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Abstract

In this work, we study two problems concerning the pro-p Iwahori-Hecke Ext-
algebra. This object, introduced by Ollivier and Schneider in [0S19], is a graded
algebra which plays an important role in the context of smooth mod p representa-
tions of p-adic reductive groups.

The first main aim of this thesis is the study of the centre of the Ext-algebra:
we determine it completely for the Ext-algebra associated with the group SL2(Q))
with p # 2,3. We then describe the 0" and the 1% graded piece of the centre for
more general groups.

The second main aim of this thesis is the study of finite generation properties
for the Ext-algebra associated with the group SL2(Q,) with p # 2,3. Under these
assumptions, we show that the Ext-algebra is finitely presented.
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Introduction

The broad area of mathematics referred to as the “local Langlands programme” aims
at connecting the representation theory of the absolute Galois group Gal(Q,/Q,)
of the field of p-adic numbers with the representation theory of GL,(Q,), or more
generally of p-adic reductive groups. A whole series of conjectural statements have
been formulated, and much progress has been made in recent years, even leading to
proofs of some of the conjectures. However, many aspects of this theory continue
to be elusive, and, in particular, the case of mod p representations is still poorly
understood.

In light of the local Langlands programme, the study of representations of p-
adic reductive groups has acquired a central importance. Let us introduce some
notation to talk about a precise setting related to the work in this thesis. Let § be
a locally compact non-archimedean field (with non-trivial absolute value) of residue
characteristic p, i.e., § is either a finite extension of Q) or the field of formal Laurent
series Fr ((T')) for some f € Z>;. We denote by O the ring of integers of § and by
9 the maximal ideal of O. Furthermore, let G = G(J) be the group of F-rational
points of a split connected reductive group G defined over 9O: for example, we may
consider G = GL,(§) or G = SL,(§). We view G as a locally profinite group with
respect to the topology induced by §.

Let [ be a field. One can consider different categories of representations of G over
[: a possible (interesting) choice is the category of smooth representations Rep®(G):
it is defined as the full subcategory of the category of abstract representations V' of
G over [ such that the map G x V — V is continuous, where V is endowed with
the discrete topology. This condition is easily seen to be equivalent to requiring that
for all v € V the stabilizer of v in G is open.

A fundamental tool to understand the category Rep®(G) is the Hecke algebra
associated with the pair (G, K), where K is a compact open subgroup of G. To
define it, let us first consider the representation ! [G/K] given by the free [-vector
space generated by the set of left cosets G/K endowed with the obvious G-action.
It is easy to show that this is a smooth representation. We define

H|(G, K) = Endgep(c) (L [G/K])*,

i.e., (the opposite ring of) the ring of endomorphisms of the representation [ [G/K].
The choice of the opposite ring instead of the actual ring of endomorphisms is done
in order to work with the category of left H;(G, K)-modules and for some other
slight advantages.

The main point in considering the Hecke algebra of the pair (G, K) in the setting



of smooth representations is the existence of the following two functors:
h: Rep®(G) ———— Hj(G, K)-mod
V ——— Hompeye(q) (L[G/K], V) = VE,

t: Hj(G, K)-mod —— Rep{°(G)

It is not difficult to see that the two functors are well defined, that ¢ is left adjoint
to A and that £ is left exact. However, they behave very differently depending on
the field /. Let us explain this in more detail, starting by recalling the following
properties in the characteristic 0 case:

(i) It is easy to see that if the characteristic of [ does not divide the pro-order of
K, then the functor # is exact.

(ii) If I = C and if K is an Iwahori subgroup (i.e., the preimage of B(9O /M) via
the reduction map G(O) — G(OD/M), for a choice of a Borel subgroup B
of G), then the functors £ and ¢ induce an equivalence of categories between
the full subcategory Repfo’K(G) C Rep;°(G) consisting of the smooth repre-
sentations that are generated by their K-invariant vectors and the category
H)(G, K)-mod (see [BD84, Cor. 3.9 (ii)]).

Therefore, especially in the case [ = C, the above functors help to shed some light on
the category Rep;®(G), also taking into account that in case (ii) the Hecke algebra
H;(G, K) can be described very explicitly.

In contrast, let us see some known facts in the opposite situation where [ has
characteristic equal to the residue characteristic p of §. In this situation, instead
of an Iwahori subgroup, it is better to consider its unique pro-p Sylow subgroup,
which is called a pro-p Iwahori subgroup. The reason for this is that a nonzero mod
p representation V of a pro-p group K is such that the space of invariants V¥ is
nonzero. From this it also follows immediately that every irreducible representation
in Repf®(G) is contained in Repfo’K(G). Given its relevance for this introduction
and for the whole thesis, further below we will come back to the definition of pro-p
Iwahori subgroups.

(iii) If the characteristic of | divides the pro-order of K, then the functor £ is not
exact (for example, this can be shown by choosing an open subgroup K’ of
K of index divisible by p, by considering the surjective homomorphism of G-
representations k[G/K'| — k[G/K] sending a coset gK' to the corresponding
coset gK, and by showing that the K-invariant coset K € k[G/K]| does not
lie in the image of the K-invariants k[G/K'|¥ = k[K\G/K'].)

(iv) If I = k is an algebraically closed field of characteristic p, if G = GL2(Q,) or
G = SL(Qp) and if K is a pro-p Iwahori subgroup then the functors £ and
t (surprisingly) induce an equivalence of categories between the subcategory
RepZO’K(G) and the category Hj(G, K)-mod: for GLy see [Oll09, Theoreme
1.3 (a)], and for SLg see [OS18, Proposition 3.25] (for SLo the case p # 2 was
first proved in [Koz16, Corollary 5.3 (1)]).

(v) If G = GL2(5), where § is an extension of Q, with non-trivial residue degree,
and if [ = k and K are as above, then the functors £ and ¢t do not induce
such equivalence of categories (see [O1l09, Theoreéme 1.3 (b) and the following
lines]).



From now on, we will always assume that [ has characteristic p and we will
call it k£ in order to avoid confusion (in accordance with the rest of the thesis).
The above observations suggest that, while the Hecke algebra still seems to play an
important role in this setting, the situation is much more complicated. The lack of
right exactness suggests to look at a “derived setting”. In this direction, one has
the following fundamental result, proved by Schneider in [Sch15]: assuming that §
is a finite extension of @, and that K is a torsion-free pro-p group, there exists
a derived version of the functors £ and t that defines an equivalence of derived
categories between the derived category of Repp°(G) and the derived category of
modules over a certain differential graded algebra H3 (G, K). Note also that here
we are considering the full derived category of Repy°(G) and we are not restricting
ourselves to representations generated by their K-invariant vectors.

The differential graded algebra H; (G, K) is constructed as the Hom®-complex
Hom®(7°, J°)°P, where k|G/K] — J* is a fixed injective resolution (here the
Hom®-complex is as in [Har66, Chapter I, §6], but we consider the opposite product).
Note that an injective resolution as above exists because the category Rep°(G) has
enough injective objects (see [Vig96, 1.5.9]). However, the differential graded algebra
H; (G, K) is independent of the choice of J*® only up to quasi-isomorphism (see
[Sch15, §3]). But its cohomology algebra is

H* (/Hl.c(Gv K)) = EXt*RepZO(G) (k [G/K] ok [G/K] )Op

(see again [Schl5, §3]), and this is of course independent of such choice. Here the
product is (the opposite of) the Yoneda product. In particular,

HY(Hy(G,K)) = Hy(G, K).

In light of the above mentioned equivalence of derived categories, it would be desir-
able to describe explicitly the differential graded algebra H3 (G, K) and to under-
stand it as best as possible. Unfortunately, this seems to be a difficult task (also
taking into account that H}(G,K) depends on the choice of an injective resolu-
tion), and as a first step in this direction one may try instead to understand the
Ext-algebra.

The study of the above Ext-algebra has been carried out by Ollivier and Schnei-
der in the case that K = I is a pro-p Iwahori subgroup of GG. This is a fundamental
case as stressed above, although, if § is a finite extension of Q,, the group I may or
may not be torsion-free (and hence the above result of Schneider is not applicable
in full generality).

From now on we will focus on the case K = I, and we will write

E* = ExtRepee ) (k[G/I],k[G/1])°".

This is called the pro-p Iwahori-Hecke Ext-algebra (and we will sometimes call it
just Ext-algebra for short). Before dealing with the properties of E*, let us return
to the notion of pro-p Iwahori subgroup, since it is the main object appearing in
this definition. We have defined a pro-p Iwahori subgroup of G as the unique pro-p
Sylow subgroup of an Iwahori subgroup, which in turn was defined as the preimage of
B(O/9M) via the reduction map G(9) — G(O /M), for a choice of a Borel subgroup
B of G. A simpler equivalent definition is the following: a pro-p Iwahori subgroup
of G is the preimage of U(O /M) via the reduction map G(9O) — G(O/M), where
U is the unipotent radical of a Borel subgroup of G. Moreover, every two choices of
a pro-p Iwahori subgroup (or of a Iwahori subgroup) are isomorphic via conjugation
by an element of G.



Let us make the definition explicit in the case G = GL,: we may consider the
Borel subgroup of upper triangular matrices, and see that the corresponding pro-p
Iwahori subgroup is

1+ O ... O
I = m
: R }9)
Mmoo M 1M

As a side remark, the corresponding Iwahori subgroup has a similar description,
where the diagonal entries lie in 9 instead of 1+ 9. If we instead consider G = SL,,
(the case G = SLg will be the topic of part of this thesis), then the description is
the same, but considering only matrices with determinant equal to 1.

Ollivier and Schneider have studied the algebra E* in [OS19] (in the general
setting) and in [OS21] (in the case G = SLa(Qp) with p # 2,3). Let us briefly recall
some of their main results:

e In [OS19, §3.2] the following isomorphisms of k-vector spaces are obtained:

E* = H*(Lk[G/I]) = @D H* (L, k),
weW
where H*(_, _) denotes the cohomology of a pro-p group with respect to a discrete

module, where W is a suitable index set (the so-called pro-p Iwahori-Weyl group),
and where [, is a suitable open subgroup of I.

e In [OS19, Proposition 5.3] a complete and explicit description of the multiplication
in E* is obtained in terms of cohomological operations on H* (I, k[G/I]).

e In [OS19, Proposition 6.1] an involutive anti-automorphism of the graded algebra
E* is constructed.

e In [OS19, §7.2] it is shown that, if § is a finite extension of Q, and I is torsion-
free, then E* is supported in degrees 0,...,d, where d is the dimension of G as
an analytic manifold over Q,, and moreover that E* satisfies a duality as an E°-
bimodule (i.e., Hx(G, I)-bimodule). It is easy to see that in the case G = SL2(Q))
with p # 2,3 the subgroup [ is torsion-free, and so E* is supported in degrees
0,1,2,3.

e Under the same assumptions as above, the structure of the top graded piece E¢
as an E°-bimodule is investigated in [0S19, §8] (with further assumptions needed
for some results).

e In [OS21] the case G = SL2(Q,) with p # 2,3 is investigated in further detail. In
particular, the structure of E* as an E%-bimodule is completely determined.

e Furthermore, interesting representation-theoretic consequences are derived from
such results. In particular, under the same assumptions as in the last point, it is
shown in [OS21, Corollary 8.12] that an irreducible representation V' € Repi®(G)
is supersingular if and only if H*(I,V) is a supersingular left E%-module (where
a left E%-module is defined to be supersingular if it is annihilated by a power of
a certain ideal J in a central subalgebra of E?).

These results show that the Ext-algebra E* is an interesting object in the context
of the study of smooth representations of GG, and, although rather complicated, also
tractable using quite explicit methods.



The present thesis is devoted to investigate some further problems in the study
of the Ext-algebra E*, namely to try to answer the following questions:

(a) What is the (graded) centre of E*? And more specifically:

(a.1) What is, explicitly, the centre of E* in the case G = SLy(Q,) with
p#£ 2,37

(a.2) What can be said about the centre of E* in the general case? In particular,
what are the 0" and 1% graded pieces of the centre?

(b) In the case G = SL(Q,) with p # 2,3, since the structure of E* as an E°-
bimodule is completely known, is it possible to describe the full multiplicative
structure? And, in particular, does one have finite generation properties?

In the remaining part of this introduction, we discuss these problems in more detail.

(a) Let us begin with some motivation to study the centre of E*. First of all,
there is the general notion of Bernstein centre of an abelian (or just additive)
category, i.e., the ring of endomorphisms of the identity functor of the category.
For a category of left (or right) modules over a ring it can be identified with the
centre of the ring. The centre of the categories of smooth representations we
are considering was first studied by Bernstein in [BD84]. In particular, from the
results quoted above in point (ii) and the previous remark about the category
of modules, it follows that if .J is an Iwahori subgroup, then the centre of the
category Rep(%o"](G) can be identified with the centre of the ring Hc (G, J).
Furthermore, under the same assumptions Bernstein determined the centre of
full category Rep@(G) by making use of a decomposition of this category as a
product of subcategories (“Bernstein blocks”), of which one factor is precisely
Repg J(@).

In contrast, in the characteristic p case the situation is less understood. Only
very recently, in [AS21], Ardakov and Schneider have investigated and com-
pletely determined the centre of the category Repi’(G). Their result shows
that, in contrast to the case of Repféo ’J(G), the Bernstein centre is quite small
(for example, if G is semisimple, it can be identified with the group ring
kE[Z(Q)] of the finite group Z(G)). Hence, it should probably not be expected
that the Bernstein centre plays the same important role as in the case [ = C.

However, in view of the equivalence of derived categories mentioned before, one
should rather consider a notion of centre in this “derived” context. We shall
not make this precise, but we remark that it is not even clear what should be
the correct notion of centre of the derived category of H; (G, I)-modules (see
[Harl6, after Question 4.3]). Since, as said before, the cohomology algebra
E* of H; (G, I) is more tractable, as a first step towards understanding such
notions, one could try instead to study the (graded) centre of the Ext-algebra
E*.

As a further piece of motivation to study the centre of E*, let us highlight
the importance of the centre of E°. This has been studied extensively in the
literature, mainly by Vignéras. The main result, due to Schmidt and Vignéras,
consists in explicitly determining a basis of Z(E°), proving that Z(EY) is a
Noetherian ring, and that E° is finitely generated as a Z(E")-module (see
Theorems 1.6.1 and 1.6.2 for precise statements and references). As a nice
consequence of this result, one immediately sees that EY is a Noetherian ring.
Furthermore, these results are a key ingredient used in the classification of
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simple supersingular E%-modules by Ollivier (see [O1114]). Therefore, one can
ask whether the centre of E* satisfies similar properties and plays a sort of
analogous role (we point out, however, that this vague question is not likely
to admit a positive answer: see Remark 2.1.2 for a more precise statement).

In the next two points, we will discuss the results about the centre of E* proven
in the present thesis.

Chapter 2 of this thesis is devoted to the explicit description of the centre of
E* in the case G = SL2(Q)p) with p # 2,3. In this case the graded algebra
E* is supported in degrees 0, 1,2, 3, and, even if computations can be rather
involved, it is in principle possible to work with explicit formulas and compute
explicit bases. We achieve the following result.

Theorem (see Theorem 2.1.1). If G = SLy(Q,) with p # 2,3, then the
centre of E* admits the following description:

* the 0 graded piece Z(E*)? is isomorphic to k x k as a k-algebra;
x the 15 graded piece Z(E*)' is zero;

* the 2" graded piece Z(E*)? and the 3" graded piece Z(E*)? are free modules
of rank o over the ring Z(E*)? = k x k.

Moreover, explicit k-bases of all the graded pieces of Z(E*) are computed (see
Section 2.1). Note that this theorem completely determines the structure of
Z(E*) as a graded-commutative k-algebra: indeed the 15* graded piece is zero,
and so the only products one needs to consider are those between an element
of degree 0 and an element of degree 0, 2 or 3.

The above result is rather intriguing: the low graded pieces of Z(E*) are very
small, resembling the result of Ardakov and Schneider mentioned above about
the centre of Rep?°(G). However, the higher graded pieces are quite “big”,
perhaps suggesting non-trivial phenomena at the level of derived categories.

As just explained, the multiplicative structure of Z(E*) is rather uninteresting.
However, for the top degree part we have Z(E*)3 = Zpo(E3) (where the
notation Zgo(E?) means the set of elements of E3 that are centralized by
all the elements of E°), and so Z(E*)? also has a natural structure of module
over the ring Z(E°). We determine this structure explicitly, under more general
assumptions, as follows (recall that we briefly mentioned an ideal J in a central
subalgebra of E°, which is used to define supersingular (left) E°-modules).

Proposition (see Proposition 2.3.6). Let G = SLa(F) and assume that
I is torsion-free (in particular, § is a finite extension of Qp). Let d be the
dimension of G as an analytic manifold over Q, (so that E* is supported in
degrees 0,...,d). One has that the Z(E®)-module Z(E*)? = Zgo(E?) can be
decomposed as a direct sum

Zpo(BEY) =M o€,

where M is a finite direct sum of Z(E°)-modules of k-dimension 1 and where
& is the injective hull of (Z(EO)/TIZ(EO))v as a Z(E®)-module (where ()Y
denotes the k-linear dual).

It is interesting to compare this with the following result from [OS21] (see
Proposition 1.10.5): under the same assumptions of the above proposition (or

6



rather, under more general assumptions) one has that E¢ decomposes as a
direct sum E? = M’ & &', where M’ is an E°-bimodule of dimension 1 over k
and where £ is an E%-bimodule that is the injective hull of (E°/JEY)Y both
as a left and as a right E°-module.

Returning to the case of G = SL2(Q),) with p # 2,3, another remark is that
also for the 2°¢ graded piece one has Z(E*)? = Zyo(E?) (a property which,
in contrast to degree 3, is not at all a priori clear). In Section 2.7, we also
determine the structure of Z(E*)? = Zpo(E?) as a Z(EY)-module, and in
particular we show that it is a quotient of Z(E*)? = Zpo(E?) by a certain
submodule having finite dimension over k.

In Chapter 3 we generalize some results regarding the low graded pieces of
Z(E™*) to the case of more general groups G. Let us introduce some notation:
we choose a split maximal torus T of G, in a compatible way with respect
to the choice of I (i.e., since we defined I by choosing a Borel subgroup, we
require T to be contained in such Borel subgroup). Let us denote by 7' the
group of F-rational points of T, and by T the unique maximal pro-p subgroup
of T' (concretely, choosing a splitting T = G}, for some n € Z>q, this means
T!' 2 (1 +9M)"). Furthermore, let C' be the group of F-rational points of the
centre of G.

We are now able to state the description of the 0 graded piece of the centre,
which we prove without any assumption of G (besides the general assumptions
stated at the beginning of the introduction).

Theorem (see Theorem 3.1.10). The 0" graded piece Z(E*)° of the centre
of E* is isomorphic as a k-algebra to the group algebra

k[C-ThH/T' =k[C/C"],
where C is the unique mazimal pro-p subgroup of C.

Again, it is interesting to notice some similarity with the result of Ardakov
and Schneider on the centre of Repp°(G).

Furthermore, we study the 15 graded piece of the centre of E* and we manage
to obtain a complete description under the assumption that § is an unramified
extension of @, as stated in the following theorem. In this statement, for
a commutative k-algebra R and a k-vector space V', we consider the tensor
product R®; V', endowed with its natural structure of (free) R-module obtained
by acting on the first factor.

Theorem (see Theorem 3.2.26). If § is an unramified extension of Qp,
then the 1t graded piece Z(E*)! of the centre of E* is isomorphic as a Z(E*)°-
module to Z(E*)° ®;, H' (Tl/Til), k), where

T(% = Image ( sed O [zeg(1+90) — T,
and where ® is the set of coroots associated with the pair (G,T).
This result can be slightly simplified under some further assumptions: indeed

we prove the following corollary (we will actually prove it under moderately
weaker assumptions).



Corollary (see Corollary 3.2.37). If § is an unramified extension of Q,
and if p does not divide the connection index of the root system (i.e., the order
of the finite group given by the weight lattice modulo the root lattice), then the
1% graded piece Z(E*)' of the centre of E* is isomorphic as a Z(E*)°-module
to Z(E*)? @, Hl((Co)l,k‘), where C° is the group of §-rational points of the
connected centre of G and where (C°)! is the unique mazimal pro-p subgroup

of C°.

This is a slightly simpler description, because for example it is clear that, under
the assumptions of the corollary, Z(E*)! is zero if G is semisimple, since in
that case C° is trivial (actually, it is not difficult to show that also the reverse
implication holds). However, this property was not clear from the description
of Z(E*)! stated in the above theorem, and it is actually even false under
the more general assumptions of the theorem. Indeed we prove the following
characterization.

Corollary (see Corollary 3.2.39). Assume that § is an unramified exten-
sion of Qp. One has that Z(E*)! is zero if and only if G is semisimple with
fundamental group of order not divisible by p.

We do not deal with the problem of studying Z(E*)! in the case that § is more
general. However, we point out where the proof fails (see Subsection 3.2.k).

In Chapter 4 we investigate the multiplicative structure of E* in the case
G = SL2(Qp) with p # 2,3. As already mentioned, in [OS21] Ollivier and
Schneider thoroughly discuss the structure of E* as an E%-bimodule. Moreover,
they also discuss the full multiplicative structure of Z( EO)(E*), but not the
full multiplicative structure of E*.

We show that the Ext-algebra is generated by its 15 graded piece, more pre-
cisely we prove the following proposition.

Theorem (see Theorem 4.8.1). Assume that G = SL2(Q,) with p # 2,3.
Let TEOE1 be the tensor algebra of the E°-bimodule E'. One has that the
natural map of graded k-algebras

TpE' — E*
is surjective and the kernel is finitely generated as a bilateral ideal.

We also explicitly compute a set of generators for such kernel, thereby com-
pletely determining the multiplicative structure of E* in terms of the k-algebra
E° and of the E°-bimodule E'. Furthermore, one may ask whether the kernel
of such map is generated by its 2"9 graded piece: the answer is negative, even
if a more informal answer would be “almost”, as made precise in the following
statement.

Proposition (see again Theorem 4.8.1). Assume that G = SL2(Q),) with
p # 2,3. Let K* be the kernel of the multiplication map TEOE1 — E*, and
let K3 be the the sub-bilateral ideal of K* generated by the 2™ graded piece K?
of K*. One has:

*x K* is generated by K? and K> (as a bilateral ideal);

* K* is not generated by K2, and more precisely Kg’ 18 properly contained in
K3, but it has finite codimension in it.
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We conclude the chapter with a presentation of E* as a (non-graded) k-algebra.
In particular, we prove the following pleasant result.

Proposition (see Proposition 4.10.4). Assume that G = SL2(Q,) with
p # 2,3. One has that E* is finitely presented as a k-algebra.

We also compute explicitly a presentation (see again the quoted proposition).

Regarding the question whether the results in Chapter 4 generalize to other
groups G, in Section 4.2 we show that the multiplication map T, E' — E*
is not surjective for G = SL2(Q3).

To conclude this introduction, let us mention another fact that we prove for
a general G (with some assumptions on the field §). We need some preliminaries:
it is easy to see that 7' is the unique pro-p Iwahori subgroup of T, and so we
have the pro-p Iwahori-Hecke algebra Hy (T, T'). This algebra admits a particularly
simple description: it is canonically isomorphic to the group algebra k[T/T']. We
now consider the submonoid 7" of T consisting of the elements which contracts the
group U := U(F) (here, U is the unipotent radical of a Borel that we have used in
the definition of I, and an element ¢ € T is said to contract U if tUt~! C U). Let
Hy(T,TY)*t C H,(T,T") be the subalgebra corresponding to the monoid algebra
K[T* /T via the fixed isomorphism Hy(T,T') = k[T/T"]. It is easy to see that
Hy(T,T") is a localization of Hy(T,T')* and it is well-known that Hy(T,T")*
canonically embeds into Hy (G, I) = E° (see [Vig98, I1.5. Proposition]). The following
result generalizes these properties to the Ext-algebra.

Proposition (see Proposition 3.3.4 and Remark 3.3.7). Assume that § is a
finite extension of Q, without non-trivial p-th roots of 1 (in particular p # 2). Let
E%. be the pro-p Iwahori-Hecke Ext-algebra relative to the pair (T, TY), and let us
keep the motation E* for the pro-p Iwahori—Hecke Ext-algebra relative to the pair
(G,I). One has that there exists a (non-unique) sub-graded k-algebra E}* C EX
with the following properties:

e 7 is a localization of E;f’*;
o E;f’o is isomorphic to Hy(T,TY)* wvia the natural isomorphism E% = Hy(T,T");

o E;f* embeds into E* as a graded k-algebra.
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Chapter 1

Background

In this chapter we introduce the main notions needed to define the pro-p Iwahori—
Hecke Ext-algebra and to work with it. Furthermore, we give an overview of the
main properties of the pro-p Iwahori—Hecke algebra and the pro-p Iwahori—Hecke
Ext-algebra, both in the general case and for the group SLy(Q)). Nothing in this
chapter is original work.

1.1 General setting and notation

In this section we introduce the general setting and some pieces of notation that we
will use throughout. The exposition partially follows [OS19, §2].

We will always work under the following assumptions and notation. Let us con-
sider a locally compact non-archimedean field (with non-trivial absolute value), and
let us denote the order of the residue field by ¢ = pf, for some prime number p. In
other words, § is either a finite extension of @, of inertia degree f or the field of
formal Laurent series F,((7)). Furthermore, let us denote by O the ring of integers
of §, by 9t the maximal ideal of O, by 7 a chosen uniformizer (fixed once and for
all), and by valg the normalized valuation of §.

We consider a connected split reductive group G over §; we denote its group of §-
rational points by G := G(§), and we endow it with the topology induced by §, thus
obtaining a locally profinite group. In general, we always adopt the convention that
boldface letters denote algebraic groups over § and the corresponding non-boldface
letter denote the locally profinite group given by its §-rational points. We fix a §-
split maximal torus T. As just explained, T" denotes the locally profinite group given
by its §-rational points, and we further define 7° to be the unique maximal compact
subgroup of T', and T to be the unique pro-p Sylow subgroup of 7°. Explicitly, this
can be seen as follows: T is isomorphic over § to some copies of the multiplicative
group Gy, say GJ; then it is easy to see that inside the group T' = (F*)" there
exists a unique maximal compact subgroup 7° = (9*)", and furthermore that the
unique pro-p Sylow subgroup is 71 = (1 + 9N)".

If § is an extension of Q,, we denote by d the dimension of G as an analytic
manifold over Q.

We denote by J a fixed Iwahori subgroup of GG, chosen in a compatible way with
respect to T', and we denote by [ its unique pro-p Sylow subgroup, which is called
pro-p Iwahori subgroup and which will be of central importance in the whole thesis.
For further details about these definitions, see Section 1.3.

We consider the normalizer N of T in G (it is an algebraic subgroup of G defined
over §), and we consider the associated Weyl group Wy := N/T. We further define
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W = N/T? (sometimes called Twahori Weyl group or generalized affine Weyl group)
and W = N /T! (sometimes called pro-p Iwahori Weyl group). The relationships
between these objects and the Iwahori and pro-p Iwahori groups will be recalled in
Section 1.3.

We fix a field k of characteristic p (i.e., the same characteristic as the residue
field of §). This will be used as a “coefficient field”, in the definition of the pro-p
Iwahori—Hecke algebra and of the pro-p Iwahori-Hecke Ext-algebra.

We end this section with some notational conventions which will be used through-
out:

e For a group G we denote by [G,G] the subgroup generated by commutators.
Also in the case that G is a topological group we denote by [G, G] the (algebraic)
commutator subgroup, while we use the notation [G, G] for the closed commutator
subgroup.

e For a field [, we use the notation Hom;(_, ) to denote homomorphisms of [-vector
spaces.

e For a vector space V over a field [, we denote by V"V its dual space Hom;(V,1).

e For a subset X of a vector space V' over a field [, the notation span; X means the
sub-vector space of V' generated by X.

e For a field [ and a set X, we denote by I[X] the free [-vector space indexed by the
elements of X and, for all z € X we denote by (z) or simply by x the corresponding
element in [[X].

e For a ring R (with 1, not necessarily commutative) we denote by Z(R) the centre
of R. For an R-bimodule M, we denote by Zr(M) the Z(R)-module given by
the elements of M that are centralized by all the elements of R. We also use the
notation Zgr/(M') for subsets R C R and M’ C M, always meaning the set of
elements of M’ that are centralized by all the elements of R’. For a graded ring
R*, we denote by Z(R*) the graded centre, and for elements r,s € R* we denote
by [r, s]g the graded commutator. If » € R* and s € R’ with either ¢ or j even,
the graded commutator is simply the commutator, and we generally simply write
[r, s].

1.2 Some notions and facts from Bruhat—Tits theory

This section consists of a brief review of the results in Bruhat—Tits theory that we
will need later on. The standard reference is the original treatise by Bruhat and
Tits ([BT72] and [BT84]). Our exposition also follows [Hey19, §1] and [OS19, §2.1].
Recall that we are working only in the split case, and so we can avoid some of the
technicalities of the theory.

We denote by X*(T) the group of characters of T and by X.(T) the group of
cocharacters of T. We consider the set of roots ® C X*(T) associated with the pair
(G, T). We will use the following notation for the canonical pairing:

(_,_): X.(T) x X*(T) — Z.

For all root o € @, let us denote by U, the unipotent subgroup of G attached
to it. We fix a choice of positive roots ®T, or, equivalently, of a basis II of the root
system. We further define U to be the unipotent subgroup generated by the U,’s
for « € T (this is the unipotent radical of the Borel subgroup TU).
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We fix a Chevalley system (z4)qecs, which, according to [BT84, 3.2.1 and 3.2.2],
is defined as follows: for each a@ € ® we choose an isomorphism z,: G, — U, of
algebraic groups over § in such a way that the following conditions hold.

(Ch 1) For all a € ® there exists a homomorphism ¢,: SLy — G of algebraic
groups over § such that, for all F-algebras R and all u € G,(R) one has

ral = (g }).

cao=an(’ )

Since SLo is generated by its unipotent subgroups, ¢, is necessarily unique.

(Ch 2) For all a, 8 € @, denoting by r,, the reflection on the root lattice associated
with «, there exists 43 € {—1,1} such that for all F-algebras R and all
u € Ga(R) one has

0 1 o 1\ "
Tra@(W) =¢a | _y o) wslEaps) - va |y o)

We list some consequences of the above definition (see [BT84, 3.2.1]).

e The homomorphism of algebraic groups

a Gy, ——— G
x 0
(5 0)

has values in T (i.e., & € X.(T)). It is called the coroot associated with «, and
seeing R @z X, (T) as the dual of R ®z X*(T), the coroot & is indeed the coroot
associated with « in the sense of abstract root systems. We denote by & C X (T)
the set of coroots.

e For all u € §* the element

lies in N, and its image in Wy corresponds to the reflection associated with «.

e For all §-algebras R, all t € T(R) and all u € G,(R) one has

Fegn ((1) 7;) = g (é 0‘(?“) (1)

(see [Mill7, Equation (135)]).

Let C be the centre of G and let C° be its identity component. The standard
apartment associated with T in the semisimple building of G can be defined as

o =R @z (X.(T)/X.(C)

(we see it as an R-vector space as well as an affine space over itself). Although
sufficient for most of our purposes, this is a simplified definition with respect of
that of Bruhat—Tits. The correct definition is the following: one fixes a discrete
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special valuation g of the group root datum (7, (Uy)aeca) compatible with valg (for
the definition of discrete special valuation see [BT72, (6.2.1), (6.2.13)] and for the
definition of compatibility with valgy see [BT84, 5.1.22.]), and then one defines the
apartment as the affine space xg + &, where the operation “4” is defined as in
[BT72, (6.2.5)]. Then x¢ + <7 consists of all the discrete valuations of (7', (Uy)acd)
compatible with valg (see [BT84, 5.1.23. Proposition]), and it is thus independent
on the choice of zy. However, we will need to fix an xg as above, for example in order
to fix a specific Iwahori subgroup. So we make the following choice:

] the discrete special valuation
o <associated with our fixed Chevalley system (:Ea)a€q>> (2)
(see [BT72, Examples (6.2.3) b)]). Since we are implicitly identifying zo + </ with
&, we view xq as the zero of 7.

We have an action of the finite Weyl group Wy on & induced by the action of
Wy on X.(T), as well as an R-bilinear map

(—,—): o xspanp(®) — R

induced by the pairing (_, ) : X,(T)x X*(T) — Z (note, however, that we cannot
replace spang(®) with R ®7 X*(T) in general).

We define the set of affine roots @, = ® x Z, and we identify ® with ® x {0},
in such a way that ® C ®,¢. To every affine root (a,h) € P4 we can attach a
subgroup U(q,p) of Uy defined as follows:

o = {n et | i) e}

in other words we have transported, via x,, the filtration (9"),cz of §, thus ob-
taining a filtration (U(q,n))nez of Ua.

Moreover, for each affine root (a,h) € @, we define its associated hyperplane
in the apartment as

Hp ={red | (z,a) +h=0}.
We also introduce the following notation for the sets of hyperplanes:

H = {H(a,h) ‘ (Oé, h) € (I)aff} .

The connected components of o/ \ |J ey H are called chambers, and there exists a
unique chamber €, called fundamental chamber, such that xq lies in its closure and
such that all the positive roots assume positive values on each point of € (equiv-
alently, on at least one point of €). More generally, one calls facet an equivalence
class in & with respect to the following equivalence relation: two points of &/ are
equivalent if (and only if) for each hyperplane in b either both points lie in the
hyperplane or both points lie in the complement.
One has that the exact sequence of groups

1 — T/T° w > Wo > 1 (3)

is split and that there exists a (necessarily unique) splitting such that for all a € ®
the reflection s, € Wy corresponding to « is sent to the class of cpa(_ol (1)) in
W = N/T°: indeed let T_; be the subgroup of T' generated by &(—1) for a € ®; by
[SFW67, Lemma 56] already the surjection N/T_; — W) splits, and the above rule
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gives such a splitting (we can apply Steinberg’s result, which is stated for semisim-
ple split groups, because once we have a splitting of N/T_; — W) for the derived
group we also have such a splitting for the original group). We fix once and for all
the splitting of (3) described above and write W = Wy x T/T?, seeing Wy as a
subgroup of W.

There is an isomorphism of abelian groups

vx,: T/T° — X,(T) (4)

defined as follows: for all € T/T° the cocharacter vy, (f) is the unique cocharacter
determined by the property (vx, (f),x) = — valz(x(t)) for all x € X*(T). We will
slightly abuse notation and write vy, () not only for z € T'/T° but also for z € T/T"
and for z € T'.

We also consider the map

Ve : T)T® — X.(T)/X.(C°) C o/ (5)

induced by vx, and also in this case we will slightly abuse notation and write v (z)
not only for z € T/T" but also for x € T/T" and for x € T. If G is semisimple,
then C° is trivial, and vx, and v, are the same map. Moreover, going back to the
general case, for all a € & we have

<VX* (33), a> - <Vﬂy($),0¢>,

where on the left we are considering the pairing (_, ) : X.(T) x X*(T) — Z and
on the right the pairing (_, _) : &/ x spang(®) — R. Since there is no ambiguity,
we will simply use the notation

(w(z), ). (6)
We can now define an action of T/T° on the apartment by affine translations
via v:
T/T° x of ———— o

(t,z) ——— =+ VLQ{(t).

The actions of Wy and T//T° on the apartment combine into an action of W, in the
sense that the following is a well defined action

W x o s of

(wot, x)
(where t € T/T° and wo € Wp)

—— wo(x 4+ vy (t)).

Similarly, we also have the following well defined action of W on the affine roots:

W x ®uq D
(wot, (Oé, h))

(where t € T/TO and wo € Wo) ? (woav h - <V(t)’ O[>) = (woau [j + Val&(a(t))>

Moreover, the actions of W on the apartment and on the affine roots are compatible,
in the sense that for all w € W and all (a, h) € ®@.¢ one has wH (4 ) = Hy(a,p) (and
this explain the choice of the signs in the above action). Another important property
is that for w € W, for n,, € N representing w and for (a, h) € ¢ one has

MW n)e = Un(ah)s (7)
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as shown in [BT72, Proposition (6.2.10) (iii)].
Let (o, ) € ®o5. We consider

0 D
N(ap) = Pa <—7T_h O> € N.

One can check that the class of n(,p) in W acts on the apartment as the affine
reflection through the hyperplane H(, ). We define Wag as the subgroup of W
generated by the images of the elements n,y) for (a,h) € . Now, let us recall
the notation II for the basis of ® corresponding to our choice of positive roots, and
let us consider the partial order on ® defined as follows: for «, 8 € ® we say that
a < B if f— « is a linear combination with non-negative coefficients of elements in
I1. We define
ILg :=ITU{(e,1) | «is minimal for <}.

For all (o, h) € I, we define s, 5 to be the class of n(, ) in W, and we consider

Saft = {S(Oé,h) ‘ (Oé, h) € Haff} .

It is easy to see that for each s € S,g there exists only one (a, h) € Il,g such that
5 = S(a,h) and so we will use the notation (g, hs) for such element of Il,g. We will
also use the notation

0 hs
N = n(asvhs) = Pa, (_ﬂ-_hs 0 ) € N

(in particular, this is a fixed lifting of s to V). It is possible to prove that (Wag, Sag) is
a Coxeter system (see [Bou81, Chapitre V, §3.2, Theoréme 1 (i)]), and that it extends
the Coxter System given by Wy together with the simple reflections associated with
IT (also compare compatibility with the splitting of the surjection W — W which
we chose in (3)).

We define the set of positive affine roots (I):ff as the set of affine roots taking
non-negative values on €; in other words @;ﬁ =®T U (P x Z>1). We further define
the set of negative affine roots ® 4 = Pag \ (b:ff' There is a “length function” on
W which extends the length function of the Coxeter system (W,g, Sag) and can be
defined as follows (see [Lus89, §1.4]):

;W >Z>0

w—— #{(a,h) € Df } w(a,h) € Dy}

Note that the cardinality is indeed finite because for all w € W and all § € Z, the
action of w sends ® x {h} to ® x {h + n,} for a suitable n,, € Z depending on w
but not on h. One can prove the following useful expressions to compute the length
(see [Vigl6, Corollary 5.10]):

ltwo) = > W a)l+ Y [w(t),a) —1] (8)

acedtNuwedt acdtNuwod—
for t € T/T° and wy € W,

lwoty = Y W), + > [wlt)a) +1] (9)

acd+Nuwy o+ acd+Nuwy 1o

for t € T/T° and wo € W.
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In particular:

(=3 it o) = 5 3 l{w(t),0)] for teT/T%.  (10)

acdt acd

We define €2 to be the subgroup of W given by the elements of length 0. The group
W decomposes as a semidirect product

W =Q x Waﬂ‘ (11)

and the length function is constant on the double coset Quw$) for all w € W (see
[Lus89, §1.5]).

1.3 The pro-p Iwahori subgroup

In this section we will recall the definition of Iwahori subgroup from [BT84], and
then we will instead focus on the pro-p Iwahori subgroup, which plays the most
important role in this thesis.

We first consider the group scheme Gg associated with the chamber € (see [BT84,
4.6.26]). Note that this depends on the choice of xg in (2), and so on the choice of
the Chevalley system. We then consider the identity component Gg of G¢ define
the corresponding Iwahori subgroup J to be J := Gg(9), seen as a profinite group
with the topology induced by © (for details on the definition see [BT84, §5.2]).
Furthermore, J has a unique pro-p Sylow subgroup I, which we call the pro-p Iwahori
subgroup.

The above are the choices of Iwahori and pro-p Iwahori subgroups that we will
fix throughout the thesis. However, in [BT84, §5.2] Iwahori subgroups are defined by
considering an arbitrary chamber in place of the fundamental chamber €. Every two
Iwahori subgroups are conjugate (see [Vigl6, after Definition 3.14]), and so every
two pro-p Iwahori subgroups are. Parahoric subgroups are defined in the same way
as Iwahori subgroups, but considering arbitrary facets instead of chambers.

Note that part of the literature (e.g., [Vigl6]) makes use of another definition of
Iwahori subgroup, due to Haines and Rapoport, and involving the Kottwitz homo-
morphism (see [HRO8] for the equivalence of the two definitions).

We recall from [Vigl6, after Definition 3.14] that, denoting by K a maximal
parahoric subgroup of G and by K! its unique maximal open normal pro-p subgroup,
one has that K/K! is canonically the group of ©/9M-rational points of a reductive
group G over 9 /9. Moreover, we recall from [Vig16, Corollary 3.28] that the Iwahori
subgroup J is the preimage in /C of a the group of k-points of a Borel subgroup of G,
and that the same holds replacing the Iwahori subgroup J with the pro-p Iwahori
subgroup I and the Borel subgroup with its idempotent radical.

If G is (the base change of) a reductive group defined over O, then we can
consider the maximal parahoric subgroup K := G(9), and then we see that this
definition of Iwahori and pro-p Iwahori subgroups coincide with the definition used
in the introduction, where we basically defined Iwahori (respectively, pro-p Iwahori)
subgroups as the preimage of the subgroup of k-rational points of a Borel (respec-
tively, unipotent radical of a Borel) in Gj. Note also that the assumption that G is
the base change of a reductive group defined over £ is basically automatically sat-
isfied, in the sense that one can use the classification of (connected) split reductive
groups by root data to produce a (connected) split reductive group defined over O
whose base change to § is G.
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As outlined in Section 1.1, we define T to be the (clearly unique) pro-p Sylow
subgroup of the profinite group T°. We are now going to state a fundamental set-
theoretical (or topological) description of the pro-p Iwahori subgroup.

Lemma 1.3.1. The multiplication map induces a homeomorphism

H u(a,l) X Tl X H u(oz,[)) — I,
acd— acdt

where the products on the left hand side are ordered in some arbitrarily chosen way.

Proof. For the fact that the multiplication map induces a bijection as in the state-
ment see [SS97, Proposition 1.2.2] and [OS14, Lemma 4.8 and its proof]. The fact that
it is also a homeomorphism is clear, since it is a continuous map between compact
Hausdorff topological spaces. |

We consider the group We=N /T, for which we clearly have the exact sequences

1 —— T/T! W Wo 1,

1 —— T/T° w w 1.

In contrast to what happens for W, in general it is not true that any of these short
exact sequences is split (for example, if G = SLo and p # 2, one sees that any lift in
W of the non-trivial element of Wo has order 4). In any case, for all s = s, p,) € Sast
we fix the following lift of s to W:

~ _ f 0 ﬂ-hs
s=nseW, where s =Pa, | __—0. (o | € N. (12)

The decomposition W = Q x W,g stated in (11) yields

W:Q'Waff7

where € (respectively, %) denotes the preimage of Q (respectively, of Weg) in W.
There are well defined conjugation actions
NxT/T® —— 17/T" NxT/T" — 7/T!
(n,t) ——— ntn~! == ntn—1, (n,t) ——— ntn~ ' == ntn-1,
because conjugation by an element n € N must preserve the unique compact sub-

group T° of T and the unique pro-p Sylow subgroup 7" of T°. Since T acts trivially
on T/T" we obtain well defined conjugation actions

Wo x T/T° —— T/T° Wo x T/T" —— T/T!
(w, ) ——— wrw ™, (w, ) —— wrw L.

The notation wxw™" still makes sense if w € W or if w € w.
The relation between the group W and the pro-p Iwahori subgroup I is given by
the following Bruhat decomposition (for the proof see [Vigl6, Proposition 3.35]):

G=|J I, (13)
weW
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where we do not distinguish between an element in N and its class in W = N /T
this makes sense because the double coset Twl does not depend on the choice of a
representative since T C I.

We end this section with a variation of Lemma 1.3.1, consisting of the Iwahori
decomposition of some subgroups of I, which will be very important for the study
of the Ext-algebra. They are defined as follows: for all w € W we set

I, =INwlw?,

where, as before, we do not distinguish between classes in W=N /T! and represen-
tatives in IN: this makes sense because 7' C I and so every n € N representing w
defines the same group nIn~'. Actually, it is also true that nIn~! only depends on
the class of n in W, because T° is contained in the Iwahori subgroup J (see, e.g.,
[Vigl6, Corollary 3.20]), and I is normal in J (alternatively, the claim also follows
from the next lemma).

Lemma 1.3.2. Let w € W. One has the following description of the group I,,.

e The product map induces a homeomorphism

1
I Yeguion X T % TT Wagnia) — Tus
acd— acdt

where the products on the left hand side are ordered in some arbitrarily chosen
way and where
gw(a) = —inf {(z,a) | z € CUwWC}.

e For each o € @, the constant g, («) also admits the following description:

guw(a) =min{m € Z | (a,m) € &z Nwdi;}.

Proof. See [0OS19, Lemma 2.3 and Remark 2.4]. The fact that the bijection induced
by the multiplication map is also a homeomorphism is clear for topological reasons,
as in Lemma 1.3.1. [ ]

1.4 The pro-p Iwahori—Hecke algebra

1.4.a Definition and Iwahori-Matsumoto presentation

The pro-p Iwahori-Hecke algebra has been introduced and studied by Vignéras in
[Vig05]. A throughout treatment, also extending to the case of non-split groups and
to the case of an arbitrary coefficient ring can be found in [Vigl6]. Here we will
give the definition and recall some fundamental properties, but we will only work
within the assumptions of the previous sections (i.e., G will be split) and the ring
of coefficients will be the characteristic p field k fixed in Section 1.1 (i.e., k is a field
of the same characteristic as the residue field of §). Our exposition follows [Vigl6]
and [0S19, §2.2].

Before defining the pro-p Iwahori—-Hecke algebra, let us consider the representa-
tion of G over k given by k [G/I]: this is the free k-vector space generated by the right
cosets of G modulo I, endowed with the left action of G given by g - (¢'I) := (g9g'I)
for all g, ¢’ € G. Since I is open in G and compact, we can identify this space with
the k-vector space of compactly supported continuous maps from G to k which are
constant on the left cosets of G modulo I, by identifying, for all g € G the coset gl
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with its characteristic function 14;. The action of G is then by left translations, i.e.,
considering f € k[G/I] seen as a function f: G — k and considering g € G we
have g - f = f(g~"-).

The representation k [G/I]| defined above is (one of the possible concrete ways
to construct) the compact induction c—ind? 1 of the trivial representation from I to

G.

We define the pro-p Iwahori-Hecke algebra H = Hy (G, I) relative to the pair
(G, I) with coefficients in k in the following way:

(i)

H = Endj|¢l.moa (K [G/1])°P. Here we are considering the endomorphism ring
in the category of representations of GG over k, or, equivalently, in the category
of left k-modules, and we are considering the opposite ring: this last convention
has of course no real content, but it has some slight advantages in various
settings.

For the sake of completeness, we are now going to give some equivalent descriptions
of this k-algebra.

(if)

(iii)

It is easy to check that valuation at (I) gives an isomorphism of k-vector spaces
H = k[G/I)" (where (_)! denotes the subspace of I-invariant vectors). The
product can be characterized as follows: let us consider

h, heH= Endk[G]-mod (k [G/I])Op )

and let us write h((1)) = > 5eq/rag(gl) and W' ((I)) = > ogec) a g (g'T) for
suitable coefficients a4,a’y € k (almost all of them equal to 0). Then, we see
that
(h-1)((1) = (W oh)(I)) = > agd'y(gg'T).
geG/I,
g eG/I

Now, to give an alternative description, let us consider the k-vector space
E[I\G/I] (meaning the free k-vector space generated by the double cosets).
As we did for k [G/1], since I is open in G and compact, we can identify this
space with the k-vector space of compactly supported continuous maps from G
to k that are constant on the double cosets of G modulo I, by identifying, for
all g € G the double coset IgI with its characteristic function 1747. It is then
easy to see that k[G/I]7 = k[I\G/I] as a k-vector space, since also k[G/I]’
can be described as a space of functions in the above way. The product can
then be characterized as a convolution: namely, considering f, f' € k[I\G/I],
seen as functions f, f': G — k, we can define a convolution product

fofl=> fla)f(@').
TeG/I

We can then check that this convolution product coincides with the product
on k[G/I]" we have already described: for this it suffices to check that given
two elements  -c/yag(9l) € k[G/I)" and ZEGG/I dg(d'I) € k[G/I)" the
following equality holds:

!/ /
( Z ag]lgl) >|<< Z aglllgq> = Z aga g Lggry,
geG/I geG/I geG/I,
9'eG/I

and this can be done explicitly.
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Note that the definition of the Hecke algebra given here follows [OS19], while the
definition in [Vig16] is slightly different: there H is defined as Endyg)-mod (K [1\G]),
where k[I\G] is endowed with the G-action defined by g - (Ig') == Ig'g~" for all
9,9 € G (i.e., the difference is that right cosets are used and that there is no opposite
ring). Proceeding as before, considering h,h’" € Endygmoa (K [[\G]), and writing
h((1)) = Ygeng ag(lg) and K'((I)) = ZEGI\G a'g(Ig') for suitable coefficients
ag,a'y € k one gets

(hoW)((I)) = > agd'y(Igq").
gel\G,
g enNG
Then, identifying Endy(g)-moa (k [[\G]) with k[I\G/I] via evaluation at (I) as above,
one gets a convolution formula

Fxf =Y fy ) (w),

yeI\G

for f, f’' € k[I\G/I], seen as functions f, f': G — k. But it is easy to check that
this coincides with the definition above, i.e.,

frf =f=f.

Hence, identifying both Endyig)mod (K [G/1])°" and Endygimed (k [I\G]) with the
space of double cosets k [I\G/I], we see that the two definitions coincide, and then
all the formulas proved in [Vigl6] are available and we should and must not rewrite
them with the opposite product.

The most useful description of the pro-p Iwahori—Hecke algebra is through gen-
erators and relations with respect to the Iwahori-Matsumoto basis. Let us introduce
this presentation: first of all we consider the already mentioned Bruhat decomposi-
tion relative to I (see (13))

G=J Iwr
weWw
It is then clear that H admits a k-basis (Tw)wew defined by 7, = 17,7, seeing H as

k[I\G/I]. This is called the Iwahori-Matsumoto basis. To describe the multiplication
with respect to this basis, we first consider the following element of H for all s € Sug:

Os = —(#pa) - >, T (14)

teds ([(O/Mm)*])

where the notation is as follows: [_]: (O/9M)* — § denotes the Teichmiiller lift,
as denotes the oot such that s = s(,, p,) With (as, bs) € @ag (and & denotes the
corresponding coroot), and finally py, denotes the kernel of the composite group
homomorphism &s([-]): (O/9M)* — T.

The following theorem describes the multiplication with respect to the Iwahori—
Matsumoto basis.

Theorem 1.4.1 (Vignéras). The lwahori-Matsumoto basis (Tw),, 7 satisfies the
following relations.

e Braid relations: for all w,w' € W such that {(ww') = l(w) + £(w'), one has

Tw * Tw' = Tww!-

e Quadratic relations: for all s € Sag one has T§2 =—0s-15=—T50;.
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Regarding the quadratic relations, note that the above formula is valid also for
a lift of s to W of the form ts or st for some t € &([(O/M)*]) in place of s, but, in
general, not for an arbitrary lift.

Proof of the theorem. This is proved in greater generality in [Vigl6, Proposition
4.1 and Proposition 4.4]. See also [0S19, Equation (28)] for the problems with the
quadratic relations as stated in [Vig05]. [

It is not difficult to see that the braid relations and the quadratic relations
completely determine the multiplicative structure of H, and so we obtain yet another
description of this k-algebra:

(iv) H = @wew kT, with the unique k-algebra structure satisfying the braid
relations and the quadratic relations.

1.4.b Bernstein presentation

To study problems such as an explicit description of the centre, it is useful to consider
a different basis of H, called Bernstein basis (actually, there are more than one such
bases). Introducing it requires some preliminaries, and we start with the definition
of orientation: an orientation consist in choosing, for each hyperplane H € §), one
of the two half-spaces (called positive, with the other one called negative) defined by
such hyperplane in such a way that:

e either for all finite subsets of ®,¢ the intersection of the corresponding negative
half-spaces is non-empty,

e or for all finite subsets of ®,¢ the intersection of the corresponding positive half-
spaces is non-empty.

Let v € Wag be a reflection through an hyperplane; we denote by H, € $ such
hyperplane. Note that if v is a reflection and w € W, also wow ™' is a reflection:
indeed it is still an element of W,g because W,g is normal in W (see (11)) and it
is easy to see that it fixes the hyperplane H, pointwise. In particular, under such
assumptions it makes sense to consider the hyperplane H,,,,~1, which is equal to
wH,. -

Let o be an orientation, let w € W (or w € W), let s € S,g and recall the
notation € for the fundamental chamber. We define:

{1 if w€ is contained in the o-negative side of H -1,
eo(w, s) ==

—1 if w€ is contained in the o-positive side of H,, ., -1,

where the hyperplane H,,,,~1 makes sense by what we said above. Under the same
assumptions one then defines

7_~(Eg(w,s)) — Ts if 50(w75) =1,
s s+ 05 if eo(w,s) = —1.
Now let w € W and let us consider a reduced decomposition w = 8y -+ syw for
suitable elements s1, ..., Sy € Sar and w € Q. We define
Bl im e e et
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This definition does not depend on the decomposition chosen (see [Vigl6, Theorem
5.25]: the decomposition considered there is slightly more general). It is then easy to
see that (Bo(w)),, .77 18 a k-basis of H, called the alcove walk basis associated with
the orientation o.

We will define in a moment the Bernstein basis as a special case of the above
construction. Namely, we choose a basis I’ of the root system and we define the
spherical orientation oy associated with II' to be the orientation given by the fol-
lowing rule: we represent each hyperplane H € $ as H = H(, ) for suitable (uniquely
determined) o € ® positive with respect to II' and b € Z; we then define the orp-
positive side of H to be given by {z € V' | (x,a) + b > 0}. It is easy to check that
a spherical orientation is indeed an orientation, because a finite intersection of pos-
itive half-spaces contains a subset of the II’-positive Weyl chamber with bounded
complement (and so, in particular, it is non-empty).

The spherical orientation or associated with our fixed basis I1 is called dominant,
whereas the spherical orientation o_1; associated with the basis —II is called the
antidominant.

Finally, for all bases II' of the root system, let us define the Bernstein basis
(Boy, (w)),, 77 associated with the spherical orientation ory to be the corresponding

weWw )
alcove walk basis.

1.4.c Idempotents

Following [OS19, 2.2.1], in this subsection we will introduce (under a small assump-
tion on k) a decomposition of H induced by the idempotents of the group algebra
k[T°/T1].

Let us consider the group algebra k [TO /T 1]. By the braid relations, there is an
injective homomorphism of k-algebra

k[T°/T') ——— H
(t)

Tt
(where t € T°/T1) t

We denote the group of k-characters of k [T°/T*| by @ = Homgps, (T0/T1, k).
Choosing a splitting T = GI™T one sees that T70/T" = (Fy y4mT - As usual with

group algebras, for all A € @, one has an idempotent
ex:=#T/TH™ > A 'n
teTo/T!
— (_1)dimT Z )\(t)_l’Tt,

teT0/T1

which we will see both as an element of & [T 0/ Tl] and of H.
From the braid relations it is easy to show that the following formulas hold:

Tw * €X = €x(w—1_w) " Tw for all w € W and all A € W, (17)
Te-ex = ey -1 = A(t)ex for all t € T°/T' and all)\eﬁ. (18)

Note that the last formula justifies the presence of the exponent —1 in the definition
of ey. Regarding the first formula, the notation A(w™!_w) means A(n~!_n) for
some choice of a representative n € N of w € W = N/T! (and clearly the result is
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independent of the choice of a representative). Actually, similarly one also sees that
there is a well defined action

Wo x JW e T/O/\T1
(wo, \) —— Mwy *_wp).

If we assume that F, C k, then there are enough k-characters, meaning more
precisely that one has a k-algebra decomposition

k[T°)T'] = H ke if F, C k.
)\eTO/Tl
Looking at (17), we see that in general ey is not central in H, and so even if

F, C k, we do not have a decomposition of H induced by the e)’s. However, let us

consider the set I' of Wy-orbits of T0/T1 (relative to the Wy-action we have just
defined); using again (17), it is immediate to see that, for all v € I', the element

ey = Z ex
el

is central in H. Moreover e, is an idempotent since each ey is, and, if we assume
again that F, C k, then ) ey, = 1. Therefore, we can write H as a product of
k-algebras

verl

H=]]eH=]]He, if F, C k.
~yel’ el

1.5 The pro-p Iwahori—Hecke algebra for SLs

In this section we will treat the pro-p Iwahori—Hecke algebra in the case G = SLo.
We will partially follow the exposition of [OS18, §3.1 and §3.2.1] and [0S21, §2.3].

Assumptions. We work with G = SLy. We fix the (§-split maximal) torus T of
diagonal matrices, and we fix the following pro-p Iwahori subgroup I:

I <1+£m O

m 1+ 93?) N SLa(F) (19)

(we will explain below why this actually is a pro-p Iwahori subgroup and what are
the corresponding choices of the positive root and the Chevalley system).

Of the two roots of (G, T) we fix the following as the positive root:
ap: T — Gp
(é t(_)l) — 12

With notation as in the definition of Chevalley system in Section 1.1, we see that
the following maps define a Chevalley system:

ao - GaHG:SLQ Tqq: G — G = SLQ
1 u 1 0
Y "o 1) Y "\ 1)
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and that the associated maps maps SLy — G = SLs are

Pag SL2 — G = SL2 Pay - SL2 —— G = SL2
t _
(¢8) —— (¢2), (a8) — (¢5) 7 = (%),

Now, as in the situation of a general G, let us consider the pro-p Iwahori sub-
group associated with the fundamental chamber € (whose definition depends on the
choice of the positive root and of the Chevalley system). Then, using the Iwahori
decomposition stated in general in Lemma 1.3.1, we see that this pro-p Iwahori sub-
group is exactly the group I defined in (19), and that such Iwahori decomposition
can be rewritten as follows:

M x (14+M) x O I

(20)

(Cvt7b) —_ (}:?)(t 0 )((lJll)) = <ttctbcfi-bt*1>'

We define sg to be the class in W of the matrix (_01 (1)) € N, and s; to be the
class in W of the matrix (2 *76_1) € N. We have that (% §) - (© *”_1) = (7 %).

T 0 0n 1
The two elements sy and s; are lifts of the simple reflections s(,,0) € Sag and

S(—ag,1) € Saff respectively: indeed we can compute

B 0 1\ [0 1
Mg = Pao\ 1 o) T\ -1 0)°
0 s 0 =1t
"sagn ¥\ -1 ) T o 0 )

Defining

we see that

S0 = 8(010,0)7 S1 = 6718(_06011) = S(_ao,l)cfl.

From the exact sequence

1—— T/T° w > Wo 1,

is easy to see that one has the following set theoretic description of W:

w=0.%) v (%)

Z . 7
= (S()Sl) U (5051) -+ S50-

Looking at the exact sequence

yp— L1 1% y W 1,

we then get the following set-theoretical description of W

W = (TO/T1 X (5051)Z> v (TO/T1 x ((s051)% - 50)> : (22)
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We then see (also using that s; 1 = c_ys; for i € {0,1} and that c_; is central) that

the elements of W are those in the following list (where the parameters ¢ and w
define an indexing, i.e., there are no repetitions):

w for w e T°/T",
w(sps1)!  forw e T°/T" and i € Z,
w(s180)"  forw e T°/T" and i € Z, (23)

wso(s150)" for w € TO/T" and i € Zo,
wsl(sosl)i for w € TO/T1 and i € Z>o.

We will use this explicit list of elements very often in the computations. Similarly
one could (as we will sometimes do) consider the analogous list with w on the right
instead of on the left. Looking again at (22), using that sgs; € 7/T" and using the
formulas (8) or (9) one sees that the length of the above elements are respectively
0,4,7,7+ 1 and ¢ + 1.

Now we consider the pro-p Iwahori-Hecke algebra H for G = SLg. Having de-
termined W explicitly, we know that the Iwahori-Matsumoto basis looks as follows:

Tw for w € T°/T",
Tw(sos)?  fOT w € T°/T! and i € Z>,,
Tw(s1s0)? for w € TO/T1 and ¢ € Z>1, (24)

Twso(siso)i 10T W € T°/T! and i € Z>,

T, for w € T°/T" and i € Zx,.

ws1(s0s1)?

Since we know lengths explicitly, using the braid relations it is immediate to see that
H is generated by 7,, 75, and 7, (for w € T°/T!) as a k-algebra. Actually, since
T°/T"' is cyclic, we can do better and say that H is generated by Tsgs Tsy and Ty,
where wy is a fixed generator of the cyclic group 7°/T"*.

Now, let us look at the quadratic relations. They simplify as follows:

2
Tg, = —€1+Tg;, = —Tg; " €1,

Si
where ¢ € {0,1} and e} == — Z Too-
weTo /T

This follows immediately from Theorem 1.4.1 (and, for s1, from the subsequent ob-

servation about the representatives for which the quadratic relations are still valid).

We will also consider an involutive automorphism defined as follows (this is done

in greater generality in [0S21, §2.2.6]). Let w = (2}) € GL2(F). We can consider

the automorphism

conj,: G — G

g —— wygw 1,

which is clearly an involution. Moreover, we see that conj_(I) = I (equivalently,

conj_ (I) C I), for example by working with the “Iwahori decomposition” stated in

(20). It follows that conj_, induces an involutive automorphism of the representation
k[G/I], and this in turn induces an automorphism

I'y: H— H. (25)
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If we describe H as k[I\G/I], it is easy to see that I'n(l797) = 1jpgm-17 for all

g € G. Taking also into account that conj_ induces an automorphism of W, this
shows that

I'o(Tw) = Towo—1 for all w € W,

and, more specifically,

Io(1w) = 71 for all w € T°/T1,
FW(TSO) = Ts1, (26)

Fo(7sy) = Ts-

1.6 The centre of the pro-p Iwahori—-Hecke algebra

The centre of the pro-p Iwahori—-Hecke algebra has been studied by Vignéras in
[Vigl4], building on her previous work in [Vig05] and on Schmidt’s Diplomarbeit
[Sch09]. We will state the main results here, starting with the explicit description
the centre as a k-vector space.

Theorem 1.6.1 (Schmidt, Vignéras). Let o be a spherical orientation. More-
over, let us consider orbits of the conjugation action of Wy on T/T*. The following
elements form a k-basis of the centre Z(H) of the pro-p Iwahori Hecke algebra H :

20 = Z B,(x) for all the Wy-orbits © C T/T".

zeO

Moreover, for all orbits O as above, the element zo does not depend on the chosen
spherical orientation.

Proof. See [Vigl4, Theorem 1.3 and Lemma 2.1]. What is denoted by A(1) in loc.
cit. is T/T" in our context, since G is F-split. [

The next theorem we are going to state gives a clear picture of the algebraic
properties of the centre and the full algebra. We will not use this result for any
proof, but it is nevertheless useful to state it both for its own importance and to
draw comparisons with the Ext-algebra and its centre later on (see Remark 2.1.2,
in which we will give counterexamples in the case G = SL2(Q,,) with p # 2, 3).

Theorem 1.6.2 (Schmidt, Vignéras). The centre Z(H) of the pro-p Iwahori
Hecke algebra H is a finitely generated (commutative) k-algebra, hence Noetherian.

The pro-p Iwahori Hecke algebra H is a finitely generated as a module over its centre
Z(H).

Proof. See [Vigl4, Theorem 1.3]. [

We have the following immediate but very important consequence: since H is
finitely generated module over the Noetherian commutative k-algebra Z(H), it is
Noetherian as a Z(H)-module, hence in particular it is a Noetherian k-algebra.
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1.7 The centre of the pro-p Iwahori-Hecke algebra for
SLo

Assumptions. We assume that G = SLy (with the fixed choices of T, of I, of the
positive root and of the Chevalley system as in Section 1.5). Later on, we will add
the assumption that F, C k.

Under the above assumptions it is possible to achieve a very explicit description
of the ring structure of the centre Z(H). This is given in [OS18, §3.2.4], which we
will follow.

Let us fix the dominant spherical orientation orj. Recall from (22) that we have
a direct product decomposition T/T" = TO/T" x (sgs1)%, with sgs; represented by
the matrix (g 7r(_)1 ) It is also easy to see that the non-trivial element of Wy act as
the inverse on T/T"'. Using also that T°/T" is the cyclic group of order ¢ — 1, one
then explicitly determines the Wy-orbits in T//T", finding the following k-basis for

Z(H) according to Theorem 1.6.1:

Bon(l)a
BOH(C*I) lfp 7& 27
By (w) + By (w™h) for {w,w ™} C T/T' \ {1,c_1},

Bopy (w(s051)") + Boy (w™(5150)") for w € T°/T" and i € Z>;.

Let us write this explicitly with respect to the Iwahori-Matsumoto basis. Making use
of the formula B,y (tt') = By (t)- Boy (t) for t, ¢ € T/T" such that £(tt') = £(t)+£4(t)
(see [Vigl6, Corollary 5.28]), and also of the fact that B, (w) = 7, for allw € T°/T*
(since such w’s have length zero), we are reduced to compute the Bernstein elements
By, (sos1) and By (s150)-

The apartment can be drawn in the following way, where the small arrows rep-
resent the dominant spherical orientation:

TH 50316 TH 80@: TH ¢ TH 819: TH 8180@: TH N

H805180 HSO HSl HSISOSI
One then sees that
EOH(ly‘SO) - ]-7 €om (SOa 51) — 17
oy (1,51) = —1, €or; (51, 50) = —1.

To apply the definition (15), there is the small problem that, while the element s is
equal to 54, o), the element s1 is equal to c_18(_q, 1) rather than to s} = 5(_q, 1)-
So working for the moment with s} instead of s;, we find that

(601'[(1750)) (601'[ (507‘9/1))

N _
By (s087) = Ts, Ty
= Too " Tst s
/ (e (1,81)) (eop(s7,50))
B, (s150) = Ty “ Tso

= (1¢ te1) (75 +€1).

Multiplying both sides of each of the above equations by 7. , = B,,(c_1) (on the
left, or, equivalently, on the right) we get that

BOH (8081) = 7—80 *Tsq
By (s150) = (75, +€1) - (Tso + €1)-
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Therefore, from our computations we deduce the following description of the canon-
ical basis of Z(H):

T1,
Te_1 lfpy'é 2,

—1 0/l (27)
T + Ty-1 for {w,w  } CT°/T" ~{1,c_1},

Tw(TSOTsl)i + Ty-1 ((Tsl +e1)(Ts + 61))i for w e TO/T1 and i € Z>;.

Lemma 1.7.1 (Ollivier, Schneider). Assume that F, C k. Let v € T, and let us
write it as v = {\, A\71}.

o If \=\"1 then the following is a k-basis of exZ(H):

Ex,

zy; = exBog ((5051)") + exBoy ((s150)") for i € Z>;.

o If X\ AL then the following is a k-basis of exZ(H):

ex+ey-1,
)i = exBoy ((5051)") + €x-1Boy ((5150)") for i € Z>1,
Ta-1; = ex-1Boy ((5051)") + exBoy ((s150)") for i € Z>;.

Moreover, setting x,, = x,1 for all p € TO/T, one has that l’L = x,;. Finally,

denoting by X,, an indeterminate for all yp € T°/T1, one has isomorphisms of k-
algebras

KXy ——— e, Z(E°)
e ity = (A},
XA )

KX, Xa1]/(Xx - Xoo1) ——— e, Z(E°)

b ey if v = (A, A1) with A #£ AL,
Xy > T\
X)\fl ' Ty-1
Proof. See [0OS18, §3.2.4]. [ |

To conclude this overview of the centre of H for SLo, we define the element
(= Tsy " Toy + (75, +€1) - (75 + €1), (28)

which, as we have seen, lies in the centre of H. It has the property that k[(] is
isomorphic to the polynomial algebra k[X]. Although we will not use this, let us
remark that the importance of ¢ stems from the fact that k[(] is the k-algebra
Z°(H) introduced in [O1114, §2.3.1], and the ideal (k[(] is the ideal J introduced in
[O1114, §5.2] (see [OS18, proof of Lemma 3.7]). Starting from these results, in [OS21,
§2.3.5], the element ( is used to define a notion of supersingularity.
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1.8 Some results on the cohomology of pro-p groups

In this section we will make a brief digression on the cohomology of pro-p groups.
We do this here because it will be needed the next section, and because we will use
these results very often in the whole thesis.

For all pro-p groups K (or more generally profinite groups), and for all discrete
(or smooth, according to different choices of terminology) K-modules A, we will
denote by H*(K, A) the continuous cohomology of K with coefficients in A.

We start by recalling the definition of conjugation: let L be a locally profinite
group, let K C L be a closed compact subgroup, and let x € L. Let us consider an
abelian group A, which we endow with the trivial action of L and of its subgroups
(one usually defines conjugation for more general L-modules, but we will only need
this case). We denote by

T HY(K,A) — H*(zKz™', A) (29)

the conjugation map on cohomology, i.e., the map functorially induced by the conju-
gation map conj,—1: tKx~' — K. Now let y € K: we recall from [NSW13, (1.6.3)
Proposition] that the map y.: H*(K, k) — H*(K, k) is the identity (note that in
loc. cit. the ambient group L is assumed to be profinite, but the proof, carried out
by dimension shifting, does not use such assumption). Since (zy). = (z)x o (y)«, we
conclude that z, only depends of the class of x in the space of left cosets L/K.

For the rest of this section, we will treat cup products and cup products algebras.
Whenever one has discrete G modules A, B and C' with a Z-bilinear K-equivariant
map A x B — C, there is a well defined cup product

v: H(K,A) x H(K,B) — H"(K,C) (30)

for i,j € Z>o (see [NSW13, Chapter I, §4]). In particular, we have the cup-product
algebra H*(K, k) (endowing k with the trivial G-action).

In the literature, one usually finds statements about the cup-product algebra
H*(K,F,); however, it is easy to extend such results to case of general k, because
there is a natural isomorphism

H*(K,k) = H*(K,F,) @, k. (31)

This can be shown as follows: we can fix an Fp-basis (a;); of k, and compute

H (K, k) = H* (K, @ Fya:) = @D H* (K, Fpa:) = H(K,F,) @, k,

where we have used that H* (K, _) commutes with direct limits (see [Ser02, Chapter
I, Proposition 8]) and hence with arbitrary direct sums, being an additive functor.

The first cohomology group of a pro-p group K is quite easy to study explicitly;
to do this it is convenient to define the Frattini quotient:

(K)y = K/[K, K]KP.

The Frattini quotient is an abelian pro-p group in which p-powers are trivial, and
so we may also regard it as a [F)-vector space. We see that

H'(K, k) = Homyop, gps. (K, k) = Homyop, gps.(K)g , k), (32)
and that if (K')g is finite-dimensional as a Fp-vector space then

H'(K,k) = Homg, ((K)g, k). (33)
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We will call a pro-p group K wuniform if it is topologically finitely generated,
torsion-free and powerful; by definition, the latter term means that the following
condition is satisfied:

K, K]
[K,K] C

p if p is odd,
4 if p=2.

N
|3

=

This definition of uniform pro-p groups is given as a characterization in [DDSMS03,
Theorem 4.5].

The cohomology algebra of a uniform pro-p group admits a very simple descrip-
tion, according to the following non-trivial result of Lazard.

Theorem 1.8.1 (Lazard). Let K be a uniform pro-p group. One has natural iso-
morphisms of k-algebras

H*(K, k) = \" (H'(K,k)) = \" (Homg, ((K)g . k),

where N\*(_) denotes the exterior algebra. Moreover, (K)g4 is a finite-dimensional
Fp-vector space, and so the above algebra has finite dimension as a k-vector space.

Proof. This is [Laz65, (2.5.7.1)]. Note, however, that the language used is not that of
uniform pro-p groups but that of “équi-p-valué” groups. For a proof in the modern
language see instead [SWO00, Theorem 5.1.5]. In these references k = FF,, but for
general k we may use (31). [ ]

Lazard also proved a second result in the same spirit as the above theorem, with
weaker assumptions and weaker conclusions. To state it, we recall the definition of
analytic pro-p group and of Poincaré group. An analytic pro-p group is a pro-p group
endowed with a structure of finite-dimensional analytic manifold over @), where the
multiplication and the inverse are analytic maps. This is an intrinsic property of a
pro-p group, in the sense that given an arbitrary pro-p group there exists at most one
structure of analytic manifold making it into an analytic pro-p group (see [Laz65,
Intrduction, §5 and Chapitre 3, (3.2.2)]).

Now, let us define Poincaré groups as in [Ser02, Chapter I, §4.5]. Let n € Z>1; a
pro-p group K is called a Poincaré group of dimension n if it satisfies the following
properties:

e for all i € Z>( the cohomology group H'(K,F,) is a finite-dimensional F,-vector
space;

e the cohomology group H"(K,[F,) is a one-dimensional Fj-vector space;
e for all i > n the cohomology group H'(K,F,) is zero;
e for all i € {0,...,n}, the cup product
v: HY(K,F,) x H" (K,F,) — H"(K,TF,)
is a non-degenerate bilinear map.

If K is a Poincaré group of dimension n, note that all the properties above still hold
if we replace [, by k, thanks to (31).
We can now state the above mentioned second result of Lazard.

Theorem 1.8.2 (Lazard). Let K be a torsion-free analytic pro-p group of dimen-
ston n as an analytic manifold over Q,. One has that K is a Poincaré group of
dimension n.
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Proof. See [SW00, Theorem 5.1.9 and the following lines]. [ |

As mentioned before, disregarding the statement about the dimension, we see
that this second theorem has both weaker assumptions and weaker conclusions than
the first theorem: indeed a uniform pro-p group is also an analytic pro-p group
(see [DDSMS03, Theorem 8.1]) and a pro-p group whose cohomology algebra is an
exterior algebra clearly satisfies the definition of Poincaré group.

1.9 The Ext-algebra

In this section we will define the pro-p Iwahori—-Hecke Ext-algebra, introduced by
Ollivier and Schneider in [OS19], and we will state some of the main results proved
there.

1.9.a Definition and description in terms of group cohomology

Let us denote by Rep;°(G) the category of smooth representations of G over k. This
is an abelian category with enough injective objects (see [Vig96, 1.5.9]), and so we
can define Ext groups via injective resolutions.
We define
E* = EXtEeng(G) (k[G/I),k|G/1)°?,

as a graded k-algebra with respect to the (opposite of the) Yoneda product. From
the definition it follows that E° = H.

At least as a k-vector space, the algebra E* admits a concrete description in terms
of profinite group cohomology. To show this, let us choose an injective resolution
k[G/I] — J* in Rep?°(G). The restriction functor from Repp®(G) to Repi” (1)
preserves injective objects (see [Vig96, Chapitre I, 5.9 d)]), and so our resolution is
also an injective resolution in Rep}°(I). By the Frobenius reciprocity for compact
induction, the functors Homgepe () (K [G/1], -) and (_)! are isomorphic, and so the
two complexes Hompepo () (K [G/1],J*) and (J *)! are isomorphic. The cohomology
of the former complex is Extf{epzo (@ (k[G/1],k[G/I]), while the cohomology of the
latter complex is H* (I, k [G/I]), and hence

E* = H* (I,k[G/I]).

From this identification, however, it is not clear at all how the product in E* can
be described in in H* (I,k[G/I]), but we will see later on a non-trivial theorem
describing the multiplicative structure in terms of cohomological operations.

A fundamental tool to study the Ext-algebra is given by (a variation of) the
Shapiro isomorphism. First of all, for all w € W we define

X (w) = k [TwI/I] C k[G/I]

(the definition makes sense because 7' C I and so every n € N representing w
defines the same group Inl). From the already mentioned Bruhat decomposition
(see (13))

G=J Iwr,
weW
we obtain the following k-vector space decomposition:
E*=H*"(I,k[G/I]) = €D H* (I,X(w)).

weW
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This can be seen as an extension of the Iwahori-Matsumoto basis, in the sense
that in degree zero this is exactly the decomposition E° = H = @w W kTy, since

HO (I, X(w)) = X(w)! =kl

1.9.b Shapiro isomorphism

We are now going to further simplify the description of E* in terms of group coho-
mology, by making use of the Shapiro isomorphism.

For all w € W let us recall the subgroup I, := I Nwlw ™! of I defined in Section
1.3. It is easy to see that the following are well defined bijections, one the inverse of
the other:

Iwl )T — I/1, 1)1, — TwI/I

twl — i1, 1Ly — twl.

Now, the representation k[I/I,)] of the group I is the smooth induction Ind}w(k‘)
of the trivial representation from [, to I, and one has the Shapiro isomorphism
H*(I,Indfw(k:)) = H*(Iy, k) (see, e.g., [NSW13, (1.6.4) Proposition]). Combining
these observations, we get the following isomorphism Sh,,, which we will call again
Shapiro isomorphism:

[a

Shy: HY (I, k [Twl/1)) ———— HI (I, k[I/I,)]) H (I, k) .
induced by . Shapiro iSOmOrphiSm7
k[Twl/1) —=— k[1/1.) e Grchusion T > T an by
iwl ————— il E[I/Iy) ——— k
il {1 if i1y = Ly
0 otherwise

It is easy to see that Sh,, can also be described as the following composite map

Shy,: H? (I,k [TwI/I]) — H (L, k [Twl/I]) — HI (I, k). (34)
res mauce: y

evy: k[Iwl/I] —— k
fr—f(w)

We have thus obtained the following description of E* (as a k-vector space):

E* = P H* (1, X(w)) Bueiw Shu, P H* (1, k). (35)

weW B weW
1.9.c Cup product

We are now going to describe a cup product on H* (I,k[G/I]) (i.e., on E* seen
as graded k-vector space). This is not the same as the (opposite of the) Yoneda
product.

We consider the G-equivariant biliner map

k[G/I] x k[G/I] — k[G/I]

defined by the pointwise product (here we see the elements of k[G/I] as functions
G — k), and then we can consider the associated cup product

v H (I, [G/1)) x H? (I,k[G/I]) — H™ (I,k[G/I])  fori,j € Zso
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as in (30). So we have a structure of graded-commutative k-algebra on H* (I, k [G/I])
with respect to the cup product (see [NSW13, (1.4.4) Proposition]). Note that this is
in general different from the (opposite of the) Yoneda product, as one easily sees in
degree 0. It is easy to see that for all w,v € W with w # v (and all i, j € Z>() one has
H(I,X(w)) v HI(I,X(v)) = 0 and H*(I,X(w)) v HI (I, X(w)) € H™*(I,X(w)).
Looking at the description of Sh,, we gave in (34), and using the fact that the
cup product commutes with restriction, that the cup product is functorial and that

evo (ff) = evy(f)evy(f'), we see that the following diagram is commutative.

Hi(I,X(w)) x HI(I,X(w)) ——— H™*(I,X(w))

Shwlg Shwlg

Hi(I, k) x Hi(Iy, k) ———— H+i(I,,, k).

1.9.d The product in the Ext-algebra

We are now going to state the already mentioned theorem on the explicit description
of the (opposite of the) Yoneda product on E* in terms of cohomological operations
(restriction, corestriction, cup product and conjugation), together with further re-
lated results.

Theorem 1.9.1 (Ollivier, Schneider). Let us fiz a family of representatives
(u'))wew for the elements of W = N/T'. Let v,w € W, let i,j € Zq. Further-
more, let a € H'(I,X(v)) and let 3 € H/(I,X(w)). One has

Of'ﬂ = § Tu
uEW
s.t. Tul C Ivl - Twl

with v, € HTI(I,X(u)) and

g1~
Shy (V) = Z coresﬁmu’l Ihi (Tun)
hel, 1 \(v-1unlwl)/I,_1

with

s —17ps—1 1A~y p—17p7—1 .
o = resi T (q, Sh (0)  resgln 00 T (aic) Sha(5).

1

where h = cid = v ta=tu with a,c,d € I.

Note that the two conjugations in the last displayed equation do make sense
because, using the notation of the theorem, we have

a-(Inolv™) o' =Tnavlo " a™?

=Inah 'Tha ™1,

1.—-1 —1

(ave) - (INwlw™Y) - (ave)™! = avlv™ a ™ Navewlv e

v a
= 4h  Tha~t NadIda?
=ah Tha t nalat.
Proof of the theorem. See [0S19, Proposition 5.3]. |

Given v, w € V[N/,Z/ln view of the theorem it is useful to have at least some necessary
conditions on u € W for the property Iul C Ivl - Iwl to be satisfied.
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Lemma 1.9.2. Let u,v,w € W be such that Tul C IvI-Twl. One has the following
properties:

(1) [£(v) = L(w)] < £(u) < L£(v) + H(w);
(i1) if L(vw) < L(v) 4+ L(w), then L(u) < £(v) + L(w);
(i3) if L(vw) = £(v) + L(w), then u = vw.

Proof. Property (i) is proved in [OS19, Lemma 2.11]. Property (ii) follows from
[OS19, Remark 2.10]. Property (iii) is proved in [OS19, Corollary 2.5] (also taking
into account the Bruhat decomposition). |

We are now going to state a corollary of the Theorem 1.9.1, which provides

a much easier formula in the special case in which lengths add up. First note

that from the lemma and the theorem it follows that for all v,w € W such that

{(vw) = £(v) 4+ £(w), for all i, j € Zsg, for all « € H*(I,X(v)) and 8 € HI(I,X(w)),
one has

a- e HY(I,X(vw)). (36)

Corollary 1.9.3. Let v,w € W such that ((vw) = ((v) + L(w), let i,j € Zsq, let
a € H(I,X(v)) and let B € HI(I,X(w)). One has

a-f=(a-m)v (- pH)
Proof. See [0S19, Corollary 5.5]. [ |

In the case that lengths do not add up, one still has some relations between the
product in E£* and the cup product, at least if G is semisimple simply connected.

Proposition 1.9.4. Assume that G s semisimple simply connected. Let s € Sag
and w € W such that {(3w) = £(w) — 1, let i,j € Z>o, and let « € H (I, X(3)) and
B € Hi(I,X(w)). One has

a-B— (1) v (rs-B) € H(I,X(3w)).
Proof. See [0S21, Proposition 2.1]. [ |

Now, we turn our attention on the action of EY on E*: first of all we are going
to state a corollary in the case in which lengths add up, which in particular gives a
way to compute the products appearing on the right hand side of the equation in
Corollary 1.9.3.

Corollary 1.9.5. Let v,w € W and let o € H (I, X(v)).
o If l(vw) = L(v) + L(w), then

- Ty € H'(I, X (vw)) and Shyy (@ - Tw) = resi“jw (Shy(a)).
o If l(wv) = L(w) + L(v), then

Tw - € H' (I, X (wv)) and Sheyy (Tw - @) = res?jsw_l (ws Shy(a)).

Proof. See [0S19, Corollary 5.5]. [
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Note that in the last formula conjugation by w is well defined (in the sense that
it does not depend on the choice of a representative modulo T") by the discussion
after (29).

Now, let us state a proposition which deals with the description (again, in terms
of cohomological operations) of the action of the generators of E° on the left on E*,
in this way completely determining the structure of E* as a graded left E°-module.
Of course Theorem 1.9.1 would already be sufficient for this purpose, but here the
formulas will be more explicit. Recall the specific lift s = m; € W of an element
s € Sag we defined in (12).

Proposition 1.9.6 (Ollivier, Schneider). Let w € W, let j € Zxo and let
B € H/(I,X(w)). One has the following formulas.

(i) For all w € Q one has

Tw € Hj(I7X(ww))v
Shyw (7w - 8) = wa Shy(B).

(ii) For all s € Sag such that {(sw) = £(w) + 1 one has
Ts - /B € H](I7 X(:SVIU)),
Shay (3 - ) = resiS " (3, Shy,(8)).

Igw
(iii) For all s € Sag such that {(sw) = f(w) — 1 one has

75 B =Y + Z Yiw
1€ ([(9/9)%])
cH(ILXGw)e P  H(I,X(w),
1, ([(9/9)%])

where
Shi (750) = coresy™ ™ (3, Shu(8)),

Igw
Shi, (i) = Y (nstTtaa, (%[0 ), Shu(8),
ze(O/M)*
st as([z]) =t

where (as, bs) is the affine root corresponding to s.

With the notation of the proposition, note that the following claims are implicit
in the statement of the proposition: the fact that Iz, C 51,5 ! if £(5w) = f(w) + 1,
the fact that the opposite inclusion holds if instead ¢(sw) = ¢(w) — 1, and, using the
notations of the third part, the fact that conjugation by ngt~'z,, (79 [z])n;! sends
Iw to Ifw'

1.9.e Anti-involution

Following [OS19, §6], in this subsection we are going to define an involutive anti-
automorphism (for brevity, anti-involution) on the Ext-algebra.

Let w € W and i € Z>o. We start by defining an isomorphism J,, of k-vector
spaces from H'(I,X(w)) to H (I, X(w™")) as the unique map making the following

38



diagram commutative:

Qy

H(I,X(w)) —2— HY(I,X(w™))

>~

Sh,, |2 ~|Sh, 1 (37)

H(Ly, k) % Hi(Ly1, k).

Summing the J,,’s over all w € W, we get an automorphism

J:E'= P HI,X(w) — P HI,X(w™) =E
wEW wEW
of the k-vector space E'; moreover it is easy to see that it is an involution.
Summing over all ¢ € Z~, we get an involutive automorphism

J: E* — E~

of E* as a graded k-vector space. The non-trivial result is how J behaves with respect
to the product in E*.

Theorem 1.9.7 (Ollivier, Schneider). The map J: E* — E* is an involutive
anti-automorphism, i.e., for all i,j € Z>o, all « € E* and all 3 € E? one has

Ia-B)=(=1)73(8) - I(a).
Proof. See [0S19, Proposition 6.1]. [ |

It is easy to describe the action of J on EY: indeed for all v € W the element
7o = l,; € HY(I,Z(v)) corresponds to 13 € k = H(I,, k) via the Shapiro isomor-
phism Sh,, (this can be seen for example using the alternative description (34) of the
Shapiro isomorphism). Therefore, we see from the diagram (37) that for all w € W
we have

I(Tw) = Typ—1. (38)

1.9.f Duality

In this section we will see a duality theorem for the Ext-algebra E* under the extra
assumption that the pro-p Iwahori subgroup I is torsion-free.

Assumptions. Let us assume that § is a finite extension of Q, and that I is
torsion-free. The former assumption is implied by the latter whenever T' C G, since
the groups U, p)’s are annihilated by p.

Under our assumption, clearly also the subgroup I, for w € W are torsion-
free. Being open subgroups of G, they are analytic groups over @, of the same
dimension, equal to the dimension d of G as an analytic manifold over Q,. We can
apply Lazard theorem on Poincaré groups (Theorem 1.8.2), obtaining that I as well
as all its subgroups I, for w € W are Poincaré groups of dimension d. Recalling from
(35) the identification of graded k-vector spaces E* = @ i H"(Iw, k) and the link
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between cohomology with coefficients in [F, and cohomology with coefficients in &
(see (31)), we see that E* is supported in degrees 0 to d:

E* = é E".
i=0
For all k-vector spaces V, let us denote by V'V the k-linear dual
VY = Homy(V, k).
Let us define the finite dual of E' as:

(e = @ (1 X(w)" < (@) B(I.Xw) = (E)".

weW weW

The k-vector space (E?)Y is naturally an E°-bimodule, the bimodule structure being
given by

EY x (B")Y —— (B")Y
(h, ) —— ¢(- - h)
and
(E")Y x B —— (E")Y
(o, h) ——— (k- ).

We will consider instead a “twisted” E°-bimodule structure on (E*)V defined through

the anti-involution; it is defined in the following way (we use the notation 3((Ei)v)3
for the k-vector space (E?)Y endowed with this “twisted” E°-bimodule structure):

FO « 3((Ez')\/)3 SN 3((Ei)V)3
(h, o) ——— (3(h) - -)
and
3((Ei)V)3 « E° 3((Ei)\/)3
(¢, h) —— o(~ - d(h)).

We also need some more pieces of notation in order to state the duality theorem:
let us consider the G-equivariant map

8: k[G/]] —— k
f—— > £

GEG/I

(39)

and its induced map

8= H'(I,8): B' = H'(I,k[G/I]) — H'(I,k).
Moreover, since we are dealing with a Poincaré group of dimension d, the cohomology
group H(I ,Fp,) is a one-dimensional [F,-vector space, and so H 4(I,k) is a one-
dimensional k-vector space (by (31)). We may therefore fix an isomorphism of k-

vector spaces
n: HYI, k) — k.
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Theorem 1.9.8 (Ollivier, Schneider). Always under the assumption that § is a
finite extension of Q, and that I is torsion-free, and defining 8 and n as above, the
following is an injective homomorphism of E°-bimodules:

Ai- E 3<(Ed7i)v)3

EY s k

| e (e e

Moreover, its image is 3((Ed_i)vvﬁnite)3, which in particular is a sub-E°-bimodule
J —ivwv\d

of ((Ed z)V) .

Proof. See [0S19, Proposition 7.18]. [ |

1.9.g The top graded piece

In the last section we have seen in particular that, under the assumption that § is
a finite extension of QQ, and that I is torsion-free, the Ext-algebra is supported in
degrees 0 to d (where d is the dimension of G as an analytic manifold over Q,) and
that the top graded piece E¢ is “dual” to E° (in a sense made precise by Theorem
1.9.8). Since we know the algebra E® = H quite explicitly, it is possible to describe
E? quite explicitly as well, as we will recall from [0S19, §8] in this section.

Assumptions. Let us assume that § is a finite extension of Q, and that I is torsion-
free. Recall that the former assumption is implied by the latter whenever T' C G.

We fix an isomorphism of k-vector spaces 1: H%(I, k) — k in order to apply the
duality theorem (Theorem 1.9.8), and then we fix the k-basis (¢u),, i of (E4)Y-finite

dual to the Iwahori-Matsumoto basis (7y), g7+ this means that (for all w € W) Pw
is the unique element of E? such that

<7708d> (w v Tw) =1,
(noSd) (P~ Ty) =0 for all v € W~ {w}.

Now, given o € E¢, which can be written as o = Zw o Qw for suitable elements

o € HUI,X(w)), we see that o v 7, = a for all v € W (indeed, it is easy
to see that the cup product of two cohomology classes coming from different W-
components is zero, as stated in [OS19, Equation 43]; moreover the elements of the

Iwahori-Matsumoto basis act as the identity on their W-component). It follows that
¢w can be characterized as the unique element of H4(I,X(w)) such that

(n ° sd) (bw) = 1. (40)

We are now going to state the explicit formulas describing the structure of E¢
as an E°-bimdodule. Before, we recall that for all s € S,g we defined

bom i) Y mel,

teds ([(O/MM)<])

and that we chose a specific lift 5 € W of s in (12).
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Proposition 1.9.9 (Ollivier, Schneider). Always under the assumption that §
is a finite extension of Q, and that I is torsion-free, the following formulas hold for

allwe W, for allw € Q and for all s € Sag:

Tw " Pw = Puw; (41)
Pw * Tw = Puw; (42)
ey = {Qb?w + (#us,) - Zte&s([(g/gﬁ)x}) Dt %f f(fw) ={l(w) -1, (43)
0 if ((sw) = l(w) + 1,
s — 05 pw i L(5w) = L(w) — 1
o if £(5w) = L(w) + 1,
by - T = {¢w§+ (Fa,) - Lrea.((©/m)%]) Pui Tf Y(ws) = L(w) — 1, (44)
0 if {(ws) = l(w) + 1,
_ Guwzg — Puw - 05 if Z(wg) :Z(’LU) —1,
o if ((w3) = (w) + 1.
Proof. See [0OS19, Proposition 8.2]. [ |

As for the quadratic relations stated in Theorem 1.4.1, note that the above for-
mulas are valid also for a lift of s to W of the form ¢s or st for some t € & ([(O/9M)*])
in place of 5, but, in general, not for an arbitrary lift.

Also the behaviour of the anti-involution J is particularly simple on E?; indeed
one has the following formula, which is proved in [OS19, Equation (89)]:

I(bw) = Gy for all w e W. (45)

We end this section with a decomposition of E? as an E%-bimodule under some
special assumptions.

Proposition 1.9.10 (Ollivier, Schneider). Assume that Q) is finite and that #
is invertible in k (and, as in the whole subsection, that § is a finite extension of
Qp and that I is torsion-free). One has that E4 decomposes into a direct sum E°-
bimodules

EY = kd @ ker(8%),

where ¢ = Zweﬁ bo. Moreover, E® acts on kd on the right and on the left through
the following character:

Proof. See [OS19, Proposition 8.6]. [
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1.9.h Filtrations

Let ¢ € Z=o. As in [0S21, §2.2.4] we define the following two filtrations of k-vector
spaces, the first one decreasing and the second one increasing;:

(FnEi)n€Z20 defined by F'E' = @ H{(I,X(w)),
weWw
st l(w) =n
(FnEnezs0 defined by F.E' = @ H(IX(w).
weW
s.t. L(w) < n

The following properties hold.

e For all n € Z>q the subspace F"E" is a bilateral ideal of E° (immediate from the
braid and quadratic relations, see Theorem 1.4.1).

e For all n,m,i,j € Zsg one has F,E* - F;, B/ C Fpyy BV (see [0S21, §2.2.4]).

e Assuming that § is a finite extension of @, and that I is torsion-free, for all
n € Zxo the subspace F,E4 is a sub-E%-bimodule of E?, or, equivalently, it is a
bilateral ideal of E* (immediate from the formulas for the action of E° on E?, see
Proposition 1.9.9).

1.10 The Ext-algebra for SL,

In the special case of G = SLy(Q,) with p # 2,3 it is possible to carry out explicit
computations on the Ext-algebra. Under these assumptions, [ is torsion-free, since
G does not contain non-trivial p-torsion elements (because the characteristic poly-
nomial of such a matrix would be divisible by the p*" cyclotomic polynomial). Since
the dimension of G as an analytic manifold over Q, is 3 we deduce from Subsection
1.9.f that

F*=E'9E'e E*e F3. (46)

Explicit formulas as well as results on the structure E* as an E°-bimodule have been
obtained in this case by Ollivier and Schneider in [OS21]. In this section, we will
state the main formulas as well as some other structural results.

Some of the result are true under more general assumptions, and so we will
specify the appropriate assumptions in each subsection.

1.10.a Preliminaries

Assumptions. We assume that G = SLa(§) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5). We does not enforce
any restriction on §.

e We fix the following group isomorphism:
w(_): (D/Qﬁ)x —_—> TO/T1

where [u] denotes the Teichmiiller lift of w.
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Assume that ¢ = p. Then O/ = F,, in the sense that there exists a unique
field isomorphism between the two, and F, C £, in the sense that there exists
a unique field homomorphism. Therefore, it make sense to consider the unique
group homomorphism

id: T9/T — k (48)

such that id ow(_) is equal to the identity map F, — k. More concretely,
id: °/7" ——— &
( t=1o ) _
0 ¢ — t.

(where t € Z)) )

Recall that in (25) we considered the automorphism I',: H — H induced by
conjugation by @ = (Y{) € GL2(F). In [0S21, §2.2.6] it is shown that I';; can
be naturally extended to an automorphism

T.: B* — E*,

such that for all w € W one has that T (H*(I,X(w))) € H*(I, X(www!)) and

that the following diagram commutes (this of course completely determines I',):

HI(I, X (w) Shy HI (I, k)
induced by
(=conj)

(L, X (www ™))~ H (It )
w1

The map I', is an automorphism of E* as a graded k-algebra, it also preserves the
cup product and commutes with the anti-involution J (see again [0S21, §2.2.6]):

Tood=gol,. (49)

Recall the element ¢ € Z(H) = Z(E"), defined in (28) as
(= Too * Toy + (Tsy +€1) - (75 + €1).

We will see that it is not central in Z(E*). The following two homomorphisms
of E%-bimodules are crucially used in [0S21] to study the structure of E* as a
graded E°-bimodule:
f: B¥ — FE*
x+—— (- x-(,
g: B —— FE* (51)
c—— (- z—x-(.

For all i € Z=g, we will denote by f;: E* — E' and g;: E' — E' the restrictions
of f and g respectively.
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1.10.b The 15t graded piece E': elements as triples

Assumptions. We assume that G = SLy(§F) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5), with § arbitrary
and p # 2. Later on, we will assume furthermore that § = Q,.

Let us start with the explicit description of E' as a k-vector space: recalling that
Fl D, v H (I, k), we see that such a description can be achieved through an

explicit description of the cohomology group H!(I,,k) for all w € W. Recall from
(32) that to this end one should compute the Frattini quotient (,,)q of I,,. This can
be done as follows.

Lemma 1.10.1. Let w € W. One has the following description of the Frattini
quotient of L.

o If ((sow) = £(w) + 1 then one has the group isomorphism

1+
D/ (14 90)P(1 + Me(w)+1) x O/M (Lw)p
(E’%’B) ’ (ﬂz(“})Jrlc(l))'(éth)'((l]ll))'

o Ifl(syw) ={(w)+ 1 then one has the group isomorphism

1+
(1 + 9M)P(1 + Mew)+1)

(Eaf75) ’ (71’169)'(8t91).((1)7ré(1w)b)'

O/M x x O/M (Iw)g

Proof. The computation of the abelianization of I, is in [OS18, Proposition 3.62.ii,
Equation (26) and the preceiding lines], and the description of the Frattini quotient
follows. |

From the above lemma, we see in particular that the Frattini quotient is finite,
and so we might apply the formula H'(I,, k) = Homp, ((Iw)g k) (see (33)). We
consider the fixed isomorphism of k-vector spaces obtained by dualizing (i.e., by
applying the functor Homp, (-, k) to) the isomorphisms of [F,-vector spaces in the
lemma:

149
Homyp,, (9 /90,k) x Homg, ((1+9ﬁ)p(1trsmé<w)+l) k) x Homg,, (9/9,k)— H' (L k),

and considering the postcomposition with the inverse of the Shapiro isomorphism
H'(I,,k) = H'(I,X(w)), we obtain an isomorphism

1490 &
(1+9m)P (14wl +1)>

(== —)uw: Homg, (/9M,k)xHom, ( ) xHomg,, (O /90 k)— H' (I,X (w)).
Let w € W. In many statements, we will say “let (e, M)y € HY(I, X (w))”,

meaning that we consider arbitrary elements ¢~,¢* € Homp, (O/M, k) and an ar-

and that we consider the corre-

. m
bitrary element ¥ € Homp, ((1+im)P21—:L£mf<w)+1) , k),

sponding element (¢, % ¢T),, € HY(I, X (w)).

Assumptions. For the rest of this subsection, let us assume that G = SL2(Q))
(with the fixed choices of T, of I, of the positive root and of the Chevalley system
as in Section 1.5), always with the condition p # 2.
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We have:

Homg, (O/M, k) = k, (52)
0 iff(w) =
1+ o~
Homp, <(1+9ﬁ)p(1+§me(w>+1)’k> B {k; if {(w) > 1; o

indeed the first isomorphism is obvious, and to prove the second one can use the
isomorphism given by the logarithm and the exponential 1+ 9t = 91, through which
one sees that (1+971)? = 1+92, which in turn proves that the claimed isomorphism
holds. In particular, we have

2 ifl(w) =

3 ifl(w)>1 (54)

dimy, H* (I, X(w)) = {

It will be sometimes useful to fix a basis for each H'(I, X (w)) (for w € W) in a
uniform way. To this end, let us consider the following isomorphism, induced by the
logarithm:

(1M1 + M) —— O/M=TF,

(55)
14 px .
We fix an element ¢ € Homg, (O/90, k) ~\ {0}, and for all w € W we define
By = (c 0,0)w,
B = (0,0, ¢)u, (56)
BY = (O ct,0)y if f(w) > 1

This is clearly a k-basis of H!(I, X (w)). In some situations further assumptions on
c will be introduced (see Subsection 4.5.a).

1.10.c The 1% graded piece E': explicit formulas

Assumptions. We assume that G = SLa(§) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5), with § arbitrary
and p # 2. We will introduce other assumptions for some of the formulas. In any
case, all the formulas will be valid at least for § = Q, with p # 2,3 and 7 =p

We are now going to list many formulas involving this description of the elements
of E' as triples proved in [0S21]. Namely, we are going to state how the involutions
d and I', behave, and we are going to describe the multiplication on the left, and,
partially, on the right, by elements of E°, at least in the case § = Q, with p # 2, 3.
Note that the description of the left action of E°, together with the description of
g, already determines the right action of E°.

e Action of the anti-involution g on E! (see [0S21, Lemma 4.7]):

Let w € W and let (¢, ¢y € HY(I,X(w)). Furthermore, let u,, € (O/9M)*
be such that w;wlw lies in the subgroup of W generated by sg and s; (it is easy
to see that such wu,, exists and, although it is not unique, it has the property that

2 is uniquely determined by w). One has:
A0, e )) = (e (ud - 2), P (ug?- _))w_1 if £(w) is even,
o (—ct(up?- ), = —c(ug, - 2)) 1 if £(w) is odd.
(57)

46



Action of the involutive automorphism I'y, on E! (see [0S21, Lemma 4.4]):

Let w € W and let (¢—,, ¢ty € H(I,X(w)). One has:
Fw((c_vco>c+)w) = (C+7_Covc_)www*1' (58)
Left and right action of 7, on E' for w € T°/T" (see [0S21, Equations (64) and

(66)]):
Let u € (O/M)*, let w € W and let (¢=, 2, ct), € H(I,X(w)). One has:

(e, e = (e (W 0), et (u? L))

(c™, &, c+)w T, = (€7, cO,c+)wwu. (60)

T
Wy waw’

Note that, if ¢ = p, then in the first formula we can write ¢~ (u=2-_) = u=2c™
and ¢t (u?- ) = u?cT.
Action of the idempotents on E':
Assume that ¢ = p, let \ € W, let w € W and let (¢, ety € HY(I, X(w)).
One has:
(6_7 07 O)w CEN = 6)\(_1)2(10) id—2 : (C_v 07 O)wa
(0,%,0)0 - ex = €, 1yt - (0,¢”,0) (if L(w) = 1),  (61)
(Oa 0, C+)w e\ = 6/\(*1)1(“’) id? : (07 07 C+)w~
These formulas can be easily computed from formulas (59) and (60), and they are

also proven in [0S21, Equation (69)] (for A = id™ for some m € Z, i.e., for every

A).

Left action of 7,5, and 75, when lengths add up:

For all n € Z>, let us define

. 1490t 149
\Ijn- HOHIFP <(1-{-9}I)P—(FW7I€> — Hom]Fp (W’_W,k)

+M
(14+mn+1) -

as the map induced from the natural map a +9ﬁ)11’zr1939ﬁn+2) — +9ﬁ)117
Furthermore, let w € W and let (¢~,c°, ¢™), € HY(I, X (w)). One has:

Tso (c™, CO? C+)w = (0, _\Ilﬁ(w) (00)7 _C_)Sow if £(sow) = L(w) + 1,

62
Ty - (¢, M)y = (¢, —\I/g(w)(co),O)slw if £(syw) = f(w) + 1. (62)

This is proved in [0S21, Proposition 4.9] in the case § = Q, for p # 2,3. We add
a proof for the general case (§ arbitrary and p # 2) further below. Note that if
§ = Q, for p # 2 the formulas simplify as follows:

oo - (€7, M) = (0, =, =)o if £(sow) = L(w) + 1,

63
7 - (7,0 M) = (=T, =, 0)6,0  if L(s1w) = L(w) + 1; (63)

indeed if £(w) = 0 then ¢ = 0 and the new formula trivially holds, whereas if
{(w) > 1 then Wy, is the identity by (53).
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Right action of 7, on E' when lengths add up (for v € W)

For all n,m € Z>g with m > n, let us define

) 1490 1+
\I/n,m : HomIE'p (WW’ k) — HomIFp ((1+m)p(—’i+9ﬁm+l) ) k)
1490 149
N 1+0)P (140 +1) (1+o)P (1+mn 1) -
Furthermore, let w,v € W such that ¢(wv) = {(w) 4 ¢(v) and such that ¢(v) > 1,
and let (¢7,c% "), € HY(I,X(w)). One has:

as the map induced from the natural map i —

(¢, ey 70 = (c7, \Ifg(w)!(wv)(co), O)M if {(sywv) = £(wv) + 1,
(¢, ey -7 = (0, W (), £(wv) (CO),C+)wU if £(sowv) = f(wv) + 1.
This is proved in [OS21, Lemma 4.12] in the case § = Q, for p # 2,3. We add a
proof for the general case (§ arbitrary and p # 2) further below. As we did for the

formulas for the left action, note that if § = Q) for p # 2 these formulas simplify
as follows:

(¢ ey 10 = (c_,CO,O)wU if ((sywv) =4
(¢ ey 7 = (0, ) e 1f L(sowv) = £(wv) + 1.

Left action of 75, and 75, when lengths do not add up:

Assume that § = Q, with p # 2,3 and © = p. We recall from (55) the definition
of the following isomorphism:

v (1+M/(14+M?) —— O/M=TF,

1+ px+ .

Let w € W and let (¢, ¢ty € HY(I,X(w)). One has:

Teo - (7,2 ¢ = e1(—c7, =% —cM)w + €a(0, —2¢71,0) + (0,0, —¢7 ) souw
if {(sow) = ¢(w) — 1 and (w) > 2,
oo - (¢, ¢ = e1(—c, =% —cM)w + €a(0, —2¢ 71, 1),

+ €;42(0,0,¢7 )y + (0,0, =€ ) squ
if £(sow) = £(w) — 1 and L(w) = 1 (i.e., if w € (T°/T") - 5p),
7o - (¢, Ny =e1(—c, =, =) + 6@—1(0, 2¢71,0) + (—¢7,0,0)5,0
if {(sqw) = £(w) — 1 and £(w) > 2,
7 - (¢, M)y =er(—c, =, =)y + €ﬁ71(—COL_1,20+L,O)w
+ eiq-2(¢",0,0)0 4 (=T, 0,0),u

if £(syw) = £(w) — 1 and L(w) =1 (i.e., if w € (TY/T) - s1).
(66)
This is proved in [OS21, Proposition 4.9)].

Right action of 75, and 75, when lengths do not add up (some cases):

Assume that § = Q, with p # 2,3 and 7 = p, and let ¢ be the isomorphism
defined in (55).

x Let (¢, c¢M)s, € HY(I,X(s0)), and let v € W such that £(sov) = £(v) —
One has:
(0,6%,0)5 - Tw = —€1(0,¢”,0)y — €,9-1(c"e71,0,0),. (67)
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* Let (¢, ¢t € HY(I,X(s1)), and let v € W such that {(s1v) = £(v) —
One has:
(0,%,0)4; - Tw = —€1(0,%,0)4 + €54(0,0,% 1), (68)
This is proved in [OS21, Lemma 4.12].

We conclude this subsection with the proof of the two formulas (62) and (64)
that are are proved in [OS21] only under more restrictive assumptions.

Proof of (62) and (64). First of all let us derive formulas (62) from formulas (64)
using the anti-involution J. Let us only treat the case of sg; the other case can be
proved similarly or derived from this one using the involutive automorphism I
Without loss of generality, we may assume that w = (s15¢)" for some i € Z~g or that
w = 51(sps1)" for some i € Zs: indeed if our formula is true in these special cases,
then, using the formula (60), we immediately obtain the formula in the general case.
We now compute

Jr)(slso - (3( C ,C 8150)) H(TSO))
((C_7 c 7C+) 8081 7-500—1)
by (57)
= 5((0_7 qj@((sosl)i),é((sosﬂ ( ) O) 8051)i806_1)
by (62) and (60)
= (07 _@Z((slso)i)(co)v _ci)(sosl)iso
by (57),
(3((0_3 CO? C+)sl(sosl)i) : H(TSO))
((_C+? _CO7 _67)81(8051)"0_1 : 7—80671)
by (57)

- 0 4+ ,
Tso * (C ,C,C )81(8081)7’

= H((O’ _\114(81(5081) 1), €(s1(s051)" )+1( 0)7 _C_)81(8081)i50)
by (62) and (60)
= ((07 _\Ijé(s1(sos1)i)(00)7 _C_)(sosl)i""l
by (57).
This proves the cases of (62) we had to show.

We now turn to the proof of (64). To compute the product, we use the formula
of Corollary 1.9.5:

(c_,co,c+)w -~ Ty € HI(I X(wv)),
Shwv((c_,co,c"’)w-n) —res?” (Shw(( =, ¢ ))

Therefore, the computation of the product amounts to the computation of a re-
striction (i.e., the map induced on cohomology by the inclusion I, < I,). We
look at the Frattini quotients (described in Lemma 1.10.1) and compute the map
(Iwv)e — (Iw)g induced by the inclusion:

(69)

ind. by. Ly <= Iy

(Tuwv) g r (Lw)g
1 0 t 0 1b 1 0 t 0 19
o (w“wlec 1)&(0 t*1>'<0 1) (w‘f(w)“c 1)'1§0 t*l)'(o 1> o
(©t.b) (t.b)
bs) % 149 % o (CE,E)'—}(OE,E) bs) % 149 % ksl
m (14+9m)P (14+Me(wo)+1) m m (14971 (14+Me(w)+1) m -



Therefore on cohomology the picture is the following (in the diagram, to save space
we use the notation (_)" := Homp, (-, k)):

go

Iy,
res;”

H (I, k) H' (I, k)

>~ [a

(O,Wz(w%g(wv)(CO),C+)(—<(077CO7C+)
1490 / j9) 9] 1+ / 9]
), X ((1+{m)p(1+9nf<wv>+1)) X (ﬁ)/ ¢ (ﬁ)/ X ((1+{)ﬁ)1)(1+§)ﬁl(w)+l)) X (ﬁ)/

Looking again at (69), we conclude that

(0_7 c ,C+)w " Ty = (07 \Pﬁ(w),é(wv)(co)v C+)wvv

as we wanted. [ |

1.10.d The 15t graded piece E': the E°-bimodule structure

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5), and
we choose m = p.

Recall from (50) and (51) the definitions of the maps f; and g;. In [0S21] a

complete description of E' as an E%-bimodule is achieved, using the kernels of the
maps f1 and g1. In the following proposition we partially recall this result; for the
complete statements see the results in [0S21] quoted in the proof.

Proposition 1.10.2. One has the following facts:

The intersection ker(f1) Nker(g1) is zero, and hence we have an exact sequence of
E°-bimodules

El
0 —— ker(f1) @ ker(g1) E! Fer (o) oker@n) 0.

The E°-bimodule W;{er(gl) has dimension 4 as a k-vector space, and a k-basis
s given by

eﬁ-ﬁf-eﬁ_h eﬁ-ﬁjl * €id,

€ig-1 Bl_ - €id, €ig-1 /8;0 " €q-1-
The E°-bimodule ker(f1) is an (E°)¢-bimodule (where (E°): denotes the localiza-
tion of E° at the powers of C: the Ore conditions are satisfied and such localization

is a classical ring of fractions: see [OS21, Remark 8.7]), and it is generated as an
(E%)¢-bimodule by the following two elements:

0 - 0 -
ﬁfr — 2e§550 — eﬁﬁzso, By + Qeﬁqﬁs1 — 6@*163051-

The E°-bimodule ker(g1) is isomorphic to F*E°, and an explicit isomorphism is
given by

170
F*E° —— ker(g1) (70)

T > By
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where

B if £(spw) = £(w) + 1 and {(w) > 2,
0 —By if £(syw) = £(w) + 1 and £(w) > 2, o)
v B — et if w = syw for some w € T°/T,

—B9 —ey18;  if w= sow for some w € TO/T".

Proof. For the first two statements see [0S21, Proposition 7.9 and its proof]. For
the third statement see [0S21, Proposition 4.28 and Proposition 7.7]. For the fourth
statement see [OS21, Proposition 7.3]. |

We also give the following less sophisticated result on the finite generation of E',
which will be fundamental for our computations.

Lemma 1.10.3. One has the following facts.

(i) Let ¢, ct € Homg, (O/M, k) and let ¢ € Homg, <(1+Dﬁ)1’(11+-|-9§)ﬂ<w)+1) : k) The
following formulas hold:
(¢7,0,0)1 - 7y = (¢,0,0)q (72)
for w € W with £(syw) = f(w) + 1,
(07070+)1 CTw = (07076+)w (73)
for w € W with £(sow) = £(w) + 1,
T(s1s0)t (677 0, 0)1 = (077 0, 0)(3130)1' (74)
for all ¢ € Z>o,
Tso(s150)t (C_, 0, 0)1 = (07 0, _C_)so(s1so)i (75)
for all i € Z>o,
Tisos)i * (0,0,¢7)1 = (0,0,¢%) (5050 (76)
for all © € Z>o,
TSI(SOSI)i . (0, 0, C+)1 = (—C+, 0, 0)81(3051)1' (77)
for all @ € Z>y,
(0,c%,0)s, - 7w = (0,¢% 0) 50 (78)
for i € {0,1} and w € W with (siw) = (w) + 1,
Tw - (0,¢,0)5, = (=1)“(0, %, 0) s, (79)

for i € {0,1} and w € W with £(ws;) = £(w) + 1.

(ii) One has that the following elements generate E' as an E°-bimodule:
- 0 0
61 bl 6?7 507 51
(where the notation has been introduced in (56)).
Proof. Let us prove the two statements.

(i) Formulas (72), (73) and (78) are immediate consequence of the formulas de-
scribing the right action of E° when lengths add up (namely, formulas (65)).
Formulas (74), (75), (76) and (77) can be shown using the formulas describing
the left action of EY when lengths add up (namely, formulas (63)). The same
is true for formula (79), also recalling the left action of 7, for w € T°/T' of
formula (59).
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(ii) This is a consequence of part (i). More precisely, for all v € W we want to show
that the elements S, B and BY (the last one if £(v) > 1) lie in the sub-E°
bimodule generated by the four elements in the statement. For 8 this is clear
form formula (78) (or from formula (79)). For 8, and 3,7, using (60) (or (59)),
we might assume that v is of the form (s150)%, so(s150)°, (5051)° or s1(s051)"
for some i € Z>(. Then we can apply the formulas in part (i) to conclude. W

1.10.e The 2" graded piece E?

Assumptions. We assume that G = SL2(Q),) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5), and
we choose m = p.

As already said, under our assumptions [ is torsion-free, and, since G has dimen-
sion 3 as an analytic manifold over QQ,, Theorem 1.9.8 yields a duality between F 1
and E?. By construction, this duality comes from a duality between H'(I, X (w))
and H2(I, X (w)) for all w € W. Recall that we described H(I, X(w)) via our fixed
isomorphism

1490

(1+m)p(£:_m[(w)+1) Jﬂ) xHomp, (O/M,k)— H(I,X(w)).

(=——)w: Homp, (O/M,k)xHomg, (

For a finite-dimensional IF,,-vector space V' one has a natural identification
Homy, (Homg, (V, k), k) =V ®g, k.

Using this identification and the above isomorphism, we obtain an isomorphism

(=== )w: (O/M@5, k)x (Hm)p(ljgﬂ(w)ﬂ) Dr, k) X (D /Mg, k) —» H2(L,X (w)).

Recall from the analogous statement for H!(I, X (w)) that the dimension of the k-
vector space H?(I,X(w)) is 3 if £(w) > 1, and it is 2 if /(w) = 0 (in this case
1 is the trivial group).

(1+9M)P (14+Me(w)+1)

As for E, it is sometimes useful to fix a basis for each H!(I,X(w)) (for w € W)
in a uniform way. To this end, let us fix an element v € (O/9M) \ {0}, and, recalling
the definition of the map

v (14 9M)/(1+ M) —— O/M =T,

1+ px > T,
we define, for all w € W,
a, = (,0,0)y,
al = (0,0, )y, (80)
a = (0,07 (), 0)u if £(w) > 1.

This is clearly a k-basis of H?(I, X (w)). In some situations further assumptions on
a will be introduced (see Subsection 4.5.a).
We recall some explicit formulas from [0S21].

e Action of the anti-involution g on E? (see [0S21, Equations (86) and (87)]):
Let w € W and let (o, a®, at),, € H2(I,X(w)). Furthermore, let u,, € (O/9M)*

be such that w;ﬂ}w lies in the subgroup of W generated by sp and s; (as already
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stated, it is easy to see that such wu,, exists and, although it is not unique, it has
the property that u2, is uniquely determined by w). One has:

3((a~,a% at)y) = (ugj?a_,ao?u%ua+)w_1 ?f (w) %s even, (81)
(—upot,—a®, —uza™) ., if £(w) is odd.

Action of the involutive automorphism I'y, on E? (see [0S21, Lemma 5.2]):

Let w € W and let (a~,a®, at), € H2(I,X(w)). One has:
I'o((a™,a%ah)y) = (at,—a’, a7 ) puw-1- (82)

Left and right action of 7, on E! for w € T°/T:

Let u € (O/9M)%, let w € W and let (o, a, a't), € H(I,X(w)). One has:
Ty - (@7,a% ™)y = (WP, 0% w2 )y, (83)
(@™, a7, = (a7, 0%, a™ ), - (84)

For the proof of the first formula see [0S21, Equation (89)]. The second formula
can be proved exactly in the same way using the corresponding formula for E!,
or from the first formula by using the anti-involution.

Action of the idempotents on E?:

Let X € ZW, let w € W and let (a=,a’ a™), € H*(I,X(w)). One has:

Qyy - €\ = 6)\(_1)4(11})&(12 Ty,
0 0 i

Oéw cE)\ = e}\(_l)ﬂ(w) ° Oéw (lf E(w) 2 1)7 (85>
+ _ +

aw €N = eA(fl)‘g(w).id72 ' aw‘

Left action of 75, and 75, when lengths add up (see [OS21, Proposition 5.5]):
Let w € W and let (o, a®, at), € H2(I,X(w)). One has:

Tsg * (Oé_, aov a+)’w = (—Oé+, 0, O)sow

if {(sow) = L(w) + 1,
T81 : (a77a07a+)w == (0707 _057)31111
if {(syw) = (w) + 1.

(86)

Left action of 75, and 75, when lengths do not add up (see [OS21, Proposition
5.5]):
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Let w € W and let (o, o, at), € H2(I,X(w)). One has:

Tso (oe_,oco, at)y = e1(—a”, —a?, —at), + eﬁ(Qb(aO),O,O)w

+ (—at, —a®,0) 5w
if £(spw) = £(w) — 1 and £(w) > 2,
Tso * (of,ao, at)y =e1(—a”, —aY, —at), + e@(QL(aO), —fl(aJr),O)w
+ e2(@,0,0)0 + (—a™,0,0) 5w
if £(sow) = £(w) — 1 and £(w) =1 (ie., if w e (T°/TY) - s0),

7, - (@7, aM)y = e1(—a, —a’, —at), + e;q-1(0,0, —21(a®))

(87)
+ (07 _a(]’ _a_)slw
if £(syw) = {(w) — 1 and ¢(w) > 2,
7o, - (@7, aM)y = er(—a™, —a®, —a™), + e;q-1(0, T am), —2u(a®))y
+ €42 (0,0, )y + (0,0, — ) gy

if £(syw) = ¢(w) — 1 and {(w) =1 (ie., if w e (T°/TY) - s1).

We will now (partially) state the description of E? as an E°-bimodule proved in
[0S21]. As for E', for the complete statements see the results in [0S21] quoted in
the proof. As in Proposition 1.10.2, we consider the localization (E°); of EY at the
powers of (.

Proposition 1.10.4. The following statements hold.

e One has the following decomposition (of E°-bimodules):

E? = ker(fo) @ ker(go).

o The E°-bimodule ker(f1) is an (E®)¢-bimodule, and it is generated as an (E°)¢-
bimodule by the following two elements:

- .0 + 0
0 — EidQg oh +€ﬁ‘10‘81'

o Let us define (FTE0)V:fnite g5 the sub-k-vector space of (F'E®)Y spanned by the
“dual basis” (Tl\L{’FlEO)wEW£>1 of the basis (Tw)weW@l of F'E°. Equivalently,

(FIEO)\/,ﬁnite — U (FIEO/FnEO)\/
nEZ>1
from which it is clear that (F'E®)V:fnite js o sub-E°-bimodule of (F'E°)Y. One

has that there exists a unique isomorphism of E°-bimodules of the following form:

d . \Jd
((FIEO)\/,ﬁmte) ker(QQ)

Vv
7_wlplEo 0,%

_ — oy,
(w € W with £(w) > 1)

where a?u’* has the property that
a%* —al e €{id,id~1} ker(fy) if £(sow) = £(w) + 1,

ad* 40l ce k if ¢ =/ 1 (88)
b w {idid~1} er(fa) if {(syw) = l(w) + 1.
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Proof. For the first statement see [0S21, Proposition 7.12]. For the second state-
ment see [OS21, §7.3.2] and in particular [OS21, Propsition 7.18]. For the third
statement see [OS21, Equations (123) and (124)]; uniqueness is clear because the
difference of two isomorphisms satisfying the claimed property would take values in

ker(f2) Nker(gz2) = {0}. [

1.10.f The top graded piece E¢

Assumptions. We assume that G = SLy(F) (with the fixed choices of T, of I,
of the positive root and of the Chevalley system as in Section 1.5) and that I is
torsion-free.

Note that the torsion-free assumption implies in particular that field is a finite
extension of Q,, because if instead § is a field of Laurent series then ((1) ?) is anni-
hilated by p. It also implies that p # 2, 3, because for example (Bl _01) and (:1,) 1:13)
are torsion elements in the pro-p Iwahori subgroup for p = 2 and p = 3 respectively.
Recall also from (46) that the torsion-free assumption is satisfied if § = Q, with
p#£2,3.

Finally, recall that under our assumptions [ is a Poincaré group of dimension d,
where d is the dimension of G as an analytic manifold over Q.

Let us see how the explicit formulas for the left and right action of E° on E¢
look like. For all w € T°/T*, for all j € {0,1} and for all w € W, we have:

Tw * Pw = Quw,
Pw * Tw = Puw,
o bsw e du i (sjw) = ((w) — 1,
Ts; buw = {0 if E(Sjw) = g(w) +1, (89)
buw - _ ¢w5j — ¢y €1 if E(ij) = f(w) -1,
v T = N if £(ws;) = €(w) + 1.

This is immediate from the general formulas for the left and right actions of E° on
E? stated in Proposition 1.9.9 (and, for s1, from the subsequent observation about
the representatives for which the formulas are still valid).

We remark that for all w € W we have

€1 Quw = Pu - €1. (90)

This is easy to see using the fact that for all w € T°/T"! one has either ww = ww or
ww = ww !, depending on the length of w.

The following proposition describes the E%-bimodule structure of E¢. The map
8 and its induced map on cohomology were defined in (39).

Proposition 1.10.5. One has a decomposition of E°-bimodules
EY = key¢y @ ker(89).
Moreover, E° acts on key on the right and on the left through the character
Xtriv: B ————— k

1 if o(w) = 0, (91)
0 ifl(w) > 1,

and ker(8%) is the injective hull of (EO/CEO)V as a left as well as a right E°-module.
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Proof. The first two claims follows from the more general statement of Proposition
1.9.10, and the third claim is proved in [OS21, Proposition 3.3]. [
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Chapter 2

The centre of the Ext-algebra for
SLo(Qp) with p # 2,3

2.1 Summary of the results

In this chapter we will determine completely the centre of E* for the group SLa(Q))
for p # 2,3. Recall from (46) that under these assumptions we have

E*=E'¢FE' @ E oL

We will prove the following theorem, which achieves the claimed description of the
centre.

Theorem 2.1.1. If G = SLy(Q,) with p # 2,3 (with the usual choices made in
Section 1.5), then the centre of E* can be described in the following way.

e The 0" graded piece Z(E*)° is isomorphic to k x k as a k-algebra. As a k-vector

space, it is spanned by 71 and T._, where c_; is the element of W represented by
the matriz (Bl _01 )

e The 1 graded piece Z(E*)! is zero.

e The 2™ graded piece Z(E*)? is free as a module over the ring Z(E*)? =k x k of
rank Ry. Moreover, choosing m = p, an explicit k-basis is the following:

0 0 0 0
er-ag, Exy * sy er- oy, Exg " Usy s
exa? —ey1ad?

A (s150)7 A1 X (s081)?

for A € TO/T1 ~ {1,id} and i € Zs1,

a9 — 0 )
6@0{(8180)1‘ eﬂfla(SOSl)l

i—1
+ + - -
+ 22 (eﬁ71 ) (aso(slso)i o asl(sosl)i) + €id - (a31(5051)i - aso(swo)i))
=0

for i € L1,
0 0 0 0
€10, 50)i + C10(gps1)i — 1" As10)is; — €17 A(sps1)isg
for i € Z>1,

where the ey’s are the idempotent of E° defined in (16), and where the elements
al (for w € W) were defined in (80).
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e The 3" graded piece Z(E*)3 is free as a module over the ring Z(E*)° = k x k of
rank Rg. Moreover, an explicit k-basis is the following:

exp1 for X € TO/T.
61¢SO7 61(2551, exo ¢807 eXO ¢s1;

U)\,i = e>\¢(5150)i + 8)\—1525(8081)1'
for X € If/\T1 ~ {1} and i € Z>1,

Ul,i = 61([5(5130)1‘ + €1¢(sosl)i - €1¢51(sosl)i - €1¢50(5150)i
for i € VASE

where the ey’s are as above and where (¢w)weW is the basis of E® defined in
Subsection 1.9.g.

Proof. The 0*" graded piece will be determined in Proposition 2.4.1. The 15* graded
piece will be determined in Proposition 2.5.2.
The basis of Z(E*)? will be computed in Proposition 2.6.12 (with some different
sign conventions) and the basis of Z(E*)? will be computed in Lemma 2.3.1.
Finally, the freeness results will be proved in Remark 2.8.1. |

Furthermore, in this chapter we will prove the following additional facts:

e If G = SLy(F) and I is torsion-free, we determine a basis of Z(E£*)¢ (Proposition
2.2.1). If furthermore F, C k, then one can use the same basis of Z(E*)? defined
in the above theorem (Lemma 2.3.1).

o If G = SLa(J), if I is torsion-free and if F, C k, we determine the structure of
Z(E*) = Zpo(E?) as a Z(E°)-module (Proposition 2.3.6). In particular we show
that there is a decomposition of Z(E®)-modules

Z(E") = keigy ® N @ €,

where N is a finite direct sum of submodules of dimension 1 over k£ and where £
is the injective hull of (Z(EO)/CZ(EO))V (the element ¢ was defined in (28)).

This result yields a strong analogy with the description of E¢ as an E°-bimodule
recalled from [OS19] and [OS21] in Proposition 1.10.5.

o If G = SLy(Q,) with p # 2,3 we show that Z(E*)? = Zpo(E?) (see Proposition
2.6.12). Hence Z(E*)? has a structure of as Z(E?)-module, and we determine it
in Subsection 2.7.

We conclude this overview by highlighting the stark contrast between the al-
gebraic properties of Z(E*) and of Z(E") (compare with Theorem 1.6.2 and the
following lines).

Remark 2.1.2. Assume that G = SL2(Q),) with p # 2,3. One has the following
(negative) results:

e Z(E*) is not Noetherian as a k-algebra;
e E* is not finitely generated as a Z(E™)-module;
e FE* is not left nor right Noetherian as a k-algebra.

Proof. Let us prove the three claims.
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e If, by contradiction, Z(E*) were Noetherian as a k-algebra, then the ideal Z(E*)3
would be finitely generated. And this is not the case since Z(E*)? has finite
dimension as a k-vector space, while Z(E*)3 has infinite dimension as a k-vector
space.

e If, by contradiction, E* were finitely generated as a Z(E*)-module, then E° would
be finitely generated as a Z(E*)’-module. And, again, this is not the case since
Z(E*)? has finite dimension as a k-vector space, while E° has infinite dimension
as a k-vector space.

e The k-algebra E* is not left nor right Noetherian because we have the ascending
exhaustive filtration of bilateral sub-ideals of E3

B = ) F.E?

n€Z>0

which shows that E3 is not finitely generated, even as a bilateral ideal. |

2.2 The top graded piece of the centre

Assumptions. We assume that G = SLa(F) (with the fixed choices of T, of I,
of the positive root and of the Chevalley system as in Section 1.5) and that I is
torsion-free.

Recall from Subsection 1.10.f that the above assumption implies that § is a finite
extension of Q, with p # 2,3 and also that I is a Poincaré group of dimension d,
where d is the dimension of G' as an analytic manifold over Q,. Finally, recall that
the torsion-free assumption is satisfied if § = Q, with p # 2, 3.

As in Subsection 1.9.g, let us consider the k-basis (¢uw),, ey of E4 obtained by
dualizing the k-basis (1), g7 of EP. Also recall the definition of c¢_; from (21).

Proposition 2.2.1. Z(E*)? is the sub-k-vector space of E¢ having the following
basis:

o for w € T°/T",
Z ¢I9507 Z ¢1950a Z ¢1951 9 Z ¢1951 9
9eT0/T! 9eT0/T! 9eT0/T! 9eT0/T!
square not a square square not a square
gbw(sgsl)i =+ ¢w*1(8180)i + Z (¢19(8051)i50 + ¢79(5150)i31)
9eT0 /T

for w € TO/T! and i € Z>;.

Remark 2.2.2. Before seeing the proof of the proposition, let us remark that some
possible alternative choices of a basis:

e It is easy to see that we can replace the four elements

Z (bﬁsoa Z ¢1950) Z ¢1931 y Z ¢1951

9eT0/T! 9eT0/T! 9eT0/T! 9eTO /T
square not a square square not a square

with the following four elements:
€1 ¢807 €xo (bsoa €1 - ¢817 €xo ° d)su

where , is the quadratic character (Legendre symbol).

99



e The elements of the form

(bw(sosl)i + ¢w—1(slso)i + Z (¢19(8051)i80 + ¢0(5150)i51)
9eT0 /T

(for w € TY/T! and i € Z>1) can be rewritten as
Bussosr)t T Pu—1(s150)F — €1 ° P(sgs1)iso — €1 ° P(sys0)is: -
Up to replacing w by wc_1, they can also be rewritten as
(Tsg + Tsy) - ((Z)w(sOsl)iSO + qbwq(sls())isl) for w € T°/T" and i € Z,
or as

(¢w(5031)iso + ¢w*1(s1so)is1) : (TSO + 7—81) for w € TO/T1 and 7 € 221‘

Proof of the proposition. Recall from (89) that for allw € TY/T!, j € {0,1}, w € W,
we have the following formulas describing left and right action of E° on E%:

Tw " Quw = Puw
Pw * Tw = Puw,
Ty = {qﬁsjw —e1- ¢y i l(s;w) =l(w) —1,
R 0 if £(sjw) = L(w) + 1,
) bws; — Pw -1 if l(wsj) = L(w) — 1,
bu Tay = {o if (ws;) = £(w) + 1.

Let us consider the following decomposition of E? as a k-vector space:

E= P E, where Bf = € kou.
1€Z>0 weWw
s.t. L(w)=1

For v € W, let us consider the k-linear maps

Cy: E* —— FE¢

Pr—— Ty P— P Ty

To ease notation let us define Eil := {0}. By the explicit formulas above it is easy
to see that

Cw(Ezd) - Eid for w € TO/T1 and ¢ € Zxo, (92)
and that
C150 (Ezd) c Eid_l (S5) Eld for i € Z>07
Cs,(Ef) CE! | & Ef for i € Zo.

Moreover, we claim that
Cso (Egz S2 EgiJrl) C B3, ® ES; for i € Z>o,

CSl (E(Ziz D Egi—i—l) - Eéii_l ©® Egz for ¢ € Zgo.
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Let us prove the first inclusion (the other being completely analogous): by the for-
mulas above the only thing which remains to check is that Cy,(ES; ;) € Eg,. This
is true since

CSO ((ﬁwso(slso)i) = (bc 1w~ (s180)* T €1¢w50(s150 ¢c 1w(sos1)? + ¢w50 5150)161

- (bc 1w~ 1(s150)* ¢c 1w(sos1)? € E217
Cso (Pusy (s0s1)7) =0 —0=0,

where we have used that e; centralizes E¢.
Let us consider o € E? and let us decompose it as

0= § 04,

1€2L>0

for suitable o; € E¢ (almost all of them equal to 0). Using (92) and (93), we see
that o is centralized by the whole E° if and only if oo; + 02,41 is centralized by the
whole E° for all i € Zy.

Hence, in order to compute Zgo (E ), it suffices to compute Zpo (E2Z @ E22 Jr1)
for all ¢ € Z>¢. Hence, with notation as above, let us assume that o = o9; + 02,41
for some ¢ € Z>o, and let us determine the conditions under which o is centralized
by the whole E°. To this end, let us distinguish the two cases i > 1 and i = 0.

e Assume that o = 09; + 02;+1 with ¢ € Z>;. Let us write it as

g = Z aw¢w (s0s1)? Z bw¢w (s150)?

weT0/T1 weTo /T
+ E w¢w (s0s1)%so + E b d)w (s180)is1>
w€eT0/T1 weTo/T1

for suitable ay,, b,,,a’,, b, € k.

wy Wy Yo
Using the already mentioned formulas for the left and right action of E° on E¢
and the fact that e, centralises E¢, we compute the following:

Tsg "0 = § aw¢c_1w—1(slso)i—1sl - E aw€1¢w(sos1)i

weT0/Tt weTO /T

+ Z w(bc 1w (s1s0)" T Z al‘*’el(bw(sosl)iso’

weTo/T1 weT0/T1

0 Tsg = Z bw(ﬁc,lw(slso)i*lsl - Z bw61¢w(slso)i

weT0/T1 weTO /T

+ Z w¢c 1w(sos1)? — Z acluel(z)w(sosl)iso'

weT0/T1 weTo/T1

Let us compute the parts where e; appears: let w € W, and for all w € T°/T" let
d, € k. One has

> deerbow=— > (do D bun)

weTo/T1 w€eTo/T1 w'€T0/T1
= - § (dw § QZ)w’w)
weT0/T1 w'€T0/T!

3 (X a)a)

w'€T0/TT weT0 /T
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This concludes the previous computation, and we can deduce that
by = a1 for all w € T°/T
Tey O =0Ty, a;:E%TO/Tl ay forall we TO/T!

by = a1 for all w € TY/T1
g / 0 /1
aw:ZﬁeTo/Tl ag forallweTY/T".

a,

Doing the same computations with s; instead of sy (or arguing with the involutive
automorphism I'), one gets

by = a1 for all w € T9/T*
by, = > perosm ap  forall w € T°/T*.

w

Tsy 0 =0 *Tgy <~ {

Hence

by = a1 for all w € T9/T*
al, = ZﬁeTO/Tl ag forall we TO/T!
by = > geromiav  for all we TO/T1.

w

o commutes with
both 75, and 7,

We have thus proved that, given o € Egi <) Egi 41 With ¢ € Z31, one has that o
commutes with both 74, and 7, if and only if it is of the form

o = Z Cuw (¢w(5051)i + ¢w71(5150)i)

weTo/T1

+< Z c"J). Z (gbw(sosl)iso+¢w(8180)i81)

weT0 /T weT0/T1

(94)

for some ¢, € k (where w € T°/T'). But if o is of this form, then it commutes
also with 7, for all w € T°/T!, because for all ¥ € T°/T! and w € W one has
Yw = wd if £(w) is even and Jw = wd~! if £(w) is odd.

Hence, this proves that, given o € E‘Qii @ Egiﬂ with ¢ € Z>1,, one has that o is
centralized by the whole E° if and only if it is of the form (94).

Now, let us assume instead that o = og + o1 with og € Eg and o1 € E{l, and let
us determine the conditions under which o is centralized by the whole E°.

* It is immediate from the explicit formulas that all of Eg is centralized by the
whole E°.

x It remains to describe which of the o = oy € E{ centralize all of E°. Hence, let
us assume that o is of the form

0 = Z aw¢wso+ Z bw¢ws17

weTo/T1 weTo/T1

for some ay,, b, € k. Let us compute

Tsg =0 = E aw¢071w71 — €1 E aw¢w807

weTv/T? w€eTo/T1
O - Tsy = E aw¢c_1w — €1 E aw(waO'
w€eT0/TT weTo/T!
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Hence we deduce that

Too 0=0Tyy = (aw=a,1 foralweT?/T"). (95)
In the same way we deduce that

T 0=0Ty <= (by=0b,1 forallweT’/T"). (96)

Now, given w € T%/T", let us compute

Tw O = 5 aw’¢ww’so + E bw’¢ww’s1a

w'€T0 /Tt w'eT0/T1

0 Ty = § aw’¢w—1w’so + E bw/¢w—1w’sl

w'€T0/T1 w'€T0/T1!

= E A2, ¢ww“so + E waw” ¢ww”sl .

w"”eT0/T1 w"”eTo/T1
Therefore,

(Tw co=0 -1, forallw e TO/Tl)

e ) = auy for all w,w’ € T°/T*
by = b2,y forall w,w' € TO/T!

e Jw=ay for all 99,9 € T°/T" such that 9~ is a square
by = by for all ¥,9" € T9/T" such that ¥~19’ is a square.

Since by assumption ¢ # 2, we have Fy/(FX)? = Z/2Z, and so we have proved
that, given o € E{l, one has that ¢ commutes with 7, for all w € T°/T" if and
only if o is of the form

T=0Y o5+ Y Gosy +DD_ osy +V Y by, (97)

9eT0/T! 9eT0/T! 9eT0/T! 9eT0/T!
square not a square square not a square
for some a,d’,b,b’ € k. Moreover, from the characterization above of the prop-
erties of commuting with 75, and 75, ((95) and (96)), we see that if o is of the
form (97), then it automatically commutes with both 75, and 75, .

Therefore we conclude that, given o € Eii, one has that o centralizes all of E°
if and only if it is of the form (97). [

2.3 Structure of top graded piece of the centre as a

Z(E")-module

Since Z(E*)¢ = Zpo(E?), there is a natural structure of Z(E°)-module on Z(E*).
In this section we are going to describe such structure.

2.3.a Assumptions and preliminaries

Assumptions. We assume that G = SLa(§) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5), that I is torsion-free
and that F, C k.
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Recall under these assumptions § is a finite extension of Q, with p # 2,3 and
that I is a Poincaré group of dimension d, where d is the dimension of G as an
analytic manifold over Q,. The assumption F, C k£ will be used in a moment for the
existence of enough k-characters of the group 7°/T".

Recall the notation

Zlﬁ]?1 = Hom (T°/T", k) ,
r={pah ‘ Xe /T,
Moreover, as in Remark 2.2.2, let us consider the quadratic character

Xo: T°/T" kx

1 if w is a square,
w . .
—1 if w is not a square.

Since p # 2 we have
F={{1}}u{{x}tu{vel | #v=2}.
Recall from Lemma 1.7.1 that since F, C k£ we have a direct product decomposition

Z(E°) =[] e, 2(E°) = [ Z2(E)e,.

vyel yel’
Moreover, for all u € IW, let us define

wy = e, Boy (s081) + €,-1Boy (5150)
— {6M7'8051 + €u-1Ts150 ifp 1,

e1( = e1Tsys; + €1Tsys0 + €175y + €175, + €1 if p # 1.

From the above mentioned lemma, we know that the components e, Z (E®) can be
described in the following way:

KXy ——— e, Z(E°)
e e it = {1} or 7 = {xo).
Xy sy

K[ Xy, Xy ] = . 0 98
X Xoo) VA(E) )

1 e, if v = {\, A7} with A # AL

Xy ——— 1y

XA—I _ $A—1
The decomposition Z(E°) = [LeresZ (E®) induces a decomposition

Z(E") =[] en2(E")".
vyerl

The following lemma, which easily follows from the results in Section 2.2, describes a
k-basis of Z(E*)? that decomposes into bases of each of the components e~ Z(E*)<.
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Lemma 2.3.1. The following is a k-basis of Z(E*)%:

exg1 for A € TO/Tl,
61¢807 61¢S17 eXO ¢$07 eXO ¢S17

U)\,i = 6)\¢(5150)i + BA_1¢(8081)i
for A€ TO/T1 < {1} and i € Zs1,
Ul,’i = 61¢(3150)i + 61@(3051)1' - el(bsl(sosl)i - el(ﬁso(slso)i
for i € Z)l.
Moreover, defining Uy ; also for i =0 (and for all X € 1@) in the same fashion
as above, one still has that Uy ,; € Z(E*)4.

Proof. This easily follows from Proposition 2.2.1 and Remark 2.2.2. The rest being
clear, let us check, for all ¢ € Z>;, the correspondence between the elements of the
form

¢w(sosl)i + qbw*l(slsg)i —€1- d)(sosl)iso —€1- ¢(8180)i81 for w € on/T1
and the elements of the form
U)\ e {6A¢(8180)i + 8)\—1(]3(8081)1' for A € zﬂlo/jjl7
) e1¢(slso)i + el¢(sosl)i - €1¢51(5051)i — €1¢50(3150)i for A = 1.

For all A € W ~ {1}, one has

Z Aw) - (¢w(sosl)i + ¢w—1(5180)i —e1- ¢(8081)i50 —e1- ¢(5150)181)
weTo/T1

- _eA*1¢(sosl)i - e)\¢(slso)i7

where the terms e1-@(yys,)is, and 1@y, 5)i5, disappear because } - cqo 71 A(w) = 0.
On the other side, doing the same computation with A = 1, we get:

Z (¢w(sosl)i + ¢w—1(s1so)i — €1 ¢(8081)'LS() —er- ¢(slso)i51)

weT0 /T
- _€1¢(5051)i - el¢(81$0)i + €1 - <Z5(5051)7'.50 + €1- ¢(5130)i51,
using also that ZweTo/Tl 1 = —1p.
Vice-versa, using the orthogonality relation
—1p ifw=9
DR s PYC) R S for all w, 9 € T°/T",
— 0 ifw#9
AETO /T

we see that for all w € T°/T?, one has

Y Awaa=— Y D AMw HAW) Ty

AETO /TN AeT0/T1 VETO/T?
— Tw—1,
and so
STOAWUni= D Mw)(exdrsis) + er-19(sps1)7)
AETO/T1 AT/ T

- 61¢51(3051)i - 61¢50(8150)i

= _¢w—1(slso)i - ¢w(sosl)i - el(z)sl(sosl)i - eld)so(slso)i‘ u
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Returning to the decomposition

2B = e, Z(E"),

~vel
we get the following description of the component e, Z (E*) for v € T

o If v = {A} (in which case A = 1 or A\ = y,), then the following is a k-basis of
*\d.
ey Z(E*)*:

exdi, exdso, exds, Uxi (fori e Zsy). (99)

o If v = {\, A7!} with X\ # A~1, then the following is a k-basis of e, Z(E*)%:

6>\¢)1, 6)\—1¢17 U>\7i (fOI‘ 1€ Z)l), U)\_lyi (fOI‘ 1€ Z}l). (100)

2.3.b The components e, Z(E*)?

We are now going to describe the components e, Z(E*)? for v € T', and more pre-
cisely we will determine their e,Z(E°)-module structure. We will do this in three
lemmas, which will deal respectively with the components e Z(E*)?, ex, 2 (E*)? and

ey Z(E*) for 4 such that #v = 2.

Lemma 2.3.2. Identifying e1 Z(E°) with the polynomial ring k[X1] as in (98), one
has the following isomorphism of k[X1]-modules:

k[Xl] k[Xl] k[Xl,Xl_l] ~

» e1Z(E*)"

(X1-1) = (X1) k[X4]
(1,0,0) > €101,
(O,T, 0) b €1¢so - 61¢51,
<0’07X; ) F > Ul’ifl.

(fOI‘ i€ Z}l)

-1
Moreover, the direct summand % is the injective hull of k = ]E[;?)] as a k[X1]-

module.

k[X1,X71 . C
Proof. The fact that Tﬂl is the injective hull of k =

shown in [Lam12, Proposition 3.91.(1)].
We have seen in (99) that the following is a k-basis of e; Z(E*)%:

k[X1]
(X1)

as a k[X1]-module is

61¢1, 61@2550, 61¢51, Ulﬂ' (fOl" 1 E Z}l). (101)

Recall also that we introduced the notation Uy o, although this is not an element of
such basis. For such element, we have

Ui = 2e1¢1 — e1¢5, — €15, -

With these facts, we see that the map in the lemma is an isomorphism of k-vector
spaces, and it remains to check that it preserves the action of Xj.
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We claim that one has the following formulas for the action of e; Z(E) on the
above k-basis of e; Z(E*)%:

T - e191 = e191,
T1- €195, = €101,
T1 - €195, = €191,
z1- Ui = Ui for all i € Zs;.

Once the formulas are proved, we are done, because it is then easy to check that
the action of X is preserved by the isomorphism in the statement of the lemma.
The proof of the formulas is a quick computation; we spell out some details, starting
with the first two. We make repeated use of the formulas for the left action of E°
on E¢ stated in (89):

Ty - e1¢1 = €1 (Tsy Tsg + TsoTsy + Tso + 75y + 1) @1
= e1¢1,

x1 - e1¢s, = €1 (TsoTs; + (Tsy + €1)(Tsy + €1)) b,
=0+ 61(7'51 + 61)(25071
= €1¢071
= e1¢1.

The third formula we have to prove is identical to the second one, and regarding the
last one, we have

21Ut = T1 - €19(5,50)i T X1 €10 (505,)7 — T1 * €19, (sps1)i — L1 €1P5(s150)7

and to finish the computation it suffices to compute that =1 - ¢g, 50w = ¢ for all
w € W such that ¢(spw) = £(w) + 1, and similarly for z1 - ¢sys,w if w is such that
L(syw) = L(w) + 1. [ ]

Lemma 2.3.3. Identifying e, Z(E") with the polynomial ring k[X, ] as in (98),
one has the following isomorphism of k‘[XXO]—modules:

KXy, KRIXy) kX, X

I

o y ey Z(E*)?
(Xx,) (X)) KXy, ] o
(T,0,0) ’ ” €x, Gsos
(O,T, 0) % ” 6X0¢817
(),(),X")
( Xo > UXO,i—l'

(fOI‘ i€ Z}l)
Proof. Recall from (99) that we have fixed the following k-basis of e, Z(E°):

€x, b1, ex, Dsos ex, Gsy s Uxo,i (for i € Z>1), (102)

and that we have
UX070 = 26)(0(;51'
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Similarly to the proof of the previous lemma, using the formulas for the left action of
EY on E stated in (89) one checks the following formulas for the action of ex, 2 (E?)

on the above k-basis of e, Z(E*)%:

Ty, " €x,P1 =0,
Txo * €X0¢80 =0,
Txo " X0 b5, =0,

Ty Uxoﬂ' = Uxovi—l for all 7 € Z}l.

From these formulas, it is clear that one has the isomorphism in the statement of

the lemma.
The statement about the injective hull has already been recalled from [Lam12,

Proposition 3.91.(1)] in the proof of the last lemma. [

To describe the component e, Z (E*)? for v € T such that #v = 2, we need to set
up some notation. Let X and Y be indeterminates, and let us consider the k-vector

space

O((X-Y)+(X,Y)")=0
for some n € Zxg

(X Y, X" Y™")=0
for some n € Z>g

Erix,y) (k‘) = {@ S Homk(k[X, Y], k‘)

(X-Y)

= {@ € Homy (k[X,Y], k)

. k(XY
= liny Homy (o ).

716220

where Homy(_, ) means homomorphisms of k-vector spaces. The k-vector space

Erx.yi (k) has a natural structure of IZ[)?(;,/)} -module, and it is proved in [Laml2,
(XY)

Theorem 3.90.(1)] that &E[}f%] (k) is the injective hull of the ?g%]-module ]z[))((;//)]

(which we will simply denote by k), where we view k as a submodule of Exx,v] (k)
X7
by identifying 1 € k with the element (1) € Eux.y) (k) that has value 1 at 1 and

X7
that is 0 on (X,Y).
It is easy to see that the following is a k-basis of Exix,v] (k):

(X-Y)

(O)V: k[X,Y] —— &
11— 1
other , 07

monomials

(XYY E[X,)Y] —— k
Xi 1 for ¢ € Z}l, (103)

other N
monomials 0

YHY: k[X,)Y] — k
yi 1 for i € Z>;.

other s 0

monomials
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It is also easy to check formulas, which describe the action of k[X, Y] on Exx.v) (k):

(X-Y)
X-(1)Y =0,
Y-(1)Y =0,
X (XY =(X"HY forieZs,
Y- (XHY =0 for i € Z>1, (104)
X (YY) = for i € Z>1,

(Y)Y = (YHY fori € Zs.

Lemma 2.3.4. Let v € T with #v = 2 and let us write it as {\,\"'}. Further-

more, let us identify e, Z(EY) with the ring % as in (98). Let us see k as a
-

E[X 3, X, . o R[X X
([X#;ll)]-module by identifying it with ([X#;ll)], and let Exixy.x, 4 (k) be defined

(Xx-Xy—1)
as above.

One has the following isomorphism of k[ Xy, Xy-1]/(X) - X\-1)-modules:

>~

k@gk[XA,XA,l](kf) e’yZ(E*)d
(Xx-Xy—1)
(1,0) ¢ > expr — ex-191,
iV
(07 (XA> ) ' ” U)\iv
(for i € Z>1) ’
©.05.0) |
(for i € Z>1) ’
(0,(1)Y) + » Uno = Uy-1,.
P , S KX, X, 1]
urthermore, Exx,.x, 1) (k) is the injective hull of k as a m-module.

(XA Xy—1)
Proof. The statement about the injective hull has already been recalled from [Lam12,
Theorem 3.90.(1)]. Let us check that we have an isomorphism as claimed. The fact
that we do have a well defined isomorphism of k-vector spaces is clear: indeed we
know a specific k-basis on the left hand side from (103), we know a specific basis on
the right hand side from (100), namely

exp1, €>\71¢1, U)\,i (fOI‘ 1€ Z;l), U)\flﬂ‘ (fOI‘ 1€ Z;l),

and it is immediate to see that

U)\,O = U)\fljo =exp1 + ex-101.

So, we have an isomorphism of k-vector spaces and it remains to check that it
preserves the actions of X, and X,-1. Similarly to the proof of the Lemmas 2.3.2
and 2.3.3, using the formulas for the left action of E° on E< stated in (89) one checks
the following formulas for the action of e, Z(E®) on e, Z(E*)%:

1‘,\-6)\¢1:O, Ty-1 ‘6)\(251:0,
Ty -ex-1¢1 =0, Ty-1-ex-101 =0,

1‘)\-U)\7i:U)\7i,1, Ty—1 -U,\yi:O for a]li€Z>1,
Ty U)ﬁl’i =0, Ty-1 -+ U>\717i = U)\fl’i_l for all i € L.

Comparing these formulas with formulas (104), it is easy to see our isomorphism
does preserve the actions of X and X,-1. |

69



2.3.c Final description of the structure of Z(E*)? as a Z(E°)-module

In the previous subsection we have described the e,Z(E")-module structure of
e4Z(E*)? for v € T. In this subsection we will deduce from this the Z(E®)-module
structure of Z(E*)?. We start with a completely general and elementary lemma
about injective hulls.

Lemma 2.3.5. Let Ry, ..., R, be commutative rings with unit. Let M; be an R;
module for all i € {1,...,n}. One has

b (D30) = Do
i=1 i=1

where the notation £ _y(-) denotes “the” injective hull.

Proof. For alli € {1,...,n} let us set

n

e; = (0,...,0,1,0,...,0) eHRi.

? =1

One of the characterizations/definitions of being an injective hull is being injective
and an essential extension. Therefore, we have to prove that @, Eg,(M;) is an
injective [ ]}, R;-module and that it is an essential extension of @' ; M;. As regards
the first claim, let us consider a diagram of the form

N—9 1

//// 3?5

X

P r. (M),
=1

¥

Since the e;’s are orthogonal idempotents whose sum is 1, it is easy to see that we
have the following decompositions:

n
e
=1

=€, 6

N n
e;
Deit

- =1

v =@ili ¢, y P

P Er. (M)).
=1

Now, since Eg, (M;) is an injective R;-module for all 4, we can construct ¢ component-
wise.

It remains to prove that @B ; Er,(M;) is an essential extension of ;. ; M;.
Let N C @, g, (M;) be a nonzero submodule. Since N = ;" ¢; N, there must
exist ig such that e;, /N # 0. Since e;, - (@?:1 SRi(Mi)) = ng'O(Mi ), we have that
e,V is a nonzero R;,-submodule of &g, (M;,), hence it intersects M;, non-trivially.
Therefore .

NN (@M) D ej,N N M;, # 0,

=1
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and this concludes the proof that D", Er,(M;) is an essential extension of ;" ; M;.
|

Let v € ', and let ke, be the k-vector space k endowed with the unique structure
of Z(E®)-module such that e, acts by 1, e, acts by 0 for all v/ € I' \ {7}, and

acts by 0 for all A € v (equivalently, for all A € W); as usual, the notation
x) is as in Lemma 1.7.1. Concretely, this module can be obtained for example as
enZ(E®)/(zy, 23 "), where {\,A\7!} = 7. To ease notation, in the case v = {\} we
simply write k., instead of k. o

Moreover, let ke, .., be the k-vector space k£ endowed with the unique structure
of Z(E®)-module such that ey acts by 1, e acts by 0 for all v/ € T'\ {1}, and x4
acts by 1 (equivalently, ¢ acts by 1). Concretely, this module can be obtained for
example as €1 Z(EY)/(e1 Z(E°)NF1E®). Equivalently, the action of Z(E) on ke, y,...
is through xuiv: EC — k (see (91)).

Proposition 2.3.6. There is a decomposition of Z(E)-modules
Z(E*) = keipy ® N @ €,
where, with notation as above,
(1) kei1¢1 is isomorphic to ke, v, ;

(ii) N is a finite direct sum of submodules of dimension 1 over k, and more pre-
cisely,

N =k, @ kexo %) kexo @ @ kje«ﬁ
~yel
with #v =2
(iii) € is the injective hull of all the following Z(E°)-modules:
* @’yel_‘ kew’
* (Z(E°)/¢2(EY)",
* Z(E%)/CZ(E?),

and moreover the last two Z(EY)-modules are isomorphic.

Finally, this decomposition is compatible with the decomposition
E? = key ¢y @ ker(8%)
of Proposition 1.10.5, in the sense that N ® & is contained in ker(8%).

Proof. Referring to Lemmas 2.3.2, 2.3.3 and 2.3.4, we define N to be the sub-Z(E°)-
module generated by the elements

€105y — €1Ps; 5

ex0¢soa
6x0¢517
expr — ex—1¢1 forAE]W\{l,xo}

(generated as a submodule or as a k-vector space). Furthermore, let us define £ as
the sub-Z(E%)-module generated by the elements

Ui for A € TO/T1 and i € Zsg

)
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(again, generated as a submodule or as a k-vector space).

Parts (i) and (ii) of the statement are clear from the three lemmas. It remains
to show (iii) and compatibility with the decomposition E?¢ = ke;¢1 @ ker(8%).

Regarding the compatibility with the decomposition E¢ = kej¢; @ ker(8%), we
have to show that N @& £ C ker(84). Let us consider the e,-component of both
sides for v € T' \ {1}: we certainly have e, - (N & &) C ey ker(8,), because from
the decomposition E¢ = kej¢ @ ker(8?) we see that e ker(8,) is the full e, E%. Tt
remains to show that e; - (N @ ) C ker(8,), i.e., that ej¢s, — e1¢s, € ker(84) and
that Uy ; € ker(84) for all i € Z>o. All these elements are of the form

> bw— > tu

weX weY

for suitable finite subsets X,Y C W having the same cardinality. Then the result
follows because (70 8%)(¢,,) = 1 for all w € W (see (40)).

The fact that & is the injective hull of B, cp ke, as a Z (E%)-module is clear from
the three lemmas together with Lemma 2.3.5. It remains to prove that it is also
the injective hull of (Z(EO)/CZ(EO))v and/or of Z(E®)/¢Z(E") and that these two
Z(E%)-modules are isomorphic. We are going to do this component-wise, and we
start by studying the components of Z(EY)/(Z(EP).

The decomposition Z(E°) = [leresZ (E®) induces a decomposition

Z(E%)[CZ(E®) = | ] esZ(E°)/e,CZ(E?).
vyer

Let v € I': we distinguish two cases on the basis of the cardinality of ~.

e Assume that v = {A} (for A=1o0r A = x,).

Recall that in this case e,Z(E") is isomorphic to the polynomial ring k[X,], an
explicit isomorphism being given by sending X, to z) = ex( = e,(. Therefore,
via this identification, we find that

ey Z(E°)/e5CZ(E%) = k[X)]/ (X)) = k.

In particular, we see that the k-dual of e,Z(E")/e,(Z(E") is isomorphic to
ey Z(E®) /e ¢ Z(E?) itself as a e, Z(EY)-module.

o Assume that v = {\, A7} with A # 271

k[X)uX)\—ﬂ
(X2 Xy-1)?
plicit isomorphism being given by sending X, to x) and X -1 to x,-1. Since
e4C = x) + x)-1, we deduce that, under this identification we have

Recall that in this case e,Z(E") is isomorphic to the ring an ex-

k[X>uX)\_1]
(X)\ - X1, X +X)\—1).

ey Z(E°)[e,CZ(E”) =

This quotient has dimension 2 as a k-vector space, and we fix the following gen-
erators:

ui=1,
V= X)\ = —X)\fl.
‘We have the formulas
Xy-u=v, Xy-1-u=—v,

(105)
Xy-v=0, X)-1-v=0,



and of course e, Z(E") /e, Z(E") can be characterized as the unique k[Xy, Xy-1]-
module of dimension 2 over k with generators v and v satisfying the above for-
mulas.

The k-dual of e, Z(E®)/e,(Z(E®) is isomorphic to e, Z(E®)/e,(Z(E®) itself as a

e~ Z(EY)-module. To check this, we have to show that ] y is isomorphic to

its k-dual as a k[X, Y]-module, or, equivalently, as a %—module (here we
are using indeterminates X and Y instead of X, and X,-1 in order to simplify
notation). Now,
k[X,Y]
(X YV, X+Y)

and k[X]/(X?) is isomorphic to its k-dual as a k[X]/(X?)-module (this can be
seen directly but is also a known fact about Frobenius algebras). Therefore,
exZ(E®)/e,¢Z(E®) is isomorphic to its k-dual as a e, Z(E®)-module.

I

KIX]/(X?),

So far, we have described explicitly the components e, Z(E°)/e,(Z(E°) fory € T
and we have also shown that Z(E®)/¢Z(E°) is isomorphic to its k-dual as a Z(E°)-
module (indeed it is easy to see that this can be checked component-wise, and we
have shown this).

It remains to prove that e,N is the injective hull of e, Z(E%)/e,(Z(E®) as a
evZ(EO)—module for all v € T', and then we are done by Lemma 2.3.5. Again, we
distinguish two cases depending on the cardinality of ~.

e Assume that v = {A} (for A\=1o0r A = x,).

-1
We know that the factor % appearing in the decomposition of e, Z (E*)?
of Lemma 2.3.2 (for A = 1) and of Lemma 2.3.3 (for A = x,) is the injective hull
of

k= k[X0)/(X2) = ey Z(E°) ey CZ(EP).

o Assume that v = {\, A7} with A # 271,
We know that the factor Eux,.x, ,)(k) in the decomposition of ey Z(E*)? of

(Xx-Xy—1)
Lemma 2.3.2 is the injective hull of k as a %—module. We have instead to
—
show that Exix,,x, 41 (k) is the injective hull of another module.
(Xx-Xy—1)

Again, let us rename the indeterminates X and Y to improve readability. We
showed that Exx.v] (k) admits the following k-basis (see (103))

(X-Y)

1Y,
(X4 for i € Z>1,
(Y4 for i € Zs1,

basis which satisfies the following formulas (see (104)):

X- ()Y =0,

Y- (1)" =0,
X (XY = (xhHY for i € Z>1,
Y- (XHY =0 for i € Z>1,
X - (Yi)v =0 for i € Z>1,
Y - (YHY = (v for i € Z>1.
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Let us define

u = (X)Y — (Y)Y,
U/ — (1)\/7
M = span,{v',u'} C Exix,.x, 41 (k).

(XA Xy—1)

It is easy to see that M is a sub-k[X, Y]-module and that we have the inclusions
of k[X,Y]-modules

Exk- (1) < M - Erx.y (k),

whose composite is the inclusion of k in Exx,y) (k). We know that the module
XY

on the right is the injective hull of the module on the left, and so it is also the
injective hull of the module in the middle.

But it is easy to see that

X -u =7, Y ' =,

X -0 =0, Y o' =0,

and these formulas are the same as (105), with obvious change of notation. There-
fore we can conclude that M is isomorphic to e, Z(E")/e,(Z(E®) as a module over
e4Z(EY) = k[X ), Xy-1], because we said that e,Z(EY)/e,(Z(E") can be charac-
terized as the unique k[X), Xy-1]-module of dimension 2 over k with generators
u and v satisfying (105). [

2.4 The 0*" graded piece of the centre

Assumptions. We assume that G = SLo(§) with p # 2 (with the fixed choices of
T, of I, of the positive root and of the Chevalley system as in Section 1.5).

Oth

Under the above assumptions, we are going to describe the graded piece of

the centre of E*. The hypothesis p # 2 makes available the description of the Frattini

quotient stated in Lemma 1.10.1 (and such hypothesis will also be used many times
in the computations). However, when we will treat the case of a general group G in

Section 3.1, we will see that also in the case p = 2 the description would be similar

(the centre is trivial in that case).
Recall the definition

Proposition 2.4.1. One has

Z(E*)° = kry 4 kr._,.

Therefore, as a k-algebra, Z(E*)° can be described as

KIX]/(X2—1) —=— Z(E*)°
X Te_,
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or as
kxk ——— Z(E*)"

(1,0) —— S (m+7)

1
2
1
2

0,1) ——— = (11— Tc_,) -

Proof. Let us check the two inclusions in the claimed equality Z(E*)? = kry +k7e_,.

“D") Let us prove the inclusion Z(E*)? D kry + k7._,.

It suffices to show that, for all i € Z>;, all w € W and all 8 € HY(I,X(w)),
one has B-7. , =7, , - fB.

Since lengths add up, we can apply the formulas of Corollary 1.9.5, obtaining
B-Te, € H(I,X(wc_1)),
Shee_, (B 7-071) = res§36_1 (Shw (5))7
Te, - B € H(I,X(c_1w)),

She_yw(Te_, - B) = res; . = ((c=1)« Shy(B)).

But ( 51 _01 ) lies in the centre of G, and so wc_1 = c_jw and every conjugation
by c¢_1 appearing in the above formulas is trivial. Hence,

B-7e, € H(I,X(wec_1)) and Shye_, (B 7e_,) = Shy(8),
Te, - B € H(I,X(we_1)) and Shue , (Te_, - B) = Shy(B).

In other words, f-7. , = 7., - 3, as we wanted to show.

“C”) Let us prove the inclusion Z(E*)? C kry + k7._,.

Let us define = == {{w,w™1} ’ w € (T°/T") ~{1,c_1}} and let us fix a choice
function
E—— (T%T") ~{1,c1}

§——— we €&

Recall from (27) that following is a k-basis of Z(E°):

T1,
TC—la
Twe T Tugh for € € =,

Giw = Tw(TSOTsl)i + 7,1 ((7'51 +e1) (s + 61))i fori € Z>1 and w € TO/Tl.

Now let z € Z(E*)? C Z(E®) and let us write it with respect to the above
basis as

T =ar + ch_1 + ch . (Tw§ + ng_1) + Z di7wCZ’7w,
== 1€{1,...,n},
weT? /Tt

for suitable n € Z>1 and a,b,c¢,d;, € k. We have to show that ¢ = 0 for all
¢ € Z and that d;, = 0 for all i € {1,...,n} and all w € T°/T!. Since we
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already know that 71,7, , € Z(E*), we can assume without loss of generality
that a =0 and b = 0.

Let us consider an element ¢~ € Homy, (O/90, k), which we will later choose
according to our needs, and let us define

Yem = (C_u 07 0)1

For L € Z>g and y € E* we say that z is supported in length less or equal

than Lify e 47 H (I, X(w)). Werecall from Theorem 1.9.1 and from
s.t. £(w)<L

Lemma 1.9.2 (i) that the product of two elements of E* supported in lengths

less or equal respectively than L; and Lo is supported in length less or equal

than L1 + Lo, and so we deduce that

Yo * T = Yo - (aﬁ + b1, + ch : (ng + ngl) + Zdi,wgi,w)

g€z ie{l,...,n},
weT%/T!

= o T D duwe  (Tusosn + Tut(siso)n)

~
supported in ~ weT0/T1
length<2n
and similarly
T Yem = <O + E dn,w : (Tw(sosl)" + Tw—l(slso)”) *Ye—-
supported in ~ weT9/T?
length<2n

Applying the formulas (64) for the right action of E on E', we see that for
all i € Z>1 and all w € T°/T" we have

Ye= " Tw(sos1)™ = (Cia 0, O)w(sosl)"v
Ye— 'wal(slso)n =0.

On the other side, using the formulas (62) for the left action of 75, and 75, on
E', we find that

T(sos1)™ * Ve= = 0,

T(s150)" " Ve— = (C_, 0, O)(slso)"a
and further applying the formula (59) describing the left action of 7, on E!,
we obtain

Tw(sos1)? * Ve = Oa
Tw=1(s150)" " Ve= = (C_ (@(w)z ’ —)a 0, 0>w—1(5150)n

(recall that id was defined in (48)).
We deduce that

0=[vez]

= L + Z dn,w : ((Civ 0, O)W(SOSI)”

supported in ~ w€T0/T1
length<2n

_ (C_ (@(M)Q - -),0, O)w*1(8150)">’

76



and so, choosing ¢~ # 0, we obtain d,,,, = 0 for all w € T°/T".
We are thus reduced to proving that an element of the form
*\0
x = 626;05 . (ng +Tw§_1) € Z(E")

is zero. Since multiplication by 7.~ on the left and on the right preserves the
decomposition @, ro /71 H*(I,X(w)), to prove our claim it suffices to show

that for all w € T°/T" \ {1,c_1} we can choose ¢~ (possibly depending on w)
such that [y.—,7,] # 0. Using formulas (59) and (60), we see that

7] = (€7,0,0), — (¢ (1d@)? - ),0,0),,

From this, we see that [y.-,7,] # 0 if we choose ¢~ in such a way that
¢~ (id(w)?) # ¢~ (1). There exists such a choice because id(w)? # 1. [

2.5 The 1%t graded piece of the centre

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose m = p.

In this section we will show that, under the above assumptions, the 15¢ graded
piece of the centre is zero. As a first step, in the next lemma we compute explicitly
Zpo(EY).

Lemma 2.5.1. The Z(E°)-bimodule Zypo(E*) is isomorphic to Z(E®) N F'E°, and
an explicit k-basis is given by

. 0 0 0 0
Yiw = /Bw(sosl)i - /Bwfl(slso)i + 61530(8130)1'71 - 61551(3081)#1
for w € T°/T" and i € Z>;,

Proof. Clearly Zpo(E') C ker(g1), and hence Zpo(E') = Zpo(ker(g;)). Using the
isomorphism of E%-bimodules ker(g;) = F'E? stated in (70), we deduce that

Zpo(EY) 2 Zpo(F'E®) = Z(E°) N F'E°.

To compute a basis, we start from the basis

71,
Te_y if p#£ 2,
P for {w,wil} C TD/T1 ~A{1,eo1},

Tw * (Tsg -Tsl>i + Tyt ((7'51 +e1) - (15 + 61))i for w € TO/T1 and i € Z>;.

of Z(EY) computed in (27). It is easy to show by induction that for all w € T°/T*
and all ¢ € Z>1 one has

Tw - (TSO '781)i + T, ((Ts1 + 61) : (Tso + 61))2
= Tw(sos1) + Tw=1(s150)¢ + €1Tsy(s180)i~1 + €175 (sos1)i~1
i—1

+ Z (617—(8031)j + €17(s150)7 + €1Ts0(s150)7 + elTSl(SOgl)j*l)
j=1

+ e;.
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It follows that the following is another k-basis of Z(E°):

1,

Te_q ifp 7& 2,

T + Tyt for {w,w™} C TY/T' {1,c_1},
Tw(sos1)' T Tw=1(s150)’ for w € T°/T" and i € Z>;.

+ 617'80(8180)171 + 617-51(5051)1'*1

Each one of the above elements lies either in FyE® or in F'EP, and so we see that
the following is a basis of Z(E") N F1EQ:

Tw(s081)° + Tw=1(s150)¢ -+ €1Ts0(s150)i~1 + €1Tsy (s051)i~1
for w e T°/T" and i € Z>,.
Now, using the explicit description of the isomorphism ker(g;) = F'E° in (70) and
(71), we see that the following is a k-basis of Zpo(E1!):
~ B sos1) T Bo-1(s1s0yr — €1Bag(sys0y-1 + €185y (sps1yi-1
for w € T/T" and i € Z>;,

and up to changing signs this is the basis in the statement of the lemma. |

We are now ready to show that Z(E*)! = 0.
Proposition 2.5.2. One has that Z(E*)! = 0, and, more precisely,
Zgoum (1. x 1)) (E') = 0.
Proof. From the formulas for the multiplication in E* when lengths add up (Equa-

tion (36)), it follows that multiplication on the left or on the right by an element of
H(I,X(1)) preserves the components of the decomposition

E* = P H*(I,X(w)).
weW
In particular we have the following: for all w € W and for all v € E, one has
pry, ([61‘ 7] gr> = [Br,pre (V)]

where pr,,: E* — H*(I,X(w)) denotes the projection with respect to the above
decomposition and where [_, _],; denotes the graded commutator. Let us apply this
in our situation: let us consider an element of Zgo(E"') written in the form

g Cow,iVw,is

’L'GZ>1,
weT? /Tt

where the elements =, ; form the basis of Zgo(FE') computed in Lemma 2.5.1 and
where the ¢, ;s are suitable coefficients in & (equal to zero for almost every i). Now,
for iy € Z>¢ and wg € T°/T*, let us compute:

Pl (sps1)i0+1 ([51_, Z Cw,i%,z’] ) = [ﬁf,PTwo(sosl)ioH < Z Cw,ﬂw,i)]
gr gr

iEZ)l, i€Z>17
UJETO/Tl UJGTO/TI
= § : Cw,i [61_7 prwo(sosl)i0+1 (f}/wﬂ?)]
T
iGZ;l, &
weT?/T!

= Cuy,io |:61 76w0(8081)10+1:|gr
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Now, if we prove that, for all i € Zs¢ and all w € T°/T", one has
(Clalm) ,8;, /68(5081)7'4'1 7é 07
gr

then all the coefficients c, ;’s are zero, and we are done.
Recall from Lemma 1.10.3 that the following formulas hold:

Tw(sosl)i+1 : ﬁl_ = 07 (106)
/81_ " Tw(spsy)itl = Bo:(sosl)i+1' (107>

Let us compute [ﬁl_ , /6’2(8051)“1} using the relation between (the opposite of)
gr

the Yoneda product and the cup product (see Corollary 1.9.3) and the formulas
(106) and (107). One has:

[6;’ Bg(sosl)i+1:|gr = ﬁ; ’ ﬁg(sosﬂ“’l + 68(5081)i+1 ’ B;

= (BL  Tua(sosy)i1) (Tl -6£(sosl)i+1)

+ (Bg(sosl)i+1 'ﬁ)  (Tuspsy)itt * B1)
= B 5051yt ¥ 5g(sosl)i+1 + Bg(sosl)m 0
- 5(;(3051)i+1 ~ 5g(sosl)i+1~

Therefore our claim has translated into proving that the above cup product is
nonzero. But it is true for all w € W ~ (TO /Tl) that (8, v 8% # 0: indeed, since
the Shapiro isomorphism commutes with cup products, this is equivalent to showing
that Shy,(8;) v Shy,(82) # 0; and this is true, because Shy,(8,) and Shy(5)) are
two linearly independent elements of H!(I,, k) and because the cup product algebra
H*(I,, k) can be identified with the exterior algebra A\* (H'(Iy,k)) (indeed, I, is
a uniform pro-p group, as explained in [0S21, §4.2.3] and then Lazard’s Theorem
1.8.1 applies). |

2.6 The 2" graded piece of the centre

Assumptions. We assume that G = SLy(Q),) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose m = p. The first lemma will be stated under more general
assumptions.

In this section we will compute explicitly the 2°d graded piece of the centre,
under the above assumptions. The proof will be divided into three subsections:

e In Subsection 2.6.a we will compute Zzo(E?). More precisely, we will determine
a basis of Zgo(E?) in terms of the family of elements (a%*)w i defined (in an
implicit way) in Proposition 1.10.4. The strategy consists in using the quoted
proposition in order to relate Zgo(E?) with Zgo(E3).

e In Subsection 2.6.b we will rewrite the basis of Zgo(E?) in terms of the “standard”
basis

o, a®  (if L(w) > 1), al for w e W,

wr w w

which we have defined in (80). The purpose is twofold: this new rewrite has the
advantage of being more explicit, and moreover it will be used to prove the final
statement in the last subsection.
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e In Subsection 2.6.c we will prove that the inclusion Z(E*)? C Zpo(E?) is actually
an equality, in particular achieving a complete description of Z(E*)2.

2.6.a Computation of Zy0(E?)

Lemma 2.6.1. Assume more generally that G = SLa(§) (with the usual fized choices
as in Section 1.5) and that I is torsion-free. The natural homomorphism of Z(E°)-

modules

Zo(EY) — Zpo (Ed/FOEd)
1§ surjective and it induces a bijection when restricted to the sub-k-vector space
Zpo(EY) N FLEY

Proof. The fact that the restriction to Zgo(E?) N F!E? is injective follows from the
fact that the map F'E? — E?/FyE? is injective. It remains to show that for every
element of Zpo (Ed/FoEd), its (unique) representative o € F1E? is centralized by
E°. We decompose o as

o= o; with o; € B¢ = k
Z (2 7 7 @ ¢w

7:6220 ’U)EW
s.t. L(w)=1

(hence op = 0). As in the proof of Proposition 2.2.1, for all v € W, let us consider
the map

Cy: ) D —
¢’—>Tv'¢_¢'7—va

and, to ease notation, let us define £¢, := {0}. In the proof of loc. cit. (see (93)) we
showed that

CSO (E(Qiz S Egi-i-l) C E(Qii_l D Egz for 7 € Z}(),
081 (Egz @ E2di+1) - Egz;l ©® Egz for ¢ € Z}O.
Let j € {0,1}. By assumption, o is mapped to Zgo (Ed/FoEd), and so

REY> Cy(0) = Y C (02 + 02it1).

’iEZ>0

From the above inclusions, we get that Cs, (02; +02;41) = 0 for all i € Z;. It is also
easy to see that Cy,(02; +02;4+1) = 0 for such i’s, and so we conclude that o9; + 02,41
is centralized by EV for all i € Z>1.

Therefore, it remains to show that oy is centralized by E?. But in the last part
of the proof of Proposition 2.2.1, we saw that if an element of Eél @ Eii is centralized
by 7, for all w € T9/T", then it is automatically centralized by the whole E°. So in
our case it suffices to check that oy is centralized by 7, for all w € T°/T"*, which is
easy. |

Remark 2.6.2. One has an isomorphism of E%bimodules
dJ L \d
((FIEO)V,ﬁmte> E3/F0E3

| —
_wlpge — u
(w € W with £(w) > 1) ’
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which by composition with the isomorphism in Proposition 1.10.4 gives an isomor-
phism

B3 |FyE? —— ker(go)

. & — o),
(w € W with £(w) > 1)

Proof. Similarly to Proposition 1.10.4 we use the identifications

(EO)Vﬁnite ~ U (EO/FnEO)V , (FIEO)V,ﬁnite ~ U (FlEO/FnEO)V )

n€Z>1 TLGZ}l

We see that the kernel of the restriction map (E0)V-finite (1 pO)Vifinite ¢oincides
with (EO/FIEO)V. Via the isomorphism

3<(EO)V,ﬁnite>3 ES

TV|
vl g,
(we W) ’

a 01 g0\V)? 3 I B
the submodule ((E /F'E ) ) corresponds to FyE”. Hence, considering the corre-

sponding quotients on both sides we get the isomorphism claimed in the remark. MW

Corollary 2.6.3. One has that Zgo(E?) is isomorphic to Zgo(E3)/FoE® as a
Z(E®)-module, and the following is a k-basis of Zgo(E?):

0,% 0,% 0,% 0,%
e - ag”, ex, " Uy s er-ag’”, ex, " sl
aO,* + 040’* — e OJO’* — e 040’*
w(sos1)? w—1(s180)" 1 (s0s1)%so 1 (s150)%s1

for w e T°/T" and i € Z,.

Proof. The last remark yields that Zgo(E?) is isomorphic to Zgo (E*/FyE?). Fur-
thermore, Lemma 2.6.1 yields that Zgo (E3 / F0E3) coincides with the image of the
map

Zpo(E®) — Zpo (EP|FHE?).
This image is Zzo(E?)/FoE? because FoE? C Zpo(E?) (see, e.g., Proposition 2.2.1).
The claim about the explicit basis then follows from the computation of the basis

of Zpo(E3) in Proposition 2.2.1 (actually, in Remark 2.2.2), by making use of the
isomorphism

E3/FyE3 —— ker(g)

. & — al*.
(w e W with £(w) > 1)

Remark 2.6.4. Equivalently, it is easy to see that also the following is a k-basis of
ker(gs2) (this can be obtained as in the proof of the last corollary by using the alter-
native k-basis of Zgo(E?) computed in Lemma 2.3.1, or, alternatively, manipulating
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the basis of ker(gs) computed in the last corollary):

0,% 0,% 0,% 0,%
el Ozsé s exo -Ozsé s el O‘si s eXO -Ozs’l s

e,\a( o) + exn- 104?5 51)f
for A € TO/T1 N {1} and i € Z31,
0,%

el-a(

0,%
e CX( 5051)%s0

0,%
e’
( 5150)%s1

0,%
s150)¢ + ela(

s051)%

for i € Z>;.

2.6.b Rewrite of the basis of Zpo(E?)

Let w € W such that ¢(w) = 1. Recall that we have the following partial description
0,x .
of ay)” (already recalled in (88)):

% —al e €id,id-1y ker(f2) if {(sow) = l(w) + 1,
ol + aly € epig a1y ker(f2) if £(s1w) = £(w) +1.

In view of Corollary 2.6.3 we would like to compute also the e {id,id—1}-component

of a%* in the cases w = (sgs1)" or w = (s1s0)¢ for some i € Zs,. This is basically
already carried out in the proof of [0S21, Lemma 7.11]. However, the formulas are
computationally involved and only partially written down explicitly, and so we will
derive them step by step from loc. cit. in the following two lemmas and one corollary.

Lemma 2.6.5. One has:

i—1
0’* —_ +
6@7104(8081)1- = —€4- 104(5051 i —|—2Zeld 1048 (s150)¢ -2 E €id- 10‘5 (s051)77
7=0

or, equivalently,

0)* — 0
€E71a(8081)i€E71 - €ld 10&(8081) ﬁ71
i—1 i—1
+ _ -
+ 2 €id=10 g (5, 50)1Cid ! 2 E €id=1 0y (55,1 Cid 1+
j=0 7=0

Note that the equivalence of the two statements follows from the fact that e;;—1

commutes with o for all w € W of odd length (see (85)), it commutes with a?, for
all w € W of even length (see again (85)), and it commutes with o for all w € W of
even length (see the description of ker(gz) as an E%-bimodule in Proposition 1.10.4).

Proof. From what we said above about the a2 ’s, it follows that
0 0,
€ia—1¥(5051)iCid—1 =V — Eid 104(5081)1 i1 for some v € ker(f2).

Let us look at the direct sum decomposition E? = ker(f2)@®ker(g2), which we recalled
in Proposition 1.10.4 quoting [OS21, Proposition 7.12]. In loc. cit. it is proved that,

via the isomorphism E? = 8((El)\/’ﬁnite)g, this decomposition corresponds to a
decomposition

dJ . \d
(B! fmie)” = K, @ Ky
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where

d L N\d
= {é‘ c <(E1)V,ﬁn1te> ‘ ‘E‘ker(gﬂ = 0} ,
d L N\J
= {ee (@) | oy, =0}

So, starting with the element ¢ = g—la(()s()sl)i@ﬁ—l = v — 6@—10[?;:81)i€@—1 and
applying to it the isomorphism E? =2 3((E1)V’ﬁnite)3, we view it as an element
E=60+n € H((]17)1)\/’ﬁn“36);J for § € Ky, corresponding to v and for n € K,
corresponding to —€iq- 104?5 51)iCid 1 We write this correspondence using a pairing
notation:

€ = (1000010 ) -
0=(v-),

0%
77:< €id- 10‘(3051)1 id~ 1,—>-

The element 1 (which is what we are interested in) is explicitly computed in
[0S21, Proof of Lemma 7.11]. Namely, in loc. cit. the linear form n: E' — k
is defined in the following way (there, £ is an arbitrary element in the subspace

. ns way (ther
eua(B) ey = ey (1)) )

n

eid ker(f1)eiq = O’

=&

n eid ker(g1)eiq eid ker(g1)eiq’

+o0o
— . R0 )
eﬁﬁjl eid 2 Zg(eﬂﬁsosleﬂ)
j=1

n

(here, we use the decomposition ejqEleiq = eiq ker(f1)eiq ®eiq ker(g1)eid ® keia B3 €ias
which follows from Proposition 1.10.2, and using this decomposition we define 7 as
a linear form 7: eﬁEleE — k, and extend it by 0 on the components e,\EleM for

A1 E ’_]T/?l with (A, p) # (id,id); moreover, note that the infinite sum does make
sense because ¢ lies in the finite dual of E'). In [0S21, Proof of Lemma 7.11], it is
shown that eﬁEleﬁ is the k-vector space generated by the following elements:
e@ﬁ?yeﬁ for w € W with positive even length,
eia B eid for w € W with odd length.

By deleting what is redundant, we get the following k-basis (the fact that these
elements are nonzero follows from (61)):

€idBsysyi€id  for j € Zz1,
€id508150 j€id fOl“j S Z}l,
e
e 37

; (108)
s0(s150)7 €id for j € Z>o,
s1(sos1)7 €id for j € Z>o.

Let w € W with positive even length. From the definition of 52;* (see (71)), we get
that

emﬂge@ = ie@ﬁg}’*eﬁ € ker(g1).
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Hence, for j € Z>; we have
1(€1aB(s051)5€1d) = &(€idB(5ysy)i€id)
— <eﬁ71 a?sOsl)ieﬁfl,eﬁﬁ?S()sl)j e@>
= <a?sosl)i75?sosl)j%>
= —<0‘(()sosl)iv > ﬁ(w_1)5?3051)1w>

w€eTv /T
-1 =1
o ifj £,

n(eﬁﬂgslso)jeﬁ) = 0
In [OS21, Proof of Lemma 7.11], the following values of 7 are computed:

and similarly we see that

400
( 1d630 (s150)7 ﬁ) =-2 Z g(eﬁ/@?sosﬂle@)’

l:j+1
( 1dB81 (s0s1)7 1d =2 Z 5 ldﬂ 5051)161d)
l=j+1

Hence, we deduce that

(eldBSO (s150)7 e1d)

I
—N—
O N
arig
oL .
VoA
v@ -~

|
-

(eldﬁ e1d.)

s1(sos1)?

1
—N—
c
[\
- =
oL S
A\YARV/AN
PSS
|
\t—‘

We claim that 7 is equal to

/o 0
n = <6ﬁ71a(8081)1‘6ﬁ717_>

i—1 1—1
+ +
—2 Z <€ﬁ71a50(5150)i6ﬁ71’ 7> +2 Z <eﬁ71a81(sos1)ieﬁfl’ *>’
=0 =0
element which can be rewritten as
! 0
n = <a(5051 iy €id * 1d>

_QZ< so(s1s0)* €id * — ld>+2z 51 (s0s1)%? €id - 1d>

It is easy to see that 1 is zero on eyE'e, for \,u € TO/T1 with (\,p) # (id,id),
and we compute
0
(eldﬁ(sosl ﬂ) <a(8081)“eldﬁ (sos1)? 1d>

-1 if j =1,
0 if j #i.
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Furthermore, we compute

i—1

) — + AT .
( 1d630 (s180)7 ﬁ) - 22 <aso(slsg)i’eﬂﬁso(slso)je@>
—0

J
B {2 if j<i—1,
o ifj>i
i—1
(61d551(5051 J ld) - 2Z%< s1(s081)" 1dﬂ81(8081)3 1d>
=
-2 ifj<i-n,
B {0 if j>i

Recalling the description of the basis (108) of eﬁEleﬁ, we see that these values
completely determine 7’ and that 17’ coincides with 1 on the whole E!.

Recalling that n = < €id- 1a? 1, _>, we conclude that

(5031)7' ld

0,% 0

€ﬁ71a(8051)i6ﬁ71 == —6id7104(5031) 1d71
1— i—1
+
+2Z€1d 1a80(8180)1 ld 1 QZed 10{ (8081)1 ld 1,
Jj=0 7=0
and this is the formula we had to show. [ |

Lemma 2.6.6. One has:

e a* =e a? ;
id ™ ¥ (sy50)7 T CidT M (s180)%

or, equivalently,

0,% _ 0
ld la(SISO)Z ld 1 —eﬁ—la(slso)ieﬁ—l.

The equivalence of the two statements can be seen in the same way as in the last
lemma.

Proof. The proof is completely analogous to (but quicker than) the proof of the last
lemma. Using (88) we write

0 0,%
€id—10(s, 50)i€id=? = 7V + €id- 10‘(513 i€id—1 for some v € ker(f2),

and with the same notation as in the proof of the last lemma we view this as an
element

E=0+4nc g((El)\/,ﬁnite)a,

for 6 € Ky, corresponding to v and for n € Ky, corresponding to e;4- 10‘(()3150)1 i1
The explicit definition of 7 from ¢ and the formulas are the same as in the last
lemma, because in [0S21, Proof of Lemma 7.11] such formulas are proved for an

arbitrary element

. dJ L \d
56 eﬂ(El)\/,ﬁmteeid == ((El)\/,ﬁmte) 6@—1,
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in particular we have

nleﬂker(fl)e@ = O’

Ul

eiq ker(gi)eiq € eia ker(g1)eiq’

+oo
n}eid/j;rl ea 2 Z 5(6@,620516@),
idPs €id =

and we have the formulas

+o0
( ldﬁso(slso id) = —2 Z g(eﬁﬁ?sosl)leﬁ) =0,
I=j+1
+oo
1(€wB (gporyi€ia) =2 Y E(€1Bl,s, cia) = 0.
1=5+1

Recall from the proof of the last lemma that ejqEleiq is the k-vector space having
the following k-basis:

eidﬁ?SOSI j€id for j € Z>1,
eldﬂ(slso €id for j € Z>1,
61d,880 (s150)9 €id fOI‘j S Z}O,
ld’le (s051)J €id fOI‘j € Z)O-

But the elements in the first two lines lie in ker(g;) (see (71)), and so at these
elements the linear forms 7 and ¢ have the same value. On the elements of the last
two lines we have just said that 7 is zero (as is £). Therefore we deduce that n = ¢,
and so by definition of 7 and & we get

_ 0
— eﬁfla( idfl. .

0,%
d IOK( 5150)2.6*

5180)’ 1d 1

Corollary 2.6.7. Let i € Z>1. The following formulas hold:

i—1
0?* J—
04(3081)1- = (5051 )i + QZeld 1a o(5150)1 Zeld 104S (s051)¢
7=0
1—1 i—1
0,% _ 0 ) Z o _ Z o
a(slso)i - O[(Slso)z + 2 eﬁasl(sosl)i 2 eﬂaso(slso)“
j=0 7=0

Proof. Recall from (88) that

0,%

L= Xsps)i T a(()5081)i € €lid,id 1} ker(f2),

0,%
Y= O[(slso)i B a?slso)i < €{id,id~1} ker(fQ)'

We have to Compute z and y. Since both aw* and a! commute with both eiq and
g1 for all w € W of even length (for oy this is (85), and for %" one can use

the description of ker(gs) as an E%-bimodule given in Proposition 1.10.4), we deduce
that

T = €jdT + €,q—1%

= €jdTeid + €;q-1TE;q—1.
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and the same for y. Now, let us write

0 _ 0,%
6@7104(8081),6@71 - eﬁ—ll'eﬁfl - 6@710{(8081)1-6@71,
0 _ + 0,%
€m71 a(slSO)ieﬂfl - 6@71 yeﬁfl eﬁfla(slSO)iemfl,
a0 = e RN O .
ega(s(]sl)ieﬂ = egxeﬂ ega(SOSl)ie@
0 _ 0,%
e@a(swo)ie@ = —eéjdyeid + e@a(swo)ie@.

Here, the two terms on the right hand side of each of the four equalities lie respec-
tively in ker(f2) and in ker(gs). Since I' () = ¢, we deduce that the decomposition
E? = ker(fs) @ ker(ga) is T'p-invariant. Using the formulas for the action of I'y, on
E? (see (82)), we compute

0 — N .
Fw (eﬁfla(SOsl)ieﬁfl) — —6@01(3150)16@,

0 _ N )
I's (6@‘104(3150)1'6@‘1) = —€id (55, )iCid-

And so by the said I'-invariance it follows that

—eiqyeid = —'w (eﬁ_lxeﬁq),
eﬁgjeﬁ = _Fw( — 6@—1y6@—1),
i.e., changing signs,
eiqyeid = ' (eﬁ_weﬁ_l),
eiareid = ' (6@—1y€@—1).

The value of e,j-1xe;3-1 has been computed in Lemma 2.6.5, while the value of
€jq-1Y€;q—1 has been computed in Lemma 2.6.6 (and is zero). Hence, also recalling

once again the formulas (82) for the action of I'y, on E?, we get:

T = €jdTeid + €;q—1T€;q-1

— 6ﬁ_1$6ﬁ_1
i—1 i—1
_ + _ +
=2 Z 6Q—1a50(8150)i 2 Z eﬁ71a81(8081)”
j=0 7=0
and

Y = €idyeid + €jq-1Y€iq—1

=Ty (egflfﬂeﬁ—l)
i—1 i—1

= 2 Z eﬁasl(SOSl)i - 2 Z 6§a$0(8180)i ' .
J=0 J=0

Corollary 2.6.8. The k-basis of Zgo(E?) computed in Remark 2.6.4 can be explic-
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itly described as follows:

O __ 0 0% __ 0
€1 Qg = —eyp - g, xy " QXsy = —Cx, " Qg
0,% O,% __ 0

€1 Qg =e1 -0y, €x, " Asy = €x, " Ogys

e aO,* +e aO,* —¢ OcO e 040 ]
A (s150)1 AT X ps1)t T A (s150)7 A1 X (s0s1)0

for A € TO/T1 < {1,id} and i € Zs1,
0,%
(s150)

0,%

— 5.0 o 0
eid . T+ eﬁ_wz(sosl)i = ega(slso)i eﬁ_la(sosl)i

i—1
+ o + . — . —
+2 z : (6@_1a50(s150)i 6@_1a51(8051)i + eﬁasl(sosl)i egaS()(Slso)i)
Jj=0

for i € Z>1,
eao’* —i—eao’* —el-a)” —e1-a)”
1®(s150)1 1 (sps1) 1 (s150)%s1 1 (sos1)tso
_ 0 0 _ A0 ) _ A0 )
= €105, 50y T €105 511 T €1 Qg g0yisy T €1 Xgig)is,
for i € Z)l.

Proof. For all the components except the €4 jq—1-component this is immediate from
formula (88), while for the e ;4-1-component we use the last corollary. |

2.6.c Computation of Z(E*)?

Recall that in this subsection we want to prove that the inclusion Z(E*)? C Zpo(E?)
is actually an equality. This means proving that every element of E! centralizes
Zpo(E?). As we know from Lemma 1.10.3 that E! is generated by B8y, B, 20
and /6’21 as an F%-bimodule, it suffices to check that these four elements centralize
Z o (E?). Equivalently (looking at the definitions of 8% and B%*), we see that B,
Bfr , 2(;* and 53;* generate E' as an E%-bimodule, and so we might instead check
that these last four elements centralize Zgo(E?). This is a better choice because
of the following lemma, whose proof can be derived from results in [0S21] without

carrying out explicit computations.

Lemma 2.6.9. Each element of ker(gy) (in particular, 8% and B%*) commutes
with each element of Zpo(E?).

Proof. In [0S21, Proposition 9.6] the multiplication between elements of ker(g;) and
elements of ker(go) is determined via the following commutative diagrams:

multipl.

ker(gl) X ker(QQ) g
(/32]*,043’*) N
o] =X (109)
(Tw’T’L\)/‘FlEO) L
FYEO x I((F1E0)V finite)d (o e
X (( ) ) (ry@)—=—a(d(r)--) (( ) ) ,
and
ker(ga) % ker(gi) multipl. s
(012’*,62]’*) o
(2)x () % o)
(Tuv|F1E0,Tw) L
J nited ] L
(! BO)Vfinite)? s 1 0 ((E0)Vfinite)?

()= —a(--3(7))
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Using the isomorphism 3((F1E0)V’ﬁnite)3 >~ E3/FyE? of Remark 2.6.2, we claim
that we obtain the following commutative diagrams:

ker(g1) x ker(ga)

multipl.
(B ,ad™) \
1 |®x® E3, (111)
(Tw,¢v) /

FUEY x g3 mEs 0T

and
ker(g2) x ker(g1)

multipl.
(ag’*ﬁg’*) \
1| @x® EB. (112)
(d)'uﬂ—w) /

E3/FyE? x F1EO (Gmm=er

We check this for the first case, the second one being completely analogous. Let us
work with the diagram (109): we first rewrite the map on the bottom as

FLEO « 3((F1Eo)v,ﬁnite>3 , g3

(T771Y|F1E0) 7 _TX‘FIEO(g(T) : *) = _T;/(H(T) ’ *) =T T'IY’

Hence the map obtained by composing the map on the bottom with the inverse of
the map on the right (always of the diagram (109)) is

FIEO % g((FlEO)\/,ﬁnite>3 3((E0)\/,ﬁnite>8

(T,T;/‘FlEO) % S —T Oy
Replacing 3((F1E0)V’ﬁnite)3 with E3/FyE3, we get a map

F'E°x B3/ RyE® ——— E3
(T, ¢v) ——— —T - bv.

Now, this is basically the map on the lower diagonal arrow of the diagram (111),
except that here we are taking a specific representative for each element of E3/FyE3,
whereas in the map in the diagram we claimed that we could take arbitrary repre-
sentatives. But this is allowed because looking at the explicit formulas for the action
of E¥ on E? we see that multiplication by an element of F'EY sends FyE? to zero.
This shows that the map on the lower diagonal arrow of the diagram (111) is well
defined and that such diagram commutes.

Now, looking back at the statement of the lemma we want to prove, we see that
using the diagrams (111) and (112) such statement can be rephrased as follows: for
all 7 € FYEY and all ¢ € Zpo(E3/FyE?) one has —7 - ¢ = —¢ - 7. We recall that
in Lemma 2.6.1 we have shown that each element of Zpo(E?/FyE?) admits a lift in
Zpo(E3), and so the claim follows. [
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In view of what we said before the lemma, it remains to prove that 5; and Bf
centralize Zpo(E?). After a preliminary remark about cup products, in the next
lemma we will compute products between ] (respectively, Bf ) and elements of E2.

Remark 2.6.10. Let w € W. Let us consider (¢, ¢t), € H'(I,X(w)) and
(a=,a% at), € HY(I,X(w)). One has:

(@™, aM)y v (7, M = ((a7,a% a™), (7, &, ¢")) du, (113)

where (_, _) denotes the natural component-wise pairing (recall that we are consid-
ering a~,a" € O/M®p, k and ¢, ¢t € Homp, (O/IM, k), and that, if £(w) > 1, we
are considering o € % ®r, k and A e Homp, (%, k:))

Proof. Let us recall from (40) that ¢, is the unique element of H3(I,X(w)) such
that

(77 ogd> (fw) = 1.
Therefore any other ¢ € H%(I,X(w)) is such that
p=(108")(9) bu

(to show this it suffices to write ¢ as a scalar multiple of ¢,, and applying the map
n o 8% to determine the value of such scalar). In particular, since we know that
(a™,a’ at), v (c, ct)y € H3(I,X(w)), we deduce that

(Oé_, aO’ a+)w ~ (C_, 607 C+)w = (77 © Sd) ((CY_, aO’ a+)w ~ (C_7 CO’ C+)w) “ Pu-

The explicit identification of H?(I,X(w)) with H'(I,X(w)) is, by construction,
through the isomorphism

H*(I,X(w)) —— HYI,X(w))"

o — (noSd)(av_),

but then the value of (0 8%)((a™,a’% at), v (c7, % c")y) is exactly the value of
the natural pairing ((a™,a% a%),(c™, % c¢)). [

Lemma 2.6.11. Let w € W. Let us consider (c=,0,ct)y € HY(I,X(1)) and let us
consider (a~,a%, at), € H*(I,X(w)). One has:

(C_a 07 C+)1 : (O[_, aoa a+)w

((c7,a™)y +{cT,at)) ¢ if weT?/TH,

=4 (a7 ) if w¢ T°/T! and £(s;w) = £(w) + 1,
(¢t a)duw if w ¢ T°/T" and ((sow) = £(w) + 1.
(114)

Proof. Using the relation between (the opposite of ) Yoneda product and cup product
(Corollary 1.9.3) and since the cup product between an element of E' and an element
of E? is commutative, we find that

(c7,0,¢M)1- (o™, a’ a™), = ((c_,O,c+)1 'Tw) v (7'1 . (a_,ao,a+)w)

=(a",a’ a™), v ((c_,070+)1 . Tw) .
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Thanks to the formulas (65) for the right action of E° on E' the term on the right
can be computed as

(c7,0,¢T)y ifweT/T!,
(c7,0,¢M)1 T =2 (¢7,0,0) ifw¢ T°/T" and £(s1w) = L(w) + 1,
(0,0,c")y  ifw ¢ T°/T! and £(sow) = £(w) + 1.

Now we can compute the cup product above using the explicit formula (113), finding
that

(c7,0,¢M)y - (of,ao,oﬁ)w = (of,ao,oﬁ)w v/ ((c*,O,ch)l . Tw)
((c7a™) + (¢, a™)) ¢y if weTO/TH,
= {(c,a)ouy if we¢ TO/T! and £(s;w) = £(w) + 1,
(¢t at) oy if w¢ T°/T' and ((sow) = £(w) + 1.

Proposition 2.6.12. One has that the inclusion Z(E*)? C Zgo(E?) is actually
an equality, and furthermore Zgo(E?) is isomorphic to Zgo(E®)/FoE® as a Z(E°)-
bimodule, and an explicit k-basis is given in Corollary 2.6.8.

Proof. 1t remains to check the first statement, the second one having been proved
in Corollary 2.6.3 and the third one in Corollary 2.6.8. We have already explained
at the beginning of this subsection that it suffices to check that the four elements
By, B, 625* and ,6’21’* centralize Zpo(E?), and the last two elements have already
been dealt with in Lemma 2.6.9. Hence, it only remains to check that the elements
of the k-basis computed in Corollary 2.6.8 commute with 8, and Bf . To compute

these products we use Lemma 2.6.11: for all w € W ~ (T°/T"), one has

— 0_
Bl'aw_()?
+ 0 _
1'aw_0)

ol - B =3 (87 - (-1
ol B =3 (B (-1l 1) =o.

It follows immediately that the commutators [3;,a] and [3{", a] are both equal to
zero for o equal to one of the following elements of our k-basis of Zgo(E?):

0 0 0 0
— e10,, —€x, Osgs €10, €xy sy s

0 0
6)\06(8150)1' — eAila(Sosl)i

for i € Z>; and for \ € W ~ {1,id},

0 0
s1(s051)¢ + el

0
—aoa s0(s150)*

0
€1y (s0s1)i

Slso)i — el

for ¢ € Z>1.
It remains to compute the commutators [3;, a] and [B;", o] where

0 0
7@(8180)1' - 6@*10&(

Q= €id 5081)"
i—1
o _ + S +
+2 Z (egam(som)j Cid =" Xy (sos1)7 — “d%%sg(s150)7 + e@_lasf)(slso)j)
J=0
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for © € Z>1. Since the first two terms do not contribute to the computation of

the commutator, it suffices to prove that the commutators |3 ,eiqo, — eﬂflaf;]

and [5{,6@0@ — eidflaﬂ are both zero for w of the form s1(sps1)’ or so(s150)’
(for j € Zxzo). Using the formulas (57), (81) and (45) for the involutive anti-
automorphism J and the formulas of Lemma 2.6.11 for the left action of 3, and
Bfr on E? we compute

ag - B =3(38r)-3(ay) =3 (B - (—af1)) =0,
af BT =3(3(B7) - 3(eh)) =3 (B - (—ay-1)) = I—bu-1) = —u,
ay BT =338 3(0y) =3 (8] - (—af 1)) = I(—=by-1) = —duw,
a8 =33(87)-3(a)) =3 (8] - (—a,)) =0

We are now able to compute both [Bf, €id0y — eid_laﬂ and [ﬁf, Cidy, — €iq—100 |
also making use of the formulas (61) for the left and right action of the idempotents
on E'. Let us start with the former commutator: one has

— — +) _ — — ot
B - (eﬁaw — eﬁflozw) = €E7161 SOy, — eﬁfsﬁl Con =

eﬂ*1¢Wa
(eﬁa; - e@*1a$> : ﬁl_ = —€g-1- (_¢w) = e@*“ﬁun

and hence the former commutator is zero. Similarly, for the latter commutator one
has

+ - +\ _ + - + . o+
pi - (eﬁaw - eﬁflaw> = eﬁi”/ﬁl O, — €idf] - Oy = —€idPuws
— +) .3+ —
(e@aw — €ﬁ—law> B = —eidPw,
and hence the latter commutator is zero as well. [ |

2.7 Structure of the 2" graded piece of the centre as a
Z(E")-module

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose 7 = p.

Since we know from Proposition 2.6.12 that Z(E*)? = Zpo(E?), it follows that
Z(E*)? has a natural structure of Z(E")-module. Moreover, from the same propo-
sition we know that Zgo(E?) is isomorphic to Zgo(E?)/FyE? as a Z(E®)-bimodule.
Since we know the structure of Zzo(E?) as a Z(E®)-module explicitly, it will then
be easy to describe the structure of such quotient.

Recall the decomposition Z(E°) = [T er e4Z(E®) and the description of the
components ey Z (E?) stated in Section 1.7, which we already used for the description
of Z(E*)? in Section 2.3. As in Section 2.3, we distinguish the components relative
to the idempotents e1, ey (where x, is the quadratic character) and e for v € I'
of cardinality 2.

e Recall from Lemma 2.3.2 that, identifying e; Z(E°) with the polynomial ring k[X]
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as in Lemma 1.7.1, one has the following isomorphism of k[X;]-modules:

KIX1) kX)) KX, XD

I

*\3
Xi—1 " (x) K[X1] aZ(E)
(1,0,0) - 11,
(O,T, O) b ” €1¢50 - €1¢817

(0, O,X;i)

(fOI‘ i€ Z}l)

Ui,

where Uy ;1 == 61¢(8180)¢71 —i—elqb(sosl)iﬂ _€1¢51(5051)i71 —€1¢50(5150)i71. Now, from

the isomorphism Zpo(E?)/FyE? = Zo(E?) we obtain an isomorphism
e1Z50(E®) Je1FoE® =5 ey Z o (E?),

of which we know an explicit description (compare Remark 2.6.2). It is then easy

to compute that we have an isomorphism

E[X1]  k[Xy, X[ = 2
e1Z(E*
X0 R 1)
(O,T, 0) —_— elag(’)* - elagi*,

0, O,X—i)
( 1 _— Vl,i—h

(for i € Z>1)

where

x +e aO,*
(s150)—1 1 (sgs1)i—1

1
VM*l = 0,%x 0,%
—€105; — €105,

—e aO,*
1 s1(sps1)i—1

if i > 2,
if i = 1.

_e CVO’*
1 so(s180)i—1

e Recall from Lemma 2.3.3 that, identifying e, Z (E®) with the polynomial ring
k[Xy,] as in Lemma 1.7.1, one has the following isomorphism of k[X, ]-modules:

-1
k[XXO] k[XXO] k[XXO’XXO ] = e Z(E*)S
(Xx,) — (Xy) k[ Xy, *o
(T, 0, 0) F 6X0 ¢80 )
(O,T, 0) % €xo Gsy s
0,0, Xy *
(0.0.55) .

(fOI‘ xS Z}l)

where Uy -1 =
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Proceeding as for the e;Z(E°)-



component, we find the following isomorphism:

-1
k[XXO] @ k[XXO] ® k[XX()7XX0] = s e Z(E*)2
X X X! "%
( Xo ) ( Xo ) k[XXO] XXO
(1,0,0) S exoag(’)*,
(0,1,0) > exoagi*,
—i
(Oy 07 XXO) N onﬂ:_17
(for i € Z3»)
h Vo . ,_ 0,% 0,%
where Vy i1 = exooa(swo)i_1 + €x, O‘(sosl)i—l'
With a shifting of the indices, we also get
—1
0l g Ml g B0 Tl o 7y
(XXO ) (XXO ) k:[XXO] %o

e Now let us treat the e,-component for v = {A\,A\71} € T of cardinality 2. As in

Lemma 1.7.1 we identify e,Z(EY) with the ring %, where X and X1
—

are indeterminates. For the moment let us use the letters X and Y for such

indeterminates to simplify notation; recall that in order to describe e, Z(E*)® we

k[X,)Y] k[X,)Y]

considered the injective hull of k = Xy) 82 Xy -module, which we denoted

by

Erx.y) (k).

Yy

We showed that it admits the following k-basis (see (103))

(X9 for i € Z>1,
(Y4 for i € Zs1,

X-(1)V =0,
Y- (1)Y =0,
X (XY =(X"HY forie Zs,
Y- (XHY =0 for i € Z>1, (115)
X-(YHV =0 for i € Z>1,
Y- (Y)Y =YY forie Zs.

Now, let us recall the description of e,Z(E*)3 from Lemma 2.3.4: we have the
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. . . k[XkaX —1] .
following isomorphism of ()(T;_l)—modules.

= s ey Z(E")3

k® gk[XAaXAA] (k)
(Xx-Xy—1)
> expr — ex-191,

(1,0)
(0,(x3)) U
(for i € Zs1) g
(© (Xf\fl)v) % > Un-1,45

(for i € Z31) ’

(0,(1)")

where for € {\,\7!} and i € Z>( we had
Uu,i = 6M¢(8150)i + eﬂ_lgb(sosl)i'

Therefore, with the same argument as for the previous components, we get an

isomorphism
(S 1 (0))/ (k- (1)) — e, Z(B")?
(XA Xy—1)

1\V
(X)\) ¥ ” V)\ia

(for i € Zx1)

X .
(for A GZ}l) v

where for p € {\,A\7!} and i € Z>1 we define
0,% 0,%
+ eufla(sosl)i'

Vi = (g, s0)i
By the formulas (115), we see that the quotient <5k[X7Y] (k))/(k -(1)V) can be
X7)

described in a much simpler way, namely as

k[X,Xfl] k[Y,Yﬁl] o~ (5k[X,Y] (k‘))/(k . (1)\/)

k[X] k[Y] 77
(Xii)va 0 | N \V
((for i€ Z}l)) ' i (X ) ’
(0,(Y=)Y) ; Y)Y,

(for i € Z>1)

where we see the first direct summand as a k[X,Y]-module by declaring that X
acts in the obvious way and that Y acts by zero, and symmetrically for the second
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direct summand. Hence, we obtain an isomorphism

KXo, XY kX, XA

) — 5 e Z(E*)?
HX) %) A
((xX)Y,0) Vair
(for i € Zx1) ’
(07 (Xi— )\/) V)\_l,i

(for i € Zx1)

For the next two remarks, let us assume again that v = {\, A7'} € T is of
cardinality 2, and let us denote by M), and M,-1 the two direct summands of

9 . . K[X XY kX, 1, X 5] .
e Z(E*)* corresponding respectively to T@ and to W via the above

isomorphism.

Remark 2.7.1. With notation as above, neither M), nor M,-1, nor the whole
e, Z(E*)? are injective e, Z(EY)-modules.

Proof. Since a direct summand of an injective module is injective as well, it suffices
to show that the k[X,Y]/(X - Y)-module k[X, X ~1]/k[X] is not injective. It is easy
to see that the following homomorphism of k-vector spaces is also an homomorphism
of k[ X,Y]/(X - Y)-modules:

(X, Y)k[X,Y] k[X,X‘l]
(X-Y) RIX]
X

(for all i € Zx1)

Yi
(for all ¢ > 2)

Assume by contradiction that there exists a homomorphism of k[X,Y]/(X - Y)-

modules
k(XY kX, X

XYy R[]

extending the one above. Then one has

0=Y p(1) =¢¥)=X"1#0,
and this contradiction concludes the proof. |

Remark 2.7.2. With notation as above, M) is an injective module over the ring

ey Z(E°)
Ry =
Ann,_z(poy (M)

(and the analogous result holds for M, 1), More precisely, My is the injective hull of
k as a module over the ring Ry (where T acts by zero on k).
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Proof. Using our fixed isomorphism k[Xy, Xy-1]/(X) - Xy-1) & e,Z(EY), and de-
noting by X and Y the indeterminates X and X,-1 respectively in order to simplify
notation, one has:

kX, Y] kX, Y]
e, Z(E°) (X.Y) (X-Y)
A7 Ann, gm0y (M) Amn kX, X (Y) X
G KX (X-Y)
and k[Xk[ﬁ{ 1 is the injective hull of k£ as a module over k[X] (where X acts by zero
on k), as explained in [Lam12, Proposition 3.91.(1)]. [ |

2.8 Multiplicative structure of Z(E*)

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5). To
use results proved in the previous sections we may assume without loss of generality
that m = p (there is no loss of generality because our statements will be independent
of such choice, while in the previous sections computations and explicit formula
for bases could depend on it). In Remark 2.8.2 we will work under more general
assumptions.

Since Z(E*)! = 0, the multiplicative structure of Z(E*) is very simple: describ-
ing the multiplication amounts to describing the multiplication on Z(E*)? and to
describing Z(E*)? and Z(E*)? as Z(E*)’-modules. Recall from Proposition 2.4.1
that Z(E*)° can be described as

kxk ——= 5 7(E")
(1,0) ———

(Tl + 7_671) )

0,1) —— (7'1 — Tc_l) .

N~ N~

It remains to describe Z(E*)? and Z(E*)? as Z(E*)-modules.
Remark 2.8.1. Both Z(E*)? and Z(E*)? are free Z(E*)°-modules of rank Rg.

Proof. Let i = 2 or 4 = 3. For all {\,A\"'} € T, one has that 7. , acts on the
component egy \-13Z(E*)" by multiplication by A(c_1) € {1,—1}. Let us identify
Z(E*)? with k x k via the above isomorphism: then & x 0 is the unique Z(E*)°-
module of dimension 1 over k£ such that 7. , acts by 1, while 0 x k is the unique
Z(E*)°-module of dimension 1 over k such that 7., acts by —1.

Now, let us choose a k-basis of efy \-13Z(E*)": by the explicit description of
this submodule we know that such basis has cardinality Rg (see Lemma 2.3.1 and
Proposition 2.6.12). Combining this with the above remarks about the action of 7._,,
we see that e{)\7/\_1}Z(E*)i is either isomorphic to @nezzo(kz x0) or to P (0xk)

as a module over the ring k x k = Z(E*)°. Therefore

2B = (P x0)) o (O xk),

jeJ1 JEJ2

n€Z>0

for suitable sets J; and Jo that are either empty or of cardinality Ry. Since there
exists at least one A\ € T0/T" such that A(c_1) =1 (e.g., A = 1) and at least one
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A€ JW such that A(c_;) = —1 (e.g., A = id), we conclude that both J; and
Jo have cardinality Rg, and so Z(E*)" is free as a module of rank Ry over the ring
kxk=Z(E*)°. [ |

Remark 2.8.2. Under the more general assumptions that G = SLy(F) (with the
usual fixed choices as in Section 1.5), that [ is torsion-free and that F, C k, the same
proof shows that Z(E*)? is a free Z(E*)°-module of rank X (recall that d denotes
the dimension of G as an analytic manifold over Q).
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Chapter 3

The Ext-algebra for more
general groups: low graded
pieces of the centre and other
remarks

This chapter is mainly devoted to understanding the 0 and 1% graded pieces of
the centre for general groups G. We achieve the following results.

e In Section 3.1 we completely determine the 0 graded piece of the centre without
further assumptions.

e In Section 3.2 we completely determine the 15 graded piece of the centre under
the assumption that § is an unramified extension of Q.

Furthermore, the final Section 3.3 is devoted to extending to the Ext-algebras the
following result about pro-p Iwahori-Hecke algebras: denoting by T is the sub-
monoid of 7' consisting of the elements ¢t such that (valgoa)(t) > 0 for all a € II,
one has an injective homomorphism of k-algebras

k[Tt /TY —— H

(t) ———— 7.

3.1 The 0'" graded piece of the centre

Assumptions. We put ourselves in the general assumptions of Section 1.1, without
any restriction on G and §.

In this section we will describe the 0" graded piece of the centre of the Ext-

algebra E*. The first subsection contains the main statement, while the second
subsection deals with the proofs.

3.1.a Statement

Recall from Section 1.2 that we denote by C the centre of G (meaning the whole
centre, not just its identity component). As usual, we denote by C its group of §-
rational points. Recall from [Mill7, Proposition 17.71 (b)] that C is contained in
T, and hence C is contained in T. As a side remark, note that C is the centre of
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G: indeed if an element g € G centralizes the whole G, then G C Cg(g)(§F), where
Ca(g) is the schematic centralizer of g in G. But Cg(g) is a closed subscheme of
G (see [Mill7, Proposition 1.79]), and G is schematically dense in G (see [Mill7,
Theorem 17.93]), and hence we conclude that G = Cg(g), i.e., that g € C(§) = C.

We will now state the theorem describing the 0" graded piece of the centre of
the Ext-algebra. We will prove it in the next subsection, splitting the argument into
various lemmas.

Theorem (see Theorem 3.1.10). Let us define
C=(C -TY/T"
One has the following facts:

e One has the following isomorphism of k-algebras describing the 0" graded piece
of the centre of E*:

k[C] —— Z(E*)°
(c)

~ Te.
(with c € C)

e The obvious inclusion Z(E*)? C ZEoqu(I,X(l))(EO) is actually an equality.
eCisa subgroup 0f(~2 NT/T' and it can also be described as
C={teT | a(t)c1+Mfor all a € ®} /T".

Moreover, in the obvious isomorphism C/(C NTY) = (C - TY)/T* = C, the group
CNT?! can be described as the (unique) pro-p Sylow subgroup of the unique mazimal
compact subgroup of C.

We complement this theorem with a few remarks: namely, we discuss the fact
that the inclusion C C Z(W) is not an equality in general, we discuss Z(E*)? for
the groups SL,, and GL,, and we determine when Z(E*)? is “trivial” (i.e., just equal
to k).

Remark (see Remark 3.1.11). The inclusion C C Z(W) might be strict in
general, but it is an equality if the order of the fundamental group of the derived
group of G is not divisible by 2.

Example 3.1.1. We briefly discuss the examples G = SL,, and G = GL,,.

e Let G = SL,, for n € Z>5. One has C = pu,,(§). By the theorem we know that we
have an isomorphism Z(E*)? = k [C/(C N T")], and that (C NT") is the p-Sylow
subgroup of C. It follows that

Z(B")° = & [, (Fy)) = K[X]/(XecAa1) — 1),

In particular, if F, C k, then Z(E*)? = Hngl(n’q_l) k.

1=

e Let G = GL,, for n € Z>;. One has C = §* =2 Z x F x (1 + M). Again we
use the isomorphism Z(E*)? = k [C/(C NT")], together with the description of
CNT! as the pro-p Sylow subgroup of the unique maximal compact subgroup of
9, and we get

Z(E) 2k [ZxFf] 2 k[X, X Y]/ (YT —1).
In particular, if F, C k, then Z(E*)® = [} k[X, X 1]
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Remark 3.1.2. The inclusion k¥ C Z(E*)? is an equality if and only if G has finite
centre C of order coprime with ¢ — 1 (compare also the example of SL,, above).

Proof. As in the above examples, it is useful to work with the description
Z(EYY =k [C/(CnTh)].

Since C is contained in a split torus, it must have the following form (see [Mill7,
Proposition 12.3 and Theorem 12.9]):

C =Gy X g X oo X

for some r,m € Z>¢ and some ni,...,n, € Z>;. Making use of the fact that
T =78 x g 1 (F) x (L+9M) with p, (F) = F7 and of the fact that CNT! can is
the pro-p Sylow subgroup of the unique maximal compact subgroup of C, it is easy
to see that

CHONTY) 2L % ((Fg)*)" X po, (Fg) % -+ X puy,, (Fy),

and so C/(C' NT') is trivial if and only if » = 0 and ny,...,n,, are coprime with
q—1. ]
3.1.b Proofs

Recall from Theorem 1.6.1 that the centre of E° has the following k-basis:

20 = Z By(z) for all the Wy-orbits O C T/T", (116)
€O
where o is a fixed spherical orientation and where (Bo(w)),, .37 denotes the associated

Bernstein basis.N
For all w € W one has

By(w) — Ty € @ k.
UGW
s.t. £(v) < l(w)
This is easy to see: indeed, following [Vigl6, Proof of Corollary 5.26] let us write
W = 81 - Syw for suitable sq,. .., sy,) € Sa and w € 2; from the definition of the
Bernstein basis, or more generally of the alcove walk basis, one sees that B,(w) — 7y,
is a k-linear combination of elements of the form 7./, where w’ = &} ---§.w’ for
suitable s,...s;. € {s1,... 84w} With r < £(w) and W’ € Q, and the claim follows.
Therefore the following formula holds:

Z0 = Z Te +T0 for some ro € @ kT, (117)
z€0 veW
s.t. £(v) < £(O)

where £(O) is defined as ¢(x) for x € O (this is independent of the choice of x
because of the formula £(z) = £ " . |(valz oa)(z)| recalled in (10)).

We are now going to see a couple of preliminary statements before the stating
the most important lemma for the proof of Theorem 3.1.10.
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Remark 3.1.3. Let x € T/T"!. Recall from Lemma 1.3.2 the Iwahori decomposition
of the group I,: the product map induces a homeomorphism

1
I Wegeion x T % JT Wagata) — L
acd— acdt

where the products on the left hand side are ordered in some arbitrarily chosen way
and where g,(a) =min{m € Z | (a,m) € ®}; Nz®f;}. Since z € T/T!, we claim
that the definition of g,(«) simplifies as follows:

( max{1l, (valzoa)(z) +1} ifae ®™,
() =
g max{0, (valg oar) ()} ifa € @,
Proof. One has:

gi(a) =min{m € Z ’ (,m) € D NER L
= min {m €z ‘ (o, m) € . and T (a,m) € (I):ﬁ}
=min{m€Z | (a,m)
B {min {meZ | m

€ @1 and (o, m — (valgoa)(t)) € @
1 and m — (valgoa)(t) > 1} ifae€ @~
0 and m — (valgoa)(t) = 0} if a € T
+1} ifae ®”
} ifa € P,

min{me€Z | m

_ {max{l, (valg oa) n
)

(t)
max{0, (valz ocr)(t)

t

Lemma 3.1.4. Let s € Sag and let (as,bs) be the corresponding affine root. One
has that I is normal in I and that there are the following isomorphisms

Il

>~

1/1,

O/9m.

u—u u(as:hs)/u(a57h5+l)

Proof. See [0OS19, Corollary 2.5.iii and Equation (12)]. [ ]

Remark 3.1.5. Let us remark that 7' C {t € T | a(t) € 1 + M for all a € @}, so
that it makes sense to define the quotient {t € T | a(t) € 1+ M for all a € ®} /T,
which we will consider in the next lemma. Indeed, a root « sends the unique maximal
compact subgroup 7° of T to the unique maximal compact subgroup O of F*, and

« sends the unique pro-p Sylow subgroup 7! of T° to the unique pro-p Sylow 1+ 9
of O*.

The next lemma is the main part of the proof of Theorem 3.1.10. Indeed, although
the lemma itself does not describe the Oth graded piece of the centre, it gives a quite
strong necessary condition for an element to lie in Z(E*)°.

Lemma 3.1.6. Let
C'={teT | a(t)e1+Mforall a € ®} /T".

One has that every element of E° that commutes with the whole E° and the whole
HY(I,X(1)) lies in the k-vector space spanned by the elements of the following set:

{zo ’ O C T/T1 orbit for Wy made of elements of 5’} ,
where the zo’s are defined in (116).

102



In the statement of the lemma, we have used the notation C’ in order to distin-
guish it from C = (C-TY)/T!, although a posteriori these two groups will be equal,
as claimed in Theorem 3.1.10. We also remark that with this alternative description
of C’ it also follows that the orbits in the statement of the lemma have cardinality
equal to 1.

Proof of the lemma. Let z € E° be an element which commutes with the whole E°
and the whole H!(I,X(1)). Using the description of the centre of E° as in (116), we

can write z as
z= E apzo,

oCcT/T!
Wo-orbit

for suitable coefficients ap € k (almost all of them equal to zero). Clearly we might
assume that z # 0 and set

L :=max{{(O) | O CT/T" orbit such that zp is in the support of z} .

We have seen in (117) that for all O one has

20 = Z Ty + 70 for a suitable ro € @ kv,
= veW
s.t. £(v) < £(O)

z= Z Z aoTs + 7, (118)

O orbit z€O
s.t. £(0O) =L

and therefore

for a suitable r supported in length strictly less than L. Let v € H*(I,X(1)), for
the moment without further assumptions. Let us compute separately v -z and z -y
and then let us try to deduce some constraints on the coefficients ap’s from the fact
that v -z and z - v are equal. Since for all w € W one has that both v -7, and 7, -y
lie in H'(I,X(w)) (see Corollary 1.9.5), we deduce that

yoz= ) dao ym o+ 3T,

~—— =

O orbit z€O .
_ €H(I,X(x)) supported in
st 40) =1L length<L
20 = E E ap Ty o+ Ty
O orbit z€O :
_ €H'(I,X(z)) supported in
st H0) =1 length<L

Let O be an orbit of length L and let x € O. Furthermore, let us consider the pro-
jection map pryi(; x () E' — HY(I,X(z)), meaning the projection with respect
to the direct sum decomposition E! = D, i HY(I,X(w)). One has:

PT i1 (1,x(2)) (Y * 2) = a0 - Ta,
Prat(1,X(2)) (2 *Y) = aoTs -

Since we are assuming that v and z commute, we have found that (for all orbits O
of length L) one has:

ao=0 or  y-T, =7, 7 forally€ H(I,X(1)) and all z € O. (119)
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Now, let us compute explicitly v - 7, and 7, - v, in order to prove that they are
different “for many choices of x and v”. Corollary 1.9.5 yields the following explicit
description of v - 7, and 7, - ¥:

Shy(y - 72) = resy, (Shi(y)),
Shy (7 -y) = 1resgflf1 (a;* Sh; (fy))

x

(120)

Let o € Il and let s(,,0) be the element of S, corresponding to the affine root («, 0).
Since «v € II, one has that s, ) € Sat, and we can apply Lemma 3.1.4, which states
that I, is normal in I and that we have an isomorphism I/ , = O /9. Let
f:O/M — k be an homomorphism of [F,-vector spaces, and let us define following

composite map:

uot. >~ &~
gmfl I 4 I/Is(a,o) ﬁ) u(a,())/u(a,l) —— D/i)ﬁ i) k.

ea(p §)ca

The map £, ¢ is a homomorphism of topological groups from I to k, i.e., an element
of HY(I,k). Let us define v, ; == Shy' (&) € HY(I,X(1)) (here the Shapiro iso-
morphism is basically the identity, but we write it explicitly to emphasize that we
consider v, 5 € H'(I,X(1)) C E'). Putting this into the formulas (120), we get

Sha (Yo - 7a) = resy, (ba.s),
Shy (7, - ’Ya,f) = 1“(35}51‘”‘”_1 (x*ﬁmf).

x

(121)

Let t, € T be a representative of . By the explicit description of I, given in Remark
3.1.3, we know that U, g, (a)) € Iz, where g;(a) = max{0, (valg oa)(t)}. Therefore,
it makes sense to compute the image of Shy (7, - 72) and the image of Shy (74 - Vo, f)

on the subgroup U4 g4, (a)) € Iz- This yields:

She (Ya,s * 72) (W(a,g, (0)) = €af (Uiaga(a))):
Sha (72 - Yo f) Wiaga(a)) = (Tx€af) Wiarga(a)))
= o 7 (t7 W go()ta)
= Lo, f (Uag, (a)—(valg 0a) t2))):

where in the last step we have used (7).
Let us examine the following cases.

e Assume that (valgoa)(t;) > 0, and choose f # 0 (clearly it exists). One has

Shy (Yo, - 7o) (Uaga (0))) = €of (Uiaga (a))
= Lo, (Wa,(valg oa)(t)))
C &a,r(Ua,1))
= {0},
Sha (72 Yo ) (Uago () = Eaf (U, (valy 0a) (t)— (vals oa)(ta)))
= &a,f(U(a,0))
= [ (O/M)
# {0}.

Hence Yo, f * 7o # o - Vo, f-
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e In a similar fashion, assume that (valg oa)(t;) < 0, and choose again f # 0. One
has

Sha(Yas - 72) (U ge (@) = €arf (U(aga (@)
= Sa.f (Ua,0))
= f(O/m)
# {0},

Shy (7 - 'Vaj)(u(oc,gz(a))) = o, f (u(a,O—(Vals Oa)(ta:)))
C &a,r(Ua,1))
={0}.

Hence Yo, f * T2 # o - Vo, f-

e Assume that (valgoa)(ty) = 0 (i.e., that a(ty) € O*) and furthermore that
a(ty) ¢ 1+ 9M. For the moment, let us not make any assumptions on f. Since
gz(a) = 0, one has that U, g) € I, and so it makes sense to compute the following:

Shy (Yo - ) (wa <(1) i)) = oy (wa <(1) i))

=f(),

20 (20 (5 1)) =t (40 (3 1)
I%JG?”%(31>¢O
= &a,f (soa <(1) a“i“))

= f(att) ).

where we have used the equality t; - o (1) s = goa((l) O‘(tﬁrl ) (see (1)). Since

we have assumed that a(t;) ¢ 1+ 9, obviously «(t,)~! # 1, and we can find

[ € Homg, (O/M, k) such that f (a(tz)) # f(1). It is therefore clear that for
such choice of f one has v, - 7o # Tz - Va,f-

Now we are able to give huge constraints on the orbits appearing in the support of
z.

e First of all, we claim that the maximal length L is actually zero: indeed, by
contradiction, if it were strictly bigger than zero then, choosing O of length L
such that ap # 0 and choosing z € O, there would exist o« € II such that
(valz oa)(ty) # 0 (indeed there would exists an o € @1 with this property by the
length formula (10), and then there would exists also an o € II with the same
property). But for such a we have proved above that, choosing f # 0, one has
Ya,f T 7 Ta* Yo, and this forces ap to be zero (see (119)), yielding a contradiction.

e Now, since we have proved that L = 0, the description of z we gave in (118)

becomes much simpler:
= Y WY

O orbit €O
s.t. £(0) =0
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To finish the proof, it remains to show that for all orbit O of length zero such that
ap # 0, all x € O and all a € ¢ (equivalently, all & € IT) one has a(t;) € 1 + M.
Assume by contradiction that this is false and let us consider O, x and « which
do not satisfy this condition (we can assume « € II). Then since the length
of x is zero one has (valgoa)(t;) = 0 by the length formula (10) and, since
moreover a(ty) ¢ 1+ 9, we have shown that for a suitable choice of f one has
Yo, f Tz 7 Tz Va,f- But this forces ap to be zero (see (119)), yielding a contradiction
and completing the proof. |

Remark 3.1.7. For later use we record the following fact: let
C'={teT | alt)el+Mforall a € ®} /T"

as in the last lemma (we will prove in Theorem 3.1.10 that C' = (C-TY)/T"). Let us
consider z € (T/T") \.C". In the proof of the last lemma we constructed an element
v € HY(I,X(1)) = HY(I, k) such that

[77 TGE] 7é 0.

Moreover [v,7;] has the property that Sh,([y,7.]) is zero on T!, as it is easy to
see from the formulas of Corollary 1.9.5 since conjugation by x~! acts trivially on
T! (actually, for the specific v we have constructed it is also easy to see that both
Sh,(7y - 72) and Shy (7, - ) are zero on T1).

Lemma 3.1.8. Let w € Q, let i € Zsg, let v € W, and let 3 € HY(I,X(v)). One
has the following formulas:

81, € Hi(I,X(vw)) and Shyw (B - 7w) = Shy (),
T, - B € H(I,X(wv)) and Shee (T - B) = ws Shy(B).

In particular, for all c € 5’, one has that 1. centralizes E*.

_ Note that the final part of the statement follows from the first one because
C C Q, for example by the length formula (10).

Proof. Since the length function is constant on each double coset modulo Q (see
after (11)), we can apply Corollary 1.9.5, finding that

B-1, € H(I,X(vw)) and Shyw (B - Tw) = resﬁw (Shy(8)),
T B € H'(I, X (wv)) and Shu (7, - B) = 1esi™ ™ (n, Shy(8)).

Since w has length zero, conjugation by w normalizes I (see [OS19, after Equation
(5)]), and hence one has

Iw =INwwlw vt =TInvlv! =1,

1

whw ' =wlv ' Nnwvlv v = INwolv v = Lo,

and the claimed formulas follow. [ |

Lemma 3.1.9. Let t € T such that a(t) € 1+ M for all « € @ (in this lemma @
could be replaced by any other subset of X*(T)). Then there exists t' € T with the
following properties:

e l=1tinT/T",

106



e a(t')=1 for alla € ®.

Proof. Since T is §-split, it is isomorphic to G}, over § (where n = dim(T)). Since
this isomorphism preserves the formation of 7', T9 and T, there is no loss of gener-
ality in assuming that T = G . Recall that one has the isomorphism of topological
groups
Zx pg1(F) x (1+9M) ——— i de
(m,z,u) ————— 7" -z - u.
Since T' = (F*)", we can write ¢ as

t= (7" 2i  Ui)ief1,..n}>
for suitable m; € Z, z; € p,_1(F) and u; € 1+ M. Let us define
thi= (1" 2i)ieq1, o n)-

Clearly, since T/T! = (F*/(1+9))", the requirement that £ = # in T/T"! is sat-
isfied. Now, let @« € ® C X*(T) and let us write it (in multiplicative notation) as
a = [TiZ, pri’, where (pr;)ic(1,.. n} is the standard basis of X*(T) made of projection
maps. One has

n n
i=1 =1
n
Oz(t,) = 7721‘:1 Cimy | H xfl
=1

By the first line and the isomorphism describing §*, we see that 2= Mici Lz =1
Hence a(t') = 1, proving the last statement we had to check. |

Theorem 3.1.10. Let us define
C=(C -TY/T"
One has the following facts:

e One has the following isomorphism of k-algebras describing the 0" graded piece
of the centre of E*:

k[C) ——— Z(E*)°
(c)

~ Te-
(with c € C)

e The obvious inclusion Z(E*)? C ZEoqu(I’X(l))(EO) is actually an equality.
eCisa subgroup of(~2 NT/T' and it can also be described as
C={teT | alt)cl+Mforall a c d}/T".

Moreover, in the obvious isomorphism C/(C NTY) = (C - TY)/T* = C, the group
CNT?! can be described as the (unique) pro-p Sylow subgroup of the unique mazimal
compact subgroup of C.

Proof. Let us prove the various facts not following the order of the statements.
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e The fact that
(C-TH/T ' ={teT | at) €1+ M for all a« € &} /T, (122)

can be seen as follows: we recall from [Mill7, Proof of Proposition 21.8] that one
has an equality of algebraic groups

C= ﬂ ker (a: T — Gy) .
acd

Looking at the claimed equality (122), we see that the inclusion from left to right is
then immediate, and the inclusion from right to left follows from Lemma 3.1.9, be-
cause for every element of the quotient {t € T | a(t) € 1+ M for all a € &} /T
we can find a representative that lies in the group of §-rational points of the

intersection () cq ker (a: T — Gp), i.e., of C.

e The fact that C is a subgroup of € (and hence of QNT/T") follows from the fact
that if ¢ € T is such that (valzoa)(t) = 0 (in particular, if a(t) € 1+ 9) for all
a € @, then () =0 (see (10)).

e The fact that the map C 3 ¢ — 7, does take values in Z (E*)Y has been seen in
Lemma 3.1.8.

e The fact that the map k[C] — Z(E*)° of the statement is a homomorphism of
k-algebras follows from the fact that C' C .

e The fact that the map k[C] — Z(E*)" of the statement is injective is clear.

e The fact that the map k[C] — Z(E*)? of the statement is surjective can be seen
as follows: we have seen in Lemma 3.1.6 that every element of ZEOUHI(I,X(l))(EO)
lies in the k-vector space spanned by the following set:

{z@ ‘ O C T/T1 orbit for Wy made of elements of C~'} ,

Ift e 6, we might assume that ¢t € C, and hence it is clear that the Wj-
orbit Of of  consists only of , and hence 20, = 7;. Therefore every element
of ZEoqu(LX(l))(EO) lies in the k-vector space spanned by the set

{r

e The fact that the obvious inclusion Z(E*)? C ZEoqu(I’X(l))(EO) is actually an
equality follows from the fact that in the last step above we have worked only
with ZEoqu(I’X(l))(EO) and not with the full Z(E*)°.

ceé}.

e The fact that C' N T"' is equal to the unique pro-p Sylow of the unique maximal
compact subgroup of C can be seen as follows: first of all C, being a closed
subgroup of a split torus, is isomorphic over § to a product of a split torus and
a finite algebraic group (see [Mill7, Proposition 12.3 and Theorem 12.9]), and
hence C actually has a unique maximal compact subgroup. Now let C' be the
unique pro-p Sylow of the unique maximal compact subgroup of C: the inclusion
CNT' C C'is clear because C NT' C C and because C' N T is a pro-p group,
being a closed subgroup of T''. Similarly, since C C T we have C' C T, proving
the last inclusion we had to show. |
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Remark 3.1.11. The inclusion ¢ C Z (W) might be strict in general, but it is
an equality if the order of the fundamental group of the derived group of G is not
divisible by 2.

Proof. For the moment let us not make any assumption on G. Let w € W. First of
all we recall from [Vigl4, Lemma 2.1] that if w ¢ T/T" then the conjugacy class of
w is infinite. In particular, this shows that Z(/V[7) C T/T'. Now let t € T and let
« € II. We recall the conjugation formula

oy ) = )

from (1) and the notation Ns(00) WE introduced for the fixed lift in N of s(, ) € Sast
(explicitly, the definition is ns, , = = ¢a( % §))- Using also the definition of Cheval-

ley basis and the equality (% §) =(§1)- (4 9)-(41), we compute
b Ms ) b=t gl %z(—ll?) ®

We remark that if 2 does not divide the order of the fundamental group of the derived
group G’ of G then &: G, — T is a monomorphism. This is basically shown in
[Jan03, Part II, Chapter 1, Equation (7)]: indeed let us identify the roots systems
of (G, T) and of (G', T'), where T :== G’ N T is the corresponding split maximal
torus of T’. In loc. cit. it is shown that &: G, — T’ is either a monomorphism
or has kernel equal to p, and that this last case is equivalent to the condition that
& € 2X,(T), say & = 2 for some A € X, (T'). Recalling that the fundamental group
is isomorphic to the quotient X, (T’)/(spany, ®) (see [Con20, §9.3]), and using the
assumptlon that 2 does not divide the order of the fundamental group, we see that
2a = \ € spany (I> which is not possible since & € IT and II is a basis of spang P,

Now, assume that the class £ of ¢ in T'/T" is central in W, and, again, that 2 does
not divide the order of the fundamental group of G’. Then the computation above
yields that &(a(t)) € T'. A monomorphism of algebraic groups such as &: Gy, — T’
is automatically a closed embedding for the Zariski topology (see [Mil17, Proposition
1.41]), and this also shows that the map &: §* — T is closed for the F-topology,
and hence it is an isomorphism of topological groups onto its image. As we said that
a(a(t)) € T, it follows that (t) must lie in the pro-p Sylow of the unique maximal
compact subgroup of F*, i.e., it must lie in 1 + 9. Now the desired conclusion that
t € C follows from the equahty C={teT | aft)el+Mforal ac ®} /T of
Theorem 3.1.10 (where ® can be clearly replaced by II).

It remains to make an example in which the inclusion C' C Z (W) is strict, and
this is suggested by the above computation of E N0 -t~1. Indeed, we assume p # 2,
we choose § such that there exists a square root ry of —1, we consider G := PGLy(F)
and we define

vy = <78) 7"(?1) S PGLQ(%)
We want to prove that the class Ty of vy modulo T lies in Z(W) but not in C.
Regarding the second fact, since C' = {1}, it suffices to show that vy ¢ T, and this
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is clear because tg has order 2, while T is a pro-p group. Regarding the statement
that Tg lies in Z(W), we see that, since the conjugation action of W on T/T" factors
through Wy, it suffices to check that conjugating Ty by the class of the matrix ( 9 é)
we get T again, and this is clear because conjugating vy by ( 0 (1)) we obtain ty L

which is equal to vg. |

3.2 The 1%t graded piece of the centre

In this section we will describe the 1% graded piece of the centre of the Ext-algebra
E* in the case that § is an unramified extension of Q. Since the main results are
scattered into various subsections, in the first subsection we will describe the main
statements and we will give a rough overview of the strategy of proof.

Assumptions. We put ourselves in the general assumptions of Section 1.1, i.e., we
assume that § is a locally compact nonarchimedean field, that G is a connected
reductive split group over § and that k is a field of the same characteristic of the
residue field of §. We will assume that § is an unramified extension of Q, only where
explicitly stated.

3.2.a Summary of the results
The following are the main results about the 15 graded piece of the centre that we

will prove:

(i) In Theorem 3.2.26 we describe the degree 1 part of the centre if § is an unram-
ified extensions of Q,: namely, we exhibit an isomorphism of Z(E*)%-modules

Z(E)' = Z(E*)" @y H' (T /Ty, k),
where
T(% = Image ([[oen @: [Toen(l+MM) — T,
and where by Z(E*)°®, H' (TI/T(%)7 k) we simply mean the free Z(E*)%-module
obtained by base change from the k-vector space H* (Tl/ T(%, k:)

The proof is divided into two parts: in the first one we show that
Z(E")' = Z(E*)° @, (Z(E*)' N HY(1,X(1))), (123)
while in the second one we show that

Z(E*)' N HY(I,X(1)) = H'(T" /T3, k). (124)

(ii) In Corollary 3.2.37 we refine the above description under the additional as-
sumption that p divides neither the order of C° N T/ nor the order of the
fundamental group of G’. In this case we show that

Z(E*)' = Z(E*)° @, H((C°), k),

where C° is the group of F-rational points of the connected centre of G and
where (C°)! is the unique pro-p Sylow subgroup of the unique maximal com-
pact subgroup of C°.

Furthermore, we show that the additional assumptions on p are optimal in a
suitable sense (Remark 3.2.38) and that they are satisfied whenever p does
not divide the connection index of the root system, i.e., the order of the finite
group given by the weight lattice modulo the root lattice (see again Corollary
3.2.37).

110



(iii) In Corollary 3.2.39 we give a characterization of the condition Z(E*)! = 0
(again under the assumption that § is an unramified extensions of @Q,), thus
generalizing the result that Z(E*)! = 0if G = SL2(Q,) with p # 2,3 (Proposi-
tion 2.5.2). Namely, we prove that Z(E*)! is zero if and only if G is semisimple
with fundamental group of order not divisible by p.

We now give an overview of the organization of this section.

Subsection 3.2.b consists in adapting some of the proofs in [Vigld] (where the
centre Z(H) = Z(E°) is studied) to the study of Zgo(E'). This object is more
complicated than Z(H) and we do not pursue a description of it. Rather, we prove
a result (Lemma 3.2.6) which gives a very rough description of how its elements
look like.

Subsection 3.2.c consists in two lemmas and a proposition. The first result (Lemma
3.2.7) is again about Zpo(E"), and complements the description given in the pre-
ceding subsection. The second result (Lemma 3.2.10), instead, is about Zp1 (E'),
and more precisely about Zp1( LX(l))(El): it is here that we make the assumption
that § is an unramified extension of Q,. Finally, in Proposition 3.2.11, we prove
(123), i.e., the first part of our theorem.

Subsections 3.2.d, 3.2.e and 3.2.f consist in preliminary work to prove the second
part of the theorem. The results shown are about G, and the Ext-algebra is not
involved.

In Subsection 3.2.g we use the above preliminaries to conclude the proof of the
theorem by showing (124).

Subsection 3.2.h deals with the examples G = GL,, and G = PGL,,. In these
special cases the determinant function can be used to describe Z(E*)! (for PGL,
we mean the “determinant” function PGL,(§) — §*/(F*)").

In Subsection 3.2.i we consider the graded algebra
E*(CI, 1) = Extieyee g (c-indf”, e-indf )P,

We show that it naturally embeds into E* and that, via this embedding, there
is some relation with the centre of E*: namely one has that Z(E*)? = E°(CI, 1)
and that Z(E*)! C EY(CI,I) if § is an unramified extension of Q,. However, we
also show that in general Z(E*) ¢ E*(CI,I).

In Subsection 3.2.j we prove the two above mentioned Corollaries 3.2.37 and 3.2.39.

In Subsection 3.2.k we show where our proof fails if § is not necessary an unram-
ified extension of Q.

3.2.b A first lemma about Zpo(E")

The purpose of this subsection is to prove the following lemma, which gives a very
partial but useful description of Zgo(E'). The strategy of the proof consists in using
(a slight modification of) a lemma by Vignéras (Lemma 3.2.1) and then in doing an
analysis of the conditions on z € T/T! under which the subgroup Wia,gu (@) € Lw

(for « € ® and w € V[N/) is contained in [, along with with a similar analysis for
I (Lemma 3.2.5).
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Lemma (see Lemma 3.2.6). Let 3 € E' be an element which is centralized by the
72’s for ¥ € T/T'. Let us write

B= > Bu

weWw
s.t. f(w) < L

for suitable L € Z>o and B, € H(I,X(w)) (almost all of them equal to zero). One
has that B, = 0 for allw € W~ (T/T*) of length L.

The next lemma and remark are basically stated and proved in [Vigl4, Lemma
2.11 and Equation (8)], where they are used to prove a statement analogous to (but
more precise than) Lemma 3.2.6 for the pro-p Iwahori-Hecke algebra E° instead of
E'.

The only difference between the following and the lemma in [Vigl4] is that we
need a slightly finer control on the signs of (v(x), ) (recall this notation from (6)).
For the proof, we will follow the same strategy as in the cited paper.

Lemma 3.2.1. Let w € W ~ (T/TO) and let us write it as w = woxrg with
wo € Wo ~ {1} and zo € T/TC. Let M be a positive integer. One has that there
exists x € T/T° such that:

(A) lwz) = L(w) + £(x);
(B) t(wrwtz~t) > M;

(C) For all & € ® such that (v(zo), ) # 0 one has that the signs of (v(z),a) and
(v(x0), ) are the same;

(D1) For all « € ® such that (v(zp),a) = 0 one has that (v(z),a) >0 if « € P
and (v(z),a) <0 ifac ®.

Similarly, there exists x € T/T® which satisfies the properties (A), (B), (C) and the
following:

(D2) For all o € ® such that (v(xo), ) = 0 one has that (v(z),a) < 0 if o € wy '@+
and (v(z),a) > 0 if @ € wy ' ®~.

Proof. First of all we claim the existence of € T'/T° satisfying the properties (A),
(C), (D1) (respectively (D2)), and the following property, less strong than (B):

(Bo) A(wzwtz~t) > 0.

Since the map v, : T/T® — X,(T)/X.(C°) is surjective, and since the intersection
of X, (T)/X.(C°) with a Weyl chamber in &/ = (X, (T)/X.(C°))®zR is non-empty,
we can choose y € T/T? satisfying one of the following two properties:

(1) (v(y),a) >0 for all @ € &t and (v(y),a) <0 for all a €

(2) (v(y),a) <0 for all @ € wy '@+ and (v(y),a) > 0 for all a € wy ' ®~.

o Let usset x := x(jy for n € Z>;. We claim that if n is big enough then the property
(C) is satisfied, as well as (D1) in case (1) and (D2) in case (2).

From the equality



it is clear that if (v(zg), @) # 0 and if n is big enough then the signs of (v(z), a)
and of (v(xp), ) are the same.

On the other side, if (v(z¢), @) = 0 then the signs of (v(z),a) and of (v(y), ) are
the same, so we get (D1) in case (1) and (D2) in case (2).

We claim that if 2 € T/T? satisfies properties (C) and (D1) (respectively (D2)),
then it satisfies property (A).

Looking at the explicit length formula (9), we see that

l(wx) = L(wozox)

= Z (v(zoz), )| + Z [(v(zoz), o) + 1

acd+nuwy ot acdtNwy o

< Y (K(@).a)l + [(v(x),a))

acd+nuwy Lo+
+ Y (o)) + 1]+ |(v(),a)])
a€d+nuwy 1o

— f(w) + £(2),
and one has equality if and only if the following two conditions hold:

(i) Foralla € ®+Nwy '@ the signs of (v(z), a) and of (v(zg), @) are compatible,
meaning that their product is bigger or equal than zero;

(ii) For all @ € ®* Nwy'®~ the signs of (v(z),a) and of (v(zg),a) + 1 are
compatible, meaning that their product is bigger or equal than zero.

For all @ € ® such that (v(zg),®) # 0, property (C) says that (v(z),a) and
(v(x0), a) have the same sign, and so (i) and (ii) are satisfied if (v(xg), ) # 0.

On the other side, condition (i) is automatically true if (v(zp),a) = 0, while
condition (ii) holds if (v(x),a) = 0 thanks to either (D1) or (D2).

Now we claim that if x € T/T° satisfies properties (C) and (D1) (respectively
(D2)), then it satisfies also property (By).

First of all, let us note that

Ywrw™ et = l(wororry fwy teTt) = L(worwy ta ).

Let us write down the length formula for wozwy 'z~ (see (10)):

U worwy et = Z ‘(V(woxwgl),a) - <V($),Oé>‘ .

acedt+

Note that vy (z) lies in an open Weyl chamber because every root is nonzero
on x by properties (C) and (D1) (respectively (C) and (D2)). The Weyl group
Wy acts simply transitively on the Weyl chambers ([Bou81, Chap. V, §3, n° 5,
Théoreme 2]), hence v, (x) and v, (wozwy ') lie in different open Weyl chambers,
meaning that there exists a root «g (which we might assume to be positive) such
that the signs of (v(z), ag) and of (v(wozwy '), ag) are different. This means that
(v(wozwy ), ap) — (v(x), ap) # 0 and hence £(wozwy 2™t > 0.
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Now it remains to show the existence of z € T/T? satisfying properties (A), (B), (C)
and (D1) (respectively (D2)). We claim that this can be accomplished by replacing
x by 2" where m is a big enough positive integer. Indeed, properties (C) and (D1)
(respectively (D2)) are clearly true for ™ if they are true for =, but also property
(A) continues to be true because we have seen that it follows from properties (C)
and (D1) (respectively (D2)). Finally, as regards property (B), we have

(wr™w te™™) = ((wrw ™ tz™H™)
= ml(wzw 1)
Zm,

where the second equality follows from the length formula. So property (B) holds if
m is big enough. |

Remark 3.2.2. Under the assumptions of the last lemma and using the same no-
tation, let us choose the constant M to be 2/(w). One has:

20(w) < L(wzw z™) = Lz wrw ™) < LT wr) + L(w),

where we have used that wrw™' and 2~! commute since they both of them lie in
T/T°. So we have obtained:

(B*) L(z~twz) > £(w). [

Now, let us see the “symmetric version” of Lemma 3.2.1 and Remark 3.2.2 when
considering the decomposition W = (T/TO) x Wy instead of the decomposition
W =Wy x (T/T°).

Remark 3.2.3. Similarly to Lemma 3.2.1, let w € W (T/TO) and let us write
it as w = xjwe with wg € Wy ~ {1} and z{, € T/TP. One has that there exists
x' € T/TY such that:

(AY) £(z'w) = £(a) + £(w);
(B¥) L(z'w(z')71) > £(w);

(C") For all @ € @ such that (v(z(), @) # 0 one has that the signs of (v(z'), @) and
(v(z(), ) are the same.

Similarly, we could give conditions analogous to (D1) and (D2), but we will not need
them.

Proof. Let us apply Lemma 3.2.1 and Remark 3.2.2 to w™! = wo_l - (zf)71, thus
finding x satisfying the following properties:

(A) Lw™'e) = Lw™) + (2);
(B*) Lz tw™ta) > L(w™t) = {(w);

(C) For all a € ® such that (v((z)~1),a) # 0 (i.e., such that (v(x}),a) # 0) one
has that the signs of (v(x),«) and (v((zf)™!), @) are the same.

Let us define 2’ := 2~ 1. It is easy to see that the conditions (A'), (B*') and (C') are
satisfied. [

The next lemma is a weaker version of [Vigl4, Proposition 2.10 and Lemma 2.12]
for E* in place of the pro-p Iwahori-Hecke algebra E°.
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Lemma 3.2.4. Let 5 € E' and let us write it as

B= > By

UEW
s.t. £(v) < L

for suitable L € Z=o and 8, € H'(I,X(v)) (almost all of them equal to zero). Let us
consider w € W of length L.

o If x € T/T" satisfies the following properties:

(A) lwz) = ((w) + ((z),
(B*) {(z7wz) > (w),

then the following formulas hold:
L1 X (wa)) (B Te) = Bw * Ta,
DT 1 (1,X (wa)) (T - B) = 0.
In particular, if B is centralized by T, then By - T, = 0.
o If 2/ € T/T! satisfies the following properties:
(A") L(z'w) = L(a") + L(w),
(B*) L(z'w(2')™h) > L(w),
then the following formulas hold:
eri(I,X(:c’w))(B “Twr) =0,
P i (1,X (z'w)) (Tar * B) = T Bu-
In particular, if B is centralized by T, then T, - By = 0.
Proof. Let us prove the four formulas.
o Let us start with multiplication by 7, on the right:
BT = Z By - Te-

veW
s.t. L(v) < L

Let v € W with ¢(v) < L. Recall that

Bo Tz € @ H’(I,X(u))

ucW
s.t. Tul C Ivl - Izl
(see Theorem 1.9.1).

* If v is such that ¢(vz) < £(v) + £(z) and if u is as above, then by Lemma 1.9.2
(ii) one has
C(u) < L(v) +L(x) < L+ (),
while wz has length L + £(z), and 80 pPr i (1 x (wa)) (Bv - Tz) = 0.
x If v is such that f(vx) = £(v) + £(x) then B, -7, € H'(I,X(vr)) and so
PT i (1,X (wa)) (B - 7o) is zero if v # w and is By, - 75 if v = w.
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This proves that P Hi(1 X (w (5 T2) = Buw * Tz

e Now let us consider 7, - 8 and let us prove that pri(; x(we)) (7 - 8) = 0. One has:

T:c'/B: Z Tz'ﬁv-

’UEW
s.t. L(v) < L

Let v € W with ¢(v) < L. As before, we have

Te P € @ HZ(LX(U))

ueW
s.t. Tul C Izl - Ivl

* If v is such that £(zv) < £(x) + £(v) then, as before, Pr i (s X (wa)) (B T2) = 0.

x If v is such that f(zv) = £(z) + £(v), then 7, - B, € H'(I,X(xv)) and so

eri(I’X(wx))(Tx - By) is zero if xv # wzx and is 7, - B, if zv = wzx. But this

last case is not possible, because we would have v = 2~ wz, and so by assump-

tion £(v) = £(z~'wz) > ¢(w) = L, which is a contradiction.
This proves that pI'Hi(Lx(wx))(Tm -B) =0.

e Now let us consider 8- 7, and let us prove that pryi(; x(rw)) (8 - 72r) = 0.

Using (A') and (B*'") is easy to see that £(w!(2')7!) = €( D+ 4((z")71) and
that £(((")"H) " tw=1(a’)~1) > £(w™!). This means that (z/)~! satisfies (A) and
(B*) if we put w~! in place of w. Let us compute DT f1i (1,X ('w)) (B * Tar) using the
involutive anti-automorphism J. First of all let us note that

=3 a8
veW
s.t. £(v) < L
with J(8,) € H'(I,X(v™!)) (and £(v=!) = £(v)). Now, let us proceed with the
computation:
Pryi(1,X (2/w) (5 o) = (3 (erl X (z'w)) (BT )))

=3 (0ra (1 xm1y) (A(B - 7))

=
0,

PR (1, X (w1 () 1)) (T =1 '3(5)))

by the first formula we have proved in this lemma.
e Now let us consider 7.+ - 8 and let us prove that pryi(; x(rw))(Ter - 8) = Tor - Bu-
Doing the same computations as above, we find that
T pi (1,X (z'w)) (T2 * B) = 3 <eri(I X(w-1(@)-1)) (3(B) - T(x’)_l))
=3 (3(Bw) - 7an1)

= Ty! 'ﬁwa

where in the second equality we have used the second formula we have proved in
this lemma. |
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We recall from 1.3.2 the Iwahori decomposition of I, for w € W

bijection given by

1 multiplication
T Yegwon X T x T Wagw(@) ————— L

acd— acdt

where for all &« € ® we have
guw(e) = min {m € Z ‘ (a,m) € D N,

In the next lemma we wish to relate the indices gy(a), guwz(a), and gz, (a) for
suitable choices of x € T/T' or of 2/ € T/T'. We recall, as one immediately see
from the above expression, that g, («) only depends on the class of w in W, and so
for simplicity in the next lemma we will work with W instead of W and with T /T
instead of T/T" (as we did in all the lemmas so far).

Lemma 3.2.5. Let w € W (T/TO) and let o« € ®. One has that at least one of
the following statements is true.

(i) There exists x € T/T° satisfying the following properties:
(A) lwz) = l(w) + £(z);
(B*) (x7 wx) > l(w);
(E) gue(a) = guw(a).
(i') There exists o' € T /T satisfying the following properties:
(A7) L(a'w) = {(z) + £(w);
(B*) £(z'w(z") ") > l(w);
(E') gurw(@) = guw(a) — (v(2'), a).
Proof. Referring to Lemma 3.2.1 and Remark 3.2.2, let us choose z € T/T° satisfying
the properties (A), (B*), (C) and either (D1) or (D2). Similarly, referring to Remark
3.2.3, let us choose x’ € T/T? satisfying the properties (A'), (B*"), (C").
Let a € ®: we want to compute gy (), gz (), gorw (). Let us write
W = wWoxg = xf)wo,
for suitable wy € Wy ~ {1} and suitable zg,z, € T/T° (clearly z{, = wozowy b,
Furthermore, for all 5 € ® let us set
0 ifecdt,
€p = . _
1 ifged .

Recalling the definition of g(_)(c) from Lemma 1.3.2, for all ¢, € T'/ TY we compute:

Juot(a) =min{m € Z | (a,m) € ﬂwot@aﬁ}
=min{m € Z | (a,m) € ®f; and t~ Lwg(a,m) €
=min{meZ | (a,m) € <I>+H and (wg Yo, m — (v (t_l),wo_la» edls
=min{m € Z | (a,m) € &} and (wy'a,m + (v(t), wy'a)) € Ofs
= max {z-:a, —(v(t),wy a>}

gt’wo (a) g'Ll)O’UJ t'wo (a)
— —1
= max {ea, Cuwgla (v(wg W), wy oz>}

= max {5a,5w0-1a —(v(t), a>} :
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Replacing t and ¢’ by the elements we are interested in, we get:

gw(a) = max {Ea,é"wala — (v(zo), w, a>}
Jwz (@) = max {sa,swala -

Let us distinguish three cases.

o If <u(:1:0),w0_104> > 0, then property (C) says that <1/(x0), wo_la> > 0 as well, and
so we get
guwz () = max {e,, something < 0}
= guw(a).
o If <V(xg),wo_1a> < 0, then we have that (v(z(),a) < 0 (because these two quan-

tities are the same since @) = wowowy ‘). This implies that (v(z'),a) < 0 by
property (C'), and so

gow(a) = max {ea,2,01, = (v(ah),a) = (v(a'), ) }
= cupta — (V(30), @) = (v(2'), )
= max {4, 2,01, — (V(ah), @) } = (v(a'), )
= gu(@) = (v(@), @)

o If (v(wo), w61a> = 0 (equivalently (v(x(),a) = 0), then we distinguish the follow-
ing three cases.

* Let us assume that wo_la c o,

We choose x satisfying property (D1) and in this way we have <1/(a:), wo_la> > 0.
Therefore, one has

Guwa () = max {e4,0 — (v(z),wy ')}
=
= max {£4,0}
= guw(a).

* Let us assume that wy 'a € wy '@~ (ie., a € ®7).

We choose z satisfying property (D2) and in this way we have <1/(x), wo_loz> > 0.
Therefore, one has

Juwz (@) = max {1’511161(1 — <l/(l‘),w0_104>}
=1

= maX{l,ng—la}

= gu(a).
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% It remains to treat the case o € T Nwod~.

Even if we could have done this, we have not stated the existence of x’ satisfy-
ing properties analogous to (D1) or (D2). Nevertheless, already property (A')
(additivity of lengths) suffices to gain control on the sign of (v(z'),a). Let us
recall from (8) the following length formula for #wq, where t' € T/T°:

Ww)= 3 @B+ X )8 1],

BedTNwod+ BedtNwod—

Since {(z'zjwo) = £(z') + £(xzowo), It is easy to see that, for all § € ®T NweP~
(in particular for 8 = «), we must have that the signs of (v(z'),3) and of
(v(zf), B) — 1 are compatible (meaning that their product is bigger or equal
than zero). Since (v(z(), @) = 0 by assumption, it follows that (v(z’), ) < 0,
and so we can conclude the following:

Jorw (@) = max {5a75w51a - <V(xf)), a> — <[/(x/)7 a>}
=max {0,1—0— (v(z),a)}
=1—(v(a'),a)
= max {0, 1 —0} —(v(2), )
= guw(a) < oz> [ |

We are now ready to prove the lemma we stated at the beginning of the subsec-
tion.

Lemma 3.2.6. Let f € E' be an element which is centralized by the T,’s for
x € T/T'. Let us write
B = Z Buw,

weW
s.t. f(w) < L

Jor suitable L € Z>o and B € HY(I,X(w)) (almost all of them equal to zero). One
has that By, = 0 for all w € W ~ (T/T") of length L.

Proof. Let w € W~ (T/ T 1) of length L. Let us prove that 3, = 0 by proving that
Shy, (Bw) is zero on all the subgroups appearing in the Iwahori decomposition of I,.
First of all, let « € ® and let us prove that Shy,(8,) is zero on Uia,gu(a))-

Lemma 3.2.5 says that at least one of the following two properties is true (there
we worked with the groups W and T/T and here we are working with the groups
W and T/T*, but clearly this does not matter).

(i) There exists x € T/T* satisfying the following properties:
(A) l(wz) = L(w) + £(z);
(B*) £(z7 wz) > l(w);
(E) guwz(@) = guw(a).

(i') There exists 2’ € T/T* satisfying the following properties:

(A) £(z'w) =
(B*) £(z"w(
(E) garuw(e

(') +
)7t > (w)
) = guw(a) — {v(z'), a).
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In particular z and 2’ (when they exist) satisfy the assumptions of Lemma 3.2.4,
and so such lemma tells us the following:

e in case (i) one has that 5, - 7, = 0;
e in case (i') one has that 7, - B, = 0.
Let us see what happens in the two cases.

e Let us assume that we are in case (i).

Since lengths add up, one has that 3, - 7, € H'(I,X(wz)) and that we can
compute it as follows (see Corollary 1.9.5):

0 = Shyg (B - 7)) = res;” (Shw(Bw)).

And therefore, considering the group U(q, g,.(a)) = U(a,gu(a)), ONE has:

0 ( Shwx (/Bw : TI)) (u(a,ng (a)))
(Shuz (Bw - 7)) Wa,gu ()

( Shy, (Bw)) (u(a,gw(a)))'

e Let us assume that we are in case (i').

Since lengths add up, one has that 7,/ - B, € H'(I,X(z'w)) and that we can
compute it as follows (see Corollary 1.9.5):

0= Shyr(rar - fu) = resy @07 ((a). Shuy(Bu))

And therefore, considering the group U = U , one has:

@, gwz (@) a,gw (@) —(v(z),a))

where we used the conjugation formula (1). This concludes the proof that Shy,(5w)
is zero on Uy g, (a))-

It remains to prove that Shy,(f8,) is zero on T, but this is easier. Let us choose
x € T/T" satisfying just properties (A) and (B*) (there exists such an z for example
by Lemma 3.2.1 and Remark 3.2.2). As before, we have:

0 = (Shua(Buw - 72)) (T
= (Shy(Bw))(TH).

This shows that Shy,(8,) is zero also on 7" and so we conclude that 3, is zero by
the Iwahori decomposition. |
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3.2.c The 1% graded piece of the centre for unramified extensions
of Q,: partial description

In this subsection we will partially describe the degree 1 part of the centre of E* for
unramified extensions of Q, (Proposition 3.2.11). The description will be completed
later, in Subsection 3.2.g, after an analysis of the commutator subgroup [G,G] of
the group of §-rational points G of G.

The proof will be based on Lemma 3.2.6 and on two more lemmas.

Lemma 3.2.7. Let f € E' be an element which is centralized by the T,’s for
x € T/T'. Let us write
B= > Bu

weWw
s.t. f(w) < L
for suitable L € Z=o and B, € H*(I,X(w)) (almost all of them equal to zero). Let
x € T/T' of length L and let us consider

Sh,(B:) € H' (I, k).

One has that Shy(5;) is zero on the “unipotent factors” of the Iwahori decomposition
of Iy (i.e., on the factors Uy, g, (a)) s for a € ®).

Before seeing the proof, let us remark that, using the notation of the lemma, we
already know from Lemma 3.2.6 that 3, is zero for w € W~ (T/T") of length L. So
it makes sense to focus on 3, for x € T /T (of length L), as we do in the statement
of the above lemma.

Proof of the lemma. Let us split the proof into some steps.

e As a first step, we choose a certain element y € T/T*, which we will use later on
to perform multiplications by 7, on the left and on the right.

Let us recall from (5) the surjective map v, : T/T° — X, (T)/X.(C°), which we
rather view as a map with source 7/T", and let us choose ¢ to be an open Weyl
chamber in & = (X.(T)/X.(C°)) ®z R such that v (x) € . For the moment let
us choose y in the following way: since v, is surjective, and since the intersection
of X,(T)/X.(C°) with a Weyl chamber is non-empty, we can choose y € T/T"!
such that v (y) € c. It follows that y satisfies the following two properties:

(i) ¢(xy) = (xz)+L(y) (because this property is equivalent, by the length formula,
to the property that for all & € ®, the signs of (v(z),a) and of (v(y),a) are
compatible, in the sense that their product is bigger or equal then zero);

(ii) for all @ € ® the quantity (v(y), ) is nonzero (by definition of (open) Weyl
chamber).

Up to replacing y with a suitable power, we can assume that |(v(y),a)| is big
enough. In particular we can choose y such that

(ii') for all w € ® one has [(v(y),a)| = M,

where M is a constant such that Shy(82) (U(a,g, (a)+a)) = 0 for all a € ® (there
exists such a constant because (u(avgm(aHm) meZag is a fundamental system of
neighbourhoods of the identity in the group u(a,gzza)) and clearly this choice can

also be made independent of « since the set of roots is finite).
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e As a second step, let us remark that, thanks to property (i), we have

(Claim) pTHl(I,x(zy))[Ty» Bl = [ry, Bal.

(and so [1y, Bz] = 0, since 8 commutes with 7, by assumption). To prove the claim,
let us prove that pryi(; x(zy)) (B8 - 7y) = Bz - 7y, the proof of the corresponding
statement regarding multlphcatlon on the left by 7, being completely symmetric
since xy = yx. Of course, we have that

B - Ty = Z Buw Ty-
weW
s.t. l(w) < L

Let w € W with ¢(w) < L. Recall that
Bw"ry € @ HZ(LX(U))
ueW
s.t. Tul C Twl - Iyl

(see Theorem 1.9.1). We have the following two possibilities.
* If w is such that £(wy) < £(w) 4+ ¢(y) and if u is as above, then by Lemma 1.9.2

(ii) one has

l(u) < l(w)+L(y) < L+ L(y),
while xy has length L + {(y), and so pr (1 X (zy)) (Bw - Ty) = 0.

x If w is such that (wy) = (w) + £(y) then Bw 7, € HY(I,X(wy)) and so
DT i (1, X () (B Ty) 18 zero if w # x and is B, - 7 if w = 2 (moreover, for w = x
the condition ¢(wy) = ¢(w) + ¢(y) is indeed satisfied by property (i)).

This proves that pryi( x(zy)) (8 T7y) = Bz - Ty-

e As a third step, we use the fact that |7, ;] = 0, together with properties (i) and
(ii'), to show that for all @ € ® one has that Sh,(8;) is zero on U thus
completing the proof.

a,gx ()

Since lengths add up, products can be easily computed (Corollary 1.9.5), and
precisely we get the following explicit descriptions of 3, - 7, and of 7, - 3, (both
lying in H'(I, X (xy))):

Shyy(Bs - 7y) = resI (Sha(B2)),
Shiy (ry - fz) = 1es¥™¥ " (1. Shy(Ba)).

Since 3, - Ty = Ty - Bz, We can of course equate the values of the right hand sides
of the two above equations on the whole I, and in particular we can do this on

the subset U(q,g,,(a)) € L2y, finding that:

Sha (Br) (U(agay (@) = She(Bz) (4™ Uia,ga, (@))¥)
= th(ﬂw) (u(a,ggcy(a)+<V(y)7a))) :

Now (thanks to property (ii)) we can distinguish the two cases (v(y),«) > 0 and
(v(y), ) < 0. Before, we recall from Lemma 1.3.2 the following formula for the
computation of g,(a) for z € T/T:

(125)

g:(a) =min{m € Z | (a,m) € ®}; N 20,
=min{meZ | (a,m) € f; and 2~ Ya,m) € of
=min{m € Z | (a,m) € @l and (o, m + (v(2), ) € O,

= max{eq,ca — (V(2), 04>}v
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where

0 ifacdt,
€a =
1 ifaed.

* If (v(y), @) > 0, then by condition (i) we have (v(x),a) > 0 and (v(zy),a) > 0,
and so the above formula for g,(«) tells us that

Jry(@) = €q

So in the formula (125) we can replace g, (a) with g,(c), obtaining

Shy (B2) (Wauga(a))) = Sha(Be) (Uag, (0)+((w).0))) -

* If (v(y), ) <0, then by condition (i) we have (v(z),«) < 0 and (v(zy),a) <0,
and so the above formula for g,(«) tells us that

gay(@) = €a — (V(z), ) — (v(y), @)
= gm(a) - <V(y)7a>'

So in formula (125) we can replace gy (o) with g,(a) — (v(y), @), obtaining

Shy (B2) (Waga (o)~ (w(w).a)) = Sha(Be) (Uiaga(a)) -

In both cases we have thus obtained
Sha (B2) (U(aga(a)) = Sha(Be) (Ua,g, (@) +lww),a)))
C Shy(Bz) (u(a,gz(a)—i-M)) by (ii').

But by definition of M we have Sh,(5;) (U(a e )+M)) = 0, and therefore we get

(B.T) ( a,gz( a))) = 07

thus concluding the proof. |

Remark 3.2.8. In the above proof, in the case that § is a finite extension of @),
we could have avoided topological considerations for the choice of M and we could
have set M equal to the ramification index.

The following remark is not needed in any subsequent proof, but it is perhaps
interesting to compare it with Lemma 3.2.7.

Remark 3.2.9. Assume that ¢ # 2,3. Let 8 € E' be an element which is centralized
by the 7,,’s for w € T/T'. Let us write

ﬁ = Z IB'LU7
weW

for suitable 8, € H(I, X(w)) (almost all of them equal to zero). Let x € T/T" and
let us consider

Sh,(B,) € H (I, k).

One has that Sh,(3;) is zero on the “unipotent factors” of the Iwahori decomposition
of 1.
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Before seeing the proof, let us compare this remark with Lemma 3.2.7: the as-
sumption ¢ # 2,3 has been added, whereas the assumption that (3 is centralized by
the 7,’s for x € T/T' has been relaxed replacing T/T' with T°/T*. Finally, the
assumption that x has “maximal length” with respect to the support of 5 has been
dropped.

We will see that the proof is shorter. However, the statement of the remark
cannot hold in general if ¢ = 2 or ¢ = 3 because in these cases it is possible that
all the 7,,’s for w € T°/T" are central (as it happens for SLy(Q2) and SL2(Qj3), see
Theorem 3.1.10). So we still need Lemma 3.2.7.

Proof of the remark. Let o € . We have to prove that Shy(3;) is zero on U(q, 4, (a))-
Since ¢ # 2,3, the group (O/9M) is cyclic of order at least 3. Therefore we can

choose ¢y € D* such that ¢3 # 1 modulo M.
Since the length of &(cp) and every element of W add up, we see that
P 1 (1,X (&(co)e)) (Téi(co) * B) = Téi(co) * Ba
DT H1.(1,X (2(c0))) (B * Téi(eo)) = Bz * Tei(eo)s

but &(cp)r = wd(cp), and since B commutes with 7,y by assumption, we deduce
that

Tai(co) * Bz = Ba " Ta(co)-

Applying the Shapiro isomorphism Shy ). = Shyg(e) to both sides, we get the
following (by the formulas of Corollary 1.9.5):

res LSO (6(eo)). Sha(B)) = reste(Sha(Br).

&(co)z zd&(c)

Since &(cg) € T°/T?, all the subgroups of I appearing in the restrictions are equal
to I (recall from Section 1.3 that T normalizes I).
Therefore, the formula above simplifies to

(&(co))« Shz(Bz) = Sha(Be)-

Hence, for all g € I, one has that

Shy(Bz) (d(co) ™" - g - &lco) g7 1) = 0.

C I, it does make sense to compute the last identity for

_ 1 an9=(@)
g T ()DOZ O 1 )
for a € O. Doing this we get:

0 = Shy(5,) (&(00)1  Gu <(1) aﬁglz(w) &(co) - (Spa ((1) aﬂglz(a)»l)
s (s (5 2) 6 1) (G ) 6 7))
= Shy(8:) <<pa (é ("~ 11)mgx(a)>) '

By definition of ¢y, one has that ¢, 2 _ 1€ O~ M. This means that we have shown
that Sh,(3;) is zero at all the elements of the form @a((l] bﬂgf(“)) with b € O, or,
equivalently, that it is zero on the whole U |

Since u(

a,gx (OZ))

gz (@)
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As in Theorem 3.1.10, we will use the notation C := (C'-T1)/T*, where C is the
group of §-rational points of the centre C of G. In view of Lemma 3.2.7, it is in-
teresting to study commutators involving an element v € H'(I,X(z)) for x € T/T*
such that Sh,(«y) is 0 on the “unipotent factors” of the Iwahori decomposition of 1.
We will do this in the next lemma, under some further assumptions.

Lemma 3.2.10. Assume that § is an unramified extension of Q,. Let us consider
ze (T/TY) C and let v € H'(I,X(x)) be such that Shy(7) is 0 on the “unipotent
factors” of the Twahori decomposition of I, (i.e., on the factors W(a,g,(a)) s fora € D)
but nonzero on T1. One has that there exists ¢ € H(I,X(1)) = HY(I, k) such that

[&'Y]gr 7’é 0.

Proof. Since x € (T / Tl) ~ 6, we know from Remark 3.1.7 that there exists an
element ¢ € HY(I,X(1)) = H(I, k) with the following properties:

e [¢, 7] is nonzero;
e Sh,([¢, 7,]) is zero on T'.

We claim that

(Claim) €] # 0.

Since ¢ € HY(I,X(1)), we can apply the formula relating the (opposite of the)
Yoneda product and the cup product (Corollary 1.9.3), obtaining

[EN]g =& v+7-¢
= (¢ m)v)+ (v (r-9)
= (€ 1) vy) = ((1z - v)
= [&, 7] v,

And so we have to prove that [£, 7,] v v is nonzero, or equivalently that

(Claim) Shy (€, 72]) © Sha(7) # 0.

By the defining properties of £, we can choose a € ® (actually from the construction
we could assume « € II but we will not need this) such that Sh,([¢,7,]) is nonzero
on Uq,g,(a)): 50 let us choose ug € Uy g, (a)) such that Shy([¢, 72]) is nonzero at ug
and let us write ug = @a(é “10) for a suitable agp € O (more precisely ag € 93?91(0‘)).
Moreover, by assumption we can choose tg € T such that Shy(v)(to) # 0.

The cohomology class Shy([¢, 7,]) v Sh;(y) can be represented by an inhomoge-

nous 2-cocycle in the following way:

0: I, x I, > k
(9,h) —— Shy([¢, 72])(g) - Sha(7)(h).

Sh([€,7.]) < Shy(7) = 8, where

Assume by contradiction that the cup product is zero; this means that there exists
a continuous map : I, — k such that 6 is the differential of ¢. Explicitly, this
means that for all g,h € I, one has

Shy ([€, 72])(g) - Sha () (h) = ¥(g) + ¥ (h) — ¥ (gh).
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Plugging in g := ug and h = g, we get:
Y (uoto) = Y (ug) + ¥(to) + co, for some nonzero ¢y € k. (126)
On the other side, we also get
P(gh) = ¥(g) +¢(h), if either g € T" or h € (g, (a))- (127)
Let .
uy =ty upty = ¢a <(1) a(tol )a0> ,

where we used the conjugation formula (1). Using the assumption that § is an
unramified extension of Q,, we have a(ty Del1+M=1+pO, and so we can write
U] as uguéJ for some us € U(a,gz(a)). Therefore we have

uOto = t0u1 = to'doug.

Putting together what we have found, we finally reach the following contradiction:

¥(uo) + ¥(to) + co = ¥(uoto) (by (126))
= Y (tououb) (by the last equation)
= (to) +¥(uou3)  (by (127))
since wlu isa group)
— bt - : (.92 ()
¥ (to) +(uo) < homomorphism by (127)
which is against the fact that ¢y # 0. |

Before stating the first proposition describing Z(E*)! for unramified extensions §
of Q,, we recall from Theorem 3.1.10 that Z(E*)° can be described via the following
isomorphism, where, as already recalled, C' = (C - T*')/T*:

k[C] —— Z(E*)"
(c)

J S
(with c € C)

Proposition 3.2.11. Assume that § is an unramified extension of Qp,. One has that
Z(E*)! can be described in the following way: there is a k-vector space decomposition

Z(E")' = P Z(E")., where Z(E*)L = Z(E)' n HY(1,X(c)).
066

Moreover, one has an isomorphism of Z(E*)°-modules

12

Z(B*)’ @k Z(B*); ——— Z(E")!
Z2®E y 2z &

(here, Z(E*)? @y Z(E*)1 denotes the free Z(E*)°-module obtained by base change
from the k-vector space Z(E*)}). This isomorphism can also be described as
k[C| @k Z(E")) ———— Z(E")!
(()®¢

*\1
(with ¢ € C) Te L€ Z(E )C.
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To complete the study of Z(E*)! (if § is an unramified extension of Q) it
remains to describe explicitly Z (E*)é for all ¢ € 6, or, equivalently, to describe
explicitly Z (E*) (this is equivalent because Z(E*)} is isomorphic as a k-vector
space to Z(E*)!, via multiplication by 7).

Proof of the proposition. Let 8 € Z(E*)!, and let us write it as

B = Z 6107
wew
s.t. f(w) < L

for suitable L € Z¢ and B, € H'(I,X(w)). From the lemmas we have proved, we
obtain the following constraints on the components [3,,’s.

e Lemma 3.2.6 tells us that for w € W ~ (T/Tl) of length L one has 3, = 0.

e Lemma 3.2.7 tells us that for z € (T//T") of length L one has that Sh, () is zero
on the “unipotent factors” of the Iwahori decomposition of I,.

e Now let z € (T/T") ~ C of length L. We have just said that Shy(3;) is zero
on the “unipotent factors” of the Iwahori decomposition of I.. If, by contra-
diction, Sh,(B3;) were nonzero on T!, then by Lemma 3.2.10 there would exist
¢ € HY(I,X(1)) = HY(I, k) such that [¢,7]g # 0. But since multiplication by &
on the left and on the right preserves the decomposition E!' = @ v 2 YT, X (w))
this is against the assumption that 8 € Z(E*)!. Therefore we have reached a con-
tradiction, and this means that Sh,(3,) is zero also on T.

In conclusion, we have proved that if w € W is of length L then 3, is nonzero at
most if w € C. Since the elements of C have length zero (e.g., by the length formula

(10)), we deduce that
B=> B

ceC

For the same reason, we see that for all j € Zsg, for all v € W and for all
v € H(I,X(v)), multiplication on the left or on the right by ~y transforms the decom-
position P, & H'(I,X(c)) into the decomposition D, H'(I,X(cv)). Therefore,
for all ¢ € C one has that 8. € Z (E*)!. This proves that we have a decomposition
=Pz, where Z(ENL = Z(E)' n H'(1,X(c)).
ceC

Now, let us look the map

Z(E")° @y, Z(E*)) ——— Z(E")!

Tc®§

e T
(with c € O) e &

which is clearly a well defined homomorphism of Z(E*)°-modules. It is also easy to
show that it is bijective, because on the left side we have a k-vector space decompo-
sition P a7 ® Z (E*)}, and the above map preserves the decompositions

PDrozE) — D2E.,
065 065’

127



So bijectivity follows from the fact that for all ¢ € C one has a bijection

Z(E*)} «+—— Z(E*)!
§ B T¢" 57

T & ——— &,
thus ending the proof. |

3.2.d Results about split tori

The two lemmas in this section are immediate consequences of the contravariant
equivalence of abelian categories between the category of diagonalizable algebraic
groups and the category of finitely generated abelian groups (see [Mill7, Theorem
12.9]). The second lemma will only be used in Subsection 3.2.j, and not to prove
Theorem 3.2.26.

Lemma 3.2.12. Let S1 and Sy be §-split tori, let v = dim Sy, let ro := dim So,
and let f: S1 —> So be a morphism of algebraic tori. If r1 < 19, then there exist
splittings of S1 and Sy and there exist integers ni,...,ny, € Zxqo Such that the
following diagram commutes:

Sy ! S
G G.

(tlv“wt?"l )’_)(t;bl 7'-'7t:’;1 ’17'“11)

Similarly, if r1 2> 7o, then there exist splittings of S1 and So and there exist integers

N1, ..., Ny, € Zxo such that the following diagram commutes:
Sl f SQ

T1 T2
G} G-

n
(b1t ) (1t ? )

Proof. This follows from the contravariant equivalence of abelian categories between
the category of diagonalizable algebraic groups and the category of finitely generated
abelian groups (see [Mill7, Theorem 12.9]) and from the existence of the Smith
normal form for maps of finitely generated free abelian groups. |

Before stating the next lemma, we recall that a finite linear algebraic group F
over a field [ is an affine group scheme over [ such that /[F] has finite dimension as
an [-vector space. Such dimension is called the order of F, and it coincides with the
order of F(I) if [ has characteristic 0. If we assume that F is a finite diagonalizable
group (over [), then F =y, x --- x p,,  for suitable ny,...,n, € Zz; (see [Mill7,

Proposition 12.3 and Theorem 12.9]), and then the order of F is ny - - - nyy,.

Lemma 3.2.13. Let S and So be §-split tori, and let f: S; — So be a morphism
of algebraic tori, surjective and with finite kernel, say of order n. Let ST (respectively,
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S3) be the unique pro-p Sylow subgroup of the unique mazimal compact subgroup of
Sy (respectively, of Sa). Let us consider the induced homomorphism of pro-p groups

fre St — 95
One has:

o 1 is injective if and only if either p does not divide n or § does not contain
non-trivial p-th roots of unity;

o f1 is surjective if and only if p does not divide n.

Proof. 1t is easy to see, for example using Lemma 3.2.12, that S; and S have the
same dimension, say r. Therefore, by Lemma 3.2.12 there exist splittings of S; and
of S and ny,...n, € Zso (nonzero because otherwise f would not be surjective)
such that the following diagram commutes:

S, / s,
Gy, (t1yeenstr ) (£ 7)) Gr,.

So ker f = p,, x---xpu, andn =ny---n,. Looking at the induced homomorphism
of pro-p groups f!: S} — Si, we have
ker f1 = (p,,(3) N (1 +9M)) x -+ x (w1, () N (1 +M)),
coker f1 = (14+9M)/(1+9M)™ x - x (1+9M)/(1+9M)"™.
For all m > 0, one has that p,,(§) N (1 + 9N) is non-trivial if and only if p divides
m and § (and hence 1+ 91) contains non-trivial p-th roots, and so the claim about
injectivity follows. As regards surjectivity, we note that (1+91)™ = 14+ 9 if p does

not divide m (for example because exponentiation by m is an invertible map with
inverse exponentiation by m~! € Z, ) whereas if p divides m then

T+ C(A+MP CL+pM+IMP C1+IM> C 1+M,

and therefore it follows that f! is surjective if and only if p does not divide n. W

3.2.e A result about the fundamental group

Assuming that G is semisimple, its fundamental group can be defined in the following
way (see, e.g., [Hum98, §31.1]):

Aw/X*(T) where Ay, = {x € X*(T)®zR | (&, x) € Z for all & € &}

128
= {xe X" (T)®zR | (&, x) € Z for all a € IT}; (128)

here the equality stems from the fact that the simple coroots form a basis of the
coroot lattice. With this definition, the fundamental group is abstractly isomorphic
to the following group (see [Con20, §9.3]):

~

X.(T)/spany D,
which can also be expressed as
X, (T)/spany I1.
The following lemma should be well-known, but the author was not able to find
a reference; our proof is inspired by [Mill7, Proof of Proposition 21.8].
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Lemma 3.2.14. Assume that G is semisimple. One has that the morphism of al-

gebraic tori
H a: H Gy — T
a€cll a€ll
1s surjective and has finite kernel whose order is equal to the order of the fundamental

group of G.

Remark 3.2.15. It follows from the lemma that if G is semisimple simply connected

then the map

H a: H Gpn — T

a€cll a€cll
is an isomorphism. Indeed a morphism of split tori that has trivial kernel and cokernel
is an isomorphism, by the contravariant equivalence of categories between split tori
and finitely generated abelian groups.

Proof of the lemma. Let us consider the exact sequence

-~ a:::IIQEH(X -~
I —— kerax —— [[,er Gm T cokeraa —— 1,

and let us apply the contravariant functor X*, which defines a contravariant equiv-
alence of abelian categories between the category of diagonalizable algebraic groups
and the category of finitely generated abelian groups (see [Mill7, Theorem 12.9]),
thus getting an exact sequence

0 — X*(coker&) — X*(T) O Nactl |y 7y X*(ker &) — 0.
Since (—,—) is a perfect pairing, the map in the middle is injective, and there-
fore X*(coker &) is trivial. This means that coker & is trivial by the contravariant
equivalence of abelian categories. As regards the kernel of &, we have

EBa@]Z
{({(& x))aen | x € X*(T)}

X" (ker &) =

The map
Ao —— Dz

X (<a7X))aEH

is an isomorphism by definition of the weight lattice Ay, and by the fact that (&)aermn
is an R-basis of X*(T) ®z R. It follows that we get isomorphisms

EBa@IZ
{({@,x))aen | x € X*(T)}

In other words, X*(ker &) is isomorphic to the fundamental group of G. Let us write

X* (ker &) = 2 Ay /X*(T).

X*(kera) 2 Z/mZ@® -+ O L/nnZ,

for suitable m € Zso and ny,...,ny, € Z=1. The functor M +— Spec(k[M]) is a
quasi-inverse of the functor X*(_), and applying it to the group Z/nZ (for n € Z>1)
we get p,,: see [Mill7, Proposition 12.3 and Theorem 12.9] for both of these facts.
This means that

ker & = pu, X -0 X phy,

and so we see that ker ¢& is a finite algebraic group of order equal to the order of
X*(ker &) and hence to the order of the fundamental group of G. [
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3.2.f Results about the commutator subgroup of the group of ra-
tional points

We are now going to collect some facts about the commutator subgroup [G, G] of
the group of §-rational points G of G. Here we will always mean the commuta-
tor subgroup in the abstract group-theoretical sense, but we will prove that it is
automatically closed in the §-topology.

The main result in this subsection is that the abelianization G/[G,G] is isomor-
phic to a quotient of 7', quotient that we will describe explicitly (Lemma 3.2.19).
This is probably well known, but the author was not able to find the precise state-
ment the literature. Similar problems are studied in [BT73], and it would be possible
to reduce our statements to various results in loc. cit. (see in particular [BT73, (1)
in the proof of Proposition 3.19, Corollaire 6.5, Remarque 6.6, Proposition 6.14]).
However, since one would still need to do some work to extend results from the
semisimple case to general case and since it is possible to write down a more self-
contained and relatively short proof, we carry out such proof, without relying on the
results in [BT73].

From now on we will use the following notation.

e We define G’ := [G, G] (the derived subgroup of G) and we define T/ := TN G":
this is a F-split maximal torus of G’ (and so in particular G’ is F-split); indeed
T’ is a maximal F-torus of G’ by [CGP15, Lemma 1.2.5 part (iii)], and, by the
same argument with § in place of §, it is a maximal F-torus. Moreover, the fact
that T is F-split follows from the fact that a F-subtorus of a F-split torus is split
(see [Bor91, Chapter III, §8.14, Corollary]).

e We consider the fundamental central covering G — G’ of the derived group G.
The existence of the fundamental central covering of a split semisimple group,
such as (G, T’), can be proved via the “Existence theorem” as in [Mill17, Corol-
lary 23.56], constructing it from an isogeny of root data in the sense of [Mill7,
Definition 23.1]: in particular G comes equipped with a §-split maximal torus T
and and the central isogeny G — G’ sends T to T".

e We thus have the following homomorphisms, whose composite will be denoted by
e
o (@1 — @) ——— @),
and the three root systems involved can be identified (since the three adjoint
groups coincide).

The following lemma is proved in [uul3]. For convenience of the reader, we hereby
add the argument.

Lemma 3.2.16. One has [G,G] C f-(G).

Proof (from [uu13]). By the universal property of the quotient of an algebraic sub-
group over a subgroup, the commutator map ¢: G x G — G factors (as a morphism
of schemes over §) through the quotient

G xG ¢ G.




Denoting by ¢ the commutator map on é, we can of course repeat the same argu-
ment, finding a commutative diagram

As we have already remarked, the adjoint groups G/Z(G) and G/Z(G) can be
identified via f.., and so we get the following commutative diagram (the fact that the
square on the right commutes can be proved by remarking that all the other squares
and triangles commute and that the oblique arrow at the top left is surjective):

GG G e
\ ////
Fo X o (é/Z(é)) X (é/Z(é)) o
G xG L - — G.

?

(G/Z(G)) x (G/Z(G))

Considering the composite of suitable maps in the above commutative diagram, we
get a morphism of §-schemes ¢: G x G — G such that the following diagram
commute:

GxG ¢ G.
X‘N%
G

Therefore, passing to §-rational points, we see that [G,G] C fN(é), as we wanted
to show. |

Remark 3.2.17. Even if we will only need the inclusion of the previous lemma, it
is actually true that [G,G] = f(G). This is shown in [uul3] using (proven cases of)
the Kneser—Tits conjecture. However, this fact will also follow from the next results

we will prove: see Remark 3.2.20.

[15-42

Remark 3.2.18. For all roots o € @ let us denote by dg the morphism “a&

relative to the pair (CN-", ’T‘), whereas we will still denote by & the one relative to the
pair (G, T), which is the same as the one relative to the pair (G’, T). Recall that
since G is semisimple simply connected, the map

[[éc: [[Gn— T
acll a€cll

is an isomorphism (Remark 3.2.15). Finally, since f. ; is a central isogeny between
(G,T) and (G',T), it follows that f.1o0dg = & (see [Mill7, Proposition 23.5]).
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We conclude that we have the following commutative diagram:

ozGH G

ael‘[
C& /

In particular, the following equality holds:

Ty = Image ([Toen &: §¢ — 1)

~ 129
= Image (fNJ: T — T/). (129)

Lemma 3.2.19. Let Ty be as above. One has an isomorphism of topological groups

T/Ty ——— GJ|G, G

|

t——— 1,
and moreover [G,G] is closed in G (for the F-topology) and Ty C T" C T are closed
inclusions (for the F-topology).

Proof. Let us divide the proof into the following parts: the map is well-defined,
injective, surjective, a homeomorphism (and therefore an isomorphism of topological
groups), and we have the claimed closed inclusions.

e Let us prove that the map in the statement is well-defined.

We have to prove that for all @ € II and for all a € F* one has &(a) € [G,G]. It
is well-known that SL, (1) is generated by transvection matrices for all n > 2 and
all fields [; moreover if the field [ has at least 4 elements, it is easy to show that
transvection matrices are in the commutator subgroup: we thus conclude that
[SLy (1), SLy(1)] = SL, (1) if [ is a field with at least 4 elements. In particular, we
obtain that &(a) € ¢q([SL2(3),SL2(3)]) C [G, G, as we wanted.

e Let us prove that the map in the statement is injective.

Let t € T N[G,G], and let us show that t € Ty. Since [G,G] C fN(~) (Lemma

3.2.16), we can write ¢t = f(g) for some g € G If we prove that § € T then we
are done by the second definition of Ty, and to prove this claim it is sufficient to
show that

(Claim) geTR).

One has that t € T N[G,G] € T(F) N G'(F) = T'(T), and the restriction
froa: ’f‘(@) — T(F) is surjective: indeed, a surjective morphism of algebraic
group varieties is such that the image of a maximal torus is a maximal torus (see
[Bor91, Proposition 11.14 part (1)] or [Mill7, Proposition 17.20]). Therefore, we
get that t = f(?) for some ¢ € T(3). In particular §-¢ ' € ker(f~1)(%); but
ker(f~ 1) is contained in the centre of G, and in a reductive group the centre is
contained in every maximal torus (see [Hum98, Section 26.2, Corollary A.(b)]).
Therefore § -7 € T(F) and so § € T(F), as we wanted to prove.
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e Let us prove that the map in the statement is surjective.

Let us use the Bruhat decomposition:

G= U U-ny-T-U,
weWp

where n,, € N is a representative of w € Wy and where U is the unipotent
subgroup generated by the U,’s for a € ®T (and, as an algebraic variety, it
is isomorphic via the multiplication map to the direct product of the U,’s: see
[Mil17, Theorem 21.68 (a)]; in particular, U is generated by the U,’s).

As we shown before, for all & € ®, an element in the image of ¢, : SLa(F) — G
lies in the commutator subgroup [G, G]. Applying this to the elements M5 0) for
all o € II, we get that for all w € W one has n,, € [G,G] for a suitably chosen
representative n,, € N of w. In a similar way one shows that U, C [G,G] for
all @« € ®* and so U C [G,G] (in this case the argument is simpler because

we can consider the commutator [(% 2:),(§%)] = (é (“2*11)"1) for all a € §

and for a fixed u € §* having non-trivial square). In conclusion, by the Bruhat
decomposition, we get that every element of G can be represented by an element
of T in the quotient G/[G, G|, thus proving that the map in the statement is
surjective.

e Let us prove that the map in the statement is a homeomorphism for the §-topology.

Continuity is clear since the map in question is induced by the inclusion of T' in
G. It remains to show that the map

T —— G/G,G]

t————
is open. We consider the map
U xTxU—G (130)

defined by multiplication, where U is the subgroup generated by the U,’s for
a € & and where U~ is the subgroup generated by the U,’s for « € ®~. We
recall that the above map is an open immersion of schemes over §. An open
immersion of §-schemes of finite type induces, taking §-rational points, an open
immersion for the §-topology (see, e.g., [Conl2, Proposition 3.1]). Therefore the
map

U xTxU—G

induced by multiplication is open for the §-topology. In particular, for every open
subset V of T, one has that U~ -V - U is open in G. But then the image of
U~ -V .U in G/|G,G] is open in G/[G, G| because the quotient map is always
open for topological groups. But this last open image is just the image of V in
G/|G, G], since we have already remarked that U C [G,G], and clearly the same
holds for U~. We have thus shown that the image in G/[G, G| of every open subset
V of T is open.

e Let us prove that the inclusions Ty € 7" C T and [G,G] C G are all closed.

The fact that T is closed in T is clear because T is a closed subscheme of T. The
fact that T} is closed in T’ can be proved via the following more general statement:
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if S; and Sy are F-split tori, and if ¢: S; — Ss is a morphism of algebraic tori,
then the induced map ¢: S; — Sy has closed image (for the F-topology). To
show this, thanks to Lemma 3.2.12, it is enough to show that (F*)" is closed in
§* for all n € Z. This is immediate using the decomposition

(SX)TL — ﬂ_nZ % (DX)n C 7TZ X OX = SX,
since the factor 7% is discrete, and the factor O* is compact Hausdorff.

It remains to check that the inclusion [G,G] C G is closed, but this now follows
from the fact that the quotient G/[G,G] = T//Ty is Hausdorff since Ty is closed
inT. |

Remark 3.2.20. As claimed in Remark 3.2.17, the inclusion [G,G] C f(G) of
Lemma 3.2.16 is actually an equality. Indeed, this is equivalent to saying that
[G G] G. If we apply the last lemma to G in place of G, we see that this is
equivalent to the condition T - =T, and this is clear from the definition of Tv (129),
because f. is the identity in thls setting.

3.2.g The 1%* graded piece of the centre for unramified extensions
of Q,: full description in the general case

In this subsection we are going to complete the description of the 15¢ graded piece

of the centre of E* under the assumption that § is an unramified extension of Q).

Recall from Proposition 3.2.11 that it remains to describe Z(E*)! N H(I,X(1)).
Let us define

Ty = Image ([Toer & [aen(l+9) — (T)1). (131)

It is easy to check using Lemma 3.2.12 that T(% is the (unique) pro-p Sylow subgroup
of the unique maximal compact subgroup of Ty (which we defined in (129)).

Lemma 3.2.21. Assume either that p # 2 or that § is an unramified extension of
Qp. One has that T(%) is trivial in the Frattini quotient of I.

Proof. We are going to give two different proofs in the two (very overlapping) cases
p # 2 and § unramified extension of Q,, both of them basically taken from [OS18,
§3.8]. Let I(3%2) be the standard pro-p Iwahori subgroup of SLo(§F) (as in Section
1.5).

o If p # 2, then it is easy to compute the commutator subgroup [I(SLQ),I(SLQ)]
explicitly (see [OS18, Proposition 3.62 i)]) and in particular to show that

1)

Using the maps ¢,’s for o € II, we see that the image of the map []

zel+ sm} C [I(SLZ’),I(SL?)} .

a€ll O“ 149m
(i.e., chl>) is contained in the commutator subgroup [/, ], and in particular it is

trivial in the Frattini quotient of I.

e If § is an unramified extension of Q,, then we follow the proof of [OS18, Proposi-
tion 3.64 i)], which is stated only for § = @, but basically works for all unramified
extensions. For all a € O let us set:

wi(a) = ((1) ‘f) u_(a) = (i ‘1)>

135



One can check the following equality for all a € O:

<1JBap (1+c?p)_1) = [u4(1), u-(pa)] - (U—(pa)u+(1fpa)pu_(pa)*1) -u_(—pa?)P.

The first factor of this decomposition is a commutator of elements of I5%2): the
second factor is conjugate in 112 to a p-th power, and the third factor is a p-th
power in I152) Applying ¢, (for o € II), we get that &(1 + ap) is trivial in
the Frattini quotient of I. Now we use the assumption that § is an unramified
extension of Q,, yielding that every element of 1 + 901 is representable as 1 + ap
for some a € O, and so we have proved that the image of the map [] 54‘1 o
(ie., Tg) is trivial in the Frattini quotient of I. [ |

Lemma 3.2.22. The pro-p group Tl/T% is a direct factor (as a topological group)
of the locally profinite group T/Ty = G/|G,G] (where the isomorphism holds by
Lemma 3.2.19).

Proof. By Lemma 3.2.12, there exists a commutative diagram of the following form,
where the vertical maps come from isomorphism of §-split tori, where r := dim T
and ' := #II = dim T’, and where nq,...n,  are suitable integers:

Haen gx HaEH o ]A:
(&) ()"

/

n
(t1,...,tT/)»—>(tT1,...,tr,” ,1,...,1)

Therefore, via the isomorphism on the right side of the diagram, we have:

T/Tg = (§7/(F)") > x (F/F)™) x §F° x---x F5,
1+9Mm 1+Mm
TYT: = —— = x...ox L4+9M) x---x (1+9M).
M= Traym 7% @yager < (FID 0o (L4
Using the factorization §* = 7% x Hy—1(F) x (1+90), we see that Tl/Tc%> is a direct
factor (as a topological group) of T'/Ty. [

Remark 3.2.23. Although we will not use this, it is interesting to compare this
result with the following: in [Koz18, Lemma 5.1] it is proved that if p # 2,3 then
Tl/T(% is a direct factor of I/[I,I].

Lemma 3.2.24. Let ¢: G — k be a homomorphism of topological groups. Let us
define 1y € HY(I,k) as the restriction of 1 to I and, for all ¢ € C, let us define
Ve = Sh; (1) € H'(I,X(c)). One has that 1. is in the centre of E*.

Proof. To show our claim that 9. € Z(E*), let us first prove that 1), is centralized
by the whole EY, i.e., that it commutes with 7, for all w € W: recall that ¢ has
length zero (see Theorem 3.1.10), so the formulas for the products are “the simple
ones”, and applying them we find that
Ve - Tw € HYI, X (cw)),
Tw - e € H (I, X(we)) = H (I, X(cw)),
Shew (Ve - Tw) = resfzw Yy = 1”[10)

Shew (T - 1he) = resp ™ wapy = p(w™ - (L) w)|, =,

(132)

136



We conclude that 9. - 7, = 7 - Ye.

Now we have to show that . € Z(E¥), i.e., that it commutes (in the “graded-
commutative” sense) with every element of the form v € H'(I,X(w)) for i € Zx
and w € W. We have already said that ¢ has length zero, and so we can apply

the formula relating the (opposite of the) Yoneda product and the cup product
(Corollary 1.9.3), finding that

Yoy = (Yo Tw) v (Te- Y
= (1w - Ye) v (Te - 7) (since 1. and 7, commute)
= (Tw - Ye) v (7 Te) (because 7. € Z(E™), see Theorem 3.1.10)
= (_1)i(7 7e) ~ (Tw  ¥e)
= (=1 e,
i.e., ¥ and v commute (in the “graded-commutative” sense). |

Proposition 3.2.25. Assume either that p # 2 or that § is an unramified extension
of Qp, and let c € C. Using the notation

Z(ENL = Z2(E)'n HY(I1,X(c))
and considering the image via the Shapiro isomorphism
Sh. (Z(E*)}!) € H'(I.,k) = H' (I, k),

one has that the restriction map resk, : H*(I,k) — H*(T", k) induces an isomor-
phism
Sh. (Z(E*);) = H'(T" /Ty, k),

where T(%) was defined in (131).

Proof. Let us show that the map
*\1 1 1 1
Sh. (Z(E*))) ——— H'(T /Ty, k)

T'Ty —— k
{r——
t——— &(t)

is well-defined, injective and surjective.

e The above map is well-defined (and would be well-defined on the whole H'(I, k)),
because we have shown in Lemma 3.2.21 that T% is trivial in the Frattini quotient
of I.

e The above map is injective because an element in Sh, (Z(E*)}) (which is a homo-
morphism of topological groups from I to k) is zero on the the “unipotent factors”
of the Iwahori decomposition of I (see Lemma 3.2.7).

e [t remains to show that the above map is surjective. Lemma 3.2.22 tells us that
TY/T 51) is a direct factor of G/[G, G]: in other words, we can fix a splitting



Given ¢ € H! (Tl /T%, k:), we can define &; as the composite

c

£

T GG, —F— TV T —>— k.

Er: 1 G

It is clear that &; is an element of H'(I, k) whose image in H' (Tl/T(fl>7 k) is equal
to £. It remains to check that & € Sh, (Z(E*)é), i.e., that Sh;1(¢;) is in the
centre of E*. Since £ is the restriction of a homomorphism of topological groups
G — k, this last claim follows from Lemma 3.2.24. [ |

Theorem 3.2.26. Assume that § is an unramified extension of Q,. One has that
Z(E*)! can be described in the following way: there is a k-vector space decomposition

Z(E")' = P Z(E"),, where Z(E*)L = Z(E*)' n HY(I,X(c)).
ceC

Moreover, one has an isomorphism of Z(E*)?-modules
Z(B") @5 Z(E)} —— Z(E")’
Z®E y z- &

(here, Z(E*)? @y Z(E*)1 denotes the free Z(E*)?-module obtained by base change
from the k-vector space Z(E*)}). This isomorphism can also be described as

KIC) @4 Z(E*)) ——— Z(E*)!
() ®¢

*\1
(with ¢ € C) Ter & € Z(ET)..

Finally, for all c € C, the restriction map rest, : HY(I,k) — H' (T, k) induces an
isomorphism of k-vector spaces

She (Z(E™)}) = H'(T' /T4, k),
where T(% was defined in (131).

Proof. The above statement combines the statements of Proposition 3.2.11 and of
Proposition 3.2.25. u

Remark 3.2.27. Under the assumptions of the theorem we have that the obvious
inclusion

Z(E*)' € Zgoum 1.x(1))(EY)
is actually an equality. This is because to determine Z(E*)! we have only used graded

commutators with elements in E and H'(I,X(1)) (see in particular Lemmas 3.2.6,
3.2.7 and 3.2.10).

Remark 3.2.28. With reference to the theorem, let us drop the assumption that §
is an unramified extension of Q,, but let us add the assumption that p # 2, in such

a way that Proposition 3.2.25 is still applicable. Since the elements of C' have length
zero (e.g., by the length formula), it is easy to see that

Z(E*)' N (@ H\(1, X(c))) =P (z(E") nHY(I1,X()) = D 2(E)..
cea ceé cea

Applying Proposition 3.2.25, it is not difficult to see that one has the following
isomorphism of Z(E*)-modules (generalizing the above Theorem 3.2.26):

2(E)" 0 (@ HIX(e)) = Z(B") @ Z(E)} = Z(E*)° @ H (T T}, k).
ceC
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3.2.h Examples
In this subsection we will discuss the examples G = GL,, and G = PGL,,.

Example 3.2.29. Assume that G = GL;, let us choose T to be the diagonal torus.
For the moment, let us not make any assumptions on §. Let ¢ € C' and let

f:1+M—k

be a homomorphism of topological groups. Let &. s € H'(I,X(c)) = H'(I, k) be the
cohomology class such that Sh.(&. f) is the following homomorphism of topological
groups:

Sh(ées): Lo=I1—9 119 B S

Since She(&. r) is the restriction to I, = I of a homomorphism of topological groups
from G to k, Lemma 3.2.24 shows that . ; lies in the centre of E*.

So, even without assumptions on §, we have produced elements in Z(E*)!. Now,
let us relate this to the description of Z(E*)! of Theorem 3.2.26.

Let us still not make any assumption on §. Note that the determinant

det: T' — 1+ M
is surjective and has kernel
T'NSL.() =T NT' = (")} = T;

here the second equality uses that 7' N7 is pro-p and contained in 7", and the third
equality uses that Ty = T" by Remark 3.2.15 (since G’ = SL,, is simply connected).
Therefore the determinant induces an isomorphism

1 1
TYTE — 1+ M.

It follows that
H'(1+9, k) = H! (Tl/T(%, k:)

via the determinant.

Now let us assume that § is an unramified extension of @, in such a way that
the description of Z(E*) of Theorem 3.2.26 holds. Then if we combine the above
isomorphism with the isomorphism

H (I, k) = H (T1 T, k;)
defined by the restriction map (see again Theorem 3.2.26), we obtain an isomorphism
HY' (I,k)= H'(1+ M, k).

It is easy to check that the following is a right inverse of such isomorphism, hence
an inverse:
H'(1+ M, k) —— H' (I, k)

f ——— fodet =Sh(&. ).

This shows that, if § is an unramified extension of @, then the above procedure
yields all the elements of Z(E*)!. Moreover, using again Theorem 3.2.26,

Z(EN' = Z(E*) @) H' (1 + M, k)
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as a Z(E*)-module.
Without assumptions on §, instead, we still have a morphism of Z(E*)°-modules

Z(E" @ H' (1 + M, k) ——— Z(E*)!

TC®§

witheed) —  e® §i,r = e f

where the equality follows from formulas (132). This homomorphism is injective
because it preserves the decompositions

P H 1+ k) — P 2(E) 0 H(1,X(0)),
el ceC

and because the map f +— &) ¢ is injective (for all nonzero f € H(1+ M, k) we find
an element t € T C I such that f(det(x)) # 0). However, as we are not under the
assumptions of Theorem 3.2.26, we do not know whether it is surjective or not.
Lastly, we compute the rank of the free Z(E*)-module Z(E*)° @), H*(1+ M, k)
(which is the same as the dimension of the k-vector space H*(1+ 9, k)), as follows.

o If ¥ is a finite extension of Q,, then the quotient (1 + 9)/(1 4+ 9M)? is finite-
dimensional as a Fj,-vector space; more precisely (see [FV02, Chapter I, (6.5),
Corollary, part (3)]) 1491 is a finitely generated Z,-module (via exponentiation)
having free part of rank [§ : Q] and torsion part consisting of the p"-th roots of
unity of §* (for r € Z>¢), and so

dimg, ((1+991)/(1 + M)?)
S Q) if § contains no non-trivial p-th roots of 1,
~|[8: Q) +1 if § contains non-trivial p-th roots of 1.
Hence,
rank 7 gy Z(E*)° @ H' (1 + 9, k)
= dimy H'(1 + MM, k)
= dimp, (1 +9)/(1 + M)?

S Q) if § contains no non-trivial p-th roots of 1,
[§:Qp] +1 if §F contains non-trivial p-th roots of 1.

e If instead § = IF((X)), then one has a bijection

o I 1% 1+M
1€Lx1 JET
with pti
(aig)ig — [ [T +5x9m,
€21 JET

with p {4
where J is a fixed basis of F; as a Fp-vector space (see [FV02, Chapter I, (6.2),

Proposition]). The map 7 is actually an isomorphism of topological groups: in-
deed it is clearly a group homomorphism between compact Hausdorff topological
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groups, and hence it suffices to check continuity. Since the source is first count-
able, it suffices to check sequential continuity. Let (am)mez., be a sequence on
the source, where ay, = (am,ij)ij With am; € Zp, and assume that it has limit
a = (a;;);; (this is a limit in the product topology, i.e., a pointwise limit). For all
| € Zz1, the sequence (bym)mezs, in 1+ M defined by

b= T JL (45X

ie{l,..,l} jeJ
with pti

IR
ie{l,. 1} jeT
with pti

converges to

Denoting by 7 the class modulo 1+ of an element = € 1+9M, this shows that the
sequence (n(am))mez>0 converges to n(a). But 1+9t = @r(1+m)/(1+mr), and
the inverse limit topol/ogy is induced by the product topology, and so convergence

on each of the factors (1 + 9)/(1 + 9") implies convergence on 1 + 9.
We deduce that

=H
=i (7, k)
’I’LEZ>0
= lim H' (F}, k)
neZ;o
>~ hg k"
nEZ;o
Y
TLGZ>0

where we have used the behaviour of profinite group cohomology with respect to
inverse and direct limits (see [Ser02, Chapter I, Proposition 8]). We conclude that

rank 7 gy (Z(E*)° @p H' (1 4+ M, k)) = dimy H' (1 + 9, k)
= Ro.
|

Example 3.2.30. Let G = PGL,, (we will later assume that p divides n to get
something non-trivial) and let us choose T to be the diagonal torus. For the moment,
let us not make any assumptions on §. One has a well-defined “determinant” function

det: PGL, () —— §/(F)"

g
(with g € GLn(§))

——— det(g).

Let us consider a homomorphism of topological groups

Fr(L+90)/(1+9m)" — k.
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Identifying H' (1, X (1)) with H'(I, k), we define £y € H'(I,X(1)) to be the following
homomorphism of topological groups:

g T — o omya ey — L g

Since &y is the restriction to I of a homomorphism of topological groups from G to
k, Lemma 3.2.24 shows that £; lies in the centre of E*. We have thus constructed a
map of k-vector spaces

H' ((1+90)/(1+ )" k) —— Z(E*)'
f > ff,

which is injective since for all nonzero f € H'((1+ 9)/(1 4+ 9M)™, k) we find an
element t € T' C I such that f(det(z)) # 0. Regarding whether we have found
something non-trivial or not, we note the following:

H'Y((1+9)/(1+ )™, k) = H'((1+90)/(1+DM)P(1 +IM)", k)

N 0 if p1n,
O HY (L) /(L +M)P k) ifping

~ )0 if ptn,
| HY A+ E) ifpin,

where we used that if p does not divide n then exponentiation by n is an automor-
phism of 1 + 9 (having inverse the exponentiation by n~! € Z,'). We have thus
found that

e If p does not divide n then the above procedure does not yield non-trivial elements
in Z(E*)%.

e If p divides n then the above procedure does yield non-trivial elements in Z(E*)*
(it is easy to see that H'! (1 + M, k) is non-trivial, and in any case we have even
computed it explicitly in the example of GL,,).

Let us prove that
1 _
Ty = ker (det|T1).
Let us consider the simply connected covering

(SLy,, Tsr, ) — (PGL,, T),

where Tgr,, is the diagonal torus of SL,. Recall that T; 3 18 the image of Tgy,, via
the above covering. It is then clear that every element of T is in the kernel of det.
In particular, we have the inclusion T(% C ker (@’ Tl)‘ For the other inclusion, let

x € ker (ﬁ’ Tl)' Denoting by Tgr,, the diagonal torus of GL,,, we can choose a lift
t € Tgy, of x. There exists u € §* such that

)

det(t) = u" = detu, where

u

Using the decomposition §* = 7% x p,_1(F) x (1 + M), we see that without loss
of generality we may assume that u € 1 + 9, and so u € T(I}Ln' Now, tu~! is an
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element of T(lan with determinant 1, and so it is an element of Tlen. Since SL,, is
simply connected, we know by Remark 3.2.15 that ¢4 ! lies in the image of

ITa: JJa+m) — T,
a€ell a€ell

Therefore the element z = ¢t = tu lies in T(%. This concludes the proof that
- _
Ti> = ker (det|T1).

If § is an unramified extension of @Q,, one can prove, using this equality and re-
producing the same argument as in the example of GL,,, that the above procedure
yields all the elements of Z(E*)! and hence that

0 if p1n,

H(1+M k) ifp|n.

3.2.i A remark about a graded-commutative algebra inside E*

Let K1 O K2 O K3 be open inclusions of locally profinite groups. Later on we will
further assume that K3 is compact. As compact induction is transitive, we have a
homomorphism of k-algebras

Endk[Kl]_mod (c-indgé ].)

End -indj2 1) ——
ndg [y mod (¢-ind 3 1) = Endj(x,}-mod (c-indf¢! c-ind 2 1) (133)

\ ind L
h c—de2 h.

Recall the concrete description of the above rings of endomorphisms as in Subsection
1.4.a (where the product can be described as a convolution):

Endpf,}-mod (c-ind i 1) ——— k [K3\K;/K3]
hi h(1)

fori=1,2,

where we read h(1) as a K3-bi-invariant function K; — k. The explicit identification
c—ind% c—ind% 1= c—ind% 1
is given by

. K1 | - Ko . K1
— — —_— —
c-ind Ky © ind Ks 1 c-ind Ks 1

<K1—>k‘ )
f—

We then see that the homomorphism (133) admits the following concrete description:

Ksx K3 —— K3z K3.

(134)

In the next lemma, we extend this to the level of Ext groups. For ¢ = 1,2 we
consider

Ext* (c-indg! 1, c-indjg! 1) = Ext™ (k[K;/Ks), k[K;/K3)).
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Lemma 3.2.31. Let K1 O Ko O K3 be open inclusions of locally profinite groups,
with K3 is compact. One has that the map

H*(K3, c-indj? 1) — H* (K3, c-indj! 1)

induced by the canonical map of Ko-representations c—ind% 1— c—ind% 1, i.e., by
the canonical inclusion k[Ky/Ks] — k[K1/K3)| is an injective homomorphism of
graded k-algebras, with respect to the (opposite of the) Yoneda product.

Proof. We identify
Eth*%ep,;“(Ki) (C—indgé 1, c—indgg 1) = Hompg,) (c—ind%3 1, (C—indﬁ 1)[*]), (135)

(see [Har66, Chapter I, Corollary 6.5]) where the notation is as follows: D(K;) is the
derived category of Repi°(K;), the c—indﬁg 1 appearing on the right hand side means

the complex concentrated in degree 0 associated with c-indgg 1, and the notation

(c—indgg 1)[#] means translation by *. With this description, the Yoneda product is
the composition of morphisms in D(Kj).

Since compact induction from an open subgroup is exact (left exactness is easy
and right exactness follows from the fact it is a left adjoint), the functor c—indllg
induces a map on the level of derived categories

Homp(g,) (c—indgi 1, (c—indgg 1)[*]) —— Hompg,) (C—indIIg 1, (C—indgé 1)[*})

\%4 |4
\7 g c—indgé\f/ c—indgé g
q.is. \ _— q.is. \

c-ind g2 1 (c-ind e 1)[] c-indjg! 1 (c-ind et 1)[]

(136)
It is then clear that this map preserves the Yoneda product. Let us see this on
the level of injective resolutions; denoting by K (K;) the homotopy category of the
category of unbounded complexes in Repp°(K;), denoting by Ext* the Ext functor
defined in terms of injective resolutions and choosing an injective resolution J? of
c—indﬁ) 1, the identification (135) can be made explicit as follows:

Homp g, (c—ind% 1, (c—indﬁ 1)[*]) = Hompg,) (c—indﬁg 1, JZ'[*])
= Homy (g, (c-indj’ 1, J2[+]) (137)

= EXt;{ep?(Ki) (c—indgg 1, c—indgg 1).

Here, the first identification is induced by the natural map c—indgg 1 — J?[*], which
is a quasi-isomorphism; the second identification stems from the fact that every mor-
phism in D(K;) having as target a complex of injective objects comes from an actual
morphism of complexes (see [Har66, Chapter I, proof of Theorem 6.4]); the third
identification is obtained by sending a morphism of complexes c—indgg 1 — J2[%]
to the class of its O-component.

Now, let us express the map (136) as a map

. 1K . 1K 1K - 1K
Extﬁep?(KQ) (C‘dei 1, c-indj? 1) — Eth*%ep;O(Kg) (c—deé 1, c-ind ! 1)7

where the Ext-groups are defined in terms of the chosen injective resolutions. Since
J7 is an injective resolution of c—ind% 1, there exists a unique morphism ¥ in K (K1)
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making the following diagram commute (note that the first row is exact because
c—ind% is an exact functor):

. 1K1 s 1K1 7e
c-indp; 1 —— c-indy) J3

H v

c-ind®r1 —— 4 ge.
Ks 1

It is then easy to describe explicitly the (obviously unique) dashed maps making the
following diagram commute:

136
Homp k) (c—ind% 1, (c—ind% 1)[*]) u Homp k) (c—ind% 1, (c—indflg 1)[*})

%(137) ~|(137)

Hom p(g,) (c—ind% 1, JQ'[*]) ————————— » Homp g, (c—ind% 1, (c—ind% Jg)[*])

TTeeell ~lind. by ¥

Hompx,) (c—ind% 1, Jp[#]).

Looking again at (137) we then get that, defining the Ext-groups in terms of our
chosen injective resolutions, the map (136) is the same as the map

ExtRep;O(K2) (c—deg 1, c—1ndK§ 1) _— EXtRep?(Kg) (c—lndK; 1, c—de; 1)

c-indX1 f
(cindf2 15 p) s (il 1 —"25 cindfit g 5 7).
(138)
Now,since we are assuming that K3 is compact, exactly as in Subsection 1.9.a
we have an identification
. K; ~ 3 K;
Ex‘c;g{epio(Ki)(c—lndK3 1) @2 H* (K3, c—de3 1),
which can be obtained as follows: recall that we have chosen an injective resolution
c—ind%} 1 — J? in Repg°(K;): this is also an injective resolution in Rep}®(K73)
(because the restriction functor from Rep;(K;) to Repp°(K3) preserves injective
objects, see [Vig96, Chapitre I, 5.9 d)]). Then, the left hand side (respectively, the
right hand side) of the above identification is the cohomology of the complex obtained
by applying the functor Homgepe (k) (c—ind% 1,_) (respectively, the functor (- ),
which is isomorphic to the previous one) to the complex J;.
For n € Z> and for f as in (138), we have the following commutative diagram

. K3
c-indyt f
. K . 14
c-indf11 — 2235 eindfr gp = gn
K3 Ky Y2 1>

N

s J B2 n
- - -
c-ind Ks 1 JQ

J

1
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where U is the obvious composite morphism. Looking at the commutative diagram

c-ind®21 — 5 g2
K3 2

I l

ind K1 s dKL e | T
cindp, 1 —— c-indy) J3 | @

H v

R o p—
3

we see that the map (138) (i.e, the map (136)) is the same as the map
H*(K3, c-indj 1) — H* (K3, c-indj 1) (139)

induced by the canonical map of Ks-representations c—indflg 1— c—ind% 1, i.e., by
the canonical inclusion k[Ka/K3] — k[K1/K3]. The latter map is a split injecitve
homomorphism of Ks-representations, because the map

k‘[Kl/Kg} _— k‘[KQ/K;g]

(xKg) {(Z‘Kg) lf x € Ky

0 if v ¢ Ky
is a well-defined homomorphism of Ks-representations that provides a left inverse.
Since profinite group cohomology commutes with direct sums, we conclude that the
map (139) (equivalently, the map (138) or, again equivalently, the map (136)) is
injective. |

Returning to our setting, let us consider
K1 = G, K2 = CI, Kg = 1.

From the above abstract situation (and considering now the opposite product, in
accordance with our conventions) we get an injective homomorphism of graded k-
algebras

Exthepee(c) (c-ind$!, c-ind¢7)oP —— Exthopee(q) (c-ind¥, c-ind§)°P.
I Il
E*(CI,I) E*(G, 1)
I
E*

This homomorphism, when seen as a map
H*(I,k[CI/I])) — H*(1,k[G/I)), (140)

is just the map induced by the inclusion k[CT/I] — k[G/I]. Since CNI = CNT*
and since C' is central, we have

cryi= \J ejyi= \J  reyr

ceC/(CNTY) ceC/(CNTY)
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On the other side, we have

G/1= | rwi/1= ( U IcI/I) ¥ ( U IwI/I).

welv ceC/(CNTY) wEWN(C/(CNT1Y)

Using the decompositions of I-representations

ke = @ X,

ceC/(CNTT)
K[G/T) = ( D X(c)) = ( D X(w)>,
ceC/(CNTY) weEW~(C/(CNTY))

we see that the map (140) has image .cc/cnr) H*(I,X(c)) € E*. Therefore we
have an identification (which we will treat as an equality)

E*CI.)= & HI,X())CE"
ceC/(CNTT)
There seems to be some relations between the subalgebra E*(CI,I) and the

centre of £*, although only regarding low graded pieces. The following remark sum-
marizes some facts in this direction.

Remark 3.2.32. The following facts hold.

(i) E*(CI,I) = k[C] @ H*(I,k) as a graded k-algebra, where k[C] is the group
algebra of the group C' = (C - T')/T' and where H*(I, k) is the usual coho-
mology algebra with respect to the tensor product. In particular, E*(C1, 1) is
graded-commutative.

(i) Z(E*)? = E°(CI,I);

(iii) If § is an unramified extension of Q,, then Z(E*)! C EY(CI, I), with equality
not holding in general.

(iv) In general, it is not true that Z(E*) C E*(CI,I).
Proof. We prove the four claims stated above.

(i) We claim that the map

k[C] @y H*(I, k) — E*(CI,1)

(c) @y
(with ¢ € O)

(141)
——— 7o - Sh{ ' (v)

is a well-defined isomorphism of k-algebras (here Shl_1 is basically the identity
map on the cohomology space H*(I, k) = H*(I,X(1)); nevertheless, we write
it explicitly in order to stress the fact that we are considering the inclusion
Shy!(y) € H*(I,X(1)) C E*). First of all recall from Theorem 3.1.10 that we
have an isomorphism of k-algebras

k[C] ——— Z(E*)°
(c)

~ /> T,
(with c € C)
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(iv)

and recall from Corollary 1.9.3 that the inclusion
H*(I,k)=2 H*(I,X(1)) — E*

is a homomorphism of k-algebras. It follows that we have a well-defined ho-
momorphism of k-vector spaces

k[C) @y H* (I, k) ——— E*

(c) ®~y Cqn—1
(with ¢ € C) 7e Shy (%),

and that this is actually a k-algebra homomorphism, because the image of

the map k[C] — E* is central in E*. It is also clear that the image of the
map displayed above is contained in the subalgebra E*(C1I,I), and so we have
shown that (141) is a well-defined homomorphism of k-algebras. To show that
it is bijective, recalling that C = (C - T1)/T' = C/(C NTY), it suffices to
consider the decompositions

kIOl @ H*(1,k) = @ (c) ® H* (I, k),
ceC
E*(CI,I) = @ H*(I,X(c))
ceC
=P =5 (1. X(1)),

ceC

where the last equality is clear from the explicit description of the product in
E* (see, e.g., Theorem 1.9.1) and from the fact that every ¢ € C has length 0.
From the above decompositions, bijectivity of the map (141) follows.

The equality Z(E*)? = E°(CI,I) is now clear because both terms coincide
with the image of the isomorphism (141) in degree 0.

If § is an unramified extension of Q,, then the inclusion Z(E*)! C E1(CI, 1)
holds because in Proposition 3.2.11 we showed that

Z(E")' c P H'(1,X(0)

ceC

=@ H'(1,X(1).

ceC

In general this is not an equality: indeed E'(CTI,I) 2 H(I,k), and H*(I, k)
is always non-zero (if G # {1}), while Z(E*)! might be zero (the first fact
is general: for a non-trivial pro-p group K the cohomology group H'(K, k) is
always non-trivial, see, e.g., the argument in the proof of Corollary 3.2.39; for
the second fact see, e.g., Corollary 3.2.39, or the explicit result for SL2(Q))
with p # 2,3 proved in Proposition 2.5.2).

The fact that in general we do not have Z(E*) C E*(CI,I) is clear from the
description of Z(E*)? for G = SLy(F) with the assumption that I is torsion-
free (see Proposition 2.2.1). [
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3.2.j The 1%t graded piece of the centre for unramified extensions
of Q,: special cases

In this subsection we will derive two corollaries (Corollary 3.2.37 and Corollary
3.2.39) from Theorem 3.2.26. Before, we need some notation and some lemmas.

Let us define C° as the identity component of the centre C of G. We have
already recalled (e.g., in Section 3.1.a) that C is defined over § and that C C T. We
also remark that C° is a §-split torus, because it is a (closed) connected subgroup
defined over § of a §-split torus (see [Bor91, Chapter III, §8.5, Corollary and §8.14,
Corollary]).

For all w € W, we define I!, to be the subgroup of I, generated by (7”)! and the
“unipotent factors” in the Iwahori decomposition of I,,. This can be also character-
ized as the group (I (G/))w obtained by replacing I with the pro-p Iwahori subgroup
I(G") of G’ corresponding to I. We add the proof of this fact together with a more
precise explanation of what we mean by I(G") and by (I(G"),, (which only makes
sense assuming w € Wag).

Proof of the claim. Since that for all w € Q one has I,,, = I,,, we may assume that
w € Wag. One can canonically identify the root systems of (G,T) and (G/,T’).
We make the same choice of positive roots and we choose compatible Chevalley
systems on (G, T) and (G, T). The corresponding apartments are then canonically
identified, as well as the corresponding groups “W,g” generated by affine reflections
in the apartment. Let us look at the Iwahori decomposition of I,,:

1
IT Yeguon X T % T Wogw(@) — Lo
acd— acedt

The groups U, ’s associated with (G, T) and with (G’, T') are canonically identified,
as well as and their filtrations. Also the respective functions g(_)(-)’s coincide. Con-

sidering the the pro-p Iwahori subgroup I(G") of (G/, T') (associated with the same
choice of positive roots / with the same fundamental chamber we are considering for
I), we therefore conclude that the Iwahori decomposition of the subgroup (1 (G’))w
consists exactly of the same factors as the Iwahori decomposition of I except that
one has (7”)! in place of T. [ ]

Lemma 3.2.33. The following are equivalent:
(1) p does not divide the order of C°NT';
(2) T' = (€)' - ()

(3) T' = (C°) x (T")";
(4) I, = (C°) x I, for allw € W.

Proof. Let us prove the equivalences (1) <= (2) <= (3), and then the implications
(3) = (4) and (4) = (2).

(1) <= (2) <= (3) : We have the following exact sequence, where the first algebraic
group is finite (see [Bor91, Chapter V, §21.1]):

] —CNT —C°xT — T —— 1.

We can therefore apply Lemma 3.2.13, which tells us that the induced map
(C°)! x (T")' — T" is surjective if and only if p does not divide the order of
C°NT’, and in this case it is also injective, yielding the required equivalences.
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(3) = (4) : Combining (3) with the Iwahori factorization of I,,, we find that mul-
tiplication defines a bijection

H u(a,gw(a)) X (Co)l X (T’)l X H u(a,gw(a)) — 1.
acd— acdt

The map (C°)! x I/, — I, defined by multiplication is a group homomorphism
because (C°)! is central, and it is bijective by the above Iwahori factorization.

(4) = (2) : Let us consider ¢ € T" and let us show that t € (C°)!-(T")!. By (4) we
can write t = ci, for some ¢ € (C°)! and some i € I'. Considering the Iwahori
factorization of i with respect to I’ (recall that I’ is a pro-p Iwahori subgroup
for (G',T")), and comparing it with the Iwahori factorization of i = tc=1 € T*
with respect to I, we see that ¢ cannot have “unipotent components”; in other
words we see that i € (T")!, thus finishing the proof that ¢t € (C°)'- (7")!. W

Lemma 3.2.34. Let us consider the map

[T o [T+ — (@)

a€ell acll
One has:

. Haen&‘u_m 1s injective if and only if either p does not divide the order of the
fundamental group of G’ or § does not contain non-trivial p-th roots of unity;

o Hael‘l&‘przm is surjective onto (T")! (i.e., (T")! = T(%) if and only if p does not
diwvide the order of the fundamental group of G'.

Proof. Lemma 3.2.14 tells us that the morphism of algebraic tori
H o H Gpn — T
a€ll a€ll

is surjective (onto T”) with kernel having order equal to the order of the fundamental
group of G’. The result about injectivity and surjectivity of the map [, 541 o
then follows from Lemma 3.2.13.

Lemma 3.2.35. The following are equivalent:

(1) p divides neither the order of C° N'T’ nor the order of the fundamental group
of G';

(2) T' = (C°)! x Ty;

(3) Tl/T% = (C°)! (meaning that the natural map from the right side to the left
side is an isomorphism);

(4) T' = (C°)" - T},

Proof. The implications (2) = (3) = (4) being obvious, it suffices to prove the
implications (1) = (2) and (4) = (1).

(1) = (2) : The condition that p does not divide the order of C° NT’ implies that
T! = (C°)! x (T")! (Lemma 3.2.33), while the condition that p does not divide
the order of the fundamental group of G’ implies that 77 = T' &1) (Lemma 3.2.34).
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(4) = (1) : Since T = (C°)! -T(%), a fortiori one has T! = (C°)! - (T")!. Lemma
3.2.33 tells us that this last condition is equivalent to the condition that p does
not divide the order of C° N T’, thus proving part of the statement (1), and
also that the product is actually a direct product, namely Tt = (C°)! x (7).
In particular, we have

(Co)l . T(% — Tl — (00)1 % (T/)l,

and therefore the inclusion T% C (T")! must be an equality. Lemma 3.2.34 tells
us that this last condition is equivalent to the condition that p does not divide
the order of the fundamental group of G’, thus proving the remaining part of
the statement (1). [ |

The following lemma is surely well-known.

Lemma 3.2.36. One has that p divides the connection indez (i.e., the order of the
finite group given by the weight lattice modulo the root lattice) if and only if p divides
either the order of Z(G') or the order of the fundamental group of G'.

Proof. Let us consider the split semisimple group G’ with maximal (split) torus T’
and root system ®(G',T') = ®(G,T). Recall from (128) the notation A, for the
weight lattice. Let us consider the exact sequence

0 —— X*(T')/spany, ® —— Ay/span; & —— Ay, /X*(T)) —— 0, (142)

where the term on the middle is the group whose order is called connection index,
while the term on the right is the fundamental group of G’. We see that p divides
the connection index if and only if it divides either the order of the fundamental
group of G’ or the order of the group X*(T’)/spany ®.

It remains to relate the term on the left with Z(G’), but in [Mill7, Proposition
21.8] it is shown that there is a group isomorphism

X*(Z(G)) = X*(T')/ spany, ®.

Now we are done because the order of the algebraic group Z(G’) is the same as the
order of the abstract group X*(Z(G')): indeed a finite diagonalizable group, such
as Z(G'), is isomorphic to copies of p,, (see [Mill7, Proposition 12.3 and Theorem
12.9]), say

Z(G') =y, X X gy

Thus, we obtain that the order of Z(G') is ny - - - nyy, and that the group X*(Z(G'))
has also order nq - - - n,,, because

X*(Z(G) 2 Z/Z & - ® L/ u

Corollary 3.2.37. Assume that § is an unramified extension of Q. One has the
following facts.

(a) Assume that p divides neither the order of C° N T' (equivalently, the order of
(C°N'T')(F)) nor the order of the fundamental group of G'. Then, there is a
decomposition I = (C°)! x I' and two maps

1 res(cey 1 1
HY(I, k) ———— H'((C°)*,k)

pf(kcop
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define an isomorphism Sh. (Z(E*)}) = H' ((C°)', k) for all c € C.

In particular, combining this with the description of Z(E*)! of Theorem 3.2.26,
we get that the composite map

idZ(E*)0 Ok pr?co)l

Z(E*)" @), H'((C°)', k) Z(E*)° @y, H'(I, k) 2 gt

defines an isomorphism of Z(E*)?-modules Z(E*)° @, H ((C°)', k) = Z(E*)'.

(b) The two conditions in (a) hold if p does not divide the connection index of
the root system (i.e., the order of the finite group given by the weight lattice
modulo the root lattice).

Proof. Let us prove the two parts of the corollary.

(a) Since p does not divide the order of C° N'T’, from Lemma 3.2.33 we get that
I = (C°)! x I'. Moreover, using both assumptions on p, from Lemma 3.2.35
we get that Tl/T% = (C°)%. Let ¢ € C, and recall from Proposition 3.2.25 that
we have an isomorphism

She (Z(E*);) ————— H'(T" /T3, k)

TI/T} .k (143)
Er— ® ;
t— &(t)

and hence an isomorphism

I
Iesy o
(Co)!

Sh, (Z(E)}) — < 1Y (%)L, k). (144)

It remains to check that the projection map from I = (C°)! x I’ to (C°)!
defines an inverse

pI‘)(kCo)l

H' ((C%)' k) —— She (Z(E");)

for the above isomorphism (144). In the proof of Proposition 3.2.25 we have
explicitly described the inverse map

H'(T" /Ty, k) — Sh, (Z(E*).)

of the isomorphism (143) in the following way: it sends each & € H (T/ T(%) k)
to the following element of Sh. (Z(E*)}):

-

§

Y G/6,G) —F— TYTE —>— k,

e 1 G

where o is a chosen splitting (recall from Lemma 3.2.22 that T /T (% is a direct
factor of T)/Ty = G/[G,G]). Hence, identifying Tl/T(% with (C°)!, we have
that the inverse map

H" ((C°)', k) — Sh, (Z(E")})
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of the isomorphism (144) can be constructed by sending each ¢ € H' ((C°)!, k)
to the following element of Sh, (Z(E*)}):

C quot.

19[: I — G v

G/G,G) —%— T"/T} % (o) — sy k.,

Therefore, it remains to check that ¥; = pr?‘co)l(ﬁ): both maps coincide with

9 on (C°)', and so the only thing left to show is that the map 95 is zero on I’.
To this end, let us consider the Iwahori decomposition of I’: it is easy to see
that U, C [G,G] for all @ € ® (this is done in detail in the proof of Lemma
3.2.19), and so we get that 97 is zero on the “unipotent factors” of the Iwahori
decomposition of I’. It now remains to check that 95 is zero on (7”)!, but this
is clear since (7")! =T 51) under our assumptions, by Lemma 3.2.34.

(b) Assuming that p does not divide the connection index, Lemma 3.2.36 gives
us that p divides neither the order of Z(G’) nor the order of the fundamental
group of G'. But C°NT’ C Z(G'), and so we also get that p does not divide
the order of C°NT'. |

Remark 3.2.38. Assume that § is an unramified extension of Q,. Let us show
that the assumptions in part (a) of the corollary are optimal, in the sense that the
restriction map

res(goy s H' (I, k) — H' ((C°)', k)
induces an isomorphism Sh; (Z(E*){) = H* ((C°)!, k) if and only if p divides neither
the order of C° N T nor the order of the fundamental group of G'.

Proof. One implication is part of the statement of the corollary, and hence it remains
to show that if the above restriction map induces an isomorphism, then the condition
on p holds. Recall from Theorem 3.2.26 that the restriction map

vesh,: HY(I,k) — H" (T, k)
induces an isomorphism
resélz Sh; (Z(E*)%) — H* (Tl/(Té)la k?) .

It is then easy to check that the following is a commutative diagram

I
res| coy1

Shy (Z(E");) = H' ((C°), k).,

rest ) nat
T HY(TY)(Ty)' k)

where nat is the map induced by the natural map (C°)! — T"'/(T3)". It follows
that nat is an isomorphism. Now, a homomorphism of pro-p groups is surjective if
and only if the map obtained by applying the functor H'(_, k) is injective (this is
shown in [NSW13, (1.6.14) Proposition] for k¥ = F,, and the general case follows
since H'(_, k) = H'(_,F,) ®p, k, as recalled in (31)). We conclude that the natural
map (C°)! — T'/(T3)! is surjective, and by Lemma 3.2.35 (points (1) and (4))
this is equivalent to the claimed conditions on p. |

Corollary 3.2.39. Assume that § is an unramified extension of Q,. One has that
Z(E*)! is zero if and only if G is semisimple with fundamental group of order not
divisible by p.

153



Proof. We know from Theorem 3.2.26 that Z(E*)! is isomorphic to

Z(E*)° @ H' (T Ty, k).
It follows that Z(E*)! is zero if and only if H' (Tl/T%, k:) is 0, or, equivalently, if
and only if T /Til) is trivial (because for a non-trivial pro-p group P one has that
HY(P, [F,) is nonzero: if P is abelian, as in our case, this can be easily shown by
choosing a proper open normal subgroup, getting an abelian p-group as a quotient,

and in general one can proceed in the same way and use the fact that a p-group is
solvable).

e Assume that G is semisimple with fundamental group of order not divisible by p.
In this situation Lemma 3.2.35 tells us that Tl/Tc%> =(C) =1.

e Now assume that T /T% is trivial and let us prove that G is semisimple with
fundamental group of order not divisible by p. Since T = T %, a fortiori one has
T! = (C°)} -T(%, but then Lemma 3.2.35 gives us that Tl/T% = (C°)}, and so
(C°)! is trivial. This means that C° is trivial, but this condition is equivalent to
the condition that the reductive group G is semisimple (see [Mill7, Proposition
19.10]). Moreover, since we have already remarked that the equivalent conditions
in Lemma 3.2.35 hold under our assumption that 7'/ T(% is trivial, we also have

that p does not divide the order of the fundamental group of G’ = G. |

3.2.k A remark about the ramified case

A part for the case p = 2, in our argument for the proof of Theorem 3.2.26 we have
only used the assumption that § is an unramified extension of Q, for the proof of
Lemma 3.2.10. In the following example, we point out that such lemma becomes
false for more general fields.

Example 3.2.40. Assume that G = SLy (with the usual choices as in Section 1.5)
and that § satisfies the following properties: p € 9M?, ¢ = p and p # 2. In other
words we are assuming either that § is a proper totally ramified extension of Q,
with p # 2 or that it is the field of Laurent series F,((X)) with p # 2. Let w € W
with £(w) > 1. We show that there is an element v9 € H(I,,k) that is 0 on the
“unipotent factors” of the Iwahori decomposition of I, and such that the element

Sh,,'(70) € E' commutes (in the “graded-commutative” sense) with all the elements
of H'(I,X(1)).

Proof. Recall from Lemma 1.10.1 that since p # 2 we have an isomorphism

1+9m
(14 90)P(1 + IM(w)+1)

A 1 0 t 0 ng
(@:5) (wet) G2 ()
for suitable ny,n); € Zs¢ such that n;, + n}; = ¢(w) + 1. It is easy to see that the
inverse of this isomorphism is explicitly given by
14+9Mm
(1 + 9P (1 + IMl(w)+1)

O/IM x x O/M (Iw)g

(Lw) e O/M x X O/M

it S S — _
<1+f‘“1r wZ) — (c- (1+ma)~Y,1+7ma,b- (1—1—77(1)_1) = (¢,1+ ma,b) .
mwe 147

(145)
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Let us consider the following group homomorphism:

1+9m —— omn/om?

l+2+—— 7.

It is immediate to see that (1 + 9)? is sent to 0, and, since ¢(w) > 1, the same is
true for 1 + ME®)+L Hence we get a well defined group homomorphism

1+9m
(14 900)P(1 + IML(w)+1)

1+x > T.

> /M

Putting together (145), this isomorphism and the fact that O/9 =T, C k, we get
that the following is a well defined homomorphism of topological groups (i.e., an
element of H'(I,,,k)):

Yo: I, > k

<1 + ma 7r"1+“b

_ r—>6€9/9ﬁ.
7ve 1+ wd

nt
Since ny, + n}, = {(w) + 1 > 2, looking at the equality det(l'ﬁm;r wZ) =1,1itis
7lwe 14

immediate to see that

14+ 7ma 7r”$b -
_ =qa=—d. 146
o ( Tlwe 1+ Wd) (146)

Let & € H'(I,X(1)). Let (y0)w = Shy'(y0) € HY(I,X(w)). As in the proof of
Lemma 3.2.10 we do the following computation:

Therefore, to prove that (vp), commutes with £ we can, equivalently, prove that
(€, Tw] v (70)w = 0, or, since the Shapiro isomorphism commutes with the cup prod-
uct, prove that

(Claim) Shy ([§; Tw]) v 70 = 0.
Recall from Subsection 1.10.b that H'(I,X(1)) is given by the elements
(c7,0,¢)y for ¢™, ¢t € Homp, (O/M, k) = k.

From the formulas (62), it is easy to see that the commutator [£,7,] lies in the
subspace of H'(I,X(w)) given by

(c7,0,¢h)y for ¢, ¢ € Homg, (O/9M, k) = k.
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Using the inverse of the isomorphism describing the Frattini quotient we wrote in
(145), we see that Shy,([¢,7,]) lies in the sub-k-vector space of H'(I,,k) generated
by the following two elements:

v Ly > k
1+ ni g
e —— e D/M=F,,
mve 1+ wd
Yy L, >y k
1+ ma nip -
_7T T —_ bED/m:Fp.
7we 1+ 7d

So looking at the claim above, we see that in order to show our statement it suffices
to prove that

(Clalm) Y-\ Y = 0 and Y+ Y Y0 = 0.

As we are assuming that p € 92, it follows that O/9M? is an F)-vector space. We
can thus fix the following map (homomorphism of topological groups):

. a chosen section of the
inclusion of Fj-vector spaces

2 2 =l (_
PR P I B, b ST SN, 9Ty C SN SO NG T,y O

By definition, it has the property that X(wz) = T for all x € ©. We define the
following continuous maps (we will see that they are not group homomorphisms,
since they will have non-zero differentials):

P 1 y k
n,
1 —|—_7ra Twh S(e),
7we 1+ 7d
"IIZ)+Z I s k
nid
1 +77ra Tlwh S(0).
mve 1+ wd

We compute the differential of v_ (i.e., diy_(g,9") = v¥_(g9) + ¥_(g') — ¥—(gg’) for
all g, ¢ € I,):

dy l+ma w™b 1+mad et
B e 1+47nd)’ \ 7wd 14 7d
* *
:Z Z /_d — - w
OO = (e (1 gty () w50 o)
=X(c) + X(¢) = B(c+ ¢ + 7 (cd’ +dc))

=ca +dc.

Similarly one computes that

nlt /! n$ /
dip, 1 +_7m mhwh ’ 1 —|—_7ra e b v
mwe 14 7d e 14+ wd
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Recalling (146) and the definitions of v_ and of v, we deduce the following equalities
for all g,¢' € L,:

dp—(g9,9") =v-(9)0(g") —v0(g)r-(d),
dpy(9,9") = v0(9)7+(9") — 1+ (9)0(d).-

This yields

Y-~ =% v y- =0,
Y~ Y+ — Y+~ = 0.

Using anti-commutativity of the cup product and that p # 2, we deduce that both
v— vy and g v v+ are zero, thus concluding the proof of our claim. |

3.3 “Toric” subalgebras

In this section we want to extend the following known result on the pro-p Iwahori—
Hecke algebra to the Ext-algebra (with some assumptions on the field ).

Assumptions. We put ourselves in the general assumptions of Section 1.1, without
any restriction on G and §. Whenever we will use more restrictive assumptions,
these will be explicitly stated.

Let us denote by Hp the pro-p Iwahori—Hecke algebra associated with the group
T (with respect to its unique pro-p Iwahori subgroup T'), while we reserve the
notation H for the pro-p Iwahori—-Hecke algebra associated with G. Using the braid
relations it is easy to see that one has a k-algebra isomorphism

E[T/T'] — Hy
(t)

1 Tt.
(for t € T/T")

Now, we consider the submonoids of T

T~ ={teT | (valzoa)(t) > 0foralla € ®~}
(submodnoid of antidominant elements),
Tt ={teT | (valgoa)(t) >0 for all « € ™}

(submodnoid of dominant elements).

Let Hp: C Hr be the subalgebra corresponding to the monoid algebra k[T /T]
via the fixed isomorphism Hrp = k[T/T"]. It is easy to see that Hr is a localization
of Hp+ and it is well-known that one has an injective k-algebra homomorphism

Hps ——— > H

Tt
(for t € TE/T?) Tt
(this is easy to see using the braid relations and additivity of the length on a closed
Weyl chamber, see also [Vig98, II.5. Proposition]).

In Proposition 3.3.4 and in Remark 3.3.7 we extend these results (in a suitable
sense) to Ext-algebra setting, under the assumption that § does not contain non-
trivial roots of 1.

157



We start by introducing some notation and proving some preliminary lemmas
towards this result.
Let j € Z>p. We define

T, = {teT } (valgoa)(t) > j for all « € @™},
TjJr ={teT | (valgoa)(t) >jforalla € ®*}.

From the definitions, we have

T =1,
TH =T .

It is easy to see that T, and Tj+ are sub-semigroups of T (actually even more: we
have a well defined multiplication action of the monoid 7% on Tji)

Let us choose a split torus .7 over O such that its base change .73 is isomorphic to
T. Such a torus can be obtained for example by choosing a splitting of T, or using
the more canonical construction of [BT84, 1.2.11], or by considering the identity
component of the Néron model of T (the last one is the approach used in [OS19,
§7.2.2]). In any case, 7 does not depend on the chosen construction, in the sense
that if 7 and 7" are two split tori over O such that both base changes 75 and 73
are isomorphic to T, then there is a unique isomorphism f of group schemes over
making the following diagram commute:

-
-

9,

where the arrows on the left are the structural maps of the base change. The claim
can be proved as follows: it is clear that there is a unique isomorphism fz of group
schemes over § making the following diagram commute:

T
— lf&
™~

T

!/

)

but then we see that there exists a unique isomorphism f: .7 — .7’/ whose base
change to § is fz: this is immediate by choosing splittings of .7 and of .7/, and by
remarking that a homomorphism over © or over § is given by a matrix with integer
coeflicients.

For all j € Z>(, we define

T = ker (7(0) 221, 7 (0 /oY) ) € 7(3) =T

Lemma 3.3.1. Let j € Z>g. One has that, for allt € T, U TjJr, the map

Iwahori

decomp. proj.
I =[] YWagy x T % ] Wagiy > T

acd— acdt

quot.

y TL/TI+!

is a group homomorphism (and so a homomorphism of topological groups).
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Proof. Let us divide the proof into two parts: in the first part we will prove the
claim for ¢ € T, while in the second part we will use this result to prove the claim

for t € Tj'".

e Let us prove the claim for ¢ € T;". As in [OS19, §7.2.2], let us denote by Gy,
the Bruhat group scheme associated with the fixed hyperspecial vertex x( corre-
sponding to the 0 point of the apartment, let us define K, = G (D), i.e., the
parahoric subgroup associated with zg, and, for all m € Z>, let us further define

Kagm = ker (Ggo (9) dwetion, Go (9 /zmm)) .

We have the following explicit description of Ky, (see [OS19, Proposition 7.9]):
the map defined by multiplication induces a bijection

I Yoy x ™ x T Wamm) — Kaom. (147)

aed— acdt

Since Ky, is normal in K, by definition, it follows that I; N K, is normal
in I; (we are implicitly using that I; is contained in K,). For all & € &7, the
factor in the Iwahori decomposition of I; associated with a is Uq,g,(a)), Where
gt(a) = max{1, (valgoa)(t) + 1} > j + 1 (see Lemma 1.3.2). For a subgroup H
of Iy, let us denote by H the image of H in the quotient group I;/ (I; N Ky, j+1)-
Choosing m = j + 1, from the last inequality we get that every element of the
quotient I;/ (I; N Ky, j+1) can be represented as a product of an element in 71
and an element in U;", where U;" = Image ([T, cqo+ u(a,gt(a))) C I;. We see that
U, is a subgroup of I;: indeed with notation as in (130), we have an injective map

induced by multiplication
U xTxU— G,

but then we see that the inclusion U;” C I; N U is actually an equality, because,
given an element u € I;NU, we consider its Iwahori decomposition and we see that
it cannot have non-tirivial factors lying in U~ or in T'. Therefore, we have shown
that UtJr = I; N U, and in particular Ut+ is a subgroup of I;. Since furthermore

T! normalizes U, (by (1)), it follows that U;" is normal in I;/ (I; N Ky, j+1). We
have a natural group homomorphism

Tt/ Ti+ N I/ (I rl(xo,jﬂ) ~ Iy
Ut (It N K j41) - Uy
t 1,

which is surjective by the description of the elements of I;/ (I; N Ky, j+1) we have
just given, but which is also injective: indeed let us consider an element in x € T
which is sent to the identity, i.e., such that « € (I; N Kz, j4+1) - UtJr C Ky jst1- Uf;
we can write such element as * = u yu™(u")" for some v~ in the image of
[Toco- Uia,j+1), some y € T7+1 some ut in the image of [loco+ Wia,j+1) and
some (ut)’ € U;". But then using the Iwahori decomposition (of I) it follows that
x =y € T7t!, thus concluding the proof of the injectivity of the above map.

Now we are done, because the composite map

I
99 (It N Kyyjy1) - U 77

I

A Iﬂ/7v+1
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is exactly the map in the statement of the lemma (because we already know that
the first map is trivial on the “unipotent factors” of the Iwahori decomposition of
I;), and it is obviously a group homomorphism.

e Let us prove the claim for ¢ € Tj+. Using the formula to compute the index gy («)
for t' € {t,t7!} and o € ® (Remark 3.1.3), and using the explicit formula to
compute the conjugation action of an element of T on the “unipotent factors”
(formula (1)), it is easy to see that the rectangles in the following diagram are
commutative:

Iwahori

I, _decomp., H Ua,1) x Tt x H Wa, (valy oar)(t) prod , 1 duot /Tt
acd— acdt
=~ |conj,—1 glconjtfl
CIlwahori j t
ecomp. roj. uot. ;
1 T Wty ooy % T % [T Uy 25 71 25 711,
acd— acet

Since t € Tj+7 it follows that t~1 € Tj_7 and so we already know that the composite
of the bottom maps is a group homomorphism. Hence the composite of the maps
at the top is a group homomorphism, as we wanted to show. |

Corollary 3.3.2. Assume that § is a finite extension of Qp, let j be a positive
integer such that 1+ 9L C (1 +IM)P, and let t € ;U Tj—". One has that the map

Iwahori
decomp. roj. uot.
Too I = ] Wagan x T % J] Wagitay = T 5 TH/(THY

aed— acdt

is a group homomorphism (and hence a homomorphism of topological groups).

Proof. If we show that 77+ C (T1)P, then we get the desired result by composing the
group homomorphism of Lemma 3.3.1 with the natural map 7% /T7+1 — T /(T1)P.
We fix an O-isomorphism between .7 and G}, (for some n € Z=). By definition we
have that ' . ‘

77+ = ker (9(9) Zeduction, 9(9/93?]+1)> .

Using our D-isomorphism, we see that the condition 1 + 9+ C (1 4 9P tells us
that 771 C (T1)P. [ |

Lemma 3.3.3. Assume that § is a finite extension of Q, without non-trivial p-th
roots (in particular p # 2), let j be a positive integer such that 1+9T1 C (14+9M)P,
and let t € Tj_ U Tj+. One has that the map

T,Y: HYT',k) = Homg, (T"/(T")?,k) — Homyop. gps. (It k) = H'(I;, k)
B » BoTh

(which is well defined by Corollary 3.5.2) can be extended in a unique way to a
homomorphism of k-algebras (with respect to the cup product)

T,V H*(T', k) — H*(I1, k).
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Proof. Since § is a finite extension of Q,, it follows that 1490 is topologically finitely
generated (see for example [FV02, Chapter I, (6.5), Corollary, part (1)]). Since §
has no non-trivial p-th roots, it follows that 1 4+ 91 is torsion-free. Hence, 1 + 90
is a uniform pro-p group (see the definition given in Section 1.8). Lazard Theorem
on uniform pro-p groups (Theorem 1.8.1) then yields that the cohomology algebra
of T (with respect to the cup product) can be identified with the exterior algebra
generated by the first cohomology group:

H*(T", k) 2 A\; (Homg, (T"/(T")?,k)).

On the other hand, even if the pro-p group I; is not necessarily uniform, we still
we still have a natural homomorphism of k-algebras from the tensor algebra to the
cohomology algebra (since p # 2):

Ns (H (I, k) — H*(11, k).

We can consider the homomorphism of k-algebras Ay (7;") functorially induced by
T,V on the tensor algebras, getting a composite homomorphism

H*(TY, k) —> N} (Homs, (T'/(T)?, k) AV, A (H (I, k) — H* (I, k).

This is the required homomorphism of k-algebras extending the original map 7;Y.
Its explicit description is

H*(T', k) H*(I;, k)
Brviv By

(for B; € HY(T',k) for all i € {1,...,n})

— (ﬁlopr%) e (Bnopréfl).

Uniqueness is clear because any homomorphism of k-algebras extending 7, must
act in this way on a cup product. |

Let us denote by E7 the pro-p Iwahori-Hecke algebra associated with the group
T (with respect to the unique pro-p Iwahori subgroup 7). We have a “Bruhat”
decomposition

Ei= P P H(T'. X)), (148)

i€Zzo teT /T

where Xp(t) := ind%tT1 (k) = k. For the 0'" graded piece we have the identification
EY = K[T/T"] (length function is constantly 0) and we will simply write ¢ in place
of 7; (this is useful in order to distinguish it from 7, € EY). Using again that the
length function is constantly 0, the multiplicative structure can be easily described
in the following way: let ¢t,¢' € T/T", let 8 € H/(T", k), let 8’ € H" (T", k) and let
us denote
(B) = Shy ' (8) € HY(T", Xr(1)) C E7,
(8" = Sh; }(8) € H'(T", Xz(t')) C Ef.

Then the formula relating the (opposite of the) Yoneda product with the cup prod-

uct (Corollary 1.9.3), combined with the explicit description of the action of the
multiplication by elements of degree 0 (Corollary 1.9.5), gives us the following:

Bt =t"-(B)e = (B)ew,
(B)e- (B = ((B)t : t/) ~ (t' (5/)t')
= (B v~ (/Bl)tt’
= (5 ™ /Bl)tt’;
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and so this describes multiplication in E7. In particular, E7 is a graded-commutative
k-algebra.

Proposition 3.3.4. Assume that § is a finite extension of Q, without non-trivial
p-th roots (in particular p # 2), and let j be a positive integer such that the inclusion
149V C (14+9M)P holds. Let E4 and Xr(—) be defined as above, and let us further

constider the following subspace of E7:

;i,j:( D HT" Xr(t ) (@ D H (T Xt )))

teT* /T 1€ZL>1 teTJi /T

> [T*/T) & (@ &b =Tk >

€221 4T3 T

(150)

One has that E7.. y is as sub-k-algebra of ET. and that there is an injective homo-
morphism of gmded k-algebras

*

TTi —> E

defined in the following way:

e in degree 0 one uses the canonical identification HO(T', Xp(t)) & k = HO(I,X(t))
for allt € T*/T*.

e fori € Z>y and fort e Tji/T1 one uses the map

HI(TY, X (8) 2 HU(T' k) 2 H(I,, k) =~ H'(I,X(¢))

defined in Lemma 3.3.3.

Proof. Tt is obvious that Tp+ ; s a well-defined homomorphism of k-vector spaces.
It remains to check that E7. . is a sub-k-algebra of Er., that Tr« ; is injective and
that it preserves the product

e It is easy to see that E}i’j is a sub-k-algebra of E7: indeed this follows from
the fact that 7% is a submonoid of T, from the fact that one has a well-defined
multiplication action of T* on Tji, and from the explicit description of the mul-
tiplication in E7. given in Formula (150).

e Let us prove injectivity. By construction T7+ ; preserves the degree and the de-
composition with respect to the “Iwahori Weyl groups” T/T! on the left side and
W on the right side. Moreover, in degree 0 injectivity is clear. It therefore suffices
to show that, for all t € Tji, the map

IAE H*(T', k) s H*(Iy, k)
Br - By

BB (o) o (o).
for alli e {1,...,n}

is injective. But it is easy to see that reséﬁ1 oY = id g+ (71 1), and so injectivity
follows.
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e Let us prove that T+ ; preserves the product between two elements of degree 0.
We are claiming that the map

k[T*/T'] —— E°
t———— 7

preserves the product: this is true because, by using the length formula (10), one
sees that the lengths of two elements of 7% /T always add up.

e Let us prove that Tp+ ; respects the products between elements of degree 0
and elements of degree 1 In other words, let t € T*/T*, let t' € TjE /T, let
B € HY(T' k), and let (8)y denote the image of 8 in H'(I, X (t)). We have to
prove that

Tpx (- (B)y) =1t - Tp= ;(B)w),

(Claim) T j((B)e - t) = Tpe ;(B)) - T2

It is easy to see that
Tr+ (- (B)r) = Tp+ ;((B)wr)

- (rou),

Of course, since ¢t and (3)y commute, we get the same result for the multiplication
on the right. So, what we have to prove are the following two equalities:

(Claim) Tt (5 °© préﬁ)t/ - (B © préi)t/ (5 opr ttl) t

As before, the lengths of ¢ and ¢’ add up and so we can apply the following formulas
to compute the product (see Corollary 1.9.5): for all v € H! (I, k) we have

1,
(e 7= (vesf?, 7).
_ o tIt/t_l *
T (Ve = (resftt, M)w'

Therefore, setting v = S o préfi, we get the following (with obvious notation for
inclusions and conjugations):

I,
(romlt)

( esl 1 (B ° prT1> t't

t/
8o pr Yo 1ncl
tt

1 t
(B o prT1 oinc '

thit~1 L
o
resy ", t ( Boprf »

=(fBo 1 o conj,_1 oin lﬂt'f1
= P ©CONJy-1 C I,y '

. Iy . I I . . tlgtT!
It is easy to see that the maps o pry% oincl 11/ and f3 o pr;; o conjs—1 oincl;

are both trivial on the “unipotent factors” of the Iwahori decomposition of Iy and

Ly

that they both coincide with 3 on T''. Therefore both maps are equal to 3 opr/i,

thus proving our claim that

I/ I/ !
e (o), = (powis), n = (o),

and with it that Tp+ ; respects the products between elements of degree 0 and
elements of degree 1.
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e Let us prove that 7+ ; respects the products between elements of degree 0 and
elements of degree i for i € Z>1, by reducing to the case ¢ = 1. Let v, w € W such
that the lengths add up. Furthermore let vy 1, ... vw: € HY(I,X(w)). We claim
that

Ty ('Yw,l e V'Yw,i) = (7 ’Yw,l) e (T 'Yw,i)7 (151>
(')’w,l e "Yw,z’) *Ty = ('Yw,l : Tv) o ('Yw,i : Tv)- (152>

This formula can be proved as follows: both sides of the first equation (respectively,
the second equation) are elements of H*(I, X (vw)), and so it remains to check that
applying the Shapiro isomorphism to both sides we get an equality, and this can be
proved by using the formulas of Corollary 1.9.5 (which compute the (opposite of
the) Yoneda product in terms of restrictions and conjugations) and by remarking
that the Shapiro isomorphism, restrictions and conjugations commute with the
cup product.

Now let t € TF/T!, let ' € Tji/Tl, let 3 € HY (T k), and as usual let (3)y
denote the image of 3 in H*(I, X7(t')). Again, we have to show that

TTi,j(t . (B)t’) =T ITi,j((/B)t’)a
Trs j(B)r - 1) = T ;(B)v) - 72
Now, 8 can be represented by a sum of cup products of elements having degree 1,

and so, by linearity, we can assume without loss of generality that g = - - - ;.
Therefore, we find that

(Claim)

(
(B - (Bi)w)
(

= TTi,j Bl)tt/) e e U gTiJ((/Bi)ttl) by def. of T’Ti,j)

(
= (10 T+ j(B1)w)) v+~ (7 - Trx j((Bi)y))  (already proved)
=T (TTi,j((ﬁl)t' e TTi,j((ﬁi)t/)) (by (151))
=T STiJ((,Bl)t/ v (ﬁi)y) (by def. of Tpx ;)
=T STi,](ﬁ)

The proof of the other formula we had to check is completely analogous.

e Now we can prove that Tp+ ; respects all products. We have already checked
products involving elements of degree 0, so it suffices to check the following: for
all t,¢' € T:, for all i, i’ € Zy, for all B € H'(I,Xp(t)), for all 8 € H" (I, Xp(t'))
one has:

(Claim) Tre (B B) = Zpx ;(8) - Tr= ;(B).

On the left hand side we can of course use the formula relating the (opposite
of the) Yoneda product and the cup product (Corollary 1.9.3), but also on the
right hand side, since Tr= ;(8) € HY(I,Xr(t)), Tr+;(8") € H' (I, Xp(t')) and
L(tt") = £(t) + £(t') as usual. So our claim becomes

(Claim) Tre i ((B-1) v (t-8) = (T2 5(8) - 7v) ~ (12 - T 5(8)).

We already know that Tp+ ; preserves the product when one of the two factors
has degree 0. Therefore, it suffices to check that the map

Ty HY(T', X (tt') — H*(I,X(tt'))
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preserves the cup product. This can be easily seen by applying the Shapiro iso-
morphism on both sides (as it preserves the cup product) and using the explicit
description of the map 7, : H*(T*, k) — H*(Iy, k). |
We complement the proposition with some remarks.
Remark 3.3.5. If § = Q, with p # 2, or more generally if § is a finite extension of
Qp with ramification index strictly smaller than p—1, then, using the logarithm and
the exponential, one sees that (1 + 9)? = 1+ 9M? and that there are no non-trivial
p-th roots. Thus, in such cases, we can apply the previous proposition with 7 = 1.

The following remarks highlights that, in the case G = SLy(Q)) with p # 2,3,
the proposition yields an optimal result.

Remark 3.3.6. Let us assume that G = SLy(Q,) with p # 2,3 (with the usual
choices as in Section 1.5). Also taking the last remark into account, the proposition
yields an injective homomorphism of graded k-algebras

;’i,l » B *»
where

Eye = P HOT X)) =k [TH/T],

teT+ /T
Ersy= @ HUT,Xr(),
teTE )Tt
Epe, =0 for all i € Zso.

We remark that the above homomorphism cannot be extended to a (not necessarily
injective) graded k-algebra homomorphism E7. , — E*.

Proof. 1t is easy to check that, for all ¢ € T1jE /T, the injective homomorphism

7+, — B sends HYT', X7(t)) to k- BY (with notation as in (56)). Since fur-
thermore H(T', X7(t)) = t - HY(T',X7(1)), assuming by contradiction that the
homomorphism E}., — E* can be extended to a homomorphism of graded k-
algebras E;i,o — E*, we see that there exists € E! such that

Tt'{II:,B?.

To simplify the computations, let us choose A € T0/T1 with A\ # 1,id, id™! (there
exists such A since p > 5) and we consider the equation

et - = e)f3y. (153)

Looking at the explicit formulas (63) and (66) we see that for all w € w (of length
> 1 in the last line) we have:

e>\7't~B;Espank{B;,ﬁj ) UGWN/},
eATt-@tEspank{ﬂ;,ﬁj ) UEW},

exry B0 {eAﬁ?w if ((tw) = £(t) + ((w),

0 if £(tw) < £(t) + L(w).
Therefore,
EATt - & € spany, {Bv_,ﬁj ‘ vE W} & spany, {68 v e W with (v) = L(t) + 1} ,
contradicting (153). [
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Remark 3.3.7. Let us work under our general assumptions without the restrictions
on § assumed in the proposition. We remark that E7.. is a localization of E7.. ; (note
that B j is still defined and still a subalgebra of E}i)

Proof. The case of EJ._ being completely analogous, let us work with E7. . We can
choose t§ € TT/T! such that (valzoa)(ty) > 1 for all a € ®T. We claim that the
inclusion
T+~ Ere
induces an isomorphism
( ;“+,j)t0+ - E’:Ik“ﬂ

where on the left hand side the notation (_)t0+ means localization at the powers of

tg : first of all let us note that the localization does make sense, because in a graded-
commutative ring the left and right Ore conditions are always satisfied. Since tar is
invertible in the bigger ring E7.., by the universal property of the localization, the
inclusion map E7., . — E7., defines a map

?-]

(B )y — B

)T = ()

This map is injective, again since tar is invertible in E7., . It remains to show that it
is also surjective, i.e., with reference to the “Bruhat decomposition” (148), that for
all i € Zxq, for all t € T/T" and for all B € H*(I,X7(t)) one has that 3 lies in the
image of our map. But recall from (149) that for n € Z we have

()™ B e H(I,Xp((td)"t)).

As (valzoa)(tg) > 1 for all @ € ®T, it follows that (t7)"t € TjJr for n big enough,
thus finishing the proof of surjectivity of our map. |
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Chapter 4

The Ext-algebra and the tensor
algebra of E' for SLy(Q,) with

p#2,3

In this chapter we will work with the algebra E* in the case G = SL2(Q,) with
p # 2,3, and we will prove finite generation properties.

The starting point is that under the above assumptions the algebra E* is gener-
ated by E', meaning more precisely that the multiplication map

M: TiE' — E*

(where T} E! is the tensor algebra generated by the E%-bimodule E!) is surjective
(Lemma 4.1.1).

It then becomes interesting to compute the kernel of the above multiplication
map, to ask if it is finitely generated as a bilateral ideal and to ask whether it is
generated by its 2"d graded piece. The main result of this chapter (Theorem 4.8.1
and Remark 4.8.2) answers these questions: we show that ker(M) is indeed finitely
generated as a bilateral ideal and we compute explicitly a finite system of generators:
such system consists of elements supported only in degrees 2 and 3. In fact, we show
that ker(M) is not generated by its 2°4 graded piece.

Another important result in this chapter is an explicit presentation of E* as a
k-algebra: we obtain it in Proposition 4.10.4, showing that E* is finitely presented
as a k-algebra.

We also give a counterexample in the case G = SLy(Q3): more precisely we show
that for this group the multiplication map M is not surjective (see Section 4.2).

4.1 FE* is generated by E!

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5) and
furthermore we choose 7 = p.

In this section we will prove that the Ext-algebra E* is generated by its first
graded piece as a graded algebra. We start by setting up the following notation.

e Let us consider the tensor algebra T EOEl generated by the E’-bimodule E', i.e.,

167



the graded k-algebra given by
TOE' = E°,
TioE' = E'®po - ®@po B for all i € Z>;.

i times

We have the multiplication map (which is a homomorphism of graded k-algebras)

M:  ThE' —— 5 E*
anx%x,
L& @ Py —— Pr-- B

e Let us denote by EZ‘1> the image of the above tensor algebra via the multiplication
map. In other terms,

0 ._ 0
By = E,

of elements of E! for i € Z>1.

B {sums of i-fold products} CE

We want to prove that E* = ETD. We will thus have to check that E3 C E?, and

tep 5y
that B2 C F2,.

e We now compute a certain formula for a threefold product that we will use re-
peatedly: let 81,61 € HY(I,X(1)), let w € W, and let v, € H'(I,X(w)). Using
the relation between (the opposite of the) Yoneda product and the cup product
(Corollary 1.9.3), we obtain the following formula for the product 1 - vy - d1:

61 * Yw '51 = ((51 'Tw)vaw) '51
= ((51 : Tw) ~ ’Yw) ~ (Tw : 51) (154)
= (b1 Tw) v Y~ (Tw - 61).
e We will use the notations (¢, ", ¢*), and (o=, a’, a™), to describe respectively

elements of E' and of E? (see respectively Subsection 1.10.b and Subsection
1.10.e).

e We will also frquently use the formulas in Lemma 1.10.3.

Lemma 4.1.1. One has E® = E?l)’ i.e., the multiplication map Ms: TE,OE1 — E3
18 surjective.

Proof. We split the proof into three parts.

e We first prove that H3(I, X (so(s150)%)) C E?U for all i € Z>o.

Let us choose nonzero elements c,e € Homp, (O/M, k) and a nonzero element
d € Homy, ((1+9M)/(1 +M)?, k). We have:
(C, 0, 0)1 ’ (O7 d, 0)30(5130)1' ) (67 0, O>1
= ((67 0, 0)1 : ng(slso)i) ~ (07 d, 0)50(5150)i ~ (Tso(slso)i ) (6, 0, 0)1)
by (154) (155)
= (C, 0, 0)so(slso)i ~ (Oa d, 0)so(slso)i ~ (07 0, _e)so(slsg)i
by (72) and (75).
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Since we know that H*(I,X(so(s150)")) is an exterior algebra with respect to the
cup product, we have that the above cup product generates H3(I, X(so(s150)")),
and therefore we obtain the inclusion H3(I, X(so(s150)")) C E?D'

We now prove that H3(I,X(s1(sps1)")) C E?U for all i € Z>y.

With notation as before, we have:

(07 0, C)l : (07 d7 0)31(5031)" : (07 07 6)1
= ((Oa 0, C)l : Tsl(sosl)i) ~ (07 d, 0)51(3051)i ~ (7-51(5051)”‘ : (05 0, 6)1)
by (154) (156)
= (07 0, C)sl(sosl)i ~ (Oa d, 0)31(sosl)i ~ (—6, 0, 0)81(8081)i
by (72) and (77).

We finally use the previous two steps to prove that H3(I,X(w)) C E?U for all
w e w.
We have already proved that H?(I, X(w)) C E?U for w € W of the form s0(5150)"

or s1(sps1)’ (for some i € Zso). The result for w of the form wsg(s180)" or
ws1(s0s1)" (for some w € TY/T! and some i € Zsg) follows immediately, because
multiplication on the left by 7., defines an isomorphism between H?3(I,X(v)) and
H3(I,X(wv)) for all v € W. Now it remains to show the result for w of even
length: do this end, let us consider the k-basis (¢y), g5 of E3 dual to the Iwahori—
Matsumoto basis of E°, let us consider i € Z>o and w € T°/T'. Applying the
formula for the left action of £ on E? (see (89)), we find that

Tso * (bsal(slso)iw = ¢(3130)i"-’ ter- ¢Sal(5130)iW.

Both the term on the left side and the second term on the right side lie in E?D’

and hence also ¢ lies in E?l)' This, together with the completely analogous

5180)*w

proof for w of the form (sgs1)w, concludes the proof for w of even length. |

Remark 4.1.2. For i € Z>1 it is possible to write elements of H?(I,X((s0s1)"))
and H3(I,X((s150)%)) as threefold products as we did for the case of even length.
Although this is not needed for the above proof, we will need such computations

later on:

(Ca 0, 0)1 : (07 d, 0)(8081)i ’ (07 0, 6)1
= ((C,O, 0)1 : T(Sosl)i) ~ (O,d, 0)(3051)1' ~ (7(8081)i : (0, 0, 6)1)
by (154)
= (C, 0, O)(Sosl)i ~ (O, d, 0)(
by (72) and (76),
(07 0, C)l : (07 d, 0)(8180)i : (67 0, 0)1
= ((O, 0, C)l : T(Slso)i) ~/ (0, d, 0)(8150)«; ~ (T(Slso)i . (6, 0, 0)1)
by (154)
= (O, O, C)(Slso)i ~ (O, d, 0)(
by (73) and (74).

)i~ (0,0,€)

s051 (s0s1)*

(157)

slso)i ~ (67 07 O)(Slso)i

Lemma 4.1.3. One has E? = E<21>, i.e., the multiplication map Mo : TJ%OE1 — E?

18 surjective.
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Proof. We split the proof into three parts.

e We first prove that H2(I,X((s150)")) C E<21> for i € Z>1.

Let Bs,50)i> Vsiso)i € H'(1,X((s150)")), let ¢™,¢™ € Homg, (O/9M, k) and let
” € Homp, ((1 4+ 9)/(1 + M)?, k). We compute:

ﬁ(slso)i ’ (Civ 0, 0)1 = B(slso)i ~ (T(slso)i ’ (6770)0)1)

:5831'\-/6_,0,0581 by (74),
. (10)+( )(10) Y( ) (158)
(0,0,¢7)1 - V(s150)t = ((0,0,¢™)y - T(slso)i) ~ V(s150)¢
= (0, Oa C+)(slso)i ~ 'Y(slso)i by (73)
By making suitable choices of 4, 5,y and of y(y, 5y)i, we thus get that the following

elements lie in E<21>:

(0, CO, 0)(3150)1' v (c,0, 0)(5180)i,
(O, O, C+)(5180)¢ v (C_, 0, 0)(5130)17
(0, O, C+)(8150)i ~ (0, CO, O)(SlSO)i.
As i > 1, we know that H*(I,X((s150)")) is an exterior algebra with respect to
the cup product: therefore, choosing nonzero elements ¢, ¢® and ¢*, we get that
the above three cup products generate H?(I,X((s150)%)), and we thus get that
H?(I,X((s150)")) € By

e We now prove that H?(I,X(w) C E<21> for w € W of the form w = (s9s1)" for
i € Z>1 or of the form w = so(s150)" for i € Zsg or of the form s1(sgsy)® for
1 € Z>p.
The proof is completely analogous to the above. The relevant equalities are the
following:

x If w = (sps1)" for i € Z>1:

B(sosl)i ’ (070)C+)1 = ﬂ(sosl)i ~ (07 0, c+)(sosl)i by (76)7

B _ (159)
(C .0, 0)1 “V(sos1)t = (C 0, 0)(5051)i ~ V(sos1)? by (72)
*x If w = s0(s150)° for i € Z>o:
Bso(slso)i : (C_7 07 0)1 = ﬁso(slso)i ~ (Oa Oa _C_)so(slso)i by (75)’ (160)
(civ 0, 0)1 *Yso(s1s0)" — (Cia 0, O)so(slso)i ™~ Vso(s180)? by (72)
* If w = s1(s0s1)* for i € Zzo:
581(8081)i ’ (Oa 0, C+)1 = 531(5051)i ~ (_C+a 0, 0)51(8051)i by (77)a (161)

(O’O7c+)1 *Vsi(sos1)? — (07 0, c+)31(3051)i ~ Vs1(sos1)? by (73)

e We finally use the previous two steps to prove that H?(I,X(w)) C E<21> for all
weWw.
Multiplication on the left by 7,, defines an isomorphism between H?(I,X(v)) and

H2(I,X(wv)) for all v € W. Therefore, from the four special cases that we have

already treated, it follows that H?(I,X(w)) C E<21> for all w € W of strictly
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positive length. It therefore remains to treat the case of length 0. Let w € T9/T*!
and let ™, a™ € O/M ®F, k; the formulas for the left action of EY on E? tell us
the following:

7o - (0,0,a7) 1, + (a,0,0), € P HUIX(),
vEW
st l(v) =1
7o - (@7,0,0) 1, +(0,0,07)y, € P H X))

vew
s.t. L(v) =1

(162)

These equations, together with the fact that we have already proved the result for

w of strictly positive length, prove that H?(I,X(w)) C E<21). [

Corollary 4.1.4. One has E* = Ezkl>, i.e., the multiplication map
M: TioE' — E*
18 surjective.

Proof. This follows from the last two lemmas. |

4.2 Counterexample: E* is not generated by E' in the
case G = SLy(Q3)

In this section we will work with G = SL2(Q3) and we will show that, contrary to
what happens for SL2(Q)) for p # 2,3, the Ext-algebra E* is not generated by its
15¢ graded piece as a graded algebra.

We start with a very general lemma, surely well-known. The proof of the first
part was suggested to the author by Claudius Heyer.

Lemma 4.2.1. Let K be a pro-p group. One has the following facts.

(i) If K is p-adic analytic, then H"(K, k) is a finite-dimensional k-vector space
for alln € Z>o;

(ii) If K has torsion, then H" (K, k) is nonzero for all n € Zx.
Proof. Let us prove the two statements.

(i) Without loss of generality, using (31), we may assume that k& = F,. We first
recall that since K is a p-adic analytic pro-p group, it has an open normal
subgroup K’ that is a uniform pro-p group (see [DDSMS03, 8.34 Corollary]).
In particular, each cohomology group H'(K',F,) is a finite-dimensional F,-
vector space (see Theorem 1.8.1).

Let us look at the Hochschild-Serre spectral sequence (see [NSW13, (2.4.1)
Theorem]):

H' (K/K',H)(K',F,)) = H'"Y(K,F,).
Since for all 4 and j both K/K’ and H?(K',F,) have finite cardinality, also
H'"(K/K',HI(K',Fp)) has finite cardinality as well. So we have a convergent
first quadrant spectral sequence whose entries (of the second page and hence

of all pages) are finite-dimensional F,-vector spaces. Hence also H'™/(K,TF))
is a finite-dimensional IF,-vector space for all 4 and j.
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(ii) The result being trivial for n = 0, we can work with n > 1. Let L be a pro-p
group. One has that the following conditions are equivalent:

* L has cohomological dimension (i.e., p-th cohomological dimension) smaller
or equal than n — 1,

* H™(L,F)) is nonzero,

* H"(L',FF,) is nonzero for all closed subgroups L of L.

(see [Ser02, Chapter I, Proposition 21 and Proposition 21']). In our case
we can choose a (necessarily closed) cyclic p-group K’ inside K. It satisfies
H"(K',F,) = F, (this is computed for example in [NSW13, (1.7.1) Proposi-
tion]), and so H"(K,F,) must be nonzero by the above equivalence, and hence
also H"(K, k) (using (31)). [

Example 4.2.2. Let G = SL2(Q3) (with the usual choices as in Section 1.5). Then
the Ext-algebra E* is not generated by E'.

Proof. We divide the proofs into some steps.

e We remark that if /(w) > 1, then I, is torsion-free.

Let us see which matrices in I have order 3. Since Q3 does not contain non-trivial
3-roots, if a matrix in SLa(Q3) has order p = 3, then the characteristic polynomial
is divisible by (i.e., is equal to) the 3-rd cyclotomic polynomial. So we are looking
for matrices of the following form:

1+ 3a b
3c 14+3d)/’

with
_ 1+3a b - 2 .
1—det< 3 1+3d>—1—|—3a+3d+3ad 3bc,
B 1+ 3a b -
—1—r< 3 1+3d>—2—|—3a—|—3d.

Replacing 1+3a+-3d in the first equation by its value given by the second equation,
we get in particular that
3 = 3%ad — 3bc.

From this equation we see that be ¢ 9t and so, recalling from Lemma 1.10.1

. . 1+Mm O 14901 opt(w) .
that I, is either equal to (mum“ Hm) or to < ;rﬁ o (where matrices

are understood to have determinant equal to 1), we see that I,, cannot contain
elements of order 3, and hence that it cannot contain torsion elements.

e Now, let again w € W with ¢(w) > 1. Since I, is an open subgroup of the 3-
dimensional analytic pro-p group G, it is a 3-dimensional analytic pro-p group as
well. As we have furthermore proved that I, is torsion-free, Theorem 1.8.2 yields
that I,, is a Poincaré group of dimension 3. In particular, H™(I,, k) = 0 for all
m € Zx4. Therefore, taking into account that the only elements of length zero are
1 and c¢_; (which was defined in (21)), we get

E™ = H™(I,X(1)) & H™(I,X(c_1)) for all m € Zs4.
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e Now, let us assume by contradiction that E* is generated by E'.

For the moment let z € E" with n € Z>;. We can write it as x = Zj Bj1- - Bjn
for suitable elements 3;; € E'. Let us assume that n = nijny with n; € Z>1 and
ng € Zs1. We see that x can be written as a sum of products of elements in
E™. Let us further assume that x € H"(I,X(1)) and that ny > 4; then using
the decomposition E™ = H™ (I,X(1)) @ H™ (I,X(c—1)) we see that = can be
written as z = Zj, Y11+ Vjme for suitable elements 7, each of them either
lying in H™(1,X(1)) or lying in H™(I,X(c—1)). But putting together the fact
that H™(I,X(c-1)) = Te_, - H™(I1,X(1)) for all m € Z, the fact that 7._, is
central and the assumption that x € H™(I,X(1)), we see that without loss of
generality we may assume that each of the ;s lies in H™ (I,X(1)). This shows
that the image of the natural map

Tp(H™(1,X(1))) — E*
contains H™"2(I,X(1)) for all ny € Z>4 and ng € Z>;.

Since the image of the above map is contained in H*(I,X(1)) = H*(I, k), and
since the product is the cup product (see Corollary 1.9.3), it follows that, changing
notation, we can rephrase this by saying that the image of the natural homomor-
phism of k-algebras

T];(H"1 (1, k)) — H*(I,k)

contains H™"2(I,k) for all n; € Z>4 and ny € Z>;. Now, we fix n; := 5 (any
other odd integer bigger then 4 would work). Then for all v € H5(I,X(1)) we
have that v v v = 0. But then the above homomorphism of k-algebras factors
through a homomorphism of k-algebras

A& (H (I k) — H*(L, k),

which, of course, has again the property that its image contains H®"2(I, k) for all
ng € Zs1. But H>(I, k) is a finite-dimensional k-vector space (Lemma 4.2.1 part
(i)) and so Ay (H°(I,k)) is a finite-dimensional k-vector space as well, whereas
D.., ez, H n2(] k) is an infinite-dimensional k-vector space: indeed I has torsion

(for example, one can consider the matrix (3,°%)), and so each summand is
nonzero (Lemma 4.2.1 part (ii)). This contradicts the claim about the image of
the above map. |

4.3 The tensor algebra

Assumptions. In this section we put ourselves in the general assumptions of Section
1.1, without any restriction on G and §. We will assume that G = SL9 only when
talking about the automorphism I".

We work with the tensor algebra
Ty E*!

generated by the E°-bimodule E'. We have the multiplication map (which is a
homomorphism of graded k-algebras)

M:  TpEBE' ———— B
anx%x,
1@ @B — BB
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In this section, we are going to give definitions of an involutive anti-automorphism
d on TroE' (compatible with the involutive anti-automorphism g on E*) and, if
G = SLy, of an involutive automorphism I', on T7, E! (compatible with the invo-
lutive automorphism I'; on E*). We begin with the second one.

If G = SLy (with the usual choices as in Section 1.5), it is easy to see that we
have an involutive automorphism induced by I',: E* — E*, which we will denote
again by I'y, defined as follows:

To:  ThoE? y TroE"

E°>z Io(x),
ﬁ1®"‘®ﬁi — FW(/BI)@)"'@FW(Bi)'

It is immediate to check that this definition is compatible with the multiplication
map, in the sense that the following diagram is commutative:

Tr Bt — M pr

rz{ lrw (163)

Let us go back to the case of a general G: we have the following involutive
anti-automorphism induced by J: E* — E*, which we will denote again by J:

J: TEOEl >TEOE1
E’> 2 J(x),
BrL®- @B — (DAJB) @ - 2 3(B).

Proof that J is an involutive anti-automorphism on TgoEl. The map J is an invo-
lutive automorphism of graded k-vector spaces, and we have to show that it is
anti-commutative, i.e., that it satisfies the following equation, for i,j € Z, for
B € ThE" and for v € Ty, E*:

(Claim) 3B-v) = (-1)3(v) - 4(B).

We first check what happens if either 7 or j are equal to 0. The equation is satisfied
if both ¢ and j are equal to 0, because then we are simply working with the anti-
involution on EY. On the other side, in the case where only one among i and j is equal
to 0, the claim basically follows from the analogous property for the anti-involution
defined on E? and E'.

Now we shall treat the case 7,7 > 1. For this, without loss of generality we may
assume that 8 = 81 ®---® B; for some By,...,3; € E' and similarly 7 = v ®- - - ®7;-
We can now compute

IB-7) =3/ @ BN @)
= (-G @ @d (1) @I(B) @ - @ I(B)
(D222 g ) @ 5().

To check our claim it remains to prove that the above coefficient is equal to (—1)¥.
We do this by distinguishing some cases:
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e if both ¢ and j are even:

(_1)L(iH)/?J*Li/?J*U/?J — (_1)(i+j)/2*i/2fj/2 —1= (_1)27';

e if ¢ is even and j is odd:

(_1)L(HJ')/?J*W?J*U/?J — (_1)(i+j*1)/2*i/2*(3'*1)/2 —1= (_1)ij;

e if i is odd and j is even, then the result follows from the above, exchanging ¢ and
J;
e if both 7 and j are odd:
(_1)L(i+j)/2J—Li/2J—Lj/2J - (_1)(i+j)/2—(i—1)/2—(j—1)/2 = —1=(-1%.

This concludes the proof that the equality J(3-v) = (=1)¥g(~) - 4(3) holds. [ |

Furthermore, J is compatible with the multiplication map, in the sense that the
following diagram is commutative:

TEOEl M E*

% lg (164)

Ty E' — B
Proof of the fact that the above diagram is commutative. In degree 0 and 1 there is
nothing to check, and so by induction we might assume that the claim is true in
degree i > 1 and check that it is true in degree ¢ + 1. We may work with simple
tensors, i.e., let us consider Si,..., Bi;1 € E! and let us compute

M(@@B1@-®Bi1)) = M((-D)IFV2IgB ) @ - @ 3(8))
= (=)L) - 4(B1)
= (—)LEDRI 1)~ ER2Ig(840) - M(3 <51 - ® B)
= (- 1)Lz+1 /2J( 1)~ l7/2] J(Bis1) - 3( "'®52‘))
= (DR )=l gy (M(ﬁ - ®Bi) - Bis1)
= (DR )=l gy (Mwl@ <@ Bis1)).

Distinguishing on the parity of i, one easily see that the coefficient in the last line
is always 1. |

4.4 An “algorithm” for the computation of kernels

In this section we will explain the strategy to compute the kernel of the multiplication
map

M: ThE' — E*.
We work in a general abstract setting to simplify the notation.

Let A be an associative k-algebra with 1 (in our case A = E°); let M and N be
A-bimodules (in our case, at first, M = E'®po E' and N = E?) and let F: M — N
be a surjective homomorphism of A-bimodules (in our case F = M). To compute
the kernel of F we fix the following:
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e generators (a;);cr of A as a k-algebra (for a suitable index set I);
e generators (m;);jcy of M as an A-bimodule (for a suitable index set J);
e a basis (n;);er, of N as a k-vector space (for a suitable index set L).

We fix a splitting R of F as a map of k-vector spaces:

(equivalently, for each [ € L we fix an element R(n;) in the non-empty set F~1(n;)).
Clearly, for all ¢ € I and all [ € L, one has

R(ain;) — a;R(ny) € ker F,
R(na;) — R(ny)a; € ker F.

Let M’ be the sub-A-bimodule of M generated by the elements R(a;n;) — a;R(n;)
and by the elements R(nja;) — R(n;)a; for i € I and | € L. We have that M’ C ker F
and that the following maps are well defined:

F
M /M’ N.
/ X ml—)]‘—(m) L
\\\\\\“—E—”//////

Of course R is a splitting of F, but this time it is a splitting as a map of A-bimodules,
thanks to the definition of M’. It follows that

(ker F)/M' = ker F = <mj — (R o ¢)(m;) ’ je J>,

where the pointed braces denote the generated sub-A-bimodule. We conclude that
ker F is the sub-A-bimodule of M generated by the following elements:

e R(ain;) —a;R(n;) € ker F, for i € I and | € L;
e R(nja;) — R(ny)a; € ker F, for i € I and | € L;

e m; — (Ro¢)(m;), for j € J.

4.5 The kernel in degree 2

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose m = p. With respect to Section 1.10 and Chapter 2, the

families of elements (85 )w, (B2)ws (B )ws (@p)ws (@0)w, (), and (¢w)w will be
chosen in a more restrictive way (see Subsection 4.5.a for the details).

In this section we will compute the kernel of the degree 2 multiplication map
My: T2 (EY) — E2.
The idea is to roughly follow the “algorithm” outlined in the previous section.
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4.5.a Preliminaries

Following [0S21, §4.2.3], we want to fix k-bases for E! and E? “in a compatible way”.
To this end, recall that in (56) we considered an element ¢ € Homg, (O/9M, k) \. {0},

and for all w € W we defined the following k-basis of H LI, X (w)):

B = (€,0,0)w,
B = (0,0,¢)u,
Be = (0,ct,0)y if 0(w) > 1,

where ¢ was the isomorphism induced by the logarithm defined in (55). On the other
side, in (80) we considered an element o € (O/9M) \ {0}, and for all w € W we
defined the following k-basis of H?(I, X (w)):

a,, = (,0,0)y,
ozj; = (0,0, ),
a = (0,07 (), 0)u if {(w) > 1.

We now choose ¢ and a satisfying the following constraint:
cla) = 1.

Recall that we chose an isomorphism 7: H3(I, k) — k to define the duality (Theo-
rem 1.9.8). In [OS21, Lemma 4.5], it is shown that there exists a (necessarily unique)
choice of i such that the following property holds:

Bz v BYw B = u for all w € W such that £(w) > 1. (165)

We will always work with these fixed choices of ¢, a and 7.
It is possible to show that the following relations hold (see [0S21, Lemma 5.3]):

AN I for all w € W such that £(w) > 1, (166)
oy =B v Bl for all w € W such that £(w) > 1, (167)
b =B v Y for all w € W such that l(w) > 1. (168)

4.5.b  Generators of T3 E' as an E’-bimodule

In this subsection we will compute a (quite simple) set of generators of T%OE1 as
an E%-bimodule. Recall that this is useful in order to implement the “algorithm” of
Section 4.4.

We recall that the following are generators of E' as an E%-bimodule (see Lemma
1.10.3):

— + 0 0
51 9 61 9 S0 S1°

It follows that E' ®zo E' is generated by the following elements as a left E%-module
(in particular also as an E°-bimodule):

for we W and o € {—,0,+}
(with £(w) > 1 in the case 0 = 0).
(169)

BT @By, B @B, Be®By, By ®0,
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Lemma 4.5.1. The following elements generate E* @ go E' as an E°-bimodule:

Br ® By,
BT @ BT,
By ® ﬁS()?
BT ® B,
B ® By oy

B ® By (o)
BL @B oy

Br ® B

5150)%

sr @By,
st e pf,
el ®5soa
s @By,

for i € L1,
for i € Ly,
for i € Z}l,

for i € Z}().

Boy © Br
o ® B,

v ® Boy,
B ® B2,

Proof. We start from the generators in (169).
We recall from (65) that

B =By - Tw
/B+ :5;'_ *Tw
31w B * Tw

sow /8 * Tw

for w € W such that ¢ S1w
for w € W such that £(s
for w € W such that ¢
for w € W such that ¢ Sow

(
(
(
(

S1w

—_ ~— ~— ~—

Be, © By,
0 @B,
5 ® B,
le ® B9,

Combining these two facts (and the behaviour of multiplication by 7, for w € T°/T,
see (60)), we get that the following elements generate E'®@po E! as an E°-bimodule:

for AS {ﬂl uﬁl 7/650’621}’

for + as above,

v® By
v ® B
v® B

7®B(’slsoi
TR B
7®B(5081 :
T® B

so(s150)?

s1(s0s1)?

for v as above,

for v as above.

for v as above and for ¢ € Z>;,

for v as above and for ¢ € Z>;,

for v as above and for ¢ € Z>;,

for v as above and for ¢ € Z>;.

The first four of these lines consist exactly of the first four lines of the claimed
generators in the statement of the lemma. Now, let us look at the remaining four
lines: we certainly get the families of generators in the remaining four lines of the
statement of the lemma, and we have to argue that the remaining generators are
superfluous. Up to changing signs if necessary, using the formulas of Lemma 1.10.3,
we can rewrite the last four lines as:

(
(7 * Ty (sos1)?
(

(7 * o (s150)7

From (65), one has

ﬂ; *T(s1s)? — 07 B; - T,

Y T(siso)i) @ Br
yi) ® B
v T(sosll)®ﬁl
)) ® By

=0,

s1(sos1)?

for v as above and for ¢ € Z>;,

for v as above and for ¢ € Z>;,

for v as above and for i € Z>1,

for v as above and for i € Z>;.

B;r " T(sps1)t —
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This shows that some of the remaining generators are superfluous, and now it re-
mains to study the cases where v € {89 , 87 }.
Let us start with the following case:

(8% * Tis1s0)1) ® BT = B 410y ® BT
= T(Sosl)i'ﬁso ® 181 ’

where we used the formulas (63) and (65). We sce that the element 80 @ 87 is a
generator already appearing in the first lines, and so the generator ( Bg T(s1s0)t) @ BT
is superfluous. The other three cases where lengths add up are similar.
Now it remains to consider the following elements, where we apply the formulas
(67) and (68) and then proceed with the computations as usual:
(521 'T(Slso)i) ® P = <_61 .’8(8180) T €id - B (s180)" ) @ o
=e€1- T(SlSO)Z sy ° /850 ®/81 +eld 51 ®/8
0 0
(631 'Tsl(sosl)i) ® ’81 - (_61 "651(5051)2 T €id - 651 8051)’) ® ﬁl
= —€1- T(slso)i " Msy ®51 — €id - 51 ®B
(BSO : T(sosl)i) X /BT = (_61 : /8?5051)1' - 6- -1 ’B(_sosl)i> & ﬁl
= €1 " T(sps1)i~1sg ﬁsl ®ﬁ1 — 6id /81 ®ﬁ
- 0
(580 " Tso(s150)? @B = <_61 "Bso(s1so)i ~Gat 550(8180 ) @5y
= €1 T(sp81)t ® Bi +eq-1- 61 ® C

(s150)"’

S1 5051

5031

s0(s180)"

This shows that these last four families of generators are superfluous, thus concluding
the proof. |

Remark 4.5.2. As already used in the last computation in the proof of the lemma,
the last four families of generators can also be rewritten in the following form:

B © B0y = By © BT for i € Zs1,
Bl ® By (spsryi = —le (sosn)i @ BT for i € Zo,
BE ® By = Bragory: © B7 for i € Zs1,
B ® ﬁ;(slso)z B ors0yi @ B for i € Zzo.

This will be used multiple times in later computations.

4.5.c A section of the multiplication map in degree 2

In Lemma 4.1.3 we have proved that the multiplication map Ms: TéDEl — FE?
is surjective. The proof was very explicit, and so looking at the details of such
computations it is immediate to construct a section of My, as a map of k-vector
spaces.

We spell out a couple of details: in (158) we have seen that

53150 By :58180)' 5(_5180)1'-

Using (168), we see that
5(8180 /81 -

(8180)
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In the same way, using all the computations in Lemma 4.1.3 (namely, using (158),
(159), (160), (161)) one finds an explicit element in the preimage via My of each
of the elements oy, a2, af for w of the following forms: w = (s150)" with i € Z>1,
or w = (s9s1)" with i € Z>1, or w = so(s150)" with i € Zsg, or w = s1(sgs1)" with
i € Z>o. Finally, using (162), one also finds an explicit element in the preimage via
M of each of the elements o] and af.

All in all, it is easy to see that the following is a section of My, as a map of
k-vector spaces.

Ry: E? » TaoB' = B! @po E?
m-d;WZH—————%—ﬂwﬁl®5%% for i € Zz1, w € TO/T7,
Tu a‘()mo)z — T, B ® Blayso) = Tw B ()i @ BT fori€Zsy e/
Tw " oz?rslso)i —_— =T, - 5(8180)i ® Br for i € Zsq, w € TO/T,
71,_,'0(78051)1 _— Tw'ﬁ(sosl ®ﬁ1 fori € Zsy, w € TO/T,
Tw 04?3081)Z —Tw B ® B (s0s1)i = ~Tw " ﬁ(s(]sl ® 61 fori € Zsy, w e TO/TH,
%‘%;miH“““*ﬁwﬁ1®5&mi for i € Zs1, w € TO/T",
Tw a;)(slso)i —_— T, ,6’20 (5150 i ® BT for i € Zsg, w € TO/T?,
n,a%@%yk+—nfﬁl®6;ﬁ% =T B (arso) © P Tori € Lno,w e TO/TY,
Tw " a;(slso)i —— Ty - ] ® Bgo (51501 for i € Zsg, w € TO/TY,
Tw * as_l(sosl)i —_— =Ty 51 ® ,80 (s081)¢ for i € Zzo, w € T°/T1,
Tw - ag1(5081) = Tws /Bl ® ﬁs1 (sos1)t W 651 (sos1)? ® ﬁf_ for i € Zo, w € TO/T,
Tw * a;(sosl)i —_— Ty 621(5051)i X ,81 for i € Zsg, w € TO/T,

Ty 0 > Ty - (Rg(al_ + To a:,l) — Tso -Rg(a:,1)> for w e TO/T,
0 0

Tw af — Tw* (Rg(af + 75, -oz;l) — Ty -Rg(a;l)) for w € TO/T?.
1 1

(170)
The claimed equalities have already been observed in Remark 4.5.2.
For later use, we compute the explicit expression of Ra(a; ), making use of the
formulas (87) for the left action of E° on E?:

Ra(a]) = Ro (ozf + Ty - a:al) — Ts - Rg(a%l)
_ + 0 - +
=R (—61 . asgl — €id * asgl + €592 - asgl) — Tso " R2 (asgl)
=Ro (—61 . ozjo + €eiq ago + €542 - ozs_o) — Tspe_q Rg(a;})
= - -ﬂf@ﬁi’o — e B1 ® B —eqe - B ® BT — Tage_y - BT @ B,

= 61 ®Bso+eld ﬁso®61_e /Bso®51 _T—l 51 ®B
(171)

Lemma 4.5.3. The map Ry commutes with the automorphism I'y,. More precisely,

180



the following diagram is commutative:

Proof. In the following we will make repeated use of the explicit formulas (26), (58)
and (82) for the action of I'y, on EY, E' and E? respectively. We consider some of
the lines in the definition of Ry (170) and we apply I'w; on both sides, getting the
following (where w € T°/T" and where i € Z>; for the first three lines and i € Z>q
for the following three lines):

r. (m : a@lso)i) =il 71— T (4“ -8 ®62§150)i) =71 BT OB

I'w (T“ ’ a(()sls())i) R 'a((JS()ﬁ)i i (T“ B @ B(SlSo)i) =T-10 P ® B:;OSI)I.7

r. (m : a&so)i) =i 1T (4“ B oy ®ﬁ;) =Tt B i ® AT
I'w (Tw ’ a;1(sos1)i) =Tl 'D‘:o(smo)i e (7‘% ’ Bfr ® BS](S(Jsl)i) =Te-1 B @ 620(5150)’”
e (T‘” : 0‘21(30S1)i) R '0‘20(5150>i =7 I (Tm e B;<5051)i) =Te-1 @ B:ro(slso)i’
= (Tw ’ a;(sosni) T Twt 'asio(sﬁo)i i e (m ’ 621<5051)i ® Bf) T et "820(51-*0)1' ® b

e (‘rw . aj’) =7,-1 o] 7 —— ' <7‘w . <R2(O¢T + 75y 'as_*l) - Tsy ~R2(a5_71))> .
1 1

By looking at the definition of Ry (170), we see that the left hand sides of the first
six lines are actually mapped to the respective right hand sides. Now it remains to
compute the right hand side of the last line:

r_ (Tw' <R2(a1+ +r, '0‘;;1) — Ty, .Rg(as_l,l)»
R (rw (R2 (af + 75, -as_fl)> — 74 T (Rz (agfl)))

—r,1 <R2 <Fw (af + 74, - a;;1)> — Tso - Ra <Fw (0‘;;1)»

(since I'w 0 Rz and Rz 0 I's coincide on Pyero /71 H2(I, X(ﬁsl)))
=7+ (Ra(af + 7 - 0) = 7 Ra(0f )
0 0
=Rs (Tw_1 '0‘1_) )

and hence also for the last one of the seven lines above it is true that the left hand
side gets mapped to the right hand side by Rs. So these seven lines show that the
maps I', 0 Ry and Ry o I'y, coincide on “half” of the elements of the k-basis of E?
used in the definition of Ry (170).

To conclude the proof, we remark that, since I', is an involution, if the maps
I'y, 0 Ry and Ry o 'y, coincide on an element 2 € E2, then they coincide on I', ().
Indeed, applying I';; to both sides of the equality (R2oI'w)(z) = (I'x 0o R2)(z), we
get

(TmwoReoly)(z) =(Ipol'y 0 Re)(x)
= RQ(ZL‘)
= (Re2oTlwol'xs)(z),
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thus proving the claim. In this way the proof of the lemma is complete, because it
is easy to check that the remaining “half” of the elements in our k-basis of E? can
be obtained by applying I, to elements of the first “half”. |

Remark 4.5.4. We have already computed the explicit expression of Ra(a; ). One
could compute RQ(ozf) in a similar way, but since now we know that Ry is I'p-
invariant we can get such explicit expression in a quicker way:

Ra(af) = To(Ra(ay))
=T (—e1- 87 © B + eia B, @ BT —eign - 85, @ BT — 70+ B7 © 5%,

=e1- 87 @B, e B @B tege B @B +7 BT @B
(172)

Lemma 4.5.5. The map defined exactly as Ro but by putting multiplication by T,
(for w € T°/T') on the right everywhere instead of on the left everywhere is actually
the same map as Ra. In other words, the map Ra is a homomorphism of k [TO/Tl] -
bimodules.

Proof. Let w € T°/T" and let w € W; from the formulas describing the structure of
E' and E? as k [T°/T"]-bimodules (see (59) and (60)), we get that, up to a certain
coefficient, the element 7,,-3,, coincide either with /., -7, or with /., -7,,-1 depending
on the length of w. And the same holds for 3, a;, or « in place of 8, and (if
the length of w is nonzero) also for B) and al. Now, let us use the notation w, for
u € F) as in (59) and (60) and let us apply such formulas to some of the lines in
the definition of Ro (170): namely, let us consider the following lines:

L B ® B a0 for i € L and w € TO/T",
. af ) . gt - ) ; 0 /1
Twu Oy 50y Twy " B ® ﬁ(ﬁso)l for i € Zxy and w € TV/T",
+ 0 — . 0 1
. N . )
Twu " X g s0) Twy ﬁ(ﬂlso)l ® By for i € Zxy and w € TV /T?,
- _ 0 - ; 0 /1
. ) — . )
Twy aSO(Slso)l Tway Bsﬂ(slso)l ® By fori € Zyg and w € TV /T7,
0 _ + . 0 /1
. T . )
Tow O sy 50 Twy By @ 580(5150)1 for i € Zyg and w € TV/T7,
+ — & 30 ; 0/l
Twy aSO(Slso)l Twy "B ® BSO(SISO)l fori € Zyg and w € TV /T7,
Ty - Q] Twy - | Ra(a] +7sq - aT_y) = 7sg - Ra(at_,) for w € TO/71
Wy O wu 2 (ay 50 @1 50 2’y .
0 0

We now apply the formulas outlined above relating multiplication by 7, on the left
and on the right, obtaining the following;:

uza(;lso)i TTwu 7u2ﬁfr ® ﬁ?slso)'i CTwey s
a?slso)"’ e u2ﬁ1+ ® u72g(;150)i CTwy s
u_QQZ;lSO)i e 7[3?5150)’& ®“_2Bf T Tway
uQ&S_O(ﬂSo)”’ CTw,—1 _ﬁsoo(swo)i ® (“71)72[31_ CTw 10
ago(sﬁo)i TTwy, -1 —uT?hr ®u25:0(slso)i CTw,—10
uizajo(slso)i (w1 Ty ®5go(31so)i CTw, -1
w?al 7w, ———— Ra(u?ay « Tw, +Tsg - (“_1)_2°‘:r—1 CTww) ~ Tsg "’22((“_1)_206211 Ty )-
s 5

From the first six lines, it is clear that Ro is a homomorphism of right k [TO / Tl]—
modules when restricted to the submodule

B P BIXWss0)) e B @ H (I,X(so(s150))) -

i€ZLx1 9€TO /T i€ZLx0 9TV /T
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We can now conclude the computation in the last line using the fact that Ro
is a homomorphism of right k& [TO /Tl]—modules when restricted to the subspace
Dyero/m H?(I,X(9s0)), getting the following result:

UQRQ (O[I + Tso * Oéjal) Ty — U2Tso . RQ (a;gl) * Ty -

So far, we have thus shown that Ra(z-7y) = Ra(z) 79 for all ¥ € T°/T" and at least
for some of the elements x in our fixed k-basis of E?. All the remaining elements
of our basis are of the form I';;(x) for z such that the last equality hold, but then,
using the last lemma we get

RQ (I’w(a:) . Tg) = RQ

This shows that the equation Ra(y - 79) = Ra(y) - 79 is satisfied for all ¥ € T°/T*
and for y running through the remaining elements of our k-basis. |

Remark 4.5.6. With the last lemma at our disposal, we can simplify the definition
of Ry (170) in the following way:

Ryt E? —————— 5 T2, E' = E' Qo B

gy > —6? & 62111 for v € W s.t. £(s1v) = £(v) + 1,
al, B ® By, for v € W s.t. £(s10) = £(v) + 1,
ol 0 @B for v € W s.t. £(s10) = £(v) + 1,
Qg ! y —B9 ® By for w € W s.t. £(sow) = £(w) + 1,
agow b > —ﬁl_ & /8;(_)10 for w € W s.t. L(sow) = L(w) + 1,
O‘:et)w ; ﬂf ® /620111 for w € W s.t. £(sow) = £(w) + 1,
o, — Ra (oz; + Tsg a:glw) — Tso " R2 (a%lw) for w € TO/T1,

af — Ro (a:j + Ty - a;l_lw) — T - Ra (as_l_lw) for w € TO/T.

Note that if we had defined Ry using multiplication on the right by 7, instead of
multiplication on the left, we could have proved the above description immediately.

Lemma 4.5.7. Let us consider the following J-invariant k-subspace of E>:
F'E” == P H*(I, X(w)).

weW
s.t. L(w)=1

One has that map Rg‘FlEQ commutes with the anti-involution J. More precisely, the
following diagram is commutative:

Ro
F1E? % E' @p0 B

Bep’
J 1 J
—3(8")®3(8)
F'E? — s E'®po EL.
Rz}FlEQ
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Proof. Before beginning the computations, we first recall from (49) that the involu-
tions J and I'; commute on E*. With this property, it is easy to show that if the
maps J o Ro and Ry o J coincide at a certain o € E?, then they also coincide at
'z («): indeed, one has:

(oR2)(I'w(er)) = (JoT'mw 0 Ra)(r) since Ry commutes with I'y; (Lemma 4.5.3)

since J and 'y, commute on E!

= (Fw o H o RQ)(O()
= (s oR207)(a)
= (RaoTlxod)(a)
= (R203)(I'x(a))

and hence on E' ® o B!
by assumption
since Ry commutes with I';; (Lemma 4.5.3)

since J and I'; commute on E2.

Now, let us consider the k-basis of F' E? used in the definition of Ry (170). By what
we have just remarked, we only need to show that J o Ry and R o J coincide at
all the elements in the left hand side of the following lines, since the other elements
appearing in such k-basis of F'E? can be obtained from these by applying I'w.

- , Re R + 0 ) 0 sl
Tw X o) —Tw - B ® [3(515[”1- fori € Zzy and w € TV/T+,
R —
0 —2 n i 0 /1
Tw O ) Tw - B ®ﬁ(s1s0)i for i € Zzy and w € T° /T,
+ Ra 0 _ ) . o
Tw'a(slso)i — *)77'“‘6(5150)1' ® B, fori € Zzy and w € TY/T",
N R, 0 - ; 0 /1
Tw * aso(slso)i —Tw - ﬁso(slso)i’ ® B, fori € Zyg and w € T /T,
R _

-a? ;2 =T + i ; 0 /1
Tw Yo (s150)t Tw By ® 550(5150)i for i € Zq and w € TO/T?,
‘I'w'a+ . R2\77-WA51—®50 . fOYi€Z>0andw6T0/T1A

so(s1s0)* s0(s1s0)? >

We now apply the anti-involution J on both sides of the above lines, in order to
check whether the new left hand side is sent to the new right hand side by Ro: for
the moment we only treat the case w = 1. For this computation we use the formulas
for the action of § on E' and E? (see respectively (57) and (81)).

gy : TS
a?b‘oﬁ)i : 7ﬁ(75051)i ©8 = —h @ B(J:'oﬂl)iy
a:;()sl)i : B ®5?5031)i’
TTe-1 'a:'ro(swo)" — Te_y By ®Bgo(slso)i‘
TTe ‘0‘20(5150)7‘, — T Aﬁs_o(slso)"' BB =Tey B ® ﬂ:)(slso)"
e O eyt T Tt ARy gy @B

It is then immediate to see that the left hand side of the first six lines is sent to the
right hand side of the respective lines.

Now it remains to treat the general case where w is not necessarily equal to 1: to
this end, it suffices to prove that if & € E? is such that Jo R, and Ry 0J coincide at
a, then they also coincide on 7, - « for all w € TY/T"*. This can be shown as follows:

(JoRe) (1w @) = (1w - Ra(a))
=J(Ra(a)) -
=R2(d(e)) - 7
=Rz (d(a) - 1y-1)
=(Ra09) (10 - ).

by Lemma 4.5.5, or immediate

T

w1

-1 by our assumption

by Lemma 4.5.5
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Remark 4.5.8. In view of the previous lemma, it is interesting to know how JoRo
and R9 o J behave on the subspace

RE’= P HI,XW)).
weT0/T1

We claim the following.

(i) The following equalities are true:

(Raod)(ay) — (doRe)(ay) = B © B + B, @ By,
= —Tao * BT @ By + Boy © By * Ty,

—(Re0d)(ef) + (o Ra)(af ) = B;, @ B3, + B, @ B,
=7y - By @B + B, ® BT 7,

(ii) The two elements above are nonzero, and in particular the two composite maps
J o R and Ry o J do not coincide on FyE?.

(iii) One could change the definition of Ry on FyE? only (let us call the new map
RS) in such a way that:

* the map R), is again a section of the multiplication map (as a homomor-
phism of k-vector spaces); it commutes again with I, as in Lemma 4.5.3;
it is again a homomorphism of k [T 0/ Tl]—bimodules, as in Lemma 4.5.5;

* the map R} commutes with g, this time on the whole E2.

However, we will use the previous map R instead of R}, in order not to make
formulas more complicate.

Proof. Let us prove the three parts of the remark.

(i) In the following we will use repeatedly the formulas of Subsection 1.10.c: in
particular, we will use some of the formulas for the action of E° on E' (namely,
(61), (63) and (65)) and the formulas for the action of the anti-involution J on
E' (57) and on E? (81). First of all, we compute

(R203)(ar) = Ra(ay)
=TRo (al_ + Toy " O 81) — Tso " R2 (oﬁll)
=Ra(a] + 75 a:al) —Tso " B ® Bgal
=Ro(a] + 75 ol ) + 85 @B,

Now let us compute (J o Rz)(aj ): to this end, we recall from (171) that

(Ro)(ay) = —e1- By ® B9 —eia - B © B
_GQQ Bgo ®ﬁ; — Tsoc—1 B; ®ﬁ20

More precisely, the sum of the first three terms is equal to Ro (al_ + Ts ~a:_1),
0

while the last summand is equal to —75, - Ra (a:,l). We now turn to the
0
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computation of (J o Ry)(ay):
(@0 Ra2)(er)
= (~e1Br @ 5%, — By @B — eigeBl @ B7 — 71 By @ BL)
=3 (~Brege ® B, — Breys ® B3 — Bhyen © BT + 81, © B2,
=3 (=B ® Bhyeur — BT @ Bheq — B, @ frer+ 81, 0 62
=3 (=87 © Blyeas — By @ Bhews — B @ Bren+ 8L, 0 42,
= e020(B5,) ® 3(By) + €1ad(B;) ® ()
+erd(Br) ®3(85,) = 3(Bs,) ©3(BL)

= —ei2B1 @ B — B © BT —e1Br @B — B @By
= —eiq285, ® By + efy, ® By — e1f © B — Foa @ B,
= ¢, 05, ® By — eiafy ® B — ey ® By, — B2 @ By,
:RQ(O[I—FTSO-Oéjal)—Bgal@ﬂ;]. O

These computations show the equality

(Ra0d)(a7) — (JoRa)(ay) = B3, ® B, + Bs, ® By

which is the first part of the statement in i). Note that the alternative descrip-
tion as

—Teo BT @B+ B ® By Ts,

is easy to obtain with the usual formulas. Furthermore, the analogous descrip-
tion of
~(Rz0d)(ay) + (doRa)(af)

can be easily obtained by applying I',; (or rather —I';;) to the above equality
and recalling that I', commutes with Ry (see Lemma 4.5.3) and with J (see

(49)).

Let us show that

(Claim) Bao ® Bor # —B1 @ By

To this end, it suffices to show that

(Claim) B £ B¢ B,

since the following map is well defined (because ¢ € Z(E")):

E'Qpo B} ——— E?
Bef —— B-¢-f.

In the following we will repeatedly use the formulas for the action of E? on
E! (in particular, (61), (63), (66) and (65)). To multiply pairs of elements of
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E! we refer instead to the definition of Ry (170). So let us start by (partially)
computing £ - ¢ - Bgalz

By € B = 8L (B2, o — - B, )

soslsg

= —Tsg 61_ 'BO

5081831 + eﬁS . 7_50 : Bl : 651561

_ + — —
= —Tg - 1 e Tt By o - B

80518

=ag ., ter-(-..)+0.

Now let us compute —5271 (- By
0

—530,1-@@):—5251.( ;C_1+el-(...)+e@,l-(...)+e@2.(...))
:Bgal‘Tslc_l‘Bfr‘i‘el‘(-~-)+€§'(~~-)+€ﬁ2‘(---)
:,82081-Bfr—kel-(...)—f—eﬁ-(...)—}—e@z-(...)
=g ter- () Fedr () Fege (L)

(173)

Now, since ¢ = p > 5, we can choose \g € T' \ {1,id, ﬁz} and, if by contradic-

tion we had the equality 5;) (- ﬂg_l = —,82_1 - ¢ - B4, then, multiplying both
0 0

terms on the left by ey,, we would get the equality ey oy, 5, = €x, g5, Which
is false.

(iii) We define
RYy(x) == Ra(x) for all z € F'E?,

Ry(1w- 07 ) = %Tw (Ra(a7) + I(Ra(aq))) for all w € TY/T*,

Ry(1 - of ) = %m - (Ra(af) +d(Ra(af)))  forallwe TO/T".

It is clear that R) is a well defined homomorphism of k-vector spaces. Using
that J commutes with the multiplication map (see (164)) and that both a; and
af are fixed by g, it is also easy to see that R) is a section of the multiplication
map My. The fact that R is a homomorphism of left k[T"/T"]-modules is

clear from the definition.

Regarding the structure of right k[T"/T']-modules, since the decomposition
FyE? ® F'E? respects the action of k[T°/T1], we only need to check what
happens on FyE?. Recall from the proof of Lemma 4.5.5 that for all v € Fy
one has

We compute

1

Ry(ru, -07) = 270, - (Rofa7) + 8(Rafa7)))
= %(Twu ‘Ra(ay) + H(Rg(af) . Tw;1))

- %(UQRQ(a;) T, + (1T, Ra(a7)))

= u2R/2(a1_) T -
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We have shown that
qué(al_ ’ Twu) = 'LL2R/2(O(1_) : TUJU’

and this, together with the analogous computation for af, shows that R, ! Fo B2

is a homomorphism of right k[T°/T!]-modules, as we wanted.

Using the definition of R} and that Rj| Fp g2 1S & homomorphism of K[T°/TY)-
bimodules, with an easy computation one checks that R, } Fo B2 (and hence RY)
commutes with J. Also the fact that Rj| o2 (and hence R5) commutes with
I'5 is easy to check, using the fact that ', commutes with Ry (Lemma 4.5.3)
and with J (see (49)). [ |

4.5.d Computation of the kernel in degree 2

Since Rq is a (set-theoretic) section of the multiplication map My, it follows that
for all x € E? one has

x — Rao(Ma(z)) € ker(My).

In particular, we can produce elements in the kernel using the generators of E?
as an E%-bimodule (computed in Lemma 4.5.1). If Ry were a section of My as a
map of E°-bimodules, in this way we would obtain a set of generators of ker(Msy).
Unfortunately, we will see in Remark 4.5.14 that this is not the case, even though
“few” generators are missing.

Lemma 4.5.9. The sub-E°-bimodule of E' @ go E' generated by the elements of the
form

r — Ra(Ma(x)) € ker(Ma),
where = Tuns through the set of generators of E? as an EY-bimodule computed in

Lemma 4.5.1, is the sub-E°-bimodule of E* ®po E' generated by the following ele-
ments.

Br ® By, B ®Br, o ® B,
BT ® B, s e pf, B ® B,
B ® B, ) ® B,
BT ® B, o ® B,

0 ® By et - BT @ By +ea Bay @ BT —er- By © B,
21®B21_6@'/8f_®5‘81_6ﬁ71. 21®6T—615f—®5;
And hence, in particular, all the above elements lie in ker(Mas).

Proof. The generators of E? as an E%-bimodule computed in Lemma 4.5.1 are the
following;:

BT ® By, s ® 6y, Boy ® Br Be, © By,
BT ® B, B ® B, o ® BT, % ® BT,
Br ® Bay B ® Ba,, o ® Boy, o ® B,
BT ® Ba B ® B3, Boy © Ba, Be, © Ba
Bl ® By fori€Zz,
Bl ® B sy 0T 0 € Lo,
By ® ﬁ(ﬁm)i for i € Z>1,
BT @ BY oy fori € Zso.
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From the definition of Ry (170), we immediately see that some of these lie in the
image of Ra, and so we can discard them immediately, because if = is one of these
elements then z — Ro(Mao(x)) = 0. We are left with the following elements:

By ® B, B ® B, /1111111 0 ® BT,
Br ® B, B ® B, % ® BT, /1111111
1111111/ B ® By, B2, ® B2, B2 ® B,
Br ® By, /1111117 o ® B, o ® B

We treat these remaining elements.

e The elements 8; ® 87, B ® B7, By ® B and B ® B{ are all in the kernel of
May: indeed products are cup products, and then trivially 8; - 3, and Bf . Bfr
are both zero; moreover, the fact that Bf v By and f; v Bf’ are both zero can
be shown with a simple computation using Poincaré duality (see [O0S21, Example
4.6]).

In particular, if  is one of the above four elements, then, trivially,

xr — RQ(MQ(%)) =X.

e Now let us consider the four elements 621 ® By, 20®Bf, ﬁf@ﬁgo and 3, ®621. To
compute the product, one can use the formula relating cup product and (opposite
of the) Yoneda product (Corollary 1.9.3). But then we see that all such products
are zero, because

TSo'/szov ﬁfr'7—50:07
Ts1 - B] =0, B - 7s, = 0.

So, again, if = is one of the above four elements, one has © — Ra(Ma(x)) = x.

e Now let us consider the two elements ,821 ® ﬁgo and 521 ® 520. We compute the
first product using the formula relating cup product and (opposite of the) Yoneda
product (Corollary 1.9.3), and we see that it is zero (the other one can be computed
exactly in the same way, or alternatively one can use I';; or J):

BY, - Boy = (B, Tso) ~ (Tsy - Bey)
= 52130 ~ (_ 2130)

=0.

So, again, if = is one of the above two elements, one has © — Ra(Ma(x)) = x.

e It remains to consider the two elements BSO ® 520 and Bgl ® 521; we start with the
first one and then we use I', for the second one. At the end of the proof of [0S21,
Proposition 9.5] the following formula is computed (recall the definition of 52(;*
from (71)):

0,% 0,x __ 0
/830 : /850 = —€1- a80
0,%

(the formula claimed and proved there is actually 525* - Bsy = e1 - ag(’)*, but in
passing also the above formula is shown, and in any case one can use (88)). Now,
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let us use the definition of %" (i.e., fo" = — % — €a—1 - B1 ) to make this formula
more explicit:

0 _ 0% 0,%
_el . aso — BSO . 50

:(_ g()_eidfl'ﬁl_)'(_ go_eidfl'/Bl_)

= Bo, - Boy €1 By - Boy 8oy eg-1 - By +eg1 - By - eg-1 - Br
= B3 - By eam - Br - By +€ia - By - B+ e eq-s - By - By
= By Bl + e -l — e o
(here we have used the behaviour of properties of the left and right action of the
idempotents (61); moreover, in the last step one can compute products explicitly,

but actually we have already computed them — see the definition of Ro (170)).
Now we can compute Ra(S8%, - 89 ):

Ra(BY - BY) = Ra (—eﬁq ol ey, —er- a20>
= —eyg-1 By @ By, — e B5, ® BT +er - By @B
We conclude that the value of x — Ro(Ma(z)) for 2 = B2 ® B2 is
Bio © By + eia=1 + BT @ By +eia - B3, @ BT —e1 - B © B

Now it remains to compute the value of & — Ro(Ma(z)) for z = 85 ® B2, but
since I'(82) = —B2, and since Ry is ['-invariant (Lemma 4.5.3), we see that
such value can be obtained by applying I', to the last displayed equality. Hence
we get

0 0 0 0 —
81®581_€@'B]—.~_®/B‘91_ﬁ71' 81®ﬁ]—_'__el'ﬁ]—fr®ﬁsl' .

Remark 4.5.10. Let us define K5 as the sub-E%-bimodule of E' ® yo E' generated

by the following elements:

BT ® B, sf e B, o ® B,
BT ® B, B ® B, o ® BT,
B ® Bay; B2, ® BY,
BT ® By, % ® B2,

20®520+eﬁ,1-ﬁf@ﬁgﬂ_eﬁ.ﬁgo®61—_61_Bl—®6;57
B21®B21_6ﬁ'ﬁf®5gl_ @—1'/321@51*—61-5;@5;,
B @ B0 + B ® By = —Teo - BT @ B2 + B2 ® BT - Teo,
By © B9 + B0, ®@ B =~y - BT © B0, + B0, @ B ey

The first twelve elements were obtained in Lemma 4.5.9 (in particular, they lie in
ker(R2)), while the last two elements were obtained in Remark 4.5.8 and they are

respectively equal to

(Rz0d)(ay) = (d o Rae)(ay),
—(Rz0d)(af) + (30 Ra)(af)

(in particular, they lie in ker(R2), too, since § and My commute by (164)).

We want to prove that Ky is actually the full ker(Rs). Let us start with some

lemmas.
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Lemma 4.5.11. One has that Ky is I'p-invariant and J-invariant.

Proof. Tt suffices to prove that the generators listed in the definition of Ky (Remark
4.5.10) are I'-invariant and J-invariant. It is immediate to see that applying I's, or
J to each of the first ten generators we get, up to a sign, again one of such generators.
The same is true for the last two generators (actually, regarding J one can avoid
the computation by recalling that these last two elements were, by definition, of the
form z — J(z) for suitable z € E!' ® o E'). It remains to study the behaviour of T',
and J on the following two elements:

o = By @ Boy + €q-1 - BT ® By, +€id - Bo, © By —e1- By © B,
vy B, @ B, — e BF © B ey 1B 6 —er- B 9B
In the proof of Lemma 4.5.9, the element x; was obtained by applying I' to z¢: in
other words ' () = 21 and hence ' (z1) = x¢. Now let us compute J(xg), using
the formula (57) for the action of J on E' and the formula (61) for the action of the
idempotents on E':
O(wo) = (B9, @ BY, + eqr - B @ B + esa - % © BT — e1 - BT @ 65 )
= B ® B+ Bl @B et By @B e — B @B e
= By @ By + -1 @ (g1 - Br) + By © (esa - Bra) = B @ (eyg2 - Br)
= 05 @ By T e B @B +egm BT @Bl —er B @ BT
= B0 ® B9 — e Bo, ® BT —eq-1 - BT @ B +e1- B @ B
= —X0.
Now it remains to treat xi: we have already recalled that x1 = I'(z9). We can

use the fact that I';; and J commute (on E*, as recalled in (49), and hence also on
TEOEI)7 getting that

I(x1) = I(Tx(w0)) = I'x(@(20)) = Tm(—20) = —21. u
Lemma 4.5.12. One has that the composite map

o g ®po B LBl g0 BY) /K

is a homomorphism of left E°-modules.
Proof. We will show that the following equalities are true:

1) Ro(7s,-af ) = 75, - Ro(a? ) modulo Ko for v € W with ¢ s1v) = f(v)+1 and
0 51V 0 S1v
for o € {—,0,+} (we will see that in this case we actually have a true equality

in E' ®go B!, with no need to consider the quotient modulo K»);

(i) Ra(7s, - aZ,,) = s, - R2(ag,,,) modulo K for v € W with £(s1v) = £(v) + 1
and for o € {—,0,+};

(iil) Ra(7s; - af ) =75, - Ra(a]) modulo Kj for i € {0,1}.

Before checking these three properties, let us show that, if they hold, then the lemma
is proved. We saw in Lemma 4.5.3 that I', commutes with Rs and in Lemma 4.5.11
that K is I'm-invariant, and so by applying I' to the equalities in (i), (ii) and (iii),
we get:
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(i") Ra(7s, - ag,y,) = s, - R2(ag,,,) modulo K for w € W with £(sow) = (w) + 1

sow

and for o € {—,0,+} (as before, we already have equality in E! @ go E');

(ii') Ra(Ts - @) = Tsp - R2(ag,,,) modulo K3 for w € W with £(sow) = (w) + 1
and for o € {—,0,+};

(ili") Ra(7s, - @y ) =75, - Ra(; ) modulo K for i € {0,1}.

Note that, for w € T°/T*, in (iii) and (iii’) we can consider the analogous congru-
ences with o (respectively, of ag,) in place of af (respectively, of aj): the new
congruences are still true because Rz is a homomorphism of left k[T /T"]-modules
(by Lemma 4.5.5, or just by definition of Ra (170)).

All in all, this shows that the congruence

Rao(x-a) =x-Ra(a) mod Ko

is true for a running through a k-basis of E? and for x € {7, 7s,}. But since R
is a homomorphism of left k[TY/T']-modules, the same congruence is also true for
x =7, for w € TY/T". In other words the above congruence is true for a running
through a k-basis of E? and for = running through a set of generators of E? as a
k-algebra, and hence it follows that it must be true for all &« € E? and all x € E°,
completing the proof that Ry becomes a homomorphism of left E%-modules after
modding out Ko.

Now, it remains to prove (i), (ii) and (iii). In the following we will use multiple
times the formulas in Subsection 1.10.c for E! (in particular, (57), (61), (63), (65)
and (66)), and, less frequently, the formulas in Subsection 1.10.e for E? (in particular,
(81), (85), (86) and (87)).

(i) We have to consider the following three lines in the new definition of Ro given
in Remark 4.5.6:

ag, — =B @B, for v € W s.t. £(s1v) = £(v) + 1,
aly > B ® B for v € W s.t. £(sqv) = £(v) + 1, (174)
af, — B @ B for v e W s.t. L(s1v) = L(v) + 1.

We multiply both sides by 75, and then we check that Ra actually sends the
resulting left hand side to the resulting right hand side (so in this case we will
see that it is not even necessary to mod out by K>3):

2
0 . 0®ﬂglv,
0 - 0®Bs_1v)

7
—_ ! 0 20 _
—Cgsqv ’ _Bsosl ® /61—)’_ - 550 ® /lev'

The first two lines need no further comment, and looking at the definition of
Ro in Remark 4.5.6, we also see that the left hand side of the third line is sent
by Ro to the right hand side of the third line.

(ii) We now consider again the lines (174) above and this time we multiply both
sides by 75, and then we check that Ry actually sends the resulting left hand
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side to the resulting right hand side after considering the quotient modulo Ks.
Since the relevant formulas are a bit different, we first treat the case ¢(v) > 1:

9
Jr p—
J— J— . }—)
Qe_1p — €1 Ogpy le ®651v7
?
0 0 + ! - -
—Qi_ ., — €1 Qg — 26@—1 e —ﬁsl ® ﬁslv, (175)
?
L : 0
—el'a;ﬁvv >7'81'551®qu_-

We first treat the last line: we claim that
o BY B = —e1- BY ® B

This is clear from the formula (66) that computes the product 75, - 3

s1v (We
use that ¢(sjv) > 2) and from the equality

0 + _ 811) ® By if £(v) is even,
® By = _ _
511} @ 51 if Z(U) is odd.

To treat the first two lines, we first compute the following product:

B =8 (mn - (-80)
=3 (75, - B3))
=7 (—621 —e -ﬁjl + 2€ﬁ—1 . 21 + €2 ﬁs_l)
23(55_1 + B3, ez — 284, e — B, '61)
=B, — g2 ﬁs}l +2e;41 -5071 + e le,l
=B, — e By, =241 - B, e B
We can now compute the right hand side of the first line in (175):
Bi ® Biyo = —Bsy - 7o ® By
=B, @B+ ez By ® )+ 2641 -521 ®B) —e1 B ® B
=B, ®B°+e@—z By @ By + 2601+ By ® By +ea - B @By,
= —Ra(a 10)—6@—2 Ty '5f®5g Tsol
+2e4-1 V@B —e1-R(ag,,);

and hence we see that although the result is not exactly what expected, it ac-
tually becomes equal to Ra(—a ., —e1-a;,,) in the quotient (E'®zo E') /Ko,

c_1v slv)
as we wanted to show. It remains to treat the second line of (175): we compute

— B, ® B,

(s1s0)?
2631'7'51 ®/8+
756 1®B+_e 681®6+_2€ gl®,8,j—+€1 ;1®5;)F

= 0., @B —eg2- By, @By — 2@—1 B @B —e1- BT @B,

=R )-— eq-2 * By, ® B — 2€14-1 “R(af,) —er-R(a®

c_1v S1v slv)'
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This is the expected result, except for the presence of the term §;, ® Bif. We
conclude the computation by showing that such term is actually 0: indeed,
since v is of the form sg - v’ for some v' € W with £(spv’) = £(v") + 1, we have:

85, ® B = —B5 @ (1 - B)
- _(65_1 : 7_80) ®B&
=0.

We now treat the case £(v) = 0, i.e., without loss of generality v = 1. We recall
that we have to consider the lines

G — _ﬂiF@Bgla

o —— B ® B,

we have to multiply both sides by 75, and see whether the resulting left hand
side is sent to the resulting right hand side, at least modulo Ks. We first
observe that from the definition of Ra(a;) (or rather from the definition of
Ro(7e_, - af)) it follows that

RQ(Tsl . as_l) = Ts; -’RQ(OJS_I),

and hence we only need to consider the last two of the above three lines.
Multiplying each side by 75, on the left, we get

1 1B 0 BF —2ey-1 B, @ B
—eq—2 - B, ® B + B, ® B,

? _
—€1 - a';‘_l ? —e€7 - ﬁgl ® B]-_‘r - eid71 N ﬁsl ® /Bf_.

0
—e1 Ay, — 2e4-1 - o)

Regarding the first line, we have

er1- B ® B =—e ~R2(agl),
—2e4-1 - 21 ® B = —2e;4-1 -Rg(az),
—eg—2 B, ® B = ez Ty B ® B € Ko,
B, ® By € Ka.

Regarding the second line, we have

—e1- BY @ B = —e1 - Ralaf),
—€iq-1 By ® B = €iq—1 " Ts1 B ® B € K.

(iii) It remains to check the congruences

?
Ra(7s, 'af) = Tso -Rg(af) mod Ko, (176)

?

Ra(7s, - af ) =75, - Ra(af) mod Ko.
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We start with the second one since it is easier:

s - Ra(af) =7 - (Rg(al + Tsy - 1_1) — Te 'Rg(a__l))
ERz(Tsl'(Oéf-i—Tsl-as_l_l))—FeyTsl Rg( 1) mod Ko
by (ii), since af + 75, ‘a1 € Dueroyn H? (I,X(w))
=Ro(7s, - (o] + T, - as_l_l)) + Ra(er - 7s, - as_l_l)
again by (i)

= Ra(7s, - 041").

This proves the second congruence in (176), and it remains to check the first
one:

w Ra(a]) = 7+ (1 BF © B, +eygr - 55 © 67
tegr B @B 7 B @A)
:0+0—e-2-5051®ﬂ1 Tosit " BT ©® Bo)

Ope) T l-l-ﬁlwsl

“Ra(ag,s, —|—T50- ,1 ® B -7, mod K

R

(ags,)

= 2 - Ro(agys,) — Bays, @ BT - TsT1
= —eiq2 - Ra(agys,) — Ra(a

5081 Uggs) - Torte

It remains to compute (or rather rewrite) the second term:

Ro(agys,) - Tyl = I(7s1 - J(Ra(agys,))) by Lemma 4.5.7
= J(7s - R2(d(ayys,)))
=J(7s, -RQ(a81SO )
= J(Ra(re, - ay,,)) mod Ky o DG e
= H(Rz( al 5o — €1 aSISO))
=Re(d(—af ,, —e1-as,)) by Lemma 4.5.7
= Ra(0g, = e - €1)
=Ra (ozs_0 €;q2 aS_OSl) by (85)
=Ry — T5o0] — €iq2 * Vg, )-

So, putting together the last two computations we see that
Tso - Ra(af) = Ra(rs, - @) mod Ko,
and this finishes the proof. |
Proposition 4.5.13. The kernel of the degree 2 multiplication map
My: T3 E' = E' ®@po E' — E?

is Ko (defined in Remark 4.5.10).
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Proof. When we have defined K5 we have highlighted that Ky C ker(M3). Therefore,
it does make sense to consider the map Mp induced by the multiplication map with
domain (E' ®go E')/Ks and codomain E2. So we have the following picture:

M
(B'®po BY) /Ky ————— E2.
R2

By definition R is a section (as a map of k-vector spaces) of the surjection Ms, and
hence R is a section of the surjection Ms, but now R is not only a homomorphism
of k-vector spaces but also a homomorphism of left E°-modules (Lemma 4.5.12). Now
we would like to show that Ry is also a homomorphism of right E%-modules. To this
end, it is useful to consider the anti-involution: since K is J-invariant (Lemma
4.5.11), we can define an involution J on (E' ®go E')/K> induced by J. It has the
following property, analogously to J:

Jz-7)=3@)-J(x) forallzc E®and allj € (E' @po E')/ Ko,

_ _ N L ) (177)
J@-z)=3(z)-J(@) forallzec E®and ally € (E' @po E')/Ko.

Furthermore, we claim that the following diagram is commutative:

o TN (E' @po E') /K>

b i

R (E' ®po EY)/Kos.

Indeed, since Ro and J commute on F!E? (Lemma 4.5.7), it is clear that the two
composite maps of the diagram coincide on F'E?. It remains to show that they
coincide on FyE?. Since Ry is a homomorphism of k [T 0 / Tl]—bimodules, also Ry is,
and so, using also formulas (177), we see that both composite maps in the diagram
transform multiplication on the left by 7, into multiplication on the right by 7,,-1
(where w € T°/T"). Therefore, to check that the two composite maps coincide on
FyE?, it suffices to check that they coincide at a; and at af. But recall that the
following two elements are among the generators of Ko (see the definition of Ks in
Remark 4.5.10):

(R20d)(ay) — (3o Ra)(ay ),
—(Ra0d)(af) + (T o Ra)(a7),

and hence we see that the two composite maps of the diagram coincide at a; and
at af.

This concludes the proof that the above diagram is commutative, and now re-
call that we wanted to show that Ry is also a homomorphism of right E%-modules.
To show our claim, we put together the fact that Ry is a homomorphism of left
E%-modules, the formulas (177) for J and the fact that the the above diagram is
commutative. With these ingredients, we can compute the following chain of equal-
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ities, where € EY and a € E?:

Ra(e) -z = (3o d)(

I
Q3 @ o

Il

(]
~—~
QO

completing the proof that R, is a homomorphism of right E%-modules.

So far, we have shown that the surjective map My admits a section Ry as a
homomorphism of EY-bimodules. If we show that Ry o My = id(E1®EOE1)/K27 then
we are done, because we get that the multiplication map induces an isomorphism
between (E'® o E') /Ko and E2. But, since R4 is a homomorphism of E°-bimodules,
it suffices to check the equality Ro o My = id Bl® 0 EY)/K, ON & set of generators of
(B! ®@po EY)/K3 as an E%-bimodule. Namely, we can consider the (classes of) the
generators of Lemma 4.5.1: if y € E' ®@go E' is one of these, then by definition of
Ky we have

y — (R0 M2)(y) € Ko,

and hence in the quotient (E! ® o E')/ K> we have

7 = (Ra o M2) (),
as we wanted to show. |
Remark 4.5.14. The elements listed in Lemma 4.5.9 do not suffice to generate

ker(Ms) as an EY-bimodule. In particular, as explained before such lemma, the
map M is not a homomorphism of E%-bimodules.

Proof. Recall the notation x, for the quadratic character. We consider the following
map, which is well-defined because both e, ~and ¢ lie in Z (E°):

V: B'@po BY ——— E?
TRY —— ey, T ey, (Y.
Let us consider the elements in the list of Remark 4.5.10 (which, by the last
proposition, generate ker(Ms) as an E%-bimodule). Recall that the elements in such

list except the last two are exactly the elements listed in Lemma 4.5.9. We compute

the image via ¢ of all the elements in the list of Remark 4.5.10: since ey - B €x,

iz zero for all w € W (see formulas (61)) we see that this reduces to compute the
image via 9 of the following elements:

21®B;7 S()@Bf’ 21®6207 g()®/8217
Boy ® Loy B3, ® By, Boy @ Bays Be, @ B

Moreover, from the fact that 5% (for i € {0,1}) commutes with ¢ (and with ex,)s

looking at the definition of 85* (see (71)), it is not difficult to see that B9 commutes
with ey ¢. But then

%Z)(Bgl ®By) = ey, '521 ey, G By
ZBXOC'BSI By
— 0,
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because we know that ﬁgl By € ker(Msy). Similarly, we see that v is zero at 3% ®61 ,

89, ® 67, and at 5, ® 50,.
For the elements 6 6 and /321 ® 621 the principle is similar, because, although

they do not lie in ker(M) looking again at the list in Remark 4.5.10 from which they

were obtained, we see that their product with e, on the left does lie in ker(M).

We have thus shown that the image via v of all the elements in the list in Remark
4.5.10 is zero, except at most the last two.

If we show that at least one of these two elements has nonzero image, than we
have shown that the sub-bimodule generated by all the elements in the list except
the last two (i.e., by the elements listed in Lemma 4.5.9) is strictly smaller that
ker(Ms), and we are done.

Hence, it suffices to show that w( ®B +9 ®6;0) is nonzero (ie., by what we
said before, that ¢ (82 ® 5, ) is nonzero) In (173) we have computed that Bo,l ¢+ By,

is nonzero and actually stays nonzero when multiplied on the left by ey . Hence the
same is true for

U(Bay ® Bey) = ex, - Bay - ex, € By
= 6XOTC—1 BSEI . C ,B;O

This concludes the proof of the remark. |

4.6 The kernel in degree 3

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose ™ = p. The elements (3w, (82)w, (B5)w, (g)w, (@2)w,
(it ), and (@) are chosen as in Subsection 4.5.a.

Recall that we are considering the multiplication map
M: TiE' — E*

and that in Subsection 4.5.c we have defined a section of its 2"d graded piece My
(as a map of k-vector spaces)

Ro: E? — Tho B
in order to compute ker(Ms). We are going to work in the same way for the 3™
graded piece Ms.

4.6.a A section of the multiplication map in degree 3
In the proof of Lemma 4.1.1 and in Remark 4.1.2 (in particular, see Equations (155),
(156) and (157)) we have obtained the following formulas:
By '520(3130 B = =By (5150 530 (s150)¢ Bso(slso ,
B - Bo(sosnyi - B = —B3 (sos1)i Bgl(sosl)i ~ By (s0s1)i0
BL Blagsiy Bl = Blagsry ™~ Blsasiy ~ Blogsnyio
B Blaysoy BT = Blrsoy ~ Blorsoy ~ Bsrsoyi-
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Recall that with our notation we have that, for all w € W with l(w) > 1,
Sw = Boy ~ Bu~ Bl
(formula (165)), and hence we deduce the following formulas:
By '520(5150)i "B = —Ps(s1s0)is
BY B sasryi - BT = Bansomyi

61_ : 5?5051)2' : /Bf_ = ¢(sosl)i7
/Bf_ : 5?5150)1' ' /81_ = —¢(5180)i.

This, together with the fact that (75, + e1) - ¢851 = ¢1, shows that the following is

a section of the multiplication map TgOE1 — E3, as a map of k-vector spaces (the
last line is defined in terms of the lines above):

R3: B3 ——— T3 E' = E' ®po E' ®po E!

T Plsrse)i M —Tw - Bi ® B?Slso)i ® By for i € Zsy, w € TO/T?,
Tw * Plsgsy)i — Tw " B ® ﬁ(OSOSl)i ® B for i € Zs1, w € TO/T?,
T Bag(srs0) > T BT @ By (g0 @ BT for i € Lo, w € T/T",
Tw * ¢51(sosl)i — Tw - /Bfr X 521(5031)1' & ,Bfr for i € Zzo, w € T°/T1,
Tw* P1 —— Ty - (75, +€1) -R3(¢861) for w € TO/T.

(178)

Lemma 4.6.1. The map defined exactly as R3 but by putting multiplication by T,
(for w € T°/T') on the right everywhere instead of on the left everywhere is actually
the same map as Ra. In other words, the map R3 is a homomorphism of k [TO/Tl] -
bimodules.

Proof. We proceed as in Lemma 4.5.5. Namely, we still use the notation w, for
u € F¥ as in (59) and (60) and we use the formulas describing the structure of E*
and E° as k [TO / Tl]—bimodules (i.e., respectively, the two formulas just mentioned
and (89)) to “move 7, on the right” in the definition of R3 (178). More precisely,
for the moment let us start by considering only the first four lines in the definition
of R3:

+ o 30 - .
Twu : ¢)(slso)i _Twu /61 ®’6(8180)i ®/61 forz€Z>1,u€IF;,<7
— 0 + .
Twy, '¢(8051)i P Tw, '61 ®6(8081)i ®ﬂl for i € Zs1, u € Fy,
_ 0 _ .
Twu 'QSSO(slSO)i — _Twu /B]. ®/680(8180)i ®,81 forzEZ>0,u€IF;,<,
Twy s1(s081)? — Tw, 1 s1(s081)¢ 1 or i € Zxo, u € Fy.

By the formulas describing the structure of E3 as a k [TO /Tl]—bimodule we have

that, for w € W and for u € F)Y, the product 7, - ¢y, is either equal to ¢y, - 7, or to
Ow - Tl depending on the length of w: so we replace the left hand side of each of the
four above lines accordingly, and similarly we start applying the formulas describing
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the structure of E' as a k [TO /T 1]—bimodule on the right hand side, getting that:

Dsise)i * T ——— =B @ (1w, - B, yi) @ BT,

(s150)°
¢(8051)i : Twu _ U7261_ ® (Twu ' ?Sosl)i) ® /8;'_7
¢80(S180)i : TWJI — _U_Qﬂ; ® (Twu ! 20(8150)i) ® 5;7

¢81(5081)" “Tugt } u25i’_ ® (Tw, - 521(3051)1‘) ® BT
We continue the computation on the right, getting that
(Z)(slso)i Twy T _U2Bi~_ ® ﬁ?sls())i ® (Twu . ﬁl_)a

¢(Sosl)i " Twy, — u_2/61_ b2 16?8081)7; & (Twu : /Bf_)7

¢30(5130)i T — _u7251_ ® Bgo(swoy ® (Twll 51_)’

(bsl(sosl)i Tt u2ﬁf_ ® ﬁ&(sosl)i ® (Twil ’Bi'—)

And finally we obtain

R p—— YR

Dlsgs1)t * T > BT ® By @ U T,

(bSO(SISO)i Tl —Uizﬂl_ & 520(5130)1' @ (u71)72/31_ “Torb

¢S1(8051)i Tl u2ﬁ1+ & ,821( & (U_I)Q,Bfr Tl

s0s1)*

This shows that, at least for the first four lines in the definition of R3 (178) we could
have used multiplication by 7, on the right instead of on the left. Now we look at
the last line:

Twu.¢1 —_— Twu'(780+61)'R3(¢551) fOI“UEIF;;.
We already know the behaviour of Rg3 (¢861) with respect to multiplication by 7,,,

and we can thus compute that the element ¢ - 7,,, which is equal to 7, - ¢1, is
mapped to

T (TSO + 61) -R3(¢sg1> = (TSO + 61) Tl 'R3(¢sgl)
= (TSO + 61) -R3(¢561) T
thus completing the proof. |

We will see that the map R3 is not invariant for ', nor for J, the problem being
the last line (see Remark 4.9.14). However, it is possible to define a new section R
which is both I',-invariant and J-invariant, as we will see in the next lemma.

Lemma 4.6.2. Let us consider the map

Ry: E° y T3,E' = E' ®po B' @po B
R3(Pw) if {(w) >1,
b —— { 47w+ (Ra(@1) + T (Rs(61))

if {(w) = 0.
+3(Rs(61)) + T (d(Rs(61))))

200



One has that RY is a section of the multiplication map Ms as a homomorphism of
k [TO/TI] -bimodules and that it commutes with I', and with J.

Proof. We have to prove four facts: that Rj is a section of the multiplication map
Mg, that it is a homomorphism of & [TO /T 1}—bimodules, that it commutes with I'y
and that it commutes with J.

Since R3 is a section of the multiplication map, R is a section of the multiplication
map as well, because the multiplication map commutes with I'; and J (see (163)
and (164)) and because I's(¢1) = ¢1 = J(¢1).

Let us prove that R is a homomorphism of k [TO /T 1]—bimodules. Using the for-

mulas
Tw  T'w(z) = (1,1 - ),

Io(z) 170 =Tp(x-70-1),
Tw-d(x) =d(x - T4Hy-1),
I(x) - 1w = (151 - @)
(where w € T/T" and & € E* or © € ThoE') it is easy to see that

Tw - Rg(qbl) = Rg(qbl) “Tw-

Then, as in Lemma 4.6.1, we have that the map defined exactly as Rj but by
putting multiplication by 7, (for w € T%/T") on the right everywhere instead of
on the left everywhere is actually the same map as Rf. In particular, the map Rj
is a homomorphism of k [T°/T"]-bimodules.

(179)

Let us show that the map R’ commutes with I',. We first look at the following
lines in the definition of RY (equivalently, of R3):

+ o 0 - ,

Tw " ¢(s1so)i —_— — Ty Bl ® ,3(8180)1» X ,81 for i € Zz1, w € T°/T1,
— & 30 + .

Tw '¢(8081)i — T ',81 ®B(Sosl)i ®51 for i € Zz1, w € T?/T1,

Tw* Pso(siso)i — —Tw B ® /850(5150)1' ® By for i € Zzo, w € TO/T",

) + 0 + ; 0 /1

Tw " ¢sl(5051)1 — T, - 51 ® 581(5081)i ® 51 for i € Zsg, w € TO/T".

We apply ', on both sides and we check that the left hand side is again sent to
the right hand side by R% (equivalently, by R3).

Tt * P(spsy)i é To-1 B ® 5?5051)2‘ ® BT for i € Zz1, w € TO/T?,
Ty—1- ¢(5180)i ’L) —T,-1 - ,Bf_ & ﬁ?slso)i ® 61_ for i € Z1, w € T°/T1,
Tw—1" ¢sl(5051)i ’L) To-1- 5; X 621(5081)1' X ﬁf_ for i € Zzo, w € T°/T1,
Tw—1- (Z)So(slso)i *L> —T,-1 - ﬁl_ ® Bgo(slso)i ® ﬁl_ for i € Zzo, w € T°/T1.

As expected, Rf sends the left hand side to the right hand side. Furthermore, it
is immediate to check that

Fw(Rg((bw)) = Rg(rw(qbw))

for all w € TY/T".
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e Let us show that the map R’ commutes with J. We again look at the following
lines in the definition of Rf (equivalently, of R3):

+ o 30 - .

Tw * Qs(slso)i — —Tw " Bl & ,8(8180)1» & ,81 for i € Zz1, w € T°/T1,
— o 30 + .

To " P(sosa )i Tw - By ®B(3031)i ® f for i € Z3y, w € TO/T,

Tw (Z)So(slso)i — TP ® 'Bso(s1so)i ® B for i € Z>o, w € T?/T,

) + 0 + . 0 /1

Tw'gbsl(sosl)l — Tw-ﬁl ®581(5051)i®61 for i € Zzo, w € TV/T.

We apply J on both sides and we check that the left hand side is again sent to the
right hand side by Rf (equivalently, by R3):

2
! — 0 + .

d)(sosl)i CTp-1 /> Bl & ,3(8081),L- & ﬁl *To—1 for i € Zx1, w € TO/T1,
?
. + 0 - .

Plsrso)i * Tt > =B @B i @ BT - Ty for i € Zsy, w € TO/T,

? _ _
(Z)so(slso)i “Te w1l _61 & (550(3150)i : 7_071) ® /81 “T—1 fori€Zso, weTO/T,
. ?, gt @ (B : +. : 01
¢51(8081)z Te_qw—1 /81 & (B81(8081)i Tc_l) & ﬂl Ty—1 fori€Zzo, weTO/T.
Using that Rf is a homomorphism of k [TO /T 1]—bimodules, we see that, as ex-

pected, R% sends the left hand side to the right hand side. Furthermore, using
that J and I'; commute (see (49)), it is immediate to check that

I(R3(é1)) = R3(d(1)).

Using again that R is a homomorphism of k [TO /Tl]—bimodules and using the
formulas (179), we also see that J(R5(¢w)) = R5(J(¢1w)) for all w € TO/TL. W

Remark 4.6.3. For later use, let us compute explicitly the four summands in the
definition of R4 (¢1):

R3(91) = (75, +€1) - Ra(9,-1)
= (Too +€1) - (8] ® 6251 ® BT)
= — (75 + 1) By ®6§61 ® By,
P (Ra(é1) =T (= (7o + €1) - By @ B2 ® By)
= (rs +e1) B @B ® B,
IJ(R3(¢1)) =3(— (150 +€1) - BT ®5§51 ®Br)

= =B ® B3y ® B (To1 +en),

T (@(Ra(91))) = T (= By © B2, @ By - (1,1 +e1))
=B @85, @ By - (1,1 +en).

4.6.b Computation of the kernel in degree 3

Lemma 4.6.4. Let K3 be the sub-E°-bimodule of TgOEl generated by the kernel
of the degree 2 multiplication map, i.e.,

Ky 3 = ker(Ms) @po E1 + E' ®@po ker(Mz) C TpoE',
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where (?) denotes the image of (?) in Tao E. One has the following congruences:

I'o(d(R3(¢1))) = Rs(¢1) mod Ko,
J(R3(¢1)) =T'x(Rs(¢1)) mod K.
Proof. First of all we note that the second congruence follows from the first one,
since K33 is I'p-invariant (which is true because the multiplication map commutes

with ', as shown in (163)). To show the first congruence, we first compute a couple
of useful equalities and congruences:

(TSO + 61) : 61_ “Tso = (Tso + 61) *Fsg
— _%e¢. 0 . + _ pt+
eﬁBSO + 6@2B80 ﬁc,l'

Since both BSO ® 521 and Bjo ® /321 =—Tg B ® 521 lie in ker(M3), tensoring both
sides of the last equality by /521 we get the congruence

(Tso +€1) - BT - Too @ B2, = =67 @ 531_1 mod ker(Ms). (180)

Now we apply I's; to the last congruence, obtaining again a congruence since ker(Ms)
is I' p-invariant:

—(7s, +€1) B 75, ® 620 =6 ® ﬁgal mod ker(Mas).

Now we apply J (or rather —J) to the last congruence, obtaining again a congruence
since ker(My) is J-invariant:

_g(ﬂgo) ® 3((7—51 + 61) ’ /Bf— : 7—51)

J(B) ®3(By)  mod ker(Ms),
i.e.,
o0 ©Tsy B - (T, +e1) = =05, @ By mod ker(Ma). (181)
We now get the desired congruence I'n(J(R3(¢1))) = Rs(¢1) modulo K3, by
putting together (180) and (181):
I (d(Rs(¢1)))
=Bl @B, @B - (11 +e)
=T, (Tog+€1) B] “Toy ® 621 ® B - (75;1 +e1) mod Ks3
by (180)
=T, (T +€1) By ®BY @7, - B (Tyo1 +e1)
=T, (T +e€1) 0] ® 520 ® [y mod Kj3
by (181)
= R3(1). |

Lemma 4.6.5. As in the last lemma, let Ko3 be the sub-E°-bimodule of T%OE1
generated by the kernel of the degree 2 multiplication map, i.e.,

Ko 3 = ker(Ma) @po B! + B ® o ker(Ma) C Too EY,

where (7) denotes the image of (?7) in TgDEl. Furthermore, let Kextra,3 be the sub-
left-k [TO/Tl] -module generated by the following element:

I'o(Rs(¢1)) — Rs(e1)
= (rsy +e1) BT @B @B + (1o +e1) - BT ®BLL @By
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One has that the kernel ker(Ms) of the multiplication map in degree 3 coincides
with K3 + Kextra,3. Furthermore, Kexira3z 5 also the sub-right-k [TO/Tl] -module
generated by the above element.

Proof. The last claim is easy to see because we know from Lemma 4.6.1 that Rj3 is
a homomorphism of k [TV/T"]-bimodules, and so for all w € T°/T" we have

7w+ (Tw(R3(¢1)) — R3(¢1)) = T (70-1 - R3(¢1)) — 7w - (1)
=I5 (R3(du-1)) — R3(dw)
=T%(Rs(¢1) - 7-1) — Ra(¢n) - 7
= (Fw(R3(¢1)) - R3(¢1)) " Tw-

We now turn to the proof of the fact that ker(Ms) coincides with Ks 3 + Kextra,3-
We reformulate this claim as follows: defining

V = K2’3 + Kextra,3 + Image(Rg) C TL?’?OEl’

we see that we have to prove that V = T]iloE1 (i.e., the inclusion from right to left):
indeed assuming that we have already achieved this, we get that

K2,3 + Kextra,?) + Image(Rg) = ker(M?)) D Image(Ré)a

and this, together with the “easy inclusion” K9 3+ Kextra,3 C ker(Ms), shows that we
have K9 3+ Kextra,3 = ker(Ms), as we wanted (for the inclusion Kexira 3 C ker(Ms),
recall from Subsection 4.5.a that ', commutes with M).

To reduce the amount of computations, we first make some preliminary obser-
vations.

a) We remark that one has the congruences

FW(H(¢1)) = R3(¢1) = FW(R3(¢1)) = 3(R3(¢1)) mod K2,3 + Kextra,3-

Indeed the first and last congruence are even true modulo K» 3 (Lemma 4.6.4),
while the second congruence trivially holds by definition of Kextra 3. Looking
at the definition of Rf, this shows that

R4(p1) = Rs(¢p1) mod Koz + Kextra,3- (182)

b) We remark that V' is invariant for I';, and J.

* The term K3 3 is invariant for I';, and J because both involutions commute
with M.

* The term Image(R%) is invariant for I'y, and J because these involutions
commute with R4 (Lemma 4.6.2).

* The term Kexira,3 is visibly invariant for I';;. Moreover, applying J to the
difference I'; (R3(¢1)) —R3(¢1) (using that I'; and J commute, see (49)) we
get ' (J(R3(¢1))) —d(R3(¢1)), which lies in Ko 3+ Kextra3 by part a). This,
taking also into account the behaviour of J with respect to multiplication
by 7, for w € TY/T*, proves that J(Kextra3) C K23 + Kextra3-

c¢) We further remark that V is a sub-k [T°/T"]-bimodule of T3, E': indeed the
term K> 3 is clearly even a sub-E°-bimodule, the term Kextra,3 is by definition a
sub-k [T°/T"]-bimodule and the term Image(Rj) is a sub-k [T°/T]-bimodule
because RY is a homomorphism of k [TO /T 1]—bimodules (Lemma 4.6.2).
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Now we can start the actual proof of the lemma. Let us consider x € Tgo E' and let
us prove that x € V. Without loss of generality, we can of course assume that z is
of the form y ® z for y € E' and z € E' ®go E'. Considering the equality

r=y®z=y® (z—Ra(Ma2(2))) +y @ Ra(Ma2(z)),

we see that the first summand on the right hand side lies in E! ® o ker(Ms) and
hence in V. Therefore, without loss of generality, we can assume that z is of the form
y ® 2’ for some y € E! and some 2’ € Image(R2). Looking at the explicit definition
of Ry (170), we see that every 2’ € Image(R2) can be written as a sum of simple
tensors of the following forms:

u® B for some u € F1,
u® By for some u € E*,
u® B for some u € E' and for some w € W with £(w) > 1.

Hence, without loss of generality, we can assume that 2’ is of one of those forms. To
simplify a little further, we note that since V is invariant for ', it follows that it
suffices to prove that the elements of the following form lie in V:

i) youepfy for some u € E1,
i) y®u®py, forsomeue E' and for some v € W with £(sqv) = £(v) + 1,

because by applying I',, to such elements we immediately obtain what is left. We
treat separately elements of the forms i) and ii).

i) Let us start the proof that every element of the form
yRu® By (for some y,u € E')
lies in V. Similarly to what we did before, we can consider the equality
y@u®pfy =y @u—Re(Ma(y®u))) @B +Ro(Ma(y®u)) ® By,

from which we see that we may only treat the elements of the form r ® 3,
for r € Image(R2), and, looking at the explicit definition of Ry (170), we can
further assume that r» ® 8, is of one of the following forms:
+ 0 - + - - 0 - -
TwB] ® /3(3130)i ® B, 71u/3(5180)i ® p; ® B, 71u/3(5180)i ® B; ® B,
0 - - - - 0 -
Twﬁ(sOsl)i & ﬂi‘_ X 61 3 TWB(sosl)i 0%y ﬁf_ ® 61 , Twﬁl ® 5(5051)1' ® 61
for i € Z>1 and w € T°/T",
0 - - - - - - 0 -
Twﬁso(slso)i ®B1 ®51 ’ T"J/Bso(slso)i ®B1 ®/81 ) Twﬂl ®630(5130)’i ®f81 )

TWBT®521(5051)1®61_7 TW6+ )i®6f_®61_7 Twﬂgl(5031)1®6f_®51_

s1(s0s1
for i € Zso and w € T°/T",
TwTso K2 (a;t)_l) ® By = TuTs, B ® Bgal ® By for w e T°/T7,
TwTs1 R (Ocs_l_l) ® B = —TwTs, B ® 52;1 ® By for w e T°/T".

Since the two elements 8, ® B; and 8] ® By lie in ker(My), we see that
many of the above elements lie in V. As we have already remarked that V
is a left-k [TO /Tl]—submodule7 we also see that there is no loss of generality
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ii)

in considering only the elements with w = 1. Therefore, we are reduced to
showing that the following elements lie in V:

BT ® ﬁ?sls())i ® By for i € Z>1,
B ® 5?5051)i ® By for i € Z>1,
By ® Bay(sysoy ® Br for i € Zo,
BY @ B (qsn)y @ BT for i € Zz,
Tso B @ Boa ® By,
Toy - B © By ® By -

(183)

Up to a sign, the first line (respectively, the third line) is exactly Rg(qﬁ(SOSl)i)
(respectively, R5(ds,(s,50):))> and hence they both lie in V. Moreover, we know
that 89 ® By € ker(My), from which it follows that

Blapsyi @ BT = ~T(sgs1)i-1sg - By © BT € ker(Mp)  for all i € Zs1,

21(8081),- ® By = T(s1s0) * Y ® By € ker(My) for all i € Z>o.

Therefore, it follows that also the second, the fourth and the sixth line in
(183) lie in V. It remains to consider the element 75, - f; ® ﬁg,l ® By .
0

First of all, we see that there is no harm in considering instead the element
(Tso+e1)-By @B @B = —Ra(¢1), since e1-f; @5, @6, € Image(Ry) C V.
But we have seen in formula (182) that R3(¢1) is congruent to R4(¢1) modulo
K33+ Kextra,3, and hence R3(¢1) € V, thus completing the proof that all the
lines in (183) lie in V.

We have to consider the elements of the form
y®u®ﬂ§0v:y®u®ﬁgo~7'v (for some y,u € E')
and prove that they lie in V. As before, we can consider the equality

Y@ u® By = (y @ u—Ra(Ma(y ®u))) @ Ba, + Ra(Ma(y ®u)) @ e,
from which we see that we may only treat the elements of the form r ® ﬁsooy
for r € Image(Rz2), and, looking at the explicit definition of Ry (170), we can

further assume that r @ 82, is of one of the following forms:

ﬁf X /8?8180)1' X 5807'1}, ﬁfr ® ﬁ(glso)i ® 5207'@7 6?8150)i & /8; ® /8207—1)7
Blogsry @ BT © BoTo, BT ® B i@ BaTes BT © Bliger)y ® BoyTo
for i € Z>1,
0 - 0 — + 0 - 0 0
s0(s150)° ® b ®6507-”’ B ®’880(5180)i ®BSOTH’ b ®’350(3130)i ®6507-v’
+ 0 0 + - 0 0 + 0
/Bl X /851(8051)i (%9 /BSQT'U’ /61 & ,851(8081)2' & /6807-’07 /851(5051)2' & /Bl & /8307-’[)
for i € Z;O,
7'50732(04:61) & /BSOTU = 7'50,81_ & 6251 & /8207-1)7
ToRo(a 1) ® Boto = —To BT ® /321,1 ® BY, To.

—1
51
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In part i) we have proved that all the elements of the form z ® y ® g; (for
some x,y € FE') lie in V. As we have already said that V is J-invariant and
I'p-invariant, we deduce that the elements of the following forms lie in V:

By TRy for some z,y € E?,
Biorey for some z,y € F'.

This shows that most of the elements in the above list are in V. The remaining
ones are:

Blorso)i ® BT © B - o for i € Z1,
5?5051)1' ® Bf ® ﬂgo " Ty for ¢ € Z>1,
go(slso)i ® By ® By, T for i € Zo,
gl(sosl)i ® B ® By, T for i € Z,

7—SO : /8; ®B2&1 ®/820 : TU7
Tsy * /Bf_ ®621—1 ®520 *Ty-

We recall from Lemma 4.5.9 that 87 @ 89 € ker(My) and that the same is

true for 89, ® B9 , and so it only remains to consider the following elements:

5?5150)1' ®pB; ® ﬂgo “Ty for i € Z>1, (184)
20(5180)1. ® By ® By - T for i € Zxo, (185)
Too - BT ® 5351 ® B -7, (186)

Let us treat the last line, where, multiplying by 7._,, we can replace s, L by
s0. We consider the following element of ker(Ms) (Lemma 4.5.9):

o0 @ Boy +eig-1 BT ® By +ewa - By, @ By — e BT ® B
Tensoring by 7, - 3; on the left we get
Too - B1 @ By @ Boy + Tsy - BT © €491 - BT © Py

+ 7o - BT ®eia- B @ BT — Tsy - By Rer - B ® B
€K273.

Since B, @ f; lies in ker(R2), we can delete the two terms where this element
appears, getting that

Too * BT ® Bay @ By + sy - B7 @ eia - B, ® BT € Ka3.
Since K3 3 is an E%-bimodule, we can multiply by 7, on the right getting that:
Too * BT ® Bgy @ By To +Tog - B @ eid - By, @ By - 7o € Ka3.

If £(v) > 1 then v must be of the form s;v’ for some v' € W such that lengths
add up. In this case f; - 7, = 0, and so we see that 7, - ] ® 520 ® ﬁgo Ty
lies in K33, and in particular to V', completing the proof that the element in
(186) lies in V if (v) > 1. Now it remains to treat the case ¢(v) = 0, and
without loss of generality v = 1. But in part i) we have seen that the element
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Tso - B ® 5251 ® B; lies in V, and hence also in this case we get that the
element 7y, - B; ® 520 ® 520 - Ty lies in V. Hence, we are done with (186).

It remains to prove that the elements in (184) and in (185) lie in V. We claim
that ,820 ® By ®ﬂ20 lies in K 3. If we show this, then we are done because K>3
is a sub- E%-bimodule, and so we get that the elements in the lines (184) and
(185) lie in K3 3 as well and hence also to V. So, let us show that 82 ® 8 ® 9,
lies in K273.

% ® B ©@ BY, = Ra(—ay,) ® B,
= Roa(Ts - O‘T) ® 520
= (TSO -Rg(af)) ® BSO mod Ks 3
= (e1 B @ B +ea1 - B @ BT
+egz - BY, ® B +T o1 B ®B) ® B
(computed in (172))
=0 mod Ky3,

where the last equivalence is true because both ﬁf ® 5?0 and 621 ® 620 lie in
ker(M3). This concludes the proof that all the elements of the forms (184) and
(185) lie in V, and with it the proof that all the elements of the form ii) lie in

V. |

4.7 The kernel in degree 4

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose 7 = p. The elements (3w, (82)w, (B5)w, (g)w, (@2)w,
(it ), and (@) are chosen as in Subsection 4.5.a.

Since E* = 0, the kernel of the multiplication map My: TfEOE1 — E*is of
course the whole Tgo E'. As we computed generators for ker(Ms) as an E°-bimodule
(Proposition 4.5.13), and we computed ker(M3) in terms of ker(Ms) and an addi-
tional generator (Lemma 4.6.5), we now wish to compute ker(My) = T2, E* in terms
of ker(M3) (and, a priori, some other generators). The following result achieves this,
showing that no further generators are needed and hence that ker(M) is generated
as a bilateral ideal by its elements of degree 2 and 3.

Lemma 4.7.1. Let M: TEOE1 — E* be the multiplication map, and let

K34 = ker(M3) ®po EL + BT ®po ker(M3) C TaoE',

where (?) denotes the image of (?) in TpoE'. One has that K34 = TroE' and,
consequently, that ker(M) is generated as a bilateral ideal by its elements of degree
2 and 3.

Proof. We have to prove that every element of TéOEl lies in K34, and clearly it
suffices to prove this for “simple tensors” of the form x®y for € E' and y € TgOE L
Let us consider the equality

TRy =21 @y —R3(Ms(y))) +rRs(Ms(y)),
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in which the first summand on the right hand side lies in K34, because clearly
y — R3(Ms3(y)) € ker(Ms). We see that it suffices to prove our claim for elements
of the form z ® 3/ for x € E! and 3 € Image(M3). Now looking at the explicit
definition of R3 (178), we see that every 3y’ € Image(Ms3) can be written as a k-
linear combination of tensors of the form z ® t ® 8; for some z,t € E' and of the
form z®t® Bfr for some z,t € E'. We are thus reduced to showing that the elements
of the following form lie in K3 4:

u® By for u € TgOEl,
u® By for u € TpoE'.

Let u € Tgo E'. Similarly to what we did before, we consider the equality
u® B = (u—Ra(Ms(u)) @ 81 + Ra(Ms(u) ® 6;,

where we see that the first summand on the right hand side lies in K34. We are
therefore reduced to proving that the following elements lie in K3 4:

u' ® By for u' € Image(M3),
u' ® By for u/ € Image(M3).
Again such every v’ € Image(M3) can be written as a k-linear combination of tensors

of the form 2’ ® ' ® B for some 2/,¢ € E! and of the form 2’ ® ¢ ® 8] for some
2/t € E'. We are thus reduced to showing that the following elements lie in K3 4:

7ot @B ®B; for 2/,¢ € E',
z'®t'®ﬂf®51— for 2/, t' € E',
et @B @B for 2/t € E',
Z@t’@ﬁf‘@ﬁf‘ for 2/, t' € EL.

But we recall from Lemma 4.5.9 that all of the elements 5; ® 8, ﬁf@ﬁf, By ®ﬂl+,
and ;" ® B{ lie in ker(Ms), and in particular all the elements in the above four
lines lie in K3 4. [ |

4.8 Main result

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose ™ = p. The elements (83 )w, (89)w, (8w, (@g)w, (@2)w,
(af ), and (@) are chosen as in Subsection 4.5.a.

We are now going to state the main result of this chapter, consisting in a pre-
sentation of the Ext-algebra E* in terms of the tensor algebra T}, E'. All the “pos-
itive” results in the statement of this theorem have already been proved, whereas
the “negative” result that the kernel of the multiplication map M : TEOE1 — E*is
not generated in degree 2 has not been dealt with yet, and its proof will be deferred
to the next section.

Theorem 4.8.1. Let us consider the multiplication map
M: T B — E*.
The following properties hold.

209



(i) The multiplication map M is surjective.

(ii) The kernel of the multiplication map M is finitely generated as a bilateral
ideal.

(iii) More precisely, one can choose a finite set of generators of ker(M) lying only
in degrees 2 and 3.

(iv) Let M; be the multiplication map in degree i for all i € Z=q, and let

Ka3 = ker(Ms) ®po EL + E1 ®po ker(Mz) C Too B,

where (?) denotes the image of (?) in TpoE'. One has that K3 has finite
codimension as a k-vector space in ker(Ms).

(v) The sub-bimodule K3 3 is properly contained in ker(Ms). In particular, ker(M)
1s not generated as a bilateral ideal by its degree 2 part.

Proof. The fact that M is surjective has been proved in Section 4.1. Furthermore,
we have seen in Lemma 4.7.1 that the homogeneous ideal ker(M) is generated by its
20d and 39 graded pieces. In Proposition 4.5.13 we have seen that the 274 graded
piece is finitely generated as an EY-bimodule, and in Lemma 4.6.5 we have seen that
K> 3 has finite codimension as a k-vector space in ker(Ms). The fact that ker(M)
is finitely generated as a bilateral ideal and that we can choose a finite number of
generators lying in degrees 2 and 3 follows from these results; for an explicit list
of generators see the next remark. The claim that K3 is properly contained in
ker(M3) will be shown in Section 4.9 (more precisely, in Corollary 4.9.12). [ |

Remark 4.8.2. The following is a set of generators of ker(M) as a bilateral ideal:

By ® By, sf @By, Bey ® By,
BT ® B, st e pf, e © BT,
B ® Ba; o ® B,
Br ® Ba, Boy © B2,

0 ® B 4 ey By ® B + e BY @B — e BT ® B,
o © B —ea- BT @B —eqr - B, @B —er- B ® By,
3 ® Bey + e, ® Bey
B, ® B3, + B3, @ B3,
(Toy 1) - B @ Bl ® B + (7 +e1) - B © Fir ® By
Proof. By the above theorem or by Lemma 4.7.1 we only need to consider the 2"4 and

3" graded pieces of ker(M). And the generators have been computed in Proposition
4.5.13 and in Lemma 4.6.5. [}

4.9 The ideal ker(M) is not generated by its 2°¢ graded
piece

Assumptions. We assume that G = SLy(Q,) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose 7 = p. The elements (85 )w, (6%)w; (8w, (@g)w, (@2)w,
() )w, and (¢y)w are chosen as in Subsection 4.5.a.
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With notation as in Theorem 4.8.1, we have to show that K» 3 is properly con-
tained in ker(M3) (and then, in particular, it will follow that ker(,M) is not generated
as a bilateral ideal by its degree 2 part).

We will adopt the following strategy: first of all instead of working with the full
E' ®po B' ®@po E' we will work with e,YE]L ®po E' ®@po Ele7 for v € T' “generic”,
and then we will prove that e, K> se, is properly contained in e, ker(Ms3)e,.

To show this last fact, we will define a homomorphism of E%-bimodules

M: e E' @po E' @po E'e, —» E3 (187)

(for a suitable E%-bimodule E3) which will be similar to the usual multiplication
map with values in E3 but which will have the following property: the image of
e~ ker(M3)e,, will be nonzero, while the image of e, K>3 e, will be zero, thus proving
the claimed statement.

We begin with the following lemma, which, although not strictly needed to prove
our claim, helps in giving a clearer picture (and, moreover, it will be used to describe
explicitly the quotient e, ker(M3z)ey /e, K2 3e).

Lemma 4.9.1. There exists a unique homomorphism of E°-bimodules © making
the following diagram commute:

quot.

ES E3/F1EO o~ 3((F2E0)\/,ﬁnitc)3

¢ ()

3 ///
B 310

quot. e

Eg/k -e1d
12
ker(83).

Proof. Uniqueness is clear, but let us nevertheless assume that such a map O is
given, in order to find an explicit formula. Let us start by computing the action of
¢ on the elements of F2E3: let w € W be such that £(syw) = £(w) + 1; we compute:

€+ Psosiw = (Tsy ~ Tsg + €175y + €1) - Psgsyw
= (Ts, T €1) * (De_is1w — €10s0s1w) + €10sgs1w
= Quw — €1Psgs1w + €1Psps1w
= Q.
By applying the automorphism I', we also get that, for all v € W be such that
£(spv) = £(v) + 1, one has
¢ Psysov = Pu-

If there exists a homomorphism of E°-bimodules © as in the statement of the lemma,
then we can compute its value on the k-basis (¢w), je2 Of E3/F E°. Indeed,
looking at the commutative diagram we get:

@(¢soslw) = C : ¢soslw

= duw for all w € W such that ¢(sjw) = l(w)+1,
@((bswov) =( Gsys0v
= ¢y for all v € W such that £(sov) = £(v) + 1.
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We have thus shown uniqueness of ©® and we also know how it must be defined if
we hope to prove that indeed there exists a map with such properties. Namely, we
first define ® as a homomorphism of k-vector spaces:

O: E3 /P E° y B3k - e1¢h

d)S()Slu) %7

(for w € W such that L(s1w) = L(w) + 1)

(Zsslsow ¢v-

(for w € W such that £(sow) = £(w) 4 1)

It is then clear that © is such that the diagram in the statement of the lemma
commutes, and it remains to show that it is a homomorphism of E%bimodules. We
start with the following computation, for w € W with {(sow) = f(w) + 1:

O ((7so + €1) * bsgsisow) = O (Pe_ys150w)
= e
= (75, +€1) M
= (75 +€1)- O (¢soslsow) .
Exactly in the same way we would get the following equality, for all w € W with
l(s1w) = L(w) + 1
O ((7s; + €1) - Psysps1w) = (Ts1 +€1) - © (Dsys081w) -
Now, let us treat the case of length 2: let w € T°/T"; we compute
© ((TSO +e1)- ;{)Slw‘FQEO) =0 (((TSO +e1)- svosw ’FQEO)
= 0(0)
=e1d1
= €19,
(Too T €1) - & bu

(TSO + 61) S/ (T%Slo-J‘FQEO) :

Exactly in the same way we would get
© ((781 +e1)- Svlsow‘FQEO) = (s, +€1)-© (T¥80w‘F2E0) :
Moreover, for all w € T°/T! and all w € W with l(w) > 2, it is easy to see that
O (Tw * Pw) = Tuw - O(u).

And finally, for all i € {0,1} and all w € W with £(s;w) = £(w) + 1, it is ecasy to sce
that

@(Tsi~¢w) :O:Tsi-@(qﬁw).
These formulas show that © is a homomorphism of left E%-modules. To show that
it is also a homomorphism of right E°-modules, one could remark that © can also
described as

O: E3 /P E° y B3k - e1¢h

¢wsosl (;Siw
? ’

(for w € W such that L(wsg) = L(w) + 1)

¢ws1so

N _ gbw,
(for v € W such that (ws1) = €(v) + 1)
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and then do analogous computations.

Alternatively, one can remark that since both F} E3 and k- e1¢; are J-invariant,
the involutive anti-automorphism J defines involutive anti-automorphisms, which we
will still denote by J both on E3/FyE3 and on E3/k - e1¢py. With these definitions,
and denoting by r the quotient map E% — E3/FE3, one sees that

OoJor=0oro{
= (¢ (0)0d
=¢-d(-)
=3((-)¢)
=3(¢- ()
=Jo0Bor.

This shows that © commutes with J on the whole E3 / FLE3. Moreover, we know
that the formula

Iz-9) =3(p)-3(x)
holds for all x € EY and for all ¢ € E3, hence it also holds for ¢ € E3/F; E? and for
@ € E3/k - e1¢p1. We then see that for all x € E° and all p € E3/F|E® we have

O(p-z)=(JoO0d)(p-x)
= (300)(d(x) - 3(»))
=3(3(=) - 6(3(#)))
= 6(p) -z,
completing the proof that © is also a homomorphism of right E°-modules. |

For the next lemma and for what will follow, recall the definitions of the maps f
and ¢ from (50) and (51) and the notations f; and g; for their graded pieces. Recall
also the structure theorems Proposition 1.10.2 and Proposition 1.10.4.

Lemma 4.9.2. Let (E') := ker(f1) @ ker(g1) C E', and let us consider the decom-
position of EY-bimodules

(E") @po (BY) ®@po (E') = @ ker(j) ®po ker(j') ® go ker(j").
j7j/7j//€{fl7gl}

One has that the composite homomorphism of E° bimodules

(E') @po (B') ®po (BY) 00 B3 M, B3k o169y 2 ker(S5)
s zero on the following direct summands:

ker(f1) ®po ker(f1) ®@po ker(f1), ker(g1) ®po ker(f1) ®po ker(g1),

ker(f1) ®go ker(g1) ®@go ker(g1), ker(g1) ®pgo ker(g1) ®@go ker(f1).

Moreover, for all v € T with v # {1}, the homomorphism of E° bimodules

multipl.

ey(EY) @po (B') @po (EB')'ey ey B’

s zero on the following direct summands:

ey ker(f1) ®@po ker(f1) ®@po ker(f1)ey, ey ker(gi) @po ker(f1) ®po ker(g1)e,,
ey ker(f1) ®po ker(g1) @po ker(g1)ey, ey ker(gi) ®po ker(g1) ®@go ker(f1)e,,
ey ker(g1) ®po ker(g1) ®pgo ker(g1)es.
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Proof. The second statement clearly follows from the first one except for the lest
direct summand. For the proof of the first statement we will use that ker(gs) = k-e1¢;
(see [0S21, Preliminary Observation B) in the proof of Proposition 9.6]). Hence, we
need to show the following facts:

ker(f1) ®@po ker(f1) ®po ker(f1) C ker(gs),
ker(g1) ®@pgo ker(f1) ®po ker(g1) C ker(gs),
ker(f1) ®po ker(g1) @po ker(g1) C ker(gs),
ker(g1) ®po ker(g1) ®go ker(f1) C ker(gs),

ker(g1) ®po ker(g1) ®po ker(g1) C e1 2.

Let us prove each one of these inclusions.

o Let us treat ker(f1) ®go ker(f1) ®go ker(f1). Let By, 5}, 6 € ker(f1); we compute:

C- By By By C=C By (C-Bp-¢)-Bf-¢
= (¢ By Q) By (C-BF- )
=fy- ﬁ} . 5}/-
This shows that the image of the simple tensors in ker( f1) ® go ker(f1) ® go ker(f1)

is contained in ker(gs) = k - e1¢1, and hence the same is true for the whole image
of ker(f1) ®go ker(f1) ®pgo ker(f1), as we wanted.

e Let us treat ker(f1) ®po ker(g1) ®po ker(g1). Let 8y € ker(f1) and 3, B; € ker(g1);
we compute:

C-Bf-Byg-By-C=C-Br-Bg-C- By
=(-By-C-By- By
= Br - By - By

and so we conclude as before.

e One can treat the direct summand ker(g1) ®go ker(g1) ® o ker(f1) exactly as the
last one.

e Let us treat ker(g1) ® o ker(f1) ®goker(g1). Let 8y € ker(f1) and B, 8; € ker(g1);
we compute:

C-Byg-By-By-C=Byg-C-By-C- By
—B,-8;- 8.,
and so we conclude as before.

o Let us treat ker(g1) ®pgo ker(g1) ® go ker(gr).
In [OS21, Proposition 9.2 and its proof] it is computed that

B cralls = vl
BIx I = e1ad* = e1ad
o i =0
o B =0
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(the rightmost equalities in the first two lines follow from (88)). One easily see
that the four elements ,Bg(’)* ® 62(’)*, @’21’* ® BS{*, 520’* ® 52{* and ,6’21’* ® 52(;* generate
ker(g1) ® go ker(g1) as an E°-bimodule (or even as a left E%-module), and that the
k-vector space

0,%
S0 ?

0,% 0

; _ 0
spang{e1ay”, erag” } = spang{eiay,, eray, }

is a sub- E°-bimodule of ker(g2) (actually sub-E°-left module would suffice for our
purposes, and that it is a sub- E%-bimodule would then follow), thus showing that
the image of the multiplication map

ker(g1) @po ker(g1) — ker(gz)

is exactly span;{e1ad , e1a }. Finally, we see that for all 3 € ker(g1) the products

B-e1a)) and B-e1a, lie in e E3, since 8 and e; commute (as 3 € ker(g1) = F*E?).
|

Remark 4.9.3. For later use we record that
ey ker(g1) - ker(gy) =0
for all v € T with v # {1}, as we saw in the last part of the proof of the lemma.
In the next lemma we are going to define a homomorphism of E%-bimodules
M: ey (E"Y @po (BYY @po (EY ey — E?
that will be our starting point to define the homomorphism of E%-bimodules M
whose existence was claimed in (187) when we outlined the strategy of our proof.

Lemma 4.9.4. As in the last lemma, let (E') = ker(f1) ®@ker(gy) C E'. Let y € T’
with v # {1}, and let us consider the decomposition of E°-bimodules

ey(EY) ®po (BY) @po (B ey = @ eyker(j) ®po ker(j') @ po ker(j”)e.
j7j/7j/l€{f17gl}

(188)
Let us define a homomorphism of E°-bimodules
M: ey (EYY @po (B @po (BY ey — E?
in the following way:
M: ey ker(f1) ®po ker(f1) ®@po ker(g1)ey —— E?
Bep ep": » B¢ BB,
M: e ker(g1) ®pgo ker(f1) ®po ker(f1)ey ——— E?
Bep ep": »B-8"-C- B,
M: ey ker(f1) @ go ker(g1) ®po ker(f1)e, E3
Bep ep": »B-C-p B =p8-8-¢- 5,

and as the zero map on all the remaining terms of the decomposition (188).
One has that the following diagram is commutative:

E3

S e

e’Y(El)/ X Eo (El)/ ® go (El)’eV T) E3.
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Proof. First note that M is a well defined homomorphism of E°-bimodules because
¢ € Z(E®) (and hence one can define suitable E°-bilinear maps).

The fact that the diagram is commutative on all the terms where we have defined
M to be the zero map follows from the fact that there also the multiplication map
is zero (Lemma 4.9.2). The fact that the diagram is commutative on the remaining
three terms is true basically by definition of ker(g;), also taking into account that
multiplication by ¢ on E® can be written equivalently on the left and on the right. W

Lemma 4.9.5. Let v € I' with v # {id,id "'}, {id? id~*}. One has that
er B @po B' @po Eley = ey (EY) @po (BY) ®po (EY)'es,

where (E') := ker(f1) @ ker(g1) € E' and where the equality means that the natural
map from the right hand side to the left hand side is an isomorphism of E°-bimodules.

Proof. Recall from Proposition 1.10.2 that we have the following exact sequence of
E°-bimodules:

0 —— ker(f1) @ ker(g1) > B! E'/(ker(f1) @ ker(g1)) —— 0,

where the quotient E'/(ker(f1) ® ker(g1)) has a k-basis given by the classes of the
following four elements of E':

+ +
ed - B - eg-1, eid * B, * €ids

eﬁfl . /B; . 6@, €E71 N BS_() . eﬁfl.
So, since v # {id,id "'}, we see that
1_ 1y/ 1, _ (ly
enE" =e (E"), Eley, = (E)e,. (189)

Moreover, let p € W, let w e W and let 8 € {85, 8%, 85} (with £(w) > 1 if we
are considering 3%). From formulas (61) we see that:

e
ey,
euﬁzﬁ
€112
euﬁ”ﬁ

eu_l @—216

/BG,M =

It follows that, writing v = {\, A~} and defining
D= {{0N AT {Nid?, At id 2, {nid 2 A id?) )

for all B € E' we have

B.@,Y:( Z 67’)'/8'67' (190)

v'ely

Since v # {id,id "'}, {id® id®}, for each 4/ € T\, we see that 7/ # {id,id"'}. But
then, as before, it follows that

El-( 3y 67/> - (El)'.( Y e,y,). (191)

/€Ty /€T,
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Putting together what we have found, we deduce the following:
exE' ®po E' @po Ele,
=e,E' ®@po E' @po < Z ea,:) - E'e, by (190)
v ely

=B @p B (Y ey) @m0 Ble
'Y,er’y

= e (E'Y ®po (El)’-< 3 ey,) ®po (B e, by (191) and (189)
y'€ly

= e, (BYY ®po (B) ®po ( 3 ev/) (EYe,
7'€ly
= e (BYY @po (BY) @po (EY e, by (190). |
We are now ready to define the map M whose existence was claimed in (187).

Remark 4.9.6. Let v € I' with v # {1}, {id,id '}, {id®,id—3}. We have the follow-
ing commutative diagram:

M

I
—
o
=
Q
c+
N
@)

exE' @po E' ®po E'e, — e E3.

This is constructed as in the following way: we identify 67E1 ®po E' ®po El&Y with
ey(EYY ®po (BY) @po (E')ey following Lemma 4.9.5 (this identification clearly
preserves the multiplication map M). The triangle on the left then makes sense and
commutes by Lemma 4.9.4. Moreover, we can define © as in Lemma 4.9.1, modulo
the fact that on the target we identify e - E3/k-e1¢1 with e, E3. With this definition,
the triangle on the right commutes by the quoted lemma.

Before using the map M to prove that ker(M) is not generated by its 2°¢ graded
piece, we need some further lemmas.

Lemma 4.9.7. Let v € T with v # {1}, {id,id "'}, {id3,id~3}. The map
M: e;E' ®po E' ®po E'e,, — e, E?

defined in Remark 4.9.6 satisfies the following properties, for 3,53, 8" € E':

eyB-¢- 8"y if B € ker(f1),

eyf3 - B¢ ,6//67 if 5 € ker(¢1),

ey - B¢ 5//67 if 8" € ker(f1),

ex3-¢C- g ﬁ”e7 if 8" € ker(g1).

Proof. Let 8,8, 3" € E'. First of all we remark that it suffices to prove the formulas
only for 3,3, 8" € (E'Y := ker(f1) @ ker(g1). Indeed, first recall from the proof of
Lemma 4.9.5 (formula (190)) that we have

Bley = ( Z ev’) -Bey,

v'ely

(
M(e,8® B @ Bey) = E
(
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where Ty == {{\, A71}, {Aid? A~1id 2}, {Aid "2, A1 id*}}. In particular,
exB® B ®B"ey =ere8® (5' : Z e,yl> ® B"eyey,
v €Ty

with the same definition of I'y as in the proof of that lemma. But now, again as in
Lemma 4.9.5, we see that

G’YB € (El)/7
,8/' Z e c (El)/,

y'ely
B//e’y c (El)/.

Hence, if we take the formulas (192) to (195) for granted for (E')’, we deduce that

eveyf- ¢ (5/ Dyer, ev’) - B"eyey if B € ker(f1)
ever 3 (B Zy/en, ey ) - ¢ B"eyey if B € ker(g1)
evey - (B Z,y,er7 ey ) - C-B"eve, if B € ker(f1)
evey-C- (5’ " Dyer, ev’) - B'eyey if B € ker(g1)
esB-C-B"ey if B € ker(f1)

ey-C-p"ey if B € ker(gr)

eyf-C-B"ey if B € ker(f1)

e f-¢-p"ey if B € ker(gr).

M(e,8® B @ Bey) =

\

Hence, without loss of generality, we may assume that 3, 8/, 3” € (E')’, and since all
the expression involved are “trilinear”, we may further assume that either 5 € ker(f1)
or B € ker(gy) and the same for 5" and 3”.

So let us treat these eight cases:

e In the following cases the claimed formulas hold by the very definition of M:

Case B eker(f1), B €ker(fi) and B” € ker(qr),
Case B €ker(g), p €ker(f) and B” € ker(fr),
Case B €ker(f1), B €ker(gqr) and "€ ker(f1).

e Assume that § € ker(f;), that " € ker(f1) and that 5" € ker(f1).

We know from Lemma 4.9.2 that e, - 5’ - "€, is zero, and a fortiori
C'evﬁ'ﬁl'ﬁﬂew:Ozevﬁ'ﬁl'ﬁue'y'c-

But it is easy to see that ¢ commutes with e, - 8’ and with - 3”e,. Recalling

that /(/l\(evﬁ ® B’ ® B"ey) is zero by definition of M\, we conclude that (192) and
(194) are satisfied in this case.

e Assume that 5 € ker(g1), that 8’ € ker(f1) and that 3" € ker(g1).

Again we know from Lemma 4.9.2 that e 3-3"- 3" e, is zero. Since here ¢ commutes
with both e, and 5”e, and since M(e,8® ' @ 3"ey) is zero by definition of M,
we conclude that (193) and (195) are satisfied in this case.
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e The case 8 € ker(g1), 8 € ker(g1) and 38” € ker(g1) can be done exactly as the
last one.

e The case § € ker(f1), 8’ € ker(g1) and " € ker(g;) and the case § € ker(g1),
B' € ker(g1) and 5" € ker(f1) can be done similarly. Here one uses that

0=e,B-8-B'ey-C=e,8-¢-B e, in the first case,

0=C-e,8-08 ey =e,8-8-¢-Be, in the second case,
yielding that (192) and (195) are satisfied in the first case, while (193) and (194)
are satisfied in the second case. |

Lemma 4.9.8. Let v € T with v # 1. The set of elements of e, E> which are
annihilated on the left by both 74,5, and Ts,s, coincides with €7F1E3.

Proof. 1t is clear that every element in eVFlE?’ is annihilated by both 74, and
Ts;s0- Let us prove the converse. We assume that v = {\, A7} with A # A1 (the
case A = A71 is similar). The following is a k-basis of e, E3:

exd1, ex-191,

eAP(sos1)s0) ex-1Pgy(s150)0 for i € Z>,
ExP(s150)is1 ex-1Ps; (5951 for i € Z>o,
eAD(s051)7 eA-1P(s51)i for ¢ € Z>1,
XD (s150)> eA-19(s50) for i € Z>1.

Let us consider ¢ € e,yE?’ with the property that it is annihilated by both 75,5, and
Ts1s0- Oince we have already said that every element in eWFlE?’ is annihilated by
both Tsys, and 7,5, we may assume that ¢ € F?2E? and prove that it must be 0.
We write ¢ as

o= Z aieAqb(SOSl)i + Z bie>\¢(s1so)i + Z Cie)\d)(soa)iso + Z dieAgZ)(SlSO)isl

1€L31 1€2L>1 1€L1 1€2L31

for suitable a;, b;, ¢;, d; € k (almost all of them equal to zero). We compute

Tsos1 QZS =+ Z bi€A¢(3150)i71 + Z di€A¢(8180)i71811

1€7L31 €231
Tsyso " @ = § aieﬂb(sosl)i*l + E Cie}\(ﬁ(sosﬂi*lso’
1€ €21

from which we see that for all ¢ € Z> all the coefficients a;, b;, ¢; and d; must be
zero, as we wanted. |

Lemma 4.9.9. Let v € T with v # {1}, {id,id ™'}, {id®,id=3}. The map
M: e E' @po B' ®po E'e, — e, - B3/ E®

defined in Remark 4.9.6 is zero on e, K3 3e, where

K3 = ker(Ms) @po E' + E! ®@po ker(Ms) C E' ®po E' @po E*.
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Proof. Let x € e, - E' ®go ker(My) - e; we want to prove that Mv(:c) = 0. The proof
in the case that z € e ker(Ms) ®po Ele, is completely analogous, and this allows
us to conclude more generally for z € Ko 3.

Without loss of generality we may assume that x is of the form

r=e,f®ye, for B € E' and y € ker(My).

And, using that e, E' = e, ker(f1) @ e ker(g1) (see (189)), without loss of generality
we may further assume that either § € ker(f;) or 5 € ker(g1). If we are in the case
B € ker(f1), then applying the formulas in Lemma 4.9.7, we see that

./{/l\(ewﬁ ®yey) =eyf - (- Ma(yey) =e,3-(-0.

And so a fortiori ./{/lv(evﬂ ® ye) is zero.

Now, it remains to treat the case 5 € ker(g;). Since ker(g;) is generated by

25* and 62{* as a left E%-module, we may assume without loss of generality that

B is equal either to BQ(;* or to 62{*. We treat only the case f = 62(;*, the other
one being completely analogous. As in the proof of Lemma 4.9.2, we see that, as
v # {id,id"'},{id,id "}, one has

E' ®po E'e, = (ker(f1) @ ker(g1)) ®po E'e,.

We can therefore write ze, as a sum of simple tensors of the following form:
rey =Y Bif @ Biey + Y Big @ Biey
i i
for some B;; € ker(f1), some B4 € ker(f1) and some f3;, Bl e EL.

We want to compute Tg, s, - //\/\1(676 ® yey) and Tgys, - A(ewﬁ ® yey), and prove
that they both lie in Fy E3. If we prove this, then Lemma 4.9.8 (together with the
definition of M in terms of M) yields that M(evﬁ ® yey) is 0.

We start with the computation of 75, - (675 ® ye):

Tsgsy * M\(evﬁ ® ye'y)
= Tsos1 - M (67526* ® (Zz Biy ® Biey + 32, Big ® 5,{6’7))
= Zz Tsps1 ° e'yﬂgé* : Bif : C : Bz‘eﬂ/ + ZZ Tsgs1 * 67526* : Big : C : 61/‘67
by Lemma 4.9.7
= Zz Tsps1 * 67/826* : 51]“ : C : Bieﬂy
since e ker(g1) - ker(g1) = 0 (Remark 4.9.3)
=3 B Bip - ¢ Biey
since T, 5y, €175y, €17s; and ep all act by 0 on e,yﬁg(’]*
=2 e'yﬁg(’)* Q- Bif - ¢ Biey
=2 67626* “Bif - Biey
— e, B3 (1 Bir - ey + X0, By @ Bl )
since e, ker(g1) - ker(g1) = 0 (Remark 4.9.3)

= e, B0 - Ma(ze,)
=0.
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Now we compute Ts, s, - ./(/l\(eWB ® yey):

Ts1s0 M(e’yﬂ ® ye’Y) = M(e’YTslso : 526* ® ye’y)
M\(O ® ye)
0.

The next remark shows that the map M alone is not useful for our purposes,
and that we really need the map M (compare this with the strategy outlined at the
beginning of the section).

Remark 4.9.10. With notation and assumptions as in the last lemma, we see that
it is not true that M is zero on e, K> 3e,. Indeed:

M(er B @ By @ Biey) = e By" - By ¢ Biey
by Lemma 4.9.7
= 67525* “B1 " Tsesy - 5?67
0 0
= _67556* " Qgps1

see, e.g., the definition of Ro in (170)

0,x 0,%x

= TCyPgy " g5, 6y

by (88) and since e, and 83" commute

= —C64Ts '(Z)Sosle’Y

by (111)

= —€yPc_y5 €y
and this is nonzero, even though e,yﬁgg)* ® B ® ﬂfre,y € Ks 3 because 3] - ﬁf =0.

Lemma 4.9.11. Let v € T with v # {1}, {id,id 7'}, {id3,id =3}, and let

T = (751+€1)'51+®5gl—1 ®ﬁ1++(750+61)-ﬁ;®5251®,8;.

One has that the map M is nonzero at €Tl .

Proof. We have to compute the values of M at Ty = ey (Ts, +€1) By ®Bg_1 ® B e,
1
and at z0 = ey(Ts, +€1) - ®Bg_1 ® 31 ey and show that their sum does not lie in
0

F E3. Before starting we recall from Proposition 1.10.2 that the following elements
lie in ker(f1):

0 - 0 -
510— - 26@/350 - eﬁﬁs—tso’ Bl + 26@*1631 - e@*1ﬁ5051’
and therefore

ey € ker(f1), eyf] € ker(f1). (196)
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We start with the computation of M\(l'%l):

o~ —~

M(wy2) = M (e5(ros + 1) - 5] @ 8% @ e, )
- M <€77'31 . ﬁfr ® 52;1 ® 51+6'7>
=M (ew-sl ey ® 621,1 ® ﬁfey)

by Lemma 4.9.7, since
Ts,e481 € ker(f1) by (196)

= €Ty -ewé’f ¢ 04:1_16«/ see, e.g., (170)

0
= eyTy B¢ 581_1 .5f67

_ + + + _
= eqyTsy - ey - (Tsys0 T €175, +€1) - asl,167 as 37 - 75, =0

_ + + +
= €qTg, - €457 - Tsysg asl,lea, as (7s, +e€1) - 0451,1 =0
_ + .ot

= e,Ts, - eyB3] - ()zs)’ls()sl_leV

= 64Ty evﬁbslsos;lev by (114)

= 67¢5051'

Now, to compute M (24,0), we first remark that M commutes with I'w: indeed first
of all, defining (E') := ker(/f1) © ker(g1), one sees that it suffices to prove that the
map .

M: ey (BYY ®@po (BY) ®@po (BY) ey — E?
commutes with ', since the identification

er(BY) ®po (BYY @po (EY) ey = ey E' ®@po E* @po Ele,

of Lemma 4.9.5 commutes with I',. Then, since I';(¢) = ¢, we see that the decom-
position

e'y(El)’ ® go (El)/ K go (El)/e,y = @ ey ker(j) Qpo ker(j') ® go ker(j")ev
j?jlzjlle{flygl}

is preserved by ', and so it suffices to prove the statement on each of these terms,
and this can be immediately done by looking at the explicit definition of M on such
term (and using again that I'(¢) = ().

Therefore, we have seen that M commutes with I', and so we can easily compute

/T/l\(azmo) knowing already M (z,,1):

—

= M(-T'x(zy1))
= Po(=M(zy1))
= FW(_67¢8081)

= _67¢S180 .

M\(xv,O)

We see that the sum /T/l\(:z%o) + M(mml) does not lie in [} E, as we wanted. W

We are now able to prove the main result of this section, thus completing the
proof of Theorem 4.8.1.

Corollary 4.9.12. Let

Ky 3 = ker(Ms) ®@po EX + B ®@po ker(Mz) C TpoEY,

as in Theorem 4.8.1. One has that the inclusion Ko 3 C ker(Ms) is not an equality.
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Proof. There exists v € I with v # {1}, {id,id '}, {id®,id®}; indeed, if p > 7 then
this is clear because

1
#r:pTH>4.

If instead p = 5, then we see that {id® id 3} = {id,id"'} and that we may choose
v ={x,}, where x, is the quadratic character.

In Lemma 4.9.9 we have seen that the map M is zero on e K> 3e,, whereas in
Lemma 4.9.11 we have seen that M (eyxey) is nonzero, where

x = (15, +€1)" Bf ®ﬁgl_1 ®ﬁ1+ + (7'50 +e1) By ®B251 ® By -
Since = € ker(M3) (see for example Remark 4.8.2, or for the proof Lemma 4.6.5),
the result follows. u

Remark 4.9.13. Let v € T with v # {1}, {id,id "'}, {id®,id~3}. It is possible to
describe the “e,-component” of ker(M3)/K3 3. Let us refer to the following diagram,
which we described in Remark 4.9.6:

— —

M = (quot.) @) M

e'yEl ®EO El ®EO E1€7 T} €7E3.

We have the following facts.
(i) Let us define F?) = ey - (ker(M3)/Ka3). One has:
F?) =€y (kel‘(Mg)/Kzg)

e, - (ker(Mg)/Kz’g) Sy
= (ey ker(Ms)ey)/ (e K2 3ey).

(i) eyKose, = ker(M).

(iii) K5 2 ker(0).

(iv) Explicitly, as a k-vector space

=0 o kuy @ kuy—1 if v = {\, A7} with A # 271
3 kuy, if v ={A} (ie,if v={x,}),

where uy and uy-1 are indeterminates. Moreover, the structure of E°-bimodule

is the following: for u € W and for A € v, the idempotent ey acts on u, as
the Kronecker symbol 6, (both on the left and on the right), whereas both
Tso and 7, act by 0 on u, (both on the left and on the right).

Proof. Let us prove the four statements.

223



(i)

(iii)

(iv)

Let us set
o + 0 + — 0 -
T = (TS1 +61)'ﬁ1 ®le—1 ®51 +(Tso+€1) 'Bl ®/8351 ®ﬂ1 .

and let us recall from Lemma 4.6.5 that ker(M3s)/Ka 3 is generated as a k-
vector space by the elements 7, - = for w € T°/T", or, equivalently, by the

elements e,z for p € TO/T1. It is easy to see that e,z = xe, = e xe,, and so
the first isomorphism in (i) follows, and the second is clear.

We have proved in Lemma 4.9.9 that e, K3 e, C ker(M), so it remains to prove

the reverse inclusion. By the commutative diagram ker(M) C e, ker(M3s)e,
and so, by what we have said above about ker(Ms)/Kj 3, we may write an
element y € ker(//\/lv) as y = z+ayexrey+ay-1ey-12ey-1 for some z € e, Ky 3e,
and some ay,ay-1 € k. Let A = X or X = A~!. The computation we made in
the proof of Lemma 4.9.11 then shows that

M(exzey) = M(eyeyzeyen)

=€y - 67¢5051 - ev¢slso

=ex * Psos; — Psysos

where (?) means the class of (?) in E3/F,E®. Hence, we see that M(e,\x@\)
and M(ey_ixey-1) are linearly independent if A # A~!, respectively that

M (eyzey) is nonzero if A = A~!. Looking again at the equality
Y =z +are rey + ay-1ex-1rey-1i,

we see that y must be equal to z, completing the proof of the inclusion

ker(M) C e, K> ze,.

The map M restricted to ey ker(Ms)e, has values in ker(©) by the commuta-

tive diagram, and so. taking (ii) into account, we see that it induces an injective

homomorphism of E°-bimodules from 79) to ker(©). But this map is also sur-

jective because, looking at the explicit description of © (proof of Lemma 4.9.1)
one sees that ker(©) = spany, {€x - @sgs; — Ps150: €1 * Psgs; — Psyso |- and then
we have shown in the preceding part of the proof that e, K> 3e, surjects onto
this space.

The claimed explicit description follows from the explicit description of

ker<@> = Spallg {€>\ “@sos1 — Ps1sgr €A1 " Psgsy — ¢slso} . u

Remark 4.9.14. Before Lemma 4.6.2 we claimed without proof that the map Rs
is not I'p-invariant nor J-invariant. As we now know that K> 3 is properly contained
in ker(Ms) (Corollary 4.9.12), looking at the statement of Lemma 4.6.5 we see that

I'%(Rs(01)) — Ra(é1) ¢ Ko3.

This clearly excludes the possibility that R3(¢1) is I'-invariant (since I's(¢1) = ¢1).
But is also excludes the possibility that R3(¢1) is J-invariant: indeed, in Lemma 4.6.4
we have proved the congruence

J(R3(¢1)) =T'w(R3(¢1)) mod K3,

and so if we had J-invariance, we would obtain that I'5(R3(¢1)) — Ra(¢1) € Kaj3
(using also that J(¢1) = ¢1), contradicting what we said above.
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4.10 The Ext-algebra in terms of generators and rela-
tions

Assumptions. We assume that G = SL2(Q),) with p # 2,3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose ™ = p. The elements (3;,)w, (8%)w, (B)w, (g)w, (@9)w,
() )w, and (¢y)w are chosen as in Subsection 4.5.a.

In this section we will compute a presentation of E* as a k-algebra, and, in par-
ticular, we will prove that E* is finitely presented as a k-algebra. We will proceed
as follows: we will compute a presentation of E' as an E%-bimodule or, more pre-
cisely, as a left module over E° @ (E?)°P (see Lemma 4.10.1) and we will compute
a presentation of the Hecke algebra E° as a k-algebra (see Lemma 4.10.1). It is then
easy to show that combining these two presentations one obtains a presentation of
the tensor algebra T E,OEl as a k-algebra (see Lemma 4.10.3). We will then put this
together with the presentation of E* as a quotient of T, E' already seen in Remark
4.8.2, to finally achieve a presentation of E* as a k-algebra (see Proposition 4.10.4).

Let us start by fixing once and for all a generator wy of the cyclic group TV /T*:

T°/T" = (wo), (197)

and recall from (47) we denote by u,,, the unique element of (9/99)* such that

This definition actually makes sense also for G = SLy(F) where § is an arbitrary
locally compact non-archimedean field, and in Lemma 4.10.2 we will work under
these more general assumptions.

In the next lemma we compute a presentation of E' as an E°-bimodule (more
precisely, as a left module over E° ®;, (E?)°P).

Lemma 4.10.1. Let A
M= E" e E°,
i=1
endowed with the natural structure making it into a free E° ®y (E°)°P-left-module of

rank 4: call the canonical basis (Bl_, Bf, /g\o, /§1) Let us consider the submodule N
generated by the following elements:

oy B1 s Too - B7 5

BY - Taos By - Tars

(Tso +€1) 5/1: : (TSO_—t 61/)\ (75, +e1) - 5/11 (T t,ell) N
+2eﬁﬂ/§0+r:?-ﬁf, —Qeﬁ,lﬁ/\g +TX.51—7

v B o B

(Tso +€1) -ﬁ/g) + €idTs -5/1:, (1, +€1) - /g\l — €415, 'Bf\_v

/g\o'(Tso -1-61)—1-6@715/1:-7'50, E'(T&*‘@l)—@@@\'-nl,

Tuo - By —U32BY Ty rs - BT — 2 BT T

T“’O'ﬁ/g\f@f%“ Two'ﬁ/g\l—ﬁA?l'Twal'
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Denote by BNl_, BNT, B?O and ngl respectively the images of By, Bf, Bg\o and ﬂ/\gl m
M/N. One has an isomorphism of E° ®j, (E°)°P-left-modules
P 1
M/N ——— FE
B; — ﬁ;v

6+}—>517
By, ——— B

Q8
Proof. To show that we indeed have a well defined homomorphism of E° ®;, (E°)°P-
left-modules it suffices to show that the elements of E! that we obtain from the
elements in the list defining N by replacing 87, 87, 89, and B9, respectively by 3,
,Bf , B2 and 521 are all zero. L.e., we want to say that the following elements are all

50
Z€ero:
Tsy - B1 5 Tso ',Bf', (198)
BT - Tss B Tsas (199)
(7so +€1) By - (Ts%:fl- e1) (15, +€1) - B7 - (79, 4;7611) (200)
+ 26@520 + 7'“? /Bf', — 26ﬁ_1ﬁ21 + TLF B

Tso By + BYy * Ters o BY + B - Tay (201)
(s +€1) - B, + €iaTs * By (o, +e1) - B, —eg1msy B, (202)
520 (7o T €1) +eq-187 * Tsps 621 (75, +e1) — e T, (203)
Two - BT — u;fﬂl_ * Tasos Two * 61" - uioﬁf “Twos (204)
Two * 20 - 20 T Tuwo * 21 - 21 T (205)

For line (198) see (63), for line (199) see (65). Regarding line (200), using again such
results and also (61) and (66), we compute

(Tso+el)'ﬁf '(Tso+el) = Tso '/8;'730 + e B; “Tso 1 Tsg B; -e1t+ep /8; c €1
= Tsg * /85_0 + elﬁs_o - eQQﬁ;‘B
_ 0 _
= (—elﬁso — 2eﬁ680 + eﬁﬁjo - j_l) + e1ﬁ30 — eﬁﬁ;
0 B ot
= _2(3@530 — Twe B -

Applying the automorphism I",, we also find that

(7—81 + 61) : /Bf- : (Tsl =+ 61) = Fw ((Tso + 61) Bl_ ' (7_80 + 61))
p—1
=T (—2eidﬁ20 — Tl ﬂf)
0 p—1
— 2€ﬁ71/351 — Tw02 . Bl_

So this shows that the elements in the line (200) are zero. To show that the elements
in line (201) are zero it suffices to use again the formulas (63) and (65). Similarly, for
line (202) we use again (66) and for line (203) we use instead (67) and (68). Finally,
for lines (204) and (205) we use (59) and (60).
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Now, it remains to prove injectivity and surjectivity of our homomorphism P.
Surjectivity is clear from the fact that the elements 37, Bf , 520 and 521 generate E*
as an E’-bimodule (see Lemma 1.10.3). To prove injectivity, we adopt the following
strategy: we fix a k-basis B of E!, and, using surjectivity, for all b € B we fix
a preimage mp € M/N (in other words we are constructing a section of P, as a
homomorphism of k-vector spaces only). If we prove that the elements m; generate
M/N as a k-vector space then injectivity of P follows, because the family (my)pe
is made of linearly independent elements.

So, let us pursue the above strategy to prove injectivity. Let us consider the
following list: on the second/third column we of course have a k-basis of E'. It is
also easy to see that the elements in the first column are mapped to the elements
on the right column by P. Therefore, we are exactly in the setting outlined above,
and it remains to prove that the elements in the first column generate M/N as a
k-vector space.

E “T(sos1)7 " Tw 7 Bgl “T(sos1)7 " Tw = 21(5051)J'w w€TY/TY, j € Lo,
go " Tsi(sps1)d " Tw 7 530 “Tsi(sos1)d " Tw = 52081(8051)jw weTO/TL, j € Zo,
,g) “T(syso)d " Tw 7 B so  T(s1s0)d " Tw = 5so (s150)7 ~ Tw weT/TY, j € Zo,
/-:9/1 *Tso(s1s0)d " Tw = 651 "Tso(s1s0)d " Tw = gl “Tso(s1s0)d " Tw WE T9/TY, j € Zxo,
ﬁ/\f C T = B Tw = B, weTO/T!,
é} Ty — Bf‘-Tw = ﬁi‘ weTo/T!,
Br Tisosty " T 2 B Tsosy T = By wETO/T', j € Lz,
/81_ " Tso(s150)7 " Tw = ﬁl_ "Tso(s150) " Tw = /68_0(8180)jw weTY/TL, j € Zxo,
Bfr "T(s1s0) " Tw Bfr “T(syso)d " Tw = 5§150)jw weTTY, j € T,
ﬁfr "Tsi(sgs1)d " Tw 7 Bfr "Tsi(s0s1)d " Tw = le (s0s1) weT%T, j € Zy,
T(s150) 51 Tw "7 T(s1s0)d B T = ﬂ@lso)m weTYTY, j €Ly,
Tso(s150)7 Bl Tw 7 Tso(s1s0)! 51 Tw = — ’6:(_)(8180)7@ weTO/TL, j € Zxo,
T(s0s1)7 51 Tw = T(sgs1)d ‘ﬁfr " Tw = B(tosl)jw weTO/TY, j € Zx,
Ts1(s0s1)d * 61 Tw Ts1(sos1)? /61 Tw = — /B;(Sosl)jw we€TOTY, j € Zso.

It is easy to see that, in order to prove that the elements in the first column generate
M/N as a k-vector space, it suffices to prove that, for all v,w € W, the following
elements lie in the sub-k-vector space V generated by the first column above:

— + - >y
Tv‘ﬁl *Tw, Tv'Bl *Tw, Tv'ﬂgo *Tws Ty * 21 *Tw-

We are going to prove this claim inductively. Namely, we will prove by induction
on {(v) + ¢(w) that the four elements above all lie in V. Let us treat the case
L(v) + ¢(w) = 0. By definition of N the following equalities are clearly true:

- 9
7_wo'ﬁl :uwoﬁl * Two s 61 _uwoﬁl Two

Two : /890 - /890 . Two_l’ /B /le
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But then we see inductively that for all n € Z>(y we have

Twp * 61 = Uy, 61 Twls Twn - 61 = U 51 Twl s (206)
. 20 — R0 . . 30 _ 30 .
Twg * Psg = Pso TwJ"’ Twg ~ Psp = Psy Tw&"'

Now we look again at the elements

Ty B; *Tw, Ty * B;r *Tw, Ty * 0 * Tw, Ty * Bgl *Tw

under our assumption that ¢(v) + ¢(w) = 0. Equivalently, we are assuming that
v,w € T°/T'. Since T°/T" is cyclic generated by wo, we can apply formulas (206),

Whlch allows us to rewrite the element 7, - 51 Tw, Up to a coefficient, in the form
Bl -7, for a suitable w € T°/T", and now By - 7w lies in V' by definition of V. In the

same way, we treat the elements 7, - 61 Taws Ty * Bso Tw and 7, - B31 Tw-
Now it remains to consider the induction step. We distinguish some different
cases.

e Let us consider first 7, - 3, - 7, and 7, - Bf T

Since both Bf’ -Tso and B8] -7, lie in IV, we see that it suffices to treat the following
cases:

Tv'ﬁ?-m for some w € T°/T",
Tv-gfr-m for some w € T°/T",
Ty - 61: CTsow! for some w’ € W such that £(sow’) = £(w') + 1,
Ty ,5’11 Toyw! for some w’ € W such that (s1w") = L(w') + 1.

o~

Let us look at the first two elements. Since both 74, - 87 and 7, -ﬂf’ liein V, it
suffices to consider the following cases:

T(s150)7 51 Tw for some j € Z=o and some w,w’ € TO/Tl,
Tso(s150)7 51 Tw for some j € Zso and some w,w’ € TY/T",
T(sos1)iw’ 51 Tw for some j € Zs and some w,w’ € T°/T",
Ts1(s0s1)7 51 Tw for some j € Z=o and some w,w’ € T°/T*.

If ' = 1 then these elements are in V because they are in the list of generators of
V', and we can reduce to this situation exactly as we did in the case £(v)+£4(w) =

Now we have to treat the elements
Ty Bl Tso * T’ for some w’ € W such that l(spw') = (w') + 1
Ty Bl Tsy * T for some w’ € W such that l(siw') = L(w') + 1

If /(v) = 0, we reduce as usual to the case v = 1, in which case we see that
the above elements are in the list of generators of V. So we might assume that

¢(v) > 1. In this case, using again that both 75, - ] and 74, - B lie in V, we are
reduced to considering elements of the following forms:

Tyt " Tsg - B1 " Tsy - Twr  for some w' € W such that ((sow’) = £(w') + 1,
4

T Tsy - B - Tey * Tur for some w’ € W such that £(sjw’) =
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Now we use that the two elements

p—1

(TSO + 61) ' /81_ : (TSO + 61) + 26@690 + TK ﬂf_y
- — p—1
(Ts, +€1) - /Bf- (s +e1) — 26@*1ﬁ21 +Tws - B1

are both in N, and we combine this with the inductive hypothesis that all of the
elements

Tv// . 61_ . Tw//, 7',01/ . 6f_ . 7',w//7 TU// . ﬁgo . Tw//7 Tv// . 621 . Tw//

lie in V for all v”,w” € W such that £(v") 4 £(w") < £(v) + £(w). By combining
these two facts, it is then easy to conclude that the elements 7,4, - 5] - Tsou and
Tu'sy * ﬂf e liein V.

e Now we consider the elements 7, - 5\80:_ - Tw (for ¢ € {0,1}) under the additional
assumption that ¢(vs;) = £(v) + 1 and £(s;w) = {(w) + 1.
Making v explicit, we see that we are dealing with the following elements:

T(s0s1)iw go

Ty fori€Zsg, weT/TH we W with {(spw

30 .1, fori€ Zsg, we TO/T, we W with £(sow
(

(

Ts1(sos1)iw " Psg

7 ,A(T,Tw forz'€Z>o,w€TO/T1,’w€WWith€Sl"w

5150)*w 51 w

) = b(w) + 1,
) = b(w) + 1,
) = bw) + 1,
Top(srsoyis B0 ) = fw) + 1.

Ty fori € Zsp, w €T0/T17 w € W with ¢ s1w

As usual, we see that we can assume without loss of generality that w = 1, and
then, using repeatedly that the elements

.30 4 A0 . .30 4 30 .
TSO S1 + ﬁSO TSI’ 7—51 ) + /851 7-50

are in N, we rewrite the elements we are dealing with as

T(Sosl)i . go cTw = go . T(Slso)i *Tw
= 20 * T(s180)iw
for i € Z>¢ and for w € W with L(spw) = L(w) + 1,
7—81(8081)i ' 20 *Tw = _ﬁgl ) T50(5150)i " Tw
= _ﬂgl " Tso(s150)tw
for i € Z=o and for w € W with £(sow) = £(w) + 1,
T(8180)i . 21 cTw = 21 . 7'(5051)2‘ *Tw
= 21 * T(sos1)iw
for i € Z>¢ and for w € W with l(s1w) = (w) + 1,
Too(s150)7 ° 5?1 T = —ﬁgo " Tsy(sos1)t " Tw

— _ [0 . 4
- Bso Tsl(sosl)lw

for i € Z>¢ and for w € W with l(siw) = L(w) + 1.

So, up to a sign, we see that we have obtained elements in the list of generators
of V.
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e Now we consider the elements 7, - 89 - 7, (for ¢ € {0,1}) under the additional
assumption that ¢(s;w) = ¢(w) — 1.

In this case, we use that the elements

o~ — o~

Bgo (75 te1) + 6@—161_ *Tsos 631 (75 +e1) — eﬁﬁr *Tsy

lie in N. Indeed, we can do the following computation (we only treat the case
i = 0, the other being completely analogous):

30

_ 30
Ty * Bsy - Tw = To “Teg * To—1

" Fsp Sg W

=Ty <_/820 e — e@_lﬁl_ ) TSO) ’ nglw

=7y Y P11~ T - B1 -+ Tw-
Using the definitions of e; and e;3-1, we see that we are dealing with terms of the
form a

20 0 /1
Ty * B, Tor for some w € TV/T",

Tow' = BT Tw for some ' € T°/T".

If we look at the element in the first line, we have £(v)+£(sy 'ww) = £(v)+£(w)—1,
and so we can apply the inductive hypothesis, while if we look at the element in
the second line we have ¢(vw’) + (w) = £(v) 4+ ¢(w), and so we can use the fact

that we have already studied the element 7, - 8] - 7. In conclusion, we see that
Ty - BY - Tw lies in V.

¢ Now it remains to treat the elements 7,32 -7, (for i € {0,1}) under the additional
assumption that ¢(vs;) = f(v) — 1.

This time the relevant elements in N are

P o~ o~

(TSO + 61) ’ 90 + €idTsg 61_7 (Tsl + 61) ’ ﬁgl — €iq-1Ts1 - Bii_

and the proof is completely analogous to the last one. For completeness, we add
the relevant computations:

.30
s1

B0 g, = T -
Tv* By " Tw = Tv Tor " Toly

_ 20 at
=T, (—,821 -e1 + eiafy - 7'31) T

+ .
1

= Ty Bgl : elTsflw + Tv€id * /B Tw,

Ty - B9 - Tw = Tyt " Tso B - Tw

:Tvsal . (—61 é;():) —CQTSO 5/‘1:) * Tw

= _Tvsglel -B;q) “Tw — T€ig-1 BAIZ “Tw,
7 - BY, Tw = Tyt T -ngl CTw

:Tvsl—l . <*61 -ngl +eﬁ_1731 E{r) *Tw

— 0 . +
——Tvsl_wl-ﬂsl “Tw + Tveid - B8] Tw- |
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In the next lemma we compute a presentation of the Hecke algebra EY = H. Since
the Ext-algebra is not involved, we prove this under slightly more general assump-
tions. We remark that Grofie-Klonne has instead computed a finite presentation of
H in the case G = GL,(F) (see [GK20, §2.1]).

Lemma 4.10.2. For this lemma only let us assume more generally that G = SLa(F),
where § is an arbitrary locally compact non-archimedean field (i.e., not necessarily
§ = Qp with p # 2,3). The pro-p Iwahori-Hecke algebra H = E° can be expressed
by generators and relations as follows. Let us choose a generator wgy of the cyclic
group T° /T (of order ¢ —1). Let

o~ o~ —~—

k <Tw07 Ts05 Ts1>

be the ring of non-commutative polynomials in three indeterminates called T, Ts,
and Ts, . Furthermore, let I be the bilateral ideal of k (Tuy, Tsys Ts,) generated by the
following elements

—~g—1

Tuwo —1,

~ o~ o~ —~q-2 o~~~ —~q-2

Tw() : Tso - TS() : Two ) Tw() : 7—81 - Tsl : Two )
q—2 q—2

—~2 —~17 =~ —~2 —~F

Tsg — Two " Tsps Tsy — Two " Tsy-
=0 =0

Let 7o, Tsy and g, be respectively the images of Ty, Tsy and Ts, ik (Twg, Tsgs Ts1) /L -
One has an isomorphism of k-algebras
k (Tags Togs To1) /[T —— H = E°
Ty " Tusp>s
Tog M Tss
P —— S P

Proof. We do have a well defined homomorphism of k-algebras as in the statement,
because the following relations holds in the pro-p Iwahori-Hecke algebra:

qg—1 _
Teo = 1,
. - . — .42 . — . — .42
Two * Tso = Tsg Twal = Tso " Twpy > Two * Tsy = Tsy Twal =Ts1 " Tupy >
q—2 q—2
2 _ _ i 2 _ i
Toy = —€1Tsy = Two * Ts0> Ty = —€1Ts; = Two * Ts1-
i=0 i=0

Since this homomorphism is clearly surjective, it remains to prove that it is injective.
Similarly to Lemma 4.10.1, we adopt the following strategy: we fix a k-basis B of EY,
and, using surjectivity, for all b € B we fix a preimage 7y € k (T, Tsg, 751 ) /1 (in other
words we are constructing a section of our homomorphism, as a homomorphism of
k-vector spaces only). If we prove that the elements r, generate k (7o, Tsgs 7s1) /1
as a k-vector space then injectivity follows, because the family (7)pep is made of
linearly independent elements.

So, let us pursue the above strategy to prove injectivity. Let us consider the
following list: on the second column we of course have a k-basis of H = E°. It is
also easy to see that the elements in the first column are mapped to the elements on
the right column by our k-algebra homomorphism k (7., Tsg, 71 ) /I — H = E°.
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Therefore, we are exactly in the setting outlined above, and it remains to prove that
the elements in the first column generate k (T, Tsg, 751 ) /I as a k-vector space.

i — T for i € {0,...,q—2},

T T (o ) T Pri€ {00 =2} and j €250,
' T (T Tl Ty, 1€ {0 g =2 and j € T
Too' + (Tog - To1) Ty fori €40 0= 2} and j € Zon,
Tl T Ty Pri€ {0 g -2 and € Loy

So, let us prove that the elements in the first column generate k (75, Ts,, 75, ) /1 as a
k-vector space. Let us denote by V the k-vector space that they generate. It suffices
to prove that every element of the form

Twl PEEEEY Twn
lies in V for all n € Z>g and wy, ..., w, € {wy, So, s1}. Using the relations
—~q-1 _
Two - 1’
~ ~ _ ~ —~q-2 ~ ~ _ ~ —~q-2
Two : TS() - TS() : TUJ() ) TLU() *Tsy = Tsq * TUJU )

we see that we may further reduce to elements of the form

—~1
TUJ() . TSll .. Tslm

for i € {0,...,q — 2}, for m € Z>o and for ly,...,l,, € {0,1}. We now prove that
the element 7,," - Tor, " Tsy,, li€s in V' by induction on m. If m = 0, then the result
is clear. Furthermore, for general m the result is clear in the case that there are no
consecutive indices /; and /1 both equal to 0 or both equal to 1. So we can assume
that there is at least one such pair of indices. Then, we have

—~ —~

7 —— —
Two . TSll o e TSlm — TLU() . 7_811 RN TSlj . Tslj

o ‘e 'Tslm

wo 14 81, 81, Sim

q—2
e A T E:TN"/-T N -
wo Sll Sljfl wo slj Slj+2 Slm, *
i'=0

Using distributivity and again the formulas involving 7., we obtain a sum of ele-
ments of the form

i — —

Two . TSll e Tslj_l . Tslj . TSLJ-

o .. 'Tslm

for some i” € {0,...,q—2}, and these elements lie in V' by inductive hypothesis. W

For the next lemma, we need to introduce some notation.

Let us consider indeterminates 7oy, 7oy, 7,5 81, 87, 8%, 89, and the ring of non-

commutative polynomials k <ﬂ),f§\0,ﬂ,ﬂf,ﬁf, o §1>. Let A\: T9/T' — k* be
a group homomorphism. Let us give the following definition, mimicking the definition

of (%

p—1
exi=— Y Mwy)oy' € kl7m).
=0

Let us recall the list of elements we used to represent H = E? as a quotient of the
ring of non-commutative polynomials k (7, Tsgs 75, ) in Lemma 4.10.2; we rewrite it
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using €1 where appropriate (and we write p instead of ¢ since we are working with

Qp):

—~p—1
Tw() - 17

o~~~ —~p-2 ~ o~ o~ —~p-2

Two . Tso - Tso : Two ) Two : Tsl - TS1 : Two 9 (207)
) — ) —

Tsg T €1 Tsgs Tsy T E1°Tsy-

Furthermore, let consider the following list of elements, obtaining from the list in

Lemma 4.10.1 by replacing 7, with 7,,, by replacing ol = 5% with 7,772 by

replacing 7,, with 75, for i € {0,1} and by replacing ey by ey for A € {1,id,id"'}:

(7o +21) - By - (7 + 1) (7 +e1) - B - (7 +e)
+2€ﬁﬂ/§o+ﬁ% ',él:_, —28ﬁ—1ﬁ/§1 +7fw\0p7§1 By,

Too B0, + BY, - Tar, 7o B 4+ B0 T, (208)

(o +e1) - B, + 0T - B (7 +e1) - B, — g7 - B,

R, - (7o +21) + g 1By T 3, - (75 +21) — el 7o,

oo By —ug2By - Ton, oo BT — w2 BT - Tons

Lemma 4.10.3. Let Rpo g1 be the quotient ring of the ring of mon-commutative
polynomials

(s Foos Fous BT B B, 0, )
modulo the bilateral ideal Ipo g1 generated by the elements in the lists (207) and
(208). For all & € {Tuy, Tsgs Tsrs By 1 B2 21} let us denote by o the image of o

S0
in Rpo g1. One has an isomorphism of k-algebras

REO’El > TEOEI

g

(for o € {TwO,TSO,TSU,Bf”B;r, 207/821 ho)

Proof. Let tg: E° — TEOE1 and ¢1: B! — Tro E' be the canonical inclusions. It is
easy to check that the triple (TgoE?, 1o, 1) enjoys the following universal property:
for all triples (R,&p,&1) consisting of a k-algebra R (associative, not necessarily
commutative), a homomorphism of k-algebras £: EY — R and a homomorphism
of left EY @y, (E?)°P-modules &;: E' — R (where R is a left E° ®;, (E°)°P-module
via &), there exists a unique homomorphism of k-algebras n: T goEl — R making
the following diagrams commute:

* 1 1
EOE EOE

o n

E° n El n

51\R.
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Using the presentation of E? given in Lemma 4.10.2, we see that there is a well
defined homomorphism of k-algebras

Hopo Rpo g
Two M Tugs
Tsog > Tsgs
Ty > Tsy-
Furthermore, using the presentation of E' as a left E° ®; (E?)°P-module given in

Lemma 4.10.1, we also see that there is a homomorphism of left E°®;,(E°)°P-modules
(where Rpo g1 is a left E° @y, (E®)°P-module via &)

Bt — REO,El
By ——— Br,
f B

0
50

Hence, by the universal property mentioned above, we get a homomorphism of k-
algebras

TroE! Rpo

o ~
o.
(for S {TW[)?TSoyTSl?/Bl vﬁfvﬂgoaﬁgl })

On the other side it makes sense to define a homomorphism of k-algebras in the
opposite direction

REO,El > TEOEI

g

- + 50 0 g
(for o 6 {Tw07T5077—311ﬁ1 )61 76301ﬁ31})

as in the statement of the lemma, because we can define a suitable homomorphism

on the k-algebra k<7a,7‘;\0,7‘;,5f,5f,620, 21> which is clearly zero on Ipo p1.
But we see that, with the above procedure, we have obtained an inverse of this
homomorphism (using also that {7, Tsy, 7s;, 51 ,B;F , 20, 21} is a set of generators

of Try E' as a k-algebra), thus concluding the proof of the lemma. |

Now, let us introduce some notation in order to finally achieve a presentation of
the algebra E* by generators and relations.
We have already computed the following list of generators of the kernel of M as
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a bilateral ideal (Remark 4.8.2):

BT ® B, BF e B, Be, ® By,
BT ® B, B ® B, o ® BT,
B ® Ba, o ® B,
Br ® Ba Boy © B2,

oo ® Boy + €1q-1 - BT ® Boy +eia - Boy @ By —e1- By ® B,
Bo, ® B, — e B © B —eq1 - B9, @B —e1- BF @By,
+® Boy + By ® By
B, © o, + Be, © B,
(Toy 1) - B @ Bl ® B + (70 + 1) - B @ For ® By

We express this only using the generators 7., s, 751, 57 > ﬁf , 520, Bgl (and the idem-
potents, which can be easily expressed in terms of 7,,,): we delete the exponent —1
which appears in the last line (we can do this by multiplying with the invertible
element 7. ,) and we use the formulas

7_50.61_:_;(_)7 Tsl'ﬁi‘r:_s_la

Br * Tso = Bay BT‘Tm: ;1
Doing this, we deduce that the following is again a list of generators of the kernel of
M as a bilateral ideal:

BT ® B, B @By, e, ® By,
Br @B, B @B, o ® BiF,
B @ B2, o ® Boy,
BT @B, 8 @ B0,

9 ® Boy 4 eq-1 - By ® Boy 4 €1 - By © By + €1+ BT @ (T - BT,
o OB —eia- B @B —eq1 - By, @ B +er - B @ (1, - B),
— Ty - Br @ Boy + By ® By - Ty

— 7o - B @ BY + o, © B - 7y,

(Ts1 +€1) - B @ B3, ®@ By + (15, + 1) - By © B3, @ By -

—

Now, we consider the following list of elements of k <’Fw\0, Teos To1s B BT o, 21>,

—

list which is obtained from the above one by replacing 5, with 3, by replacing
B with B;, by replacing 521, with g9, for i € {0,1}, by replacing 7,, with 7, for
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i € {0,1} and by replacing ey by ey for A € {1,id,id"*}:

5/1:/51:7 B%%? /g\lﬁ/lza

Br - B st Bt 3,51,

5175/\{5)1’ @,'/9\1’

B0 B0 + gt B B e BY - By o1 BT Br (209)

30, - B9, — e By B — e BY B e BT B
B - By Ty — Ty - BT - BD,
(Fs\1+€1)'é11~E-Bf—l—(@—ka)-ﬁ?-ﬂ/gﬂ?.

The set of elements in this list clearly has the following property: its image under
the homomorphism of k-algebras

e M T -
k<7—w077_8077_51751 7617 207 g1> TEOE
o
— + 50 0 g
(for oc {TUJO,TSO,TslyBl 751 7630’531})

is a set of generators of ker(M) as a bilateral ideal.

Proposition 4.10.4. Let Rg« be the quotient ring of the ring of non-commutative
polynomials in seven indeterminates

e TS OTY o o
k<7—w077_8077—517517617 g07 gl>

modulo the bilateral ideal I~ generated by the elements in the lists (207), (208) and
(209). For all o € {Tuwy, Tso> Ts1» B1 » B 5 B 21}, let us denote by o the image of &

507
in Rp~. One has an isomorphism of k-algebras

RE* s B

g

(for S {Twm Tsgy Ts1s Bfa /vaﬁgo s Bgl })

In particular, E* is a finitely presented k-algebra.
Proof. Let us consider the homomorphism of k-algebras

b k<7'woa7—sm7-s1w817517 9 9

* 1
K 51> TEOE

~

g

- + 0 0 o
(for oc {Tw077-3077—51761 151 7/8507/851 })

and the natural homomorphism of (graded) k-algebras
M: Ty E' — E*.
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We know that both ® and M are surjective (for ® see Lemma 4.10.3 and for M see
Section 4.1). So M o @ is surjective, and, in order to prove the lemma, it remains to
show that the kernel is Ig«. Let x € ker(M o ®). When we wrote the list (209), we
said that the images of the elements in this list via ® form a system of generators
of ker(M) as a bilateral ideal. In particular, this means that ®(z) (which lies in
ker(M)) can be written as

for suitable elements a;,b; € TEOEl, and z; in the list (209). Representing a; as

—

®(a}) for some a; € k <T/JO,T/S\O,T/S\1,51_, B, B2, 91> and similarly for b;, we see that

x — Za; - x; - b, € ker(®).

7

Since ker(®) is generated by the elements in the lists (207) and (208) as a bilateral
ideal (Lemma 4.10.3), we deduce that x € Ig-. This concludes the proof, because we
have shown the inclusion ker(M o ®) C I+, and the reverse inclusion is clear. W

Remark 4.10.5. It is easy to see that the relation

p—1

(7'31+€1)-ﬁf~(7’sl—}—€1)—2€g—lﬂgl+Tw2 /6; :O

(which we used in to produce the corresponding element in the list (208)) allows
us to express [5; in terms of Bfr , ng Ts, and 7,,. This shows that E* is actually
generated by 7., Tsys Ts1s Bfr , 520 and ﬁgl as a k-algebra, without the need to add

B; - Using the presentation we obtained in the last proposition, it is then immediate

to get a presentation of E* as a quotient of k <7ﬁ,a,a,ﬁf’, O 21> (quotient

—

modulo a finitely generated bilateral ideal) by replacing 3; with

ezl T~ _p=L =
_TWO 2 . (7—31 + 51) * /Bi‘l’ . (7-,31 + 61) + 27-0_;0 2 . €ﬁ71621

wherever it appears in the lists (207), (208) and (209).
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