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Abstract

The one–sample log–rank test is the method of choice for single–arm Phase II trials with

time–to–event endpoint. It allows to compare the survival of patients to a reference survival

curve that typically represents the expected survival under standard of care. The one–

sample log–rank test, however, assumes that the reference survival curve is known. This

ignores that the reference curve is commonly estimated from historic data and thus prone to

sampling error. Ignoring sampling variability of the reference curve results in type I error rate

inflation. We study this inflation in type I error rate analytically and by simulation. Moreover

we derive the actual distribution of the one–sample log–rank test statistic, when the sam-

pling variability of the reference curve is taken into account. In particular, we provide a con-

sistent estimate of the factor by which the true variance of the one-sample log–rank statistic

is underestimated when reference curve sampling variability is ignored. Our results are fur-

ther substantiated by a case study using a real world data example in which we demonstrate

how to estimate the error rate inflation in the planning stage of a trial.

Introduction

The one–sample log–rank test is the method of choice for single–arm Phase II trials with

time–to–event endpoint. It allows to compare the survival of the patients to a prefixed refer-

ence survival curve that typically represents the expected survival under standard of care. First

proposed by [1], its practical implementation including sample size calculation has been

described by [2]. The one–sample log–rank test is often criticized in different directions. First,

it has been reported repeatedly in the literature that the original one–sample log–rank test

tends to be conservative (see [3, 4]). One reason for the test’s inaccuracy is the dependence

between the estimators of mean and variance of the original one–sample log–rank statistic

when sample size is small. Several attempts have been made in the literature to correct for this

(see [3–7]). Amongst those, the proposal made by [6] is presently implemented in the com-

mercial software PASS [8] for sample size calculation for the one–sample log–rank test.

Another more conceptual point of criticism against the one–sample log–rank test relates to the

process of selecting the reference survival curve. It is common practice to choose the reference

survival curve in the light of historic data on standard treatment. At the data level the difficulty
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is that it might not reflect recent advances in diagnostics and/or concomitant therapy for stan-

dard of care thus resulting in a bias by not addressing confounders. Therefore, careful choice

of the historic data set is crucial. At the level of analysis, the problem is that choosing the refer-

ence curve in the light of historic data implies that the reference survival curve itself is prone to

sampling error. This sampling variability of the reference curve however, is ignored in the

original one–sample log–rank statistic. One–sample log–rank tests rather assume that the ref-

erence survival curve is a priori known and deterministic (see [2–7, 9]). This ignores that the

reference curve resulted from an estimation process, complicates interpretation of the test

results and implies an inflation in type I error rate. As lined out in [10], this is a general prob-

lem in clinical trials with historical controls.

One aim of this paper is to systematically study the amount of type I error inflation in

dependence of the design parameters of the trial. Moreover, we provide a consistent estimate

of the factor by which the true variance of the one-sample log–rank statistic is underestimated

when reference curve sampling variability is ignored. This allows to construct a random vari-

able Z that explicitly accounts for the sampling variability of the reference curve and thus

assures strict type I error rate control.

The paper is organized as follows. After settling notation and the testing problem, we derive

a consistent estimate of the actual variance of the one-sample log-rank statistic when the refer-

ence cumulative hazard function is estimated non–parametrically from historic data using the

Nelson–Aalen estimator. We continue with a simulation study which sheds light on the

amount of type I error rate inflation of the one-sample log-rank test when the reference curve

sampling variability is neglected in the test statistic. As a tool for planning a one-armed sur-

vival study, we then provide a formula that can be used to estimate the inflation based on the

historical data and the design parameters of a new study. This instrument is also applied in a

case study using a real world data example. We conclude with a discussion of our results and

future research. Mathematical proofs are shifted to S1 Appendix.

General aspects

Notation

We assume that historic data on standard of care (group A) is available and consider a

single arm survival trial where survival data from a new treatment is collected (group B). Let

N x denote the set of patients from group x = A, B, nx ≔ jN xj the number of such patients, and

n≔ nA + nB the total number of patients. In particular, we denote by π≔ nB/nA the treatment

group allocation ratio.

The parameter n will index the arrival process and asymptotic results will be derived in the

limit n ! 1. Accordingly, we assume that the group sizes grow uniformly as total sample size

increases, i.e. we assume π as a fixed constant.

We denote by Tx,i or Cx,i the time from entry to event or censoring for patient i from group

x = A, B, respectively. Let Xx,i≔ Tx,i^Cx,i denote the minimum of both. As usual, we assume

that the Tx,i and Cx,i are mutually independent (non–informative censoring). Based on the

observed data, we calculate the number of events from treatment group x = A, B up to study

time s � 0 as

NxðsÞ ≔
X

i2N x

Nx;iðsÞ; Nx;iðsÞ ≔ IðTx;i � s;Tx;i � Cx;iÞ; ð1Þ

and the number at risk YxðsÞ ≔
P

i2N x
IðTx;i ^ Cx;i � sÞ by study time s � 0 in treatment group

x = A, B. Let Jx(s)≔ I(Yx(s) > 0) indicate whether there are still patients at risk in treatment

group x by study time s. As usual, we let λx(s)≔ limΔ!0 P(s � Tx,i < s + Δ|Tx,i � s)/Δ denote
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the hazard of a patient from treatment group x = A, B. We denote by LxðsÞ ≔
R s

0
lxðuÞdu the

corresponding cumulative hazard function for treatment group x = A, B, respectively. Finally,

we denote by fTx , FTx
, STx (or fCx , FCx

, SCx ) the density, distribution function and survival func-

tion of the time to event Tx,i (or time to censoring Cx,i) in treatment group x = A, B. Notice

that λx, Λx, fTx , FTx
, STx and fCx , FCx

, SCx are assumed to coincide for all patients from the same

treatment group.

We will also need the Nelson–Aalen estimator (see [11, 12])

L̂xðsÞ ≔
Z s

0

JxðuÞ

YxðuÞ
dNxðuÞ �

X

i2N x ;Nx;iðsÞ¼1

JxðTx;iÞ

YxðTx;iÞ
ð2Þ

of the cumulative hazard function Λx(s) for group x = A, B, and the corresponding estimator

of the variance function

ŝ2
xðsÞ ≔ nx �

Z s

0

JxðuÞ

Y2
x ðuÞ

dNxðuÞ � nx �
X

i2N x ;Nx;iðsÞ¼1

JxðTx;iÞ

Y2
x ðTx;iÞ

: ð3Þ

We consider Nx, Yx, Jx, L̂x and ŝ2
x as stochastic processes in study time s � 0. Notice that we

define 0/0≔ 0 whenever formal division of zero by zero occurs in a mathematical expression.

Any stochastic process and martingale in this manuscript is regarded w.r.t. the filtration gener-

ated by the observable survival times which is defined at the beginning of Appendix A in S1

Appendix.

Motivation

The classical one–sample log–rank test (see [1, 2]) assesses the null hypothesis

Href : LBðsÞ ¼ L0ðsÞ for all s 2 ½0; smax�;

that the hazard ΛB of patients from the experimental group B coincides with some prefixed ref-

erence hazard Λ0 on some prefixed observation horizon 0 � s � smax. Common basis for con-

struction of the one–sample log–rank test is the stochastic process

M0ðsÞ ≔ n�1=2

B ½NBðsÞ �
P

i2N B
L0ðs ^ XB;iÞ�. When Href holds true, M0 is (known to be) a

mean–zero martingale whose variance S2

OSLRðsÞ ≔
R1

0
FTB

ðs ^ uÞfCBðuÞdu may consistently be

estimated by n�1
B NBðsÞ or n�1

B

P
i2N B

L0ðs ^ XB;iÞ (see e.g. [13]). A standardized version of the

one–sample log–rank statistic is then given by M0ðsmaxÞ=ðn�1
B NBðsmaxÞÞ resp.

M0ðsmaxÞ=ðn�1
B

P
i2N B

L0ðsmax ^ XB;iÞÞ which are asymptotically standard normally distributed

under the null hypothesis Href.

In clinical practice, the reference curve Λ0 is typically intended to represent the survival

under standard of care ΛA i.e. it is aimed that Λ0 � ΛA. Accordingly, one is actually interested

in the two-sided null hypothesis

H0 : LBðsÞ ¼ LAðsÞ for all s 2 ½0; smax�

which is the intersection of the two one-sided hypotheses

H0;sup : LBðsÞ � LAðsÞ for all s 2 ½0; smax� and

H0;inf : LBðsÞ � LAðsÞ for all s 2 ½0; smax�:

In this context however, the immediate difficulty is that the true cumulative hazard ΛA

under standard of care is unknown, and thus in practice cannot be used as a reference function
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in the one–sample log–rank test. To get around this problem it is common practice in the

implementation of the classical one–sample log–rank test to estimate ΛA from historic data,

and to choose the obtained estimate L̂A for ΛA as reference cumulative hazard function,

while pretending (i) that L̂A is deterministic and (ii) that L̂A coincides with ΛA. Consequently,

the practical implementation of the classical log–rank test often is to consider the processes

M̂0ðsÞ ≔ n�1=2

B ½NBðsÞ �
P

i2N B
L̂Aðs ^ XB;iÞ�, ŜOSLR;1ðsÞ ¼ n�1

B NBðsÞ, ŜOSLR;2ðsÞ ¼ n�1
B

P
i2N B

L̂Aðs ^ XB;iÞ and to use the statistic

ZOSLR;i
M̂0ðsmaxÞ

ŜOSLR;iðsmaxÞ
ð4Þ

for i = 1 or i = 2 for testing the null hypothesis H0, while additionally pretending that still

ZOSLR;i � N ð0; 1Þ under H0. In doing so, note that the maximum observation time in group B

must be smaller than the maximum observation duration in the control group so that the

above comparison with the estimator L̂A from the control group can be made at all. However,

this approach ignores that the estimator L̂A for ΛA is in fact random and thus contributes

additional variance to the test statistic. Consequently, ŜOSLR;iðsmaxÞ underestimates the true var-

iance of M̂0ðsmaxÞ. Hence, ZOSLR,i in fact fails to be standard normally distributed under H0 and

inflation of the type I error rate results. The aim of the following is to systematically study the

extent of this type I error rate. In a first step, a correct estimator of the variance of the process

M̂0 has to be worked out.

Revisiting the one–sample log–rank test statistic

Consider the stochastic processes

M̂0ðsÞ ≔ n�1=2

B NBðsÞ �
X

i2N B

L̂Aðs ^ XB;iÞ

" #

Ŝ2
1
ðsÞ ≔ n�1

B NBðsÞ þ n�1
B n�1

A

X

i;j2N B

ŝ2

Aðs ^ XB;i ^ XB;jÞ

Ŝ2
2
ðsÞ ≔ n�1

B

X

i2N B

L̂Aðs ^ XB;iÞ þ n�1

B n�1

A

X

i;j2N B

ŝ2

Aðs ^ XB;i ^ XB;jÞ

ð5Þ

with NB, L̂A and ŝ2
A according to (1), (2) and (3). Assume that the null hypothesis H0 : ΛB(s) =

ΛA(s) for all 0 � s � smax holds true. Then by Theorem 1 (see S1 Appendix) M̂0 is a mean–zero

martingale and for each fixed smax � s > 0 we have M̂0ðsÞ!d N ð0; S2ðsÞÞ in distribution as

n ! 1, where SðsÞ ≔ plimn!1
ŜiðsÞ ¼ limn!1E½ŜiðsÞ� for i 2 {1, 2} (see S1 Appendix,

Lemma 1 and Corollary 1). In particular, we conclude that Ŝ2
1

and Ŝ2
2

are consistent estimators

of the variance of M̂0, and that the random variable

Zi ≔
M̂0ðsmaxÞ

Ŝ iðsmaxÞ
�
H0 N ð0; 1Þ ð6Þ

for i 2 {1, 2} is approximately standard normally distributed under the null hypothesis H0 if

SXAðsmaxÞ ¼ STAðsmaxÞSCAðsmaxÞ≕p0 > 0 (see Theorem 1 in S1 Appendix). A sufficient condition

for p0 > 0 is as follows: Let aB and fB denote the length of accrual and follow-up period in
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group B and let smax = aB + fB. Let sA,max denote the maximum observation time in the historic

control group A, i.e. sA;max ¼ maxi2NA
XA;i. Then p0 > 0 if smax < sA,max.

Also note that the factor n�1
A in the second summand of Ŝ2

i ðsmaxÞ cancels out with the factor

nA from the definition of ŝ2
A and the factor n�1=2

B from both the numerator and the denomina-

tor of Z1 cancel each other out.

In contrast, the standard one–sample log–rank test statistic at smax is

ZOSLR;i ≔
M̂0ðsmaxÞ

ŜOSLR;iðsmaxÞ
ð7Þ

for an i 2 {1, 2}. The standard one–sample log–rank test of the two-sided null hypothesis H0 is

by definition considered to be significant to the level α whenever

jZOSLR;ij � F�1 1 �
a

2

� �
: ð8Þ

Analogously, the one-sided hypotheses H0,sup or H0,inf were rejected at the level of α/2 by clas-

sical one-sample log-rank tests if

ZOSLR;i � F�1 a

2

� �
or ZOSLR;i � F�1 1 �

a

2

� �
; respectively: ð9Þ

It follows directly from the distribution approximation (6), however that ZOSLR,i is in truth

not standard normal under the null hypothesis H0, since for both i 2 {1, 2}, Ŝ2
OSLR;iðsmaxÞ

falls short of the consistent variance estiamtors Ŝ2
i ðsmaxÞ of M̂0ðsmaxÞ by the amount

n�1
B n�1

A

P
i;j2N B

ŝ2
Aðsmax ^ XB;i ^ XB;jÞ representing the reference curve sampling variability. This

results in type I error rate inflation.

The exact amount of the type I error rate inflation is driven by the ratio of the standard

deviations

R ≔SOSLRðsmaxÞ=SðsmaxÞ: ð10Þ

This ratio can be consistently estimated by

R̂i ≔ ŜOSLR;iðsmaxÞ=ŜiðsmaxÞ ð11Þ

for i 2 {1, 2}. The actual type I error rate of the one-sample procedure under H0 can thus be

approximated by

aOSLR ≔ 2 � F R � za
2

� �
: ð12Þ

If recruitment and censoring mechanism were equal in both groups, R would amount to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1 þ pÞ

p
and the actual type I error level would be inflated to

aOSLR ¼ 2 � F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð1 þ pÞ

p
� za

2

� �
: ð13Þ

We refer to S1 Appendix for the general case and the derivation of this formula.

In particular the classical one–sample log–rank test procedure (8) exceeds the nominal level

α whenever the reference curve sampling variability is large. In this sense the procedure (8) is

invalid to test for H0.

In contrast, notice that the two–sample log–rank test would be a valid test for testing the

null hypothesis H0 that survival in the new and historic control coincide.
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At this point it should be noted that it would be natural to choose the modified test statistic

Zi as a new statistic for testing H0. In a forthcoming paper we will examine its performance

regarding type I error rate and power as compared to the two-sample log–rank test. However,

these aspects are beyond the focus and scope of this manuscript.

Simulation study: Effective type I error rate of the one–sample

log–rank tsest

Design

The objective of this simulation study is to quantify the amount of type I error rate inflation,

when the reference curve serving as benchmark in the one–sample log–rank test is estimated

from historic data, but the reference curve sampling variability is ignored in the test statistic.

In our simulations we focussed on settings of particular practical relevance: Patients were

assumed to enter the trial uniformly between year 0 and year a = 2. Accordingly, the calendar

times of entry were generated according to a uniform distribution on [0, a], i.e. Yx;i � Uð0; aÞ.

After the end of the accrual period, patients were assumed to be followed up for further f = 3

years, while assuming no loss to follow–up. Hence, we have Cx;i ≔ a þ f � Yx;i � Uðf ; a þ f Þ
for x = A, B. Survival times TA,i in the historic control group A were generated according to a

Weibull distribution ΛA(s)≔ −log(S1)�tκ with prefixed shape parameter κ 2 {0.5, 1.0, 2.0} and

1-year survival rate STAð1Þ ¼ S1 ¼ 0:5. Survival times TB,i in the new treatment group B were

generated from the same distribution (ΛB = ΛA), because our focus is on the type I error

rate inflation of the classical one–sample log–rank test when used for testing the null hypothe-

sis H0 : ΛB = ΛA.

To perform the one–sample log–rank test, the group A data was used to calculate the Nel-

son–Aalen estimate L̂A of ΛA, and the procedure defined in Eq (8) was applied with a desired

two–sided significance level of α = 5% with both variance estimators Ŝ2
OSLR;1

and Ŝ2
OSLR;2

.

The simulations were used to estimate (i) the empirical type I error rate â of the two-sided

procedures (8) when used for testing H0 and (ii) the median factors R̂i ≔ ŜOSLR;iðsmaxÞ=ŜiðsmaxÞ

by which the true standard deviation of the one–sample log–rank statistic M̂0 is underesti-

mated when sampling variability of the reference curve estimate is ignored. Additionally, we

study the empirical type I error rates âsup and â inf of the one-sided procedures (9) for testing

the two one-sided hypotheses H0,sup and H0,inf. In order to satisfy the requirements of our

asymptotical results, we chose smax = a+ f−10−8.

We used different sample sizes nB 2 {25, 50, 100, 200} for group B and allocation ratios π =

nB/nA 2 {1, 1/2, 1/4, 1/8, 1/16} to study the impact of these parameters on the amount of type I

error rate inflation and underestimation of the true variance. Scenarios with π � 1/2 are more

likely to reflect common practice as the size of the experimental cohort is typically smaller

than the size of the historical control cohort.

For each parameter constellation, we generated 100,000 samples to which we applied the

one–sample log–rank test procedures and calculated the underestimation of variance and

empirical type I error rates. For this number of samples, the breadth of a 95% confidence inter-

val ranges between 0.0027 and 0.0057 for underlying true rates between 0.05 and 0.3. The

results for κ = 1 are shown in Tables 1 and 2. The results for κ = 0.5 and κ = 2 are shifted to

Appendix C of S1 Appendix.
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Results

The classical one–sample log–rank test procedure defined in (8) does not account for sampling

variability of the reference curve estimate. This leads to type I error rate inflation when the

underlying null hypothesis to be tested is H0 : ΛB = ΛA. As expected, our simulations support

that the amount of type I error rate inflation of the one–sample log–rank test is most pro-

nounced when the historic control group is small compared to the new treatment group, i.e.

when the allocation ratio π is large. For most constellations, the inflation for the test statistics

ZOSLR,1 slightly decreases with increasing overall sample size n but stabilizes on some level

Table 1. Empirical type I error rates under consideration of sampling variability.

nB π = 1 π = 1/2 π = 1/4 π = 1/8 π = 1/16

α̂ R̂i
α̂ R̂i

α̂ R̂i
α̂ R̂i

α̂ R̂i

using ŜOSLR;1 as variance estimator

25 0.143 0.689 0.100 0.804 0.077 0.884 0.065 0.935 0.058 0.963

50 0.155 0.696 0.107 0.810 0.080 0.889 0.066 0.938 0.059 0.966

100 0.161 0.701 0.108 0.813 0.079 0.892 0.065 0.941 0.057 0.968

200 0.164 0.703 0.108 0.815 0.079 0.893 0.064 0.942 0.057 0.969

using ŜOSLR;2 as variance estimator

25 0.167 0.689 0.117 0.804 0.086 0.884 0.071 0.935 0.063 0.963

50 0.169 0.696 0.114 0.810 0.084 0.889 0.070 0.938 0.061 0.966

100 0.167 0.701 0.112 0.813 0.082 0.892 0.067 0.941 0.059 0.968

200 0.166 0.703 0.110 0.815 0.080 0.893 0.065 0.942 0.058 0.969

(i) Empirical two–sided type I error rates α of test procedure (8) when used for testing H0 : ΛB = ΛA, and (ii) median factors R̂i as in (11) by which the true standard

deviation of the one–sample log–rank statistic M̂0 is underestimated when ignoring the reference curve sampling variability for different parameter constellations of

practical relevance. Survival times were Weibull distributed with shape parameter κ = 1 and 1–year survival rate S1 = 0.5 in the historic control group A and the new

treatment group B. Theoretical two–sided significance level: 5%. Underlying sample size of group B is nB with allocation ratio π = nB/nA between new and historic

groups.

https://doi.org/10.1371/journal.pone.0271094.t001

Table 2. Empirical one-sided type I error rates under consideration of sampling variability.

nB π = 1 π = 1/2 π = 1/4 π = 1/8 π = 1/16

α̂ inf α̂ sup α̂ inf α̂ sup α̂ inf α̂ sup α̂ inf α̂ sup α̂ inf α̂ sup

using ŜOSLR;1 as variance estimator

25 0.081 0.062 0.066 0.034 0.054 0.023 0.048 0.017 0.043 0.015

50 0.087 0.069 0.065 0.042 0.052 0.029 0.044 0.022 0.039 0.019

100 0.087 0.074 0.063 0.046 0.047 0.032 0.040 0.025 0.035 0.022

200 0.086 0.077 0.060 0.048 0.045 0.034 0.037 0.027 0.033 0.024

using ŜOSLR;2 as variance estimator

25 0.050 0.117 0.038 0.079 0.028 0.058 0.023 0.048 0.020 0.043

50 0.062 0.106 0.043 0.071 0.032 0.052 0.026 0.044 0.022 0.039

100 0.069 0.099 0.047 0.065 0.033 0.049 0.027 0.040 0.023 0.036

200 0.073 0.094 0.048 0.062 0.035 0.045 0.028 0.037 0.025 0.033

(i) Empirical one-sided type I error rates α1 and α2 of test procedures (9) when used for testing H0,sup and H0,inf, respectively, for different parameter constellations of

practical relevance. Survival times were Weibull distributed with shape parameter κ = 1 and 1–year survival rate S1 = 0.5 in the historic control group A and the new

treatment group B. Theoretical one–sided significance level: 2.5%. Underlying sample size of group B is nB with allocation ratio π = nB/nA between new and historic

groups.

https://doi.org/10.1371/journal.pone.0271094.t002
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above the desired significance level of α = 5%. For the test statistic ZOSLR,2 one can observe a

slight increase of this inflation with increasing overall sample size and a stabilization on the

same level as for ZOSLR,1. This supports that the observed type I error rate inflation is primarily

not a small sample size phenomenon, but rather due to the underestimation of the variance in

the one–sample log–rank statistic. The type I error rate varies furthermore only slightly

between the different shape parameters. For ratios π = 1, the true two-sided type I error rate is

approximately three times larger than the desired one (14.3%−16.9% instead of 5% for π = 1

and κ = 1). For low allocation ratios as 1/8 or 1/16, the actual two-sided type I error still

exceeds the nominal level, but to an extent that might be acceptable for a phase II trial

(5.7%−6.3% for π = 1/16 and κ = 1; 6.4%−7.1% for π = 1/8 and κ = 1). The one-sided type I

error rates, however, are quite imbalanced with the direction of imbalance heavily linked to

the variance estimator used. This is a well-known phenomenon (see [14]), that affects our sim-

ulation results in addition to the neglected variance. Estimation of the variance with the count-

ing process estimator SOSLR,1 leads in the finite sample case to a left-skewed distribution of

ZOSLR,1 and thus more decisions in favour of the new treatment are made. Estimation with the

compensator process via SOSLR,2 in contrast leads to a right-skewed distribution of ZOSLR,2.

Even for small allocation ratios at π = 1/8 both tests have an one-sided error rate above 3.7%

instead of 2.5% in their corresponding favoured direction. For small historic control groups (π
� 1/2) the effect of ignoring reference curve sampling variability on type I error rate inflation

predominates these effects of skewness.

Varying the shape parameter κ does only change the inflation slightly (see Appendix C in

S1 Appendix). This is to be expected as the log-rank test is a rank-based test. By transforma-

tions of the time scale, the survival distributions of the different scenarios can be transformed

into each other such that only the distributions of entry and censoring times differ between the

scenarios. This is reconfirmed by the fact that in case of equal entry and censoring distribu-

tions of groups A and B the asymptotical inflation in Eq (13) does only depend on π and no

other design parameters.

With a view to application of the classical one-sample log-rank test (8) for testing H0 in his-

torically controlled phase II survival trials, our results support that as a rule of thumb choice of

the reference curve should be based on a historic control that is at least about 12 times larger

than the new experimental trial cohort. According to (13), a factor of at least 12 corresponds to

an inflation of the type I error rate to a maximum of 6%. For a stricter type I error rate control

one could implement a hybrid testing procedure defined by rejecting H0 when either ZOSLR,1

� F−1(1−α/2) or ZOSLR,2 � F−1(α/2). This hybrid testing strategy exploits the skewness of the

statistics ZOSLR,i to compensate in parts for the type I error rate inflation due to neglect of the

reference curve sampling variability. In our simulations, this strategy yields valid tests of H0 for

allocation ratios π � 1/8. If the historic control group A is small (π � 1/4), the null hypothesis

of no difference between group B and A should rather be tested by a two–sample log–rank test.

Furthermore, the maximum observation time of the new trial should also be set smaller

than the one of the historic control to avoid utilizing the volatile tails of the Kaplan-Meier

curve within the test statistic. This is also supported by the calculation of αOSLR as defined in

(12) via (10). The results of this calculation are displayed in Fig 1. The inflated type I error level

is plotted as a function of the allocation ratio π for three different durations of the follow-up

period. As expected, longer observation periods lead to a higher inflation of the type I error

rate. This is due to the fact that the estimation of the survival time in group A becomes more

volatile at the tail of the distribution which is more frequently utilized in the test statistic for

group B if the follow-up duration is extended.

In summary, the simulations support that neglecting the reference curve sampling variabil-

ity in the classical one–sample log–rank test relevantly compromises type I error rate control
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when testing null hypotheses H0 : ΛB = ΛA. Notice that the classical one–sample log–rank test

only realizes strict type I error rate control for testing the null hypothesis ~H0 : LB ¼ L̂A which,

however, detracts from the null hypothesis H0 : ΛB = ΛA of true interest when random devia-

tion of L̂A from ΛA is large.

A priori estimation of the expected type I error rate inflation

As seen in the preceding simulations, the actual type I error rate of the classical one-sample

log-rank test always exceeds the nominal type I error level if the sampling variability of the ref-

erence curve is not taken into account. However, the magnitude of this excess depends on the

data from the reference cohort as well as the sample size in the new, experimental cohort. In

this section, we describe how to estimate the expected amount of type I error rate inflation

already at the planning stage of a historically controlled, single-arm survival trial. This allows

Fig 1. Type I error rate approximation. Type I error rate approximation given by 2 � F SOSLRðsmaxÞ=SðsmaxÞ � za
2

� �
as a function of the allocation ratio π

for different durations fB 2 {1, 2, 3} of the follow-up period in the new trial. Calculations were done for exponentially distributed survival times with a 1

year survival rate of 50%. Accrual a for the historic control and new treatment groups was set to 5 years, follow-up fA of the historic trial was set to 3

years. To satisfy the conditions of Theorem 1 (see S1 Appendix), we choose smax = a + fB−10−8.

https://doi.org/10.1371/journal.pone.0271094.g001

PLOS ONE Reference curve sampling variability in one–sample log–rank tests

PLOS ONE | https://doi.org/10.1371/journal.pone.0271094 July 21, 2022 9 / 16

https://doi.org/10.1371/journal.pone.0271094.g001
https://doi.org/10.1371/journal.pone.0271094


an a priori assessment of whether the one-sample log-rank test can be considered appropriate

to test H0 in the particular trial setting or whether the use of alternative methods such as the

two-sample log-rank test is preferable.

The difference between the test statistic of the classical one-sample log-rank statistic ZOSLR,i

from (4) and the asymptotically standard normally distributed random variable Zi from (6) is

the standardization factor in the respective denominators. Let R̂i from (11) denote the ratio of

the standardisation factors without and with consideration of the sampling variability. With

the factors R̂i it is possible to explicitly quantify the expected amount of type I error rate due to

neglect of reference curve sampling variability: The actual type I error rate of a two-sided clas-

sical one-sample log-rank test with nominal level α is in expectation E 2 � F R̂i � za
2

� �h i
instead

of α when reference curve sampling variability is neglected. The former can be approximated

by 2 � F E½R̂i� � za
2

� �
. Analogously, E½R̂i� can be approximated via a first-order Taylor expansion

by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½Ŝ2
OSLR;iðsmaxÞ�=E½Ŝ2

i ðsmaxÞ�

q

. In the planning stage of a new trial, the historical data (sum-

marized by the set of random variables DA) is already known and can be taken into account

when considering the type I error rate inflation. Conditioning on this we can compute

Rpre :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½Ŝ2

OSLR;iðsmaxÞ�

E½Ŝ2
i ðsmaxÞjDA�

s

ð14Þ

One should note that according to our calculations in S1 Appendix the asymptotics for both

i 2 {1, 2} lead to the same result. Hence, Rpre is well-defined. The expression given here can

immediately be estimated from given historical control data and design parameters of a trial

(see Appendix B in S1 Appendix for details). Analogously to (12), the actual type I error rate to

be expected is given by

apre ≔ 2 � F

 

Rpre � za

2

!

: ð15Þ

The computations in [6] and the asymptotics of the Nelson-Aalen estimator yield

E½Ŝ2
OSLR;iðsmaxÞ� �

Z 1

0

FTB
ðsmax ^ uÞdFCB

ðuÞ: ð16Þ

After another approximation and some computations (see Appendix B in S1 Appendix), we

also get

E½Ŝ2
i ðsmaxÞjDA� �

Z 1

0

FTB
ðsmax ^ uÞdFCB

ðuÞ

þ 2p �

 Z 1

0

ŝ2

Aðsmax ^ uÞS2

TB
ðuÞSCBðuÞdFCB

ðuÞ

þ

Z 1

0

ŝ2

Aðsmax ^ uÞSTBðuÞS2

CB
ðuÞdFTB

ðuÞ

!

Under the null hypothesis H0, the right hand side can be estimated by plugging in Kaplan-

Meier estimates gained from the historic control group A for FTB
respectively STB . For a given

historical control group, these formulas can now be used to compute the type I error inflation

due to ignoring reference curve sampling variability. Of course, the treatment group allocation
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ratio π is essential for the extent of this inflation. We also applied this a priori estimation in

our simulation from the previous section. The results can be found in Table 3. They suggest

that the underestimation of variance can be robustly examined based on the historic data

before the new group is recruited. A much simpler estimate is provided by formula (13). This

is particularly useful when no assumption can be made about recruitment and censoring

mechanism in group B. From Fig 3, however, it can be seen that these have a large influence

on the actual extent of the type I error rate inflation.

We will now illustrate the influence of basic design parameters on the type I error inflation

using a practical example. We employ the setting of the Mayo Clinical trial in primary biliary

cirrhosis of the liver (PBC), which is a rare but fatal chronic disease whose cause is still

unknown (see [15]). In this double-blinded randomized trial the drug D-penicillamine

(DPCA) was compared with a placebo. The study data is publicly available via the survival

package in R (see [16, 17]).

Among the 158 patients of the cohort treated with DPCA, 65 died during the trial. The

Kaplan-Meier survival curve of these patients can be found in Fig 2. The time scale is given in

years. In the same figure, we also display the empirical distribution of the censoring variable C
in this cohort. As we will see below, the censoring distribution also plays a crucial role for our

computations. We now suppose, that a new treatment becomes available and the data from

this new trial shall be used to compare the survival under a new treatment to the survival

under historic treatment with DPCA. This shall be accomplished in a trial in which patients

are recruited uniformly over a accrual period of length a and then followed-up in an subse-

quent observation phase of length f. The allocation ratio (new to historic cohort) will again be

denoted by π. If one cannot find a suitable parametric model to be fitted to the data, the

Kaplan-Meier and Nelson-Aalen estimates (see Fig 2) are employed as reference curves for the

one-sample log-rank test, respectively.

Similar to our simulation study, we first investigate the influence of the allocation ratio on

the type I error inflation. We choose π 2 {0.01, 0.02, 0.03, . . ., 1}, a = 2 and f 2 {2, 4, 6, 8}.

Hence, we obtain analysis dates smax 2 {4, 6, 8, 10}. As the observation period of many patients

in the historical reference group exceeds 10 years, we do comply with the requirements of The-

orem 1 (see Appendix A of S1 Appendix) here. The results in terms of the actual type I error

level of the one-sample log-rank test can be found on the left hand side of Fig 3. For any fixed

f, the actual type I error level increases nearly linearly with the allocation ratio. the amount of

increase additionally depends on the length of the follow-up, where a longer duration of the

follow-up period leads to steeper increases.

Table 3. Apriori estimated type I error rates under consideration of sampling variability.

nB π = 1 π = 1/2 π = 1/4 π = 1/8 π = 1/16

αpre Rpre αpre Rpre αpre Rpre αpre Rpre αpre Rpre

25 0.156 0.724 0.107 0.823 0.079 0.896 0.064 0.943 0.057 0.970

50 0.161 0.715 0.108 0.820 0.079 0.895 0.065 0.943 0.057 0.970

100 0.163 0.711 0.109 0.818 0.079 0.895 0.065 0.943 0.057 0.970

200 0.165 0.709 0.109 0.817 0.080 0.895 0.065 0.943 0.057 0.970

(i) Median a priori estimates of type I error rate αpre (see Eq (15)) of test procedure (8) when used for testing H0 : ΛB = ΛA, and (ii) median a priori estimates of

underestimation of the standard deviation Rpre (see Eq (14)) of the one–sample log–rank statistic M̂ 0 when ignoring the reference curve sampling variability for different

parameter constellations of practical relevance. Survival times were Weibull distributed with shape parameter κ = 1 and 1–year survival rate S1 = 0.5 in the historic

control group A. Underlying sample size of nA = nB/π with allocation ratio π.

https://doi.org/10.1371/journal.pone.0271094.t003
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Fig 2. Distribution of survival and censoring variable. Distribution of overall survival and censoring in the cohort treated with DPCA of the Mayo

Clinical trial in primary biliary cirrhosis. Left: Cumulative hazards according to the Nelson-Aalen estimator. Right: Survival distributions according to

the Kaplan-Meier estimator

https://doi.org/10.1371/journal.pone.0271094.g002

Fig 3. Type I error inflation. Actual type I error levels of the classical one-sample log-rank test when sampling variability of the reference curve is

ignored. Left: Variation of the allocation ratio with fixed accrual duration a and four different durations of the follow-up period f. Right: Variation of

the length of the follow-up period f for a fixed allocation ratio π and three different durations of the accrual period a.

https://doi.org/10.1371/journal.pone.0271094.g003
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We take a closer look at the role of the trial overall trial duration a + f next. As already seen

in the first part, longer trials lead to a larger inflation of the type I error levels. To analyse this

dependence, we now choose π = 0.5, a 2 {2, 4, 6} and f 2 {0, 0.05, 0.1, . . ., 6}. The results can be

found on the right hand side of Fig 3. As we can see, trials with a longer overall duration a + f
lead to larger type I error inflation. This effect is most substantial if the overall duration of the

new trial is close to the longest observation in the historic data set (in our example about 12.5

years). The reason is that in this case, the testing procedure needs to utilize parts of the tail of

the Nelson-Aalen estimator which are based on a small proportion of patients and thus are

affected by a high amount of variability. This stresses the importance of the frame condition

that the available follow–up data for patients from the historic group should be substantially

longer than the desired length of the new trial, if the reference survival curve is estimated from

historic data. However, the inflation of the type I error rate neither behaves completely mono-

tonically in the accrual duration a nor in the follow-up duration f. Even if the variance estima-

tors Ŝ2
OSLR;i of the one–sample log–rank test and the additional variance Ŝ2

i � Ŝ2
OSLR;i from

consideration of the reference curve sampling variability increase monotonically in a and f,
their ratio can increase if the increase of the former is steeper than the increase of the latter.

Nevertheless, there is a clear tendency towards a larger inflation of the type I error rate if either

a or f increases.

Discussion

Traditional one–sample log–rank tests compare the survival function of an experimental treat-

ment to a prefixed reference survival curve, which typically represents the expected survival

under standard of care. Choice of the reference survival curve is commonly based on historic

data on standard therapy and thus prone to sampling error. Nevertheless, traditional one–sam-

ple log–rank tests do not account for this variance of the reference curve estimator, but rather

assume that the reference curve is deterministic.

Ignoring the sampling variability however, leads to an inflation of the type I error rate. The

extent of this inflation depends in particular on the relative size of the historic control cohort

compared to the new treatment cohort. A major objective of this paper was to work out recom-

mendations on the size of the historic control group such that the type I error inflation remains

within an acceptable range. In this regard, our simulations support that the classical one-sam-

ple log-rank test is adequate for two-sided type I error rate control if the historical control

cohort is large enough. If the desired significance level is 5%, Eq (12) suggests that this historic

control cohort should be at least 12 times larger than the new cohort (π � 1/12) to assure that

the type I error rate is not inflated beyond 6%. Additionally, the available follow–up data for

patients from the historic group should be substantially longer than the desired length of the

new trial (see Fig 1 and Results). For stricter type I error rate control one could use a hybrid

strategy defined by rejecting H0 whenever ZOSLR,1 � F−1(1−α/2) or ZOSLR,2 � F−1(α/2). This

strategy exploits the skewness of the distribution of different versions of the one-sample log-

rank test statistic in order to compensate in parts the type I error rate inflation due to neglect

of reference curve sampling variability. In our simulations, this hybrid strategy yields satisfac-

tory type I error rate performance for allocation ratios π � 1/8.

In this respect, it seems advisable to use the classical two-sample log-rank test (see [18]) if

these conditions are not met and the proportional hazards assumption can be made. There,

the variability in the data of the reference group is naturally taken into account. However, one

must be careful here as well, since compliance with the type I error rate is not given in case of

small sample sizes or unbalanced groups [19] as in some scenarios of our simulations. How-

ever, such issues can be solved by the application of resampling-based tests [20].
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We also provided a consistent estimate of the actual variance of the one–sample log–rank

statistic when reference curve sampling variability is taken into account. This allows to con-

struct a random variable Zi (see Eq (6)) that is asymptotically standard normally distributed

under the null hypothesis H0 : ΛB = ΛA. Zi thus yields a test of H0 that may be viewed as an

alternative to the two-sample log–rank test for H0. Planning and performance of this new test

as compared to the two–sample log–rank test will be contents of a forthcoming paper.

Conceptually, this construction of our random variable Zi also sheds light on a general strat-

egy for lifting existing methodology for single–arm survival trials to a randomized, multi–arm

setting. This might be of interest for designing confirmatory survival trials with interim analy-

ses. Performance of interim analyses in clinical trials is of ethical and economic interest. On

the one hand, interim analyses enable faster decisions regarding rejection or acceptance of the

underlying null hypothesis when the treatment effect is larger or smaller than initially

expected. Moreover, interim analyses offer the possibility for data dependent modifications of

the trial (e.g. sample size recalculation) in the case of new insights, thus increasing the pros-

pects of the trial. Trial designs with interim analyses offering such kind of flexibility at full type

I error rate control are commonly referred to as confirmatory adaptive designs [21, 22].

Advanced one-sample methodology as in [23] might be transformed to be applicable in multi-

arm settings in this way to address still existing problems when it comes to the use of addi-

tional information in interim analyses (see [24]).

Similarly, weighted one-sample log-rank tests as in [25] which are better suited for the

detection of late or early effects can also be analyzed with the methods proposed here. Corre-

sponding weights can be introduced to ZOSLR,i (see (4)) resp. Zi (see (6)) for i 2 {1, 2} by multi-

plying them with the event indicator functions, inserting them into the counting process

integral (2) of the Nelson-Aalen estimator and inserting its square into the counting process

integral (3) of the variance estimator.

Going beyond our research, we have to point out that we did not consider the problem of

confounding in historically controlled trials here. This occurs if the characteristics of the his-

torical control cohort and the cohort of the new study differ substantially. Extreme caution is

therefore required when selecting a historical control. In [26, 27], several criteria under which

a historical control cohort appears suitable, are given. Of course, known confounders can also

be taken into account by choosing an adequate analysis technique. This can be achieved by

stratification of the two cohorts or, if appropriate, a Cox proportional hazards model. How-

ever, this will be content of future research. The objective of this paper is to provide methodol-

ogy for accounting for sampling variability of the reference curve in classical one-sample log-

rank tests, and illustrate the drastic consequences of neglect of reference curve sampling vari-

ability on type I error rate control.
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