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Abstract

Information flow control is concerned with ensuring that a program which receives
confidential input does not leak information about this input to untrusted channels.
We present a novel approach for static information flow control that can harness the
power of modern safety analyses.

The approach is based on a characterisation of pairs of executions which break a se-
curity property. From the characterisation approximating safety properties are derived
which ensure the security of the program. The development utilises a simple yet versa-
tile program model that is not limited to finite control or data and targets a semantic
security property which is termination insensitive but still gives some guarantees for
non-terminating executions by allowing for observations throughout the execution of a
program.

We provide rigorous soundness proofs that have also been machine checked and de-
scribe multiple instantiations of the approach including a fixed point—based approach
targeting abstract interpretation—like safety analyses and a regular approximation that

is the basis for a prototypical implementation.
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1 Introduction

Data protection is a topic of broad and current interest. Multiple parties have an interest
in the protection of private user data from misuse as well as its utilisation to provide
services to the user and others. From a program verification perspective this leads to
the problem of information flow control, where a program receives confidential input
and the task is to verify that no information about this input is leaked to untrusted
channels. Traditional access control as it is employed for instance in current day mobile
operating systems is insufficient for this purpose, as programs often require access to
both confidential data and untrusted channels to provide their desired functionality. A
more sophisticated approach is therefore needed.

Less crude than the security properties enforced by access control are semantic secu-
rity properties like noninterference [21], which require that whenever for two runs of a
program the non-confidential inputs are equal then the untrusted outputs must also be
the same. Two established approaches to verify noninterference properties for programs
are security type systems [48] and slicing based on program dependency graphs [25].
Both approaches target the control structure of the program, proving that it is struc-
tured in such a way that no illicit interference between the confidential inputs and the
untrusted outputs can happen because they are clearly separated at all times. They
come in various flavours offering different degrees of precision primarily in regard to
the control flow of a program. However, properties of data and their influence on the
behaviour of a program, in particular which control flow paths are actually realised by
executions, are mostly ignored. For this reason these approaches are still very crude
over-approximations of the desired noninterference properties and cannot verify the se-
curity of programs where security is guaranteed not solely through structural means
but by the overall behaviour of the program.

For a minimal example of how properties of data influence the behaviour and security
of a program and how ignoring them can render a security analysis unable to verify the

security of a program, consider the program snippet in Figure 1.1. Assume that the
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if b then x = y else x = h; sec = 0 fi;

if sec > 0 then print x fi

Figure 1.1: A program where h does not interfere with print x.

variable h contains the confidential input and that the print x command produces
output to an untrusted channel. The program uses a flag sec to disable output when
confidential input is processed, which ensures the security of the program. Traditional
approaches based on program dependence graphs or type systems will in general not be
able to verify the security of programs containing such behaviour, as they do not model
this influence of data properties on the control flow.

An area where the finer behaviour of programs and properties of data are more
extensively studied are static program analyses for the verification of safety properties.
Approaches like abstract interpretation [10, 11, 28] can exploit the power of a plethora
of (numerical) abstract domains [27, 12, 22, 34, 35, 43, 15, 41, 38, 36, 30, 18] and
have for instance successfully been used to verify avionics software by Airbus [13] or to
validate the Monitoring and Safing Unit (MSU) of ESA’s Automated Transfer Vehicle
(ATV) [9, 4]. More recently in particular advances in SAT solving were harnessed for
software verification based on satisfiability modulo theories (SMT) solving [6, 5].

In contrast to security properties like noninterference, which require that there are no
pairs of executions that together exhibit some form of critical behaviour, safety prop-
erties require that there are no single executions that taken on their own exhibit some
critical or unsafe behaviour. The verification task for safety properties is therefore to
check whether the set of executions of a program is a subset of the set of safe executions.
During analysis this allows at the same time to partition the space of executions and
also to over-approximate the set of executions of the program. This is exploited by
abstraction-based methods, which are commonly utilised for the verification of safety
properties.

For security properties it is in general not possible to verify them based on a covering
of the set of executions of a program. An indication for this is given by what is colloqui-
ally known as the refinement paradox [26, 2, 32], which refers to the insight that many
security properties are not preserved under refinement. This is the case as a (malicious)

refinement might simply resolve underspecified behaviour based on confidential inputs.



In order to harness the power behind modern safety analyses in a security context
a different approach is therefore required. One approach for this are methods based
on self composition [3], where the underlying safety analysis is performed on pairs of
executions.

In this work we develop a different approach that instead allows to encode infor-
mation about possible information flows in a given program into a safety property on
single executions. The safety property guarantees the security of the program and is
amenable to abstraction-based methods or can be verified directly by suitable safety
analyses. We do this in a stepwise manner by first characterising pairs of executions
that break a formally defined security property using a syntax driven approach that
is inspired by how information flows are tracked in program dependence graphs. The
characterisation is based on the simultaneous tracking of data and control dependencies
within pairs of executions. We then use this characterisation to derive an approximating
safety property which tracks additional dependencies, as data and control dependencies
are insufficient to identify information flows within single executions. The soundness of
this approach is established by rigorous soundness proofs based on a semantic security
property and a simple yet flexible program model. The program model allows for infi-
nite control and data to handle programming features like procedures, local variables or
arrays. The security property is based on observations made throughout the execution
of a program and corresponds to a basic noninterference property for terminating execu-
tions but additionally provides some guarantees for non-terminating executions without
requiring equitermination, which tends to be overly restrictive and hard to verify for
practical approaches. Finally, we describe multiple applications that employ different
approaches to target the derived safety property in order to obtain practical security
analyses. In particular, we describe a fixed point—based approach that can harness the
power of abstract interpretation—based safety analyses. Moreover, we provide a regular
approximation that can be targeted by other kinds of safety analyses and also provide

some empirical results from a prototypical implementation.

Outline. The remainder of this thesis is structured as follows: Chapter 2 details some
related work and also describes some motivations that went into the development of our
approach. We provide definitions for the mathematical concepts used throughout this
thesis in Chapter 3. In Chapter 4 we define our formal program model and the semantic

security property targeted by our methodology and also provide an instantiation of
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the program model by a simple command language. Chapter 5 contains our central
characterisation of critical pairs of executions that break our security property as well as
the approximation by a safety property. The correctness proofs for our characterisation
and approximation are given in Chapter 6. We describe several applications in Chapter 7

and close in Chapter 8.



2 Related Work

Security Type Systems. Security type systems for the verification of noninterference
properties were introduced by Volpano et al. [48]. Security type systems work by assign-
ing security types (or levels) to different program parts like variables, expressions and
commands in a way that certain rules are respected. If a valid type can be derived for
all parts of a program under these rules, the program is said to be well-typed and guar-
anteed to fulfil the targeted security property. One advantage of type systems is that
their soundness is often comparably easy to prove, especially if paired with a semantics
that is defined structurally in the same manner. They also tend to be rather declarative
and succinct, as they decouple the specification of a valid type from its computation
while other approaches like program dependence graphs are more algorithmic in nature.
Mantel and Sudbrock [33] call type systems the “probably most popular approach to
information flow analysis”. There exists an abundance of variants targeting various
security properties, supporting different programming features and providing varying
degrees of precision. For an overview and further pointers we refer to the overview
article on language-based security by Sabelfeld and Myers [42] or the work by Mantel
and Sudbrock [33].

As mentioned in the introduction, security type systems usually only target the syn-
tactic structure of a program and do not exploit properties of data as it is the goal of
our approach. While core ideas of this work could most probably also be expressed in
the language of type systems, they seem less suited for bridging the gap to data flow
analyses like abstract interpretation—based approaches as these often do not target the
syntactic structure of a program, like type systems do, but are rather defined on an

execution level.

Program Dependence Graphs. Program dependence graphs (PDGs) were introduced
by Ferrante et al. [16] as a tool for program optimisation and later exploited for in-

formation flow control, first by Hsieh et al. [25]. The program dependence graph of a
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given program is a directed graph over the set of instructions of the program. An edge
within the PDG denotes a direct dependency of the sink instruction upon the source
instruction, either because the sink instruction may read a value that is written by the
source instruction (called a data dependency), or because the source instruction controls
whether the sink instruction will be executed, e.g. the source instruction is a guarding
control instruction (called a control dependency). If there exists no path in the PDG
from an instruction that reads confidential input to an instruction that produces un-
trusted output, which is verified through slicing [50], then the program is guaranteed to
fulfil a corresponding security property. PDGs and slicing algorithms come in multiple
variants supporting different programming features like procedures, objects and con-
currency and there exist implementations targeting prominent programming languages
like Java, see for instance the works by Horwitz et al. [24], Hammer and Snelting [23]
and Giffhorn and Snelting [20]. A connection to type systems is provided by Mantel
and Sudbrock [33] who define a type system—based as well as a PDG-based information
flow analysis for a class of multi-threaded programs and prove their equivalence.

Similar to type systems, PDGs in general only target the syntactic structure of a
program and do not consider properties of data. Implementations of PDG-based secu-
rity analyses like the JOANA tool by Snelting et al. [45] utilise some specific data flow
analyses like points-to analyses in an initial phase to obtain a more suitable program
representation that improves the handling of features like dynamic dispatch and aliasing
before beginning with the actual PDG-based analysis.

Our methodology is inspired by the way PDGs track information flows through data
and control dependencies. Instead of a graph on the set of instructions of a program
our approach defines dependencies between points in the executions of the program
and based on these it provides a characterisation of executions violating a security
property. A similar concept of dynamic dependencies, which are defined for paths in
the control flow graph, can be found in the soundness proofs for PDG-based approaches
by Wasserrab et al. [49] and Giffhorn and Snelting [20]. However, other than through
the PDG these dependencies are not clearly connected to program executions breaking
the security property, which is a central feature of our approach.

In Section 7.1 we provide a direct comparison to the PDG-based approach by defining
PDGs for our program model as a simple instantiation of our approach and utilise our
results to directly derive a soundness property. In Section 7.3.2 we also prove for another

instantiation of our approach that it is as least as precise as the PDG-based approach.



Path Conditions. Path conditions based on program dependence graphs are one at-
tempt to exploit how data properties influence the control flow of a program in order to
improve information flow analysis. Snelting [44] and Robschink and Snelting [40] define
a path condition as a necessary condition for information flow along a PDG path. Work
on this focused on how to efficiently compute such conditions by collecting control flow
predicates that dominate instructions on a PDG path. The calculated path condition
was then checked by an SMT-solver with the goal to prove it unsatisfiable and deduce
the security of the program. The soundness of this approach has however not been
justified rigorously. Taghdiri et al. [46] provide the intuitive justification that path
conditions are exploiting the fact that flow can only happen along PDG paths.

Path conditions did in fact motivate the development in this thesis. An initial idea
was to improve path conditions by combining them with global program invariants ob-
tainable from data flow analyses, as path conditions themselves do not consider how the
values of program variables occurring in the collected control predicates are computed.
This however resulted in soundness problems as path conditions obtained from insecure
programs turned out to be unsatisfiable when combined with valid program invariants.

Unlike path conditions our approach is built upon a rigorous soundness proof that
has also been machine checked. Instead of generating a verification condition to be
checked by a constraint solver based on some aspects extracted from a PDG path our
approach directly characterises executions that violate a security property and thereby
allows the employed data flow analyses to exploit arbitrary aspects that play into the

feasibility of these executions.

Self Composition. The potential benefits of reducing security problems to safety prob-
lems has also been studied by several authors through means of self composition. A
self composition of a program is a new program that contains two independent copies
of the original program such that the executions of the self composition correspond
exactly to pairs of executions of the original program. This allows one to express secu-
rity properties like noninterference of the original program as a safety property of the
self composition. Barthe et al. [3] define a simple self composition and provide exam-
ples of how to exploit it to verify security using Hoare logic, a weakest precondition
calculus, separation logic as well as temporal logic. Terauchi and Aiken [47] observe
that practical safety analyses, in their case the BLAST model checker, are not able to

verify the required safety properties when using naive self compositions and propose
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a type-directed self composition inspired by security type systems. Kovécs et al. [29]
and Miiller et al. [37] also explore more sophisticated approaches to construct adequate
self compositions and employ relational abstract interpretations to verify the required
safety properties. Conceptually similar approaches can also be found in the field of
regression verification, which aims at checking two programs for equivalence, e.g. by
Felsing et al. [14] who employ a weakest precondition calculus based on a composition
of the programs in order to generate verification conditions in the form of Horn clauses
to be checked by an SMT solver.

Self composition—based approaches still require the employed safety analyses to es-
sentially handle two executions at once and verify that they produce the same outputs
and therefore rely on more powerful relational safety analyses. Our approach instead
allows to consider only single executions of the original program and encodes informa-
tion about possible influences into a simpler reachability problem which might also be
checked with cheaper non-relational safety analyses. A potential connection might be
found in our central characterisation of critical execution pairs. While not explored
further in this work, it might be possible to exploit this to also define an optimised self

composition that only has to consider a reduced set of execution pairs.



3 Preliminaries

Before we begin with our formal development in the next chapter we record some general

definitions and conventions used throughout the rest of this work.

Fundamentals. Theorems and other statements will in general contain free variables,
which are to be considered universally quantified over the greatest appropriate domain,
such that all appearing terms are well-defined. In the same way we might omit the do-
mains in explicit existential or universal quantifiers where also the greatest appropriate
domain is to be assumed.

Quantifiers (3,V, # (a shorthand for —3)) have the lowest precedence of all operators
and extend to the end of the innermost scope in which they were introduced. They
are followed with increasing precedence by: logical implications (=, <, <), disjunc-
tions (V), conjunctions (A), negation (=), relational operators (e.g. <, 2%, €4 binary

operators (e.g. +), unary operators and function applications.

Intervals, Sequences and Relations. We denote by N the set of natural numbers
including zero. Equations (3.1) to (3.4) define closed, open and half-open intervals of
natural numbers, denoted by [, j], (¢,7), [i,7), (i,4] for i € N and j € NU {oc} where
for right open intervals the upper bound j might be infinite.

={neN|i<n<j}

[i, ]

(i,j]={neN|i<n<j}

={neN|i<n<j}

We utilise finite and infinite sequences which we represent as families indexed by

natural numbers starting at zero and denote as (n;)i<r where k € NU {oo}. The
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empty sequence (n;);<o is denoted by € and we identify single elements with sequences
of length one. We define the prefix order on finite and infinite sequences by (n;)i<r <
(nh)ickr & k < k' AVi < k:n; =n}. For any sequence m = (n;);<x and any | < k we
denote by m = (n;);<; the prefix of 7 up to {. Conversely we define a shift operator
(<) for sequences by (n;)i<x <! = (njti)i<k—; with the convention that co — 1 =
o0 = 0o+ [ for any | € N. Moreover we define the concatenation operator (-) for
sequences by (n;)i<k- (n})i<kr = (M4)i<k+kr Where m; = n; for i < k and m; = n/_, for
1 > k. Note that this definition allows the first sequence to be infinite in which case
it returns the first sequence. The concatenation operator is lifted to sets of sequences
via XY ={zy| 2z € XAy €Y} Foranyset X and natural number k¥ € N we
denote by X* = {(;)i<x | Vi < k: z; € X} the set of sequences of length k over X, by
X* =Uikso X* the set of all finite sequences over X, by X+ = J,-, X* the set of all
finite nonjempty sequences over X and by X =% the set of all seque?nces over X, finite
or infinite.

For any endorelation £ C X x X we overload the notation defined above and let
E* ={J,>, E¥ denote the transitive and E* = |J,~, E* the transitive reflexive closure,
inductivelgf defined by E° = {(z,z) | * € X} and EM1 = {(z,2) | Jy: (z,y) €
E* A (y,2) € E}. For any binary relation R C X x Y we write * R y to denote
(x,y) € R and also chain this notation, e.g. z E y R z for (z,y) € E A (y,z) € R.

Finite Automata. We utilise finite automata to represent regular sets of finite se-
quences. A finite automaton is a five-tuple A = (Q, N, 0, go, Q) where Q is the finite
set of states, gy € @ is the initial state, Q5 C @ is the set of accepting states, the alpha-
bet N is a finite set of symbols over which the automaton operates and § C Q@ x N x @ is
the transition relation. We write ¢ —5 ¢’ to denote (¢,n,¢’) € § as well as ¢ M)g q
for sequences (n;);<x € N* to denote 3(g;)i<k € Q"1 go = qAqx = ¢ AVi < k: ¢ Diss
@i+1- The language L£(A) C N* of an automaton is defined by L£(A) = quQf La(q)
where £4(q) = {m € N* | g0 D5 ¢} is the language accepted by ¢ in A.

Functions. For any mapping f: X — Y we denote its domain X by dom(f) and by
ran(f) = {f(x) | = € X} its range and for any subset of its domain Z C X we denote
by flz: Z — Y the restriction of f to the domain Z. For any set Z we define for
maps whose domain encompasses Z the pointwise equivalence on Z by f =z g & Vz €

Z: f(x) = g(x). We utilise — to define anonymous functions, where x — t(x) denotes

10



the function mapping any x from an appropriate domain, which as for quantifiers will
be clear from the context, to ¢(z). For any function f: X - Y,z € X and y € Y we
define the function update of f with y for x denoted by f{y/z} as the function from X
to Y that maps x to y and all other elements in the same way as f and extend this to
updates of multiple variables by defining f{y1/z1,...,yn/xn}t = f{v1i/x1} .. {yn/zn}
For any endofunction f: X — X and i € N, f': X — X denotes the function applying
f repeatedly i times.

Orders, Lattices, Monotone Functions and Fixed Points. A partial order is a tuple
(D, E) counsisting of a domain D and relation = C D x D which is reflexive, that is for
all a € D it holds that a C a, transitive, that is for all a,b,c € D it holds that if a £ b
and b C ¢ then it must also hold that a C ¢, as well as antisymmetric, that is for all
a,b € D it holds that if a C b and b C ¢ then it must already be the case that a = b.

An endofunction f: D — D on a partial order (D,C) is called monotone, if for
all a,b € D it holds that if @ T b then it also holds that f(a) C f(b). Moreover a
function f: X3 x --- x X, — D with X; = D is called monotone in the i-th argument,
if for all 3 € X1,...,2;-1 € Xi—1, 241 € Xig1,.-.,2n € X, the function d —
flz1, ... @i—1,d, %41, ..., 2y) is monotone. An element d € D is called a pre-fixed
point of an endofunction f: D — D, if f(d) C d and is called a fixed point if f(d) = d.

An element d € D is called an upper bound for a set of elements D’ C D, if for all
d’ € D' it holds that d’ E d and is called a lower bound for D, if for all d € D’ it holds
that d C d'. A partial order is called a complete lattice, if for any subset D’ C D there
exists a unique least upper bound | | D’ € D (also called the join or supremum), that
is an upper bound which is also a lower bound for the set of all upper bounds of the
subset, as well as a greatest lower bound [ D’ € D (also called the meet or infimum),
that is a lower bound which is also an upper bound for the set of all lower bounds
of the subset. For a complete lattice the least element, which exists as it is the least
upper bound of the empty set, is denoted by | and the greatest element, which exists
as it is the greatest lower bound of the empty set, is denoted by T. By B we denote
the complete lattice of two elements {_L, T}, where T represents truth and a statement
consisting of a B valued term ¢ denotes t = T.

For any set X and complete lattice (D, C) the set of mappings from X to D with the
pointwise order forms a complete lattice (X — D,C) where f C g & Vo € X: f(z) C
g(z). For a mapping f: X — D and z € X we denote by f|,: X — D the mapping

11
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that maps x to f(z) and all other elements to the bottom element of D. For an
endofunction f: D — D on a complete lattice D we denote by f*: D — D the function
d— | [{f(d) |i >0} and by fT: D — D the function d — | [{f*(d) | i > 1}.

Graphs, Paths and Reachability. A directed graph is a tuple (N, E') where N is an
arbitrary set of so called nodes and E C N x N is a set of so called edges. A path in
a directed graph (N, E) is a sequence (n;)i<x € N=% of nodes, either finite or infinite,
such that for all ¢ € (0,%) it holds that (n;_1,n;) € E. A finite path (n;);<k is said
to lead from a node n to a node m, if ng = n and nxy = m and we say that the path
reaches m. An infinite path (n;);>0 is said to reach a node n, if there exists an index
k, such that n; = n for all i > k. In the context of a path (n;);<; we say that an index
i, or the path at ¢, reaches a node n if n; = n. A node m is said to be reachable from
a node n, if there exists a path leading from n to m and in this case we also say that n
reaches m. A rooted graph is a tuple (N, E,st) where st € N and (IV, E) is a directed
graph. A path (n;);<x in a rooted graph is said to be initial if ng = st. A node n is
said to be reachable in a rooted graph (N, E, st) if n is reachable from st.

12



4 Program Model and Security
Property

We now move to defining the formal security property as well as the program model
that we will use throughout this work. We also give an exemplary instantiation of our

abstract program model by a command language that we will use for examples.

4.1 Security Property

Our security property is a noninterference-like property where sufficiently similar inputs
are required to produce sufficiently similar observable behaviours for a given attacker.
We therefore require notions of input, similarity of inputs, produced observable be-
haviour and sufficient similarity of behaviours. The precise structure of inputs, their
similarity and the observable behaviour it produces will be defined when we fix our pro-
gram model. For our definition of security we initially assume that there is an arbitrary
set X of possible inputs together with an equivalence relation =;, C ¥ x X, relating those
inputs that should lead to similar behaviour for the attacker. The equivalence relation
is suggestively named =j, or low equivalence, as our program model will handle inputs
through values of variables in initial states and the similarity relation will relate initial
states that coincide on a set L of variables, whose values are allowed to influence the
observable behaviour. For any input the program model will define a sequence of values
that can be observed throughout the execution of the program, which we assume at this
point to be given directly by a function mapping inputs to sequences of observed values.
In order to define when two observable behaviours are sufficiently similar we addition-
ally rely on a notion of termination, here given in form of a set of inputs for which the
program terminates. We do so as requiring non-terminating executions to produce ex-

actly the same observations would demand analyses to prove equitermination of certain

13
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loops, which is either rather challenging or results in overly restrictive approximations.
Our security property therefore only requires terminating executions to produce exactly
the same sequences of observations and allows the observation sequence produced by a
non-terminating execution to be truncated at some point and therefore only requires
that one sequence of observations is a prefix of the other for general executions. As
terminating executions must not drop any observations, we require that for any input,
independent of whether the execution terminates or not, the corresponding observation
sequence must be a prefix of any observation sequence that is produced by a sufficiently

similar input for which the execution terminates.

Definition 4.1 (Security). An observation function obs: ¥ — V=¥ is called secure in
regard to an equivalence relation =, C ¥ x X and termination predicate T C X if and

only if the following statements hold:
Vo € T:Vo' € X: 0 =1 0’ = obs(d’) < obs(o) (4.1)

Vo,0' € $: 0 =1 0’ = obs(c) < obs(c’) V obs(a) > obs(o’) (4.2)

While the definition does not directly consider pairs of terminating executions, due
to the fact that the low equivalence relation =y, is symmetric and the prefix ordering on
sequences < is antisymmetric, equation (4.1) directly yields that terminating executions
on low equivalent input states have to produce the same sequences of observations, which

we record in the following lemma.

Lemma 4.1. For a secure observation function obs: ¥ — V=w in regard to =, C ¥ x X
and T C X it holds that Vo,0’ € T: 0 =, 0/ = obs(o) = obs(d”). O

Note that this notion of security corresponds to the notion of indistinguishable secu-

rity as used by Bohannon et al. [8].

In comparison with classical noninterference properties on input/output states mak-
ing observations throughout the run of a program allows us to also obtain some security
guarantees for non-terminating executions, which are both more lenient and expressive
than requiring equitermination and allow for more relaxed and precise approximations

for analysis.

14



4.2 Program Model

4.2 Program Model

While our definition of security is based on a direct mapping from inputs to observable
behaviour, the program model defined in this section will make it explicit how those
behaviours are produced and contains all necessary components and assumptions upon
which we will base our further development in the next chapters.

The program model is based on control flow graphs that lend themselves straight for-
wardly to the application of e.g. abstract interpretation—based safety analyses and are
widely used both throughout the safety and security community. We use a determinis-
tic semantic because we already opted for deterministic behaviour in our definition of
security and security properties for non-deterministic programs tend to be either very
restrictive or hard to verify and are often not stable under refinement. Our control
flow graphs are node annotated with state transformers associated to control locations,
such that the semantic is given by an endofunction on location-state pairs. States are
maps from an arbitrary set of variables to an arbitrary set of values. We allow for
arbitrary state transformers that have to fulfil some semantic assumptions in order to
be consistent with the abstractions fixed by the model. This allows for our abstract
program model to be instantiated for a variety of concrete models, which we will illus-
trate by instantiating it for a simple command language in the next section. Note that
neither the set of control locations nor the set of variables or values are assumed to be
finite, which allows the model to also be instantiated in infinite state settings e.g. with

procedural programs or arrays.

Definition 4.2 (Program model). An admissible program (with control and data ab-
stractions and security specification) is a decuple (X, N, E, st, te, [.], def, use, L, obs)

where:
e ¥ = Var — Val is the set of states mapping wvariables from an arbitrary set of
variables Var to values from Val,
e N is an arbitrary set of control locations,
e st € N is the initial control location,
e te € N is the terminal control location,
o [J: N xX — N x X is the deterministic semantic transfer function,
e EC N x N is the control flow abstraction,

o def: N — 2V2" is the abstraction of variables written at control locations,
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4 Program Model and Security Property

o use: N — 2V2 is the abstraction of variables read at control locations,
e L C Var is the set of low input variables and

e obs: X — (¥ — Val) for some X C N is the attacker model.

We denote the projections of [.] to locations N and states X by [.J;: N x X = N
and [.]s: N x ¥ — 3, which satisfy Vo, n: [n, o] = ([n, o], [7, o]s). For a program to
be admissible the following well-formedness assumptions have be fulfilled:

1. The terminal control location te only admits identity self loops:
Vo € X: [te,0] = (te, 0).

2. The terminal control location is reachable from any control location according to

the control flow abstraction:
N x {te} C E™.
3. The control flow abstraction safely approximates the semantic control flow:

Vn e N:Vo e X: (n,[n,o];) € E.
4. The control flow abstraction models the terminal self loop precisely:
({te} x N)N E = {(te, te)}.
5. The write abstraction captures the variables modified at control locations:
Vn € N: def(n) D {v € Var | 3o: o(v) # [n,o]s(v)}.

6. The read abstraction safely captures the variables that determine the next control
location, the values of the written variables and a possible observation, that is
VYn € N:Vo,0’ € &

[n,o]i = [n,o']i A
0 =use(n) 0 = [, 0]s =det(n) [n,0']s A

(n € dom(obs) = obs(n)(c) = obs(n)(c”)).
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4.2 Program Model

7. The read and write abstractions map the initial control location to the non-low

variables:
def(st) = use(st) = Var \ L.

While the behaviour and security of a program will be defined solely based on L, obs,
Y, st, te and [.], this definition also fixes data and control abstractions with the necessary
assumptions, upon which our methodology relies. The behaviour of a program is defined
through the transfer function [.], which is repeatedly applied starting with the initial
control location st and a given input state from ¥ until the terminal control location
te is reached, at which point the semantic only performs an identity self loop according
to Assumption 1. This simplifies the handling of terminating and non-terminating
executions by avoiding any structural differences as all executions are always infinite as

defined in the following definition.

Definition 4.3 (Execution). Given an admissible program (X, N, E, st, te, [.], def, use,
L, obs) for any 0 € ¥ we call ([st,c]")o<; the corresponding execution. An execution
([st,0]")o<i is called terminating if there exists an index i > 0 and state o’ € ¥ such
that [st, o] = (te,o”).

For simplicity we introduce the convention that in any context where we fix an initial
state denoted by o € ¥ we implicitly also fix (n;)o<; and (0;)o<; to denote the elements
of the corresponding execution that is we have ([st,0]")o<i = ((ni,04))o<i- In the same

way we fix (n})o<; and (0})o<; whenever we fix an initial state denoted by o’.

Besides the behaviour of the program itself in the form of its executions, Definition 4.2
also fixes our model of an attacker. The behaviour an attacker might observe during
the execution of a program is given by observations that occur whenever a control
location from dom(obs) is visited by an execution and allow the attacker to observe
the value produced by evaluating the mapping annotated to the control location by obs
in the reached state. The resulting sequence of values is the behaviour, in the sense
of Definition 4.1, observed by the attacker. Note that we do not model the fact that
observations within an execution might occur at different times in an actual execution,
which an attacker might also observe, our security property is in this sense timing

insensitive.
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4 Program Model and Security Property

Definition 4.4 (Observable behaviour). Given an admissible program (X, N, E, st, te,
[.], def, use, L, obs), the corresponding observation function as required by Definition 4.1
is defined by lifting obs to ¥ through obs(c) = (obs(n;,)(0i;));j<r where (ij)j<x with
k € NU{oo} is the maximal strictly increasing family of indices such that n;; € dom(obs)

for all j less than k.

In addition to the attacker model, which defines the observable behaviour, our secu-
rity property requires a model of confidential information that the attacker must not
observe and a termination predicate. We already defined the latter in the definition
of executions, where an execution is considered terminating if it reaches the terminal
control location te. The confidential information is defined through an equivalence re-
lation on the input states, which our model defines through the set of low variables L,
whose values in an initial state are allowed to influence the behaviour the attacker can

observe.

Definition 4.5 (Security of a program). An admissible program (X, N, E, st, te, [.],
def, use, L, obs) is called secure if the observation function obtained by lifting obs to X
as in Definition 4.4 is secure in regard to =f and T = {o € ¥ | Ji: n; = te} according
to Definition 4.1.

The remaining components fixed by Definition 4.2, namely the control flow abstrac-
tion E, the abstractions of variables read and written at nodes (use and def) and the
corresponding Assumptions 2 to 7, are not required to define the behaviour or security
of a program itself but build the connection point for our characterisations of informa-
tion flows in Chapter 5 and are the basis for further abstractions that we will perform
from there to obtain sound and effective analysis methods for our security property.

Before we move to defining our central characterisation of information flows in the
next chapter we give an exemplary instantiation of our abstract model in the following
section in order to assure ourselves of its adequacy and enable us to present concise and

well-defined examples later on.

4.3 Command Language

While the abstract program model we defined in the previous section will underlie the
formal development in this work we will now give a concrete instantiation in the form

of a simple command language that we will use for examples.
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The syntax of our command language is parameterised by a set of variable names
Var, a set of constant names C7, which we assume to include the constant 0 € CT,
and a set of binary operator names OP. Expressions to be used for assignments and
control flow guards are constructed inductively from those. We fix the sets Var, CT, OP
for the remainder of this section. We use abstract grammars to define the expressions
and commands of our command language. While we use textual representations to
denote commands and expressions, the actual objects these represent are abstract terms
that possess unique productions in our abstract grammars. To this end we do not
include parenthesis or precedence rules in our grammars but might use them in textual

representations to clarify which abstract term is denoted.

Definition 4.6 (Expressions). The set of expressions € is a term language defined by
the grammar

ex=v|cleope forve Var, ceCT,ope OP.

In order to establish the semantics for expressions we fix a set of values Val, with
which the set of states ¥ is given as the set of all maps from the set of variables to
the set of values (¥ = Var — Val). The semantics is then determined by a given
evaluation function for constants eval.: CT — Val, mapping constants to values and a
given evaluation function for operators evaly,: OP x Val x Val — Val, combining values

for operators.

Definition 4.7 (Expression semantics). The semantics for expressions is given through
the evaluation function eval: € x ¥ — Val, defined recursively over the structure of the

first argument by

o(v) if e=v € Var,
eval(e, o) = < eval.(c) ife=ceCT,

evalyp (op, eval(er,0),eval(es,0)) if e = ey op es.

For a concrete instantiation we define the set of arithmetic expressions over alpha-
betical variables and integer values in Example 4.1, which we will use as the default set

of expressions in later examples.
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4 Program Model and Security Property

Example 4.1 (Arithmetic expressions). The set of arithmetic expressions uses
alphabetical strings for variables Var = {a, ..., 2}, integers as constants CT = Z
and the operators OP = {+, —, %, <}. It uses integers as values Val = Z, such that
constants are evaluated to themselves via eval.(i¢) = ¢ and operators (+, —, ¥, <)

are interpreted as the usual arithmetic operators that is

i+j ifop=+,
i—j ifop=-,
evalop(op,i,7) = S ixj  if op = %,
1 ifop=<ANi<yjy,
0 ifop=<Ai>j.

Based on any set of expressions we define the corresponding set of commands in
the form of a simple while-language. The language contains the basic skip command
which does not alter the state, assignments of the form v = e which allow the result of
evaluating expressions in the current state to be assigned to a variable in the successor
state, if-then-else statements which allow branching based on the value of an expression
in the current state, where, if the value is zero, the else branch is taken and otherwise the
then branch is taken, while statements, which repeatedly execute a command until the
guarding expression evaluates to zero, and print statements, which output the value of
an expression visibly to an attacker and are used to define the observations made by an
attacker during the execution of one of our programs, as well as sequential compositions

of commands.

Definition 4.8 (Commands). The set of commands C over an expression set € over

(Var,CT,OP) is defined as the set of all terms derivable by the following grammar:

C ::=skip |v=-e|if e then S else S fi | while e do S od | print e
fore € £,v € Var
S:=C|C;8

Note that by definition the left-hand side (C') of a sequential composition (C'; S) can

not be a sequential composition itself. We nonetheless write C7; Cs for arbitrary Cq, Cs
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to denote the command where the elements of C; have successively been composed with
Cs by recursively unfolding (C;.5); Cy to C; (S;Cs). Our default set of commands will
be the set of those over the set of arithmetic expressions with alphabetical variables as

defined in Example 4.1.

We define a small step semantics as an endofunction on pairs of commands and states
and use the singular skip command with an identity self loop to model termination as
we did in Definition 4.2.

Definition 4.9 (Command semantics). The semantics [.]: C x ¥ — C x X for a set C
of commands over a set of expressions £ with expression semantics eval: £ x 3 — Val

is defined recursively by:
[skip, o] = (skip, o) [v =e,o] = (skip, o{eval(e,o)/v})

[print e, o] = (skip, o)

[if e then C; else Cf fi, o] = (Cp0)  if eval(e, 0) = eval(0, 0)
t ) -
(Ci,0)  otherwise

ski , T lf eval e,o)= eval 0,0'
[while e do C od, o] = (skip, o) (e;0) (0,0)

(C;while e do C od,o) otherwise

[Cr: Coo] = (Cq,0") if [C1, 0] = (skip, o)
(C1; Ca,0’)  if [Ch,0] = (C,0") ANC} # skip

We note two properties of these semantics. Firstly print commands are treated
within the semantics just like skip commands, they will only obtain further meaning
when we define the attacker later on. Secondly, the way we treat sequential compositions
and skip commands means that when an if command contains a simple skip in a
branch, taking that branch directly skips over this command and moves on to the next
command when the if command is part of a sequential composition. We therefore omit
the skip command in some cases and write if e then C fi to denote the command
if e then C else skip fi.
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We now move to instantiating the other components of our program model for a given
command. Commands themselves represent control locations in our instantiation, yet as
our program model utilises the initial control location to model how critical information
enters an execution through the high variables, we introduce for any command C' an
additional fresh control location sto and extend our above defined semantic function to
transfer from stc with any state to C' without changing the state (Vo € X: [ste, 0] =
(C,0)). In order to avoid cluttering the program model for a command with infinitely
many unreachable control locations, we do not utilise the full set of commands plus fresh
start locations as control locations for the program model of a command but first define
a global control flow abstraction on the set of commands as a syntactic approximation
of the semantics and then utilise the set of reachable commands in this approximation
as the control locations and the global control abstraction restricted to those as control

abstraction for the instantiation.

Definition 4.10. The global control flow abstraction on all commands — C C x C is
inductively defined by:
skip — skip v =e — skip

print e — skip
if e then C; else Cf fi — () if e then C} else Cf fi — Cf
while e do C' od — skip while e do C' od — C;while e do C' od

C;Cy = Cy ifCy — skip
CriCy = Cl3Cy if Cy — C) A C) # skip

Based on this, the set of control locations for a command C € C is defined as
Ne={C'"eC|C =" C"}U{stc},

where sto is the fresh control location fixed above, from which the semantic moves to

C'. The control flow abstraction FE¢ is defined as
Ec = {(Sfc,C)} U {(01,02) € N¢ | Ci1 — 02}

In order to define the data abstraction (def,use) we first fix the set of low variables

L C Var and let H be Var\ L as Assumption 7 of our program model requires that these
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are exactly the variables read and written at the initial control location. For commands
themselves the variables read or written only depend upon the head of the command,
which is the first command in a sequential composition of commands or the command
itself for basic commands. All variables occurring in an expression of the head make up
the variables read by a command. Only commands whose head is an assignment write
any variables, which in that case is the single variable occurring on the left-hand side

of the assignment.

Definition 4.11 (Data abstraction). The set of variables appearing in an expression e

is denoted by fv(e) and inductively defined through

0 ife=ceCT,
fv(e) = ¢ {v} if e =wv € Var,

fv(er) Utv(ea) ife=e; opes.
The head of a command C, denoted by hd(C), is defined as

' ifc=0,0",
hd(C) =
C  otherwise.

With these the set of variables read at a control location C' is defined through

if hd(C) = skip,
use(C) = fv(e) if hd(C) = print e,
fv(e) it hd(C) = (v =),
fv(e) if hd(C) = if e then Cy else Cs fi,
fv(e) if hd(C) =while e do C’ od.

And the set of variables written at a control location is defined by

H lf C = EtC/v
def(C) = { {v} ifhd(C) = (v=e),
0 otherwise.
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As mentioned above, we utilise the occurring print statements to define the attacker
model. At any command whose head is a print statement, the corresponding obser-
vation is defined by evaluating the expression from that statement against the reached

state.

Definition 4.12 (Observation). The attacker model corresponding to a command C'is

denoted as obsc and defined by
obsc = {(C',o + eval(e,0)) | C' € No Ahd(C’) = print e}.

With this we have all components to define the program corresponding to a command.

Definition 4.13. Given a command C' € C and L C Var the corresponding program
Pc is defined as Po = (X, N¢, Ec, stc, skip, [.], def, use, L, obsc).

Lemma 4.2. The program corresponding to a command is admissible in the sense of
Definition 4.2.

Proofsketch. We have stc € N¢ by definition. By induction one obtains C’ —* skip
for any C' € C and thereby skip € N¢ as well as N¢ x {skip} C Ef, as required
by Assumption 2. Assumption 1, that the semantic maps the terminal control location
(skip) to itself without changing the reached state, follows directly from Definition 4.9.
Assumption 3, that all steps in the semantics are matched by E¢, follows by simple
case distinction from its definition, as does Assumption 4, that skip only reaches itself
in Ec. Assumption 5, that at any control location n, no variable besides those in
def(n) are changed by the semantics, follows as the semantics only updates the left-
hand side variable in assignments. As the semantics of expressions only depends upon
the values of the occurring variables, Assumption 6 follows. Finally Assumption 7, that
def(stc) = use(ste) = Var \ L, trivially follows from Definition 4.11. O

To conclude this chapter we give a more involved example and introduce a graphical

notation to depict the programs corresponding to commands in Example 4.2.

Example 4.2. For the command from Figure 4.1 we depict in Figure 4.2 a graph-
ical notation that represents the control flow abstraction of the corresponding pro-
gram. The nodes of the graph represent the control locations of the program and its

edges are those defined by the control abstraction. We do not annotate the nodes
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with the complete command that corresponds to the control location but only with
a part of the commands head that is sufficient to reconstruct the command. For
that purpose the outgoing edges of if and while commands are labelled with t
and f to distinguish the then and else branch. We do not formalise the proce-
dure to reconstruct the command from this representation, which we only utilise in

examples where it should be obvious, how the original command can be obtained.

if b
st
then l
i=20; if b
x = h t/ \f
else i 0 i 1

b
Il
i
<1

h—while i < 2%*u

VAN

i=1i+ 1; I*—l priljty
z = x;
= ki
oy l X skip | D
=z
=Y
Od; l
print y =z
Figure 4.1: Command Figure 4.2: Graph Notation

We also utilise the labels from the graph notation to refer to the nodes themselves.
In order to obtain a program through Definition 4.13 we need to fix the set of low
or respectively high variables, which we set to H = {h}. An exemplary execution
of this program is depicted in Figure 4.3. The execution produces the observation
obs(o) = 7, which is the initial value of y. Note, that in this example the heads of
the control locations and their labels are unique which must not be the case in all

examples but the actual referred to control location will be clear from the context.
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26

while i < 2xu,
i=1+ 1,

while i < 2xu,
i =1+ 1,

y = 2z,
while i < 2xuy,
print vy,

N e e e e e N N N N T T e T N
<
Il
N

skip,

Figure 4.3: Execution for o with o(b) =1, o(h) =3, o(y) =7 and o(u) = 1.

One can observe that the program actually is secure in the sense of Definition 4.5.
While the initial value of h is first written to & and from there written to y — a
variable which can be observed by the attacker eventually — the values of x and
y are swapped in each iteration of the loop, which is executed an even number
of times whenever h was written to z. The attacker therefore either observes the
initial value of y, whenever the initial value of b is non-zero, or the initial value of
x otherwise. We will illustrate with Example 7.7 in Chapter 7 how our approach

leads to an analysis capable of certifying this when instantiating it with a suitable

a{0/i}

a{0/i,3/x}
a{0/i,3/z}
a{1/i,3/z}
o{1/i,3/x,3/z}
o{1/i,7/x,3/z}
o{1/i,7/x,3/2,3/y}
o{1/i,7/x,3/2,3/y}
c{2/i,7/x,3/2,3/y}
c{2/i,3/x,7/z,3/y}
c{2/i,3/x,7/z,7/y}
c{2/i,3/x,7/z,7/y}
o{2/1,3/x,7/z,7/y}
o{2/1,3/x,7/z,7/y}

safety analysis that is able to reason about evenness.

O O N N N N N N S . N



5 Characterisation of Information Flows

In this chapter we develop our central characterisation of information flows in programs
that provides the basis of our approach. For an admissible program in the sense of
Definition 4.2 we describe how variations in initial states can be propagated within
executions to produce distinguishable observations that are prohibited by our definition

of security.

Our approach is inspired by program dependency graphs and also uses data and
control dependencies based on abstractions of control flow and data, which we already
fixed with the program model, to track how information is propagated by a program. In
contrast to the approach used in program dependency graphs, which syntactically de-
scribe dependencies between control locations, our approach instead defines dependen-
cies within executions themselves where semantic properties can still be fully exploited.
The latter is also possible because our characterisation directly considers pairs of exe-
cutions that might violate the security property, and for these it defines critical points
in the executions that are influenced by confidential information and between which
this information is propagated along dependencies postulated by the abstractions of
control flow and data but is precise in the sense that it only requires propagation along
those dependencies where there is actually semantically observable difference between
the executions. This yields a characterisation of critical executions, which then can
be abstracted in various ways to function as a heuristic to obtain sound and effective
analyses for security, which are free to exploit arbitrarily precise semantic properties
while avoiding the danger of running into soundness problems as mentioned earlier in
Chapter 2 for the combination of path conditions with precise program analysis tech-

niques.

We now move towards defining our characterisation of critical executions. To this end
we fix throughout this chapter a program (3, N, F, st, te, [.], def, use, L, obs), admissible

in the sense of Definition 4.2.
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As mentioned we intend to define control and data dependencies within executions
to track information flows based on the abstractions of control flow and data. Within
single executions, where there is no additional structure to the control locations, it is
hard to define what control is supposed to mean. In our setting this additional structure
is provided by the control flow abstraction E together with the terminal control location
te, which we already included in the definition of admissible programs. The control flow
abstraction allows us to define control dependence through the use of post dominance.
The idea is that if a control location is post dominated by another one, the former
has no direct influence on whether the later will be executed or not and therefore the
absence of post dominance between control locations in an execution can be used to
identify control dependence. We utilise the strict post dominance relation, which is the
irreflexive version of the post dominance relation. A control location n € N strictly post
dominates another control location m € N, written n 2% m, if n and m are distinct

and n appears on any path from m to the terminal control location te.

Definition 5.1 (Strict post dominance). The strict post dominance relation 2% on N
induced by (N, E, te) is defined through

n%m@n;«ém/\V(ni)iZOEH,keN:nozmAnk:te:HISk:nl:n,

where IT = {(n;);>0 € N¥ | Vi: (n;,n1+1) € E} is the set of infinite paths in (N, E).

Note that as all control locations reach the looping terminal control location in (N, E),
any finite path can be extended to a corresponding infinite path, such that the definition
is equivalent to a version based on finite paths. We utilise infinite paths here as we will
later only consider infinite paths. Also note that the strict post dominance relation can
be succinctly represented as the transitive closure of the post dominance tree and can
be computed in quasi linear time® using the algorithm by Lengauer and Tarjan [31] if N
is finite. The post dominance relation and tree for a simple program from our command

language are illustrated in Example 5.1.

Example 5.1. Figure 5.1 depicts a program (a), which corresponds to the com-
mand if b then x = 1 else x = 2 fi; print x, together with its strict

post dominance relation (b) as well as its post dominance tree (c). Note how

IThat is in time O(|E| - a(|E|,|N|)) where a is an inverse of Ackermann’s function.
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the two assignments to x, which lie in the conditional branches, are the only con-
trol locations not post dominating their predecessors and how the post dominance

relation is the transitive closure of the post dominance tree.

st st st
if b if b if b
O\
x =1 x =2 =1 X = x =1 x =2
print x kx‘int% print x
| T T
skip D skip skip
(a) Program (b) Post dominance relation (c) Post dominance tree

Figure 5.1: Program with post dominance relation and tree.

Based on the definition of post dominance between control locations, we now move
to define control dependencies within executions. As our program model utilises a
deterministic semantics, any point in any execution can be uniquely identified through
the initial state and the number of steps taken from there. Recall that to this end
we already introduced in Chapter 4 the convention that whenever a context fixes an
initial state o, we fix (n;);>0 and (0;);>0 such that ((ni,0;))iz0 = ([st,0]")i>0. A
control dependency is identified by a triple (o,14,j) consisting of the initial state o and
two indices ¢ and j where ¢ is a step in the execution of ¢ where it was required —
according to the control flow abstraction £ — to take the branch from control location
n; to m;11 in order to reach the control location n; in step j. The latter is the case
if n; lies on a branch that starts with n;;; but there exists another branch of n; that
does not contain n; and it is also the case that the location where the branches of n;
merge has not been reached before step j. This is expressed through the requirement
that there appears no strict post dominator of n; between the steps ¢ and j. We denote

this with i <%, j, which is formally defined in the following definition.

Definition 5.2 (Control dependency). For i, j € N we define that i is a control depen-
dency of j in the execution corresponding to o € ¥, denoted by i <4 j, through

i, j i< AP E i, ] np 2 n,.
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Note that this definition closely corresponds to the definition of (transitive) control
dependencies between control locations in program dependence graphs. This connection
is formalised by Lemma 7.1 in Section 7.1 and discussed there. Similar notions called
dynamic control dependence for paths within the control flow graph have for example
been used by Xin and Zhang [51] for the purpose of dynamic program slicing [1] as well
as in the soundness proofs for PDG-based information flow control by Wasserrab et al.
[49] and Giffhorn and Snelting [20].

A potentially surprising property of this definition of control dependence in executions
is the fact that the instances of the terminal control location are control dependencies
of all their successors as we observe in Example 5.2. While these control dependencies
on the instances of the terminal control location might not seem canonical, as there is
no branching happening after all, they emerge naturally from the definition through
post dominance, which was chosen this way deliberately, as it allows us to handle
terminating and non-terminating executions in the same way in several theorems down

the line. Beside its surprising nature it has no downsides to the remaining development.

Example 5.2. Again consider the program from Figure 5.1a. Let o be an initial
state with o(b) = 1. This gives rise to an execution ((n;, 0;))o<; whose first steps
are depicted in Figure 5.2 together with the control dependencies resulting from the
post dominance relation from Example 5.1. Until step 4 the only control location
that does not post dominate its predecessor is ns, wherefore we have 1 <%, 2.
For all ¢« > 4 we have that n; = skip and as the strict post dominator relation is

irreflexive, we have i <& j for 4 <1i < j.

cd
m
;0 1<y 3 4d 5 _cdy7

n; st if b x =1 print x skip skip

o, O o o af{l/x} o{l/z} o{l/z}

Figure 5.2: Execution with control dependencies.

We now move to defining the second kind of dependence which we utilise for our
definition of critical executions, data dependencies. While control dependencies model
an, as it is sometimes referred to, implicit flow of information within a program, where
discernible states between two executions differ because the executions took different

paths to reach them, data dependencies describe how differences in states are directly

30



propagated through the semantic state transformers that are associated with the control
locations, as they can propagate information about the values of variables that are read
at a control location to the values of the variables which are written there. In the same
way that the definition of control dependence was based on the control flow abstraction,
the definition of data dependence, will be based on the data abstractions (def and use),
which we fixed in Definition 4.2.

As we did not motivate the assumptions made for the data abstraction in Defini-
tion 4.2 before, we do so here. Similarly to how we used an indistinguishability relation
on the initial states in the definition of security, which was defined through fixing the
set of low variables L, we utilise the sets of variables provided by the data abstraction to
do so within executions, that is based on the sets of variables read, respectively written,
at the reached control locations. Assumptions 5 to 7 of Definition 4.2 then state how
indistinguishability under these relations is preserved by the semantics as well as how
indistinguishability locally leads to the same behaviour. Assumption 5 requires that the
set of variables written at a control location (def(n)), encompasses all variables whose
values can be changed by the associated state transformer, which guarantees that based
on all other variables, input and output state are indistinguishable. Assumption 6 then
requires that indistinguishability between input states, based on the variables read at
a control location, must be sufficient to also ensure indistinguishability between the
output states, based on the variables written at the control location. Assumption 6
moreover requires that under these circumstances, the semantics continues to the same
control location, as well as that any possible observations produced must be identical.
Finally Assumption 7 makes the link on the other end to the indistinguishability rela-
tion on the initial states, in that the variables read and written at the initial control
location, are exactly the non-low variables.

For programs from our command language we saw in Lemma 4.2 that these as-
sumptions are fulfilled by setting the set of variables written by a command to the set
containing only the variable appearing on the left-hand side if the head of the command
is an assignment and the read variables to the variables appearing in the contained ex-
pression if the head of the command is an assignment, branch or print command, as
done in Definition 4.11.

The data dependency relation tracks the direct flow of information from a point where
a variable is written to points where it is read, a setting in which distinguishability based

on the variables read at a point can be propagated to another. As in our definition of

31



5

control dependencies, we identify the execution through the initial state and besides
the two indices forming the dependency, we additionally include the variable through
which the dependency is created, in order to enable us to impose additional constraints

on it, when using the dependency in later definitions. A data dependency is therefore

Characterisation of Information Flows

a four-tuple (0,1, j,v) where o is the initial state, i is smaller than j and the variable

v is written by n;, read by n; but not redefined by any n; for k between ¢ and j. We

denote this by i 92 j, which is formally defined in the following definition.

Definition 5.3 (Data dependency). For 4, j € N we define that ¢ is a data dependency

of j via variable v € Var in the execution corresponding to o € %, denoted by i ddy, 7,
through
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i 4oy G i< § Av € def(n;) Nuse(nj) AVE € (i,5): v & def(ny,)

We illustrate this definition in the following example.

Example 5.3. Again consider the program from Figure 5.1a while assuming that
H = {b}. Definition 4.11 then yields that the data abstraction has the following
form. We have use(st) = def(st) = use(if b) = {b} as well as that def(x = 1) =
def(x = 2) = use(print x) = {z} and all other control locations are mapped to
the empty set by both maps.

In Figure 5.3 the same execution as in Example 5.2 is depicted together with
the data abstraction of the reached control locations and the resulting data de-
pendencies. We have only two data dependencies. Firstly we have 0 ddp, 1
as due to H = {b} we have b € def(st) N use(if b) and secondly 2 4= 3 as
x € def(x = 1)Nuse(print x).

ddy dd,
i 0——1 2——3 4 5
n; st if b x =1 print x skip skip
def(n;) {b} 0 {z} 0 0 0
use(n;) {b} {b} 0 {z} ) 0

o, O o o of{l/x}  o{l/z} of{l/x}

Figure 5.3: Execution with data dependencies.



In the case of program dependence graphs, which motivated our approach, in order to
guarantee the security of a program, it suffices to track data and control dependencies
between control locations and verify that one cannot construct a path from a source
reading high data (which in our case is the initial control location in the first step) to
a sink producing an observation (in our case an observable control location). Unfor-
tunately, the corresponding property does not hold for data and control dependencies
within executions. While in our running example, where the program is insecure as it
outputs 2 if the initial value of b is 0 and 1 otherwise, we actually have a path from the
initial step to one reaching an observable control location with the dependencies de-
scribed in Examples 5.2 and 5.3, namely 0 24ty 1 <4, 2 4oy 3 with ng € dom(obs),

this is not a sound criterion in the general case as we observe in Example 5.4.

Example 5.4. Consider the program in Figure 5.4 during whose execution an

attacker can observe whether the initial value of h was 0 or not.

x =1; v =1;
if h then x = 0 fi;
0 fi;

if x then y
print y

Figure 5.4: Insecure program for H = {h}.

The program is not secure for H = {h}, as we have for o with o(h) =1 and ¢/ =
c{0/h} that o =1, o’ but obs(c) = 1 # 0 = obs(¢’). Figure 5.5 shows the data and
control dependencies in the first steps of the executions from ¢ and ¢’. Inspecting
these dependencies we observe that in neither execution the observable print y
executed in step number 6 ("K) can be reached through our dependencies from the
initial step (%), which is the source for high information. The problem arises, as
in the first execution we miss the fact that the value of x, at the execution of if x
in step number 5, influences the value of y, at the execution of print vy in step
number 6, and also due to the fact that in the second execution the dependencies
do not depict that the value of h, at the execution of if h in step number 3,
influences the value of x, at the execution of if x in step number 4. In both cases

at the latter step, the value of the variable reflects that it has not been updated
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and thereby propagates information about the value of the variable governing the

branch.

ng st x =1 vy 1 ifh x =0 if x @print y

ddy, | b

n, st x=1 y=1 if h if x y =0 print y

Ly 1 ———
Figure 5.5: Dependencies in the executions of o and o’.

In Example 5.4 we observe how information can be propagated within an execution
by not taking a branch that might update a variable. Moreover we see, that if this
happens in two executions which violate our security property, the afore-defined depen-
dencies themselves, do not directly suffice to track this propagation within any single
execution. We notice however, that in these cases there always exists a control depen-
dency followed by a data dependency in the other execution such that the source of
the control dependency and the sink of the data dependency appear in both executions.
This also holds in general as we will ultimately prove. Our approach therefore is to track
these dependencies between matching steps, for a suitable definition of matching steps,
in two executions simultaneously, which we prove to be a precise semantic property in
the sense that it captures exactly those matching steps where different data is read. In
a subsequent step we then approximate this characterisation to obtain more effective
criteria based on single executions for the implementation of practical analyses.

A challenge that arises with this approach of considering dependencies in two exe-
cutions simultaneously is the matching of steps between executions. In our example
matching steps was rather simple as there were no loops and therefore any control loca-
tion other than the terminal control location could only appear once in each execution.

In the general case loops and branching make this matching of steps between arbitrary
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executions less trivial because of shifted and duplicated instructions. We utilise what
Giffhorn [19] already used for this purpose, the control slice. The control slice of an
index within an execution consists of the reached control location plus the sequence of
control locations reached by indices upon which the index is control dependent. We

then consider indices in two executions matching, if they have the same control slice.

Definition 5.4 (Control slice). The control slice of an index i within an execution
corresponding to o € ¥ is the sequence cs{ = (n;;)j<r of control locations, where
(4j)j<k is the maximal strictly ascending sequence of indices such that i = ¢ and
Vi < k:i; <4, i. Based on this the control slice equivalence between indices of two

S

. . . . . . / . .
executions is defined as ¢ =2°_, 7' if and only if c¢s{ = ¢s? and in this case we say that

1 in execution of ¢ is matched by ¢’ in the execution of o’.

The control slice is useful to identify instances of control locations within different
executions for the following three reasons. Firstly, it is injective on every execution
(Lemma 6.15). Secondly, it determines the order in which instances of control locations
are visited by executions (Lemma 6.16). Thirdly, it has the — for information flow
purposes — useful property that if for an index there does not exist an index with a
matching control slice in another execution then there must either be a non-terminating
loop or some control dependency of the unmatched index took a different branch in
the other execution (Lemma 6.28). This will allow us to follow the propagation of
information in two executions in a lockstep fashion by always stepping from one pair of
matched indices to the next while tracking data and control dependencies.

We now have all tools assembled to define our criterion for critical executions or
more precisely the critical points within these. At this point we strive to make our
criterion as precise as possible, which is aided by the fact that we still work semantically.
This will allow later analyses to exploit any kind of additional semantic information
to increase its precision without having to worry about soundness problems as the
underlying characterisation did not rely on any imprecision to obtain its soundness. As
mentioned, we will consider two executions simultaneously and only advance from one
pair of matching indices to the next while tracking data and control dependencies. To
achieve maximal precision we require that at each such pair there is an actual diverging
value for a variable read at that point, that is the reached states are distinguishable
based on the variables read at the reached control location, which must be the same in

both executions because the indices match.
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Our inductive definition begins at the first step in the executions for two low equiva-
lent but distinct input states. As all executions start at the same control location st and
because the first step in an execution cannot have any control dependencies, the control
slices of the first steps between any two executions match and as our data abstraction
by assumption defines the set of variables read by the initial control location to be
exactly the high variables, the states are distinguishable based on the variables read. In
the inductive step we consider the two cases we observed in our examples. Either both
executions propagate the diverging value directly via corresponding data dependencies
on the same variable to another pair of matching indices or the executions diverge by
taking different branches and in at least one of the executions a control dependent index
is reached that is a data dependency of a matched index, which we then call a data

control dependency on the matching indices.

Definition 5.5 (Critical executions/critical matching indices). The data dependency

cs
o0’

relation is lifted to pairs of matching indices i = i’ and j = j', parameterised by

initial states o,0’ € ¥ and v € Var via

(i,0) 000 (4,4") == i 2 j AT (5.1)

Moreover, the data control dependency relation on matching indices is defined by

nz—i—l?éni/_l,-l/\gklﬂ)()'k%()'j/\

(i) *ro 00 (G.5') &
VLUK i <l=g,, ' <K <j' = v ¢def(n,).

(5.2)

With these, the critical matching indices My, C N x N for 0,0’ € ¥ are inductively
defined through:

oc=p0' No#p o = 0K, 0 (5.3)
T [x]a,(r’ i/ A (277/) ﬂ)o’,a’ (ja]l> \
J =50 3N A i) 2 0 (3,5 V| = e (5.4)
oj(v) # o (v) (ii) L2505 (5 )

We will step through this definition in detail as it is central to our development. The
definition of data dependencies on matching indices in (5.1) is straightforward. It is
meant to capture the case where different values are propagated by storing them in a

variable that is read later. To this end both executions must have reached matching
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indices (that is the same location with the same control slice) and both must exhibit a
data dependency on the same variable to another pair of matching indices. Note that
while the executions reach matching indices at the beginning and end of the dependency,
they do not need to progress in the same manner in-between.

The definition of data control dependencies on matching pairs in (5.2) is a little
more involved. It captures the case where control flow differs and during this time one
execution updates a variable that is later read at a point, where the control flow has
merged again. To this end the definition in (5.2) requires that n;y 1 # nj,,,, which
ensures that the control flow actually differs and furthermore requires the existence of
another index k, which is control dependent upon the matched index ¢ and updates
the variable v that is read at the matched index j. The definition also requires that
there is no update to the variable v in the other execution after the control flow merged
again with the first execution. This requirement is added because we strive to make the
property as strict as possible and the existence of such an index would lead to another
intermediate dependency to a pair of matching indices that lies before that update.
Including this requirement provides us with an additional constraint on the execution
that does not update the variable that can be exploited to optimise later approximations
like the single execution property we derive. Note that in the case where the control
flow is well-structured — in the sense that if a branch point has multiple branches, no
two of them merge early that is all branches merge at a common post dominator of
the branch point, which is always the case for programs derived from our command
language as it only supports binary branching — the requirement that k' lies after a
pair of matching indices is equivalent to k' not being control dependent upon ’.

The critical matching indices for initial states that coincide on the low variables L but
differ on the high variables H are then defined inductively beginning at the matching
indices 0 and 0. The inductive case then steps from two critical matching indices
i Mg ,o i to two matching indices j =g j' whose corresponding reached states o; and
a;., disagree on the value of some variable v on which there either is a data dependency
or a data control dependency between the pairs of matching indices. Note that there
is only one case for data dependencies as their definition is symmetric. Also note that
in either case of (5.4) it holds that v is read at the location reached by j and j', as at
least one of them is a target of a data dependency on v, which directly yields that the
executions reached matching indices where reached states are distinguishable based on

the variables read. We illustrate this definition in Example 5.5.
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Example 5.5. We again consider the program and executions from Example 5.4.
Figure 5.5 depicts the dependencies on indices, the resulting dependencies on

matching indices and their criticality, which are derived as follows:
o We have 0 =p, ¢/ and o #g o’ whereby with (5.3) it holds that 0 M, . 0.

o In both executions we have a data dependency of 3 on h upon 0 and as in
both executions 3 has no control dependencies and reaches the same control
location we have 3 =¢° , 3 whereby it follows with (5.1) that (0,0) .

(3,3) and as o3(h) = 1 # 0 = o5(h) this yields with (5.4) that 3 x, o 3.

o As for the pair (3,3) it holds for the pair (5,4) that 5 =¢° , 4. It also holds
that ny = (x = 0) # (if x) = n and with 3 <&, 4 9=, 5 and there
being no write of = in the execution of ¢’ between 3 and 4 it follows with
(5.2) that (3,3) 4w, (5,4) whereby with o5(z) = 1 # 0 = o(z) and
(5.4) it follows that 5 M, o 4.

¢ Analogously we have 6 =¢°, 6, 4 <d, ;5 94y, , 6 and there is no write of
y between 5 and 6 in the execution of o, wherefore with (5.2) it holds that
(4,5) 4duy . (6,6) (note the swapped roles of o and ¢”) and therefore with
o6(y) =1# 0 =0g4(y) and (5.4), we have 6 M, o 6.

n; st x=1y=1 if h x =0 if x print y

ddp,
/\ Cd dda;

i 0 1 2 3T Ty s 6

ddp, ded; dcd,
Mo‘,a’ ’ G - &

i 0 1 2 3 4 _cd 5 ddy 6
ddh o’ o’ o’

nl, st x=1y=1 if h if x y = 0 print y

Figure 5.6: Propagation of My o .



Our definition has the desired property that it exactly captures the matching indices
where the reached states are distinguishable based on the variables read in executions

starting from low equivalent input states, which is captured in the following theorem.

Theorem 5.1.
_ / . cs -/ / . .7
0 =10 Ni=g, 1 N0 Fuse(n;) Tir &1 Mg o @

We dedicate the next chapter to the proofs of the central theorems from this chapter
and therefore skip over them here. The proof for the above theorem can be found on
Page 69 in the form of Corollary 6.34.

While our definition of critical matching indices captures the points in executions to
which differences in the high input data are propagated, what we are actually interested
in for our security property, is the question whether these differences lead to different
observations for an attacker. The attacker is defined through a set of control locations
at which, when they are reached during an execution, an observation is produced, which
is determined by the values of the variables read at that location. Having characterised
the points during an execution that are influenced by the high data, we can characterise
which executions might finally lead to different observations for the attacker. We distin-
guish two cases based on whether the different observations are produced at matching
points or not, both of which we will consider critical. That is either the executions
reach matching points where the same control location reads different data that causes
the executions to produce different observations or the executions produce the different
observations at two points that do not match. In the latter case there must be some
unmatched index in one of the executions, as matching indices always have to appear in
the same order, wherefore the unmatched index must lie within a branch that was not
taken by the other execution. We utilise this to define a notion of critical observable
executions, which in general is somewhat stricter than our security property itself as the
latter is chosen to be as simple as possible while the notion defined now is tailored to
our structure driven approach. The definition of critical observable executions ignores
the fact that our security property only considers the sequence of observations and that
the same observations might be produced from different data at the same or at different
locations. Our criterion instead requires that the observations are produced at the same
points based on the same data. The critical observable executions, or more precisely the

critical observable indices in executions, are defined as pairs of indices in two executions
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where the first index reached an observable control location and either the indices are
critical matching indices themselves or the second index forms a critical matching pair
with an index that is a control dependency of the observable index and after which the

branch, inside which the observable index lies, was not taken by the other execution.

Definition 5.6 (Critical observable indices). An index ¢ in the execution corresponding
to the initial state o is called a critical observable indez as witnessed by i’ in ¢’, denoted
i X4 o ¢, if and only if it holds that

n; € dom(obs) A (z Moo iV (EIL: L i N Mg i ATy # n;,+1))

and in this case the execution corresponding to o is called a critical observable execution.

The non-existence of critical observable executions or equivalently the non-existence
of critical observable indices, is the criterion targeted by our methodology. Example 5.6

illustrates in three cases how insecure programs exhibit critical observable executions.

Example 5.6. In the following examples we describe how one obtains critical

observable indices for executions of some insecure programs described before.

(a) In Example 5.5 we observed that in the executions corresponding to o and
o' the indices (6,6) constitute a critical pair, that is 6 X, . 6. As ng is an
observable control location, we obtain that 6 is a critical observable index in
the execution corresponding to o as witnessed by the index 6 in the execution

corresponding to ¢’, that is 6 X, o/ 6.

(b) In Examples 5.2 and 5.3 we described some dependencies for the program
if b then x = 1 else x = 2 fi; print x for o with o(b) = 1.
Here we obtain with o/ = ¢{0/b} and H = {b} that (0,0) 4= (1,1) as
well as (1,1) 4<%ey ., (3,3). It therefore holds that 3 X, . 3 and because
ng = print x € dom(obs), we obtain 3 X, . 3.

Note that (1,1) %=, , , (3,3) also holds (notice the swapped roles of o and
o’) wherefore we also have 3 X,/ 3. In cases like these our single execution

approximation defined later will not depend upon a second execution.

(¢) In order to illustrate the second case of Definition 5.6, where observations

differ because an observation is missing from a terminating execution, consider
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the minimal program if h then print 1 fi. Assuming that H = {h}
and o(h) = 1 as well as ¢/ = 0{0/h} =p o it holds that obs(c) =1 £ € =
obs(c’). Tt follows that the program is not secure as the execution for o’
terminates. We have 0 X, o/ 0 and (0,0) 4%, (1,1) wherefore 1 Xy o 1.
With ny = print 1 # skip = n), no € dom(obs) and 1 <%, 2 we then
obtain 2 X, o 1.

The following theorem states that the absence of critical observable executions is
actually a sound criterion for the security of a program. More precisely it is the case
that for any pair of executions which violate our security property at least one of them

is a critical observable execution as witnessed by the other.

Theorem 5.2.
a) o= 0o Nobs(c’) £ obs(o) A (Tk: ng =te) = Fi,i' 1 i Xy i’ Vi Kgrg i

b) o =L o' Aobs(c) £ obs(a’) Aobs(c’) £ obs(0) = Fi,i': i Xy i’ Vi Kgrp i

The two parts of the above theorem capture the two cases of our security property for
terminating and arbitrary executions (Definition 4.5) and directly imply the following
corollary, which is the underlying correctness result for our approach. We defer the
proof of the above theorem to the next chapter where it can be found in Corollaries 6.36
and 6.37.

Corollary 5.3 (Correctness). If a program does not exhibit any critical observable
executions, which is there are no i, ¢, o, o fulfilling i x5, i, then the program is

secure. O

This result allows one to prove the security of a program by verifying that a program
does not exhibit any critical observable executions. In Chapter 7 we will do this by
applying abstractions to the definition of critical observable executions to obtain com-
putable approximations. In Example 5.7 we apply the definitions directly in a semantic

argument for the security of a program.

Example 5.7. We sketch how the definitions of critical and critical observable
indices can be applied to verify the security of a program through the above cor-

rectness result in an ad hoc manner. Consider the program corresponding to the
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command from Figure 5.7 with H = {h}. We already considered a variant of this
program in the introduction in Figure 1.1 as an example for a secure program where

solely syntactic arguments are insufficient to verify its security.

if b then
x = h; sec = 0
else
X =Yy
fi;
if sec then
print x
else
print O
fi

Figure 5.7: Secure program for H = {h}.

We have to assure ourselves that there can be no critical observable indices for
this program. Starting with the inductive definition of critical pairs for arbitrary
low equivalent but distinct o and ¢’ it is the case that 0 X, 0. From here,
as ng = st has only one successor which is a post dominator, there cannot exist
any control dependencies. Due to def(st) = {h}, the only way to advance is via a
data dependency on h, which is only read at x = h, a control location that can
only be reached in the second step of an execution so that the data dependency
in question would have to be (0,0) 4%, (2,2). Again, as x = h has only one
successor which is a post dominator and def(ns) = {x}, the only way to advance
is via another data dependency in both executions to print x, which would be
reached by both executions in the fifth step. It can however not be the case that
(2,2) 2=y ., (5,5), as ng would be sec = 0 wherefore g4(sec) = 0 and thereby
ns = [1f sec,o04]; = print 0, which contradicts ns being print x.

The only critical pairs can be 0 X, , 0 where ng is st and 2 X, .+ 2 where ny
is x = h. As both are neither observable nor can have any control dependencies,

there cannot be any critical observable indices and the program must be secure.



Note that in the above argument we did not rely on any properties between the
two executions allowing it to be fully reduced to properties of single executions. In
the following we will define single execution approximations that can handle this

example as well.

Before we continue with the proofs of the theorems in the next chapter, we make a
first step towards obtaining an effective analysis from our semantic characterisation. As
we ultimately strive for decidable criteria for security, we are forced to abstract from
our precise yet in general undecidable property. Here we perform a first step still within
the semantics to move into this direction and in Chapter 7 we will present further ab-
stractions that finally yield effective analyses. While our property from Definition 5.6
considers two executions simultaneously and defines a set of pairs of critical or unsafe
executions, single execution safety properties, which only consider a single execution at
a time and define a set of unsafe executions are often more tractable and enjoy better
support from various program analysis techniques and frameworks. We therefore pro-
vide as a starting point for further abstractions an approximation of our two execution
property by a single execution property. Alas, as we observed previously, it might not
always be easily possible to identify a potential information flow within a single execu-
tion and as different abstractions might enable different possibilities to identify those,
we still use a second execution locally to define an additional kind of dependency to
capture these information flows.

We define the data control dependency relation on indices within a single execution
analogously to the data control dependency relation on pairs of indices in Definition 5.5.
They capture the case that in another execution there exist matching indices such
that the former is a control dependency of an index that is a data dependency of the
latter, which leads to different values being read at the latter index. As we consider
single executions where we will also track data and control dependencies themselves
instead of only tracking data and data control dependencies like we did for pairs of
executions, we can make the definition of data control dependencies for single executions
somewhat stronger than in the case of data control dependencies on pairs. Due to this
the definition assumes that there is no update of the variable in the original execution
at all while the definition on pairs of executions allowed updates to the variable after
the control flow merged. As we did with data dependencies, which we partitioned over

the variable used for the data dependency, we partition data control dependencies over
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the variable used and additionally over the alternative input state and the matching
index in the witnessing execution in order to pose additional constraints on these. We
then define a single execution approximation of our two execution characterisation of
critical observable executions, which tracks data dependencies and control dependencies
in single executions as well as data control dependencies to cover information flows not
easily visible in an execution itself. The approximation still utilises the full semantics
and initial states with execution indices to represent points within executions. We define
two sets R and C' C ¥ x N, representing points in executions which might be reached

by high information (R) as well as the observable subset of these (C).

Definition 5.7. For i,5,i’ € N, 0,0’ € ¥ and v € Var, the existence of a data control
dependency on v between ¢ and j in the execution corresponding to o witnessed by i’ in

o’ is denoted as ¢ M)g j and defined by

chd070]<:>2_ ,’L No =0 /\(Vke[lj> U¢d€f(nk))/\

e i <y k/ A / (5'5)
' o NG =00 ' Naj(v) # ) (v).

Using this relation, the reaching and critical reaching executions R,C C ¥ x N are

defined inductively through:

(0,0) € R (5.6)

(0,i) e RAi 4oy j= (0,j) €R (5.7)
(U,Z)ER/\Z—d>Uj:>( j)€ER (5.8)
(a,i)ER/\(U’,Z')ERAZ—>0]:>(UJ)€R (5.9)
(0,i) € R An; € dom(obs) = (0,i) € C (5.10)

This definition provides a safe approximation for critical observable executions as we
record in the following theorem, whose proof we defer to the next chapter where it can
be found as Corollary 6.39.

Theorem 5.4.
i Koo i = (0,i)eCA(d)i')eER

Combined with Corollary 5.3 this directly yields that emptiness of C' is a sound

criterion for security.
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Corollary 5.5. If C' is empty, then the program is secure. O

Applying stepwise abstractions to the definition of C' in order to obtain computable
criteria for security will be our focus in Chapter 7. We end this chapter with revisiting

Example 5.4 using our newly defined single execution criterion.

Example 5.8. We again consider the program from Figure 5.4 with the same
initial states o and ¢’ as in Example 5.4. In Figure 5.8 we include, additionally to
the data and control dependencies already listed in Example 5.4, the newly defined
data control dependencies of the first steps of the executions of o and ¢’. With
these additional dependencies we see in both executions that the initial read of the
high data in step 0 (%) reaches the execution of the observable control location in
step 6 (K), whereby we obtain that both (o, 6) and (¢7,6) lie in C and see that our

criterion correctly deems the program insecure.

i 0 1 2 3 4 5 6

ng st x=0 y=1 ifh x =1 if x @print y
ed, :
ddny g
dday, SN

n, s¢ x =0 y=1 if h 4if x -y = 0 print y

ddh} el *

— g —> X

Figure 5.8: Dependencies in the executions of ¢ and o’.
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In this chapter we provide proofs for the central Theorems 5.1 and 5.2 as well as for
Theorem 5.4 from the previous chapter. The proofs presented in this chapter have
also been formalised [39] and machine checked using the interactive theorem prover
Isabelle/HOL.! We again assume the same context as before, that is we fix a program
(X, N, E, st, te, [.], def, use, L, obs), admissible in the sense of Definition 4.2.

We split the proof into three major parts. Firstly, in Section 6.1 we will study basic
properties of paths, control dependence and the control slice to establish theorems to
foster our understanding of how control dependencies determine the occurrence and
order of operations in executions. In Section 6.2 we will then define the concept of
contradicting executions to split the remaining proof into two parts, corresponding
to the stepwise definition of critical observable indices which were based on critical
matching pairs. Contradicting executions retain the idea of comparing differences in
executions at steps with matching control slices but drop the tracking of data and
control dependencies and thereby bridge the gap between the characterisation of critical
matching pairs in Theorem 5.1 and the definition of critical observable indices. In order
to exploit this we prove in Section 6.2 that insecure programs contain contradicting
executions and then close the main proof in Section 6.3 by proving that contradicting
executions themselves are critical observable executions. Finally, we quickly conclude in
Section 6.4 with the correctness result for the single execution approximation by proving
that critical observable executions are also considered critical by the single execution

approximation.

INote, that for historic reasons the Isabelle/HOL formalisation handles the terminal self loop in termi-
nating executions in a slightly different way, which was, together with a few arguments, streamlined
in the proofs presented here.
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6.1 Properties of Paths

In this section we will establish required properties related to the control of a program.
To this end we will study properties that are independent of the initial and reached
states in the way that they only depend on the sequence of visited control locations.
As the definitions of control dependence (<%) (Definition 5.2), data dependence (-<24x)
(Definition 5.3) and the control slice (cs) (Definition 5.4) for initial states already only
depend upon the sequence of control locations visited by the corresponding execution,
we lift those from being defined for initial states from ¥ to also being defined on the
set IT C N of infinite paths in the control flow abstraction (N, E). As we do for initial
states, whenever we fix a path m € II (respectively n') we let (n;)o<; (respectively
(n})o<i) denote the corresponding sequence of control locations, which we uniformly
refer to as the execution in this section, independently of whether it actually stems from
an initial state or is a directly fixed path in (N, E). The theorems in this section for
paths in the control flow abstraction are directly applicable for initial states when using
the original definitions of dependencies and the control slice on initial states.

In addition to our definition of control dependence lifted from initial states, which
is transitive as we will prove in Lemma 6.11, we define the intransitive version, the
immediate control dependency relation. The immediate control dependency relation
consist of only those control dependencies, where the first index is the greatest index
upon which the second index is control dependent. This definition also gives directly

rise to the corresponding definition for initial states, which we will utilise later.

Definition 6.1 (Immediate control dependency). For any path 7 € II (or initial state)
we define the immediate control dependency relation 4 C N x N by

idedy jei < GARkE (i,5): k<D .

As control dependence and thereby the control slice are defined based on the strict
post dominance relation (2%), we begin with observations about the latter. The fol-
lowing lemmas establish the fact that the terminal control location (te) strictly post
dominates any other control location but is itself not strictly post dominated by any

control location.

Lemma 6.1.
T #te = te 24 o
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6.1 Properties of Paths

Proof. Any path from x to te trivially contains te, with the antecedent the claim follows.
O

Lemma 6.2.
-z 2 te

Proof. In the case where z = te, we directly obtain that x does not strictly post dominate
te. If = # te consider the unique path starting at te that only contains te, which exists
as te is the unique successor of itself in F. Thereby x cannot strictly post dominate te

as x does not appear on this path. O

Due to our assumption that the terminal control location can be reached from all

control locations it follows that the strict post dominance relation is anti-symmetric.

Lemma 6.3.
y 2 op = —p 2y

Proof. From y 2% x we obtain by Lemma 6.2 that = # te. Let 7 be a path from  to
te, that is ng = = and n, = te. Such a path exists by Assumption 2 of Definition 4.2.
We can assume that = does not occur in 7 after 0, as it cannot occur after k as te only
admits self loops and we can shorten 7 if there is another instance of z. As y 2% z and
7 is a path from z to te there exists an index j < k, such that n; = y. Due to y 2% z
we have x # y and thereby j > 0. The subpath from j is then a path from y to te that

does not contain x and therefore x cannot strictly post dominate y. O

From the definition of the strict post dominance relation and utilising its anti-

symmetry, it follows that the strict post dominance relation is transitive.

Lemma 6.4.
2z 2dy y Ny 2y g = 5 2Dy g

Proof. Assume the antecedent, whereby = # z holds by Lemma 6.3. Let 7 be any path
from z to te, we have to show that 7 contains z. As y 2% z there exists an instance
of y on 7 before te. The subpath from the instance of y to te contains an instance of z

before te as z 2% y. Therefore 7 contains the required instance of z before te. O

Another fact following from the assumption that all control locations can reach the
terminal control location is that any control location can only have finitely many strict

post dominators.
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Lemma 6.5.
Ky |y 2% 2}| < o0

Proof. As x reaches te there is a path from x to te, as all strict post dominators of x
appear on that path before it reaches te after finitely many steps, there can only be

finitely many. O

Moving on from the strict post dominance relation itself, we will now investigate basic
properties of control dependence and the control slice. A first observation is that while
the dependency relations (<4, 24, %) and the control slice are defined based on whole
executions, their definitions actually only depend on the sequence of control locations
appearing between the indices they relate, respectively the control locations appearing
up to the index for the control slice. We therefore have the following properties which

allow us to switch between paths.

Lemma 6.6.

Viel,jl:im=nl) = (D.jeitk D jitk)A
(i it kD L 4 k) A
(i Hr j & itk S j+ k)

’

(VI <i:ny=mn)) = cs] =cs]

3

Proof. This follows directly from closely inspecting Definitions 5.2, 5.3, 5.4 and 6.1. [

The following two lemmas characterise the control dependencies and control slice
of indices that reached the terminal control location (te). Firstly, indices that have
reached the terminal control location are exactly control dependent upon the smaller
indices that also reached te. Secondly, the control slice of any index reaching te thereby
only depends upon the number of times the execution has looped there.

Note that this in particular means that any two terminating executions reach match-
ing indices when first reaching the terminal control location. This will be beneficial
later, as we will often require indices with matching control slices and we can by as-
sumption at any point modify the sequence of control locations to eventually reach the

terminal control location (te).

Lemma 6.7.
nk:te:(i%ﬂk@i<k/\ni:te)
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Proof. If i <% k we have by Definition 5.2 that ¢ < k and = nj, 2% n;, whereby n; = te
by Lemma 6.1.

If i < k and n; = te then it holds that Vj € [i, k]: n; = te because te only reaches itself
by Assumption 4 of Definition 4.2. As —te 2% te we obtain i <%, k as required. O

Lemma 6.8.

ny =te A (Vi <ring #te) = sl = (t)iciou]

Proof. As n,,j = te it follows by Lemma 6.7 that r + k is exactly control dependent in
7 upon the previous instances of te, which are exactly the ones between r and r + k, as

r is the first instance of te and te only reaches itself. O

Besides identifying indices with matching control slices, we also require means to tell
indices apart based on their control slice. The following lemma makes a first step in
this direction by showing that whenever a control location is reached twice within one
execution, there must exist a control dependency for the later visit, which lies at or
after the earlier visit. Intuitively this follows from our assumption that according to
the control flow abstraction any loop must have the option to terminate. We already
used this assumption to prove the transitivity of the post dominance relation, from

which the result follows based on our definition of control dependence.

Lemma 6.9.

i<jAn;i=mn;=3k€li,j): kL,
Proof. Assume the consequent is false. Unfolding Definition 5.2, we thus have
VE € [i,4): 3 € [k, §]: g 2% ny. (6.1)

We then obtain Vk € [i,5): n; 2% n;, by induction over j — k using (6.1) for the base
case and (6.1) together with the transitivity of the post dominator relation (Lemma 6.4)
in the inductive case. This yields n; d, n;, which is a contradiction to n; = n; and

thus the consequent must be true. O

The following two lemmas establish that control dependencies are well-nested, that is
if an index is control dependent upon another then so are all intermediate indices and

moreover the control dependency relation is transitive.
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Lemma 6.10.

i kANi<j<k=i<

Proof. This follows directly from Definition 5.2 as there cannot exist a strict post dom-

inator of n; between i and j if there is none between ¢ and k. O

Lemma 6.11.

i A k=g |

Proof. Assume the consequent is false, we then obtain an index [ € [i, k] such that
ny 24 n;. As i <% 5 it must be the case that [ € (4, k] and therefore n; must not post
dominate n; as j <dy k. If n; does not post dominate n; we can obtain a path from
n; to te that does not contain n;. If we append this path to 7 at position j and drop
the prefix before i we obtain a path from n; to te that does not contain n;, which is a

contradiction as n; 2% n;. O

Transferring these well-nestedness properties to the definition of the control slice
yields the following lemma which allows us to decompose the control slice. The lemma
states that any non-empty prefix of a control slice is itself the control slice of a control
dependency of the index the original control slice corresponded to and these indices

build a chain of immediate control dependencies.

Lemma 6.12. Given any path ™ and i € N, let (ij);cjo,x be the mazimal strictly
ascending sequence with iy = 1 and Vj < k: i; <d, i as in Definition 5.4, such that
csf = (n4;)jefo,k)- Then it holds that:

VI < k: CSZ = (nij)je[o,l] N1y ﬂ>7r 141

Proof. Let | < k hold. Due to 4; <%, i and Lemma 6.11, any control dependency of
1; is also a control dependency of i, wherefore the maximal strictly increasing sequence
of indices that defines the control slice of 7; is a subsequence of (i;);ejo.x]- Vice versa,
due to Lemma 6.10, any control dependency 7; of ¢ is a control dependency of 7; if and
only if i; < j, which is the case if and only if j < I due to the sequence (i;),c[o,x being
strictly ascending. It follows that the maximal strictly increasing sequence of indices
defining csf must be (i;);c[0,), which yields csf = (n;,);e[0, as required. Moreover,
as [ < k, we have in the same manner that (i;);eo, is the strictly increasing sequence

of control dependencies of i;11. With i; being the greatest control dependency of 4;41,
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6.1 Properties of Paths

it follows that there can be no further control dependencies of 4,11 after i;, such that

iy Aedy 1141 holds as required. O

As the immediate control dependency of an index must be unique by definition, we
can specialise the above lemma for a common use case were we deconstruct the control
slice based on an immediate control dependency.

Lemma 6.13.

- dcd - T T )
1 —r ] :>CSj = CS; 'TLJ

Proof. From the antecedent it follows that the control slice of j has length greater one,
such that by applying Lemma 6.12 we obtain ¢ with ¢ 44 j and csj = cs]nj. As
there cannot exist two different immediate control dependencies for j, it must be the

case that + = i and the consequent follows. O

We now work towards Lemma 6.16, one of the central lemmas in this section, which
will establish the fact that the control slice determines the order in which control loca-
tions are visited by executions, that is the order between indices with matching control
slices is fixed. To this end the following lemma first considers the case, where two con-
trol locations both appear in two executions, such that the index of the one appearing
later in the first execution does not have any control dependencies and neither has the

index of the appearance of the other control location in the other execution.

Lemma 6.14.
ni=ny Ang=njy ABk: ke )N E S i Ni<j =i <]

Proof. Assume the consequent is false and thus j° < ¢’ holds. Consider the path ob-
tained by stitching 7’ from j’ onto m at j. This yields a path # with a loop on n;
between ¢ and i’ + j — j’. By Lemma 6.9 we obtain a control dependency k of ¢/ + 7 — j
in #. If j < k then this control dependency lies completely in the section of # from 7/,
thus by Lemma 6.6 k+ 5’ — j is a control dependency of ¢’ in «’, which is a contradiction.
Otherwise, if k£ < j we obtain with Lemma 6.10 that & is a control dependency of j in
7, which completely lies in the part of & from 7 and thus, again by Lemma 6.6, also

arrive at a contradiction. O

Together with the previous lemmas we can inductively prove that for any execution

the mapping from indices to their control slice is injective.
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Lemma 6.15.

P =i =i

Proof. We prove the claim by induction over the length of csT. As the control slice is
never empty we start the induction with the case where cs = n;. We therefore have
Fk: k <4 i and the same for j. The claim then follows from Lemma 6.14 with 7’ = 7,
i/ = j and j' = i. In the other case obtain with Lemma 6.12 two indices k and [ such
that k 2<% 4, 1 2y j and csf-n; = csT = csj = csf -nj. We therefore have k =7
with a shorter control slice and by induction hypothesis obtain k = [. If we drop the
first k& control locations from 7 we obtain the path 7= < (k + 1) where, by Lemma 6.6,
both i —k—1 and j —k — 1 have no control dependencies. As in the base case we obtain

i—k—1=j—k— 1 using Lemma 6.14 and therefore ¢ = j as required. O

We can now prove the central lemma about the order of indices with matching control
slices in different executions. Together with the later lemmas about unmatched control
slices this lemma is the main motivator for the use of the control slice for the inductive

definition of critical executions in Definition 5.5.

Lemma 6.16.

i=p i N =2 = (1<j e <)

Proof. Without loss of generality assume ¢ < j. By Lemma 6.15 we have cs] # csj.

We now consider the following cases for this inequality:

us

1. cs] is a proper prefix of cs]

u
K2

is a proper prefix of cs
and csj diverge in the first position

and cs] share a common non-empty prefix before they diverge

Case 1. As cs is a proper prefix of csj, it is also the case that csf,/ is a prefix of cs;r,/.
With Lemma 6.12 and Lemma 6.15 it follows that i’ <%, j” and therefore i’ < j’

as required.

Case 2. This case is empty, as like in Case 1 it would follow that j <& i, which

contradicts ¢ < j.
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Case 3. Let k, [, k¥’ and I’ be the respective indices of the first control dependence of i,
j, 1" and j’ or the respective index itself if no such control dependence exists. Due
to Lemma 6.11, none of these can posses a control dependence itself. We have
k < l, as it can neither be the case that [ = k, as that would contradict the control
slices of 7 and j, which begin with n; and n;, diverging in the first position, nor
be the case that I < k < i < j, as this would, by Lemma 6.10, imply that [ <% k,

which again is a contradiction, as k does not have a control dependence.

As [ and k' do not have any control dependence, we obtain from k < [ with
Lemma 6.14 that ¥’ < I/, which leaves us with ¢/ > k¥’ < I’ < j'. Again with
Lemma 6.10, we see that it cannot be the case that ¢/ > I’, as this would yield
k' <4, I’ but I’ has no control dependence. Therefore it must be the case that

i < 1" <j’ as required.

Case 4. We consider the common non-empty prefix after which the control slices di-
verge. By Lemmas 6.12 and 6.15 the prefix is the control slice of an index k in 7
and of an index k" in 7/, such that k is the last common control dependency of i and
Jj in m, respectively of ¢ and j' in 7’. We then consider the paths # = 7 <(k + 1)
and ' = 7’ < (k' + 1), where we dropped the first & control locations in 7 and
the first &’ control locations in 7/. With Lemma 6.6 and Lemma 6.11 we see that
we are in the same situation with #, &/, 1 —k, j — k, ¢/ — k’, 7/ — k' as with «, 7/,
i, 7,1, 7/ in Case 3. Applying the same argument leaves us with ' — &’ < 5/ — K/

and we obtain ¢’ < j' as required.
O

Before we continue with the central lemmas on unmatched control slices, we will first
develop two further lemmas about the equivalence of control slices in shifted executions.
The following lemma is an inductive generalisation of Lemma 6.13, allowing us to split

the control slice of an index at an arbitrary control dependency.

Lemma 6.17.

i s k= csf = csT-csp ST

Proof. We prove the claim through induction over k. May the claim hold for all smaller
k. If i 2<% k we obtain by Lemma 6.13 that cs], = csT-ng. As there exists no control
dependency between i and k in 7, there is none of k—i—1 in m < i+1 and by definition we

therefore have cstiﬁl = Njy1+k—i—1 = N as required. If there exists another control
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dependency between i and k, let j be the greatest such, which gives us with Lemma 6.10

that ¢ <4y j 44, k. Using Lemma 6.13 for j 2% kand j—i—1 % o, 1 k—i—1
we obtain with the induction hypothesis that csj, 6é3 s ny g CHEE R ity 613
csT CSZ<<Zh1L1 as required. O

While the above lemma allows us to split the control slice of an instruction itself at
an arbitrary control dependency, we are often mostly interested in whether two control
slices of certain indices match or not. To this end the following lemma allows us to reason
about whether control slices match when splitting the executions at an arbitrary pair
of matching indices, which are not necessarily control dependencies. It states that two
indices that are reached after a pair of matching indices match if and only if the shifted
indices match when dropping the prefixes that reached the matching indices. This will
allow us to drop matched prefixes between executions when looking for matched control

slices as we do in our inductive definition of critical matching indices.
Lemma 6.18.

’ ’ ’
k=0 K = (esT<F =8, <P & sty = esfn)

Proof. For the implication from right to left we assume csj,, = csg/+n, and let (4;),<.

and (i’ )j<L be the strictly ascending families of indices from Definition 5.4 for cs]

and Cbk/+n, Let n and " be minimal such that i, > k and z > k’. Utilising the

definition of the control slice and Lemma 6.6 one recognlses that cs’r <k = = (Ni;y,)j<i—n

and (:s7r <K =(njy )j<i—y. Aswehave Vj <¢:i; =3, i, we obtain by Lemma 6.16
Jj+n’ T

that Vj <¢:d; > k < i’ > k" and thereby n = n" and csT <k = CSZ: <F as required.
For the implication from left to right assume cs? <% = CSZj <K We first prove the

following property:

Vi<k:j<h k+n=35 <k:j=C_.j bk +n (6.2)
Assume the statement does not hold and fix j < k such that j <%, k + n but Aj’ <
k:jg=2_7 <y k' 4+n'. As j <4 k+n by Lemma 6.10 it holds that Jj %5, k and as

k._

be the first control dependence of k' +n' in 7/ after or at k' or k' +n/ itself if none exists.

k’ we obtain with Lemma 6.12 an index j" such that j =3° , j" <% cdy k. Let I’

T,

We have that I’ cannot be control dependent upon j’ and therefore obtain the existence
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of i € (j',1') such that n/, 2% n. As j' <d, , k' we also obtain k' < i’. Therefore
I’ has no control dependence greater or equal to i’ and we obtain by Lemma 6.19 that
nj, 2dy ! ¢ and therefore by transitivity that nj, d, n . As csT<F = cs7r <+ and nj,
is part of the latter we obtain the existence of [ € [k, k + n] such that n; = nj, but then
n; 24 n;, which is a contradiction to j <d, k4 n, whereby (6.2) must hold.

Due to all assumptions being symmetric in 7 and 7’ we obtain by the same argument:

Vil <k o kK 40 =3 <k =817 b k+n (6.3)

We now consider two cases. Firstly, if there does not exist a control dependence of
k + n in m before k, then by (6.3) neither does one of ¥ + n' in 7’ before k' and we
obtain csf,, = cs7 <F = cs™ <K =T, as required.
Secondly, if there exists a control dependence of k + n in 7 before k, then let j be

the greatest such. By (6.2) we obtain the existence of an index j’ that is a control

dependence of k' +n' in 7’ before k' with j =2, j/. We have that j' is also the greatest
control dependence of k' 4+ n/ in 7’ before k’ due to (6.2) and Lemma 6.16. We there-
fore have cstflj_ ng_l = csT <k = ”/ <K s’,:,ffj:; 1 which yields together with
Lemma 6.17 that csf,,, = cs]- csszf';l L= csj, cszlfﬂ - | = s}, as required. [

We now prepare for the proof of Lemma 6.24, our main lemma about unmatched
control slices, which considers the case where the control slice of some index is not
matched by another execution but some later index is. In this case the lemma allows
us to obtain a matched control dependency of the unmatched index, at which the
executions take different branches. The proof will be done by an induction over the
control slice of the unmatched index, for which Lemma 6.21 will provide the base case
and Lemma 6.23 the inductive case.

The following two lemmas first consider relevant properties of control dependence and
post dominance. The first lemma considers the case where the last index in a range of
indices has no control dependency within that range and shows that the control location
reached at the end post dominates the control locations reached at the beginning. The
second lemma shows vice versa that when in a range of indices the last index reaches a
post dominator of the control location reached by the first index and that last control
location is otherwise not reached within that range, then the last index does not possess

any control dependencies within the range.
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Lemma 6.19.
cd

Pi<kAN@j>ij k) = np 2,
Proof. We perform an induction over k —i. As i < k and —i <& k we obtain the
existence of j € (i, k] with n; 2dy p;. If j = k we are done, otherwise applying the
induction hypothesis to i < j < k we obtain nj 2% n; and therefore ny, 2dy p; using

the transitivity of the post dominator relation (Lemma 6.4). O

Lemma 6.20.
i<k/\nkﬂd—>m/\(ﬂj€(i,k):nj:nk):>£j2i:jﬂ>ﬂk

Proof. Assume the consequent is false. We thus obtain j > 4 such that j <& k. Tt is
therefore the case that j € (i,k) and ny # n; and also that n; does not post dominate
n;. We can then change 7 at j to reach te without visiting n;. This is a contradiction

to ny 22 n;, as there also is no instance of n; between ¢ and j. O

The following lemma considers the base case of Lemma 6.24 where an index possesses
no control dependencies and a later index is matched by another execution and shows

that it cannot be the case that the earlier index is unmatched.

Lemma 6.21.

no=nog ANl <mAm=3_,m'Nesf =g = 3" 1=, 1
Proof. If | = 0 there is nothing to do as csj = ng = nf = csj . If { > 0 and as [ has
no control dependencies, we can apply Lemma 6.19 in order to obtain that n; 2% ny.
Without loss of generality we may then assume that m and 7’ both reach te after m,
respectively after m’, as otherwise we could append a path to te to both at m and m’

and would find that any I’ that is control slice equivalent to ! in the modified path

cs
!

We therefore obtain that n; must appear in 7’. Let I’ be the first instance of n; in 7’.

would also be part of the original path due to Lemma 6.16 as [ < m and m = m'.

As nj, 24 n!) we obtain by Lemma 6.20 that csﬁ/ =nj, =mn; = cs] as required. O

Moving towards the inductive case, the following lemma proves that an index that
is immediately control dependent upon another index post dominates all intermediate

indices.
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Lemma 6.22.
i kA< j < k= ng 2D n,

Proof. We perform an induction over k — j for arbitrary j. In the base case if k = j+1
we have that n; must post dominate n; because otherwise it would be the case that
j <4k, which is a contradiction to i %4k and i < j. In the inductive case we
also utilise that j cannot be a control dependency of k and therefore obtain an index
I € (j, k] such that n; 2% n;. If | = k we are done. Otherwise, we apply the induction
hypothesis for I, which yields n, 2% n;, such that with the transitivity of the post

dominator relation (Lemma 6.4) we obtain nj, 2% n; as required. O

The following lemma describes the inductive case of Lemma 6.24 and shows that if
an index that lies before a matched index is immediately control dependent upon a
matched index at which both executions take the same branch, then the original index

must also be matched by the second execution.

Lemma 6.23.

kA INE=20K Anger =njp o Al<mAm=S,m/ =3 1=

7! T, !

Proof. From k 4<% | we obtain csj = csy-ny by Lemma 6.13.

We first consider the case that [ = k + 1. In this case we obtain &’ %%, k' + 1 and
thereby also with Lemma 6.13 that csf, 1= csf, -, 41 = CSpMpy1 = cs] as required.

Now consider the case that [ > k+1. Using Lemma 6.22 we obtain that n; 24 Nkl =
Ny 4+1- We may assume without loss of generality that 7 and 7’ both reach te after m,
respectively after m’, as otherwise we could append a path to te to both at m and m/
and would find that any !’ that is control slice equivalent to [ in the modified paths
would also be part of the original paths due to Lemma 6.16, as [ < m and m = m'.

As n; 24 nj, 4, and 7’ reaches te, n; must appear in 7’ after &' 4 1. Let I’ be the
smallest index greater than k&’ + 1 such that nj, = n;. With Lemma 6.13 it suffices show
that k' 24, ',

We have that n;, = ny # te because n; = ng41 = te would be a contradiction to
n; 2% nyo 1 as te has no post dominators according to Lemma 6.2. Therefore, with 7/
reaching te and te 2% n},, there exists a smallest index i’ > &’ such that n}, 2% n},.

As n; does not post dominate nj, = ny due to k ded, 1. we also have that n; does not

post dominate n/, due to the transitivity of the post dominator relation and n}, 2% n},.
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This yields that I < i’, as otherwise we could construct a path from nj, ; to te without
visiting n; by changing 7’ at i’ because I’ was the first index visiting n; in 7’ after k' +1.
As i was the first index visiting a post dominator of nj, after k', we obtain from
I <4 that k' <%, ['.
We also see by using Lemma 6.20 that there is no other control dependence of I after
K, as k'+1<1,np d, Ny, and I” was the first instance of n; after &’. We therefore

have k' 24, I” as required. O

The property shown in the following lemma is, together with Lemma 6.16, the major
motivation for our utilisation of the control slice in the inductive definition of critical
executions. It states that if an index is unmatched by another execution that matches
a later index, there must be a matched control dependency of the first index that takes

different branches in the two executions.

Lemma 6.24.

ng=nogAl<mAm=2,m'N@B 1=
s T K k=S K A S L Ay £ 1l

Proof. Assume that ng =ng, | <m, m =_, m’ and that

VE K k=21 K ANk S L= gy = nj . (6.4)

We show that there exists an (' such that [ =2, I’ by induction over the length of
cs] for arbitrary [. In the base case, where cs] = n;, the existence of the required index
I’ follows directly from Lemma 6.21.

If csT # n; we obtain by Lemma 6.12 an index ¢ with ¢ dedy [ and cs] = cs]-ny. As
1 < I < m and because any control dependence of ¢ is also a control dependence of [,
we have that (6.4) also holds for i instead of I and can apply the induction hypothesis
for i to obtain i’ such that i =5, 7.

From (6.4) we also obtain that n; 1 = nj, ; such that by Lemma 6.23 we obtain the
required !" with [ =5°_, I'. O

The following lemma generalises the above to indices between matched indices in

arbitrary executions by using Lemma 6.18.
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Lemma 6.25.

i =i N <l<mAm =2, m' AR L=00T)

—m,m’

— 3k ki <kAR =2 K Ak S LA #

Proof. Applying Lemma 6.18 we obtain that m —i =2°_, , ., m — i as well as

A1 —i=__ ,_ . 1. With Lemma 6.24 we obtain the existence of k and &’ such
L, L4

that k :;:rs<<7;,ﬂ./ <L

we also obtain k+i =° , k' +i" and by Lemma 6.6 also have k+i <dy [ asrequired. [

K,k ﬂ>w<<i l—iand ngige1 # n;,Jrk,H. Again with Lemma 6.18

While the previous lemmas considered unmatched indices in executions that later
reach matching indices — which, via Lemma 6.8, is always the case for terminating
executions — we now show in Lemma 6.28 that in the general case that if an index
is unmatched then it is either control dependent upon a matched index that takes a
different branch or there exists an earlier matched index such that in the other execution
all later indices are control dependent upon the matched index, which corresponds to
the case where an execution does not match an index because it entered an infinite loop.

The following lemma makes the observation that there are always infinitely many in-
dices upon which all later indices are control dependent. In the case of non-terminating
executions, these would be the loop heads, whose immediate post dominator is never
reached by the execution and for terminating executions this follows directly, as they
loop at the terminal control location. We already did the main work for this proof and

can directly obtain the result from the transitivity of the post dominance relation.

Lemma 6.26.
i |Vj >i:0 <%, j} =00

Proof. Assume the claim does not hold and fix an upper bound m. We then have
Vi>m:3j >i: i <5 5 which yields Vi > m: 35 > i: n; 24y ;. We thereby obtain
an infinite sequence (i;);>0 such that Vj: n;, 2d, n;;. This cannot be the case as by
Lemma 6.4 we would have Vk > j: n;, 2% n;;, which with Lemma 6.5 would yield the

existence of j < k such that n;; = n;,, which contradicts n;, d, N, O

As mentioned above, terminating runs always reach matching indices. The following
lemma utilises this to specialises Lemma 6.24 by assuming that the execution that fails

to match an index terminates but does not restrict the other execution. As the other
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execution can be modified to terminate after reaching the unmatched index, this can

be reduced to the previous result.

Lemma 6.27.
ng=nyAn, =teA@B:1=200) = 3k K k=20 kAE S LA # nj gy

Proof. Without loss of generality let 7/ be minimal such that n/, = te and let = reach
te at or after [ with r be the corresponding minimal index such that n, = te. As r and
r’ are the first instances of te, we have r =%, 7/ by Lemma 6.8. As fl': 1 =2, I it
must be the case that n; # te and therefore | < r. With this we obtain the existence of

k and k' as required from Lemma 6.24. O

Using this we can prove the final lemma about unmatched indices in this section,
which considers general executions and shows that whenever an index in one execution
is unmatched by another execution there exists a matched index at which the executions
take different branches such that either the unmatched index is control dependent upon

this index or all subsequent indices in the other execution are.
Lemma 6.28.

no=mny A Bl 1 = =
3k kR <INkE=2 0 K Anggr #nj g Ak N AYAZ 1 - Sy )

7!

Proof. If there exists r’ such that n, = te the claim follows from Lemma 6.27. Therefore
let there be no ’ such that n}, = te and without loss of generality assume that = reaches
te at or after I. Let M’ = {i' | V' > i': i <%, j'}. We now make a case distinction
based on whether there exists an index in M’ that is unmatched by .

Assume there exists an index i’ € M’ such that fi: i = i'. As  reaches te, using
Lemma 6.27 we obtain k& and k&’ such that k =5 K,k <ds i and npyq # na41. From
k' <dy , i’ with i’ € M’ it follows by Lemmas 6.10 and 6.11 that Vj’ > k’: k/ <&, j/. If
it is the case that k& < [ we are finished as k and k' are as required by the consequent. If
on the other hand it holds that I < k we can close with Lemma 6.24 as | < k =° , k'

Assume that there exists no index in M’ that is unmatched by 7w. Then we have
Vi'e M': Jii =S, i'. As M’ is unbounded by Lemma 6.26, we obtain the existence

of i >l and i’ such that i =° , i and can again close with Lemma 6.24. O
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6.2 Insecurity Contradicts

Exploiting the properties about control dependence and matching control slices proven
in the previous section, we now move further towards proving our desired property
that executions that break our security property are classified as critical observable
executions by Definition 5.6. We split off the last step that is done in Definition 5.6
over the inductive definition of critical matching pairs (Definition 5.5) and to this end
define the concept of contradicting executions, which do not care about the inductive
tracking of data and control dependencies but directly compare executions at arbitrary
indices with matching control slices.

We will first prove that executions which break our security property are contradicting
executions. This follows mainly from the fact that the control slice determines the order
of operations in executions, so that if the observations in two executions differ then there
either exists an unmatched index in one execution that provides us with a diverging
control dependency through the lemmas in the previous section, or we directly have
matching indices that reached an observable control location that reads different data
in the two executions. In the next section we will then conclude with the inductive

proof that contradicting executions are also classified as critical by our definitions.

Definition 6.2 (Contradicting execution). We say that proper matching of an index i
in the execution from o by the execution from o’ is contradicted by an index 4/, denote

by i ¢y 7', as defined through

i o i S (1 =001 AN O Fuse(ny) 0) V (Tt g i Ae =51 Angy # iy ).

The idea behind this definition is that ¢’ fails to properly match the execution of
n; at ¢ in o because either there already exists a corresponding execution of n; at the
matching index ¢’ in o’ but the corresponding state o}, differs from o; in a variable
read by n;, or the execution in ¢’ takes a different branch than the execution in o at a

control dependency of i, which prohibits the proper matching of i by o’.2

2In general taking a different branch at a control dependency does not fully rule out that a matching
index may still be reached. This is possible if some but not all branches of a branching control
location join early and the control location of the to be matched index is common to these branches.
If however branches do not join early, which is they only join at the immediate post dominator of
the branching control location, for instance because all branches are binary as in our command
language, this is not possible.
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For convenience we let in the following (0;);<5 (respectively (o});<s) denote the
strictly ascending family of observable indices in the execution from o (respectively
o'), that is used in Definition 4.4 and fulfils obs(o) = (obs(n,,)(0s,))i<s-

Our definition of security (Definition 4.5) requires that the sequences of observations
produced for low equivalent input states must be comparable, which means that there
must be no point in the sequences of observations where different values are observed,
that is there must be no k < min(o,0’) such that obs(n,, )(0s,) # obs(n;;c)(agz). We

distinguish two ways how a different observed value can be produced at a point in the

—CS

observation sequence, either at matching indices (that is o, =¢°,

, 0}.) where the observed
value is produced by states that, based on Assumption 6 of Definition 4.2, must differ
in the variables read at the reached control location (that is o, Fuse(no, ) O’/O;C), or
the observable indices corresponding to the point in the observation sequence do not
match at all (that is o #5°,, 0)). The latter case requires, as we will prove, that a
matched control dependency of an observable index takes different branches in the two
executions, whereby these two cases correspond to the two cases distinguished in our
definition of contradicting executions.

We will consider the second case first and to this end the following lemma first makes
a note about non-matching observable indices. It states that if at some point in the
observation sequence of two executions the observations are produced by non-matching
indices then there must be some observable index missing from one of the executions
leading to that point, which follows as the control slice determines the order in which

the observations can happen.

Lemma 6.29.

Ok #gb;a" 0?@ =4l S k: (ﬂj o’a/ j ) (ﬂ] ] UJ’ Ol)

Proof. Without loss of generality let & be minimal such that the antecedent holds and
assume that the consequent is false. We therefore obtain for [ = k the existence of j
_cs

and j’ such that o =5, j" and j =%, 0. As oy and o}, are observable so are j and

j’ and we obtain the existence of 7 and 4, such that o =5 o}, and 0; = 0.0 0}, Using

O'
Lemma 6.16 and the strict monotonicity of (0;);<5 and (0});<5 we obtain k < i < i’ < k.
As the indices cannot coincide, either i or ¢/ must be smaller than k. Without loss of
generality let i < k hold. As k was minimal we have o} =57 0; =¢°,, 0, which due to

Lemma 6.15 is a contradiction as o} # o). O
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Combined with the lemmas from the previous section about unmatched indices, this
yields that if at some point in two observation sequences the observations are produced
by non-matching indices, then there must exist some observable index in one of the

executions that is contradicted by an index in the other execution.

Lemma 6.30.
Ok Forgr Op = 3,02 01 Co0r IV 0] Cor o i

Proof. Without loss of generality we may assume that k is minimal with this property
and thereby that 3j': o, =% , 4/, which we obtain from Lemma 6.29 after swapping o

o,0’
and o’ accordingly.

From Lemma 6.28 we obtain the existence of 7 and i’ such that i < o, 1 =% _, ¥/,

0,0
nit1 # Ny, and either <dy o or V5’ > i': i’ <4, j’ In the former case we directly
obtain from Definition 6.2 that oy ¢, . ¢’ as required.

Let it now be the case that Vj’ > ': i <, j. If o}, > i’ we again directly obtain

0} Col 5 4.
If 0}, < i’ then it cannot be the case that there exists an index j such that j =", o},
as this would imply the existence of an index [ such that j = o; and thereby o, =¢°
o, <1 =g/ o © < 0, which with Lemma 6.16 implies o; < o; and thereby | < k, which
contradicts the minimality of k.
We therefore have that #j: j =0 o}, and again apply Lemma 6.28 to obtain the
existence of indices ¢ and ¢/, such that J/ < o}, ¢ =¢

o<y, o) orVj >t <d, . Again in the former case we obtain 0}, ¢/ o L as required.

Vs g1 # nl,y, and either

S
Nea
In the latter case we have ¢« =, / < o), <" =5, i < op, and therefore ¢ < oy by

Lemma 6.16 and thereby ¢ <%, oy, which yields oy, s ¢ as required. O

With this we can now prove the central theorems linking insecure executions to con-
tradicting executions. The following theorem first considers arbitrary executions where
the observation sequences are not comparable and shows that there exists an observable

index in one of the executions that is contradicted by an index in the other.

Theorem 6.31.
obs(c) £ obs(c’) £ obs(c) = Tl,i: 01 ¢o0r iV O] Cor 5 i

Proof. From the antecedent we obtain the existence of a position k& < min(o,0’) in the

observation sequences such that obs(n,, )(0,,) # obs(n!, (o, ). We then consider two
k k
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cases based on whether o, = , oﬁg holds or not. If o 7535)0, O;C holds then the claim

0,0

follows directly from Lemma 6.30.

Otherwise, if o, =¢°

0,0

tion 4.2 and obs(n,, )(0,,) # obs(ng, )(o,,) we obtain o,, Fuse(n,, ) 0, - From this
k k k

, 0y, holds we have n,, = n, . With Assumption 6 of Defini-
Ok ¢, 0}, follows by Definition 6.2. O

Finally, together with Lemma 6.27 from the previous section this also enables us to
prove the corresponding theorem for terminating executions, for which the following
theorem shows that if the observation sequence of an arbitrary execution is not a prefix
of the observation sequence of a terminating execution then there exists an observable

index in one of the executions that is contradicted by an index in the other.

Theorem 6.32.
ny = te Aobs(c’) £ obs(o) = Tk, i: 0}, ¢or o i V O Co o0 i

Proof. We first consider the case where some observable index in ¢’ is not matched by
o that is we assume there exists [ < &’ such that #j: j =g o). By Lemma 6.27 and
n, = te we obtain the existence of indices ¢ and ¢’ such that ¢ :gfg, oLy, 02 and
N1 7 Ny, Whereby we obtain 0 ¢;v , ¢ by Definition 6.2 as required.

Otherwise, we have VI < 0': 3j: j =¢°, 0} and together with the fact that the o] are
distinct and the control slice is injective we obtain that ¢’ < 6. This yields together
with obs(c’) £ obs(o) the existence of a position [ < ¢ such that obs(n,,)(cs,) #
obs(n’oz)(aoi), whereby obs(o) £ obs(c’) holds and the claim follows by Theorem 6.31.

O

6.3 Contradictions are Critical

While the previous section provided the connection between security and contradicting
executions, we now move to proving that contradicting executions are captured by our
inductive definition of critical executions. The main preparations for this were already
done in Section 6.1 in the form of the ordering lemma for control slices (Lemma 6.16)
and the lemmas on unmatched control slices. Most of the remaining work is done by

the following theorem through induction and careful case distinction.
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Theorem 6.33.
o=p0 Nk= /k /\Uk#use(nk O'k/:>kl>4(,,7/k

Proof. We prove the claim through induction over the sum of k and k’. Our induction
hypothesis thus is that the claim holds for any k, &’ such that k + &' < k + k'

First consider the case that k = &’ = 0. By Assumption 7 of Definition 4.2 we have
H = use(st) = use(ng) whereby it holds that o = o¢ #pg of, = ¢’ and therefore with
the base case (5.3) of Definition 5.5 we obtain 0 X, 0 as required.

Now let k and k' be greater than zero. Note that due to 0 =¢°_, 0 and Lemma 6.15, it
cannot be the case that only one of them is greater than zero. Let v € use(ny) be such
that oy (v) # 0}, (v). As the values of the low variables L coincide initially and all other
variables are written at the initial control location st = ng = ny,, we obtain that there
must exist at least one index smaller than k where v is written in the first execution or
an index smaller than &’ where v was written in the second execution. Therefore there
must exist at least one data dependency of v at k in the first execution or at k' in the
second execution. We make a case distinction based on whether v at k and %’ is data

dependent upon matching indices in the two executions that is we consider the cases:

ddu dd.,
Lj=20"Nj e kNG S50 K,

2. 4,44 =00 J /\]—”)Uk‘/\j/ ddv, k'

Case 1. We have 011(v) = 04(v) # 01,(v) = 0}, ,1(v) and v € def(n;) therefore by
Assumption 6 of Definition 4.2 we have 0 #yse(n,) 0. With j + j' < k+ k" we obtain
from the induction hypothesis that j X,/ j/, which together with (j,7) 2=, .+ (k, k')

and rule (5.4) from the inductive definition of x yields k ™, k' as required.

Case 2. It cannot be the case that there exist 7, i, j and j' such that i =¢°, ',
J =0 §', i ey koand j e K but i # j due to Lemma 6.16. Therefore there
exists at least one unmatched data dependency of v at k or at k' in the corresponding

execution that is we have

(3.7] dd k/\ﬂj j aa’j) (3] ]/%J’k//\ﬂj j 0‘0”])
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With Lemma 6.24 we obtain from k =0 k' that there must exist at least one
diverging control dependency of a data dependency of v at k or k¥’ in the corresponding
execution that is

Fiyi' i =, 8 Anipy # 0y A
(Fjri <y j Lo, kAR 5=, )V (6.5)
(3" 8" “hor j o K ABj1 § =50 7).

As any such ¢ is bound by k due to Lemma 6.16, we can fix ¢ and i’ as above such that
1 is maximal with this property. It follows that i’ is also maximal with this property
due to Lemma 6.16.

Assume that it is the case that there exists an index j such that i <%, j dduy J and
A4 =g, j'- The other case works analogously.

As n; = nj, but n; 1 # nj,; it must be the case that o; #yse(n,) 07 due to Assump-
tion 6 of Definition 4.2. As i + i’ < k + k' due to Lemma 6.16, we obtain from the
induction hypothesis that ¢ X, o 4’

In order to obtain (i,i') 2% ., (k, k') through (5.2) and thereby k x4,/ k” through

(5.4), what remains to be shown is that
VLU i<l =31 <V <K = v ¢ def(ng,). (6.6)

Assume that (6.6) does not hold and fix /,I" and " accordingly such that i <1 =5,
I < k' holds and ¢’ is maximal in [I, k") with v € def(n/,). As // is chosen maximal we
have that ¢/ 9w, k.

It must therefore be the case that there exists ¢ with ¢ =g " because 7’ is maximal
with property (6.5) and otherwise Lemma 6.25 would yield a diverging control depen-
dency of / that lies at or after I’ and thereby is greater than ' but also has property
(6.5), contradicting the maximality of 4’

As ¢ < k, v € def(n,) and j 9= k. it must be the case that + < j and as j is
unmatched even that ¢+ < j. But then Lemma 6.25 again yields a diverging control
dependency of j that is greater or equal to ¢ and thereby greater than i but also has
property (6.5), which is a contradiction to i being maximal with that property. We
therefore have that (6.6) must hold as required. O

The above theorem corresponds to one implication of the to be proven Theorem 5.1

from Chapter 5, which follows as the other implication holds by induction.
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Corollary 6.34 (Theorem 5.1).

o=r 0 Ni =g i’ Aoy Fuse(n;) O =i My 1
Proof. The implication from left to right is given by Theorem 6.33 and the implication
from right to left follows by induction from Definition 5.5. It holds for the base case
(5.3), due to the fact that 0 X, ./ 0 implies 0 =1, ¢’ and o #g o', which with use(st) =
H implies 00 #yse(ng) 7o and 0 =g 0 holds for all initial states. In the inductive
case (5.4), where 0 =, ¢’ follows from the induction hypothesis, i =0 7' holds by

assumption and we have a difference in a variable that is read at the reached control

location, as at least one index is the target of a data dependency on that variable. [

As our definition of contradicting executions was especially tailored to bridge the
gap between our notions of critical executions (Definition 5.5) and critical observable
executions (Definition 5.6), we can obtain from the above result about critical executions
that contradicting executions that reach observable locations from low equivalent inputs

are captured by our notion of critical observable executions.

Theorem 6.35.
0=10 Nkcso k' Any € dom(obs) <= k Xy o K

Proof. For the implication from left to right assume that o = o', k ¢, k' and
ny, € dom(obs) hold. From k ¢, . k' we obtain by Definition 6.2 that either k& = K
and op Fuse(ny) Tp OF it i N =g K Amnit1 #nj, hold.

If it is the case that k =5, k' and o #use(ny) 0j hold, then we obtain by Theo-
rem 6.33 that k X, k" Together with n; € dom(obs) we have by Definition 5.6 that
k %o o k' as required.

Otherwise, if i <%, k, i =, k" and n;41 # nj, ., hold, then by Assumption 6 of
Definition 4.2 we have that o; # se(n,) 0}, and therefore again by Theorem 6.33 obtain
i Mo, k' and again with Definition 5.6, as 4 <d, kandng # Ny 1, find that kx, 5 k'
holds as required.

For the other implication assume that k X, o &’ holds. By Definition 5.6 we directly
obtain that ny € dom(obs) and that either k x, .+ k" or there exists ¢ such that ¢ <y F,

=%, k" and n,11 # ngr11. Depending on which case holds let ¢ be either k itself,

0,0
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if kK X4, k' holds and otherwise be the presumed ¢. We therefore have in either case
i Xg o k' and obtain from Corollary 6.34 that o =1, o', i =° , k" and 0; #yse(n;) Thr-
The two cases now directly correspond to the two cases in Definition 6.2 such that we

obtain k ¢, o+ k" as required. O

Combining the above result, which links critical observable executions to contra-
dicting executions, with the results from the previous section that link contradicting
executions to executions that break our security property, we finally obtain our desired
soundness properties for our notion of critical observable executions.

Firstly, in combination with Theorem 6.31 we obtain Part b) of Theorem 5.2, which
states that if the observation sequences for two low equivalent input states are not
comparable then there exists a critical observable index in at least one of the executions

as witnessed by an index in the other execution.
Corollary 6.36 (Part b of Theorem 5.2).

o =1, 0’ ANobs(o) £ obs(a’) Aobs(c") £ obs(c) = Fi,i': i Xy i’ Vi Kgrp i
Proof. By Theorem 6.31 we obtain k and ¢ such that oy, ¢5 5 7 or 0}, ¢; 7 and conclude

by Theorem 6.35 that o X4 o @ Or 0}, X, ¢ holds. O

Secondly, in combination with Theorem 6.32 we obtain Part a) of Theorem 5.2, which
considers terminating executions and states that if for an execution there exist another
terminating execution from a low equivalent input state such that the observation se-
quence of the former is not a prefix of the latter then there exists a critical observable

index in at least of one of the executions that is witnessed by the other.
Corollary 6.37 (Part a of Theorem 5.2).
o =1 0 ANobs(c’) £ obs(o) A (Fr:n, =te) = Fi,i": i X or i’ Vi Xprpi

Proof. From Theorem 6.32 we obtain k and 7 such that oy ¢, @ or 0}, ¢/, i hold and

obtain from Theorem 6.35 that o X4, @ Or 0§€ X4 ¢ hold as required. O
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6.4 Critical Reaching Executions

We conclude this chapter with the proof of Theorem 5.4, the correctness result for our
single execution approximation, which we called critical reaching executions. Our notion
of (critical) reaching executions from Definition 5.7 mostly corresponds to the definition
of critical execution pairs in Definition 5.5, yet the inductive rules in both definitions do
not completely match one-to-one. The definition of data control dependencies on single
executions in equation (5.5) of Definition 5.7 is somewhat stricter than the correspond-
ing definition of data control dependencies on pairs of executions in equation (5.2) of
Definition 5.5, as the former does not allow any writes to the variable in question, while
the latter only forbids them after the executions have reached matching indices for the
first time. For (critical) reaching executions these dependencies are already captured
though the other dependencies. The following lemma establishes that our notion of

critical pairs () is safely approximated by our notion of reaching executions (R).

Lemma 6.38.
k [x]a,cr’ k/ = (0', k) cRA (O’l,kl) cR

Proof. We prove the claim via induction over the inductive definition of k X, o k'.

In the base case (5.3) where 0 X, s 0 holds, we directly have (0,0) € Rand (¢/,0) € R
by the first rule (5.6) of Definition 5.7.

Now let k My, k' hold via the inductive rule (5.4) of Definition 5.5. We therefore
have k =3° , k', ox(v) # o},(v) for some v € Var and the existence of i and i’ with
i Mg i such that (i,i") o, o0 (kK'Y or (i,4") LLes 0 (k, k') or (i) L2, (K K).
From the induction hypothesis we have (0,i) € R and (¢’,i') € R.

Consider the first case (i,7') 9%, ./ (k, k). As i 4%k and i/ 4%, k' we obtain
by the second rule of Definition 5.7 that (¢, k) € R and (¢’, k") € R as required.

As the second and third case are symmetrical we only consider the second, the other
works analogously. Let it be the case that (i,i') 4<%, ., (k, k') holds. From this we
obtain with (5.2) that n;y1 # nj,_; as well as the existence of an index j such that
i, j Y, koand that VLU, j' i < 1 =2, 1 < j' < K = v ¢ def(n},). As
(0,i) € Rand i <%, j 4o,k we obtain from rules (5.7) and (5.8) of Definition 5.7
that (0,7) € R and (0,k) € R. What remains to be shown is that (¢’,k") € R. We
make a case distinction based on whether there exists an index j’ € [i’, k") such that

v € def(n)).
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If there is no such j’ then, as ¢ X, @' implies ¢ =,
.

obtained k =¢° , k" and oy (v) # 0},(v), we have by (5.5) that i’ dc—d%;g/ k'. Together
with (0,i) € R and (0/,i’) € R we obtain the required (¢’,k’) € R using rule (5.9) of
Definition 5.7.

Now consider the case where we have an index j’ € [¢', k) such that v € def(n},) and

let j’ be the greatest such. We therefore have that j/ 2%, k' and can close the proof

i Ao = o/ and we already

by showing that (¢’,j') € R holds. If j* = ¢’ holds we are done. Therefore assume that
i < gl From VLU, j" i <1 =3, ' <j <k = v ¢ def(n,), utilising ' < j° < &/
v € def(n},) and Lemma 6.16, we obtain (x): VI € (i/,j/]: l: 1 =&, I'. With i’ < j/
it follows that j° must be unmatched by . Using Lemma 6.25 we then obtain the
existence of indices ¢« and ¢/ such that i’ < ¢/, v/ <%, j/ and ¢ =g, V. Due to (x) it
must be the case that «/ =i’ and thereby we obtain the required (¢, ;') € R using rule
(5.8) of Definition 5.7. O

The final step that links critical reaching executions to critical observable pairs is

straightforward by unfolding the definitions and applying the above result.

Corollary 6.39 (Theorem 5.4).
ib(mo’ i’ - (U,i)EC/\(U/,iI>€R

Proof. From Definition 5.6 we have that n; € dom(obs) and either i X, . 7’ or obtain
the existence of an index ¢ such that ¢ <%, i and ¢ Moo 1.

In the former case we obtain (0,7) € R and (¢’,i’) € R from Lemma 6.38. With
n; € dom(obs) and using rule (5.10) of Definition 5.7 we see that (o,7) € C holds as
required.

In the latter case we obtain that (o,¢) € R and (¢’,4') € R by Lemma 6.38. Using
rule (5.8) of Definition 5.7 we then have that (o,7) € R and again with n; € dom(obs)
and using rule (5.10) of Definition 5.7 we also obtain (o,7) € C' as required. O
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Control

In this chapter we seek to demonstrate the versatility of our previous development by
describing some possible applications for information flow control purposes. We describe
different approaches how our semantic characterisation can be abstracted to obtain
less precise but more tractable properties. Our approaches are axiomatic and provide
different interfaces for the implementation of concrete analyses, such that precision can
be traded for efficiency and based on the capabilities of a possibly underlying safety
analysis as well as the desired degree of integration, a more or less simplified interface
might be chosen. Firstly, in Section 7.1 we describe a crude abstraction of our criterion
based only on the control flow and data abstractions themselves and thereby obtain what
is known as the program dependence graph. In Section 7.2 we then sketch a fixed point—
based approach, which we develop stepwise by refining abstract soundness properties
derived from our characterisation for increasingly structured abstractions of program
semantics. Finally, in Section 7.3 we give a regular approximation of critical executions,
which we then utilise in two ways. Firstly, we describe in Section 7.3.3 how this regular
abstraction can be folded into the original program to obtain a new program together
with a safety property, such that it suffices to verify the safety of the derived program to
show the security of the original program. This allows one to utilise off the shelf safety
analyses for security analyses. Secondly, the regular approximation forms the basis
for our prototypical implementation within an existing program analysis framework for
safety analyses, which we present in Section 7.3.4. Throughout this chapter we again fix

a program (X, N, F, st, te, [.], def, use, L, obs), admissible in the sense of Definition 4.2.

73



7 Applications for Information Flow Control

7.1 Relation to Program Dependence Graphs

We mentioned earlier that our approach is inspired by how program dependence graphs
(PDGs) track information flows through control and data dependencies. In this section
we want to make this connection more concrete by providing a definition of PDGs
for our program model based on classical definitions from the literature and proving
connecting theorems. PDGs were introduced by Ferrante et al. [16] as a tool for program
optimisation and later exploited for information flow control [25].

We take the definition given by Ferrante et al. [17] as reference. They use control
flow graphs which are similar to our control flow abstraction (N, F,st,te) only with
the additional restrictions that N must be finite and that any node (control location)
might have at most two successors and must be reachable from the initial node. They
also utilise the same notion of (strict) post dominance. Based on this their definition

of control dependence is as follows.

Definition 7.1 (Definition 3 in [17]). Let G be a control flow graph. Let X and Y be
nodes in G. Y is control dependent on X if and only if (1) there exists a directed path
P from X to Y with any Z in P (excluding X and Y') post-dominated by Y and (2) X
is not post-dominated by Y.

While phrased slightly differently, this definition directly corresponds to the existence
of a path in the control flow abstraction with an immediate control dependence between

indices reaching the corresponding nodes. We formalise this in the following lemma.

Lemma 7.1. A noden is control dependent upon a node m in the sense of Definition 7.1
if and only if there exists a path © and index i such that ng =m, n; =n and 0 2% _ .
Proof. The “if” direction follows directly from our previous results. We have —n 2% m
from our definition of control dependence and with Lemma 6.22 it follows that Vk €
(0,4): n 24 ny, whereby 7 is the required path in Definition 7.1.

For the “only if” direction we let 7 be the path from Definition 7.1 and 4 be the first
instance with n; = n. As we have for any j € (0,i) that n; 2% n;, it cannot be the case
that any such n; post dominates m, as the transitivity of the post dominator relation
(Lemma 6.4) would otherwise yield n 2% m. It must therefore be the case that 0 <4 i
and it must moreover already be the case that 0 %% i, as if there was any j € (0,4)

with j <4 ¢ this would contradict n; 2% n;. O
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Besides control dependencies, the program dependence graph contains data depen-
dencies, which Ferrante et al. [17] define as those being obtained by computing reaching
definitions and connecting the definitions of a variable to its uses accordingly. Note,
that Ferrante et al. [17] actually include additional nodes obtained by unfolding ex-
pressions and connecting those. This however makes no difference for information flow
purposes, as one is only interested in the reachability of certain nodes in the PDG, for
which the existence of these additional intermediate nodes is irrelevant. If we assume
that the reaching definition analysis propagates definitions along program paths, this
corresponds directly to the existence of a path connecting the nodes in question and
exhibiting one of our data dependencies for some variable, which we therefore use to

formally define our notion of a PDG for our program model.

Definition 7.2. The PDG is defined as the graph (N, Eppg) where (m,n) € Eppg if
and only if there exists a path 7 and indices ¢, j such that m = n;, n = n; and either

i 4ed, j or there exists v € Var such that i ddy, J.

PDGs are exploited for information flow control through slicing. The forward slice
of a node in a program is meant to be a safe approximation of the set of nodes that
can be influenced by the former and can be obtained from the PDG as the set of
nodes that are reachable from the node in question. In our setting we assumed that
the confidential information only enters the program through the initial node and the
PDG-based approach therefore deems the program secure, if the forward slice of the
initial node, Rppg = {n | (st,n) € E} s} does not contain any observable nodes. As
the PDG can be understood as a path-insensitive over-approximation of R, we directly

obtain the soundness of the PDG for information flow control.
Corollary 7.2. If Rppg Ndom(obs) = @) holds, then the program is secure.

Proof. By induction over the definition of R we first show that for all ¢ and i:
(0,i) € R=n; € Rppa (7.1)

The base case for (0,0) € R follows directly, as nyg = st is trivially reachable from st. The
cases for data and control dependencies follow directly from the induction hypothesis
using the definition of the PDG and the fact that any control dependency can always be

decomposed into a sequence of immediate control dependencies by utilising Lemma 6.10.
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The case for data control dependencies follows as indices with matching control slices
reach the same locations and if i 4““" j there are k’,j' such that i =gor 1 <d,
kv, g =g7 » j and thereby with the induction hypothesis n; = n}, € Rppg.

With (7.1) we then obtain from Rppe N dom(obs) = ) that C' = @) and thereby the

program is secure due to Corollary 5.5. O

The fact that a sound PDG can be directly defined through the dependencies we used
in our approach serves not only to highlight the connection between the approaches, it
also gives us a lower bound for precision of many analyses derived from our approach.
Any reasonable analysis which is capable of tracking flows at least on a control loca-
tion level should not deem any program insecure that can be verified as secure by the
PDG-based approach. We explicitly prove this property for our regular approach from
Section 7.3 in Lemma 7.11. Moreover one might envision how this direct connection
could be exploited to develop optimised variants of the approaches presented in the fol-
lowing sections by performing a PDG-based analysis first and then guiding and pruning
the more expensive propagation of the more precise approaches according to the critical
paths in the PDG.

7.2 Fixed Point Abstraction

In this section we perform an abstraction of our criterion for single critical reaching
executions from Definition 5.7 using a fixed point—based approach. As our goal is to
demonstrate the usefulness of our approach within the wide design space that is given
here as broadly as possible, we do this in a stepwise manner. In Section 7.2.1 we begin
with a very broad definition of a fixed point—based information flow abstraction that
contains requirements to reduce the soundness of that definition to our characterisa-
tion. In a subsequent step in Section 7.2.2 we instantiate this definition for a class of
more concrete abstractions, which propagate abstract states between abstract control
locations through abstract dependency transformers that reflect the requirements from
our semantic characterisations for data and control dependencies. In Section 7.2.3 we
then refine this instantiation further to obtain a more efficient approach and finally
demonstrate how this approach can verify the security of a concrete example program

using an appropriate abstraction of the program semantics.
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7.2.1 Top Level Information Flow Abstraction

In the following definition we capture the basic structure of what we mean by a fixed
point—based abstraction of our criterion of critical reaching executions C', respectively
reaching executions R as defined in Definition 5.7. Such an abstraction defines a domain
of abstract flow facts that represent sets of points within executions, which is sets of
state index pairs as we use them in our definition of critical reaching executions. This
representation is formalised through an abstraction function that maps state index pairs
to abstract flow facts. We then assume that the abstract flow facts form a partial order
and based on this any abstract flow fact that is greater or equal than the image of a state
index pair under the abstraction map is interpreted as an abstraction representing that
state index pair. The dependencies between state index pairs, which are used in the
inductive definition of the reaching executions R, are represented by an endofunction
on abstract flow facts, which we call an abstract dependency transformer, that yields
for any abstract flow fact that represents the source of a dependency an abstract flow
fact, which represents the sink of the dependency. In that way a pre-fixed point of this
transformer which abstracts all initial state index pairs must be a valid abstraction for
all critical state index pairs from C'. Thereby, if there exists a suitable pre-fixed point
which is not an abstraction of any state index pair from C, then it follows that C is
empty and the program is secure. At this point we do not make any assumptions on
how the analysis would check for the existence of such a pre-fixed point, but under
suitable conditions, e.g. if the underlying domain is a chain complete partial order of
finite height and the abstract dependency transformer is continuous, it can be computed

by iterative application of the abstract dependency transformer itself.

Definition 7.3. A single execution information flow abstraction is a tuple ((D, ),
a, F) where (D,C) is a partial order of abstract flow facts, a: ¥ x N — D is an
abstraction function and F': D — D is an abstract dependency transformer which fulfils

the following soundness conditions for all o, 1, j, d, v, o', '

(0,i) e RAT Yoy 5 ANafo,i) Td = a(o,j) C F(d) (7.2)
(0,i) ERANT %, 5 Aa(o,i)Td = a(o,j) C F(d) (7.3)

(0,i) € RNi 245 i Aa(o,i) TdA

(di'y e R ANa(ci')CEd = alo,j)C F(d) (7.4)
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7 Applications for Information Flow Control

A solution for a single execution information flow abstraction is a flow fact d € D
which is a pre-fixed point of F (that is F/(d) C d) such that for all o € ¥ it holds that
a(0,0) C d. A solution d is called safe if there exists no (o,i) € C with «(o,4) C d.

As sketched in the motivation for this definition, the assumptions are such that any
suitable pre-fixed point, which we call a solution, is a valid abstraction of any state
index pair in C. Any solution is actually a valid abstraction for any state index pair
in R as formalised in Lemma 7.3, which follows easily as conditions 7.2 to 7.4 directly
correspond to the inductive definition of R. The critical state index pairs in C' are just
those elements of R which reached observable locations, such that we can conclude that
the program must be secure if a safe solution exists because C' must be empty. This is

formalised in Lemma 7.4.

Lemma 7.3. For any solution d € D of a single execution information flow abstraction
((D,D),a, F) it holds that

V(o,i) € R: a(o,1) C d.
Proof by induction over the definition of R. In the first case (5.6) of Definition 5.7 we
have i = 0 and as d is a solution we obtain that «(c,0) C d as required.

In the second case (5.7) where (0,7) € R due to (0,i) € R and i 4%, j we have by
the induction hypothesis a(o,i) C d and thereby with (7.2) that a(o,j) C F(d) C d.
The third case (5.8) where (o,7) € R due to (0,i) € R and i <%, j works completely
analogously using (7.3).

In the fourth case (5.9) where (0,j) € R due to (0,i) € R and (0',7') € R with
i edi i we again obtain via the induction hypothesis a(c,i) C d and a(o’,i') T d,
whereby with (7.4) it holds that a(c,j) C F(d) and with F(d) C d it follows that

a(o,j) C d as required. O

Lemma 7.4. If a single execution information flow abstraction of a program has a safe

solution, then the program is secure.

Proof. Assume a safe solution d exists and that the program is not secure. By Corol-
lary 5.5 we obtain the existence of (0,i) € C C R. With Lemma 7.3 we obtain

a(o,i) C d, which is a contradiction to d being safe. O
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7.2.2 Abstract Location Based Instantiation

While the definition in the previous section does not assume any structure on the domain
of flow facts besides forming a partial order, we will now consider a more structured
class of abstractions. Based on this additional structure we will then make more fine-
grained assumptions and definitions which we use to instantiate our general definition.
A common approach which we utilise here is to use maps from abstract locations to
abstract states as flow facts.

We do not assume any structure on the abstract locations themselves and only require
an abstraction function which maps points in executions, that is state index pairs as
above, to abstract locations, which are mostly meant to represent the location reached
by the execution. The abstraction is free to store more information in these locations,
however our intention is to utilise those locations to store abstractions for matching
indices in executions starting from low equivalent input states like they are used in
data control dependencies. We therefore require that matching indices in executions

starting from low equivalent input states are abstracted to the same abstract location.

Definition 7.4. A location abstraction is a map p from 3 x N to an arbitrary set of so
called abstract locations X that factors over the reached control slice and the values of

low variables, which is 3g: Vo,i: p(0,7) = g(o ]}, cs?).

While an abstract location might include further information about the low part of
the input state, we utilise it to be a representative for a set of control slices. One
might notice that the control slice during an execution behaves somewhat similar to
a call stack during the execution of an procedural program, with the slight difference
that for control slices all copies of a loop head are popped when a loop terminates.
Call strings are one technique that is utilised in the analysis of procedural programs
to represent subsets from an infinite set of call stacks by common suffixes or other
subwords of bounded length. This approach lends itself straightforwardly to be applied
in this setting and Example 7.1 can be seen as a special case of this where we utilise

call strings of length one, which we will use in later examples.

Example 7.1. The canonical location abstraction, especially if the set of control
locations N is finite, is given by using X = N and defining p(o,7) = n;. As cs?

always contains n; as its last element, p is a valid location abstraction.
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The flow facts in our domain will map abstract locations to abstract states. An
abstract state is intended to be a representative for a set of states that might be observed
at a point which is mapped to a given abstract location but it might contain any
information about the initial state or point within the execution. Formally we assume
an abstraction function that maps state index pairs to abstract states which we require
to be non-bottom elements of a complete lattice. We make the assumption that the
abstract states form a complete lattice and require that the abstraction function does not
map concrete states to the bottom element in order to simplify the following definitions
where we will utilise the bottom element to denote unreached locations and use least

upper bounds in places where any upper bound would suffice for soundness purposes.

Definition 7.5. A state abstraction is a map o>: ¥ x N — S# for a complete lattice
(X#,C) such that L ¢ ran(a™).

From the world of abstraction-based safety analyses there is an abundance of state
abstractions like various numerical abstract domains and others to choose from. Note
that many will either be relational domains and come in the form of abstractions of
the reached state itself a: ¥ — %%, which would simply be lifted to state index pairs
via a*(0,i) = a(o;) or non-relational abstractions of values stored in variables, where
one might have a collection of potentially different abstractions a,: Val — X# one for
each variable v € Var and one defines a state abstraction pointwise for each variable
by a®(0,i) = v + a,(0;(v)). For our examples we will utilise a so called predicate
abstraction where abstract states are formal predicates and represent the set of states
in which they hold based on a suitable interpretation. We give a definition for this in

Example 7.2.

Example 7.2. A predicate abstraction is defined by fixing a set of predicates Pred
together with an interpretation |=: ¥ x Pred — B which fulfils that Pred forms a
complete lattice with respect to p C g & Vo € 3: 0 | p = o = g and guarantees
for all o that o = L as well as that the mapping p — o |= p preserves all meets,
that is VP C Pred: (0 = [|P) & (Vp € P: o = p). We then define the state
abstraction a*: ¥ x N — Pred by a*(o,i) = [{p € Pred | o; = p}. We observe
that o is indeed a valid state abstraction. For this we only need to verify that
)

(

a*(0,i) # L. Due to the fact that p — o; = p preserves all meets, we have

o; = a¥(0,i), as 0; | a(0,i) & (Vp € {p € Pred | o; = p}: 0; = p). We have by
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assumption that o; [~ | whereby a”(0,4) # L holds as required.

Note that one can define equally expressive notions of predicate abstractions as
above which do not require the strict assumptions made on the set of predicates but
this definition allows for simpler handling without having to deal with potentially

ambiguous representations for equivalent predicates and the like.

We use Example 4.2 as a running example in this section and in Example 7.3 define
an appropriate predicate abstraction which we will utilise for its analysis. This is a
minimised version only containing the strictly necessary predicates to verify the pro-
gram’s security. In practice including guards appearing in the program as predicates
is a common technique and we might envision for instance that a user who has basic
knowledge about the program could configure the analysis with additional potentially

beneficial predicates, such as the ones about evenness used in our example.

Example 7.3. For the verification of Example 4.2 we utilise a predicate abstraction
with Pred = {T,i < 2u, even(i), odd(7),i < 2uieven(i),i < 2uAodd(i), L}, which,
with the canonical interpretation =, forms a complete lattice that is depicted in
Figure 7.1. Omne can verify that for all o the mapping p — o |= p preserves all
meets and that Pred with = defines a valid state abstraction through Example 7.2.

i < 2u A even(i)

i < 2u A odd(7)

Figure 7.1: Complete lattice for the verification of Example 4.2.

As mentioned above, we will utilise maps from abstract locations to abstract states
as flow facts for instantiating Definition 7.3. The corresponding abstraction based on
given location and state abstractions is formally defined in Definition 7.6. The flow
fact for a given state index pair under this abstraction maps the abstract location given
by the location abstraction to the abstract state given by the state abstraction and all

other abstract locations to the abstract bottom state.
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Definition 7.6. Given a location abstraction p: ¥ x N — X and state abstraction
a”: ¥ x N = ©# the induced domain of flow facts is D = X — X% where C is lifted
to D pointwise through d C d' < Vz € X: d(x) C d'(z) and the induced abstraction
a: X X N = D is defined by

| o (,i) o= pl(o,i),
alo,i) =z —
L otherwise.

With the additional structure on flow facts given by these definitions we can define a
more direct criterion for pre-fixed points to be (safe) solutions if they utilise the location

abstraction from Example 7.1.

Lemma 7.5. For a single execution information flow abstraction that is using the
abstraction obtained from Definition 7.6 based on the location abstraction p(c,i) = n;
from Example 7.1 it holds that any pre-fized point d with d(st) = T is a solution and

moreover d is a safe solution if it also holds that Vn € dom(obs): d(n) = L.

Proof. Firstly, for all o it holds that p(c,0) = ng = st and a”(0,0) T T = d(st).
Thereby «(o,0) C d holds by Definition 7.6 as required. For the second claim we have
for all (o,i) € C that p(o,i) = n; € dom(obs) and «a(c,4)(n;) = a*(0,i) 3 L = d(n;)

whereby it follows that d is safe because it cannot be the case that a(o,4) C d. O

As it is common in abstract interpretation inspired approaches like this we will finally
rely on an abstract version of the semantic step function that allows us to compute
abstract successors in order to define the abstract dependency transformer required by
Definition 7.3. While our program semantics is deterministic and only yields a single
successor location and state for any location state pair, an abstraction will often be
non-deterministic and propagate an abstract state from one abstract location to several
others. We therefore require a so called semantic abstraction, which for any given
abstract source location, state and target location yields an abstract state that is to
be propagated to the target location and safely abstracts the program semantics as

formalised in Definition 7.7.

Definition 7.7. Given location and state abstractions p and o, a semantic abstraction

is a mapping f: X x ¥# x X — % monotone in the second argument, such that

a*(0,i+1) C f(p(0,4),a(0,4), plo, i+ 1)) (7.5)
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We lift f to an endofunction f: D — D by

d) =z~ | [{f@@'d('),2) |2 € X}.

With our usage of the bottom state to indicate unreachability, it is desirable that
a semantic abstraction is strict in the second argument, that is it always maps the
bottom state to itself, but this is not required for soundness. We note that as a semantic
abstraction is required to be monotone in the second argument, we can utilise (7.5) to
formally define a best semantic abstraction which takes the join over a*(o,i+ 1) for all

relevant o and ¢ by:
f@, 0¥ x) |_|{a o,i+1) | a®(0,i) Co? Aa' = plo,i) ANx=p(o,i+1)}

This definition is however not well suited for an effective analysis as it will not be
computable in general and one will want to provide a suitable alternative. For programs
from our command language with simple arithmetic expressions suitable semantic ab-
stractions exist for many common abstract domains and we provide one which we use

to verify our running example in Example 7.4.

Example 7.4. We again consider the program from Example 4.2. Based on the
location abstraction from Example 7.1 and predicate abstraction from Example 7.3
we define the semantic abstraction f: N x Pred x N — Pred as follows. Table 7.1

contains the definition of f for some special location pairs.

Table 7.1: Special cases of the semantic abstraction.

n' n f(n/;p,n) for p #£ L
i=0 x =h even(i)

i=1 while i < 2xu odd(i)

while i < 2+u 1 =1 + 1 pNi < 2u

1L ifpCi<2u
while i < 2xu print y

p otherwise

odd(7) if p = even(t)

even(i) if 1 CpC odd(i)

1 <2uAodd(i) ifp=1i<2uAeven(i)
T ifi<2ulp
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For all n,n’ € N we define f(n/,L,n) = L. For the location pairs not listed
in Table 7.1 we have that either f(n/,p,n) = p if (n’,n) € E or f(n,p,n) = L if
(n/;n) ¢ E. Tt is straightforward to verify through careful case distinction that this

definition is indeed monotone in the second argument and that it fulfils (7.5).

With the above setup we define the abstract dependency transformer as required by
Definition 7.3. We do this independently for the three kinds of dependencies. For data
dependencies we additionally require abstract versions of the data abstractions (def, use)
compatible with the given location abstraction. The abstract version of variables read
at a location is required to encompass all variables read by any corresponding control
location, that is any location reached by a state index pair abstracted to the abstract
location. As a single abstract location might represent multiple control locations, which
might not write the same variables, we utilise two maps for variables written at abstract
locations. One map encompasses for a given abstract location all variables that might
be written by any corresponding control location and another which contains only vari-
ables that must be written by all corresponding control locations. Based on these we
then define for each variable an abstract transformer by propagating according to the
semantic abstraction starting from any abstract location where the variable might be
written, then iteratively further over all abstract locations where it is not the case that
the variable must be written and finally selecting only those where the variable is read.
The join over all those transformers for all variables then yields the final transformer

for data dependencies as formalised in the following definition.

Definition 7.8. Given a location abstraction p: ¥ x N — X a read write abstraction

is a triple (use, def?, def?) of mappings from X to 2V** such that for all o, i:

Based on these we define, when additionally given a state abstraction o> and seman-
tic abstraction f: X x % x X — X% the abstract read write transformers as the
endofunctions use,, def,, def_, for v € Var on D such that for all d € D,z € X:

def, (d)(x) = Ll{f(x’, d(z'),z) |2 € X,v e def# (')} (7.9)
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def—(d)(z) = |_|{f(2)d(a’),2) | &' € X, v ¢ def] (')} (7.10)
d(z if v € use? (x
use, (d)(z) = L( ) | © @) (7.11)

With these we define the abstract data dependency transformers ddf for v € Var and
dd” on D through:

dd? (d) = use, (def*, (def,(d))) (7.12)
dd#(d) =| |{dd¥(d) | v € Var} (7.13)

Recall that for any endofunction g: D — D on a complete lattice we denote by
g*: D — D the endofunction d — | |{g"(d) | n € N}. We note that for correctness we
only require any upper bound here, which for instance for monotone g and if D has no
infinite strictly ascending chains can be obtained through the Kleene iteration dy = d,
div1 = d; U g(d;). We will however perform further approximations to remove those
closures in Definition 7.12 where we then exploit the use of the least upper bound at this
place by proving that Definition 7.12 is a sound over-approximation of this definition.
For our examples a read write abstraction can be trivially obtained from the program

model as we note in Example 7.5.

Example 7.5. For the location abstraction from Example 7.1 where p(o,i) = n;

we can directly define use” = use and dele‘7£ = deff;7£ = def.

We now define the abstract dependency transformer for control dependencies. Sim-
ilar to how the definition of control dependence in executions is based upon the post
dominance relation on control locations, we base the abstract dependency transformer
for control dependencies on an abstraction of control dependence on abstract locations.
The definition of control dependence requires that the execution does not visit any post
dominating control location. Our abstract version contrariwise maps an abstract loca-
tion to a set of abstract locations that encompasses all abstractions of control dependent
indices. We then define the abstract dependency transformer for control dependencies
by iteratively propagating from any abstract location within the set of abstract loca-
tions provided by the abstraction of control dependence, which is sound due to the

transitivity of the control dependency relation.
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Definition 7.9. Given a location abstraction p: ¥ x N — X, an abstraction of control

dependence is a mapping cds™ : X — 2% such that for all o, i, 7 it holds that
i<, j = p(o,j) € cds™ (p(o, 1)) (7.14)

With this we define, given a state abstraction that together with p induces the domain
D, for any x € X the control filter cdsf: D — D by

d if y € cds™
cds? (d)(y) = W) iy € ci™() (7.15)
1 otherwise.

When additionally given a compatible semantic abstraction f we define the abstract

control dependency transformer by

cd?(d) = (cds? o )T (d|.) (7.16)
cd#(d) =| [{cd?(d) |z € X} (7.17)

Recall that for d € D we denote by d|,€ D the flow fact that maps = to d(z) and
all other abstract locations to the bottom element. Example 7.6 defines the canonical

abstraction of control dependence which we use in our running example.

Example 7.6. For the location abstraction from Example 7.1 we can define a valid

abstraction of control dependence based on the strict post dominance relation by
# — [ ! pd
cds™(n) ={n’ € N |-~ n' 2% n}.

Note that this definition includes unnecessary control locations that lie before the
control location or within branches that can be reached after reaching a post dom-
inator. However, for strict semantic abstractions this makes no difference as there

happens no further propagation by (7.16) after reaching a first post dominator.

In order to handle data control dependencies, we utilise the transformers already
defined for data and control dependencies and exploit the assumption that the abstract
bottom state does not represent any concrete state. For any abstract location and

variable we first propagate along abstract locations that do not write to the variable
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to any abstract location reading the variable. We take the abstract states obtained at
these reading abstract locations but additionally filter out those whose abstract location
is only reached by the abstract bottom state when instead propagating from the original
abstract location to its control dependent abstract locations and then to any abstract

location data dependent via the fixed variable.

Definition 7.10. Given location, state, read write, control and semantic abstractions

we define based on the previous definitions the filter V: D x D — D by

1 if ¢(z) =1
(dve)(z) = ' (7.18)
d(z) otherwise

as well as the abstract data control dependency transformer by
ded?(d) = | |{use,(def,(d|,))vdd¥ (cd¥ (d)) | = € X,v € Var} (7.19)

Finally, we combine the three transformers defined above to obtain the desired ab-
stract dependency transformer for our single execution information flow abstraction,
which we prove to be valid under the assumptions made in the above definitions in

Lemma 7.6.

Definition 7.11. Given a location abstraction p: ¥ x N — X, a state abstraction
a”: Y xN = %, asemantic abstraction f: X xI# x X — %, aread write abstraction
use#, def? def? : X — Var and an abstraction of control dependence cds®: X — 2%,
we define based on the above definitions the induced abstract dependency transformer
on D =X — X% by

F(d) = dd*(d) U cd(d) U ded¥ (d). (7.20)

Lemma 7.6. ((D,C),«, F) as defined by Definition 7.11 forms a valid single execution

information flow abstraction in the sense of Definition 7.3.

Proof. The assumption that (D, C) forms a partial order follows from the fact that it
is a complete lattice, which follows from (X% C) being a complete lattice.

In order to show that (7.2) to (7.4) hold we first fix o, ¢ < j and d such that a(0,i) C d
and let (w4)i<k<; = (p(0,F))iche; and (0] icksj = (@¥(0,7))ichs;-

For (7.2) we additionally fix v and presume that 7 2= j. We have to show that
a(o,j) C F(d), which means showing that O';# C F(d)(z;). Asi e, j we have
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by (7.7) that v € defﬁ(mi). With this we obtain from (7.9) that (x): def,(d)(z+1) 3
flxy, d(x;), zi41). From «(o,i) C d we have that d(z;) 3 O’Z# and with (%) we obtain,

as f is monotone in the second argument, that

(7.5)
def,(d)(zi41) 3 f(as, 0l 2i41) 2 of ).

As v ¢ def(ng) 2 def\f(xk) for i < k < j we obtain inductively With the same argument
as above, using (7.10) instead of (7.9), that def? , (def,(d))(x) 3 Jk fori < k < j by us-
ing def” (def, (d)) 3 def,(d) in the base case and def”, (def,(d)) 3 def_,(def*, (def,(d)))
in the inductive case. Thereby, as v € use(n;) C use” (), we obtain as required

o C def’,,(def, (d))(z;) £ use,(det, (def, (d)))(w;) = ddff (d)(x;) T F(d)(x;)-

For (7.3) we additionally assume i <%, j. Again we have to verify aj# C F(d)(zj).
By Lemma 6.10 we have i <% k for k with i < k < j. For these k we then obtain,
from (7.5), (7.14) and (7.15) using the monotonicity of both f and cdsx#i with L C a;f,

that
#

ofy Ed(xi—r) = off T f(d)(x),
off Cd(ax) = off Cods? (d)(w) and
oty Cd(ar1) = off C (cds?, o )(d) ().

Together with Uz#(xi) C (d|g,;)(z;) we obtain by induction for any k with i < k < j
that
o C (cdsf, o f)*(dLs) ().

We therefore have f C cd?(d)(z;) C F(d)(xj) as required.

deds (,jw1th( i') € R and «a(0’,i') C d.

__cs
o,0’ i’

For (7.4) we additionally assume that i
We obtain k' and j’ such that i/ <&, k' 4, , 5/ =c5 o J- Aso=p 0" and i =
we have p(0’,7') = x; as well as p(d’,j') = =;. From this we obtain from the previous
cases that L C o¥(0,j') C dd#(cd# (d))(xj). We have v ¢ def(ny) 2 defv#(xk) for
i <k < jas well as v € use(ng) C use”(zx) and obtain in the same manner as
in the first case that a# C use,(def’, (d|.,))(x;). With Definition 7.10 we finally
obtain that a# C (usev( eft (d|. i))vddv#(cdﬁ_ (d)))(x;) T ded(d)(x;) T F(d)(z;) as
required. O
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7.2.3 Optimising the Instantiation for Efficiency

The instantiation in the previous section uses transitive closures to directly capture
the propagation of flow facts along dependencies. These closures or at least safe up-
per bounds, should usually be computable under similar assumptions as are generally
required for abstract domains and transformers to be effective. For appropriate instan-
tiations we therefore already have a computable analysis. Yet we were quite liberal in
utilising those closures and having to repeatedly recompute the corresponding nested
pre-fixed points can lead to rather expensive analyses. We will now unfold those clo-
sures into the main transformer itself where we are free to merge several of them to
obtain a cheaper analysis that propagates in a stepwise manner directly along program
paths.

In order to achieve this goal we extend the domain X of flow facts with different
copies for the various kinds of dependencies. Another approach would be to instead
enrich the abstract states associated with each location with the required information,
which with the transformation used below would yield an even cheaper analysis at the
cost of loosing further precision. After this transformation the propagation by the new
transformer will not work in the same big step manner along dependencies. Hence it is
not a direct instance of the above definition but it will be defined in such a way that any
pre-fixed point of the extended version restricted to the original domain X will be a pre-
fixed point of the abstract dependency transformer from Definition 7.11. Depending on
the distributivity of the underlying domain and continuity of the transformers, different
choices on where to split and merge the domain and dependencies can lead to cruder
or finer over-approximations. Therefore in practise it would be advisable to make an
informed decision based on the problem and tools at hand. Here we make choices that
allow us to handle our examples and illustrate the propagation in a reasonably concise
way. For data dependencies we split the domain based on the variable propagating the
dependency. To this end we extend the domain by X x Var, where the second component
represents the variable of the data dependency and the first component the abstract
location reached after writing to the variable without overwriting the information. For
control dependencies we proceed in the same manner and split the domain based on
the abstract location of where a branch was entered and therefore extend the domain
further by X x X. We do not utilise additional copies for data control dependencies

but reuse those for data and control dependencies.
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Definition 7.12. Given location and state abstractions p and o with induced ab-
straction «, a semantic abstraction f: X x % x X — Y% which is strict in the second
argument (that is Vz,y: f(z, L,y) = 1), a read write abstraction (use®, defﬁé7 def\ﬁé) and
an abstraction of control dependence cds™, we define D = XU(X x Var)U(X x X) — ©#
with the pointwise order C induced by (X#,C) and define the induced small step ab-

stract information flow transformer F:D—D by

{(f(x,y) ‘ yeX}) (7.21)

{CZ z) | Jy:ve defg#(y) Ad(y,z) 3 1}iu

{f(@d(z'v),x) | v ¢ deff (a')}) (7.22)
ﬁ‘( A)(x,y) = |_|({f x dA(w’, Y), ) | ¥ eXNnxe cds#(y)} U
{d(y) | = =v}) (7.23)

As for single execution information flow abstractions we call d € D a solution if it
is a pre-fixed point of F' and a(o,0) C CZ[X for all 0. We call it safe if there exists no
(0,i) € C with a(o,i) C d] .

The propagation by F' uses the main copy for the abstractions of the state index pairs
of reaching executions from R as is done by F above. Within the main copy there is no
direct propagation between abstract locations and all propagation happens through the
copies for the individual dependencies. For data dependencies we begin by propagating
from the main copy, at any location where a variable is written to its successors within
the copy for the variable in question, as is done in the first line of (7.22). Within the
copy for a variable we propagate along program paths as long as we cannot guarantee
that the variable has been overwritten, which is done in the third line of (7.22). Finally
at any location where a variable is read we propagate from the corresponding copy back
into the main copy to complete the propagation of the data dependency, which is done
in the first part of (7.21). For control dependencies we propagate from the main copy
to the copy of the current abstract location, as is done in the second part of (7.23),
and propagate there further as long as the abstraction of control dependence deems

the reached location control dependent, as is done in the first part of (7.23). From any
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abstract location reached that way we directly propagate back to the main copy, as is
done in the second part of (7.21). For data control dependencies we exploit the fact that
the abstract bottom state does not represent any concrete state and whenever in the
copy of an abstract location a control dependent definition of a variable is reached by a
non-bottom state, we propagate from the controlling abstract location in the main copy
to that abstract location in the copy for that variable, which is done in the second line of
(7.22). That means that we actually drop the requirement that the data dependency is
actually realised in another execution but handle a branching location as if it actually
writes any variable that we see modified at a control dependent location in another
critical execution. We choose to do so as it is cheap to realise in this setting and will
be just as precise in most practical cases, as when there is a controlled write that is not
read then either the phantom write added to the branching location will not be read
either or whatever keeps the reading location from being reached, after taking the high
influenced branch with the write, should itself already be high influenced.

Note that strictness, which we assumed for the semantic abstraction, is a desirable
property for semantic abstractions in most cases but here we actually require it as we
want solutions of £ to be solutions of F. The property is necessary as we shortcut the
criterion for data control dependencies and a non-strict semantic abstraction might lead
to spurious propagation of data control dependencies in F' that would not be propagated

by F which could break the following lemma.

Lemma 7.7. For F as defined in Definition 7.12 and F as defined in Definition 7.11
we have that E(d) Cd = F(d)x) Cd|y.

Proof. Let F(d) C d hold. Utilising (7.20) it suffices to show that d]y is an upper
bound for dd# (d] ), cd” (d] ) and ded™ (d] ).

For the first case we have def, (d)(z) C d(x,v) as the supremum in (7.22) is taken over
a greater set than the one in (7.9) in the definition of def,. Inductively we obtain from
the monotonicity of f that def* (def,(d]y))(z) C d(z,v), as (7.22) subsumes (7.10).
Thereby we obtain dd# ((j I¢) C d [ v as required because all elements not mapped to
bottom in (7.11) have a supremum in (7.21).

For the second case we obtain d(z) C d(x,z) from (7.23) and thereby (d] x)|.(y) C
d(y, ) for all z and y. With this we inductively obtain (cds? o f)*((d] x)|+)(y) C d(y, z)
by unfolding (7.15), as it holds trivially for y ¢ cds™ (z) and otherwise follows from
(7.23) with F(d) T d. Together with d(y,z) C d(y), which holds due to (7.21), we
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obtain ¢d” (d] ) C d| x as required.

Lastly we show (use,(def™, ((d] x)|2))vdd¥ (cd? (d] +)))(y) T d(y,v) for arbitrary
z, y and v. This then implies ded?(d]y) C dyx by (7.21). First consider the case
that dd(cd”((d)x)|2))(y) = L. In that case the left-hand side is bottom and the
inequation holds trivially by (7.18). Otherwise we obtain from the strictness of f that
cd?(d] ) («') 3 L for some 2’ with v € def?(x’). From the previous cases we know that
cd? (d] x)(2') C d(z', ) thereby d(«',2) 3 L and we obtain d(z) C d(x,v). Inductively
we again obtain def®, ((d] x)|2)(y) C d(y,v) and thereby the required

(use, (def’, ((dIx) [»))vddf (cdF (dIx)))(y) E use,(def, ((dlx)[)(y) € d(y, v).
O

As the definition of solutions of £’ otherwise directly matches that for single execution

information flow abstractions, we obtain a sound criterion for security.

Corollary 7.8. IfF as defined in Definition 7.12 has a safe solution, then the program

18 secure.

Proof. By Lemma 7.7 any safe solution of F' restricted to X is a solution of F' as defined
in Definition 7.11 and by definition it is also a safe solution of F'. With Lemma 7.6 and
Lemma 7.4 the claim follows directly. O

We conclude this section with Example 7.7 where we illustrate how the above devel-

opment is capable to verify the security of the program from Example 4.2.

Example 7.7. Consider the program from Example 4.2. In order to verify its
security we utilise the location abstraction from Example 7.1, the predicate ab-
straction from Example 7.3 as state abstraction, the semantic abstraction from
Example 7.4, the read write abstraction from Example 7.5 and the abstraction of
control dependence from Example 7.6.

In order to search for a safe solution of £ let czo € D be such that czo maps st
to the top element and everything else to bottom. Starting from dy and using the
iteration czm_l =d, L F(Jn) we obtain a pre-fixed point d of F' that lies above CZO,
as the sequence is increasing and D finite. In the same manner as in Lemma 7.5
we see that d is a solution for F', as d(st) = T. What remains to be checked is

whether this solution is also safe.
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In order to illustrate the propagation by F and how it finally manages to assert
the security of our program we depict in Figure 7.2 the relevant part of din a
graphical form together with an indication how the propagation through F takes
place. The nodes of the graph represent the extended abstract locations, that is
either control locations or pairs consisting of a control location and a variable or
a second control location. They are labelled with the abstract state assigned to
the extended abstract location by d in the first line as well as the abstract location
itself in the second line, where we again use only part of the head of a command
to denote the corresponding control location. We omit the part corresponding to
pairs of two control locations which are used for control dependencies, as there is no
propagation happening over those in this example because no branching location in
the main copy is reached by a non-trivial state and our abstraction is strict. We also
leave out the copy for the variable ¢ as no location where 7 is written is reached by a
non-bottom states in the main copy, such that no non-trivial states are propagated
there. The nodes in the respective copies are arranged in the same way as in
the graph notation in Example 4.2. Edges denote the propagation by F between
the nodes. Edges between different copies of the same control location correspond
to the propagation of the abstract state itself, while other edges correspond to
propagation of the transformed abstract state according to the semantic abstraction
f. The emphasised part corresponds to propagation by F to parts that reach the
main copy again. Parts that cannot propagate back to the main copy or stay
bottom throughout the propagation have been greyed out as they play no role in
asserting that the solution is safe.

The propagation starts at the initial location st in the main copy, which is de-
picted in the top right. The node is mapped to the top element T by cz, as this
is the initialisation in dy and the iteration is increasing. As the initial location
writes all variables in H = {h}, this state is propagated to 1£ b in the copy for h,
depicted on the left.

Note that F also propagates the top value to (st, st), the copy for control depen-
dencies starting at st, but as 1£ b is the only successor of st and post dominates st,
that value is not propagated any further. The same is true for all other locations in
the main copy that are reached by non-trivial values, which is why we will ignore

them from now on. From the if b node in the copy for h the top value is propa-

on
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gated through both branches but only the left branch contains a node that reads h
and where propagation back into the main copy is possible. In the left branch i is
assigned zero and therefore at the node for x = h the propagated state is even(i),
which is then propagated to the corresponding node in the main copy. As x is
written at that location, the abstract state is propagated to the successor location,
the loop head in the copy for x. There the abstract state is propagated into the
loop body and strengthened with ¢ < 2u, then transformed to odd(i) A i < 2u by
the i=i+1 node, and then propagated back into the main copy from the z = x
node, as x is read. Note that in the copy for x the local propagation does not fully
go through the loop as x is overwritten at the x = y node, such that the abstract
state even(i) at the loop head is not weakened. From the main copy the abstract
state odd(i) Ai < 2u is propagated from the z = x node into the copy for z where
it is propagated unchanged to the y = z node and then back into the main copy.
The still unchanged state is then propagated into the copy for y, which is the only
copy, besides those for control dependencies, from where it could possibly be prop-
agated to the observable print y node in the main copy. As the abstract state
entails the loop guard ¢ < 2u, it is only propagated into the left branch where it
is changed by i=i+1 to even(i) and propagated to the x = y node. From there
the even(i) state is then propagated back through the main copy to the copy for =
where the propagation becomes stable as the even(i) state was already propagated
to the head of the while loop in that copy.

Finally, we can observe that the node for print vy in the main copy, which is
the only location in dom(obs), is still mapped to bottom, whereby d must be a
safe solution by the same argument as in Lemma 7.5 and therefore the program is

secure according to Corollary 7.8.
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Figure 7.2: Solution of F' for Example 7.7 with Propagation. 95
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7.3 Regular Abstraction

We now lay out a different approach to exploit our semantic characterisation to obtain
sound analyses for our security property. While the approach in Section 7.2 was target-
ing fixed point—based safety analyses, for which we assumed the analysis to propagate
abstract states via abstract transformers that we could freely combine, we now target
arbitrary safety analyses that are capable to verify the unreachability of certain error
locations in programs. To this end we first construct in Section 7.3.1 for a given program
a regular automaton which provides an over-approximation of execution paths corre-
sponding to critical executions. For program analyses that can verify the unfeasibility
of a regular set of executions this can directly be exploited to verify the security of a
program. We do so in Section 7.3.4 where we describe a prototypical implementation.
In Section 7.3.3 we target further analyses by folding the automaton from Section 7.3.1
into the control locations of the program to be analysed in order to obtain a new pro-
gram together with a set of error locations, whose unreachability in the new program
implies the security of the original program. While both approaches target a broader
class of safety analyses than the approach in the previous section, they rely on a less
precise abstraction of data control dependencies, where we cannot directly exploit the

intermediate results of the analysis itself to compute those on the fly during analysis.

7.3.1 Information Flow Automaton

For this section we assume that the set of control locations N of the fixed admissible
program (X, N, E| st, te, [.], def, use, L, obs) is finite. We also assume that we are
given an abstraction of controlled writes, that is a mapping def.q: N — 2V¥ which

fulfils for all 4, j, k, o, v:
iy, j oy =y € defeq(ny). (7.24)

As we assume N to be finite, we can compute an abstraction of controlled writes by
traversing F over the non post dominating control locations and collecting all written

variables, that is

defeq(n) = {v | v € def(m) A (n,m) € (E\ {(n',n") | n" 2% n})*}.
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Definition 7.13. The information flow automaton for the fixed program is defined as
the finite automaton A = (Q, N, §, o, {gs }) where the set of states Q = NUVarU{qo, ¢}
consists of all control locations and variables of the program plus a distinct initial state
go and the single accepting state gy, the alphabet N is the set of program locations
and the transition relation § C @ x N x ) consists of the following transitions for all

m,n € N and v € Var:

go <5 5t (7.25)
Q0 5 v if v € def(st) U defeq(st) (7.26)
Q0 s qr if st € dom(obs) (7.27)
m s m if ~n 2% m (7.28)
m s v if =n 2% m A v € def(n) U defeq(n) (7.29)
m s qp if =n 2% m A n € dom(obs) (7.30)
v S5 v if v ¢ def(n) (7.31)
v s if v € use(n) (7.32)
V=5 w it v € use(n) A w € def(n) U defeq(n) (7.33)
v s qp if v € use(n) An € dom(obs) (7.34)

The information flow automaton does not keep track of the control flow itself and
is intended to be combined with a suitable abstraction of control flow, as we will do
when deriving the security program in Section 7.3.3. In order to motivate the definition
we describe the conditions under which prefixes of control location sequences from
executions in R and C' are accepted by the individual states of the automaton. As R is
defined inductively along data, control and data control dependencies the automaton
checks that the conditions corresponding to the currently tracked dependency hold
while accepting a prefix. By which state of the automaton a prefix is accepted therefore
depends upon the last dependency that is still open or has just been completed in the
prefix. If the prefix ends with a complete data or data control dependency, it shall
be accepted by the state corresponding to the reached location. If the prefix ends in
a non complete data or data control dependency, the prefix shall be accepted by the
state corresponding to the variable used by the dependency. If the prefix ends in a

control dependency there is no need to distinguish between open and closed control
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dependencies, due to the prefix property of control dependencies (Lemma 6.10) and by
also exploiting the transitivity of control dependencies (Lemma 6.11) the automaton
shall accept the prefix with the location corresponding to the first index upon which the
reached index is control dependent. Finally, if the prefix of the execution corresponds
to a critical state index pair from C, it shall be accepted by the final state qr. We
formalise this in the proof of the following theorem, which states the soundness of the

information flow automaton for our purposes.
Theorem 7.9. (0,i) € C = (n)r<; € L(A)

Proof. For the proof we first establish the following properties for all 0,1, 7, v,0’,4':

i, oy Sl (7.35)
§duy oy, (Rickes, o (7.36)
§ el i g, Oedicked, o (7.37)

We observe that in the case where j = i + 1 the right hand-sides degenerate to ¢ 4
q, which holds trivially. Otherwise we have (7.35), as from the definition of control
dependence we have Vk € (i, j]: ~ng 24y p; and thereby have Vk € (i,§): n; —%5 n; by
(7.28). For (7.36) and (7.37) we note that in either case we have Vk € (i,7): v ¢ def(ny),
either by the definition of data dependence in the first or data control dependence in
the second case and therefore have Vk € (i,5): v 5 v by (7.31).

We now prove by induction over the definition of R (Definition 5.7) that we have the

following property for all o and i:
(O’, Z) €ER= (’nk)kgi S EA(nl) Ve %J AN (nk)kgi S EA(nL) (738)

In the base case (5.6) we have i = 0 and (ng)r<; = (st). By (7.25) we have ¢ 25 st
and thereby (st) € £ 4(st) as required.

In the case (5.7), where (0,7) € R due to i 4, j with (0,i) € R, we have from
the induction hypothesis that either (ng)r<; € La(n;) or we obtain the existence of an
index ¢ such that + <% _ i and (nk)r<i € La(n,). Due to ¢ ddy, i we have v € def(n;).
We show that in both cases we have (nx)r<; € L4(v), as then we obtain with (7.36)
that (nx)r<; € La(v) and thereby, as v € use(n;), further obtain with (7.32) that

(nk)r<j € La(n;) as required.
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First assume that it is the case that (ng)k<; € £4(n;). We then obtain the existence
of a state ¢ such that (x): ¢ —55 n; and (ng)k<; € L£4(q), which, as i > 0, implies
q # qo. There then remain two options for g, either ¢ is a control location and (x)
holds due to transition (7.28), in which case we can instead take transition (7.29), as
v € def(n;), to obtain (ng)k<; € L4(v), or g is a variable and (*) holds due to transition
(7.32), in which case we can again with v € def(n;) use (7.33) instead to also obtain
(nk)r<i € La(v) and close the fist case where (ng)k<; € La(n;).

In the second case where ¢ <% i and (nk)k<i € La(n,), wehave (ng)r<i = (k) k<i N
and obtain ¢ such that (n)r<; € £4(¢) and ¢ =5 n,. We might assume without loss of
generality that n, # n; as otherwise this would bring us back to the first case. Thereby
the only fitting rule is (7.28) and it must be the case that ¢ = n, and (ng)k<; € La(n,).
We can then apply rule (7.29) instead to also obtain (ng)r<; € La(v) and close the
second case, which closes the case for (5.7). .

The case (5.9), where (0,5) € R due to @ MU j with (0,i) € R and (¢’,4') € R,
works completely analogously by utilising v € def.q(n;) and (7.37) instead.

Finally, in the case of (5.8), where (c,) € R due to i <%, j with (0,4) € R, we have
again by induction hypothesis that either (ng)r<; € £4(n;) or we obtain the existence
of ¢ such that ¢« <%, i and (nk)k<i € La(n,). In the first case we define ¢ = ¢ and in the
second case utilise the transitivity of control dependencies to obtain in either case that
L4y, jand (ng)gr<; € La(n,). With (7.35) we then directly obtain (ng)g<; € La(n,).
As —n; 2% n, because of ¢ <%, j, we obtain (ng)r<; € La(n,) by rule (7.28) as
required.

With this we can now conclude the proof and to that end assume that (o,i) € C.
As (0,1) € R we have from (7.38), that (ng)i<; € La(n) for some n € N. As we did
in the case for (5.7) we consider the last transition that was applied in order to obtain
(nk)r<i € La(n). Due to n € N this last transition must be one of (7.25), (7.28) or
(7.32). In each case we can use the fact that n; € dom(obs) and instead apply (7.27),
(7.30) or (7.34) respectively to obtain (ng)r<; € La(qr) = L(A) as required. O

With this result we can use any analysis that is capable of verifying that no sequence
of locations from L£(.A) is the prefix of an actual execution to assert the security of a

program as recorded by the following corollary.
Corollary 7.10. If L(A) N {(ny)k<i | o € £,i € N} = () then the program is secure.

Proof. This follows directly from Theorem 7.9 in combination with Corollary 5.5. O
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7.3.2 Precision Compared to the PDG

One will usually want to utilise an analysis that checks an over-approximation of the
set of feasible paths for acceptance by the information flow automaton to verify the
security of a program with this approach. Unlike the upper bound established by the
soundness properties proven before, we now give a lower bound for the precision of
this approach for analyses that are at least as precise as the control flow abstraction
itself. The following lemma to this end states, that if the used abstraction of controlled
writes is at least as precise as the control flow abstraction, which for instance is the
case for the one we defined at the beginning of the previous section, then any execution
path in the control flow abstraction that is accepted by the information flow automaton
reaches an observable control location in the forward slice of the PDG. Therefore, for
such abstractions this approach is at least as precise as the PDG-based approach from
Section 7.1.

Lemma 7.11. If the abstraction of controlled writes is precise with respect to the control
flow abstraction, that is for all v € Var and n € N it holds that

v € defoq(n) = Im,i:n=ng A0 <L i Av € def(n;), (7.39)

then the information flow automaton is as least as precise as the PDG, that is for all

initial paths 7 in the control flow abstraction and all indices k it holds that
7 € L(A) = n, € Rppe N dom(obs). (7.40)

Proof. In order to prove the lemma we strengthen (7.40) by adding cases for the non
accepting states of the information flow automaton. We prove the following three

implications simultaneously via induction over the index k:

e € La(n) =n€ Rppa A(n=n, VI <k:ni=nAiL k) (7.41)
7 € LA(V) =

3i <k:n; € Rppe Av € def(n;) Udefeqa(n;) AVj € (i, k]: v ¢ def(n;) (7.42)
T, € La(qf) = ni € Rppe N dom(obs) (7.43)

Let the implications hold for all indices smaller than k and let 7, € £4(¢’) hold for
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some ¢’ € Q. We perform a case distinction over the last transition ¢ —=s ¢’ with which
7 € L 4(q") can be deduced, that is based on rules (7.25)—(7.34) of Definition 7.13.

In the cases where the transition corresponds to (7.25)—(7.27), that is if ¢ = g, we
have k = 0 and nj = st, whereby n; € Rppg holds directly. The additional conditions
required by (7.41)—(7.43) respectively follow from the corresponding side conditions of
(7.25)—(7.27).

In the cases where ¢ = m € N, that is rules (7.28)—(7.30), we obtain from the
induction hypothesis for k — 1 by (7.41) that m € Rppg and either ng_; = m or we
obtain an index i such that n; = m and i <%_ k — 1. In the former case we let i = k — 1
and due to the side condition that = nj 2% m, which is present for all rules in this case,
we obtain in either of these cases that i <% k and thereby also that n; € Rppg from
n;, =m € Rppg.

If we consider the case of rule (7.28), where ¢ = m and m %5 m, we have (7.41)
due to m € Rppe and i <% k with n, = m. The other implications are trivial as the
antecedent is false.

The case of rule (7.29), where ¢’ = v € Var, follows as only implication (7.42) is
non-trivial and we can instantiate the quantified ¢ with k and have ny € Rppg and
v € def(ny) U defcq(ng) from the side condition of (7.29).

The case of rule (7.30), where ¢’ = gy, follows as only implication (7.43) is non-trivial
and we have ny, € Rppg as well as nj, € dom(obs) from the side condition of (7.30).

In the cases where ¢ = v € Var, that is rules (7.31)—(7.34), we obtain by the induction
hypothesis for & — 1 from (7.42) the existence of an index ¢ < k such that n; € Rppg,
v € def(n;) U defea(n;) and Vj € (i,k): v ¢ def(n;). The case for rule (7.31) where
v 55 v with side condition v ¢ def(ny) is trivial, as we have (7.42) using the index i
obtained above and the side condition allows us to expand the universal quantifier at
the end to k. For the cases (7.32)—(7.34) we first assume the common side condition
v € use(ng) and will prove that ny € Rppg. With this in each case the respective
additional side conditions are sufficient to directly obtain (7.41)—(7.43).

In order to show n; € Rppg we distinguish the cases where v € def(n;) and those
where v € defeq(n;). If v € def(n;) we have with v € use(ny,) that i 24« k and thereby
with n; € Rppg by Definition 7.2 that ny € Rppe as required. If v € defeq(n;) we
obtain 7/ and j’ from (7.39) such that n), = n;, 0 <%, §’ and v € def(n/,). We might
assume that 7/ reaches te after j. If i <4 k we directly obtain n; € Rppg from

n; € Rppg otherwise, if it is not the case that i <dy kit cannot be the case that
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n; = te due to Lemma 6.7 and Assumption 4 of Definition 4.2. Therefore as 7’ reaches
te and te 2% n; = n)) there exists a smallest index I’ such that n), 2% n. As 0 <%, 5,
it must be the case that j' < I’ As ' is the first index that visits a post dominator of ny,
all smaller indices are control dependent upon 0 and we might therefore assume that ;'
is the greatest index below I’ such that v € def(n’,). As it is not the case that i <dy k
we can also fix the smallest index I greater than i such that n; 2% n,, which must be
smaller or equal to k. It must be the case that n; = nj,, as otherwise one of them would
not post dominate the other and we could construct a path from n; over the latter to
te without visiting the former. We therefore obtain a new path # by following 7" until
! and then switching to = from I + 1 on, that is we let # = 7},-(m <1+ 1). We have
that 7y = n; and fg_i4p = ng. As j < I’ we have 0 <% j” such that with n; € Rppg
we obtain nj; € Rppe. Because j was the last definition of v before I’ in 7’ and we
also obtained from the induction hypothesis for k£ — 1 that there is no definition of v in
7 between i and k, we have j/ v k — 1 4 I’ and thereby nj, = fik—irr € Rppg as
required. O

7.3.3 Security Program

While directly verifying that no execution of the original program corresponds to a path
accepted by the information flow automaton is the approach used by our prototypical
implementation, which we describe in Section 7.3.4, here we first describe another ap-
proach where we fold the automaton into the program itself to obtain a new program
together with a simple safety property that might be targeted by a broad class of safety
analyses. In order to fold the automaton into the program one option is to utilise pairs
of program locations and automata states as locations in the derived program, which
yields a non-deterministic program. We pursue another approach where we directly
perform a power set construction and use sets of automaton states instead of simple
states in order to preserve determinism. In this setting we choose this option as it
actually yields smaller programs in our examples, as the control flow greatly limits the
number of reachable states. The construction is however exponential in theory and
while not the case in our examples, it is not hard to construct examples where the
exponential blow-up can be observed. In practice one might therefore instead opt for
the non-deterministic option based on the program and analysis at hand. We call the

program constructed in this way the corresponding security program.
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Definition 7.14. For a given program (X, N, E, st, te, [.], def, use, L, obs) and corre-
sponding information flow automaton A = (Q, N, 6, go, {¢s}) the corresponding security
program is defined as (3, N, E, st, Nf, () where

N =N x 29 is the set of control locations,
E ={((n, Q),(n,6(Q,n")) | (n,n') € E} is the control flow abstraction,
st :(st, 5(q0,5t)) is the initial control location,

Nf :{(n7 Q) eN lqr € Q} is the set of critical control locations, and
((n,Q),0) =(([n, o], 6(Q, [n, o]1)), [n,0]s) is the semantic step function, using

5(Q,n)=1{dqeQrqg>d}.

We define executions of the security program in the same manner as for our main
program model from Definition 4.2, where for any input state the semantic step function
is repeatedly applied starting at the initial control location, that is ((st,o)?);>o is the
execution corresponding to the initial state o € 3. The safety property to be targeted
by analyses is then whether any such execution can at any point reach a control location
from N t. If no such execution exists the original program is secure as stated in the

following theorem.

Theorem 7.12. If no execution of the security program as defined by Definition 7.14

reaches a location from N ¢ then the original program is secure.

Proof. Assume the program is not secure. According to Corollary 5.5 there then exists a
critical observable execution, that is (0,4) € C. From this we then have by Theorem 7.9
that (nk)r<; € L(A) and obtain a sequence (gi)o<kr<i such that ¢; = ¢y and Vk <
it qr — qry1. The initial state o gives rise to an execution of the security program,
which has the form ((n, Qx), ox)o<x and for which we observe inductively that Vk <

1t qx € Qk. As ¢; = ¢y we have that the execution reaches a location from Nf. O

As the initial paths in the control flow abstraction of the security program that reach
Ny correspond to the initial path in the control flow abstraction of the original program
that are accepted by the information flow automaton, we directly obtain the following
corollary about the precision of the security program from the result about the precision

of the information flow automaton, Lemma 7.11.
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Corollary 7.13. If the program is secure according to the PDG as defined in Section 7.1
and the abstraction of controlled writes underlying the information flow automaton is
precise with respect to the control flow, then no state from Nf is reachable from st in
(N,E).

We conclude this section with a concrete example.

Example 7.8. Consider the program for the command pictured in Figure 7.3 with
H = {h}. The program is a condensed example of how a program might utilises
data properties (in this case p = 0) to guide control flow to avoid observable be-
haviour when handling confidential data. From the semantics it is straightforward
to see that the attacker can only observe the initial value of y if ¢ is initially zero
and p is not and can make no observation otherwise, wherefore the program is

secure.

if ¢ then x = h; p = 0 else x =y fi;
if p then print x fi

Figure 7.3: Secure program for H = {h}.

For the approach from this section to verify the security of this program we
require an abstraction of controlled writes that we obtain as defined in the previous
section by collecting the variables written within each control structure, which in
this example are only = and p in the first if-then-else command. With this we
let defeq(if c) = {z,p} and defeq(n) = 0 for all other n. We can then obtain
the corresponding security program via Definition 7.14. Based on the unoptimised
definition the program contains several structurally unreachable locations which are
irrelevant for reachability of the critical locations N t. The structurally reachable
part of the security program is depicted in Figure 7.4.

In order to verify the security of the original program, it suffices, according to
Theorem 7.12, to show that the annotated print x node in the right branch is
not reachable. To do so is rather simple for a safety analysis, it only has to be
capable of propagating the information that p is zero from the p = 0 node to the
following 1f p node and deducing that the then-branch cannot be taken.
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X =Y x =h
{h} {z,h,x =h}
4 &
if p p=20
R {1}
4 NV 4
print x skip if p
—
{n} {n} . o
0 e N
print x skip

{z.h,print x,qs} {z, h}
c qu (v)

Figure 7.4: Security program for the program from Figure 7.3.

7.3.4 Implementation

For a basic experimental evaluation of our overall approach we developed a prototypi-
cal implementation based on the regular abstraction from Definition 7.13 utilising the
software verification platform CPAchecker! by Beyer and Keremoglu [6]. While the
platform targets C as well as Java programs, our implementation is only meant as a
demonstrator and we restricted ourselves to a small intraprocedural fragment corre-
sponding to our command language from Section 4.3 that does not support thread-
ing, heap access, function calls and several other features present in the intermediate
representation. As the intermediate representation used by the platform utilises edge
annotated control flow graphs instead of the node annotated graphs used in our devel-
opment, the necessary definitions have to be translated adequately. This can be done
rather straightforwardly and we will not go into detail about that here. In a first phase

the implementation computes the post dominators and an abstraction of controlled

1https://cpachecker.sosy—lab.org
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writes. Based on this the main analysis is performed in a second phase. The analysis
by the platform works by allowing multiple analyses to run in parallel, each propagat-
ing and transforming its own internal states over provided transitions of the program in
such a way that each analysis can restrict the set of allowed transitions or mark certain
states as error states, similar to how a product automaton for the intersection of regular
languages works. If an error state is reached by some analysis the platform attempts to
perform refinements in the individual analyses to prove it unreachable or finally fails if
that is not possible. This allows us to implement an automaton corresponding to the
one from Definition 7.13 directly as one individual analysis which keeps track of the
state of the automaton, updates them according to the corresponding transitions and
reports an error when the accepting state of the automaton is reached. We can then
combine our analysis with different safety analyses provided by the platform to evaluate
the main goal of our approach, that is how increasingly precise safety analyses can be
exploited to obtain increasingly precise security analyses. To this end we test our anal-
ysis in two configurations combined with analyses provided by the platform. Firstly
as a reference point, we combine our analysis solely with a so called location analysis
that only keeps track of the control location. With this we obtain an analysis which
has the same power as a simple PDG-based analysis. This also allows us to directly
compare results obtainable by our methodology with results which would be obtained
by classical methods. Secondly we utilise a so called predicate analysis [7], which works
similar to the predicate abstractions we utilised for our fixed point—based examples in
Section 7.2. In this configuration our implementation can handle examples similar to

those given so far like Example 5.7, Example 7.8 or Example 7.9 given below.

Example 7.9. The program in Figure 7.5 is secure. Translated to an equivalent C
program, this can be verified by our implementation utilising either the predicate
analysis or the interval analysis that is available on the platform as well. When
only using a location analysis the verification fails as one would also expect from

syntactic approaches like PDGs or type systems.
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if b then
3 =100; x = h
else
3 = 1000
fi;
i = 0;
while i < j do
i=1i+1
if i > 100 then
y = X
fi
od;
print y

Figure 7.5: Secure program for H = {h}.

Experimental Evaluation. For evaluation we utilised 282 program snippets that ship
with the platform for unit test and benchmark purposes. As security specifications we
generated all possible pairs of local variables used within each snippet and if there were
more than one thousand possible pairs we randomly sampled one thousand of them. In
this way we obtained a total of 168491 queries for our analysis where we defined the
first variable as high and all writes to the second variable as observable. The analysis of
many of those queries either encountered unsupported operations during analysis, hit
the timeout of 5 minutes or caused the platform to report an error for other reasons.
In a first step we were left with 25 985 successfully handled queries when using nothing
but the location analysis of the platform. Of the 25985 handled queries 24 989 were
deemed secure and 996 insecure by this configuration of the analysis, which as mentioned
corresponds to a simple PDG-based analysis. In a second step we utilised a predicate
analysis with our approach and of the 25985 queries handled in the first step 25117
(an increase of 128) were deemed secure while 560 (a decrease of 436) were deemed
insecure and an additional 308 queries hit the timeout or produced an error. When
only considering the queries that did not produce an error or hit the time out in the

first configuration this leaves us with 868 (a decrease of 128) queries for which security
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could not be asserted by this configuration of the analysis, which is a 13 % improvement
over the 996 queries whose security could not be verified initially in this subset.

When interpreting these numbers one should keep in mind that the selection of pro-
grams will probably be heavily biased as they were selected as test cases for the platform.
Also we do not have any ground truth for our generated queries so we cannot determine
how many of the failed queries were due to actual flows. Yet the results indicate that
there might be a significant number of cases where our approach can successfully verify

security while syntactic approaches fail.
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8 Conclusion

We have presented a novel approach for static information flow control that can har-
ness the power of modern safety analyses. The development is based on a simple yet
versatile program model that is not limited to finite control or data. The program
model can handle procedures for instance by utilising a control stack as control loca-
tions and the availability of infinite data as well as branching also allows representing
local variables or arrays. The targeted security property is in general termination insen-
sitive while still providing some guarantees for non-terminating executions as it allows
for observations during executions but strongly limits how non-terminating executions
might leak information about confidential inputs. After observing that the tracking of
data and control dependencies within single executions is insufficient for ensuring in-
formation flow security we developed our central characterisation of pairs of executions
breaking the security property based on the tracking of data and control dependencies
within those pairs. The characterisation is inductive and precisely describes matching
points in executions to which confidential input is propagated and where different data
is read. As the characterisation utilises the full semantics, it allows analyses to exploit
arbitrary information about the executions of a program without risking loss of sound-
ness. We utilised the characterisation to derive a single execution approximation which
can be targeted by safety analyses. The single execution approximation additionally
tracks data control dependencies to handle flows not directly visible in an execution
itself when only tracking data and control dependencies. We provided rigorous sound-
ness proofs that have also been formalised and machine checked using the interactive
theorem prover Isabelle/HOL. Based on the single execution approximation we then
described multiple possible applications of how this approximation might be exploited
to obtain effective security analyses that are providing different interfaces for generic

safety analyses.
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In a first application we described how PDGs can directly be derived as a crude
approximation of our characterisation. We revisited a definition of PDGs from the
literature adequate for our program model and provided a formal connection to our
approach allowing us to derive a corresponding soundness result for the PDG-based
approach as well as a reference point for the precision of our development.

As a second application we used abstract interpretation—like techniques to derive
a fixed point—based approach that provides an interface to generic abstract domains.
This approach allows for a deeper integration with the underlying safety analyses as it
can reuse intermediate results from the safety analyses to improve the information flow
approximation. In a concrete example we employed a predicate abstraction to verify
the security of a program using this approach.

In a third application we derived a regular approximation that describes a regular
language of critical execution paths for programs with finite control. The approxima-
tion can be directly targeted by existing safety analyses by verifying that there is no
feasible execution of the program taking such a critical path. Alternatively the regular
approximation can be folded into the control structure of the original program to obtain
a derived program together with a simple control location reachability property whose
validity implies the security of the original program. We also prove that this approach
is at least as precise as the PDG-based approach for our program model. Finally, we
reported empirical results from a prototypical implementation based on the regular

approximation that indicate practical benefits of our approach.

Future Work. Possible future work includes further empirical evaluation of this ap-
proach, in particular comparing its efficiency and precision against approaches based
on self composition.

As already mentioned in Chapter 2 it might also be possible to exploit our central
characterisation of pairs of critical executions to derive an optimised self-composition
where the employed safety analysis has to consider fewer execution pairs and can verify
a simpler reachability property while still exploiting the possible advantages of a self
composition—based approach.

Also of interest would be the study of possible extensions of the program model or
its applicability for further programming features. While procedures and arrays can be
handled rather straightforwardly by the existing program model, it is less clear whether

suitable representations for features like objects and pointers exist.
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Of interest could also be the potential development of a staggered approach utilising
this development where increasingly precise analyses might be optimised using infor-
mation from less precise analyses run before exploiting the common characterisation of
critical executions. Such an approach could for instance begin with a PDG-based anal-
ysis and then employ more expensive but more precise analyses only to check possibly
spurious paths found in the PDG.

Studying whether this approach can also be adapted for the verification of concurrent

programs is another possible direction for future research.
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