

Then Iq,pC (Rn,Σ) lies dense in Iq,p(Rn,Σ) since C∞c (Σ;Rn) lies dense in Lp(Σ;Rn) (cf.
Corollary 2.4) and it suffices to show the existence of a recovery sequence for all T ∈
Iq,pC (Rn,Σ) (cf. Remark 2.21).
Thus, let T ∈ Iq,pC (Rn,Σ) and t ∈ C∞c (Σ;Rn) be its corresponding kernel characterizing
element. We define a sequence of integral operators (Tm)m∈N ⊂ Iq,p(Rn,Σ) via the
sequence of its inducing elements (tm)m∈N ⊂ Lp(Σ;Rn) which we characterize by

(tm)j(s) :=
m∑
i=1

∫
Σmi

tj(s̃) ds̃

|Σm
i |

χΣmi
(s) ∀j ∈ {1, . . . , n}, s ∈ Σ.

Due to the continuity of the tj and property (#) we can then find for all εj > 0 some
Mj ∈ N such that for s ∈ Σm

i′ , i
′ ∈ {1, . . . ,m} and all m ≥Mj the following holds:

|(tm)j(s)− tj(s)| =
∣∣∣∣∣
∫

Σm
i′
tj(s̃) ds̃

|Σm
i′ |

− tj(s)
∣∣∣∣∣

=
1

|Σm
i′ |

∣∣∣∣∣
∫

Σm
i′

tj(s̃)− tj(s) ds̃

∣∣∣∣∣
≤ sup

s̃∈Σm
i′

|tj(s̃)− tj(s)|

≤ εj .

(6.13)

The combination of this result for varying j ∈ {1, . . . , n} then yields that for every ε > 0

there also exists some M ∈ N which guarantees |tm − t| ≤ ε for all m ≥ M . Hence,
the above constructed sequence of elements in Lp(Σ;Rn) converges (uniformly) toward t
implying also the convergence of (Tm)m∈N toward T . Together with the continuity of the
single components of R∞,np,q and the coincidence of Rm,np,q (Tm) and R∞,np,q (Tm) for all m ∈ N
this ultimately leads to

lim
m→∞

Rm,np,q (Tm) = lim
m→∞

R∞,np,q (Tm) = R∞,np,q (T ).

When considering the contrary continuity approach in which one strives for a time-continuous
but space-discrete scenario, i.e. when contemplating Iq,p(Ω,Rm), the discrete choice in (6.11)
asks for the asymptotic study of the sequence of functionals Rm,np,q : Iq,p(Ω,Rm)→ R which are
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6 Asymptotic behavior

also characterized through the expression in (6.12). In this setting then the following convergence
behavior can be observed.

Theorem 6.10. Let p,q > 1. Suppose that (On)n∈N is a sequence of partitions of Ω with
the following property:

(#) max
j∈{1,...,n}

diam(Ωn
j )

n→∞−−−→ 0.

Let furthermore ωij := |Ωn
j | for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Then (Rm,np,q )n∈N Γ-

converges with respect to the weak operator topology on Iq,p(Ω,Rm) for n → ∞ to Rm,∞p,q :

Iq,p(Ω,Rm)→ R with

Rm,∞p,q (T ) :=

(
m∑
i=1

||ti||pLq(Ω)

) 1
p

.

Similar to Remark 6.9 we can deduce from Remark 6.2 that Rm,np,q and Rm,∞p,q coincide for dis-
cretely representable arguments if ωij := |Ωn

j |. Since also here due to Lemma 6.6 the weak
convergences of (Tn)n∈N ⊂ Iq,p(Ω,Rm) and (tn)n∈N ⊂ Lq(Ω;Rm) are equivalent, this theorem
can be proven following the same line of argument of the proof of Theorem 6.8 which is why we
want to omit further details.

Covering the last approach, which simultaneously provides continuity in space and time, we
interpret the expression in (6.12) as the definition of a functional that maps from Iq,p(Ω,Σ) to R.
In this scenario we are interested in the behavior of Rm,np,q as soon as both parameters, m and n,
tend toward infinity. In order to avoid notational confusion while pursuing this interest we want
to revisit subscripting the pair (m,n). By considering (mµ, nµ) with mµ, nµ →∞ as µ→∞ we
are then able to observe the limit behavior dependent on a single parameter. Unsurprisingly, the
according analysis results in the combination of the previous two assertions.

Theorem 6.11. Let p, q > 1. Suppose that (Smµ)µ∈N, (Onµ)µ∈N are sequences of partitions
of Σ and Ω with the following properties:

(#) max
i∈{1,...,mµ}

diam(Σ
mµ
i )

µ→∞−−−→ 0,

(##) max
j∈{1,...,nµ}

diam(Ω
nµ
j )

µ→∞−−−→ 0.

Let furthermore ωij := |Ωnµ
j ||Σ

mµ
i |

q
p for all i ∈ {1, ...,mµ}, j ∈ {1, ..., nµ}. Then (Rmµ,nµp,q )µ∈N

Γ-converges with respect to the weak operator topology on Iq,p(Ω,Σ) for µ → ∞ to R∞p,q :

Iq,p(Ω,Σ)→ R with

R∞p,q(T ) := ||t||Lp,q(Σ×Ω).

The similarity to the assertions in Theorem 6.8 and Theorem 6.10 also allows us to again proceed
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6.2 Γ-convergence of regularizing norms

equally when it comes to proving. The statements in Remark 6.2 and Lemma 6.6 can be applied
likewise. Incorporating, in addition to that, the lower semicontinuity of the norm on Lp,q(Σ×Ω)

regarding the weak topology and the denseness of C∞c (Σ× Ω) in Lp,q(Σ× Ω) (cf. Remark 2.10,
Lemma 2.11), we can eventually pursue the exact same strategy as in the proof of Theorem 6.8.

With the results in Theorems 6.8, 6.10 and 6.11 we therefore found limits that, depending on
the respective type of continuity approach, complete the asymptotic analysis of functionals of
the form (6.7) that include regularizing mixed norms. Combined with the respective results in
Propositions 6.5 and 6.7 they guarantee the minimization structure preserving Γ-convergence
of Em,nα .

6.2.2 Nuclear norm

After the warm-up in the previous subsection we now want to turn toward the analysis of the
asymptotic behavior of the nuclear norm. In terms of the formulation in (6.1) this means we
are interested in considering problems that involve

R(A) = ||A||ω;∗ for ω ∈ Rm×n.

For p = q = 2, the condition in (6.2) can also be verified in this case: Choosing ω ∈ Rm×n to be
defined by ωij = ω2

ij for all i ∈ {1, . . . ,m}, j ∈ {1, . . . n} while taking advantage of the general
positivity of all singular values and the representation of the Frobenius norm over the singular
value decomposition we find that

||A||ω;2,2 = ||ω ·A||2,2 =

min(m,n)∑
ξ=1

σξ(ω ·A)2

 1
2

(6.14)

≤

σmax(ω ·A)

min(m,n)∑
ξ=1

σξ(ω ·A)

 1
2

(6.15)

≤

min(m,n)∑
ξ=1

σξ(ω ·A)

2
1
2

= ||A||ω;∗. (6.16)

Consequently, the conclusions in Section 6.1 are applicable and studying the asymptotic behav-
ior of the nuclear norm turns out to be the missing piece of the puzzle on our way to grasp how
functionals Em,nα defined by (6.7) and their corresponding minimizers act as soon as dimensions
tend to infinity.

Concerning the analysis of the mixed norm we saw that, regardless of the contemplated continuity
approach, the proofs of all Γ-convergence results were mainly following the same strategy. This
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6 Asymptotic behavior

was because, realizing that there is a natural bijective relation between Iq,p(Rn,Σ) and

Iq,pn (Ω,Σ) :=

T ∈ Iq,p(Ω,Σ)

∣∣∣∣(Ty)(s) =

∫
Ω

n∑
j=1

tj(s)χΩnj
(r)y(r) dr with t ∈ Lp(Σ;Rn)


(6.17)

for any Ω ⊂ Rd with arbitrary partition On = {Ωn
1 , . . . ,Ω

n
n}, respectively between Iq,p(Ω,Rm)

and

Iq,pm (Ω,Σ) :=

{
T ∈ Iq,p(Ω,Σ)

∣∣∣∣(Ty)(s) =

∫
Ω

m∑
i=1

ti(r)χΣmi
(s)y(r) dr with t ∈ Lq(Ω;Rm)

}
(6.18)

for any Σ ⊂ Rd with arbitrary partition Sm = {Σm
1 , . . . ,Σ

m
m}, both semi-discrete scenarios can

in general be perceived as special cases of the entirely continuous case. Within this subsection
we thus want to swap the order in which we are considering the various continuity approaches.
Starting with the most general one - the one which aims for a continuous resolution in space
and time - we can refer to similar proving techniques more efficiently and therefore facilitate
the ensuing elaborations.
Hence, reverting to the definition in (6.9) we are first of all intrigued in understanding the
behavior of the functional Rm,n∗ : I2,2(Ω,Σ)→ R characterized by

Rm,n∗ (T ) :=


∑min(m,n)

ξ=1 σξ(ω ·A), if T = EA for some A ∈ Rm×n

∞, else
(6.19)

for ω ∈ Rm×n as soon as m,n → ∞. With this objective, harking back to the single variable
notation (mµ, nµ) used in Theorem 6.11, we examine its Γ-limit for µ→∞.

Theorem 6.12. Suppose that (Smµ)µ∈N, (Onµ)µ∈N are sequences of partitions of Σ and Ω

with the following properties:

(#) max
i∈{1,...,mµ}

diam(Σ
mµ
i )

µ→∞−−−→ 0,

(##) max
j∈{1,...,nµ}

diam(Ω
nµ
j )

µ→∞−−−→ 0.

Let furthermore ωij := (|Σmµ
i ||Ω

nµ
j |)

1
2 for all i ∈ {1, . . . ,mµ}, j ∈ {1, . . . , nµ} and (fφ)φ∈N

be an orthonormal basis of L2(Ω). Then (Rmµ,nµ∗ )µ∈N Γ-converges with respect to the weak
operator topology on I2,2(Ω,Σ) for µ→∞ to R∞∗ : I2,2(Ω,Σ)→ R with

R∞∗ (T ) :=
∑
φ∈N

〈
(T ∗T )

1
2 fφ , fφ

〉
.

Though the proof of this theorem is based on very similar components as the ones related to
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6.2 Γ-convergence of regularizing norms

the mixed norm there are some crucial points where we have to work a little bit harder. This
is why we want to give a detailed explanation on its derivation instead of just pointing to the
differences. For this purpose, we start by collecting some auxiliary statements which will prove
useful in the following.

Lemma 6.13. Let T ∈ I2,2(Ω,Σ) and (σξ)ξ∈N be its singular values. Then

R∞∗ (T ) =
∑
ξ∈N

σξ.

Proof. Let T ∈ I2,2(Ω,Σ) and (σξ, uξ, vξ)ξ∈N be an associated singular system. Hence, by
definition (σ2

ξ , vξ)ξ∈N is an eigensystem of the selfadjoint operator T ∗T which therefore, due to
the spectral theorem, can be understood as

T ∗T =
∑
ξ∈N

σ2
ξ (vξ ⊗ vξ).

Defining B : L2(Ω)→ L2(Ω) via

B :=
∑
ξ∈N

σξ(vξ ⊗ vξ)

we consequently compute that for every y ∈ L2(Ω)

B(By) =
∑
ξ∈N

σξ

〈∑
η∈N

ση〈y, vη〉vη , vξ
〉
vξ =

∑
ξ∈N

σ2
ξ 〈y, vξ〉vξ = T ∗Ty

applies which indicates the equality of B and (T ∗T )
1
2 . Following the definition of R∞∗ and

making use of Parseval’s identity then eventually yields for any orthonormal basis (fφ)φ∈N of
L2(Ω)

R∞∗ (T ) =
∑
φ∈N
〈Bfφ, fφ〉 =

∑
φ∈N

〈∑
ξ∈N

σξ〈fφ, vξ〉vξ , fφ
〉

=
∑
ξ∈N

σξ
∑
φ∈N
|〈fφ, vξ〉|2 =

∑
ξ∈N

σξ.

Note that with the help of this lemma we furthermore gain information on the relation between
Rm,n∗ and R∞∗ for discretely representable integral operators.
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Remark 6.14. For ωij := (|Σi||Ωj |)
1
2 and any T = EA we can calculate that

(T ∗Ty)(r) =
m∑
i=1

n∑
j=1

AijχΩnj
(r)

∫
Σmi

(Ty)(s) ds

=
m∑
i=1

n∑
j=1

AijχΩnj
(r)

∫
Σmi

m∑
i′=1

n∑
j′=1

Ai′j′χΣm
i′

(s)

(∫
Ωn
j′

y(r̄) dr̄

)
ds

=
m∑
i=1

n∑
j=1

Aij |Σm
i |χΩnj

(r)

 n∑
j′=1

Aij′

(∫
Ωn
j′

y(r̄) dr̄

)
holds for any y ∈ L2(Ω), r ∈ Ω, such that the eigenvalue problem for T ∗T , which yields the
singular values of T , can at first be described by

n∑
j=1

 m∑
i=1

Aij |Σm
i |

 n∑
j′=1

Aij′

(∫
Ωn
j′

v(r̄) dr̄

)χΩnj
(r) = λv(r) ∀r ∈ Ω

for an eigenvalue λ ∈ R and an eigenfunction v ∈ L2(Ω). Reinserting the information thus
obtained about the representation of the eigenfunction, namely that

v(r) =
n∑
j=1

cj

|Ωn
j |

1
2

χΩnj
(r) ∀r ∈ Ω

for some c ∈ Rn, as well as considering the linear independence of the χΩnj
returns

T ∗Tv = λv

⇔
n∑
j=1

 m∑
i=1

Aij |Σi|

 n∑
j′=1

Aij′ cj′ |Ωj′ |
1
2

χΩj (r) = λ

n∑
j=1

cj

|Ωj |
1
2

χΩj (r) ∀r ∈ Ω

⇔
m∑
i=1

(|Σm
i ||Ωn

j |)
1
2Aij

 n∑
j′=1

(|Σm
i ||Ωn

j′ |)
1
2Aij′cj′

 = λcj ∀j = 1, . . . , n

⇔ (ω ·A)T (ω ·A)c = λc.

Thus, the singular values of T match exactly with those of the matrix ω ·A which together with
Lemma 6.13 guarantees the equality of Rm,n∗ (T ) and R∞∗ (T ).

Another useful tool which helps proving Theorem 6.12 is the lower semicontinuity of R∞∗ . Its
derivation makes use of the following lemma.
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6.2 Γ-convergence of regularizing norms

Lemma 6.15. Let Î2,2(Ω,Σ) be the set of all operators in I2,2(Ω,Σ) with finite number of
nonzero singular values, i.e.

Î2,2(Ω,Σ) := {T ∈ I2,2(Ω,Σ) | ∃Ξ ∈ N : σξ(T ) = 0 ∀ξ > Ξ}.

Suppose that 〈·, ·〉 denotes the inner product on I2,2(Ω,Σ) defined in Remark 6.4. Then, for
any T ∈ I2,2(Ω,Σ)

R∞∗ (T ) = sup
L∈Î2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉

applies.

Proof. Let T ∈ I2,2(Ω,Σ) and (σξ, uξ, vξ)ξ∈N be an associated singular system. In order to
prove the assertion in the following we want to exhibit:

(i) sup
L∈Î2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉 ≥ R∞∗ (T ),

(ii) sup
L∈Î2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉 ≤ R∞∗ (T ).

For the first conjecture we define the integral operator L ∈ I2,2(Ω,Σ) via its kernel

`(s, r) :=
∑
ξ∈N

uξ(s) vξ(r) ∀s ∈ Σ, ∀r ∈ Ω.

By computing the eigenvalues of L∗L we can verify that all singular values of L equal 1, such
that σmax(L) = 1 applies. Now utilizing the representation of T through its singular value
decomposition, i.e. realizing that its characterizing element t ∈ L2(Σ× Ω) is of the form

t(s, r) =
∑
ξ∈N

σξuξ(s)vξ(r) ∀s ∈ Σ, r ∈ Ω

(cf. Lemma 2.17), then leads to

〈L, T 〉 =

∫
Σ

∫
Ω
`(s, r)t(s, r) dr ds

=
∑
ξ∈N

∑
η∈N

ση

∫
Σ
uξ(s)uη(s) ds

∫
Ω
vξ(r)vη(r) dr

=
∑
ξ∈N

σξ.

In fact we can even deduce likewise that for a truncated version LΞ ∈ Î2,2(Ω,Σ) of L, which for
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6 Asymptotic behavior

some Ξ ∈ N is defined by the kernel

`Ξ(s, r) :=
Ξ∑
ξ=1

uξ(s)vξ(r) ∀s ∈ Σ, r ∈ Ω

and therefore shares the maximum singular value of L,

〈LΞ, T 〉 =
Ξ∑
ξ=1

σξ

holds true. Combining these identities and incorporating the result in Lemma 6.13 we thus
obtain that

R∞∗ (T ) = 〈LΞ, T 〉+

∞∑
ξ=Ξ+1

σξ ≤ sup
L∈Î2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉+

∞∑
ξ=Ξ+1

σξ. (6.20)

Since Ξ ∈ N was arbitrary and the latter summand in (6.20) is tending to zero as Ξ tends to
infinity this eventually implies

sup
L∈Î2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉 ≥ R∞∗ (T ).

For the second conjecture we want to contemplate an arbitrary L ∈ I2,2(Ω,Σ) whose maximum
singular value σmax(L) does not exceed 1. Once again representing T and L through their
singular systems (σξ, uξ, vξ)ξ∈N and (ση, uη, vη)η∈N and applying the inequalities of Cauchy-
Schwarz and Bessel we observe that this setting implies

〈L, T 〉 =

∫
Σ

∫
Ω

∑
ξ∈N

σξuξ(s)vξ(r)

∑
η∈N

σηuη(s)vη(r)

 dr ds

≤
∑
ξ∈N

∑
η∈N

σξ 〈uξ, uη〉 〈vξ, vη〉

≤
∑
ξ∈N

σξ

∑
η∈N
〈uξ, uη〉2

 1
2
∑
η∈N
〈vξ, vη〉2

 1
2

≤
∑
ξ∈N

σξ ||uξ||L2(Σ) ||vξ||L2(Ω)

=
∑
ξ∈N

σξ.
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Therefore, due to Î2,2(Ω,Σ) ⊂ I2,2(Ω,Σ) and the result in Lemma 6.13 we can guarantee that

sup
L∈Î2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉 ≤ sup
L∈I2,2(Ω,Σ)
σmax(L)≤1

〈L, T 〉 ≤
∑
ξ∈N

σξ = R∞∗ (T ).

With this statement we can consequently derive the lower semicontinuity ofR∞∗ .

Lemma 6.16. R∞∗ is lower semi-continuous with respect to the weak topology.

Proof. Let L ∈ Î2,2(Ω,Σ) with corresponding singular system (ση, uη, vη)η∈{1,...,H} and max-
imum singular value that does not exceed 1. Further let (Tγ)γ∈N ⊂ I2,2(Ω,Σ) be a weakly
convergent sequence of integral operators with limit T∗ and respective associated characterizing
elements ((tγ)ξ)ξ∈N and t∗ in L2(Σ× Ω). This convergence is then equivalent to the validity of∫

Σ
x(s) (T∗y)(s) ds = lim

γ→∞

∫
Σ
x(s) (Tγy)(s) ds ∀x ∈ L2(Σ), ∀y ∈ L2(Ω)

whereby via the representation of the characterizing element of L through its singular system
(cf. Lemma 2.17) it holds that

〈L, T∗〉 =

∫
Σ

∫
Ω

 H∑
η=1

σηuη(s)vη(r)

 t∗(s, r) dr ds

=

H∑
η=1

ση

∫
Σ
uη(s)(T∗vη)(s) ds

=
H∑
η=1

ση lim
γ→∞

∫
Σ
uη(s)(Tγvη)(s) ds

= lim
γ→∞

∫
Σ

∫
Ω

H∑
η=1

σηuη(s)vη(r) tγ(s, r) dr ds

= lim
γ→∞
〈L, Tγ〉.

Additionally applying Lemma 6.15 which yields for every γ ∈ N

〈L, Tγ〉 ≤ sup
L∈Î2,2(Ω,Σ)

σmax(L)≤1

〈L, Tγ〉 = R∞∗ (Tγ)

then leads to

〈L, T∗〉 = lim inf
γ→∞

〈L, Tγ〉 ≤ lim inf
γ→∞

R∞∗ (Tγ).

Modifying this last inequality by taking the supremum over all L ∈ Î2,2(Ω,Σ) that fulfill
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6 Asymptotic behavior

σmax(L) ≤ 1 on the left hand side together with the identity in Lemma 6.15 eventually proves
the assertion.

Before proving Theorem 6.12 we now need to verify one last statement.

Lemma 6.17. For all T ∈ I2,2(Ω,Σ) it holds that

R∞∗ (T ) = sup
∑
φ∈N
|〈Tfφ, eφ〉|

where the supremum is taken over all orthonormal systems (eφ)φ∈N, (fφ)φ∈N in L2(Σ), respec-
tively L2(Ω).

Proof. Let T ∈ I2,2(Ω,Σ) and (σξ, uξ, vξ)ξ∈N be an associated singular system. Thus, (uξ)ξ∈N

and (vξ)ξ∈N are orthonormal systems in L2(Σ), respectively L2(Ω), and we can deduce

sup
∑
φ∈N
|〈Tfφ, eφ〉| ≥

∑
ξ∈N
|〈Tvξ, uξ〉| =

∑
ξ∈N

σξ ||uξ||2 = R∞∗ (T ).

On the other hand, when exploiting the singular system based representation of T as well as
Young’s and Bessel’s inequalities, we can see that for arbitrary orthonormal systems (ēφ)φ∈N ⊂
L2(Σ) and (f̄φ)φ∈N ⊂ L2(Ω)

∑
φ∈N
|〈T f̄φ, ēφ〉| =

∑
φ∈N

∣∣∣∣∣∣
〈∑
ξ∈N

σξ 〈vξ, f̄φ〉uξ, ēφ
〉∣∣∣∣∣∣

≤
∑
φ∈N

∑
ξ∈N

σξ
∣∣〈vξ, f̄φ〉 〈uξ, ēφ〉∣∣

≤ 1

2

∑
φ∈N

∑
ξ∈N

σξ
(
|〈vξ, f̄φ〉|2 + |〈uξ, ēφ〉|2

)
≤ 1

2

∑
ξ∈N

σξ
(
||vξ||2 + ||uξ||2

)
=
∑
ξ∈N

σξ

= R∞∗ (T )

holds which due to the arbitrariness of (ēφ)φ∈N and (f̄φ)φ∈N can be generalized to

sup
(eφ)φ,(fφ)φ

ONS

∑
φ∈N
|〈Tfφ, eφ〉| ≤ R∞∗ (T ).

With this we have everything at hand to finally demonstrate the validity of Theorem 6.12. In
doing so, we abridge the parts that are borrowed from the mixed norm case in the previous
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6.2 Γ-convergence of regularizing norms

subsection.

Proof of Theorem 6.12.

(1) Lim inf inequality:
Let (Tµ)µ∈N ⊂ I2,2(Ω,Σ) be a convergent sequence with respect to the weak operator
topology. Then due to the equivalence of convergence concepts on integral operators
and their kernels (cf. Lemma 6.6) its limit T∗ lies in I2,2(Ω,Σ) and the inequality holds
immediately for lim infµ→∞Rmµ,nµ∗ (Tµ) =∞.
Thus, let lim infµ→∞Rmµ,nµ∗ (Tµ) < ∞. Then there exists a subsequence (Tµφ)φ∈N ⊆
(Tµ)µ∈N such that

∞ > lim inf
µ→∞

Rmµ,nµ∗ (Tµ) = lim
φ→∞

Rmµφ ,nµφ∗ (Tµφ),

which implies

sup
φ∈N
Rmµφ ,nµφ∗ (Tµφ) <∞.

This, together with the reflexivity of L2(Σ × Ω), enables us to apply Banach-Alaoglu
and infer the existence of a weakly convergent subsubsequence (Tµφψ )ψ∈N with limit T∗.
Making use of the in Lemma 6.16 shown lower semicontinuity of R∞∗ and involving Remark
6.14 then leads to

lim inf
µ→∞

Rmµ,nµ∗ (Tµ) = lim
φ→∞

Rmµφ ,nµφ∗ (Tµφ)

= lim inf
ψ→∞

R
mµφψ

,nµφψ
∗ (Tµφψ )

= lim inf
ψ→∞

R∞∗ (Tµφψ )

≥ R∞∗ (T∗).

(2) Existence of a recovery sequence:
Let Î2,2(Ω,Σ) be the set of all integral operators in I2,2(Ω,Σ) with finite number of
nonzero singular values, i.e.

Î2,2(Ω,Σ) :=
{
T ∈ I2,2(Ω,Σ) | ∃ Ξ ∈ N : σξ(T ) = 0 ∀ξ > Ξ

}
.

Furthermore, suppose that T ∈ I2,2(Ω,Σ) is equipped with the singular system (σξ, uξ, vξ)ξ

for ξ ∈ N. Then, according to Lemma 2.17 the corresponding kernel t ∈ L2(Σ × Ω) can
be represented by

t(s, r) =
∑
ξ∈N

σξuξ(s)vξ(r)
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6 Asymptotic behavior

and its truncation tΞ ∈ L2(Σ× Ω) with

tΞ(s, r) =

Ξ∑
ξ=1

σξuξ(s)vξ(r), Ξ ∈ N

uniquely defines an operator TΞ ∈ Î2,2(Ω,Σ). Respecting the positivity of all singular
values we realize that this truncated version of T fulfills

||T − TΞ||2I2,2(Ω,Σ) =

∣∣∣∣∣∣∣∣ ∞∑
ξ=Ξ+1

σξuξvξ

∣∣∣∣∣∣∣∣2
L2(Σ×Ω)

=

∞∑
ξ=Ξ+1

∞∑
ξ′=Ξ+1

σξσξ′〈uξ, uξ′〉L2(Σ)〈vξ, vξ′〉L2(Ω)

=

∞∑
ξ=Ξ+1

σ2
ξ

≤

 ∞∑
ξ=Ξ+1

σξ

2

.

Due to the convergence of (σξ)ξ∈N toward zero, this implies that given any ε > 0 we are
able to find Ξ0 ∈ N big enough such that

||T − TΞ0 ||I2,2(Ω,Σ) ≤ ε.

Hence, Î2,2(Ω,Σ) lies dense in I2,2(Ω,Σ) and according to Remark 2.21 it is sufficient to
find a recovery sequence for all T ∈ Î2,2(Ω,Σ).
So let T ∈ Î2,2(Ω,Σ) and (σξ, uξ, vξ)ξ∈{1,...,Ξ} be its associated singular system. Moreover,
let t ∈ L2(Σ× Ω) with

t(s, r) =
Ξ∑
ξ=1

σξuξ(s)vξ(r)

denote its corresponding integral kernel. Then, we define the sequence of operators
(Tµ)µ∈N ⊂ Î2,2(Ω,Σ) via the sequence of its inducing kernels (tµ)µ∈N ⊂ L2(Σ× Ω) which
are characterized by

tµ(s, r) :=
Ξ∑
ξ=1

σξ(Pmµuξ)(s)(Qnµvξ)(r).

Here, for any m,n ∈ N, Pmµ : L2(Σ) → L2(Σ) and Qnµ : L2(Ω) → L2(Ω) indicate
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projections that we want to define via

Pmx :=
m∑
i=1

∫
Σmi

x(s) ds

|Σm
i |

χΣmi
, Qny :=

n∑
j=1

∫
Ωnj
y(r) dr

|Ωn
j |

χΩnj
. (6.21)

Note that, since Jensen’s inequality ensures that for all x ∈ L2(Σ), y ∈ L2(Ω) with
||x||L2(Σ) ≤ 1, ||y||L2(Ω) ≤ 1

||Pmx||2L2(Σ) =
m∑
i=1

∣∣∣∣∣
∫

Σmi
x(s) ds

|Σm
i |

∣∣∣∣∣
2

|Σm
i | ≤

m∑
i=1

∫
Σmi
|x(s)|2 ds

|Σm
i |

|Σm
i | = ||x||2L2(Σ) ≤ 1, (6.22)

||Qny||2L2(Ω) ≤
n∑
j=1

∫
Ωnj
|y(r)|2 dr

|Ωn
j |

|Ωn
j | ≤ 1 (6.23)

holds, these definitions essentially imply the boundedness of ||Pm|| and ||Qn|| by 1. In
fact this boundedness is even independent of the parameters m and n.
With the objective of validating the convergence of (Tµ)µ∈N toward T we now want to
scrutinize the behavior of ||T − Tµ||I2,2(Ω,Σ). To this end we initially ascertain that

||T − Tµ||I2,2(Ω,Σ) =

∣∣∣∣∣∣
∣∣∣∣∣∣

Ξ∑
ξ=1

σξuξvξ −
Ξ∑
ξ=1

σξPmµuξQnµvξ

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Σ×Ω)

=

∣∣∣∣∣∣
∣∣∣∣∣∣

Ξ∑
ξ=1

σξ
(
uξ(vξ −Qnµvξ) + (uξ − Pmµuξ)Qnµvξ

)∣∣∣∣∣∣
∣∣∣∣∣∣
L2(Σ×Ω)

≤
Ξ∑
ξ=1

σξ ||uξ(vξ −Qnµvξ) + (uξ − Pmµuξ)Qnµvξ||L2(Σ×Ω)

≤
Ξ∑
ξ=1

σξ
(
||vξ −Qnµvξ||L2(Ω) + ||uξ − Pmµuξ||L2(Σ)

)
.

(6.24)

To examine this expression in more detail we first of all take into account that due to
the density of C∞c (Ω) in L2(Ω) we can find for every ξ ∈ {1, . . . ,Ξ} and any ε > 0 some
vεξ ∈ C∞c (Ω) that meets ||vξ − vεξ ||L2(Ω) ≤ ε

6R∞∗ (T ) . Thereby, we can deduce that

||vξ −Qnµvξ||L2(Ω) ≤ ||vξ − vεξ ||L2(Ω) + ||vεξ −Qnµvεξ ||L2(Ω) + ||Qnµvεξ −Qnµvξ||L2(Ω)

≤ ε

6R∞∗ (T )
+ ||vεξ −Qnµvεξ ||L2(Ω) + ||Qnµ || ||vεξ − vξ||L2(Ω)

≤ ε

3R∞∗ (T )
+ ||vεξ −Qnµvεξ ||L2(Ω)

(6.25)

which projects the remaining estimation problem to functions vεξ ∈ C∞c (Ω). Taking
advantage of this continuity and respecting property (##) we perceive similar to (6.13)
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that there exists µξ ∈ N such that for r ∈ Ω
nµ
j′ , j

′ ∈ {1, . . . , nµ} and all µ ≥ µξ

|vεξ(r)−Qnµvεξ(r)| =
1

|Ωnµ
j′ |

∣∣∣∣∣
∫

Ω
nµ

j′

vεξ(r)− vεξ(r̃) dr̃

∣∣∣∣∣ ≤ sup
r̃∈Ω

nµ

j′

|vεξ(r)− vεξ(r̃)| ≤
ε

6
√
|Ω|R∞∗ (T )

applies. This induces that dependent on the contemplated ξ

||vεξ −Qnµvεξ ||L2(Ω) =

(∫
Ω
|vεξ(r)− (Qnµv

ε
ξ)(r)|2 dr

) 1
2

≤ ε

6R∞∗ (T )

holds for µ big enough. Defining

M := max
ξ∈{1,...,Ξ}

µξ

we can then infer together with (6.25) that even independent of ξ

||vξ −Qnµvξ||L2(Ω) ≤
ε

2R∞∗ (T )
(6.26)

holds as long as µ ≥M . Beyond that, exploiting the density of C∞c (Σ) in L2(Σ) as well
as property (#) we can likewise deduce the existence of some M̃ ∈ N which guarantees
the validity of

||uξ − Pmµuξ||L2(Σ) ≤
ε

2R∞∗ (T )
(6.27)

for all µ ≥ M̃ and all ξ ∈ {1, . . . ,Ξ}. Combining the results in (6.24), (6.26) and (6.27)
as well as the statement in Lemma 6.13 we can therefore conclude that

||T − Tµ||I2,2(Ω,Σ) ≤
ε

R∞∗ (T )

Ξ∑
ξ=

σξ = ε

for µ ≥M := max(M, M̃) which due to the arbitrariness of ε implies the (norm) conver-
gence of (Tµ)µ∈N toward T .
With this convergence at hand we now want to verify that (Tµ)µ∈N in fact represents a re-
covery sequence for T . Therefore, let (σµη , u

µ
η , v

µ
η )η∈N denote the respective singular system

to any element Tµ. Then, we can argue from Remark 6.14 and the discrete representability
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of Tµ through a matrix Amµ,nµ ∈ Rmµ×nµ that

Rmµ,nµ∗ (Tµ) =R∞∗ (Tµ)

=
∑
η∈N

σµη

=
∑
η∈N
〈Tµvµη , uµη 〉

=
∑
η∈N

〈
Ξ∑
ξ=1

σξ〈Qnµvξ, vµη 〉Pmµuξ, uµη

〉

=
∑
η∈N

Ξ∑
ξ=1

σξ〈Qnµvξ, vµη 〉〈Pmµuξ, uµη 〉

=
∑
η∈N

Ξ∑
ξ=1

σξ〈vξ, vµη 〉〈uξ, uµη 〉+
∑
η∈N

Ξ∑
ξ=1

σξ〈Qnµvξ − vξ, vµη 〉〈Pmµuξ, uµη 〉︸ ︷︷ ︸
(∗)

+
∑
η∈N

Ξ∑
ξ=1

σξ〈vξ, vµη 〉〈Pmµuξ − uξ, uµη 〉︸ ︷︷ ︸
(∗∗)

.

Taking a closer look on the expressions in (∗) and (∗∗) we perceive with the help of the
inequalities of Cauchy-Schwarz and Bessel that

∑
η∈N
〈Qnµvξ − vξ, vµη 〉〈Pmµuξ, uµη 〉 ≤

∑
η∈N
〈Qnµvξ − vξ, vµη 〉2

∑
η∈N
〈Pmµuξ, uµη 〉2

 1
2

≤ ||Qnµvξ − vξ||L2(Ω) ||Pmµuξ||L2(Σ)

and likewise ∑
η∈N
〈Pmµuξ − uξ, uµη 〉〈vξ, vµη 〉 ≤ ||Pmµuξ − uξ||L2(Σ).

Recalling the results in (6.22), (6.26) and (6.27) these estimations lead to the insight, that
for any δ > 0 there exists a variable M ∈ N which ensures that

∑
η∈N
〈Qnµvξ − vξ, vµη 〉〈Pmµuξ, uµη 〉 ≤

δ

R∞∗ (T )
,

∑
η∈N
〈Pmµuξ − uξ, uµη 〉〈vξ, vµη 〉 ≤

δ

R∞∗ (T )

for all µ ≥ M and all ξ ∈ {1, . . . ,Ξ}. This in turn, again with Lemma 6.13 and the
arbitrariness of δ, entails the vanishing behavior of both terms, (∗) and (∗∗), as soon as µ

99



6 Asymptotic behavior

tends to infinity. Incorporating the result in Lemma 6.17 we hence eventually preserve

lim
µ→∞

Rmµ,nµ∗ (Tµ) = lim
µ→∞

∑
η∈N

Ξ∑
ξ=1

σξ〈vξ, vµη 〉〈uξ, uµη 〉

= lim
µ→∞

∑
η∈N
〈Tvµη , uµη 〉

≤ lim
µ→∞

sup

∑
φ∈N
|〈Tfφ, eφ〉|

∣∣∣∣(eφ)φ∈N ⊂ L2(Σ), (fφ)φ∈N ⊂ L2(Ω) ONSs


= R∞∗ (T ).

With this result we now briefly want to turn toward the consideration of both semi-discrete
scenarios which, due to their previously mentioned bijective relation to the spaces I2,2

n (Ω,Σ) ⊂
I2,2(Ω,Σ) and I2,2

m (Ω,Σ) ⊂ I2,2(Ω,Σ) (cf. (6.17) and (6.18)), can in some sense be understood
as special cases of the fully continuous scenario. To do so we first of all perceive that this bijective
relation via the characterizing elements t ∈ L2(Σ;Rn), respectively t ∈ L2(Ω;Rm), is even an
isometric isomorphic one as soon as the artificially introduced and therefore freely selectable
spaces Ω, respectively Σ, and their corresponding partitions are chosen properly. This means
for example that when considering I2,2(Rn,Σ) an isometric isomorphic relation to I2,2

n (Ω,Σ)

can be achieved by choosing Ω = (0, n) and defining its partition via

On = {Ωn
j = (j − 1, j) | j = 1, . . . n}.

That is because respecting the definition of inner products in Remark 6.4 in this case we can
compute for any T, L ∈ I2,2(Rn,Σ) and T̂ , L̂ ∈ I2,2

n (Ω,Σ) ⊂ I2,2(Ω,Σ) which share the same
characterizing elements t, ` ∈ Lp(Σ;Rn) that

〈T̂ , L̂〉I2,2(Ω,Σ) =

∫
Σ

∫
Ω

 n∑
j=1

tj(s)χΩnj
(r)

 n∑
j′=1

`j′(s)χΩn
j′

(r)

 dr ds

=

∫
Σ

n∑
j=1

tj(s)`j(s)|Ωn
j | ds

=

n∑
j=1

∫
Σ
tj(s)`j(s) ds

= 〈T, L〉I2,2(Rn,Σ).

The same holds true for the relation between I2,2(Ω,Rm) and I2,2
m (Ω,Σ) for an appropriate choice

of Σ and Sm that obeys |Σm
i | = 1 for all i ∈ {1, . . . ,m}. Noticing that all auxilary statements

that were used in the previous proof were stated for arbitrary operators T ∈ I2,2(Ω,Σ) this
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observation suggests that the mentioned assertions equally apply to operators in I2,2(Rn,Σ)

and I2,2(Ω,Rm). This in turn would intend that Theorem 6.12 and its proof can almost directly
be transferred to these settings.
Indeed, for the sequence of functionals (Rm,n∗ )m∈N with elements Rm,n∗ : I2,2(Rn,Σ)→ R which
obey the mapping rule in (6.19) we can state the following corollary.

Corollary 6.18. Suppose that (Sm)m∈N is a sequence of partitions of Σ with the following
property:

(#) max
i∈{1,...,m}

diam(Σm
i )

m→∞−−−−→ 0.

Let furthermore ωij := |Σm
i |

1
2 for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and (fφ)φ∈{1,...,n} be an

orthonormal basis of Rn. Then (Rm,n∗ )m∈N Γ-converges with respect to the weak operator
topology on I2,2(Rn,Σ) for m→∞ to R∞,n∗ : I2,2(Rn,Σ)→ R with

R∞,n∗ (T ) :=
n∑
φ=1

〈
(T ∗T )

1
2 fφ , fφ

〉
.

In order to make the validity of this assertion clear we first of all want to point to the fact that
the statements in Lemma 6.13 - Lemma 6.17 can actually be transmitted to the scenario in
which T ∈ I2,2(Rn,Σ). The following three remarks pave the way for the confirmation of this
conjecture.

Remark 6.19. Let Ω and its partition On be chosen such that I2,2
n (Ω,Σ) is isometrically isomorph

to I2,2(Rn,Σ), i.e. such that |Ωn
j | = 1 for all j ∈ {1, . . . , n}. Then, for any T̂ ∈ I2,2

n (Ω,Σ) with
characterizing element t ∈ L2(Σ;Rn) we can compute similar to Remark 6.14 that for arbitrary
y ∈ L2(Ω)

(T̂ ∗T̂ y)(r) =

∫
Σ

n∑
j=1

tj(s)χΩnj
(r) (Ty)(s) ds

=

∫
Σ

n∑
j=1

tj(s)χΩnj
(r)

∫
Ω

n∑
j′=1

tj′(s)χΩn
j′

(r̃)y(r̃) dr̃ ds

=

n∑
j=1

∫
Σ
tj(s)

n∑
j′=1

tj′(s)

∫
Ωn
j′

y(r̃) dr̃ ds

χΩnj
(r)

applies. Thereby inducing that eigenfunctions v ∈ L2(Ω) of T̂ ∗T̂ need to be of the form

v(r) =

n∑
j=1

cjχΩnj
(r)
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for some c ∈ Rn this implies that the corresponding eigenproblem obeys

T̂ ∗T̂ v = λv

⇔
∫

Σ
tj(s)

n∑
j′=1

tj′(s)

∫
Ωn
j′

n∑
j̄=1

cj̄χΩn
j̄
(r̃) dr̃ ds = λcj ∀j ∈ {1, . . . , n}

⇔
∫

Σ
tj(s)

n∑
j′=1

tj′(s)cj′ ds = λcj ∀j ∈ {1, . . . , n}

⇔ T ∗Tc = λc

for λ ∈ R. Here, T denotes the associated operator in I2,2(Rn,Σ) that shares the characterizing
element t. Thus, T̂ ∈ I2,2

n (Ω,Σ) and T ∈ I2,2(Rn,Σ) own the exact same set of singular values.
Note that it is also clear that the number of non-zero elements in this set does not exceed n.

Remark 6.20. Let T ∈ I2,2(Rn,Σ) with associated singular system (σξ, uξ, vξ)ξ∈{1,...,n}. Analo-
gously to the proof of Lemma 6.13 we can see that

(T ∗T )
1
2 =

n∑
ξ=1

σξ(vξ ⊗ vξ)

such that for any orthonormal basis (fφ)φ∈{1,...,n} of Rn Parseval’s identity guarantees that

R∞,n∗ (T ) =
n∑
φ=1

n∑
ξ=1

σξ〈vξ, fφ〉2 =
n∑
ξ=1

σξ.

Making use of the previous remark and the statement in Lemma 6.13 regarding operators in
I2,2(Ω,Σ) we therefore deduce that the evaluations of R∞,n∗ at T and R∞∗ at T̂ ∈ I2,2

n (Ω,Σ),
which shares the same characterizing element as T , coincide.

Remark 6.21. Let Ω and its partition On be chosen such that I2,2
n (Ω,Σ) is isometrically isomorph

to I2,2(Rn,Σ). Suppose that (Tγ)γ∈N ⊂ I2,2(Rn,Σ) is a weakly convergent sequence with limit
T∗ ∈ I2,2(Rn,Σ) and respective associated characterizing elements (tγ)γ∈N and t∗ in L2(Σ;Rn).
Then, for all y ∈ Rn and all x ∈ L2(Σ)

lim
γ→∞

∫
Σ

 n∑
j=1

yj(tγ)j(s)

x(s) ds =

∫
Σ

 n∑
j=1

yj(t∗)j(s)

x(s) ds

applies. Since this equality especially holds true for vectors of the form

y =

(∫
Ωnj

ŷ(r) dr

)
j=1,...,n

where ŷ denotes an arbitrary function in L2(Ω), we can calculate for the corresponding sequence
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6.2 Γ-convergence of regularizing norms

(T̂γ)γ∈N of elements in I2,2
n (Ω,Σ) which share the characterizing elements (tγ)γ∈N that

lim
γ→∞

∫
Σ

(T̂γ ŷ)(s)x(s) ds = lim
γ→∞

∫
Σ

 n∑
j=1

(tγ)j(s)

∫
Ωnj

ŷ(r) dr

x(s) ds

=

∫
Σ

 n∑
j=1

(t∗)j(s)

∫
Ωnj

ŷ(r) dr

x(s) ds

=

∫
Σ

∫
Ω

n∑
j=1

(t∗)j(s)χΩnj
(r)y(r) dr

x(s) ds

for all ŷ ∈ L2(Ω), x ∈ L2(Σ). Hence, the weak convergence of (Tγ)γ∈N ⊂ I2,2(Rn,Σ) toward T∗
induces the weak convergence of its corresponding sequence (T̂γ)γ∈N ⊂ I2,2

n (Ω,Σ) toward the
natural transform of T∗ in In(Ω,Σ).

Combining these three remarks we can extrapolate fairly easy that an operator T ∈ I2,2(Rn,Σ)

with singular system (σξ, uξ, vξ)ξ∈{1,...,n} owns the following properties:

• R∞,n∗ (T ) =
∑n

ξ=1 σξ,

• if T = EA for any A ∈ Rm×n its singular values coincide with those of the matrix ω · A,
where ω ∈ Rm×n is defined by ωij := |Σm

i |
1
2 ,

• if (Tγ)γ∈N ⊂ I2,2(Rn,Σ) is a sequence of operators with Tγ ⇀ T then

lim inf
γ→∞

R∞,n∗ (Tγ) ≥ R∞,n∗ (T ),

i.e. R∞,n∗ is lower semi-continuous with respect to the weak topology on I2,2(Rn,Σ),

• R∞,n∗ (T ) = sup
∑r

φ=1 |〈Tfφ, eφ〉|, where for r ≤ n the supremum is taken over all or-
thonormal systems (eφ)φ∈{1,...,r}, (fφ)φ∈{1,...,r} in L2(Σ), respectively Rn.

Since these attributes served as the key arguments in the proof of Theorem 6.12 we are convinced
that one only has to follow the same line of argument in order to obtain the result in Corollary
6.18. In fact, regarding the existence of a recovery sequence the consideration of I2,2(Rn,Σ) even
facilitates the proof as the finiteness of the set of non-zero singular values can immediately be
presumed. Beyond that the construction of this recovery sequence reduces to the piecewise con-
stant approximation of the singular function in L2(Σ) which simplifies the subsequent estimation.

Now devoting ourselves to the remaining second semi-discrete case we can unsurprisingly observe
a very similar behavior of the sequence (Rm,n∗ )n∈N whose elements Rm,n∗ : I2,2(Ω,Rm) → R
follow the specification in (6.19).
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6 Asymptotic behavior

Corollary 6.22. Suppose that (On)n∈N is a sequence of partitions of Ω with the following
property:

(#) max
j∈{1,...,n}

diam(Ωn
j )

n→∞−−−→ 0.

Let furthermore ωij := |Ωn
j |

1
2 for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} and (ei)i={1,...,m} be an

orthonormal basis of Rm. Then (Rm,n∗ )n∈N Γ-converges with respect to the weak operator
topology on I2,2(Ω,Rm) for n→∞ to Rm,∞∗ : I2,2(Ω,Rm)→ R with

Rm,∞∗ (T ) :=
m∑
i=1

〈
(TT ∗)

1
2 ei , ei

〉
.

In order to be confident about this statement we only have to realize that the arguments in
Lemma 6.13 and Remark 6.20 regarding the eigenvalues of T ∗T obviously transfer to the eigen-
values of TT ∗. From that point on it is clear that the assertions in Remark 6.19 - Remark 6.21
can be deduced accordingly and a rigorous proof can once again be obtained in analogy to the
proof of Theorem 6.12.

With the results in Theorem 6.12, Corollary 6.18 and Corollary 6.22 we could thus extend our
asymptotic understanding of functionals of the form (6.7) to those which include a regularizing
nuclear norm. Together with the insights in Proposition 6.5 and 6.7 they confirm with respect
to all continuity approaches the Γ-convergence of Em,nα toward a limit which preserves the
minimizing structure of its corresponding sequence.

6.2.3 Generalized nuclear norm

In the previous two sections we highlighted the asymptotic behavior of the mixed norm and
the nuclear norm as soon as space and/or time resolutions of the considered argument matrix
become infinitely fine. However, the probably most interesting analysis deals with the behavior
of the newly introduced generalized nuclear norm.
Similar to the discrete setting, for this purpose we want to contemplate integral operators that
do not operate on L2(Ω) and L2(Σ) equipped with their natural Euclidean inner products and
norms but resort to alternative versions. Therefore, we first of all formally introduce this new
type of function space.

Definition 6.23. Let Π ⊂ Rd be open. Suppose that F : L2(Π) → L2(Π) is a bijective,
bounded operator that fulfills

(i) ∃c > 0 :

∫
Π
x(w)(Fx)(w) dw ≥ c||x||2L2(Π) ∀x ∈ L2(Π),

(ii)
∫

Π
x(w)(Fy)(w) dw =

∫
Π

(Fx)(w)y(w) dw ∀x, y ∈ L2(Π).
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6.2 Γ-convergence of regularizing norms

Then, we define 〈·, ·〉F : L2(Π)× L2(Π)→ R via

〈x, y〉F :=

∫
Π
x(w)(Fy)(w) dw

and denote by (L2(Π), 〈 . , . 〉F ) the Hilbert space which equips L2(Π) with this inner product.
Furthermore we indicate the corresponding norm on (L2(Π), 〈 . , . 〉F ) by || . ||F , i.e. for all
x ∈ L2(Π)

||x||F := 〈x, x〉
1
2
F .

Note that this definition directly implies the existence of some c̃ > 0 which guarantees that

c̃||x|| ≤ ||x||F

holds for all x ∈ L2(Π). But in fact, we can even make a stronger statement. Due to the
demanded boundedness of F we easily calculate with the help of Hölder’s inequality that
furthermore there exists some ĉ > 0 such that for all x ∈ L2(Π)

||x||F =

(∫
Π
x(w)(Fx)(w) dw

) 1
2

≤ ||x|| 12 ||Fx|| 12 ≤ ĉ||x||

applies. Hence, the norms on (L2(Π), 〈 . , . 〉) and (L2(Π), 〈 . , . 〉F ) are equivalent. Another
property which can directly be deduced from Definition 6.23 is the boundedness of the inverse
functional of F : Once again consulting Hölder’s inequality we infer from the constraint in (i)
that

c||F−1x||2 ≤
∫

Π
(F−1x)(w)x(w) dw ≤ ||F−1x||||x||

holds true for all x ∈ L2(Π) and thus confirm that ||F−1|| ≤ 1
c .

Just as in the discrete setting the consideration of these modified inner products changes our
understanding of the singular value decomposition. Therefore, based on Proposition 4.5, we
want to reformulate and specify Definition 2.15.

Definition 6.24. Suppose that F : L2(Π)→ L2(Π) and G : L2(P )→ L2(P ) are operators
which fulfill the requirements in Definition 6.23. Let T ∈ L(L2(P ), L2(Π)) be compact. A
sequence (σF,Gξ , uF,Gξ , vF,Gξ )ξ∈N is called F and G induced singular system of T if

(i) σF,Gξ > 0 for all ξ ∈ N,

(ii) ((σF,Gξ )2, uF,Gξ )ξ∈N is an eigensystem corresponding to TT ∗F,G , where T ∗F,G defines the
with respect to (L2(Π), 〈 . , . 〉F ) and (L2(P ), 〈 . , . 〉G) adjoint operator to T ,
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6 Asymptotic behavior

(iii) vF,Gξ =
T
∗F,G uF,Gξ

||T ∗F,G uF,Gξ ||G
for all ξ ∈ N.

Note that here the main difference to the classical understanding of a singular system is,
that due to the assumption of modified Hilbert spaces the adjoint operator associated with
T gets influenced by F and G. Consequently, the operator TT ∗F,G differs from the Euclidean
counterpart and a different singular system is obtained. However, the overall structure of this
system is retained.

Remark 6.25. Let (σF,Gξ , uF,Gξ , vF,Gξ )ξ∈N be the F and G induced singular system corresponding
to a compact operator T ∈ L(L2(P ), L2(Π)). Then, equivalently to Proposition 2.16 we can
deduce, that

TvF,Gξ = σF,Gξ uF,Gξ , T ∗F,GuF,Gξ = σF,Gξ vF,Gξ

hold and the systems (uF,Gξ )ξ∈N and (vF,Gξ )ξ∈N are orthonormal with respect to the inner product
induced by F , respectively G. Furthermore, ((σF,Gξ )2, vF,Gξ )ξ∈N is an eigensystem to T ∗F,GT .

Hence, when considering the F and G induced singular system, we can almost proceed with the
usual properties. The only adaption that has to be made concerns all upcoming inner products
and all expressions that revert to them. As a consequence we unsurprisingly observe that also
for the representation which was introduced in Lemma 2.17 a more general version which adapts
to our new understanding of a singular system can be established.

Lemma 6.26. Let T ∈ I2,2(P,Π) and (σF,Gξ , uF,Gξ , vF,Gξ )ξ∈N be a by F and G induced
associated singular system. Then,

T =
∑
ξ∈N

σF,Gξ uF,Gξ ⊗GvF,Gξ

holds.

Proof. Let (σF,Gξ , uF,Gξ , vF,Gξ )ξ∈N denote the singular system induced by F and G and associated
with T ∈ I2,2(P,Π). Then, according to Definition 6.24, ((σF,Gξ )2, uF,Gξ )ξ∈N is an eigensystem
to TT ∗F,G and for all ξ ∈ N

vF,Gξ =
T ∗F,GuF,Gξ

||T ∗F,GuF,Gξ ||G
.

applies. Now realizing that

〈y,G−1T ∗Fx〉G = 〈y, T ∗Fx〉 = 〈Ty, Fx〉 = 〈Ty, x〉F ,

where T ∗ designates the Euclidean adjoint operator to T , and defining the system (eξ)ξ∈N via

eξ := F
1
2uF,Gξ ,
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6.2 Γ-convergence of regularizing norms

we perceive that

TG−1T ∗F
1
2 eξ = TT ∗F,GuF,Gξ =

(
σF,Gξ

)2
uF,Gξ =

(
σF,Gξ

)2
F−

1
2 eξ.

Consequently, (
F

1
2TG−

1
2

)∗ (
F

1
2TG−

1
2

)
eξ =

(
σF,Gξ

)2
eξ

holds true and ((σF,Gξ )2, eξ)ξ∈N represents an eigensystem to (F
1
2TG−

1
2 )∗(F

1
2TG−

1
2 ). Since,

beyond that we can compute that

fξ := G
1
2 vF,Gξ =

G
1
2

(
G−1T ∗F

)
F−

1
2 eξ〈

(G−1T ∗F )F−
1
2 eξ , G (G−1T ∗F )F−

1
2 eξ

〉 =

(
F

1
2TG−

1
2

)∗
eξ∥∥∥(F 1

2TG−
1
2

)∗
eξ

∥∥∥
applies, Definition 2.15 suggests that (σF,Gξ , eξ, fξ)ξ∈N represents an Euclidean singular system

to F
1
2TG−

1
2 . Involving the statement in Lemma 2.17 this implies that

F
1
2TG−

1
2 =

∑
ξ∈N

σF,Gξ eξ ⊗ fξ =
∑
ξ∈N

σF,Gξ

(
F

1
2uF,Gξ

)
⊗
(
G

1
2 vF,Gξ

)
and we eventually observe that

Ty = TG−
1
2 (G

1
2 y) =

∑
ξ∈N

σF,Gξ

〈
G

1
2 y,G

1
2 vF,Gξ

〉
uF,Gξ =

∑
ξ∈N

σF,Gξ

〈
y,GvF,Gξ

〉
uF,Gξ

for all y ∈ L2(P ).

With Definition 6.24 and its resulting properties at hand we now want to return to the consider-
ation of the open sets Σ ⊂ Rd and Ω ⊂ Rd′ and their partitions Sm and On. Based on them, in
order to enable the transition from discrete spaces with modified inner products to continuous
ones like in Definition 6.23, we first of all want to introduce operators which allow us to extend
the effect of a matrix to general functions in L2(Σ), respectively L2(Ω).

Definition 6.27. Let A ∈ Rm×m and B ∈ Rn×n. Suppose that Sm = {Σm
1 , . . . ,Σ

m
m}

and On = {Ωn
1 , . . . ,Ω

n
n} are given partitions of Σ and Ω. Then, we define the operators

GA : L2(Σ)→ L2(Σ) and HB : L2(Ω)→ L2(Ω) via

GAx :=
m∑
i=1

m∑
i′=1

(|Σm
i ||Σm

i′ |)−
1
2 Ai′i

∫
Σmi

x(s) ds χΣm
i′
,

HBy :=

n∑
j=1

n∑
j′=1

(|Ωn
j ||Ωn

j′ |)−
1
2 Bj′j

∫
Ωnj

y(r) dr χΩn
j′
.

Since the operators we have just defined have some special properties that we will make use of
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in the following, we want to start by putting them on record.

Remark 6.28.

(i) Let A, Â ∈ Rm×m. Then we compute, that for all x ∈ L2(Σ)

(
GA ◦GÂ

)
x =

m∑
i=1

m∑
i′=1

(|Σm
i ||Σm

i′ |)−
1
2 Ai′i

(
m∑
i◦=1

|Σm
i◦ |−

1
2 |Σm

i |
1
2 Âii◦

∫
Σm
i◦

x(s) ds

)
χΣm

i′

=
m∑
i◦=1

m∑
i′=1

(|Σm
i◦ ||Σm

i′ |)−
1
2

(
m∑
i=1

Ai′iÂii◦

)∫
Σm
i◦

x(s) ds χΣm
i′

= GAÂx,

applies. For B, B̂ ∈ Rn×n we analogously obtain that

(
HB ◦HB̂

)
y = HBB̂y

for all y ∈ L2(Ω).

(ii) If A ∈ Rm×m and B ∈ Rn×n are symmetric this property transfers to the operators GA
and HB, i.e. for all x, x̄ ∈ L2(Σ) and all y, ȳ ∈ L2(Ω)

〈x,GAx̄〉 = 〈GAx, x̄〉, 〈y,HB ȳ〉 = 〈HBy, ȳ〉

holds true.

(iii) Let A ∈ Rm×m, B ∈ Rn×n. Then, for x ∈ L2(Σ) and y ∈ L2(Ω) with

〈x, χΣmi
〉 =

∫
Σmi

x(s) ds = 0 ∀i = 1, . . .m,

〈y, χΩnj
〉 =

∫
Ωnj

y(r) dr = 0 ∀j = 1, . . . , n

the evaluations of GA and HB vanish. Accordingly, there exist elements x 6= 0 and y 6= 0

in L2(Σ), respectively L2(Ω), which fulfill

〈x,GAx〉 = 0 = 〈y,HBy〉

and GA and GB can at best be positive semidefinte. Hence, 〈 . , GA. 〉 and 〈 . , HB . 〉 do
not represent proper inner products on L2(Σ), respectively L2(Ω). However, restricting
ourselves to with respect to Sm and On piecewise constant functions x ∈ L2(Σ) and
y ∈ L2(Ω) we can deduce that, together with

〈x, Ax〉 ≥ c||x||2, 〈y, By〉 ≥ ĉ||y||2 (6.28)
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for c, ĉ > 0 and all x ∈ Rm, y ∈ Rn, also

〈x,GAx〉 ≥ c||x||2, 〈y,HBy〉 ≥ ĉ||y||2

holds true.

(iv) Let A ∈ Rm×m, B ∈ Rn×n. For piecewise constant functions x ∈ L2(Σ) and y ∈ L2(Ω)

characterized through

x :=

m∑
i=1

xi|Σm
i |−

1
2χΣmi

, y :=

n∑
j=1

yj |Ωn
j |−

1
2χΩnj

with x ∈ Rm, y ∈ Rn it pertains that

GAx =

m∑
i=1

(Ax)i|Σm
i |−

1
2χΣmi

, HBy =

n∑
j=1

(By)j |Ωn
j |−

1
2χΩnj

and therefore especially

GIx = x, HIy = y.

Keeping the Definition in 6.27 and the precedent characteristics in mind, from now on we
want to focus on the consideration of sequences of matrices (Cm)m∈N ⊂

⋃
m∈NRm×m and

(Dn)n∈N ⊂
⋃
n∈NRn×n whose elements are symmetric and positive definite. Moreover we

want to presume that in some way or another they do behave consistently. To formalize this
consistency, we will assert that the by Definition 6.27 corresponding sequences (GCm)m∈N and
(HDn)n∈N converge pointwise against bounded and bijective limit operators C : L2(Σ)→ L2(Σ)

and D : L2(Ω) → L2(Ω). Asking for these attributes, we then can infer the transfer of the
following properties to C and D.

Lemma 6.29. Suppose that (Sm)m∈N and (On)n∈N are sequences of partitions of Σ and Ω

with the following properties:

(#) max
i∈{1,...,mµ}

diam(Σ
mµ
i )

µ→∞−−−→ 0,

(##) max
j∈{1,...,nµ}

diam(Ω
nµ
j )

µ→∞−−−→ 0.

Let (Cm)m∈N and (Dn)n∈N be sequences of symmetric and (6.28) fulfilling positive definite
matrices for whose corresponding sequences (GCm)m∈N and (HDn)n∈N there exist operators
C : L2(Σ)→ L2(Σ) and D : L2(Ω)→ L2(Ω) with

lim
m→∞

||GCmx− Cx|| = 0 ∀x ∈ L2(Σ), lim
n→∞

||HDny −Dy|| = 0 ∀y ∈ L2(Ω).
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Then, C and D are bounded, bijective, symmetric and satisfy

〈x,Cx〉 ≥ c||x||2, 〈y,Dy〉 ≥ ĉ||y||2

for c, ĉ > 0 and all x ∈ L2(Σ), y ∈ L2(Ω).

Proof. The boundedness of C and D can be directly deduced from the Banach-Steinhaus
Theorem (cf., e.g., [Rudin, 1991, Thrm. 2.5]).
Moreover, since the convergence with respect to the strong operator topology also implies the
convergence with respect to the weak one the symmetry of C and D follows directly from the
symmetry of GCm and HDn mentioned in Remark 6.28 (ii).
Regarding the positive definite property of C and D we first of all want to consider the arbitrary
function x ∈ L2(Σ). Reverting to the projection Pm introduced in (6.21) we then can argue
from the statement in Remark 6.28 (iii) that

〈Pmx,GCmPmx〉 ≥ c‖Pmx‖2.

Now recalling that we have already shown in (6.27) that under assumption (#) (Pmx)m∈N

converges toward x, we infer that

lim
m→∞

‖Pmx‖2 = ‖x‖2.

On the other hand, we ascertain that Cauchy-Schwarz ensures

|〈Pmx,GCmPmx〉 − 〈x,Cx〉|
≤ | 〈Pmx− x,GCmPmx〉+ 〈x, (GCm − C)Pmx〉+ 〈x,C(Pmx− x)〉 |
≤ ‖Pmx− x‖‖GCm‖‖Pm‖‖x‖+ ‖x‖‖(GCm − C)Pmx‖+ ‖x‖‖C‖‖Pmx− x‖

and therefore conclude that together with the pointwise convergence of (GCm)m∈N to C as well
as the boundedness of C, supm∈N ‖Pm‖ (cf. (6.22)) and supm∈N ‖GCm‖ (cf. Banach-Steinhaus
Theorem)

lim
m→∞

〈Pmx,GCmPmx〉 = 〈x,Cx〉

applies. Consequently, we are convinced that

〈x,Cx〉 ≥ c‖x‖2

holds true for all x ∈ L2(Σ). Together with the assumption in (##) an equivalent argumentation
leads to the corresponding statement for D.
With the validation of this latter property it is also evident, that C and D have to be injective.
Hence, in order to prove the bijectivity of both operators it remains to deduce their surjectivity.
For this purpose, we again start to focus on (GCm)m∈N and C: Contemplating any fixed m ∈ N
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6.2 Γ-convergence of regularizing norms

the comment in Remark 6.28 (iv) and the invertibility of Cm ensure that for any x ∈ L2(Σ)

there exists some xm ∈ Rm such that

GCmxm = Pmx,

for

xm :=
m∑
i=1

xmχΣmi
.

Now considering the resulting sequence of piecewise constant functions (xm)m∈N we first of all
find, that due to Remark 6.28 (iii) for every m ∈ N

c‖xm‖2 ≤ 〈xm, GCmxm〉 ≤ ‖xm‖‖GCmxm‖

pertains and consequently together with the boundedness of Pm by 1

c‖xm‖2 ≤ ‖GCmxm‖2 = ‖Pmx‖2 ≤ ‖x‖2

applies. Thus, (xm)m∈N is bounded and Banach-Alaoglu guarantees the existence of a weakly
converging subsequence whose limit we will denote by x ∈ L2(Σ). For this subsequence we then
perceive that, without relabeling, for all z ∈ L2(Σ)

|〈GCmxm − Cx, z〉| ≤ |〈GCm(xm − x), z〉|+ |〈GCmx− Cx, z〉|
≤ |〈xm − x, (GCm − C)z〉|+ |〈xm − x,Cz〉|+ |〈GCmx− Cx, z〉|
≤ ‖xm − x‖‖(GCm − C)z‖+ |〈xm − x,Cz〉|+ |〈GCmx− Cx, z〉|

holds. Due to the pointwise convergence of (GCm)m∈N toward C and the weak convergence of
(xm)m∈N to x this implies the validity of

lim
m→∞

〈GCmxm, z〉 = 〈Cx, z〉

for all z ∈ L2(Σ). Additionally incorporating the convergence of (Pmx)m∈N to x then ultimately
leads to

〈Cx, z〉 = lim
m→∞

〈GCmxm, z〉 = lim
m→∞

〈Pmx, z〉 = 〈x, z〉 ∀z ∈ L2(Σ).

Hence, we can confirm the existence of some x ∈ L2(Σ) fulfilling

Cx = x,

which due to the arbitrariness of x induces the surjectivity of C. Obviously, again an equivalent
reasoning yields the corresponding assertion for D.
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6 Asymptotic behavior

With the proof of these properties we are now confident, that 〈 . , . 〉C and 〈 . , . 〉D define proper
inner products on L2(Σ), respectively L2(Ω). Thus, it is reasonable to follow Definition 6.24
and consider the singular value decomposition of operators T ∈ I2,2(Ω,Σ) with respect to them.
Beyond that, according to [Riesz and Sz-Nagy, 1955, §104] the proven characteristics in the
previous lemma guarantee that symmetric and positive definite operators C

1
2 and D

1
2 exist

which due to

||C 1
2x||2 = 〈C 1

2x,C
1
2x〉 = 〈x,Cx〉 ≤ ||C|| ||x||2 ∀x ∈ L2(Σ),

||D 1
2 y||2 ≤ ||D|| ||y||2 ∀y ∈ L2(Ω)

inherit the boundedness of C and D. Involving that a nontrivial kernel of C
1
2 or D

1
2 would

directly lead to a nontrivial kernel of C, respectively D, and that a range of C
1
2 or D

1
2 which

does not complete L2(Σ), respectively L2(Ω), would not allow C, respectively D, to do so, we
can furthermore also certify the bijectivity of C

1
2 and D

1
2 . We shall see, that these attributes

will benefit us later on. Nevertheless, to realize their full potential, it will be necessary to make
further assumptions on (Cm)m∈N and (Dn)n∈N. Therefore, we introduce the subsequent premise.
Therein, in order to have a summary of all presumptions made, we take up the ones which were
already mentioned in Lemma 6.29 and complete them with further ones.

Assumption 6.30. Let (Cm)m∈N ⊂
⋃
m∈NRm×m and (Dn)n∈N ⊂

⋃
n∈NRn×n be sequences

of matrices. In the further course of this chapter we want to presume that these were already
chosen to satisfy the following properties:

• all elements of both sequences are symmetric and fulfill the positive definite characteristic
in (6.28),

• the corresponding sequences of operators (GCm)m∈N and (HDn)n∈N converge with respect
to the strong operator topology toward operators C : L2(Σ)→ L2(Σ) and D : L2(Ω)→
L2(Ω),

• the corresponding sequences
(
G
C

1
2
m

)
m∈N

and
(
H
D
− 1

2
n

)
n∈N

converge with respect to

the strong operator topology to C
1
2 , respectively D−

1
2 ,

• there exist global constants c, c̄ > 0 which guarantee that for all m,n ∈ N

‖Cmx‖ ≤ c‖x‖ ∀x ∈ Rm and ‖Dny‖ ≤ c̄‖y‖ ∀y ∈ Rn

hold,

• in addition to the positive definite characteristic in (6.28) there exist global constants
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6.2 Γ-convergence of regularizing norms

c̃, ĉ > 0 such that for all m,n ∈ N

‖x‖ ≤ c̃‖x‖Cm ∀x ∈ Rm and ‖y‖ ≤ ĉ‖y‖Dn ∀y ∈ Rn

apply.

Note that especially the latter two presumed characteristics do not restrict the choices of
(Cm)m∈N and (Dn)n∈N much further. Although the pointwise convergence of (GCm)m∈N and
(HDn)n∈N toward the bounded operators C and D, whose associated inner products are equiva-
lent to the Euclidean one, did not directly imply these two properties, we can be sure that we
were already quite close.

Within this setting we are now interested in contemplating problems which, in the sense of
formulation (6.1), involve regularizers of the form

R(A) = ||A||ω;∗Cm,Dn .

In order to address their asymptotic analysis, we again first of all want to check if the statements
in section 6.1 apply. Therefore, we need to establish the existence of some β > 0 which,
independent from m and n, ensures that

‖A‖ω;2,2 ≤ β||A||ω;∗Cm,Dn

for allA ∈ Rm×n. To do so we initially recall the estimation in (6.14): If (λη, eη, fη)η∈{1,...,min(m,n)}

denotes an Euclidean singular system associated with the pointwise product of the arbitrary
matrices ω,A ∈ Rm×n and if ω ∈ Rm×n is defined via ωij := ω2

ij , then

‖A‖ω;2,2 ≤
min(m,n)∑

η

λη

holds true. Now furthermore assuming that (σCm,Dnξ ,uCm,Dnξ ,vCm,Dnξ )ξ∈{1,...,min(m,n)} represents
an according to Proposition 4.5 Cm and Dn induced generalized singular system corresponding
to ω ·A we can infer that

ω ·A =

min(m,n)∑
ξ=1

σCm,Dnξ uCm,Dnξ ⊗
(
Dnv

Cm,Dn
ξ

)
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6 Asymptotic behavior

is fulfilled (cf. (4.8)) and conclude

‖A‖ω;2,2 ≤
min(m,n)∑
η=1

|〈(ω ·A)fη, eη〉|

≤
min(m,n)∑
η=1

min(m,n)∑
ξ=1

σCm,Dnξ

∣∣∣ 〈uCm,Dnξ , eη

〉 ∣∣∣ ∣∣∣ 〈Dnv
Cm,Dn
ξ , fη

〉 ∣∣∣
≤

min(m,n)∑
ξ=1

σCm,Dnξ

2

min(m,n)∑
η=1

∣∣∣ 〈uCm,Dnξ , eη

〉 ∣∣∣2 +
∣∣∣ 〈Dnv

Cm,Dn
ξ , fη

〉 ∣∣∣2

≤
min(m,n)∑
ξ=1

σCm,Dnξ

2

(∥∥∥uCm,Dnξ

∥∥∥2
+
∥∥∥Dnv

Cm,Dn
ξ

∥∥∥2
)
.

Here we made use of the inequalities of Young and Bessel. Together with the characteristics
in Assumption 6.30 and the orthonormality of (uCm,Dnξ )ξ and (vCm,Dnξ )ξ with respect to the by
Cm, respectively Dn, induced inner product we thus deduce, that independent from m and n
for all A ∈ Rm×n

‖A‖ω;2,2 ≤
c̃+ c̄ĉ

2

min(m,n)∑
ξ=1

σCm,Dnξ =
c̃+ c̄ĉ

2
‖A‖ω;∗Cm,Dn

applies. With this we are now confident, that even regularizing with the generalized nuclear
norm the equi-coercivity of (Emµ,nµα )µ∈N as well as the continuity of the associated data fidelity
term is ensured. Consequently, in order to understand the limit behavior of (Emµ,nµα )µ∈N it
remains to contemplate the asymptotics of the generalized nuclear norm.
While studying these, this time we want to concentrate exclusively on the scenario in which
both parameters, m and n, simultaneously tend to infinity. In the previous subsection we
already saw that both other semi-continuous scenarios can be understood as special cases of this
fully continuous one and therefore, quite straight-forward arguments also imply the according
convergence behavior for them. This is why we want to omit further details. So, with regard
to the definition in (6.9), we are keen to grasp how the functional Rm,n∗Cm,Dn : I2,2(Ω,Σ) → R
characterized through

Rm,n∗Cm,Dn (T ) =


∑min(m,n)

ξ=1 σCm,Dnξ (ω ·A), if T = EA for some A ∈ Rm×n

∞, else

with ω ∈ Rm×n behaves for m,n → ∞. For this purpose we once again want to resort to the
single variable notation (mµ, nµ) and study its Γ-convergence as µ tends to infinity.
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6.2 Γ-convergence of regularizing norms

Theorem 6.31. Suppose that (Smµ)µ∈N, (Onµ)µ∈N are sequences of partitions of Σ and Ω

with the following properties:

(#) max
i∈{1,...,mµ}

diam(Σ
mµ
i )

µ→∞−−−→ 0,

(##) max
j∈{1,...,nµ}

diam(Ω
nµ
j )

µ→∞−−−→ 0.

Assume that (Cmµ)µ∈N and (Dnµ)µ∈N are sequences of matrices with respect to which the
attributes in Assumption 6.30 apply and let furthermore ωij := (|Σmµ

i ||Ω
nµ
j |)

1
2 for all i ∈

{1, . . . ,mµ}, j ∈ {1, . . . , nµ} and (fφ)φ∈N be an orthonormal basis in (L2(Ω), 〈 . , . 〉D). Then
(Rmµ,nµ∗Cmµ,Dnµ )µ∈N Γ-converges with respect to the weak operator topology on I2,2(Ω,Σ) for
µ→∞ to R∞∗C,D : I2,2(Ω,Σ)→ R with

R∞∗C,D(T ) :=
∑
φ∈N

〈
(T ∗T )

1
2 fφ , fφ

〉
D
.

Similar to the standard nuclear norm case the proof of this theorem is in need of some auxiliary
statements and remarks. In order to state these we start by introducing the ‘pseudo singular
value decomposition’ of all discretely representable operators in I2,2(Ω,Σ).

Remark 6.32. Let (σCm,Dnξ ,uCm,Dnξ ,vCm,Dnξ )ξ∈{1,...,min(m,n)} be a singular system to any matrix
(ω ·A) ∈ Rm×n with respect to the inner products in (Rm, 〈 . , . 〉Cm) and (Rn, 〈 . , . 〉Dn), i.e.

ω ·A =

min(m,n)∑
ξ=1

σCm,Dnξ uCm,Dnξ

(
Dnv

Cm,Dn
ξ

)T
(cf. (4.8)). Let furthermore T ∈ I2,2(Ω,Σ) be defined as

T :=

min(m,n)∑
ξ

σCm,Dnξ

(
uCm,Dnξ ⊗HDnv

Cm,Dn
ξ

)
(6.29)

where uCm,Dnξ ∈ L2(Σ) and vCm,Dnξ ∈ L2(Ω) are characterized through

uCm,Dnξ :=
m∑
i=1

(
uCm,Dnξ

)
i
|Σm
i |−

1
2χΣmi

, vCm,Dnξ :=
n∑
j=1

(
vCm,Dnξ

)
j
|Ωn
j |−

1
2χΩnj

.

Now choosing ωij = (|Σm
i ||Ωn

j |)
1
2 and applying the property in Remark 6.28 (iv) we realize that

its corresponding integral kernel t ∈ L2(Σ× Ω) obeys

t(s, r) =

min(m,n)∑
ξ

σCm,Dnξ uCm,Dnξ (s)
(
HDnv

Cm,Dn
ξ

)
(r) =

m∑
i=1

n∑
j=1

AijχΣmi
(s)χΩnj

(r)

which implies the coincidence of T and EA. Consequently, with (6.29) we found out how any

115



6 Asymptotic behavior

discrete respresentable operator T = EA can be described through the Cm and Dn dependent
singular value decomposition of its corresponding matrix (ω · A). Recalling the in Lemma
6.26 derived representation of general operators in I2,2(Ω,Σ) through their singular system
this suggests to understand (σξ, u

Cm,Dn
ξ , vCm,Dnξ )ξ∈{1,...,min(m,n)} as some sort of ‘pseudo singular

value decomposition’ of T = EA with respect to the operators GCm and HDn . Although these
operators do not fulfill the requirements to define a scalar product on L2(Σ), respectively L2(Ω),
and thus the definition of a proper singular value decomposition is not feasible, they do own
these properties on the subspaces of piecewise constant functions of the form

x =

m∑
i=1

xi|Σm
i |−

1
2χΣmi

and y =

n∑
j=1

yj |Ωn
j |−

1
2χΩnj

with x ∈ Rm, y ∈ Rn. This is why we can compute that for all ξ, ψ ∈ {1, . . . ,min(m,n)}

〈
uCm,Dnξ , GCmu

Cm,Dn
ψ

〉
=

m∑
i=1

(
uCm,Dnξ

)
i

(
Cmu

Cm,Dn
ψ

)
i

=
〈
uCm,Dnξ ,uCm,Dnψ

〉
Cm

= δξψ (6.30)

〈
vCm,Dnξ , HDnv

Cm,Dn
ψ

〉
=

n∑
j=1

(
vCm,Dnξ

)
j

(
Dnv

Cm,Dn
ψ

)
j

=
〈
vCm,Dnξ ,vCm,Dnψ

〉
Dn

= δξψ (6.31)

applies and even verify that

TvCm,Dnψ =
∑
ξ

σCm,Dnξ uCm,Dnξ

〈
vCm,Dnψ , HDnv

Cm,Dn
ξ

〉
=
∑
ξ

σCm,Dnξ uCm,Dnξ

n∑
j=1

n∑
j′=1

(
vCm,Dnψ

)
j

(
Dnv

Cm,Dn
ξ

)
j′

(|Ωn
j ||Ωn

j′ |)−
1
2 〈χΩnj

, χΩn
j′
〉

=
∑
ξ

σCm,Dnξ uCm,Dnξ

〈
vCm,Dnψ ,vCm,Dnξ

〉
Dn

= σCm,Dnψ uCm,Dnψ . (6.32)

Hence, (σξ, u
Cm,Dn
ξ , vCm,Dnξ )ξ∈{1,...,min(m,n)} indeed fulfills all key properties of a singular system

corresponding to T and its designation as the ‘pseudo singular value decomposition’ with respect
to GCm and HDn is suitable.

We have thus seen that, in order to be able to consider inner products induced by GCm and
HDn , temporarily restricting ourselves to the piecewise constant functions in L2(Σ) and L2(Ω)

can be useful. In the further course of this subsection we will also see that it can be helpful
to be able to orthonormalize any arbitrary system of piecewise constant functions in L2(Σ) or
L2(Ω) with respect to these inner products. Therefore, resorting to the Gram-Schmidt process
we want to specify how such orthonormal systems can explicitly be constructed.
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6.2 Γ-convergence of regularizing norms

Definition 6.33. Let Φ ≤ m and Ψ ≤ n. Suppose that (xφ)φ∈{1,...,Φ} ⊂ L2(Σ) and
(yψ)ψ∈{1,...,Ψ} ⊂ L2(Ω) are systems whose elements are piecewise constant with respect to the
partitions in Sm, respectively On. Then, following the Gram-Schmidt process we recursively
construct the systems (x̄φ)φ∈{1,...,Φ} and (ȳψ)ψ∈{1,...,Ψ} via

x̄1 :=
x1

〈x1, GCmx1〉
, x̃φ := xφ −

φ−1∑
φ′=1

〈x̄φ′ , GCmxφ〉x̄φ′ , x̄φ :=
x̃φ

〈x̃φ, GCm x̃φ〉
;

ȳ1 :=
y1

〈y1, HDny1〉
, ỹψ := yψ −

ψ−1∑
ψ′=1

〈ȳψ′ , HDnyψ〉ȳψ′ , ȳψ :=
ỹψ

〈ỹψ, HDn ỹψ〉
.

Due to the positive definiteness of GCm and HDn restricted to the space of piecewise constant
functions these are then orthonormal with respect to 〈 . , GCm . 〉 and 〈 . ,HDn . 〉.

In the following our special interest will be devoted to orthonormal systems, which emerge by
means of this process from systems of the form (Pmxφ)φ∈{1,...,Φ} and (Qnyψ)ψ∈{1,...,Ψ}. Here we
revert to the previously defined projections Pm and Qn and contemplate systems (xφ)φ∈{1,...,Φ}

and (yψ)ψ∈{1,...,Ψ} which are orthonormal in (L2(Σ), 〈 . , . 〉C), respectively (L2(Ω), 〈 . , . 〉D). Due
to the structure of Pm and Qn as well as the strong convergence of (Cm)m∈N and (Dn)n∈N in
this particular case a special behavior can be observed.

Lemma 6.34. Let Pm : L2(Σ) → L2(Σ) and Qn : L2(Ω) → L2(Ω) be defined as in (6.21).
Suppose that (xφ)φ∈{1,...,Φ} and (yψ)ψ∈{1,...,Ψ} are orthonormal systems in (L2(Σ), 〈 . , . 〉C),
respectively (L2(Ω), 〈 . , . 〉D). Let furthermore (x̄mφ )ψ∈{1,...,Φ} and (ȳnψ)ψ∈{1,...,Ψ} denote the
from (Pmxφ)ψ∈{1,...,Φ} and (Qnyψ)ψ∈{1,...,Ψ} via Definition 6.33 constructed orthonormalized
systems. Then, for all φ ∈ {1, . . . ,Φ} and all ψ ∈ {1, . . . ,Ψ}

lim
m→∞

‖x̄mφ − xφ‖ = 0, lim
n→∞

‖ȳnψ − yψ‖ = 0

applies.

Since the proof of this lemma follows the same line of argument for both types of systems, the
ones in L2(Σ) and the ones in L2(Ω), we limit ourselves to exemplifying its validity for systems
(Pmxφ)φ∈{1,...,Φ} ⊂ L2(Σ).

Proof. Let (x̄mφ )φ∈{1,...,Φ} be the through Definition 6.33 orthonormalized system which emerged
from (Pmxφ)φ∈{1,...,Φ}, where (xφ)φ∈{1,...,Φ} forms an orthonormal system in (L2(Σ), 〈 . , . 〉C).
Furthermore, suppose that (x̃mφ )φ∈{1,...,Φ} denotes the in Definition 6.33 mentioned intermediate
orthogonal system before normalization. Then, we want to verify the assertion by validating
the following two substatements for all φ ∈ {1, . . . ,Φ}:

(i) lim
m→∞

‖x̃mφ − xφ‖ = 0, (ii) lim
m→∞

〈x̃mφ , GCm x̃mφ 〉 = 1 = ‖xφ‖C .
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6 Asymptotic behavior

In doing so, we first of all want to turn to the one in (ii). Assuming that for any φ ∈ {1, . . . ,Φ}
the convergence of (x̃mφ )m∈N toward xφ was already shown, we estimate that

|〈x̃mφ , GCm x̃mφ 〉 − ‖xφ‖C | ≤ |〈x̃mφ − xφ, GCm x̃mφ 〉|+ |〈xφ, (GCm − C) x̃mφ 〉|
+ |〈xφ, C

(
x̃mφ − xφ

)
〉|

≤ ‖x̃mφ − xφ‖‖GCm‖‖x̃mφ ‖+ ‖xφ‖‖ (GCm − C) x̃mφ ‖
+ ‖xφ‖‖C‖‖x̃mφ − xφ‖.

Now, involving that according to the Banach-Steinhaus Theorem [Rudin, 1991, Thrm. 2.5] the
strong convergence of (GCm)m∈N implies the boundedness of supm∈N ‖GCm‖ we can argue from
the convergence of (x̃mφ )m∈N as well as the strong convergence of (GCm)m∈N to C that for any
δ > 0

|〈x̃mφ , GCm x̃mφ 〉 − ‖xφ‖C | ≤ δ

applies asm is big enough. Hence, due to the arbitrariness of δ the convergence of (〈x̃mφ , GCm x̃mφ 〉)m
toward 1 is confirmed.
Regarding the statement in (i) we want to apply the concept of induction. Therefore, we initially
realize that

‖x̃m1 − x1‖ = ‖Pmx1 − x1‖.

Recalling that we have already seen in (6.27) that the latter expression can become arbitrary
small as soon as m is chosen big enough this attests the norm convergence of x̃m1 toward x1.
Now, assuming that for all φ ∈ {1, . . . , φ′ − 1} with 2 ≤ φ′ ≤ Φ (x̃mφ )m∈N already converges
toward xφ, we can deduce that, as previously shown, also

lim
m→∞

〈x̃mφ , GCm x̃mφ 〉 = 1

applies as φ < φ′. Consequently, we can guarantee the existence of some ĉ > 0 which fulfills

‖x̃mφ ‖
|〈x̃mφ , GCm x̃mφ 〉|

≤ ĉ
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6.2 Γ-convergence of regularizing norms

for all φ ∈ {1, . . . , φ′ − 1} and infer that

‖x̃mφ′ − xφ′‖ ≤‖Pmxφ′ − xφ′‖+

φ′−1∑
φ=1

|〈x̃mφ , GCmPmxφ′〉|
‖x̃mφ ‖

|〈x̃mφ , GCm x̃mφ 〉|

≤ ‖Pmxφ′ − xφ′‖+ ĉ

φ′−1∑
φ=1

(
|〈xφ, Cxφ′〉|+ |〈xφ, (GCm − C)xφ′〉|

+ |〈xφ, GCm
(
Pmxφ′ − xφ′

)
〉|+ |〈x̃mφ − xφ, GCmPmxφ′〉|

)
≤‖Pmxφ′ − xφ′‖+ ĉ

φ′−1∑
φ=1

(
‖xφ‖‖ (GCm − C)xφ′‖

+ ‖xφ‖‖GCm‖‖Pmxφ′ − xφ′‖+ ‖x̃mφ − xφ‖‖GCm‖‖Pm‖‖xφ′‖
)
.

Once again referring to the result in (6.27) and additionally incorporating the strong convergence
of (GCm)m∈N toward C as well as the in (6.22) shown boundedness of Pm we are convinced that
for any ε > 0 we can find some M ∈ N which ensures

‖x̃mφ′ − xφ′‖ ≤ ε

for m ≥M . Thus, the general convergence of (x̃mφ )m∈N to xφ is proven and we deduce

lim
m→∞

x̄mφ = lim
m→∞

x̃mφ
〈x̃mφ , GCm x̃mφ 〉

= xφ

for all φ ∈ {1, . . . ,Φ}.

Coming back to more general functions and operators we now want to derive two alternative
representations for R∞∗C,D which will prove useful later on. This happens, in consideration of
the new modified inner products, equivalently to the statements in Lemma 6.13 and Lemma
6.17.

Lemma 6.35. Let T ∈ I2,2(Ω,Σ) and (σC,Dξ )ξ∈N be the sequence of corresponding singular
values with respect to the inner products in (L2(Σ), 〈 . , . 〉C) and (L2(Ω), 〈 . , . 〉D). Then, it
holds that

R∞∗C,D(T ) =
∑
ξ∈N

σC,Dξ .

Proof. Let T ∈ I2,2(Ω,Σ) and (σC,Dξ , uC,Dξ , vC,Dξ )ξ∈N be an associated singular system with
respect to C and D. Then, recalling the representation of T through this singular system (cf.
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Lemma 6.26) we compute that for all x ∈ L2(Σ), y ∈ L2(Ω)

〈x, Ty〉C =
∑
ξ∈N

σC,Dξ

〈
y, vC,Dξ

〉
D

〈
x, uC,Dξ

〉
C

=

〈∑
ξ∈N

σC,Dξ

〈
x, uC,Dξ

〉
C
vC,Dξ , y

〉
D

applies, such that we can deduce that

T ∗T =
∑
ξ∈N

(
σC,Dξ

)2 (
vC,Dξ ⊗DvC,Dξ

)
.

Now, following the same line of argument as in Lemma 6.13 we can verify that

(T ∗T )
1
2 =

∑
ξ∈N

(
σC,Dξ

)(
vC,Dξ ⊗DvC,Dξ

)
and therefore

R∞∗C,D(T ) =
∑
ξ∈N

σC,Dξ .

Lemma 6.36. For all T ∈ I2,2(Ω,Σ) it holds, that

R∞∗C,D(T ) = sup
∑
φ∈N
|〈Tfφ, eφ〉C |

where the supremum is taken over all orthonormal systems (eφ)φ∈N, (fφ)φ∈N in (L2(Σ), 〈 . , . 〉C),
respectively (L2(Ω), 〈 . , . 〉D).

Proof. For proving this statement we can once again stick to the reasoning pursued in the
standard nuclear norm case. Substituting the Euclidean inner products with the respective ones
in (L2(Σ), 〈 . , . 〉C) and (L2(Ω), 〈 . , . 〉D) and using the representation in Lemma 6.26, following
the proof of Lemma 6.17 yields the assertion.

Note that this latter representation of R∞∗C,D can easily be transformed to work on Euclidean
orthonormal systems in L2(Σ) and L2(Ω).

Remark 6.37. Let T ∈ I2,2(Ω,Σ) and (eφ)φ∈N, (fφ)φ∈N be arbitrary orthonormal systems in
(L2(Σ), 〈 . , . 〉C), respectively (L2(Ω), 〈 . , . 〉D). Then, due to the bijectivity of C

1
2 and D

1
2 we

can find a bijective relation to systems (êφ)φ∈N ⊂ L2(Σ) and (f̂φ)φ∈N ⊂ L2(Ω) whose elements
fulfill

eφ = C−
1
2 êφ, fφ = D−

1
2 f̂φ.

Simultaneously, the symmetry of C
1
2 and D

1
2 guarantees that these newly defined systems
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6.2 Γ-convergence of regularizing norms

satisfy

〈êφ, êψ〉 = 〈C 1
2 eφ, C

1
2 eψ〉 = 〈eφ, eψ〉C = δφψ, (6.33)

〈f̂φ, f̂ψ〉 = 〈D 1
2 fφ, D

1
2 fψ〉 = 〈fφ, fψ〉D = δφψ. (6.34)

and we perceive that for any T ∈ I2,2(Ω,Σ) the identity in Lemma 6.36 can be modified to

R∞∗C,D(T ) = sup
∑
φ∈N

∣∣∣∣ 〈TD− 1
2 fφ, C

1
2 eφ

〉 ∣∣∣∣
where now the supremum is taken over all Euclidean orthonormal systems in L2(Σ), respectively
L2(Ω).

In fact a very similar statement can be derived for Rm,n∗Cm,Dn restricted to operators which have
a matrix representation.

Lemma 6.38. Let T ∈ I2,2(Ω,Σ) be an operator which can be represented by a matrix
A ∈ Rm×n, i.e. T = EA. Then,

Rm,n∗Cm,Dn (T ) = sup
∑
φ∈N

∣∣∣∣ 〈TH
D
− 1

2
n

fφ, G
C

1
2
m

eφ

〉 ∣∣∣∣.
Here the supremum was taken over all orthonormal systems (eφ)φ∈N, (fφ)φ∈N in L2(Σ),
respectively L2(Ω), both with respect to the Euclidean inner product.

Proof. Let T ∈ I2,2(Ω,Σ) be an operator which satisfies T = EA for any matrix A ∈ Rm×n and
ω ∈ Rm×n be defined through ωij := (|Σm

i ||Ωn
j |)

1
2 . Furthermore, let (σCm,Dnξ ,uCm,Dnξ ,vCm,Dnξ )ξ

with ξ ∈ {1, . . . ,min(m,n)} denote a singular system corresponding to ω · A which resorts to
the structures in (Rm, 〈 . , . 〉Cm) and (Rn, 〈 . , . 〉Dn). Then, Remark 6.32 guarantees that

T =

min(m,n)∑
ξ=1

σCm,Dnξ

(
uCm,Dnξ ⊗ (HDn)vCm,Dnξ

)
for

uCm,Dnξ :=

m∑
i=1

(
uCm,Dnξ

)
i
|Σm
i |−

1
2χΣmi

, vCm,Dnξ :=

n∑
j=1

(
vCm,Dnξ

)
j
|Ωn
j |−

1
2χΩnj

.

Now defining the systems (êξ)ξ∈{1,...,min(m,n)} ⊂ L2(Σ) and (f̂ξ)ξ∈{1,...,min(m,n)} ⊂ L2(Ω) via

êξ := G
C

1
2
m

uCm,Dnξ , f̂ξ := H
D

1
2
n

vCm,Dnξ

we realize that as in (6.33) and (6.34) the symmetry of G
C

1
2
m

and H
D

1
2
n

and the properties

in (6.30) and (6.31) ensure their Euclidean orthonormality. Thus, additionally involving the
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6 Asymptotic behavior

characteristics in (6.32) and Remark 6.28 (iv) we can compute that

sup
(eφ)φ,(fφ)φ
eucl. ONS

∑
φ∈N

∣∣∣∣ 〈TH
D
− 1

2
n

fφ, G
C

1
2
m

eφ

〉 ∣∣∣∣ ≥ min(m,n)∑
ξ=1

∣∣∣∣ 〈TH
D
− 1

2
n

f̂ ξ, G
C

1
2
m

êξ

〉 ∣∣∣∣
=

min(m,n)∑
ξ=1

∣∣∣∣ 〈TvCm,Dnξ , GCmu
Cm,Dn
ξ

〉 ∣∣∣∣
=

min(m,n)∑
ξ=1

∣∣∣∣ 〈σCm,Dnξ uCm,Dnξ , GCmu
Cm,Dn
ξ

〉 ∣∣∣∣
=

min(m,n)∑
ξ=1

σCm,Dnξ

= Rm,n∗Cm,Dn (T ).

On the other hand, letting (ẽψ)ψ∈N ⊂ L2(Σ) and (f̃ψ)ψ∈N ⊂ L2(Ω) be arbitrary Euclidean
orthonormal systems we deduce with Young’s and Bessel’s inequality that

∑
ψ∈N

∣∣∣∣ 〈TH
D
− 1

2
n

f̃ψ, G
C

1
2
m

ẽψ

〉 ∣∣∣∣
=
∑
ψ∈N

∣∣∣∣
〈

min(m,n)∑
ξ=1

σCm,Dnξ uCm,Dnξ

〈
H
D
− 1

2
n

f̃ψ, HDnv
Cm,Dn
ξ

〉
, G

C
1
2
m

ẽψ

〉∣∣∣∣
=
∑
ψ∈N

∣∣∣∣min(m,n)∑
ξ=1

σCm,Dnξ

〈
f̃ψ, H

D
1
2
n

vCm,Dnξ

〉〈
uCm,Dnξ , G

C
1
2
m

ẽψ

〉 ∣∣∣∣
≤ 1

2

∑
ψ∈N

min(m,n)∑
ξ=1

σCm,Dnξ

(∣∣∣∣ 〈f̃ψ, H
D

1
2
n

vξ

〉 ∣∣∣∣2 +

∣∣∣∣ 〈uCm,Dnξ , G
C

1
2
m

ẽψ

〉 ∣∣∣∣2
)

≤ 1

2

min(m,n)∑
ξ=1

σCm,Dnξ

(∥∥∥∥H
D

1
2
n

vCm,Dnξ

∥∥∥∥2

+

∥∥∥∥G
C

1
2
m

uCm,Dnξ

∥∥∥∥2
)

=

min(m,n)∑
ξ=1

σCm,Dnξ

= Rm,n∗Cm,Dn (T )

which due to the arbitrariness of (ẽψ)ψ∈N and (f̃ψ)ψ∈N generalizes to

sup
(eφ)φ,(fφ)φ
eucl. ONS

∑
φ∈N

∣∣∣∣ 〈TH
D
− 1

2
n

fφ, G
C

1
2
m

eφ

〉 ∣∣∣∣ ≤ Rm,n∗Cm,Dn (T ).

With Lemma 6.36 and Lemma 6.38 we thus saw, that exploiting an operators representation
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6.2 Γ-convergence of regularizing norms

through its associated singular system we can find alternative options which characterize its
generalized nuclear norm by resorting to maximizing orthonormal systems. Another useful
statement which makes use of the same kind of argumentation but on the level of matrices is
the following.

Lemma 6.39. Let Φ ≤ min(m,n) and (λφ)φ∈{1,...,Φ} ⊂ R+. Suppose that (eφ)φ∈{1,...,Φ} and
(fφ)φ∈{1,...,Φ} are orthonormal systems in (Rm, 〈 . , . 〉Cm), respectively (Rn, 〈 . , . 〉Dn). Then,
for a matrix A ∈ Rm×n the identity A =

∑Φ
φ=1 λφeφ ⊗Dnfφ implies that

‖A‖∗Cm,Dn =
Φ∑
φ=1

λφ.

Proof. Considering the representation of A ∈ Rm×n through its by Cm and Dn induced singular
system (σCm,Dnξ ,uCm,Dnξ ,vCm,Dnξ )ξ∈{1,...,min(m,n)}, i.e. respecting that

A =

min(m,n)∑
ξ=1

σCm,Dnξ uCm,Dnξ ⊗Dnv
Cm,Dn
ξ

(cf. (4.8)), and performing the same type of downward and upward estimations as in Lemma
6.36 and Lemma 6.38 we conceive that

‖A‖∗Cm,Dn =

min(m,n)∑
ξ=1

σCm,Dnξ = sup

min(m,n)∑
ψ=1

|〈Ayψ,xψ〉Cm |,

where the supremum is taken over all orthonormal systems (xψ)ψ and (yψ)ψ in (Rm, 〈 . , . 〉Cm),
respectively (Rn, 〈 . , . 〉Dn). On the other hand exploiting the assumed representation of A
through the systems (λφ)φ∈{1,...,Φ}, (eφ)φ∈{1,...,Φ} and (fφ)φ∈{1,...,Φ} the exact same argumentation
leads to

sup

min(m,n)∑
ψ=1

|〈Ayψ,xψ〉Cm | =
Φ∑
φ=1

λφ

and the assertion is proven.

With these insights we are now properly equipped to face the proof of Theorem 6.31.

Proof of Theorem 6.31.

(1) Lim inf inequality:
Let (Tµ)µ∈N ⊂ I2,2(Ω,Σ) be a convergent sequence with respect to the weak operator
topology. Then, as already seen in the proof of Theorem 6.12, its limit T∗ lies in I2,2(Ω,Σ)

and it suffices to consider the scenario in which lim infµ→∞Rmµ,nµ∗Cmµ,Dnµ (Tµ) is bounded.
Equivalently to the standard nuclear norm case this implies the existence of a weakly
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6 Asymptotic behavior

convergent subsubsequence of (Tµ)µ∈N which shares the same limit T∗ and whose limit
inferior with respect to Rmµ,nµ∗Cmµ,Dnµ coincides with the one of the original sequence. Beyond
that, this subsubsequence, which in the following will not be relabeled, satisfies

sup
µ∈N
Rmµ,nµ∗Cmµ,Dnµ (Tµ) <∞,

i.e. all of its elements can be represented by a matrix.
Now let (êφ)φ∈N and (f̂φ)φ∈N be arbitrary orthonormal systems in L2(Σ), respectively
L2(Ω), both with respect to the Euclidean inner product. Let furthermore Φ ∈ N. Then,
applying Lemma 6.38 yields

lim inf
µ→∞

Rmµ,nµ∗Cmµ,Dnµ (Tµ) = lim inf
µ→∞

sup
(eψ)ψ ,(fψ)ψ
eucl. ONS

∑
ψ∈N

∣∣∣∣ 〈TµH
D
− 1

2
nµ

fψ, G
C

1
2
mµ

eψ

〉 ∣∣∣∣
≥ lim inf

µ→∞

Φ∑
φ=1

∣∣∣∣ 〈TµH
D
− 1

2
nµ

f̂φ, G
C

1
2
mµ

êφ

〉 ∣∣∣∣
and together with Fatou’s Lemma we conceive that

lim inf
µ→∞

Rmµ,nµ∗Cmµ,Dnµ (Tµ) ≥
Φ∑
φ=1

lim inf
µ→∞

∣∣∣∣ 〈TµH
D
− 1

2
nµ

f̂φ, G
C

1
2
mµ

êφ

〉 ∣∣∣∣
≥

Φ∑
φ=1

lim inf
µ→∞

∣∣∣∣ 〈TµD− 1
2 f̂φ, C

1
2 êφ

〉 ∣∣∣∣
−
∣∣∣∣ 〈Tµ(D− 1

2 −H
D
− 1

2
nµ

)
f̂φ, G

C
1
2
mµ

êφ

〉 ∣∣∣∣
−
∣∣∣∣ 〈TµD− 1

2 f̂φ,

(
C

1
2 −G

C
1
2
mµ

)
êφ

〉 ∣∣∣∣.
Elaborating on this latter expression we take a closer look on the subtrahends within the
limit inferior and realize that for any fixed φ′ ∈ {1, . . . ,Φ}∣∣∣∣ 〈Tµ(D− 1

2 −H
D
− 1

2
nµ

)
f̂φ′ , G

C
1
2
mµ

êφ′

〉 ∣∣∣∣ ≤ ‖Tµ‖ ∥∥∥∥(D− 1
2 −H−

1
2

Dnµ

)
f̂φ′

∥∥∥∥ ∥∥∥∥G
C

1
2
mµ

∥∥∥∥,∣∣∣∣ 〈TµD− 1
2 f̂φ′ ,

(
C

1
2 −G

C
1
2
mµ

)
êφ′

〉 ∣∣∣∣ ≤ ∥∥Tµ∥∥ ∥∥∥D− 1
2

∥∥∥ ∥∥∥∥(C 1
2 −G

C
1
2
mµ

)
êφ′

∥∥∥∥
holds true. Beyond that, respecting the pointwise convergence of G

C
1
2
mµ

and H
D
− 1

2
nµ

toward

C
1
2 , respectively D−

1
2 , we can even attest that for any ε > 0 there exists a φ′-dependent
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6.2 Γ-convergence of regularizing norms

constant Mφ′ ∈ N which ensures that∣∣∣∣ 〈Tµ(D− 1
2 −H

D
− 1

2
nµ

)
f̂φ′ , G

C
1
2
mµ

êφ′

〉 ∣∣∣∣ ≤ ε‖Tµ‖ ∥∥∥G
C

1
2
mµ

∥∥∥,∣∣∣∣ 〈TµD− 1
2 f̂φ′ ,

(
C

1
2 −G

C
1
2
mµ

)
êφ′

〉 ∣∣∣∣ ≤ ε∥∥Tµ∥∥ ∥∥∥D− 1
2

∥∥∥
for all µ ≥Mφ′ . Hence, involving the boundedness of D−

1
2 and supµ∈N ||Tµ|| as well as the

boundedness of supµ∈N ‖G
C

1
2
mµ

‖ which follows from the Banach-Steinhaus Theorem [Rudin,

1991, Thrm. 2.5], we are confident that both of these subtrahends become arbitrary small
as soon as µ is big enough. Additionally incorporating that (Tµ)µ∈N is weakly converging
toward T∗ we eventually perceive that

lim inf
µ→∞

Rmµ,nµ∗Cmµ,Dnµ (Tµ) ≥
Φ∑
φ=1

|
〈
T∗D

− 1
2 f̂φ, C

1
2 êφ

〉
|.

Recalling that the orthonormal systems (êφ)φ∈N ⊂ L2(Σ) and (f̂φ)φ∈N ⊂ L2(Ω) as well as
the constant Φ ∈ N were chosen arbitrarily, this implies together with Remark 6.37 the
validity of

lim inf
µ→∞

Rmµ,nµ∗Cmµ,Dnµ (Tµ) ≥ sup
(eφ)φ,(fφ)φ
eucl. ONS

∑
φ∈N
|
〈
T∗D

− 1
2 fφ, C

1
2 eφ

〉
|

= R∞∗C,D(T∗).

(2) Existence of a recovery sequence:
Within the proof of Theorem 6.12 we already saw that the set of integral operators with
finite number of nonzero standard singular values lies dense in I2,2(Ω,Σ). In fact, exploit-
ing the representation in Lemma 6.26 as well as the equivalence between the Euclidean
inner product and || . ||[C,D−1] on L2(Σ × Ω) this insight can directly be extrapolated to
the set of integral operators with finite number of nonzero C- and D-dependent singular
values. Consequently, according to Remark 2.21 it suffices to prove the existence of a
recovery sequence on this set.
So, let T ∈ I2,2(Ω,Σ) be an operator whose singular values (σC,Dξ )ξ∈N regarding the
inner products in (L2(Σ), 〈 . , . 〉C) and (L2(Ω), 〈 . , . 〉D) equal zero as soon as ξ > Ξ ∈ N.
Denoting its associated singular system by (σC,Dξ , uC,Dξ , vC,Dξ )ξ∈N this means that its cor-
responding integral kernel t ∈ L2(Σ× Ω) is of the form

t(s, r) =

Ξ∑
ξ=1

σC,Dξ uC,Dξ (s)DvC,Dξ (r) ∀s ∈ Σ, r ∈ Ω

(cf. Lemma 6.26). Now reverting to the projections Pm : L2(Σ) → L2(Σ) and Qn :
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6 Asymptotic behavior

L2(Ω) → L2(Ω) introduced in (6.21) and assuming without loss of generality that µ is
big enough to fulfill min(mµ, nµ) ≥ Ξ, we contemplate the systems (Pmµu

C,D
ξ )ξ∈{1,...,Ξ}

and (Qnµv
C,D
ξ )ξ∈{1,...,Ξ} and orthonormalize them following the construction in Definition

6.33. The resulting systems (ūµξ )ξ∈{1,...,Ξ} ⊂ L2(Σ) and (v̄µξ )ξ∈{1,...,Ξ} ⊂ L2(Ω) are then
orthonormal with respect to the ‘pseudo inner product’ on piecewise constant functions
induced by GCmµ , respectively HDnµ . With these systems at hand we define the sequence
of operators (Tµ)µ∈N via the sequence of its kernels (tµ)µ∈N ⊂ L2(Σ× Ω) whose elements
are characterized through

tµ(s, r) :=
Ξ∑
ξ=1

σC,Dξ ūµξ (s)
(
HDnµ v̄

µ
ξ

)
(r).

Considering its elements discrepancy to the operator T we initially realize that

‖T − Tµ‖I2,2(Ω,Σ) =

∥∥∥∥ Ξ∑
ξ=1

σC,Dξ uC,Dξ DvC,Dξ −
Ξ∑
ξ=1

σC,Dξ ūµξ

(
HDnµ v̄

µ
ξ

)∥∥∥∥
L2(Σ×Ω)

≤
Ξ∑
ξ=1

σC,Dξ

∥∥∥(uC,Dξ − ūµξ
)
DvC,Dξ

∥∥∥
L2(Σ×Ω)

+
Ξ∑
ξ=1

σC,Dξ

∥∥ūµξ (D −HDnµ

)
vC,Dξ

∥∥
L2(Σ×Ω)

+
Ξ∑
ξ=1

σC,Dξ

∥∥∥ūµξHDnµ

(
vC,Dξ − v̄µξ

)∥∥∥
L2(Σ×Ω)

≤
Ξ∑
ξ=1

σC,Dξ ‖D‖
∥∥uC,Dξ − ūµξ

∥∥
L2(Σ)

∥∥vC,Dξ

∥∥
L2(Ω)

+
Ξ∑
ξ=1

σC,Dξ ‖ūµξ ‖L2(Σ)

∥∥(D −HDnµ

)
vC,Dξ

∥∥
L2(Ω)

+
Ξ∑
ξ=1

σC,Dξ

∥∥ūµξ ∥∥L2(Σ)

∥∥HDnµ

∥∥ ∥∥vC,Dξ − v̄µξ
∥∥
L2(Ω)

applies. Taking a closer look on the latter estimate we notice that, due to the pointwise
convergence of (HDnµ )µ∈N toward D and the in Lemma 6.34 demonstrated convergence of
(ūµξ )µ∈N and (v̄µξ )µ∈N to uC,Dξ , respectively vC,Dξ , all three subtractive expressions become
arbitrary small as soon as µ is chosen big enough. Since in addition to that the Banach-
Steinhaus Theorem [Rudin, 1991, Thrm. 2.5] ensures the boundedness of supµ∈N ‖HDnµ‖
and the convergence of (ūµξ )µ∈N guarantees that supµ∈N ‖ūµξ ‖ is bounded we can infer that
for any ε > 0 there is a global constant M ∈ N which certifies

‖T − Tµ‖I2,2(Ω,Σ) ≤ ε
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6.2 Γ-convergence of regularizing norms

for all µ ≥M . Hence, (Tµ)µ∈N converges (in norm) toward T .
With this convergence at hand we now want to verify that this candidate indeed represents
a proper recovery sequence for T . In order to do so we first of all note, that by construction
the elements in (ūµξ )ξ∈{1,...,Ξ} and (v̄µξ )ξ∈{1,...,Ξ} are piecewise constant functions, i.e. there
exist (uµξ )ξ∈{1,...,Ξ} ⊂ Rmµ and (vµξ )ξ∈{1,...,Ξ} ⊂ Rnµ with

ūµξ =

mµ∑
i=1

(uµξ )iχΣ
mµ
i
, v̄µξ =

nµ∑
j=1

(vµξ )jχΩ
nµ
j

for all ξ ∈ {1, . . . ,Ξ}. Consequently, for all elements tµ of our kernel sequence of choice it
holds that

tµ =

mµ∑
i=1

nµ∑
j=1

 Ξ∑
ξ=1

σC,Dξ (uµξ )i

nµ∑
j′=1

|Ωnµ
j′ |

1
2 |Ωnµ

j |−
1
2 (Dn)jj′(v

µ
ξ )j′

χΣ
mµ
i
χΩ

nµ
j

and we can deduce, that the corresponding elements Tµ are induced by the matrix

Aµ :=

 Ξ∑
ξ=1

σC,Dξ (uµξ )i

nµ∑
j′=1

|Ωnµ
j′ |

1
2 |Ωnµ

j |−
1
2 (Dn)jj′(v

µ
ξ )j′


i=1,...,mµ

j=1,...,nµ

∈ Rmµ×nµ ,

i.e. Tµ = EAµ for all µ ∈ N. Contemplating the associated matrix (ω · Aµ) which is
consulted when computing the nuclear norm of Tµ, we then observe that for systems
(ûµξ )ξ∈{1,...,Ξ} ⊂ Rmµ and (v̂µξ )ξ∈{1,...,Ξ} ⊂ Rnµ whose elements are defined via

ûµξ :=
(
|Σmµ
i |

1
2 (uµξ )i

)
i=1,...,mµ

, v̂µξ :=
(
|Ωnµ
j |

1
2 (vµξ )j

)
j=1,...,nµ

the following identity applies:

ω ·Aµ =

 Ξ∑
ξ=1

σC,Dξ (ûµξ )i(Dnv̂
µ
ξ )j


i=1,...,mµ

j=1,...,nµ

.

However, recalling that in Remark 6.32 we already found that

〈ūµξ , GCmµ ū
µ
ψ〉L2(Σ) = 〈ûµξ , Cmµû

µ
ψ〉Rmµ , 〈v̄µξ , HDnµ v̄

µ
ψ〉L2(Ω) = 〈v̂µξ , Dnµ v̂

µ
ψ〉Rnµ

and taking into account that (ūµξ )ξ∈{1,...,Ξ} and (v̄µξ )ξ∈{1,...,Ξ} were constructed to be or-
thonormal with respect to the ‘pseudo inner products’ induced by GCmµ and HDnµ we
realize that (ûµξ )ξ∈{1,...,Ξ} and (v̂µξ )ξ∈{1,...,Ξ} are orthonormal with respect to 〈 . , . 〉Cmµ ,
respectively 〈 . , . 〉Dnµ . Therefore, incorporating the statement in Lemma 6.39 we deduce
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6 Asymptotic behavior

that

Rmµ,nµ∗Cmµ,Dnµ (Tµ) =

min(mµ,nµ)∑
η=1

σ
Cmµ ,Dnµ
η (ω ·Aµ) =

Ξ∑
ξ=1

σC,Dξ

as min(mµ, nµ) ≥ Ξ and eventually obtain

lim
µ→∞

Rmµ,nµ∗Cmµ,Dnµ (Tµ) =

Ξ∑
ξ=1

σC,Dξ = R∞∗C,D(T ).

With this proof of Γ-convergence we now completed the asymptotic analysis of functionals of
the form (6.7) which involve the generalized nuclear norm as a regularizer. Combined with the
results in Proposition 6.5 and 6.7 we hence derived a limit functional which due to its preserving
minimizing structure can be consulted when dealing with very high-dimensional variational
problems.
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7
Conclusion and outlook

In this thesis, we discussed how the regularization with nuclear norms can support the varia-
tional reconstruction of dynamic MR scans.
After a brief introduction to the concept of variational methods, in Chapter 4 we first demon-
strated how the singular value decomposition of matrices, whose columns represent the vectorized
frames of a time series, decomposes them into their individual pairwise orthogonal dynamics. In
doing so, we figured out, that the spatial localization of the observed dynamics as well as their
temporal evolution is captured in the right and left singular vectors. Furthermore, we found
that via the associated singular values also a certain dominance is assigned to these artifacts:
While dynamics with a large singular value are considered to have a big influence on the course
of the time series, those with a smaller singular value are perceived as less influential.
With the help of this understanding, we then turned to modeling explicit minimization prob-
lems for the reconstruction of dynamic MR data. To this end, we first reviewed some existing
approaches that, with respect to regularization, rely on the nuclear norm. In scenarios where
the MR data is assumed to encode only few observable dynamics, good results can be obtained
via this family of approaches, since the nuclear norm coincides with the `1-norm on the singular
values and therefore promotes their sparsity. In terms of our interpretative findings, this means
that only time series that can be decomposed into a few influential dynamics can be considered
as solutions to such minimization problems.
In our review, we also focused on the low rank + sparse approach, which represents the sought-
after reconstruction as the superposition of two individual time series, only one of which is
penalized using the nuclear norm. With respect to the second time series, the model is sup-
plemented by the regularization with the matrix 1, 1-norm. This promises a particularly good
result in scenarios where the reconstruction is expected to identify the motion of very small
structures against an almost constant background.
In a second step, we then dealt with expanding the regularization with the nuclear norm. Guided
by our previously gained interpretative understanding, we set out to influence the perception
of dominance of dynamics induced via the singular value decomposition. For this purpose, we
introduced a generalized form of the classical SVD: Perceiving matrices as linear mappings
between non-euclidean vector spaces allowed us to manipulate the singular vectors as well as
the singular values by only choosing appropriate positive definite and symmetric matrices. In
particular, we encountered interesting results when considering an approximation of the negative
Laplacian matrix. Namely, in this special case we found that the singular values to singular
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7 Conclusion and outlook

vectors with large discretized H1-norm turn out rather small. Conversely, large singular values
were assigned to those singular vectors that are associated with particularly smooth dynamics.
This observation led us to also define a generalized nuclear norm and to incorporate its concrete
Laplacian expression as a regularizer in the minimization problem of reconstruction. Follow-
ing our findings from the classical case, we expected this model to promote the occurrence of
smooth dynamics and thus to support the reconstruction of those dynamical data from which
such behavior is expected.
In Chapter 5, we then addressed to verify the effectiveness of the introduced variational models
by using explicit application-based examples. To this end, we first of all derived concrete iter-
ative schemes for their numerical solution based on the forward-backward splitting algorithm.
With these we were able to demonstrate the effectiveness of the low rank + sparse approach
on simulated raw MR data of a brain. Despite heavy undersampling, this method provided a
reconstruction that reproduced even the movements of very small cells. Moreover, using the real
MR scan of a mouse brain, we showed that a variation of this approach is also suitable to perform
posterior cell tracking in already reconstructed dynamic series. Regarding the regularization
with the newly introduced generalized nuclear norm, we first wanted to approve numerically
that, analogous to the classical nuclear norm, in combination with the identity operator its
incorporation can indeed be traced back to a linear shrinkage of the singular values. Surprisingly,
however, we found that the generalized singular values in the previously introduced Laplacian
setting do not undergo uniform diminution. Instead, we observed a strong signal-dependent
behavior. This makes it currently unpredictable how the dominance of singular vectors will
be perceived after the minimization problem is solved. However, since the variational problem
considered here can be reformulated to match the one which involves a real (smoothing) operator
and regularizes with the classical nuclear norm, with this observation we were also able to point
out that even the more established model requires further investigation.
Within Chapter 6 we then took care of the asymptotic analysis of the functionals considered
in the applied part of this work. Concentrating on their behavior as temporal and/or spatial
dimensions tend to infinity, we first of all showed the general equi-coercivity of this family of
problems with respect to the weak operator topology on the space of (semi-discrete) integral
operators. Subsequently, we found that the involved data fidelity term converges continuously
toward its natural continuous counterpart. Hence, aiming for Γ-convergence, in the following we
focused on the determination of the respective Γ-limits of the included regularizing norms. In
doing so, we were ultimately able to confirm that the mixed p, q-norm for p, q > 1, as well as the
classical and generalized nuclear norm Γ-converge toward their logical continuous counterparts
in the space of Lp,q-integral operators, respectively L2,2-integral operators. Altogether, we have
thus successfully transferred the discretely defined minimization problems into a continuous
setting, and therefore provided the basis for further more analytical investigations.

Although we have gained some new insights in this work, we certainly did not tackle all open
questions on the reconstruction of dynamic MR scans via the regularization with the nuclear
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norm. Instead, by introducing the generalized nuclear norm we have raised many new ones.
First and foremost, it would be desirable to understand the pattern in which the generalized
singular values are shrunk during optimization with the identity operator. As mentioned
before, this question can be traced back to minimization problems with true forward operator
and regularizing classical nuclear norm. Hence, in a first step, future work on this topic
should definitely address the general interaction between involved operators and the associated
shrinkage behavior of singular values. Based on these results, the study of regularization with
the generalized nuclear norm can then be resumed in the context of dynamic MRI.
In addition, of course, it is worth considering in what other contexts this new norm might be
useful. Here it is used to favor smooth signals in dynamic series, however, that is probably
just one of many potential applications. By choosing wisely the positive definite matrices on
which it depends, the generalized nuclear norm offers a large number of possibilities to integrate
additional knowledge in the solution of inverse problems.
But also regarding the theoretical part of this thesis there is an open point left. In fact, in order
to prove the Γ-convergence of the generalized nuclear norm, we made some assumptions which
ultimately led to the considered modified norms being equivalent to the Euclidean norm. This
simplified the analysis considerably for us. We thus leave the proof without these presumptions
to future work.
All in all, we hope that with this work we have been able to draw general attention to the
versatility of the nuclear norm. Although its use as a regularizer for solving inverse problems has
been rather underrepresented so far, it is worth thinking about more far-reaching applications.
With the definition of its generalization, we hope to contribute to expand its radius of impact.
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