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Abstract

In this work, we study two problems concerning the pro-p Iwahori–Hecke Ext-
algebra. This object, introduced by Ollivier and Schneider in [OS19], is a graded
algebra which plays an important role in the context of smooth mod p representa-
tions of p-adic reductive groups.

The first main aim of this thesis is the study of the centre of the Ext-algebra:
we determine it completely for the Ext-algebra associated with the group SL2(Qp)
with p 6= 2, 3. We then describe the 0th and the 1st graded piece of the centre for
more general groups.

The second main aim of this thesis is the study of finite generation properties
for the Ext-algebra associated with the group SL2(Qp) with p 6= 2, 3. Under these
assumptions, we show that the Ext-algebra is finitely presented.
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Introduction

The broad area of mathematics referred to as the “local Langlands programme” aims
at connecting the representation theory of the absolute Galois group Gal(Qp/Qp)
of the field of p-adic numbers with the representation theory of GLn(Qp), or more
generally of p-adic reductive groups. A whole series of conjectural statements have
been formulated, and much progress has been made in recent years, even leading to
proofs of some of the conjectures. However, many aspects of this theory continue
to be elusive, and, in particular, the case of mod p representations is still poorly
understood.

In light of the local Langlands programme, the study of representations of p-
adic reductive groups has acquired a central importance. Let us introduce some
notation to talk about a precise setting related to the work in this thesis. Let F be
a locally compact non-archimedean field (with non-trivial absolute value) of residue
characteristic p, i.e., F is either a finite extension of Qp or the field of formal Laurent
series Fpf ((T )) for some f ∈ Z>1. We denote by O the ring of integers of F and by
M the maximal ideal of O. Furthermore, let G = G(F) be the group of F-rational
points of a split connected reductive group G defined over O: for example, we may
consider G = GLn(F) or G = SLn(F). We view G as a locally profinite group with
respect to the topology induced by F.

Let l be a field. One can consider different categories of representations of G over
l: a possible (interesting) choice is the category of smooth representations Rep∞l (G):
it is defined as the full subcategory of the category of abstract representations V of
G over l such that the map G × V −→ V is continuous, where V is endowed with
the discrete topology. This condition is easily seen to be equivalent to requiring that
for all v ∈ V the stabilizer of v in G is open.

A fundamental tool to understand the category Rep∞l (G) is the Hecke algebra
associated with the pair (G,K), where K is a compact open subgroup of G. To
define it, let us first consider the representation l [G/K] given by the free l-vector
space generated by the set of left cosets G/K endowed with the obvious G-action.
It is easy to show that this is a smooth representation. We define

Hl(G,K) := EndRep∞l (G) (l [G/K])op ,

i.e., (the opposite ring of) the ring of endomorphisms of the representation l [G/K].
The choice of the opposite ring instead of the actual ring of endomorphisms is done
in order to work with the category of left Hl(G,K)-modules and for some other
slight advantages.

The main point in considering the Hecke algebra of the pair (G,K) in the setting
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of smooth representations is the existence of the following two functors:

h : Rep∞l (G) Hl(G,K)-mod

V HomRep∞l (G) (l [G/K] , V ) ∼= V K ,

t : Hl(G,K)-mod Rep∞l (G)

M l [G/K]⊗Hl(G,K) M.

It is not difficult to see that the two functors are well defined, that t is left adjoint
to h and that h is left exact. However, they behave very differently depending on
the field l. Let us explain this in more detail, starting by recalling the following
properties in the characteristic 0 case:

(i) It is easy to see that if the characteristic of l does not divide the pro-order of
K, then the functor h is exact.

(ii) If l = C and if K is an Iwahori subgroup (i.e., the preimage of B(O/M) via
the reduction map G(O) −→ G(O/M), for a choice of a Borel subgroup B
of G), then the functors h and t induce an equivalence of categories between
the full subcategory Rep∞,Kl (G) ⊆ Rep∞l (G) consisting of the smooth repre-
sentations that are generated by their K-invariant vectors and the category
Hl(G,K)-mod (see [BD84, Cor. 3.9 (ii)]).

Therefore, especially in the case l = C, the above functors help to shed some light on
the category Rep∞l (G), also taking into account that in case (ii) the Hecke algebra
Hl(G,K) can be described very explicitly.

In contrast, let us see some known facts in the opposite situation where l has
characteristic equal to the residue characteristic p of F. In this situation, instead
of an Iwahori subgroup, it is better to consider its unique pro-p Sylow subgroup,
which is called a pro-p Iwahori subgroup. The reason for this is that a nonzero mod
p representation V of a pro-p group K is such that the space of invariants V K is
nonzero. From this it also follows immediately that every irreducible representation
in Rep∞l (G) is contained in Rep∞,Kl (G). Given its relevance for this introduction
and for the whole thesis, further below we will come back to the definition of pro-p
Iwahori subgroups.

(iii) If the characteristic of l divides the pro-order of K, then the functor h is not
exact (for example, this can be shown by choosing an open subgroup K ′ of
K of index divisible by p, by considering the surjective homomorphism of G-
representations k[G/K ′] −→ k[G/K] sending a coset gK ′ to the corresponding
coset gK, and by showing that the K-invariant coset K ∈ k[G/K] does not
lie in the image of the K-invariants k[G/K ′]K = k[K\G/K ′].)

(iv) If l = k is an algebraically closed field of characteristic p, if G = GL2(Qp) or
G = SL2(Qp) and if K is a pro-p Iwahori subgroup then the functors h and
t (surprisingly) induce an equivalence of categories between the subcategory
Rep∞,Kk (G) and the category Hk(G,K)-mod: for GL2 see [Oll09, Theorème
1.3 (a)], and for SL2 see [OS18, Proposition 3.25] (for SL2 the case p 6= 2 was
first proved in [Koz16, Corollary 5.3 (1)]).

(v) If G = GL2(F), where F is an extension of Qp with non-trivial residue degree,
and if l = k and K are as above, then the functors h and t do not induce
such equivalence of categories (see [Oll09, Theorème 1.3 (b) and the following
lines]).
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From now on, we will always assume that l has characteristic p and we will
call it k in order to avoid confusion (in accordance with the rest of the thesis).
The above observations suggest that, while the Hecke algebra still seems to play an
important role in this setting, the situation is much more complicated. The lack of
right exactness suggests to look at a “derived setting”. In this direction, one has
the following fundamental result, proved by Schneider in [Sch15]: assuming that F
is a finite extension of Qp and that K is a torsion-free pro-p group, there exists
a derived version of the functors h and t that defines an equivalence of derived
categories between the derived category of Rep∞k (G) and the derived category of
modules over a certain differential graded algebra H•k(G,K). Note also that here
we are considering the full derived category of Rep∞k (G) and we are not restricting
ourselves to representations generated by their K-invariant vectors.

The differential graded algebra H•k(G,K) is constructed as the Hom•-complex
Hom•(J •,J •)op, where k[G/K] −→ J • is a fixed injective resolution (here the
Hom•-complex is as in [Har66, Chapter I, §6], but we consider the opposite product).
Note that an injective resolution as above exists because the category Rep∞k (G) has
enough injective objects (see [Vig96, I.5.9]). However, the differential graded algebra
H•k(G,K) is independent of the choice of J • only up to quasi-isomorphism (see
[Sch15, §3]). But its cohomology algebra is

H∗
(
H•k(G,K)

)
= Ext∗Rep∞k (G)

(
k [G/K] , k [G/K]

)op

(see again [Sch15, §3]), and this is of course independent of such choice. Here the
product is (the opposite of) the Yoneda product. In particular,

H0
(
H•k(G,K)

)
= Hk(G,K).

In light of the above mentioned equivalence of derived categories, it would be desir-
able to describe explicitly the differential graded algebra H•k(G,K) and to under-
stand it as best as possible. Unfortunately, this seems to be a difficult task (also
taking into account that H•k(G,K) depends on the choice of an injective resolu-
tion), and as a first step in this direction one may try instead to understand the
Ext-algebra.

The study of the above Ext-algebra has been carried out by Ollivier and Schnei-
der in the case that K = I is a pro-p Iwahori subgroup of G. This is a fundamental
case as stressed above, although, if F is a finite extension of Qp, the group I may or
may not be torsion-free (and hence the above result of Schneider is not applicable
in full generality).

From now on we will focus on the case K = I, and we will write

E∗ := Ext∗Rep∞k (G)

(
k [G/I] , k [G/I]

)op
.

This is called the pro-p Iwahori–Hecke Ext-algebra (and we will sometimes call it
just Ext-algebra for short). Before dealing with the properties of E∗, let us return
to the notion of pro-p Iwahori subgroup, since it is the main object appearing in
this definition. We have defined a pro-p Iwahori subgroup of G as the unique pro-p
Sylow subgroup of an Iwahori subgroup, which in turn was defined as the preimage of
B(O/M) via the reduction map G(O) −→ G(O/M), for a choice of a Borel subgroup
B of G. A simpler equivalent definition is the following: a pro-p Iwahori subgroup
of G is the preimage of U(O/M) via the reduction map G(O) −→ G(O/M), where
U is the unipotent radical of a Borel subgroup of G. Moreover, every two choices of
a pro-p Iwahori subgroup (or of a Iwahori subgroup) are isomorphic via conjugation
by an element of G.
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Let us make the definition explicit in the case G = GLn: we may consider the
Borel subgroup of upper triangular matrices, and see that the corresponding pro-p
Iwahori subgroup is

I =


1 + M O . . . O

M
. . .

. . .
...

...
. . .

. . . O
M . . . M 1 + M

 .

As a side remark, the corresponding Iwahori subgroup has a similar description,
where the diagonal entries lie in O× instead of 1+M. If we instead consider G = SLn
(the case G = SL2 will be the topic of part of this thesis), then the description is
the same, but considering only matrices with determinant equal to 1.

Ollivier and Schneider have studied the algebra E∗ in [OS19] (in the general
setting) and in [OS21] (in the case G = SL2(Qp) with p 6= 2, 3). Let us briefly recall
some of their main results:

• In [OS19, §3.2] the following isomorphisms of k-vector spaces are obtained:

E∗ ∼= H∗ (I, k [G/I]) ∼=
⊕
w∈W̃

H∗(Iw, k),

where H∗(−,−) denotes the cohomology of a pro-p group with respect to a discrete

module, where W̃ is a suitable index set (the so-called pro-p Iwahori–Weyl group),
and where Iw is a suitable open subgroup of I.

• In [OS19, Proposition 5.3] a complete and explicit description of the multiplication
in E∗ is obtained in terms of cohomological operations on H∗ (I, k [G/I]).

• In [OS19, Proposition 6.1] an involutive anti-automorphism of the graded algebra
E∗ is constructed.

• In [OS19, §7.2] it is shown that, if F is a finite extension of Qp and I is torsion-
free, then E∗ is supported in degrees 0, . . . , d, where d is the dimension of G as
an analytic manifold over Qp, and moreover that E∗ satisfies a duality as an E0-
bimodule (i.e., Hk(G, I)-bimodule). It is easy to see that in the case G = SL2(Qp)
with p 6= 2, 3 the subgroup I is torsion-free, and so E∗ is supported in degrees
0, 1, 2, 3.

• Under the same assumptions as above, the structure of the top graded piece Ed

as an E0-bimodule is investigated in [OS19, §8] (with further assumptions needed
for some results).

• In [OS21] the case G = SL2(Qp) with p 6= 2, 3 is investigated in further detail. In
particular, the structure of E∗ as an E0-bimodule is completely determined.

• Furthermore, interesting representation-theoretic consequences are derived from
such results. In particular, under the same assumptions as in the last point, it is
shown in [OS21, Corollary 8.12] that an irreducible representation V ∈ Rep∞k (G)
is supersingular if and only if H∗(I, V ) is a supersingular left E0-module (where
a left E0-module is defined to be supersingular if it is annihilated by a power of
a certain ideal I in a central subalgebra of E0).

These results show that the Ext-algebra E∗ is an interesting object in the context
of the study of smooth representations of G, and, although rather complicated, also
tractable using quite explicit methods.
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The present thesis is devoted to investigate some further problems in the study
of the Ext-algebra E∗, namely to try to answer the following questions:

(a) What is the (graded) centre of E∗? And more specifically:

(a.1) What is, explicitly, the centre of E∗ in the case G = SL2(Qp) with
p 6= 2, 3?

(a.2) What can be said about the centre of E∗ in the general case? In particular,
what are the 0th and 1st graded pieces of the centre?

(b) In the case G = SL2(Qp) with p 6= 2, 3, since the structure of E∗ as an E0-
bimodule is completely known, is it possible to describe the full multiplicative
structure? And, in particular, does one have finite generation properties?

In the remaining part of this introduction, we discuss these problems in more detail.

(a) Let us begin with some motivation to study the centre of E∗. First of all,
there is the general notion of Bernstein centre of an abelian (or just additive)
category, i.e., the ring of endomorphisms of the identity functor of the category.
For a category of left (or right) modules over a ring it can be identified with the
centre of the ring. The centre of the categories of smooth representations we
are considering was first studied by Bernstein in [BD84]. In particular, from the
results quoted above in point (ii) and the previous remark about the category
of modules, it follows that if J is an Iwahori subgroup, then the centre of the
category Rep∞,JC (G) can be identified with the centre of the ring HC(G, J).
Furthermore, under the same assumptions Bernstein determined the centre of
full category Rep∞C (G) by making use of a decomposition of this category as a
product of subcategories (“Bernstein blocks”), of which one factor is precisely
Rep∞,JC (G).

In contrast, in the characteristic p case the situation is less understood. Only
very recently, in [AS21], Ardakov and Schneider have investigated and com-
pletely determined the centre of the category Rep∞k (G). Their result shows

that, in contrast to the case of Rep∞,JC (G), the Bernstein centre is quite small
(for example, if G is semisimple, it can be identified with the group ring
k[Z(G)] of the finite group Z(G)). Hence, it should probably not be expected
that the Bernstein centre plays the same important role as in the case l = C.

However, in view of the equivalence of derived categories mentioned before, one
should rather consider a notion of centre in this “derived” context. We shall
not make this precise, but we remark that it is not even clear what should be
the correct notion of centre of the derived category of H•k(G, I)-modules (see
[Har16, after Question 4.3]). Since, as said before, the cohomology algebra
E∗ of H•k(G, I) is more tractable, as a first step towards understanding such
notions, one could try instead to study the (graded) centre of the Ext-algebra
E∗.

As a further piece of motivation to study the centre of E∗, let us highlight
the importance of the centre of E0. This has been studied extensively in the
literature, mainly by Vignéras. The main result, due to Schmidt and Vignéras,
consists in explicitly determining a basis of Z(E0), proving that Z(E0) is a
Noetherian ring, and that E0 is finitely generated as a Z(E0)-module (see
Theorems 1.6.1 and 1.6.2 for precise statements and references). As a nice
consequence of this result, one immediately sees that E0 is a Noetherian ring.
Furthermore, these results are a key ingredient used in the classification of
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simple supersingular E0-modules by Ollivier (see [Oll14]). Therefore, one can
ask whether the centre of E∗ satisfies similar properties and plays a sort of
analogous role (we point out, however, that this vague question is not likely
to admit a positive answer: see Remark 2.1.2 for a more precise statement).

In the next two points, we will discuss the results about the centre of E∗ proven
in the present thesis.

(a.1) Chapter 2 of this thesis is devoted to the explicit description of the centre of
E∗ in the case G = SL2(Qp) with p 6= 2, 3. In this case the graded algebra
E∗ is supported in degrees 0, 1, 2, 3, and, even if computations can be rather
involved, it is in principle possible to work with explicit formulas and compute
explicit bases. We achieve the following result.

Theorem (see Theorem 2.1.1). If G = SL2(Qp) with p 6= 2, 3, then the
centre of E∗ admits the following description:

? the 0th graded piece Z(E∗)0 is isomorphic to k × k as a k-algebra;

? the 1st graded piece Z(E∗)1 is zero;

? the 2nd graded piece Z(E∗)2 and the 3rd graded piece Z(E∗)3 are free modules
of rank ℵ0 over the ring Z(E∗)0 ∼= k × k.

Moreover, explicit k-bases of all the graded pieces of Z(E∗) are computed (see
Section 2.1). Note that this theorem completely determines the structure of
Z(E∗) as a graded-commutative k-algebra: indeed the 1st graded piece is zero,
and so the only products one needs to consider are those between an element
of degree 0 and an element of degree 0, 2 or 3.

The above result is rather intriguing: the low graded pieces of Z(E∗) are very
small, resembling the result of Ardakov and Schneider mentioned above about
the centre of Rep∞k (G). However, the higher graded pieces are quite “big”,
perhaps suggesting non-trivial phenomena at the level of derived categories.

As just explained, the multiplicative structure of Z(E∗) is rather uninteresting.
However, for the top degree part we have Z(E∗)3 = ZE0(E3) (where the
notation ZE0(E3) means the set of elements of E3 that are centralized by
all the elements of E0), and so Z(E∗)3 also has a natural structure of module
over the ring Z(E0). We determine this structure explicitly, under more general
assumptions, as follows (recall that we briefly mentioned an ideal I in a central
subalgebra of E0, which is used to define supersingular (left) E0-modules).

Proposition (see Proposition 2.3.6). Let G = SL2(F) and assume that
I is torsion-free (in particular, F is a finite extension of Qp). Let d be the
dimension of G as an analytic manifold over Qp (so that E∗ is supported in
degrees 0, . . . , d). One has that the Z(E0)-module Z(E∗)d = ZE0(Ed) can be
decomposed as a direct sum

ZE0(Ed) = M ⊕ E ,

where M is a finite direct sum of Z(E0)-modules of k-dimension 1 and where
E is the injective hull of

(
Z(E0)/IZ(E0)

)∨
as a Z(E0)-module (where (−)∨

denotes the k-linear dual).

It is interesting to compare this with the following result from [OS21] (see
Proposition 1.10.5): under the same assumptions of the above proposition (or
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rather, under more general assumptions) one has that Ed decomposes as a
direct sum Ed = M ′ ⊕ E ′, where M ′ is an E0-bimodule of dimension 1 over k
and where E ′ is an E0-bimodule that is the injective hull of (E0/IE0)∨ both
as a left and as a right E0-module.

Returning to the case of G = SL2(Qp) with p 6= 2, 3, another remark is that
also for the 2nd graded piece one has Z(E∗)2 = ZE0(E2) (a property which,
in contrast to degree 3, is not at all a priori clear). In Section 2.7, we also
determine the structure of Z(E∗)2 = ZE0(E2) as a Z(E0)-module, and in
particular we show that it is a quotient of Z(E∗)3 = ZE0(E3) by a certain
submodule having finite dimension over k.

(a.2) In Chapter 3 we generalize some results regarding the low graded pieces of
Z(E∗) to the case of more general groups G. Let us introduce some notation:
we choose a split maximal torus T of G, in a compatible way with respect
to the choice of I (i.e., since we defined I by choosing a Borel subgroup, we
require T to be contained in such Borel subgroup). Let us denote by T the
group of F-rational points of T, and by T 1 the unique maximal pro-p subgroup
of T (concretely, choosing a splitting T ∼= Gn

m for some n ∈ Z>0, this means
T 1 ∼= (1 + M)n). Furthermore, let C be the group of F-rational points of the
centre of G.

We are now able to state the description of the 0th graded piece of the centre,
which we prove without any assumption of G (besides the general assumptions
stated at the beginning of the introduction).

Theorem (see Theorem 3.1.10). The 0th graded piece Z(E∗)0 of the centre
of E∗ is isomorphic as a k-algebra to the group algebra

k
[
(C · T 1)/T 1

] ∼= k
[
C/C1

]
,

where C1 is the unique maximal pro-p subgroup of C.

Again, it is interesting to notice some similarity with the result of Ardakov
and Schneider on the centre of Rep∞k (G).

Furthermore, we study the 1st graded piece of the centre of E∗ and we manage
to obtain a complete description under the assumption that F is an unramified
extension of Qp, as stated in the following theorem. In this statement, for
a commutative k-algebra R and a k-vector space V , we consider the tensor
product R⊗kV , endowed with its natural structure of (free) R-module obtained
by acting on the first factor.

Theorem (see Theorem 3.2.26). If F is an unramified extension of Qp,
then the 1st graded piece Z(E∗)1 of the centre of E∗ is isomorphic as a Z(E∗)0-
module to Z(E∗)0 ⊗k H1

(
T 1/T 1

qΦ
, k
)
, where

T 1
qΦ

:= Image
(∏

qα∈qΦ
qα :
∏

qα∈qΦ
(1 + M) −→ T 1

)
,

and where qΦ is the set of coroots associated with the pair (G,T).

This result can be slightly simplified under some further assumptions: indeed
we prove the following corollary (we will actually prove it under moderately
weaker assumptions).
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Corollary (see Corollary 3.2.37). If F is an unramified extension of Qp

and if p does not divide the connection index of the root system (i.e., the order
of the finite group given by the weight lattice modulo the root lattice), then the
1st graded piece Z(E∗)1 of the centre of E∗ is isomorphic as a Z(E∗)0-module
to Z(E∗)0 ⊗k H1

(
(C◦)1, k

)
, where C◦ is the group of F-rational points of the

connected centre of G and where (C◦)1 is the unique maximal pro-p subgroup
of C◦.

This is a slightly simpler description, because for example it is clear that, under
the assumptions of the corollary, Z(E∗)1 is zero if G is semisimple, since in
that case C◦ is trivial (actually, it is not difficult to show that also the reverse
implication holds). However, this property was not clear from the description
of Z(E∗)1 stated in the above theorem, and it is actually even false under
the more general assumptions of the theorem. Indeed we prove the following
characterization.

Corollary (see Corollary 3.2.39). Assume that F is an unramified exten-
sion of Qp. One has that Z(E∗)1 is zero if and only if G is semisimple with
fundamental group of order not divisible by p.

We do not deal with the problem of studying Z(E∗)1 in the case that F is more
general. However, we point out where the proof fails (see Subsection 3.2.k).

(b) In Chapter 4 we investigate the multiplicative structure of E∗ in the case
G = SL2(Qp) with p 6= 2, 3. As already mentioned, in [OS21] Ollivier and
Schneider thoroughly discuss the structure of E∗ as an E0-bimodule. Moreover,
they also discuss the full multiplicative structure of ZZ(E0)(E

∗), but not the
full multiplicative structure of E∗.

We show that the Ext-algebra is generated by its 1st graded piece, more pre-
cisely we prove the following proposition.

Theorem (see Theorem 4.8.1). Assume that G = SL2(Qp) with p 6= 2, 3.
Let T ∗E0E

1 be the tensor algebra of the E0-bimodule E1. One has that the
natural map of graded k-algebras

T ∗E0E
1 −→ E∗

is surjective and the kernel is finitely generated as a bilateral ideal.

We also explicitly compute a set of generators for such kernel, thereby com-
pletely determining the multiplicative structure of E∗ in terms of the k-algebra
E0 and of the E0-bimodule E1. Furthermore, one may ask whether the kernel
of such map is generated by its 2nd graded piece: the answer is negative, even
if a more informal answer would be “almost”, as made precise in the following
statement.

Proposition (see again Theorem 4.8.1). Assume that G = SL2(Qp) with
p 6= 2, 3. Let K∗ be the kernel of the multiplication map T ∗E0E

1 −→ E∗, and
let K∗2 be the the sub-bilateral ideal of K∗ generated by the 2nd graded piece K2

of K∗. One has:

? K∗ is generated by K2 and K3 (as a bilateral ideal);

? K∗ is not generated by K2, and more precisely K3
2 is properly contained in

K3, but it has finite codimension in it.
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We conclude the chapter with a presentation of E∗ as a (non-graded) k-algebra.
In particular, we prove the following pleasant result.

Proposition (see Proposition 4.10.4). Assume that G = SL2(Qp) with
p 6= 2, 3. One has that E∗ is finitely presented as a k-algebra.

We also compute explicitly a presentation (see again the quoted proposition).

Regarding the question whether the results in Chapter 4 generalize to other
groups G, in Section 4.2 we show that the multiplication map T ∗E0E

1 −→ E∗

is not surjective for G = SL2(Q3).

To conclude this introduction, let us mention another fact that we prove for
a general G (with some assumptions on the field F). We need some preliminaries:
it is easy to see that T 1 is the unique pro-p Iwahori subgroup of T , and so we
have the pro-p Iwahori–Hecke algebra Hk(T, T

1). This algebra admits a particularly
simple description: it is canonically isomorphic to the group algebra k[T/T 1]. We
now consider the submonoid T+ of T consisting of the elements which contracts the
group U := U(F) (here, U is the unipotent radical of a Borel that we have used in
the definition of I, and an element t ∈ T is said to contract U if tUt−1 ⊆ U). Let
Hk(T, T

1)+ ⊆ Hk(T, T
1) be the subalgebra corresponding to the monoid algebra

k[T+/T 1] via the fixed isomorphism Hk(T, T
1) ∼= k[T/T 1]. It is easy to see that

Hk(T, T
1) is a localization of Hk(T, T

1)+ and it is well-known that Hk(T, T
1)+

canonically embeds into Hk(G, I) = E0 (see [Vig98, II.5. Proposition]). The following
result generalizes these properties to the Ext-algebra.

Proposition (see Proposition 3.3.4 and Remark 3.3.7). Assume that F is a
finite extension of Qp without non-trivial p-th roots of 1 (in particular p 6= 2). Let
E∗T be the pro-p Iwahori–Hecke Ext-algebra relative to the pair (T, T 1), and let us
keep the notation E∗ for the pro-p Iwahori–Hecke Ext-algebra relative to the pair
(G, I). One has that there exists a (non-unique) sub-graded k-algebra E+,∗

T ⊆ E∗T
with the following properties:

• E∗T is a localization of E+,∗
T ;

• E+,0
T is isomorphic to Hk(T, T

1)+ via the natural isomorphism E0
T
∼= Hk(T, T

1);

• E+,∗
T embeds into E∗ as a graded k-algebra.
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Chapter 1

Background

In this chapter we introduce the main notions needed to define the pro-p Iwahori–
Hecke Ext-algebra and to work with it. Furthermore, we give an overview of the
main properties of the pro-p Iwahori–Hecke algebra and the pro-p Iwahori–Hecke
Ext-algebra, both in the general case and for the group SL2(Qp). Nothing in this
chapter is original work.

1.1 General setting and notation

In this section we introduce the general setting and some pieces of notation that we
will use throughout. The exposition partially follows [OS19, §2].

We will always work under the following assumptions and notation. Let us con-
sider a locally compact non-archimedean field (with non-trivial absolute value), and
let us denote the order of the residue field by q = pf , for some prime number p. In
other words, F is either a finite extension of Qp of inertia degree f or the field of
formal Laurent series Fq((T )). Furthermore, let us denote by O the ring of integers
of F, by M the maximal ideal of O, by π a chosen uniformizer (fixed once and for
all), and by valF the normalized valuation of F.

We consider a connected split reductive group G over F; we denote its group of F-
rational points by G := G(F), and we endow it with the topology induced by F, thus
obtaining a locally profinite group. In general, we always adopt the convention that
boldface letters denote algebraic groups over F and the corresponding non-boldface
letter denote the locally profinite group given by its F-rational points. We fix a F-
split maximal torus T. As just explained, T denotes the locally profinite group given
by its F-rational points, and we further define T 0 to be the unique maximal compact
subgroup of T , and T 1 to be the unique pro-p Sylow subgroup of T 0. Explicitly, this
can be seen as follows: T is isomorphic over F to some copies of the multiplicative
group Gm, say Gn

m; then it is easy to see that inside the group T ∼= (F×)n there
exists a unique maximal compact subgroup T 0 ∼= (O×)n, and furthermore that the
unique pro-p Sylow subgroup is T 1 ∼= (1 + M)n.

If F is an extension of Qp, we denote by d the dimension of G as an analytic
manifold over Qp.

We denote by J a fixed Iwahori subgroup of G, chosen in a compatible way with
respect to T , and we denote by I its unique pro-p Sylow subgroup, which is called
pro-p Iwahori subgroup and which will be of central importance in the whole thesis.
For further details about these definitions, see Section 1.3.

We consider the normalizer N of T in G (it is an algebraic subgroup of G defined
over F), and we consider the associated Weyl group W0 := N/T . We further define
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W := N/T 0 (sometimes called Iwahori Weyl group or generalized affine Weyl group)

and W̃ := N/T 1 (sometimes called pro-p Iwahori Weyl group). The relationships
between these objects and the Iwahori and pro-p Iwahori groups will be recalled in
Section 1.3.

We fix a field k of characteristic p (i.e., the same characteristic as the residue
field of F). This will be used as a “coefficient field”, in the definition of the pro-p
Iwahori–Hecke algebra and of the pro-p Iwahori–Hecke Ext-algebra.

We end this section with some notational conventions which will be used through-
out:

• For a group G we denote by [G,G] the subgroup generated by commutators.
Also in the case that G is a topological group we denote by [G,G] the (algebraic)
commutator subgroup, while we use the notation [G,G] for the closed commutator
subgroup.

• For a field l, we use the notation Homl(−,−) to denote homomorphisms of l-vector
spaces.

• For a vector space V over a field l, we denote by V ∨ its dual space Homl(V, l).

• For a subset X of a vector space V over a field l, the notation spanlX means the
sub-vector space of V generated by X.

• For a field l and a set X, we denote by l[X] the free l-vector space indexed by the
elements of X and, for all x ∈ X we denote by (x) or simply by x the corresponding
element in l[X].

• For a ring R (with 1, not necessarily commutative) we denote by Z(R) the centre
of R. For an R-bimodule M , we denote by ZR(M) the Z(R)-module given by
the elements of M that are centralized by all the elements of R. We also use the
notation ZR′(M

′) for subsets R′ ⊆ R and M ′ ⊆ M , always meaning the set of
elements of M ′ that are centralized by all the elements of R′. For a graded ring
R∗, we denote by Z(R∗) the graded centre, and for elements r, s ∈ R∗ we denote
by [r, s]gr the graded commutator. If r ∈ Ri and s ∈ Rj with either i or j even,
the graded commutator is simply the commutator, and we generally simply write
[r, s].

1.2 Some notions and facts from Bruhat–Tits theory

This section consists of a brief review of the results in Bruhat–Tits theory that we
will need later on. The standard reference is the original treatise by Bruhat and
Tits ([BT72] and [BT84]). Our exposition also follows [Hey19, §1] and [OS19, §2.1].
Recall that we are working only in the split case, and so we can avoid some of the
technicalities of the theory.

We denote by X∗(T) the group of characters of T and by X∗(T) the group of
cocharacters of T. We consider the set of roots Φ ⊆ X∗(T) associated with the pair
(G,T). We will use the following notation for the canonical pairing:

〈−,−〉 : X∗(T)×X∗(T) −→ Z.

For all root α ∈ Φ, let us denote by Uα the unipotent subgroup of G attached
to it. We fix a choice of positive roots Φ+, or, equivalently, of a basis Π of the root
system. We further define U to be the unipotent subgroup generated by the Uα’s
for α ∈ Φ+ (this is the unipotent radical of the Borel subgroup TU).
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We fix a Chevalley system (xα)α∈Φ, which, according to [BT84, 3.2.1 and 3.2.2],
is defined as follows: for each α ∈ Φ we choose an isomorphism xα : Ga −→ Uα of
algebraic groups over F in such a way that the following conditions hold.

(Ch 1) For all α ∈ Φ there exists a homomorphism ϕα : SL2 −→ G of algebraic
groups over F such that, for all F-algebras R and all u ∈ Ga(R) one has

xα(u) = ϕα

(
1 u
0 1

)
,

x−α(u) = ϕα

(
1 0
−u 1

)
.

Since SL2 is generated by its unipotent subgroups, ϕα is necessarily unique.

(Ch 2) For all α, β ∈ Φ, denoting by rα the reflection on the root lattice associated
with α, there exists εα,β ∈ {−1, 1} such that for all F-algebras R and all
u ∈ Ga(R) one has

xrα(β)(u) = ϕα

(
0 1
−1 0

)
· xβ(εα,βu) · ϕα

(
0 1
−1 0

)−1

.

We list some consequences of the above definition (see [BT84, 3.2.1]).

• The homomorphism of algebraic groups

qα : Gm G

x ϕα

(
x 0
0 x−1

)
has values in T (i.e., qα ∈ X∗(T)). It is called the coroot associated with α, and
seeing R⊗Z X∗(T) as the dual of R⊗Z X

∗(T), the coroot qα is indeed the coroot
associated with α in the sense of abstract root systems. We denote by qΦ ⊆ X∗(T)
the set of coroots.

• For all u ∈ F× the element

ϕα

(
0 u
−u−1 0

)
lies in N , and its image in W0 corresponds to the reflection associated with α.

• For all F-algebras R, all t ∈ T(R) and all u ∈ Ga(R) one has

t · ϕα
(

1 u
0 1

)
· t−1 = ϕα

(
1 α(t)u
0 1

)
(1)

(see [Mil17, Equation (135)]).

Let C be the centre of G and let C◦ be its identity component. The standard
apartment associated with T in the semisimple building of G can be defined as

A := R⊗Z
(
X∗(T)/X∗(C

◦)
)

(we see it as an R-vector space as well as an affine space over itself). Although
sufficient for most of our purposes, this is a simplified definition with respect of
that of Bruhat–Tits. The correct definition is the following: one fixes a discrete
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special valuation x0 of the group root datum (T, (Uα)α∈Φ) compatible with valF (for
the definition of discrete special valuation see [BT72, (6.2.1), (6.2.13)] and for the
definition of compatibility with valF see [BT84, 5.1.22.]), and then one defines the
apartment as the affine space x0 + A , where the operation “+” is defined as in
[BT72, (6.2.5)]. Then x0 + A consists of all the discrete valuations of (T, (Uα)α∈Φ)
compatible with valF (see [BT84, 5.1.23. Proposition]), and it is thus independent
on the choice of x0. However, we will need to fix an x0 as above, for example in order
to fix a specific Iwahori subgroup. So we make the following choice:

x0 :=

(
the discrete special valuation

associated with our fixed Chevalley system (xα)α∈Φ

)
(2)

(see [BT72, Examples (6.2.3) b)]). Since we are implicitly identifying x0 + A with
A , we view x0 as the zero of A .

We have an action of the finite Weyl group W0 on A induced by the action of
W0 on X∗(T), as well as an R-bilinear map

〈−,−〉 : A × spanR(Φ) −→ R

induced by the pairing 〈−,−〉 : X∗(T)×X∗(T) −→ Z (note, however, that we cannot
replace spanR(Φ) with R⊗Z X

∗(T) in general).
We define the set of affine roots Φaff := Φ× Z, and we identify Φ with Φ × {0},

in such a way that Φ ⊆ Φaff . To every affine root (α, h) ∈ Φaff we can attach a
subgroup U(α,h) of Uα defined as follows:

U(α,h) :=
{
u ∈ Uα

∣∣∣ x−1
α (u) ∈Mh

}
;

in other words we have transported, via xa, the filtration (Mn)n∈Z of F, thus ob-
taining a filtration (U(α,n))n∈Z of Uα.

Moreover, for each affine root (α, h) ∈ Φaff we define its associated hyperplane
in the apartment as

H(α,h) := {x ∈ A | 〈x, α〉+ h = 0} .

We also introduce the following notation for the sets of hyperplanes:

H :=
{
H(α,h)

∣∣ (α, h) ∈ Φaff

}
.

The connected components of A r
⋃
H∈hH are called chambers, and there exists a

unique chamber C, called fundamental chamber, such that x0 lies in its closure and
such that all the positive roots assume positive values on each point of C (equiv-
alently, on at least one point of C). More generally, one calls facet an equivalence
class in A with respect to the following equivalence relation: two points of A are
equivalent if (and only if) for each hyperplane in h either both points lie in the
hyperplane or both points lie in the complement.

One has that the exact sequence of groups

1 T/T 0 W W0 1 (3)

is split and that there exists a (necessarily unique) splitting such that for all α ∈ Φ
the reflection sα ∈ W0 corresponding to α is sent to the class of ϕα

(
0 1
−1 0

)
in

W = N/T 0: indeed let T−1 be the subgroup of T generated by qα(−1) for α ∈ Φ; by
[SFW67, Lemma 56] already the surjection N/T−1 −→W0 splits, and the above rule
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gives such a splitting (we can apply Steinberg’s result, which is stated for semisim-
ple split groups, because once we have a splitting of N/T−1 −→ W0 for the derived
group we also have such a splitting for the original group). We fix once and for all
the splitting of (3) described above and write W = W0 n T/T 0, seeing W0 as a
subgroup of W .

There is an isomorphism of abelian groups

νX∗ : T/T 0 −→ X∗(T) (4)

defined as follows: for all t ∈ T/T 0 the cocharacter νX∗(t) is the unique cocharacter
determined by the property 〈νX∗(t), χ〉 = − valF(χ(t)) for all χ ∈ X∗(T). We will
slightly abuse notation and write νX∗(x) not only for x ∈ T/T 0 but also for x ∈ T/T 1

and for x ∈ T .
We also consider the map

νA : T/T 0 −→ X∗(T)/X∗(C
◦) ⊆ A (5)

induced by νX∗ and also in this case we will slightly abuse notation and write νA (x)
not only for x ∈ T/T 0 but also for x ∈ T/T 1 and for x ∈ T . If G is semisimple,
then C◦ is trivial, and νX∗ and νA are the same map. Moreover, going back to the
general case, for all α ∈ Φ we have

〈νX∗(x), α〉 = 〈νA (x), α〉,

where on the left we are considering the pairing 〈−,−〉 : X∗(T)×X∗(T) −→ Z and
on the right the pairing 〈−,−〉 : A × spanR(Φ) −→ R. Since there is no ambiguity,
we will simply use the notation

〈ν(x), α〉. (6)

We can now define an action of T/T 0 on the apartment by affine translations
via ν:

T/T 0 ×A A

(t, x) x+ νA (t).

The actions of W0 and T/T 0 on the apartment combine into an action of W , in the
sense that the following is a well defined action

W ×A A

(w0t, x)
(where t ∈ T/T 0 and w0 ∈W0)

w0(x+ νA (t)).

Similarly, we also have the following well defined action of W on the affine roots:

W × Φaff Φaff(
w0t, (α, h)

)
(where t ∈ T/T 0 and w0 ∈W0)

(
w0α, h− 〈ν(t), α〉

)
=
(
w0α, h + valF(α(t))

)
.

Moreover, the actions of W on the apartment and on the affine roots are compatible,
in the sense that for all w ∈W and all (α, h) ∈ Φaff one has wH(α,h) = Hw(α,h) (and
this explain the choice of the signs in the above action). Another important property
is that for w ∈W , for nw ∈ N representing w and for (α, h) ∈ Φaff one has

nwU(α,h)n
−1
w = Uw(α,h), (7)
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as shown in [BT72, Proposition (6.2.10) (iii)].
Let (α, h) ∈ Φaff . We consider

n(α,h) := ϕα

(
0 πh

−π−h 0

)
∈ N.

One can check that the class of n(α,h) in W acts on the apartment as the affine
reflection through the hyperplane H(α,h). We define Waff as the subgroup of W
generated by the images of the elements n(α,h) for (α, h) ∈ Φaff . Now, let us recall
the notation Π for the basis of Φ corresponding to our choice of positive roots, and
let us consider the partial order on Φ defined as follows: for α, β ∈ Φ we say that
α 6 β if β − α is a linear combination with non-negative coefficients of elements in
Π. We define

Πaff := Π ∪ {(α, 1) | α is minimal for 6} .

For all (α, h) ∈ Πaff we define sα,h to be the class of n(α,h) in W , and we consider

Saff :=
{
s(α,h)

∣∣ (α, h) ∈ Πaff

}
.

It is easy to see that for each s ∈ Saff there exists only one (α, h) ∈ Πaff such that
s = s(α,h), and so we will use the notation (αs, hs) for such element of Πaff . We will
also use the notation

ns := n(αs,hs) = ϕαs

(
0 πhs

−π−hs 0

)
∈ N

(in particular, this is a fixed lifting of s toN). It is possible to prove that (Waff , Saff) is
a Coxeter system (see [Bou81, Chapitre V, §3.2, Theoréme 1 (i)]), and that it extends
the Coxter System given by W0 together with the simple reflections associated with
Π (also compare compatibility with the splitting of the surjection W −→W0 which
we chose in (3)).

We define the set of positive affine roots Φ+
aff as the set of affine roots taking

non-negative values on C; in other words Φ+
aff = Φ+ ∪ (Φ× Z>1). We further define

the set of negative affine roots Φ−aff := Φaff r Φ+
aff . There is a “length function” on

W which extends the length function of the Coxeter system (Waff , Saff) and can be
defined as follows (see [Lus89, §1.4]):

` : W Z>0

w #
{

(α, h) ∈ Φ+
aff

∣∣ w(α, h) ∈ Φ−aff

}
.

Note that the cardinality is indeed finite because for all w ∈ W and all h ∈ Z, the
action of w sends Φ × {h} to Φ × {h + nw} for a suitable nw ∈ Z depending on w
but not on h. One can prove the following useful expressions to compute the length
(see [Vig16, Corollary 5.10]):

`(tw0) =
∑

α∈Φ+∩w0Φ+

|〈ν(t), α〉|+
∑

α∈Φ+∩w0Φ−

|〈ν(t), α〉 − 1| (8)

for t ∈ T/T 0 and w0 ∈W ,

`(w0t) =
∑

α∈Φ+∩w−1
0 Φ+

|〈ν(t), α〉|+
∑

α∈Φ+∩w−1
0 Φ−

|〈ν(t), α〉+ 1| (9)

for t ∈ T/T 0 and w0 ∈W .
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In particular:

`(t) =
∑
α∈Φ+

|〈ν(t), α〉| = 1

2

∑
α∈Φ

|〈ν(t), α〉| for t ∈ T/T 0. (10)

We define Ω to be the subgroup of W given by the elements of length 0. The group
W decomposes as a semidirect product

W = Ω nWaff (11)

and the length function is constant on the double coset ΩwΩ for all w ∈ W (see
[Lus89, §1.5]).

1.3 The pro-p Iwahori subgroup

In this section we will recall the definition of Iwahori subgroup from [BT84], and
then we will instead focus on the pro-p Iwahori subgroup, which plays the most
important role in this thesis.

We first consider the group scheme GC associated with the chamber C (see [BT84,
4.6.26]). Note that this depends on the choice of x0 in (2), and so on the choice of
the Chevalley system. We then consider the identity component G◦C of GC define
the corresponding Iwahori subgroup J to be J := G◦C(O), seen as a profinite group
with the topology induced by O (for details on the definition see [BT84, §5.2]).
Furthermore, J has a unique pro-p Sylow subgroup I, which we call the pro-p Iwahori
subgroup.

The above are the choices of Iwahori and pro-p Iwahori subgroups that we will
fix throughout the thesis. However, in [BT84, §5.2] Iwahori subgroups are defined by
considering an arbitrary chamber in place of the fundamental chamber C. Every two
Iwahori subgroups are conjugate (see [Vig16, after Definition 3.14]), and so every
two pro-p Iwahori subgroups are. Parahoric subgroups are defined in the same way
as Iwahori subgroups, but considering arbitrary facets instead of chambers.

Note that part of the literature (e.g., [Vig16]) makes use of another definition of
Iwahori subgroup, due to Haines and Rapoport, and involving the Kottwitz homo-
morphism (see [HR08] for the equivalence of the two definitions).

We recall from [Vig16, after Definition 3.14] that, denoting by K a maximal
parahoric subgroup of G and by K1 its unique maximal open normal pro-p subgroup,
one has that K/K1 is canonically the group of O/M-rational points of a reductive
group G over O/M. Moreover, we recall from [Vig16, Corollary 3.28] that the Iwahori
subgroup J is the preimage in K of a the group of k-points of a Borel subgroup of G,
and that the same holds replacing the Iwahori subgroup J with the pro-p Iwahori
subgroup I and the Borel subgroup with its idempotent radical.

If G is (the base change of) a reductive group defined over O, then we can
consider the maximal parahoric subgroup K := G(O), and then we see that this
definition of Iwahori and pro-p Iwahori subgroups coincide with the definition used
in the introduction, where we basically defined Iwahori (respectively, pro-p Iwahori)
subgroups as the preimage of the subgroup of k-rational points of a Borel (respec-
tively, unipotent radical of a Borel) in Gk. Note also that the assumption that G is
the base change of a reductive group defined over O is basically automatically sat-
isfied, in the sense that one can use the classification of (connected) split reductive
groups by root data to produce a (connected) split reductive group defined over O
whose base change to F is G.
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As outlined in Section 1.1, we define T 1 to be the (clearly unique) pro-p Sylow
subgroup of the profinite group T 0. We are now going to state a fundamental set-
theoretical (or topological) description of the pro-p Iwahori subgroup.

Lemma 1.3.1. The multiplication map induces a homeomorphism∏
α∈Φ−

U(α,1) × T 1 ×
∏
α∈Φ+

U(α,0) −→ I,

where the products on the left hand side are ordered in some arbitrarily chosen way.

Proof. For the fact that the multiplication map induces a bijection as in the state-
ment see [SS97, Proposition I.2.2] and [OS14, Lemma 4.8 and its proof]. The fact that
it is also a homeomorphism is clear, since it is a continuous map between compact
Hausdorff topological spaces. �

We consider the group W̃ := N/T 1, for which we clearly have the exact sequences

1 T/T 1 W̃ W0 1,

1 T/T 0 W̃ W 1.

In contrast to what happens for W , in general it is not true that any of these short
exact sequences is split (for example, if G = SL2 and p 6= 2, one sees that any lift in

W̃ of the non-trivial element of W0 has order 4). In any case, for all s = s(αs,hs) ∈ Saff

we fix the following lift of s to W̃ :

s̃ := ns ∈ W̃ , where ns = ϕαs

(
0 πhs

−π−hs 0

)
∈ N. (12)

The decomposition W = Ω nWaff stated in (11) yields

W̃ = Ω̃ · W̃aff ,

where Ω̃ (respectively, W̃aff) denotes the preimage of Ω (respectively, of Waff) in W̃ .
There are well defined conjugation actions

N × T/T 0 T/T 0

(n, t) ntn−1 := ntn−1,

N × T/T 1 T/T 1

(n, t) ntn−1 := ntn−1,

because conjugation by an element n ∈ N must preserve the unique compact sub-
group T 0 of T and the unique pro-p Sylow subgroup T 1 of T 0. Since T acts trivially
on T/T 1 we obtain well defined conjugation actions

W0 × T/T 0 T/T 0

(w, x) wxw−1,

W0 × T/T 1 T/T 1

(w, x) wxw−1.

The notation wxw−1 still makes sense if w ∈W or if w ∈ W̃ .
The relation between the group W̃ and the pro-p Iwahori subgroup I is given by

the following Bruhat decomposition (for the proof see [Vig16, Proposition 3.35]):

G =
⋃̇
w∈W̃

IwI, (13)
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where we do not distinguish between an element in N and its class in W̃ = N/T 1:
this makes sense because the double coset IwI does not depend on the choice of a
representative since T 1 ⊆ I.

We end this section with a variation of Lemma 1.3.1, consisting of the Iwahori
decomposition of some subgroups of I, which will be very important for the study
of the Ext-algebra. They are defined as follows: for all w ∈ W̃ we set

Iw := I ∩ wIw−1,

where, as before, we do not distinguish between classes in W̃ = N/T 1 and represen-
tatives in N : this makes sense because T 1 ⊆ I and so every n ∈ N representing w
defines the same group nIn−1. Actually, it is also true that nIn−1 only depends on
the class of n in W , because T 0 is contained in the Iwahori subgroup J (see, e.g.,
[Vig16, Corollary 3.20]), and I is normal in J (alternatively, the claim also follows
from the next lemma).

Lemma 1.3.2. Let w ∈ W̃ . One has the following description of the group Iw.

• The product map induces a homeomorphism∏
α∈Φ−

U(α,gw(α)) × T 1 ×
∏
α∈Φ+

U(α,gw(α)) −→ Iw,

where the products on the left hand side are ordered in some arbitrarily chosen
way and where

gw(α) := − inf {〈x, α〉 | x ∈ C ∪ wC} .

• For each α ∈ Φ, the constant gw(α) also admits the following description:

gw(α) = min
{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff ∩ wΦ+

aff

}
.

Proof. See [OS19, Lemma 2.3 and Remark 2.4]. The fact that the bijection induced
by the multiplication map is also a homeomorphism is clear for topological reasons,
as in Lemma 1.3.1. �

1.4 The pro-p Iwahori–Hecke algebra

1.4.a Definition and Iwahori–Matsumoto presentation

The pro-p Iwahori–Hecke algebra has been introduced and studied by Vignéras in
[Vig05]. A throughout treatment, also extending to the case of non-split groups and
to the case of an arbitrary coefficient ring can be found in [Vig16]. Here we will
give the definition and recall some fundamental properties, but we will only work
within the assumptions of the previous sections (i.e., G will be split) and the ring
of coefficients will be the characteristic p field k fixed in Section 1.1 (i.e., k is a field
of the same characteristic as the residue field of F). Our exposition follows [Vig16]
and [OS19, §2.2].

Before defining the pro-p Iwahori–Hecke algebra, let us consider the representa-
tion of G over k given by k [G/I]: this is the free k-vector space generated by the right
cosets of G modulo I, endowed with the left action of G given by g · (g′I) := (gg′I)
for all g, g′ ∈ G. Since I is open in G and compact, we can identify this space with
the k-vector space of compactly supported continuous maps from G to k which are
constant on the left cosets of G modulo I, by identifying, for all g ∈ G the coset gI
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with its characteristic function 1gI . The action of G is then by left translations, i.e.,
considering f ∈ k [G/I] seen as a function f : G −→ k and considering g ∈ G we
have g · f = f(g−1

−).
The representation k [G/I] defined above is (one of the possible concrete ways

to construct) the compact induction c-indGI 1 of the trivial representation from I to
G.

We define the pro-p Iwahori–Hecke algebra H = Hk(G, I) relative to the pair
(G, I) with coefficients in k in the following way:

(i) H := Endk[G]-mod (k [G/I])op. Here we are considering the endomorphism ring
in the category of representations of G over k, or, equivalently, in the category
of left k-modules, and we are considering the opposite ring: this last convention
has of course no real content, but it has some slight advantages in various
settings.

For the sake of completeness, we are now going to give some equivalent descriptions
of this k-algebra.

(ii) It is easy to check that valuation at (I) gives an isomorphism of k-vector spaces
H ∼= k [G/I]I (where (−)I denotes the subspace of I-invariant vectors). The
product can be characterized as follows: let us consider

h, h′ ∈ H = Endk[G]-mod (k [G/I])op ,

and let us write h((I)) =
∑

g∈G/I ag(gI) and h′((I)) =
∑

g′∈G/I a
′
g′(g

′I) for

suitable coefficients ag, a
′
g′ ∈ k (almost all of them equal to 0). Then, we see

that
(h · h′)((I)) = (h′ ◦ h)((I)) =

∑
g∈G/I,
g′∈G/I

aga
′
g′(gg

′I).

(iii) Now, to give an alternative description, let us consider the k-vector space
k [I\G/I] (meaning the free k-vector space generated by the double cosets).
As we did for k [G/I], since I is open in G and compact, we can identify this
space with the k-vector space of compactly supported continuous maps from G
to k that are constant on the double cosets of G modulo I, by identifying, for
all g ∈ G the double coset IgI with its characteristic function 1IgI . It is then

easy to see that k [G/I]I ∼= k [I\G/I] as a k-vector space, since also k [G/I]I

can be described as a space of functions in the above way. The product can
then be characterized as a convolution: namely, considering f, f ′ ∈ k [I\G/I],
seen as functions f, f ′ : G −→ k, we can define a convolution product

f ∗ f ′ :=
∑
x∈G/I

f(x)f ′(x−1
−).

We can then check that this convolution product coincides with the product
on k [G/I]I we have already described: for this it suffices to check that given
two elements

∑
g∈G/I ag(gI) ∈ k [G/I]I and

∑
g′∈G/I a

′
g′(g

′I) ∈ k [G/I]I the
following equality holds:( ∑

g∈G/I

ag1gI

)
∗
( ∑
g′∈G/I

a′g′1g′I

)
=

∑
g∈G/I,
g′∈G/I

aga
′
g′1gg′I ,

and this can be done explicitly.
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Note that the definition of the Hecke algebra given here follows [OS19], while the
definition in [Vig16] is slightly different: there H is defined as Endk[G]-mod (k [I\G]),
where k [I\G] is endowed with the G-action defined by g · (Ig′) := Ig′g−1 for all
g, g′ ∈ G (i.e., the difference is that right cosets are used and that there is no opposite
ring). Proceeding as before, considering h, h′ ∈ Endk[G]-mod (k [I\G]), and writing
h((I)) =

∑
g∈I\G ag(Ig) and h′((I)) =

∑
g′∈I\G a

′
g′(Ig

′) for suitable coefficients

ag, a
′
g′ ∈ k one gets

(h ◦ h′)((I)) =
∑

g∈I\G,
g′∈I\G

aga
′
g′(Igg

′).

Then, identifying Endk[G]-mod (k [I\G]) with k[I\G/I] via evaluation at (I) as above,
one gets a convolution formula

f ? f ′ :=
∑
y∈I\G

f(−y
−1)f ′(y),

for f, f ′ ∈ k [I\G/I], seen as functions f, f ′ : G −→ k. But it is easy to check that
this coincides with the definition above, i.e.,

f ? f ′ = f ∗ f ′.

Hence, identifying both Endk[G]-mod (k [G/I])op and Endk[G]-mod (k [I\G]) with the
space of double cosets k [I\G/I], we see that the two definitions coincide, and then
all the formulas proved in [Vig16] are available and we should and must not rewrite
them with the opposite product.

The most useful description of the pro-p Iwahori–Hecke algebra is through gen-
erators and relations with respect to the Iwahori–Matsumoto basis. Let us introduce
this presentation: first of all we consider the already mentioned Bruhat decomposi-
tion relative to I (see (13))

G =
⋃̇
w∈W̃

IwI.

It is then clear that H admits a k-basis (τw)
w∈W̃ defined by τw := 1IwI , seeing H as

k [I\G/I]. This is called the Iwahori–Matsumoto basis. To describe the multiplication
with respect to this basis, we first consider the following element of H for all s ∈ Saff :

θs := −(#µ
qαs) ·

∑
t∈qαs([(O/M)×])

τt, (14)

where the notation is as follows: [−] : (O/M)× −→ F denotes the Teichmüller lift,
αs denotes the root such that s = s(αs,hs) with (αs, hs) ∈ Φaff (and qαs denotes the
corresponding coroot), and finally µ

qαs denotes the kernel of the composite group
homomorphism qαs([−]) : (O/M)× −→ T .

The following theorem describes the multiplication with respect to the Iwahori–
Matsumoto basis.

Theorem 1.4.1 (Vignéras). The Iwahori–Matsumoto basis (τw)
w∈W̃ satisfies the

following relations.

• Braid relations: for all w,w′ ∈ W̃ such that `(ww′) = `(w) + `(w′), one has
τw · τw′ = τww′.

• Quadratic relations: for all s ∈ Saff one has τ2
s̃ = −θs · τs̃ = −τs̃ · θs.
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Regarding the quadratic relations, note that the above formula is valid also for
a lift of s to W̃ of the form ts̃ or s̃t for some t ∈ qαs([(O/M)×]) in place of s̃, but, in
general, not for an arbitrary lift.

Proof of the theorem. This is proved in greater generality in [Vig16, Proposition
4.1 and Proposition 4.4]. See also [OS19, Equation (28)] for the problems with the
quadratic relations as stated in [Vig05]. �

It is not difficult to see that the braid relations and the quadratic relations
completely determine the multiplicative structure of H, and so we obtain yet another
description of this k-algebra:

(iv) H ∼=
⊕

w∈W̃ kτw, with the unique k-algebra structure satisfying the braid
relations and the quadratic relations.

1.4.b Bernstein presentation

To study problems such as an explicit description of the centre, it is useful to consider
a different basis of H, called Bernstein basis (actually, there are more than one such
bases). Introducing it requires some preliminaries, and we start with the definition
of orientation: an orientation consist in choosing, for each hyperplane H ∈ H, one
of the two half-spaces (called positive, with the other one called negative) defined by
such hyperplane in such a way that:

• either for all finite subsets of Φaff the intersection of the corresponding negative
half-spaces is non-empty,

• or for all finite subsets of Φaff the intersection of the corresponding positive half-
spaces is non-empty.

Let v ∈ Waff be a reflection through an hyperplane; we denote by Hv ∈ H such
hyperplane. Note that if v is a reflection and w ∈ W , also wvw−1 is a reflection:
indeed it is still an element of Waff because Waff is normal in W (see (11)) and it
is easy to see that it fixes the hyperplane Hv pointwise. In particular, under such
assumptions it makes sense to consider the hyperplane Hwvw−1 , which is equal to
wHv.

Let o be an orientation, let w ∈ W (or w ∈ W̃ ), let s ∈ Saff and recall the
notation C for the fundamental chamber. We define:

εo(w, s) :=

{
1 if wC is contained in the o-negative side of Hwsw−1 ,

−1 if wC is contained in the o-positive side of Hwsw−1 ,

where the hyperplane Hwsw−1 makes sense by what we said above. Under the same
assumptions one then defines

τ
(εo(w,s))
s̃

:=

{
τs̃ if εo(w, s) = 1,

τs̃ + θs if εo(w, s) = −1.

Now let w ∈ W̃ and let us consider a reduced decomposition w = s̃1 · · · s̃`(w)ω for

suitable elements s1, . . . , s`(w) ∈ Saff and ω ∈ Ω̃. We define

Bo(w) := τ
(εo(1,s1))
s̃1

· · · τ (εo(s1···si−1,si))
s̃i

· · · τ (εo(s1···s`(w)−1,s`(w)))

s̃`(w)
· τω. (15)
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This definition does not depend on the decomposition chosen (see [Vig16, Theorem
5.25]: the decomposition considered there is slightly more general). It is then easy to
see that (Bo(w))

w∈W̃ is a k-basis of H, called the alcove walk basis associated with
the orientation o.

We will define in a moment the Bernstein basis as a special case of the above
construction. Namely, we choose a basis Π′ of the root system and we define the
spherical orientation oΠ′ associated with Π′ to be the orientation given by the fol-
lowing rule: we represent each hyperplane H ∈ H asH = H(α,h) for suitable (uniquely
determined) α ∈ Φ positive with respect to Π′ and h ∈ Z; we then define the oΠ′-
positive side of H to be given by {x ∈ V | 〈x, α〉+ h > 0}. It is easy to check that
a spherical orientation is indeed an orientation, because a finite intersection of pos-
itive half-spaces contains a subset of the Π′-positive Weyl chamber with bounded
complement (and so, in particular, it is non-empty).

The spherical orientation oΠ associated with our fixed basis Π is called dominant,
whereas the spherical orientation o−Π associated with the basis −Π is called the
antidominant.

Finally, for all bases Π′ of the root system, let us define the Bernstein basis
(BoΠ′ (w))

w∈W̃ associated with the spherical orientation oΠ′ to be the corresponding
alcove walk basis.

1.4.c Idempotents

Following [OS19, 2.2.1], in this subsection we will introduce (under a small assump-
tion on k) a decomposition of H induced by the idempotents of the group algebra
k
[
T 0/T 1

]
.

Let us consider the group algebra k
[
T 0/T 1

]
. By the braid relations, there is an

injective homomorphism of k-algebra

k
[
T 0/T 1

]
H

(t)
(where t ∈ T 0/T 1)

τt.

We denote the group of k-characters of k
[
T 0/T 1

]
by T̂ 0/T 1 := Homgps.

(
T 0/T 1, k×

)
.

Choosing a splitting T ∼= GdimT
m , one sees that T 0/T 1 ∼= (F×q )dimT. As usual with

group algebras, for all λ ∈ T̂ 0/T 1, one has an idempotent

eλ := (#T 0/T 1)−1
∑

t∈T 0/T 1

λ(t)−1τt

= (−1)dimT
∑

t∈T 0/T 1

λ(t)−1τt,
(16)

which we will see both as an element of k
[
T 0/T 1

]
and of H.

From the braid relations it is easy to show that the following formulas hold:

τw · eλ = eλ(w−1−w) · τw for all w ∈ W̃ and all λ ∈ T̂ 0/T 1, (17)

τt · eλ = eλ · τt = λ(t)eλ for all t ∈ T 0/T 1 and all λ ∈ T̂ 0/T 1. (18)

Note that the last formula justifies the presence of the exponent −1 in the definition
of eλ. Regarding the first formula, the notation λ(w−1

−w) means λ(n−1
−n) for

some choice of a representative n ∈ N of w ∈ W̃ = N/T 1 (and clearly the result is
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independent of the choice of a representative). Actually, similarly one also sees that
there is a well defined action

W0 × T̂ 0/T 1 T̂ 0/T 1

(w0, λ) λ(w−1
0 −w0).

If we assume that Fq ⊆ k, then there are enough k-characters, meaning more
precisely that one has a k-algebra decomposition

k
[
T 0/T 1

]
=

∏
λ∈T̂ 0/T 1

keλ if Fq ⊆ k.

Looking at (17), we see that in general eλ is not central in H, and so even if
Fq ⊆ k, we do not have a decomposition of H induced by the eλ’s. However, let us

consider the set Γ of W0-orbits of T̂ 0/T 1 (relative to the W0-action we have just
defined); using again (17), it is immediate to see that, for all γ ∈ Γ, the element

eγ :=
∑
λ∈Γ

eλ

is central in H. Moreover eγ is an idempotent since each eλ is, and, if we assume
again that Fq ⊆ k, then

∑
γ∈Γ eγ = 1. Therefore, we can write H as a product of

k-algebras

H =
∏
γ∈Γ

eγH =
∏
γ∈Γ

Heγ if Fq ⊆ k.

1.5 The pro-p Iwahori–Hecke algebra for SL2

In this section we will treat the pro-p Iwahori–Hecke algebra in the case G = SL2.
We will partially follow the exposition of [OS18, §3.1 and §3.2.1] and [OS21, §2.3].

Assumptions. We work with G = SL2. We fix the (F-split maximal) torus T of
diagonal matrices, and we fix the following pro-p Iwahori subgroup I:

I =

(
1 + M O
M 1 + M

)
∩ SL2(F) (19)

(we will explain below why this actually is a pro-p Iwahori subgroup and what are
the corresponding choices of the positive root and the Chevalley system).

Of the two roots of (G,T) we fix the following as the positive root:

α0 : T Gm(
t 0
0 t−1

)
t2.

With notation as in the definition of Chevalley system in Section 1.1, we see that
the following maps define a Chevalley system:

xα0 : Ga G = SL2

u

(
1 u
0 1

)
,

x−α0 : Ga G = SL2

u

(
1 0
−u 1

)
,
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and that the associated maps maps SL2 −→ G = SL2 are

ϕα0 : SL2 G = SL2(
a b
c d

) (
a b
c d

)
,

ϕα0 : SL2 G = SL2(
a b
c d

) t(
a b
c d

)−1
=
(
d −c
−b a

)
.

Now, as in the situation of a general G, let us consider the pro-p Iwahori sub-
group associated with the fundamental chamber C (whose definition depends on the
choice of the positive root and of the Chevalley system). Then, using the Iwahori
decomposition stated in general in Lemma 1.3.1, we see that this pro-p Iwahori sub-
group is exactly the group I defined in (19), and that such Iwahori decomposition
can be rewritten as follows:

M× (1 + M)×O I

(c, t, b) ( 1 0
c 1 ) ·

(
t 0
0 t−1

)
·
(

1 b
0 1

)
=
(
t tb
tc tbc+t−1

)
.

(20)

We define s0 to be the class in W̃ of the matrix
(

0 1
−1 0

)
∈ N , and s1 to be the

class in W̃ of the matrix
(

0 −π−1

π 0

)
∈ N . We have that

(
0 1
−1 0

)
·
(

0 −π−1

π 0

)
=
(
π 0
0 π−1

)
.

The two elements s0 and s1 are lifts of the simple reflections s(α0,0) ∈ Saff and
s(−α0,1) ∈ Saff respectively: indeed we can compute

ns(α0,0)
= ϕα0

(
0 1
−1 0

)
=

(
0 1
−1 0

)
,

ns(−α0,1)
= ϕ−α0

(
0 π
−π−1 0

)
=

(
0 π−1

−π 0

)
.

Defining

c−1 :=

(
−1 0
0 −1

)
∈ W̃ , (21)

we see that

s0 = s̃(α0,0), s1 = c−1s̃(−α0,1) = s̃(−α0,1)c−1.

From the exact sequence

1 T/T 0 W W0 1,

is easy to see that one has the following set theoretic description of W :

W =
(
π 0
0 π−1

)Z
∪̇
(
π 0
0 π−1

)Z
·
(

0 1
−1 0

)
= (s0s1)

Z ∪̇ (s0s1)
Z · s0.

Looking at the exact sequence

1 T 0/T 1 W̃ W 1,

we then get the following set-theoretical description of W̃ :

W̃ =
(
T 0/T 1 × (s0s1)Z

)
∪̇
(
T 0/T 1 ×

(
(s0s1)Z · s0

))
. (22)
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We then see (also using that s−1
i = c−1si for i ∈ {0, 1} and that c−1 is central) that

the elements of W̃ are those in the following list (where the parameters i and ω
define an indexing, i.e., there are no repetitions):

ω for ω ∈ T 0/T 1,

ω(s0s1)i for ω ∈ T 0/T 1 and i ∈ Z>1,

ω(s1s0)i for ω ∈ T 0/T 1 and i ∈ Z>1,

ωs0(s1s0)i for ω ∈ T 0/T 1 and i ∈ Z>0,

ωs1(s0s1)i for ω ∈ T 0/T 1 and i ∈ Z>0.

(23)

We will use this explicit list of elements very often in the computations. Similarly
one could (as we will sometimes do) consider the analogous list with ω on the right
instead of on the left. Looking again at (22), using that s0s1 ∈ T/T 1 and using the
formulas (8) or (9) one sees that the length of the above elements are respectively
0, i, i, i+ 1 and i+ 1.

Now we consider the pro-p Iwahori–Hecke algebra H for G = SL2. Having de-
termined W̃ explicitly, we know that the Iwahori–Matsumoto basis looks as follows:

τω for ω ∈ T 0/T 1,

τω(s0s1)i for ω ∈ T 0/T 1 and i ∈ Z>1,

τω(s1s0)i for ω ∈ T 0/T 1 and i ∈ Z>1,

τωs0(s1s0)i for ω ∈ T 0/T 1 and i ∈ Z>0,

τωs1(s0s1)i for ω ∈ T 0/T 1 and i ∈ Z>0.

(24)

Since we know lengths explicitly, using the braid relations it is immediate to see that
H is generated by τs0 , τs1 and τω (for ω ∈ T 0/T 1) as a k-algebra. Actually, since
T 0/T 1 is cyclic, we can do better and say that H is generated by τs0 , τs1 and τω0 ,
where ω0 is a fixed generator of the cyclic group T 0/T 1.

Now, let us look at the quadratic relations. They simplify as follows:

τ2
si = −e1 · τsi = −τsi · e1,

where i ∈ {0, 1} and e1 := −
∑

ω∈T 0/T 1

τω.

This follows immediately from Theorem 1.4.1 (and, for s1, from the subsequent ob-
servation about the representatives for which the quadratic relations are still valid).

We will also consider an involutive automorphism defined as follows (this is done
in greater generality in [OS21, §2.2.6]). Let $ := ( 0 1

π 0 ) ∈ GL2(F). We can consider
the automorphism

conj$ : G G

g $g$−1,

which is clearly an involution. Moreover, we see that conj$(I) = I (equivalently,
conj$(I) ⊆ I), for example by working with the “Iwahori decomposition” stated in
(20). It follows that conj$ induces an involutive automorphism of the representation
k [G/I], and this in turn induces an automorphism

Γ$ : H −→ H. (25)
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If we describe H as k [I\G/I], it is easy to see that Γ$(1IgI) = 1I$g$−1I for all

g ∈ G. Taking also into account that conj$ induces an automorphism of W̃ , this
shows that

Γ$(τw) = τ$w$−1 for all w ∈ W̃ ,

and, more specifically,

Γ$(τω) = τω−1 for all ω ∈ T 0/T 1,

Γ$(τs0) = τs1 ,

Γ$(τs1) = τs0 .

(26)

1.6 The centre of the pro-p Iwahori–Hecke algebra

The centre of the pro-p Iwahori–Hecke algebra has been studied by Vignéras in
[Vig14], building on her previous work in [Vig05] and on Schmidt’s Diplomarbeit
[Sch09]. We will state the main results here, starting with the explicit description
the centre as a k-vector space.

Theorem 1.6.1 (Schmidt, Vignéras). Let o be a spherical orientation. More-
over, let us consider orbits of the conjugation action of W0 on T/T 1. The following
elements form a k-basis of the centre Z(H) of the pro-p Iwahori Hecke algebra H:

zO :=
∑
x∈O

Bo(x) for all the W0-orbits O ⊆ T/T 1.

Moreover, for all orbits O as above, the element zO does not depend on the chosen
spherical orientation.

Proof. See [Vig14, Theorem 1.3 and Lemma 2.1]. What is denoted by Λ(1) in loc.
cit. is T/T 1 in our context, since G is F-split. �

The next theorem we are going to state gives a clear picture of the algebraic
properties of the centre and the full algebra. We will not use this result for any
proof, but it is nevertheless useful to state it both for its own importance and to
draw comparisons with the Ext-algebra and its centre later on (see Remark 2.1.2,
in which we will give counterexamples in the case G = SL2(Qp) with p 6= 2, 3).

Theorem 1.6.2 (Schmidt, Vignéras). The centre Z(H) of the pro-p Iwahori
Hecke algebra H is a finitely generated (commutative) k-algebra, hence Noetherian.
The pro-p Iwahori Hecke algebra H is a finitely generated as a module over its centre
Z(H).

Proof. See [Vig14, Theorem 1.3]. �

We have the following immediate but very important consequence: since H is
finitely generated module over the Noetherian commutative k-algebra Z(H), it is
Noetherian as a Z(H)-module, hence in particular it is a Noetherian k-algebra.
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1.7 The centre of the pro-p Iwahori–Hecke algebra for
SL2

Assumptions. We assume that G = SL2 (with the fixed choices of T, of I, of the
positive root and of the Chevalley system as in Section 1.5). Later on, we will add
the assumption that Fq ⊆ k.

Under the above assumptions it is possible to achieve a very explicit description
of the ring structure of the centre Z(H). This is given in [OS18, §3.2.4], which we
will follow.

Let us fix the dominant spherical orientation oΠ. Recall from (22) that we have
a direct product decomposition T/T 1 = T 0/T 1 × (s0s1)Z, with s0s1 represented by
the matrix

(
π 0
0 π−1

)
. It is also easy to see that the non-trivial element of W0 act as

the inverse on T/T 1. Using also that T 0/T 1 is the cyclic group of order q − 1, one
then explicitly determines the W0-orbits in T/T 1, finding the following k-basis for
Z(H) according to Theorem 1.6.1:

BoΠ(1),

BoΠ(c−1) if p 6= 2,

BoΠ(ω) +BoΠ(ω−1) for {ω, ω−1} ⊆ T 0/T 1 r {1, c−1},
BoΠ(ω(s0s1)i) +BoΠ(ω−1(s1s0)i) for ω ∈ T 0/T 1 and i ∈ Z>1.

Let us write this explicitly with respect to the Iwahori–Matsumoto basis. Making use
of the formula BoΠ(tt′) = BoΠ(t)·BoΠ(t′) for t, t′ ∈ T/T 1 such that `(tt′) = `(t)+`(t′)
(see [Vig16, Corollary 5.28]), and also of the fact that BoΠ(ω) = τω for all ω ∈ T 0/T 1

(since such ω’s have length zero), we are reduced to compute the Bernstein elements
BoΠ(s0s1) and BoΠ(s1s0).

The apartment can be drawn in the following way, where the small arrows rep-
resent the dominant spherical orientation:

. . . Hs0s1s0 Hs0 Hs1 Hs1s0s1 . . .

C s1C s1s0Cs0Cs0s1C . . .. . .

One then sees that

εoΠ(1, s0) = 1, εoΠ(s0, s1) = 1,

εoΠ(1, s1) = −1, εoΠ(s1, s0) = −1.

To apply the definition (15), there is the small problem that, while the element s0 is
equal to s̃(α0,0), the element s1 is equal to c−1s̃(−α0,1) rather than to s′1 := s̃(−α0,1).
So working for the moment with s′1 instead of s1, we find that

BoΠ(s0s
′
1) = τ

(εoΠ (1,s0))
s0 · τ (εoΠ (s0,s′1))

s′1

= τs0 · τs′1 ,

BoΠ(s′1s0) = τ
(εoΠ (1,s′1))

s′1
· τ (εoΠ (s′1,s0))
s0

= (τs′1 + e1) · (τs0 + e1).

Multiplying both sides of each of the above equations by τc−1 = BoΠ(c−1) (on the
left, or, equivalently, on the right) we get that

BoΠ(s0s1) = τs0 · τs1 ,
BoΠ(s1s0) = (τs1 + e1) · (τs0 + e1).
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Therefore, from our computations we deduce the following description of the canon-
ical basis of Z(H):

τ1,

τc−1 if p 6= 2,

τω + τω−1 for {ω, ω−1} ⊆ T 0/T 1 r {1, c−1},

τω(τs0τs1)i + τω−1

(
(τs1 + e1)(τs0 + e1)

)i
for ω ∈ T 0/T 1 and i ∈ Z>1.

(27)

Lemma 1.7.1 (Ollivier, Schneider). Assume that Fq ⊆ k. Let γ ∈ Γ, and let us
write it as γ = {λ, λ−1}.

• If λ = λ−1 then the following is a k-basis of eγZ(H):

eλ,

xλ,i := eλBoΠ((s0s1)i) + eλBoΠ((s1s0)i) for i ∈ Z>1.

• If λ 6= λ−1 then the following is a k-basis of eγZ(H):

eλ + eλ−1 ,

xλ,i := eλBoΠ((s0s1)i) + eλ−1BoΠ((s1s0)i) for i ∈ Z>1,

xλ−1,i := eλ−1BoΠ((s0s1)i) + eλBoΠ((s1s0)i) for i ∈ Z>1.

Moreover, setting xµ := xµ,1 for all µ ∈ T̂ 0/T 1, one has that xiµ = xµ,i. Finally,

denoting by Xµ an indeterminate for all µ ∈ T̂ 0/T 1, one has isomorphisms of k-
algebras

k[Xλ] eγZ(E0)

1 eγ

Xλ xλ

∼=

if γ = {λ},

k[Xλ, Xλ−1 ]/(Xλ ·Xλ−1) eγZ(E0)

1 eγ

Xλ xλ

Xλ−1 xλ−1

∼=

if γ = {λ, λ−1} with λ 6= λ−1.

Proof. See [OS18, §3.2.4]. �

To conclude this overview of the centre of H for SL2, we define the element

ζ := τs0 · τs1 + (τs1 + e1) · (τs0 + e1), (28)

which, as we have seen, lies in the centre of H. It has the property that k[ζ] is
isomorphic to the polynomial algebra k[X]. Although we will not use this, let us
remark that the importance of ζ stems from the fact that k[ζ] is the k-algebra
Z◦(H) introduced in [Oll14, §2.3.1], and the ideal ζk[ζ] is the ideal I introduced in
[Oll14, §5.2] (see [OS18, proof of Lemma 3.7]). Starting from these results, in [OS21,
§2.3.5], the element ζ is used to define a notion of supersingularity.
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1.8 Some results on the cohomology of pro-p groups

In this section we will make a brief digression on the cohomology of pro-p groups.
We do this here because it will be needed the next section, and because we will use
these results very often in the whole thesis.

For all pro-p groups K (or more generally profinite groups), and for all discrete
(or smooth, according to different choices of terminology) K-modules A, we will
denote by H∗(K,A) the continuous cohomology of K with coefficients in A.

We start by recalling the definition of conjugation: let L be a locally profinite
group, let K ⊆ L be a closed compact subgroup, and let x ∈ L. Let us consider an
abelian group A, which we endow with the trivial action of L and of its subgroups
(one usually defines conjugation for more general L-modules, but we will only need
this case). We denote by

x∗ : H∗(K,A) −→ H∗(xKx−1, A) (29)

the conjugation map on cohomology, i.e., the map functorially induced by the conju-
gation map conjx−1 : xKx−1 −→ K. Now let y ∈ K: we recall from [NSW13, (1.6.3)
Proposition] that the map y∗ : H∗(K, k) −→ H∗(K, k) is the identity (note that in
loc. cit. the ambient group L is assumed to be profinite, but the proof, carried out
by dimension shifting, does not use such assumption). Since (xy)∗ = (x)∗ ◦ (y)∗, we
conclude that x∗ only depends of the class of x in the space of left cosets L/K.

For the rest of this section, we will treat cup products and cup products algebras.
Whenever one has discrete G modules A, B and C with a Z-bilinear K-equivariant
map A×B −→ C, there is a well defined cup product

^ : H i(K,A)×Hj(K,B) −→ H i+j(K,C) (30)

for i, j ∈ Z>0 (see [NSW13, Chapter I, §4]). In particular, we have the cup-product
algebra H∗(K, k) (endowing k with the trivial G-action).

In the literature, one usually finds statements about the cup-product algebra
H∗(K,Fp); however, it is easy to extend such results to case of general k, because
there is a natural isomorphism

H∗(K, k) ∼= H∗(K,Fp)⊗Fp k. (31)

This can be shown as follows: we can fix an Fp-basis (ai)i of k, and compute

H∗(K, k) = H∗
(
K,
⊕
i

Fpai
)
∼=
⊕
i

H∗(K,Fpai) ∼= H∗(K,Fp)⊗Fp k,

where we have used that H∗(K,−) commutes with direct limits (see [Ser02, Chapter
I, Proposition 8]) and hence with arbitrary direct sums, being an additive functor.

The first cohomology group of a pro-p group K is quite easy to study explicitly;
to do this it is convenient to define the Frattini quotient :

(K)Φ := K/[K,K]Kp.

The Frattini quotient is an abelian pro-p group in which p-powers are trivial, and
so we may also regard it as a Fp-vector space. We see that

H1(K, k) ∼= Homtop. gps.(K, k) ∼= Homtop. gps.((K)Φ , k), (32)

and that if (K)Φ is finite-dimensional as a Fp-vector space then

H1(K, k) ∼= HomFp((K)Φ , k). (33)
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We will call a pro-p group K uniform if it is topologically finitely generated,
torsion-free and powerful; by definition, the latter term means that the following
condition is satisfied:

[K,K] ⊆ Kp if p is odd,

[K,K] ⊆ K4 if p = 2.

This definition of uniform pro-p groups is given as a characterization in [DDSMS03,
Theorem 4.5].

The cohomology algebra of a uniform pro-p group admits a very simple descrip-
tion, according to the following non-trivial result of Lazard.

Theorem 1.8.1 (Lazard). Let K be a uniform pro-p group. One has natural iso-
morphisms of k-algebras

H∗(K, k) ∼=
∧∗ (H1(K, k)

) ∼= ∧∗ (HomFp((K)Φ , k)
)
,

where
∧∗(−) denotes the exterior algebra. Moreover, (K)Φ is a finite-dimensional

Fp-vector space, and so the above algebra has finite dimension as a k-vector space.

Proof. This is [Laz65, (2.5.7.1)]. Note, however, that the language used is not that of
uniform pro-p groups but that of “équi-p-valué” groups. For a proof in the modern
language see instead [SW00, Theorem 5.1.5]. In these references k = Fp, but for
general k we may use (31). �

Lazard also proved a second result in the same spirit as the above theorem, with
weaker assumptions and weaker conclusions. To state it, we recall the definition of
analytic pro-p group and of Poincaré group. An analytic pro-p group is a pro-p group
endowed with a structure of finite-dimensional analytic manifold over Qp, where the
multiplication and the inverse are analytic maps. This is an intrinsic property of a
pro-p group, in the sense that given an arbitrary pro-p group there exists at most one
structure of analytic manifold making it into an analytic pro-p group (see [Laz65,
Intrduction, §5 and Chapitre 3, (3.2.2)]).

Now, let us define Poincaré groups as in [Ser02, Chapter I, §4.5]. Let n ∈ Z>1; a
pro-p group K is called a Poincaré group of dimension n if it satisfies the following
properties:

• for all i ∈ Z>0 the cohomology group H i(K,Fp) is a finite-dimensional Fp-vector
space;

• the cohomology group Hn(K,Fp) is a one-dimensional Fp-vector space;

• for all i > n the cohomology group H i(K,Fp) is zero;

• for all i ∈ {0, . . . , n}, the cup product

^ : H i(K,Fp)×Hn−i(K,Fp) −→ Hn(K,Fp)

is a non-degenerate bilinear map.

If K is a Poincaré group of dimension n, note that all the properties above still hold
if we replace Fp by k, thanks to (31).

We can now state the above mentioned second result of Lazard.

Theorem 1.8.2 (Lazard). Let K be a torsion-free analytic pro-p group of dimen-
sion n as an analytic manifold over Qp. One has that K is a Poincaré group of
dimension n.
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Proof. See [SW00, Theorem 5.1.9 and the following lines]. �

As mentioned before, disregarding the statement about the dimension, we see
that this second theorem has both weaker assumptions and weaker conclusions than
the first theorem: indeed a uniform pro-p group is also an analytic pro-p group
(see [DDSMS03, Theorem 8.1]) and a pro-p group whose cohomology algebra is an
exterior algebra clearly satisfies the definition of Poincaré group.

1.9 The Ext-algebra

In this section we will define the pro-p Iwahori–Hecke Ext-algebra, introduced by
Ollivier and Schneider in [OS19], and we will state some of the main results proved
there.

1.9.a Definition and description in terms of group cohomology

Let us denote by Rep∞k (G) the category of smooth representations of G over k. This
is an abelian category with enough injective objects (see [Vig96, I.5.9]), and so we
can define Ext groups via injective resolutions.

We define
E∗ := Ext∗Rep∞k (G) (k [G/I] , k [G/I])op ,

as a graded k-algebra with respect to the (opposite of the) Yoneda product. From
the definition it follows that E0 = H.

At least as a k-vector space, the algebra E∗ admits a concrete description in terms
of profinite group cohomology. To show this, let us choose an injective resolution
k [G/I] −→ J• in Rep∞k (G). The restriction functor from Rep∞k (G) to Rep∞k (I)
preserves injective objects (see [Vig96, Chapitre I, 5.9 d)]), and so our resolution is
also an injective resolution in Rep∞k (I). By the Frobenius reciprocity for compact
induction, the functors HomRep∞k (G) (k [G/I] ,−) and (−)I are isomorphic, and so the

two complexes HomRep∞k (G) (k [G/I] , J•) and (J•)I are isomorphic. The cohomology
of the former complex is Ext∗Rep∞k (G) (k [G/I] , k [G/I]), while the cohomology of the

latter complex is H∗ (I, k [G/I]), and hence

E∗ = H∗ (I, k [G/I]) .

From this identification, however, it is not clear at all how the product in E∗ can
be described in in H∗ (I, k [G/I]), but we will see later on a non-trivial theorem
describing the multiplicative structure in terms of cohomological operations.

A fundamental tool to study the Ext-algebra is given by (a variation of) the

Shapiro isomorphism. First of all, for all w ∈ W̃ we define

X(w) := k [IwI/I] ⊆ k [G/I]

(the definition makes sense because T 1 ⊆ I and so every n ∈ N representing w
defines the same group InI). From the already mentioned Bruhat decomposition
(see (13))

G =
⋃̇
w∈W̃

IwI,

we obtain the following k-vector space decomposition:

E∗ = H∗ (I, k [G/I]) =
⊕
w∈W̃

H∗ (I,X(w)) .
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This can be seen as an extension of the Iwahori–Matsumoto basis, in the sense
that in degree zero this is exactly the decomposition E0 = H =

⊕
w∈W̃ kτw, since

H0 (I,X(w)) = X(w)I = k1IwI .

1.9.b Shapiro isomorphism

We are now going to further simplify the description of E∗ in terms of group coho-
mology, by making use of the Shapiro isomorphism.

For all w ∈ W̃ let us recall the subgroup Iw := I ∩wIw−1 of I defined in Section
1.3. It is easy to see that the following are well defined bijections, one the inverse of
the other:

IwI/I I/Iw

iwI iIw,

I/Iw IwI/I

iIw iwI.

Now, the representation k [I/Iw] of the group I is the smooth induction IndIIw(k)
of the trivial representation from Iw to I, and one has the Shapiro isomorphism
H∗(I, IndIIw(k)) ∼= H∗(Iw, k) (see, e.g., [NSW13, (1.6.4) Proposition]). Combining
these observations, we get the following isomorphism Shw, which we will call again
Shapiro isomorphism:

Shw : Hj (I, k [IwI/I])
∼=−−−−−−→

induced by

k [IwI/I] k [I/Iw]

iwI iIw

∼=

Hj (I, k [I/Iw])
∼=−−−−−−−−−−−−−−→

Shapiro isomorphism,
i.e., the map induced by

the inclusion Iw ↪→ I and by

k [I/Iw] k

iIw
{1 if iIw = Iw

0 otherwise

Hj (Iw, k) .

It is easy to see that Shw can also be described as the following composite map

Shw : Hj (I, k [IwI/I]) −−−→
res

Hj (Iw, k [IwI/I]) −−−−−−−−−−−→
induced by

evw : k [IwI/I] k

f f(w)

Hj (Iw, k) . (34)

We have thus obtained the following description of E∗ (as a k-vector space):

E∗ =
⊕
w∈W̃

H∗(I,X(w))

⊕
w∈W̃ Shw

−−−−−−−→∼=

⊕
w∈W̃

H∗(Iw, k). (35)

1.9.c Cup product

We are now going to describe a cup product on H∗ (I, k [G/I]) (i.e., on E∗, seen
as graded k-vector space). This is not the same as the (opposite of the) Yoneda
product.

We consider the G-equivariant biliner map

k [G/I]× k [G/I] −→ k [G/I]

defined by the pointwise product (here we see the elements of k [G/I] as functions
G −→ k), and then we can consider the associated cup product

^ : H i (I, k [G/I])×Hj (I, k [G/I]) −→ H i+j (I, k [G/I]) for i, j ∈ Z>0
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as in (30). So we have a structure of graded-commutative k-algebra on H∗ (I, k [G/I])
with respect to the cup product (see [NSW13, (1.4.4) Proposition]). Note that this is
in general different from the (opposite of the) Yoneda product, as one easily sees in

degree 0. It is easy to see that for all w, v ∈ W̃ with w 6= v (and all i, j ∈ Z>0) one has
H i(I,X(w)) ^ Hj(I,X(v)) = 0 and H i(I,X(w)) ^ Hj(I,X(w)) ⊆ H i+j(I,X(w)).
Looking at the description of Shw we gave in (34), and using the fact that the
cup product commutes with restriction, that the cup product is functorial and that
evw(ff ′) = evw(f) evw(f ′), we see that the following diagram is commutative.

H i(I,X(w))×Hj(I,X(w)) H i+j(I,X(w))

H i(Iw, k)×Hj(Iw, k) H i+j(Iw, k).

^

Shw ∼= Shw ∼=

^

1.9.d The product in the Ext-algebra

We are now going to state the already mentioned theorem on the explicit description
of the (opposite of the) Yoneda product on E∗ in terms of cohomological operations
(restriction, corestriction, cup product and conjugation), together with further re-
lated results.

Theorem 1.9.1 (Ollivier, Schneider). Let us fix a family of representatives

(ẇ)
w∈W̃ for the elements of W̃ = N/T 1. Let v, w ∈ W̃ , let i, j ∈ Z>0. Further-

more, let α ∈ H i(I,X(v)) and let β ∈ Hj(I,X(w)). One has

α · β =
∑
u∈W̃

s.t. IuI ⊆ IvI · IwI

γu

with γu ∈ H i+j(I,X(u)) and

Shu(γu) =
∑

h∈Iv−1\(v−1Iu∩IwI)/Iu−1

coresIu∩u̇h
−1Ihu̇−1

Iu

(
Γ̃u,h

)
with

Γ̃u,h := resI∩u̇h
−1Ihu̇−1

Iu∩u̇h−1Ihu̇−1

(
a∗ Shv(α)

)
^ resuIu

−1∩u̇h−1Ihu̇−1

Iu∩u̇h−1Ihu̇−1

(
(av̇c)∗ Shw(β)

)
,

where h = cẇd = v̇−1a−1u̇ with a, c, d ∈ I.

Note that the two conjugations in the last displayed equation do make sense
because, using the notation of the theorem, we have

a · (I ∩ v̇Iv̇−1) · a−1 = I ∩ av̇Iv̇−1a−1

= I ∩ u̇h−1Ihu̇−1,

(av̇c) · (I ∩ ẇIẇ−1) · (av̇c)−1 = av̇Iv̇−1a−1 ∩ av̇cẇIẇ−1c−1v̇−1a−1

= u̇h−1Ihu̇−1 ∩ u̇d−1Idu̇−1

= u̇h−1Ihu̇−1 ∩ u̇Iu̇−1.

Proof of the theorem. See [OS19, Proposition 5.3]. �

Given v, w ∈ W̃ , in view of the theorem it is useful to have at least some necessary
conditions on u ∈ W̃ for the property IuI ⊆ IvI · IwI to be satisfied.
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Lemma 1.9.2. Let u, v, w ∈ W̃ be such that IuI ⊆ IvI · IwI. One has the following
properties:

(i) |`(v)− `(w)| 6 `(u) 6 `(v) + `(w);

(ii) if `(vw) < `(v) + `(w), then `(u) < `(v) + `(w);

(iii) if `(vw) = `(v) + `(w), then u = vw.

Proof. Property (i) is proved in [OS19, Lemma 2.11]. Property (ii) follows from
[OS19, Remark 2.10]. Property (iii) is proved in [OS19, Corollary 2.5] (also taking
into account the Bruhat decomposition). �

We are now going to state a corollary of the Theorem 1.9.1, which provides
a much easier formula in the special case in which lengths add up. First note
that from the lemma and the theorem it follows that for all v, w ∈ W̃ such that
`(vw) = `(v) + `(w), for all i, j ∈ Z>0, for all α ∈ H i(I,X(v)) and β ∈ Hj(I,X(w)),
one has

α · β ∈ H i+j(I,X(vw)). (36)

Corollary 1.9.3. Let v, w ∈ W̃ such that `(vw) = `(v) + `(w), let i, j ∈ Z>0, let
α ∈ H i(I,X(v)) and let β ∈ Hj(I,X(w)). One has

α · β = (α · τw) ^ (τv · β).

Proof. See [OS19, Corollary 5.5]. �

In the case that lengths do not add up, one still has some relations between the
product in E∗ and the cup product, at least if G is semisimple simply connected.

Proposition 1.9.4. Assume that G is semisimple simply connected. Let s ∈ Saff

and w ∈ W̃ such that `(s̃w) = `(w)− 1, let i, j ∈ Z>0, and let α ∈ H i(I,X(s̃)) and
β ∈ Hj(I,X(w)). One has

α · β − (α · τw) ^ (τs̃ · β) ∈ H i+j(I,X(s̃w)).

Proof. See [OS21, Proposition 2.1]. �

Now, we turn our attention on the action of E0 on E∗: first of all we are going
to state a corollary in the case in which lengths add up, which in particular gives a
way to compute the products appearing on the right hand side of the equation in
Corollary 1.9.3.

Corollary 1.9.5. Let v, w ∈ W̃ and let α ∈ H i(I,X(v)).

• If `(vw) = `(v) + `(w), then

α · τw ∈ H i(I,X(vw)) and Shvw(α · τw) = resIvIvw
(

Shv(α)
)
.

• If `(wv) = `(w) + `(v), then

τw · α ∈ H i(I,X(wv)) and Shwv(τw · α) = reswIvw
−1

Iwv

(
w∗ Shv(α)

)
.

Proof. See [OS19, Corollary 5.5]. �

37



Note that in the last formula conjugation by w is well defined (in the sense that
it does not depend on the choice of a representative modulo T 1) by the discussion
after (29).

Now, let us state a proposition which deals with the description (again, in terms
of cohomological operations) of the action of the generators of E0 on the left on E∗,
in this way completely determining the structure of E∗ as a graded left E0-module.
Of course Theorem 1.9.1 would already be sufficient for this purpose, but here the
formulas will be more explicit. Recall the specific lift s̃ = ns ∈ W̃ of an element
s ∈ Saff we defined in (12).

Proposition 1.9.6 (Ollivier, Schneider). Let w ∈ W̃ , let j ∈ Z>0 and let
β ∈ Hj(I,X(w)). One has the following formulas.

(i) For all ω ∈ Ω̃ one has

τω · β ∈ Hj(I,X(ωw)),

Shωw(τω · β) = ω∗ Shw(β).

(ii) For all s ∈ Saff such that `(s̃w) = `(w) + 1 one has

τs̃ · β ∈ Hj(I,X(s̃w)),

Shs̃w(τs̃ · β) = ress̃Iw s̃
−1

Is̃w

(
s̃∗ Shw(β)

)
.

(iii) For all s ∈ Saff such that `(s̃w) = `(w)− 1 one has

τs̃ · β = γs̃w +
∑

t∈qαs([(O/M)×])

γtw

∈ Hj(I,X(s̃w))⊕
⊕

t∈qαs([(O/M)×])

Hj(I,X(tw)),

where

Shs̃w(γs̃w) = coress̃Iw s̃
−1

Is̃w

(
s̃∗ Shw(β)

)
,

Shtw(γtw) =
∑

z∈(O/M)×

s.t. qαs([z]) = t

(
nst
−1xαs(π

hs [z])n−1
s

)
∗ Shw(β),

where (αs, hs) is the affine root corresponding to s.

With the notation of the proposition, note that the following claims are implicit
in the statement of the proposition: the fact that Is̃w ⊆ s̃Iws̃−1 if `(s̃w) = `(w) + 1,
the fact that the opposite inclusion holds if instead `(s̃w) = `(w)− 1, and, using the
notations of the third part, the fact that conjugation by nst

−1xαs(π
hs [z])n−1

s sends
Iw to Itw.

1.9.e Anti-involution

Following [OS19, §6], in this subsection we are going to define an involutive anti-
automorphism (for brevity, anti-involution) on the Ext-algebra.

Let w ∈ W̃ and i ∈ Z>0. We start by defining an isomorphism Jw of k-vector
spaces from H i(I,X(w)) to H i(I,X(w−1)) as the unique map making the following
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diagram commutative:

H i(I,X(w)) H i(I,X(w−1))

H i(Iw, k) H i(Iw−1 , k).

Jw
∼=

Shw ∼= Shw−1∼=

(w−1)∗

∼=

(37)

Summing the Jw’s over all w ∈ W̃ , we get an automorphism

J : Ei =
⊕
w∈W̃

H i(I,X(w)) −→
⊕
w∈W̃

H i(I,X(w−1)) = Ei,

of the k-vector space Ei; moreover it is easy to see that it is an involution.
Summing over all i ∈ Z>0, we get an involutive automorphism

J : E∗ −→ E∗

of E∗ as a graded k-vector space. The non-trivial result is how J behaves with respect
to the product in E∗.

Theorem 1.9.7 (Ollivier, Schneider). The map J : E∗ −→ E∗ is an involutive
anti-automorphism, i.e., for all i, j ∈ Z>0, all α ∈ Ei and all β ∈ Ej one has

J(α · β) = (−1)ijJ(β) · J(α).

Proof. See [OS19, Proposition 6.1]. �

It is easy to describe the action of J on E0: indeed for all v ∈ W̃ the element
τv = 1IvI ∈ H0(I,Z(v)) corresponds to 1k ∈ k = H0(Iv, k) via the Shapiro isomor-
phism Shv (this can be seen for example using the alternative description (34) of the

Shapiro isomorphism). Therefore, we see from the diagram (37) that for all w ∈ W̃
we have

J(τw) = τw−1 . (38)

1.9.f Duality

In this section we will see a duality theorem for the Ext-algebra E∗ under the extra
assumption that the pro-p Iwahori subgroup I is torsion-free.

Assumptions. Let us assume that F is a finite extension of Qp and that I is
torsion-free. The former assumption is implied by the latter whenever T ( G, since
the groups U(α,h)’s are annihilated by p.

Under our assumption, clearly also the subgroup Iw for w ∈ W̃ are torsion-
free. Being open subgroups of G, they are analytic groups over Qp of the same
dimension, equal to the dimension d of G as an analytic manifold over Qp. We can
apply Lazard theorem on Poincaré groups (Theorem 1.8.2), obtaining that I as well

as all its subgroups Iw for w ∈ W̃ are Poincaré groups of dimension d. Recalling from
(35) the identification of graded k-vector spaces E∗ ∼=

⊕
w∈W̃ H∗(Iw, k) and the link
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between cohomology with coefficients in Fp and cohomology with coefficients in k
(see (31)), we see that E∗ is supported in degrees 0 to d:

E∗ =
d⊕
i=0

Ei.

For all k-vector spaces V , let us denote by V ∨ the k-linear dual

V ∨ := Homk(V, k).

Let us define the finite dual of Ei as:

(Ei)∨,finite :=
⊕
w∈W̃

(
H i(I,X(w))

)∨ ⊆ ( ⊕
w∈W̃

H i(I,X(w))
)∨

= (Ei)∨.

The k-vector space (Ei)∨ is naturally an E0-bimodule, the bimodule structure being
given by

E0 × (Ei)∨ (Ei)∨

(h, ϕ) ϕ(− · h)

and

(Ei)∨ × E0 (Ei)∨

(ϕ, h) ϕ(h · −).

We will consider instead a “twisted” E0-bimodule structure on (Ei)∨ defined through

the anti-involution; it is defined in the following way (we use the notation
(
(Ei)∨

)J J

for the k-vector space (Ei)∨ endowed with this “twisted” E0-bimodule structure):

E0 ×
(
(Ei)∨

)J J (
(Ei)∨

)J J

(h, ϕ) ϕ(J(h) · −)

and (
(Ei)∨

)J J × E0
(
(Ei)∨

)J J

(ϕ, h) ϕ(− · J(h)).

We also need some more pieces of notation in order to state the duality theorem:
let us consider the G-equivariant map

S : k [G/I] k

f
∑
g∈G/I

f(g)
(39)

and its induced map

Si := H i(I, S) : Ei = H i (I, k [G/I]) −→ H i(I, k).

Moreover, since we are dealing with a Poincaré group of dimension d, the cohomology
group Hd(I,Fp) is a one-dimensional Fp-vector space, and so Hd(I, k) is a one-
dimensional k-vector space (by (31)). We may therefore fix an isomorphism of k-
vector spaces

η : Hd(I, k) −→ k.
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Theorem 1.9.8 (Ollivier, Schneider). Always under the assumption that F is a
finite extension of Qp and that I is torsion-free, and defining S and η as above, the
following is an injective homomorphism of E0-bimodules:

∆i : Ei
(

(Ed−i)∨
)J J

α

 Ed−i k

β
(
η ◦ Sd

)
(α ^ β)

 .

Moreover, its image is
(
(Ed−i)∨,finite

)J J
, which in particular is a sub-E0-bimodule

of
(
(Ed−i)∨

)J J
.

Proof. See [OS19, Proposition 7.18]. �

1.9.g The top graded piece

In the last section we have seen in particular that, under the assumption that F is
a finite extension of Qp and that I is torsion-free, the Ext-algebra is supported in
degrees 0 to d (where d is the dimension of G as an analytic manifold over Qp) and
that the top graded piece Ed is “dual” to E0 (in a sense made precise by Theorem
1.9.8). Since we know the algebra E0 = H quite explicitly, it is possible to describe
Ed quite explicitly as well, as we will recall from [OS19, §8] in this section.

Assumptions. Let us assume that F is a finite extension of Qp and that I is torsion-
free. Recall that the former assumption is implied by the latter whenever T ( G.

We fix an isomorphism of k-vector spaces η : Hd(I, k) −→ k in order to apply the
duality theorem (Theorem 1.9.8), and then we fix the k-basis (φw)

w∈W̃ of (Ed)∨,finite

dual to the Iwahori–Matsumoto basis (τw)
w∈W̃ : this means that (for all w ∈ W̃ ) φw

is the unique element of Ed such that(
η ◦ Sd

)
(φw ^ τw) = 1,(

η ◦ Sd
)

(φw ^ τv) = 0 for all v ∈ W̃ r {w}.

Now, given α ∈ Ed, which can be written as α =
∑

w∈W̃ αw for suitable elements

αw ∈ Hd(I,X(w)), we see that α ^ τv = αv for all v ∈ W̃ (indeed, it is easy

to see that the cup product of two cohomology classes coming from different W̃ -
components is zero, as stated in [OS19, Equation 43]; moreover the elements of the

Iwahori–Matsumoto basis act as the identity on their W̃ -component). It follows that
φw can be characterized as the unique element of Hd(I,X(w)) such that(

η ◦ Sd
)

(φw) = 1. (40)

We are now going to state the explicit formulas describing the structure of Ed

as an E0-bimdodule. Before, we recall that for all s ∈ Saff we defined

θs := −(#µ
qαs) ·

∑
t∈qαs([(O/M)×])

τt ∈ E0,

and that we chose a specific lift s̃ ∈ W̃ of s in (12).
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Proposition 1.9.9 (Ollivier, Schneider). Always under the assumption that F
is a finite extension of Qp and that I is torsion-free, the following formulas hold for

all w ∈ W̃ , for all ω ∈ Ω̃ and for all s ∈ Saff :

τω · φw = φωw, (41)

φw · τω = φwω, (42)

τs̃ · φw =

{
φs̃w + (#µ

qαs) ·
∑

t∈qαs([(O/M)×]) φtw if `(s̃w) = `(w)− 1,

0 if `(s̃w) = `(w) + 1,
(43)

=

{
φs̃w − θs · φw if `(s̃w) = `(w)− 1,

0 if `(s̃w) = `(w) + 1,

φw · τs̃ =

{
φws̃ + (#µ

qαs) ·
∑

t∈qαs([(O/M)×]) φwt if `(ws̃) = `(w)− 1,

0 if `(ws̃) = `(w) + 1,
(44)

=

{
φws̃ − φw · θs if `(ws̃) = `(w)− 1,

0 if `(ws̃) = `(w) + 1.

Proof. See [OS19, Proposition 8.2]. �

As for the quadratic relations stated in Theorem 1.4.1, note that the above for-
mulas are valid also for a lift of s to W̃ of the form ts̃ or s̃t for some t ∈ qαs([(O/M)×])
in place of s̃, but, in general, not for an arbitrary lift.

Also the behaviour of the anti-involution J is particularly simple on Ed; indeed
one has the following formula, which is proved in [OS19, Equation (89)]:

J(φw) = φw−1 for all w ∈ W̃ . (45)

We end this section with a decomposition of Ed as an E0-bimodule under some
special assumptions.

Proposition 1.9.10 (Ollivier, Schneider). Assume that Ω is finite and that #Ω
is invertible in k (and, as in the whole subsection, that F is a finite extension of
Qp and that I is torsion-free). One has that Ed decomposes into a direct sum E0-
bimodules

Ed = kφ⊕ ker(Sd),

where φ :=
∑

ω∈Ω̃
φω. Moreover, E0 acts on kφ on the right and on the left through

the following character:

χtriv : E0 k

τw

{
1 if `(w) = 0,

0 if `(w) > 1.

Proof. See [OS19, Proposition 8.6]. �
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1.9.h Filtrations

Let i ∈ Z>0. As in [OS21, §2.2.4] we define the following two filtrations of k-vector
spaces, the first one decreasing and the second one increasing:

(FnEi)n∈Z>0
defined by FnEi :=

⊕
w∈W̃

s.t. `(w) > n

H i(I,X(w)),

(FnE
i)n∈Z>0

defined by FnE
i :=

⊕
w∈W̃

s.t. `(w) 6 n

H i(I,X(w)).

The following properties hold.

• For all n ∈ Z>0 the subspace FnE0 is a bilateral ideal of E0 (immediate from the
braid and quadratic relations, see Theorem 1.4.1).

• For all n,m, i, j ∈ Z>0 one has FnE
i · FmEj ⊆ Fn+mE

i+j (see [OS21, §2.2.4]).

• Assuming that F is a finite extension of Qp and that I is torsion-free, for all
n ∈ Z>0 the subspace FnE

d is a sub-E0-bimodule of Ed, or, equivalently, it is a
bilateral ideal of E∗ (immediate from the formulas for the action of E0 on Ed, see
Proposition 1.9.9).

1.10 The Ext-algebra for SL2

In the special case of G = SL2(Qp) with p 6= 2, 3 it is possible to carry out explicit
computations on the Ext-algebra. Under these assumptions, I is torsion-free, since
G does not contain non-trivial p-torsion elements (because the characteristic poly-
nomial of such a matrix would be divisible by the pth cyclotomic polynomial). Since
the dimension of G as an analytic manifold over Qp is 3 we deduce from Subsection
1.9.f that

E∗ = E0 ⊕ E1 ⊕ E2 ⊕ E3. (46)

Explicit formulas as well as results on the structure E∗ as an E0-bimodule have been
obtained in this case by Ollivier and Schneider in [OS21]. In this section, we will
state the main formulas as well as some other structural results.

Some of the result are true under more general assumptions, and so we will
specify the appropriate assumptions in each subsection.

1.10.a Preliminaries

Assumptions. We assume that G = SL2(F) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5). We does not enforce
any restriction on F.

• We fix the following group isomorphism:

ω(−) : (O/M)× T 0/T 1

u ωu :=

(
[u]−1 0

0 [u]

)
,

(47)

where [u] denotes the Teichmüller lift of u.

43



• Assume that q = p. Then O/M = Fp, in the sense that there exists a unique
field isomorphism between the two, and Fp ⊆ k, in the sense that there exists
a unique field homomorphism. Therefore, it make sense to consider the unique
group homomorphism

id: T 0/T 1 −→ k (48)

such that id ◦ω(−) is equal to the identity map Fp −→ k. More concretely,

id : T 0/T 1 k(
t−1 0
0 t

)
(where t ∈ Z×p )

t.

• Recall that in (25) we considered the automorphism Γ$ : H −→ H induced by
conjugation by $ := ( 0 1

π 0 ) ∈ GL2(F). In [OS21, §2.2.6] it is shown that Γ$ can
be naturally extended to an automorphism

Γ$ : E∗ −→ E∗,

such that for all w ∈ W̃ one has that Γ$
(
H∗(I,X(w))

)
⊆ H∗(I,X($w$−1)) and

that the following diagram commutes (this of course completely determines Γ$):

Hj(I,X(w) Hj(Iw, k)

Hj(I,X($w$−1)) Hj(I$w$−1 , k).

Shw

Γ$ $∗
induced by
conj$−1 : I$w$−1−→Iw
(=conj$)

Sh$w$−1

The map Γ$ is an automorphism of E∗ as a graded k-algebra, it also preserves the
cup product and commutes with the anti-involution J (see again [OS21, §2.2.6]):

Γ$ ◦ J = J ◦ Γ$. (49)

• Recall the element ζ ∈ Z(H) = Z(E0), defined in (28) as

ζ := τs0 · τs1 + (τs1 + e1) · (τs0 + e1).

We will see that it is not central in Z(E∗). The following two homomorphisms
of E0-bimodules are crucially used in [OS21] to study the structure of E∗ as a
graded E0-bimodule:

f : E∗ E∗

x ζ · x · ζ,
(50)

g : E∗ E∗

x ζ · x− x · ζ.
(51)

For all i ∈ Z>0, we will denote by fi : E
i −→ Ei and gi : E

i −→ Ei the restrictions
of f and g respectively.
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1.10.b The 1st graded piece E1: elements as triples

Assumptions. We assume that G = SL2(F) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5), with F arbitrary
and p 6= 2. Later on, we will assume furthermore that F = Qp.

Let us start with the explicit description of E1 as a k-vector space: recalling that
E1 ∼=

⊕
w∈W̃ H1(Iw, k), we see that such a description can be achieved through an

explicit description of the cohomology group H1(Iw, k) for all w ∈ W̃ . Recall from
(32) that to this end one should compute the Frattini quotient (Iw)Φ of Iw. This can
be done as follows.

Lemma 1.10.1. Let w ∈ W̃ . One has the following description of the Frattini
quotient of Iw.

• If `(s0w) = `(w) + 1 then one has the group isomorphism

O/M× 1 + M

(1 + M)p(1 + M`(w)+1)
×O/M (Iw)Φ(

c, t, b
) (

1 0
π`(w)+1c 1

)
·
(
t 0
0 t−1

)
·
(

1 b
0 1

)
.

• If `(s1w) = `(w) + 1 then one has the group isomorphism

O/M× 1 + M

(1 + M)p(1 + M`(w)+1)
×O/M (Iw)Φ(

c, t, b
)

( 1 0
πc 1 ) ·

(
t 0
0 t−1

)
·
(

1 π`(w)b
0 1

)
.

Proof. The computation of the abelianization of Iw is in [OS18, Proposition 3.62.ii,
Equation (26) and the preceiding lines], and the description of the Frattini quotient
follows. �

From the above lemma, we see in particular that the Frattini quotient is finite,
and so we might apply the formula H1(Iw, k) ∼= HomFp((Iw)Φ , k) (see (33)). We
consider the fixed isomorphism of k-vector spaces obtained by dualizing (i.e., by
applying the functor HomFp(−, k) to) the isomorphisms of Fp-vector spaces in the
lemma:

HomFp (O/M,k)×HomFp

(
1+M

(1+M)p(1+M`(w)+1)
,k
)
×HomFp (O/M,k)−→H1(Iw,k),

and considering the postcomposition with the inverse of the Shapiro isomorphism
H1(Iw, k) ∼= H1(I,X(w)), we obtain an isomorphism

(−,−,−)w : HomFp (O/M,k)×HomFp

(
1+M

(1+M)p(1+M`(w)+1)
,k
)
×HomFp (O/M,k)−→H1(I,X(w)).

Let w ∈ W̃ . In many statements, we will say “let (c−, c0, c+)w ∈ H1(I,X(w))”,
meaning that we consider arbitrary elements c−, c+ ∈ HomFp (O/M, k) and an ar-

bitrary element c0 ∈ HomFp
(

1+M
(1+M)p(1+M`(w)+1)

, k
)
, and that we consider the corre-

sponding element (c−, c0, c+)w ∈ H1(I,X(w)).

Assumptions. For the rest of this subsection, let us assume that G = SL2(Qp)
(with the fixed choices of T, of I, of the positive root and of the Chevalley system
as in Section 1.5), always with the condition p 6= 2.
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We have:

HomFp (O/M, k) ∼= k, (52)

HomFp

(
1+M

(1+M)p(1+M`(w)+1)
, k
)
∼=

{
0 if `(w) = 0,

k if `(w) > 1;
(53)

indeed the first isomorphism is obvious, and to prove the second one can use the
isomorphism given by the logarithm and the exponential 1+M ∼= M, through which
one sees that (1+M)p = 1+M2, which in turn proves that the claimed isomorphism
holds. In particular, we have

dimkH
1(I,X(w)) =

{
2 if `(w) = 0,

3 if `(w) > 1.
(54)

It will be sometimes useful to fix a basis for each H1(I,X(w)) (for w ∈ W̃ ) in a
uniform way. To this end, let us consider the following isomorphism, induced by the
logarithm:

ι : (1 + M)/(1 + M2) O/M = Fp

1 + px x.

(55)

We fix an element c ∈ HomFp (O/M, k) r {0}, and for all w ∈ W̃ we define

β−w := (c, 0, 0)w,

β+
w := (0, 0, c)w,

β0
w := (0, cι, 0)w if `(w) > 1.

(56)

This is clearly a k-basis of H1(I,X(w)). In some situations further assumptions on
c will be introduced (see Subsection 4.5.a).

1.10.c The 1st graded piece E1: explicit formulas

Assumptions. We assume that G = SL2(F) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5), with F arbitrary
and p 6= 2. We will introduce other assumptions for some of the formulas. In any
case, all the formulas will be valid at least for F = Qp with p 6= 2, 3 and π = p.

We are now going to list many formulas involving this description of the elements
of E1 as triples proved in [OS21]. Namely, we are going to state how the involutions
J and Γ$ behave, and we are going to describe the multiplication on the left, and,
partially, on the right, by elements of E0, at least in the case F = Qp with p 6= 2, 3.
Note that the description of the left action of E0, together with the description of
J, already determines the right action of E0.

• Action of the anti-involution J on E1 (see [OS21, Lemma 4.7]):

Let w ∈ W̃ and let (c−, c0, c+)w ∈ H1(I,X(w)). Furthermore, let uw ∈ (O/M)×

be such that ω−1
uww lies in the subgroup of W̃ generated by s0 and s1 (it is easy

to see that such uw exists and, although it is not unique, it has the property that
u2
w is uniquely determined by w). One has:

J
(
(c−, c0, c+)w

)
=

{(
c−(u2

w · −), c0, c+(u−2
w · −)

)
w−1 if `(w) is even,(

− c+(u−2
w · −),−c0,−c−(u2

w · −)
)
w−1 if `(w) is odd.

(57)
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• Action of the involutive automorphism Γ$ on E1 (see [OS21, Lemma 4.4]):

Let w ∈ W̃ and let (c−, c0, c+)w ∈ H1(I,X(w)). One has:

Γ$
(
(c−, c0, c+)w

)
= (c+,−c0, c−)$w$−1 . (58)

• Left and right action of τω on E1 for ω ∈ T 0/T 1 (see [OS21, Equations (64) and
(66)]):

Let u ∈ (O/M)×, let w ∈ W̃ and let (c−, c0, c+)w ∈ H1(I,X(w)). One has:

τωu · (c−, c0, c+)w =
(
c−(u−2 · −), c0, c+(u2 · −)

)
ωuw

, (59)

(c−, c0, c+)w · τωu = (c−, c0, c+)wωu . (60)

Note that, if q = p, then in the first formula we can write c−(u−2 · −) = u−2c−

and c+(u2 · −) = u2c+.

• Action of the idempotents on E1:

Assume that q = p, let λ ∈ T̂ 0/T 1, let w ∈ W̃ and let (c−, c0, c+)w ∈ H1(I,X(w)).
One has:

(c−, 0, 0)w · eλ = e
λ(−1)`(w)

id−2 · (c−, 0, 0)w,

(0, c0, 0)w · eλ = e
λ(−1)`(w) · (0, c0, 0)w (if `(w) > 1),

(0, 0, c+)w · eλ = e
λ(−1)`(w)

id2 · (0, 0, c+)w.

(61)

These formulas can be easily computed from formulas (59) and (60), and they are
also proven in [OS21, Equation (69)] (for λ = idm for some m ∈ Z, i.e., for every
λ).

• Left action of τs0 and τs1 when lengths add up:

For all n ∈ Z>0, let us define

Ψn : HomFp

(
1+M

(1+M)p(1+Mn+1)
, k
)
−→ HomFp

(
1+M

(1+M)p(1+Mn+2)
, k
)

as the map induced from the natural map 1+M
(1+M)p(1+Mn+2)

−→ 1+M
(1+M)p(1+Mn+1)

.

Furthermore, let w ∈ W̃ and let (c−, c0, c+)w ∈ H1(I,X(w)). One has:

τs0 · (c−, c0, c+)w = (0,−Ψ`(w)(c
0),−c−)s0w if `(s0w) = `(w) + 1,

τs1 · (c−, c0, c+)w = (−c+,−Ψ`(w)(c
0), 0)s1w if `(s1w) = `(w) + 1.

(62)

This is proved in [OS21, Proposition 4.9] in the case F = Qp for p 6= 2, 3. We add
a proof for the general case (F arbitrary and p 6= 2) further below. Note that if
F = Qp for p 6= 2 the formulas simplify as follows:

τs0 · (c−, c0, c+)w = (0,−c0,−c−)s0w if `(s0w) = `(w) + 1,

τs1 · (c−, c0, c+)w = (−c+,−c0, 0)s1w if `(s1w) = `(w) + 1;
(63)

indeed if `(w) = 0 then c0 = 0 and the new formula trivially holds, whereas if
`(w) > 1 then Ψ`(w) is the identity by (53).
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• Right action of τv on E1 when lengths add up (for v ∈ W̃ ):

For all n,m ∈ Z>0 with m > n, let us define

Ψn,m : HomFp

(
1+M

(1+M)p(1+Mn+1)
, k
)
−→ HomFp

(
1+M

(1+M)p(1+Mm+1)
, k
)

as the map induced from the natural map 1+M
(1+M)p(1+Mm+1)

−→ 1+M
(1+M)p(1+Mn+1)

.

Furthermore, let w, v ∈ W̃ such that `(wv) = `(w) + `(v) and such that `(v) > 1,
and let (c−, c0, c+)w ∈ H1(I,X(w)). One has:

(c−, c0, c+)w · τv =
(
c−,Ψ`(w),`(wv)(c

0), 0
)
wv

if `(s1wv) = `(wv) + 1,

(c−, c0, c+)w · τv =
(
0,Ψ`(w),`(wv)(c

0), c+
)
wv

if `(s0wv) = `(wv) + 1.
(64)

This is proved in [OS21, Lemma 4.12] in the case F = Qp for p 6= 2, 3. We add a
proof for the general case (F arbitrary and p 6= 2) further below. As we did for the
formulas for the left action, note that if F = Qp for p 6= 2 these formulas simplify
as follows:

(c−, c0, c+)w · τv =
(
c−, c0, 0

)
wv

if `(s1wv) = `(wv) + 1,

(c−, c0, c+)w · τv =
(
0, c0, c+

)
wv

if `(s0wv) = `(wv) + 1.
(65)

• Left action of τs0 and τs1 when lengths do not add up:

Assume that F = Qp with p 6= 2, 3 and π = p. We recall from (55) the definition
of the following isomorphism:

ι : (1 + M)/(1 + M2) O/M = Fp

1 + px x.

Let w ∈ W̃ and let (c−, c0, c+)w ∈ H1(I,X(w)). One has:

τs0 · (c−, c0, c+)w = e1(−c−,−c0,−c+)w + eid(0,−2c−ι, 0)w + (0, 0,−c−)s0w

if `(s0w) = `(w)− 1 and `(w) > 2,

τs0 · (c−, c0, c+)w = e1(−c−,−c0,−c+)w + eid(0,−2c−ι, c0ι−1)w

+ eid2(0, 0, c−)w + (0, 0,−c−)s0w

if `(s0w) = `(w)− 1 and `(w) = 1 (i.e., if w ∈ (T 0/T 1) · s0),

τs1 · (c−, c0, c+)w = e1(−c−,−c0,−c+)w + eid−1(0, 2c+ι, 0)w + (−c+, 0, 0)s1w

if `(s1w) = `(w)− 1 and `(w) > 2,

τs1 · (c−, c0, c+)w = e1(−c−,−c0,−c+)w + eid−1(−c0ι−1, 2c+ι, 0)w

+ eid−2(c+, 0, 0)w + (−c+, 0, 0)s1w

if `(s1w) = `(w)− 1 and `(w) = 1 (i.e., if w ∈ (T 0/T 1) · s1).
(66)

This is proved in [OS21, Proposition 4.9].

• Right action of τs0 and τs1 when lengths do not add up (some cases):

Assume that F = Qp with p 6= 2, 3 and π = p, and let ι be the isomorphism
defined in (55).

? Let (c−, c0, c+)s0 ∈ H1(I,X(s0)), and let v ∈ W̃ such that `(s0v) = `(v) − 1.
One has:

(0, c0, 0)s0 · τw = −e1(0, c0, 0)w − eid−1(c0ι−1, 0, 0)w. (67)
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? Let (c−, c0, c+)s1 ∈ H1(I,X(s1)), and let v ∈ W̃ such that `(s1v) = `(v) − 1.
One has:

(0, c0, 0)s1 · τw = −e1(0, c0, 0)w + eid(0, 0, c0ι−1)w. (68)

This is proved in [OS21, Lemma 4.12].

We conclude this subsection with the proof of the two formulas (62) and (64)
that are are proved in [OS21] only under more restrictive assumptions.

Proof of (62) and (64). First of all let us derive formulas (62) from formulas (64)
using the anti-involution J. Let us only treat the case of s0; the other case can be
proved similarly or derived from this one using the involutive automorphism Γ$.
Without loss of generality, we may assume that w = (s1s0)i for some i ∈ Z>0 or that
w = s1(s0s1)i for some i ∈ Z>0: indeed if our formula is true in these special cases,
then, using the formula (60), we immediately obtain the formula in the general case.
We now compute

τs0 · (c−, c0, c+)(s1s0)i = J
(
J
(
(c−, c0, c+)(s1s0)i

)
· J(τs0)

)
= J
(
(c−, c0, c+)(s0s1)i · τs0c−1

)
by (57)

= J
(
(c−,Ψ`((s0s1)i),`((s0s1)i)+1(c0), 0)(s0s1)is0c−1

)
by (62) and (60)

= (0,−Ψ`((s1s0)i)(c
0),−c−)(s0s1)is0

by (57),

τs0 · (c−, c0, c+)s1(s0s1)i = J
(
J
(
(c−, c0, c+)s1(s0s1)i

)
· J(τs0)

)
= J
(
(−c+,−c0,−c−)s1(s0s1)ic−1

· τs0c−1

)
by (57)

= J
(
(0,−Ψ`(s1(s0s1)i),`(s1(s0s1)i)+1(c0),−c−)s1(s0s1)is0

)
by (62) and (60)

=
(
(0,−Ψ`(s1(s0s1)i)(c

0),−c−)(s0s1)i+1

by (57).

This proves the cases of (62) we had to show.
We now turn to the proof of (64). To compute the product, we use the formula

of Corollary 1.9.5:

(c−, c0, c+)w · τv ∈ H1(I,X(wv)),

Shwv((c
−, c0, c+)w · τv) = resIwIwv

(
Shw((c−, c0, c+)w)

)
.

(69)

Therefore, the computation of the product amounts to the computation of a re-
striction (i.e., the map induced on cohomology by the inclusion Iwv ↪→ Iw). We
look at the Frattini quotients (described in Lemma 1.10.1) and compute the map
(Iwv)Φ −→ (Iw)Φ induced by the inclusion:

(Iwv)Φ (Iw)Φ

O
M ×

1+M
(1+M)p(1+M`(wv)+1)

× O
M

O
M ×

1+M
(1+M)p(1+M`(w)+1)

× O
M .

ind. by. Iwv ↪→ Iw

∼=

(
1 0

π`(wv)+1c 1

)
·
(
t 0
0 t−1

)
·
(

1 b
0 1

)

7→

(c,t,b)

(c,t,b)7→(0,t,b)

∼=

(
1 0

π`(w)+1c 1

)
·
(
t 0
0 t−1

)
·
(

1 b
0 1

)

7→

(c,t,b)
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Therefore on cohomology the picture is the following (in the diagram, to save space
we use the notation (−)′ := HomFp(−, k)):

H1(Iwv, k) H1(Iw, k)

( O
M)′ ×

(
1+M

(1+M)p(1+M`(wv)+1)

)′ × ( O
M)′ ( O

M)′ ×
(

1+M
(1+M)p(1+M`(w)+1)

)′ × ( O
M)′.

resIwIwv

∼= ∼=
(0,Ψ`(w),`(wv)(c

0),c+)←[(c−,c0,c+)

Looking again at (69), we conclude that

(c−, c0, c+)w · τv = (0,Ψ`(w),`(wv)(c
0), c+)wv,

as we wanted. �

1.10.d The 1st graded piece E1: the E0-bimodule structure

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5), and
we choose π = p.

Recall from (50) and (51) the definitions of the maps f1 and g1. In [OS21] a
complete description of E1 as an E0-bimodule is achieved, using the kernels of the
maps f1 and g1. In the following proposition we partially recall this result; for the
complete statements see the results in [OS21] quoted in the proof.

Proposition 1.10.2. One has the following facts:

• The intersection ker(f1)∩ker(g1) is zero, and hence we have an exact sequence of
E0-bimodules

0 ker(f1)⊕ ker(g1) E1 E1

ker(f1)⊕ker(g1) 0.

• The E0-bimodule E1

ker(f1)⊕ker(g1) has dimension 4 as a k-vector space, and a k-basis
is given by

eid · β+
1 · eid−1 , eid · β+

s1 · eid,

eid−1 · β−1 · eid, eid−1 · β−s0 · eid−1 .

• The E0-bimodule ker(f1) is an (E0)ζ-bimodule (where (E0)ζ denotes the localiza-
tion of E0 at the powers of ζ: the Ore conditions are satisfied and such localization
is a classical ring of fractions: see [OS21, Remark 8.7]), and it is generated as an
(E0)ζ-bimodule by the following two elements:

β+
1 − 2eidβ

0
s0 − eidβ

+
s1s0 , β−1 + 2eid−1β0

s1 − eid−1β−s0s1 .

• The E0-bimodule ker(g1) is isomorphic to F 1E0, and an explicit isomorphism is
given by

F 1E0 ker(g1)

τw β0,?
w ,

(70)
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where

β0,?
w :=


β0
w if `(s0w) = `(w) + 1 and `(w) > 2,

−β0
w if `(s1w) = `(w) + 1 and `(w) > 2,

β0
w − eidβ

+
ω if w = s1ω for some ω ∈ T 0/T 1,

−β0
w − eid−1β−ω if w = s0ω for some ω ∈ T 0/T 1.

(71)

Proof. For the first two statements see [OS21, Proposition 7.9 and its proof]. For
the third statement see [OS21, Proposition 4.28 and Proposition 7.7]. For the fourth
statement see [OS21, Proposition 7.3]. �

We also give the following less sophisticated result on the finite generation of E1,
which will be fundamental for our computations.

Lemma 1.10.3. One has the following facts.

(i) Let c−, c+ ∈ HomFp (O/M, k) and let c0 ∈ HomFp

(
1+M

(1+M)p(1+M`(w)+1)
, k
)

. The

following formulas hold:

(c−, 0, 0)1 · τw = (c−, 0, 0)w (72)

for w ∈ W̃ with `(s1w) = `(w) + 1,

(0, 0, c+)1 · τw = (0, 0, c+)w (73)

for w ∈ W̃ with `(s0w) = `(w) + 1,

τ(s1s0)i · (c−, 0, 0)1 = (c−, 0, 0)(s1s0)i (74)

for all i ∈ Z>0,

τs0(s1s0)i · (c−, 0, 0)1 = (0, 0,−c−)s0(s1s0)i (75)

for all i ∈ Z>0,

τ(s0s1)i · (0, 0, c+)1 = (0, 0, c+)(s0s1)i (76)

for all i ∈ Z>0,

τs1(s0s1)i · (0, 0, c+)1 = (−c+, 0, 0)s1(s0s1)i (77)

for all i ∈ Z>0,

(0, c0, 0)si · τw = (0, c0, 0)siw (78)

for i ∈ {0, 1} and w ∈ W̃ with `(siw) = `(w) + 1,

τw · (0, c0, 0)si = (−1)`(w)(0, c0, 0)wsi (79)

for i ∈ {0, 1} and w ∈ W̃ with `(wsi) = `(w) + 1.

(ii) One has that the following elements generate E1 as an E0-bimodule:

β−1 , β+
1 , β0

s0 , β0
s1

(where the notation has been introduced in (56)).

Proof. Let us prove the two statements.

(i) Formulas (72), (73) and (78) are immediate consequence of the formulas de-
scribing the right action of E0 when lengths add up (namely, formulas (65)).
Formulas (74), (75), (76) and (77) can be shown using the formulas describing
the left action of E0 when lengths add up (namely, formulas (63)). The same
is true for formula (79), also recalling the left action of τω for ω ∈ T 0/T 1 of
formula (59).
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(ii) This is a consequence of part (i). More precisely, for all v ∈ W̃ we want to show
that the elements β−v , β+

v and β0
v (the last one if `(v) > 1) lie in the sub-E0

bimodule generated by the four elements in the statement. For β0
v this is clear

form formula (78) (or from formula (79)). For β−v and β+
v , using (60) (or (59)),

we might assume that v is of the form (s1s0)i, s0(s1s0)i, (s0s1)i or s1(s0s1)i

for some i ∈ Z>0. Then we can apply the formulas in part (i) to conclude. �

1.10.e The 2nd graded piece E2

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5), and
we choose π = p.

As already said, under our assumptions I is torsion-free, and, since G has dimen-
sion 3 as an analytic manifold over Qp, Theorem 1.9.8 yields a duality between E1

and E2. By construction, this duality comes from a duality between H1(I,X(w))

and H2(I,X(w)) for all w ∈ W̃ . Recall that we described H1(I,X(w)) via our fixed
isomorphism

(−,−,−)w : HomFp (O/M,k)×HomFp

(
1+M

(1+M)p(1+M`(w)+1)
,k
)
×HomFp (O/M,k)−→H1(I,X(w)).

For a finite-dimensional Fp-vector space V one has a natural identification

Homk

(
HomFp(V, k), k

) ∼= V ⊗Fp k.

Using this identification and the above isomorphism, we obtain an isomorphism

(−,−,−)w : (O/M⊗Fpk)×
(

1+M
(1+M)p(1+M`(w)+1)

⊗Fpk
)
×(O/M⊗Fpk)−→H2(I,X(w)).

Recall from the analogous statement for H1(I,X(w)) that the dimension of the k-
vector space H2(I,X(w)) is 3 if `(w) > 1, and it is 2 if `(w) = 0 (in this case

1+M
(1+M)p(1+M`(w)+1)

is the trivial group).

As for E1, it is sometimes useful to fix a basis for each H1(I,X(w)) (for w ∈ W̃ )
in a uniform way. To this end, let us fix an element α ∈

(
O/M

)
r{0}, and, recalling

the definition of the map

ι : (1 + M)/(1 + M2) O/M = Fp

1 + px x,

we define, for all w ∈ W̃ ,

α−w := (α, 0, 0)w,

α+
w := (0, 0,α)w,

α0
w := (0, ι−1(α), 0)w if `(w) > 1.

(80)

This is clearly a k-basis of H2(I,X(w)). In some situations further assumptions on
α will be introduced (see Subsection 4.5.a).

We recall some explicit formulas from [OS21].

• Action of the anti-involution J on E2 (see [OS21, Equations (86) and (87)]):

Let w ∈ W̃ and let (α−, α0, α+)w ∈ H2(I,X(w)). Furthermore, let uw ∈ (O/M)×

be such that ω−1
uww lies in the subgroup of W̃ generated by s0 and s1 (as already
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stated, it is easy to see that such uw exists and, although it is not unique, it has
the property that u2

w is uniquely determined by w). One has:

J
(
(α−, α0, α+)w

)
=

{(
u−2
w α−, α0, u2

wα
+
)
w−1 if `(w) is even,(

− u2
wα

+,−α0,−u−2
w α−

)
w−1 if `(w) is odd.

(81)

• Action of the involutive automorphism Γ$ on E2 (see [OS21, Lemma 5.2]):

Let w ∈ W̃ and let (α−, α0, α+)w ∈ H2(I,X(w)). One has:

Γ$
(
(α−, α0, α+)w

)
= (α+,−α0, α−)$w$−1 . (82)

• Left and right action of τω on E1 for ω ∈ T 0/T 1:

Let u ∈ (O/M)×, let w ∈ W̃ and let (α−, α0, α+)w ∈ H2(I,X(w)). One has:

τωu · (α−, α0, α+)w = (u2α−, α0, u−2α+)ωuw, (83)

(α−, α0, α+)w · τωu = (α−, α0, α+)wωu . (84)

For the proof of the first formula see [OS21, Equation (89)]. The second formula
can be proved exactly in the same way using the corresponding formula for E1,
or from the first formula by using the anti-involution.

• Action of the idempotents on E2:

Let λ ∈ T̂ 0/T 1, let w ∈ W̃ and let (α−, α0, α+)w ∈ H2(I,X(w)). One has:

α−w · eλ = e
λ(−1)`(w) ·id2 · α−w ,

α0
w · eλ = e

λ(−1)`(w) · α0
w (if `(w) > 1),

α+
w · eλ = e

λ(−1)`(w) ·id−2 · α+
w .

(85)

• Left action of τs0 and τs1 when lengths add up (see [OS21, Proposition 5.5]):

Let w ∈ W̃ and let (α−, α0, α+)w ∈ H2(I,X(w)). One has:

τs0 · (α−, α0, α+)w = (−α+, 0, 0)s0w

if `(s0w) = `(w) + 1,

τs1 · (α−, α0, α+)w = (0, 0,−α−)s1w

if `(s1w) = `(w) + 1.

(86)

• Left action of τs0 and τs1 when lengths do not add up (see [OS21, Proposition
5.5]):
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Let w ∈ W̃ and let (α−, α0, α+)w ∈ H2(I,X(w)). One has:

τs0 · (α−, α0, α+)w = e1(−α−,−α0,−α+)w + eid(2ι(α0), 0, 0)w

+ (−α+,−α0, 0)s0w

if `(s0w) = `(w)− 1 and `(w) > 2,

τs0 · (α−, α0, α+)w = e1(−α−,−α0,−α+)w + eid(2ι(α0),−ι−1(α+), 0)w

+ eid2(α+, 0, 0)w + (−α+, 0, 0)s0w

if `(s0w) = `(w)− 1 and `(w) = 1 (i.e., if w ∈ (T 0/T 1) · s0),

τs1 · (α−, α0, α+)w = e1(−α−,−α0,−α+)w + eid−1(0, 0,−2ι(α0))w

+ (0,−α0,−α−)s1w

if `(s1w) = `(w)− 1 and `(w) > 2,

τs1 · (α−, α0, α+)w = e1(−α−,−α0,−α+)w + eid−1(0, ι−1(α−),−2ι(α0))w

+ eid−2(0, 0, α−)w + (0, 0,−α−)s1w

if `(s1w) = `(w)− 1 and `(w) = 1 (i.e., if w ∈ (T 0/T 1) · s1).

(87)

We will now (partially) state the description of E2 as an E0-bimodule proved in
[OS21]. As for E1, for the complete statements see the results in [OS21] quoted in
the proof. As in Proposition 1.10.2, we consider the localization (E0)ζ of E0 at the
powers of ζ.

Proposition 1.10.4. The following statements hold.

• One has the following decomposition (of E0-bimodules):

E2 = ker(f2)⊕ ker(g2).

• The E0-bimodule ker(f1) is an (E0)ζ-bimodule, and it is generated as an (E0)ζ-
bimodule by the following two elements:

α−1 − eidα
0
s0 , α+

1 + eid−1α0
s1 .

• Let us define (F 1E0)∨,finite as the sub-k-vector space of (F 1E0)∨ spanned by the
“dual basis” (τ∨w

∣∣
F 1E0)

w∈W̃ `>1 of the basis (τw)
w∈W̃ `>1 of F 1E0. Equivalently,

(F 1E0)∨,finite =
⋃

n∈Z>1

(
F 1E0/FnE0

)∨
,

from which it is clear that (F 1E0)∨,finite is a sub-E0-bimodule of (F 1E0)∨. One
has that there exists a unique isomorphism of E0-bimodules of the following form:(

(F 1E0)∨,finite
)J J

ker(g2)

τ∨w
∣∣
F 1E0

(w ∈ W̃ with `(w) > 1)
α0,?
w ,

where α0,?
w has the property that

α0,?
w − α0

w ∈ e{id,id−1} ker(f2) if `(s0w) = `(w) + 1,

α0,?
w + α0

w ∈ e{id,id−1} ker(f2) if `(s1w) = `(w) + 1.
(88)
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Proof. For the first statement see [OS21, Proposition 7.12]. For the second state-
ment see [OS21, §7.3.2] and in particular [OS21, Propsition 7.18]. For the third
statement see [OS21, Equations (123) and (124)]; uniqueness is clear because the
difference of two isomorphisms satisfying the claimed property would take values in
ker(f2) ∩ ker(g2) = {0}. �

1.10.f The top graded piece Ed

Assumptions. We assume that G = SL2(F) (with the fixed choices of T, of I,
of the positive root and of the Chevalley system as in Section 1.5) and that I is
torsion-free.

Note that the torsion-free assumption implies in particular that field is a finite
extension of Qp, because if instead F is a field of Laurent series then

(
1 O
0 1

)
is anni-

hilated by p. It also implies that p 6= 2, 3, because for example
(−1 0

0 −1

)
and

(
1 −1
3 1−3

)
are torsion elements in the pro-p Iwahori subgroup for p = 2 and p = 3 respectively.
Recall also from (46) that the torsion-free assumption is satisfied if F = Qp with
p 6= 2, 3.

Finally, recall that under our assumptions I is a Poincaré group of dimension d,
where d is the dimension of G as an analytic manifold over Qp.

Let us see how the explicit formulas for the left and right action of E0 on Ed

look like. For all ω ∈ T 0/T 1, for all j ∈ {0, 1} and for all w ∈ W̃ , we have:

τω · φw = φωw,

φw · τω = φwω,

τsj · φw =

{
φsjw − e1 · φw if `(sjw) = `(w)− 1,

0 if `(sjw) = `(w) + 1,

φw · τsj =

{
φwsj − φw · e1 if `(wsj) = `(w)− 1,

0 if `(wsj) = `(w) + 1.

(89)

This is immediate from the general formulas for the left and right actions of E0 on
Ed stated in Proposition 1.9.9 (and, for s1, from the subsequent observation about
the representatives for which the formulas are still valid).

We remark that for all w ∈ W̃ we have

e1 · φw = φw · e1. (90)

This is easy to see using the fact that for all ω ∈ T 0/T 1 one has either ωw = wω or
ωw = wω−1, depending on the length of w.

The following proposition describes the E0-bimodule structure of Ed. The map
S and its induced map on cohomology were defined in (39).

Proposition 1.10.5. One has a decomposition of E0-bimodules

Ed = ke1φ1 ⊕ ker(Sd).

Moreover, E0 acts on ke1 on the right and on the left through the character

χtriv : E0 k

τw

{
1 if `(w) = 0,

0 if `(w) > 1,

(91)

and ker(Sd) is the injective hull of
(
E0/ζE0

)∨
as a left as well as a right E0-module.
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Proof. The first two claims follows from the more general statement of Proposition
1.9.10, and the third claim is proved in [OS21, Proposition 3.3]. �
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Chapter 2

The centre of the Ext-algebra for
SL2(Qp) with p 6= 2, 3

2.1 Summary of the results

In this chapter we will determine completely the centre of E∗ for the group SL2(Qp)
for p 6= 2, 3. Recall from (46) that under these assumptions we have

E∗ = E0 ⊕ E1 ⊕ E2 ⊕ E3.

We will prove the following theorem, which achieves the claimed description of the
centre.

Theorem 2.1.1. If G = SL2(Qp) with p 6= 2, 3 (with the usual choices made in
Section 1.5), then the centre of E∗ can be described in the following way.

• The 0th graded piece Z(E∗)0 is isomorphic to k × k as a k-algebra. As a k-vector

space, it is spanned by τ1 and τc−1 where c−1 is the element of W̃ represented by
the matrix

(−1 0
0 −1

)
.

• The 1st graded piece Z(E∗)1 is zero.

• The 2nd graded piece Z(E∗)2 is free as a module over the ring Z(E∗)0 ∼= k × k of
rank ℵ0. Moreover, choosing π = p, an explicit k-basis is the following:

e1 · α0
s0 , eχ0

· α0
s0 , e1 · α0

s1 , eχ0
· α0

s1 ,

eλα
0
(s1s0)i − eλ−1α0

(s0s1)i

for λ ∈ T̂ 0/T 1 r {1, id} and i ∈ Z>1,

eidα
0
(s1s0)i − eid−1α0

(s0s1)i

+ 2
i−1∑
j=0

(
eid−1 ·

(
α+
s0(s1s0)i

− α+
s1(s0s1)i

)
+ eid ·

(
α−
s1(s0s1)i

− α−
s0(s1s0)i

))
for i ∈ Z>1,

e1α
0
(s1s0)i + e1α

0
(s0s1)i − e1 · α0

(s1s0)is1
− e1 · α0

(s0s1)is0

for i ∈ Z>1,

where the eλ’s are the idempotent of E0 defined in (16), and where the elements

α0
w (for w ∈ W̃ ) were defined in (80).
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• The 3rd graded piece Z(E∗)3 is free as a module over the ring Z(E∗)0 ∼= k × k of
rank ℵ0. Moreover, an explicit k-basis is the following:

eλφ1 for λ ∈ T̂ 0/T 1.

e1φs0 , e1φs1 , eχ0
φs0 , eχ0

φs1 ,

Uλ,i := eλφ(s1s0)i + eλ−1φ(s0s1)i

for λ ∈ T̂ 0/T 1 r {1} and i ∈ Z>1,

U1,i := e1φ(s1s0)i + e1φ(s0s1)i − e1φs1(s0s1)i − e1φs0(s1s0)i

for i ∈ Z>1,

where the eλ’s are as above and where (φw)
w∈W̃ is the basis of E3 defined in

Subsection 1.9.g.

Proof. The 0th graded piece will be determined in Proposition 2.4.1. The 1st graded
piece will be determined in Proposition 2.5.2.

The basis of Z(E∗)2 will be computed in Proposition 2.6.12 (with some different
sign conventions) and the basis of Z(E∗)3 will be computed in Lemma 2.3.1.

Finally, the freeness results will be proved in Remark 2.8.1. �

Furthermore, in this chapter we will prove the following additional facts:

• If G = SL2(F) and I is torsion-free, we determine a basis of Z(E∗)d (Proposition
2.2.1). If furthermore Fq ⊆ k, then one can use the same basis of Z(E∗)d defined
in the above theorem (Lemma 2.3.1).

• If G = SL2(F), if I is torsion-free and if Fq ⊆ k, we determine the structure of
Z(E∗)d = ZE0(Ed) as a Z(E0)-module (Proposition 2.3.6). In particular we show
that there is a decomposition of Z(E0)-modules

Z(E∗)d = ke1φ1 ⊕N ⊕ E ,

where N is a finite direct sum of submodules of dimension 1 over k and where E
is the injective hull of

(
Z(E0)/ζZ(E0)

)∨
(the element ζ was defined in (28)).

This result yields a strong analogy with the description of Ed as an E0-bimodule
recalled from [OS19] and [OS21] in Proposition 1.10.5.

• If G = SL2(Qp) with p 6= 2, 3 we show that Z(E∗)2 = ZE0(E2) (see Proposition
2.6.12). Hence Z(E∗)2 has a structure of as Z(E0)-module, and we determine it
in Subsection 2.7.

We conclude this overview by highlighting the stark contrast between the al-
gebraic properties of Z(E∗) and of Z(E0) (compare with Theorem 1.6.2 and the
following lines).

Remark 2.1.2. Assume that G = SL2(Qp) with p 6= 2, 3. One has the following
(negative) results:

• Z(E∗) is not Noetherian as a k-algebra;

• E∗ is not finitely generated as a Z(E∗)-module;

• E∗ is not left nor right Noetherian as a k-algebra.

Proof. Let us prove the three claims.
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• If, by contradiction, Z(E∗) were Noetherian as a k-algebra, then the ideal Z(E∗)3

would be finitely generated. And this is not the case since Z(E∗)0 has finite
dimension as a k-vector space, while Z(E∗)3 has infinite dimension as a k-vector
space.

• If, by contradiction, E∗ were finitely generated as a Z(E∗)-module, then E0 would
be finitely generated as a Z(E∗)0-module. And, again, this is not the case since
Z(E∗)0 has finite dimension as a k-vector space, while E0 has infinite dimension
as a k-vector space.

• The k-algebra E∗ is not left nor right Noetherian because we have the ascending
exhaustive filtration of bilateral sub-ideals of E3

E3 =
⋃

n∈Z>0

FnE
3,

which shows that E3 is not finitely generated, even as a bilateral ideal. �

2.2 The top graded piece of the centre

Assumptions. We assume that G = SL2(F) (with the fixed choices of T, of I,
of the positive root and of the Chevalley system as in Section 1.5) and that I is
torsion-free.

Recall from Subsection 1.10.f that the above assumption implies that F is a finite
extension of Qp with p 6= 2, 3 and also that I is a Poincaré group of dimension d,
where d is the dimension of G as an analytic manifold over Qp. Finally, recall that
the torsion-free assumption is satisfied if F = Qp with p 6= 2, 3.

As in Subsection 1.9.g, let us consider the k-basis (φw)
w∈W̃ of Ed obtained by

dualizing the k-basis (τw)
w∈W̃ of E0. Also recall the definition of c−1 from (21).

Proposition 2.2.1. Z(E∗)d is the sub-k-vector space of Ed having the following
basis:

φω for ω ∈ T 0/T 1,∑
ϑ∈T 0/T 1

square

φϑs0 ,
∑

ϑ∈T 0/T 1

not a square

φϑs0 ,
∑

ϑ∈T 0/T 1

square

φϑs1 ,
∑

ϑ∈T 0/T 1

not a square

φϑs1 ,

φω(s0s1)i + φω−1(s1s0)i +
∑

ϑ∈T 0/T 1

(
φϑ(s0s1)is0 + φϑ(s1s0)is1

)
for ω ∈ T 0/T 1 and i ∈ Z>1.

Remark 2.2.2. Before seeing the proof of the proposition, let us remark that some
possible alternative choices of a basis:

• It is easy to see that we can replace the four elements∑
ϑ∈T 0/T 1

square

φϑs0 ,
∑

ϑ∈T 0/T 1

not a square

φϑs0 ,
∑

ϑ∈T 0/T 1

square

φϑs1 ,
∑

ϑ∈T 0/T 1

not a square

φϑs1

with the following four elements:

e1 · φs0 , eχ0
· φs0 , e1 · φs1 , eχ0

· φs1 ,

where χ0 is the quadratic character (Legendre symbol).
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• The elements of the form

φω(s0s1)i + φω−1(s1s0)i +
∑

ϑ∈T 0/T 1

(
φϑ(s0s1)is0 + φϑ(s1s0)is1

)
(for ω ∈ T 0/T 1 and i ∈ Z>1) can be rewritten as

φω(s0s1)i + φω−1(s1s0)i − e1 · φ(s0s1)is0 − e1 · φ(s1s0)is1 .

Up to replacing ω by ωc−1, they can also be rewritten as

(τs0 + τs1) ·
(
φω(s0s1)is0 + φω−1(s1s0)is1

)
for ω ∈ T 0/T 1 and i ∈ Z>1

or as (
φω(s0s1)is0 + φω−1(s1s0)is1

)
· (τs0 + τs1) for ω ∈ T 0/T 1 and i ∈ Z>1.

Proof of the proposition. Recall from (89) that for all ω ∈ T 0/T 1, j ∈ {0, 1}, w ∈ W̃ ,
we have the following formulas describing left and right action of E0 on Ed:

τω · φw = φωw,

φw · τω = φwω,

τsj · φw =

{
φsjw − e1 · φw if `(sjw) = `(w)− 1,

0 if `(sjw) = `(w) + 1,

φw · τsj =

{
φwsj − φw · e1 if `(wsj) = `(w)− 1,

0 if `(wsj) = `(w) + 1.

Let us consider the following decomposition of Ed as a k-vector space:

E =
⊕
i∈Z>0

Edi , where Edi :=
⊕
w∈W̃

s.t. `(w)=i

kφw.

For v ∈ W̃ , let us consider the k-linear maps

Cv : Ed Ed

φ τv · φ− φ · τv.

To ease notation let us define Ed−1 := {0}. By the explicit formulas above it is easy
to see that

Cω(Edi ) ⊆ Edi for ω ∈ T 0/T 1 and i ∈ Z>0, (92)

and that

Cs0(Edi ) ⊆ Edi−1 ⊕ Edi for i ∈ Z>0,

Cs1(Edi ) ⊆ Edi−1 ⊕ Edi for i ∈ Z>0.

Moreover, we claim that

Cs0

(
Ed2i ⊕ Ed2i+1

)
⊆ Ed2i−1 ⊕ Ed2i for i ∈ Z>0,

Cs1

(
Ed2i ⊕ Ed2i+1

)
⊆ Ed2i−1 ⊕ Ed2i for i ∈ Z>0.

(93)
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Let us prove the first inclusion (the other being completely analogous): by the for-
mulas above the only thing which remains to check is that Cs0(Ed2i+1) ⊆ Ed2i. This
is true since

Cs0
(
φωs0(s1s0)i

)
= φc−1ω−1(s1s0)i − e1φωs0(s1s0)i − φc−1ω(s0s1)i + φωs0(s1s0)ie1

= φc−1ω−1(s1s0)i − φc−1ω(s0s1)i ∈ Ed2i,
Cs0

(
φωs1(s0s1)i

)
= 0− 0 = 0,

where we have used that e1 centralizes Ed.
Let us consider σ ∈ Ed and let us decompose it as

σ =
∑
i∈Z>0

σi,

for suitable σi ∈ Edi (almost all of them equal to 0). Using (92) and (93), we see
that σ is centralized by the whole E0 if and only if σ2i + σ2i+1 is centralized by the
whole E0 for all i ∈ Z>0.

Hence, in order to compute ZE0(Ed), it suffices to compute ZE0

(
Ed2i ⊕ Ed2i+1

)
for all i ∈ Z>0. Hence, with notation as above, let us assume that σ = σ2i + σ2i+1

for some i ∈ Z>0, and let us determine the conditions under which σ is centralized
by the whole E0. To this end, let us distinguish the two cases i > 1 and i = 0.

• Assume that σ = σ2i + σ2i+1 with i ∈ Z>1. Let us write it as

σ =
∑

ω∈T 0/T 1

aωφω(s0s1)i +
∑

ω∈T 0/T 1

bωφω(s1s0)i

+
∑

ω∈T 0/T 1

a′ωφω(s0s1)is0 +
∑

ω∈T 0/T 1

b′ωφω(s1s0)is1 ,

for suitable aω, bω, a
′
ω, b
′
ω ∈ k.

Using the already mentioned formulas for the left and right action of E0 on Ed

and the fact that e1 centralises Ed, we compute the following:

τs0 · σ =
∑

ω∈T 0/T 1

aωφc−1ω−1(s1s0)i−1s1 −
∑

ω∈T 0/T 1

aωe1φω(s0s1)i

+
∑

ω∈T 0/T 1

a′ωφc−1ω−1(s1s0)i −
∑

ω∈T 0/T 1

a′ωe1φω(s0s1)is0 ,

σ · τs0 =
∑

ω∈T 0/T 1

bωφc−1ω(s1s0)i−1s1 −
∑

ω∈T 0/T 1

bωe1φω(s1s0)i

+
∑

ω∈T 0/T 1

a′ωφc−1ω(s0s1)i −
∑

ω∈T 0/T 1

a′ωe1φω(s0s1)is0 .

Let us compute the parts where e1 appears: let w ∈ W̃ , and for all ω ∈ T 0/T 1 let
dω ∈ k. One has ∑

ω∈T 0/T 1

dωe1φωw = −
∑

ω∈T 0/T 1

(
dω

∑
ω′∈T 0/T 1

φω′ωw

)
= −

∑
ω∈T 0/T 1

(
dω

∑
ω′∈T 0/T 1

φω′w

)
= −

∑
ω′∈T 0/T 1

(( ∑
ω∈T 0/T 1

dω

)
φω′w

)
.
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This concludes the previous computation, and we can deduce that

τs0 · σ = σ · τs0 ⇐⇒


bω = aω−1 for all ω ∈ T 0/T 1

a′ω =
∑

ϑ∈T 0/T 1 aϑ for all ω ∈ T 0/T 1

a′ω =
∑

ϑ∈T 0/T 1 bϑ for all ω ∈ T 0/T 1

⇐⇒

{
bω = aω−1 for all ω ∈ T 0/T 1

a′ω =
∑

ϑ∈T 0/T 1 aϑ for all ω ∈ T 0/T 1.

Doing the same computations with s1 instead of s0 (or arguing with the involutive
automorphism Γ$), one gets

τs1 · σ = σ · τs1 ⇐⇒

{
bω = aω−1 for all ω ∈ T 0/T 1

b′ω =
∑

ϑ∈T 0/T 1 aϑ for all ω ∈ T 0/T 1.

Hence

(
σ commutes with
both τs0 and τs1

)
⇐⇒


bω = aω−1 for all ω ∈ T 0/T 1

a′ω =
∑

ϑ∈T 0/T 1 aϑ for all ω ∈ T 0/T 1

b′ω =
∑

ϑ∈T 0/T 1 aϑ for all ω ∈ T 0/T 1.

We have thus proved that, given σ ∈ Ed2i ⊕ Ed2i+1 with i ∈ Z>1, one has that σ
commutes with both τs0 and τs1 if and only if it is of the form

σ =
∑

ω∈T 0/T 1

cω
(
φω(s0s1)i + φω−1(s1s0)i

)
+
( ∑
ω∈T 0/T 1

cω

)
·
∑

ω∈T 0/T 1

(
φω(s0s1)is0 + φω(s1s0)is1

) (94)

for some cω ∈ k (where ω ∈ T 0/T 1). But if σ is of this form, then it commutes

also with τω for all ω ∈ T 0/T 1, because for all ϑ ∈ T 0/T 1 and w ∈ W̃ one has
ϑw = wϑ if `(w) is even and ϑw = wϑ−1 if `(w) is odd.

Hence, this proves that, given σ ∈ Ed2i ⊕ Ed2i+1 with i ∈ Z>1,, one has that σ is
centralized by the whole E0 if and only if it is of the form (94).

• Now, let us assume instead that σ = σ0 + σ1 with σ0 ∈ Ed0 and σ1 ∈ Ed1 , and let
us determine the conditions under which σ is centralized by the whole E0.

? It is immediate from the explicit formulas that all of Ed0 is centralized by the
whole E0.

? It remains to describe which of the σ = σ1 ∈ Ed1 centralize all of E0. Hence, let
us assume that σ is of the form

σ =
∑

ω∈T 0/T 1

aωφωs0 +
∑

ω∈T 0/T 1

bωφωs1 ,

for some aω, bω ∈ k. Let us compute

τs0 · σ =
∑

ω∈T 0/T 1

aωφc−1ω−1 − e1

∑
ω∈T 0/T 1

aωφωs0 ,

σ · τs0 =
∑

ω∈T 0/T 1

aωφc−1ω − e1

∑
ω∈T 0/T 1

aωφωs0 .
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Hence we deduce that

τs0 · σ = σ · τs0 ⇐⇒
(
aω = aω−1 for all ω ∈ T 0/T 1

)
. (95)

In the same way we deduce that

τs1 · σ = σ · τs1 ⇐⇒
(
bω = bω−1 for all ω ∈ T 0/T 1

)
. (96)

Now, given ω ∈ T 0/T 1, let us compute

τω · σ =
∑

ω′∈T 0/T 1

aω′φωω′s0 +
∑

ω′∈T 0/T 1

bω′φωω′s1 ,

σ · τω =
∑

ω′∈T 0/T 1

aω′φω−1ω′s0 +
∑

ω′∈T 0/T 1

bω′φω−1ω′s1

=
∑

ω′′∈T 0/T 1

aω2ω′′φωω′′s0 +
∑

ω′′∈T 0/T 1

bω2ω′′φωω′′s1 .

Therefore,(
τω · σ = σ · τω for all ω ∈ T 0/T 1

)
⇐⇒

{
aω′ = aω2ω′ for all ω, ω′ ∈ T 0/T 1

bω′ = bω2ω′ for all ω, ω′ ∈ T 0/T 1

⇐⇒

{
aϑ = aϑ′ for all ϑ, ϑ′ ∈ T 0/T 1 such that ϑ−1ϑ′ is a square

bϑ = bϑ′ for all ϑ, ϑ′ ∈ T 0/T 1 such that ϑ−1ϑ′ is a square.

Since by assumption q 6= 2, we have F×q /(F×q )2 ∼= Z/2Z, and so we have proved

that, given σ ∈ Ed1 , one has that σ commutes with τω for all ω ∈ T 0/T 1 if and
only if σ is of the form

σ = a
∑

ϑ∈T 0/T 1

square

φϑs0 + a′
∑

ϑ∈T 0/T 1

not a square

φϑs0 + b
∑

ϑ∈T 0/T 1

square

φϑs1 + b′
∑

ϑ∈T 0/T 1

not a square

φϑs1 , (97)

for some a, a′, b, b′ ∈ k. Moreover, from the characterization above of the prop-
erties of commuting with τs0 and τs1 ((95) and (96)), we see that if σ is of the
form (97), then it automatically commutes with both τs0 and τs1 .

Therefore we conclude that, given σ ∈ Ed1 , one has that σ centralizes all of E0

if and only if it is of the form (97). �

2.3 Structure of top graded piece of the centre as a
Z(E0)-module

Since Z(E∗)d = ZE0(Ed), there is a natural structure of Z(E0)-module on Z(E∗)d.
In this section we are going to describe such structure.

2.3.a Assumptions and preliminaries

Assumptions. We assume that G = SL2(F) (with the fixed choices of T, of I, of
the positive root and of the Chevalley system as in Section 1.5), that I is torsion-free
and that Fq ⊆ k.
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Recall under these assumptions F is a finite extension of Qp with p 6= 2, 3 and
that I is a Poincaré group of dimension d, where d is the dimension of G as an
analytic manifold over Qp. The assumption Fq ⊆ k will be used in a moment for the
existence of enough k-characters of the group T 0/T 1.

Recall the notation

T̂ 0/T 1 := Hom
(
T 0/T 1, k×

)
,

Γ :=
{
{λ, λ−1}

∣∣∣ λ ∈ T̂ 0/T 1
}
.

Moreover, as in Remark 2.2.2, let us consider the quadratic character

χ0 : T 0/T 1 k×

ω

{
1 if ω is a square,

−1 if ω is not a square.

Since p 6= 2 we have

Γ = {{1}} ∪̇ {{χ0}} ∪̇ {γ ∈ Γ | #γ = 2} .

Recall from Lemma 1.7.1 that since Fq ⊆ k we have a direct product decomposition

Z(E0) =
∏
γ∈Γ

eγZ(E0) =
∏
γ∈Γ

Z(E0)eγ .

Moreover, for all µ ∈ T̂ 0/T 1, let us define

xµ := eµBoΠ(s0s1) + eµ−1BoΠ(s1s0)

=

{
eµτs0s1 + eµ−1τs1s0 if µ 6= 1,

e1ζ = e1τs0s1 + e1τs1s0 + e1τs0 + e1τs1 + e1 if µ 6= 1.

From the above mentioned lemma, we know that the components eγZ(E0) can be
described in the following way:

k[Xλ] eγZ(E0)

1 eγ

Xλ xλ

∼=

if γ = {1} or γ = {χ0},

k[Xλ, Xλ−1 ]

(Xλ ·Xλ−1)
eγZ(E0)

1 eγ

Xλ xλ

Xλ−1 xλ−1

∼=

if γ = {λ, λ−1} with λ 6= λ−1.

(98)

The decomposition Z(E0) =
∏
γ∈Γ eγZ(E0) induces a decomposition

Z(E∗)d =
∏
γ∈Γ

eγZ(E∗)d.

The following lemma, which easily follows from the results in Section 2.2, describes a
k-basis of Z(E∗)d that decomposes into bases of each of the components eγZ(E∗)d.
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Lemma 2.3.1. The following is a k-basis of Z(E∗)d:

eλφ1 for λ ∈ T̂ 0/T 1,

e1φs0 , e1φs1 , eχ0
φs0 , eχ0

φs1 ,

Uλ,i := eλφ(s1s0)i + eλ−1φ(s0s1)i

for λ ∈ T̂ 0/T 1 r {1} and i ∈ Z>1,

U1,i := e1φ(s1s0)i + e1φ(s0s1)i − e1φs1(s0s1)i − e1φs0(s1s0)i

for i ∈ Z>1.

Moreover, defining Uλ,i also for i = 0 (and for all λ ∈ T̂ 0/T 1) in the same fashion
as above, one still has that Uλ,i ∈ Z(E∗)d.

Proof. This easily follows from Proposition 2.2.1 and Remark 2.2.2. The rest being
clear, let us check, for all i ∈ Z>1, the correspondence between the elements of the
form

φω(s0s1)i + φω−1(s1s0)i − e1 · φ(s0s1)is0 − e1 · φ(s1s0)is1 for ω ∈ T 0/T 1

and the elements of the form

Uλ,i =

{
eλφ(s1s0)i + eλ−1φ(s0s1)i for λ ∈ T̂ 0/T 1,

e1φ(s1s0)i + e1φ(s0s1)i − e1φs1(s0s1)i − e1φs0(s1s0)i for λ = 1.

For all λ ∈ T̂ 0/T 1 r {1}, one has∑
ω∈T 0/T 1

λ(ω) ·
(
φω(s0s1)i + φω−1(s1s0)i − e1 · φ(s0s1)is0 − e1 · φ(s1s0)is1

)
= −eλ−1φ(s0s1)i − eλφ(s1s0)i ,

where the terms e1 ·φ(s0s1)is0 and e1 ·φ(s1s0)is1 disappear because
∑

ω∈T 0/T 1 λ(ω) = 0.
On the other side, doing the same computation with λ = 1, we get:∑

ω∈T 0/T 1

(
φω(s0s1)i + φω−1(s1s0)i − e1 · φ(s0s1)is0 − e1 · φ(s1s0)is1

)
= −e1φ(s0s1)i − e1φ(s1s0)i + e1 · φ(s0s1)is0 + e1 · φ(s1s0)is1 ,

using also that
∑

ω∈T 0/T 1 1k = −1k.
Vice-versa, using the orthogonality relation∑

λ∈T̂ 0/T 1

λ(ω−1)λ(ϑ) =

{
−1k if ω = ϑ

0 if ω 6= ϑ
for all ω, ϑ ∈ T 0/T 1,

we see that for all ω ∈ T 0/T 1, one has∑
λ∈T̂ 0/T 1

λ(ω−1)eλ = −
∑

λ∈T̂ 0/T 1

∑
ϑ∈T 0/T 1

λ(ω−1)λ(ϑ)τϑ−1

= τω−1 ,

and so ∑
λ∈T̂ 0/T 1

λ(ω)Uλ,i =
∑

λ∈T̂ 0/T 1

λ(ω)
(
eλφ(s1s0)i + eλ−1φ(s0s1)i

)
− e1φs1(s0s1)i − e1φs0(s1s0)i

= −φω−1(s1s0)i − φω(s0s1)i − e1φs1(s0s1)i − e1φs0(s1s0)i . �
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Returning to the decomposition

Z(E∗)d =
⊕
γ∈Γ

eγZ(E∗)d,

we get the following description of the component eγZ(E∗)d for γ ∈ Γ:

• If γ = {λ} (in which case λ = 1 or λ = χ0), then the following is a k-basis of
eγZ(E∗)d:

eλφ1, eλφs0 , eλφs1 , Uλ,i (for i ∈ Z>1). (99)

• If γ = {λ, λ−1} with λ 6= λ−1, then the following is a k-basis of eγZ(E∗)d:

eλφ1, eλ−1φ1, Uλ,i (for i ∈ Z>1), Uλ−1,i (for i ∈ Z>1). (100)

2.3.b The components eγZ(E
∗)d

We are now going to describe the components eγZ(E∗)d for γ ∈ Γ, and more pre-
cisely we will determine their eγZ(E0)-module structure. We will do this in three
lemmas, which will deal respectively with the components e1Z(E∗)d, eχ0

Z(E∗)d and

eγZ(E∗)d for γ such that #γ = 2.

Lemma 2.3.2. Identifying e1Z(E0) with the polynomial ring k[X1] as in (98), one
has the following isomorphism of k[X1]-modules:

k[X1]

(X1 − 1)
⊕ k[X1]

(X1)
⊕ k[X1, X

−1
1 ]

k[X1]
e1Z(E∗)d(

1, 0, 0
)

e1φ1,(
0, 1, 0

)
e1φs0 − e1φs1 ,(

0, 0, X−i1

)
(for i ∈ Z>1)

U1,i−1.

∼=

Moreover, the direct summand
k[X1,X

−1
1 ]

k[X1] is the injective hull of k = k[X1]
(X1) as a k[X1]-

module.

Proof. The fact that
k[X1,X

−1
1 ]

k[X1] is the injective hull of k = k[X1]
(X1) as a k[X1]-module is

shown in [Lam12, Proposition 3.91.(1)].
We have seen in (99) that the following is a k-basis of e1Z(E∗)d:

e1φ1, e1φs0 , e1φs1 , U1,i (for i ∈ Z>1). (101)

Recall also that we introduced the notation U1,0, although this is not an element of
such basis. For such element, we have

U1,0 = 2e1φ1 − e1φs0 − e1φs1 .

With these facts, we see that the map in the lemma is an isomorphism of k-vector
spaces, and it remains to check that it preserves the action of X1.
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We claim that one has the following formulas for the action of e1Z(E0) on the
above k-basis of e1Z(E∗)d:

x1 · e1φ1 = e1φ1,

x1 · e1φs0 = e1φ1,

x1 · e1φs1 = e1φ1,

x1 · U1,i = U1,i−1 for all i ∈ Z>1.

Once the formulas are proved, we are done, because it is then easy to check that
the action of X1 is preserved by the isomorphism in the statement of the lemma.
The proof of the formulas is a quick computation; we spell out some details, starting
with the first two. We make repeated use of the formulas for the left action of E0

on Ed stated in (89):

x1 · e1φ1 = e1 (τs1τs0 + τs0τs1 + τs0 + τs1 + 1)φ1

= e1φ1,

x1 · e1φs0 = e1 (τs0τs1 + (τs1 + e1)(τs0 + e1))φs0

= 0 + e1(τs1 + e1)φc−1

= e1φc−1

= e1φ1.

The third formula we have to prove is identical to the second one, and regarding the
last one, we have

x1 · U1,i = x1 · e1φ(s1s0)i + x1 · e1φ(s0s1)i − x1 · e1φs1(s0s1)i − x1 · e1φs0(s1s0)i ,

and to finish the computation it suffices to compute that x1 · φs1s0w = φw for all

w ∈ W̃ such that `(s0w) = `(w) + 1, and similarly for x1 · φs0s1w if w is such that
`(s1w) = `(w) + 1. �

Lemma 2.3.3. Identifying eχ0
Z(E0) with the polynomial ring k[Xχ0

] as in (98),
one has the following isomorphism of k[Xχ0

]-modules:

k[Xχ0
]

(Xχ0
)
⊕
k[Xχ0

]

(Xχ0
)
⊕
k[Xχ0

, X−1
χ0

]

k[Xχ0
]

eχ0
Z(E∗)d(

1, 0, 0
)

eχ0
φs0 ,(

0, 1, 0
)

eχ0
φs1 ,(

0, 0, X−iχ0

)
(for i ∈ Z>1)

Uχ0 ,i−1.

∼=

Proof. Recall from (99) that we have fixed the following k-basis of eχ0
Z(E0):

eχ0
φ1, eχ0

φs0 , eχ0
φs1 , Uχ0 ,i

(for i ∈ Z>1), (102)

and that we have
Uχ0 ,0

= 2eχ0
φ1.
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Similarly to the proof of the previous lemma, using the formulas for the left action of
E0 on Ed stated in (89) one checks the following formulas for the action of eχ0

Z(E0)

on the above k-basis of eχ0
Z(E∗)d:

xχ0
· eχ0

φ1 = 0,

xχ0
· eχ0

φs0 = 0,

xχ0
· eχ0

φs1 = 0,

xχ0
· Uχ0 ,i

= Uχ0 ,i−1 for all i ∈ Z>1.

From these formulas, it is clear that one has the isomorphism in the statement of
the lemma.

The statement about the injective hull has already been recalled from [Lam12,
Proposition 3.91.(1)] in the proof of the last lemma. �

To describe the component eγZ(E∗)d for γ ∈ Γ such that #γ = 2, we need to set
up some notation. Let X and Y be indeterminates, and let us consider the k-vector
space

E k[X,Y ]
(X·Y )

(k) :=

{
Θ ∈ Homk(k[X,Y ], k)

∣∣∣∣ Θ ((X · Y ) + (X,Y )n) = 0
for some n ∈ Z>0

}
=

{
Θ ∈ Homk(k[X,Y ], k)

∣∣∣∣ Θ ((X · Y,Xn, Y n)) = 0
for some n ∈ Z>0

}
= lim−→

n∈Z>0

Homk

(
k[X,Y ]

(X·Y,Xn,Y n) , k
)
,

where Homk(−,−) means homomorphisms of k-vector spaces. The k-vector space

E k[X,Y ]
(X·Y )

(k) has a natural structure of k[X,Y ]
(X·Y ) -module, and it is proved in [Lam12,

Theorem 3.90.(1)] that E k[X,Y ]
(X·Y )

(k) is the injective hull of the k[X,Y ]
(X·Y ) -module k[X,Y ]

(X,Y )

(which we will simply denote by k), where we view k as a submodule of E k[X,Y ]
(X·Y )

(k)

by identifying 1 ∈ k with the element (1)∨ ∈ E k[X,Y ]
(X·Y )

(k) that has value 1 at 1 and

that is 0 on (X,Y ).
It is easy to see that the following is a k-basis of E k[X,Y ]

(X·Y )

(k):

(1)∨ : k[X,Y ] k

1 1
other

monomials 0,

(Xi)∨ : k[X,Y ] k

Xi 1
other

monomials 0

for i ∈ Z>1,

(Y i)∨ : k[X,Y ] k

Y i 1
other

monomials 0

for i ∈ Z>1.

(103)
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It is also easy to check formulas, which describe the action of k[X,Y ] on E k[X,Y ]
(X·Y )

(k):

X · (1)∨ = 0,

Y · (1)∨ = 0,

X · (Xi)∨ = (Xi−1)∨ for i ∈ Z>1,

Y · (Xi)∨ = 0 for i ∈ Z>1,

X · (Y i)∨ = 0 for i ∈ Z>1,

Y · (Y i)∨ = (Y i−1)∨ for i ∈ Z>1.

(104)

Lemma 2.3.4. Let γ ∈ Γ with #γ = 2 and let us write it as {λ, λ−1}. Further-

more, let us identify eγZ(E0) with the ring
k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) as in (98). Let us see k as a

k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) -module by identifying it with
k[Xλ,Xλ−1 ]

(Xλ,Xλ−1 ) , and let E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k) be defined

as above.
One has the following isomorphism of k[Xλ, Xλ−1 ]/(Xλ ·Xλ−1)-modules:

k ⊕ E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k) eγZ(E∗)d

(1, 0) eλφ1 − eλ−1φ1,(
0, (Xi

λ)∨
)

(for i ∈ Z>1)
Uλ,i,(

0, (Xi
λ−1)∨

)
(for i ∈ Z>1)

Uλ−1,i,(
0, (1)∨

)
Uλ,0 = Uλ−1,0.

∼=

Furthermore, E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k) is the injective hull of k as a
k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) -module.

Proof. The statement about the injective hull has already been recalled from [Lam12,
Theorem 3.90.(1)]. Let us check that we have an isomorphism as claimed. The fact
that we do have a well defined isomorphism of k-vector spaces is clear: indeed we
know a specific k-basis on the left hand side from (103), we know a specific basis on
the right hand side from (100), namely

eλφ1, eλ−1φ1, Uλ,i (for i ∈ Z>1), Uλ−1,i (for i ∈ Z>1),

and it is immediate to see that

Uλ,0 = Uλ−1,0 = eλφ1 + eλ−1φ1.

So, we have an isomorphism of k-vector spaces and it remains to check that it
preserves the actions of Xλ and Xλ−1 . Similarly to the proof of the Lemmas 2.3.2
and 2.3.3, using the formulas for the left action of E0 on Ed stated in (89) one checks
the following formulas for the action of eγZ(E0) on eγZ(E∗)d:

xλ · eλφ1 = 0, xλ−1 · eλφ1 = 0,

xλ · eλ−1φ1 = 0, xλ−1 · eλ−1φ1 = 0,

xλ · Uλ,i = Uλ,i−1, xλ−1 · Uλ,i = 0 for all i ∈ Z>1,

xλ · Uλ−1,i = 0, xλ−1 · Uλ−1,i = Uλ−1,i−1 for all i ∈ Z>1.

Comparing these formulas with formulas (104), it is easy to see our isomorphism
does preserve the actions of Xλ and Xλ−1 . �

69



2.3.c Final description of the structure of Z(E∗)d as a Z(E0)-module

In the previous subsection we have described the eγZ(E0)-module structure of
eγZ(E∗)d for γ ∈ Γ. In this subsection we will deduce from this the Z(E0)-module
structure of Z(E∗)d. We start with a completely general and elementary lemma
about injective hulls.

Lemma 2.3.5. Let R1, . . . , Rn be commutative rings with unit. Let Mi be an Ri
module for all i ∈ {1, . . . , n}. One has

E∏n
i=1 Ri

( n⊕
i=1

Mi

)
∼=

n⊕
i=1

ERi(Mi),

where the notation E(−)(−) denotes “the” injective hull.

Proof. For all i ∈ {1, . . . , n} let us set

ei := (0, . . . , 0, 1
i

, 0, . . . , 0) ∈
n∏
i=1

Ri.

One of the characterizations/definitions of being an injective hull is being injective
and an essential extension. Therefore, we have to prove that

⊕n
i=1 ERi(Mi) is an

injective
∏n
i=1Ri-module and that it is an essential extension of

⊕n
i=1Mi. As regards

the first claim, let us consider a diagram of the form

N L

n⊕
i=1

ERi(Mi).

δ

ϕ
∃?ϕ̃

Since the ei’s are orthogonal idempotents whose sum is 1, it is easy to see that we
have the following decompositions:

n⊕
i=1

eiN
n⊕
i=1

eiL

n⊕
i=1

ERi(Mi).

δ =
⊕n

i=1 δ
∣∣∣
eiN

ϕ =
⊕n

i=1 ϕ
∣∣∣
eiN ∃?ϕ̃

Now, since ERi(Mi) is an injective Ri-module for all i, we can construct ϕ̃ component-
wise.

It remains to prove that
⊕n

i=1 ERi(Mi) is an essential extension of
⊕n

i=1Mi.
Let N ⊆

⊕n
i=1 ERi(Mi) be a nonzero submodule. Since N =

⊕n
i=1 eiN , there must

exist i0 such that ei0N 6= 0. Since ei0 ·
(⊕n

i=1 ERi(Mi)
)

= ERi0 (Mi0), we have that
ei0N is a nonzero Ri0-submodule of ERi0 (Mi0), hence it intersects Mi0 non-trivially.
Therefore

N ∩
( n⊕

i=1

Mi

)
⊇ ei0N ∩Mi0 6= 0,
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and this concludes the proof that
⊕n

i=1 ERi(Mi) is an essential extension of
⊕n

i=1Mi.
�

Let γ ∈ Γ, and let keγ be the k-vector space k endowed with the unique structure
of Z(E0)-module such that eγ acts by 1, eγ′ acts by 0 for all γ′ ∈ Γ r {γ}, and xλ

acts by 0 for all λ ∈ γ (equivalently, for all λ ∈ T̂ 0/T 1); as usual, the notation
xλ is as in Lemma 1.7.1. Concretely, this module can be obtained for example as
eγZ(E0)/(xλ, x

−1
λ ), where {λ, λ−1} = γ. To ease notation, in the case γ = {λ} we

simply write keλ instead of ke{λ} .
Moreover, let ke1,χtriv be the k-vector space k endowed with the unique structure

of Z(E0)-module such that e1 acts by 1, eγ′ acts by 0 for all γ′ ∈ Γ r {1}, and x1

acts by 1 (equivalently, ζ acts by 1). Concretely, this module can be obtained for
example as e1Z(E0)/(e1Z(E0)∩F 1E0). Equivalently, the action of Z(E0) on ke1,χtriv

is through χtriv : E0 −→ k (see (91)).

Proposition 2.3.6. There is a decomposition of Z(E0)-modules

Z(E∗)d = ke1φ1 ⊕N ⊕ E ,

where, with notation as above,

(i) ke1φ1 is isomorphic to ke1,χtriv ;

(ii) N is a finite direct sum of submodules of dimension 1 over k, and more pre-
cisely,

N ∼= ke1 ⊕ keχ0
⊕ keχ0

⊕
⊕
γ∈Γ

with #γ = 2

keγ ;

(iii) E is the injective hull of all the following Z(E0)-modules:

?
⊕

γ∈Γ keγ ,

?
(
Z(E0)/ζZ(E0)

)∨
,

? Z(E0)/ζZ(E0),

and moreover the last two Z(E0)-modules are isomorphic.

Finally, this decomposition is compatible with the decomposition

Ed = ke1φ1 ⊕ ker(Sd)

of Proposition 1.10.5, in the sense that N ⊕ E is contained in ker(Sd).

Proof. Referring to Lemmas 2.3.2, 2.3.3 and 2.3.4, we define N to be the sub-Z(E0)-
module generated by the elements

e1φs0 − e1φs1 ,

eχ0
φs0 ,

eχ0
φs1 ,

eλφ1 − eλ−1φ1 for λ ∈ T̂ 0/T 1 r {1, χ0}

(generated as a submodule or as a k-vector space). Furthermore, let us define E as
the sub-Z(E0)-module generated by the elements

Uλ,i for λ ∈ T̂ 0/T 1 and i ∈ Z>0
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(again, generated as a submodule or as a k-vector space).
Parts (i) and (ii) of the statement are clear from the three lemmas. It remains

to show (iii) and compatibility with the decomposition Ed = ke1φ1 ⊕ ker(Sd).
Regarding the compatibility with the decomposition Ed = ke1φ1 ⊕ ker(Sd), we

have to show that N ⊕ E ⊆ ker(Sd). Let us consider the eγ-component of both
sides for γ ∈ Γ r {1}: we certainly have eγ · (N ⊕ E) ⊆ eγ ker(Sd), because from
the decomposition Ed = ke1φ1 ⊕ ker(Sd) we see that eγ ker(Sd) is the full eγE

d. It
remains to show that e1 · (N ⊕ E) ⊆ ker(Sd), i.e., that e1φs0 − e1φs1 ∈ ker(Sd) and
that U1,i ∈ ker(Sd) for all i ∈ Z>0. All these elements are of the form∑

w∈X
φw −

∑
w∈Y

φw

for suitable finite subsets X,Y ⊆ W̃ having the same cardinality. Then the result
follows because (η ◦ Sd)(φw) = 1 for all w ∈ W̃ (see (40)).

The fact that E is the injective hull of
⊕

γ∈Γ keγ as a Z(E0)-module is clear from
the three lemmas together with Lemma 2.3.5. It remains to prove that it is also
the injective hull of

(
Z(E0)/ζZ(E0)

)∨
and/or of Z(E0)/ζZ(E0) and that these two

Z(E0)-modules are isomorphic. We are going to do this component-wise, and we
start by studying the components of Z(E0)/ζZ(E0).

The decomposition Z(E0) =
∏
γ∈Γ eγZ(E0) induces a decomposition

Z(E0)/ζZ(E0) =
∏
γ∈Γ

eγZ(E0)/eγζZ(E0).

Let γ ∈ Γ: we distinguish two cases on the basis of the cardinality of γ.

• Assume that γ = {λ} (for λ = 1 or λ = χ0).

Recall that in this case eγZ(E0) is isomorphic to the polynomial ring k[Xλ], an
explicit isomorphism being given by sending Xλ to xλ = eλζ = eγζ. Therefore,
via this identification, we find that

eγZ(E0)/eγζZ(E0) ∼= k[Xλ]/(Xλ) = k.

In particular, we see that the k-dual of eγZ(E0)/eγζZ(E0) is isomorphic to
eγZ(E0)/eγζZ(E0) itself as a eγZ(E0)-module.

• Assume that γ = {λ, λ−1} with λ 6= λ−1.

Recall that in this case eγZ(E0) is isomorphic to the ring
k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) , an ex-

plicit isomorphism being given by sending Xλ to xλ and Xλ−1 to xλ−1 . Since
eγζ = xλ + xλ−1 , we deduce that, under this identification we have

eγZ(E0)/eγζZ(E0) ∼=
k[Xλ, Xλ−1 ]

(Xλ ·Xλ−1 , Xλ +Xλ−1)
.

This quotient has dimension 2 as a k-vector space, and we fix the following gen-
erators:

u := 1,

v := Xλ = −Xλ−1 .

We have the formulas
Xλ · u = v, Xλ−1 · u = −v,
Xλ · v = 0, Xλ−1 · v = 0,

(105)
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and of course eγZ(E0)/eγζZ(E0) can be characterized as the unique k[Xλ, Xλ−1 ]-
module of dimension 2 over k with generators u and v satisfying the above for-
mulas.

The k-dual of eγZ(E0)/eγζZ(E0) is isomorphic to eγZ(E0)/eγζZ(E0) itself as a

eγZ(E0)-module. To check this, we have to show that k[X,Y ]
(X·Y,X+Y ) is isomorphic to

its k-dual as a k[X,Y ]-module, or, equivalently, as a k[X,Y ]
(X·Y,X+Y ) -module (here we

are using indeterminates X and Y instead of Xλ and Xλ−1 in order to simplify
notation). Now,

k[X,Y ]

(X · Y,X + Y )
∼= k[X]/(X2),

and k[X]/(X2) is isomorphic to its k-dual as a k[X]/(X2)-module (this can be
seen directly but is also a known fact about Frobenius algebras). Therefore,
eγZ(E0)/eγζZ(E0) is isomorphic to its k-dual as a eγZ(E0)-module.

So far, we have described explicitly the components eγZ(E0)/eγζZ(E0) for γ ∈ Γ
and we have also shown that Z(E0)/ζZ(E0) is isomorphic to its k-dual as a Z(E0)-
module (indeed it is easy to see that this can be checked component-wise, and we
have shown this).

It remains to prove that eγN is the injective hull of eγZ(E0)/eγζZ(E0) as a
eγZ(E0)-module for all γ ∈ Γ, and then we are done by Lemma 2.3.5. Again, we
distinguish two cases depending on the cardinality of γ.

• Assume that γ = {λ} (for λ = 1 or λ = χ0).

We know that the factor
k[Xλ,X

−1
λ ]

k[Xλ] appearing in the decomposition of eγZ(E∗)d

of Lemma 2.3.2 (for λ = 1) and of Lemma 2.3.3 (for λ = χ0) is the injective hull
of

k = k[Xλ]/(Xλ) ∼= eγZ(E0)/eγζZ(E0).

• Assume that γ = {λ, λ−1} with λ 6= λ−1.

We know that the factor E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k) in the decomposition of eγZ(E∗)d of

Lemma 2.3.2 is the injective hull of k as a
k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) -module. We have instead to

show that E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k) is the injective hull of another module.

Again, let us rename the indeterminates X and Y to improve readability. We
showed that E k[X,Y ]

(X·Y )

(k) admits the following k-basis (see (103))

(1)∨,

(Xi)∨ for i ∈ Z>1,

(Y i)∨ for i ∈ Z>1,

basis which satisfies the following formulas (see (104)):

X · (1)∨ = 0,

Y · (1)∨ = 0,

X · (Xi)∨ = (Xi−1)∨ for i ∈ Z>1,

Y · (Xi)∨ = 0 for i ∈ Z>1,

X · (Y i)∨ = 0 for i ∈ Z>1,

Y · (Y i)∨ = (Y i−1)∨ for i ∈ Z>1.
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Let us define

u′ := (X)∨ − (Y )∨,

v′ := (1)∨,

M := spank{v′, u′} ⊆ E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k).

It is easy to see that M is a sub-k[X,Y ]-module and that we have the inclusions
of k[X,Y ]-modules

k ∼= k · (1)∨ M E k[X,Y ]
(X·Y )

(k),

whose composite is the inclusion of k in E k[X,Y ]
(X·Y )

(k). We know that the module

on the right is the injective hull of the module on the left, and so it is also the
injective hull of the module in the middle.

But it is easy to see that

X · u′ = v′, Y · u′ = −v′,
X · v′ = 0, Y · v′ = 0,

and these formulas are the same as (105), with obvious change of notation. There-
fore we can conclude that M is isomorphic to eγZ(E0)/eγζZ(E0) as a module over
eγZ(E0) ∼= k[Xλ, Xλ−1 ], because we said that eγZ(E0)/eγζZ(E0) can be charac-
terized as the unique k[Xλ, Xλ−1 ]-module of dimension 2 over k with generators
u and v satisfying (105). �

2.4 The 0th graded piece of the centre

Assumptions. We assume that G = SL2(F) with p 6= 2 (with the fixed choices of
T, of I, of the positive root and of the Chevalley system as in Section 1.5).

Under the above assumptions, we are going to describe the 0th graded piece of
the centre of E∗. The hypothesis p 6= 2 makes available the description of the Frattini
quotient stated in Lemma 1.10.1 (and such hypothesis will also be used many times
in the computations). However, when we will treat the case of a general group G in
Section 3.1, we will see that also in the case p = 2 the description would be similar
(the centre is trivial in that case).

Recall the definition

c−1 :=

(
−1 0
0 −1

)
T 1 ∈ W̃ .

Proposition 2.4.1. One has

Z(E∗)0 = kτ1 + kτc−1 .

Therefore, as a k-algebra, Z(E∗)0 can be described as

k[X]/(X2 − 1) Z(E∗)0

X τc−1

∼=
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or as

k × k Z(E∗)0

(1, 0)
1

2

(
τ1 + τc−1

)
(0, 1)

1

2

(
τ1 − τc−1

)
.

∼=

Proof. Let us check the two inclusions in the claimed equality Z(E∗)0 = kτ1 +kτc−1 .

“⊇”) Let us prove the inclusion Z(E∗)0 ⊇ kτ1 + kτc−1 .

It suffices to show that, for all i ∈ Z>1, all w ∈ W̃ and all β ∈ H i(I,X(w)),
one has β · τc−1 = τc−1 · β.

Since lengths add up, we can apply the formulas of Corollary 1.9.5, obtaining

β · τc−1 ∈ H i(I,X(wc−1)),

Shwc−1(β · τc−1) = resIwIwc−1

(
Shw(β)

)
,

τc−1 · β ∈ H i(I,X(c−1w)),

Shc−1w(τc−1 · β) = res
c−1Iwc

−1
−1

Ic−1w

(
(c−1)∗ Shw(β)

)
.

But
(−1 0

0 −1

)
lies in the centre of G, and so wc−1 = c−1w and every conjugation

by c−1 appearing in the above formulas is trivial. Hence,

β · τc−1 ∈ H i(I,X(wc−1)) and Shwc−1(β · τc−1) = Shw(β),

τc−1 · β ∈ H i(I,X(wc−1)) and Shwc−1(τc−1 · β) = Shw(β).

In other words, β · τc−1 = τc−1 · β, as we wanted to show.

“⊆”) Let us prove the inclusion Z(E∗)0 ⊆ kτ1 + kτc−1 .

Let us define Ξ :=
{
{ω, ω−1}

∣∣ ω ∈ (T 0/T 1
)
r {1, c−1}

}
and let us fix a choice

function

Ξ
(
T 0/T 1

)
r {1, c−1}

ξ ωξ ∈ ξ.

Recall from (27) that following is a k-basis of Z(E0):

τ1,

τc−1 ,

τωξ + τω−1
ξ
, for ξ ∈ Ξ,

ζi,ω := τω(τs0τs1)i + τω−1

(
(τs1 + e1)(τs0 + e1)

)i
for i ∈ Z>1 and ω ∈ T 0/T 1.

Now let x ∈ Z(E∗)0 ⊆ Z(E0) and let us write it with respect to the above
basis as

x = aτ1 + bτc−1 +
∑
ξ∈Ξ

cξ ·
(
τωξ + τω−1

ξ

)
+

∑
i∈{1,...,n},
ω∈T 0/T 1

di,ωζi,ω,

for suitable n ∈ Z>1 and a, b, cξ, di,ω ∈ k. We have to show that cξ = 0 for all
ξ ∈ Ξ and that di,ω = 0 for all i ∈ {1, . . . , n} and all ω ∈ T 0/T 1. Since we
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already know that τ1, τc−1 ∈ Z(E∗), we can assume without loss of generality
that a = 0 and b = 0.

Let us consider an element c− ∈ HomFp (O/M, k), which we will later choose
according to our needs, and let us define

γc− := (c−, 0, 0)1.

For L ∈ Z>0 and y ∈ E∗ we say that x is supported in length less or equal
than L if y ∈

⊕
w∈W̃

s.t. `(w)6L

H∗(I,X(w)). We recall from Theorem 1.9.1 and from

Lemma 1.9.2 (i) that the product of two elements of E∗ supported in lengths
less or equal respectively than L1 and L2 is supported in length less or equal
than L1 + L2, and so we deduce that

γc− · x = γc− ·
(
aτ1 + bτc−1 +

∑
ξ∈Ξ

cξ ·
(
τωξ + τω−1

ξ

)
+
∑

i∈{1,...,n},
ω∈T 0/T 1

di,ωζi,ω

)

= . . .︸︷︷︸
supported in
length<2n

+
∑

ω∈T 0/T 1

dn,ωγc− ·
(
τω(s0s1)n + τω−1(s1s0)n

)

and similarly

x · γc− = . . .︸︷︷︸
supported in
length<2n

+
∑

ω∈T 0/T 1

dn,ω ·
(
τω(s0s1)n + τω−1(s1s0)n

)
· γc− .

Applying the formulas (64) for the right action of E0 on E1, we see that for
all i ∈ Z>1 and all ω ∈ T 0/T 1 we have

γc− · τω(s0s1)n = (c−, 0, 0)ω(s0s1)n ,

γc− · τω−1(s1s0)n = 0.

On the other side, using the formulas (62) for the left action of τs0 and τs1 on
E1, we find that

τ(s0s1)n · γc− = 0,

τ(s1s0)n · γc− = (c−, 0, 0)(s1s0)n ,

and further applying the formula (59) describing the left action of τω on E1,
we obtain

τω(s0s1)n · γc− = 0,

τω−1(s1s0)n · γc− =
(
c−(id(ω)2 · −), 0, 0

)
ω−1(s1s0)n

(recall that id was defined in (48)).

We deduce that

0 = [γc− , x]

= . . .︸︷︷︸
supported in
length<2n

+
∑

ω∈T 0/T 1

dn,ω ·
(

(c−, 0, 0)ω(s0s1)n

−
(
c−(id(ω)2 · −), 0, 0

)
ω−1(s1s0)n

)
,
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and so, choosing c− 6= 0, we obtain dn,ω = 0 for all ω ∈ T 0/T 1.

We are thus reduced to proving that an element of the form

x =
∑
ξ∈Ξ

cξ ·
(
τωξ + τω−1

ξ

)
∈ Z(E∗)0

is zero. Since multiplication by γc− on the left and on the right preserves the
decomposition

⊕
ω∈T 0/T 1 H∗(I,X(ω)), to prove our claim it suffices to show

that for all ω ∈ T 0/T 1 r {1, c−1} we can choose c− (possibly depending on ω)
such that [γc− , τω] 6= 0. Using formulas (59) and (60), we see that

[γc− , τω] =
(
c−, 0, 0

)
ω
−
(
c−(id(ω)2 · −), 0, 0

)
ω
.

From this, we see that [γc− , τω] 6= 0 if we choose c− in such a way that
c−(id(ω)2) 6= c−(1). There exists such a choice because id(ω)2 6= 1. �

2.5 The 1st graded piece of the centre

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p.

In this section we will show that, under the above assumptions, the 1st graded
piece of the centre is zero. As a first step, in the next lemma we compute explicitly
ZE0(E1).

Lemma 2.5.1. The Z(E0)-bimodule ZE0(E1) is isomorphic to Z(E0)∩F 1E0, and
an explicit k-basis is given by

γi,ω := β0
ω(s0s1)i − β

0
ω−1(s1s0)i + e1β

0
s0(s1s0)i−1 − e1β

0
s1(s0s1)i−1

for ω ∈ T 0/T 1 and i ∈ Z>1,

Proof. Clearly ZE0(E1) ⊆ ker(g1), and hence ZE0(E1) = ZE0(ker(g1)). Using the
isomorphism of E0-bimodules ker(g1) ∼= F 1E0 stated in (70), we deduce that

ZE0(E1) ∼= ZE0(F 1E0) = Z(E0) ∩ F 1E0.

To compute a basis, we start from the basis

τ1,

τc−1 if p 6= 2,

τω + τω−1 for {ω, ω−1} ⊆ T 0/T 1 r {1, c−1},

τω · (τs0 · τs1)i + τω−1 ·
(
(τs1 + e1) · (τs0 + e1)

)i
for ω ∈ T 0/T 1 and i ∈ Z>1.

of Z(E0) computed in (27). It is easy to show by induction that for all ω ∈ T 0/T 1

and all i ∈ Z>1 one has

τω · (τs0 · τs1)i + τω−1 ·
(
(τs1 + e1) · (τs0 + e1)

)i
= τω(s0s1)i + τω−1(s1s0)i + e1τs0(s1s0)i−1 + e1τs1(s0s1)i−1

+

i−1∑
j=1

(
e1τ(s0s1)j + e1τ(s1s0)j + e1τs0(s1s0)j−1 + e1τs1(s0s1)j−1

)
+ e1.
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It follows that the following is another k-basis of Z(E0):

τ1,

τc−1 if p 6= 2,

τω + τω−1 for {ω, ω−1} ⊆ T 0/T 1 r {1, c−1},
τω(s0s1)i + τω−1(s1s0)i

+ e1τs0(s1s0)i−1 + e1τs1(s0s1)i−1
for ω ∈ T 0/T 1 and i ∈ Z>1.

Each one of the above elements lies either in F0E
0 or in F 1E0, and so we see that

the following is a basis of Z(E0) ∩ F 1E0:

τω(s0s1)i + τω−1(s1s0)i + e1τs0(s1s0)i−1 + e1τs1(s0s1)i−1

for ω ∈ T 0/T 1 and i ∈ Z>1.

Now, using the explicit description of the isomorphism ker(g1) ∼= F 1E0 in (70) and
(71), we see that the following is a k-basis of ZE0(E1):

− β0
ω(s0s1)i + β0

ω−1(s1s0)i − e1β
0
s0(s1s0)i−1 + e1β

0
s1(s0s1)i−1

for ω ∈ T 0/T 1 and i ∈ Z>1,

and up to changing signs this is the basis in the statement of the lemma. �

We are now ready to show that Z(E∗)1 = 0.

Proposition 2.5.2. One has that Z(E∗)1 = 0, and, more precisely,

ZE0∪H1(I,X(1))(E
1) = 0.

Proof. From the formulas for the multiplication in E∗ when lengths add up (Equa-
tion (36)), it follows that multiplication on the left or on the right by an element of
H1(I,X(1)) preserves the components of the decomposition

E∗ =
⊕
w∈W̃

H∗(I,X(w)).

In particular we have the following: for all w ∈ W̃ and for all γ ∈ E1, one has

prw

([
β−1 , γ

]
gr

)
=
[
β−1 , prw(γ)

]
gr
,

where prw : E∗ −→ H∗(I,X(w)) denotes the projection with respect to the above
decomposition and where [−,−]gr denotes the graded commutator. Let us apply this
in our situation: let us consider an element of ZE0(E1) written in the form∑

i∈Z>1,

ω∈T 0/T 1

cω,iγω,i,

where the elements γω,i form the basis of ZE0(E1) computed in Lemma 2.5.1 and
where the cω,i’s are suitable coefficients in k (equal to zero for almost every i). Now,
for i0 ∈ Z>0 and ω0 ∈ T 0/T 1, let us compute:

prω0(s0s1)i0+1

([
β−1 ,

∑
i∈Z>1,

ω∈T 0/T 1

cω,iγω,i

]
gr

)
=

[
β−1 , prω0(s0s1)i0+1

( ∑
i∈Z>1,

ω∈T 0/T 1

cω,iγω,i

)]
gr

=
∑
i∈Z>1,

ω∈T 0/T 1

cω,i

[
β−1 , prω0(s0s1)i0+1(γω,i)

]
gr

= cω0,i0

[
β−1 , β

0
ω0(s0s1)i0+1

]
gr
.

78



Now, if we prove that, for all i ∈ Z>0 and all ω ∈ T 0/T 1, one has

(Claim)
[
β−1 , β

0
ω(s0s1)i+1

]
gr
6= 0,

then all the coefficients cω,i’s are zero, and we are done.
Recall from Lemma 1.10.3 that the following formulas hold:

τω(s0s1)i+1 · β−1 = 0, (106)

β−1 · τω(s0s1)i+1 = β−
ω(s0s1)i+1 . (107)

Let us compute
[
β−1 , β

0
ω(s0s1)i+1

]
gr

using the relation between (the opposite of)

the Yoneda product and the cup product (see Corollary 1.9.3) and the formulas
(106) and (107). One has:[

β−1 , β
0
ω(s0s1)i+1

]
gr

= β−1 · β
0
ω(s0s1)i+1 + β0

ω(s0s1)i+1 · β−1

=
(
β−1 · τω(s0s1)i+1

)
^
(
τ1 · β0

ω(s0s1)i+1

)
+
(
β0
ω(s0s1)i+1 · τ1

)
^
(
τω(s0s1)i+1 · β−1

)
= β−

ω(s0s1)i+1 ^ β0
ω(s0s1)i+1 + β0

ω(s0s1)i+1 ^ 0

= β−
ω(s0s1)i+1 ^ β0

ω(s0s1)i+1 .

Therefore our claim has translated into proving that the above cup product is
nonzero. But it is true for all w ∈ W̃ r

(
T 0/T 1

)
that β−w ^ β0

w 6= 0: indeed, since
the Shapiro isomorphism commutes with cup products, this is equivalent to showing
that Shw(β−w ) ^ Shw(β0

w) 6= 0; and this is true, because Shw(β−w ) and Shw(β0
w) are

two linearly independent elements of H1(Iw, k) and because the cup product algebra
H∗(Iw, k) can be identified with the exterior algebra

∧∗ (H1(Iw, k)
)

(indeed, Iw is
a uniform pro-p group, as explained in [OS21, §4.2.3] and then Lazard’s Theorem
1.8.1 applies). �

2.6 The 2nd graded piece of the centre

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. The first lemma will be stated under more general
assumptions.

In this section we will compute explicitly the 2nd graded piece of the centre,
under the above assumptions. The proof will be divided into three subsections:

• In Subsection 2.6.a we will compute ZE0(E2). More precisely, we will determine
a basis of ZE0(E2) in terms of the family of elements (α0,?

w )
w∈W̃ defined (in an

implicit way) in Proposition 1.10.4. The strategy consists in using the quoted
proposition in order to relate ZE0(E2) with ZE0(E3).

• In Subsection 2.6.b we will rewrite the basis of ZE0(E2) in terms of the “standard”
basis

α−w , α0
w (if `(w) > 1), α+

w for w ∈ W̃ ,

which we have defined in (80). The purpose is twofold: this new rewrite has the
advantage of being more explicit, and moreover it will be used to prove the final
statement in the last subsection.
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• In Subsection 2.6.c we will prove that the inclusion Z(E∗)2 ⊆ ZE0(E2) is actually
an equality, in particular achieving a complete description of Z(E∗)2.

2.6.a Computation of ZE0(E2)

Lemma 2.6.1. Assume more generally that G = SL2(F) (with the usual fixed choices
as in Section 1.5) and that I is torsion-free. The natural homomorphism of Z(E0)-
modules

ZE0(Ed) −→ ZE0

(
Ed/F0E

d
)

is surjective and it induces a bijection when restricted to the sub-k-vector space
ZE0(Ed) ∩ F 1Ed.

Proof. The fact that the restriction to ZE0(Ed)∩F 1Ed is injective follows from the
fact that the map F 1E0 −→ Ed/F0E

d is injective. It remains to show that for every
element of ZE0

(
Ed/F0E

d
)
, its (unique) representative σ ∈ F 1Ed is centralized by

E0. We decompose σ as

σ =
∑
i∈Z>0

σi, with σi ∈ Edi :=
⊕
w∈W̃

s.t. `(w)=i

kφw

(hence σ0 = 0). As in the proof of Proposition 2.2.1, for all v ∈ W̃ , let us consider
the map

Cv : Ed Ed

φ τv · φ− φ · τv,

and, to ease notation, let us define Ed−1 := {0}. In the proof of loc. cit. (see (93)) we
showed that

Cs0

(
Ed2i ⊕ Ed2i+1

)
⊆ Ed2i−1 ⊕ Ed2i for i ∈ Z>0,

Cs1

(
Ed2i ⊕ Ed2i+1

)
⊆ Ed2i−1 ⊕ Ed2i for i ∈ Z>0.

Let j ∈ {0, 1}. By assumption, σ is mapped to ZE0

(
Ed/F0E

d
)
, and so

F0E
d 3 Csj (σ) =

∑
i∈Z>0

Csj (σ2i + σ2i+1).

From the above inclusions, we get that Csj (σ2i+σ2i+1) = 0 for all i ∈ Z>1. It is also
easy to see that Cω(σ2i+σ2i+1) = 0 for such i’s, and so we conclude that σ2i+σ2i+1

is centralized by E0 for all i ∈ Z>1.
Therefore, it remains to show that σ1 is centralized by E0. But in the last part

of the proof of Proposition 2.2.1, we saw that if an element of Ed0 ⊕Ed1 is centralized
by τω for all ω ∈ T 0/T 1, then it is automatically centralized by the whole E0. So in
our case it suffices to check that σ1 is centralized by τω for all ω ∈ T 0/T 1, which is
easy. �

Remark 2.6.2. One has an isomorphism of E0-bimodules(
(F 1E0)∨,finite

)J J

E3/F0E
3

τ∨w
∣∣
F 1E0

(w ∈ W̃ with `(w) > 1)
φw,

80



which by composition with the isomorphism in Proposition 1.10.4 gives an isomor-
phism

E3/F0E
3 ker(g2)

φw
(w ∈ W̃ with `(w) > 1)

α0,?
w .

Proof. Similarly to Proposition 1.10.4 we use the identifications

(E0)∨,finite ∼=
⋃

n∈Z>1

(
E0/FnE0

)∨
, (F 1E0)∨,finite ∼=

⋃
n∈Z>1

(
F 1E0/FnE0

)∨
.

We see that the kernel of the restriction map (E0)∨,finite −→ (F 1E0)∨,finite coincides
with

(
E0/F 1E0

)∨
. Via the isomorphism

(
(E0)∨,finite

)J J

E3

τ∨w
∣∣
F 1E0

(w ∈ W̃ )
φw,

the submodule
((
E0/F 1E0

)∨)J J

corresponds to F0E
3. Hence, considering the corre-

sponding quotients on both sides we get the isomorphism claimed in the remark. �

Corollary 2.6.3. One has that ZE0(E2) is isomorphic to ZE0(E3)/F0E
3 as a

Z(E0)-module, and the following is a k-basis of ZE0(E2):

e1 · α0,?
s0 , eχ0

· α0,?
s0 , e1 · α0,?

s1 , eχ0
· α0,?

s1 ,

α0,?
ω(s0s1)i

+ α0,?
ω−1(s1s0)i

− e1 · α0,?
(s0s1)is0

− e1 · α0,?
(s1s0)is1

for ω ∈ T 0/T 1 and i ∈ Z>1.

Proof. The last remark yields that ZE0(E2) is isomorphic to ZE0

(
E3/F0E

3
)
. Fur-

thermore, Lemma 2.6.1 yields that ZE0

(
E3/F0E

3
)

coincides with the image of the
map

ZE0(E3) −→ ZE0

(
E3/F0E

3
)
.

This image is ZE0(E3)/F0E
3 because F0E

3 ⊆ ZE0(E3) (see, e.g., Proposition 2.2.1).
The claim about the explicit basis then follows from the computation of the basis
of ZE0(E3) in Proposition 2.2.1 (actually, in Remark 2.2.2), by making use of the
isomorphism

E3/F0E
3 ker(g2)

φw
(w ∈ W̃ with `(w) > 1)

α0,?
w .

�

Remark 2.6.4. Equivalently, it is easy to see that also the following is a k-basis of
ker(g2) (this can be obtained as in the proof of the last corollary by using the alter-
native k-basis of ZE0(Ed) computed in Lemma 2.3.1, or, alternatively, manipulating
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the basis of ker(g2) computed in the last corollary):

e1 · α0,?
s0 , eχ0

· α0,?
s0 , e1 · α0,?

s1 , eχ0
· α0,?

s1 ,

eλα
0,?
(s1s0)i

+ eλ−1α0,?
(s0s1)i

for λ ∈ T̂ 0/T 1 r {1} and i ∈ Z>1,

e1α
0,?
(s1s0)i

+ e1α
0,?
(s0s1)i

− e1 · α0,?
(s1s0)is1

− e1 · α0,?
(s0s1)is0

for i ∈ Z>1.

2.6.b Rewrite of the basis of ZE0(E2)

Let w ∈ W̃ such that `(w) > 1. Recall that we have the following partial description
of α0,?

w (already recalled in (88)):

α0,?
w − α0

w ∈ e{id,id−1} ker(f2) if `(s0w) = `(w) + 1,

α0,?
w + α0

w ∈ e{id,id−1} ker(f2) if `(s1w) = `(w) + 1.

In view of Corollary 2.6.3 we would like to compute also the e{id,id−1}-component

of α0,?
w in the cases w = (s0s1)i or w = (s1s0)i for some i ∈ Z>1. This is basically

already carried out in the proof of [OS21, Lemma 7.11]. However, the formulas are
computationally involved and only partially written down explicitly, and so we will
derive them step by step from loc. cit. in the following two lemmas and one corollary.

Lemma 2.6.5. One has:

eid−1α0,?
(s0s1)i

= −eid−1α0
(s0s1)i + 2

i−1∑
j=0

eid−1α+
s0(s1s0)i

− 2

i−1∑
j=0

eid−1α+
s1(s0s1)i

,

or, equivalently,

eid−1α0,?
(s0s1)i

eid−1 = −eid−1α0
(s0s1)ieid−1

+ 2

i−1∑
j=0

eid−1α+
s0(s1s0)i

eid−1 − 2

i−1∑
j=0

eid−1α+
s1(s0s1)i

eid−1 .

Note that the equivalence of the two statements follows from the fact that eid−1

commutes with α+
w for all w ∈ W̃ of odd length (see (85)), it commutes with α0

w for

all w ∈ W̃ of even length (see again (85)), and it commutes with α0,?
w for all w ∈ W̃ of

even length (see the description of ker(g2) as an E0-bimodule in Proposition 1.10.4).

Proof. From what we said above about the α0
w’s, it follows that

eid−1α0
(s0s1)ieid−1 = γ − eid−1α0,?

(s0s1)i
eid−1 for some γ ∈ ker(f2).

Let us look at the direct sum decomposition E2 = ker(f2)⊕ker(g2), which we recalled
in Proposition 1.10.4 quoting [OS21, Proposition 7.12]. In loc. cit. it is proved that,

via the isomorphism E2 ∼=
(
(E1)∨,finite

)J J
, this decomposition corresponds to a

decomposition (
(E1)∨,finite

)J J

= Kf1 ⊕Kg1 ,
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where

Kf1
:=

{
ξ ∈

(
(E1)∨,finite

)J J
∣∣∣∣ ξ∣∣ker(g1)

= 0

}
,

Kg1
:=

{
ξ ∈

(
(E1)∨,finite

)J J
∣∣∣∣ ξ∣∣ker(f1)

= 0

}
.

So, starting with the element ξ = eid−1α0
(s0s1)i

eid−1 = γ − eid−1α0,?
(s0s1)i

eid−1 and

applying to it the isomorphism E2 ∼=
(
(E1)∨,finite

)J J
, we view it as an element

ξ = θ + η ∈
(
(E1)∨,finite

)J J
for θ ∈ Kf1 corresponding to γ and for η ∈ Kg1

corresponding to −eid−1α0,?
(s0s1)i

eid−1 . We write this correspondence using a pairing
notation:

ξ =
〈
eid−1α0

(s0s1)ieid−1 ,−

〉
,

θ = 〈γ,−〉 ,

η =
〈
−eid−1α0,?

(s0s1)i
eid−1 ,−

〉
.

The element η (which is what we are interested in) is explicitly computed in
[OS21, Proof of Lemma 7.11]. Namely, in loc. cit. the linear form η : E1 −→ k
is defined in the following way (there, ξ is an arbitrary element in the subspace

eid(E1)∨,finiteeid = eid−1

(
(E1)∨,finite

)J J
eid−1):

η
∣∣
eid ker(f1)eid

= 0,

η
∣∣
eid ker(g1)eid

= ξ
∣∣
eid ker(g1)eid

,

η
∣∣
eidβ

+
s1
eid

= 2

+∞∑
j=1

ξ
(
eidβ

0
s0s1eid

)
(here, we use the decomposition eidE

1eid = eid ker(f1)eid⊕eid ker(g1)eid⊕keidβ
+
s1eid,

which follows from Proposition 1.10.2, and using this decomposition we define η as
a linear form η : eidE

1eid −→ k, and extend it by 0 on the components eλE
1eµ for

λ, µ ∈ T̂ 0/T 1 with (λ, µ) 6= (id, id); moreover, note that the infinite sum does make
sense because ξ lies in the finite dual of E1). In [OS21, Proof of Lemma 7.11], it is
shown that eidE

1eid is the k-vector space generated by the following elements:

eidβ
0
weid for w ∈ W̃ with positive even length,

eidβ
+
w eid for w ∈ W̃ with odd length.

By deleting what is redundant, we get the following k-basis (the fact that these
elements are nonzero follows from (61)):

eidβ
0
(s0s1)jeid for j ∈ Z>1,

eidβ
0
(s1s0)jeid for j ∈ Z>1,

eidβ
+
s0(s1s0)j

eid for j ∈ Z>0,

eidβ
+
s1(s0s1)j

eid for j ∈ Z>0.

(108)

Let w ∈ W̃ with positive even length. From the definition of β0,?
w (see (71)), we get

that
eidβ

0
weid = ±eidβ

0,?
w eid ∈ ker(g1).
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Hence, for j ∈ Z>1 we have

η
(
eidβ

0
(s0s1)jeid

)
= ξ
(
eidβ

0
(s0s1)jeid

)
=
〈
eid−1α0

(s0s1)ieid−1 , eidβ
0
(s0s1)jeid

〉
=
〈
α0

(s0s1)i , β
0
(s0s1)jeid

〉
= −

〈
α0

(s0s1)i ,
∑

ω∈T 0/T 1

id(ω−1)β0
(s0s1)jω

〉

=

{
−1 if j = i,

0 if j 6= i,

and similarly we see that
η
(
eidβ

0
(s1s0)jeid

)
= 0.

In [OS21, Proof of Lemma 7.11], the following values of η are computed:

η
(
eidβ

+
s0(s1s0)j

eid

)
= −2

+∞∑
l=j+1

ξ
(
eidβ

0
(s0s1)leid

)
,

η
(
eidβ

+
s1(s0s1)j

eid

)
= 2

+∞∑
l=j+1

ξ
(
eidβ

0
(s0s1)leid

)
.

Hence, we deduce that

η
(
eidβ

+
s0(s1s0)j

eid

)
=

{
2 if j 6 i− 1,

0 if j > i,

η
(
eidβ

+
s1(s0s1)j

eid

)
=

{
−2 if j 6 i− 1,

0 if j > i.

We claim that η is equal to

η′ :=
〈
eid−1α0

(s0s1)ieid−1 ,−
〉

− 2

i−1∑
j=0

〈
eid−1α+

s0(s1s0)i
eid−1 ,−

〉
+ 2

i−1∑
j=0

〈
eid−1α+

s1(s0s1)i
eid−1 ,−

〉
,

element which can be rewritten as

η′ =
〈
α0

(s0s1)i , eid · − · eid

〉
− 2

i−1∑
j=0

〈
α+
s0(s1s0)i

, eid · − · eid

〉
+ 2

i−1∑
j=0

〈
α+
s1(s0s1)i

, eid · − · eid

〉
.

It is easy to see that η′ is zero on eλE
1eµ for λ, µ ∈ T̂ 0/T 1 with (λ, µ) 6= (id, id),

and we compute

η′
(
eidβ

0
(s0s1)jeid

)
=
〈
α0

(s0s1)i , eidβ
0
(s0s1)jeid

〉
=

{
−1 if j = i,

0 if j 6= i.
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Furthermore, we compute

η′
(
eidβ

+
s0(s1s0)j

eid

)
= −2

i−1∑
j=0

〈
α+
s0(s1s0)i

, eidβ
+
s0(s1s0)j

eid

〉
=

{
2 if j 6 i− 1,

0 if j > i.

η′
(
eidβ

+
s1(s0s1)j

eid

)
= 2

i−1∑
j=0

〈
α+
s1(s0s1)i

, eidβ
+
s1(s0s1)j

eid

〉
=

{
−2 if j 6 i− 1,

0 if j > i.

Recalling the description of the basis (108) of eidE
1eid, we see that these values

completely determine η′ and that η′ coincides with η on the whole E1.

Recalling that η =
〈
−eid−1α0,?

(s0s1)i
eid−1 ,−

〉
, we conclude that

eid−1α0,?
(s0s1)i

eid−1 = −eid−1α0
(s0s1)ieid−1

+ 2

i−1∑
j=0

eid−1α+
s0(s1s0)i

eid−1 − 2

i−1∑
j=0

eid−1α+
s1(s0s1)i

eid−1 ,

and this is the formula we had to show. �

Lemma 2.6.6. One has:

eid−1α0,?
(s1s0)i

= eid−1α0
(s1s0)i ,

or, equivalently,
eid−1α0,?

(s1s0)i
eid−1 = eid−1α0

(s1s0)ieid−1 .

The equivalence of the two statements can be seen in the same way as in the last
lemma.

Proof. The proof is completely analogous to (but quicker than) the proof of the last
lemma. Using (88) we write

eid−1α0
(s1s0)ieid−1 = γ + eid−1α0,?

(s1s0)i
eid−1 for some γ ∈ ker(f2),

and with the same notation as in the proof of the last lemma we view this as an
element

ξ = θ + η ∈
(

(E1)∨,finite
)J J

,

for θ ∈ Kf1 corresponding to γ and for η ∈ Kg1 corresponding to eid−1α0,?
(s1s0)i

eid−1 .

The explicit definition of η from ξ and the formulas are the same as in the last
lemma, because in [OS21, Proof of Lemma 7.11] such formulas are proved for an
arbitrary element

ξ ∈ eid(E1)∨,finiteeid = eid−1

(
(E1)∨,finite

)J J

eid−1 ;
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in particular we have

η
∣∣
eid ker(f1)eid

= 0,

η
∣∣
eid ker(g1)eid

= ξ
∣∣
eid ker(g1)eid

,

η
∣∣
eidβ

+
s1
eid

= 2
+∞∑
j=1

ξ
(
eidβ

0
s0s1eid

)
,

and we have the formulas

η
(
eidβ

+
s0(s1s0)j

eid

)
= −2

+∞∑
l=j+1

ξ
(
eidβ

0
(s0s1)leid

)
= 0,

η
(
eidβ

+
s1(s0s1)j

eid

)
= 2

+∞∑
l=j+1

ξ
(
eidβ

0
(s0s1)leid

)
= 0.

Recall from the proof of the last lemma that eidE
1eid is the k-vector space having

the following k-basis:

eidβ
0
(s0s1)jeid for j ∈ Z>1,

eidβ
0
(s1s0)jeid for j ∈ Z>1,

eidβ
+
s0(s1s0)j

eid for j ∈ Z>0,

eidβ
+
s1(s0s1)j

eid for j ∈ Z>0.

But the elements in the first two lines lie in ker(g1) (see (71)), and so at these
elements the linear forms η and ξ have the same value. On the elements of the last
two lines we have just said that η is zero (as is ξ). Therefore we deduce that η = ξ,
and so by definition of η and ξ we get

eid−1α0,?
(s1s0)i

eid−1 = eid−1α0
(s1s0)ieid−1 . �

Corollary 2.6.7. Let i ∈ Z>1. The following formulas hold:

α0,?
(s0s1)i

= −α0
(s0s1)i + 2

i−1∑
j=0

eid−1α+
s0(s1s0)i

− 2

i−1∑
j=0

eid−1α+
s1(s0s1)i

α0,?
(s1s0)i

= α0
(s1s0)i + 2

i−1∑
j=0

eidα
−
s1(s0s1)i

− 2

i−1∑
j=0

eidα
−
s0(s1s0)i

,

Proof. Recall from (88) that

x := α0,?
(s0s1)i

+ α0
(s0s1)i ∈ e{id,id−1} ker(f2),

y := α0,?
(s1s0)i

− α0
(s1s0)i ∈ e{id,id−1} ker(f2).

We have to compute x and y. Since both α0,?
w and α0

w commute with both eid and

eid−1 for all w ∈ W̃ of even length (for α0,?
w this is (85), and for α0,?

w one can use

the description of ker(g2) as an E0-bimodule given in Proposition 1.10.4), we deduce
that

x = eidx+ eid−1x

= eidxeid + eid−1xeid−1 .
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and the same for y. Now, let us write

eid−1α0
(s0s1)ieid−1 = eid−1xeid−1 − eid−1α0,?

(s0s1)i
eid−1 ,

eid−1α0
(s1s0)ieid−1 = −eid−1yeid−1 + eid−1α0,?

(s1s0)i
eid−1 ,

eidα
0
(s0s1)ieid = eidxeid − eidα

0,?
(s0s1)i

eid,

eidα
0
(s1s0)ieid = −eidyeid + eidα

0,?
(s1s0)i

eid.

Here, the two terms on the right hand side of each of the four equalities lie respec-
tively in ker(f2) and in ker(g2). Since Γ$(ζ) = ζ, we deduce that the decomposition
E2 = ker(f2) ⊕ ker(g2) is Γ$-invariant. Using the formulas for the action of Γ$ on
E2 (see (82)), we compute

Γ$
(
eid−1α0

(s0s1)ieid−1

)
= −eidα

0
(s1s0)ieid,

Γ$
(
eid−1α0

(s1s0)ieid−1

)
= −eidα

0
(s0s1)ieid.

And so by the said Γ$-invariance it follows that

−eidyeid = −Γ$
(
eid−1xeid−1

)
,

eidxeid = −Γ$
(
− eid−1yeid−1

)
,

i.e., changing signs,

eidyeid = Γ$
(
eid−1xeid−1

)
,

eidxeid = Γ$
(
eid−1yeid−1

)
.

The value of eid−1xeid−1 has been computed in Lemma 2.6.5, while the value of
eid−1yeid−1 has been computed in Lemma 2.6.6 (and is zero). Hence, also recalling

once again the formulas (82) for the action of Γ$ on E2, we get:

x = eidxeid + eid−1xeid−1

= eid−1xeid−1

= 2
i−1∑
j=0

eid−1α+
s0(s1s0)i

− 2
i−1∑
j=0

eid−1α+
s1(s0s1)i

,

and

y = eidyeid + eid−1yeid−1

= Γ$
(
eid−1xeid−1

)
= 2

i−1∑
j=0

eidα
−
s1(s0s1)i

− 2

i−1∑
j=0

eidα
−
s0(s1s0)i

. �

Corollary 2.6.8. The k-basis of ZE0(E2) computed in Remark 2.6.4 can be explic-
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itly described as follows:

e1 · α0,?
s0 = −e1 · α0

s0 , eχ0
· α0,?

s0 = −eχ0
· α0

s0 ,

e1 · α0,?
s1 = e1 · α0

s1 , eχ0
· α0,?

s1 = eχ0
· α0

s1 ,

eλα
0,?
(s1s0)i

+ eλ−1α0,?
(s0s1)i

= eλα
0
(s1s0)i − eλ−1α0

(s0s1)i

for λ ∈ T̂ 0/T 1 r {1, id} and i ∈ Z>1,

eidα
0,?
(s1s0)i

+ eid−1α0,?
(s0s1)i

= eidα
0
(s1s0)i − eid−1α0

(s0s1)i

+ 2

i−1∑
j=0

(
eid−1α+

s0(s1s0)i
− eid−1α+

s1(s0s1)i
+ eidα

−
s1(s0s1)i

− eidα
−
s0(s1s0)i

)
for i ∈ Z>1,

e1α
0,?
(s1s0)i

+ e1α
0,?
(s0s1)i

− e1 · α0,?
(s1s0)is1

− e1 · α0,?
(s0s1)is0

= e1α
0
(s1s0)i + e1α

0
(s0s1)i − e1 · α0

(s1s0)is1
− e1 · α0

(s0s1)is0

for i ∈ Z>1.

Proof. For all the components except the eid,id−1-component this is immediate from
formula (88), while for the eid,id−1-component we use the last corollary. �

2.6.c Computation of Z(E∗)2

Recall that in this subsection we want to prove that the inclusion Z(E∗)2 ⊆ ZE0(E2)
is actually an equality. This means proving that every element of E1 centralizes
ZE0(E2). As we know from Lemma 1.10.3 that E1 is generated by β−1 , β+

1 , β0
s0

and β0
s1 as an E0-bimodule, it suffices to check that these four elements centralize

ZE0(E2). Equivalently (looking at the definitions of β0,?
s0 and β0,?

s1 ), we see that β−1 ,

β+
1 , β0,?

s0 and β0,?
s1 generate E1 as an E0-bimodule, and so we might instead check

that these last four elements centralize ZE0(E2). This is a better choice because
of the following lemma, whose proof can be derived from results in [OS21] without
carrying out explicit computations.

Lemma 2.6.9. Each element of ker(g1) (in particular, β0,?
s0 and β0,?

s1 ) commutes
with each element of ZE0(E2).

Proof. In [OS21, Proposition 9.6] the multiplication between elements of ker(g1) and
elements of ker(g2) is determined via the following commutative diagrams:

ker(g1)× ker(g2) E3

F 1E0 ×
(
(F 1E0)∨,finite

)J J (
(E0)∨,finite

)J J
,

multipl.

(β0,?
w ,α0,?

v )7→

(τw,τ∨v |F1E0 )
(∼=)×(∼=)

φw7→

τ∨w

∼=

(τ,α)7→−α(J(τ)·−)

(109)

and

ker(g2)× ker(g1) E3

(
(F 1E0)∨,finite

)J J × F 1E0
(
(E0)∨,finite

)J J
.

multipl.

(α0,?
v ,β0,?

w )7→

(τ∨v |F1E0 ,τw)
(∼=)×(∼=)

φw7→

τ∨w

∼=

(α,τ)7→−α(−·J(τ))

(110)
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Using the isomorphism
(
(F 1E0)∨,finite

)J J ∼= E3/F0E
3 of Remark 2.6.2, we claim

that we obtain the following commutative diagrams:

ker(g1)× ker(g2)

E3,

F 1E0 × E3/F0E
3

multipl.

(β0,?
w ,α0,?

v )7→

(τw,φv)

(∼=)×(∼=)

(τ,φ)7→−τ ·φ

(111)

and
ker(g2)× ker(g1)

E3.

E3/F0E
3 × F 1E0

multipl.

(α0,?
v ,β0,?

w )7→

(φv ,τw)

(∼=)×(∼=)

(φ,τ)7→−φ·τ

(112)

We check this for the first case, the second one being completely analogous. Let us
work with the diagram (109): we first rewrite the map on the bottom as

F 1E0 ×
(

(F 1E0)∨,finite
)J J

E3

(τ, τ∨v
∣∣
F 1E0) −τ∨v

∣∣
F 1E0(J(τ) · −) = −τ∨v (J(τ) · −) = −τ · τ∨v .

Hence the map obtained by composing the map on the bottom with the inverse of
the map on the right (always of the diagram (109)) is

F 1E0 ×
(

(F 1E0)∨,finite
)J J (

(E0)∨,finite
)J J

(τ, τ∨v
∣∣
F 1E0) −τ · φv.

Replacing
(
(F 1E0)∨,finite

)J J
with E3/F0E

3, we get a map

F 1E0 × E3/F0E
3 E3

(τ, φv) −τ · φv.

Now, this is basically the map on the lower diagonal arrow of the diagram (111),
except that here we are taking a specific representative for each element of E3/F0E

3,
whereas in the map in the diagram we claimed that we could take arbitrary repre-
sentatives. But this is allowed because looking at the explicit formulas for the action
of E0 on E3 we see that multiplication by an element of F 1E0 sends F0E

3 to zero.
This shows that the map on the lower diagonal arrow of the diagram (111) is well
defined and that such diagram commutes.

Now, looking back at the statement of the lemma we want to prove, we see that
using the diagrams (111) and (112) such statement can be rephrased as follows: for
all τ ∈ F 1E0 and all φ ∈ ZE0(E3/F0E

3) one has −τ · φ = −φ · τ . We recall that
in Lemma 2.6.1 we have shown that each element of ZE0(E3/F0E

3) admits a lift in
ZE0(E3), and so the claim follows. �
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In view of what we said before the lemma, it remains to prove that β−1 and β+
1

centralize ZE0(E2). After a preliminary remark about cup products, in the next
lemma we will compute products between β−1 (respectively, β+

1 ) and elements of E2.

Remark 2.6.10. Let w ∈ W̃ . Let us consider (c−, c0, c+)w ∈ H1(I,X(w)) and
(α−, α0, α+)w ∈ H1(I,X(w)). One has:

(α−, α0, α+)w ^ (c−, c0, c+)w =
〈
(α−, α0, α+), (c−, c0, c+)

〉
φw, (113)

where 〈−,−〉 denotes the natural component-wise pairing (recall that we are consid-
ering α−, α+ ∈ O/M⊗Fp k and c−, c+ ∈ HomFp (O/M, k), and that, if `(w) > 1, we

are considering α0 ∈ 1+M
(1+M)p ⊗Fp k and c0 ∈ HomFp

(
1+M

(1+M)p , k
)
).

Proof. Let us recall from (40) that φw is the unique element of H3(I,X(w)) such
that (

η ◦ Sd
)

(φw) = 1.

Therefore any other ϕ ∈ Hd(I,X(w)) is such that

ϕ =
(
η ◦ Sd

)
(ϕ) · φw

(to show this it suffices to write ϕ as a scalar multiple of φw and applying the map
η ◦ Sd to determine the value of such scalar). In particular, since we know that
(α−, α0, α+)w ^ (c−, c0, c+)w ∈ H3(I,X(w)), we deduce that

(α−, α0, α+)w ^ (c−, c0, c+)w =
(
η ◦ Sd

)(
(α−, α0, α+)w ^ (c−, c0, c+)w

)
· φw.

The explicit identification of H2(I,X(w)) with H1(I,X(w))∨ is, by construction,
through the isomorphism

H2(I,X(w)) H1(I,X(w))∨

α
(
η ◦ Sd

)
(α ^ −),

but then the value of
(
η ◦ Sd

)(
(α−, α0, α+)w ^ (c−, c0, c+)w

)
is exactly the value of

the natural pairing
〈
(α−, α0, α+), (c−, c0, c+)

〉
. �

Lemma 2.6.11. Let w ∈ W̃ . Let us consider (c−, 0, c+)1 ∈ H1(I,X(1)) and let us
consider (α−, α0, α+)w ∈ H2(I,X(w)). One has:

(c−, 0, c+)1 · (α−, α0, α+)w

=


(〈c−, α−〉+ 〈c+, α+〉)φw if w ∈ T 0/T 1,

〈c−, α−〉φw if w /∈ T 0/T 1 and `(s1w) = `(w) + 1,

〈c+, α+〉φw if w /∈ T 0/T 1 and `(s0w) = `(w) + 1.

(114)

Proof. Using the relation between (the opposite of) Yoneda product and cup product
(Corollary 1.9.3) and since the cup product between an element of E1 and an element
of E2 is commutative, we find that

(c−, 0, c+)1 · (α−, α0, α+)w =
(
(c−, 0, c+)1 · τw

)
^
(
τ1 · (α−, α0, α+)w

)
= (α−, α0, α+)w ^

(
(c−, 0, c+)1 · τw

)
.
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Thanks to the formulas (65) for the right action of E0 on E1 the term on the right
can be computed as

(c−, 0, c+)1 · τw =


(c−, 0, c+)w if w ∈ T 0/T 1,

(c−, 0, 0)w if w /∈ T 0/T 1 and `(s1w) = `(w) + 1,

(0, 0, c+)w if w /∈ T 0/T 1 and `(s0w) = `(w) + 1.

Now we can compute the cup product above using the explicit formula (113), finding
that

(c−, 0, c+)1 · (α−, α0, α+)w = (α−, α0, α+)w ^
(
(c−, 0, c+)1 · τw

)
=


(〈c−, α−〉+ 〈c+, α+〉)φw if w ∈ T 0/T 1,

〈c−, α−〉φw if w /∈ T 0/T 1 and `(s1w) = `(w) + 1,

〈c+, α+〉φw if w /∈ T 0/T 1 and `(s0w) = `(w) + 1.

�

Proposition 2.6.12. One has that the inclusion Z(E∗)2 ⊆ ZE0(E2) is actually
an equality, and furthermore ZE0(E2) is isomorphic to ZE0(E3)/F0E

3 as a Z(E0)-
bimodule, and an explicit k-basis is given in Corollary 2.6.8.

Proof. It remains to check the first statement, the second one having been proved
in Corollary 2.6.3 and the third one in Corollary 2.6.8. We have already explained
at the beginning of this subsection that it suffices to check that the four elements
β−1 , β+

1 , β0,?
s0 and β0,?

s1 centralize ZE0(E2), and the last two elements have already
been dealt with in Lemma 2.6.9. Hence, it only remains to check that the elements
of the k-basis computed in Corollary 2.6.8 commute with β−1 and β+

1 . To compute

these products we use Lemma 2.6.11: for all w ∈ W̃ r
(
T 0/T 1

)
, one has

β−1 · α
0
w = 0,

β+
1 · α

0
w = 0,

α0
w · β−1 = J

(
β−1 · (−1)`(w)α0

w−1

)
= 0,

α0
w · β+

1 = J
(
β+

1 · (−1)`(w)α0
w−1

)
= 0.

It follows immediately that the commutators [β−1 , α] and [β+
1 , α] are both equal to

zero for α equal to one of the following elements of our k-basis of ZE0(E2):

− e1α
0
s0 , −eχ0

α0
s0 , e1α

0
s1 , eχ0

α0
s1 ,

eλα
0
(s1s0)i − eλ−1α0

(s0s1)i

for i ∈ Z>1 and for λ ∈ T̂ 0/T 1 r {1, id},
e1α

0
(s1s0)i − e1α

0
(s0s1)i − e1α

0
s1(s0s1)i + e1α

0
s0(s1s0)i

for i ∈ Z>1.

It remains to compute the commutators [β−1 , α] and [β+
1 , α] where

α := eidα
0
(s1s0)i − eid−1α0

(s0s1)i

+ 2

i−1∑
j=0

(
eidα

−
s1(s0s1)j

− eid−1α+
s1(s0s1)j

− eidα
−
s0(s1s0)j

+ eid−1α+
s0(s1s0)j

)
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for i ∈ Z>1. Since the first two terms do not contribute to the computation of

the commutator, it suffices to prove that the commutators
[
β−1 , eidα

−
w − eid−1α+

w

]
and

[
β+

1 , eidα
−
w − eid−1α+

w

]
are both zero for w of the form s1(s0s1)j or s0(s1s0)j

(for j ∈ Z>0). Using the formulas (57), (81) and (45) for the involutive anti-
automorphism J and the formulas of Lemma 2.6.11 for the left action of β−1 and
β+

1 on E2 we compute

α−w · β−1 = J
(
J(β−1 ) · J(α−w)

)
= J

(
β−1 · (−α

+
w−1)

)
= 0,

α+
w · β−1 = J

(
J(β−1 ) · J(α+

w)
)

= J
(
β−1 · (−α

−
w−1)

)
= J(−φw−1) = −φw,

α−w · β+
1 = J

(
J(β+

1 ) · J(α−w)
)

= J
(
β+

1 · (−α
+
w−1)

)
= J(−φw−1) = −φw,

α+
w · β+

1 = J
(
J(β+

1 ) · J(α+
w)
)

= J
(
β+

1 · (−α
−
w−1)

)
= 0.

We are now able to compute both
[
β−1 , eidα

−
w − eid−1α+

w

]
and

[
β+

1 , eidα
−
w − eid−1α+

w

]
,

also making use of the formulas (61) for the left and right action of the idempotents
on E1. Let us start with the former commutator: one has

β−1 ·
(
eidα

−
w − eid−1α+

w

)
= eid−1β−1 · α

−
w − eid−3β−1 · α

+
w = eid−1φw,(

eidα
−
w − eid−1α+

w

)
· β−1 = −eid−1 · (−φw) = eid−1φw,

and hence the former commutator is zero. Similarly, for the latter commutator one
has

β+
1 ·
(
eidα

−
w − eid−1α+

w

)
= eid3β+

1 · α
−
w − eidβ

+
1 · α

+
w = −eidφw,(

eidα
−
w − eid−1α+

w

)
· β+

1 = −eidφw,

and hence the latter commutator is zero as well. �

2.7 Structure of the 2nd graded piece of the centre as a
Z(E0)-module

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p.

Since we know from Proposition 2.6.12 that Z(E∗)2 = ZE0(E2), it follows that
Z(E∗)2 has a natural structure of Z(E0)-module. Moreover, from the same propo-
sition we know that ZE0(E2) is isomorphic to ZE0(E3)/F0E

3 as a Z(E0)-bimodule.
Since we know the structure of ZE0(E3) as a Z(E0)-module explicitly, it will then
be easy to describe the structure of such quotient.

Recall the decomposition Z(E0) =
∏
γ∈Γ eγZ(E0) and the description of the

components eγZ(E0) stated in Section 1.7, which we already used for the description
of Z(E∗)3 in Section 2.3. As in Section 2.3, we distinguish the components relative
to the idempotents e1, eχ0

(where χ0 is the quadratic character) and eγ for γ ∈ Γ
of cardinality 2.

• Recall from Lemma 2.3.2 that, identifying e1Z(E0) with the polynomial ring k[X1]
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as in Lemma 1.7.1, one has the following isomorphism of k[X1]-modules:

k[X1]

(X1 − 1)
⊕ k[X1]

(X1)
⊕ k[X1, X

−1
1 ]

k[X1]
e1Z(E∗)3

(
1, 0, 0

)
e1φ1,(

0, 1, 0
)

e1φs0 − e1φs1 ,(
0, 0, X−i1

)
(for i ∈ Z>1)

U1,i−1,

∼=

where U1,i−1 := e1φ(s1s0)i−1 +e1φ(s0s1)i−1−e1φs1(s0s1)i−1−e1φs0(s1s0)i−1 . Now, from

the isomorphism ZE0(E3)/F0E
3
∼=−→ ZE0(E2) we obtain an isomorphism

e1ZE0(E3)/e1F0E
3 ∼=−→ e1ZE0(E2),

of which we know an explicit description (compare Remark 2.6.2). It is then easy
to compute that we have an isomorphism

k[X1]

(X1)
⊕ k[X1, X

−1
1 ]

k[X1]
e1Z(E∗)2

(
0, 1, 0

)
e1α

0,?
s0 − e1α

0,?
s1 ,(

0, 0, X−i1

)
(for i ∈ Z>1)

V1,i−1,

∼=

where

V1,i−1 :=

{
e1α

0,?
(s1s0)i−1 + e1α

0,?
(s0s1)i−1 − e1α

0,?
s1(s0s1)i−1 − e1α

0,?
s0(s1s0)i−1 if i > 2,

−e1α
0,?
s1 − e1α

0,?
s0 if i = 1.

• Recall from Lemma 2.3.3 that, identifying eχ0
Z(E0) with the polynomial ring

k[Xχ0
] as in Lemma 1.7.1, one has the following isomorphism of k[Xχ0

]-modules:

k[Xχ0
]

(Xχ0
)
⊕
k[Xχ0

]

(Xχ0
)
⊕
k[Xχ0

, X−1
χ0

]

k[Xχ0
]

eχ0
Z(E∗)3

(
1, 0, 0

)
eχ0

φs0 ,(
0, 1, 0

)
eχ0

φs1 ,(
0, 0, X−iχ0

)
(for i ∈ Z>1)

Uχ0 ,i−1,

∼=

where Uχ0 ,i−1 := eχ0
φ(s1s0)i−1 + eχ0

φ(s0s1)i−1 . Proceeding as for the e1Z(E0)-
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component, we find the following isomorphism:

k[Xχ0
]

(Xχ0
)
⊕
k[Xχ0

]

(Xχ0
)
⊕
k[Xχ0

, X−1
χ0

]

k[Xχ0
] ·X−1

χ0

eχ0
Z(E∗)2

(
1, 0, 0

)
eχ0

α0,?
s0 ,(

0, 1, 0
)

eχ0
α0,?
s1 ,(

0, 0, X−iχ0

)
(for i ∈ Z>2)

Vχ0 ,i−1,

∼=

where Vχ0 ,i−1 := eχ0
α0,?

(s1s0)i−1 + eχ0
α0,?

(s0s1)i−1 .

With a shifting of the indices, we also get

k[Xχ0
]

(Xχ0
)
⊕
k[Xχ0

]

(Xχ0
)
⊕
k[Xχ0

, X−1
χ0

]

k[Xχ0
]
∼= eχ0

Z(E∗)2.

• Now let us treat the eγ-component for γ = {λ, λ−1} ∈ Γ of cardinality 2. As in

Lemma 1.7.1 we identify eγZ(E0) with the ring
k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) , where Xλ and Xλ−1

are indeterminates. For the moment let us use the letters X and Y for such
indeterminates to simplify notation; recall that in order to describe eγZ(E∗)3 we

considered the injective hull of k = k[X,Y ]
(X,Y ) as a k[X,Y ]

(X·Y ) -module, which we denoted
by

E k[X,Y ]
(X·Y )

(k).

We showed that it admits the following k-basis (see (103))

(1)∨,

(Xi)∨ for i ∈ Z>1,

(Y i)∨ for i ∈ Z>1,

basis which satisfies the following formulas (see (104)):

X · (1)∨ = 0,

Y · (1)∨ = 0,

X · (Xi)∨ = (Xi−1)∨ for i ∈ Z>1,

Y · (Xi)∨ = 0 for i ∈ Z>1,

X · (Y i)∨ = 0 for i ∈ Z>1,

Y · (Y i)∨ = (Y i−1)∨ for i ∈ Z>1.

(115)

Now, let us recall the description of eγZ(E∗)3 from Lemma 2.3.4: we have the
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following isomorphism of
k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 ) -modules:

k ⊕ E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k) eγZ(E∗)3

(1, 0) eλφ1 − eλ−1φ1,(
0, (Xi

λ)∨
)

(for i ∈ Z>1)
Uλ,i,(

0, (Xi
λ−1)∨

)
(for i ∈ Z>1)

Uλ−1,i,(
0, (1)∨

)
Uλ,0 = Uλ−1,0,

∼=

where for µ ∈ {λ, λ−1} and i ∈ Z>0 we had

Uµ,i := eµφ(s1s0)i + eµ−1φ(s0s1)i .

Therefore, with the same argument as for the previous components, we get an
isomorphism (

E k[Xλ,Xλ−1 ]

(Xλ·Xλ−1 )

(k)
)
/
(
k · (1)∨

)
eγZ(E∗)2

(Xi
λ)∨

(for i ∈ Z>1)
Vλ,i,

(Xi
λ−1)∨

(for i ∈ Z>1)
Vλ−1,i,

∼=

where for µ ∈ {λ, λ−1} and i ∈ Z>1 we define

Vµ,i := eµα
0,?
(s1s0)i

+ eµ−1α0,?
(s0s1)i

.

By the formulas (115), we see that the quotient
(
E k[X,Y ]

(X·Y )

(k)
)
/
(
k · (1)∨

)
can be

described in a much simpler way, namely as

k[X,X−1]

k[X]
⊕ k[Y, Y −1]

k[Y ]

(
E k[X,Y ]

(X·Y )

(k)
)
/
(
k · (1)∨

)
(
(X−i)∨, 0

)
(for i ∈ Z>1)

(Xi)∨,

(
0, (Y −i)∨

)
(for i ∈ Z>1)

(Y i)∨,

∼=

where we see the first direct summand as a k[X,Y ]-module by declaring that X
acts in the obvious way and that Y acts by zero, and symmetrically for the second
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direct summand. Hence, we obtain an isomorphism

k[Xλ, X
−1
λ ]

k[Xλ]
⊕
k[Xλ−1 , X−1

λ−1 ]

k[Xλ−1 ]
eγZ(E∗)2

(
(X−iλ )∨, 0

)
(for i ∈ Z>1)

Vλ,i,

(
0, (X−i

λ−1)∨
)

(for i ∈ Z>1)
Vλ−1,i.

∼=

For the next two remarks, let us assume again that γ = {λ, λ−1} ∈ Γ is of
cardinality 2, and let us denote by Mλ and Mλ−1 the two direct summands of

eγZ(E∗)2 corresponding respectively to
k[Xλ,X

−1
λ ]

k[Xλ] and to
k[Xλ−1 ,X

−1

λ−1 ]

k[Xλ−1 ] via the above

isomorphism.

Remark 2.7.1. With notation as above, neither Mλ, nor Mλ−1 , nor the whole
eγZ(E∗)2 are injective eγZ(E0)-modules.

Proof. Since a direct summand of an injective module is injective as well, it suffices
to show that the k[X,Y ]/(X · Y )-module k[X,X−1]/k[X] is not injective. It is easy
to see that the following homomorphism of k-vector spaces is also an homomorphism
of k[X,Y ]/(X · Y )-modules:

(X,Y )k[X,Y ]

(X · Y )

k[X,X−1]

k[X]

Xi

(for all i ∈ Z>1)
0,

Y X−1,

Y i

(for all i > 2)
0.

Assume by contradiction that there exists a homomorphism of k[X,Y ]/(X · Y )-
modules

ϕ :
k[X,Y ]

(X · Y )
−→ k[X,X−1]

k[X]

extending the one above. Then one has

0 = Y · ϕ(1) = ϕ(Y ) = X−1 6= 0,

and this contradiction concludes the proof. �

Remark 2.7.2. With notation as above, Mλ is an injective module over the ring

Rλ :=
eγZ(E0)

AnneγZ(E0)(Mλ)

(and the analogous result holds for M−1
λ ). More precisely, Mλ is the injective hull of

k as a module over the ring Rλ (where xλ acts by zero on k).
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Proof. Using our fixed isomorphism k[Xλ, Xλ−1 ]/(Xλ ·Xλ−1) ∼= eγZ(E0), and de-
noting by X and Y the indeterminates Xλ and Xλ−1 respectively in order to simplify
notation, one has:

Rλ =
eγZ(E0)

AnneγZ(E0)(Mλ)
∼=

k[X,Y ]

(X · Y )

Ann k[X,Y ]
(X·Y )

(
k[X,X−1]

k[X]

) =

k[X,Y ]

(X · Y )

(Y )

(X · Y )

∼= k[X],

and k[X,X−1]
k[X] is the injective hull of k as a module over k[X] (where X acts by zero

on k), as explained in [Lam12, Proposition 3.91.(1)]. �

2.8 Multiplicative structure of Z(E∗)

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5). To
use results proved in the previous sections we may assume without loss of generality
that π = p (there is no loss of generality because our statements will be independent
of such choice, while in the previous sections computations and explicit formula
for bases could depend on it). In Remark 2.8.2 we will work under more general
assumptions.

Since Z(E∗)1 = 0, the multiplicative structure of Z(E∗) is very simple: describ-
ing the multiplication amounts to describing the multiplication on Z(E∗)0 and to
describing Z(E∗)2 and Z(E∗)3 as Z(E∗)0-modules. Recall from Proposition 2.4.1
that Z(E∗)0 can be described as

k × k Z(E∗)0

(1, 0)
1

2

(
τ1 + τc−1

)
,

(0, 1)
1

2

(
τ1 − τc−1

)
.

∼=

It remains to describe Z(E∗)2 and Z(E∗)3 as Z(E∗)0-modules.

Remark 2.8.1. Both Z(E∗)2 and Z(E∗)3 are free Z(E∗)0-modules of rank ℵ0.

Proof. Let i = 2 or i = 3. For all {λ, λ−1} ∈ Γ, one has that τc−1 acts on the
component e{λ,λ−1}Z(E∗)i by multiplication by λ(c−1) ∈ {1,−1}. Let us identify
Z(E∗)0 with k × k via the above isomorphism: then k × 0 is the unique Z(E∗)0-
module of dimension 1 over k such that τc−1 acts by 1, while 0 × k is the unique
Z(E∗)0-module of dimension 1 over k such that τc−1 acts by −1.

Now, let us choose a k-basis of e{λ,λ−1}Z(E∗)i: by the explicit description of
this submodule we know that such basis has cardinality ℵ0 (see Lemma 2.3.1 and
Proposition 2.6.12). Combining this with the above remarks about the action of τc−1 ,
we see that e{λ,λ−1}Z(E∗)i is either isomorphic to

⊕
n∈Z>0

(k×0) or to
⊕

n∈Z>0
(0×k)

as a module over the ring k × k ∼= Z(E∗)0. Therefore

Z(E∗)i ∼=
(⊕
j∈J1

(k × 0)
)
⊕
(⊕
j∈J2

(0× k)
)
,

for suitable sets J1 and J2 that are either empty or of cardinality ℵ0. Since there

exists at least one λ ∈ T̂ 0/T 1 such that λ(c−1) = 1 (e.g., λ = 1) and at least one
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λ ∈ T̂ 0/T 1 such that λ(c−1) = −1 (e.g., λ = id), we conclude that both J1 and
J2 have cardinality ℵ0, and so Z(E∗)i is free as a module of rank ℵ0 over the ring
k × k ∼= Z(E∗)0. �

Remark 2.8.2. Under the more general assumptions that G = SL2(F) (with the
usual fixed choices as in Section 1.5), that I is torsion-free and that Fq ⊆ k, the same
proof shows that Z(E∗)d is a free Z(E∗)0-module of rank ℵ0 (recall that d denotes
the dimension of G as an analytic manifold over Qp).
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Chapter 3

The Ext-algebra for more
general groups: low graded
pieces of the centre and other
remarks

This chapter is mainly devoted to understanding the 0th and 1st graded pieces of
the centre for general groups G. We achieve the following results.

• In Section 3.1 we completely determine the 0th graded piece of the centre without
further assumptions.

• In Section 3.2 we completely determine the 1st graded piece of the centre under
the assumption that F is an unramified extension of Qp.

Furthermore, the final Section 3.3 is devoted to extending to the Ext-algebras the
following result about pro-p Iwahori–Hecke algebras: denoting by T+ is the sub-
monoid of T consisting of the elements t such that (valF ◦α)(t) > 0 for all α ∈ Π,
one has an injective homomorphism of k-algebras

k[T+/T 1] H

(t) τt.

3.1 The 0th graded piece of the centre

Assumptions. We put ourselves in the general assumptions of Section 1.1, without
any restriction on G and F.

In this section we will describe the 0th graded piece of the centre of the Ext-
algebra E∗. The first subsection contains the main statement, while the second
subsection deals with the proofs.

3.1.a Statement

Recall from Section 1.2 that we denote by C the centre of G (meaning the whole
centre, not just its identity component). As usual, we denote by C its group of F-
rational points. Recall from [Mil17, Proposition 17.71 (b)] that C is contained in
T, and hence C is contained in T . As a side remark, note that C is the centre of
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G: indeed if an element g ∈ G centralizes the whole G, then G ⊆ CG(g)(F), where
CG(g) is the schematic centralizer of g in G. But CG(g) is a closed subscheme of
G (see [Mil17, Proposition 1.79]), and G is schematically dense in G (see [Mil17,
Theorem 17.93]), and hence we conclude that G = CG(g), i.e., that g ∈ C(F) = C.

We will now state the theorem describing the 0th graded piece of the centre of
the Ext-algebra. We will prove it in the next subsection, splitting the argument into
various lemmas.

Theorem (see Theorem 3.1.10). Let us define

C̃ := (C · T 1)/T 1.

One has the following facts:

• One has the following isomorphism of k-algebras describing the 0th graded piece
of the centre of E∗:

k[C̃] Z(E∗)0

(c)
(with c ∈ C̃)

τc.

• The obvious inclusion Z(E∗)0 ⊆ ZE0∪H1(I,X(1))(E
0) is actually an equality.

• C̃ is a subgroup of Ω̃ ∩ T/T 1 and it can also be described as

C̃ = {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1.

Moreover, in the obvious isomorphism C/(C ∩ T 1) ∼= (C · T 1)/T 1 = C̃, the group
C∩T 1 can be described as the (unique) pro-p Sylow subgroup of the unique maximal
compact subgroup of C.

We complement this theorem with a few remarks: namely, we discuss the fact
that the inclusion C̃ ⊆ Z(W̃ ) is not an equality in general, we discuss Z(E∗)0 for
the groups SLn and GLn, and we determine when Z(E∗)0 is “trivial” (i.e., just equal
to k).

Remark (see Remark 3.1.11). The inclusion C̃ ⊆ Z(W̃ ) might be strict in
general, but it is an equality if the order of the fundamental group of the derived
group of G is not divisible by 2.

Example 3.1.1. We briefly discuss the examples G = SLn and G = GLn.

• Let G = SLn, for n ∈ Z>2. One has C ∼= µn(F). By the theorem we know that we
have an isomorphism Z(E∗)0 ∼= k

[
C/(C ∩ T 1)

]
, and that (C ∩T 1) is the p-Sylow

subgroup of C. It follows that

Z(E∗)0 ∼= k [µn(Fq)] ∼= k[X]/(Xgcd(n,q−1) − 1).

In particular, if Fq ⊆ k, then Z(E∗)0 ∼=
∏gcd(n,q−1)
i=1 k.

• Let G = GLn, for n ∈ Z>1. One has C ∼= F× ∼= Z × F×q × (1 + M). Again we
use the isomorphism Z(E∗)0 ∼= k

[
C/(C ∩ T 1)

]
, together with the description of

C ∩ T 1 as the pro-p Sylow subgroup of the unique maximal compact subgroup of
O, and we get

Z(E∗)0 ∼= k
[
Z× F×q

] ∼= k[X,X−1, Y ]/(Y q−1 − 1).

In particular, if Fq ⊆ k, then Z(E∗)0 ∼=
∏q−1
i=1 k[X,X−1].
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Remark 3.1.2. The inclusion k ⊆ Z(E∗)0 is an equality if and only if G has finite
centre C of order coprime with q − 1 (compare also the example of SLn above).

Proof. As in the above examples, it is useful to work with the description

Z(E∗)0 ∼= k
[
C/(C ∩ T 1)

]
.

Since C is contained in a split torus, it must have the following form (see [Mil17,
Proposition 12.3 and Theorem 12.9]):

C ∼= Gr
m × µn1

× · · · × µnm

for some r,m ∈ Z>0 and some n1, . . . , nm ∈ Z>1. Making use of the fact that
F× = πZ×µq−1(F)× (1 +M) with µq−1(F) ∼= F×q and of the fact that C ∩T 1 can is
the pro-p Sylow subgroup of the unique maximal compact subgroup of C, it is easy
to see that

C/(C ∩ T 1) ∼= Zr × ((Fq)×)r × µn1
(Fq)× · · · × µnm(Fq),

and so C/(C ∩ T 1) is trivial if and only if r = 0 and n1, . . . , nm are coprime with
q − 1. �

3.1.b Proofs

Recall from Theorem 1.6.1 that the centre of E0 has the following k-basis:

zO :=
∑
x∈O

Bo(x) for all the W0-orbits O ⊆ T/T 1, (116)

where o is a fixed spherical orientation and where (Bo(w))
w∈W̃ denotes the associated

Bernstein basis.
For all w ∈ W̃ one has

Bo(w)− τw ∈
⊕
v∈W̃

s.t. `(v) < `(w)

kτv.

This is easy to see: indeed, following [Vig16, Proof of Corollary 5.26] let us write
w = s̃1 · · · s̃`(w)ω for suitable s1, . . . , s`(w) ∈ Saff and ω ∈ Ω̃; from the definition of the
Bernstein basis, or more generally of the alcove walk basis, one sees that Bo(w)− τw
is a k-linear combination of elements of the form τw′ , where w′ = s̃′1 · · · s̃′rω′ for

suitable s′1, . . . s
′
r ∈ {s1, . . . s`(w)} with r < `(w) and ω′ ∈ Ω̃, and the claim follows.

Therefore the following formula holds:

zO =
∑
x∈O

τx + rO for some rO ∈
⊕
v∈W̃

s.t. `(v) < `(O)

kτv, (117)

where `(O) is defined as `(x) for x ∈ O (this is independent of the choice of x
because of the formula `(x) = 1

2

∑
α∈Φ |(valF ◦α)(x)| recalled in (10)).

We are now going to see a couple of preliminary statements before the stating
the most important lemma for the proof of Theorem 3.1.10.
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Remark 3.1.3. Let x ∈ T/T 1. Recall from Lemma 1.3.2 the Iwahori decomposition
of the group Ix: the product map induces a homeomorphism∏

α∈Φ−

U(α,gx(α)) × T 1 ×
∏
α∈Φ+

U(α,gx(α)) −→ Ix,

where the products on the left hand side are ordered in some arbitrarily chosen way
and where gx(α) = min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff ∩ xΦ+

aff

}
. Since x ∈ T/T 1, we claim

that the definition of gx(α) simplifies as follows:

gx(α) =

{
max{1, (valF ◦α)(x) + 1} if α ∈ Φ−,

max{0, (valF ◦α)(x)} if α ∈ Φ+.

Proof. One has:

gt(α) = min
{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff ∩ tΦ

+
aff

}
= min

{
m ∈ Z

∣∣∣ (α,m) ∈ Φ+
aff and t

−1 · (α,m) ∈ Φ+
aff

}
= min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff and (α,m− (valF ◦α)(t)) ∈ Φ+

aff

}
=

{
min {m ∈ Z | m > 1 and m− (valF ◦α)(t) > 1} if α ∈ Φ−

min {m ∈ Z | m > 0 and m− (valF ◦α)(t) > 0} if α ∈ Φ+

=

{
max{1, (valF ◦α)(t) + 1} if α ∈ Φ−

max{0, (valF ◦α)(t)} if α ∈ Φ+.
�

Lemma 3.1.4. Let s ∈ Saff and let (αs, hs) be the corresponding affine root. One
has that Is is normal in I and that there are the following isomorphisms

I/Is U(αs,hs)/U(αs,hs+1) O/M.
u←[u

∼=
ϕαs

(
1 aπhs

0 1

)
← [a

∼=

Proof. See [OS19, Corollary 2.5.iii and Equation (12)]. �

Remark 3.1.5. Let us remark that T 1 ⊆ {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ}, so
that it makes sense to define the quotient {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1,
which we will consider in the next lemma. Indeed, a root α sends the unique maximal
compact subgroup T 0 of T to the unique maximal compact subgroup O× of F×, and
α sends the unique pro-p Sylow subgroup T 1 of T 0 to the unique pro-p Sylow 1 +M
of O×.

The next lemma is the main part of the proof of Theorem 3.1.10. Indeed, although
the lemma itself does not describe the 0th graded piece of the centre, it gives a quite
strong necessary condition for an element to lie in Z(E∗)0.

Lemma 3.1.6. Let

C̃ ′ := {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1.

One has that every element of E0 that commutes with the whole E0 and the whole
H1(I,X(1)) lies in the k-vector space spanned by the elements of the following set:{

zO

∣∣∣ O ⊆ T/T 1 orbit for W0 made of elements of C̃ ′
}
,

where the zO’s are defined in (116).
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In the statement of the lemma, we have used the notation C̃ ′ in order to distin-
guish it from C̃ := (C ·T 1)/T 1, although a posteriori these two groups will be equal,
as claimed in Theorem 3.1.10. We also remark that with this alternative description
of C̃ ′ it also follows that the orbits in the statement of the lemma have cardinality
equal to 1.

Proof of the lemma. Let z ∈ E0 be an element which commutes with the whole E0

and the whole H1(I,X(1)). Using the description of the centre of E0 as in (116), we
can write z as

z =
∑

O⊆T/T 1

W0-orbit

aOzO,

for suitable coefficients aO ∈ k (almost all of them equal to zero). Clearly we might
assume that z 6= 0 and set

L := max
{
`(O)

∣∣ O ⊆ T/T 1 orbit such that zO is in the support of z
}
.

We have seen in (117) that for all O one has

zO =
∑
x∈O

τx + rO for a suitable rO ∈
⊕
v∈W̃

s.t. `(v) < `(O)

kτv,

and therefore
z =

∑
O orbit

s.t. `(O) = L

∑
x∈O

aOτx + r, (118)

for a suitable r supported in length strictly less than L. Let γ ∈ H1(I,X(1)), for
the moment without further assumptions. Let us compute separately γ · z and z · γ
and then let us try to deduce some constraints on the coefficients aO’s from the fact
that γ · z and z · γ are equal. Since for all w ∈ W̃ one has that both γ · τw and τw · γ
lie in H1(I,X(w)) (see Corollary 1.9.5), we deduce that

γ · z =
∑
O orbit

s.t. `(O) = L

∑
x∈O

aO γ · τx︸ ︷︷ ︸
∈H1(I,X(x))

+ γ · r︸︷︷︸
supported in

length<L

,

z · γ =
∑
O orbit

s.t. `(O) = L

∑
x∈O

aO τx · γ︸ ︷︷ ︸
∈H1(I,X(x))

+ r · γ︸︷︷︸
supported in

length<L

.

Let O be an orbit of length L and let x ∈ O. Furthermore, let us consider the pro-
jection map prH1(I,X(x)) : E1 −→ H1(I,X(x)), meaning the projection with respect

to the direct sum decomposition E1 =
⊕

w∈W̃ H1(I,X(w)). One has:

prH1(I,X(x))(γ · z) = aOγ · τx,
prH1(I,X(x))(z · γ) = aOτx · γ.

Since we are assuming that γ and z commute, we have found that (for all orbits O
of length L) one has:

aO = 0 or γ · τx = τx · γ for all γ ∈ H1(I,X(1)) and all x ∈ O. (119)
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Now, let us compute explicitly γ · τx and τx · γ, in order to prove that they are
different “for many choices of x and γ”. Corollary 1.9.5 yields the following explicit
description of γ · τx and τx · γ:

Shx(γ · τx) = resIIx
(

Sh1(γ)
)
,

Shx(τx · γ) = resxIx
−1

Ix

(
x∗ Sh1(γ)

)
.

(120)

Let α ∈ Π and let s(α,0) be the element of Saff corresponding to the affine root (α, 0).
Since α ∈ Π, one has that s(α,0) ∈ Saff , and we can apply Lemma 3.1.4, which states
that Is(α,0)

is normal in I and that we have an isomorphism I/Is(α,0)
∼= O/M. Let

f : O/M −→ k be an homomorphism of Fp-vector spaces, and let us define following
composite map:

ξα,f : I I/Is(α,0)
U(α,0)/U(α,1) O/M k.

quot.
u←[u

∼=
ϕα( 1 a

0 1 )←[a

∼= f

The map ξα,f is a homomorphism of topological groups from I to k, i.e., an element
of H1(I, k). Let us define γα,f := Sh−1

1 (ξα,f ) ∈ H1(I,X(1)) (here the Shapiro iso-
morphism is basically the identity, but we write it explicitly to emphasize that we
consider γα,f ∈ H1(I,X(1)) ⊆ E1). Putting this into the formulas (120), we get

Shx(γα,f · τx) = resIIx
(
ξα,f

)
,

Shx(τx · γα,f ) = resxIx
−1

Ix

(
x∗ξα,f

)
.

(121)

Let tx ∈ T be a representative of x. By the explicit description of Ix given in Remark
3.1.3, we know that U(α,gx(α)) ⊆ Ix, where gx(α) = max{0, (valF ◦α)(tx)}. Therefore,
it makes sense to compute the image of Shx(γα,f · τx) and the image of Shx(τx ·γα,f )
on the subgroup U(α,gx(α)) ⊆ Ix. This yields:

Shx(γα,f · τx)(U(α,gx(α))) = ξα,f (U(α,gx(α))),

Shx(τx · γα,f )(U(α,gx(α))) =
(
x∗ξα,f

)
(U(α,gx(α)))

= ξα,f (t−1
x U(α,gx(α))tx)

= ξα,f (U(α,gx(α)−(valF ◦α)(tx))),

where in the last step we have used (7).
Let us examine the following cases.

• Assume that (valF ◦α)(tx) > 0, and choose f 6= 0 (clearly it exists). One has

Shx(γα,f · τx)(U(α,gx(α))) = ξα,f (U(α,gx(α)))

= ξα,f (U(α,(valF ◦α)(tx)))

⊆ ξα,f (U(α,1))

= {0},
Shx(τx · γα,f )(U(α,gx(α))) = ξα,f (U(α,(valF ◦α)(tx)−(valF ◦α)(tx)))

= ξα,f (U(α,0))

= f (O/M)

6= {0}.

Hence γα,f · τx 6= τx · γα,f .
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• In a similar fashion, assume that (valF ◦α)(tx) < 0, and choose again f 6= 0. One
has

Shx(γα,f · τx)(U(α,gx(α))) = ξα,f (U(α,gx(α)))

= ξα,f (U(α,0))

= f (O/M)

6= {0},
Shx(τx · γα,f )(U(α,gx(α))) = ξα,f (U(α,0−(valF ◦α)(tx)))

⊆ ξα,f (U(α,1))

= {0}.

Hence γα,f · τx 6= τx · γα,f .

• Assume that (valF ◦α)(tx) = 0 (i.e., that α(tx) ∈ O×) and furthermore that
α(tx) /∈ 1 + M. For the moment, let us not make any assumptions on f . Since
gx(α) = 0, one has that U(α,0) ⊆ Ix and so it makes sense to compute the following:

Shx(γα,f · τx)

(
ϕα

(
1 1
0 1

))
= ξα,f

(
ϕα

(
1 1
0 1

))
= f

(
1
)
,

Shx(τx · γα,f )

(
ϕα

(
1 1
0 1

))
= (x∗ξα,f )

(
ϕα

(
1 1
0 1

))
= ξα,f

(
t−1
x · ϕα

(
1 1
0 1

)
· tx
)

= ξα,f

(
ϕα

(
1 α(tx)−1

0 1

))
= f

(
α(tx)−1

)
,

where we have used the equality t−1
x ·ϕα( 1 1

0 1 ) · tx = ϕα

(
1 α(tx)−1

0 1

)
(see (1)). Since

we have assumed that α(tx) /∈ 1 + M, obviously α(tx)−1 6= 1, and we can find

f ∈ HomFp (O/M, k) such that f
(
α(tx)

)
6= f

(
1
)
. It is therefore clear that for

such choice of f one has γα,f · τx 6= τx · γα,f .

Now we are able to give huge constraints on the orbits appearing in the support of
z.

• First of all, we claim that the maximal length L is actually zero: indeed, by
contradiction, if it were strictly bigger than zero then, choosing O of length L
such that aO 6= 0 and choosing x ∈ O, there would exist α ∈ Π such that
(valF ◦α)(tx) 6= 0 (indeed there would exists an α ∈ Φ+ with this property by the
length formula (10), and then there would exists also an α ∈ Π with the same
property). But for such α we have proved above that, choosing f 6= 0, one has
γα,f ·τx 6= τx·γα,f and this forces aO to be zero (see (119)), yielding a contradiction.

• Now, since we have proved that L = 0, the description of z we gave in (118)
becomes much simpler:

z =
∑
O orbit

s.t. `(O) = 0

aO
∑
x∈O

τx.
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To finish the proof, it remains to show that for all orbit O of length zero such that
aO 6= 0, all x ∈ O and all α ∈ Φ (equivalently, all α ∈ Π) one has α(tx) ∈ 1 + M.
Assume by contradiction that this is false and let us consider O, x and α which
do not satisfy this condition (we can assume α ∈ Π). Then since the length
of x is zero one has (valF ◦α)(tx) = 0 by the length formula (10) and, since
moreover α(tx) /∈ 1 + M, we have shown that for a suitable choice of f one has
γα,f ·τx 6= τx·γα,f . But this forces aO to be zero (see (119)), yielding a contradiction
and completing the proof. �

Remark 3.1.7. For later use we record the following fact: let

C̃ ′ := {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1

as in the last lemma (we will prove in Theorem 3.1.10 that C̃ ′ = (C ·T 1)/T 1). Let us
consider x ∈

(
T/T 1

)
r C̃ ′. In the proof of the last lemma we constructed an element

γ ∈ H1(I,X(1)) = H1(I, k) such that

[γ, τx] 6= 0.

Moreover [γ, τx] has the property that Shx([γ, τx]) is zero on T 1, as it is easy to
see from the formulas of Corollary 1.9.5 since conjugation by x−1 acts trivially on
T 1 (actually, for the specific γ we have constructed it is also easy to see that both
Shx(γ · τx) and Shx(τx · γ) are zero on T 1).

Lemma 3.1.8. Let ω ∈ Ω̃, let i ∈ Z>0, let v ∈ W̃ , and let β ∈ H i(I,X(v)). One
has the following formulas:

β · τω ∈ H i(I,X(vω)) and Shvω(β · τω) = Shv(β),

τω · β ∈ H i(I,X(ωv)) and Shωv(τω · β) = ω∗ Shv(β).

In particular, for all c ∈ C̃, one has that τc centralizes E∗.

Note that the final part of the statement follows from the first one because
C̃ ⊆ Ω̃, for example by the length formula (10).

Proof. Since the length function is constant on each double coset modulo Ω̃ (see
after (11)), we can apply Corollary 1.9.5, finding that

β · τω ∈ H i(I,X(vω)) and Shvω(β · τω) = resIvIvω
(

Shv(β)
)
,

τω · β ∈ H i(I,X(ωv)) and Shωv(τω · β) = resωIvω
−1

Iωv

(
n∗ Shv(β)

)
.

Since ω has length zero, conjugation by ω normalizes I (see [OS19, after Equation
(5)]), and hence one has

Ivω = I ∩ vωIω−1v−1 = I ∩ vIv−1 = Iv,

ωIvω
−1 = ωIω−1 ∩ ωvIv−1ω−1 = I ∩ ωvIv−1ω−1 = Iωv,

and the claimed formulas follow. �

Lemma 3.1.9. Let t ∈ T such that α(t) ∈ 1 + M for all α ∈ Φ (in this lemma Φ
could be replaced by any other subset of X∗(T)). Then there exists t′ ∈ T with the
following properties:

• t = t′ in T/T 1,
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• α(t′) = 1 for all α ∈ Φ.

Proof. Since T is F-split, it is isomorphic to Gn
m over F (where n = dim(T)). Since

this isomorphism preserves the formation of T , T 0 and T 1, there is no loss of gener-
ality in assuming that T = Gn

m. Recall that one has the isomorphism of topological
groups

Z× µq−1(F)× (1 + M) F×

(m,x, u) πm · x · u.

Since T = (F×)n, we can write t as

t = (πmi · xi · ui)i∈{1,...,n},

for suitable mi ∈ Z, xi ∈ µq−1(F) and ui ∈ 1 + M. Let us define

t′ := (πmi · xi)i∈{1,...,n}.

Clearly, since T/T 1 = (F×/(1 + M))
n
, the requirement that t = t′ in T/T 1 is sat-

isfied. Now, let α ∈ Φ ⊆ X∗(T) and let us write it (in multiplicative notation) as
α =

∏n
i=1 prcii , where (pri)i∈{1,...,n} is the standard basis of X∗(T) made of projection

maps. One has

1 + M 3 α(t) = π
∑n
i=1 cimi ·

n∏
i=1

xcii ·
n∏
i=1

ucii ,

α(t′) = π
∑n
i=1 cimi ·

n∏
i=1

xcii .

By the first line and the isomorphism describing F×, we see that π
∑
imici ·

∏
i x

ci
i = 1.

Hence α(t′) = 1, proving the last statement we had to check. �

Theorem 3.1.10. Let us define

C̃ := (C · T 1)/T 1.

One has the following facts:

• One has the following isomorphism of k-algebras describing the 0th graded piece
of the centre of E∗:

k[C̃] Z(E∗)0

(c)
(with c ∈ C̃)

τc.

• The obvious inclusion Z(E∗)0 ⊆ ZE0∪H1(I,X(1))(E
0) is actually an equality.

• C̃ is a subgroup of Ω̃ ∩ T/T 1 and it can also be described as

C̃ = {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1.

Moreover, in the obvious isomorphism C/(C ∩ T 1) ∼= (C · T 1)/T 1 = C̃, the group
C∩T 1 can be described as the (unique) pro-p Sylow subgroup of the unique maximal
compact subgroup of C.

Proof. Let us prove the various facts not following the order of the statements.
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• The fact that

(C · T 1)/T 1 = {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1, (122)

can be seen as follows: we recall from [Mil17, Proof of Proposition 21.8] that one
has an equality of algebraic groups

C =
⋂
α∈Φ

ker (α : T −→ Gm) .

Looking at the claimed equality (122), we see that the inclusion from left to right is
then immediate, and the inclusion from right to left follows from Lemma 3.1.9, be-
cause for every element of the quotient {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1

we can find a representative that lies in the group of F-rational points of the
intersection

⋂
α∈Φ ker (α : T −→ Gm), i.e., of C.

• The fact that C̃ is a subgroup of Ω̃ (and hence of Ω̃∩ T/T 1) follows from the fact
that if t ∈ T is such that (valF ◦α)(t) = 0 (in particular, if α(t) ∈ 1 + M) for all
α ∈ Φ, then `(t) = 0 (see (10)).

• The fact that the map C̃ 3 c 7→ τc does take values in Z(E∗)0 has been seen in
Lemma 3.1.8.

• The fact that the map k[C̃] −→ Z(E∗)0 of the statement is a homomorphism of
k-algebras follows from the fact that C̃ ⊆ Ω̃.

• The fact that the map k[C̃] −→ Z(E∗)0 of the statement is injective is clear.

• The fact that the map k[C̃] −→ Z(E∗)0 of the statement is surjective can be seen
as follows: we have seen in Lemma 3.1.6 that every element of ZE0∪H1(I,X(1))(E

0)
lies in the k-vector space spanned by the following set:{

zO

∣∣∣ O ⊆ T/T 1 orbit for W0 made of elements of C̃
}
,

If t ∈ C̃, we might assume that t ∈ C, and hence it is clear that the W0-
orbit Ot of t consists only of t, and hence zOt = τt. Therefore every element
of ZE0∪H1(I,X(1))(E

0) lies in the k-vector space spanned by the set{
τc

∣∣∣ c ∈ C̃} .
• The fact that the obvious inclusion Z(E∗)0 ⊆ ZE0∪H1(I,X(1))(E

0) is actually an
equality follows from the fact that in the last step above we have worked only
with ZE0∪H1(I,X(1))(E

0) and not with the full Z(E∗)0.

• The fact that C ∩ T 1 is equal to the unique pro-p Sylow of the unique maximal
compact subgroup of C can be seen as follows: first of all C, being a closed
subgroup of a split torus, is isomorphic over F to a product of a split torus and
a finite algebraic group (see [Mil17, Proposition 12.3 and Theorem 12.9]), and
hence C actually has a unique maximal compact subgroup. Now let C1 be the
unique pro-p Sylow of the unique maximal compact subgroup of C: the inclusion
C ∩ T 1 ⊆ C1 is clear because C ∩ T 1 ⊆ C and because C ∩ T 1 is a pro-p group,
being a closed subgroup of T 1. Similarly, since C ⊆ T we have C1 ⊆ T 1, proving
the last inclusion we had to show. �
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Remark 3.1.11. The inclusion C̃ ⊆ Z(W̃ ) might be strict in general, but it is
an equality if the order of the fundamental group of the derived group of G is not
divisible by 2.

Proof. For the moment let us not make any assumption on G. Let w ∈ W̃ . First of
all we recall from [Vig14, Lemma 2.1] that if w /∈ T/T 1 then the conjugacy class of

w is infinite. In particular, this shows that Z(W̃ ) ⊆ T/T 1. Now let t ∈ T and let
α ∈ Π. We recall the conjugation formula

t · ϕα
(

1 1
0 1

)
· t−1 = ϕα

(
1 α(t)
0 1

)
,

from (1) and the notation ns(α,0)
we introduced for the fixed lift in N of s(α,0) ∈ Saff

(explicitly, the definition is ns(α,0)
:= ϕα

(
0 1
−1 0

)
). Using also the definition of Cheval-

ley basis and the equality
(

0 1
−1 0

)
= ( 1 1

0 1 ) ·
(

1 0
−1 1

)
· ( 1 1

0 1 ), we compute

t · ns(α,0)
· t−1 = t · ϕα( 1 1

0 1 ) · ϕα
(

1 0
−1 1

)
· ϕα( 1 1

0 1 ) · t−1

= t · ϕα( 1 1
0 1 ) · t−1 · t · ϕ−α( 1 0

1 1 ) · t−1 · t · ϕα( 1 1
0 1 ) · t−1

= ϕα

(
1 α(t)
0 1

)
· ϕ−α

(
1 α(t)−1

0 1

)
· ϕα

(
1 α(t)
0 1

)
= ϕα

((
1 α(t)
0 1

)
·
(

1 0
−α(t)−1 1

)
·
(

1 α(t)
0 1

))
= qα(α(t)) · ns(α,0)

.

We remark that if 2 does not divide the order of the fundamental group of the derived
group G′ of G then qα : Gm −→ T is a monomorphism. This is basically shown in
[Jan03, Part II, Chapter 1, Equation (7)]: indeed let us identify the roots systems
of (G,T) and of (G′,T′), where T′ := G′ ∩ T is the corresponding split maximal
torus of T′. In loc. cit. it is shown that qα : Gm −→ T′ is either a monomorphism
or has kernel equal to µ2, and that this last case is equivalent to the condition that
qα ∈ 2X∗(T

′), say qα = 2λ for some λ ∈ X∗(T′). Recalling that the fundamental group
is isomorphic to the quotient X∗(T

′)/(spanZ
qΦ) (see [Con20, §9.3]), and using the

assumption that 2 does not divide the order of the fundamental group, we see that
1
2 qα = λ ∈ spanZ

qΦ, which is not possible since qα ∈ qΠ and qΠ is a basis of spanR
qΦ.

Now, assume that the class t of t in T/T 1 is central in W̃ , and, again, that 2 does
not divide the order of the fundamental group of G′. Then the computation above
yields that qα(α(t)) ∈ T 1. A monomorphism of algebraic groups such as qα : Gm −→ T′

is automatically a closed embedding for the Zariski topology (see [Mil17, Proposition
1.41]), and this also shows that the map qα : F× −→ T is closed for the F-topology,
and hence it is an isomorphism of topological groups onto its image. As we said that
qα(α(t)) ∈ T 1, it follows that α(t) must lie in the pro-p Sylow of the unique maximal
compact subgroup of F×, i.e., it must lie in 1 + M. Now the desired conclusion that
t ∈ C̃ follows from the equality C̃ = {t ∈ T | α(t) ∈ 1 + M for all α ∈ Φ} /T 1 of
Theorem 3.1.10 (where Φ can be clearly replaced by Π).

It remains to make an example in which the inclusion C̃ ⊆ Z(W̃ ) is strict, and
this is suggested by the above computation of t·ns(α,0)

·t−1. Indeed, we assume p 6= 2,
we choose F such that there exists a square root r0 of −1, we consider G := PGL2(F)
and we define

r0 :=

(
r0 0

0 r−1
0

)
∈ PGL2(F).

We want to prove that the class r0 of r0 modulo T 1 lies in Z(W̃ ) but not in C̃.
Regarding the second fact, since C = {1}, it suffices to show that r0 /∈ T 1, and this
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is clear because r0 has order 2, while T 1 is a pro-p group. Regarding the statement
that r0 lies in Z(W̃ ), we see that, since the conjugation action of W̃ on T/T 1 factors
through W0, it suffices to check that conjugating r0 by the class of the matrix

(
0 1
−1 0

)
we get r0 again, and this is clear because conjugating r0 by

(
0 1
−1 0

)
we obtain r−1

0 ,
which is equal to r0. �

3.2 The 1st graded piece of the centre

In this section we will describe the 1st graded piece of the centre of the Ext-algebra
E∗ in the case that F is an unramified extension of Qp. Since the main results are
scattered into various subsections, in the first subsection we will describe the main
statements and we will give a rough overview of the strategy of proof.

Assumptions. We put ourselves in the general assumptions of Section 1.1, i.e., we
assume that F is a locally compact nonarchimedean field, that G is a connected
reductive split group over F and that k is a field of the same characteristic of the
residue field of F. We will assume that F is an unramified extension of Qp only where
explicitly stated.

3.2.a Summary of the results

The following are the main results about the 1st graded piece of the centre that we
will prove:

(i) In Theorem 3.2.26 we describe the degree 1 part of the centre if F is an unram-
ified extensions of Qp: namely, we exhibit an isomorphism of Z(E∗)0-modules

Z(E∗)1 ∼= Z(E∗)0 ⊗k H1
(
T 1/T 1

qΦ
, k
)
,

where
T 1

qΦ
:= Image

(∏
α∈Π qα :

∏
α∈Π(1 + M) −→ T 1

)
,

and where by Z(E∗)0⊗kH1
(
T 1/T 1

qΦ
, k
)

we simply mean the free Z(E∗)0-module

obtained by base change from the k-vector space H1
(
T 1/T 1

qΦ
, k
)
.

The proof is divided into two parts: in the first one we show that

Z(E∗)1 ∼= Z(E∗)0 ⊗k
(
Z(E∗)1 ∩H1(I,X(1))

)
, (123)

while in the second one we show that

Z(E∗)1 ∩H1(I,X(1)) ∼= H1
(
T 1/T 1

qΦ
, k
)
. (124)

(ii) In Corollary 3.2.37 we refine the above description under the additional as-
sumption that p divides neither the order of C◦ ∩ T′ nor the order of the
fundamental group of G′. In this case we show that

Z(E∗)1 ∼= Z(E∗)0 ⊗k H1
(
(C◦)1, k

)
,

where C◦ is the group of F-rational points of the connected centre of G and
where (C◦)1 is the unique pro-p Sylow subgroup of the unique maximal com-
pact subgroup of C◦.

Furthermore, we show that the additional assumptions on p are optimal in a
suitable sense (Remark 3.2.38) and that they are satisfied whenever p does
not divide the connection index of the root system, i.e., the order of the finite
group given by the weight lattice modulo the root lattice (see again Corollary
3.2.37).
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(iii) In Corollary 3.2.39 we give a characterization of the condition Z(E∗)1 = 0
(again under the assumption that F is an unramified extensions of Qp), thus
generalizing the result that Z(E∗)1 = 0 if G = SL2(Qp) with p 6= 2, 3 (Proposi-
tion 2.5.2). Namely, we prove that Z(E∗)1 is zero if and only if G is semisimple
with fundamental group of order not divisible by p.

We now give an overview of the organization of this section.

• Subsection 3.2.b consists in adapting some of the proofs in [Vig14] (where the
centre Z(H) = Z(E0) is studied) to the study of ZE0(E1). This object is more
complicated than Z(H) and we do not pursue a description of it. Rather, we prove
a result (Lemma 3.2.6) which gives a very rough description of how its elements
look like.

• Subsection 3.2.c consists in two lemmas and a proposition. The first result (Lemma
3.2.7) is again about ZE0(E1), and complements the description given in the pre-
ceding subsection. The second result (Lemma 3.2.10), instead, is about ZE1(E1),
and more precisely about ZH1(I,X(1))(E

1): it is here that we make the assumption
that F is an unramified extension of Qp. Finally, in Proposition 3.2.11, we prove
(123), i.e., the first part of our theorem.

• Subsections 3.2.d, 3.2.e and 3.2.f consist in preliminary work to prove the second
part of the theorem. The results shown are about G, and the Ext-algebra is not
involved.

• In Subsection 3.2.g we use the above preliminaries to conclude the proof of the
theorem by showing (124).

• Subsection 3.2.h deals with the examples G = GLn and G = PGLn. In these
special cases the determinant function can be used to describe Z(E∗)1 (for PGLn
we mean the “determinant” function PGLn(F) −→ F×/(F×)n).

• In Subsection 3.2.i we consider the graded algebra

E∗(CI, I) := Ext∗Rep∞k (G)(c-indCII , c-indCII )op.

We show that it naturally embeds into E∗ and that, via this embedding, there
is some relation with the centre of E∗: namely one has that Z(E∗)0 = E0(CI, I)
and that Z(E∗)1 ⊆ E1(CI, I) if F is an unramified extension of Qp. However, we
also show that in general Z(E∗) * E∗(CI, I).

• In Subsection 3.2.j we prove the two above mentioned Corollaries 3.2.37 and 3.2.39.

• In Subsection 3.2.k we show where our proof fails if F is not necessary an unram-
ified extension of Qp.

3.2.b A first lemma about ZE0(E1)

The purpose of this subsection is to prove the following lemma, which gives a very
partial but useful description of ZE0(E1). The strategy of the proof consists in using
(a slight modification of) a lemma by Vignéras (Lemma 3.2.1) and then in doing an
analysis of the conditions on x ∈ T/T 1 under which the subgroup U(α,gw(α)) ⊆ Iw

(for α ∈ Φ and w ∈ W̃ ) is contained in Iwx, along with with a similar analysis for
Ixw (Lemma 3.2.5).
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Lemma (see Lemma 3.2.6). Let β ∈ E1 be an element which is centralized by the
τx’s for x ∈ T/T 1. Let us write

β =
∑
w∈W̃

s.t. `(w) 6 L

βw,

for suitable L ∈ Z>0 and βw ∈ H1(I,X(w)) (almost all of them equal to zero). One

has that βw = 0 for all w ∈ W̃ r
(
T/T 1

)
of length L.

The next lemma and remark are basically stated and proved in [Vig14, Lemma
2.11 and Equation (8)], where they are used to prove a statement analogous to (but
more precise than) Lemma 3.2.6 for the pro-p Iwahori–Hecke algebra E0 instead of
E1.

The only difference between the following and the lemma in [Vig14] is that we
need a slightly finer control on the signs of 〈ν(x), α〉 (recall this notation from (6)).
For the proof, we will follow the same strategy as in the cited paper.

Lemma 3.2.1. Let w ∈ W r
(
T/T 0

)
and let us write it as w = w0x0 with

w0 ∈ W0 r {1} and x0 ∈ T/T 0. Let M be a positive integer. One has that there
exists x ∈ T/T 0 such that:

(A) `(wx) = `(w) + `(x);

(B) `(wxw−1x−1) > M ;

(C) For all α ∈ Φ such that 〈ν(x0), α〉 6= 0 one has that the signs of 〈ν(x), α〉 and
〈ν(x0), α〉 are the same;

(D1) For all α ∈ Φ such that 〈ν(x0), α〉 = 0 one has that 〈ν(x), α〉 > 0 if α ∈ Φ+

and 〈ν(x), α〉 < 0 if α ∈ Φ−.

Similarly, there exists x ∈ T/T 0 which satisfies the properties (A), (B), (C) and the
following:

(D2) For all α ∈ Φ such that 〈ν(x0), α〉 = 0 one has that 〈ν(x), α〉 < 0 if α ∈ w−1
0 Φ+

and 〈ν(x), α〉 > 0 if α ∈ w−1
0 Φ−.

Proof. First of all we claim the existence of x ∈ T/T 0 satisfying the properties (A),
(C), (D1) (respectively (D2)), and the following property, less strong than (B):

(B0) `(wxw−1x−1) > 0.

Since the map νA : T/T 0 −→ X∗(T)/X∗(C
◦) is surjective, and since the intersection

of X∗(T)/X∗(C
◦) with a Weyl chamber in A = (X∗(T)/X∗(C

◦))⊗ZR is non-empty,
we can choose y ∈ T/T 0 satisfying one of the following two properties:

(1) 〈ν(y), α〉 > 0 for all α ∈ Φ+ and 〈ν(y), α〉 < 0 for all α ∈ Φ−;

(2) 〈ν(y), α〉 < 0 for all α ∈ w−1
0 Φ+ and 〈ν(y), α〉 > 0 for all α ∈ w−1

0 Φ−.

• Let us set x := xn0y for n ∈ Z>1. We claim that if n is big enough then the property
(C) is satisfied, as well as (D1) in case (1) and (D2) in case (2).

From the equality

〈ν(x), α〉 = 〈ν(xn0y), α〉
= n〈ν(x0), α〉+ 〈ν(y), α〉,
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it is clear that if 〈ν(x0), α〉 6= 0 and if n is big enough then the signs of 〈ν(x), α〉
and of 〈ν(x0), α〉 are the same.

On the other side, if 〈ν(x0), α〉 = 0 then the signs of 〈ν(x), α〉 and of 〈ν(y), α〉 are
the same, so we get (D1) in case (1) and (D2) in case (2).

• We claim that if x ∈ T/T 0 satisfies properties (C) and (D1) (respectively (D2)),
then it satisfies property (A).

Looking at the explicit length formula (9), we see that

`(wx) = `(w0x0x)

=
∑

α∈Φ+∩w−1
0 Φ+

|〈ν(x0x), α〉|+
∑

α∈Φ+∩w−1
0 Φ−

|〈ν(x0x), α〉+ 1|

6
∑

α∈Φ+∩w−1
0 Φ+

(
|〈ν(x0), α〉|+ |〈ν(x), α〉|

)
+

∑
α∈Φ+∩w−1

0 Φ−

(
|〈ν(x0), α〉+ 1|+ |〈ν(x), α〉|

)
= `(w) + `(x),

and one has equality if and only if the following two conditions hold:

(i) For all α ∈ Φ+∩w−1
0 Φ+ the signs of 〈ν(x), α〉 and of 〈ν(x0), α〉 are compatible,

meaning that their product is bigger or equal than zero;

(ii) For all α ∈ Φ+ ∩ w−1
0 Φ− the signs of 〈ν(x), α〉 and of 〈ν(x0), α〉 + 1 are

compatible, meaning that their product is bigger or equal than zero.

For all α ∈ Φ such that 〈ν(x0), α〉 6= 0, property (C) says that 〈ν(x), α〉 and
〈ν(x0), α〉 have the same sign, and so (i) and (ii) are satisfied if 〈ν(x0), α〉 6= 0.

On the other side, condition (i) is automatically true if 〈ν(x0), α〉 = 0, while
condition (ii) holds if 〈ν(x0), α〉 = 0 thanks to either (D1) or (D2).

• Now we claim that if x ∈ T/T 0 satisfies properties (C) and (D1) (respectively
(D2)), then it satisfies also property (B0).

First of all, let us note that

`(wxw−1x−1) = `(w0x0xx
−1
0 w−1

0 x−1) = `(w0xw
−1
0 x−1).

Let us write down the length formula for w0xw
−1
0 x−1 (see (10)):

`(w0xw
−1
0 x−1) =

∑
α∈Φ+

∣∣〈ν(w0xw
−1
0 ), α〉 − 〈ν(x), α〉

∣∣ .
Note that νA (x) lies in an open Weyl chamber because every root is nonzero
on x by properties (C) and (D1) (respectively (C) and (D2)). The Weyl group
W0 acts simply transitively on the Weyl chambers ([Bou81, Chap. V, §3, n° 5,
Théorème 2]), hence νA (x) and νA (w0xw

−1
0 ) lie in different open Weyl chambers,

meaning that there exists a root α0 (which we might assume to be positive) such
that the signs of 〈ν(x), α0〉 and of 〈ν(w0xw

−1
0 ), α0〉 are different. This means that

〈ν(w0xw
−1
0 ), α0〉 − 〈ν(x), α0〉 6= 0 and hence `(w0xw

−1
0 x−1) > 0.
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Now it remains to show the existence of x ∈ T/T 0 satisfying properties (A), (B), (C)
and (D1) (respectively (D2)). We claim that this can be accomplished by replacing
x by xm where m is a big enough positive integer. Indeed, properties (C) and (D1)
(respectively (D2)) are clearly true for xm if they are true for x, but also property
(A) continues to be true because we have seen that it follows from properties (C)
and (D1) (respectively (D2)). Finally, as regards property (B), we have

`(wxmw−1x−m) = `((wxw−1x−1)m)

= m`(wxw−1x−1)

> m,

where the second equality follows from the length formula. So property (B) holds if
m is big enough. �

Remark 3.2.2. Under the assumptions of the last lemma and using the same no-
tation, let us choose the constant M to be 2`(w). One has:

2`(w) < `(wxw−1x−1) = `(x−1wxw−1) 6 `(x−1wx) + `(w),

where we have used that wxw−1 and x−1 commute since they both of them lie in
T/T 0. So we have obtained:

(B*) `(x−1wx) > `(w). �

Now, let us see the “symmetric version” of Lemma 3.2.1 and Remark 3.2.2 when
considering the decomposition W =

(
T/T 0

)
o W0 instead of the decomposition

W = W0 n
(
T/T 0

)
.

Remark 3.2.3. Similarly to Lemma 3.2.1, let w ∈ W r
(
T/T 0

)
and let us write

it as w = x′0w0 with w0 ∈ W0 r {1} and x′0 ∈ T/T 0. One has that there exists
x′ ∈ T/T 0 such that:

(A') `(x′w) = `(x′) + `(w);

(B*') `(x′w(x′)−1) > `(w);

(C') For all α ∈ Φ such that 〈ν(x′0), α〉 6= 0 one has that the signs of 〈ν(x′), α〉 and
〈ν(x′0), α〉 are the same.

Similarly, we could give conditions analogous to (D1) and (D2), but we will not need
them.

Proof. Let us apply Lemma 3.2.1 and Remark 3.2.2 to w−1 = w−1
0 · (x′0)−1, thus

finding x satisfying the following properties:

(A) `(w−1x) = `(w−1) + `(x);

(B*) `(x−1w−1x) > `(w−1) = `(w);

(C) For all α ∈ Φ such that 〈ν((x′0)−1), α〉 6= 0 (i.e., such that 〈ν(x′0), α〉 6= 0) one
has that the signs of 〈ν(x), α〉 and 〈ν((x′0)−1), α〉 are the same.

Let us define x′ := x−1. It is easy to see that the conditions (A'), (B*') and (C') are
satisfied. �

The next lemma is a weaker version of [Vig14, Proposition 2.10 and Lemma 2.12]
for Ei in place of the pro-p Iwahori–Hecke algebra E0.
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Lemma 3.2.4. Let β ∈ Ei and let us write it as

β =
∑
v∈W̃

s.t. `(v) 6 L

βv,

for suitable L ∈ Z>0 and βv ∈ H i(I,X(v)) (almost all of them equal to zero). Let us

consider w ∈ W̃ of length L.

• If x ∈ T/T 1 satisfies the following properties:

(A) `(wx) = `(w) + `(x),

(B*) `(x−1wx) > `(w),

then the following formulas hold:

prHi(I,X(wx))(β · τx) = βw · τx,
prHi(I,X(wx))(τx · β) = 0.

In particular, if β is centralized by τx then βw · τx = 0.

• If x′ ∈ T/T 1 satisfies the following properties:

(A') `(x′w) = `(x′) + `(w),

(B*') `(x′w(x′)−1) > `(w),

then the following formulas hold:

prHi(I,X(x′w))(β · τx′) = 0,

prHi(I,X(x′w))(τx′ · β) = τx′ · βw.

In particular, if β is centralized by τx′ then τx′ · βw = 0.

Proof. Let us prove the four formulas.

• Let us start with multiplication by τx on the right:

β · τx =
∑
v∈W̃

s.t. `(v) 6 L

βv · τx.

Let v ∈ W̃ with `(v) 6 L. Recall that

βv · τx ∈
⊕
u∈W̃

s.t. IuI ⊆ IvI · IxI

H i(I,X(u))

(see Theorem 1.9.1).

? If v is such that `(vx) < `(v) + `(x) and if u is as above, then by Lemma 1.9.2
(ii) one has

`(u) < `(v) + `(x) 6 L+ `(x),

while wx has length L+ `(x), and so prHi(I,X(wx))(βv · τx) = 0.

? If v is such that `(vx) = `(v) + `(x) then βv · τx ∈ H i(I,X(vx)) and so
prHi(I,X(wx))(βv · τx) is zero if v 6= w and is βw · τx if v = w.
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This proves that prHi(I,X(wx))(β · τx) = βw · τx.

• Now let us consider τx · β and let us prove that prHi(I,X(wx))(τx · β) = 0. One has:

τx · β =
∑
v∈W̃

s.t. `(v) 6 L

τx · βv.

Let v ∈ W̃ with `(v) 6 L. As before, we have

τx · βv ∈
⊕
u∈W̃

s.t. IuI ⊆ IxI · IvI

H i(I,X(u)).

? If v is such that `(xv) < `(x) + `(v) then, as before, prHi(I,X(wx))(βv · τx) = 0.

? If v is such that `(xv) = `(x) + `(v), then τx · βv ∈ H i(I,X(xv)) and so
prHi(I,X(wx))(τx · βv) is zero if xv 6= wx and is τx · βv if xv = wx. But this

last case is not possible, because we would have v = x−1wx, and so by assump-
tion `(v) = `(x−1wx) > `(w) = L, which is a contradiction.

This proves that prHi(I,X(wx))(τx · β) = 0.

• Now let us consider β · τx′ and let us prove that prHi(I,X(x′w))(β · τx′) = 0.

Using (A') and (B*') is easy to see that `(w−1(x′)−1) = `(w−1) + `((x′)−1) and
that `(((x′)−1)−1w−1(x′)−1) > `(w−1). This means that (x′)−1 satisfies (A) and
(B*) if we put w−1 in place of w. Let us compute prHi(I,X(x′w))(β · τx′) using the
involutive anti-automorphism J. First of all let us note that

J(β) =
∑
v∈W̃

s.t. `(v) 6 L

J(βv)

with J(βv) ∈ H i(I,X(v−1)) (and `(v−1) = `(v)). Now, let us proceed with the
computation:

prHi(I,X(x′w))(β · τx′) = J
(
J
(

prHi(I,X(x′w))(β · τx′)
))

= J
(

prHi(I,X(w−1(x′)−1)) (J(β · τx′))
)

= J
(

prHi(I,X(w−1(x′)−1))

(
τ(x′)−1 · J(β)

))
= 0,

by the first formula we have proved in this lemma.

• Now let us consider τx′ · β and let us prove that prHi(I,X(x′w))(τx′ · β) = τx′ · βw.

Doing the same computations as above, we find that

prHi(I,X(x′w))(τx′ · β) = J
(

prHi(I,X(w−1(x′)−1))

(
J(β) · τ(x′)−1

))
= J

(
J(βw) · τ(x′)−1

)
= τx′ · βw,

where in the second equality we have used the second formula we have proved in
this lemma. �
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We recall from 1.3.2 the Iwahori decomposition of Iw for w ∈ W̃ :

∏
α∈Φ−

U(α,gw(α)) × T 1 ×
∏
α∈Φ+

U(α,gw(α))

bijection given by
multiplication−−−−−−−−−−−→ Iw

where for all α ∈ Φ we have

gw(α) = min
{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff ∩ wΦ+

aff

}
.

In the next lemma we wish to relate the indices gw(α), gwx(α), and gx′w(α) for
suitable choices of x ∈ T/T 1 or of x′ ∈ T/T 1. We recall, as one immediately see
from the above expression, that gw(α) only depends on the class of w in W , and so

for simplicity in the next lemma we will work with W instead of W̃ and with T/T 0

instead of T/T 1 (as we did in all the lemmas so far).

Lemma 3.2.5. Let w ∈ W r
(
T/T 0

)
and let α ∈ Φ. One has that at least one of

the following statements is true.

(i) There exists x ∈ T/T 0 satisfying the following properties:

(A) `(wx) = `(w) + `(x);

(B*) `(x−1wx) > `(w);

(E) gwx(α) = gw(α).

(i') There exists x′ ∈ T/T 0 satisfying the following properties:

(A') `(x′w) = `(x′) + `(w);

(B*') `(x′w(x′)−1) > `(w);

(E') gx′w(α) = gw(α)− 〈ν(x′), α〉.

Proof. Referring to Lemma 3.2.1 and Remark 3.2.2, let us choose x ∈ T/T 0 satisfying
the properties (A), (B*), (C) and either (D1) or (D2). Similarly, referring to Remark
3.2.3, let us choose x′ ∈ T/T 0 satisfying the properties (A'), (B*'), (C').

Let α ∈ Φ: we want to compute gw(α), gwx(α), gx′w(α). Let us write

w = w0x0 = x′0w0,

for suitable w0 ∈ W0 r {1} and suitable x0, x
′
0 ∈ T/T 0 (clearly x′0 = w0x0w

−1
0 ).

Furthermore, for all β ∈ Φ let us set

εβ :=

{
0 if β ∈ Φ+,

1 if β ∈ Φ−.

Recalling the definition of g(−)(α) from Lemma 1.3.2, for all t, t′ ∈ T/T 0 we compute:

gw0t(α) = min
{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff ∩ w0tΦ

+
aff

}
= min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff and t−1w−1

0 (α,m) ∈ Φ+
aff

}
= min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff and

(
w−1

0 α,m−
〈
ν(t−1), w−1

0 α
〉)
∈ Φ+

aff

}
= min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff and

(
w−1

0 α,m+
〈
ν(t), w−1

0 α
〉)
∈ Φ+

aff

}
= max

{
εα, εw−1

0 α −
〈
ν(t), w−1

0 α
〉}

;

gt′w0(α) = gw0w
−1
0 t′w0

(α)

= max
{
εα, εw−1

0 α −
〈
ν(w−1

0 t′w0), w−1
0 α

〉}
= max

{
εα, εw−1

0 α −
〈
ν(t′), α

〉}
.
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Replacing t and t′ by the elements we are interested in, we get:

gw(α) = max
{
εα, εw−1

0 α −
〈
ν(x0), w−1

0 α
〉}

= max
{
εα, εw−1

0 α −
〈
ν(x′0), α

〉}
;

gwx(α) = max
{
εα, εw−1

0 α −
〈
ν(x0), w−1

0 α
〉
−
〈
ν(x), w−1

0 α
〉}

;

gx′w(α) = max
{
εα, εw−1

0 α −
〈
ν(x′0), α

〉
−
〈
ν(x′), α

〉}
.

Let us distinguish three cases.

• If
〈
ν(x0), w−1

0 α
〉
> 0, then property (C) says that

〈
ν(x0), w−1

0 α
〉
> 0 as well, and

so we get

gwx(α) = max {εα, something 6 0}
= gw(α).

• If
〈
ν(x0), w−1

0 α
〉
< 0, then we have that 〈ν(x′0), α〉 < 0 (because these two quan-

tities are the same since x′0 = w0x0w
−1
0 ). This implies that 〈ν(x′), α〉 < 0 by

property (C'), and so

gx′w(α) = max
{
εα, εw−1

0 α −
〈
ν(x′0), α

〉
−
〈
ν(x′), α

〉}
= εw−1

0 α −
〈
ν(x′0), α

〉
−
〈
ν(x′), α

〉
= max

{
εα, εw−1

0 α −
〈
ν(x′0), α

〉}
−
〈
ν(x′), α

〉
= gw(α)−

〈
ν(x′), α

〉
.

• If
〈
ν(x0), w−1

0 α
〉

= 0 (equivalently 〈ν(x′0), α〉 = 0), then we distinguish the follow-
ing three cases.

? Let us assume that w−1
0 α ∈ Φ+.

We choose x satisfying property (D1) and in this way we have
〈
ν(x), w−1

0 α
〉
> 0.

Therefore, one has

gwx(α) = max
{
εα, 0−

〈
ν(x), w−1

0 α
〉}

= εα

= max {εα, 0}
= gw(α).

? Let us assume that w−1
0 α ∈ w−1

0 Φ− (i.e., α ∈ Φ−).

We choose x satisfying property (D2) and in this way we have
〈
ν(x), w−1

0 α
〉
> 0.

Therefore, one has

gwx(α) = max
{

1, εw−1
0 α −

〈
ν(x), w−1

0 α
〉}

= 1

= max
{

1, εw−1
0 α

}
= gw(α).
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? It remains to treat the case α ∈ Φ+ ∩ w0Φ−.

Even if we could have done this, we have not stated the existence of x′ satisfy-
ing properties analogous to (D1) or (D2). Nevertheless, already property (A')
(additivity of lengths) suffices to gain control on the sign of 〈ν(x′), α〉. Let us
recall from (8) the following length formula for t′w0, where t′ ∈ T/T 0:

`(t′w0) =
∑

β∈Φ+∩w0Φ+

∣∣〈ν(t′), β〉
∣∣+

∑
β∈Φ+∩w0Φ−

∣∣〈ν(t′), β〉 − 1
∣∣ .

Since `(x′x′0w0) = `(x′) + `(x0w0), It is easy to see that, for all β ∈ Φ+ ∩w0Φ−

(in particular for β = α), we must have that the signs of 〈ν(x′), β〉 and of
〈ν(x′0), β〉 − 1 are compatible (meaning that their product is bigger or equal
than zero). Since 〈ν(x′0), α〉 = 0 by assumption, it follows that 〈ν(x′), α〉 6 0,
and so we can conclude the following:

gx′w(α) = max
{
εα, εw−1

0 α −
〈
ν(x′0), α

〉
−
〈
ν(x′), α

〉}
= max

{
0, 1− 0−

〈
ν(x′), α

〉}
= 1−

〈
ν(x′), α

〉
= max {0, 1− 0} −

〈
ν(x′), α

〉
= gw(α)−

〈
ν(x′), α

〉
. �

We are now ready to prove the lemma we stated at the beginning of the subsec-
tion.

Lemma 3.2.6. Let β ∈ E1 be an element which is centralized by the τx’s for
x ∈ T/T 1. Let us write

β =
∑
w∈W̃

s.t. `(w) 6 L

βw,

for suitable L ∈ Z>0 and βw ∈ H1(I,X(w)) (almost all of them equal to zero). One

has that βw = 0 for all w ∈ W̃ r
(
T/T 1

)
of length L.

Proof. Let w ∈ W̃ r
(
T/T 1

)
of length L. Let us prove that βw = 0 by proving that

Shw(βw) is zero on all the subgroups appearing in the Iwahori decomposition of Iw.
First of all, let α ∈ Φ and let us prove that Shw(βw) is zero on U(α,gw(α)).

Lemma 3.2.5 says that at least one of the following two properties is true (there
we worked with the groups W and T/T 0 and here we are working with the groups

W̃ and T/T 1, but clearly this does not matter).

(i) There exists x ∈ T/T 1 satisfying the following properties:

(A) `(wx) = `(w) + `(x);

(B*) `(x−1wx) > `(w);

(E) gwx(α) = gw(α).

(i') There exists x′ ∈ T/T 1 satisfying the following properties:

(A') `(x′w) = `(x′) + `(w);

(B*') `(x′w(x′)−1) > `(w);

(E') gx′w(α) = gw(α)− 〈ν(x′), α〉.
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In particular x and x′ (when they exist) satisfy the assumptions of Lemma 3.2.4,
and so such lemma tells us the following:

• in case (i) one has that βw · τx = 0;

• in case (i') one has that τx′ · βw = 0.

Let us see what happens in the two cases.

• Let us assume that we are in case (i).

Since lengths add up, one has that βw · τx ∈ H1(I,X(wx)) and that we can
compute it as follows (see Corollary 1.9.5):

0 = Shwx(βw · τx) = resIwIwx
(

Shw(βw)
)
.

And therefore, considering the group U(α,gwx(α)) = U(α,gw(α)), one has:

0 =
(

Shwx(βw · τx)
)
(U(α,gwx(α)))

=
(

Shwx(βw · τx)
)
(U(α,gw(α)))

=
(

Shw(βw)
)
(U(α,gw(α))).

• Let us assume that we are in case (i').

Since lengths add up, one has that τx′ · βw ∈ H1(I,X(x′w)) and that we can
compute it as follows (see Corollary 1.9.5):

0 = Shx′w(τx′ · βw) = res
x′Iw(x′)−1

Ix′w

(
(x′)∗ Shw(βw)

)
.

And therefore, considering the group U(α,gwx(α)) = U(α,gw(α)−〈ν(x′),α〉), one has:

0 =
(

Shx′w(τx′ · βw)
)
(U(α,gwx(α)))

=
(

Shx′w(τx′ · βw)
)
(U(α,gw(α)−〈ν(x′),α〉))

=
(
(x′)∗ Shw(βw)

)
(U(α,gw(α)−〈ν(x′),α〉))

= Shw(βw)
(
(x′)−1U(α,gw(α)−〈ν(x′),α〉)x

′)
= Shw(βw)

(
U(x′)−1(α,gw(α)−〈ν(x′),α〉)

)
= Shw(βw)

(
U(α,gw(α)−〈ν(x′),α〉−〈ν((x′)−1),α〉)

)
= Shw(βw)

(
U(α,gw(α))

)
,

where we used the conjugation formula (1). This concludes the proof that Shw(βw)
is zero on U(α,gw(α)).

It remains to prove that Shw(βw) is zero on T 1, but this is easier. Let us choose
x ∈ T/T 1 satisfying just properties (A) and (B*) (there exists such an x for example
by Lemma 3.2.1 and Remark 3.2.2). As before, we have:

0 =
(

Shwx(βw · τx)
)
(T 1)

=
(

Shw(βw)
)
(T 1).

This shows that Shw(βw) is zero also on T 1 and so we conclude that βw is zero by
the Iwahori decomposition. �
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3.2.c The 1st graded piece of the centre for unramified extensions
of Qp: partial description

In this subsection we will partially describe the degree 1 part of the centre of E∗ for
unramified extensions of Qp (Proposition 3.2.11). The description will be completed
later, in Subsection 3.2.g, after an analysis of the commutator subgroup [G,G] of
the group of F-rational points G of G.

The proof will be based on Lemma 3.2.6 and on two more lemmas.

Lemma 3.2.7. Let β ∈ E1 be an element which is centralized by the τx’s for
x ∈ T/T 1. Let us write

β =
∑
w∈W̃

s.t. `(w) 6 L

βw,

for suitable L ∈ Z>0 and βw ∈ H1(I,X(w)) (almost all of them equal to zero). Let
x ∈ T/T 1 of length L and let us consider

Shx(βx) ∈ H1(Ix, k).

One has that Shx(βx) is zero on the “unipotent factors” of the Iwahori decomposition
of Ix (i.e., on the factors U(α,gx(α))’s for α ∈ Φ).

Before seeing the proof, let us remark that, using the notation of the lemma, we
already know from Lemma 3.2.6 that βw is zero for w ∈ W̃ r

(
T/T 1

)
of length L. So

it makes sense to focus on βx for x ∈ T/T 1 (of length L), as we do in the statement
of the above lemma.

Proof of the lemma. Let us split the proof into some steps.

• As a first step, we choose a certain element y ∈ T/T 1, which we will use later on
to perform multiplications by τy on the left and on the right.

Let us recall from (5) the surjective map νA : T/T 0 −→ X∗(T)/X∗(C
◦), which we

rather view as a map with source T/T 1, and let us choose c to be an open Weyl
chamber in A = (X∗(T)/X∗(C

◦))⊗Z R such that νA (x) ∈ c. For the moment let
us choose y in the following way: since νA is surjective, and since the intersection
of X∗(T)/X∗(C

◦) with a Weyl chamber is non-empty, we can choose y ∈ T/T 1

such that νA (y) ∈ c. It follows that y satisfies the following two properties:

(i) `(xy) = `(x)+`(y) (because this property is equivalent, by the length formula,
to the property that for all α ∈ Φ, the signs of 〈ν(x), α〉 and of 〈ν(y), α〉 are
compatible, in the sense that their product is bigger or equal then zero);

(ii) for all α ∈ Φ the quantity 〈ν(y), α〉 is nonzero (by definition of (open) Weyl
chamber).

Up to replacing y with a suitable power, we can assume that |〈ν(y), α〉| is big
enough. In particular we can choose y such that

(ii') for all α ∈ Φ one has |〈ν(y), α〉| >M ,

where M is a constant such that Shx(βx)
(
U(α,gx(α)+M)

)
= 0 for all α ∈ Φ (there

exists such a constant because
(
U(α,gx(α)+m)

)
m∈Z>0

is a fundamental system of

neighbourhoods of the identity in the group U(α,gx(α)) and clearly this choice can
also be made independent of α since the set of roots is finite).
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• As a second step, let us remark that, thanks to property (i), we have

(Claim) prH1(I,X(xy))[τy, β] = [τy, βx].

(and so [τy, βx] = 0, since β commutes with τy by assumption). To prove the claim,
let us prove that prH1(I,X(xy))(β · τy) = βx · τy, the proof of the corresponding
statement regarding multiplication on the left by τy being completely symmetric
since xy = yx. Of course, we have that

β · τy =
∑
w∈W̃

s.t. `(w) 6 L

βw · τy.

Let w ∈ W̃ with `(w) 6 L. Recall that

βw · τy ∈
⊕
u∈W̃

s.t. IuI ⊆ IwI · IyI

H i(I,X(u))

(see Theorem 1.9.1). We have the following two possibilities.

? If w is such that `(wy) < `(w) + `(y) and if u is as above, then by Lemma 1.9.2
(ii) one has

`(u) < `(w) + `(y) 6 L+ `(y),

while xy has length L+ `(y), and so prHi(I,X(xy))(βw · τy) = 0.

? If w is such that `(wy) = `(w) + `(y) then βw · τy ∈ H i(I,X(wy)) and so
prHi(I,X(xy))(βw · τy) is zero if w 6= x and is βx · τy if w = x (moreover, for w = x
the condition `(wy) = `(w) + `(y) is indeed satisfied by property (i)).

This proves that prHi(I,X(xy))(β · τy) = βx · τy.

• As a third step, we use the fact that [τy, βx] = 0, together with properties (i) and
(ii'), to show that for all α ∈ Φ one has that Shx(βx) is zero on U(α,gx(α)), thus
completing the proof.

Since lengths add up, products can be easily computed (Corollary 1.9.5), and
precisely we get the following explicit descriptions of βx · τy and of τy · βx (both
lying in H1(I,X(xy))):

Shxy(βx · τy) = resIxIxy
(

Shx(βx)
)
,

Shxy(τy · βx) = resyIxy
−1

Ixy

(
y∗ Shx(βx)

)
.

Since βx · τy = τy · βx, we can of course equate the values of the right hand sides
of the two above equations on the whole Ixy, and in particular we can do this on
the subset U(α,gxy(α)) ⊆ Ixy, finding that:

Shx(βx)
(
U(α,gxy(α))

)
= Shx(βx)

(
y−1U(α,gxy(α))y

)
= Shx(βx)

(
U(α,gxy(α)+〈ν(y),α〉)

)
.

(125)

Now (thanks to property (ii)) we can distinguish the two cases 〈ν(y), α〉 > 0 and
〈ν(y), α〉 < 0. Before, we recall from Lemma 1.3.2 the following formula for the
computation of gz(α) for z ∈ T/T 1:

gz(α) = min
{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff ∩ zΦ+

aff

}
= min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff and z−1(α,m) ∈ Φ+

aff

}
= min

{
m ∈ Z

∣∣ (α,m) ∈ Φ+
aff and (α,m+ 〈ν(z), α〉) ∈ Φ+

aff

}
= max{εα, εα − 〈ν(z), α〉},
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where

εα =

{
0 if α ∈ Φ+,

1 if α ∈ Φ−.

? If 〈ν(y), α〉 > 0, then by condition (i) we have 〈ν(x), α〉 > 0 and 〈ν(xy), α〉 > 0,
and so the above formula for gz(α) tells us that

gxy(α) = εα

= gx(α).

So in the formula (125) we can replace gxy(α) with gx(α), obtaining

Shx(βx)
(
U(α,gx(α))

)
= Shx(βx)

(
U(α,gx(α)+〈ν(y),α〉)

)
.

? If 〈ν(y), α〉 < 0, then by condition (i) we have 〈ν(x), α〉 6 0 and 〈ν(xy), α〉 < 0,
and so the above formula for gz(α) tells us that

gxy(α) = εα − 〈ν(x), α〉 − 〈ν(y), α〉
= gx(α)− 〈ν(y), α〉.

So in formula (125) we can replace gxy(α) with gx(α)− 〈ν(y), α〉, obtaining

Shx(βx)
(
U(α,gx(α)−〈ν(y),α〉)

)
= Shx(βx)

(
U(α,gx(α)

)
.

In both cases we have thus obtained

Shx(βx)
(
U(α,gx(α))

)
= Shx(βx)

(
U(α,gx(α)+|〈ν(y),α〉|)

)
⊆ Shx(βx)

(
U(α,gx(α)+M)

)
by (ii').

But by definition of M we have Shx(βx)
(
U(α,gx(α)+M)

)
= 0, and therefore we get

Shx(βx)
(
U(α,gx(α))

)
= 0,

thus concluding the proof. �

Remark 3.2.8. In the above proof, in the case that F is a finite extension of Qp,
we could have avoided topological considerations for the choice of M and we could
have set M equal to the ramification index.

The following remark is not needed in any subsequent proof, but it is perhaps
interesting to compare it with Lemma 3.2.7.

Remark 3.2.9. Assume that q 6= 2, 3. Let β ∈ E1 be an element which is centralized
by the τω’s for ω ∈ T 0/T 1. Let us write

β =
∑
w∈W̃

βw,

for suitable βw ∈ H1(I,X(w)) (almost all of them equal to zero). Let x ∈ T/T 1 and
let us consider

Shx(βx) ∈ H1(Ix, k).

One has that Shx(βx) is zero on the “unipotent factors” of the Iwahori decomposition
of Ix.
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Before seeing the proof, let us compare this remark with Lemma 3.2.7: the as-
sumption q 6= 2, 3 has been added, whereas the assumption that β is centralized by
the τx’s for x ∈ T/T 1 has been relaxed replacing T/T 1 with T 0/T 1. Finally, the
assumption that x has “maximal length” with respect to the support of β has been
dropped.

We will see that the proof is shorter. However, the statement of the remark
cannot hold in general if q = 2 or q = 3 because in these cases it is possible that
all the τω’s for ω ∈ T 0/T 1 are central (as it happens for SL2(Q2) and SL2(Q3), see
Theorem 3.1.10). So we still need Lemma 3.2.7.

Proof of the remark. Let α ∈ Φ. We have to prove that Shx(βx) is zero on U(α,gx(α)).

Since q 6= 2, 3, the group (O/M)× is cyclic of order at least 3. Therefore we can
choose c0 ∈ O× such that c2

0 6≡ 1 modulo M.

Since the length of qα(c0) and every element of W̃ add up, we see that

prH1(I,X(qα(c0)x))(τqα(c0) · β) = τ
qα(c0) · βx,

prH1(I,X(xqα(c0)))(β · τqα(c0)) = βx · τ
qα(c0),

but qα(c0)x = xqα(c0), and since β commutes with τ
qα(c0) by assumption, we deduce

that
τ

qα(c0) · βx = βx · τ
qα(c0).

Applying the Shapiro isomorphism Sh
qα(c0)x = Shxqα(c0) to both sides, we get the

following (by the formulas of Corollary 1.9.5):

res
qα(c0)Ixqα(c0)−1

I
qα(c0)x

(
(qα(c0))∗ Shx(βx)

)
= resIxIxqα(c0)

(
Shx(βx)

)
.

Since qα(c0) ∈ T 0/T 1, all the subgroups of I appearing in the restrictions are equal
to Ix (recall from Section 1.3 that T 0 normalizes I).

Therefore, the formula above simplifies to

(qα(c0))∗ Shx(βx) = Shx(βx).

Hence, for all g ∈ Ix one has that

Shx(βx)
(

qα(c0)−1 · g · qα(c0) · g−1
)

= 0.

Since U(α,gx(α)) ⊆ Ix, it does make sense to compute the last identity for

g := ϕα

(
1 aπgx(α)

0 1

)
,

for a ∈ O. Doing this we get:

0 = Shx(βx)

(
qα(c0)−1 · ϕα

(
1 aπgx(α)

0 1

)
· qα(c0) ·

(
ϕα

(
1 aπgx(α)

0 1

))−1
)

= Shx(βx)

(
ϕα

((
c−1

0 0
0 c0

)
·
(

1 aπgx(α)

0 1

)
·
(
c0 0

0 c−1
0

)
·
(

1 −aπgx(α)

0 1

)))
= Shx(βx)

(
ϕα

(
1 (c−2

0 − 1)aπgx(α)

0 1

))
.

By definition of c0, one has that c−2
0 − 1 ∈ OrM. This means that we have shown

that Shx(βx) is zero at all the elements of the form ϕα
(

1 bπgx(α)

0 1

)
with b ∈ O, or,

equivalently, that it is zero on the whole U(α,gx(α)). �
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As in Theorem 3.1.10, we will use the notation C̃ := (C ·T 1)/T 1, where C is the
group of F-rational points of the centre C of G. In view of Lemma 3.2.7, it is in-
teresting to study commutators involving an element γ ∈ H1(I,X(x)) for x ∈ T/T 1

such that Shx(γ) is 0 on the “unipotent factors” of the Iwahori decomposition of Ix.
We will do this in the next lemma, under some further assumptions.

Lemma 3.2.10. Assume that F is an unramified extension of Qp. Let us consider

x ∈
(
T/T 1

)
r C̃ and let γ ∈ H1(I,X(x)) be such that Shx(γ) is 0 on the “unipotent

factors” of the Iwahori decomposition of Ix (i.e., on the factors U(α,gx(α))’s for α ∈ Φ)
but nonzero on T 1. One has that there exists ξ ∈ H1(I,X(1)) ∼= H1(I, k) such that

[ξ, γ]gr 6= 0.

Proof. Since x ∈
(
T/T 1

)
r C̃, we know from Remark 3.1.7 that there exists an

element ξ ∈ H1(I,X(1)) = H1(I, k) with the following properties:

• [ξ, τx] is nonzero;

• Shx([ξ, τx]) is zero on T 1.

We claim that

(Claim) [ξ, γ]gr 6= 0.

Since ξ ∈ H1(I,X(1)), we can apply the formula relating the (opposite of the)
Yoneda product and the cup product (Corollary 1.9.3), obtaining

[ξ, γ]gr = ξ · γ + γ · ξ
=
(
(ξ · τx) ^ γ

)
+
(
γ ^ (τx · ξ)

)
=
(
(ξ · τx) ^ γ

)
−
(
(τx · ξ) ^ γ

)
= [ξ, τx] ^ γ,

And so we have to prove that [ξ, τx] ^ γ is nonzero, or equivalently that

(Claim) Shx([ξ, τx]) ^ Shx(γ) 6= 0.

By the defining properties of ξ, we can choose α ∈ Φ (actually from the construction
we could assume α ∈ Π but we will not need this) such that Shx([ξ, τx]) is nonzero
on U(α,gx(α)): so let us choose u0 ∈ U(α,gx(α)) such that Shx([ξ, τx]) is nonzero at u0

and let us write u0 = ϕα
(

1 a0
0 1

)
for a suitable a0 ∈ O (more precisely a0 ∈Mgx(α)).

Moreover, by assumption we can choose t0 ∈ T 1 such that Shx(γ)(t0) 6= 0.
The cohomology class Shx([ξ, τx]) ^ Shx(γ) can be represented by an inhomoge-

nous 2-cocycle in the following way:

Shx([ξ, τx]) ^ Shx(γ) = θ, where
θ : Ix × Ix k

(g, h) Shx([ξ, τx])(g) · Shx(γ)(h).

Assume by contradiction that the cup product is zero; this means that there exists
a continuous map ψ : Ix −→ k such that θ is the differential of ψ. Explicitly, this
means that for all g, h ∈ Ix one has

Shx([ξ, τx])(g) · Shx(γ)(h) = ψ(g) + ψ(h)− ψ(gh).
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Plugging in g := u0 and h := t0, we get:

ψ(u0t0) = ψ(u0) + ψ(t0) + c0, for some nonzero c0 ∈ k. (126)

On the other side, we also get

ψ(gh) = ψ(g) + ψ(h), if either g ∈ T 1 or h ∈ U(α,gx(α)). (127)

Let

u1 := t−1
0 u0t0 = ϕα

(
1 α(t−1

0 )a0

0 1

)
,

where we used the conjugation formula (1). Using the assumption that F is an
unramified extension of Qp, we have α(t−1

0 ) ∈ 1 +M = 1 + pO, and so we can write
u1 as u0u

p
2 for some u2 ∈ U(α,gx(α)). Therefore we have

u0t0 = t0u1 = t0u0u
p
2.

Putting together what we have found, we finally reach the following contradiction:

ψ(u0) + ψ(t0) + c0 = ψ(u0t0) (by (126))

= ψ(t0u0u
p
2) (by the last equation)

= ψ(t0) + ψ(u0u
p
2) (by (127))

= ψ(t0) + ψ(u0),

(
since ψ

∣∣
U(α,gx(α))

is a group

homomorphism by (127)

)
which is against the fact that c0 6= 0. �

Before stating the first proposition describing Z(E∗)1 for unramified extensions F
of Qp, we recall from Theorem 3.1.10 that Z(E∗)0 can be described via the following

isomorphism, where, as already recalled, C̃ := (C · T 1)/T 1:

k[C̃] Z(E∗)0

(c)
(with c ∈ C̃)

τc.

Proposition 3.2.11. Assume that F is an unramified extension of Qp. One has that
Z(E∗)1 can be described in the following way: there is a k-vector space decomposition

Z(E∗)1 =
⊕
c∈C̃

Z(E∗)1
c , where Z(E∗)1

c := Z(E∗)1 ∩H1(I,X(c)).

Moreover, one has an isomorphism of Z(E∗)0-modules

Z(E∗)0 ⊗k Z(E∗)1
1 Z(E∗)1

z ⊗ ξ z · ξ

∼=

(here, Z(E∗)0 ⊗k Z(E∗)1
1 denotes the free Z(E∗)0-module obtained by base change

from the k-vector space Z(E∗)1
1). This isomorphism can also be described as

k[C̃]⊗k Z(E∗)1
1 Z(E∗)1

(c)⊗ ξ
(with c ∈ C̃)

τc · ξ ∈ Z(E∗)1
c .

∼=
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To complete the study of Z(E∗)1 (if F is an unramified extension of Qp) it

remains to describe explicitly Z(E∗)1
c for all c ∈ C̃, or, equivalently, to describe

explicitly Z(E∗)1
1 (this is equivalent because Z(E∗)1

1 is isomorphic as a k-vector
space to Z(E∗)1

c , via multiplication by τc).

Proof of the proposition. Let β ∈ Z(E∗)1, and let us write it as

β =
∑
w∈W̃

s.t. `(w) 6 L

βw,

for suitable L ∈ Z>0 and βw ∈ H1(I,X(w)). From the lemmas we have proved, we
obtain the following constraints on the components βw’s.

• Lemma 3.2.6 tells us that for w ∈ W̃ r
(
T/T 1

)
of length L one has βw = 0.

• Lemma 3.2.7 tells us that for x ∈
(
T/T 1

)
of length L one has that Shx(βx) is zero

on the “unipotent factors” of the Iwahori decomposition of Ix.

• Now let x ∈
(
T/T 1

)
r C̃ of length L. We have just said that Shx(βx) is zero

on the “unipotent factors” of the Iwahori decomposition of Ix. If, by contra-
diction, Shx(βx) were nonzero on T 1, then by Lemma 3.2.10 there would exist
ξ ∈ H1(I,X(1)) = H1(I, k) such that [ξ, γ]gr 6= 0. But since multiplication by ξ
on the left and on the right preserves the decomposition E1 =

⊕
w∈W̃ H1(I,X(w))

this is against the assumption that β ∈ Z(E∗)1. Therefore we have reached a con-
tradiction, and this means that Shx(βx) is zero also on T 1.

In conclusion, we have proved that if w ∈ W̃ is of length L then βw is nonzero at
most if w ∈ C̃. Since the elements of C̃ have length zero (e.g., by the length formula
(10)), we deduce that

β =
∑
c∈C̃

βc.

For the same reason, we see that for all j ∈ Z>0, for all v ∈ W̃ and for all
γ ∈ Hj(I,X(v)), multiplication on the left or on the right by γ transforms the decom-
position

⊕
c∈C̃ H

1(I,X(c)) into the decomposition
⊕

c∈C̃ H
1(I,X(cv)). Therefore,

for all c ∈ C̃ one has that βc ∈ Z(E∗)1. This proves that we have a decomposition

Z(E∗)1 =
⊕
c∈C̃

Z(E∗)1
c , where Z(E∗)1

c := Z(E∗)1 ∩H1(I,X(c)).

Now, let us look the map

Z(E∗)0 ⊗k Z(E∗)1
1 Z(E∗)1

τc ⊗ ξ
(with c ∈ C̃)

τc · ξ,

∼=

which is clearly a well defined homomorphism of Z(E∗)0-modules. It is also easy to
show that it is bijective, because on the left side we have a k-vector space decompo-
sition

⊕
c∈C̃ τc ⊗ Z(E∗)1

1, and the above map preserves the decompositions⊕
c∈C̃

τc ⊗ Z(E∗)1
1 −→

⊕
c∈C̃

Z(E∗)1
c ,
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So bijectivity follows from the fact that for all c ∈ C̃ one has a bijection

Z(E∗)1
1 Z(E∗)1

c

ξ τc · ξ,
τc−1 · ξ′ ξ′,

thus ending the proof. �

3.2.d Results about split tori

The two lemmas in this section are immediate consequences of the contravariant
equivalence of abelian categories between the category of diagonalizable algebraic
groups and the category of finitely generated abelian groups (see [Mil17, Theorem
12.9]). The second lemma will only be used in Subsection 3.2.j, and not to prove
Theorem 3.2.26.

Lemma 3.2.12. Let S1 and S2 be F-split tori, let r1 := dim S1, let r2 := dim S2,
and let f : S1 −→ S2 be a morphism of algebraic tori. If r1 6 r2, then there exist
splittings of S1 and S2 and there exist integers n1, . . . , nr1 ∈ Z>0 such that the
following diagram commutes:

S1 S2

Gr1
m Gr2

m .

f

∼= ∼=

(t1,...,tr1 )7→
(
t
n1
1 ,...,t

nr1
r1

,1,...,1
)

Similarly, if r1 > r2, then there exist splittings of S1 and S2 and there exist integers
n1, . . . , nr2 ∈ Z>0 such that the following diagram commutes:

S1 S2

Gr1
m Gr2

m .

f

∼= ∼=

(t1,...,tr1 )7→
(
t
n1
1 ,...,t

nr2
r2

)
Proof. This follows from the contravariant equivalence of abelian categories between
the category of diagonalizable algebraic groups and the category of finitely generated
abelian groups (see [Mil17, Theorem 12.9]) and from the existence of the Smith
normal form for maps of finitely generated free abelian groups. �

Before stating the next lemma, we recall that a finite linear algebraic group F
over a field l is an affine group scheme over l such that l[F] has finite dimension as
an l-vector space. Such dimension is called the order of F, and it coincides with the
order of F(l) if l has characteristic 0. If we assume that F is a finite diagonalizable
group (over l), then F ∼= µn1

× · · · ×µnm for suitable n1, . . . , nm ∈ Z>1 (see [Mil17,
Proposition 12.3 and Theorem 12.9]), and then the order of F is n1 · · ·nm.

Lemma 3.2.13. Let S1 and S2 be F-split tori, and let f : S1 −→ S2 be a morphism
of algebraic tori, surjective and with finite kernel, say of order n. Let S1

1 (respectively,

128



S1
2) be the unique pro-p Sylow subgroup of the unique maximal compact subgroup of
S1 (respectively, of S2). Let us consider the induced homomorphism of pro-p groups

f1 : S1
1 −→ S1

2 .

One has:

• f1 is injective if and only if either p does not divide n or F does not contain
non-trivial p-th roots of unity;

• f1 is surjective if and only if p does not divide n.

Proof. It is easy to see, for example using Lemma 3.2.12, that S1 and S2 have the
same dimension, say r. Therefore, by Lemma 3.2.12 there exist splittings of S1 and
of S2 and n1, . . . nr ∈ Z>0 (nonzero because otherwise f would not be surjective)
such that the following diagram commutes:

S1 S2

Gr
m Gr

m.

f

∼= ∼=

(t1,...,tr)7→(tn1
1 ,...,tnrr )

So ker f ∼= µn1
×· · ·×µnr and n = n1 · · ·nr. Looking at the induced homomorphism

of pro-p groups f1 : S1
1 −→ S1

2 , we have

ker f1 =
(
µn1

(F) ∩ (1 + M)
)
× · · · ×

(
µnr(F) ∩ (1 + M)

)
,

coker f1 = (1 + M)/(1 + M)n1 × · · · × (1 + M)/(1 + M)nr .

For all m > 0, one has that µm(F) ∩ (1 + M) is non-trivial if and only if p divides
m and F (and hence 1 + M) contains non-trivial p-th roots, and so the claim about
injectivity follows. As regards surjectivity, we note that (1 +M)m = 1 +M if p does
not divide m (for example because exponentiation by m is an invertible map with
inverse exponentiation by m−1 ∈ Z×p ) whereas if p divides m then

(1 + M)m ⊆ (1 + M)p ⊆ 1 + pM + Mp ⊆ 1 + M2 ( 1 + M,

and therefore it follows that f1 is surjective if and only if p does not divide n. �

3.2.e A result about the fundamental group

Assuming that G is semisimple, its fundamental group can be defined in the following
way (see, e.g., [Hum98, §31.1]):

Λw/X
∗(T) where Λw := {χ ∈ X∗(T)⊗Z R | 〈qα, χ〉 ∈ Z for all α ∈ Φ}

= {χ ∈ X∗(T)⊗Z R | 〈qα, χ〉 ∈ Z for all α ∈ Π} ;
(128)

here the equality stems from the fact that the simple coroots form a basis of the
coroot lattice. With this definition, the fundamental group is abstractly isomorphic
to the following group (see [Con20, §9.3]):

X∗(T)/ spanZ
qΦ,

which can also be expressed as

X∗(T)/ spanZ
qΠ.

The following lemma should be well-known, but the author was not able to find
a reference; our proof is inspired by [Mil17, Proof of Proposition 21.8].
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Lemma 3.2.14. Assume that G is semisimple. One has that the morphism of al-
gebraic tori ∏

α∈Π

qα :
∏
α∈Π

Gm −→ T

is surjective and has finite kernel whose order is equal to the order of the fundamental
group of G.

Remark 3.2.15. It follows from the lemma that if G is semisimple simply connected
then the map ∏

α∈Π

qα :
∏
α∈Π

Gm −→ T

is an isomorphism. Indeed a morphism of split tori that has trivial kernel and cokernel
is an isomorphism, by the contravariant equivalence of categories between split tori
and finitely generated abelian groups.

Proof of the lemma. Let us consider the exact sequence

1 ker qα
∏
α∈Π Gm T coker qα 1,

qα :=
∏
α∈Π qα

and let us apply the contravariant functor X∗, which defines a contravariant equiv-
alence of abelian categories between the category of diagonalizable algebraic groups
and the category of finitely generated abelian groups (see [Mil17, Theorem 12.9]),
thus getting an exact sequence

0 X∗(coker qα) X∗(T)
⊕

α∈Π Z X∗(ker qα) 0.
χ 7→(〈qα,χ〉)α∈Π

Since 〈−,−〉 is a perfect pairing, the map in the middle is injective, and there-
fore X∗(coker qα) is trivial. This means that coker qα is trivial by the contravariant
equivalence of abelian categories. As regards the kernel of qα, we have

X∗(ker qα) ∼=
⊕

α∈Π Z
{(〈qα, χ〉)α∈Π | χ ∈ X∗(T)}

.

The map

Λw

⊕
α∈Π

Z

χ (〈qα, χ〉)α∈Π

is an isomorphism by definition of the weight lattice Λw and by the fact that (qα)α∈Π

is an R-basis of X∗(T)⊗Z R. It follows that we get isomorphisms

X∗(ker qα) ∼=
⊕

α∈Π Z
{(〈qα, χ〉)α∈Π | χ ∈ X∗(T)}

∼= Λw/X
∗(T).

In other words, X∗(ker qα) is isomorphic to the fundamental group of G. Let us write

X∗(ker qα) ∼= Z/n1Z⊕ · · · ⊕ Z/nmZ,

for suitable m ∈ Z>0 and n1, . . . , nm ∈ Z>1. The functor M 7→ Spec(k[M ]) is a
quasi-inverse of the functor X∗(−), and applying it to the group Z/nZ (for n ∈ Z>1)
we get µn: see [Mil17, Proposition 12.3 and Theorem 12.9] for both of these facts.
This means that

ker qα ∼= µn1
× · · · × µnm ,

and so we see that ker qα is a finite algebraic group of order equal to the order of
X∗(ker qα) and hence to the order of the fundamental group of G. �
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3.2.f Results about the commutator subgroup of the group of ra-
tional points

We are now going to collect some facts about the commutator subgroup [G,G] of
the group of F-rational points G of G. Here we will always mean the commuta-
tor subgroup in the abstract group-theoretical sense, but we will prove that it is
automatically closed in the F-topology.

The main result in this subsection is that the abelianization G/[G,G] is isomor-
phic to a quotient of T , quotient that we will describe explicitly (Lemma 3.2.19).
This is probably well known, but the author was not able to find the precise state-
ment the literature. Similar problems are studied in [BT73], and it would be possible
to reduce our statements to various results in loc. cit. (see in particular [BT73, (1)
in the proof of Proposition 3.19, Corollaire 6.5, Remarque 6.6, Proposition 6.14]).
However, since one would still need to do some work to extend results from the
semisimple case to general case and since it is possible to write down a more self-
contained and relatively short proof, we carry out such proof, without relying on the
results in [BT73].

From now on we will use the following notation.

• We define G′ := [G,G] (the derived subgroup of G) and we define T′ := T ∩G′:
this is a F-split maximal torus of G′ (and so in particular G′ is F-split); indeed
T′ is a maximal F-torus of G′ by [CGP15, Lemma 1.2.5 part (iii)], and, by the
same argument with F in place of F, it is a maximal F-torus. Moreover, the fact
that T′ is F-split follows from the fact that a F-subtorus of a F-split torus is split
(see [Bor91, Chapter III, §8.14, Corollary]).

• We consider the fundamental central covering G̃ −→ G′ of the derived group G′.
The existence of the fundamental central covering of a split semisimple group,
such as (G′,T′), can be proved via the “Existence theorem” as in [Mil17, Corol-
lary 23.56], constructing it from an isogeny of root data in the sense of [Mil17,
Definition 23.1]: in particular G̃ comes equipped with a F-split maximal torus T̃
and and the central isogeny G̃ −→ G′ sends T̃ to T′.

• We thus have the following homomorphisms, whose composite will be denoted by
f∼:

f∼ : (G̃, T̃) (G′,T′) (G,T),
f∼,1

and the three root systems involved can be identified (since the three adjoint
groups coincide).

The following lemma is proved in [uu13]. For convenience of the reader, we hereby
add the argument.

Lemma 3.2.16. One has [G,G] ⊆ f∼(G̃).

Proof (from [uu13]). By the universal property of the quotient of an algebraic sub-
group over a subgroup, the commutator map c : G×G −→ G factors (as a morphism
of schemes over F) through the quotient

G×G G.

G×G

Z(G)× Z(G)
(G/Z(G))× (G/Z(G))

c

=

∃
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Denoting by c̃ the commutator map on G̃, we can of course repeat the same argu-
ment, finding a commutative diagram

G̃× G̃ G̃.

G̃× G̃

Z(G̃)× Z(G̃)

(
G̃/Z(G̃)

)
×
(
G̃/Z(G̃)

)
c̃

=

∃

As we have already remarked, the adjoint groups G̃/Z(G̃) and G/Z(G) can be
identified via f∼, and so we get the following commutative diagram (the fact that the
square on the right commutes can be proved by remarking that all the other squares
and triangles commute and that the oblique arrow at the top left is surjective):

G̃× G̃ G̃

(
G̃/Z(G̃)

)
×
(
G̃/Z(G̃)

)

G×G G.

(G/Z(G))× (G/Z(G))

c̃

f∼ × f∼ f∼

c
∼=

Considering the composite of suitable maps in the above commutative diagram, we
get a morphism of F-schemes ϕ : G × G −→ G̃ such that the following diagram
commute:

G×G G.

G̃

c

ϕ f∼

Therefore, passing to F-rational points, we see that [G,G] ⊆ f∼(G̃), as we wanted
to show. �

Remark 3.2.17. Even if we will only need the inclusion of the previous lemma, it
is actually true that [G,G] = f∼(G̃). This is shown in [uu13] using (proven cases of)
the Kneser–Tits conjecture. However, this fact will also follow from the next results
we will prove: see Remark 3.2.20.

Remark 3.2.18. For all roots α ∈ Φ let us denote by qα
G̃

the morphism “qα”

relative to the pair (G̃, T̃), whereas we will still denote by qα the one relative to the
pair (G,T), which is the same as the one relative to the pair (G′,T′). Recall that
since G̃ is semisimple simply connected, the map∏

α∈Π

qα
G̃

:
∏
α∈Π

Gm −→ T̃

is an isomorphism (Remark 3.2.15). Finally, since f∼,1 is a central isogeny between

(G̃, T̃) and (G′,T′), it follows that f∼,1 ◦ qα
G̃

= qα (see [Mil17, Proposition 23.5]).
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We conclude that we have the following commutative diagram:

∏
α∈Π Gm T̃

T′.

∏
α∈Π qα

G̃
∼=

∏
α∈Π qα f∼,1

In particular, the following equality holds:

T
qΦ

:= Image
(∏

α∈Π qα : F× −→ T ′
)

= Image
(
f∼,1 : T̃ −→ T ′

)
.

(129)

Lemma 3.2.19. Let T
qΦ

be as above. One has an isomorphism of topological groups

T/T
qΦ

G/[G,G]

t t,

∼=

and moreover [G,G] is closed in G (for the F-topology) and T
qΦ
⊆ T ′ ⊆ T are closed

inclusions (for the F-topology).

Proof. Let us divide the proof into the following parts: the map is well-defined,
injective, surjective, a homeomorphism (and therefore an isomorphism of topological
groups), and we have the claimed closed inclusions.

• Let us prove that the map in the statement is well-defined.

We have to prove that for all α ∈ Π and for all a ∈ F× one has qα(a) ∈ [G,G]. It
is well-known that SLn(l) is generated by transvection matrices for all n > 2 and
all fields l; moreover if the field l has at least 4 elements, it is easy to show that
transvection matrices are in the commutator subgroup: we thus conclude that
[SLn(l), SLn(l)] = SLn(l) if l is a field with at least 4 elements. In particular, we
obtain that qα(a) ∈ ϕα

(
[SL2(F), SL2(F)]

)
⊆ [G,G], as we wanted.

• Let us prove that the map in the statement is injective.

Let t ∈ T ∩ [G,G], and let us show that t ∈ T
qΦ
. Since [G,G] ⊆ f∼(G̃) (Lemma

3.2.16), we can write t = f∼(g̃) for some g̃ ∈ G̃. If we prove that g̃ ∈ T̃ then we
are done by the second definition of T

qΦ
, and to prove this claim it is sufficient to

show that

(Claim) g̃ ∈ T̃(F).

One has that t ∈ T ∩ [G,G] ⊆ T(F) ∩ G′(F) = T′(F), and the restriction
f∼,1 : T̃(F) −→ T′(F) is surjective: indeed, a surjective morphism of algebraic
group varieties is such that the image of a maximal torus is a maximal torus (see
[Bor91, Proposition 11.14 part (1)] or [Mil17, Proposition 17.20]). Therefore, we
get that t = f∼(t̃) for some t̃ ∈ T̃(F). In particular g̃ · t̃−1 ∈ ker(f∼,1)(F); but

ker(f∼,1) is contained in the centre of G̃, and in a reductive group the centre is
contained in every maximal torus (see [Hum98, Section 26.2, Corollary A.(b)]).
Therefore g̃ · t̃−1 ∈ T̃(F) and so g̃ ∈ T̃(F), as we wanted to prove.
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• Let us prove that the map in the statement is surjective.

Let us use the Bruhat decomposition:

G =
⋃̇

w∈W0

U · nw · T · U,

where nw ∈ N is a representative of w ∈ W0 and where U is the unipotent
subgroup generated by the Uα’s for α ∈ Φ+ (and, as an algebraic variety, it
is isomorphic via the multiplication map to the direct product of the Uα’s: see
[Mil17, Theorem 21.68 (a)]; in particular, U is generated by the Uα’s).

As we shown before, for all α ∈ Φ, an element in the image of ϕα : SL2(F) −→ G
lies in the commutator subgroup [G,G]. Applying this to the elements ns(α,0)

for
all α ∈ Π, we get that for all w ∈ W0 one has nw ∈ [G,G] for a suitably chosen
representative nw ∈ N of w. In a similar way one shows that Uα ⊆ [G,G] for
all α ∈ Φ+ and so U ⊆ [G,G] (in this case the argument is simpler because

we can consider the commutator [
(
u 0
0 u−1

)
, ( 1 a

0 1 )] =
(

1 (u2−1)·a
0 1

)
for all a ∈ F

and for a fixed u ∈ F× having non-trivial square). In conclusion, by the Bruhat
decomposition, we get that every element of G can be represented by an element
of T in the quotient G/[G,G], thus proving that the map in the statement is
surjective.

• Let us prove that the map in the statement is a homeomorphism for the F-topology.

Continuity is clear since the map in question is induced by the inclusion of T in
G. It remains to show that the map

T G/[G,G]

t t

is open. We consider the map

U− ×T×U −→ G (130)

defined by multiplication, where U is the subgroup generated by the Uα’s for
α ∈ Φ+ and where U− is the subgroup generated by the Uα’s for α ∈ Φ−. We
recall that the above map is an open immersion of schemes over F. An open
immersion of F-schemes of finite type induces, taking F-rational points, an open
immersion for the F-topology (see, e.g., [Con12, Proposition 3.1]). Therefore the
map

U− × T × U −→ G

induced by multiplication is open for the F-topology. In particular, for every open
subset V of T , one has that U− · V · U is open in G. But then the image of
U− · V · U in G/[G,G] is open in G/[G,G] because the quotient map is always
open for topological groups. But this last open image is just the image of V in
G/[G,G], since we have already remarked that U ⊆ [G,G], and clearly the same
holds for U−. We have thus shown that the image in G/[G,G] of every open subset
V of T is open.

• Let us prove that the inclusions T
qΦ
⊆ T ′ ⊆ T and [G,G] ⊆ G are all closed.

The fact that T ′ is closed in T is clear because T′ is a closed subscheme of T. The
fact that T

qΦ
is closed in T ′ can be proved via the following more general statement:
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if S1 and S2 are F-split tori, and if ϕ : S1 −→ S2 is a morphism of algebraic tori,
then the induced map ϕ : S1 −→ S2 has closed image (for the F-topology). To
show this, thanks to Lemma 3.2.12, it is enough to show that (F×)n is closed in
F× for all n ∈ Z. This is immediate using the decomposition

(F×)n = πnZ × (O×)n ⊆ πZ ×O× = F×,

since the factor πZ is discrete, and the factor O× is compact Hausdorff.

It remains to check that the inclusion [G,G] ⊆ G is closed, but this now follows
from the fact that the quotient G/[G,G] ∼= T/T

qΦ
is Hausdorff since T

qΦ
is closed

in T . �

Remark 3.2.20. As claimed in Remark 3.2.17, the inclusion [G,G] ⊆ f∼(G̃) of
Lemma 3.2.16 is actually an equality. Indeed, this is equivalent to saying that
[G̃, G̃] = G̃. If we apply the last lemma to G̃ in place of G, we see that this is
equivalent to the condition T̃

qΦ
= T̃ , and this is clear from the definition of T̃

qΦ
(129),

because f∼ is the identity in this setting.

3.2.g The 1st graded piece of the centre for unramified extensions
of Qp: full description in the general case

In this subsection we are going to complete the description of the 1st graded piece
of the centre of E∗ under the assumption that F is an unramified extension of Qp.
Recall from Proposition 3.2.11 that it remains to describe Z(E∗)1 ∩H1(I,X(1)).

Let us define

T 1
qΦ

:= Image
(∏

α∈Π qα :
∏
α∈Π(1 + M) −→ (T ′)1

)
. (131)

It is easy to check using Lemma 3.2.12 that T 1
qΦ

is the (unique) pro-p Sylow subgroup

of the unique maximal compact subgroup of T
qΦ

(which we defined in (129)).

Lemma 3.2.21. Assume either that p 6= 2 or that F is an unramified extension of
Qp. One has that T 1

qΦ
is trivial in the Frattini quotient of I.

Proof. We are going to give two different proofs in the two (very overlapping) cases
p 6= 2 and F unramified extension of Qp, both of them basically taken from [OS18,
§3.8]. Let I(SL2) be the standard pro-p Iwahori subgroup of SL2(F) (as in Section
1.5).

• If p 6= 2, then it is easy to compute the commutator subgroup [I(SL2), I(SL2)]
explicitly (see [OS18, Proposition 3.62 i)]) and in particular to show that{(

x 0
0 x−1

) ∣∣∣∣ x ∈ 1 + M

}
⊆
[
I(SL2), I(SL2)

]
.

Using the maps ϕα’s for α ∈ Π, we see that the image of the map
∏
α∈Π qα

∣∣
1+M

(i.e., T 1
qΦ
) is contained in the commutator subgroup [I, I], and in particular it is

trivial in the Frattini quotient of I.

• If F is an unramified extension of Qp, then we follow the proof of [OS18, Proposi-
tion 3.64 i)], which is stated only for F = Qp but basically works for all unramified
extensions. For all a ∈ O let us set:

u+(a) :=

(
1 a
0 1

)
, u−(a) :=

(
1 0
a 1

)
.
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One can check the following equality for all a ∈ O:(
1+ap 0

0 (1+ap)−1

)
= [u+(1), u−(pa)] ·

(
u−(pa)u+( a

1+pa)pu−(pa)−1
)
· u−(−pa2)p.

The first factor of this decomposition is a commutator of elements of I(SL2); the
second factor is conjugate in I(SL2) to a p-th power, and the third factor is a p-th
power in I(SL2). Applying ϕα (for α ∈ Π), we get that qα(1 + ap) is trivial in
the Frattini quotient of I. Now we use the assumption that F is an unramified
extension of Qp, yielding that every element of 1 + M is representable as 1 + ap
for some a ∈ O, and so we have proved that the image of the map

∏
α∈Π qα

∣∣
1+M

(i.e., T 1
qΦ
) is trivial in the Frattini quotient of I. �

Lemma 3.2.22. The pro-p group T 1/T 1
qΦ

is a direct factor (as a topological group)

of the locally profinite group T/T
qΦ
∼= G/[G,G] (where the isomorphism holds by

Lemma 3.2.19).

Proof. By Lemma 3.2.12, there exists a commutative diagram of the following form,
where the vertical maps come from isomorphism of F-split tori, where r := dim T
and r′ := #Π = dim T′, and where n1, . . . nr′ are suitable integers:

∏
α∈Π F× T

(F×)r
′

(F×)r.

∏
α∈Π qα

∼= ∼=

(t1,...,tr′ )7→
(
t
n1
1 ,...,t

nr′
r′ ,1,...,1

)
Therefore, via the isomorphism on the right side of the diagram, we have:

T/T
qΦ
∼= (F×/(F×)n1) × · · ·× (F×/(F×)nr′ ) × F× × · · ·× F×,

T 1/T 1
qΦ
∼=

1 + M

(1 + M)n1
× · · ·× 1 + M

(1 + M)nr′
× (1 + M) × · · ·× (1 + M).

Using the factorization F× = πZ×µq−1(F)× (1 +M), we see that T 1/T 1
qΦ

is a direct

factor (as a topological group) of T/T
qΦ
. �

Remark 3.2.23. Although we will not use this, it is interesting to compare this
result with the following: in [Koz18, Lemma 5.1] it is proved that if p 6= 2, 3 then
T 1/T 1

qΦ
is a direct factor of I/[I, I].

Lemma 3.2.24. Let ψ : G −→ k be a homomorphism of topological groups. Let us
define ψI ∈ H1(I, k) as the restriction of ψ to I and, for all c ∈ C̃, let us define
ψc := Sh−1

c (ψI) ∈ H1(I,X(c)). One has that ψc is in the centre of E∗.

Proof. To show our claim that ψc ∈ Z(E∗), let us first prove that ψc is centralized

by the whole E0, i.e., that it commutes with τw for all w ∈ W̃ : recall that c has
length zero (see Theorem 3.1.10), so the formulas for the products are “the simple
ones”, and applying them we find that

ψc · τw ∈ H1(I,X(cw)),

τw · ψc ∈ H1(I,X(wc)) = H1(I,X(cw)),

Shcw(ψc · τw) = resIcIcw ψI = ψ
∣∣
Iw
,

Shcw(τw · ψc) = reswIcw
−1

Iwc
w∗ψI = ψ

(
w−1 · (−) · w

)∣∣
Iw

= ψ
∣∣
Iw
.

(132)
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We conclude that ψc · τw = τw · ψc.
Now we have to show that ψc ∈ Z(E∗), i.e., that it commutes (in the “graded-

commutative” sense) with every element of the form γ ∈ H i(I,X(w)) for i ∈ Z>0

and w ∈ W̃ . We have already said that c has length zero, and so we can apply
the formula relating the (opposite of the) Yoneda product and the cup product
(Corollary 1.9.3), finding that

ψc · γ = (ψc · τw) ^ (τc · γ)

= (τw · ψc) ^ (τc · γ) (since ψc and τw commute)

= (τw · ψc) ^ (γ · τc) (because τc ∈ Z(E∗), see Theorem 3.1.10)

= (−1)i(γ · τc) ^ (τw · ψc)
= (−1)iγ · ψc,

i.e., ψc and γ commute (in the “graded-commutative” sense). �

Proposition 3.2.25. Assume either that p 6= 2 or that F is an unramified extension
of Qp, and let c ∈ C̃. Using the notation

Z(E∗)1
c := Z(E∗)1 ∩H1(I,X(c))

and considering the image via the Shapiro isomorphism

Shc
(
Z(E∗)1

c

)
⊆ H1(Ic, k) = H1(I, k),

one has that the restriction map resIT 1 : H1(I, k) −→ H1(T 1, k) induces an isomor-
phism

Shc
(
Z(E∗)1

c

) ∼= H1
(
T 1/T 1

qΦ
, k
)
,

where T 1
qΦ

was defined in (131).

Proof. Let us show that the map

Shc
(
Z(E∗)1

c

)
H1
(
T 1/T 1

qΦ
, k
)

ξ

 T 1/T 1
qΦ

k

t ξ(t)


is well-defined, injective and surjective.

• The above map is well-defined (and would be well-defined on the whole H1(I, k)),
because we have shown in Lemma 3.2.21 that T 1

qΦ
is trivial in the Frattini quotient

of I.

• The above map is injective because an element in Shc
(
Z(E∗)1

c

)
(which is a homo-

morphism of topological groups from I to k) is zero on the the “unipotent factors”
of the Iwahori decomposition of I (see Lemma 3.2.7).

• It remains to show that the above map is surjective. Lemma 3.2.22 tells us that
T 1/T 1

qΦ
is a direct factor of G/[G,G]: in other words, we can fix a splitting

T 1/T 1
qΦ

G/[G,G],t 7→t

σ

137



Given ξ ∈ H1
(
T 1/T 1

qΦ
, k
)

, we can define ξI as the composite

ξI : I G G/[G,G] T 1/T 1
qΦ

k.
⊆ quot. σ ξ

It is clear that ξI is an element of H1(I, k) whose image in H1
(
T 1/T 1

qΦ
, k
)

is equal

to ξ. It remains to check that ξI ∈ Shc
(
Z(E∗)1

c

)
, i.e., that Sh−1

c (ξI) is in the
centre of E∗. Since ξI is the restriction of a homomorphism of topological groups
G −→ k, this last claim follows from Lemma 3.2.24. �

Theorem 3.2.26. Assume that F is an unramified extension of Qp. One has that
Z(E∗)1 can be described in the following way: there is a k-vector space decomposition

Z(E∗)1 =
⊕
c∈C̃

Z(E∗)1
c , where Z(E∗)1

c := Z(E∗)1 ∩H1(I,X(c)).

Moreover, one has an isomorphism of Z(E∗)0-modules

Z(E∗)0 ⊗k Z(E∗)1
1 Z(E∗)1

z ⊗ ξ z · ξ

∼=

(here, Z(E∗)0 ⊗k Z(E∗)1
1 denotes the free Z(E∗)0-module obtained by base change

from the k-vector space Z(E∗)1
1). This isomorphism can also be described as

k[C̃]⊗k Z(E∗)1
1 Z(E∗)1

(c)⊗ ξ
(with c ∈ C̃)

τc · ξ ∈ Z(E∗)1
c .

∼=

Finally, for all c ∈ C̃, the restriction map resIT 1 : H1(I, k) −→ H1(T 1, k) induces an
isomorphism of k-vector spaces

Shc
(
Z(E∗)1

c

) ∼= H1
(
T 1/T 1

qΦ
, k
)
,

where T 1
qΦ

was defined in (131).

Proof. The above statement combines the statements of Proposition 3.2.11 and of
Proposition 3.2.25. �

Remark 3.2.27. Under the assumptions of the theorem we have that the obvious
inclusion

Z(E∗)1 ⊆ ZE0∪H1(I,X(1))(E
1)

is actually an equality. This is because to determine Z(E∗)1 we have only used graded
commutators with elements in E0 and H1(I,X(1)) (see in particular Lemmas 3.2.6,
3.2.7 and 3.2.10).

Remark 3.2.28. With reference to the theorem, let us drop the assumption that F
is an unramified extension of Qp, but let us add the assumption that p 6= 2, in such

a way that Proposition 3.2.25 is still applicable. Since the elements of C̃ have length
zero (e.g., by the length formula), it is easy to see that

Z(E∗)1 ∩
(⊕
c∈C̃

H1(I,X(c))
)

=
⊕
c∈C̃

(
Z(E∗)1 ∩H1(I,X(c))

)
=
⊕
c∈C̃

Z(E∗)1
c .

Applying Proposition 3.2.25, it is not difficult to see that one has the following
isomorphism of Z(E∗)0-modules (generalizing the above Theorem 3.2.26):

Z(E∗)1 ∩
(⊕
c∈C̃

H1(I,X(c))
)
∼= Z(E∗)0 ⊗k Z(E∗)1

1
∼= Z(E∗)0 ⊗k H1

(
T 1/T 1

qΦ
, k
)
.
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3.2.h Examples

In this subsection we will discuss the examples G = GLn and G = PGLn.

Example 3.2.29. Assume that G = GLn let us choose T to be the diagonal torus.
For the moment, let us not make any assumptions on F. Let c ∈ C̃ and let

f : 1 + M −→ k

be a homomorphism of topological groups. Let ξc,f ∈ H1(I,X(c)) ∼= H1(I, k) be the
cohomology class such that Shc(ξc,f ) is the following homomorphism of topological
groups:

Shc(ξc,f ) : Ic = I 1 + M k.det f

Since Shc(ξc,f ) is the restriction to Ic = I of a homomorphism of topological groups
from G to k, Lemma 3.2.24 shows that ξc,f lies in the centre of E∗.

So, even without assumptions on F, we have produced elements in Z(E∗)1. Now,
let us relate this to the description of Z(E∗)1 of Theorem 3.2.26.

Let us still not make any assumption on F. Note that the determinant

det : T 1 −→ 1 + M

is surjective and has kernel

T 1 ∩ SLn(F) = T 1 ∩ T ′ = (T ′)1 = T 1
qΦ
;

here the second equality uses that T 1∩T ′ is pro-p and contained in T ′, and the third
equality uses that T

qΦ
= T ′ by Remark 3.2.15 (since G′ = SLn is simply connected).

Therefore the determinant induces an isomorphism

T 1/T 1
qΦ
−→ 1 + M.

It follows that
H1(1 + M, k) ∼= H1

(
T 1/T 1

qΦ
, k
)

via the determinant.
Now let us assume that F is an unramified extension of Qp, in such a way that

the description of Z(E∗) of Theorem 3.2.26 holds. Then if we combine the above
isomorphism with the isomorphism

H1 (Ic, k) ∼= H1
(
T 1/T 1

qΦ
, k
)

defined by the restriction map (see again Theorem 3.2.26), we obtain an isomorphism

H1 (Ic, k) ∼= H1(1 + M, k).

It is easy to check that the following is a right inverse of such isomorphism, hence
an inverse:

H1(1 + M, k) H1 (Ic, k)

f f ◦ det = Sh(ξc,f ).

This shows that, if F is an unramified extension of Qp, then the above procedure
yields all the elements of Z(E∗)1. Moreover, using again Theorem 3.2.26,

Z(E∗)1 ∼= Z(E∗)0 ⊗k H1(1 + M, k)
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as a Z(E∗)0-module.
Without assumptions on F, instead, we still have a morphism of Z(E∗)0-modules

Z(E∗)0 ⊗k H1(1 + M, k) Z(E∗)1

τc ⊗ ξ
(with c ∈ C̃)

τc ⊗ ξ1,f = ξc,f ,

where the equality follows from formulas (132). This homomorphism is injective
because it preserves the decompositions⊕

c∈C̃

τc ⊗H1(1 + M, k) −→
⊕
c∈C̃

Z(E∗)1 ∩H1(I,X(c)),

and because the map f 7→ ξ1,f is injective (for all nonzero f ∈ H1(1 +M, k) we find
an element t ∈ T 1 ⊆ I such that f(det(x)) 6= 0). However, as we are not under the
assumptions of Theorem 3.2.26, we do not know whether it is surjective or not.

Lastly, we compute the rank of the free Z(E∗)0-module Z(E∗)0⊗kH1(1 +M, k)
(which is the same as the dimension of the k-vector space H1(1 +M, k)), as follows.

• If F is a finite extension of Qp, then the quotient (1 + M)/(1 + M)p is finite-
dimensional as a Fp-vector space; more precisely (see [FV02, Chapter I, (6.5),
Corollary, part (3)]) 1 +M is a finitely generated Zp-module (via exponentiation)
having free part of rank [F : Qp] and torsion part consisting of the pr-th roots of
unity of F× (for r ∈ Z>0), and so

dimFp ((1 + M)/(1 + M)p)

=

{
[F : Qp] if F contains no non-trivial p-th roots of 1,

[F : Qp] + 1 if F contains non-trivial p-th roots of 1.

Hence,

rankZ(E∗)0 Z(E∗)0 ⊗k H1(1 + M, k)

= dimkH
1(1 + M, k)

= dimFp(1 + M)/(1 + M)p

=

{
[F : Qp] if F contains no non-trivial p-th roots of 1,

[F : Qp] + 1 if F contains non-trivial p-th roots of 1.

• If instead F = Fq((X)), then one has a bijection

η :
∏
i∈Z>1

with p - i

∏
j∈J

Zp 1 + M

(ai,j)i,j
∏
i∈Z>1

with p - i

∏
j∈J

(1 + jX i)ai,j ,

where J is a fixed basis of Fq as a Fp-vector space (see [FV02, Chapter I, (6.2),
Proposition]). The map η is actually an isomorphism of topological groups: in-
deed it is clearly a group homomorphism between compact Hausdorff topological
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groups, and hence it suffices to check continuity. Since the source is first count-
able, it suffices to check sequential continuity. Let (am)m∈Z>0

be a sequence on
the source, where am = (am,i,j)i,j with am,i,j ∈ Zp, and assume that it has limit
a = (ai,j)i,j (this is a limit in the product topology, i.e., a pointwise limit). For all
l ∈ Z>1, the sequence (bl,m)m∈Z>0

in 1 + M defined by

bl,m :=
∏

i∈{1,...,l}
with p - i

∏
j∈J

(1 + jX i)am,i,j

converges to ∏
i∈{1,...,l}
with p - i

∏
j∈J

(1 + jX i)ai,j .

Denoting by x the class modulo 1+Ml of an element x ∈ 1+M, this shows that the
sequence

(
η(am)

)
m∈Z>0

converges to η(a). But 1+M = lim←−r(1+M)/(1+Mr), and

the inverse limit topology is induced by the product topology, and so convergence
on each of the factors (1 + M)/(1 + Mr) implies convergence on 1 + M.

We deduce that

H1(1 + M, k) ∼= H1
(
ZZ>0
p , k

)
∼= H1

(
ZZ>0
p /pZZ>0

p , k
)

∼= H1
(
FZ>0
p , k

)
∼= H1

(
lim←−
n∈Z>0

Fnp , k
)

∼= lim−→
n∈Z>0

H1
(
Fnp , k

)
∼= lim−→

n∈Z>0

kn

=
⊕
n∈Z>0

k,

where we have used the behaviour of profinite group cohomology with respect to
inverse and direct limits (see [Ser02, Chapter I, Proposition 8]). We conclude that

rankZ(E∗)0

(
Z(E∗)0 ⊗k H1(1 + M, k)

)
= dimkH

1(1 + M, k)

= ℵ0.

�

Example 3.2.30. Let G = PGLn (we will later assume that p divides n to get
something non-trivial) and let us choose T to be the diagonal torus. For the moment,
let us not make any assumptions on F. One has a well-defined “determinant” function

det : PGLn(F) F×/(F×)n

g
(with g ∈ GLn(F))

det(g).

Let us consider a homomorphism of topological groups

f : (1 + M)/(1 + M)n −→ k.
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Identifying H1(I,X(1)) with H1(I, k), we define ξf ∈ H1(I,X(1)) to be the following
homomorphism of topological groups:

ξf : I (1 + M)/(1 + M)n k.det f

Since ξf is the restriction to I of a homomorphism of topological groups from G to
k, Lemma 3.2.24 shows that ξf lies in the centre of E∗. We have thus constructed a
map of k-vector spaces

H1
(
(1 + M)/(1 + M)n, k

)
Z(E∗)1

f ξf ,

which is injective since for all nonzero f ∈ H1
(
(1 + M)/(1 + M)n, k

)
we find an

element t ∈ T 1 ⊆ I such that f(det(x)) 6= 0. Regarding whether we have found
something non-trivial or not, we note the following:

H1
(
(1 + M)/(1 + M)n, k

) ∼= H1
(
(1 + M)/(1 + M)p(1 + M)n, k

)
∼=

{
0 if p - n,

H1
(
(1 + M)/(1 + M)p, k

)
if p - n;

∼=

{
0 if p - n,

H1
(
1 + M, k

)
if p - n,

where we used that if p does not divide n then exponentiation by n is an automor-
phism of 1 + M (having inverse the exponentiation by n−1 ∈ Z×p ). We have thus
found that

• If p does not divide n then the above procedure does not yield non-trivial elements
in Z(E∗)1.

• If p divides n then the above procedure does yield non-trivial elements in Z(E∗)1

(it is easy to see that H1
(
1 + M, k

)
is non-trivial, and in any case we have even

computed it explicitly in the example of GLn).

Let us prove that
T 1

qΦ
= ker

(
det
∣∣
T 1

)
.

Let us consider the simply connected covering

(SLn,TSLn) −→ (PGLn,T),

where TSLn is the diagonal torus of SLn. Recall that T
qΦ

is the image of TSLn via

the above covering. It is then clear that every element of T
qΦ

is in the kernel of det.

In particular, we have the inclusion T 1
qΦ
⊆ ker

(
det
∣∣
T 1

)
. For the other inclusion, let

x ∈ ker
(
det
∣∣
T 1

)
. Denoting by TGLn the diagonal torus of GLn, we can choose a lift

t ∈ TGLn of x. There exists u ∈ F× such that

det(t) = un = det û, where û :=

u . . .

u

 .

Using the decomposition F× = πZ × µq−1(F) × (1 + M), we see that without loss
of generality we may assume that u ∈ 1 + M, and so û ∈ T 1

GLn
. Now, tû−1 is an
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element of T 1
GLn

with determinant 1, and so it is an element of T 1
SLn

. Since SLn is
simply connected, we know by Remark 3.2.15 that tû−1 lies in the image of∏

α∈Π

qα :
∏
α∈Π

(1 + M) −→ TSLn .

Therefore the element x = t = tû lies in T 1
qΦ
. This concludes the proof that

T 1
qΦ

= ker
(
det
∣∣
T 1

)
.

If F is an unramified extension of Qp, one can prove, using this equality and re-
producing the same argument as in the example of GLn, that the above procedure
yields all the elements of Z(E∗)1 and hence that

Z(E∗)1 ∼=

{
0 if p - n,

H1(1 + M, k) if p | n.

�

3.2.i A remark about a graded-commutative algebra inside E∗

Let K1 ⊇ K2 ⊇ K3 be open inclusions of locally profinite groups. Later on we will
further assume that K3 is compact. As compact induction is transitive, we have a
homomorphism of k-algebras

Endk[K2]-mod(c-indK2
K3

1)
Endk[K1]-mod(c-indK1

K3
1)

= Endk[K1]-mod(c-indK1
K2

c-indK2
K3

1)

h c-indK1
K2
h.

(133)

Recall the concrete description of the above rings of endomorphisms as in Subsection
1.4.a (where the product can be described as a convolution):

Endk[Ki]-mod(c-indKiK3
1) k [K3\Ki/K3]

h h(1)

∼=
for i = 1, 2,

where we read h(1) as a K3-bi-invariant function Ki −→ k. The explicit identification

c-indK1
K2

c-indK2
K3

1 = c-indK1
K3

1

is given by

c-indK1
K2

c-indK2
K3

1 c-indK1
K3

1

f

(
K1 k

x f(x)(1)

)
.

We then see that the homomorphism (133) admits the following concrete description:

k [K3\K2/K3] k [K3\K1/K3]

K3xK3 K3xK3.
(134)

In the next lemma, we extend this to the level of Ext groups. For i = 1, 2 we
consider

Ext∗
(

c-indK1
Ki

1, c-indK1
Ki

1
)

= Ext∗
(
k[Ki/K3], k[Ki/K3]

)
.
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Lemma 3.2.31. Let K1 ⊇ K2 ⊇ K3 be open inclusions of locally profinite groups,
with K3 is compact. One has that the map

H∗(K3, c-indK2
K3

1) −→ H∗(K3, c-indK1
K3

1)

induced by the canonical map of K2-representations c-indK2
K3

1 −→ c-indK1
K3

1, i.e., by
the canonical inclusion k[K2/K3] −→ k[K1/K3] is an injective homomorphism of
graded k-algebras, with respect to the (opposite of the) Yoneda product.

Proof. We identify

Ext∗Rep∞k (Ki)

(
c-indKiK3

1, c-indKiK3
1
)

= HomD(Ki)

(
c-indKiK3

1, (c-indKiK3
1)[∗]

)
, (135)

(see [Har66, Chapter I, Corollary 6.5]) where the notation is as follows: D(Ki) is the
derived category of Rep∞k (Ki), the c-indKiK3

1 appearing on the right hand side means

the complex concentrated in degree 0 associated with c-indKiK3
1, and the notation

(c-indKiK3
1)[∗] means translation by ∗. With this description, the Yoneda product is

the composition of morphisms in D(Ki).
Since compact induction from an open subgroup is exact (left exactness is easy

and right exactness follows from the fact it is a left adjoint), the functor c-indK1
K2

induces a map on the level of derived categories

HomD(K2)

(
c-indK2

K3
1, (c-indK2

K3
1)[∗]

)
HomD(K1)

(
c-indK1

K3
1, (c-indK1

K3
1)[∗]

)


V

c-indK2
K3

1 (c-indK2
K3

1)[∗]
q.is.

f g




V

c-indK1
K3

1 (c-indK1
K3

1)[∗]
q.is.

c-ind
K1
K2

f c-ind
K1
K2

g

.
(136)

It is then clear that this map preserves the Yoneda product. Let us see this on
the level of injective resolutions; denoting by K(Ki) the homotopy category of the
category of unbounded complexes in Rep∞k (Ki), denoting by Ext∗ the Ext functor
defined in terms of injective resolutions and choosing an injective resolution J•i of
c-indKiK3

1, the identification (135) can be made explicit as follows:

HomD(Ki)

(
c-indKiK3

1, (c-indKiK3
1)[∗]

)
= HomD(Ki)

(
c-indKiK3

1, J•i [∗]
)

= HomK(Ki)

(
c-indKiK3

1, J•i [∗]
)

= Ext∗Rep∞k (Ki)

(
c-indKiK3

1, c-indKiK3
1
)
.

(137)

Here, the first identification is induced by the natural map c-indKiK3
1 −→ J•i [∗], which

is a quasi-isomorphism; the second identification stems from the fact that every mor-
phism in D(Ki) having as target a complex of injective objects comes from an actual
morphism of complexes (see [Har66, Chapter I, proof of Theorem 6.4]); the third
identification is obtained by sending a morphism of complexes c-indKiK3

1 −→ J•i [∗]
to the class of its 0-component.

Now, let us express the map (136) as a map

Ext∗Rep∞k (K2)

(
c-indK2

K3
1, c-indK2

K3
1
)
−→ Ext∗Rep∞k (K3)

(
c-indK1

K3
1, c-indK1

K3
1
)
,

where the Ext-groups are defined in terms of the chosen injective resolutions. Since
J•1 is an injective resolution of c-indK1

K3
1, there exists a unique morphism Ψ in K(K1)
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making the following diagram commute (note that the first row is exact because
c-indK1

K2
is an exact functor):

c-indK1
K3

1 c-indK1
K2
J•2

c-indK1
K3

1 J•1 .

Ψ

It is then easy to describe explicitly the (obviously unique) dashed maps making the
following diagram commute:

HomD(K2)

(
c-indK2

K3
1, (c-indK2

K3
1)[∗]

)
HomD(K1)

(
c-indK1

K3
1, (c-indK1

K3
1)[∗]

)

HomD(K2)

(
c-indK2

K3
1, J•2 [∗]

)
HomD(K1)

(
c-indK1

K3
1, (c-indK1

K2
J•2 )[∗]

)

HomD(K1)

(
c-indK1

K3
1, J•1 [∗]

)
.

(136)

(137)∼= (137)∼=

ind. by Ψ∼=

Looking again at (137) we then get that, defining the Ext-groups in terms of our
chosen injective resolutions, the map (136) is the same as the map

Ext∗Rep∞k (K2)

(
c-indK2

K3
1, c-indK2

K3
1
)

Ext∗Rep∞k (K3)

(
c-indK1

K3
1, c-indK1

K3
1
)

(
c-indK2

K3
1

f−→ Jn2

) (
c-indK1

K3
1

c-ind
K1
K2

f
−−−−−→ c-indK1

K2
Jn2

Ψ−→ Jn1

)
.

(138)
Now,since we are assuming that K3 is compact, exactly as in Subsection 1.9.a

we have an identification

Ext∗Rep∞k (Ki)
(c-indKiK3

1) ∼= H∗(K3, c-indKiK3
1),

which can be obtained as follows: recall that we have chosen an injective resolution
c-indKiK3

1 −→ J•i in Rep∞k (Ki): this is also an injective resolution in Rep∞k (K3)
(because the restriction functor from Rep∞k (Ki) to Rep∞k (K3) preserves injective
objects, see [Vig96, Chapitre I, 5.9 d)]). Then, the left hand side (respectively, the
right hand side) of the above identification is the cohomology of the complex obtained
by applying the functor HomRep∞k (Ki)

(
c-indKiK3

1,−
)

(respectively, the functor (−)I ,
which is isomorphic to the previous one) to the complex J•i .

For n ∈ Z>0 and for f as in (138), we have the following commutative diagram

c-indK1
K3

1 c-indK1
K2
Jn2 Jn1 ,

c-indK2
K3

1 Jn2

1

c-indK1
K2
f Ψ

f Ψ̃

145



where Ψ̃ is the obvious composite morphism. Looking at the commutative diagram

c-indK2
K3

1 J•2

c-indK1
K3

1 c-indK1
K2
J•2

c-indK1
K3

1 J•1 ,

Ψ̃

Ψ

we see that the map (138) (i.e, the map (136)) is the same as the map

H∗(K3, c-indK2
K3

1) −→ H∗(K3, c-indK1
K3

1) (139)

induced by the canonical map of K2-representations c-indK2
K3

1 −→ c-indK1
K3

1, i.e., by
the canonical inclusion k[K2/K3] −→ k[K1/K3]. The latter map is a split injecitve
homomorphism of K2-representations, because the map

k[K1/K3] k[K2/K3]

(xK3)

{
(xK3) if x ∈ K2

0 if x /∈ K2

is a well-defined homomorphism of K2-representations that provides a left inverse.
Since profinite group cohomology commutes with direct sums, we conclude that the
map (139) (equivalently, the map (138) or, again equivalently, the map (136)) is
injective. �

Returning to our setting, let us consider

K1 := G, K2 := CI, K3 := I.

From the above abstract situation (and considering now the opposite product, in
accordance with our conventions) we get an injective homomorphism of graded k-
algebras

Ext∗Rep∞k (G)(c-indCII , c-indCII )op Ext∗Rep∞k (G)(c-indGI , c-indGI )op.

E∗(CI, I) E∗(G, I)

E∗

: = : =
=

This homomorphism, when seen as a map

H∗(I, k[CI/I]) −→ H∗(I, k[G/I]), (140)

is just the map induced by the inclusion k[CI/I] −→ k[G/I]. Since C ∩ I = C ∩ T 1

and since C is central, we have

CI/I =
⋃̇

c∈C/(C∩T 1)

cI/I =
⋃̇

c∈C/(C∩T 1)

IcI/I.
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On the other side, we have

G/I =
⋃̇
w∈W̃

IwI/I =
( ⋃̇
c∈C/(C∩T 1)

IcI/I
)
∪̇
( ⋃̇
w∈W̃r(C/(C∩T 1))

IwI/I
)
.

Using the decompositions of I-representations

k[CI/I] =
⊕

c∈C/(C∩T 1)

X(c),

k[G/I] =
( ⊕
c∈C/(C∩T 1)

X(c)
)
⊕
( ⊕
w∈W̃r(C/(C∩T 1))

X(w)
)
,

we see that the map (140) has image
⊕

c∈C/(C∩T 1)H
∗(I,X(c)) ⊆ E∗. Therefore we

have an identification (which we will treat as an equality)

E∗(CI, I) =
⊕

c∈C/(C∩T 1)

H∗(I,X(c)) ⊆ E∗.

There seems to be some relations between the subalgebra E∗(CI, I) and the
centre of E∗, although only regarding low graded pieces. The following remark sum-
marizes some facts in this direction.

Remark 3.2.32. The following facts hold.

(i) E∗(CI, I) ∼= k[C̃] ⊗k H∗(I, k) as a graded k-algebra, where k[C̃] is the group
algebra of the group C̃ = (C · T 1)/T 1 and where H∗(I, k) is the usual coho-
mology algebra with respect to the tensor product. In particular, E∗(CI, I) is
graded-commutative.

(ii) Z(E∗)0 = E0(CI, I);

(iii) If F is an unramified extension of Qp, then Z(E∗)1 ⊆ E1(CI, I), with equality
not holding in general.

(iv) In general, it is not true that Z(E∗) ⊆ E∗(CI, I).

Proof. We prove the four claims stated above.

(i) We claim that the map

k[C̃]⊗k H∗(I, k) E∗(CI, I)

(c)⊗ γ
(with c ∈ C̃)

τc · Sh−1
1 (γ)

(141)

is a well-defined isomorphism of k-algebras (here Sh−1
1 is basically the identity

map on the cohomology space H∗(I, k) = H∗(I,X(1)); nevertheless, we write
it explicitly in order to stress the fact that we are considering the inclusion
Sh−1

1 (γ) ∈ H∗(I,X(1)) ⊆ E∗). First of all recall from Theorem 3.1.10 that we
have an isomorphism of k-algebras

k[C̃] Z(E∗)0

(c)
(with c ∈ C̃)

τc,
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and recall from Corollary 1.9.3 that the inclusion

H∗(I, k) ∼= H∗(I,X(1)) −→ E∗

is a homomorphism of k-algebras. It follows that we have a well-defined ho-
momorphism of k-vector spaces

k[C̃]⊗k H∗(I, k) E∗

(c)⊗ γ
(with c ∈ C̃)

τc · Sh−1
1 (γ),

and that this is actually a k-algebra homomorphism, because the image of
the map k[C̃] −→ E∗ is central in E∗. It is also clear that the image of the
map displayed above is contained in the subalgebra E∗(CI, I), and so we have
shown that (141) is a well-defined homomorphism of k-algebras. To show that
it is bijective, recalling that C̃ = (C · T 1)/T 1 = C/(C ∩ T 1), it suffices to
consider the decompositions

k[C̃]⊗k H∗(I, k) =
⊕
c∈C̃

(c)⊗H∗(I, k),

E∗(CI, I) =
⊕
c∈C̃

H∗(I,X(c))

=
⊕
c∈C̃

τc ·H∗(I,X(1)),

where the last equality is clear from the explicit description of the product in
E∗ (see, e.g., Theorem 1.9.1) and from the fact that every c ∈ C̃ has length 0.
From the above decompositions, bijectivity of the map (141) follows.

(ii) The equality Z(E∗)0 = E0(CI, I) is now clear because both terms coincide
with the image of the isomorphism (141) in degree 0.

(iii) If F is an unramified extension of Qp, then the inclusion Z(E∗)1 ⊆ E1(CI, I)
holds because in Proposition 3.2.11 we showed that

Z(E∗)1 ⊆
⊕
c∈C̃

H1(I,X(c))

=
⊕
c∈C̃

τc ·H1(I,X(1)).

In general this is not an equality: indeed E1(CI, I) ⊇ H1(I, k), and H1(I, k)
is always non-zero (if G 6= {1}), while Z(E∗)1 might be zero (the first fact
is general: for a non-trivial pro-p group K the cohomology group H1(K, k) is
always non-trivial, see, e.g., the argument in the proof of Corollary 3.2.39; for
the second fact see, e.g., Corollary 3.2.39, or the explicit result for SL2(Qp)
with p 6= 2, 3 proved in Proposition 2.5.2).

(iv) The fact that in general we do not have Z(E∗) ⊆ E∗(CI, I) is clear from the
description of Z(E∗)d for G = SL2(F) with the assumption that I is torsion-
free (see Proposition 2.2.1). �
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3.2.j The 1st graded piece of the centre for unramified extensions
of Qp: special cases

In this subsection we will derive two corollaries (Corollary 3.2.37 and Corollary
3.2.39) from Theorem 3.2.26. Before, we need some notation and some lemmas.

Let us define C◦ as the identity component of the centre C of G. We have
already recalled (e.g., in Section 3.1.a) that C is defined over F and that C ⊆ T. We
also remark that C◦ is a F-split torus, because it is a (closed) connected subgroup
defined over F of a F-split torus (see [Bor91, Chapter III, §8.5, Corollary and §8.14,
Corollary]).

For all w ∈W , we define I ′w to be the subgroup of Iw generated by (T ′)1 and the
“unipotent factors” in the Iwahori decomposition of Iw. This can be also character-
ized as the group (I(G′))w obtained by replacing I with the pro-p Iwahori subgroup
I(G′) of G′ corresponding to I. We add the proof of this fact together with a more
precise explanation of what we mean by I(G′) and by (I(G′))w (which only makes
sense assuming w ∈Waff).

Proof of the claim. Since that for all ω ∈ Ω one has Iwω = Iw, we may assume that
w ∈ Waff . One can canonically identify the root systems of (G,T) and (G′,T′).
We make the same choice of positive roots and we choose compatible Chevalley
systems on (G,T) and (G′,T′). The corresponding apartments are then canonically
identified, as well as the corresponding groups “Waff” generated by affine reflections
in the apartment. Let us look at the Iwahori decomposition of Iw:∏

α∈Φ−

U(α,gw(α)) × T 1 ×
∏
α∈Φ+

U(α,gw(α)) −→ Iw.

The groups Uα’s associated with (G,T) and with (G′,T′) are canonically identified,
as well as and their filtrations. Also the respective functions g(−)(−)’s coincide. Con-

sidering the the pro-p Iwahori subgroup I(G′) of (G′,T′) (associated with the same
choice of positive roots / with the same fundamental chamber we are considering for
I), we therefore conclude that the Iwahori decomposition of the subgroup (I(G′))w
consists exactly of the same factors as the Iwahori decomposition of I except that
one has (T ′)1 in place of T 1. �

Lemma 3.2.33. The following are equivalent:

(1) p does not divide the order of C◦ ∩T′;

(2) T 1 = (C◦)1 · (T ′)1;

(3) T 1 = (C◦)1 × (T ′)1;

(4) Iw = (C◦)1 × I ′w for all w ∈ W̃ .

Proof. Let us prove the equivalences (1)⇐⇒ (2)⇐⇒ (3), and then the implications
(3) =⇒ (4) and (4) =⇒ (2).

(1)⇐⇒ (2)⇐⇒ (3) : We have the following exact sequence, where the first algebraic
group is finite (see [Bor91, Chapter V, §21.1]):

1 C◦ ∩T′ C◦ ×T′ T 1.

We can therefore apply Lemma 3.2.13, which tells us that the induced map
(C◦)1 × (T ′)1 −→ T 1 is surjective if and only if p does not divide the order of
C◦∩T′, and in this case it is also injective, yielding the required equivalences.
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(3) =⇒ (4) : Combining (3) with the Iwahori factorization of Iw, we find that mul-
tiplication defines a bijection∏

α∈Φ−

U(α,gw(α)) × (C◦)1 × (T ′)1 ×
∏
α∈Φ+

U(α,gw(α)) −→ Iw.

The map (C◦)1×I ′w −→ Iw defined by multiplication is a group homomorphism
because (C◦)1 is central, and it is bijective by the above Iwahori factorization.

(4) =⇒ (2) : Let us consider t ∈ T 1 and let us show that t ∈ (C◦)1 · (T ′)1. By (4) we
can write t = ci, for some c ∈ (C◦)1 and some i ∈ I ′. Considering the Iwahori
factorization of i with respect to I ′ (recall that I ′ is a pro-p Iwahori subgroup
for (G′, T ′)), and comparing it with the Iwahori factorization of i = tc−1 ∈ T 1

with respect to I, we see that i cannot have “unipotent components”; in other
words we see that i ∈ (T ′)1, thus finishing the proof that t ∈ (C◦)1 · (T ′)1. �

Lemma 3.2.34. Let us consider the map∏
α∈Π

qα
∣∣
1+M

:
∏
α∈Π

(1 + M) −→ (T ′)1.

One has:

•
∏
α∈Π qα

∣∣
1+M

is injective if and only if either p does not divide the order of the
fundamental group of G′ or F does not contain non-trivial p-th roots of unity;

•
∏
α∈Π qα

∣∣
1+M

is surjective onto (T ′)1 (i.e., (T ′)1 = T 1
qΦ

) if and only if p does not

divide the order of the fundamental group of G′.

Proof. Lemma 3.2.14 tells us that the morphism of algebraic tori∏
α∈Π

qα :
∏
α∈Π

Gm −→ T′

is surjective (onto T′) with kernel having order equal to the order of the fundamental
group of G′. The result about injectivity and surjectivity of the map

∏
α∈Π qα

∣∣
1+M

then follows from Lemma 3.2.13. �

Lemma 3.2.35. The following are equivalent:

(1) p divides neither the order of C◦ ∩T′ nor the order of the fundamental group
of G′;

(2) T 1 = (C◦)1 × T 1
qΦ

;

(3) T 1/T 1
qΦ

= (C◦)1 (meaning that the natural map from the right side to the left

side is an isomorphism);

(4) T 1 = (C◦)1 · T 1
qΦ

.

Proof. The implications (2) =⇒ (3) =⇒ (4) being obvious, it suffices to prove the
implications (1) =⇒ (2) and (4) =⇒ (1).

(1) =⇒ (2) : The condition that p does not divide the order of C◦ ∩T′ implies that
T 1 = (C◦)1× (T ′)1 (Lemma 3.2.33), while the condition that p does not divide
the order of the fundamental group of G′ implies that T ′ = T 1

qΦ
(Lemma 3.2.34).
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(4) =⇒ (1) : Since T 1 = (C◦)1 · T 1
qΦ
, a fortiori one has T 1 = (C◦)1 · (T ′)1. Lemma

3.2.33 tells us that this last condition is equivalent to the condition that p does
not divide the order of C◦ ∩ T′, thus proving part of the statement (1), and
also that the product is actually a direct product, namely T 1 = (C◦)1× (T ′)1.
In particular, we have

(C◦)1 · T 1
qΦ

= T 1 = (C◦)1 × (T ′)1,

and therefore the inclusion T 1
qΦ
⊆ (T ′)1 must be an equality. Lemma 3.2.34 tells

us that this last condition is equivalent to the condition that p does not divide
the order of the fundamental group of G′, thus proving the remaining part of
the statement (1). �

The following lemma is surely well-known.

Lemma 3.2.36. One has that p divides the connection index (i.e., the order of the
finite group given by the weight lattice modulo the root lattice) if and only if p divides
either the order of Z(G′) or the order of the fundamental group of G′.

Proof. Let us consider the split semisimple group G′ with maximal (split) torus T′

and root system Φ(G′,T′) = Φ(G,T). Recall from (128) the notation Λw for the
weight lattice. Let us consider the exact sequence

0 X∗(T′)/ spanZ Φ Λw/ spanZ Φ Λw/X
∗(T′) 0, (142)

where the term on the middle is the group whose order is called connection index,
while the term on the right is the fundamental group of G′. We see that p divides
the connection index if and only if it divides either the order of the fundamental
group of G′ or the order of the group X∗(T′)/ spanZ Φ.

It remains to relate the term on the left with Z(G′), but in [Mil17, Proposition
21.8] it is shown that there is a group isomorphism

X∗(Z(G′)) ∼= X∗(T′)/ spanZ Φ.

Now we are done because the order of the algebraic group Z(G′) is the same as the
order of the abstract group X∗(Z(G′)): indeed a finite diagonalizable group, such
as Z(G′), is isomorphic to copies of µn (see [Mil17, Proposition 12.3 and Theorem
12.9]), say

Z(G′) ∼= µn1
× · · · × µnm .

Thus, we obtain that the order of Z(G′) is n1 · · ·nm and that the group X∗(Z(G′))
has also order n1 · · ·nm, because

X∗(Z(G′)) ∼= Z/n1Z⊕ · · · ⊕ Z/n1Z. �

Corollary 3.2.37. Assume that F is an unramified extension of Qp. One has the
following facts.

(a) Assume that p divides neither the order of C◦ ∩T′ (equivalently, the order of
(C◦ ∩T′)(F)) nor the order of the fundamental group of G′. Then, there is a
decomposition I = (C◦)1 × I ′ and two maps

H1(I, k) H1
(
(C◦)1, k

)resI(C◦)1

pr∗(C◦)1
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define an isomorphism Shc
(
Z(E∗)1

c

) ∼= H1
(
(C◦)1, k

)
for all c ∈ C̃.

In particular, combining this with the description of Z(E∗)1 of Theorem 3.2.26,
we get that the composite map

Z(E∗)0 ⊗k H1
(
(C◦)1, k

)
Z(E∗)0 ⊗k H1(I, k) E1

idZ(E∗)0 ⊗k pr∗(C◦)1
mult.

defines an isomorphism of Z(E∗)0-modules Z(E∗)0⊗kH1
(
(C◦)1, k

) ∼= Z(E∗)1.

(b) The two conditions in (a) hold if p does not divide the connection index of
the root system (i.e., the order of the finite group given by the weight lattice
modulo the root lattice).

Proof. Let us prove the two parts of the corollary.

(a) Since p does not divide the order of C◦ ∩T′, from Lemma 3.2.33 we get that
I = (C◦)1 × I ′. Moreover, using both assumptions on p, from Lemma 3.2.35
we get that T 1/T 1

qΦ
= (C◦)1. Let c ∈ C̃, and recall from Proposition 3.2.25 that

we have an isomorphism

Shc
(
Z(E∗)1

c

)
H1
(
T 1/T 1

qΦ
, k
)

ξ

 T 1/T 1
qΦ

k

t ξ(t)

 ,

(143)

and hence an isomorphism

Shc
(
Z(E∗)1

c

) resI(C◦)1

−−−−−−→ H1
(
(C◦)1, k

)
. (144)

It remains to check that the projection map from I = (C◦)1 × I ′ to (C◦)1

defines an inverse

H1
(
(C◦)1, k

) pr∗(C◦)1

−−−−−→ Shc
(
Z(E∗)1

c

)
for the above isomorphism (144). In the proof of Proposition 3.2.25 we have
explicitly described the inverse map

H1
(
T 1/T 1

qΦ
, k
)
−→ Shc

(
Z(E∗)1

c

)
of the isomorphism (143) in the following way: it sends each ξ ∈ H1

(
T 1/T 1

qΦ
, k
)

to the following element of Shc
(
Z(E∗)1

c

)
:

ξI : I G G/[G,G] T 1/T 1
qΦ

k,
⊆ quot. σ ξ

where σ is a chosen splitting (recall from Lemma 3.2.22 that T 1/T 1
qΦ

is a direct

factor of T/T
qΦ
∼= G/[G,G]). Hence, identifying T 1/T 1

qΦ
with (C◦)1, we have

that the inverse map

H1
(
(C◦)1, k

)
−→ Shc

(
Z(E∗)1

c

)
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of the isomorphism (144) can be constructed by sending each ϑ ∈ H1
(
(C◦)1, k

)
to the following element of Shc

(
Z(E∗)1

c

)
:

ϑI : I G G/[G,G] T 1/T 1
qΦ

(C◦)1 k.
⊆ quot. σ ∼=

t← [t
ϑ

Therefore, it remains to check that ϑI = pr∗(C◦)1(ϑ): both maps coincide with

ϑ on (C◦)1, and so the only thing left to show is that the map ϑI is zero on I ′.
To this end, let us consider the Iwahori decomposition of I ′: it is easy to see
that Uα ⊆ [G,G] for all α ∈ Φ (this is done in detail in the proof of Lemma
3.2.19), and so we get that ϑI is zero on the “unipotent factors” of the Iwahori
decomposition of I ′. It now remains to check that ϑI is zero on (T ′)1, but this
is clear since (T ′)1 = T 1

qΦ
under our assumptions, by Lemma 3.2.34.

(b) Assuming that p does not divide the connection index, Lemma 3.2.36 gives
us that p divides neither the order of Z(G′) nor the order of the fundamental
group of G′. But C◦ ∩T′ ⊆ Z(G′), and so we also get that p does not divide
the order of C◦ ∩T′. �

Remark 3.2.38. Assume that F is an unramified extension of Qp. Let us show
that the assumptions in part (a) of the corollary are optimal, in the sense that the
restriction map

resI(C◦)1 : H1(I, k) −→ H1
(
(C◦)1, k

)
induces an isomorphism Sh1

(
Z(E∗)1

1

) ∼= H1
(
(C◦)1, k

)
if and only if p divides neither

the order of C◦ ∩T′ nor the order of the fundamental group of G′.

Proof. One implication is part of the statement of the corollary, and hence it remains
to show that if the above restriction map induces an isomorphism, then the condition
on p holds. Recall from Theorem 3.2.26 that the restriction map

resIT 1 : H1(I, k) −→ H1
(
T 1, k

)
induces an isomorphism

resI
T 1 : Sh1

(
Z(E∗)1

1

)
−→ H1

(
T 1/(T

qΦ
)1, k

)
.

It is then easy to check that the following is a commutative diagram

Sh1

(
Z(E∗)1

1

)
H1
(
(C◦)1, k

)
,

H1
(
T 1/(T

qΦ
)1, k

)
resI(C◦)1

∼=

resI
T 1

∼=
nat

where nat is the map induced by the natural map (C◦)1 −→ T 1/(T
qΦ
)1. It follows

that nat is an isomorphism. Now, a homomorphism of pro-p groups is surjective if
and only if the map obtained by applying the functor H1(−, k) is injective (this is
shown in [NSW13, (1.6.14) Proposition] for k = Fp, and the general case follows
since H1(−, k) ∼= H1(−,Fp)⊗Fp k, as recalled in (31)). We conclude that the natural
map (C◦)1 −→ T 1/(T

qΦ
)1 is surjective, and by Lemma 3.2.35 (points (1) and (4))

this is equivalent to the claimed conditions on p. �

Corollary 3.2.39. Assume that F is an unramified extension of Qp. One has that
Z(E∗)1 is zero if and only if G is semisimple with fundamental group of order not
divisible by p.
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Proof. We know from Theorem 3.2.26 that Z(E∗)1 is isomorphic to

Z(E∗)0 ⊗k H1
(
T 1/T 1

qΦ
, k
)
.

It follows that Z(E∗)1 is zero if and only if H1
(
T 1/T 1

qΦ
, k
)

is 0, or, equivalently, if

and only if T 1/T 1
qΦ

is trivial (because for a non-trivial pro-p group P one has that

H1(P,Fp) is nonzero: if P is abelian, as in our case, this can be easily shown by
choosing a proper open normal subgroup, getting an abelian p-group as a quotient,
and in general one can proceed in the same way and use the fact that a p-group is
solvable).

• Assume that G is semisimple with fundamental group of order not divisible by p.
In this situation Lemma 3.2.35 tells us that T 1/T 1

qΦ
= (C◦)1 = 1.

• Now assume that T 1/T 1
qΦ

is trivial and let us prove that G is semisimple with

fundamental group of order not divisible by p. Since T 1 = T 1
qΦ
, a fortiori one has

T 1 = (C◦)1 · T 1
qΦ
, but then Lemma 3.2.35 gives us that T 1/T 1

qΦ
= (C◦)1, and so

(C◦)1 is trivial. This means that C◦ is trivial, but this condition is equivalent to
the condition that the reductive group G is semisimple (see [Mil17, Proposition
19.10]). Moreover, since we have already remarked that the equivalent conditions
in Lemma 3.2.35 hold under our assumption that T 1/T 1

qΦ
is trivial, we also have

that p does not divide the order of the fundamental group of G′ = G. �

3.2.k A remark about the ramified case

A part for the case p = 2, in our argument for the proof of Theorem 3.2.26 we have
only used the assumption that F is an unramified extension of Qp for the proof of
Lemma 3.2.10. In the following example, we point out that such lemma becomes
false for more general fields.

Example 3.2.40. Assume that G = SL2 (with the usual choices as in Section 1.5)
and that F satisfies the following properties: p ∈ M2, q = p and p 6= 2. In other
words we are assuming either that F is a proper totally ramified extension of Qp

with p 6= 2 or that it is the field of Laurent series Fp((X)) with p 6= 2. Let w ∈ W̃
with `(w) > 1. We show that there is an element γ0 ∈ H1(Iw, k) that is 0 on the
“unipotent factors” of the Iwahori decomposition of Iw and such that the element
Sh−1

w (γ0) ∈ E1 commutes (in the “graded-commutative” sense) with all the elements
of H1(I,X(1)).

Proof. Recall from Lemma 1.10.1 that since p 6= 2 we have an isomorphism

O/M× 1 + M

(1 + M)p(1 + M`(w)+1)
×O/M (Iw)Φ

(
c, t, b

) (
1 0

πn
−
w c 1

)
·
(
t 0
0 t−1

)
·
(

1 πn
+
w b

0 1

)
for suitable n−w , n

+
w ∈ Z>0 such that n−w + n+

w = `(w) + 1. It is easy to see that the
inverse of this isomorphism is explicitly given by

(Iw)Φ O/M× 1 + M

(1 + M)p(1 + M`(w)+1)
×O/M

(
1+πa πn

+
w b

πn
−
w c 1+πd

) (
c · (1 + πa)−1, 1 + πa, b · (1 + πa)−1

)
=
(
c, 1 + πa, b

)
.

(145)
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Let us consider the following group homomorphism:

1 + M M/M2

1 + x x.

It is immediate to see that (1 + M)p is sent to 0, and, since `(w) > 1, the same is
true for 1 + M`(w)+1. Hence we get a well defined group homomorphism

1 + M

(1 + M)p(1 + M`(w)+1)
M/M2

1 + x x.

Putting together (145), this isomorphism and the fact that O/M = Fp ⊆ k, we get
that the following is a well defined homomorphism of topological groups (i.e., an
element of H1(Iw, k)):

γ0 : Iw k(
1 + πa πn

+
wb

πn
−
wc 1 + πd

)
a ∈ O/M.

Since n−w + n+
w = `(w) + 1 > 2, looking at the equality det

(
1+πa πn

+
w b

πn
−
w c 1+πd

)
= 1, it is

immediate to see that

γ0

(
1 + πa πn

+
wb

πn
−
wc 1 + πd

)
= a = −d. (146)

Let ξ ∈ H1(I,X(1)). Let (γ0)w := Sh−1
w (γ0) ∈ H1(I,X(w)). As in the proof of

Lemma 3.2.10 we do the following computation:

[ξ, (γ0)w]gr = ξ · (γ0)w + (γ0)w · ξ
=
(
(ξ · τw) ^ (γ0)w

)
+
(
(γ0)w ^ (τw · ξ)

)
=
(
(ξ · τw) ^ (γ0)w

)
−
(
(τw · ξ) ^ (γ0)w

)
= [ξ, τw] ^ (γ0)w,

Therefore, to prove that (γ0)w commutes with ξ we can, equivalently, prove that
[ξ, τw] ^ (γ0)w = 0, or, since the Shapiro isomorphism commutes with the cup prod-
uct, prove that

(Claim) Shw([ξ, τw]) ^ γ0 = 0.

Recall from Subsection 1.10.b that H1(I,X(1)) is given by the elements

(c−, 0, c+)1 for c−, c+ ∈ HomFp (O/M, k) ∼= k.

From the formulas (62), it is easy to see that the commutator [ξ, τw] lies in the
subspace of H1(I,X(w)) given by

(c−, 0, c+)w for c−, c+ ∈ HomFp (O/M, k) ∼= k.
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Using the inverse of the isomorphism describing the Frattini quotient we wrote in
(145), we see that Shw([ξ, τw]) lies in the sub-k-vector space of H1(Iw, k) generated
by the following two elements:

γ− : Iw k(
1 + πa πn

+
wb

πn
−
w c 1 + πd

)
c ∈ O/M = Fp,

γ+ : Iw k(
1 + πa πn

+
wb

πn
−
w c 1 + πd

)
b ∈ O/M = Fp.

So looking at the claim above, we see that in order to show our statement it suffices
to prove that

(Claim) γ− ^ γ0 = 0 and γ+ ^ γ0 = 0.

As we are assuming that p ∈ M2, it follows that O/M2 is an Fp-vector space. We
can thus fix the following map (homomorphism of topological groups):

Σ: O O/M2 M/M2 O/M k.
quot.

a chosen section of the
inclusion of Fp-vector spaces

M/M2−→O/M2 π−1·(−)

By definition, it has the property that Σ(πx) = x for all x ∈ O. We define the
following continuous maps (we will see that they are not group homomorphisms,
since they will have non-zero differentials):

ψ− : I k(
1 + πa πn

+
wb

πn
−
wc 1 + πd

)
Σ(c),

ψ+ : I k(
1 + πa πn

+
wb

πn
−
wc 1 + πd

)
Σ(b).

We compute the differential of ψ− (i.e., dψ−(g, g′) := ψ−(g) + ψ−(g′)− ψ−(gg′) for
all g, g′ ∈ Iw):

dψ−

((
1 + πa πn

+
wb

πn
−
w c 1 + πd

)
,

(
1 + πa′ πn

+
wb′

πn
−
w c′ 1 + πd′

))

= Σ(c) + Σ(c′)− dψ−
(

∗ ∗
πn
−
w c · (1 + πa′) + (1 + πd) · πn

−
w c′ ∗

)
= Σ(c) + Σ(c′)− Σ

(
c+ c′ + π · (ca′ + dc′)

)
= ca′ + dc′.

Similarly one computes that

dψ+

((
1 + πa πn

+
wb

πn
−
wc 1 + πd

)
,

(
1 + πa′ πn

+
wb′

πn
−
wc′ 1 + πd′

))
= ab′ + bd′.
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Recalling (146) and the definitions of γ− and of γ+, we deduce the following equalities
for all g, g′ ∈ Iw:

dψ−(g, g′) = γ−(g)γ0(g′)− γ0(g)γ−(g′),

dψ+(g, g′) = γ0(g)γ+(g′)− γ+(g)γ0(g′).

This yields

γ− ^ γ0 − γ0 ^ γ− = 0,

γ0 ^ γ+ − γ+ ^ γ0 = 0.

Using anti-commutativity of the cup product and that p 6= 2, we deduce that both
γ− ^ γ0 and γ0 ^ γ+ are zero, thus concluding the proof of our claim. �

3.3 “Toric” subalgebras

In this section we want to extend the following known result on the pro-p Iwahori–
Hecke algebra to the Ext-algebra (with some assumptions on the field F).

Assumptions. We put ourselves in the general assumptions of Section 1.1, without
any restriction on G and F. Whenever we will use more restrictive assumptions,
these will be explicitly stated.

Let us denote by HT the pro-p Iwahori–Hecke algebra associated with the group
T (with respect to its unique pro-p Iwahori subgroup T 1), while we reserve the
notation H for the pro-p Iwahori–Hecke algebra associated with G. Using the braid
relations it is easy to see that one has a k-algebra isomorphism

k[T/T 1] HT

(t)
(for t ∈ T/T 1)

τt.

Now, we consider the submonoids of T :

T− :=
{
t ∈ T

∣∣ (valF ◦α)(t) > 0 for all α ∈ Φ−
}

(submodnoid of antidominant elements),

T+ :=
{
t ∈ T

∣∣ (valF ◦α)(t) > 0 for all α ∈ Φ+
}

(submodnoid of dominant elements).

Let HT± ⊆ HT be the subalgebra corresponding to the monoid algebra k[T±/T 1]
via the fixed isomorphism HT

∼= k[T/T 1]. It is easy to see that HT is a localization
of HT± and it is well-known that one has an injective k-algebra homomorphism

HT± H

τt
(for t ∈ T±/T 1)

τt.

(this is easy to see using the braid relations and additivity of the length on a closed
Weyl chamber, see also [Vig98, II.5. Proposition]).

In Proposition 3.3.4 and in Remark 3.3.7 we extend these results (in a suitable
sense) to Ext-algebra setting, under the assumption that F does not contain non-
trivial roots of 1.
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We start by introducing some notation and proving some preliminary lemmas
towards this result.

Let j ∈ Z>0. We define

T−j :=
{
t ∈ T

∣∣ (valF ◦α)(t) > j for all α ∈ Φ−
}
,

T+
j :=

{
t ∈ T

∣∣ (valF ◦α)(t) > j for all α ∈ Φ+
}
.

From the definitions, we have

T− = T−0 ,

T+ = T+
0 .

It is easy to see that T−j and T+
j are sub-semigroups of T (actually even more: we

have a well defined multiplication action of the monoid T± on T±j ).
Let us choose a split torus T over O such that its base change TF is isomorphic to

T. Such a torus can be obtained for example by choosing a splitting of T, or using
the more canonical construction of [BT84, 1.2.11], or by considering the identity
component of the Néron model of T (the last one is the approach used in [OS19,
§7.2.2]). In any case, T does not depend on the chosen construction, in the sense
that if T and T ′ are two split tori over O such that both base changes TF and T ′F
are isomorphic to T, then there is a unique isomorphism f of group schemes over O
making the following diagram commute:

T

T

T ′,

f

where the arrows on the left are the structural maps of the base change. The claim
can be proved as follows: it is clear that there is a unique isomorphism fF of group
schemes over F making the following diagram commute:

TF

T

T ′F ,

fF

but then we see that there exists a unique isomorphism f : T −→ T ′ whose base
change to F is fF: this is immediate by choosing splittings of T and of T ′, and by
remarking that a homomorphism over O or over F is given by a matrix with integer
coefficients.

For all j ∈ Z>0, we define

T j+1 = ker
(
T (O)

reduction−−−−−−→ T
(
O/Mj+1

))
⊆ T (F) = T.

Lemma 3.3.1. Let j ∈ Z>0. One has that, for all t ∈ T−j ∪ T
+
j , the map

It
∏
α∈Φ−

U(α,gt(α)) × T 1 ×
∏
α∈Φ+

U(α,gt(α)) T 1 T 1/T j+1
Iwahori
decomp. proj. quot.

is a group homomorphism (and so a homomorphism of topological groups).
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Proof. Let us divide the proof into two parts: in the first part we will prove the
claim for t ∈ T−j , while in the second part we will use this result to prove the claim

for t ∈ T+
j .

• Let us prove the claim for t ∈ T−j . As in [OS19, §7.2.2], let us denote by Gx0

the Bruhat group scheme associated with the fixed hyperspecial vertex x0 corre-
sponding to the 0 point of the apartment, let us define Kx0

:= G◦x0
(O), i.e., the

parahoric subgroup associated with x0, and, for all m ∈ Z>1, let us further define

Kx0,m := ker
(
G◦x0

(O)
reduction−−−−−−→ G◦x0

(O/Mm)
)
.

We have the following explicit description of Kx0,m (see [OS19, Proposition 7.9]):
the map defined by multiplication induces a bijection∏

α∈Φ−

U(α,m) × Tm ×
∏
α∈Φ+

U(α,m) −→ Kx0,m. (147)

Since Kx0,m is normal in Kx0 by definition, it follows that It ∩ Kx0,m is normal
in It (we are implicitly using that It is contained in Kx0). For all α ∈ Φ−, the
factor in the Iwahori decomposition of It associated with α is U(α,gt(α)), where
gt(α) = max{1, (valF ◦α)(t) + 1} > j + 1 (see Lemma 1.3.2). For a subgroup H
of It, let us denote by H the image of H in the quotient group It/ (It ∩Kx0,j+1).
Choosing m := j + 1, from the last inequality we get that every element of the
quotient It/ (It ∩Kx0,j+1) can be represented as a product of an element in T 1

and an element in U+
t , where U+

t := Image
(∏

α∈Φ+ U(α,gt(α))

)
⊆ It. We see that

U+
t is a subgroup of It: indeed with notation as in (130), we have an injective map

induced by multiplication
U− × T × U −→ G,

but then we see that the inclusion U+
t ⊆ It ∩ U is actually an equality, because,

given an element u ∈ It∩U , we consider its Iwahori decomposition and we see that
it cannot have non-tirivial factors lying in U− or in T . Therefore, we have shown
that U+

t = It ∩ U , and in particular U+
t is a subgroup of It. Since furthermore

T 1 normalizes U+
t (by (1)), it follows that U+

t is normal in It/ (It ∩Kx0,j+1). We
have a natural group homomorphism

T 1/T j+1 It/ (It ∩Kx0,j+1)

U+
t

It

(It ∩Kx0,j+1) · U+
t

t t,

∼=

which is surjective by the description of the elements of It/ (It ∩Kx0,j+1) we have
just given, but which is also injective: indeed let us consider an element in x ∈ T 1

which is sent to the identity, i.e., such that x ∈ (It ∩Kx0,j+1) ·U+
t ⊆ Kx0,j+1 ·U+

t ;
we can write such element as x = u−yu+(u+)′ for some u− in the image of∏
α∈Φ− U(α,j+1), some y ∈ T j+1, some u+ in the image of

∏
α∈Φ+ U(α,j+1) and

some (u+)′ ∈ U+
t . But then using the Iwahori decomposition (of I) it follows that

x = y ∈ T j+1, thus concluding the proof of the injectivity of the above map.

Now we are done, because the composite map

It
It

(It ∩Kx0,j+1) · U+
t

T 1/T j+1
g 7→g

∼=
x← [x
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is exactly the map in the statement of the lemma (because we already know that
the first map is trivial on the “unipotent factors” of the Iwahori decomposition of
It), and it is obviously a group homomorphism.

• Let us prove the claim for t ∈ T+
j . Using the formula to compute the index gt′(α)

for t′ ∈ {t, t−1} and α ∈ Φ (Remark 3.1.3), and using the explicit formula to
compute the conjugation action of an element of T 1 on the “unipotent factors”
(formula (1)), it is easy to see that the rectangles in the following diagram are
commutative:

It
∏
α∈Φ−

U(α,1) × T 1 ×
∏
α∈Φ+

U(α,(valF ◦α)(t)) T 1 T 1/T j+1

It−1

∏
α∈Φ−

U(α,1+(valF ◦α)(t−1)) × T 1 ×
∏
α∈Φ+

U(α,0) T 1 T 1/T j+1.

Iwahori
decomp.

conjt−1∼=

proj.

conjt−1∼=

quot.

Iwahori
decomp. proj. quot.

Since t ∈ T+
j , it follows that t−1 ∈ T−j , and so we already know that the composite

of the bottom maps is a group homomorphism. Hence the composite of the maps
at the top is a group homomorphism, as we wanted to show. �

Corollary 3.3.2. Assume that F is a finite extension of Qp, let j be a positive
integer such that 1 +Mj+1 ⊆ (1 +M)p, and let t ∈ T−j ∪ T

+
j . One has that the map

Tt : It
∏
α∈Φ−

U(α,gt(α)) × T 1 ×
∏
α∈Φ+

U(α,gt(α)) T 1 T 1/(T 1)p
Iwahori
decomp. proj. quot.

is a group homomorphism (and hence a homomorphism of topological groups).

Proof. If we show that T j+1 ⊆ (T 1)p, then we get the desired result by composing the
group homomorphism of Lemma 3.3.1 with the natural map T 1/T j+1 −→ T 1/(T 1)p.
We fix an O-isomorphism between T and Gn

m (for some n ∈ Z>0). By definition we
have that

T j+1 = ker
(
T (O)

reduction−−−−−−→ T
(
O/Mj+1

))
.

Using our O-isomorphism, we see that the condition 1 + Mj+1 ⊆ (1 + M)p tells us
that T j+1 ⊆ (T 1)p. �

Lemma 3.3.3. Assume that F is a finite extension of Qp without non-trivial p-th
roots (in particular p 6= 2), let j be a positive integer such that 1+Mj+1 ⊆ (1+M)p,
and let t ∈ T−j ∪ T

+
j . One has that the map

T ∨t : H1(T 1, k) HomFp
(
T 1/(T 1)p, k

)
Homtop. gps. (It, k) H1(It, k)

β β ◦ Tt

∼= ∼=

(which is well defined by Corollary 3.3.2) can be extended in a unique way to a
homomorphism of k-algebras (with respect to the cup product)

T ∨t : H∗(T 1, k) −→ H∗(It, k).
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Proof. Since F is a finite extension of Qp, it follows that 1+M is topologically finitely
generated (see for example [FV02, Chapter I, (6.5), Corollary, part (1)]). Since F
has no non-trivial p-th roots, it follows that 1 + M is torsion-free. Hence, 1 + M
is a uniform pro-p group (see the definition given in Section 1.8). Lazard Theorem
on uniform pro-p groups (Theorem 1.8.1) then yields that the cohomology algebra
of T 1 (with respect to the cup product) can be identified with the exterior algebra
generated by the first cohomology group:

H∗(T 1, k) ∼=
∧∗
k

(
HomFp

(
T 1/(T 1)p, k

))
.

On the other hand, even if the pro-p group It is not necessarily uniform, we still
we still have a natural homomorphism of k-algebras from the tensor algebra to the
cohomology algebra (since p 6= 2):∧∗

k

(
H1(It, k)

)
−→ H∗(It, k).

We can consider the homomorphism of k-algebras
∧∗
k(T ∨t ) functorially induced by

T ∨t on the tensor algebras, getting a composite homomorphism

H∗(T 1, k)
∧∗
k

(
HomFp

(
T 1/(T 1)p, k

)) ∧∗
k

(
H1(It, k)

)
H∗(It, k).

∼=
∧∗
k(T ∨t )

This is the required homomorphism of k-algebras extending the original map T ∨t .
Its explicit description is

H∗(T 1, k) H∗(It, k)

β1 ^ · · · ^ βn
(for βi ∈ H1(T 1, k) for all i ∈ {1, . . . , n})

(
β1 ◦ prIt

T 1

)
^ · · · ^

(
βn ◦ prIt

T 1

)
.

Uniqueness is clear because any homomorphism of k-algebras extending T ∨t must
act in this way on a cup product. �

Let us denote by E∗T the pro-p Iwahori–Hecke algebra associated with the group
T (with respect to the unique pro-p Iwahori subgroup T 1). We have a “Bruhat”
decomposition

E∗T =
⊕
i∈Z>0

⊕
t∈T/T 1

H i(T 1,XT (t)), (148)

where XT (t) := indT
1tT 1

T 1 (k) ∼= k. For the 0th graded piece we have the identification
E0
T
∼= k[T/T 1] (length function is constantly 0) and we will simply write t in place

of τt (this is useful in order to distinguish it from τt ∈ E0). Using again that the
length function is constantly 0, the multiplicative structure can be easily described
in the following way: let t, t′ ∈ T/T 1, let β ∈ H i(T 1, k), let β′ ∈ H i′(T 1, k) and let
us denote

(β)t := Sh−1
t (β) ∈ H i(T 1,XT (t)) ⊆ E∗T ,

(β′)t′ := Sh−1
t (β′) ∈ H i′(T 1,XT (t′)) ⊆ E∗T .

Then the formula relating the (opposite of the) Yoneda product with the cup prod-
uct (Corollary 1.9.3), combined with the explicit description of the action of the
multiplication by elements of degree 0 (Corollary 1.9.5), gives us the following:

(β)t · t′ = t′ · (β)t = (β)tt′ ,

(β)t · (β′)t′ =
(
(β)t · t′

)
^
(
t · (β′)t′

)
= (β)tt′ ^ (β′)tt′

= (β ^ β′)tt′ ,

(149)
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and so this describes multiplication in E∗T . In particular, E∗T is a graded-commutative
k-algebra.

Proposition 3.3.4. Assume that F is a finite extension of Qp without non-trivial
p-th roots (in particular p 6= 2), and let j be a positive integer such that the inclusion
1+Mj+1 ⊆ (1+M)p holds. Let E∗T and XT (−) be defined as above, and let us further
consider the following subspace of E∗T :

E∗T±,j :=

( ⊕
t∈T±/T 1

H0(T 1,XT (t))

)
⊕
( ⊕
i∈Z>1

⊕
t∈T±j /T 1

H i(T 1,XT (t))

)

∼= k
[
T±/T 1

]
⊕
( ⊕
i∈Z>1

⊕
t∈T±j /T 1

H i(T 1, k)

)
.

(150)

One has that E∗T±,j is as sub-k-algebra of E∗T and that there is an injective homo-
morphism of graded k-algebras

TT±,j : E∗T±,j −→ E∗

defined in the following way:

• in degree 0 one uses the canonical identification H0(T 1,XT (t)) ∼= k ∼= H0(I,X(t))
for all t ∈ T±/T 1.

• for i ∈ Z>1 and for t ∈ T±j /T 1 one uses the map

H i(T 1,XT (t)) ∼= H i(T 1, k)
T ∨t−−→ H i(It, k) ∼= H i(I,X(t))

defined in Lemma 3.3.3.

Proof. It is obvious that TT±,j s a well-defined homomorphism of k-vector spaces.
It remains to check that E∗T±,j is a sub-k-algebra of E∗T , that TT±,j is injective and
that it preserves the product.

• It is easy to see that E∗T±,j is a sub-k-algebra of E∗T : indeed this follows from

the fact that T± is a submonoid of T , from the fact that one has a well-defined
multiplication action of T± on T±j , and from the explicit description of the mul-
tiplication in E∗T given in Formula (150).

• Let us prove injectivity. By construction TT±,j preserves the degree and the de-
composition with respect to the “Iwahori Weyl groups” T/T 1 on the left side and

W̃ on the right side. Moreover, in degree 0 injectivity is clear. It therefore suffices
to show that, for all t ∈ T±j , the map

T ∨t : H∗(T 1, k) H∗(It, k)

β1 ^ · · · ^ βn(
for βi ∈ H1(T 1, k)

for all i ∈ {1, . . . , n}

) (
β1 ◦ prIt

T 1

)
^ · · · ^

(
βn ◦ prIt

T 1

)
.

is injective. But it is easy to see that resIt
T 1 ◦T ∨t = idH∗(T 1,k), and so injectivity

follows.
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• Let us prove that TT±,j preserves the product between two elements of degree 0.
We are claiming that the map

k
[
T±/T 1

]
E0

t τt

preserves the product: this is true because, by using the length formula (10), one
sees that the lengths of two elements of T±/T 1 always add up.

• Let us prove that TT±,j respects the products between elements of degree 0
and elements of degree 1. In other words, let t ∈ T±/T 1, let t′ ∈ T±j /T

1, let

β ∈ H1(T 1, k), and let (β)t′ denote the image of β in H1(I,XT (t′)). We have to
prove that

(Claim)
TT±,j(t · (β)t′) = τt · TT±,j((β)t′),

TT±,j((β)t′ · t) = TT±,j((β)t′) · τt.

It is easy to see that

TT±,j(t · (β)t′) = TT±,j((β)tt′)

=
(
β ◦ pr

Itt′
T 1

)
tt′
.

Of course, since t and (β)t′ commute, we get the same result for the multiplication
on the right. So, what we have to prove are the following two equalities:

(Claim) τt ·
(
β ◦ pr

It′
T 1

)
t′

=
(
β ◦ pr

It′
T 1

)
t′
· τt =

(
β ◦ pr

Itt′
T 1

)
tt′
.

As before, the lengths of t and t′ add up and so we can apply the following formulas
to compute the product (see Corollary 1.9.5): for all γ ∈ H1(It′ , k) we have

(γ)t′ · τt =
(

res
It′
It′t

γ
)
t′t
,

τt · (γ)t′ =
(

res
tIt′ t

−1

Itt′
t∗γ
)
tt′
.

Therefore, setting γ := β ◦ pr
It′
T 1 , we get the following (with obvious notation for

inclusions and conjugations):(
β ◦ pr

It′
T 1

)
t′
· τt =

(
res

It′
It′t

(
β ◦ pr

It′
T 1

))
t′t

=
(
β ◦ pr

It′
T 1 ◦ incl

It′
It′t

)
t′t

=
(
β ◦ pr

It′
T 1 ◦ incl

It′
Itt′

)
tt′
,

τt ·
(
β ◦ pr

It′
T 1

)
t′

=
(

res
tIt′ t

−1

Itt′
t∗
(
β ◦ pr

It′
T 1

))
tt′

=
(
β ◦ pr

It′
T 1 ◦ conjt−1 ◦ incl

tIt′ t
−1

Itt′

)
tt′
.

It is easy to see that the maps β ◦ pr
It′
T 1 ◦ incl

It′
Itt′

and β ◦ pr
It′
T 1 ◦ conjt−1 ◦ incl

tIt′ t
−1

Itt′
are both trivial on the “unipotent factors” of the Iwahori decomposition of Itt′ and

that they both coincide with β on T 1. Therefore both maps are equal to β ◦pr
Itt′
T 1 ,

thus proving our claim that

τt ·
(
β ◦ pr

It′
T 1

)
t′

=
(
β ◦ pr

It′
T 1

)
t′
· τt =

(
β ◦ pr

Itt′
T 1

)
tt′
,

and with it that TT±,j respects the products between elements of degree 0 and
elements of degree 1.
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• Let us prove that TT±,j respects the products between elements of degree 0 and

elements of degree i for i ∈ Z>1, by reducing to the case i = 1. Let v, w ∈ W̃ such
that the lengths add up. Furthermore let γw,1, . . . γw,i ∈ H1(I,X(w)). We claim
that

τv · (γw,1 ^ · · · ^ γw,i) = (τv · γw,1) ^ · · · ^ (τv · γw,i), (151)

(γw,1 ^ · · · ^ γw,i) · τv = (γw,1 · τv) ^ · · · ^ (γw,i · τv). (152)

This formula can be proved as follows: both sides of the first equation (respectively,
the second equation) are elements of H i(I,X(vw)), and so it remains to check that
applying the Shapiro isomorphism to both sides we get an equality, and this can be
proved by using the formulas of Corollary 1.9.5 (which compute the (opposite of
the) Yoneda product in terms of restrictions and conjugations) and by remarking
that the Shapiro isomorphism, restrictions and conjugations commute with the
cup product.

Now let t ∈ T±/T 1, let t′ ∈ T±j /T
1, let β ∈ H i(T 1, k), and as usual let (β)t′

denote the image of β in H i(I,XT (t′)). Again, we have to show that

(Claim)
TT±,j(t · (β)t′) = τt · TT±,j((β)t′),

TT±,j((β)t′ · t) = TT±,j((β)t′) · τt.

Now, β can be represented by a sum of cup products of elements having degree 1,
and so, by linearity, we can assume without loss of generality that β = β1^· · ·^βi.
Therefore, we find that

TT±,j
(
t · (β)t′

)
= TT±,j

(
t · (β1 ^ · · · ^ βi)t′

)
= TT±,j

(
(β1 ^ · · · ^ βi)tt′

)
= TT±,j

(
(β1)tt′ ^ · · · ^ (βi)tt′

)
= TT±,j

(
(β1)tt′

)
^ · · · ^ TT±,j

(
(βi)tt′

)
(by def. of TT±,j)

=
(
τt · TT±,j((β1)t′)

)
^ · · · ^

(
τt · TT±,j((βi)t′)

)
(already proved)

= τt ·
(
TT±,j((β1)t′) ^ · · · ^ TT±,j((βi)t′)

)
(by (151))

= τt · TT±,j
(
(β1)t′ ^ · · · ^ (βi)t′

)
(by def. of TT±,j)

= τt · TT±,j(β).

The proof of the other formula we had to check is completely analogous.

• Now we can prove that TT±,j respects all products. We have already checked
products involving elements of degree 0, so it suffices to check the following: for
all t, t′ ∈ T±j , for all i, i′ ∈ Z>1, for all β ∈ H i(I,XT (t)), for all β′ ∈ H i′(I,XT (t′))
one has:

(Claim) TT±,j(β · β′) = TT±,j(β) · TT±,j(β′).

On the left hand side we can of course use the formula relating the (opposite
of the) Yoneda product and the cup product (Corollary 1.9.3), but also on the
right hand side, since TT±,j(β) ∈ H i(I,XT (t)), TT±,j(β

′) ∈ H i′(I,XT (t′)) and
`(tt′) = `(t) + `(t′) as usual. So our claim becomes

(Claim) TT±,j
(
(β · t′) ^ (t · β′)

)
=
(
TT±,j(β) · τt′

)
^
(
τt · TT±,j(β′)

)
.

We already know that TT±,j preserves the product when one of the two factors
has degree 0. Therefore, it suffices to check that the map

TT±,j : H∗(T 1,XT (tt′)) −→ H∗(I,X(tt′))
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preserves the cup product. This can be easily seen by applying the Shapiro iso-
morphism on both sides (as it preserves the cup product) and using the explicit
description of the map T ∨tt′ : H∗(T 1, k) −→ H∗(Itt′ , k). �

We complement the proposition with some remarks.

Remark 3.3.5. If F = Qp with p 6= 2, or more generally if F is a finite extension of
Qp with ramification index strictly smaller than p−1, then, using the logarithm and
the exponential, one sees that (1 + M)p = 1 + M2 and that there are no non-trivial
p-th roots. Thus, in such cases, we can apply the previous proposition with j = 1.

The following remarks highlights that, in the case G = SL2(Qp) with p 6= 2, 3,
the proposition yields an optimal result.

Remark 3.3.6. Let us assume that G = SL2(Qp) with p 6= 2, 3 (with the usual
choices as in Section 1.5). Also taking the last remark into account, the proposition
yields an injective homomorphism of graded k-algebras

E∗T±,1 −→ E∗,

where

E0
T±,1 =

⊕
t∈T±/T 1

H0(T 1,XT (t)) ∼= k
[
T±/T 1

]
,

E1
T±,1 =

⊕
t∈T±1 /T 1

H1(T 1,XT (t)),

EiT±,1 = 0 for all i ∈ Z>2.

We remark that the above homomorphism cannot be extended to a (not necessarily
injective) graded k-algebra homomorphism E∗T±,0 −→ E∗.

Proof. It is easy to check that, for all t ∈ T±1 /T
1, the injective homomorphism

E∗T±,1 −→ E∗ sends H1(T 1,XT (t)) to k · β0
t (with notation as in (56)). Since fur-

thermore H1(T 1,XT (t)) = t · H1(T 1,XT (1)), assuming by contradiction that the
homomorphism E∗T±,1 −→ E∗ can be extended to a homomorphism of graded k-

algebras E∗T±,0 −→ E∗, we see that there exists x ∈ E1 such that

τt · x = β0
t .

To simplify the computations, let us choose λ ∈ T̂ 0/T 1 with λ 6= 1, id, id−1 (there
exists such λ since p > 5) and we consider the equation

eλτt · x = eλβ
0
t . (153)

Looking at the explicit formulas (63) and (66) we see that for all w ∈ W̃ (of length
> 1 in the last line) we have:

eλτt · β−w ∈ spank

{
β−v , β

+
v

∣∣∣ v ∈ W̃} ,
eλτt · β+

w ∈ spank

{
β−v , β

+
v

∣∣∣ v ∈ W̃} ,
eλτt · β0

w ∈

{
eλβ

0
tw if `(tw) = `(t) + `(w),

0 if `(tw) < `(t) + `(w).

Therefore,

eλτt · x ∈ spank

{
β−v , β

+
v

∣∣∣ v ∈ W̃}⊕ spank

{
β0
v

∣∣∣ v ∈ W̃ with `(v) > `(t) + 1
}
,

contradicting (153). �
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Remark 3.3.7. Let us work under our general assumptions without the restrictions
on F assumed in the proposition. We remark that E∗T± is a localization of E∗T±,j (note

that E∗T±,j is still defined and still a subalgebra of E∗T±).

Proof. The case of E∗T− being completely analogous, let us work with E∗T+ . We can
choose t+0 ∈ T+/T 1 such that (valF ◦α)(t+0 ) > 1 for all α ∈ Φ+. We claim that the
inclusion

E∗T+,j −→ E∗T+

induces an isomorphism (
E∗T+,j

)
t+0
−→ E∗T+ ,

where on the left hand side the notation (−)t+0
means localization at the powers of

t+0 : first of all let us note that the localization does make sense, because in a graded-
commutative ring the left and right Ore conditions are always satisfied. Since t+0 is
invertible in the bigger ring E∗T+ , by the universal property of the localization, the
inclusion map E∗T+,j −→ E∗T+ defines a map

(
E∗T+,j

)
t+0

E∗T+

x

(t+0 )n
(t+0 )−n · x = x · (t+0 )−n.

This map is injective, again since t+0 is invertible in E∗T+ . It remains to show that it
is also surjective, i.e., with reference to the “Bruhat decomposition” (148), that for
all i ∈ Z>0, for all t ∈ T/T 1 and for all β ∈ H i(I,XT (t)) one has that β lies in the
image of our map. But recall from (149) that for n ∈ Z we have

(t+0 )n · β ∈ H i
(
I,XT ((t+0 )nt)

)
.

As (valF ◦α)(t+0 ) > 1 for all α ∈ Φ+, it follows that (t+0 )nt ∈ T+
j for n big enough,

thus finishing the proof of surjectivity of our map. �
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Chapter 4

The Ext-algebra and the tensor
algebra of E1 for SL2(Qp) with
p 6= 2, 3

In this chapter we will work with the algebra E∗ in the case G = SL2(Qp) with
p 6= 2, 3, and we will prove finite generation properties.

The starting point is that under the above assumptions the algebra E∗ is gener-
ated by E1, meaning more precisely that the multiplication map

M : T ∗E0E
1 −→ E∗

(where T ∗E0E
1 is the tensor algebra generated by the E0-bimodule E1) is surjective

(Lemma 4.1.1).
It then becomes interesting to compute the kernel of the above multiplication

map, to ask if it is finitely generated as a bilateral ideal and to ask whether it is
generated by its 2nd graded piece. The main result of this chapter (Theorem 4.8.1
and Remark 4.8.2) answers these questions: we show that ker(M) is indeed finitely
generated as a bilateral ideal and we compute explicitly a finite system of generators:
such system consists of elements supported only in degrees 2 and 3. In fact, we show
that ker(M) is not generated by its 2nd graded piece.

Another important result in this chapter is an explicit presentation of E∗ as a
k-algebra: we obtain it in Proposition 4.10.4, showing that E∗ is finitely presented
as a k-algebra.

We also give a counterexample in the case G = SL2(Q3): more precisely we show
that for this group the multiplication map M is not surjective (see Section 4.2).

4.1 E∗ is generated by E1

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5) and
furthermore we choose π = p.

In this section we will prove that the Ext-algebra E∗ is generated by its first
graded piece as a graded algebra. We start by setting up the following notation.

• Let us consider the tensor algebra T ∗E0E
1 generated by the E0-bimodule E1, i.e.,
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the graded k-algebra given by

T 0
E0E

1 := E0,

T iE0E
1 := E1 ⊗E0 · · · ⊗E0 E1︸ ︷︷ ︸

i times

for all i ∈ Z>1.

We have the multiplication map (which is a homomorphism of graded k-algebras)

M : T ∗E0E
1 E∗

E0 3 x x,

β1 ⊗ · · · ⊗ βi β1 · · ·βi.

• Let us denote by E∗〈1〉 the image of the above tensor algebra via the multiplication
map. In other terms,

E0
〈1〉 := E0,

Ei〈1〉 :=

{
sums of i-fold products

of elements of E1

}
⊆ Ei for i ∈ Z>1.

We want to prove that E∗ = E∗〈1〉. We will thus have to check that E3 ⊆ E3
〈1〉 and

that E2 ⊆ E2
〈1〉.

• We now compute a certain formula for a threefold product that we will use re-
peatedly: let β1, δ1 ∈ H1(I,X(1)), let w ∈ W̃ , and let γw ∈ H1(I,X(w)). Using
the relation between (the opposite of the) Yoneda product and the cup product
(Corollary 1.9.3), we obtain the following formula for the product β1 · γw · δ1:

β1 · γw · δ1 =
(
(β1 · τw) ^ γw

)
· δ1

=
(
(β1 · τw) ^ γw

)
^ (τw · δ1)

= (β1 · τw) ^ γw ^ (τw · δ1).

(154)

• We will use the notations (c−, c0, c+)w and (α−, α0, α+)w to describe respectively
elements of E1 and of E2 (see respectively Subsection 1.10.b and Subsection
1.10.e).

• We will also frquently use the formulas in Lemma 1.10.3.

Lemma 4.1.1. One has E3 = E3
〈1〉, i.e., the multiplication mapM3 : T 3

E0E
1 −→ E3

is surjective.

Proof. We split the proof into three parts.

• We first prove that H3(I,X(s0(s1s0)i)) ⊆ E3
〈1〉 for all i ∈ Z>0.

Let us choose nonzero elements c, e ∈ HomFp (O/M, k) and a nonzero element
d ∈ HomFp ((1 + M)/(1 + M)p, k). We have:

(c, 0, 0)1 · (0, d, 0)s0(s1s0)i · (e, 0, 0)1

=
(
(c, 0, 0)1 · τs0(s1s0)i

)
^ (0, d, 0)s0(s1s0)i ^

(
τs0(s1s0)i · (e, 0, 0)1

)
by (154)

= (c, 0, 0)s0(s1s0)i ^ (0, d, 0)s0(s1s0)i ^ (0, 0,−e)s0(s1s0)i

by (72) and (75).

(155)
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Since we know that H∗(I,X(s0(s1s0)i)) is an exterior algebra with respect to the
cup product, we have that the above cup product generates H3(I,X(s0(s1s0)i)),
and therefore we obtain the inclusion H3(I,X(s0(s1s0)i)) ⊆ E3

〈1〉.

• We now prove that H3(I,X(s1(s0s1)i)) ⊆ E3
〈1〉 for all i ∈ Z>0.

With notation as before, we have:

(0, 0, c)1 · (0, d, 0)s1(s0s1)i · (0, 0, e)1

=
(
(0, 0, c)1 · τs1(s0s1)i

)
^ (0, d, 0)s1(s0s1)i ^

(
τs1(s0s1)i · (0, 0, e)1

)
by (154)

= (0, 0, c)s1(s0s1)i ^ (0, d, 0)s1(s0s1)i ^ (−e, 0, 0)s1(s0s1)i

by (72) and (77).

(156)

• We finally use the previous two steps to prove that H3(I,X(w)) ⊆ E3
〈1〉 for all

w ∈ W̃ .

We have already proved that H3(I,X(w)) ⊆ E3
〈1〉 for w ∈ W̃ of the form s0(s1s0)i

or s1(s0s1)i (for some i ∈ Z>0). The result for w of the form ωs0(s1s0)i or
ωs1(s0s1)i (for some ω ∈ T 0/T 1 and some i ∈ Z>0) follows immediately, because
multiplication on the left by τω defines an isomorphism between H3(I,X(v)) and

H3(I,X(ωv)) for all v ∈ W̃ . Now it remains to show the result for w of even
length: do this end, let us consider the k-basis (φv)v∈W̃ of E3 dual to the Iwahori–

Matsumoto basis of E0, let us consider i ∈ Z>0 and ω ∈ T 0/T 1. Applying the
formula for the left action of E0 on E3 (see (89)), we find that

τs0 · φs−1
0 (s1s0)iω = φ(s1s0)iω + e1 · φs−1

0 (s1s0)iω.

Both the term on the left side and the second term on the right side lie in E3
〈1〉,

and hence also φ(s1s0)iω lies in E3
〈1〉. This, together with the completely analogous

proof for w of the form (s0s1)iω, concludes the proof for w of even length. �

Remark 4.1.2. For i ∈ Z>1 it is possible to write elements of H3(I,X((s0s1)i))
and H3(I,X((s1s0)i)) as threefold products as we did for the case of even length.
Although this is not needed for the above proof, we will need such computations
later on:

(c, 0, 0)1 · (0, d, 0)(s0s1)i · (0, 0, e)1

=
(
(c, 0, 0)1 · τ(s0s1)i

)
^ (0, d, 0)(s0s1)i ^

(
τ(s0s1)i · (0, 0, e)1

)
by (154)

= (c, 0, 0)(s0s1)i ^ (0, d, 0)(s0s1)i ^ (0, 0, e)(s0s1)i

by (72) and (76),

(0, 0, c)1 · (0, d, 0)(s1s0)i · (e, 0, 0)1

=
(
(0, 0, c)1 · τ(s1s0)i

)
^ (0, d, 0)(s1s0)i ^

(
τ(s1s0)i · (e, 0, 0)1

)
by (154)

= (0, 0, c)(s1s0)i ^ (0, d, 0)(s1s0)i ^ (e, 0, 0)(s1s0)i

by (73) and (74).

(157)

Lemma 4.1.3. One has E2 = E2
〈1〉, i.e., the multiplication mapM2 : T 2

E0E
1 −→ E2

is surjective.
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Proof. We split the proof into three parts.

• We first prove that H2(I,X((s1s0)i)) ⊆ E2
〈1〉 for i ∈ Z>1.

Let β(s1s0)i , γ(s1s0)i ∈ H1(I,X((s1s0)i)), let c−, c+ ∈ HomFp (O/M, k) and let

c0 ∈ HomFp ((1 + M)/(1 + M)p, k). We compute:

β(s1s0)i · (c−, 0, 0)1 = β(s1s0)i ^ (τ(s1s0)i · (c−, 0, 0)1)

= β(s1s0)i ^ (c−, 0, 0)(s1s0)i by (74),

(0, 0, c+)1 · γ(s1s0)i = ((0, 0, c+)1 · τ(s1s0)i) ^ γ(s1s0)i

= (0, 0, c+)(s1s0)i ^ γ(s1s0)i by (73).

(158)

By making suitable choices of β(s1s0)i and of γ(s1s0)i , we thus get that the following

elements lie in E2
〈1〉:

(0, c0, 0)(s1s0)i ^ (c−, 0, 0)(s1s0)i ,

(0, 0, c+)(s1s0)i ^ (c−, 0, 0)(s1s0)i ,

(0, 0, c+)(s1s0)i ^ (0, c0, 0)(s1s0)i .

As i > 1, we know that H∗(I,X((s1s0)i)) is an exterior algebra with respect to
the cup product: therefore, choosing nonzero elements c−, c0 and c+, we get that
the above three cup products generate H2(I,X((s1s0)i)), and we thus get that
H2(I,X((s1s0)i)) ⊆ E2

〈1〉.

• We now prove that H2(I,X(w) ⊆ E2
〈1〉 for w ∈ W̃ of the form w = (s0s1)i for

i ∈ Z>1 or of the form w = s0(s1s0)i for i ∈ Z>0 or of the form s1(s0s1)i for
i ∈ Z>0.

The proof is completely analogous to the above. The relevant equalities are the
following:

? If w = (s0s1)i for i ∈ Z>1:

β(s0s1)i · (0, 0, c+)1 = β(s0s1)i ^ (0, 0, c+)(s0s1)i by (76),

(c−, 0, 0)1 · γ(s0s1)i = (c−, 0, 0)(s0s1)i ^ γ(s0s1)i by (72).
(159)

? If w = s0(s1s0)i for i ∈ Z>0:

βs0(s1s0)i · (c−, 0, 0)1 = βs0(s1s0)i ^ (0, 0,−c−)s0(s1s0)i by (75),

(c−, 0, 0)1 · γs0(s1s0)i = (c−, 0, 0)s0(s1s0)i ^ γs0(s1s0)i by (72).
(160)

? If w = s1(s0s1)i for i ∈ Z>0:

βs1(s0s1)i · (0, 0, c+)1 = βs1(s0s1)i ^ (−c+, 0, 0)s1(s0s1)i by (77),

(0, 0, c+)1 · γs1(s0s1)i = (0, 0, c+)s1(s0s1)i ^ γs1(s0s1)i by (73).
(161)

• We finally use the previous two steps to prove that H2(I,X(w)) ⊆ E2
〈1〉 for all

w ∈ W̃ .

Multiplication on the left by τω defines an isomorphism between H2(I,X(v)) and

H2(I,X(ωv)) for all v ∈ W̃ . Therefore, from the four special cases that we have

already treated, it follows that H2(I,X(w)) ⊆ E2
〈1〉 for all w ∈ W̃ of strictly

170



positive length. It therefore remains to treat the case of length 0. Let ω ∈ T 0/T 1

and let α−, α+ ∈ O/M⊗Fp k; the formulas for the left action of E0 on E2 tell us
the following:

τs0 · (0, 0, α+)s−1
0 ω + (α+, 0, 0)ω ∈

⊕
v∈W̃

s.t. `(v) = 1

H2(I,X(v)),

τs1 · (α−, 0, 0)s−1
1 ω + (0, 0, α−)ω ∈

⊕
v∈W̃

s.t. `(v) = 1

H2(I,X(v)).
(162)

These equations, together with the fact that we have already proved the result for
w of strictly positive length, prove that H2(I,X(ω)) ⊆ E2

〈1〉. �

Corollary 4.1.4. One has E∗ = E∗〈1〉, i.e., the multiplication map

M : T ∗E0E
1 −→ E∗

is surjective.

Proof. This follows from the last two lemmas. �

4.2 Counterexample: E∗ is not generated by E1 in the
case G = SL2(Q3)

In this section we will work with G = SL2(Q3) and we will show that, contrary to
what happens for SL2(Qp) for p 6= 2, 3, the Ext-algebra E∗ is not generated by its
1st graded piece as a graded algebra.

We start with a very general lemma, surely well-known. The proof of the first
part was suggested to the author by Claudius Heyer.

Lemma 4.2.1. Let K be a pro-p group. One has the following facts.

(i) If K is p-adic analytic, then Hn(K, k) is a finite-dimensional k-vector space
for all n ∈ Z>0;

(ii) If K has torsion, then Hn(K, k) is nonzero for all n ∈ Z>0.

Proof. Let us prove the two statements.

(i) Without loss of generality, using (31), we may assume that k = Fp. We first
recall that since K is a p-adic analytic pro-p group, it has an open normal
subgroup K ′ that is a uniform pro-p group (see [DDSMS03, 8.34 Corollary]).
In particular, each cohomology group H i(K ′,Fp) is a finite-dimensional Fp-
vector space (see Theorem 1.8.1).

Let us look at the Hochschild–Serre spectral sequence (see [NSW13, (2.4.1)
Theorem]):

H i
(
K/K ′, Hj(K ′,Fp)

)
=⇒ H i+j(K,Fp).

Since for all i and j both K/K ′ and Hj(K ′,Fp) have finite cardinality, also
H i
(
K/K ′, Hj(K ′,Fp)

)
has finite cardinality as well. So we have a convergent

first quadrant spectral sequence whose entries (of the second page and hence
of all pages) are finite-dimensional Fp-vector spaces. Hence also H i+j(K,Fp)
is a finite-dimensional Fp-vector space for all i and j.
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(ii) The result being trivial for n = 0, we can work with n > 1. Let L be a pro-p
group. One has that the following conditions are equivalent:

? L has cohomological dimension (i.e., p-th cohomological dimension) smaller
or equal than n− 1,

? Hn(L,Fp) is nonzero,

? Hn(L′,Fp) is nonzero for all closed subgroups L′ of L.

(see [Ser02, Chapter I, Proposition 21 and Proposition 21']). In our case
we can choose a (necessarily closed) cyclic p-group K ′ inside K. It satisfies
Hn(K ′,Fp) = Fp (this is computed for example in [NSW13, (1.7.1) Proposi-
tion]), and so Hn(K,Fp) must be nonzero by the above equivalence, and hence
also Hn(K, k) (using (31)). �

Example 4.2.2. Let G = SL2(Q3) (with the usual choices as in Section 1.5). Then
the Ext-algebra E∗ is not generated by E1.

Proof. We divide the proofs into some steps.

• We remark that if `(w) > 1, then Iw is torsion-free.

Let us see which matrices in I have order 3. Since Q3 does not contain non-trivial
3-roots, if a matrix in SL2(Q3) has order p = 3, then the characteristic polynomial
is divisible by (i.e., is equal to) the 3-rd cyclotomic polynomial. So we are looking
for matrices of the following form:(

1 + 3a b
3c 1 + 3d

)
,

with

1 = det

(
1 + 3a b

3c 1 + 3d

)
= 1 + 3a+ 3d+ 32ad− 3bc,

−1 = tr

(
1 + 3a b

3c 1 + 3d

)
= 2 + 3a+ 3d.

Replacing 1+3a+3d in the first equation by its value given by the second equation,
we get in particular that

3 = 32ad− 3bc.

From this equation we see that bc /∈ M and so, recalling from Lemma 1.10.1

that Iw is either equal to
(

1+M O
M`(w)+1 1+M

)
or to

(
1+M M`(w)

M 1+M

)
(where matrices

are understood to have determinant equal to 1), we see that Iw cannot contain
elements of order 3, and hence that it cannot contain torsion elements.

• Now, let again w ∈ W̃ with `(w) > 1. Since Iw is an open subgroup of the 3-
dimensional analytic pro-p group G, it is a 3-dimensional analytic pro-p group as
well. As we have furthermore proved that Iw is torsion-free, Theorem 1.8.2 yields
that Iw is a Poincaré group of dimension 3. In particular, Hm(Iw, k) = 0 for all
m ∈ Z>4. Therefore, taking into account that the only elements of length zero are
1 and c−1 (which was defined in (21)), we get

Em = Hm(I,X(1))⊕Hm(I,X(c−1)) for all m ∈ Z>4.
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• Now, let us assume by contradiction that E∗ is generated by E1.

For the moment let x ∈ En with n ∈ Z>1. We can write it as x =
∑

j βj1 · · ·βjn
for suitable elements βji ∈ E1. Let us assume that n = n1n2 with n1 ∈ Z>1 and
n2 ∈ Z>1. We see that x can be written as a sum of products of elements in
En1 . Let us further assume that x ∈ Hn(I,X(1)) and that n1 > 4; then using
the decomposition En1 = Hn1(I,X(1)) ⊕ Hn1(I,X(c−1)) we see that x can be
written as x =

∑
j′ γj′1 · · · γj′n2 for suitable elements γj′i′ each of them either

lying in Hn1(I,X(1)) or lying in Hn1(I,X(c−1)). But putting together the fact
that Hm(I,X(c−1)) = τc−1 · Hm(I,X(1)) for all m ∈ Z>0, the fact that τc−1 is
central and the assumption that x ∈ Hn(I,X(1)), we see that without loss of
generality we may assume that each of the γj′i′ lies in Hn1(I,X(1)). This shows
that the image of the natural map

T •k
(
Hn1(I,X(1))

)
−→ E∗

contains Hn1n2(I,X(1)) for all n1 ∈ Z>4 and n2 ∈ Z>1.

Since the image of the above map is contained in H∗(I,X(1)) ∼= H∗(I, k), and
since the product is the cup product (see Corollary 1.9.3), it follows that, changing
notation, we can rephrase this by saying that the image of the natural homomor-
phism of k-algebras

T •k
(
Hn1(I, k)

)
−→ H∗(I, k)

contains Hn1n2(I, k) for all n1 ∈ Z>4 and n2 ∈ Z>1. Now, we fix n1 := 5 (any
other odd integer bigger then 4 would work). Then for all γ ∈ H5(I,X(1)) we
have that γ ^ γ = 0. But then the above homomorphism of k-algebras factors
through a homomorphism of k-algebras∧•

k

(
H5(I, k)

)
−→ H∗(I, k),

which, of course, has again the property that its image contains H5n2(I, k) for all
n2 ∈ Z>1. But H5(I, k) is a finite-dimensional k-vector space (Lemma 4.2.1 part
(i)) and so

∧•
k

(
H5(I, k)

)
is a finite-dimensional k-vector space as well, whereas⊕

n2∈Z>1
H5n2(I, k) is an infinite-dimensional k-vector space: indeed I has torsion

(for example, one can consider the matrix
(

1 −1
3 1−3

)
), and so each summand is

nonzero (Lemma 4.2.1 part (ii)). This contradicts the claim about the image of
the above map. �

4.3 The tensor algebra

Assumptions. In this section we put ourselves in the general assumptions of Section
1.1, without any restriction on G and F. We will assume that G = SL2 only when
talking about the automorphism Γ$.

We work with the tensor algebra

T ∗E0E
1

generated by the E0-bimodule E1. We have the multiplication map (which is a
homomorphism of graded k-algebras)

M : T ∗E0E
1 E∗

E0 3 x x,

β1 ⊗ · · · ⊗ βi β1 · · ·βi.
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In this section, we are going to give definitions of an involutive anti-automorphism
J on T ∗E0E

1 (compatible with the involutive anti-automorphism J on E∗) and, if
G = SL2, of an involutive automorphism Γ$ on T ∗E0E

1 (compatible with the invo-
lutive automorphism Γ$ on E∗). We begin with the second one.

If G = SL2 (with the usual choices as in Section 1.5), it is easy to see that we
have an involutive automorphism induced by Γ$ : E∗ −→ E∗, which we will denote
again by Γ$, defined as follows:

Γ$ : T ∗E0E
1 T ∗E0E

1

E0 3 x Γ$(x),

β1 ⊗ · · · ⊗ βi Γ$(β1)⊗ · · · ⊗ Γ$(βi).

It is immediate to check that this definition is compatible with the multiplication
map, in the sense that the following diagram is commutative:

T ∗E0E
1 E∗

T ∗E0E
1 E∗.

M

Γ$ Γ$

M

(163)

Let us go back to the case of a general G: we have the following involutive
anti-automorphism induced by J : E∗ −→ E∗, which we will denote again by J:

J : T ∗E0E
1 T ∗E0E

1

E0 3 x J(x),

β1 ⊗ · · · ⊗ βi (−1)bi/2cJ(βi)⊗ · · · ⊗ J(β1).

Proof that J is an involutive anti-automorphism on T ∗E0E
1. The map J is an invo-

lutive automorphism of graded k-vector spaces, and we have to show that it is
anti-commutative, i.e., that it satisfies the following equation, for i, j ∈ Z>0, for
β ∈ T iE0E

1 and for γ ∈ T j
E0E

1:

(Claim) J(β · γ) = (−1)ijJ(γ) · J(β).

We first check what happens if either i or j are equal to 0. The equation is satisfied
if both i and j are equal to 0, because then we are simply working with the anti-
involution on E0. On the other side, in the case where only one among i and j is equal
to 0, the claim basically follows from the analogous property for the anti-involution
defined on E0 and E1.

Now we shall treat the case i, j > 1. For this, without loss of generality we may
assume that β = β1⊗· · ·⊗βi for some β1, . . . , βi ∈ E1 and similarly γ = γ1⊗· · ·⊗γj .
We can now compute

J(β · γ) = J(β1 ⊗ · · · ⊗ βi ⊗ γ1 ⊗ · · · ⊗ γj)
= (−1)b(i+j)/2cJ(γj)⊗ · · · ⊗ J(γ1)⊗ J(βi)⊗ · · · ⊗ J(β1)

= (−1)b(i+j)/2c−bi/2c−bj/2cJ(γ)⊗ J(β).

To check our claim it remains to prove that the above coefficient is equal to (−1)ij .
We do this by distinguishing some cases:
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• if both i and j are even:

(−1)b(i+j)/2c−bi/2c−bj/2c = (−1)(i+j)/2−i/2−j/2 = 1 = (−1)ij ;

• if i is even and j is odd:

(−1)b(i+j)/2c−bi/2c−bj/2c = (−1)(i+j−1)/2−i/2−(j−1)/2 = 1 = (−1)ij ;

• if i is odd and j is even, then the result follows from the above, exchanging i and
j;

• if both i and j are odd:

(−1)b(i+j)/2c−bi/2c−bj/2c = (−1)(i+j)/2−(i−1)/2−(j−1)/2 = −1 = (−1)ij .

This concludes the proof that the equality J(β · γ) = (−1)ijJ(γ) · J(β) holds. �

Furthermore, J is compatible with the multiplication map, in the sense that the
following diagram is commutative:

T ∗E0E
1 E∗

T ∗E0E
1 E∗.

M

J J

M

(164)

Proof of the fact that the above diagram is commutative. In degree 0 and 1 there is
nothing to check, and so by induction we might assume that the claim is true in
degree i > 1 and check that it is true in degree i + 1. We may work with simple
tensors, i.e., let us consider β1, . . . , βi+1 ∈ E1 and let us compute

M
(
J(β1 ⊗ · · · ⊗ βi+1)

)
=M

(
(−1)b(i+1)/2cJ(βi+1)⊗ · · · ⊗ J(β1)

)
= (−1)b(i+1)/2cJ(βi+1) · · · J(β1)

= (−1)b(i+1)/2c(−1)−bi/2cJ(βi+1) · M
(
J(β1 ⊗ · · · ⊗ βi)

)
= (−1)b(i+1)/2c(−1)−bi/2cJ(βi+1) · J

(
M(β1 ⊗ · · · ⊗ βi)

)
= (−1)b(i+1)/2c(−1)−bi/2c(−1)iJ

(
M(β1 ⊗ · · · ⊗ βi) · βi+1

)
= (−1)b(i+1)/2c(−1)−bi/2c(−1)iJ

(
M(β1 ⊗ · · · ⊗ βi+1)

)
.

Distinguishing on the parity of i, one easily see that the coefficient in the last line
is always 1. �

4.4 An “algorithm” for the computation of kernels

In this section we will explain the strategy to compute the kernel of the multiplication
map

M : T ∗E0E
1 −→ E∗.

We work in a general abstract setting to simplify the notation.
Let A be an associative k-algebra with 1 (in our case A = E0); let M and N be

A-bimodules (in our case, at first, M = E1⊗E0E1 and N = E2) and let F : M −→ N
be a surjective homomorphism of A-bimodules (in our case F = M). To compute
the kernel of F we fix the following:
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• generators (ai)i∈I of A as a k-algebra (for a suitable index set I);

• generators (mj)j∈J of M as an A-bimodule (for a suitable index set J);

• a basis (nl)l∈L of N as a k-vector space (for a suitable index set L).

We fix a splitting R of F as a map of k-vector spaces:

M NF

R

(equivalently, for each l ∈ L we fix an element R(nl) in the non-empty set F−1(nl)).
Clearly, for all i ∈ I and all l ∈ L, one has

R(ainl)− aiR(nl) ∈ kerF ,
R(nlai)−R(nl)ai ∈ kerF .

Let M ′ be the sub-A-bimodule of M generated by the elements R(ainl) − aiR(nl)
and by the elements R(nlai)−R(nl)ai for i ∈ I and l ∈ L. We have that M ′ ⊆ kerF
and that the following maps are well defined:

M/M ′ N.F
m 7→F(m)

R
R(n)← [n

Of courseR is a splitting of F , but this time it is a splitting as a map of A-bimodules,
thanks to the definition of M ′. It follows that

(kerF)/M ′ = kerF =
〈
mj − (R ◦ φ)(mj)

∣∣∣ j ∈ J
〉
,

where the pointed braces denote the generated sub-A-bimodule. We conclude that
kerF is the sub-A-bimodule of M generated by the following elements:

• R(ainl)− aiR(nl) ∈ kerF , for i ∈ I and l ∈ L;

• R(nlai)−R(nl)ai ∈ kerF , for i ∈ I and l ∈ L;

• mj − (R ◦ φ)(mj), for j ∈ J.

4.5 The kernel in degree 2

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. With respect to Section 1.10 and Chapter 2, the
families of elements (β−w )w, (β0

w)w, (β+
w )w, (α−w)w, (α0

w)w, (α+
w)w, and (φw)w will be

chosen in a more restrictive way (see Subsection 4.5.a for the details).

In this section we will compute the kernel of the degree 2 multiplication map

M2 : T 2
E0(E1) −→ E2.

The idea is to roughly follow the “algorithm” outlined in the previous section.

176



4.5.a Preliminaries

Following [OS21, §4.2.3], we want to fix k-bases for E1 and E2 “in a compatible way”.
To this end, recall that in (56) we considered an element c ∈ HomFp (O/M, k)r{0},
and for all w ∈ W̃ we defined the following k-basis of H1(I,X(w)):

β−w := (c, 0, 0)w,

β+
w := (0, 0, c)w,

β0
w := (0, cι, 0)w if `(w) > 1,

where ι was the isomorphism induced by the logarithm defined in (55). On the other

side, in (80) we considered an element α ∈
(
O/M

)
r {0}, and for all w ∈ W̃ we

defined the following k-basis of H2(I,X(w)):

α−w := (α, 0, 0)w,

α+
w := (0, 0,α)w,

α0
w := (0, ι−1(α), 0)w if `(w) > 1.

We now choose c and α satisfying the following constraint:

c(α) = 1.

Recall that we chose an isomorphism η : H3(I, k) −→ k to define the duality (Theo-
rem 1.9.8). In [OS21, Lemma 4.5], it is shown that there exists a (necessarily unique)
choice of η such that the following property holds:

β−w ^ β0
w ^ β+

w = φw for all w ∈ W̃ such that `(w) > 1. (165)

We will always work with these fixed choices of c, α and η.
It is possible to show that the following relations hold (see [OS21, Lemma 5.3]):

α0
w = β+

w ^ β−w for all w ∈ W̃ such that `(w) > 1, (166)

α−w = β0
w ^ β+

w for all w ∈ W̃ such that `(w) > 1, (167)

α+
w = β−w ^ β0

w for all w ∈ W̃ such that `(w) > 1. (168)

4.5.b Generators of T 2
E0
E1 as an E0-bimodule

In this subsection we will compute a (quite simple) set of generators of T 2
E0
E1 as

an E0-bimodule. Recall that this is useful in order to implement the “algorithm” of
Section 4.4.

We recall that the following are generators of E1 as an E0-bimodule (see Lemma
1.10.3):

β−1 , β+
1 , β0

s0 , β0
s1 .

It follows that E1⊗E0 E1 is generated by the following elements as a left E0-module
(in particular also as an E0-bimodule):

β−1 ⊗ β
σ
w, β+

1 ⊗ β
σ
w, β0

s0 ⊗ β
σ
w, β0

s1 ⊗ β
σ
w

for w ∈ W̃ and σ ∈ {−, 0,+}
(with `(w) > 1 in the case σ = 0).

(169)
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Lemma 4.5.1. The following elements generate E1 ⊗E0 E1 as an E0-bimodule:

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s0 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 , β0

s1 ⊗ β
+
1 ,

β−1 ⊗ β
0
s0 , β+

1 ⊗ β
0
s0 , β0

s0 ⊗ β
0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β+

1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 , β0

s1 ⊗ β
0
s1 ,

β+
1 ⊗ β

−
(s1s0)i

for i ∈ Z>1,

β+
1 ⊗ β

−
s1(s0s1)i

for i ∈ Z>0,

β−1 ⊗ β
+
(s0s1)i

for i ∈ Z>1,

β−1 ⊗ β
+
s0(s1s0)i

for i ∈ Z>0.

Proof. We start from the generators in (169).
We recall from (65) that

β−w = β−1 · τw for w ∈ W̃ such that `(s1w) = `(w) + 1,

β+
w = β+

1 · τw for w ∈ W̃ such that `(s0w) = `(w) + 1,

β0
s1w = β0

s1 · τw for w ∈ W̃ such that `(s1w) = `(w) + 1,

β0
s0w = β0

s0 · τw for w ∈ W̃ such that `(s0w) = `(w) + 1.

Combining these two facts (and the behaviour of multiplication by τω for ω ∈ T 0/T 1,
see (60)), we get that the following elements generate E1⊗E0E1 as an E0-bimodule:

γ ⊗ β−1 for γ ∈
{
β−1 , β

+
1 , β

0
s0 , β

0
s1

}
,

γ ⊗ β+
1 for γ as above,

γ ⊗ β0
s0 for γ as above,

γ ⊗ β0
s1 for γ as above.

γ ⊗ β−
(s1s0)i

for γ as above and for i ∈ Z>1,

γ ⊗ β−
s1(s0s1)i

for γ as above and for i ∈ Z>1,

γ ⊗ β+
(s0s1)i

for γ as above and for i ∈ Z>1,

γ ⊗ β+
s0(s1s0)i

for γ as above and for i ∈ Z>1.

The first four of these lines consist exactly of the first four lines of the claimed
generators in the statement of the lemma. Now, let us look at the remaining four
lines: we certainly get the families of generators in the remaining four lines of the
statement of the lemma, and we have to argue that the remaining generators are
superfluous. Up to changing signs if necessary, using the formulas of Lemma 1.10.3,
we can rewrite the last four lines as:

(γ · τ(s1s0)i)⊗ β−1 for γ as above and for i ∈ Z>1,

(γ · τs1(s0s1)i)⊗ β+
1 for γ as above and for i ∈ Z>1,

(γ · τ(s0s1)i)⊗ β+
1 for γ as above and for i ∈ Z>1,

(γ · τs0(s1s0)i)⊗ β−1 for γ as above and for i ∈ Z>1.

From (65), one has

β−1 · τ(s1s0)i = 0, β−1 · τs1(s0s1)i = 0, β+
1 · τ(s0s1)i = 0, β+

1 · τs0(s1s0)i = 0.
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This shows that some of the remaining generators are superfluous, and now it re-
mains to study the cases where γ ∈ {β0

s0 , β
0
s1}.

Let us start with the following case:

(β0
s0 · τ(s1s0)i)⊗ β−1 = β0

s0(s1s0)i ⊗ β
−
1

= τ(s0s1)iβ
0
s0 ⊗ β

−
1 ,

where we used the formulas (63) and (65). We see that the element β0
s0 ⊗ β

−
1 is a

generator already appearing in the first lines, and so the generator (β0
s0 ·τ(s1s0)i)⊗β−1

is superfluous. The other three cases where lengths add up are similar.
Now it remains to consider the following elements, where we apply the formulas

(67) and (68) and then proceed with the computations as usual:

(β0
s1 · τ(s1s0)i)⊗ β−1 =

(
−e1 · β0

(s1s0)i + eid · β+
(s1s0)i

)
⊗ β−1

= e1 · τ(s1s0)i−1s1 · β
0
s0 ⊗ β

−
1 + eid · β+

1 ⊗ β
−
(s1s0)i

,

(β0
s1 · τs1(s0s1)i)⊗ β+

1 =
(
−e1 · β0

s1(s0s1)i + eid · β+
s1(s0s1)i

)
⊗ β+

1

= −e1 · τ(s1s0)i · β0
s1 ⊗ β

+
1 − eid · β+

1 ⊗ β
−
s1(s0s1)i

,

(β0
s0 · τ(s0s1)i)⊗ β+

1 =
(
−e1 · β0

(s0s1)i − eid−1 · β−
(s0s1)i

)
⊗ β+

1

= e1 · τ(s0s1)i−1s0 · β
0
s1 ⊗ β

+
1 − eid−1 · β−1 ⊗ β

+
(s0s1)i

,

(β0
s0 · τs0(s1s0)i)⊗ β−1 =

(
−e1 · β0

s0(s1s0)i − eid−1 · β−
s0(s1s0)i

)
⊗ β−1

= −e1 · τ(s0s1)i · β0
s0 ⊗ β

−
1 + eid−1 · β−1 ⊗ β

+
s0(s1s0)i

.

This shows that these last four families of generators are superfluous, thus concluding
the proof. �

Remark 4.5.2. As already used in the last computation in the proof of the lemma,
the last four families of generators can also be rewritten in the following form:

β+
1 ⊗ β

−
(s1s0)i

= β+
(s1s0)i

⊗ β−1 for i ∈ Z>1,

β+
1 ⊗ β

−
s1(s0s1)i

= −β+
s1(s0s1)i

⊗ β+
1 for i ∈ Z>0,

β−1 ⊗ β
+
(s0s1)i

= β−
(s0s1)i

⊗ β+
1 for i ∈ Z>1,

β−1 ⊗ β
+
s0(s1s0)i

= −β−
s0(s1s0)i

⊗ β−1 for i ∈ Z>0.

This will be used multiple times in later computations.

4.5.c A section of the multiplication map in degree 2

In Lemma 4.1.3 we have proved that the multiplication map M2 : T 2
E0E

1 −→ E2

is surjective. The proof was very explicit, and so looking at the details of such
computations it is immediate to construct a section of M2, as a map of k-vector
spaces.

We spell out a couple of details: in (158) we have seen that

β0
(s1s0)i · β

−
1 = β0

(s1s0)i ^ β−(s1s0)i
.

Using (168), we see that
β0

(s1s0)i · β
−
1 = −α+

(s1s0)i
.
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In the same way, using all the computations in Lemma 4.1.3 (namely, using (158),
(159), (160), (161)) one finds an explicit element in the preimage via M2 of each
of the elements α−w , α0

w, α+
w for w of the following forms: w = (s1s0)i with i ∈ Z>1,

or w = (s0s1)i with i ∈ Z>1, or w = s0(s1s0)i with i ∈ Z>0, or w = s1(s0s1)i with
i ∈ Z>0. Finally, using (162), one also finds an explicit element in the preimage via
M2 of each of the elements α−1 and α+

1 .
All in all, it is easy to see that the following is a section of M2, as a map of

k-vector spaces.

R2 : E2 T 2
E0E

1 = E1 ⊗E0 E1

τω · α−(s1s0)i
−τω · β+

1 ⊗ β0
(s1s0)i

for i ∈ Z>1, ω ∈ T 0/T 1,

τω · α0
(s1s0)i

τω · β+
1 ⊗ β

−
(s1s0)i

= τω · β+
(s1s0)i

⊗ β−1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · α+
(s1s0)i

−τω · β0
(s1s0)i

⊗ β−1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · α−(s0s1)i
τω · β0

(s0s1)i
⊗ β+

1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · α0
(s0s1)i

−τω · β−1 ⊗ β
+
(s0s1)i

= −τω · β−(s0s1)i
⊗ β+

1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · α+
(s0s1)i

τω · β−1 ⊗ β0
(s0s1)i

for i ∈ Z>1, ω ∈ T 0/T 1,

τω · α−s0(s1s0)i
−τω · β0

s0(s1s0)i
⊗ β−1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · α0
s0(s1s0)i

−τω · β−1 ⊗ β
+
s0(s1s0)i

= τω · β−s0(s1s0)i
⊗ β−1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · α+
s0(s1s0)i

τω · β−1 ⊗ β0
s0(s1s0)i

for i ∈ Z>0, ω ∈ T 0/T 1,

τω · α−s1(s0s1)i
−τω · β+

1 ⊗ β0
s1(s0s1)i

for i ∈ Z>0, ω ∈ T 0/T 1,

τω · α0
s1(s0s1)i

τω · β+
1 ⊗ β

−
s1(s0s1)i

= −τω · β+
s1(s0s1)i

⊗ β+
1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · α+
s1(s0s1)i

τω · β0
s1(s0s1)i

⊗ β+
1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · α−1 τω ·
(
R2

(
α−1 + τs0 · α+

s−1
0

)
− τs0 · R2

(
α+

s−1
0

))
for ω ∈ T 0/T 1,

τω · α+
1 τω ·

(
R2

(
α+

1 + τs1 · α−s−1
1

)
− τs1 · R2

(
α−
s−1
1

))
for ω ∈ T 0/T 1.

(170)
The claimed equalities have already been observed in Remark 4.5.2.

For later use, we compute the explicit expression of R2(α−1 ), making use of the
formulas (87) for the left action of E0 on E2:

R2(α−1 ) = R2

(
α−1 + τs0 · α+

s−1
0

)
− τs0 · R2

(
α+

s−1
0

)
= R2

(
−e1 · α+

s−1
0

− eid · α0
s−1
0

+ eid2 · α−
s−1
0

)
− τs0 · R2

(
α+

s−1
0

)
= R2

(
−e1 · α+

s0 + eid · α0
s0 + eid2 · α−s0

)
− τs0c−1 · R2

(
α+
s0

)
= −e1 · β−1 ⊗ β

0
s0 − eid · β−1 ⊗ β

+
s0 − eid2 · β0

s0 ⊗ β
−
1 − τs0c−1 · β−1 ⊗ β

0
s0

= −e1 · β−1 ⊗ β
0
s0 + eid · β−s0 ⊗ β

−
1 − eid2 · β0

s0 ⊗ β
−
1 − τs−1

0
· β−1 ⊗ β

0
s0 .

(171)

Lemma 4.5.3. The map R2 commutes with the automorphism Γ$. More precisely,

180



the following diagram is commutative:

E2 E1 ⊗E0 E1

E2 E1 ⊗E0 E1.

R2

Γ$ Γ$

R2

Proof. In the following we will make repeated use of the explicit formulas (26), (58)
and (82) for the action of Γ$ on E0, E1 and E2 respectively. We consider some of
the lines in the definition of R2 (170) and we apply Γ$ on both sides, getting the
following (where ω ∈ T 0/T 1 and where i ∈ Z>1 for the first three lines and i ∈ Z>0

for the following three lines):

Γ$

(
τω · α−

(s1s0)i

)
= τ

ω−1 · α
+

(s0s1)i
Γ$

(
−τω · β+

1 ⊗ β
0
(s1s0)i

)
= τ

ω−1 · β
−
1 ⊗ β

0
(s0s1)i

,

Γ$

(
τω · α0

(s1s0)i

)
= −τ

ω−1 · α0
(s0s1)i

Γ$

(
τω · β+

1 ⊗ β
−
(s1s0)i

)
= τ

ω−1 · β
−
1 ⊗ β

+

(s0s1)i
,

Γ$

(
τω · α+

(s1s0)i

)
= τ

ω−1 · α
−
(s0s1)i

Γ$

(
−τω · β0

(s1s0)i
⊗ β−

1

)
= τ

ω−1 · β0
(s0s1)i

⊗ β+
1 ,

Γ$

(
τω · α−

s1(s0s1)i

)
= τ

ω−1 · α
+

s0(s1s0)i
Γ$

(
−τω · β+

1 ⊗ β
0
s1(s0s1)i

)
= τ

ω−1 · β
−
1 ⊗ β

0
s0(s1s0)i

,

Γ$

(
τω · α0

s1(s0s1)i

)
= −τ

ω−1 · α0
s0(s1s0)i

Γ$

(
τω · β+

1 ⊗ β
−
s1(s0s1)i

)
= τ

ω−1 · β
−
1 ⊗ β

+

s0(s1s0)i
,

Γ$

(
τω · α+

s1(s0s1)i

)
= τ

ω−1 · α
−
s0(s1s0)i

Γ$

(
τω · β0

s1(s0s1)i
⊗ β+

1

)
= −τ

ω−1 · β0
s0(s1s0)i

⊗ β−
1 ,

Γ$

(
τω · α+

1

)
= τ

ω−1 · α
−
1 Γ$

(
τω ·

(
R2
(
α+
1 + τs1 · α

−
s
−1
1

)
− τs1 · R2

(
α−
s
−1
1

)))
.

?

?

?

?

?

?

?

By looking at the definition of R2 (170), we see that the left hand sides of the first
six lines are actually mapped to the respective right hand sides. Now it remains to
compute the right hand side of the last line:

Γ$

(
τω ·

(
R2

(
α+

1 + τs1 · α−s−1
1

)
− τs1 · R2

(
α−
s−1
1

)))
= τω−1 ·

(
Γ$

(
R2

(
α+

1 + τs1 · α−s−1
1

))
− τs0 · Γ$

(
R2

(
α−
s−1
1

)))
= τω−1 ·

(
R2

(
Γ$
(
α+

1 + τs1 · α−s−1
1

))
− τs0 · R2

(
Γ$
(
α−
s−1
1

)))
(since Γ$ ◦ R2 and R2 ◦ Γ$ coincide on

⊕
ϑ∈T0/T1 H2(I,X(ϑs1)))

= τω−1 ·
(
R2

(
α−1 + τs0 · α+

s−1
0

)
− τs0 · R2

(
α+

s−1
0

))
= R2

(
τω−1 · α−1

)
,

and hence also for the last one of the seven lines above it is true that the left hand
side gets mapped to the right hand side by R2. So these seven lines show that the
maps Γ$ ◦ R2 and R2 ◦ Γ$ coincide on “half” of the elements of the k-basis of E2

used in the definition of R2 (170).
To conclude the proof, we remark that, since Γ$ is an involution, if the maps

Γ$ ◦ R2 and R2 ◦ Γ$ coincide on an element x ∈ E2, then they coincide on Γ$(x).
Indeed, applying Γ$ to both sides of the equality (R2 ◦ Γ$)(x) = (Γ$ ◦ R2)(x), we
get

(Γ$ ◦ R2 ◦ Γ$)(x) = (Γ$ ◦ Γ$ ◦ R2)(x)

= R2(x)

= (R2 ◦ Γ$ ◦ Γ$)(x),

181



thus proving the claim. In this way the proof of the lemma is complete, because it
is easy to check that the remaining “half” of the elements in our k-basis of E2 can
be obtained by applying Γ$ to elements of the first “half”. �

Remark 4.5.4. We have already computed the explicit expression of R2(α−1 ). One
could compute R2(α+

1 ) in a similar way, but since now we know that R2 is Γ$-
invariant we can get such explicit expression in a quicker way:

R2(α+
1 ) = Γ$(R2(α+

1 ))

= Γ$

(
−e1 · β−1 ⊗ β

0
s0 + eid · β−s0 ⊗ β

−
1 − eid2 · β0

s0 ⊗ β
−
1 − τs−1

0
· β−1 ⊗ β

0
s0

)
= e1 · β+

1 ⊗ β
0
s1 + eid−1 · β+

s1 ⊗ β
+
1 + eid−2 · β0

s1 ⊗ β
+
1 + τs−1

1
· β+

1 ⊗ β
0
s1 .

(172)

Lemma 4.5.5. The map defined exactly as R2 but by putting multiplication by τω
(for ω ∈ T 0/T 1) on the right everywhere instead of on the left everywhere is actually
the same map as R2. In other words, the map R2 is a homomorphism of k

[
T 0/T 1

]
-

bimodules.

Proof. Let ω ∈ T 0/T 1 and let w ∈ W̃ ; from the formulas describing the structure of
E1 and E2 as k

[
T 0/T 1

]
-bimodules (see (59) and (60)), we get that, up to a certain

coefficient, the element τω ·β−w coincide either with β−w ·τω or with β−w ·τω−1 depending
on the length of w. And the same holds for β+

w , α−w or α+
w in place of β−w , and (if

the length of w is nonzero) also for β0
w and α0

w. Now, let us use the notation ωu for
u ∈ F×p as in (59) and (60) and let us apply such formulas to some of the lines in
the definition of R2 (170): namely, let us consider the following lines:

τωu · α
−
(s1s0)i

−τωu · β
+
1 ⊗ β

0
(s1s0)i

for i ∈ Z>1 and ω ∈ T0/T1,

τωu · α
0
(s1s0)i

τωu · β
+
1 ⊗ β

−
(s1s0)i

for i ∈ Z>1 and ω ∈ T0/T1,

τωu · α
+

(s1s0)i
−τωu · β

0
(s1s0)i

⊗ β−
1 for i ∈ Z>1 and ω ∈ T0/T1,

τωu · α
−
s0(s1s0)i

−τωu · β
0
s0(s1s0)i

⊗ β−
1 for i ∈ Z>0 and ω ∈ T0/T1,

τωu · α
0
s0(s1s0)i

−τωu · β
−
1 ⊗ β

+

s0(s1s0)i
for i ∈ Z>0 and ω ∈ T0/T1,

τωu · α
+

s0(s1s0)i
τωu · β

−
1 ⊗ β

0
s0(s1s0)i

for i ∈ Z>0 and ω ∈ T0/T1,

τωu · α
−
1 τωu ·

(
R2
(
α−
1 + τs0 · α

+

s
−1
0

)
− τs0 · R2

(
α+

s
−1
0

))
for ω ∈ T0/T1.

We now apply the formulas outlined above relating multiplication by τωu on the left
and on the right, obtaining the following:

u2α−
(s1s0)i

· τωu −u2β+
1 ⊗ β

0
(s1s0)i

· τωu ,

α0
(s1s0)i

· τωu u2β+
1 ⊗ u

−2β−
(s1s0)i

· τωu ,

u−2α+

(s1s0)i
· τωu −β0

(s1s0)i
⊗ u−2β−

1 · τωu ,

u2α−
s0(s1s0)i

· τω
u−1

−β0
s0(s1s0)i

⊗ (u−1)−2β−
1 · τωu−1

,

α0
s0(s1s0)i

· τω
u−1

−u−2β−
1 ⊗ u

2β+

s0(s1s0)i
· τω

u−1
,

u−2α+

s0(s1s0)i
· τω

u−1
u−2β−

1 ⊗ β
0
s0(s1s0)i

· τω
u−1

,

u2α−
1 · τωu R2

(
u2α−

1 · τωu + τs0 · (u
−1)−2α+

s
−1
0

· τωu

)
− τs0 · R2

(
(u−1)−2α+

s
−1
0

· τωu

)
.

From the first six lines, it is clear that R2 is a homomorphism of right k
[
T 0/T 1

]
-

modules when restricted to the submodule⊕
i∈Z>1

⊕
ϑ∈T 0/T 1

H2
(
I,X(ϑ(s1s0)i)

)
⊕
⊕
i∈Z>0

⊕
ϑ∈T 0/T 1

H2
(
I,X(ϑs0(s1s0)i)

)
.
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We can now conclude the computation in the last line using the fact that R2

is a homomorphism of right k
[
T 0/T 1

]
-modules when restricted to the subspace⊕

ϑ∈T 0/T 1 H2(I,X(ϑs0)), getting the following result:

u2R2

(
α−1 + τs0 · α+

s−1
0

)
· τωu − u2τs0 · R2

(
α+

s−1
0

)
· τωu .

So far, we have thus shown that R2(x ·τϑ) = R2(x) ·τϑ for all ϑ ∈ T 0/T 1 and at least
for some of the elements x in our fixed k-basis of E2. All the remaining elements
of our basis are of the form Γ$(x) for x such that the last equality hold, but then,
using the last lemma we get

R2 (Γ$(x) · τϑ) = R2 (Γ$(x · τϑ−1))

= Γ$ (R2(x · τϑ−1))

= Γ$ (R2(x) · τϑ−1)

= Γ$ (R2(x)) · τϑ
= R2 (Γ$(x)) · τϑ.

This shows that the equation R2(y · τϑ) = R2(y) · τϑ is satisfied for all ϑ ∈ T 0/T 1

and for y running through the remaining elements of our k-basis. �

Remark 4.5.6. With the last lemma at our disposal, we can simplify the definition
of R2 (170) in the following way:

R2 : E2 T 2
E0E

1 = E1 ⊗E0 E1

α−s1v −β+
1 ⊗ β0

s1v for v ∈ W̃ s.t. `(s1v) = `(v) + 1,

α0
s1v β+

1 ⊗ β−s1v for v ∈ W̃ s.t. `(s1v) = `(v) + 1,

α+
s1v β0

s1 ⊗ β
+
v for v ∈ W̃ s.t. `(s1v) = `(v) + 1,

α−s0w −β0
s0 ⊗ β

−
w for w ∈ W̃ s.t. `(s0w) = `(w) + 1,

α0
s0w −β−1 ⊗ β+

s0w for w ∈ W̃ s.t. `(s0w) = `(w) + 1,

α+
s0w β−1 ⊗ β0

s0w for w ∈ W̃ s.t. `(s0w) = `(w) + 1,

α−ω R2

(
α−ω + τs0 · α+

s−1
0 ω

)
− τs0 · R2

(
α+

s−1
0 ω

)
for ω ∈ T 0/T 1,

α+
ω R2

(
α+
ω + τs1 · α−s−1

1 ω

)
− τs1 · R2

(
α−
s−1
1 ω

)
for ω ∈ T 0/T 1.

Note that if we had defined R2 using multiplication on the right by τω instead of
multiplication on the left, we could have proved the above description immediately.

Lemma 4.5.7. Let us consider the following J-invariant k-subspace of E2:

F 1E2 :=
⊕
w∈W̃

s.t. `(w)>1

H2(I,X(w)).

One has that map R2

∣∣
F 1E2 commutes with the anti-involution J. More precisely, the

following diagram is commutative:

F 1E2 E1 ⊗E0 E1

F 1E2 E1 ⊗E0 E1.

R2

∣∣∣
F 1E2

J J
β⊗β′7→

−J(β′)⊗J(β)

R2

∣∣∣
F 1E2
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Proof. Before beginning the computations, we first recall from (49) that the involu-
tions J and Γ$ commute on E∗. With this property, it is easy to show that if the
maps J ◦ R2 and R2 ◦ J coincide at a certain α ∈ E2, then they also coincide at
Γ$(α): indeed, one has:

(J ◦ R2)(Γ$(α)) = (J ◦ Γ$ ◦ R2)(α) since R2 commutes with Γ$ (Lemma 4.5.3)

= (Γ$ ◦ J ◦ R2)(α)
since J and Γ$ commute on E1

and hence on E1 ⊗E0 E1

= (Γ$ ◦ R2 ◦ J)(α) by assumption

= (R2 ◦ Γ$ ◦ J)(α) since R2 commutes with Γ$ (Lemma 4.5.3)

= (R2 ◦ J)(Γ$(α)) since J and Γ$ commute on E2.

Now, let us consider the k-basis of F 1E2 used in the definition of R2 (170). By what
we have just remarked, we only need to show that J ◦ R2 and R2 ◦ J coincide at
all the elements in the left hand side of the following lines, since the other elements
appearing in such k-basis of F 1E2 can be obtained from these by applying Γ$.

τω · α−
(s1s0)i

−τω · β+
1 ⊗ β

0
(s1s0)i

for i ∈ Z>1 and ω ∈ T0/T1,

τω · α0
(s1s0)i

τω · β+
1 ⊗ β

−
(s1s0)i

for i ∈ Z>1 and ω ∈ T0/T1,

τω · α+

(s1s0)i
−τω · β0

(s1s0)i
⊗ β−

1 for i ∈ Z>1 and ω ∈ T0/T1,

τω · α−
s0(s1s0)i

−τω · β0
s0(s1s0)i

⊗ β−
1 for i ∈ Z>0 and ω ∈ T0/T1,

τω · α0
s0(s1s0)i

−τω · β−
1 ⊗ β

+

s0(s1s0)i
for i ∈ Z>0 and ω ∈ T0/T1,

τω · α+

s0(s1s0)i
τω · β−

1 ⊗ β
0
s0(s1s0)i

for i ∈ Z>0 and ω ∈ T0/T1.

R2

R2

R2

R2

R2

R2

We now apply the anti-involution J on both sides of the above lines, in order to
check whether the new left hand side is sent to the new right hand side by R2: for
the moment we only treat the case ω = 1. For this computation we use the formulas
for the action of J on E1 and E2 (see respectively (57) and (81)).

α−
(s0s1)i

β0
(s0s1)i

⊗ β+
1 ,

α0
(s0s1)i

−β−
(s0s1)i

⊗ β+
1 = −β−

1 ⊗ β
+

(s0s1)i
,

α+

(s0s1)i
β−
1 ⊗ β

0
(s0s1)i

,

−τc−1
· α+

s0(s1s0)i
−τc−1

· β−
1 ⊗ β

0
s0(s1s0)i

,

−τc−1
· α0

s0(s1s0)i
−τc−1

· β−
s0(s1s0)i

⊗ β−
1 = τc−1

· β−
1 ⊗ β

+

s0(s1s0)i
,

−τc−1
· α−

s0(s1s0)i
τc−1

· β0
s0(s1s0)i

⊗ β−
1 .

?

?

?

?

?

?

It is then immediate to see that the left hand side of the first six lines is sent to the
right hand side of the respective lines.

Now it remains to treat the general case where ω is not necessarily equal to 1: to
this end, it suffices to prove that if α ∈ E2 is such that J ◦R2 and R2 ◦ J coincide at
α, then they also coincide on τω ·α for all ω ∈ T 0/T 1. This can be shown as follows:

(J ◦ R2)(τω · α) = J (τω · R2(α)) by Lemma 4.5.5, or immediate

= J(R2(α)) · τω−1

= R2(J(α)) · τω−1 by our assumption

= R2 (J(α) · τω−1) by Lemma 4.5.5

= (R2 ◦ J) (τω · α) . �
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Remark 4.5.8. In view of the previous lemma, it is interesting to know how J ◦R2

and R2 ◦ J behave on the subspace

F0E
2 =

⊕
ω∈T 0/T 1

H2(I,X(ω)).

We claim the following.

(i) The following equalities are true:

(R2 ◦ J)(α−1 )− (J ◦ R2)(α−1 ) = β+
s0 ⊗ β

0
s0 + β0

s0 ⊗ β
−
s0

= −τs0 · β−1 ⊗ β
0
s0 + β0

s0 ⊗ β
−
1 · τs0 ,

−(R2 ◦ J)(α+
1 ) + (J ◦ R2)(α+

1 ) = β−s1 ⊗ β
0
s1 + β0

s1 ⊗ β
+
s1

= −τs1 · β+
1 ⊗ β

0
s1 + β0

s1 ⊗ β
+
1 · τs1 .

(ii) The two elements above are nonzero, and in particular the two composite maps
J ◦ R2 and R2 ◦ J do not coincide on F0E

2.

(iii) One could change the definition of R2 on F0E
2 only (let us call the new map

R′2) in such a way that:

? the map R′2 is again a section of the multiplication map (as a homomor-
phism of k-vector spaces); it commutes again with Γ$, as in Lemma 4.5.3;
it is again a homomorphism of k

[
T 0/T 1

]
-bimodules, as in Lemma 4.5.5;

? the map R′2 commutes with J, this time on the whole E2.

However, we will use the previous map R2 instead of R′2 in order not to make
formulas more complicate.

Proof. Let us prove the three parts of the remark.

(i) In the following we will use repeatedly the formulas of Subsection 1.10.c: in
particular, we will use some of the formulas for the action of E0 on E1 (namely,
(61), (63) and (65)) and the formulas for the action of the anti-involution J on
E1 (57) and on E2 (81). First of all, we compute

(R2 ◦ J)(α−1 ) = R2(α−1 )

= R2

(
α−1 + τs0 · α+

s−1
0

)
− τs0 · R2

(
α+

s−1
0

)
= R2

(
α−1 + τs0 · α+

s−1
0

)
− τs0 · β−1 ⊗ β

0
s−1
0

= R2

(
α−1 + τs0 · α+

s−1
0

)
+ β+

s0 ⊗ β
0
s−1
0
.

Now let us compute (J ◦ R2)(α−1 ): to this end, we recall from (171) that

(R2)(α−1 ) = −e1 · β−1 ⊗ β
0
s0 − eid · β−1 ⊗ β

+
s0

− eid2 · β0
s0 ⊗ β

−
1 − τs0c−1 · β−1 ⊗ β

0
s0 .

More precisely, the sum of the first three terms is equal to R2

(
α−1 + τs0 ·α+

s−1
0

)
,

while the last summand is equal to −τs0 · R2

(
α+

s−1
0

)
. We now turn to the
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computation of (J ◦ R2)(α−1 ):

(J ◦ R2)(α−1 )

= J
(
−e1β

−
1 ⊗ β

0
s0 − eidβ

−
1 ⊗ β

+
s0 − eid2β0

s0 ⊗ β
−
1 − τs−1

0
· β−1 ⊗ β

0
s0

)
= J

(
−β−1 eid2 ⊗ β0

s0 − β
−
1 eid3 ⊗ β+

s0 − β
0
s0eid−2 ⊗ β−1 + β+

s−1
0

⊗ β0
s0

)
= J

(
−β−1 ⊗ β

0
s0eid−2 − β−1 ⊗ β

+
s0eid−1 − β0

s0 ⊗ β
−
1 e1 + β+

s−1
0

⊗ β0
s0

)
= J

(
−β−1 ⊗ β

0
s0eid−2 − β−1 ⊗ β

+
s0eid−1 − β0

s0 ⊗ β
−
1 e1 + β+

s−1
0

⊗ β0
s0

)
= eid2J(β0

s0)⊗ J(β−1 ) + eidJ(β+
s0)⊗ J(β−1 )

+ e1J(β−1 )⊗ J(β0
s0)− J(β0

s0)⊗ J(β+

s−1
0

)

= −eid2β0
s−1
0
⊗ β−1 − eidβ

−
s−1
0

⊗ β−1 − e1β
−
1 ⊗ β

0
s−1
0
− β0

s−1
0
⊗ β−s0

= −eid2β0
s0 ⊗ β

−
1 + eidβ

−
s0 ⊗ β

−
1 − e1β

−
1 ⊗ β

0
s0 − β

0
s−1
0
⊗ β−s0

= −eid2β0
s0 ⊗ β

−
1 − eidβ

−
1 ⊗ β

+
s0 − e1β

−
1 ⊗ β

0
s0 − β

0
s−1
0
⊗ β−s0

= R2

(
α−1 + τs0 · α+

s−1
0

)
− β0

s−1
0
⊗ β−s0 .

These computations show the equality

(R2 ◦ J)(α−1 )− (J ◦ R2)(α−1 ) = β+
s0 ⊗ β

0
s0 + β0

s0 ⊗ β
−
s0 ,

which is the first part of the statement in i). Note that the alternative descrip-
tion as

−τs0 · β−1 ⊗ β
0
s0 + β0

s0 ⊗ β
−
1 · τs0

is easy to obtain with the usual formulas. Furthermore, the analogous descrip-
tion of

−(R2 ◦ J)(α+
1 ) + (J ◦ R2)(α+

1 )

can be easily obtained by applying Γ$ (or rather −Γ$) to the above equality
and recalling that Γ$ commutes with R2 (see Lemma 4.5.3) and with J (see
(49)).

(ii) Let us show that

(Claim) β+
s0 ⊗ β

0
s−1
0
6= −β0

s−1
0
⊗ β−s0 .

To this end, it suffices to show that

(Claim) β+
s0 · ζ · β

0
s−1
0
6= −β0

s−1
0
· ζ · β−s0 ,

since the following map is well defined (because ζ ∈ Z(E0)):

E1 ⊗E0 E1 E2

β ⊗ β′ β · ζ · β′.

In the following we will repeatedly use the formulas for the action of E0 on
E1 (in particular, (61), (63), (66) and (65)). To multiply pairs of elements of
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E1 we refer instead to the definition of R2 (170). So let us start by (partially)
computing β+

s0 · ζ · β
0
s−1
0

:

β+
s0 · ζ · β

0
s−1
0

= β+
s0 ·
(
β0
s0s1s

−1
0
− eid−1 · β−

s1s
−1
0

)
= −τs0 · β−1 · β

0
s0s1s

−1
0

+ eid3 · τs0 · β−1 · β
−
s1s
−1
0

= −τs0 · α+

s0s1s
−1
0

+ eid3 · τs0 · β−1 · τs1s−1
0
· β−1

= α−s1s0 + e1 · (. . . ) + 0.

Now let us compute −β0
s−1
0

· ζ · β−s0 :

−β0
s−1
0
· ζ · β−s0 = −β0

s−1
0
·
(
β−s1c−1

+ e1 · (. . . ) + eid−1 · (. . . ) + eid−2 · (. . . )
)

= β0
s−1
0
· τs1c−1 · β+

1 + e1 · (. . . ) + eid · (. . . ) + eid2 · (. . . )

= β0
s0s1 · β

+
1 + e1 · (. . . ) + eid · (. . . ) + eid2 · (. . . )

= α−s0s1 + e1 · (. . . ) + eid · (. . . ) + eid2 · (. . . ).
(173)

Now, since q = p > 5, we can choose λ0 ∈ Γ r {1, id, id2} and, if by contradic-
tion we had the equality β+

s0 · ζ · β
0
s−1
0

= −β0
s−1
0

· ζ · β−s0 , then, multiplying both

terms on the left by eλ0 , we would get the equality eλ0α
−
s1s0 = eλ0α

−
s0s1 , which

is false.

(iii) We define

R′2(x) := R2(x) for all x ∈ F 1E2,

R′2(τω · α−1 ) :=
1

2
τω ·

(
R2(α−1 ) + J(R2(α−1 ))

)
for all ω ∈ T 0/T 1,

R′2(τω · α+
1 ) :=

1

2
τω ·

(
R2(α+

1 ) + J(R2(α+
1 ))
)

for all ω ∈ T 0/T 1.

It is clear that R′2 is a well defined homomorphism of k-vector spaces. Using
that J commutes with the multiplication map (see (164)) and that both α−1 and
α+

1 are fixed by J, it is also easy to see that R′2 is a section of the multiplication
map M2. The fact that R′2 is a homomorphism of left k[T 0/T 1]-modules is
clear from the definition.

Regarding the structure of right k[T 0/T 1]-modules, since the decomposition
F0E

2 ⊕ F 1E2 respects the action of k[T 0/T 1], we only need to check what
happens on F0E

2. Recall from the proof of Lemma 4.5.5 that for all u ∈ F×p
one has

τωu · R2(α−1 ) = u2R2(α−1 ) · τωu .

We compute

R′2(τωu · α−1 ) :=
1

2
τωu ·

(
R2(α−1 ) + J(R2(α−1 ))

)
=

1

2

(
τωu · R2(α−1 ) + J

(
R2(α−1 ) · τω−1

u

))
=

1

2

(
u2R2(α−1 ) · τωu + J

(
u2τω−1

u
· R2(α−1 )

))
= u2R′2(α−1 ) · τωu .
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We have shown that

u2R′2(α−1 · τωu) = u2R′2(α−1 ) · τωu ,

and this, together with the analogous computation for α+
1 , shows that R′2

∣∣
F0E2

is a homomorphism of right k[T 0/T 1]-modules, as we wanted.

Using the definition of R′2 and that R′2
∣∣
F0E2 is a homomorphism of k[T 0/T 1]-

bimodules, with an easy computation one checks that R′2
∣∣
F0E2 (and hence R′2)

commutes with J. Also the fact that R′2
∣∣
F0E2 (and hence R′2) commutes with

Γ$ is easy to check, using the fact that Γ$ commutes with R2 (Lemma 4.5.3)
and with J (see (49)). �

4.5.d Computation of the kernel in degree 2

Since R2 is a (set-theoretic) section of the multiplication map M2, it follows that
for all x ∈ E2 one has

x−R2(M2(x)) ∈ ker(M2).

In particular, we can produce elements in the kernel using the generators of E2

as an E0-bimodule (computed in Lemma 4.5.1). If R2 were a section of M2 as a
map of E0-bimodules, in this way we would obtain a set of generators of ker(M2).
Unfortunately, we will see in Remark 4.5.14 that this is not the case, even though
“few” generators are missing.

Lemma 4.5.9. The sub-E0-bimodule of E1⊗E0 E1 generated by the elements of the
form

x−R2(M2(x)) ∈ ker(M2),

where x runs through the set of generators of E2 as an E0-bimodule computed in
Lemma 4.5.1, is the sub-E0-bimodule of E1 ⊗E0 E1 generated by the following ele-
ments.

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 ,

β+
1 ⊗ β

0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 ,

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 ,

β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 − e1 · β+

1 ⊗ β
−
s1 .

And hence, in particular, all the above elements lie in ker(M2).

Proof. The generators of E2 as an E0-bimodule computed in Lemma 4.5.1 are the
following:

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s0 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 , β0

s1 ⊗ β
+
1 ,

β−1 ⊗ β
0
s0 , β+

1 ⊗ β
0
s0 , β0

s0 ⊗ β
0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β+

1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 , β0

s1 ⊗ β
0
s1 ,

β+
1 ⊗ β

−
(s1s0)i

for i ∈ Z>1,

β+
1 ⊗ β

−
s1(s0s1)i

for i ∈ Z>0,

β−1 ⊗ β
+
(s0s1)i

for i ∈ Z>1,

β−1 ⊗ β
+
s0(s1s0)i

for i ∈ Z>0.
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From the definition of R2 (170), we immediately see that some of these lie in the
image of R2, and so we can discard them immediately, because if x is one of these
elements then x−R2(M2(x)) = 0. We are left with the following elements:

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , //////// β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 , ////////

//////// β+
1 ⊗ β

0
s0 , β0

s0 ⊗ β
0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , //////// β0

s0 ⊗ β
0
s1 , β0

s1 ⊗ β
0
s1 .

We treat these remaining elements.

• The elements β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β−1 ⊗ β

+
1 and β+

1 ⊗ β
+
1 are all in the kernel of

M2: indeed products are cup products, and then trivially β−1 · β
−
1 and β+

1 · β
+
1

are both zero; moreover, the fact that β+
1 ^ β−1 and β−1 ^ β+

1 are both zero can
be shown with a simple computation using Poincaré duality (see [OS21, Example
4.6]).

In particular, if x is one of the above four elements, then, trivially,

x−R2(M2(x)) = x.

• Now let us consider the four elements β0
s1⊗β

−
1 , β0

s0⊗β
+
1 , β+

1 ⊗β0
s0 and β−1 ⊗β0

s1 . To
compute the product, one can use the formula relating cup product and (opposite
of the) Yoneda product (Corollary 1.9.3). But then we see that all such products
are zero, because

τs0 · β+
1 = 0, β+

1 · τs0 = 0,

τs1 · β−1 = 0, β−1 · τs1 = 0.

So, again, if x is one of the above four elements, one has x−R2(M2(x)) = x.

• Now let us consider the two elements β0
s1 ⊗ β

0
s0 and β0

s1 ⊗ β
0
s0 . We compute the

first product using the formula relating cup product and (opposite of the) Yoneda
product (Corollary 1.9.3), and we see that it is zero (the other one can be computed
exactly in the same way, or alternatively one can use Γ$ or J):

β0
s1 · β

0
s0 = (β0

s1 · τs0) ^ (τs1 · β0
s0)

= β0
s1s0 ^ (−β0

s1s0)

= 0.

So, again, if x is one of the above two elements, one has x−R2(M2(x)) = x.

• It remains to consider the two elements β0
s0 ⊗ β

0
s0 and β0

s1 ⊗ β
0
s1 ; we start with the

first one and then we use Γ$ for the second one. At the end of the proof of [OS21,
Proposition 9.5] the following formula is computed (recall the definition of β0,?

s0

from (71)):
β0,?
s0 · β

0,?
s0 = −e1 · α0

s0

(the formula claimed and proved there is actually β0,?
s0 · β

0,?
s0 = e1 · α0,?

s0 , but in
passing also the above formula is shown, and in any case one can use (88)). Now,
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let us use the definition of β0,?
s0 (i.e., β0,?

s0 = −β0
s0−eid−1 ·β−1 ) to make this formula

more explicit:

−e1 · α0
s0 = β0,?

s0 · β
0,?
s0

=
(
− β0

s0 − eid−1 · β−1
)
·
(
− β0

s0 − eid−1 · β−1
)

= β0
s0 · β

0
s0 + eid−1 · β−1 · β

0
s0 + β0

s0 · eid−1 · β−1 + eid−1 · β−1 · eid−1 · β−1
= β0

s0 · β
0
s0 + eid−1 · β−1 · β

0
s0 + eid · β0

s0 · β
−
1 + eid−1 · eid−3 · β−1 · β

−
1

= β0
s0 · β

0
s0 + eid−1 · α+

s0 − eid · α−s0

(here we have used the behaviour of properties of the left and right action of the
idempotents (61); moreover, in the last step one can compute products explicitly,
but actually we have already computed them – see the definition of R2 (170)).
Now we can compute R2(β0

s0 · β
0
s0):

R2(β0
s0 · β

0
s0) = R2

(
−eid−1 · α+

s0 + eid · α−s0 − e1 · α0
s0

)
= −eid−1 · β−1 ⊗ β

0
s0 − eid · β0

s0 ⊗ β
−
1 + e1 · β−1 ⊗ β

+
s0 .

We conclude that the value of x−R2(M2(x)) for x = β0
s0 ⊗ β

0
s0 is

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 .

Now it remains to compute the value of x − R2(M2(x)) for x = β0
s1 ⊗ β

0
s1 , but

since Γ$(β0
s0) = −β0

s1 and since R2 is Γ$-invariant (Lemma 4.5.3), we see that
such value can be obtained by applying Γ$ to the last displayed equality. Hence
we get

β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 − e1 · β+

1 ⊗ β
−
s1 . �

Remark 4.5.10. Let us define K2 as the sub-E0-bimodule of E1⊗E0 E1 generated
by the following elements:

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 ,

β+
1 ⊗ β

0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 ,

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 ,

β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 − e1 · β+

1 ⊗ β
−
s1 ,

β+
s0 ⊗ β

0
s0 + β0

s0 ⊗ β
−
s0 = −τs0 · β−1 ⊗ β

0
s0 + β0

s0 ⊗ β
−
1 · τs0 ,

β−s1 ⊗ β
0
s1 + β0

s1 ⊗ β
+
s1 = −τs1 · β+

1 ⊗ β
0
s1 + β0

s1 ⊗ β
+
1 · τs1 .

The first twelve elements were obtained in Lemma 4.5.9 (in particular, they lie in
ker(R2)), while the last two elements were obtained in Remark 4.5.8 and they are
respectively equal to

(R2 ◦ J)(α−1 )− (J ◦ R2)(α−1 ),

−(R2 ◦ J)(α+
1 ) + (J ◦ R2)(α+

1 )

(in particular, they lie in ker(R2), too, since J and M2 commute by (164)).

We want to prove that K2 is actually the full ker(R2). Let us start with some
lemmas.
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Lemma 4.5.11. One has that K2 is Γ$-invariant and J-invariant.

Proof. It suffices to prove that the generators listed in the definition of K2 (Remark
4.5.10) are Γ$-invariant and J-invariant. It is immediate to see that applying Γ$ or
J to each of the first ten generators we get, up to a sign, again one of such generators.
The same is true for the last two generators (actually, regarding J one can avoid
the computation by recalling that these last two elements were, by definition, of the
form x− J(x) for suitable x ∈ E1⊗E0 E1). It remains to study the behaviour of Γ$
and J on the following two elements:

x0 := β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 ,

x1 := β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 − e1 · β+

1 ⊗ β
−
s1 .

In the proof of Lemma 4.5.9, the element x1 was obtained by applying Γ$ to x0: in
other words Γ$(x0) = x1 and hence Γ$(x1) = x0. Now let us compute J(x0), using
the formula (57) for the action of J on E1 and the formula (61) for the action of the
idempotents on E1:

J(x0) = J
(
β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0

)
= −β0

s−1
0
⊗ β0

s−1
0

+ β0
s−1
0
⊗ β−1 · eid + β−1 ⊗ β

0
s−1
0
· eid−1 − β−

s−1
0

⊗ β−1 · e1

= −β0
s0 ⊗ β

0
s0 + β0

s−1
0
⊗ (eid−1 · β−1 ) + β−1 ⊗ (eid · β0

s−1
0

)− β−
s−1
0

⊗ (eid−2 · β−1 )

= −β0
s0 ⊗ β

0
s0 + eid · β0

s−1
0
⊗ β−1 + eid−1 · β−1 ⊗ β

0
s−1
0
− e1 · β−s−1

0

⊗ β−1
= −β0

s0 ⊗ β
0
s0 − eid · β0

s0 ⊗ β
−
1 − eid−1 · β−1 ⊗ β

0
s0 + e1 · β−1 ⊗ β

+
s0

= −x0.

Now it remains to treat x1: we have already recalled that x1 = Γ$(x0). We can
use the fact that Γ$ and J commute (on E∗, as recalled in (49), and hence also on
T ∗E0E

1), getting that

J(x1) = J(Γ$(x0)) = Γ$(J(x0)) = Γ$(−x0) = −x1. �

Lemma 4.5.12. One has that the composite map

E2 E1 ⊗E0 E1 (E1 ⊗E0 E1)/K2
R2 quot. map

is a homomorphism of left E0-modules.

Proof. We will show that the following equalities are true:

(i) R2(τs0 ·ασs1v) ≡ τs0 ·R2(ασs1v) modulo K2 for v ∈ W̃ with `(s1v) = `(v)+1 and
for σ ∈ {−, 0,+} (we will see that in this case we actually have a true equality
in E1 ⊗E0 E1, with no need to consider the quotient modulo K2);

(ii) R2(τs1 · ασs1v) ≡ τs1 · R2(ασs1v) modulo K2 for v ∈ W̃ with `(s1v) = `(v) + 1
and for σ ∈ {−, 0,+};

(iii) R2(τsi · α+
1 ) ≡ τsi · R2(α+

1 ) modulo K2 for i ∈ {0, 1}.

Before checking these three properties, let us show that, if they hold, then the lemma
is proved. We saw in Lemma 4.5.3 that Γ$ commutes with R2 and in Lemma 4.5.11
that K2 is Γ$-invariant, and so by applying Γ$ to the equalities in (i), (ii) and (iii),
we get:
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(i') R2(τs1 · ασs0w) ≡ τs1 · R2(ασs0w) modulo K2 for w ∈ W̃ with `(s0w) = `(w) + 1
and for σ ∈ {−, 0,+} (as before, we already have equality in E1 ⊗E0 E1);

(ii') R2(τs0 · ασs0w) ≡ τs0 · R2(ασs0w) modulo K2 for w ∈ W̃ with `(s0w) = `(w) + 1
and for σ ∈ {−, 0,+};

(iii') R2(τsi · α−1 ) ≡ τsi · R2(α−1 ) modulo K2 for i ∈ {0, 1}.

Note that, for ω ∈ T 0/T 1, in (iii) and (iii’) we can consider the analogous congru-
ences with α+

ω (respectively, of α−ω ) in place of α+
1 (respectively, of α−1 ): the new

congruences are still true because R2 is a homomorphism of left k[T 0/T 1]-modules
(by Lemma 4.5.5, or just by definition of R2 (170)).

All in all, this shows that the congruence

R2(x · α) ≡ x · R2(α) mod K2

is true for α running through a k-basis of E2 and for x ∈ {τs1 , τs2}. But since R2

is a homomorphism of left k[T 0/T 1]-modules, the same congruence is also true for
x = τω for ω ∈ T 0/T 1. In other words the above congruence is true for α running
through a k-basis of E2 and for x running through a set of generators of E0 as a
k-algebra, and hence it follows that it must be true for all α ∈ E2 and all x ∈ E0,
completing the proof that R2 becomes a homomorphism of left E0-modules after
modding out K2.

Now, it remains to prove (i), (ii) and (iii). In the following we will use multiple
times the formulas in Subsection 1.10.c for E1 (in particular, (57), (61), (63), (65)
and (66)), and, less frequently, the formulas in Subsection 1.10.e for E2 (in particular,
(81), (85), (86) and (87)).

(i) We have to consider the following three lines in the new definition of R2 given
in Remark 4.5.6:

α−s1v −β+
1 ⊗ β0

s1v for v ∈ W̃ s.t. `(s1v) = `(v) + 1,

α0
s1v β+

1 ⊗ β−s1v for v ∈ W̃ s.t. `(s1v) = `(v) + 1,

α+
s1v β0

s1 ⊗ β
+
v for v ∈ W̃ s.t. `(s1v) = `(v) + 1.

(174)

We multiply both sides by τs0 and then we check that R2 actually sends the
resulting left hand side to the resulting right hand side (so in this case we will
see that it is not even necessary to mod out by K2):

0 0⊗ β0
s1v,

0 0⊗ β−s1v,

−α−s0s1v −β0
s0s1 ⊗ β

+
v = β0

s0 ⊗ β
−
s1v.

?

?

?

The first two lines need no further comment, and looking at the definition of
R2 in Remark 4.5.6, we also see that the left hand side of the third line is sent
by R2 to the right hand side of the third line.

(ii) We now consider again the lines (174) above and this time we multiply both
sides by τs1 and then we check that R2 actually sends the resulting left hand
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side to the resulting right hand side after considering the quotient modulo K2.
Since the relevant formulas are a bit different, we first treat the case `(v) > 1:

−α+
c−1v − e1 · α−s1v β−s1 ⊗ β

0
s1v,

−α0
c−1v − e1 · α0

s1v − 2eid−1 · α+
s1v −β−s1 ⊗ β

−
s1v,

−e1 · α+
s1v τs1 · β0

s1 ⊗ β
+
v .

?

?

?

(175)

We first treat the last line: we claim that

τs1 · β0
s1 ⊗ β

+
v = −e1 · β0

s1 ⊗ β
+
v .

This is clear from the formula (66) that computes the product τs1 · β0
s1v (we

use that `(s1v) > 2) and from the equality

β0
s1 ⊗ β

+
v =

{
β0
s1v ⊗ β

+
1 if `(v) is even,

−β0
s1v ⊗ β

−
1 if `(v) is odd.

To treat the first two lines, we first compute the following product:

β−s1 · τs1 = J
(
τs−1

1
· (−β+

s−1
1

)
)

= −J
(
τs1 · β+

s1

)
= −J

(
−β−c−1

− e1 · β+
s1 + 2eid−1 · β0

s1 + eid−2 · β−s1
)

= J
(
β−c−1

+ β+
s1 · eid2 − 2β0

s1 · eid − β−s1 · e1

)
= β−c−1

− eid−2 · β−
s−1
1

+ 2eid−1 · β0
s−1
1

+ e1 · β+

s−1
1

= β−c−1
− eid−2 · β−s1 − 2eid−1 · β0

s1 + e1 · β+
s1 .

We can now compute the right hand side of the first line in (175):

β−s1 ⊗ β
0
s1v = −β−s1 · τs1 ⊗ β

0
v

= −β−c−1
⊗ β0

v + eid−2 · β−s1 ⊗ β
0
v + 2eid−1 · β0

s1 ⊗ β
0
v − e1 · β+

s1 ⊗ β
0
v

= −β−c−1
⊗ β0

v + eid−2 · β−s1 ⊗ β
0
v + 2eid−1 · β0

s1 ⊗ β
0
v + e1 · β+

1 ⊗ β
0
s1v

= −R2(α+
c−1v)− eid−2 · τs1 · β+

1 ⊗ β
0
s0 · τs−1

0 v

+ 2eid−1 · β0
s1 ⊗ β

0
s0 · τs−1

0 v − e1 · R(α−s1v);

and hence we see that although the result is not exactly what expected, it ac-
tually becomes equal to R2(−α+

c−1v−e1 ·α−s1v) in the quotient (E1⊗E0E1)/K2,
as we wanted to show. It remains to treat the second line of (175): we compute

− β−s1 ⊗ β
−
(s1s0)i

= β−s1 · τs1 ⊗ β
+
v

= β−c−1
⊗ β+

v − eid−2 · β−s1 ⊗ β
+
v − 2eid−1 · β0

s1 ⊗ β
+
v + e1 · β+

s1 ⊗ β
+
v

= β−c−1
⊗ β+

v − eid−2 · β−s1 ⊗ β
+
v − 2eid−1 · β0

s1 ⊗ β
+
v − e1 · β+

1 ⊗ β
−
s1v

= −R(α0
c−1v)− eid−2 · β−s1 ⊗ β

+
v − 2eid−1 · R(α+

s1v)− e1 · R(α0
s1v).
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This is the expected result, except for the presence of the term β−s1 ⊗ β
+
v . We

conclude the computation by showing that such term is actually 0: indeed,
since v is of the form s0 · v′ for some v′ ∈ W̃ with `(s0v

′) = `(v′) + 1, we have:

β−s1 ⊗ β
+
v = −β−s1 ⊗ (τs0 · β−v′)

= −(β−s1 · τs0)⊗ β−v′
= 0.

We now treat the case `(v) = 0, i.e., without loss of generality v = 1. We recall
that we have to consider the lines

α−s1 −β+
1 ⊗ β0

s1 ,

α0
s1 β+

1 ⊗ β−s1 ,

α+
s1 β0

s1 ⊗ β
+
1 ,

we have to multiply both sides by τs1 and see whether the resulting left hand
side is sent to the resulting right hand side, at least modulo K2. We first
observe that from the definition of R2(α+

1 ) (or rather from the definition of
R2(τc−1 · α+

1 )) it follows that

R2(τs1 · α−s1) = τs1 · R2(α−s1),

and hence we only need to consider the last two of the above three lines.
Multiplying each side by τs1 on the left, we get

−e1 · α0
s1 − 2eid−1 · α+

s1

e1 · β+
s1 ⊗ β

+
1 − 2eid−1 · β0

s1 ⊗ β
+
1

−eid−2 · β−s1 ⊗ β
+
1 + β−c−1

⊗ β+
1 ,

−e1 · α+
s1 −e1 · β0

s1 ⊗ β
+
1 − eid−1 · β−s1 ⊗ β

+
1 .

?

?

Regarding the first line, we have

e1 · β+
s1 ⊗ β

+
1 = −e1 · R2(α0

s1),

−2eid−1 · β0
s1 ⊗ β

+
1 = −2eid−1 · R2(α+

s1),

−eid−2 · β−s1 ⊗ β
+
1 = eid−2 · τs1 · β+

1 ⊗ β
+
1 ∈ K2,

β−c−1
⊗ β+

1 ∈ K2.

Regarding the second line, we have

−e1 · β0
s1 ⊗ β

+
1 = −e1 · R2(α+

s1),

−eid−1 · β−s1 ⊗ β
+
1 = eid−1 · τs1 · β+

1 ⊗ β
+
1 ∈ K2.

(iii) It remains to check the congruences

R2(τs0 · α+
1 )

?≡ τs0 · R2(α+
1 ) mod K2,

R2(τs1 · α+
1 )

?≡ τs1 · R2(α+
1 ) mod K2.

(176)
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We start with the second one since it is easier:

τs1 · R2(α+
1 ) = τs1 ·

(
R2

(
α+

1 + τs1 · α−s−1
1

)
− τs1 · R2

(
α−
s−1
1

))
≡ R2

(
τs1 · (α+

1 + τs1 · α−s−1
1

)
)

+ e1 · τs1 · R2

(
α−
s−1
1

)
mod K2

by (ii), since α+
1 + τs1 · α

−
s−1
1

∈
⊕
ω∈T0/T1 H2(I,X(ω))

= R2

(
τs1 · (α+

1 + τs1 · α−s−1
1

)
)

+R2

(
e1 · τs1 · α−s−1

1

)
again by (ii)

= R2(τs1 · α+
1 ).

This proves the second congruence in (176), and it remains to check the first
one:

τs0 · R2(α+
1 ) = τs0 ·

(
e1 · β+

1 ⊗ β
0
s1 + eid−1 · β+

s1 ⊗ β
+
1

+ eid−2 · β0
s1 ⊗ β

+
1 + τs−1

1
· β+

1 ⊗ β
0
s1

)
= 0 + 0− eid2 · β0

s0s1 ⊗ β
+
1 + τs0s−1

1
· β+

1 ⊗ β
0
s1

= −eid2 · R2(α−s0s1) + τs0s−1
1
· β+

1 ⊗ β
0
s1

≡ −eid2 · R2(α−s0s1) + τs0 · β0
s−1
1
⊗ β+

1 · τs1 mod K2

= −eid2 · R2(α−s0s1)− β0
s0s1 ⊗ β

+
1 · τs−1

1

= −eid2 · R2(α−s0s1)−R2(α−s0s1) · τs−1
1
.

It remains to compute (or rather rewrite) the second term:

R2(α−s0s1) · τs−1
1

= J
(
τs1 · J(R2(α−s0s1))

)
by Lemma 4.5.7

= J
(
τs1 · R2(J(α−s0s1))

)
= J
(
τs1 · R2(α−s1s0)

)
≡ J
(
R2(τs1 · α−s1s0)

)
mod K2

by part (ii) and
since K2 is J-invariant

= J
(
R2(−α+

c−1s0 − e1 · α−s1s0)
)

= R2

(
J(−α+

c−1s0 − e1 · α−s1s0)
)

by Lemma 4.5.7

= R2

(
α−s0 − α

−
s0s1 · e1

)
= R2

(
α−s0 − eid2 · α−s0s1

)
by (85)

= R2

(
− τs0α+

1 − eid2 · α−s0s1
)
.

So, putting together the last two computations we see that

τs0 · R2(α+
1 ) ≡ R2(τs0 · α+

1 ) mod K2,

and this finishes the proof. �

Proposition 4.5.13. The kernel of the degree 2 multiplication map

M2 : T 2
E0
E1 = E1 ⊗E0 E1 −→ E2

is K2 (defined in Remark 4.5.10).
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Proof. When we have definedK2 we have highlighted that K2 ⊆ ker(M2). Therefore,
it does make sense to consider the mapM2 induced by the multiplication map with
domain (E1 ⊗E0 E1)/K2 and codomain E2. So we have the following picture:

(E1 ⊗E0 E1)/K2 E2.
M2

R2

By definition R2 is a section (as a map of k-vector spaces) of the surjectionM2, and
hence R2 is a section of the surjectionM2, but now R2 is not only a homomorphism
of k-vector spaces but also a homomorphism of left E0-modules (Lemma 4.5.12). Now
we would like to show that R2 is also a homomorphism of right E0-modules. To this
end, it is useful to consider the anti-involution: since K2 is J-invariant (Lemma
4.5.11), we can define an involution J on (E1 ⊗E0 E1)/K2 induced by J. It has the
following property, analogously to J:

J(x · y) = J(y) · J(x) for all x ∈ E0 and all y ∈ (E1 ⊗E0 E1)/K2,

J(y · x) = J(x) · J(y) for all x ∈ E0 and all y ∈ (E1 ⊗E0 E1)/K2.
(177)

Furthermore, we claim that the following diagram is commutative:

E2 (E1 ⊗E0 E1)/K2

E2 (E1 ⊗E0 E1)/K2.

R2

J J

R2

Indeed, since R2 and J commute on F 1E2 (Lemma 4.5.7), it is clear that the two
composite maps of the diagram coincide on F 1E2. It remains to show that they
coincide on F0E

2. Since R2 is a homomorphism of k
[
T 0/T 1

]
-bimodules, also R2 is,

and so, using also formulas (177), we see that both composite maps in the diagram
transform multiplication on the left by τω into multiplication on the right by τω−1

(where ω ∈ T 0/T 1). Therefore, to check that the two composite maps coincide on
F0E

2, it suffices to check that they coincide at α−1 and at α+
1 . But recall that the

following two elements are among the generators of K2 (see the definition of K2 in
Remark 4.5.10):

(R2 ◦ J)(α−1 )− (J ◦ R2)(α−1 ),

−(R2 ◦ J)(α+
1 ) + (J ◦ R2)(α+

1 ),

and hence we see that the two composite maps of the diagram coincide at α−1 and
at α+

1 .
This concludes the proof that the above diagram is commutative, and now re-

call that we wanted to show that R2 is also a homomorphism of right E0-modules.
To show our claim, we put together the fact that R2 is a homomorphism of left
E0-modules, the formulas (177) for J and the fact that the the above diagram is
commutative. With these ingredients, we can compute the following chain of equal-
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ities, where x ∈ E0 and α ∈ E2:

R2(α) · x = (J ◦ J)
(
R2(α) · x

)
= J
(
J(x) · J(R2(α))

)
= J
(
J(x) · R2(J(α))

)
= J
(
R2(J(x) · J(α))

)
= R2

(
J(J(x) · J(α))

)
= R2(α · x),

completing the proof that R2 is a homomorphism of right E0-modules.
So far, we have shown that the surjective map M2 admits a section R2 as a

homomorphism of E0-bimodules. If we show that R2 ◦M2 = id(E1⊗E0E1)/K2
, then

we are done, because we get that the multiplication map induces an isomorphism
between (E1⊗E0E1)/K2 and E2. But, sinceR2 is a homomorphism of E0-bimodules,
it suffices to check the equality R2 ◦M2 = id(E1⊗E0E1)/K2

on a set of generators of

(E1 ⊗E0 E1)/K2 as an E0-bimodule. Namely, we can consider the (classes of) the
generators of Lemma 4.5.1: if y ∈ E1 ⊗E0 E1 is one of these, then by definition of
K2 we have

y − (R2 ◦M2)(y) ∈ K2,

and hence in the quotient (E1 ⊗E0 E1)/K2 we have

y = (R2 ◦M2)(y),

as we wanted to show. �

Remark 4.5.14. The elements listed in Lemma 4.5.9 do not suffice to generate
ker(M2) as an E0-bimodule. In particular, as explained before such lemma, the
map M2 is not a homomorphism of E0-bimodules.

Proof. Recall the notation χ0 for the quadratic character. We consider the following
map, which is well-defined because both eχ0

and ζ lie in Z(E0):

ψ : E1 ⊗E0 E1 E2

x⊗ y eχ0
· x · eχ0

ζ · y.

Let us consider the elements in the list of Remark 4.5.10 (which, by the last
proposition, generate ker(M2) as an E0-bimodule). Recall that the elements in such
list except the last two are exactly the elements listed in Lemma 4.5.9. We compute
the image via ψ of all the elements in the list of Remark 4.5.10: since eχ0

· β±w · eχ0

iz zero for all w ∈ W̃ (see formulas (61)) we see that this reduces to compute the
image via ψ of the following elements:

β0
s1 ⊗ β

−
1 , β0

s0 ⊗ β
+
1 , β0

s1 ⊗ β
0
s0 , β0

s0 ⊗ β
0
s1 ,

β0
s0 ⊗ β

0
s0 , β0

s1 ⊗ β
0
s1 , β0

s0 ⊗ β
−
s0 , β0

s1 ⊗ β
+
s1 .

Moreover, from the fact that β0,?
si (for i ∈ {0, 1}) commutes with ζ (and with eχ0

),

looking at the definition of β0,?
si (see (71)), it is not difficult to see that β0

si commutes
with eχ0

ζ. But then

ψ(β0
s1 ⊗ β

−
1 ) = eχ0

· β0
s1 · eχ0

ζ · β−1
= eχ0

ζ · β0
s1 · β

−
1

= 0,
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because we know that β0
s1 ·β

−
1 ∈ ker(M2). Similarly, we see that ψ is zero at β0

s0⊗β
+
1 ,

β0
s1 ⊗ β

0
s0 and at β0

s0 ⊗ β
0
s1 .

For the elements β0
s0⊗β

0
s0 and β0

s1⊗β
0
s1 the principle is similar, because, although

they do not lie in ker(M), looking again at the list in Remark 4.5.10 from which they
were obtained, we see that their product with eχ0

on the left does lie in ker(M).
We have thus shown that the image via ψ of all the elements in the list in Remark

4.5.10 is zero, except at most the last two.
If we show that at least one of these two elements has nonzero image, than we

have shown that the sub-bimodule generated by all the elements in the list except
the last two (i.e., by the elements listed in Lemma 4.5.9) is strictly smaller that
ker(M2), and we are done.

Hence, it suffices to show that ψ
(
β+
s0⊗β

0
s0 +β0

s0⊗β
−
s0

)
is nonzero (ie., by what we

said before, that ψ(β0
s0⊗β

−
s0) is nonzero). In (173) we have computed that β0

s−1
0

·ζ ·β−s0
is nonzero and actually stays nonzero when multiplied on the left by eχ0

. Hence the
same is true for

ψ(β0
s0 ⊗ β

−
s0) = eχ0

· β0
s0 · eχ0

ζ · β−s0
= eχ0

τc−1 · β0
s−1
0
· ζ · β−s0 .

This concludes the proof of the remark. �

4.6 The kernel in degree 3

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. The elements (β−w )w, (β0

w)w, (β+
w )w, (α−w)w, (α0

w)w,
(α+

w)w, and (φw)w are chosen as in Subsection 4.5.a.

Recall that we are considering the multiplication map

M : T ∗E0E
1 −→ E∗

and that in Subsection 4.5.c we have defined a section of its 2nd graded piece M2

(as a map of k-vector spaces)

R2 : E2 −→ T 2
E0E

1

in order to compute ker(M2). We are going to work in the same way for the 3rd

graded piece M3.

4.6.a A section of the multiplication map in degree 3

In the proof of Lemma 4.1.1 and in Remark 4.1.2 (in particular, see Equations (155),
(156) and (157)) we have obtained the following formulas:

β−1 · β
0
s0(s1s0)i · β

−
1 = −β−

s0(s1s0)i ^ β
0
s0(s1s0)i ^ β+

s0(s1s0)i
,

β+
1 · β

0
s1(s0s1)i · β

+
1 = −β+

s1(s0s1)i ^ β
0
s1(s0s1)i ^ β−s1(s0s1)i

,

β−1 · β
0
(s0s1)i · β

+
1 = β−

(s0s1)i ^ β
0
(s0s1)i ^ β+

(s0s1)i
,

β+
1 · β

0
(s1s0)i · β

−
1 = β+

(s1s0)i ^ β
0
(s1s0)i ^ β−(s1s0)i

.
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Recall that with our notation we have that, for all w ∈ W̃ with `(w) > 1,

φw = β−w ^ β0
w ^ β+

w

(formula (165)), and hence we deduce the following formulas:

β−1 · β
0
s0(s1s0)i · β

−
1 = −φs0(s1s0)i ,

β+
1 · β

0
s1(s0s1)i · β

+
1 = φs1(s0s1)i ,

β−1 · β
0
(s0s1)i · β

+
1 = φ(s0s1)i ,

β+
1 · β

0
(s1s0)i · β

−
1 = −φ(s1s0)i .

This, together with the fact that (τs0 + e1) · φs−1
0

= φ1, shows that the following is

a section of the multiplication map T 3
E0E

1 −→ E3, as a map of k-vector spaces (the
last line is defined in terms of the lines above):

R3 : E3 T 3
E0E

1 = E1 ⊗E0 E1 ⊗E0 E1

τω · φ(s1s0)i −τω · β+
1 ⊗ β0

(s1s0)i
⊗ β−1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · φ(s0s1)i τω · β−1 ⊗ β0
(s0s1)i

⊗ β+
1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · φs0(s1s0)i −τω · β−1 ⊗ β0
s0(s1s0)i

⊗ β−1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · φs1(s0s1)i τω · β+
1 ⊗ β0

s1(s0s1)i
⊗ β+

1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · φ1 τω · (τs0 + e1) · R3(φs−1
0

) for ω ∈ T 0/T 1.

(178)

Lemma 4.6.1. The map defined exactly as R3 but by putting multiplication by τω
(for ω ∈ T 0/T 1) on the right everywhere instead of on the left everywhere is actually
the same map as R3. In other words, the map R3 is a homomorphism of k

[
T 0/T 1

]
-

bimodules.

Proof. We proceed as in Lemma 4.5.5. Namely, we still use the notation ωu for
u ∈ F×p as in (59) and (60) and we use the formulas describing the structure of E1

and E3 as k
[
T 0/T 1

]
-bimodules (i.e., respectively, the two formulas just mentioned

and (89)) to “move τωu on the right” in the definition of R3 (178). More precisely,
for the moment let us start by considering only the first four lines in the definition
of R3:

τωu · φ(s1s0)i −τωu · β+
1 ⊗ β0

(s1s0)i
⊗ β−1 for i ∈ Z>1, u ∈ F×p ,

τωu · φ(s0s1)i τωu · β−1 ⊗ β0
(s0s1)i

⊗ β+
1 for i ∈ Z>1, u ∈ F×p ,

τωu · φs0(s1s0)i −τωu · β−1 ⊗ β0
s0(s1s0)i

⊗ β−1 for i ∈ Z>0, u ∈ F×p ,

τωu · φs1(s0s1)i τωu · β+
1 ⊗ β0

s1(s0s1)i
⊗ β+

1 for i ∈ Z>0, u ∈ F×p .

By the formulas describing the structure of E3 as a k
[
T 0/T 1

]
-bimodule we have

that, for w ∈ W̃ and for u ∈ F×p , the product τωu ·φw is either equal to φw · τωu or to
φw ·τω−1

u
depending on the length of w: so we replace the left hand side of each of the

four above lines accordingly, and similarly we start applying the formulas describing
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the structure of E1 as a k
[
T 0/T 1

]
-bimodule on the right hand side, getting that:

φ(s1s0)i · τωu −u2β+
1 ⊗ (τωu · β0

(s1s0)i
)⊗ β−1 ,

φ(s0s1)i · τωu u−2β−1 ⊗ (τωu · β0
(s0s1)i

)⊗ β+
1 ,

φs0(s1s0)i · τω−1
u

−u−2β−1 ⊗ (τωu · β0
s0(s1s0)i

)⊗ β−1 ,

φs1(s0s1)i · τω−1
u

u2β+
1 ⊗ (τωu · β0

s1(s0s1)i
)⊗ β+

1 .

We continue the computation on the right, getting that

φ(s1s0)i · τωu −u2β+
1 ⊗ β0

(s1s0)i
⊗ (τωu · β−1 ),

φ(s0s1)i · τωu u−2β−1 ⊗ β0
(s0s1)i

⊗ (τωu · β+
1 ),

φs0(s1s0)i · τω−1
u

−u−2β−1 ⊗ β0
s0(s1s0)i

⊗ (τω−1
u
· β−1 ),

φs1(s0s1)i · τω−1
u

u2β+
1 ⊗ β0

s1(s0s1)i
⊗ (τω−1

u
· β+

1 ).

And finally we obtain

φ(s1s0)i · τωu −u2β+
1 ⊗ β0

(s1s0)i
⊗ u−2β−1 · τωu ,

φ(s0s1)i · τωu u−2β−1 ⊗ β0
(s0s1)i

⊗ u2β+
1 · τωu ,

φs0(s1s0)i · τω−1
u

−u−2β−1 ⊗ β0
s0(s1s0)i

⊗ (u−1)−2β−1 · τω−1
u
,

φs1(s0s1)i · τω−1
u

u2β+
1 ⊗ β0

s1(s0s1)i
⊗ (u−1)2β+

1 · τω−1
u
.

This shows that, at least for the first four lines in the definition of R3 (178) we could
have used multiplication by τωu on the right instead of on the left. Now we look at
the last line:

τωu · φ1 τωu · (τs0 + e1) · R3(φs−1
0

) for u ∈ F×p .

We already know the behaviour of R3(φs−1
0

) with respect to multiplication by τωu ,

and we can thus compute that the element φ1 · τωu , which is equal to τωu · φ1, is
mapped to

τωu · (τs0 + e1) · R3(φs−1
0

) = (τs0 + e1) · τω−1
u
· R3(φs−1

0
)

= (τs0 + e1) · R3(φs−1
0

) · τωu ,

thus completing the proof. �

We will see that the map R3 is not invariant for Γ$ nor for J, the problem being
the last line (see Remark 4.9.14). However, it is possible to define a new section R′3
which is both Γ$-invariant and J-invariant, as we will see in the next lemma.

Lemma 4.6.2. Let us consider the map

R′3 : E3 T 3
E0E

1 = E1 ⊗E0 E1 ⊗E0 E1

φw


R3(φw) if `(w) > 1,
1
4τw ·

(
R3(φ1) + Γ$(R3(φ1))

+J(R3(φ1)) + Γ$(J(R3(φ1)))
) if `(w) = 0.
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One has that R′3 is a section of the multiplication map M3 as a homomorphism of
k
[
T 0/T 1

]
-bimodules and that it commutes with Γ$ and with J.

Proof. We have to prove four facts: that R′3 is a section of the multiplication map
M3, that it is a homomorphism of k

[
T 0/T 1

]
-bimodules, that it commutes with Γ$

and that it commutes with J.

• SinceR3 is a section of the multiplication map,R′3 is a section of the multiplication
map as well, because the multiplication map commutes with Γ$ and J (see (163)
and (164)) and because Γ$(φ1) = φ1 = J(φ1).

• Let us prove that R′3 is a homomorphism of k
[
T 0/T 1

]
-bimodules. Using the for-

mulas
τω · Γ$(x) = Γ$(τω−1 · x),

Γ$(x) · τω = Γ$(x · τω−1),

τω · J(x) = J(x · τω−1),

J(x) · τω = J(τω−1 · x)

(179)

(where ω ∈ T 0/T 1 and x ∈ E∗ or x ∈ T ∗E0E
1) it is easy to see that

τω · R′3(φ1) = R′3(φ1) · τω.

Then, as in Lemma 4.6.1, we have that the map defined exactly as R′3 but by
putting multiplication by τω (for ω ∈ T 0/T 1) on the right everywhere instead of
on the left everywhere is actually the same map as R′3. In particular, the map R′3
is a homomorphism of k

[
T 0/T 1

]
-bimodules.

• Let us show that the map R′ commutes with Γ$. We first look at the following
lines in the definition of R′3 (equivalently, of R3):

τω · φ(s1s0)i −τω · β+
1 ⊗ β0

(s1s0)i
⊗ β−1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · φ(s0s1)i τω · β−1 ⊗ β0
(s0s1)i

⊗ β+
1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · φs0(s1s0)i −τω · β−1 ⊗ β0
s0(s1s0)i

⊗ β−1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · φs1(s0s1)i τω · β+
1 ⊗ β0

s1(s0s1)i
⊗ β+

1 for i ∈ Z>0, ω ∈ T 0/T 1.

We apply Γ$ on both sides and we check that the left hand side is again sent to
the right hand side by R′3 (equivalently, by R3).

τω−1 · φ(s0s1)i τω−1 · β−1 ⊗ β0
(s0s1)i

⊗ β+
1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω−1 · φ(s1s0)i −τω−1 · β+
1 ⊗ β0

(s1s0)i
⊗ β−1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω−1 · φs1(s0s1)i τω−1 · β+
1 ⊗ β0

s1(s0s1)i
⊗ β+

1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω−1 · φs0(s1s0)i −τω−1 · β−1 ⊗ β0
s0(s1s0)i

⊗ β−1 for i ∈ Z>0, ω ∈ T 0/T 1.

?

?

?

?

As expected, R′3 sends the left hand side to the right hand side. Furthermore, it
is immediate to check that

Γ$(R′3(φω)) = R′3(Γ$(φω))

for all ω ∈ T 0/T 1.

201



• Let us show that the map R′ commutes with J. We again look at the following
lines in the definition of R′3 (equivalently, of R3):

τω · φ(s1s0)i −τω · β+
1 ⊗ β0

(s1s0)i
⊗ β−1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · φ(s0s1)i τω · β−1 ⊗ β0
(s0s1)i

⊗ β+
1 for i ∈ Z>1, ω ∈ T 0/T 1,

τω · φs0(s1s0)i −τω · β−1 ⊗ β0
s0(s1s0)i

⊗ β−1 for i ∈ Z>0, ω ∈ T 0/T 1,

τω · φs1(s0s1)i τω · β+
1 ⊗ β0

s1(s0s1)i
⊗ β+

1 for i ∈ Z>0, ω ∈ T 0/T 1.

We apply J on both sides and we check that the left hand side is again sent to the
right hand side by R′3 (equivalently, by R3):

φ(s0s1)i · τω−1 β−1 ⊗ β0
(s0s1)i

⊗ β+
1 · τω−1 for i ∈ Z>1, ω ∈ T 0/T 1,

φ(s1s0)i · τω−1 −β+
1 ⊗ β0

(s1s0)i
⊗ β−1 · τω−1 for i ∈ Z>1, ω ∈ T 0/T 1,

φs0(s1s0)i · τc−1ω−1 −β−1 ⊗ (β0
s0(s1s0)i

· τc−1)⊗ β−1 · τω−1 for i ∈ Z>0, ω ∈ T 0/T 1,

φs1(s0s1)i · τc−1ω−1 β+
1 ⊗ (β0

s1(s0s1)i
· τc−1)⊗ β+

1 · τω−1 for i ∈ Z>0, ω ∈ T 0/T 1.

?

?

?

?

Using that R′3 is a homomorphism of k
[
T 0/T 1

]
-bimodules, we see that, as ex-

pected, R′3 sends the left hand side to the right hand side. Furthermore, using
that J and Γ$ commute (see (49)), it is immediate to check that

J(R′3(φ1)) = R′3(J(φ1)).

Using again that R′3 is a homomorphism of k
[
T 0/T 1

]
-bimodules and using the

formulas (179), we also see that J(R′3(φω)) = R′3(J(φ1ω)) for all ω ∈ T 0/T 1. �

Remark 4.6.3. For later use, let us compute explicitly the four summands in the
definition of R′3(φ1):

R3(φ1) = (τs0 + e1) · R3(φs−1
0

)

= (τs0 + e1) · (−β−1 ⊗ β
0
s−1
0
⊗ β−1 )

= −(τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 ,

Γ$(R3(φ1)) = Γ$
(
− (τs0 + e1) · β−1 ⊗ β

0
s−1
0
⊗ β−1

)
= (τs1 + e1) · β+

1 ⊗ β
0
s−1
1
⊗ β+

1 ,

J(R3(φ1)) = J
(
− (τs0 + e1) · β−1 ⊗ β

0
s−1
0
⊗ β−1

)
= −β−1 ⊗ β

0
s0 ⊗ β

−
1 · (τs−1

0
+ e1),

Γ$(J(R3(φ1))) = Γ$
(
− β−1 ⊗ β

0
s0 ⊗ β

−
1 · (τs−1

0
+ e1)

)
= β+

1 ⊗ β
0
s1 ⊗ β

+
1 · (τs−1

1
+ e1).

4.6.b Computation of the kernel in degree 3

Lemma 4.6.4. Let K2,3 be the sub-E0-bimodule of T 3
E0E

1 generated by the kernel
of the degree 2 multiplication map, i.e.,

K2,3 := ker(M2)⊗E0 E1 + E1 ⊗E0 ker(M2) ⊆ T 3
E0E

1,
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where (?) denotes the image of (?) in T 3
E0E

1. One has the following congruences:

Γ$(J(R3(φ1))) ≡ R3(φ1) mod K2,3,

J(R3(φ1)) ≡ Γ$(R3(φ1)) mod K2,3.

Proof. First of all we note that the second congruence follows from the first one,
since K2,3 is Γ$-invariant (which is true because the multiplication map commutes
with Γ$, as shown in (163)). To show the first congruence, we first compute a couple
of useful equalities and congruences:

(τs0 + e1) · β−1 · τs0 = (τs0 + e1) · β−s0
= −2eidβ

0
s0 + eid2β+

s0 − β
+
c−1
.

Since both β0
s0 ⊗ β

0
s1 and β+

s0 ⊗ β
0
s1 = −τs0 · β−1 ⊗ β0

s1 lie in ker(M2), tensoring both
sides of the last equality by β0

s1 we get the congruence

(τs0 + e1) · β−1 · τs0 ⊗ β
0
s1 ≡ −β

+
1 ⊗ β

0
s−1
1

mod ker(M2). (180)

Now we apply Γ$ to the last congruence, obtaining again a congruence since ker(M2)
is Γ$-invariant:

−(τs1 + e1) · β+
1 · τs1 ⊗ β

0
s0 ≡ β

−
1 ⊗ β

0
s−1
0

mod ker(M2).

Now we apply J (or rather −J) to the last congruence, obtaining again a congruence
since ker(M2) is J-invariant:

−J(β0
s0)⊗ J

(
(τs1 + e1) · β+

1 · τs1
)
≡ J(β0

s−1
0

)⊗ J(β−1 ) mod ker(M2),

i.e.,
β0
s0 ⊗ τs1 · β

+
1 · (τs−1

1
+ e1) ≡ −β0

s0 ⊗ β
−
1 mod ker(M2). (181)

We now get the desired congruence Γ$(J(R3(φ1))) ≡ R3(φ1) modulo K2,3, by
putting together (180) and (181):

Γ$(J(R3(φ1)))

= β+
1 ⊗ β

0
s1 ⊗ β

+
1 · (τs−1

1
+ e1)

≡ −τc−1 · (τs0 + e1) · β−1 · τs0 ⊗ β
0
s1 ⊗ β

+
1 · (τs−1

1
+ e1) mod K2,3

by (180)

= τc−1 · (τs0 + e1) · β−1 ⊗ β
0
s0 ⊗ τs1 · β

+
1 · (τs−1

1
+ e1)

≡ −τc−1 · (τs0 + e1) · β−1 ⊗ β
0
s0 ⊗ β

−
1 mod K2,3

by (181)

= R3(φ1). �

Lemma 4.6.5. As in the last lemma, let K2,3 be the sub-E0-bimodule of T 3
E0E

1

generated by the kernel of the degree 2 multiplication map, i.e.,

K2,3 := ker(M2)⊗E0 E1 + E1 ⊗E0 ker(M2) ⊆ T 3
E0E

1,

where (?) denotes the image of (?) in T 3
E0E

1. Furthermore, let Kextra,3 be the sub-
left-k

[
T 0/T 1

]
-module generated by the following element:

Γ$(R3(φ1))−R3(φ1)

= (τs1 + e1) · β+
1 ⊗ β

0
s−1
1
⊗ β+

1 + (τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 .
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One has that the kernel ker(M3) of the multiplication map in degree 3 coincides
with K2,3 + Kextra,3. Furthermore, Kextra,3 is also the sub-right-k

[
T 0/T 1

]
-module

generated by the above element.

Proof. The last claim is easy to see because we know from Lemma 4.6.1 that R3 is
a homomorphism of k

[
T 0/T 1

]
-bimodules, and so for all ω ∈ T 0/T 1 we have

τω ·
(
Γ$(R3(φ1))−R3(φ1)

)
= Γ$

(
τω−1 · R3(φ1)

)
− τω · R3(φ1)

= Γ$
(
R3(φω−1)

)
−R3(φω)

= Γ$
(
R3(φ1) · τω−1

)
−R3(φ1) · τω

=
(
Γ$(R3(φ1))−R3(φ1)

)
· τω.

We now turn to the proof of the fact that ker(M3) coincides with K2,3 + Kextra,3.
We reformulate this claim as follows: defining

V := K2,3 +Kextra,3 + Image(R′3) ⊆ T 3
E0E

1,

we see that we have to prove that V = T 3
E0E

1 (i.e., the inclusion from right to left):
indeed assuming that we have already achieved this, we get that

K2,3 +Kextra,3 + Image(R′3) = ker(M3)⊕ Image(R′3),

and this, together with the “easy inclusion” K2,3+Kextra,3 ⊆ ker(M3), shows that we
have K2,3 +Kextra,3 = ker(M3), as we wanted (for the inclusion Kextra,3 ⊆ ker(M3),
recall from Subsection 4.5.a that Γ$ commutes with M).

To reduce the amount of computations, we first make some preliminary obser-
vations.

a) We remark that one has the congruences

Γ$(J(φ1)) ≡ R3(φ1) ≡ Γ$(R3(φ1)) ≡ J(R3(φ1)) mod K2,3 +Kextra,3.

Indeed the first and last congruence are even true modulo K2,3 (Lemma 4.6.4),
while the second congruence trivially holds by definition of Kextra,3. Looking
at the definition of R′3, this shows that

R′3(φ1) ≡ R3(φ1) mod K2,3 +Kextra,3. (182)

b) We remark that V is invariant for Γ$ and J.

? The term K2,3 is invariant for Γ$ and J because both involutions commute
with M2.

? The term Image(R′3) is invariant for Γ$ and J because these involutions
commute with R′3 (Lemma 4.6.2).

? The term Kextra,3 is visibly invariant for Γ$. Moreover, applying J to the
difference Γ$(R3(φ1))−R3(φ1) (using that Γ$ and J commute, see (49)) we
get Γ$(J(R3(φ1)))−J(R3(φ1)), which lies in K2,3 +Kextra,3 by part a). This,
taking also into account the behaviour of J with respect to multiplication
by τω for ω ∈ T 0/T 1, proves that J(Kextra,3) ⊆ K2,3 +Kextra,3.

c) We further remark that V is a sub-k
[
T 0/T 1

]
-bimodule of T 3

E0E
1: indeed the

term K2,3 is clearly even a sub-E0-bimodule, the term Kextra,3 is by definition a
sub-k

[
T 0/T 1

]
-bimodule and the term Image(R′3) is a sub-k

[
T 0/T 1

]
-bimodule

because R′3 is a homomorphism of k
[
T 0/T 1

]
-bimodules (Lemma 4.6.2).
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Now we can start the actual proof of the lemma. Let us consider x ∈ T 3
E0E

1 and let
us prove that x ∈ V . Without loss of generality, we can of course assume that x is
of the form y ⊗ z for y ∈ E1 and z ∈ E1 ⊗E0 E1. Considering the equality

x = y ⊗ z = y ⊗ (z −R2(M2(z))) + y ⊗R2(M2(z)),

we see that the first summand on the right hand side lies in E1 ⊗E0 ker(M2) and
hence in V . Therefore, without loss of generality, we can assume that x is of the form
y ⊗ z′ for some y ∈ E1 and some z′ ∈ Image(R2). Looking at the explicit definition
of R2 (170), we see that every z′ ∈ Image(R2) can be written as a sum of simple
tensors of the following forms:

u⊗ β−1 for some u ∈ E1,

u⊗ β+
1 for some u ∈ E1,

u⊗ β0
w for some u ∈ E1 and for some w ∈ W̃ with `(w) > 1.

Hence, without loss of generality, we can assume that z′ is of one of those forms. To
simplify a little further, we note that since V is invariant for Γ$, it follows that it
suffices to prove that the elements of the following form lie in V :

i) y ⊗ u⊗ β−1 for some u ∈ E1,

ii) y ⊗ u⊗ β0
s0v for some u ∈ E1 and for some v ∈ W̃ with `(s0v) = `(v) + 1,

because by applying Γ$ to such elements we immediately obtain what is left. We
treat separately elements of the forms i) and ii).

i) Let us start the proof that every element of the form

y ⊗ u⊗ β−1 (for some y, u ∈ E1)

lies in V . Similarly to what we did before, we can consider the equality

y ⊗ u⊗ β−1 = (y ⊗ u−R2(M2(y ⊗ u)))⊗ β−1 +R2(M2(y ⊗ u))⊗ β−1 ,

from which we see that we may only treat the elements of the form r ⊗ β−1
for r ∈ Image(R2), and, looking at the explicit definition of R2 (170), we can
further assume that r ⊗ β−1 is of one of the following forms:

τωβ
+
1 ⊗ β

0
(s1s0)i ⊗ β

−
1 , τωβ

+
(s1s0)i

⊗ β−1 ⊗ β
−
1 , τωβ

0
(s1s0)i ⊗ β

−
1 ⊗ β

−
1 ,

τωβ
0
(s0s1)i ⊗ β

+
1 ⊗ β

−
1 , τωβ

−
(s0s1)i

⊗ β+
1 ⊗ β

−
1 , τωβ

−
1 ⊗ β

0
(s0s1)i ⊗ β

−
1

for i ∈ Z>1 and ω ∈ T 0/T 1,

τωβ
0
s0(s1s0)i ⊗ β

−
1 ⊗ β

−
1 , τωβ

−
s0(s1s0)i

⊗ β−1 ⊗ β
−
1 , τωβ

−
1 ⊗ β

0
s0(s1s0)i ⊗ β

−
1 ,

τωβ
+
1 ⊗ β

0
s1(s0s1)i ⊗ β

−
1 , τωβ

+
s1(s0s1)i

⊗ β+
1 ⊗ β

−
1 , τωβ

0
s1(s0s1)i ⊗ β

+
1 ⊗ β

−
1

for i ∈ Z>0 and ω ∈ T 0/T 1,

τωτs0R2

(
α+

s−1
0

)
⊗ β−1 = τωτs0β

−
1 ⊗ β

0
s−1
0
⊗ β−1 for ω ∈ T 0/T 1,

τωτs1R2

(
α−
s−1
1

)
⊗ β−1 = −τωτs1β+

1 ⊗ β
0
s−1
1
⊗ β−1 for ω ∈ T 0/T 1.

Since the two elements β−1 ⊗ β−1 and β+
1 ⊗ β−1 lie in ker(M2), we see that

many of the above elements lie in V . As we have already remarked that V
is a left-k

[
T 0/T 1

]
-submodule, we also see that there is no loss of generality
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in considering only the elements with ω = 1. Therefore, we are reduced to
showing that the following elements lie in V :

β+
1 ⊗ β

0
(s1s0)i ⊗ β

−
1 for i ∈ Z>1,

β−1 ⊗ β
0
(s0s1)i ⊗ β

−
1 for i ∈ Z>1,

β−1 ⊗ β
0
s0(s1s0)i ⊗ β

−
1 for i ∈ Z>0,

β+
1 ⊗ β

0
s1(s0s1)i ⊗ β

−
1 for i ∈ Z>0,

τs0 · β−1 ⊗ β
0
s−1
0
⊗ β−1 ,

τs1 · β+
1 ⊗ β

0
s−1
1
⊗ β−1 .

(183)

Up to a sign, the first line (respectively, the third line) is exactly R′3(φ(s0s1)i)
(respectively, R′3(φs0(s1s0)i)), and hence they both lie in V . Moreover, we know

that β0
s1 ⊗ β

−
1 ∈ ker(M2), from which it follows that

β0
(s0s1)i ⊗ β

−
1 = −τ(s0s1)i−1s0 · β

0
s1 ⊗ β

−
1 ∈ ker(M2) for all i ∈ Z>1,

β0
s1(s0s1)i ⊗ β

−
1 = τ(s1s0)i · β0

s1 ⊗ β
−
1 ∈ ker(M2) for all i ∈ Z>0.

Therefore, it follows that also the second, the fourth and the sixth line in
(183) lie in V . It remains to consider the element τs0 · β−1 ⊗ β0

s−1
0

⊗ β−1 .

First of all, we see that there is no harm in considering instead the element
(τs0 +e1)·β−1 ⊗β0

s−1
0

⊗β−1 = −R3(φ1), since e1·β−1 ⊗β0
s−1
0

⊗β−1 ∈ Image(R′3) ⊆ V .

But we have seen in formula (182) that R3(φ1) is congruent to R′3(φ1) modulo
K2,3 +Kextra,3, and hence R3(φ1) ∈ V , thus completing the proof that all the
lines in (183) lie in V .

ii) We have to consider the elements of the form

y ⊗ u⊗ β0
s0v = y ⊗ u⊗ β0

s0 · τv (for some y, u ∈ E1)

and prove that they lie in V . As before, we can consider the equality

y ⊗ u⊗ β0
s0v = (y ⊗ u−R2(M2(y ⊗ u)))⊗ β0

s0v +R2(M2(y ⊗ u))⊗ β0
s0v,

from which we see that we may only treat the elements of the form r ⊗ β0
s0v

for r ∈ Image(R2), and, looking at the explicit definition of R2 (170), we can
further assume that r ⊗ β0

s0v is of one of the following forms:

β+
1 ⊗ β

0
(s1s0)i ⊗ β

0
s0τv, β+

1 ⊗ β
−
(s1s0)i

⊗ β0
s0τv, β0

(s1s0)i ⊗ β
−
1 ⊗ β

0
s0τv,

β0
(s0s1)i ⊗ β

+
1 ⊗ β

0
s0τv, β−1 ⊗ β

+
(s0s1)i

⊗ β0
s0τv, β−1 ⊗ β

0
(s0s1)i ⊗ β

0
s0τv

for i ∈ Z>1,

β0
s0(s1s0)i ⊗ β

−
1 ⊗ β

0
s0τv, β−1 ⊗ β

+
s0(s1s0)i

⊗ β0
s0τv, β−1 ⊗ β

0
s0(s1s0)i ⊗ β

0
s0τv,

β+
1 ⊗ β

0
s1(s0s1)i ⊗ β

0
s0τv, β+

1 ⊗ β
−
s1(s0s1)i

⊗ β0
s0τv, β0

s1(s0s1)i ⊗ β
+
1 ⊗ β

0
s0τv

for i ∈ Z>0,

τs0R2

(
α+

s−1
0

)
⊗ β0

s0τv = τs0β
−
1 ⊗ β

0
s−1
0
⊗ β0

s0τv,

τs1R2

(
α−
s−1
1

)
⊗ β0

s0τv = −τs1β+
1 ⊗ β

0
s−1
1
⊗ β0

s0τv.
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In part i) we have proved that all the elements of the form x ⊗ y ⊗ β−1 (for
some x, y ∈ E1) lie in V . As we have already said that V is J-invariant and
Γ$-invariant, we deduce that the elements of the following forms lie in V :

β−1 ⊗ x⊗ y for some x, y ∈ E1,

β+
1 ⊗ x⊗ y for some x, y ∈ E1.

This shows that most of the elements in the above list are in V . The remaining
ones are:

β0
(s1s0)i ⊗ β

−
1 ⊗ β

0
s0 · τv for i ∈ Z>1,

β0
(s0s1)i ⊗ β

+
1 ⊗ β

0
s0 · τv for i ∈ Z>1,

β0
s0(s1s0)i ⊗ β

−
1 ⊗ β

0
s0 · τv for i ∈ Z>0,

β0
s1(s0s1)i ⊗ β

+
1 ⊗ β

0
s0 · τv for i ∈ Z>0,

τs0 · β−1 ⊗ β
0
s−1
0
⊗ β0

s0 · τv,

τs1 · β+
1 ⊗ β

0
s−1
1
⊗ β0

s0 · τv.

We recall from Lemma 4.5.9 that β+
1 ⊗ β0

s0 ∈ ker(M2) and that the same is
true for β0

s1 ⊗ β
0
s0 , and so it only remains to consider the following elements:

β0
(s1s0)i ⊗ β

−
1 ⊗ β

0
s0 · τv for i ∈ Z>1, (184)

β0
s0(s1s0)i ⊗ β

−
1 ⊗ β

0
s0 · τv for i ∈ Z>0, (185)

τs0 · β−1 ⊗ β
0
s−1
0
⊗ β0

s0 · τv. (186)

Let us treat the last line, where, multiplying by τc−1 , we can replace s−1
0 by

s0. We consider the following element of ker(M2) (Lemma 4.5.9):

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 .

Tensoring by τs0 · β−1 on the left we get

τs0 · β−1 ⊗ β
0
s0 ⊗ β

0
s0 + τs0 · β−1 ⊗ eid−1 · β−1 ⊗ β

0
s0

+ τs0 · β−1 ⊗ eid · β0
s0 ⊗ β

−
1 − τs0 · β

−
1 ⊗ e1 · β−1 ⊗ β

+
s0

∈ K2,3.

Since β−1 ⊗β
−
1 lies in ker(R2), we can delete the two terms where this element

appears, getting that

τs0 · β−1 ⊗ β
0
s0 ⊗ β

0
s0 + τs0 · β−1 ⊗ eid · β0

s0 ⊗ β
−
1 ∈ K2,3.

Since K2,3 is an E0-bimodule, we can multiply by τv on the right getting that:

τs0 · β−1 ⊗ β
0
s0 ⊗ β

0
s0 · τv + τs0 · β−1 ⊗ eid · β0

s0 ⊗ β
−
1 · τv ∈ K2,3.

If `(v) > 1 then v must be of the form s1v
′ for some v′ ∈ W̃ such that lengths

add up. In this case β−1 · τv = 0, and so we see that τs0 · β−1 ⊗ β0
s0 ⊗ β

0
s0 · τv

lies in K2,3, and in particular to V , completing the proof that the element in
(186) lies in V if `(v) > 1. Now it remains to treat the case `(v) = 0, and
without loss of generality v = 1. But in part i) we have seen that the element
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τs0 · β−1 ⊗ β0
s−1
0

⊗ β−1 lies in V , and hence also in this case we get that the

element τs0 · β−1 ⊗ β0
s0 ⊗ β

0
s0 · τv lies in V . Hence, we are done with (186).

It remains to prove that the elements in (184) and in (185) lie in V . We claim
that β0

s0⊗β
−
1 ⊗β0

s0 lies in K2,3. If we show this, then we are done because K2,3

is a sub-E0-bimodule, and so we get that the elements in the lines (184) and
(185) lie in K2,3 as well and hence also to V . So, let us show that β0

s0⊗β
−
1 ⊗β0

s0
lies in K2,3.

β0
s0 ⊗ β

−
1 ⊗ β

0
s0 = R2(−α−s0)⊗ β0

s0

= R2(τs0 · α+
1 )⊗ β0

s0

≡
(
τs0 · R2(α+

1 )
)
⊗ β0

s0 mod K2,3

=
(
e1 · β+

1 ⊗ β
0
s1 + eid−1 · β+

s1 ⊗ β
+
1

+ eid−2 · β0
s1 ⊗ β

+
1 + τs−1

1
· β+

1 ⊗ β
0
s1

)
⊗ β0

s0

(computed in (172))

≡ 0 mod K2,3,

where the last equivalence is true because both β+
1 ⊗ β0

s0 and β0
s1 ⊗ β

0
s0 lie in

ker(M2). This concludes the proof that all the elements of the forms (184) and
(185) lie in V , and with it the proof that all the elements of the form ii) lie in
V . �

4.7 The kernel in degree 4

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. The elements (β−w )w, (β0

w)w, (β+
w )w, (α−w)w, (α0

w)w,
(α+

w)w, and (φw)w are chosen as in Subsection 4.5.a.

Since E4 = 0, the kernel of the multiplication map M4 : T 4
E0E

1 −→ E4 is of
course the whole T 4

E0E
1. As we computed generators for ker(M2) as an E0-bimodule

(Proposition 4.5.13), and we computed ker(M3) in terms of ker(M2) and an addi-
tional generator (Lemma 4.6.5), we now wish to compute ker(M4) = T 4

E0E
1 in terms

of ker(M3) (and, a priori, some other generators). The following result achieves this,
showing that no further generators are needed and hence that ker(M) is generated
as a bilateral ideal by its elements of degree 2 and 3.

Lemma 4.7.1. Let M : T ∗E0E
1 −→ E∗ be the multiplication map, and let

K3,4 := ker(M3)⊗E0 E1 + E1 ⊗E0 ker(M3) ⊆ T 4
E0E

1,

where (?) denotes the image of (?) in T 4
E0E

1. One has that K3,4 = T 4
E0E

1 and,
consequently, that ker(M) is generated as a bilateral ideal by its elements of degree
2 and 3.

Proof. We have to prove that every element of T 4
E0E

1 lies in K3,4, and clearly it
suffices to prove this for “simple tensors” of the form x⊗y for x ∈ E1 and y ∈ T 3

E0E
1.

Let us consider the equality

x⊗ y = x⊗ (y −R3(M3(y))) + x⊗R3(M3(y)),
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in which the first summand on the right hand side lies in K3,4, because clearly
y −R3(M3(y)) ∈ ker(M3). We see that it suffices to prove our claim for elements
of the form x ⊗ y′ for x ∈ E1 and y′ ∈ Image(M3). Now looking at the explicit
definition of R3 (178), we see that every y′ ∈ Image(M3) can be written as a k-
linear combination of tensors of the form z ⊗ t ⊗ β−1 for some z, t ∈ E1 and of the
form z⊗t⊗β+

1 for some z, t ∈ E1. We are thus reduced to showing that the elements
of the following form lie in K3,4:

u⊗ β−1 for u ∈ T 3
E0E

1,

u⊗ β+
1 for u ∈ T 3

E0E
1.

Let u ∈ T 3
E0E

1. Similarly to what we did before, we consider the equality

u⊗ β±1 = (u−R3(M3(u)))⊗ β±1 +R3(M3(u))⊗ β±1 ,

where we see that the first summand on the right hand side lies in K3,4. We are
therefore reduced to proving that the following elements lie in K3,4:

u′ ⊗ β−1 for u′ ∈ Image(M3),

u′ ⊗ β+
1 for u′ ∈ Image(M3).

Again such every u′ ∈ Image(M3) can be written as a k-linear combination of tensors
of the form z′ ⊗ t′ ⊗ β−1 for some z′, t′ ∈ E1 and of the form z′ ⊗ t′ ⊗ β+

1 for some
z′, t′ ∈ E1. We are thus reduced to showing that the following elements lie in K3,4:

z′ ⊗ t′ ⊗ β−1 ⊗ β
−
1 for z′, t′ ∈ E1,

z′ ⊗ t′ ⊗ β+
1 ⊗ β

−
1 for z′, t′ ∈ E1,

z′ ⊗ t′ ⊗ β−1 ⊗ β
+
1 for z′, t′ ∈ E1,

z′ ⊗ t′ ⊗ β+
1 ⊗ β

+
1 for z′, t′ ∈ E1.

But we recall from Lemma 4.5.9 that all of the elements β−1 ⊗β
−
1 , β+

1 ⊗β
−
1 , β−1 ⊗β

+
1 ,

and β+
1 ⊗ β

+
1 lie in ker(M2), and in particular all the elements in the above four

lines lie in K3,4. �

4.8 Main result

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. The elements (β−w )w, (β0

w)w, (β+
w )w, (α−w)w, (α0

w)w,
(α+

w)w, and (φw)w are chosen as in Subsection 4.5.a.

We are now going to state the main result of this chapter, consisting in a pre-
sentation of the Ext-algebra E∗ in terms of the tensor algebra T ∗E0E

1. All the “pos-
itive” results in the statement of this theorem have already been proved, whereas
the “negative” result that the kernel of the multiplication mapM : T ∗E0E

1 −→ E∗ is
not generated in degree 2 has not been dealt with yet, and its proof will be deferred
to the next section.

Theorem 4.8.1. Let us consider the multiplication map

M : T ∗E0E
1 −→ E∗.

The following properties hold.
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(i) The multiplication map M is surjective.

(ii) The kernel of the multiplication map M is finitely generated as a bilateral
ideal.

(iii) More precisely, one can choose a finite set of generators of ker(M) lying only
in degrees 2 and 3.

(iv) Let Mi be the multiplication map in degree i for all i ∈ Z>0, and let

K2,3 := ker(M2)⊗E0 E1 + E1 ⊗E0 ker(M2) ⊆ T 3
E0E

1,

where (?) denotes the image of (?) in T 3
E0E

1. One has that K2,3 has finite
codimension as a k-vector space in ker(M3).

(v) The sub-bimodule K2,3 is properly contained in ker(M3). In particular, ker(M)
is not generated as a bilateral ideal by its degree 2 part.

Proof. The fact that M is surjective has been proved in Section 4.1. Furthermore,
we have seen in Lemma 4.7.1 that the homogeneous ideal ker(M) is generated by its
2nd and 3rd graded pieces. In Proposition 4.5.13 we have seen that the 2nd graded
piece is finitely generated as an E0-bimodule, and in Lemma 4.6.5 we have seen that
K2,3 has finite codimension as a k-vector space in ker(M3). The fact that ker(M)
is finitely generated as a bilateral ideal and that we can choose a finite number of
generators lying in degrees 2 and 3 follows from these results; for an explicit list
of generators see the next remark. The claim that K2,3 is properly contained in
ker(M3) will be shown in Section 4.9 (more precisely, in Corollary 4.9.12). �

Remark 4.8.2. The following is a set of generators of ker(M) as a bilateral ideal:

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 ,

β+
1 ⊗ β

0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 ,

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 ,

β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 − e1 · β+

1 ⊗ β
−
s1 ,

β+
s0 ⊗ β

0
s0 + β0

s0 ⊗ β
−
s0

β−s1 ⊗ β
0
s1 + β0

s1 ⊗ β
+
s1

(τs1 + e1) · β+
1 ⊗ β

0
s−1
1
⊗ β+

1 + (τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 .

Proof. By the above theorem or by Lemma 4.7.1 we only need to consider the 2nd and
3rd graded pieces of ker(M). And the generators have been computed in Proposition
4.5.13 and in Lemma 4.6.5. �

4.9 The ideal ker(M) is not generated by its 2nd graded
piece

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. The elements (β−w )w, (β0

w)w, (β+
w )w, (α−w)w, (α0

w)w,
(α+

w)w, and (φw)w are chosen as in Subsection 4.5.a.
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With notation as in Theorem 4.8.1, we have to show that K2,3 is properly con-
tained in ker(M3) (and then, in particular, it will follow that ker(M) is not generated
as a bilateral ideal by its degree 2 part).

We will adopt the following strategy: first of all instead of working with the full
E1 ⊗E0 E1 ⊗E0 E1 we will work with eγE

1 ⊗E0 E1 ⊗E0 E1eγ for γ ∈ Γ “generic”,
and then we will prove that eγK2,3eγ is properly contained in eγ ker(M3)eγ .

To show this last fact, we will define a homomorphism of E0-bimodules

M̃ : eγE
1 ⊗E0 E1 ⊗E0 E1eγ −→ Ẽ3 (187)

(for a suitable E0-bimodule Ẽ3) which will be similar to the usual multiplication
map with values in E3 but which will have the following property: the image of
eγ ker(M3)eγ will be nonzero, while the image of eγK2,3eγ will be zero, thus proving
the claimed statement.

We begin with the following lemma, which, although not strictly needed to prove
our claim, helps in giving a clearer picture (and, moreover, it will be used to describe
explicitly the quotient eγ ker(M3)eγ/eγK2,3eγ).

Lemma 4.9.1. There exists a unique homomorphism of E0-bimodules Θ making
the following diagram commute:

E3 E3/F1E
0

(
(F 2E0)∨,finite

)J J

E3

E3/k · e1φ1

ker(S3).

quot.

ζ · (−)

∃!Θ

∼=

quot.

∼=

Proof. Uniqueness is clear, but let us nevertheless assume that such a map Θ is
given, in order to find an explicit formula. Let us start by computing the action of
ζ on the elements of F 2E3: let w ∈ W̃ be such that `(s1w) = `(w) + 1; we compute:

ζ · φs0s1w = (τs1 · τs0 + e1τs0 + e1) · φs0s1w
= (τs1 + e1) ·

(
φc−1s1w − e1φs0s1w

)
+ e1φs0s1w

= φw − e1φs0s1w + e1φs0s1w

= φw.

By applying the automorphism Γ$ we also get that, for all v ∈ W̃ be such that
`(s0v) = `(v) + 1, one has

ζ · φs1s0v = φv.

If there exists a homomorphism of E0-bimodules Θ as in the statement of the lemma,
then we can compute its value on the k-basis (φw)

w∈W̃ `>2 of E3/F1E
0. Indeed,

looking at the commutative diagram we get:

Θ(φs0s1w) = ζ · φs0s1w
= φw for all w ∈ W̃ such that `(s1w) = `(w) + 1,

Θ(φs1s0v) = ζ · φs1s0v
= φv for all v ∈ W̃ such that `(s0v) = `(v) + 1.
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We have thus shown uniqueness of Θ and we also know how it must be defined if
we hope to prove that indeed there exists a map with such properties. Namely, we
first define Θ as a homomorphism of k-vector spaces:

Θ: E3/F1E
0 E3/k · e1φ1

φs0s1w
(for w ∈ W̃ such that `(s1w) = `(w) + 1)

φw,

φs1s0w
(for w ∈ W̃ such that `(s0w) = `(w) + 1)

φv.

It is then clear that Θ is such that the diagram in the statement of the lemma
commutes, and it remains to show that it is a homomorphism of E0-bimodules. We
start with the following computation, for w ∈ W̃ with `(s0w) = `(w) + 1:

Θ
(
(τs0 + e1) · φs0s1s0w

)
= Θ

(
φc−1s1s0w

)
= φc−1w

= (τs0 + e1) · φs0w
= (τs0 + e1) ·Θ

(
φs0s1s0w

)
.

Exactly in the same way we would get the following equality, for all w ∈ W̃ with
`(s1w) = `(w) + 1:

Θ
(
(τs1 + e1) · φs1s0s1w

)
= (τs1 + e1) ·Θ

(
φs1s0s1w

)
.

Now, let us treat the case of length 2: let ω ∈ T 0/T 1; we compute

Θ
(
(τs0 + e1) · τ∨s0s1ω

∣∣
F 2E0

)
= Θ

(
((τs0 + e1) · τ∨s0s1ω)

∣∣
F 2E0

)
= Θ(0)

= e1φ1

= e1φω

= (τs0 + e1) · φω
= (τs0 + e1) ·Θ

(
τ∨s0s1ω

∣∣
F 2E0

)
.

Exactly in the same way we would get

Θ
(
(τs1 + e1) · τ∨s1s0ω

∣∣
F 2E0

)
= (τs1 + e1) ·Θ

(
τ∨s1s0ω

∣∣
F 2E0

)
.

Moreover, for all ω ∈ T 0/T 1 and all w ∈ W̃ with `(w) > 2, it is easy to see that

Θ
(
τω · φw

)
= τω ·Θ(φw).

And finally, for all i ∈ {0, 1} and all w ∈ W̃ with `(siw) = `(w) + 1, it is easy to see
that

Θ
(
τsi · φw

)
= 0 = τsi ·Θ

(
φw
)
.

These formulas show that Θ is a homomorphism of left E0-modules. To show that
it is also a homomorphism of right E0-modules, one could remark that Θ can also
described as

Θ: E3/F1E
0 E3/k · e1φ1

φws0s1
(for w ∈ W̃ such that `(ws0) = `(w) + 1)

φw,

φws1s0
(for v ∈ W̃ such that `(ws1) = `(v) + 1)

φw,
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and then do analogous computations.
Alternatively, one can remark that since both F1E

3 and k · e1φ1 are J-invariant,
the involutive anti-automorphism J defines involutive anti-automorphisms, which we
will still denote by J both on E3/F1E

3 and on E3/k · e1φ1. With these definitions,
and denoting by r the quotient map E3 −→ E3/F1E

3, one sees that

Θ ◦ J ◦ r = Θ ◦ r ◦ J
=
(
ζ · (−)

)
◦ J

= ζ · J(−)

= J
(
(−) · ζ

)
= J
(
ζ · (−)

)
= J ◦Θ ◦ r.

This shows that Θ commutes with J on the whole E3/F1E
3. Moreover, we know

that the formula
J(x · ϕ) = J(ϕ) · J(x)

holds for all x ∈ E0 and for all ϕ ∈ E3, hence it also holds for ϕ ∈ E3/F1E
3 and for

ϕ ∈ E3/k · e1φ1. We then see that for all x ∈ E0 and all ϕ ∈ E3/F1E
3 we have

Θ(ϕ · x) = (J ◦Θ ◦ J)(ϕ · x)

= (J ◦Θ)(J(x) · J(ϕ))

= J
(
J(x) ·Θ(J(ϕ))

)
= Θ(ϕ) · x,

completing the proof that Θ is also a homomorphism of right E0-modules. �

For the next lemma and for what will follow, recall the definitions of the maps f
and g from (50) and (51) and the notations fi and gi for their graded pieces. Recall
also the structure theorems Proposition 1.10.2 and Proposition 1.10.4.

Lemma 4.9.2. Let (E1)′ := ker(f1)⊕ ker(g1) ⊆ E1, and let us consider the decom-
position of E0-bimodules

(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′ =
⊕

j,j′,j′′∈{f1,g1}

ker(j)⊗E0 ker(j′)⊗E0 ker(j′′).

One has that the composite homomorphism of E0 bimodules

(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′ E3 E3/k · e1φ1
∼= ker(S3)

multipl. quot.

is zero on the following direct summands:

ker(f1)⊗E0 ker(f1)⊗E0 ker(f1), ker(g1)⊗E0 ker(f1)⊗E0 ker(g1),

ker(f1)⊗E0 ker(g1)⊗E0 ker(g1), ker(g1)⊗E0 ker(g1)⊗E0 ker(f1).

Moreover, for all γ ∈ Γ with γ 6= {1}, the homomorphism of E0 bimodules

eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ
multipl.−−−−−→ eγE

3

is zero on the following direct summands:

eγ ker(f1)⊗E0 ker(f1)⊗E0 ker(f1)eγ , eγ ker(g1)⊗E0 ker(f1)⊗E0 ker(g1)eγ ,

eγ ker(f1)⊗E0 ker(g1)⊗E0 ker(g1)eγ , eγ ker(g1)⊗E0 ker(g1)⊗E0 ker(f1)eγ ,

eγ ker(g1)⊗E0 ker(g1)⊗E0 ker(g1)eγ .
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Proof. The second statement clearly follows from the first one except for the lest
direct summand. For the proof of the first statement we will use that ker(g3) = k·e1φ1

(see [OS21, Preliminary Observation B) in the proof of Proposition 9.6]). Hence, we
need to show the following facts:

ker(f1)⊗E0 ker(f1)⊗E0 ker(f1) ⊆ ker(g3),

ker(g1)⊗E0 ker(f1)⊗E0 ker(g1) ⊆ ker(g3),

ker(f1)⊗E0 ker(g1)⊗E0 ker(g1) ⊆ ker(g3),

ker(g1)⊗E0 ker(g1)⊗E0 ker(f1) ⊆ ker(g3),

ker(g1)⊗E0 ker(g1)⊗E0 ker(g1) ⊆ e1E
3.

Let us prove each one of these inclusions.

• Let us treat ker(f1)⊗E0 ker(f1)⊗E0 ker(f1). Let βf , β
′
f , β

′′
f ∈ ker(f1); we compute:

ζ · βf · β′f · β′′f · ζ = ζ · βf · (ζ · β′f · ζ) · β′′f · ζ
= (ζ · βf · ζ) · β′f · (ζ · β′′f · ζ)

= βf · β′f · β′′f .

This shows that the image of the simple tensors in ker(f1)⊗E0 ker(f1)⊗E0 ker(f1)
is contained in ker(g3) = k · e1φ1, and hence the same is true for the whole image
of ker(f1)⊗E0 ker(f1)⊗E0 ker(f1), as we wanted.

• Let us treat ker(f1)⊗E0 ker(g1)⊗E0 ker(g1). Let βf ∈ ker(f1) and βg, β
′
g ∈ ker(g1);

we compute:

ζ · βf · βg · β′g · ζ = ζ · βf · βg · ζ · β′g
= ζ · βf · ζ · βg · β′g
= βf · βg · β′g,

and so we conclude as before.

• One can treat the direct summand ker(g1)⊗E0 ker(g1)⊗E0 ker(f1) exactly as the
last one.

• Let us treat ker(g1)⊗E0 ker(f1)⊗E0 ker(g1). Let βf ∈ ker(f1) and βg, β
′
g ∈ ker(g1);

we compute:

ζ · βg · βf · β′g · ζ = βg · ζ · βf · ζ · β′g
= βg · βf · β′g,

and so we conclude as before.

• Let us treat ker(g1)⊗E0 ker(g1)⊗E0 ker(g1).

In [OS21, Proposition 9.2 and its proof] it is computed that

β0,?
s0 · β

0,?
s0 = e1α

0,?
s0 = −e1α

0
s0 ,

β0,?
s1 · β

0,?
s1 = e1α

0,?
s1 = e1α

0
s1 ,

β0,?
s0 · β

0,?
s1 = 0,

β0,?
s1 · β

0,?
s0 = 0
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(the rightmost equalities in the first two lines follow from (88)). One easily see
that the four elements β0,?

s0 ⊗ β
0,?
s0 , β0,?

s1 ⊗ β
0,?
s1 , β0,?

s0 ⊗ β
0,?
s1 and β0,?

s1 ⊗ β
0,?
s0 generate

ker(g1)⊗E0 ker(g1) as an E0-bimodule (or even as a left E0-module), and that the
k-vector space

spank{e1α
0,?
s0 , e1α

0,?
s1 } = spank{e1α

0
s0 , e1α

0
s1}

is a sub-E0-bimodule of ker(g2) (actually sub-E0-left module would suffice for our
purposes, and that it is a sub-E0-bimodule would then follow), thus showing that
the image of the multiplication map

ker(g1)⊗E0 ker(g1) −→ ker(g2)

is exactly spank{e1α
0
s0 , e1α

0
s1}. Finally, we see that for all β ∈ ker(g1) the products

β ·e1α
0
s0 and β ·e1α

0
s1 lie in e1E

3, since β and e1 commute (as β ∈ ker(g1) ∼= F 1E0).
�

Remark 4.9.3. For later use we record that

eγ ker(g1) · ker(g1) = 0

for all γ ∈ Γ with γ 6= {1}, as we saw in the last part of the proof of the lemma.

In the next lemma we are going to define a homomorphism of E0-bimodules

M̂ : eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ −→ E3

that will be our starting point to define the homomorphism of E0-bimodules M̃
whose existence was claimed in (187) when we outlined the strategy of our proof.

Lemma 4.9.4. As in the last lemma, let (E1)′ := ker(f1)⊕ker(g1) ⊆ E1. Let γ ∈ Γ
with γ 6= {1}, and let us consider the decomposition of E0-bimodules

eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ =
⊕

j,j′,j′′∈{f1,g1}

eγ ker(j)⊗E0 ker(j′)⊗E0 ker(j′′)eγ .

(188)
Let us define a homomorphism of E0-bimodules

M̂ : eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ −→ E3

in the following way:

M̂ : eγ ker(f1)⊗E0 ker(f1)⊗E0 ker(g1)eγ E3

β ⊗ β′ ⊗ β′′ β · ζ · β′ · β′′,

M̂ : eγ ker(g1)⊗E0 ker(f1)⊗E0 ker(f1)eγ E3

β ⊗ β′ ⊗ β′′ β · β′ · ζ · β′′,

M̂ : eγ ker(f1)⊗E0 ker(g1)⊗E0 ker(f1)eγ E3

β ⊗ β′ ⊗ β′′ β · ζ · β′ · β′′ = β · β′ · ζ · β′′,

and as the zero map on all the remaining terms of the decomposition (188).
One has that the following diagram is commutative:

E3

eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ E3.

ζ · (−)

M

M̂
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Proof. First note that M̂ is a well defined homomorphism of E0-bimodules because
ζ ∈ Z(E0) (and hence one can define suitable E0-bilinear maps).

The fact that the diagram is commutative on all the terms where we have defined
M̂ to be the zero map follows from the fact that there also the multiplication map
is zero (Lemma 4.9.2). The fact that the diagram is commutative on the remaining
three terms is true basically by definition of ker(g1), also taking into account that
multiplication by ζ on E3 can be written equivalently on the left and on the right. �

Lemma 4.9.5. Let γ ∈ Γ with γ 6= {id, id−1}, {id3, id−3}. One has that

eγE
1 ⊗E0 E1 ⊗E0 E1eγ = eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ ,

where (E1)′ := ker(f1)⊕ ker(g1) ⊆ E1 and where the equality means that the natural
map from the right hand side to the left hand side is an isomorphism of E0-bimodules.

Proof. Recall from Proposition 1.10.2 that we have the following exact sequence of
E0-bimodules:

0 ker(f1)⊕ ker(g1) E1 E1/(ker(f1)⊕ ker(g1)) 0,

where the quotient E1/(ker(f1) ⊕ ker(g1)) has a k-basis given by the classes of the
following four elements of E1:

eid · β+
1 · eid−1 , eid · β+

s1 · eid,

eid−1 · β−1 · eid, eid−1 · β−s0 · eid−1 .

So, since γ 6= {id, id−1}, we see that

eγE
1 = eγ(E1)′, E1eγ = (E1)′eγ . (189)

Moreover, let µ ∈ T̂ 0/T 1, let w ∈ W̃ and let β ∈ {β−w , β0
w, β

+
w} (with `(w) > 1 if we

are considering β0
w). From formulas (61) we see that:

βeµ =



eµβ

eµ−1β

eµ id2β

eµ−1 id2β

eµ id−2β

eµ−1 id−2β

It follows that, writing γ = {λ, λ−1} and defining

Γγ :=
{
{λ, λ−1}, {λ id2, λ−1 id−2}, {λ id−2, λ−1 id2}

}
,

for all β ∈ E1 we have

β · eγ =
( ∑
γ′∈Γγ

eγ′
)
· β · eγ . (190)

Since γ 6= {id, id−1}, {id3, id−3}, for each γ′ ∈ Γγ we see that γ′ 6= {id, id−1}. But
then, as before, it follows that

E1 ·
( ∑
γ′∈Γγ

eγ′
)

= (E1)′ ·
( ∑
γ′∈Γγ

eγ′
)
. (191)
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Putting together what we have found, we deduce the following:

eγE
1 ⊗E0 E1 ⊗E0 E1eγ

= eγE
1 ⊗E0 E1 ⊗E0

( ∑
γ′∈Γγ

eγ′
)
· E1eγ by (190)

= eγE
1 ⊗E0 E1 ·

( ∑
γ′∈Γγ

eγ′
)
⊗E0 E1eγ

= eγ(E1)′ ⊗E0 (E1)′ ·
( ∑
γ′∈Γγ

eγ′
)
⊗E0 (E1)′eγ by (191) and (189)

= eγ(E1)′ ⊗E0 (E1)′ ⊗E0

( ∑
γ′∈Γγ

eγ′
)
· (E1)′eγ

= eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ by (190). �

We are now ready to define the map M̃ whose existence was claimed in (187).

Remark 4.9.6. Let γ ∈ Γ with γ 6= {1}, {id, id−1}, {id3, id−3}. We have the follow-
ing commutative diagram:

eγE
3 eγ · E3/F1E

3

eγE
1 ⊗E0 E1 ⊗E0 E1eγ eγE

3.

ζ · (−)

quot.

Θ

M

M̂

M̃ := (quot.) ◦ M̂

This is constructed as in the following way: we identify eγE
1⊗E0 E1⊗E0 E1eγ with

eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ following Lemma 4.9.5 (this identification clearly
preserves the multiplication mapM). The triangle on the left then makes sense and
commutes by Lemma 4.9.4. Moreover, we can define Θ as in Lemma 4.9.1, modulo
the fact that on the target we identify eγ ·E3/k ·e1φ1 with eγE

3. With this definition,
the triangle on the right commutes by the quoted lemma.

Before using the map M̃ to prove that ker(M) is not generated by its 2nd graded
piece, we need some further lemmas.

Lemma 4.9.7. Let γ ∈ Γ with γ 6= {1}, {id, id−1}, {id3, id−3}. The map

M̂ : eγE
1 ⊗E0 E1 ⊗E0 E1eγ −→ eγE

3

defined in Remark 4.9.6 satisfies the following properties, for β, β′, β′′ ∈ E1:

M̂(eγβ ⊗ β′ ⊗ β′′eγ) =


eγβ · ζ · β′ · β′′eγ if β ∈ ker(f1), (192)

eγβ · β′ · ζ · β′′eγ if β ∈ ker(g1), (193)

eγβ · β′ · ζ · β′′eγ if β′′ ∈ ker(f1), (194)

eγβ · ζ · β′ · β′′eγ if β′′ ∈ ker(g1). (195)

Proof. Let β, β′, β′′ ∈ E1. First of all we remark that it suffices to prove the formulas
only for β, β′, β′′ ∈ (E1)′ := ker(f1) ⊕ ker(g1). Indeed, first recall from the proof of
Lemma 4.9.5 (formula (190)) that we have

β′′eγ =
( ∑
γ′∈Γγ

eγ′
)
· β′′eγ ,
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where Γγ :=
{
{λ, λ−1}, {λ id2, λ−1 id−2}, {λ id−2, λ−1 id2}

}
. In particular,

eγβ ⊗ β′ ⊗ β′′eγ = eγeγβ ⊗
(
β′ ·

∑
γ′∈Γγ

eγ′
)
⊗ β′′eγeγ ,

with the same definition of Γγ as in the proof of that lemma. But now, again as in
Lemma 4.9.5, we see that

eγβ ∈ (E1)′,

β′ ·
∑
γ′∈Γγ

eγ′ ∈ (E1)′,

β′′eγ ∈ (E1)′.

Hence, if we take the formulas (192) to (195) for granted for (E1)′, we deduce that

M̂(eγβ ⊗ β′ ⊗ β′′eγ) =



eγeγβ · ζ ·
(
β′ ·

∑
γ′∈Γγ

eγ′
)
· β′′eγeγ if β ∈ ker(f1)

eγeγβ ·
(
β′ ·

∑
γ′∈Γγ

eγ′
)
· ζ · β′′eγeγ if β ∈ ker(g1)

eγeγβ ·
(
β′ ·

∑
γ′∈Γγ

eγ′
)
· ζ · β′′eγeγ if β′′ ∈ ker(f1)

eγeγβ · ζ ·
(
β′ ·

∑
γ′∈Γγ

eγ′
)
· β′′eγeγ if β′′ ∈ ker(g1)

=


eγβ · ζ · β′′eγ if β ∈ ker(f1)

eγβ · ζ · β′′eγ if β ∈ ker(g1)

eγβ · ζ · β′′eγ if β′′ ∈ ker(f1)

eγβ · ζ · β′′eγ if β′′ ∈ ker(g1).

Hence, without loss of generality, we may assume that β, β′, β′′ ∈ (E1)′, and since all
the expression involved are “trilinear”, we may further assume that either β ∈ ker(f1)
or β ∈ ker(g1) and the same for β′ and β′′.

So let us treat these eight cases:

• In the following cases the claimed formulas hold by the very definition of M̂:

Case β ∈ ker(f1), β′ ∈ ker(f1) and β′′ ∈ ker(g1),

Case β ∈ ker(g1), β′ ∈ ker(f1) and β′′ ∈ ker(f1),

Case β ∈ ker(f1), β′ ∈ ker(g1) and β′′ ∈ ker(f1).

• Assume that β ∈ ker(f1), that β′ ∈ ker(f1) and that β′′ ∈ ker(f1).

We know from Lemma 4.9.2 that eγβ · β′ · β′′eγ is zero, and a fortiori

ζ · eγβ · β′ · β′′eγ = 0 = eγβ · β′ · β′′eγ · ζ.

But it is easy to see that ζ commutes with eγβ · β′ and with β′ · β′′eγ . Recalling

that M̂(eγβ ⊗ β′ ⊗ β′′eγ) is zero by definition of M̂, we conclude that (192) and
(194) are satisfied in this case.

• Assume that β ∈ ker(g1), that β′ ∈ ker(f1) and that β′′ ∈ ker(g1).

Again we know from Lemma 4.9.2 that eγβ ·β′ ·β′′eγ is zero. Since here ζ commutes

with both eγβ and β′′eγ and since M̂(eγβ⊗β′⊗β′′eγ) is zero by definition of M̂,
we conclude that (193) and (195) are satisfied in this case.
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• The case β ∈ ker(g1), β′ ∈ ker(g1) and β′′ ∈ ker(g1) can be done exactly as the
last one.

• The case β ∈ ker(f1), β′ ∈ ker(g1) and β′′ ∈ ker(g1) and the case β ∈ ker(g1),
β′ ∈ ker(g1) and β′′ ∈ ker(f1) can be done similarly. Here one uses that

0 = eγβ · β′ · β′′eγ · ζ = eγβ · ζ · β′ · β′′eγ in the first case,

0 = ζ · eγβ · β′ · β′′eγ = eγβ · β′ · ζ · β′′eγ in the second case,

yielding that (192) and (195) are satisfied in the first case, while (193) and (194)
are satisfied in the second case. �

Lemma 4.9.8. Let γ ∈ Γ with γ 6= 1. The set of elements of eγE
3 which are

annihilated on the left by both τs0s1 and τs1s0 coincides with eγF
1E3.

Proof. It is clear that every element in eγF
1E3 is annihilated by both τs0s1 and

τs1s0 . Let us prove the converse. We assume that γ = {λ, λ−1} with λ 6= λ−1 (the
case λ = λ−1 is similar). The following is a k-basis of eγE

3:

eλφ1, eλ−1φ1,

eλφ(s0s1)is0 , eλ−1φs0(s1s0)i for i ∈ Z>0,

eλφ(s1s0)is1 , eλ−1φs1(s0s1)i for i ∈ Z>0,

eλφ(s0s1)i , eλ−1φ(s0s1)i for i ∈ Z>1,

eλφ(s1s0)i , eλ−1φ(s1s0)i for i ∈ Z>1.

Let us consider φ ∈ eγE3 with the property that it is annihilated by both τs0s1 and
τs1s0 . Since we have already said that every element in eγF

1E3 is annihilated by
both τs0s1 and τs1s0 , we may assume that φ ∈ F 2E2 and prove that it must be 0.
We write φ as

φ =
∑
i∈Z>1

aieλφ(s0s1)i +
∑
i∈Z>1

bieλφ(s1s0)i +
∑
i∈Z>1

cieλφ(s0s1)is0 +
∑
i∈Z>1

dieλφ(s1s0)is1

for suitable ai, bi, ci, di ∈ k (almost all of them equal to zero). We compute

τs0s1 · φ = +
∑
i∈Z>1

bieλφ(s1s0)i−1 +
∑
i∈Z>1

dieλφ(s1s0)i−1s1 ,

τs1s0 · φ =
∑
i∈Z>1

aieλφ(s0s1)i−1 +
∑
i∈Z>1

cieλφ(s0s1)i−1s0 ,

from which we see that for all i ∈ Z>1 all the coefficients ai, bi, ci and di must be
zero, as we wanted. �

Lemma 4.9.9. Let γ ∈ Γ with γ 6= {1}, {id, id−1}, {id3, id−3}. The map

M̃ : eγE
1 ⊗E0 E1 ⊗E0 E1eγ −→ eγ · E3/F1E

3

defined in Remark 4.9.6 is zero on eγK2,3eγ, where

K2,3 := ker(M2)⊗E0 E1 + E1 ⊗E0 ker(M2) ⊆ E1 ⊗E0 E1 ⊗E0 E1.
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Proof. Let x ∈ eγ ·E1 ⊗E0 ker(M2) ·eγ ; we want to prove that M̃(x) = 0. The proof

in the case that x ∈ eγker(M2)⊗E0 E1eγ is completely analogous, and this allows
us to conclude more generally for x ∈ K2,3.

Without loss of generality we may assume that x is of the form

x = eγβ ⊗ yeγ for β ∈ E1 and y ∈ ker(M2).

And, using that eγE
1 = eγ ker(f1)⊕eγ ker(g1) (see (189)), without loss of generality

we may further assume that either β ∈ ker(f1) or β ∈ ker(g1). If we are in the case
β ∈ ker(f1), then applying the formulas in Lemma 4.9.7, we see that

M̂(eγβ ⊗ yeγ) = eγβ · ζ · M2(yeγ) = eγβ · ζ · 0.

And so a fortiori M̃(eγβ ⊗ yeγ) is zero.
Now, it remains to treat the case β ∈ ker(g1). Since ker(g1) is generated by

β0,?
s0 and β0,?

s1 as a left E0-module, we may assume without loss of generality that
β is equal either to β0,?

s0 or to β0,?
s1 . We treat only the case β = β0,?

s0 , the other
one being completely analogous. As in the proof of Lemma 4.9.2, we see that, as
γ 6= {id, id−1}, {id, id−3}, one has

E1 ⊗E0 E1eγ = (ker(f1)⊕ ker(g1))⊗E0 E1eγ .

We can therefore write xeγ as a sum of simple tensors of the following form:

xeγ =
∑
i

βif ⊗ βieγ +
∑
i

βig ⊗ β′ieγ

for some βif ∈ ker(f1), some βig ∈ ker(f1) and some βi, β
′
i ∈ E1.

We want to compute τs1s0 · M̂(eγβ ⊗ yeγ) and τs0s1 · M̂(eγβ ⊗ yeγ), and prove
that they both lie in F1E

3. If we prove this, then Lemma 4.9.8 (together with the

definition of M̃ in terms of M̂) yields that M̃(eγβ ⊗ yeγ) is 0.

We start with the computation of τs0s1 · M̂(eγβ ⊗ yeγ):

τs0s1 · M̂(eγβ ⊗ yeγ)

= τs0s1 · M̂
(
eγβ

0,?
s0 ⊗

(∑
i βif ⊗ βieγ +

∑
i βig ⊗ β′ieγ

))
=
∑

i τs0s1 · eγβ
0,?
s0 · βif · ζ · βieγ +

∑
i τs0s1 · eγβ

0,?
s0 · βig · ζ · β′ieγ

by Lemma 4.9.7

=
∑

i τs0s1 · eγβ
0,?
s0 · βif · ζ · βieγ

since eγ ker(g1) · ker(g1) = 0 (Remark 4.9.3)

=
∑

i ζ · eγβ
0,?
s0 · βif · ζ · βieγ

since τs1s0 , e1τs0 , e1τs1 and e1 all act by 0 on eγβ
0,?
s0

=
∑

i eγβ
0,?
s0 · ζ · βif · ζ · βieγ

=
∑

i eγβ
0,?
s0 · βif · βieγ

= eγβ
0,?
s0 ·

(∑
i βif · βieγ +

∑
i βig ⊗ β′ieγ

)
since eγ ker(g1) · ker(g1) = 0 (Remark 4.9.3)

= eγβ
0,?
s0 · M2(xeγ)

= 0.
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Now we compute τs1s0 · M̂(eγβ ⊗ yeγ):

τs1s0 · M̂(eγβ ⊗ yeγ) = M̂(eγτs1s0 · β0,?
s0 ⊗ yeγ)

= M̂(0⊗ yeγ)

= 0. �

The next remark shows that the map M̂ alone is not useful for our purposes,
and that we really need the map M̃ (compare this with the strategy outlined at the
beginning of the section).

Remark 4.9.10. With notation and assumptions as in the last lemma, we see that
it is not true that M̂ is zero on eγK2,3eγ . Indeed:

M̂
(
eγβ

0,?
s0 ⊗ β

−
1 ⊗ β

+
1 eγ

)
= eγβ

0,?
s0 · β

−
1 · ζ · β

+
1 eγ

by Lemma 4.9.7

= eγβ
0,?
s0 · β

−
1 · τs0s1 · β

+
1 eγ

= −eγβ0,?
s0 · α

0
s0s1eγ

see, e.g., the definition of R2 in (170)

= −eγβ0,?
s0 · α

0,?
s0s1eγ

by (88) and since eγ and β0,?
s0 commute

= −eγτs0 · φs0s1eγ
by (111)

= −eγφc−1s1eγ ,

and this is nonzero, even though eγβ
0,?
s0 ⊗ β−1 ⊗ β

+
1 eγ ∈ K2,3 because β−1 · β

+
1 = 0.

Lemma 4.9.11. Let γ ∈ Γ with γ 6= {1}, {id, id−1}, {id3, id−3}, and let

x := (τs1 + e1) · β+
1 ⊗ β

0
s−1
1
⊗ β+

1 + (τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 .

One has that the map M̃ is nonzero at eγxeγ.

Proof. We have to compute the values of M̂ at xγ,1 := eγ(τs1 +e1) ·β+
1 ⊗β0

s−1
1

⊗β+
1 eγ

and at xγ,0 := eγ(τs0 +e1) ·β−1 ⊗β0
s−1
0

⊗β−1 eγ and show that their sum does not lie in

F1E
3. Before starting we recall from Proposition 1.10.2 that the following elements

lie in ker(f1):

β+
1 − 2eidβ

0
s0 − eidβ

+
s1s0 , β−1 + 2eid−1β0

s1 − eid−1β−s0s1 ,

and therefore

eγβ
+
1 ∈ ker(f1), eγβ

−
1 ∈ ker(f1). (196)
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We start with the computation of M̂(xγ,1):

M̂(xγ,1) = M̂
(
eγ(τs1 + e1) · β+

1 ⊗ β
0
s−1
1
⊗ β+

1 eγ

)
= M̂

(
eγτs1 · β+

1 ⊗ β
0
s−1
1
⊗ β+

1 eγ

)
= M̂

(
eγτs1 · eγβ+

1 ⊗ β
0
s−1
1
⊗ β+

1 eγ

)
= eγτs1 · β+

1 · ζ · β
0
s−1
1
· β+

1 eγ
by Lemma 4.9.7, since
τs1eγβ

+
1 ∈ ker(f1) by (196)

= eγτs1 · eγβ+
1 · ζ · α

+

s−1
1

eγ see, e.g., (170)

= eγτs1 · eγβ+
1 · (τs1s0 + e1τs1 + e1) · α+

s−1
1

eγ as β+
1 · τs0 = 0

= eγτs1 · eγβ+
1 · τs1s0 · α

+

s−1
1

eγ as (τs1 + e1) · α+

s−1
1

= 0

= eγτs1 · eγβ+
1 · α

+

s1s0s
−1
1

eγ

= eγτs1 · eγφs1s0s−1
1
eγ by (114)

= eγφs0s1 .

Now, to compute M̂(xγ,0), we first remark that M̂ commutes with Γ$: indeed first
of all, defining (E1)′ := ker(f1)⊕ ker(g1), one sees that it suffices to prove that the
map

M̂ : eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ −→ E3

commutes with Γ$, since the identification

eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ = eγE
1 ⊗E0 E1 ⊗E0 E1eγ

of Lemma 4.9.5 commutes with Γ$. Then, since Γ$(ζ) = ζ, we see that the decom-
position

eγ(E1)′ ⊗E0 (E1)′ ⊗E0 (E1)′eγ =
⊕

j,j′,j′′∈{f1,g1}

eγ ker(j)⊗E0 ker(j′)⊗E0 ker(j′′)eγ

is preserved by Γ$, and so it suffices to prove the statement on each of these terms,
and this can be immediately done by looking at the explicit definition of M̂ on such
term (and using again that Γ$(ζ) = ζ).

Therefore, we have seen that M̂ commutes with Γ$, and so we can easily compute
M̂(xγ,0) knowing already M̂(xγ,1):

M̂(xγ,0) = M̂(−Γ$(xγ,1))

= Γ$(−M̂(xγ,1))

= Γ$(−eγφs0s1)

= −eγφs1s0 .

We see that the sum M̂(xγ,0) + M̂(xγ,1) does not lie in F1E
0, as we wanted. �

We are now able to prove the main result of this section, thus completing the
proof of Theorem 4.8.1.

Corollary 4.9.12. Let

K2,3 := ker(M2)⊗E0 E1 + E1 ⊗E0 ker(M2) ⊆ T 3
E0E

1,

as in Theorem 4.8.1. One has that the inclusion K2,3 ⊆ ker(M3) is not an equality.
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Proof. There exists γ ∈ Γ with γ 6= {1}, {id, id−1}, {id3, id−3}; indeed, if p > 7 then
this is clear because

#Γ =
p− 1

2
+ 1 > 4.

If instead p = 5, then we see that {id3, id−3} = {id, id−1} and that we may choose
γ = {χ0}, where χ0 is the quadratic character.

In Lemma 4.9.9 we have seen that the map M̃ is zero on eγK2,3eγ , whereas in

Lemma 4.9.11 we have seen that M̃(eγxeγ) is nonzero, where

x := (τs1 + e1) · β+
1 ⊗ β

0
s−1
1
⊗ β+

1 + (τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 .

Since x ∈ ker(M3) (see for example Remark 4.8.2, or for the proof Lemma 4.6.5),
the result follows. �

Remark 4.9.13. Let γ ∈ Γ with γ 6= {1}, {id, id−1}, {id3, id−3}. It is possible to
describe the “eγ-component” of ker(M3)/K2,3. Let us refer to the following diagram,
which we described in Remark 4.9.6:

eγE
3 eγ · E3/F1E

3

eγE
1 ⊗E0 E1 ⊗E0 E1eγ eγE

3.

ζ · (−)

quot.

Θ

M

M̂

M̃ := (quot.) ◦ M̂

We have the following facts.

(i) Let us define K
(γ)
3 := eγ · (ker(M3)/K2,3). One has:

K
(γ)
3 := eγ ·

(
ker(M3)/K2,3

)
∼= eγ ·

(
ker(M3)/K2,3

)
· eγ

∼= (eγ ker(M3)eγ)/(eγK2,3eγ).

(ii) eγK2,3eγ = ker(M̃).

(iii) K
(γ)
3
∼= ker(Θ).

(iv) Explicitly, as a k-vector space

K
(γ)
3
∼=

{
kuλ ⊕ kuλ−1 if γ = {λ, λ−1} with λ 6= λ−1,

kuλ if γ = {λ} (i.e., if γ = {χ0}),

where uλ and uλ−1 are indeterminates. Moreover, the structure of E0-bimodule

is the following: for µ ∈ T̂ 0/T 1 and for λ ∈ γ, the idempotent eλ acts on uµ as
the Kronecker symbol δµ,λ (both on the left and on the right), whereas both
τs0 and τs1 act by 0 on uµ (both on the left and on the right).

Proof. Let us prove the four statements.
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(i) Let us set

x := (τs1 + e1) · β+
1 ⊗ β

0
s−1
1
⊗ β+

1 + (τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 .

and let us recall from Lemma 4.6.5 that ker(M3)/K2,3 is generated as a k-
vector space by the elements τω · x for ω ∈ T 0/T 1, or, equivalently, by the

elements eµx for µ ∈ T̂ 0/T 1. It is easy to see that eµx = xeµ = eµxeµ, and so
the first isomorphism in (i) follows, and the second is clear.

(ii) We have proved in Lemma 4.9.9 that eγK2,3eγ ⊆ ker(M̃), so it remains to prove

the reverse inclusion. By the commutative diagram ker(M̃) ⊆ eγ ker(M3)eγ ,
and so, by what we have said above about ker(M3)/K2,3, we may write an

element y ∈ ker(M̃) as y = z+aλeλxeλ+aλ−1eλ−1xeλ−1 for some z ∈ eγK2,3eγ
and some aλ, aλ−1 ∈ k. Let λ′ = λ or λ′ = λ−1. The computation we made in
the proof of Lemma 4.9.11 then shows that

M̃(eλ′xeλ′) = M̃(eλ′eγxeγeλ′)

= eλ′ · eγφs0s1 − eγφs1s0
= eλ′ · φs0s1 − φs1s0 ,

where (?) means the class of (?) in E3/F1E
3. Hence, we see that M̃(eλxeλ)

and M̃(eλ−1xeλ−1) are linearly independent if λ 6= λ−1, respectively that

M̃(eλxeλ) is nonzero if λ = λ−1. Looking again at the equality

y = z + aλeλxeλ + aλ−1eλ−1xeλ−1 ,

we see that y must be equal to z, completing the proof of the inclusion
ker(M̃) ⊆ eγK2,3eγ .

(iii) The map M̃ restricted to eγ ker(M3)eγ has values in ker(Θ) by the commuta-
tive diagram, and so. taking (ii) into account, we see that it induces an injective

homomorphism of E0-bimodules from K
(γ)
3 to ker(Θ). But this map is also sur-

jective because, looking at the explicit description of Θ (proof of Lemma 4.9.1)
one sees that ker(Θ) = spank

{
eλ · φs0s1 − φs1s0 , eλ−1 · φs0s1 − φs1s0

}
, and then

we have shown in the preceding part of the proof that eγK2,3eγ surjects onto
this space.

(iv) The claimed explicit description follows from the explicit description of

ker(Θ) = spank
{
eλ · φs0s1 − φs1s0 , eλ−1 · φs0s1 − φs1s0

}
. �

Remark 4.9.14. Before Lemma 4.6.2 we claimed without proof that the map R3

is not Γ$-invariant nor J-invariant. As we now know that K2,3 is properly contained
in ker(M3) (Corollary 4.9.12), looking at the statement of Lemma 4.6.5 we see that

Γ$(R3(φ1))−R3(φ1) /∈ K2,3.

This clearly excludes the possibility thatR3(φ1) is Γ$-invariant (since Γ$(φ1) = φ1).
But is also excludes the possibility that R3(φ1) is J-invariant: indeed, in Lemma 4.6.4
we have proved the congruence

J(R3(φ1)) ≡ Γ$(R3(φ1)) mod K2,3,

and so if we had J-invariance, we would obtain that Γ$(R3(φ1)) − R3(φ1) ∈ K2,3

(using also that J(φ1) = φ1), contradicting what we said above.
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4.10 The Ext-algebra in terms of generators and rela-
tions

Assumptions. We assume that G = SL2(Qp) with p 6= 2, 3 (with the fixed choices
of T, of I, of the positive root and of the Chevalley system as in Section 1.5).
Furthermore, we choose π = p. The elements (β−w )w, (β0

w)w, (β+
w )w, (α−w)w, (α0

w)w,
(α+

w)w, and (φw)w are chosen as in Subsection 4.5.a.

In this section we will compute a presentation of E∗ as a k-algebra, and, in par-
ticular, we will prove that E∗ is finitely presented as a k-algebra. We will proceed
as follows: we will compute a presentation of E1 as an E0-bimodule or, more pre-
cisely, as a left module over E0 ⊗k (E0)op (see Lemma 4.10.1) and we will compute
a presentation of the Hecke algebra E0 as a k-algebra (see Lemma 4.10.1). It is then
easy to show that combining these two presentations one obtains a presentation of
the tensor algebra T ∗E0E

1 as a k-algebra (see Lemma 4.10.3). We will then put this
together with the presentation of E∗ as a quotient of T ∗E0E

1 already seen in Remark
4.8.2, to finally achieve a presentation of E∗ as a k-algebra (see Proposition 4.10.4).

Let us start by fixing once and for all a generator ω0 of the cyclic group T 0/T 1:

T 0/T 1 = 〈ω0〉, (197)

and recall from (47) we denote by uω0 the unique element of (O/M)× such that

ω0 =

(
u−1
ω0

0
0 uω0

)
.

This definition actually makes sense also for G = SL2(F) where F is an arbitrary
locally compact non-archimedean field, and in Lemma 4.10.2 we will work under
these more general assumptions.

In the next lemma we compute a presentation of E1 as an E0-bimodule (more
precisely, as a left module over E0 ⊗k (E0)op).

Lemma 4.10.1. Let

M :=
4⊕
i=1

E0 ⊗k E0,

endowed with the natural structure making it into a free E0⊗k (E0)op-left-module of

rank 4: call the canonical basis
(
β̂−1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

)
. Let us consider the submodule N

generated by the following elements:

τs1 · β̂−1 , τs0 · β̂+
1 ,

β̂+
1 · τs0 , β̂−1 · τs1 ,

(τs0 + e1) · β̂−1 · (τs0 + e1)

+ 2eidβ̂0
s0 + τ

p−1
2

ω0 · β̂+
1 ,

(τs1 + e1) · β̂+
1 · (τs1 + e1)

− 2eid−1 β̂0
s1 + τ

p−1
2

ω0 · β̂−1 ,

τs0 · β̂0
s1 + β̂0

s0 · τs1 , τs1 · β̂0
s0 + β̂0

s1 · τs0 ,

(τs0 + e1) · β̂0
s0 + eidτs0 · β̂−1 , (τs1 + e1) · β̂0

s1 − eid−1τs1 · β̂+
1 ,

β̂0
s0 · (τs0 + e1) + eid−1 β̂−1 · τs0 , β̂0

s1 · (τs1 + e1)− eidβ̂
+
1 · τs1 ,

τω0 · β̂−1 − u
−2
ω0
β̂−1 · τω0 , τω0 · β̂+

1 − u
2
ω0
β̂+

1 · τω0 ,

τω0 · β̂0
s0 − β̂0

s0 · τω−1
0
, τω0 · β̂0

s1 − β̂0
s1 · τω−1

0
.
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Denote by β̃−1 , β̃+
1 , β̃0

s0 and β̃0
s1 respectively the images of β̂−1 , β̂+

1 , β̂0
s0 and β̂0

s1 in
M/N . One has an isomorphism of E0 ⊗k (E0)op-left-modules

M/N E1

β̃−1 β−1 ,

β̃+
1 β+

1 ,

β̃0
s0 β0

s0 ,

β̃0
s1 β0

s1 .

P

Proof. To show that we indeed have a well defined homomorphism of E0⊗k (E0)op-
left-modules it suffices to show that the elements of E1 that we obtain from the
elements in the list defining N by replacing β̂−1 , β̂+

1 , β̂0
s0 and β̂0

s1 respectively by β−1 ,
β+

1 , β0
s0 and β0

s1 are all zero. I.e., we want to say that the following elements are all
zero:

τs1 · β−1 , τs0 · β+
1 , (198)

β+
1 · τs0 , β−1 · τs1 , (199)

(τs0 + e1) · β−1 · (τs0 + e1)

+ 2eidβ
0
s0 + τ

p−1
2

ω0 · β+
1 ,

(τs1 + e1) · β+
1 · (τs1 + e1)

− 2eid−1β0
s1 + τ

p−1
2

ω0 · β−1 ,
(200)

τs0 · β0
s1 + β0

s0 · τs1 , τs1 · β0
s0 + β0

s1 · τs0 , (201)

(τs0 + e1) · β0
s0 + eidτs0 · β−1 , (τs1 + e1) · β0

s1 − eid−1τs1 · β+
1 , (202)

β0
s0 · (τs0 + e1) + eid−1β−1 · τs0 , β0

s1 · (τs1 + e1)− eidβ
+
1 · τs1 , (203)

τω0 · β−1 − u
−2
ω0
β−1 · τω0 , τω0 · β+

1 − u
2
ω0
β+

1 · τω0 , (204)

τω0 · β0
s0 − β

0
s0 · τω−1

0
, τω0 · β0

s1 − β
0
s1 · τω−1

0
. (205)

For line (198) see (63), for line (199) see (65). Regarding line (200), using again such
results and also (61) and (66), we compute

(τs0 + e1) · β−1 · (τs0 + e1) = τs0 · β−1 · τs0 + e1 · β−1 · τs0 + τs0 · β−1 · e1 + e1 · β−1 · e1

= τs0 · β−s0 + e1β
−
s0 − eid2β+

s0

=
(
−e1β

−
s0 − 2eidβ

0
s0 + eid2β+

s0 − β
+
c−1

)
+ e1β

−
s0 − eid2β+

s0

= −2eidβ
0
s0 − τ

p−1
2

ω0 · β+
1 .

Applying the automorphism Γ$, we also find that

(τs1 + e1) · β+
1 · (τs1 + e1) = Γ$

(
(τs0 + e1) · β−1 · (τs0 + e1)

)
= Γ$

(
−2eidβ

0
s0 − τ

p−1
2

ω0 · β+
1

)
= 2eid−1β0

s1 − τ
p−1

2
ω0 · β−1 .

So this shows that the elements in the line (200) are zero. To show that the elements
in line (201) are zero it suffices to use again the formulas (63) and (65). Similarly, for
line (202) we use again (66) and for line (203) we use instead (67) and (68). Finally,
for lines (204) and (205) we use (59) and (60).

226



Now, it remains to prove injectivity and surjectivity of our homomorphism P .
Surjectivity is clear from the fact that the elements β−1 , β+

1 , β0
s0 and β0

s1 generate E1

as an E0-bimodule (see Lemma 1.10.3). To prove injectivity, we adopt the following
strategy: we fix a k-basis B of E1, and, using surjectivity, for all b ∈ B we fix
a preimage mb ∈ M/N (in other words we are constructing a section of P , as a
homomorphism of k-vector spaces only). If we prove that the elements mb generate
M/N as a k-vector space then injectivity of P follows, because the family (mb)b∈B
is made of linearly independent elements.

So, let us pursue the above strategy to prove injectivity. Let us consider the
following list: on the second/third column we of course have a k-basis of E1. It is
also easy to see that the elements in the first column are mapped to the elements
on the right column by P . Therefore, we are exactly in the setting outlined above,
and it remains to prove that the elements in the first column generate M/N as a
k-vector space.

β̃0
s1 · τ(s0s1)j · τω 7→ β0

s1 · τ(s0s1)j · τω = β0
s1(s0s1)jω ω ∈ T 0/T 1, j ∈ Z>0,

β̃0
s0 · τs1(s0s1)j · τω 7→ β0

s0 · τs1(s0s1)j · τω = β0
s0s1(s0s1)jω ω ∈ T 0/T 1, j ∈ Z>0,

β̃0
s0 · τ(s1s0)j · τω 7→ β0

s0 · τ(s1s0)j · τω = β0
s0 · τ(s1s0)j · τω ω ∈ T 0/T 1, j ∈ Z>0,

β̃0
s1 · τs0(s1s0)j · τω 7→ β0

s1 · τs0(s1s0)j · τω = β0
s1 · τs0(s1s0)j · τω ω ∈ T 0/T 1, j ∈ Z>0,

β̃−1 · τω 7→ β−1 · τω = β−ω ω ∈ T 0/T 1,

β̃+
1 · τω 7→ β+

1 · τω = β+
ω ω ∈ T 0/T 1,

β̃−1 · τ(s0s1)j · τω 7→ β−1 · τ(s0s1)j · τω = β−
(s0s1)jω

ω ∈ T 0/T 1, j ∈ Z>1,

β̃−1 · τs0(s1s0)j · τω 7→ β−1 · τs0(s1s0)j · τω = β−
s0(s1s0)jω

ω ∈ T 0/T 1, j ∈ Z>0,

β̃+
1 · τ(s1s0)j · τω 7→ β+

1 · τ(s1s0)j · τω = β+
(s1s0)jω

ω ∈ T 0/T 1, j ∈ Z>1,

β̃+
1 · τs1(s0s1)j · τω 7→ β+

1 · τs1(s0s1)j · τω = β+
s1(s0s1)jω

ω ∈ T 0/T 1, j ∈ Z>0,

τ(s1s0)j · β̃−1 · τω 7→ τ(s1s0)j · β−1 · τω = β−
(s1s0)jω

ω ∈ T 0/T 1, j ∈ Z>1,

τs0(s1s0)j · β̃−1 · τω 7→ τs0(s1s0)j · β−1 · τω = − β+
s0(s1s0)jω

ω ∈ T 0/T 1, j ∈ Z>0,

τ(s0s1)j · β̃+
1 · τω 7→ τ(s0s1)j · β+

1 · τω = β+
(s0s1)jω

ω ∈ T 0/T 1, j ∈ Z>1,

τs1(s0s1)j · β̃+
1 · τω 7→ τs1(s0s1)j · β+

1 · τω = − β−
s1(s0s1)jω

ω ∈ T 0/T 1, j ∈ Z>0.

It is easy to see that, in order to prove that the elements in the first column generate
M/N as a k-vector space, it suffices to prove that, for all v, w ∈ W̃ , the following
elements lie in the sub-k-vector space V generated by the first column above:

τv · β̃−1 · τw, τv · β̃+
1 · τw, τv · β̃0

s0 · τw, τv · β̃0
s1 · τw.

We are going to prove this claim inductively. Namely, we will prove by induction
on `(v) + `(w) that the four elements above all lie in V . Let us treat the case
`(v) + `(w) = 0. By definition of N the following equalities are clearly true:

τω0 · β̃−1 = u−2
ω0
β̃−1 · τω0 , τω0 · β̃+

1 = u2
ω0
β̃+

1 · τω0 ,

τω0 · β̃0
s0 = β̃0

s0 · τω−1
0
, τω0 · β̃0

s1 = β̃0
s1 · τω−1

0
.
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But then we see inductively that for all n ∈ Z>0 we have

τωn0 · β̃
−
1 = u−2n

ω0
β̃−1 · τωn0 , τωn0 · β̃

+
1 = u2n

ω0
β̃+

1 · τωn0 ,

τωn0 · β̃0
s0 = β̃0

s0 · τω−n0
, τωn0 · β̃0

s1 = β̃0
s1 · τω−n0

.
(206)

Now we look again at the elements

τv · β̃−1 · τw, τv · β̃+
1 · τw, τv · β̃0

s0 · τw, τv · β̃0
s1 · τw

under our assumption that `(v) + `(w) = 0. Equivalently, we are assuming that
v, w ∈ T 0/T 1. Since T 0/T 1 is cyclic generated by ω0, we can apply formulas (206),

which allows us to rewrite the element τv · β̃−1 · τw, up to a coefficient, in the form

β̃−1 · τω for a suitable ω ∈ T 0/T 1, and now β̃−1 · τω lies in V by definition of V . In the

same way, we treat the elements τv · β̃+
1 · τw, τv · β̃0

s0 · τw and τv · β̃0
s1 · τw.

Now it remains to consider the induction step. We distinguish some different
cases.

• Let us consider first τv · β̃−1 · τw and τv · β̃+
1 · τw.

Since both β̂+
1 ·τs0 and β̂−1 ·τs1 lie in N , we see that it suffices to treat the following

cases:

τv · β̃−1 · τω for some ω ∈ T 0/T 1,

τv · β̃+
1 · τω for some ω ∈ T 0/T 1,

τv · β̃−1 · τs0w′ for some w′ ∈ W̃ such that `(s0w
′) = `(w′) + 1,

τv · β̃+
1 · τs1w′ for some w′ ∈ W̃ such that `(s1w

′) = `(w′) + 1.

Let us look at the first two elements. Since both τs1 · β̂−1 and τs0 · β̂+
1 lie in V , it

suffices to consider the following cases:

τ(s1s0)jω′ · β̃−1 · τω for some j ∈ Z>0 and some ω, ω′ ∈ T 0/T 1,

τs0(s1s0)jω′ · β̃−1 · τω for some j ∈ Z>0 and some ω, ω′ ∈ T 0/T 1,

τ(s0s1)jω′ · β̃+
1 · τω for some j ∈ Z>0 and some ω, ω′ ∈ T 0/T 1,

τs1(s0s1)jω′ · β̃+
1 · τω for some j ∈ Z>0 and some ω, ω′ ∈ T 0/T 1.

If ω′ = 1 then these elements are in V because they are in the list of generators of
V , and we can reduce to this situation exactly as we did in the case `(v)+`(w) = 0.

Now we have to treat the elements

τv · β̃−1 · τs0 · τw′ for some w′ ∈ W̃ such that `(s0w
′) = `(w′) + 1,

τv · β̃+
1 · τs1 · τw′ for some w′ ∈ W̃ such that `(s1w

′) = `(w′) + 1.

If `(v) = 0, we reduce as usual to the case v = 1, in which case we see that
the above elements are in the list of generators of V . So we might assume that

`(v) > 1. In this case, using again that both τs1 · β̂−1 and τs0 · β̂+
1 lie in V , we are

reduced to considering elements of the following forms:

τv′ · τs0 · β̃−1 · τs0 · τw′ for some w′ ∈ W̃ such that `(s0w
′) = `(w′) + 1,

τv′ · τs1 · β̃+
1 · τs1 · τw′ for some w′ ∈ W̃ such that `(s1w

′) = `(w′) + 1.
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Now we use that the two elements

(τs0 + e1) · β̂−1 · (τs0 + e1) + 2eidβ̂0
s0 + τ

p−1
2

ω0 · β̂+
1 ,

(τs1 + e1) · β̂+
1 · (τs1 + e1)− 2eid−1 β̂0

s1 + τ
p−1

2
ω0 · β̂−1

are both in N , and we combine this with the inductive hypothesis that all of the
elements

τv′′ · β̃−1 · τw′′ , τv′′ · β̃+
1 · τw′′ , τv′′ · β̃0

s0 · τw′′ , τv′′ · β̃0
s1 · τw′′

lie in V for all v′′, w′′ ∈ W̃ such that `(v′′) + `(w′′) < `(v) + `(w). By combining

these two facts, it is then easy to conclude that the elements τv′s0 · β̃
−
1 · τs0w′ and

τv′s1 · β̃
+
1 · τs1w′ lie in V .

• Now we consider the elements τv · β̃0
si · τw (for i ∈ {0, 1}) under the additional

assumption that `(vsi) = `(v) + 1 and `(siw) = `(w) + 1.

Making v explicit, we see that we are dealing with the following elements:

τ(s0s1)iω · β̃0
s0 · τw for i ∈ Z>0, ω ∈ T 0/T 1, w ∈ W̃ with `(s0w) = `(w) + 1,

τs1(s0s1)iω · β̃0
s0 · τw for i ∈ Z>0, ω ∈ T 0/T 1, w ∈ W̃ with `(s0w) = `(w) + 1,

τ(s1s0)iω · β̃0
s1 · τw for i ∈ Z>0, ω ∈ T 0/T 1, w ∈ W̃ with `(s1w) = `(w) + 1,

τs0(s1s0)iω · β̃0
s1 · τw for i ∈ Z>0, ω ∈ T 0/T 1, w ∈ W̃ with `(s1w) = `(w) + 1.

As usual, we see that we can assume without loss of generality that ω = 1, and
then, using repeatedly that the elements

τs0 · β̂0
s1 + β̂0

s0 · τs1 , τs1 · β̂0
s0 + β̂0

s1 · τs0

are in N , we rewrite the elements we are dealing with as

τ(s0s1)i · β̃0
s0 · τw = β̃0

s0 · τ(s1s0)i · τw
= β̃0

s0 · τ(s1s0)iw

for i ∈ Z>0 and for w ∈ W̃ with `(s0w) = `(w) + 1,

τs1(s0s1)i · β̃0
s0 · τw = −β̃0

s1 · τs0(s1s0)i · τw
= −β̃0

s1 · τs0(s1s0)iw

for i ∈ Z>0 and for w ∈ W̃ with `(s0w) = `(w) + 1,

τ(s1s0)i · β̃0
s1 · τw = β̃0

s1 · τ(s0s1)i · τw
= β̃0

s1 · τ(s0s1)iw

for i ∈ Z>0 and for w ∈ W̃ with `(s1w) = `(w) + 1,

τs0(s1s0)i · β̃0
s1 · τw = −β̃0

s0 · τs1(s0s1)i · τw
= −β̃0

s0 · τs1(s0s1)iw

for i ∈ Z>0 and for w ∈ W̃ with `(s1w) = `(w) + 1.

So, up to a sign, we see that we have obtained elements in the list of generators
of V .
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• Now we consider the elements τv · β̃0
si · τw (for i ∈ {0, 1}) under the additional

assumption that `(siw) = `(w)− 1.

In this case, we use that the elements

β̂0
s0 · (τs0 + e1) + eid−1 β̂−1 · τs0 , β̂0

s1 · (τs1 + e1)− eidβ̂
+
1 · τs1

lie in N . Indeed, we can do the following computation (we only treat the case
i = 0, the other being completely analogous):

τv · β̃0
s0 · τw = τv · β̃0

s0 · τs0 · τs−1
0 w

= τv ·
(
−β̃0

s0 · e1 − eid−1 β̃−1 · τs0
)
· τs−1

0 w

= −τv · β̃0
s0 · τs−1

0 we1 − τveid−1 · β̃−1 · τw.

Using the definitions of e1 and eid−1 , we see that we are dealing with terms of the
form

τv · β̃0
s0 · τs−1

0 wω for some ω ∈ T 0/T 1,

τvω′ · β̃−1 · τw for some ω′ ∈ T 0/T 1.

If we look at the element in the first line, we have `(v)+`(s−1
0 wω) = `(v)+`(w)−1,

and so we can apply the inductive hypothesis, while if we look at the element in
the second line we have `(vω′) + `(w) = `(v) + `(w), and so we can use the fact

that we have already studied the element τvω′ · β̃−1 · τw. In conclusion, we see that

τv · β̃0
s0 · τw lies in V .

• Now it remains to treat the elements τv ·β̃0
si ·τw (for i ∈ {0, 1}) under the additional

assumption that `(vsi) = `(v)− 1.

This time the relevant elements in N are

(τs0 + e1) · β̂0
s0 + eidτs0 · β̂−1 , (τs1 + e1) · β̂0

s1 − eid−1τs1 · β̂+
1

and the proof is completely analogous to the last one. For completeness, we add
the relevant computations:

τv · β̃0
s1 · τw = τv · β̃0

s1 · τs1 · τs−1
1 w

= τv ·
(
−β̃0

s1 · e1 + eidβ̃
+
1 · τs1

)
· τs−1

1 w

= −τv · β̃0
s1 · e1τs−1

1 w + τveid · β̃+
1 · τw,

τv · β̃0
s0 · τw = τvs−1

0
· τs0 · β̃0

s0 · τw

= τvs−1
0
·
(
−e1 · β̃0

s0 − eidτs0 · β̃−1
)
· τw

= −τvs−1
0
e1 · β̃0

s0 · τw − τveid−1 · β̃−1 · τw,

τv · β̃0
s1 · τw = τvs−1

1
· τs1 · β̃0

s1 · τw

= τvs−1
1
·
(
−e1 · β̃0

s1 + eid−1τs1 · β̃+
1

)
· τw

= −τvs−1
1
e1 · β̃0

s1 · τw + τveid · β̃+
1 · τw. �
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In the next lemma we compute a presentation of the Hecke algebra E0 = H. Since
the Ext-algebra is not involved, we prove this under slightly more general assump-
tions. We remark that Große-Klönne has instead computed a finite presentation of
H in the case G = GLn(F) (see [GK20, §2.1]).

Lemma 4.10.2. For this lemma only let us assume more generally that G = SL2(F),
where F is an arbitrary locally compact non-archimedean field (i.e., not necessarily
F = Qp with p 6= 2, 3). The pro-p Iwahori–Hecke algebra H = E0 can be expressed
by generators and relations as follows. Let us choose a generator ω0 of the cyclic
group T 0/T 1 (of order q − 1). Let

k 〈τ̂ω0 , τ̂s0 , τ̂s1〉

be the ring of non-commutative polynomials in three indeterminates called τ̂ω0, τ̂s0
and τ̂s1. Furthermore, let I be the bilateral ideal of k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 generated by the
following elements

τ̂ω0

q−1 − 1,

τ̂ω0 · τ̂s0 − τ̂s0 · τ̂ω0

q−2, τ̂ω0 · τ̂s1 − τ̂s1 · τ̂ω0

q−2,

τ̂s0
2 −

q−2∑
i=0

τ̂ω0

i · τ̂s0 , τ̂s1
2 −

q−2∑
i=0

τ̂ω0

i · τ̂s1 .

Let τ̃ω0, τ̃s0 and τ̃s1 be respectively the images of τ̂ω0, τ̂s0 and τ̂s1 in k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I.
One has an isomorphism of k-algebras

k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I H = E0

τ̃ω0 τω0 ,

τ̃s0 τs0 ,

τ̃s1 τs1 .

Proof. We do have a well defined homomorphism of k-algebras as in the statement,
because the following relations holds in the pro-p Iwahori–Hecke algebra:

τ q−1
ω0

= 1,

τω0 · τs0 = τs0 · τω−1
0

= τs0 · τ q−2
ω0

, τω0 · τs1 = τs1 · τω−1
0

= τs1 · τ q−2
ω0

,

τ2
s0 = −e1τs0 =

q−2∑
i=0

τ iω0
· τs0 , τ2

s1 = −e1τs1 =

q−2∑
i=0

τ iω0
· τs1 .

Since this homomorphism is clearly surjective, it remains to prove that it is injective.
Similarly to Lemma 4.10.1, we adopt the following strategy: we fix a k-basis B of E0,
and, using surjectivity, for all b ∈ B we fix a preimage rb ∈ k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I (in other
words we are constructing a section of our homomorphism, as a homomorphism of
k-vector spaces only). If we prove that the elements rb generate k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I
as a k-vector space then injectivity follows, because the family (rb)b∈B is made of
linearly independent elements.

So, let us pursue the above strategy to prove injectivity. Let us consider the
following list: on the second column we of course have a k-basis of H = E0. It is
also easy to see that the elements in the first column are mapped to the elements on
the right column by our k-algebra homomorphism k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I −→ H = E0.
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Therefore, we are exactly in the setting outlined above, and it remains to prove that
the elements in the first column generate k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I as a k-vector space.

τ̃ω0

i 7−→ τωi0
for i ∈ {0, . . . , q − 2},

τ̃ω0

i · τ̃s1 · (τ̃s0 · τ̃s1)j 7−→ τs1(s0s1)jωi0
for i ∈ {0, . . . , q − 2} and j ∈ Z>0,

τ̃ω0

i · τ̃s0 · (τ̃s1 · τ̃s0)j 7−→ τs0(s1s0)jωi0
for i ∈ {0, . . . , q − 2} and j ∈ Z>0,

τ̃ω0

i · (τ̃s0 · τ̃s1)j 7−→ τ(s0s1)jωi0
for i ∈ {0, . . . , q − 2} and j ∈ Z>1,

τ̃ω0

i · (τ̃s1 · τ̃s0)j 7−→ τ(s1s0)jωi0
for i ∈ {0, . . . , q − 2} and j ∈ Z>1.

So, let us prove that the elements in the first column generate k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 /I as a
k-vector space. Let us denote by V the k-vector space that they generate. It suffices
to prove that every element of the form

τ̃w1 · · · τ̃wn

lies in V for all n ∈ Z>0 and w1, . . . , wn ∈ {ω0, s0, s1}. Using the relations

τ̃ω0

q−1 = 1,

τ̃ω0 · τ̃s0 = τ̃s0 · τ̃ω0

q−2, τ̃ω0 · τ̃s1 = τ̃s1 · τ̃ω0

q−2,

we see that we may further reduce to elements of the form

τ̃ω0

i · τ̃sl1 · · · τ̃slm
for i ∈ {0, . . . , q − 2}, for m ∈ Z>0 and for l1, . . . , lm ∈ {0, 1}. We now prove that
the element τ̃ω0

i · τ̃sl1 · · · τ̃slm lies in V by induction on m. If m = 0, then the result
is clear. Furthermore, for general m the result is clear in the case that there are no
consecutive indices lj and lj+1 both equal to 0 or both equal to 1. So we can assume
that there is at least one such pair of indices. Then, we have

τ̃ω0

i · τ̃sl1 · · · τ̃slm = τ̃ω0

i · τ̃sl1 · · · τ̃slj · τ̃slj+1
· · · τ̃slm

= τ̃ω0

i · τ̃sl1 · · · τ̃slj · τ̃slj · · · τ̃slm

= τ̃ω0

i · τ̃sl1 · · · τ̃slj−1
·
( q−2∑
i′=0

τ̃ω0

i′ · τ̃slj
)
· τ̃slj+2

· · · τ̃slm .

Using distributivity and again the formulas involving τ̃ω0 , we obtain a sum of ele-
ments of the form

τ̃ω0

i′′ · τ̃sl1 · · · τ̃slj−1
· τ̃slj · τ̃slj+2

· · · τ̃slm
for some i′′ ∈ {0, . . . , q−2}, and these elements lie in V by inductive hypothesis. �

For the next lemma, we need to introduce some notation.

Let us consider indeterminates τ̂ω0 , τ̂s0 , τ̂s1 , β̂
−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1 and the ring of non-

commutative polynomials k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
. Let λ : T 0/T 1 −→ k× be

a group homomorphism. Let us give the following definition, mimicking the definition
of eλ:

ελ := −
p−1∑
i=0

λ(ω−i0 )τ̂ω0

i ∈ k[τ̂ω0 ].

Let us recall the list of elements we used to represent H = E0 as a quotient of the
ring of non-commutative polynomials k 〈τ̂ω0 , τ̂s0 , τ̂s1〉 in Lemma 4.10.2; we rewrite it
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using ε1 where appropriate (and we write p instead of q since we are working with
Qp):

τ̂ω0

p−1 − 1,

τ̂ω0 · τ̂s0 − τ̂s0 · τ̂ω0

p−2, τ̂ω0 · τ̂s1 − τ̂s1 · τ̂ω0

p−2,

τ̂s0
2 + ε1 · τ̂s0 , τ̂s1

2 + ε1 · τ̂s1 .
(207)

Furthermore, let consider the following list of elements, obtaining from the list in
Lemma 4.10.1 by replacing τω0 with τ̂ω0 , by replacing τω−1

0
= τp−2

ω0 with τ̂ω0

p−2 by

replacing τsi with τ̂si for i ∈ {0, 1} and by replacing eλ by ελ for λ ∈ {1, id, id−1}:

τ̂s1 · β̂−1 , τ̂s0 · β̂+
1 ,

β̂+
1 · τ̂s0 , β̂−1 · τ̂s1 ,

(τ̂s0 + ε1) · β̂−1 · (τ̂s0 + ε1)

+2εidβ̂0
s0 + τ̂ω0

p−1
2 · β̂+

1 ,

(τ̂s1 + ε1) · β̂+
1 · (τ̂s1 + ε1)

−2εid−1 β̂0
s1 + τ̂ω0

p−1
2 · β̂−1 ,

τ̂s0 · β̂0
s1 + β̂0

s0 · τ̂s1 , τ̂s1 · β̂0
s0 + β̂0

s1 · τ̂s0 ,

(τ̂s0 + ε1) · β̂0
s0 + εidτ̂s0 · β̂−1 , (τ̂s1 + ε1) · β̂0

s1 − εid−1 τ̂s1 · β̂+
1 ,

β̂0
s0 · (τ̂s0 + ε1) + εid−1 β̂−1 · τ̂s0 , β̂0

s1 · (τ̂s1 + ε1)− εidβ̂
+
1 · τ̂s1 ,

τ̂ω0 · β̂−1 − u
−2
ω0
β̂−1 · τ̂ω0 , τ̂ω0 · β̂+

1 − u
2
ω0
β̂+

1 · τ̂ω0 ,

τ̂ω0 · β̂0
s0 − β̂0

s0 · τ̂ω0

p−2, τ̂ω0 · β̂0
s1 − β̂0

s1 · τ̂ω0

p−2.

(208)

Lemma 4.10.3. Let RE0,E1 be the quotient ring of the ring of non-commutative
polynomials

k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
modulo the bilateral ideal IE0,E1 generated by the elements in the lists (207) and
(208). For all σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0 , β

0
s1} let us denote by σ̃ the image of σ̂

in RE0,E1. One has an isomorphism of k-algebras

RE0,E1 T ∗E0E
1

σ̃
(for σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0
, β0
s1
})

σ.

Proof. Let ι0 : E0 −→ T ∗E0E
1 and ι1 : E1 −→ TE0E1 be the canonical inclusions. It is

easy to check that the triple (TE0E1, ι0, ι1) enjoys the following universal property:
for all triples (R, ξ0, ξ1) consisting of a k-algebra R (associative, not necessarily
commutative), a homomorphism of k-algebras ξ0 : E0 −→ R and a homomorphism
of left E0 ⊗k (E0)op-modules ξ1 : E1 −→ R (where R is a left E0 ⊗k (E0)op-module
via ξ0), there exists a unique homomorphism of k-algebras η : T ∗E0E

1 −→ R making
the following diagrams commute:

T ∗E0E
1

E0

R,

η

ι0

ξ0

T ∗E0E
1

E1

R.

η

ι1

ξ1
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Using the presentation of E0 given in Lemma 4.10.2, we see that there is a well
defined homomorphism of k-algebras

H = E0 RE0,E1

τω0 τ̃ω0 ,

τs0 τ̃s0 ,

τs1 τ̃s1 .

ξ0

Furthermore, using the presentation of E1 as a left E0 ⊗k (E0)op-module given in
Lemma 4.10.1, we also see that there is a homomorphism of left E0⊗k(E0)op-modules
(where RE0,E1 is a left E0 ⊗k (E0)op-module via ξ0)

E1 RE0,E1

β−1 β̃−1 ,

β+
1 β̃+

1 ,

β0
s0 β̃0

s0 ,

β0
s1 β̃0

s1 .

ξ1

Hence, by the universal property mentioned above, we get a homomorphism of k-
algebras

T ∗E0E
1 RE0,E1

σ
(for σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0
, β0
s1
})

σ̃.

On the other side it makes sense to define a homomorphism of k-algebras in the
opposite direction

RE0,E1 T ∗E0E
1

σ̃
(for σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0
, β0
s1
})

σ

as in the statement of the lemma, because we can define a suitable homomorphism

on the k-algebra k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
which is clearly zero on IE0,E1 .

But we see that, with the above procedure, we have obtained an inverse of this
homomorphism (using also that {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0 , β

0
s1} is a set of generators

of T ∗E0E
1 as a k-algebra), thus concluding the proof of the lemma. �

Now, let us introduce some notation in order to finally achieve a presentation of
the algebra E∗ by generators and relations.

We have already computed the following list of generators of the kernel of M as
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a bilateral ideal (Remark 4.8.2):

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 ,

β+
1 ⊗ β

0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 ,

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 − e1 · β−1 ⊗ β

+
s0 ,

β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 − e1 · β+

1 ⊗ β
−
s1 ,

β+
s0 ⊗ β

0
s0 + β0

s0 ⊗ β
−
s0 ,

β−s1 ⊗ β
0
s1 + β0

s1 ⊗ β
+
s1 ,

(τs1 + e1) · β+
1 ⊗ β

0
s−1
1
⊗ β+

1 + (τs0 + e1) · β−1 ⊗ β
0
s−1
0
⊗ β−1 .

We express this only using the generators τω0 , τs0 , τs1 , β
−
1 , β

+
1 , β

0
s0 , β

0
s1 (and the idem-

potents, which can be easily expressed in terms of τω0): we delete the exponent −1
which appears in the last line (we can do this by multiplying with the invertible
element τc−1) and we use the formulas

τs0 · β−1 = −β+
s0 , τs1 · β+

1 = −β−s1 ,
β−1 · τs0 = β−s0 , β+

1 · τs1 = β+
s1 .

Doing this, we deduce that the following is again a list of generators of the kernel of
M as a bilateral ideal:

β−1 ⊗ β
−
1 , β+

1 ⊗ β
−
1 , β0

s1 ⊗ β
−
1 ,

β−1 ⊗ β
+
1 , β+

1 ⊗ β
+
1 , β0

s0 ⊗ β
+
1 ,

β+
1 ⊗ β

0
s0 , β0

s1 ⊗ β
0
s0 ,

β−1 ⊗ β
0
s1 , β0

s0 ⊗ β
0
s1 ,

β0
s0 ⊗ β

0
s0 + eid−1 · β−1 ⊗ β

0
s0 + eid · β0

s0 ⊗ β
−
1 + e1 · β−1 ⊗ (τs0 · β−1 ),

β0
s1 ⊗ β

0
s1 − eid · β+

1 ⊗ β
0
s1 − eid−1 · β0

s1 ⊗ β
+
1 + e1 · β+

1 ⊗ (τs1 · β+
1 ),

− τs0 · β−1 ⊗ β
0
s0 + β0

s0 ⊗ β
−
1 · τs0 ,

− τs1 · β+
1 ⊗ β

0
s1 + β0

s1 ⊗ β
+
1 · τs1 ,

(τs1 + e1) · β+
1 ⊗ β

0
s1 ⊗ β

+
1 + (τs0 + e1) · β−1 ⊗ β

0
s0 ⊗ β

−
1 .

Now, we consider the following list of elements of k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
,

list which is obtained from the above one by replacing β−1 with β̂−1 , by replacing

β+
1 with β̂+

1 , by replacing β0
si with β̂0

si for i ∈ {0, 1}, by replacing τsi with τ̂si for
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i ∈ {0, 1} and by replacing eλ by ελ for λ ∈ {1, id, id−1}:

β̂−1 · β̂
−
1 , β̂+

1 · β̂
−
1 , β̂0

s1 · β̂
−
1 ,

β̂−1 · β̂
+
1 , β̂+

1 · β̂
+
1 , β̂0

s0 · β̂
+
1 ,

β̂+
1 · β̂0

s0 , β̂0
s1 · β̂0

s0 ,

β̂−1 · β̂0
s1 , β̂0

s0 · β̂0
s1 ,

β̂0
s0 · β̂0

s0 + εid−1 · β̂−1 · β̂0
s0 + εid · β̂0

s0 · β̂
−
1 + ε1 · β̂−1 · τ̂s0 · β̂

−
1 ,

β̂0
s1 · β̂0

s1 − εid · β̂+
1 · β̂0

s1 − εid−1 · β̂0
s1 · β̂

+
1 + ε1 · β̂+

1 · τ̂s1 · β̂
+
1 ,

β̂0
s0 · β̂

−
1 · τ̂s0 − τ̂s0 · β̂

−
1 · β̂0

s0 ,

β̂0
s1 · β̂

+
1 · τ̂s1 − τ̂s1 · β̂

+
1 · β̂0

s1 ,

(τ̂s1 + ε1) · β̂+
1 · β̂0

s1 · β̂
+
1 + (τ̂s0 + ε1) · β̂−1 · β̂0

s0 · β̂
−
1 .

(209)

The set of elements in this list clearly has the following property: its image under
the homomorphism of k-algebras

k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
T ∗E0

E1

σ̂
(for σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0
, β0
s1
})

σ

is a set of generators of ker(M) as a bilateral ideal.

Proposition 4.10.4. Let RE∗ be the quotient ring of the ring of non-commutative
polynomials in seven indeterminates

k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
modulo the bilateral ideal IE∗ generated by the elements in the lists (207), (208) and
(209). For all σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0 , β

0
s1}, let us denote by σ̃ the image of σ̂

in RE∗ . One has an isomorphism of k-algebras

RE∗ E∗

σ̃
(for σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0
, β0
s1
})

σ.

In particular, E∗ is a finitely presented k-algebra.

Proof. Let us consider the homomorphism of k-algebras

Φ: k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
T ∗E0

E1

σ̂
(for σ ∈ {τω0 , τs0 , τs1 , β

−
1 , β

+
1 , β

0
s0
, β0
s1
})

σ

and the natural homomorphism of (graded) k-algebras

M : T ∗E0
E1 −→ E∗.
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We know that both Φ andM are surjective (for Φ see Lemma 4.10.3 and forM see
Section 4.1). SoM◦Φ is surjective, and, in order to prove the lemma, it remains to
show that the kernel is IE∗ . Let x ∈ ker(M◦ Φ). When we wrote the list (209), we
said that the images of the elements in this list via Φ form a system of generators
of ker(M) as a bilateral ideal. In particular, this means that Φ(x) (which lies in
ker(M)) can be written as

Φ(x) =
∑
i

ai · Φ(xi) · bi

for suitable elements ai, bi ∈ T ∗E0
E1, and xi in the list (209). Representing ai as

Φ(a′i) for some ai ∈ k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

−
1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
and similarly for bi, we see that

x−
∑
i

a′i · xi · b′i ∈ ker(Φ).

Since ker(Φ) is generated by the elements in the lists (207) and (208) as a bilateral
ideal (Lemma 4.10.3), we deduce that x ∈ IE∗ . This concludes the proof, because we
have shown the inclusion ker(M◦ Φ) ⊆ IE∗ , and the reverse inclusion is clear. �

Remark 4.10.5. It is easy to see that the relation

(τs1 + e1) · β+
1 · (τs1 + e1)− 2eid−1β0

s1 + τ
p−1

2
ω0 · β−1 = 0

(which we used in to produce the corresponding element in the list (208)) allows
us to express β−1 in terms of β+

1 , β0
s1 , τs1 and τω0 . This shows that E∗ is actually

generated by τω0 , τs0 , τs1 , β+
1 , β0

s0 and β0
s1 as a k-algebra, without the need to add

β−1 . Using the presentation we obtained in the last proposition, it is then immediate

to get a presentation of E∗ as a quotient of k
〈
τ̂ω0 , τ̂s0 , τ̂s1 , β̂

+
1 , β̂

0
s0 , β̂

0
s1

〉
(quotient

modulo a finitely generated bilateral ideal) by replacing β̂−1 with

−τ̂ω0

p−1
2 · (τ̂s1 + ε1) · β̂+

1 · (τ̂s1 + ε1) + 2τ̂ω0

p−1
2 · εid−1 β̂0

s1

wherever it appears in the lists (207), (208) and (209).
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[uu13] MathOverflow User user30180 (https://mathoverflow.net/users/
30180/user30180). On the F -rational points of the derived group of a
connected reductive algebraic group. MathOverflow, 2013. URL:https:
//mathoverflow.net/q/133288 (version: 2013-06-10).
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