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Preface

Process mining has been a hot topic for the last 10 years. It originated
from the work of Wil van der Aalst and has quickly picked up attention
in both industry and academia. Indeed, industry has developed so much
interest in the topic, its applications, and its potential benefits that several
start-ups focusing on process mining could successfully established, one
of which has even reached unicorn status.

Process mining is based on the idea of generating process models from
event logs. In other words, it is a total deviation from process modeling,
which has been popular for the last 25 years, since the interest is no longer
to model a process before it is enacted and deployed, but afterwards. An
event log as produced by almost every modern IT system is a protocol
of all events which have occurred in a system up to a certain point in
time; hence it shows both what has been executed (which software) and
the order in which execution events have occurred. Obviously, process
mining thus cannot capture many details which could easily be reflected
in a process model (e.g., the human actors, roles or re-sources involved in
the execution of a process, the data model underlying the events which
are executed, or a relevant risk or SWOT model). On the other hand,
various applications seem satisfied with the results that process mining
can produce.

Several users as well as researchers see process mining as a special form
of data mining. This analogy is valid, since an event log can be considered
as a dataset from which a model (the process model) is learned, and then



compared to the intention or purpose that is underling the execution
of the respective process (and for which a model may or may not yet
exist). Due to this analogy, it makes sense to study whether and which
established data mining techniques can be used in this context.
Nico Grohmann’s thesis has two main research questions it wants to

answer: How to develop an implementation which applies association rule
and sequential pattern mining to event data in the form of event logs for
use in practice, and how can resulting rules and patterns be translated into
declarative model elements in a way that they can be exploited for process
improvement. The reader’s attention is particularly directed to Chapter 5,
one of the main contributions, where he applies pattern and rule mining
to event log data, and shows in detail how algorithms Apriori/FP-Growth
and GSP can be applied by using the commercial RapidMiner tool. It is also
shown how the resulting rules or sequential patterns can be translated
into Declare statements. He then evaluates the approach on three vastly
realistic examples, and delivers the insight that sequential mining can
yield considerably better results than just rule mining.
The core of the thesis is a demonstration that process mining in the

declarative direction can more or less easily be done using a commercially
available tool without extraordinary efforts, which makes it an interesting
read especially for the practitioner.

Münster, March 2022 Prof. Dr. Gottfried Vossen
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1 Introduction

Digitalization has influenced nearly all areas of life and is an unstoppable
phenomenon for upcoming times. Whether it is in the communication,
shopping, entertainment, or mobility area, digitalization has changed busi-
ness models and how these actions are carried out. Former paper-based
processes are now possible only using a digital device or have become
entirely obsolete. Furthermore, new business models and processes were
just not possible before digitalization had entered the stage [1].
Digitalization comprises a multi-dimensional concept whose capture

is not trivial. For this purpose, research has developed various digital
maturity models [TMB20] that try to capture the current digital status of
an organization, whereby business processes and data were discovered to
be of prime importance.
Processes characterize the creation of value for any business. Tradi-

tionally, Business Process Management (BPM) is the field that deals with
all aspects of processes in organizations. It focuses on understanding
and modeling existing processes and identifying the differences between
desired process executions. BPM has its origins early in the 1990s, with
the work of Hammer [Ham90] introducing Business Process Reeingeneer-
ing (BPR), claiming that companies should rather completely rework their
work procedures instead of automating them. Today, processes are often
supported by at least one information system and, therefore, produce
large amounts of data [MSW11]. Processes consume data to fulfill their
purposes and produce new data based on their executions. Exploiting

1



1 Introduction

data sources is crucial for a large majority of business models today. The
data mining discipline, nowadays often associated with the Big Data term,
focuses on exploiting all kinds of data sources to understand or predict
relationships in a domain [TSK16].
Recently, data mining techniques have been applied to process data

in the form of so-called event logs. Process mining [Wil16] has arisen,
which uses the traces of process executions in IT systems to discover
real-world processes. With that technology, process modeling is now a
semi-automated task that does not require manual modeling activities. In
general, process mining connects the BPM and data mining disciplines by
exploiting data sources for all kinds of process analyses.
Research progress in process mining directly contributes to advance-

ments in BPM which can be seen as one dimension of digitalization. Like
other research efforts in the information systems discipline, process min-
ing is closely linked between research developments and the technology
application in practice. New findings in research are applied in practice
to verify whether they hold in reality. Reversely, observations in the in-
dustry lead to research initiatives to explain observations or come up
with solutions for a problem observed. As process mining is a relatively
new technology and its application in practice is only at the beginning in
many environments, questions arise of how to integrate it in the exist-
ing BPM environment and which benefit it can deliver in what kind of
circumstances.

1.1 Motivation

Process Mining allows companies and other organizations to get an
overview of the actual status of their business processes. The founda-
tions for process mining were laid in 2012 with the Process Mining Mani-
festo [vdAAdM+12] with van der Aalst being one of its principal founders

2



1.1 Motivation

who published a work that summarizes a large share of the knowledge
about this technology in 2016 [Wil16]. As a subset of BPM, process mod-
eling tries to capture and visualize the flow of processes happening in
any organization. Such activity typically results in a process model or
diagram in a notation like Petri nets or BPMN. Typically, process mining
applications in larger companies consider Order-to-Cash (O2C), Purchase-
to-Pay (P2P), production or administrative processes. Such processes are
often supported by various information systems, whereby some may even
communicate with external systems from customers or suppliers [24]. In
many cases, modeling such processes is not feasible [DGDMM15] because,
depending on the abstraction degree, they consist of many activities and
have many variants, meaning that the activities can be gone through in
various ways. There are no or only a few conditions and dependencies
that enforce a particular order of the process. The flow of the process is
relatively free as long as it adheres to the logical structures (e.g., XOR-
gateways) and starts in a start and ends in an end state.
For this reason, process mining, where the process model is automat-

ically generated based on the input of process execution data, may be
a suitable option. Van der Aalst et al. define process mining as a tech-
nique “to discover, monitor and improve real processes (i.e., not assumed
processes) by extracting knowledge from event logs readily available in
today’s (information) systems” [vdAAdM+12]. The challenge is to collect
all relevant event data from the various information systems and integrate
and transform them into one event log. Assuming this hurdle is cleared,
the file can be imported into a process mining tool of choice. Then, a
process discovery routine generates a process model underlying the event
data input. In some cases, this results in a large, complex, spaghetti-like
diagram that is confusing and does not deliver any concise overview.
Still, modelers and other process stakeholders would like to know

the process’s most critical procedures and relations. Declarative model-
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ing [DGDMM15] notations can help here as they introduce constraints
and conditions on the process without defining the exact flow of the pro-
cess in detail. Such constraints and conditions can originate from either
process mining activities taking the event log as the source or manual
modeling activities by process modelers using their domain knowledge
about the process or conducting interviews with employees who are part
of the process under consideration. In this way, even though traditional
process modeling and mining cannot deliver satisfying analysis results,
process analysts could nevertheless deliver possibly meaningful insights
that help to improve the process performance.
All process stakeholders, including management people, must under-

stand the resulting process models to ensure the analyses are beneficial.
One widely-used notation for modeling processes in a declarative manner
is Declare [PSVdA07]. It consists of a set of constraint templates restricting
the existence of single activities or the relation of two or more activities
between each other. Besides, a multi-perspective extension of Declare
can also capture data-related conditions for their associated activities. As
declarative notations for process modeling are nowhere near as widely
used as imperative notations like the industry-standard Business Process
Model and Notation (BPMN), employees that are not professional pro-
cess modelers may have difficulties grasping the process depicted in such
models or at least need some time to familiarize themselves [FLM+09].
Therefore, another format with which non-experts in modeling are more
familiar but can still represent the process coherences may be desirable.

For a long time, data mining has used association rules [ZB03] and se-
quential patterns [16] to describe relations in all kinds of datasets, whereby
the market basket analysis is the most prominent application scenario. As-
sociation rules create a statement that whenever a customer buys product
A, he or she is likely to buy product B, whereas sequential patterns show
frequent sequential orders in which customers buy products. Because
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of their conciseness, both association rules and sequential patterns are
intuitively understandable for most employees with various backgrounds.
Transferring their application from market basket to process analysis
means that the activities of a process are the new products and a process
instance is one customer transaction describing the products a customer
buys. In this way, they are an intermediary representation of process rela-
tions but not yet translated to model elements of the declarative process
model notation. Ideally, they are derived directly from the event log input
that is the same as for “traditional” process mining resulting in process
graphs.

Consider the following motivating example that may happen similarly
in practice based on a sample event log from the internet. It was used for
the BPI Challenge 2019 [18] and describes the purchase order process of a
larger multi-national company based in the Netherlands in one year.While
the scenario is fictive, the goal is to illustrate the benefits of combining
the declarative process modeling paradigm and process mining in such
application settings.

Motivating Example

The setting is a company Paint & Co. producing coatings and paints for
industrial applications. Controller C detects a notification at her Business
Intelligence (BI) dashboard indicating that recently revenue numbers have
dropped. After a chat with her colleagues in the production department,
she finds out that production had to reduce the production speed as the
company lacks raw material. Furthermore, she hears that supply compa-
nies complained about the unreliability of the purchasing department of
Paint & Co. C wants to get to the bottom of things and talks to a process
analysis department colleague.
The purchase order process is currently not part of the department’s

analyses as it was found to be very hard to be modeled because of its
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large number of variants. Furthermore, the focus of the process analy-
sis team was set on the production processes as higher cost-saving and
performance improvement potentials were expected there. The process
analysis team recently included process mining into their skills portfolio
and toolbox as the team thinks it could benefit the company substantially.
However, the application of process mining in Paint & Co. is still at the
beginning. There have been successful pilot projects with more straight-
forward and smaller processes that have led to changes and optimizations.
One reason why process mining often has not yet been established for
larger, more complex processes is that data collection and integration
requires significant effort with the introduction of ETL (Extract, Trans-
form, Load) pipelines. C and her colleague agree that they should apply
process mining on the purchase order process to clarify the reason for
the shortage of raw material.
They contact the purchasing department of Paint & Co. and explain

their project. The purchasing department provides them with an extract
of all ERP system tables that come in contact with the purchase order
process. With these extracts, BI and process analysts, with the help of a
data science expert, build an event log that describes the executions of
the purchase order process in the last five years. After importing the file
in a process mining tool (Disco [4] in this example), they start the process
discovery process. It results in the process model shown in Figure 1.1.
C and her colleague from the process analysis team are surprised be-

cause the model is confusing even though it only includes 50 percent of
the paths. They can identify the happy path of the process through the
color coding and varying thickness of the output, indicating which of the
activities and paths are frequent. First, Paint & Co. creates a purchase order
item (activity Create Purchase Order Item) which includes the products
the company would like to buy and leads to the buying contract between
the company and the suppliers. Then, the vendor creates an invoice, and
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Figure 1.1: Discovery of Purchase Order Process in Disco [4].

the goods and invoice receipts are recorded, i.e., stored in the system. In
some cases, the invoice creation is skipped or executed after the receipt
of the goods has been recorded. Finally, the invoice is closed and archived
(activity Clear Invoice). C and her colleague do not identify any significant
deviations from what is expected and cannot find the problem that leads
to the missing raw materials as relevant statistics like throughput time
are in the norm.

Therefore, they decide to split the event data and only load the purchase
order process cases of the last two months into the process mining tools
because this is roughly the time where the complaints of the suppliers and
the lack of raw material started. After generating the process model, it can
be seen that the frequency of activities in the cases has changed. The happy
path remains unchanged, but another path from Vendor creates invoice to
Create Purchase Requisition Item back to the Create Purchase Order Item
activity grows substantially regarding frequency. In a significant amount
of cases, Paint & Co. requests new items after the vendor has already
created the invoice.
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Such process behavior is unusual and represents an exceptional case
that requires further investigation. Now that C and her colleague have an
indication of why the purchase order process may currently not be optimal
and cause the problems with the procurement of the raw materials, they
still do not know why the purchasing department executes the purchase
orders in this way. A small interview session with the employees does not
lead to new conclusions because they state that nothing has changed and
the purchase orders are executed in the same way like they have been in
the previous years. The BI and process analyst conferred to discuss the
next steps with this unsatisfying situation.

The process analyst proposes to apply association rule and sequential
pattern mining on the event log to derive frequent relations on the process.
Thereby, these fundamental data mining techniques shall be enriched with
data, i.e., attribute values associated with each activity execution. In this
way, the execution path of the process is linked with attribute values. Still,
it requires some domain knowledge to interpret the resulting rules and
patterns and decide whether they represent behavior outside the happy
path that should generally be avoided or one should try to keep infrequent.
The data science of team of Paint & Co. supports the process of applying
the two data mining techniques on the event log and develops a Python
script that produces association rules and sequential patterns based on
minimum support and confidence values. Again, the script uses the data
from the last two months. After playing around with these settings for
some time, C and her colleague come across the following sequential
pattern, with relatively high support of 0.5, raising their interest:

{Vendor Creates Invoice, Create Purchase Requisition Item/user_005, Create

Purchase Order Item}

The user_005 value originates from the User attribute of the event
log, which is a so-called event attribute that specifies the user who was
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responsible for executing a particular activity (if known and meaningful,
can also be empty). A slash between Create Purchase Requisition Item

and user_005 indicates that this specific value for the User attribute and
the activity appeared together. The pattern shows that the rework of
the purchase order items is significantly associated with one particular
user. C and her colleague arrange a confidential talk with the head of
the procurement department. The de-anonymization of the user id shows
that the employee associated is relatively new in the company. Here, it
is crucial always to be cautious of sensitive user-related that could lead
to accusations of individual employees. Privacy issues are an important
(research) topic for the process mining field.

The problem solution is found after a private face-to-face talk of the
procurement manager and the employee, including a live walkthrough
through the purchase order process. Instead of creating new purchase
orders for every product Paint & Co. wants to get delivered, the employee
created a purchase requisition item based on the same invoice number
when he believed that the additional products have a content-related
connection to an already existing order. In this way, the supply company
receives a purchase order associated with an invoice number that already
exists and that was possibly already closed and archived, interrupting
the automatic workflow at the supplier’s side. An employee of the sales
department has to manually inspect the case and initiate the shipment
of the products, causing delivery delays. This explains why Paint & Co.

lacks some essential raw materials as the company applies Just-in-time
production with minimal storage capacity from which it could draw on.
Still, the possibility to create a purchase requisition item based on an

existing invoice is intended and was designed for cases where the supply
company could not deliver parts of the order. In some of these cases, Paint
& Co. falls back for other suppliers to obtain the products. However, a
supplier may generally be the only one selling one type of material or
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others do not have it in stock as well. The purchase requisition shall
explicitly state that Paint & Co. asks the supplier to restock these products
to deliver them in the future even though this could take longer than
usual and therefore violate delivery time agreements. In total, the supply
company could also use the findings of the sequential pattern analysis to
make their sales processes more robust against such deviations so that
they do not lead to the loss of automation.

C and her colleague are content with the outcome of their joint project.
They could find the cause of the short raw materials. For the future, they
agree that applying association rule and sequential pattern mining to
process event data seems promising and should be continued with other
processes, especially those that were not touched before by process analy-
sis due to their complexity and deep integration in various company parts.
The association rules and sequential patterns were easily understandable,
also by non-process-experts, whereby sequential patterns were found to
be more beneficial for understanding the process steps chronology.
Some questions remain open, for instance, how this new procedure

of applying fundamental data mining techniques on event data should
be included in the current process analysis cycle. Currently, the process
analysis team of Paint & Co. starts with context analysis of the process
and conducts interviews with employees who work with the process
afterwards, which results in process models. Should process mining, in
general, happen after a context analysis, and should, if possible, both
modeling and mining be performed for one process? In case the process
analysis team performs both techniques, how should Paint & Co. deal with
non-matching results? Related to that is how to represent the association
rules and sequential patterns in a global process model.
It is already clear that a declarative modeling notation with the op-

portunity to model data-related relations fits this purpose best here. Still,
there is the question of which rules and patterns lead to which model
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elements in the declarative modeling notation. C and her colleague raise
the question of whether the notations currently described in the literature
are sufficient or they have to be extended to make them more fitting to
represent the mining output. Furthermore, both agree that general guide-
lines providing indications about parameter settings and the question
of which rules and patterns should be selected for including them in a
declarative model could be immensely helpful.

1.2 Research Objectives

The research foci of this thesis are two-fold. One part concentrates on
rather technical issues of the implementation. It shows how a general
implementation of association rule and sequential pattern mining could
look like in programming languages dealing with datasets. Thereby, the
thesis expands on all preprocessing steps and parameter settings in detail
to finally apply the two fundamental data mining techniques. Additionally,
it illustrates how various types of resulting association rules and patterns
can be transformed to a Declare constraint to be included in a declarative
process model based on a compact sample process event data set. The
following questions capture the main contributions of this thesis.

■ RQ1 How to develop a general implementation of applying associ-
ation rule and sequential pattern mining to event data in the form
of event logs for use in practice?

■ RQ2 How can resulting rules and patterns be translated to declara-
tive model elements, and are the existing (multi-perspective) nota-
tions appropriate and fitting to capture their meaning?

Another aspect focuses on integrating the declarative process mining
approach presented in this thesis and the declarative paradigm in general
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into a company’s structure. It addresses how and for whom a rule/pattern
and declarative model representation may be beneficial, compared to
existing declarative process mining approaches whose algorithmic details
may not be transparent to non-technical users. Both parts are supported
by applying the approach to sample event logs from web repositories;
however, real-world applications are not included and left for future
research interests. Therefore, the following two questions are not explicitly
answered but touched in the course of the thesis.

■ Is the association rule and sequential pattern representation benefi-
cial for users, especially those without knowledge about algorithmic
details and programming languages?

■ How should the application of association rule and sequential pat-
tern mining be integrated into the BPM life cycle to maximize a
company’s benefit for process understanding?

1.3 Thesis Structure

The remaining thesis is structured as follows: Part 1 encompasses the
foundations that play a substantial role throughout the thesis. Chapter 2
introduces a maturity model to assess a company’s degree of digitalization
concerning a set of dimensions. It identifies processes as the most critical
aspect of digitalization and motivates the joint consideration of Business
Process Management (BPM) and process mining. Both concepts or re-
search fields are introduced in more detail in Chapter 3. Process mining
enriches the traditional BPM field with data-driven analyses of real-world
processes. Together, their application could result in findings for future
process analysis initiatives that were not possible before. Next, Chapter 4
recalls association rule and sequential pattern mining as two fundamental
data mining techniques.
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Part 2 of this thesis combines the data and process mining techniques.
Starting from their traditional, typical application settings like market
basket analysis, Chapter 5 transfers them to the process analysis field
and sets up a process to apply them to event logs for process mining.
Furthermore, the chapter shows how the resulting rules and patterns
can be translated to model elements in the (multi-perspective) Declare
notation and how these notations can be adapted to represent them even
more precisely. Chapter 6 evaluates the approach by applying it to sample
event logs of different sizes from web repositories. This results in full
declarative models and assesses whether and how process analysis and
understanding benefit from this representation.
At last, Part 3 relates the contribution of this thesis with the research

context and compares it with existing declarative process mining ap-
proaches. The goal is to demonstrate that the straightforward generation
of association rules and sequential from event logs benefits the common
understanding of a process model and a transformation to declarative
model elements and backwards is practical. Finally, Chapter 8 concludes
the thesis and points out possible directions of future research.
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Foundations
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Part 1 (“Foundations”) introduces the fundamental terms and concepts
relevant to this thesis. Starting from a brief overview of digitalization
or digital transformation of companies, Chapter 2 focuses on the digital
dimension of Processes. Processes in the firm context are very strongly
related to Business Process Management (BPM), which covers all aspects
of business processes in organizations and represents a major research
field. In that context, the Horus method represents a comprehensive
framework guiding companies to analyze all aspects related to business
processes and their connection to other business parts. It shall serve as a
reference point to show how the approach presented in this thesis can be
integrated into a company’s BPM activities.

Chapter 3 continues with process mining as a relatively new technology
that exploits traces of processes supported by information systems of all
kinds. Furthermore, it provides a short history of process mining and
explains the fundamentals and most important types to use in practice.
Both process modeling and mining are traditionally applied by using an
imperative paradigm. However, researchers have started to investigate the
declarative paradigm. Declarative approaches for process modeling do not
define a control flow but describe the process at hand using constraints
and conditions. In that way, the process is restricted by constraints. Every
other behavior not captured by these constraints is allowed. Declarative
model elements are especially useful for rather complex and loosely-
structured processes. Their description with traditional process models
would result in so-called "spaghetti" diagrams. This chapter introduces
declarative constraints for process modeling, specifically the Declare
notation, which is common and accepted in research environments. Then,
a multi-perspective extension of Declare (MP-Declare) is presented which
makes it possible to add attributes or other data-based conditions to the
declarative process model. Examples of such conditions are activation,
correlation, and time conditions on or between the process activities.
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After setting the basis for the process field, Chapter 4 continues with
introducing two fundamental data mining techniques, namely association
rule mining and sequential pattern mining. Starting with the Apriori
principle, the standard market basket example recalls the advantages of
the FP-Growth algorithm for association rule and the GSP algorithm for
sequential pattern mining. The overall goal is to use these techniques on
event data (in the form of event logs) to discover association rules and
sequential patterns that can be translated to declarative process models
later in this thesis.
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This chapter is based on a digitalization check by Vossen et al. [VEGD20]
that contributes a survey addressing the digital maturity of companies (in
particular small and medium-sized enterprises (SMEs)) whose results are
then mapped to a multi-dimensional radar chart illustrating the results.
Digitalization or digital transformation are very prominent terms, not
only in research but also in media and the public.
There are various definitions for digitalization that mean different

things or have different foci. One prominent meaning is that it stands for
the challenge of adapting procedures and business models of all kinds
in a way so that they are compatible with a highly digital, computerized
world [25]. This thesis focuses on such definitions of digitalization. In
companies and their environment, digitalization is more than the mere
transformation of analogue to digital information. Nowadays, there is
consensus in research and practice that companies must adapt to the
changing environment. If they do not, an organization is likely to get
into severe trouble as competitors may develop significant competitive
advantages or new challenges may arise that completely change the
market field, leaving no room for the established ones anymore [SM17].

A related term is disruption. Christensen defines disruption as “a process
by which a product or service takes root initially in simple applications at
the bottom of a market and then relentlessly moves up market, eventually
displacing established competitors” [1]. Examples of such a phenomenon
are personal computers that replaced mainframes or cellular phones that
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displaced fixed-line telephony. Also, the introduction of Apple’s iPhone
in 2007 is seen as such a disruption because it significantly simplified the
process of installing external software (apps) on the phone by introducing
the App Store. Quite recently, traditional mobility service providers like
taxis have been attacked by the likes of Uber and Lyft. These competitors
play out their advantages through a digital business model and have sig-
nificantly better cost and service level structures. Therefore, traditional
companies already present in the market should adapt to the new circum-
stances and change the way they carry out their business model. However,
such changes should be planned carefully. Otherwise, a high amount of
resources might be spent with no or minimal effect on the digital status
of the company.
Therefore, a starting point for digitalization initiatives should be an

assessment of the current digital maturity. Researchers and practitioners
have developed various approaches. For instance, McKinsey & Company
have developed a maturity model that includes several dimensions like
strategy, automation, or technology whereby each of them contains a set
of subitems that go into more detail [19]. Its purpose is to assess their
customer’s digital maturity. Academic researchers have, for instance,
developed maturity models focusing on particular branches [CBM18,
DCMNT17, CWWM14], aspects of digitalization [ASA+19, FAS19], or di-
mensions [PB18, VL10]. The following presents a digital maturity model
that encompasses the most relevant dimension of digitalization and serves
as a frame for determining the digital status of a company. It includes the
possibility to individually weight each dimension’s influence on the total
digital value.
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2.1 Assessing Digital Maturity

Digitalization is a multi-dimensional concept covering several aspects of a
company’s operations. Figure 2.1 shows amaturitymodel for digitalization
with seven dimensions. Three dimensions (Processes, Data, Business Model)
are primary and four secondary (Connectivity, Interaction, Optimization,
Disruption) ones. The following introduces each dimension and explains
what aspect of digitalization it measures. Then, the characteristics of the
survey addressing each dimension through a set of statements are intro-
duced. Afterwards, the survey results must be evaluated by calculating
dimension-specific maturity values and a total digital score. Altogether,
a radar chart can represent the results best. The relevant dimensions
were found by combining related research found by extensive literature
research and own considerations.

Processes

Processes are the heart of any company or organization because they
directly contribute to the value creation and delivery of the business
model. In earlier times, processes were carried out without the use of any
Information Technology (IT). With the invention of the computer and
the internet, more and more process parts (activities) became digitalized.
A fully digitalized process is a process that is entirely executed by the
use IT and no or only inevitable manual labour is required. The digital
maturity of a company in dimension Processes can be rated on a scale
between these two extreme cases.

Data

More and more data is available in companies that have to be stored and
structured somehow. Similar to processes, in earlier times, data was stored
on paper and archived in large physical archives when not required any-
more. With the advancing progress in storage capacities, nowadays, the
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Figure 2.1: Digital Maturity Model with Seven Dimensions [VEGD20].

challenge is not about storing the data itself but rather about generating
knowledge about the data and their correct format for use in the processes.
The dimension Data measures the degree to which the data is digitally
available and stored in a structured and harmonized manner.

Business Model

Business models describe how a company plans to earn money from their
activities. The goal of this dimension is to measure the degree to which
the business model of a company depends on IT and digital technologies.
For some business models or branches, a fully digitalized business model
is not possible or desirable, e.g., a restaurant sells food in a physical place
that cannot be digitalized. Nevertheless, the dimension can provide an
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overview of the dependency on such technologies and indicate how the
company performs compared to competitors for branches where digital
technologies are highly relevant and vital for digital progress.

Connectivity

The Connectivity dimension of the maturity model addresses information
and communication channels. Thereby, a company achieves a higher
score for this dimension with more different channels. Examples of such
channels can be mail, chat, or social media channels with customers or
internal channels between company departments.

Interaction

While the Connectivity dimension solely cares about the quantity of infor-
mation and communication channels, the Interaction dimension evaluates
the use of such channels. The digital score for this dimension is based on
the intensity of use for digital channels.

Optimization

Optimization refers to the fast-changing property of digitalization and
measures the degree to which the company adapts to new digital trends on
the market and exploits such opportunities. Examples for such activities
are search-engine optimization, process mining, or chatbots.

Disruption

Based on the definition of Christensen [1], the Disruption dimension
assesses the risk for a company to be disrupted by competitors and to lose
its current business model. More digital business models have a lower
risk of being disrupted than traditional, analogue business models.
Companies have to conduct a digitalization check to determine the

digital status based on these seven digital dimensions. The check in the
form of a survey consists of questions and statements addressing the
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relevant aspects of each dimension. The following presents some selected
types of questions for the Processes andData dimension and the calculation
model to finally come to an evaluation of a company’s current digital
maturity.

2.2 A Comprehensive Digitalization Check

To assess the digital maturity for each dimension, specific questions that
address the relevant concepts of a particular dimension have to be stated.
The responder can either be an employee of the company or an external
person, e.g., a consultant. Both options lead to different viewpoints and
more or less subjective or objective results. Though, it is noteworthy that
the person has to have a certain overview of the company’s overall picture.
For this reason, the practice has shown that CEOs or at least employees
with managerial responsibility are good choices for this survey.

Each dimension of the maturity model has five levels, whereas level 0
indicates the worst and level 4 the best (or most digital) manifestation.
The statements are stated in a way that the respondent can reply with
options ranging fromDoes not apply toApplys totally (5-point Likert scale).
Then, an average Likert-scale value of the given answer is calculated
representing the digital score for one dimension. Sample statements for
the Processes dimension look like the following:

Statement:
Many different simple process steps are not digitalized and must be
performed manually.

Explanation:
This statement measures whether a company has many activities that
are executed without the help of IT.
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Statement:
There are processes I do not understand.

Explanation:
Are employees able to capture the overall structure of the processes they
work with or do they just perform single activities?

The statements capture various aspects of digital maturity for one di-
mension. Single statements are not enough, and some overlap in some
aspects. However, together they cover a broad spectrum of what is con-
sidered relevant for the digital status in one dimension. Also, they can
balance outliers caused by weaknesses of the statements or uncertainties
in the responses. One statement for the almost equally important Data
dimension is the following:

Statement:
All information from business processes involving customers are
reflected in our database.

Explanation:
Does the company store its knowledge about the customers at a single
point?

There are about ten to 15 questions for each dimension. For each of them,
a digital score is calculated as the average of the Likert-value given by the
respondent. Now that a company’s digital status regarding a particular
dimension is known, it is clear where the strengths and weaknesses lie. A
comparison with branch competitors or similar companies is advisable.
The total digital maturity value that includes all the digital maturity

levels of the dimension can deliver a general impression of a company’s
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status. This value is calculated with a weighted mean of the dimension
values. Analysts can adapt the weight of each dimension (a value ranging
from 0 to 10) to fit the characteristics of a particular company. The standard
setting is a weight of 10 for Processes, Data, and Business Model and 5 for
the secondary dimensions. For instance, a craft business may decide that
the Data or Business Model dimension is less critical than dimensions like
Connectivity or Interaction because it has a business model that cannot
be fully digitalized but very intense communication with customers and
suppliers.

Table 2.1: Sample Calculation of Total Digital Maturity.

Dimension Score Weight

Processes 4 10
Data 2.5 10
Business Model 2.5 10
Connectivity 2.25 5
Interaction 1.8 5
Optimization 2.4 5
Disruption 1.7 5

Total Maturity 2.62 -

Table 2.1 shows a sample calculation of the total maturity based on
dimension-specific digital maturity values with standard weighting set-
tings. Figure 2.2 visualizes the dimensional maturity values of Table 2.1
using a radar chart. The larger the area of the shape (blue background
color), the higher is the overall digital maturity of a company. Assuming
a company, for instance, an advertising agency adjudges that for them
connectivity and interaction (e.g., for social media communication) is
as essential as the three primary dimensions (Processes, Data, Business
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Figure 2.2: Radar Chart for the Maturity Values in Table 2.1.

Model), they can set the dimensions’ weight to ten as well. In this case,
the total maturity value drops to 2.52. It lies in the self-responsibility of
firms to not deceive themselves by setting higher weights for dimensions
where they perform well and lower weights for their weak points.

It should be noted that the digital maturity value alone is only a first
indication of strengths and weaknesses regarding the digitalization status
of a company. Further investigations and comparisons with competitors’
results (if known) should be made to judge the result of the digitalization
check. Furthermore, the digitalization check does not replace specific
consulting and can, as it is, not provide concrete recommendations for
actions. The general model for assessing a company’s digital maturity is
highly relevant for all companies and organizations that want to start their
digitalization journey or are already on their way and want to review their
progress. This thesis mainly focuses on the Processes dimension, which
is one of the primary digital dimensions (cf. Figure 2.1), most likely the
most important one.
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2.3 Processes as a Digital Dimension

Processes are the heart of any business activity. They describe how compa-
nies earn profit and how their workflows look like. The business processes
influence nearly every other aspect of the company structure or perfor-
mance. One possibility is to understand the digitalization of processes
as transforming a formerly analogue activity to a digital one. However,
there are different kinds of “digital” processes and activities:
For instance, one of the statements of the digitalization check shown

previously addresses the automatization aspect. In the lowest maturity
level, a process step is entirely manual. A person executes a process step
without any support from IT systems. Another type of digital process
activity is an activity that is performed by humans but supported by IT
systems. An example may be a formerly paper-based form that is now
digitally available and is filled out by an employee with a PDF editing
program. More advanced forms of digital process steps are executed
fully or partly automatically, such as script or batch jobs. Such semi- or
fully automated process steps require only little human intervention if
something goes wrong or a state appears that cannot be solved by a
program. An example for such a process step is the import of an invoice
in PDF format by an Optical Character Recognition (OCR) application
that only requires human intervention when, for instance, an invoice field
contains data in the wrong format. Often, they represent the ultimate goal
for a business process digitalization initiative when no full automation
without any human interaction is possible or desired.

Fully-automated process steps such as the execution of database or
financial transactions do not require any manual work. In case of an error,
they can automatically recover a functional state. Process steps can be
ranged in the described spectrum with zero representing fully manual
and four fully automatic activities whereby a continuous scale is used.
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For optimal results, however, processes should not only be fully digital-
ized and automated but also optimized regarding structure and control
flow. In this context, research and practice often use the notion of “stream-
lined” processes. There is a whole field in research and business that
focuses, inter alia, on the design and implementation of business pro-
cesses: Business Process Management (BPM). The following gives an
overview of BPM and motivates the use of process mining as one of the
most promising technologies in the process analysis research discipline
for current and future process analysis. Progress regarding a company’s
business processes directly contributes to improving the digital maturity
status in the Processes dimension. Therefore, Chapter 2 serves as broader
motivation for the main aspects and contributions of this thesis.
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and Process Mining

Dumas et al. define BPM as "the art and science of overseeing how work is
performed in an organization to ensure consistent outcomes and to take
advantage of improvement opportunities" [DLRM+13]. It is noteworthy
that the discipline does not focus so much on the transformation or change
of individual activities but rather on a holistic view and management of
organizational processes that add value for the company and customers. A
major part of BPM deals with capturing and modeling business processes.
For this purpose, several notation forms have been introduced in the
past decades that can capture the shape and characteristics of processes.
Often, the goal is to create an evaluation of the process situation, identify
weaknesses and potentials for improvement and finally adapt the real-
world process.

Vossen and Lechtenbörger [VL19] collect different approaches for pro-
cess modeling, namely the Event-driven Process Chain (EPC), the Business
Process Model and Notation (BPMN) and the Petri net notation. This the-
sis focuses on Petri nets as one well-known and proven representative
of process modeling languages. Schönthaler et al. [SVOK12] propose the
Horus method as an approach for covering all aspects related to business
processes and their integration in and combination with the residual busi-
ness parts. Its procedure modeling is based on an adapted version of Petri
nets. The following presents the concept of the Horus method.
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3.1 The Horus Method

The Horus method serves as a frame around business (process) analysis
and leads from project preparation to application. Figure 3.1 shows an
overview of the Horus method with its phases, steps, and accompany-
ing activities. Phase 0 prepares the projects, sets goals, and produces a
project initialization and definition. The Strategy and Architecture phase
(Phase 1) includes an assessment of strategic and system architecture
aspects. Phase 2 (Business Process Analysis) represents the core of the
Horus method in which several models addressing organization structure
and risk analysis are created. Business processes and the development of
the procedure models using the adapted Petri net notation stand in the
middle of all analyses here. Finally, Phase 3 (Application) encompasses
the actual use and implementation of the previously developed models
and analyses.

The Horus method represents a well-proven reference model for BPM
projects in the industry. Usually, consultants go into a company and ana-
lyze the as-is state in respect of the aspects shown in Figure 3.1. Thereby,
she or he conducts interviews with employees (e.g., process owners) who
can deliver relevant information, especially about the procedures, and then
creates the models. The Horus Business Modeler [10] supports creating
all models included in the Horus method.

Naturally, interviews result in partly subjective impressions. Therefore,
an overall goal may be to automatize capturing the analyses of the Horus
method by applying specific algorithms on objective data. At the present
time of this thesis, there are no approaches for the automatic generation
of most aspects of the Horus method. However, process mining has arisen
to discover procedure models based on event data input. This technology
could be integrated into the Business Process Analysis phase of the Horus
method, complementing the process modeling activities. Consequently,
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Figure 3.1: Overview of the Horus Method (Source: adopted from

[SVOK12]).

Business performance management could be automated as process mining
can constantly monitor the actual executions. Recommended adaptations
of the process (Process implementation and evolution) can also be derived
from process mining relatively easily.

3.2 Imperative Process Modeling

Imperative or procedural process modeling denotes a paradigm where a
process is modeled by a graph describing a flow of activities. It aims to
create an abstraction of the real-world business using a graph that shows
the allowed control flow. In general, imperative approaches focus on the
“How”; they define how concrete instances of something should look like.
Note that here imperative does not fully comply with the meaning in the
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context of programming languages. Fahland et al. [FLM+09] elaborate on
this analogy in more detail.
Examples for such notations are EPCs, BPMN, or Petri nets. BPMN is

standardized andmaintained by the Object Management Group (OMG) [2].
Figure 3.2 shows a small payment process in the BPMN notation. In the
most simple form, BPMN includes symbols for tasks, gateways, sequences,
and events. The sample process starts with a start event that leads to an
activity Identify payment method. Then, a decision regarding the payment
method is made. If the customer wants to pay by check or cash, the next
activity is Accept cash or check. Process credit card follows in case credit
card was selected as the payment method. The Payment method? gateway
represents a logical XOR-decision. Both alternative flows eventually lead
to the Prepare package for customer activity. It is noteworthy that no AND-
gateway precedes this activity. Thus, one of the input flows is enough
to continue the process. This matches the XOR-decision before the two
processing activities. Finally, the process is terminated by an end activity
depicted as a circle with a bold border.

BPMN is a de facto standard for process modeling in practice and has a
large set of symbols allowing users to develop comprehensive and complex
process representation. Despite its powerfulness and wide adoption, the
BPMN notation is criticized for having too many symbols leading to an
impaired understanding of the models.

Petri nets are an alternative notation that uses aminimum set of symbols
but can express any process in a comprehensible way, originating from
the Ph.D. thesis of Petri in 1962 [Pet62]. Figure 3.3 shows an equivalent
representation of the process model in Figure 3.2 in an (adapted) Petri
net notation in the Horus Business Modeler [10]. The places represent
data objects that are provided as an input for the activities or are their
output. Activities (represented as rectangles) modify the input objects or
create new ones. Activity elements indicate XOR-decision paths (both
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Figure 3.2: Sample Process Model in BPMN Notation (Source: adopted

from [3]).

Figure 3.3: Payment Process in the Horus Business Modeler [10] (based

on Figure 3.2).

input and output) with an X before or after the rectangle. Here, Horus
uses a slightly adapted Petri net notation to enable the active decision
for exclusive choices. The same model without the extended activity
rectangles would depict a parallel control flow where both inputs are
required for the Prepare package activity.
The Horus method (like BPMN), is based on the imperative process

modeling paradigm. It uses an adapted version of the Petri net notation
to create procedure models of business processes. However, researchers
have investigated the declarative process modeling paradigm. With that
approach, processes are no longer represented by a control flow graph but
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by constraints and conditions that restrict the executions of the process.
Everything that is not specified by the constraints is allowed, comparable
to an “open world assumption” in the database context. This modeling
style is helpful in cases where the imperative modeling of highly-flexible
processes would result in spaghetti-like diagrams or only conditions, but
no concrete information about the procedure of the process is known.
The following introduces the declarative process modeling paradigm in
more detail and illustrates the historical early days until today’s use in
the process mining discipline.

3.3 Declarative Process Modeling

Declarative approaches, in general, have the property that they do not
prescribe how something should be constructed or implemented on a
detailed level. Instead, they describe properties and conditions that have
to hold. The concrete shape of the realization is left open. Examples in the
programming language context are SQL or Haskell. For process modeling,
this means creating a model in the form of a graph describing the (allowed)
flow of the process. Imperative notations completely describe the allowed
control flow of the process. Everything else that is that not specified
by the model is not part of the process. Declarative notations, on the
contrary, forbid certain behavior that is not in line with the constraints.
Additionally, some declarative notations include constraint templates that
allow the definition of optional behavior, for instance, the (exclusive)
choice between two activities. Everything else that is that not captured
by the constraints set is allowed.
Imperative approaches (e.g., BPMN or Petri nets) have the advantage

that they are relatively easily understandable. Users of the process model
can directly see which process paths are desired and which are not and
therefore identify deviations. At the same time, experience has shown that
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declarative approaches have advantages for large, complex, and loosely
structured processes with many variants. Modeling such processes with
imperative approaches can result in huge process models, hardly un-
derstandable diagrams with many paths, especially when not using ab-
straction layers with super- and subprocesses. Investigations about the
understandability of both paradigms have, for instance, been made by
Fahland et al. [FLM+09] or Pichler et al. [PWZ+11].
Thus, alternatives and solutions for this problem have to be found.

Declarative process modeling comes into play here. This paradigm alone
is not new, as contributions in research were already made 20 years ago.
For instance, Desel and Erwin [DE00] have addressed the topic of hybrid
(combining imperative and declarative model elements) process specifica-
tions for workflow systems. Van der Aalst et al. [vDAPS09] contributed
the Declare framework in 2009. More recently, in 2016, Slaats et al. de-
fined formal semantics for hybrid process modeling notations [SSMR16].
With process mining emerging, declarative approaches have got a new
application field.

Like imperative approaches, declarative ones also need notations used
to express the process model. One of the most widespread notations for
declarative process models in research is Declare. Pesic et al. present
Declare as a constraint-based, declarative approach that uses instances of
constraint templates to model a process [PSVdA07].
Constraint templates in Declare are based on Linear Temporal Logic

(LTL) [GPC99]. It is a temporal extension of first-order logic including
temporal operator such as (eventually ( ♢ ), always ( □ ), until ( ⊔ ) and
next time ( ◦ )). The expressive power is equivalent to first-order logic
with monadic relation symbols and the smaller relation (<). Systematically
relating the logics to each other, a superset of LTL and the computation
tree logic (CTL) forms the CTL* logic.
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Figure 3.4 shows some Declare constraints with an explanation and
graphical depiction [ADCH+]. Unary constraints are applied to single
activities, whereas binary constraints define a relationship between two
activities. For instance, the EXISTENCE constraint prescribes that a
process instance has to include an activity at least once. INIT or END
constraints enforce that some activity is first or last for every execution
of a process.

Template Explanation Notation

Unary constraints

EXISTENCE (x)
Activity x occurs at least once per 

trace.

INIT (x)
Activity x occurs at the beginning 

of every trace.

Binary constraints

RESPONDED EXISTENCE (x,y)
If x occurs, then y must occur

before or after x.

RESPONSE (x, y)
If x occurs, then y must occur

eventually after x.

CHAIN RESPONSE (x, y)
If x occurs, then y must occur

immediately after x.

PRECEDENCE (x, y)
y occurs only if preceded by x.

x y

x y

x y

x y

EXISTENCE

x

INIT

x

Figure 3.4: Sample Declare Constraints (based on [ADCH+]).

A binaryRESPONDEDEXISTENCE constraint between two activities
indicates that whenever an activity x is executed, activity y also has to be
part of the trace, i.e., it has to occur before or after x. The RESPONSE
constraint, though, takes the temporal order into account and demands
that if one activity appears, another activity has to be executed at some
point in time subsequently. It can also be that the first activity is not part
of the trace. In this case, the constraint is trivially (or vacuously) satisfied.
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Using an LTL formula, the RESPONSE constraint is described as follows:
□(A → ♢B). CHAIN RESPONSE constraints are strengthened versions
of this type and prescribe that the second activity has to be executed
directly afterwards. PRECEDENCE constraints are in some way the
counterpart of RESPONSE in that they enforce that an activity is only
executed if some other activity was part of the trace beforehand.

There are more constraint types, like, for instance, SUCCESSION, that
enforces a direct succession of two activities or EXACTLY_N with N a
number greater or equal to one that prescribes that an activity appears
exactly N times in a trace. Together, the constraints form a description of
a process that matches representations in imperative modeling notations
like BPMN or Petri nets. Synchronization or parallelism in the style of
procedural models is not directly supported by the standard Declare set;
however, the binary CHOICE constraint can specify that either one or
both activities together have to occur. EXCLUSIVE CHOICE constraints
demand that either one or another activity occur but not both together.
Declare constraints forbid behavior that is not in line with the constraints.
Only some of them, for instance, the CHOICE or EXCLUSIVE CHOICE

templates, leave some optional freedom to the process. An extensive
overview of the set of Declare templates can be found in the appendix in
Chapter A.
Generally, it is theoretically possible to describe any process using

imperative, declarative, or hybrid specifications. Figure 3.5 presents a
declarative representation of the payment process in Figures 3.2 and 3.3.
Note that the Declare model does not explicitly contain all coherences of
the imperative representation, often there is no 1-to-1 translation, and
various variants are possible. For instance, it does not prescribe that
Prepare package for customer has to directly follow Accept cash or check or
Process credit card. Theoretically, other activities could occur in between.
Also, the model does not indicate that eitherAccept cash or check or Process
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credit card occur, and no parallel execution of them is allowed. In this case,
these losses of information can be prevented. First, introducing a NOT
CO-EXISTENCE constraint between the Accept cash or check and Process
credit card activities and second, changing the RESPONSE to CHAIN

RESPONSE constraints aligns the declarative and imperative model.
However, especially for such smaller process representations, modelers
commonly face a trade-off between the complexity and size of the model,
the loss of information, and the additional freedom that shall be granted
to the process.
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Figure 3.5: Declare Representation of Payment Process (Figures 3.2 and

3.3).

The Declare notation does not have the same expressive power as
imperative modeling notations. One reason is that even though it allows
the definition of a direct control flow between two activities through
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the CHAIN RESPONSE constraint type, parallelism and exclusive or
inclusive joins of activities cannot be represented. The EXCLUSIVE and
CHOICE constraints in the Declare template set are not suitable for at
least three activities which would be required to represent a split or join
operation. Still, the declarative specification of process models can be
extended with data conditions. Thereby, the model additionally contains
conditions and constraints on the attributes related to the activities. One
representative of this concept is Multi-Perspective Declare (MP-Declare).
The following introduces this extension of Declare and points out the
relevant types of conditions for this thesis.

3.4 Multi-perspective Declarative Constraints

Multi-perspective declarative process modeling denotes the enrichment
of declarative process models with data-aware conditions. Westergaard
et al. [WM12] and Masellis et al. [DMMM14] contribute groundwork
by examining the static check of temporal constraints regarding their
consistency and the monitoring of data-aware constraints on process
event streams. This thesis mainly takes Declare as the declarative process
model representation of choice, therefore it seems natural to focus on one
of its most prominent multi-perspective extension MP-Declare.
Burattin et al. [BMS16] formalize MP-Declare. They use Metric First

Order Temporal Logic (MFOTL) as the basis to define the semantics of
the conditions that it can construct. The authors present polynomial-time
algorithms to check the conformance of multi-perspective declarative
models and event data. This is in line with the finding that MFOTL is
decidable for finite sets of words [BKMZ15] which is the case for event
logs. MFOTL is an extension of metric temporal logic (MTL) for which
the satisfiability problem is EXPSPACE-complete meaning that it can be
solved by a deterministic Turing machine in exponential space [Koy90].
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Multi-perspective extensions of Declare, in general, intend to use ad-
ditional data perspectives for the definition of constraints in declarative
process model descriptions. The assumption is that one or more attributes
of different types (e.g., Strings, Integers, Boolean, etc.) belong to an activity.
Taking these attributes, MP-Declare can express three types of conditions,
namely activation, correlation, and time conditions.
The first activity of a binary constraint is called activation and the

second one target. Activation conditions can be applied to both unary
and binary constraints. They describe a condition that has to be fulfilled
to make a condition active, i.e., if it does not hold, the constraint cannot
violate the Declare model no matter how the actual process execution
looks. This thesis uses a slightly different notion of activation conditions
compared to Maggi et al. [MMB19] in the sense that they can also include
attributes of the target activity. Hence, the activation condition applies
quasi for the full constraint and not only the activating activity. An at-
tribute named resource, for instance, is accessed as A.resource or T.resource
depending on whether it is part of the activation or target activity. Corre-
lation conditions define relationships between attributes of two activities.
They can only be applied to binary constraint types and have to hold
when the target occurs [MMB19].

Time conditions introduce additional, more concrete temporal con-
straints between two activities. It is possible to specify a time window
in which an activity has to be executed after another. For instance, a
time condition [2,5,h] applied to a RESPONSE constraint between two
activities means that the second activity has to be executed between two
and five hours after the first one.
Figure 3.6 enriches the declarative model in Figure 3.5 with activa-

tion, correlation, and time conditions. For unary constraints, activation
conditions are represented inside brackets after the constraint’s name.
Binary constraints have three brackets where the first one indicates the
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activation, the second one the correlation, and the third one the time
condition.
The PRECEDENCE template between the Identify payment method

and Accept cash or check activities has no activation condition. The same
person must execute both activities (correlation condition [same resource]).
Accepting the cash or check should not take place later than two days
after the identification of the payment method (time condition [0,2,d].
The activation condition of the INIT constraint on the Identify payment

method activity indicates that only in case the price is below 100, the
payment method has to be identified first. It could be, for instance, that all
payments with a price above must be paid with a credit card. Therefore,
the identification of the payment method is obsolete. To make sure that in
this case, the processing of the credit card can take place independently,
the other PRECEDENCE constraint requires an activation condition
A.price < 100. Time conditions are not further considered as the approach
of this thesis cannot discover them from event logs.
Besides manually constructing declarative models, they could also be

derived automatically by applying process mining to event logs. The
following introduces process mining and puts a special focus on the
discovery type as the main focus of this thesis.

3.5 Process Mining

The foundations for process mining itself as known today were laid in
2011 with the Process Mining Manifesto [vdAAdM+12] although the
basic concepts were already known and discussed before, e.g., by van
der Aalst [VdAVDH+03, VdAWM04]. It is based on the idea that process
executions are supported by information systems that leave traces, e.g.,
database entries, message interchanges, or log files. Overall, the goal
of process mining is to analyze business processes based on their real-
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Figure 3.6: Multi-perspective Declare Model of Payment Process (based

on Figure 3.5).

world executions. Process mining stands in contrast to traditional process
modeling activities where a process is constructed based on observations
and interviews with process stakeholders.

The following introduces the history and foundations of process mining
and shows the relationships to related research fields, including a delimita-
tion of the discipline. Then, a glimpse into the application of process min-
ing in practice, including reference processes for a best-practice-oriented
way of proceeding, follows. Event data in a suitable format (event logs) is
the crucial input component for any process mining initiative. Hence, the
requirements for such event logs and possible ways to construct them are
presented. Afterwards, the discovery type of process mining is introduced
with the standard algorithms and KPIs description. Conformance checking
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represents another essential target of process mining applications. Finally,
the thesis sheds light on process mining with the declarative modeling
paradigm and shows differences to classic imperative applications.

3.5.1 History and Foundations

Although the concept of process mining itself is only around ten years old,
there had been research about similar concepts and terms years before.
For instance, van der Aalst et al. addressed the issue of “workflow mining”
that has very similar properties and can be seen as a predecessor of pro-
cess mining in 2003 [VdAVDH+03]. In 2004, van der Aalst et al. presented
one of the first algorithms to discover a process model based on given
execution data [VdAWM04]. Generally, process mining is positioned at
the intersection between BPM and Data Science [Wil16]. Data Mining or
analysis methods are now also applied to process event data. At the same
time, it remains a process analysis task to improve and optimize existing
business processes. Figure 3.7 visualizes these relationships. Van der Aalst
et al. [vdAAdM+12] classify process mining as a subset of process intelli-
gence which in turn is a subset of Business Intelligence (BI). Questions
regarding the integration of process mining into existing company struc-
tures arise. For instance, when applying process mining in practice today,
it has to be decided whether the competencies and skills should be pooled
centrally, e.g., at a BI department or a so-called Center of Excellence (CoE)
or distributed in a decentralized manner.
Another frequent challenge of process mining is transforming and

integrating the relevant data into a structured file, a so-called event log. In
contrast to process modeling, process mining allows the detection of AS-IS
processes without or very little bias compared to reality. The bias in the
process modeling cases can originate from the interviews with employees
of an organization who are part of the business process under analysis.
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For instance, it can be the case that the employee does not remember all
details correctly or has a subjective view on things that could cast a poor
light on her or him.

Business 
Process

Management

Data 

Science

Process Mining

Figure 3.7: Relationships of BPM, Data Science and Process Mining

(based on [Wil16]).

Primarily, process mining consists of three types [Wil16]: Process dis-
covery denotes the type that focuses on the generation of process models
from event data input. No, or nearly no knowledge about the actual exe-
cution of the process is required. However, it is necessary to know how to
map (raw) data excerpts to activities of the process under consideration.
With these mappings, it is possible to create an event log suitable for
process mining tools. The conformance checking type covers all aspects
of checking whether expectations about the process match with reality.
Thereby, among other things, pre-defined, hand-made process models are
compared to either process models created by discovery algorithms or
the executions themselves. Process enhancement varies this approach.
Process models are adapted based on what process mining finds during
the analysis of the process event data. Overall, the goal is to have a pro-
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cess model that describes and matches the actual execution as closely as
possible. The following elaborates on the fundamental terms and concepts
of process mining, starting with event data as the input for all process
mining activities.

3.5.2 Event Data

Event data denotes data that describes the execution of a process in a
business or any other organizational environment. It is a crucial input
for any process mining activity. Because business processes today are
supported by various information systems that are possibly part of many
departments and organizations, all relevant information must be collected
and integrated into an event log beforehand. In the best case, a process
at hand is modeled and implemented in a workflow management system
that allows the generation and export of logs. However, many business
processes have developed historically without using a central instance
like a workflow management system.
Instead, the relevant event data is distributed over many systems and

cannot be collected from a single source [Wil16]. Moreover, the infor-
mation about the execution of a particular activity of a process may not
be represented explicitly but may come in the form of database entries
or change logs, log files, or Electronic Data Interchange (EDI) messages.
In these cases, the challenge is to transform and map the data pieces to
concrete activities of process instances. Thereby, humans constructing
the event log require a certain amount of domain knowledge about the
process. Until today, the preparation of the process event data remains a
significant challenge and hurdle for process mining [Wil16].
Dakic et al. [DSL+19] perform a survey and literature review that

result in 15 publications contributing approaches for the extraction of
event data from information systems. They differentiate between Process-
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Aware (PAIS) and Process-Unaware Information Systems whereby Dumas
et al. [DVdATH05] define PAISs as systems that are implemented with
the knowledge that they support the execution of a series of activities
described by a process model. Non-PAISs represent the opposite and are
often historically developed legacy systems introduced into an existing
IT landscape without considering the overall process. The extraction
processes differ depending on the source systems; research has contributed
several approaches.

In practice, frequent sources of process event data are data and object-
specific ERP systems that often hold the relevant event data in database
tables. De Murillas et al. [dMRVDA19] propose a generic approach for
extracting event data from databases. For that purpose, they introduce
a metamodel compatible with the XES format that provides structured
storage capabilities for all information related to processes and their
activities. Extracting event data is performed by using the SQL language.
The authors provide three sample types of sources in database format:
Redo logs of database tables, in-table versioned tables, and SAP style
change tables. Table 3.1 shows an excerpt of an in-table versioned table.
Lines 1 and 2 and lines 3 and 4 show entries for address data with

different timestamps. For the first entry, the name and for the second, the
address attributes are different, although they refer to the same id. This
in-table versioning of changes indicates that some process activity has
changed these values. Changing values can be mapped to an execution
of a particular activity. Using domain knowledge, the changes could, for
instance, be traced back to Update name and Update address activities of a
process that updates the master data of a customer.

Another standard storage format for in-table versioned process data is
SAP-style change tables. Because SAP is widely used as an ERP system,
more and more commercial process mining vendors develop adapters and
connectors for these systems. The overall goal is to establish standard
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routines for extracting event data from SAP database tables and lower the
barriers for introducing process mining [dMRVDA19].

Castillo et al. [PCWP+11] contribute an approach for extracting event
data from non-process-aware information systems. With the proposed
technique, code inspection of Legacy Information Systems (LIS) can obtain
an event log just like for PAISs. All in all, the extraction of event data
remains a significant challenge for process mining that still requires
substantial work and efforts [Wil16].

Table 3.1: In-table Versioning of Personal Data (Source: adopted from

[dMRVDA19]).

id load_timestamp name address birth_date

17299 2014-11-27 15:57:08.0 Name1 Address1 01-AUG-06
17299 2014-11-27 16:07:02.0 Name2 Address1 01-AUG-06
17300 2014-11-27 17:48:09.0 Name3 Address2 14-JUN-04
17300 2014-11-27 19:06:12.0 Name3 Address3 14-JUN-04

Nearly all process mining tools available today require an event log
with three mandatory attributes as input for every line: A case ID uniquely
identifying a trace of the process, an activity name denoting the execution
of a particular activity, and a timestamp that provides the information
about the activities’ execution order. With these three attributes, process
mining tools can discover a process model. It is possible to add more
optional attributes like resources or costs for a more in-depth analysis
of Key Performance Indicators (KPIs). Figure 3.8 shows a screenshot of
the import process for a sample event log in Disco [Wil16, 4]. A role is
assigned to each column. The event log is in CSV format and describes an
insurance compensation request process. Disco is a standalone process
mining tool originating from academia. The event log includes three
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mandatory (Case ID, Activity, and dd-MM-yyyy:HH-mm) and two optional
attributes (Resource and Costs).

Figure 3.8: Import of Insurance Compensation Request Process Event

Log into Disco [4].

An alternative storage format for event logs was introduced by Verbeek
et al. [VBVDVDA10] in 2010. The eXtensible Event Stream (XES) format
addresses the weaknesses of the previously usedMXML format. It resulted
in the “IEEE Standard for eXtensible Event Stream (XES) for Achieving
Interoperability in Event Logs and Event Streams” in 2016 [Gro16]. Like
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MXML, XES is XML-based. Listing 3.1 presents an equivalent represen-
tation for one event of the event log excerpt in Figure 3.8 in XES format.
Figure 3.10 shows the underlying process model resulting from discovery
in Disco.
First, the log defines the required extensions. The Lifecycle, Time, and

Concept extensions are necessary to specify the activity name, the time-
stamp and the status of the corresponding activity (e.g., scheduled, started,
assigned, completed, etc.). Then, attributes on both the event and trace
level are defined whose values are taken as standard whenever they are
not defined by the traces and events themselves [VBVDVDA10]. Line 16
gives a name to the event log. Inside the <trace> tags, a name is given to
a specific trace (line 18), and line 19 assigns a value to the case attribute
totalValue indicating the sum of all activity costs in a particular trace.

Finally, lines 21 to 25 determine the name, status, resource, timestamp,
and costs of the Register request activity. The XES file uses all extensions
introduced in lines 2 to 6 and assigns concrete values to attributes of
the extensions. Even though research-inspired process mining tools like
ProM [7] or Disco [4] and commercial ones like Celonis [5] support
the XES event log format, the CSV format is probably more common in
practice because it is a well-known, accepted standard for information
interchange as against XES being a standard originating from research
activities.

Listing 3.1: Excerpt of Insurance Compensation Request Process Event

Log in XES Format.

1 < log >
2 < ex t en s i on name= " L i f e c y c l e " p r e f i x = " l i f e c y c l e " u r i = "

h t t p : / /www. xes − s t anda rd . org / l i f e c y c l e . x e s e x t " / >
3 < ex t en s i on name= " Time " p r e f i x = " t ime " u r i = " h t t p : / /www.

xes − s t anda rd . org / t ime . x e s e x t " / >
4 < ex t en s i on name= " Concept " p r e f i x = " concep t " u r i = " h t t p : / /

www. xes − s t anda rd . org / concep t . x e s e x t " / >
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5 < ex t en s i on name= " O r g a n i z a t i o n a l " p r e f i x = " org " u r i = "
h t t p : / /www. xes . s t anda r d . org / org . x e s e x t " / >

6 < ex t en s i on name= " Cos t s " p r e f i x = " c o s t " u r i = " h t t p : / /www.
xes − s t anda rd . org / c o s t . x e s e x t " / >

7 < g l o b a l scope= " t r a c e " >
8 < s t r i n g key= " concept :name " va lue = " unknown " / >
9 < / g l o b a l >
10 < g l o b a l scope= " even t " >
11 < s t r i n g key= " concept :name " va lue = " unknown " / >
12 < s t r i n g key= " l i f e c y c l e : t r a n s i t i o n " va l u e = " unknown " / >
13 < s t r i n g key= " o r g : r e s o u r c e " va l u e = " unknown " / >
14 < / g l o b a l >
15 < c l a s s i f i e r name= " A c t i v i t y c l a s s i f i e r " keys= "

concept :name l i f e c y c l e : t r a n s i t i o n " / >
16 < s t r i n g key= " concept :name " va lue = " Compensation r e qu e s t

l og " / >
17 < t r a c e >
18 < s t r i n g key= " concept :name " va lue = " Compensation Reques t

1 " / >
19 < f l o a t key= " c o s t s : t o t a l V a l u e " va l u e = " 950 " / >
20 <even t >
21 < s t r i n g key= " concept :name " va lue = " R e g i s t e r r e q u e s t " / >
22 < s t r i n g key= " l i f e c y c l e : t r a n s i t i o n " va l u e = " comple te " / >
23 < s t r i n g key= " o r g : r e s o u r c e " va l u e = " Pe t e " / >
24 <da t e key= " t ime : t ime s t amp " va lue = " 30 −12 −2010 : 1 1 . 0 2 " / >
25 < f l o a t key= " c o s t : c u r r e n t V a l u e " va l u e = " 50 " / >
26 < / even t >
27 < / t r a c e >
28 < / l og >

Case IDs can have any format (not only numerical) as long as they
are the same for any activity that belongs to a process instance. The
screenshot in Figure 3.8 shows four different Case IDs meaning that it
describes four executions of the same process. The full event log contains
six. Each Case ID appears in a line of the log from four to nine times,
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depending on the number of activities that were part of one particular
process instance. All activities should have descriptive names and must be
equal for every entry that relates to the same activity (e.g., register request
in every case and not register_request in some of them).

The time information must be in timestamp format. Theoretically, only
the information about the date has to be given. However, it is advisable
to specify it with at least minute-by-minute precision in practice. The
timestamp should provide second or even millisecond information for
processes with shorter intervals between the activities.
Additionally, optional attributes can be divided into two types: Case

attributes are related to a case and are equal for each activity of the same
process instance. Activity or event attributes are related to one activity
of the case and can have different values for each activity of the same
process instance. The Resource andCosts attributes in Figure 3.8 are activity
attributes and specify the employee (human resource) who was assigned
to a particular step of the insurance compensation request process and
how high the costs for each step were. An example of a case attribute
could be the total amount of an order handled by an Order2Cash process.
One distinctive feature or indication for case attributes (in CSV files) is
that the value is equal for all activities related to the same process. In
general, activity attributes are more frequent than case attributes because
they go well with the typical structure in CSV files.
Process discovery is one of the three types of process mining (most

likely the most prominent) and deals with generating process models
from event log input. The following provides more details, including a
concise comparison of discovery algorithms in the literature.
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3.5.3 Process Discovery

Process mining discovery takes an event log (for instance, in CSV or
XES format) as an input and generates a process model underlying the
execution data. Several mining algorithms have been contributed to the lit-
erature to perform such transformations. Van der Aalst [Wil16] identifies
four competing quality criteria of process discovery algorithms: fitness,
precision, generalization, and simplicity.
Fitness denotes the ability of a process model to represent as many

traces of the event log as possible. The precision criterion indicates the
property of a resulting process model to specifically match the behavior
in the event log. The generalization indicator addresses the opposite issue
indicating whether it overfits the event log. Finally, the simplicity criterion
favours simpler, more compact process models over complex, confusing
ones. These four criteria are affected by each other and can together
evaluate the result of the process discovery process [Wil16]. There are
several algorithms, each of which focuses on one particular criterion (e.g.,
generalizability) while neglecting others.

The most common and straightforward process discovery algorithm is
the α-algorithm, first introduced by van der Aalst et al. [VdAWM04] in
2004. Its fundamental idea is to create ordering relations (directly follows,
causality, not directly follows, parallelism) between activities transformed
into a “footprint matrix”. Table 3.2 shows such a matrix whereby a, b,
and c denote the activities in the event log. The # symbol indicates no
direct sequence, → and ← direct sequence in one of the directions and
|| a concurrency relation between the activities. The α-algorithm then
takes these footprints and creates sequences, XOR-splits, XOR-joins, AND-
splits, and AND-join patterns. For instance, the ordering relations → b, a
→ c and b || c together in Table 3.2 can be transformed to an AND-split
pattern like depicted in Figure 3.9. The entirety of such transformations
and patterns forms the final process model.
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Table 3.2: Sample Event Log Footprint Matrix (Source: adopted from

[Wil16]).

a b c

a # # →

b ← # ||
c ← || #

a

b

c

Figure 3.9: AND-split in Petri Net Notation (Source: adopted from

[Wil16]).

The α-algorithm works well with larger event logs and can deal with
parallel events. Furthermore, it nearly always produces a process model
with a high fitness to the event log. However, it has difficulties dealing
with noise, loops, and infrequent behavior in the log [Wil16]. Therefore,
several improvements have been developed to overcome these weaknesses.
Besides, researchers have developed heuristic, genetic, region-based, in-
ductive, and other process discovery procedures and algorithms.
Weijters and Ribeiro [WR11] contribute a heuristic process discovery

approach. Heuristic approaches use causal nets and calculate a dependency
value between the activities based on the frequency of the “directly follows”
relation. With that values, a dependency graph is constructed that is
then used to generate splits and joins for the resulting process model
while considering certain threshold values related to the frequency of
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the relation. Because the heuristic algorithms take the frequencies into
account, these algorithms are resilient against infrequent behavior in the
event log. In sum, heuristic approaches are well suited for users who want
to achieve high precision of the event log and process model.
Leemans et al. [LFvdA13] propose an algorithm for inductive process

mining. Inductive mining techniques split event logs into sub logs, orga-
nize them into process trees, and finally derive process models. Today,
there are various robust and proven algorithms for process discovery. If
possible, users who apply process mining should try out various ones to
find the algorithm that suits their needs (performance criteria) and event
data best.
Popular process mining tools like Celonis [5], or Disco [4] implement

some of these process discovery algorithms. Often, however, they do not
offer the explicit possibility to choose between differentmining algorithms.
Most of the tools can vary the percentages of paths and activities of the
resulting process model shown based on the frequency with which they
appear in the traces. Figure 3.10 shows the output for a process discovery
in Disco [4]. The process model shows a compensation request process
in an insurance company based on the event log in Figure 3.8. Absolute
frequencies of the activity occurrences are provided in the activity boxes,
whereas the absolute frequencies of the paths are placed at the respective
edges. Only the most common paths are shown, but the relative frequency
of shown activities is set to 100%.

Figure 3.11 depicts the same process discovery but with the percentage
of paths set to 100%, too. The process model now represents all traces of
the event log. However, even for this small sample, the diagrams become
more complex and harder to understand. Users of process mining tools like
Disco can play aroundwith the settings and concentrate on the parameters
and indicators that fit their desired analysis best. Other metrics are, for
instance, the case frequency (number of cases an activity appears in),
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Figure 3.10: Discovery of Compensation Request Process in Disco [4].

the total duration, or the lead times of the process. Furthermore, process
mining software allows inspecting individual traces and the detailed
analysis of process variants.

Besides the mere discovery of a process model based on execution data
(with a rather descriptive focus), process mining provides the ability to
check whether a (possibly hand-made) process model matches the real-
world execution and, if not, where the deviations lie. This type of process
mining is subsumed under conformance checking.
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(100% Paths).

3.5.4 Conformance Checking

Conformance checking is especially suited to evaluate the fitness of pro-
cess discovery algorithms [Wil16]. An event log is replayed on the discov-
ered process model through, for instance, a token replay as it is known
from Petri nets. This type of process mining can either detect real-world
violations of normative process models or create suggestions for changing
descriptive ones.
Rozinat and van der Aalst [RVdA08] have contributed one of the first

approaches for conformance checking. Their technique is based on a fit-
ness indicator measured by replaying the log. A behavioral and structural
appropriateness criterion indicates whether the model allows for behav-
ior not present in the log or contains unnecessary control structures and
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duplicate activities, complicating the understanding of the process model.
All previous elaborations are based on procedural process models. How-
ever, process mining can also be applied using the declarative modeling
paradigm.

3.5.5 Declarative Process Mining

Researchers have also developed process discovery and conformance
checking approaches for the declarative modeling paradigm. Generally,
all types of process mining are also applicable for the declarative paradigm.
More detailed elaborations and discussions of such approaches follow
in Chapter 7. In general, it may be said that many approaches include a
candidate set generation approach where an algorithm checks whether a
potential set of constraints holds on the event log. Some techniques only
support generating a subset of the Declare templates set. One challenge for
declarative process mining is that with event logs getting larger, individual
constraints may have less support and confidence as there is often no
optimal solution. For imperativemining, this problem can be circumvented
by showing more or fewer activities or paths of the process.

Maggi et al. [MBvdA12] and Kala et al. [KMDCDF16] contribute declara-
tive discovery algorithms applying association rule and sequential pattern
mining techniques alone or in combination on event logs, inspiring the
approach of this thesis. The following provides an overview of applying
process mining in practice.

3.5.6 Application in Practice

Process mining originates from academia, with Wil van der Aalst and oth-
ers being its main driver and pioneer. Van der Aalst et al. [vdAAdM+12]
have proposed the L* life-cycle model as a first reference point for practical

59



3 Business Process Management and Process Mining

process mining projects; others have developed alternative methodolo-
gies and guidelines. Some are especially suited for a specific branch, e.g.,
healthcare. Researchers who are often inspired or influenced by success
stories in practice develop new reference processes or methodologies.
Both practitioners and researchers create collections of case studies

that describe the (successful) application of process mining. For instance,
HSPI S.p.A., an Italian consulting company, regularly creates a comprehen-
sive collection of process mining applications during one year [11]. This
“Database of Applications” serves as a good starting point when searching
for process mining applications in particular branches or sectors. Bank-
ing & Insurance, Public Administration, and Manufacturing are just a few
examples for them.

Reinkemeyer [Rei20] contributes an update about the current status of
process mining in practice. First, he provides an overview of the principles
and foundations of process mining. Then, case studies of successful pro-
cess mining implementations in companies like Bosch, Siemens, or BMW
deliver an understanding of the challenges and benefits of this technology
in practice. The work concludes with an outlook on process mining’s
future academic and business challenges. It represents one of the first
contributions that explicitly focuses on process mining in practice and
brings back observations in the industry back to research.

Reference Models and Processes

In general, reference models are prototypical, comprehensive represen-
tations of concepts and serve as blueprints for constructing concrete
instances of something. Such models can be called references processes
whenever they depict a specific course of action that may or should be
default for the described context. Typically, reference processes are ap-
plied in reality by instantiating the model elements and omitting certain
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irrelevant or non-fitting parts for a particular scenario. For the process
mining context, reference processes could help practitioners implement
process mining in the best possible way.
One example for such a guideline is the work of Rebuge and Fer-

reira [RF12] that proposes a methodology for applying process mining in
healthcare environments. Process mining projects, in general, consist of a
planning phase where the goals and requirements are defined. Afterwards,
the event data must be extracted from the relevant sources and integrated
into an event log. The actual analysis follows, where employees involved
in the project draw conclusions and develop results. Finally, the results
are mapped to concrete actions which are put into practice. There are
iterative cycles between each step to acknowledge new findings during
the project. All in all, every process mining initiative follows more or less
this strategy. However, the concrete manifestations of each step remain
open and can be refined by project descriptions or methodologies.

L* Life-cycle Model Van der Aalst et al. [vdAAdM+12] have con-
tributed the first reference model for process mining projects. Figure 3.12
shows an overview of the conceptual level. A process mining project
consists of five stages. In stage 0, the general course of the project is
planned, and the reasons for the application of process mining are clearly
stated. Stage 1 encompasses extracting the event data, creating hand-made
process models, and setting the objectives and questions precisely. Stage 2
and 3 include the actual process analysis using the three types of process
mining (discovery, conformance checking, enhancement), striving for
answers to the questions, and determining the concrete values of the
KPIs. At last, in stage 4, process models and data extractions continuously
monitor current process executions.
Later, van der Aalst extended this to the concept of “business pro-

cess hygiene” where it is a standard procedure to apply process mining
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to any business process [Wil16]. The results of stages 2 and 3 have to
be interpreted concerning the questions within the project. These re-
sults can lead to interventions, adjustments, and redesigns of the objec-
tives [vdAAdM+12].

Figure 3.12: The L* Life-cyle Model for Process Mining Projects (Source:

based on [vdAAdM+12]).

PM2 The PM2 process mining project methodology [VELLVDA15] can
be seen as a response to the criticism on existing methodologies. Van Eck
et al. claim that PM2 addresses, for instance, the issue of the Process

Diagnostics Method (PDM) [BGvdW09] that it is only tailored towards
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smaller projects. The authors criticize both the L* life-cycle model and
PDM for not allowing explicit iterative analyses. According to them, L*
is only suitable for discovering and integrating single, very structured
processes.
Figure 3.13 shows the PM2 process mining project methodology. It

consists of six steps, clearly indicates input and output objects of each of
them, and assigns roles (business experts, process experts). During the
planning phase, goals are translated into research questions that shall
be answered in the mining process. The main phase of the methodology
where the extracted event data is processed, the actual mining and analysis,
and an evaluation happen explicitly includes iteration cycles. Furthermore,
it is possible to go back from evaluation to mining and data processing
when refined or new research questions indicate this.

Figure 3.13: The PM2 Process Mining Project Methodology (Source:

[VELLVDA15, 26]).
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ProcessMining ProjectMethodology (ProMiPM) ProMiPM is based
on research of Grohmann and Vossen. It is inspired by the well-known
Business Model Canvas, whose foundations were laid by Osterwalder in
2004 [Ost04], an investment value canvas for data science projects [12]
and methodologies related to process management such as the Horus
method [SVOK12]. Several ideas of these concepts are combined into its
canvas-like setup and appearance depicted in Figure 3.14. Although it
has strong similarities with a canvas, it is still a methodology because it
indicates a direction and consists of three main phases.
In [Rei20], van der Aalst claims that one of the current challenges for

process mining is to bridge the gap between process mining and modeling.
A general methodology can serve people with a background in normative
process models and those who promote the use of process mining as a new
approach for gaining As-Is models at the same time. Although process
mining is successfully applied in practice, significant challenges remain.
There is resistance whenever there is change, and process mining is no
exception. ProMiPM supports overcoming this challenge in an organiza-
tion by providing a global overview of a process for all stakeholders. In
that sense, it represents a communication tool and is general enough to
apply to any field of application, branch, or size of an organization.
At the same time, it is not only touching the highest abstraction level,

scratching on the surface. Its goal is to concretely support a process
mining project with an analysis of its characteristics, valuable for all
process stakeholders. ProMiPM consists of 16 fields or steps, each of
which addresses a different aspect relevant for process mining and has
three phases. Fields in the pre-evaluation phase (Phase 1) are filled out
when preparing the project, i.e., before the actual process mining starts.
On the other hand, fields of the post-evaluation phase (Phase 3) are only
filled out with assumptions or ideas beforehand. When the actual process
mining is over, they are used to document the results.
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Figure 3.14: The Process Mining Project Methodology (ProMiPM).

Phase 2 encompasses the mining process with a refined value proposi-
tion and data input. The four fields with a gray background constitute the
project objectives. All objectives together form the purpose of a project
according to the definition in Reinkemeyer’s work [Rei20]. Similarly, or-
ganizational, product, process, and end user impacts constitute the project
outcome or impact. ProMiPM’s internal and external factor analysis has a
blue, and the global post-analysis has a green background.

Further details and descriptions about the values of the fields are omit-
ted here because the general overview is sufficient for sketching out a
selection of reference models for process mining projects. Note that the
questions and statements are not complete and only provide an impression
of the content for each field. Project teams that apply the methodology for
their process can quickly adapt the questions or add information suitable
for their particular domain whenever they think this is appropriate.
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After having introduced the essential terms and concepts for BPM and
process mining, Chapter 4 continues with introducing two fundamental
data mining techniques for pattern discovery, namely association rule and
sequential pattern mining. Later in this thesis, process and data mining
techniques are combined into a declarative process discovery approach.
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Pattern Discovery

Data Mining denotes techniques and approaches that focus on extracting
information and patterns in possibly large amounts of data. Leskovec
et al. [LRU20] define data mining as “the discovery of models for data”
whereby a model can, for instance, be a statistical, machine learning, or
computational one. This thesis aims to apply data mining techniques to
event data to perform process mining analysis. Since event logs are poten-
tially massive datasets, combining both worlds seems to have promising
benefits for understanding real-world processes.

One of the most prominent and widely-used techniques is association
rule mining or learning, for which Agrawal et al. [AIS93] laid the founda-
tions in 1993. Today, their approach is known as the Apriori algorithm. The
goal is to discover significant patterns, relationships, and rules (between
items) in a dataset consisting of transactions. A widespread application
example is the market basket analysis, where marketing analysts want to
find out which products customers commonly buy together. With that
information, products that are likely to be bought together can be placed
close by each other.
Another type of analysis that considers the temporal orders and rela-

tions between items is sequential pattern mining, also known as sequence
mining. Sequential rule mining denotes the case where found patterns
are translated to rules. Like the Apriori algorithm, sequential pattern
mining originates from contributions of Agrawal et al. [AIS93]. In 1995,
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Agrawal and Srikant [AS95] presented three algorithms for generating
sequential patterns from a customer transaction database. Fournier-Viger
et al. [FVLR+17] present a survey about a variety of sequential pattern
mining techniques. Two representatives of this set of approaches are the
GSP [SA96] and SPADE [Zak01] algorithms.

Figure 4.1: Three Cases of Insurance Compensation Request Process.

The motivation for applying these techniques to event logs in the
context of process mining is as follows: Consider the first nineteen lines of
the insurance compensation request process event log shown in Figure 4.1
representing three instances of the process. An association rule register
request → decide or a sequential pattern {register request, decide} holds
for all three cases and thus has a support of one. At the same time, a rule
register request → pay compensation or pattern {register request, pay

compensation} holds only in two out of three cases leading to support of 2
3 .
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Overall, the idea for applying such fundamental data mining techniques to
event logs is to take the activities of the process instances as the items or
products of the famous market basket analysis example. Thereby, one case
of the process corresponds to one customer buying the various products.
With that in mind, analyses about activity coherences can be made that
deliver insights into the actual process executions.

The following introduces association rule and sequential pattern min-
ing more generally and in more detail whereby the focus is put on FP-

Growth [HPY00] for generating frequent itemsets and the GSP [SA96]
algorithm for discovering sequential patterns.

Table 4.1: Customer Transactions in a Computer Store (Source: based

on [13]).

Transaction Items

t1 {PC, Monitor, Mouse, Keyboard}
t2 {PC, Monitor, Keyboard}
t3 {PC, Monitor}
t4 {Monitor, Mouse, Keyboard}
t5 {Monitor, Mouse}
t6 {Mouse, Keyboard}
t7 {Monitor, Keyboard}

Let n be the number of transactions and X an itemset. Then, the support
of X with respect to a set of transactions t1, ..., tn is defined as follows:

Support(X) = Number of appearances of X in transactions t1, ..., tn

Consider Table 4.1, containing customer transactions of a computer
store (t1 to t7). The support value of itemset {PC, Monitor} is three be-
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cause it is a subset of three of the seven transactions. Association rules
create relations between at least two items. Semantically, they indicate
dependencies between the existence of a set of items and the existence of
another set. The support of an association rule X → Y is defined as the
support of itemset X united with Y divided by the number of transactions.
Content-wise, the support value indicates the share of transaction on
which the association rule holds. The support value of the association
rule Monitor → PC is 3

7 because the support of itemset {PC, Monitor} is
three and must be divided by seven (number of transactions).

Support(X −→ Y ) =
Support(X ∪ Y )

N

Another interestmeasure for association rules is confidence. It is defined
as the support of itemset X united with itemset Y divided by the support
of X. The confidence of X shows in how many of the cases where the
items of itemset X are present, the items of Y are also present. For the
transactions in Table 4.1, the confidence of the rule Monitor → PC

is 3∗7
7∗6 = 1

2 because the support of Monitor −→ PC is 3
7 which must

be divided by 6
7 as the itemset {Monitor} appears in six out of the seven

transactions, meaning that in half of the cases where customers bought
a monitor they also bought a PC. Note that there the fractional support
representation for an itemset has to be used.

Confidence(X −→ Y ) =
Support(X ∪ Y )

Support(X)

For both support and confidence, usually higher values are desired to
discover representative and meaningful association rules on the dataset.
Together, they create an impression of the significance of an association
rule. However, there can be cases where the confidence value is misleading.
In case the confidence of a rule X −→ Y is close to the support of the
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consequent, the relation between X and Y may not be meaningful because
the existence of Y may in reality not be influenced by the existence of
X [14]. Therefore, alternative measurements like lift have been introduced
over time. Lift is defined as follows:

Lift(X −→ Y ) =
Confidence(X −→ Y )

Support(Y )
N

If the lift of a rule is (significantly) higher than one the existence of
itemset, X positively influences the existence of itemset Y.. They are
independent if the lift value is close to one and negatively correlated if
it is lower than one. Thus, the lift measure is another contribution for
evaluating a rule’s importance regarding the whole transaction set. The

lift value of the rule Monitor → PC is 7
6 because

1

2
3

7

= 7
6 . This means

that buying a monitor is, in fact, relatively independent of purchasing a
PC.
All in all, the lift measurement delivers another indicator of whether

an association rule is “interesting” and users should take a closer look
at it or just represents a statistical accumulation [14]. Other measures
like conviction [BMUT97] or leverage [Pia91] do most likely not provide
any additional benefit for evaluating their interestingness as the statistical
independence aspect is already covered by lift.

4.1 Association Rule Mining

Association rule mining denotes the process of generating association
rules based on a set of transactions. Each of the resulting rules relates a
single item or set of items to another single item or set of items. Table 4.1
shows a sample set of market baskets found at the checkout in a computer
store. The goal is to find patterns between products that are commonly
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bought together. In that way, statements in the form “whenever someone
buys product A there is a certain likelihood X that she or he also buys
product B” can be constructed.

For all standard approaches, the critical part is to generate a set of fre-
quent itemsets from which finally association rules can be generated. The
following introduces Apriori as the oldest and most common technique.
FP-Growth is an advanced, more efficient algorithm that relies on a tree-
based structure to derive the frequent itemsets. Frequent itemsets require
a minimum support value, whereas association rules can be evaluated
with support, confidence, and lift.

4.1.1 Apriori

Generally speaking, the Apriori algorithm consists of threemain steps [15].
It requires a minimum support threshold as input:

■ Step 1: For each itemset of size one, calculate the support value.

■ Step 2: Calculate the support value of the itemsets, remove those
that do not fulfill the minimum required support value.

■ Step 3: Based on the itemsets of the previous step kept, create
itemsets with one item more and switch to step two with those.
Stop as soon as no new itemsets that fulfill the support value can
be constructed.

■ (Step 4: Generate association rules based on the frequent patterns
found).

The Apriori algorithm is based on the (anti-)monotonicity principle that
subsets of frequent itemsets are also frequent and supersets of infrequent
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itemsets are also infrequent, i.e., they do not fulfill the minimum support
condition.

Figure 4.2 shows an application of the Apriori algorithm for the itemsets
in Table 4.1 Using a minimum support of 0.5, i.e., the itemsets have to
appear in at least four of the transactions, resulting in the following
output: {Monitor}, {Mouse}, {Keyboard}, and {Monitor, Keyboard}. It uses
twoiterations. In the first iteration, the algorithm constructs all itemsets of
size one. The {PC} item does not fulfill the minimum support condition of
5; hence, it is not included in the set of frequent itemsets. Two of the three
itemsets of size two do not fulfill the support condition. Therefore, only
the itemset {Monitor, Keyboard} is kept. No further itemset {Monitor, Mouse,

Keyboard} of size three is constructed because of the Apriori principle.
The subsets {Monitor, Mouse} and {Mouse, Keyboard} of such an itemset
were already found to be infrequent, i.e., they do not fulfill the minimum
support requirement. Finally, the right side of Figure 4.2 shows all frequent
itemsets.
While being an easy-to-understand algorithm, Apriori suffers from

scalability and time complexity problems. Let d be the number of different
products in the data set. Even though the Apriori principle allows a
reduction of the item sets to be considered, the general functioning of the
algorithm leads to 2d item subsets requiring the database to be scanned d

times to construct more candidate sets. This does not scale well for larger
databases despite each scan being of linear complexity.
Therefore, the run time of Apriori is not so much dependent on the

number of transactions but rather on the number of different products
bought. For instance, another item {Webcam} in at least one of the transac-
tions in Table 4.1 would enormously increase the time complexity because
it had to be considered in every frequent itemset generation iteration. Tan
et al. [TSK16] discuss the factors influencing the computational and time
complexity. In the worst case, every candidate set of length k-1 must be
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Itemset Support

{PC} 3/7 < 0.5

{Monitor} 6/7

{Mouse} 4/7

{Keyboard} 5/7

Itemset Support

{Monitor} 6/7

{Mouse} 4/7

{Keyboard} 5/7

Itemset Support

{Monitor, Mouse} 3/7 < 0.5

{Monitor, Keyboard} 4/7

{Mouse, Keyboard} 3/7 < 0.5

Itemset Support

{Monitor,
Keyboard}

4/7

Iteration 1

Iteration 2

Figure 4.2: The Apriori Algorithm for Transactions in Table 4.1 (Mini-

mum Support 0.5).

merged with another set of length k-1. This is of linear complexity but still
does not scale for larger datasets. For this reason, researchers have devel-
oped alternative, more efficient algorithms for frequent itemset generation.
One representative of these algorithms is FP-Growth [HPYM04].

4.1.2 FP-Growth

Han et al. [HPY00] claim that the popular FP-Growth algorithm delivers
massive efficiency improvements compared to the Apriori algorithm. In
contrast to Apriori-based approaches, it finds frequent itemsets with-
out generating candidate sets. The basic idea is to construct a frequent-
pattern tree (FP-tree) from which finally the frequent itemsets can be
derived [TSK16]. FP-Growth performs the tree construction as follows:
The items are sorted according to their appearances in the transaction.
Items that do not fulfill the minimum support condition are discarded.
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Then, starting from a root node (named null) for each transaction, paths
with every item are constructed whereby a frequency counter is initialized
with the value one. If a transaction shares a common prefix on an already
existing path, the rest of the transaction is attached to the common prefix
in the tree. The frequency counters for the common items are incremented
by one.
Applying FP-Growth on the transactions in Table 4.1 leads to the

progress shown in Figures 4.3 and 4.4. Assuming a minimum support
requirement of 0.5, in the first step the {PC} item is removed as it only
has a support of 3/7. The remaining products are ordered regarding their
support in descending order (Monitor=6, Keyboard=5, Mouse=4). The
transaction t1 produces the first path of the FP-tree (Monitor, Keyboard,
Mouse) with a frequency count of one. Since the ordered items for trans-
actions t1 to t5 all share the full common prefix, no new paths or nodes
are introduced to the tree, but only the frequency counts are incremented.

Transaction t5 ({Monitor, Mouse}) shares a common prefix {Monitor} but
skips the Keyboard item. Thus, a new node is attached to theMonitor node.
Transaction t6 does not share a common prefix. For this reason, a new
path is introduced and attached to the null node. At last, transaction t7
shares a common prefix again. Dotted lines between nodes representing
the same items are required for constructing the frequent itemsets in the
end [TSK16].

The process of deriving frequent itemsets from the FP-tree is illustrated
in Figure 4.5, showing all paths containing the items {Keyboard} (left tree)
and {Monitor, Keyboard} (right tree) based on the final FP-tree in Figure 4.4.
First, the paths only containing single items are constructed. These sets
of paths are called prefix-paths, for instance, of item {Keyboard} with
a support of four. To evaluate whether, for instance, the item {Monitor,

Keyboard} is frequent, first its prefix-path has to be constructed, which
is shown in the right tree of Figure 4.5. The support value of {Monitor,
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Figure 4.3: The FP-Growth Algorithm for Transactions in Table 4.1 (T1

to T5).

null

Monitor

:5

Keyboard
:3

Mouse:

2

Mouse:

1

Keyboard
:1

Mouse:

1

null

Monitor

:6

Keyboard
:4

Mouse:

3

Mouse:

1

Keyboard
:1

Mouse:

1

Figure 4.4: The FP-Growth Algorithm for Transactions in Table 4.1 (T6

to T7).

76



4.1 Association Rule Mining

null

Monitor

:6

Keyboard
:4

Keyboard
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Figure 4.5: Prefix paths of {Keyboard} and {Monitor, Keyboard} (based

on Last FP-tree in Figure 4.4).

Keyboard} can directly be read from this tree by adding up the leaves’
values (four plus one equals five).

FP-Growth also divides the problem of finding frequent itemsets into
subproblems. Whenever an itemset is found to be infrequent, the algo-
rithm does not extend it but continues with others [TSK16]. Kosters et
al. [KPP03] investigate the complexity of FP-Growth and find that it has
performance advantages for cases with more different transaction items.
All in all, FP-Growth is an efficient algorithm that does not rely on

generating candidate sets by extending frequent itemsets. Instead, it di-
rectly constructs FP-trees from the transactions database and derives the
frequent patterns. Note that both Apriori and FP-Growth find the same set
of frequent itemsets because there is only one correct solution assuming
equal minimum support values are given.

After finding the frequent itemsets, they can generate association rules.
Association rules consist of an antecedent and a consequent part, whereby
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each consists of one ormore items. Generating such rules requires itemsets
of at least a length of two because no rule can be constructed from a single
item. Typical are sizes of two to four items leading to rules with one to
three elements in antecedent or consequent.

4.1.3 Association Rule Generation

In the most straightforward approach, all combinations of possible rules
are constructed and evaluated whether they fulfill minimum confidence or
other measure requirements (e.g., lift). For the frequent patterns resulting
from the transaction in Table 4.1, there are only two possible association
rules. The itemsets {Monitor}, {Keyboard}, and {Mouse} are single items and
cannot be translated to any association rule. Itemset {Monitor, Keyboard}

can be transformed to two association rules:Monitor −→ Keyboard and
Keyboard −→ Monitor. The former rule has a confidence value of 4

6 = 2
3

while the latter has a confidence of 4
5 . Assuming a minimum confidence

of 2
3 , both rules would be included in the final set of association rules. The

support values of the rules are equal to the support values of the frequent
itemsets they are based on.
Agrawal and Srikant [AS+94] contribute an improved algorithm for

generating association rules with more than one item in the consequent
part. Its basic idea is that if rules of the form ABC −→ D do not meet the
minimum confidence requirement, the rule AB −→ CD will not as well
and, therefore, does not have to be further considered. The reason is the
definition of confidence. All rules involving a set of items have the same
numerator value. By removing an item from a set, its support can only
increase or stay the same. Therefore, the term’s denominator gets larger
(or stays the same), and the overall confidence gets smaller (or stays the
same). Hence, the rules constructed by shifting items from the antecedent
to the consequent will also not meet the confidence requirement.
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Association rules define relationships between items but can only find
relations between the existence of items without considering their tempo-
ral order. Sequential pattern mining overcomes this shortcoming.

4.2 Sequential Pattern Mining

Sequential pattern mining was first introduced by Agrawal and Srikant
[AS95] in 1995. They propose three algorithms, whereby two of them
are based on the same candidate generation principle as the Apriori al-
gorithm for association analysis. According to the definition of Agrawal
and Srikant [AS95], sequential pattern mining requires two pieces of ad-
ditional information, namely information about time with either concrete
timestamps or at least a temporal order of the items and an assignment of
the transactions to a customer.
Items in such sequences do not need to follow each other directly

in reality, but there can be items in between that are not part of a spe-
cific sequence. In contrast, episode mining aims for discovering frequent
sequence patterns with items that are “close to each other” [MTIV97].
Table 4.2 shows a transaction database with items bought by customers
in a computer store. Table 4.3 presents the same data with the entire
customer sequence assigned to a customer in one cell.
Note that the elements of the sequences can consist of more than

one item. The support of a sequence X with elements i1, ..., n is defined
similar to association rule mining as the frequency in which a sequence
is subsequence of a transaction. For instance, the sequence {Keyboard}
has a support of 4

5 as it appears in four of the five transactions. Setting
the minimum support the 0.25, the frequent sequential patterns would be
the following: {Keyboard}, {Mouse}, {GPU}, {Webcam}, {Keyboard, Mouse},
{Keyboard, GPU}, {Mouse, GPU}, {Keyboard, Webcam}, and {Keyboard,
{Mouse, GPU}}. Some algorithms like AprioriSome [AS95] with standard
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Table 4.2: Computer Store Transaction Data (Source: based on [AS95]).

Transaction Time Customer ID Items Bought

August 10 2021 2 PC, Monitor
August 12 2021 5 Webcam
August 15 2021 2 Keyboard
August 20 2021 2 Mouse, SSD, GPU
August 25 2021 4 Keyboard
August 25 2021 3 Keyboard, Software, GPU
August 25 2021 1 Keyboard
August 30 2021 1 Webcam
August 30 2021 4 Mouse, GPU
September 25 2021 4 Webcam

Table 4.3: Computer Store Transactions per Customer (Source: based on

[AS95]).

Customer ID Customer Sequence

1 {{Keyboard}, {Webcam}}
2 {{PC, Monitor}, {Keyboard}, {Mouse, SSD, GPU}}
3 {{Keyboard, Software, GPU}}
4 {{Keyboard}, {Mouse, GPU}, {Webcam}}
5 {{Webcam}}

settings only produce sequences with maximum length. In this case, only
{Keyboard, Webcam}, and {Keyboard, {Mouse, GPU}} remain. Srikant and
Agrawal [SA96] contribute improvements for their approach. Today, this
algorithm is known as the Generalized Sequential Pattern (GSP) pattern
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algorithm. The following introduces its basic operation and applies it on
a sample data snippet.

4.2.1 Generalized Sequential Pattern Mining (GSP)

The GSP algorithm is a direct successor of the three algorithms by Srikant
and Agrawal [AS95]. They identify three shortcomings of their previ-
ous contributions, focusing on the sequential pattern mining problem
description. First, users cannot specify a time window for items’ mini-
mum and maximum time distance in a frequent sequential pattern. In
the business process context, such a feature could be convenient to focus
on patterns that are more close to each other. Consider a process where
one set of activities happens a few hours and another one days or weeks
afterwards. In this case, patterns between activities of the two sets may
not be meaningful.
Moreover, users cannot define a time window in which several items

elements are treated as a single element. This could be useful in cases
where some elements form a group of elements belonging together that
should be treated as such in the resulting sequential patterns. Consider
a set of events belonging to a superordinate task of the process. e.g.,
five manufacturing steps for the assembly of a table. Process modelers
would most likely represent them in a subprocess. If users know the time
period in which the steps usually take place, they can define a sliding
time window so that the GSP algorithm handles them as one activity.
Another advantage of the GSP algorithm in comparison to the algo-

rithms in [AS95] is that users can specify taxonomies of elements. This
means that generalizing and specializing items can replace elements in
resulting sequential patterns. For instance, the Cologne cathedral is one
representative of the Buildings in Cologne category and a software appli-
cation is a special application. This feature of the GSP algorithm could
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Table 4.4: Computer Store Transactions with Time Differences (Source:

based on [SA96]).

Customer ID Transaction Time Items Bought

1 1 Keyboard
1 2 Webcam
2 1 PC, Monitor
2 20 Keyboard
2 50 Mouse, SSD, GPU
3 1 Keyboard, Software, GPU
4 5 Keyboard
4 50 Mouse, GPU
4 60 Webcam
5 15 Webcam

be exploited similarly to the sliding time window parameter. Consider a
taxonomy that assigns five manufacturing steps to a manufacturing item.
The superordinate concept could automatically replace concrete activities
in sequential patterns.
If the minimum time distance is zero, the maximum time distance is

infinite and the sliding time window to differentiate elements is also
zero, the GSP algorithm produces the same results as the algorithms
introduced in the previous contribution [AS95]. As usual, the goal is to
find all frequent sequences that fulfill the requirement of a minimum
user-specified support threshold. The GSP algorithm fits process mining
activities because of the three additional parameter options. Besides, it
is performant and can be applied to larger datasets [SA96]. However,
also other algorithms like SPADE [Zak01] could be applied to event logs
without any problems.
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Table 4.4 shows the same transaction data as in Table 4.2 with trans-
actions sorted by customer ID and different timestamp information in
numerical format. If no minimum and maximum gap and no sliding win-
dows is defined the GSP algorithm finds the same frequent sequences
as the other algorithms: {Keyboard}, {Mouse}, {GPU}, {Webcam}, {Key-
board, Mouse}, {Keyboard, GPU}, {Mouse, GPU}, {Keyboard, Webcam}, and
{Keyboard, {Mouse, GPU}} for a minimum support of 0.25.

With a sliding window of five, the sequence {Keyboard, Webcam} would
not be included in the set of frequent sequences anymore. The reason is
that items {Keyboard} and {Webcam} are treated as one single element
because their transaction time difference is only one. Setting a maximum
gap of 40 leads to a set of frequent sequences where the sequence {Key-
board, {Mouse, GPU}} is not included anymore since the transaction time
difference of {Keyboard} and {Mouse, GPU} for customer id four is 45.
Therefore, this sequence is only found for customer id two and no longer
supports the minimum support requirement. Overall, the GSP algorithm
provides additional freedom for users to limit and adapt the generation
of sequential patterns. At the same time, it still allows the standard dis-
covery approach when using the standard parameter settings. The basic
procedure of the GSP algorithm is as follows:

■ Step 1: Calculate the support value of all sequences of length one,
i.e., single items.

■ Step 2: Extend the frequent sequences with one more item and
check whether it still fulfills the support requirement.

■ Step 3: Drop the infrequent sequences.

■ Step 4: Repeat step two and three until no additional sequences can
be constructed.
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Like the Apriori algorithm for frequent itemset generation [AS95],
the GSP algorithm is based on the principle of candidate set generation.
Potential sequential patterns are evaluated regarding whether they fulfill
the minimum support requirement. Although the principle is the same,
the GSP algorithm uses some more advanced mechanisms to generate the
candidate sets and determine the support value of a sequential pattern.

That is because sequential pattern mining deals with sequences whose
join mechanism is not as trivial as for itemsets without any order of
the elements. Srikant and Agrawal [SA96] introduce the definition of a
“contiguous subsequence”. A sequence c is a contiguous subsequence of
sequence s if either c only misses the first or last item of s or misses only
one item of a multi-item element of c (subsequence with at least two
items). Another possibility to characterize c as a contiguous subsequence
is if it fulfills one of the two properties for another sequence that is a
contiguous subsequence of s itself (transitive contiguousness).

The GSP algorithm starts with the single item sequences and joins them
with each other to produce sequences of length two. Starting with single
item sequences, they have to be constructed in two ways: In one join
mechanism, the resulting sequence consists of an item with two elements,
and in another one, they appear as two disjoint elements. Table 4.4 consists
of the following sequences of length one: {Keyboard}, {Webcam}, {Mouse},
{GPU}, {Software}, {PC}, {Monitor}, and {SSD}. Table 4.5 shows the joint
candidate sequences of length two leading to 8 x 14 = 112 sequences.
In the next step, all sequences with non-frequent contiguous subse-

quences are removed from the set of candidate sequences. For the se-
quences shown in Table 4.5 this leads to the remaining sequences of
length two shown in Table 4.6. Setting a minimum support requirement
of 0.25, all sequences that contain {Software}, PC, {Monitor}, and {SSD} are
deleted from the candidate set because these items were in the market
basket of only one of the five customers. Then, if the maximum gap pa-
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Table 4.5: Joined Candidate Sequences of Length Two (Transactions of

Table 4.4).

First Item Candidate Sequence of Length Two

Keyboard {{Keyboard}, {Webcam}}, {Keyboard, Webcam}, {{Keyboard}, {Mouse}},
{Keyboard, Mouse},{{Keyboard}, {GPU}}, {Keyboard, GPU}, {{Keyboard},
{Software}}, {Keyboard, Software}, {{Keyboard}, {PC}}, {Keyboard, PC},
{{Keyboard}, {Monitor}}, {Keyboard, Monitor}, {{Keyboard}, {SSD}}, {Key-
board, SSD}

Webcam {{Webcam}, {Keyboard}}, {Webcam, Keyboard}, {{Webcam}, {Mouse}}, {We-
bcam, Mouse}, {{Webcam}, {GPU}}, {Webcam, GPU}, {{Webcam}, {Soft-
ware}}, {Webcam, Software}, {{Webcam}, {PC}}, {Webcam, PC}, {Web-
cam, PC}, {{Webcam}, {Monitor}}, {Webcam, Monitor}, {{Webcam}, {SSD}},
{Webcam, SSD}

Mouse {{Mouse}, {Keyboard}}, {Mouse, Keyboard}, {{Mouse}, {Webcam}}, {Mouse,
Webcam}, {{Mouse}, {GPU}}, {Mouse, GPU}, {{Mouse}, {Software}},
{Mouse, Software}, {{Mouse}, {PC}}, {Mouse, PC}, {{Mouse}, {Monitor}},
{Mouse, Monitor}, {{Mouse}, {SSD}}, {Mouse, SSD}

GPU {{GPU}, {Keyboard}}, {GPU, Keyboard}, {{GPU}, {Webcam}}, {GPU, Web-
cam}, {{GPU}, {Mouse}}, {GPU, Mouse}, {{GPU}, {Software}}, {GPU, Soft-
ware}, {{GPU}, {PC}}, {GPU, PC}, {{GPU}, {Monitor}}, {GPU, Monitor},
{{GPU}, {SSD}}, {GPU, SSD}

Software {{Software}, {Keyboard}}, {Software, Keyboard}, {{Software}, {Webcam}},
{Software, Webcam}, {{Software}, {Mouse}}, {Software, Mouse}, {{Soft-
ware}, {GPU}}, {Software, GPU}, {{Software}, {PC}}, {Software, PC}, {{Soft-
ware}, {Monitor}}, {Software, Monitor}, {{Software}, {SSD}}, {Software,
SSD}

PC {{PC}, {Keyboard}}, {PC, Keyboard}, {{PC}, {Webcam}}, {PC, Webcam},
{{PC}, {Mouse}}, {PC, Mouse}, {{PC}, {GPU}}, {PC, GPU}, {{PC}, {Software}},
{PC, Software}, {{PC}, {Monitor}}, {PC, Monitor}, {{PC}, {SSD}}, {PC, SSD}

Monitor {{Monitor}, {Keyboard}}, {Monitor, Keyboard}, {{Monitor}, {Webcam}},
{Monitor, Webcam}, {{Monitor}, {Mouse}}, {Monitor, Mouse}, {{Monitor},
{GPU}}, {Monitor, GPU}, {{Monitor}, {Software}}, {Monitor, Software},
{{Monitor}, {PC}}, {Monitor, PC}, {{Monitor}, {SSD}}, {Monitor, SSD}

SSD {{SSD}, {Keyboard}}, {SSD, Keyboard}, {{SSD}, {Webcam}}, {SSD, Webcam},
{{SSD}, {Mouse}}, {SSD, Mouse}, {{SSD}, {GPU}}, {SSD, GPU}, {{SSD}, {Soft-
ware}}, {SSD, Software}, {{SSD}, {PC}}, {SSD, PC}, {{SSD}, {Monitor}}, {SSD,
Monitor}
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rameter is set to infinity, all other infrequent subsequences are removed.
Table 4.7 shows the remaining sequences of length two included in the
set of sequential patterns found by the GSP algorithm.
These sequences of length two join with each other if the following

condition holds: Removing the first item of one sequence leads to the
same result as dropping the last item of another sequence. The items
can be single items or be part of an itemset. This procedure stops when
no additional candidate sequences can be generated through this join
mechanism. Taking the sequences in Table 4.7 {{Keyboard}, {Mouse}} and
{Mouse, GPU} can be joined to {{Keyboard}, {Mouse, GPU}} because deleting
the first and last item leads to the item {Mouse}. Other joins are not possible.
The final sequence of length three is not removed from the candidate set
because {{Keyboard}, {Mouse}, {{Keyboard}, {GPU}}, as well as {Mouse, GPU}
are frequent (no infrequent contiguous subsequence). The GSP algorithm
stops with that set of sequences because only a single item remains, and
no further joins are possible. The final output of the algorithm consists of
the sequences in Table 4.7 and 4.8 plus the four sequences with a single
item.
Another unique aspect of the GSP algorithm is how it determines

the support values of the sequences. For frequent itemsets without any
sequential order aiming for discovering association rules, one pass over
all transaction is enough to determine the support of an itemset that, for
instance, includes three specific items. However, things are different for
sequential pattern mining. For instance, the sequences {Keyboard, Mouse,
GPU} and {Mouse, GPU, Keyboard} are not equivalent. Therefore, several
independent passes over the data are required for determining the support
count of each sequence that consists of the same elements. This is why a
stronger focus has to be laid on the efficient calculation of support values
for candidate sequences for which the GSP algorithm uses a special tree
structure that consists of a mix of lists of sequences and hash tables.
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Table 4.6: Joined Candidate Sequences of Length Two After Pruning

(1/2).

First Item Candidate Sequences of Length Two

Keyboard {{Keyboard}, {Webcam}}, {Keyboard, Webcam}, {{Key-
board}, {Mouse}}, {Keyboard, Mouse}, {{Keyboard},
{GPU}}, {Keyboard, GPU}

Webcam {{Webcam}, {Keyboard}}, {Webcam, Keyboard}, {{Web-
cam}, {Mouse}}, {Webcam, Mouse}, {{Webcam}, {GPU}},
{Webcam, GPU}

Mouse {{Mouse}, {Keyboard}}, {Mouse, Keyboard}, {{Mouse},
{Webcam}}, {Mouse, Webcam}, {{Mouse}, {GPU}}, {Mouse,
GPU}

GPU {{GPU}, {Keyboard}}, {GPU, Keyboard}, {{GPU}, {Web-
cam}}, {GPU, Webcam}, {{GPU}, {Mouse}}, {GPU, Mouse}

Sequential patterns are sequences that fulfill a certain minimum sup-
port requirement providing a good overview of the sequential orders in
customer transactions. Sometimes, however, it is desirable to represent
these sequences as rules that create a relation between two sequences. The
relationship between sequential patterns and sequential rules is analogue
to the frequent itemsets and the association rules derived from them.

4.2.2 Sequential Rule Mining

Fournier-Viger et al. [FVGZT14] differentiate between two types of se-
quential rule mining: One type produces rules that have unordered sets of
events in both antecedent and consequent parts. Their ERMiner approach
or the RuleGrowth algorithm by Fournier-Viger et al. [FVNT11] generate
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Table 4.7: Joined Candidate Sequences of Length Two After Pruning

(2/2).

First Item Candidate Sequences of Length Two

Keyboard {{Keyboard}, {Webcam}} {{Keyboard}, {Mouse}}, {{Key-
board}, {GPU}}

Mouse {Mouse, GPU}

Table 4.8: Joined Candidate Sequences of Length Three After Pruning.

First Item Candidate Sequences of Length Two

Keyboard {{Keyboard}, {Mouse, GPU}}

such output. For this thesis, they are not considered in larger detail. The
reason is that the respective sets of events do not specify a particular
order. For the application in the business process context later in this
thesis, however, it is very desirable to know the order of process activities.
Also, information would be lost when transforming a sequential pattern
into a sequential rule.

Therefore, the second type of sequential rule mining includes sequences
in the antecedent and consequent parts of the rule. Lo et al. [LKW09]
present groundwork definitions for sequential rules and a mining al-
gorithm that generates sequential rules based on sequential patterns
found from the PrefixSpan algorithm by Pei et al. [PHMA+01]. Pham et
al. [PLHV14] contribute an approach for constructing sequential rules
based on patterns in a prefix tree. Fournier [16] shows the fundamentals
of sequential rule mining and provides a set of open-source, java-based
libraries for pattern discovery [17].
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Two important terms here are closed sequential patterns and non-
redundant sequential rules. Closed sequential patterns are patterns that
are not included in any other pattern with the same support. They rep-
resent a minimal set of frequent sequences (sequential patterns) with
which all other sequential patterns can be constructed again [PLHV14].
Their purpose is to reduce the number of patterns that have to be consid-
ered to construct sequential rules. For instance, in Table 4.7 and 4.8 only
{{Keyboard},{Webcam}} and {{Keyboard}, {Mouse, GPU}} are closed because
{{Keyboard},{Webcam}}, {{Keyboard}, {Mouse}} and {{Keyboard},{GPU}} as
well as the frequent one-element sequences can be derived from them.
A non-redundant sequential rule is a rule that cannot be inferred by
another rule. Consider the sequential rules Keyboard −→ Mouse and
Keyboard −→ Mouse,GPU . The former is a redundant rule because it
can be derived from the latter. Analogue to association rules, support and
confidence are defined as follows:

Support(X −→ Y ) =
Support(X + Y )

N

whereby X and Y are sequences and the plus-operator indicates a concate-
nation of two sequences. The following term calculates the confidence
value of a sequential rule:

Confidence(X −→ Y ) =
Support(X + Y )

Support(X)

Consider the rule Keyboard −→ Webcam, derived from the closed
sequential pattern {{Keyboard},{Webcam}} with a support of 2. The confi-
dence is 2

4 = 0.5. For the ruleKeyboard −→ Mouse,GPU the support is
2 and the confidence is 2

4 = 0.5 as well. Generally, sequential rules can be
derived from any sequence of at least length two. Besides the confidence
value, also other measures like lift can be determined.
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4 Data Mining Techniques for Pattern Discovery

After having introduced two fundamental data mining techniques for
pattern and rule discovery, Chapter 5 continues with their application
on process event data for a declarative process mining approach. The
fundamental requirement is event data which can be represented in a
format equivalent to the customer transaction data.
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Part 2 (“Combining Data and Process Mining”) of this thesis combines data
and process mining. Chapter 5 shows how association rule and sequential
pattern mining can be applied to event logs for process mining. The ap-
proach in this thesis uses a RapidMiner [6] script that loads the event log,
performs several preprocessing steps, and finally executes the data mining
techniques. All steps are performed on a small insurance compensation
request process but are generally transferable to other event logs that
fulfill the minimum requirements for process mining (case ID, activity
name, timestamp). Next, the chapter demonstrates how different types of
association rules and sequential patterns or rules (varying regarding, e.g.,
size or inclusion of additional attributes) can be transformed to constraints
based on the (multi-perspective) Declare template set. Additionally, pa-
rameter settings like support, confidence, or inclusion and exclusion of
attributes are mentioned. Furthermore, Chapter 5 discusses to what extent
they influence the transformation process or the meaningfulness of the
declarative process model.
Chapter 6 uses the RapidMiner script and applies it to larger sample

event logs from web repositories, resulting in full declarative models and
a discussion about the benefits of each application and a rule/pattern or
Declare representation in general.
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Mining on Process Event Data

This chapter combines the techniques for pattern discovery with process
mining and shows how to apply association rule and sequential pattern
mining to event logs suitable for process mining. For this purpose, the
event data has to be transformed and represented to be comparable to
the transactions in the market baskets standard example. Transactions in
this process context are instances (executions) of processes. An item is a
single activity of the process, and sequences are successions of activities
in a particular process. Overall, the goal is to produce association rules
and sequential patterns (or rules) that uncover interesting, beneficial
relations for users in process analysis environments. Finally, some results
are transformed to model elements in the Declare notation to build a
declarative process model.

5.1 General Setup of the Implementation

The approach in this thesis requires a standard event log suitable for
process mining activities in tool environments like Celonis [5] or Disco [4].
It is implemented in RapidMiner [6], a tool for all kinds of activities in the
data transformation and mining field which is Java-based and implements
most of the functionalities in the prominent Weka tool [FHW16]. This
thesis uses RapidMiner for all data mining activities on process event logs.
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One of its advantages is that it provides the user with operators they
can select and include into a RapidMiner process via a Drag&Drop mecha-
nism. Examples for such operators are accesses to all kinds of file formats,
attribute type changes, discretization, or model generation and applica-
tions. Assuming a sound process with matching inputs and outputs of
the operators, users can execute the data process by clicking a button.
RapidMiner supports data import through either CSV or Excel format.
Once imported into the application, users can load the data into a

process with a single operator. The overall idea for the approach in this
thesis is that users only have to change data input and can then reuse
the remaining process without changing the remaining structure. How-
ever, they can adapt the operators’ parameters. Users can vary support
and confidence values for rule generation or include or exclude optional
event data attributes. One disadvantage of RapidMiner in comparison to,
for instance, Python scripts is that it does not provide the flexibility of
code-based applications. The assumption is, though, that the clear set
of operators provides the users an easy-to-use toolbox for their process
analysis activities. Also, more advanced users can extend RapidMiner
processes and embed Python scripts.

The following presents the RapidMiner processes for generating asso-
ciation rules and sequential patterns from event log input with a detailed
inspection of each parameter’s input, output, and parameters. Addition-
ally, each process shows how the resulting patterns and rules should
be interpreted and how they can be translated to a part of a declarative
process model in the Declare notation. The outputs of the RapidMiner
processes and the declarative process models should form a close connec-
tion with a fast translation between the resulting patterns or rules and
the model elements and vice versa.
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5.2 Association Rule Mining on Event Logs

5.2 Association Rule Mining on Event Logs

Figure 5.1 presents a process for the application of association rule mining
on an event log in the RapidMiner tool [6]. Before applying association rule
mining on an event log, several preprocessing steps have to be performed.
Assuming an event log in the usual form like in Figure 3.8, in a first step,
the activities of a trace have to be grouped by the Case ID. This is done
by the Aggregate operator with Activity as the aggregation attribute and
concatenation as the aggregation function. For the compensation request
process example, the output of the aggregation looks like in Table 5.1.
Now that every row of the data represents one case, the activities are
concatenated in one cell. The cells for the activities have to be split up.
In this case, this happens by applying a split operation on the Activities
column with “|" as the split pattern so that every activity has its own cell
or column.

Process

Retrieve running-exa...

out

Generate Concatena...

exa exa

ori

Aggregate

exa exa

ori

Split

exa exa

ori

Select Attributes

exa exa

ori

FP-Growth

exa exa

fre

Create Association ...

ite rul

ite

inp res

res

Figure 5.1: Process of Association Rule Mining on Event Logs in Rapid-

Miner [6].

Then, only the activity columns are selected as an input for generating
the frequent itemsets (operator Select Attributes). The FP-Growth operator
generates frequent itemsets of activities. For the process context, they
mean activities that appear together in many executions, i.e., cases of the
process. Users can set the minimal support or frequency of an itemset and
the minimum and maximum number of items per itemset and number
of itemsets. Starting with standard settings of a minimum support of 0.8,
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5 Applying Pattern and Rule Mining on Process Event Data

Table 5.1: Compensation Request Log with Activities Aggregated by

Case ID.

Case Id Activities

1 register request | examine thoroughly | check ticket |
decide | reject request

2 register request | check ticket | examine casually | decide |
compensation

3 register request | examine casually | check ticket | decide |
reinitiate request | examine thoroughly | check ticket |
decide | pay compensation

4 register request | check ticket | examine thoroughly |
decide | reject request

5 register request | examine casually | check ticket | decide |
reinitiate request | check ticket | examine casually | decide
| reinitiate request | examine casually | check ticket |
decide | reject request

6 register request | examine casually | check ticket | decide |
pay compensation

itemset sizes of two to three, and no maximum or minimum number of
itemsets is advisable.
Table 5.2 shows frequent itemsets based on the following settings:

Minimum support of 0.9, minimum items per itemset of 2, maximum
items per itemset of 3, and maximum number of itemsets of 100. The
minimum number of itemsets is 10. Although the minimum support
is 0.9, the algorithm finds six itemsets with lower support because the
minimum number of items was set to 10. Frequent itemsets are the input
for generating association rules.
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The criterion parameter of the Create Association Rules operator defines
the criterion which is used for generating the rules, the standard setting is
confidence, but also others like lift or gain are possible. Figure 5.3 presents
an excerpt of the association rules found with a minimum confidence of
0.8. All rules have one or two items in their premise and conclusion parts,
resulting from the frequent itemset generation operator for which the
maximum number of itemsets was set to three.

Table 5.2: Frequent Itemsets of Compensation Request Process Event

Log Activities.

Size Support Item 1 Item 2 Item 3

2 1.0 check ticket decide
2 1.0 check ticket register request
2 1.0 decide register request
3 1.0 check ticket decide register request
2 0.667 check ticket examine casually
2 0.667 decide examine casually
2 0.667 register request examine casually
3 0.667 check ticket decide examine casually
3 0.667 check ticket register request examine casually
3 0.667 decide register request examine casually

Table 5.3 shows association rules that only include activities of the
compensation request process. However, it is also possible to use the other
optional attributes in the event log. RapidMiner provides the Generate
Concatenation operator to combine two attributes of the same row. The
compensation request process event log contains resource information
for every activity execution, indicating the employee who has executed
one particular step. After concatenating activity and resource attribute,
Table 5.1 is extendedwith another column that contains the same activities
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Table 5.3: Association Rules for Compensation Request Process Event

Log.

Premises Conclusion Support Conf.

check ticket, decide register request 1.0 1.0
check ticket, register request decide 1.0 1.0
decide, register request check ticket 1.0 1.0
check ticket decide 1.0 1.0
decide check ticket 1.0 1.0
check ticket register request 1.0 1.0
register request check ticket 1.0 1.0
decide register request 1.0 1.0
register request decide 1.0 1.0
check ticket decide, register re-

quest
1.0 1.0

decide check ticket, register
request

1.0 1.0

register request check ticket, decide 1.0 1.0
... ... ... ...

as before, where each of them is combined with the associated resource
attribute. Afterwards, the RapidMiner process stays the same as before,
with the only difference that both the columns with single activities and
activity-resource combinations are provided as an input for frequent
itemset and association rule generation. The attribute combinations alone
may not lead to frequent itemsets with appropriate support values.
Using the insurance compensation request process with the same set-

tings as before, RapidMiner produces 36 association rules. The reason is
that the process finds many combinations of resource Sara and the decide
activity and the other activities of the process. Therefore, Table 5.4 shows
only an excerpt with five association rules. Line 1, for instance, can be
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Table 5.4: Association Rules for Compensation Request Process Event

Log with Resource Information.

Premises Conclusion Support Conf.

check ticket decide/Sara 1.0 1.0
check ticket, decide/Sara decide 1.0 1.0
decide, decide/Sara check ticket 1.0 1.0
check ticket, decide register request 1.0 1.0
check ticket, register request decide 1.0 1.0
... ... ... ...

interpreted in a way that every checked ticket is finally decided by Sara.
Still, the process finds association rules that do not include any resource
information (e.g., line 4 of Table 5.4). It is also possible to use continuous
attributes in the association rule generation process. For this, continuous
attributes (for instance, costs) must be discretized so that every value is
mapped to a specific category. Then, users can perform the same process
as with the resource attributes.

The process of generating declarative constraints from an event log is
not over yet. In a final step, the association rules have to be translated to
declarative process model elements. Altogether, the transformations form
the set of declarative model elements and thereby the declarative process
model.

Confidence is more important for selecting association rules for trans-
formation. Constraints with high confidence values hold on the process in
more cases and thus, provide a more precise declarative description. The
number of times a constraint is active, but the actual process execution
as indicated by the event log does not fulfill it, is lower. Users should
most likely go for settings above 0.8. For lower values, active constraints
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describe incorrect behavior for more than 20% of the cases, which, most
likely, is not acceptable for most scenarios. Support, in this case, is more
closely related to the relative importance of a constraint. Rules with higher
support values create constraints that can be applied to more cases of the
process, i.e., they are not vacuously satisfied and provide an overview of
standard behavior of the process.
Chapter 6 addresses the proper selection of support and confidence

values for frequent itemset and rule generation and the advantages and
drawbacks that come with it in more detail. The following presents an
approach for transforming association rules to model elements in Declare.

5.2.1 Translating Association Rules to Declare Constraints

In the simplest case, a rule consists of one activity as the premise and one
as the conclusion. Users decide to include this rule in a declarative process
model based on support and confidence. For the 1-to-1 relationship, one
can translate the rule to a RESPONDED EXISTENCE template where
the existence of the first activity enforces the existence of the second. For
the rules in Table 5.3, line 4 with activities check ticket and decide form
such a constraint, meaning that whenever a ticket is checked, there should
also be a decision about it. A graphical representation of the constraints
using the Declare notation could look as shown in Figure 5.2.

check ticket decide
RESPONDED EXISTENCE

Figure 5.2: RESPONDED EXISTENCE Constraint for Two Activities.

Another type of setup is an association rule with one activity as the
premise and two activities as the conclusion. The translation of such rules
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check ticket decide
RESPONDED EXISTENCE

register request

RESPONDED 

EXISTENCE

Figure 5.3: RESPONDED EXISTENCE Constraint for Three Activities

(1 Premise, 2 Conclusions).

to Declare constraints can be done by splitting the rule into two indepen-
dent RESPONDED EXISTENCE templates. Table 5.3 shows a rule with
check as the premise and decide and register request as conclusions.
Figure 5.3 shows a graphical representation of both RESPONDED

EXISTENCE constraints. The previous example represents a subset of
the rule and translation here. So additional to the graphical depiction of
the first constraint, the construct contains another line from the check
ticket to the register request activity. Both constraints are independent of
each other.
There is no direct translation to Declare if a rule has two activities as

the premise and one as the conclusion. The standard set of the Declare
notation does not include a RESPONDED EXISTENCE constraint with
more than one activity on one side of the constraint. However, it is pos-
sible to extend the Declare notation by introducing new LTL formulas
and adding own constraint templates. Figure 5.4 shows a RESPONDED
EXISTENCE constraint for the {check ticket, register request} → {decide}
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rule. This rule requires both premises to appear in the process and not
only one of them.
However, the {check ticket} → {decide} relation still also holds. Rule

generation has shown that the larger rule may be more expressive than
the first one. It remains open how to explicitly include that the {check ticket}
→ {decide} and {register request}→ {decide} rules also hold in the Declare
representation. One option is to introduce a RESPONDED EXISTENCE

label on both connections like depicted in Figure 5.4. If the confidence
values of the rules with single-item antecedents are too low, there is only
one label for both connections.

check ticket

decide

RESPONDED EXISTENCE

register request RESPONDED E
XISTENCE

Figure 5.4: RESPONDED EXISTENCE Constraint for Three Activities

(2 Premises, 1 Conclusion).

When setting the maximum number of items per itemset for frequent
itemset generation to four, the rule generation operator also generates
rules with four items. Using the same event data as before, the process
produces a rule {decide, examine casually} → {check ticket, register request}

(not included in Table 5.3). Figure 5.5 presents a possible visualization of
the rule in the Declare notation. Like for the case with three activities, the
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problem remains that also subsets of the rules may hold for the process. For
instance, rule generation also outputs the rules {decide, examine casually}

→ {register request} and {examine casually} → {check ticket}.

decide check ticket

examine casually

RESPONDED EXISTENCE

register request

Figure 5.5: RESPONDED EXISTENCE Constraint for Four Activities

(2 Premises and 2 Conclusions).

Theoretically, it is possible to have an infinite amount of items in
the premises and conclusions. However, for reasons of comprehension
and usefulness it most likely does not make sense to introduce rules or
constraints with more than four activities in a single itemset. Besides, it
is possible to create rules with one or three premises and one or three
conclusions. Figure 5.6 and 5.7 visualize declarative constraints on the
sample event log with one or three premises for a four items setting.
As introduced earlier, the association rule mining process can also

include other optional attributes. Representing such association rules in
the Declare modeling language requires the multi-perspective extension.
Attributes are included in either the activation or correlation conditions
depending on whether they appear in the antecedent, consequent, or both
parts of the rule and how the process modeler decides to represent the
association rule.
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check ticket register request

examine casually

RESPONDED 

EXISTENCE

decide

RESPONDED EXISTENCE

RESPONDED 

EXISTENCE

Figure 5.6: RESPONDED EXISTENCE Constraint for Four Activities

(1 Premise and 3 Conclusions).

decide

register requestexamine casually
RESPONDED EXISTENCE

check ticket

RESPONDED EXISTENCE

RESPONDED EXISTENCE

Figure 5.7: RESPONDED EXISTENCE Constraint for Four Activities

(3 Premises and 1 Conclusion).
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Figure 5.8 presents amulti-perspective declarativemodel representation
of an association rule {decide/Sara} → {check ticket}. The constraint can
be interpreted in a way that this RESPONDED EXISTENCE is only
activated when resource Sara is deciding about the compensation request.
There is no correlation condition (second brackets of the constraint are
empty). Figure 5.9 shows a multi-perspective Declare translation for a rule
of the form {decide}→ {check ticket/Sara}. The only difference to Figure
5.8 is that the activation condition of the RESPONDED EXISTENCE

constraint addresses the second activity of the constraint, indicated by
T.resource instead of A.resource.

decide check ticket

RESPONDED EXISTENCE 
[A.resource == Sara] []  

Figure 5.8: RESPONDED EXISTENCE Constraint with Activation Con-

dition.

decide check ticket

RESPONDED EXISTENCE 
[T.resource == Sara] []  

Figure 5.9: RESPONDED EXISTENCE Constraint with Activation Con-

dition on Target Activity.

Another type of rule includes attributes on both sides of the constraint.
Here, one should distinguish between cases where the attributes have
different and equal values. The rules can be represented using either acti-
vation or correlation conditions in both cases. Consider an association
rule {check ticket/Mike}→ {decide/Sara}. Figure 5.10 shows one possible
translation to the Declare notation using an AND-concatenation in the ac-
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tivation condition of the RESPONDED EXISTENCE constraint. Another
option is to introduce a correlation condition different resource for this
constraint type. However, the disadvantage of this representation is that
information about the concrete attribute values is lost. This means that
the constraint generally enforces that two activities have to be executed
by two different persons (resources), which may not be what is intended
and what the association rule expresses.

decide check ticket

RESPONDED EXISTENCE 

[A.resource == Sara ∧

T.Resource == Mike] []  

Figure 5.10: RESPONDED EXISTENCE Constraint with Two Activation

Conditions.

Figure 5.11 depicts a Declare constraint for the rule {check ticket/Sara}
→ {decide/Sara}. It consists of a correlation condition same resource that
indicates that both activities decide and check ticket have to be executed
by the same resource. This general restriction applies to every resource
associated with both activities.
Users without knowledge about the association rules do not exactly

know from which single association rule or which association rules the
Declare element originates. Alternatively, instead of using a correlation
condition with the same indicator, association rules with the same at-
tribute value on both sides of the rule can be translated to constraint with
activation conditions like in Figure 5.10. The activation condition would
beA.resource = Sara∧ T.Resource= Sara, whereby the whole expression has
to evaluate to true to activate the RESPONDED EXISTENCE constraint.

It is crucial to consider their support when translating association rules
including additional attributes to Declare constraints. The higher the
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decide check ticket

RESPONDED EXISTENCE 
[] [same resource]  

Figure 5.11: RESPONDED EXISTENCEConstraint with Correlation Con-

dition.

support, the more often they are executed, and thus, related constraints
represent a more general behavior of the process.
Some rule of thumb is the following: Rules with a low support (< 0.5)

should never be translated to general constraints on the process, especially
not to correlation conditions with same or different indicators. For associ-
ation rules with a support from 0.5 to 0.8, modelers or process analysts
should also tend to rather introduce activation conditions with concrete
attribute values (e.g., A.resource = Mike ∧ T.Resource= Sara instead of
different resource). In exceptional cases and while considering domain
knowledge for the process, persons may decide to transform it to a more
general constraint when they know that other combinations of attribute
values do not appear or are not relevant for the desired execution of a
process. For association rules with attributes included and a support from
0.8 to less than one, there may be a rule to translate them to more abstract
constraints generally.

However, if modelers or analysts have domain knowledge that prevents
introducing a general statement and know about important cases which
would not fulfill the constraint, they should also be transformed to more
specific model elements in Declare. Finally, constraints with a support
equal to one can always generate a universal constraint because it holds
for every process instance in the event log. The support of an association
rule is important to evaluate a constraint’s relevancy and significance for
the whole process and event log.
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Modelers should try to introduce constraints based on rules with a
support as high as possible. Besides the support, confidence values indicate
the precision of a constraint regarding the full event log and a preferred
direction of the association rules or Declare constraints. Consider rules of
the form {A}→ {B} and {B}→ {A}, A and B are activities. Both rules have
the same support because they consist of the same set of items. Assuming
that the support of single item B is lower than the support of single item A,
rule {B}→ {A} has a higher confidence than {B}→ {A} and should therefore
be preferred for a transformation to a Declare model element. Because
of the lower support of B, the resulting constraint is trivially (vacuously)
satisfied in more cases than it would be with activity A in the antecedent
part of the rule. This is preferable compared to incorrect descriptions of
the process for more cases of the event log.
Besides RESPONDED EXISTENCE, association rules can also trans-

late to EXISTENCE constraints. Thereby, no relationships between activ-
ities are formed but only a statement about the appearance of a particular
activity is made. The reason for such a translation instead of introducing
RESPONDED EXISTENCE constraints could be that, for instance, a rela-
tion between activities without any significance about their temporal order
may not be meaningful or beneficial for a declarative model. Figure 5.12
shows the translation of the rule {check ticket/Mike} → {decide/Sara} to
two Declare EXISTENCE constraints with activation conditions. For
EXISTENCE constraints, association rules are not strictly required, but
frequent itemsets are sufficient to derive these types of constraints. The
support value alone can evaluate the suitability of an activity alone or in
combination with attributes to be translated to an EXISTENCE constraint.
As always, higher support values should be preferred.

Like for the RESPONDED EXISTENCE process restrictions, users
should follow the general rule thumb that the higher a support value the
more appropriate it is to represent it as a general condition for the whole
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process. Figure 5.12 visualizes such constraint types where the decide and
check ticket activities only have to be part of the process if the activation
conditions hold. There is no information about the existence of these ac-
tivities otherwise. The question arises whether such constraints represent
a circular reference because whenever a value for the resource attribute of
decide can be determined, it is clear that the activity exists. Though, one
could argue to interpret them by using an alternative semantics: If, for
instance, the decide activity exists, it should be associated with resource
Sara.

decide check ticket

EXISTENCE
[A.resource == Sara]

EXISTENCE
[A.resource == Mike]

Figure 5.12: Two EXISTENCE Constraints with Activation Conditions.

Association rules can only be translated to either RESPONDED EXIS-

TENCE, EXISTENCE, or CO-EXISTENCE constraints and their multi-
perspective extensions because no sequential order can be determined.
This changes with sequential patterns. The following introduces the appli-
cation of sequential pattern mining on event logs in RapidMiner and the
translation of sequential patterns or rules to declarative model elements.

5.3 Sequential Pattern Mining on Event Logs

Sequential pattern mining on event logs allows considering and including
the temporal order of activities in combination with additional attributes.
Figure 5.13 presents a process of applying sequential pattern mining
on event logs in RapidMiner [6]. The process uses the GSP operator
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working as introduced in Chapter 4, also the event data input file remains
unchanged. Like for association rule mining, the RapidMiner process
consists of several preprocessing steps to bring the event data into a
format suitable for the sequential pattern mining algorithm.
After importing the data, the date attribute of the event log has to be

transformed from a date to a numerical attribute. The reason is that the
sequential pattern mining operator in RapidMiner expects a numerical
value for the time and does not support the use of attributes with type
date. Each date value of the event log is transformed to one second relative
to the epoch (start of the epoch is 1st of January 1970). Then, the Activity,
Case Id, Timestamp, and Resource attributes of each entry of the event
log are selected. Possible other attributes are discarded. Afterwards, the
Activity and Resource attributes are transformed from a nominal to a
binominal value. Clearly, it is possible to only transform the Activity and
drop the Resource attribute.
Table 5.5 presents an excerpt of an event log after transforming the

Activity and Resource attributes. For each different value of both attributes,
a new column is inserted, and true or false values indicate whether the
specific value is present for one instance of the process whereas only one
activity and resource column is true for each line of the table. The more
different values the event log has, the more columns have the resulting
table. Triple points in Table 5.5 indicate that the representation of both
activities and resources and the cases is not complete. Transforming the
values is necessary because the GSP algorithm expects binominal attribute
values.

Table 5.6 presents the parameters of the GSP operator in RapidMiner [6].
As introduced in Chapter 4, the GSP algorithm is frequently used for
analyzing customers’ markets baskets and their buying behavior. For an
application in the process context, one instance of a process (case) is
assumed to be one customer. Customers fill their shopping baskets and
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Figure 5.13: Process of Sequential Pattern Mining on Event Logs in

RapidMiner [6].

buy certain products. In this use case, the activities of one process instance
are treated as the set of products a customer buys. Therefore, the customer

id is set to the Case ID attribute of the event log. The time attribute is set to
the timestamp information of the event log in a numerical format relative
to the epoch. In a first attempt, the minimal support for the sequential
patterns is set to 0.8. This value can be varied and adapted depending on
the user needs and expectations.
The GSP operator only produces sequential patterns that fulfill the

minimum support. Next, the window size parameter defines a range of
time in which activities are treated as a single transaction. For this process
use case, the parameter is set to zero as there may be activities that happen
seconds (or milliseconds) after another, and every activity should therefore
be treated as single activity of the process.
There are two more parameters max gap and min gap, whereby the

former determines a maximal difference in time in which the GSP algo-
rithm generates sequential patterns. Patterns with activities whose time
difference is too big will not be included in the same pattern. Similarly, the
min gap operator defines a minimum time difference of the activities. For
the first run, themaximum gap is set to Infinity. In this way, the algorithm
generates patterns for all activities, no matter how big the time difference
between them is. The minimal gap is set to zero because it is desirable
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Table 5.5: Event Log Excerpt in Binominal Format (Activity and Resource

Attributes).

register

request

check

ticket

... Pete Sue ... Case ID Time

true false ... true false ... 1 1293703320
false true ... false true ... 1 1293786360
... ... ... ... ... ... ... ...
true false ... false false ... 2 1293705120
false true ... false false ... 2 1293707520
... ... ... ... ... ... ... ...
true false ... true false ... 3 1293715920
false false ... false false ... 3 1293723240
... ... ... ... ... ... ... ...
true false ... true false ... 4 1294322520
false false ... false false ... 4 1294398360
... ... ... ... ... ... ... ...
true false ... false false ... 5 1294300920
false false ... false false ... 5 1294391760
... ... ... ... ... ... ... ...
true false ... false false ... 6 1294322520
false false ... false false ... 6 1294326360
... ... ... ... ... ... ... ...

also to find patterns for activities that happen within a time window of
one millisecond.

Finally, the positive value parameter is set to true. This parameter value
indicates the binominal value that shall be treated as positive. Here, the
Boolean value truewas used. However, other encodings like zero or one are
conceivable. With these GSP operator settings and the complete picture
shown in Figure 5.13, the process is ready-to-run.
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Table 5.6: GSP Operator Parameters in RapidMiner [6].

Parameter Value

customer id Case ID
time attribute dd/MM/yyyy:HH.mm
min support 0.8
window size 0.0

max gap Infinity
min gap 0.0

positive value true

Table 5.7 shows a subset of the output for sequential pattern mining
using the GSP algorithm on the compensation request process event data.
The process generates sequential patterns with a minimum support of
0.83 (0.8 was specified) and up to three transactions and four items and
finds 20 patterns in total. Thereby, a transaction is one element of the
sequential pattern. One transaction can be composed out of two elements
(possiblymore for other scenarios and datasets), whereby one of them is an
activity and the other one an information about used resources. Patterns,
where an activity/resource combination is followed by a single activity
or the other way around, are also possible. This means that an activity
follows or precedes an activity with the respective resource information.
Furthermore, there can be sequential patterns where an activity follows or
precedes a resource attribute alone or even resource attributes following
each other.
Contrary to the association rule mining process, with this sequential

pattern mining approach, it is impossible to directly specify the maxi-
mum or minimum number of items a sequential pattern can consist of.
Instead, the shape of the output results from the GSP operator parameter
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settings and the number of binominal attributes and can only be indi-
rectly influenced. One can derive sequential rules from such sequential
patterns to benefit from confidence measures and an alternative format
for practitioners.

Table 5.7: Excerpt of the GSP Output for the Compensation Request

Process Dataset.

Support Trans-

actions

Items T1 T2 T3

0.833 2 2 register request Ellen
0.833 2 2 Mike Ellen

1 2 2 register request check ticket
1 2 2 register request decide
1 2 2 check ticket decide
1 2 2 decide/Sara
1 2 2 Mike decide
1 3 3 register request check ticket decide
1 3 3 register request check ticket Sara
1 2 3 check ticket decide/Sara
1 3 3 register request check ticket decide/Sara
... ... ... ... ... ....

5.3.1 Translating Sequential Patterns to Sequential Rules

There is only one possibility to form a sequential rule for sequential
patterns with only two transactions. For instance, the pattern {register

request, check ticket} is translated to a rule {register request}→ {check ticket}

and has a confidence of 1
1 = 1 as activity register request appears in a

hundred percent of the cases. Similarly, the pattern {Mike, Ellen} forms a
sequential rule {Mike} → {Ellen} with a confidence of 0.833

1 = 0.833. Only
in one case of the process, resource Mike is associated with the execution
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of some activity of the process while not being followed by an activity
associated with resource Ellen.
Things are only slightly more complex for patterns with more than

two transactions. The number of items as depicted in Table 5.7 does not
influence the rule generation process. A transaction itself, possibly a com-
bination of an activity and additional attributes like resource information,
is kept together and not split for the transformation to a sequential rule
(e.g., {check ticket} → {decide/Sara}). The Pattern {register request, check

ticket, decide} can be transformed to either {register request, check ticket}
→ {decide} or {register request} → {check ticket, decide}. Both rules have
the same confidence (equal to one) because {register request, check ticket}
as well as {register request} alone appear in all instances of the process.
If confidence values are different, the rule with the higher value should
generally be preferred. There are even more possible rule transformations
for sequential patterns with four transactions. They can be represented by
a rule with three transactions in the antecedent and one in the consequent
part, one transaction in the antecedent and three in the consequent part,
or two transactions in both.

As usual, higher confidence values are preferable. However, there can
also be cases where modelers may decide to consider rules with lower
confidence values because he or she believes that they are more important
based on domain knowledge about the process and overall setting. Theo-
retically, there can be patterns with more than four activities; however,
the question arises whether such large structures are still meaningful and
can be interpreted by users working with a particular process.
In the last step, the sequential patterns or rules must be translated to

Declare constraints to include them into a declarative process model and
finish the process mining procedure. The following introduces a selection
of the most common transformation approaches for sequential patterns
and rules, similar to the ones for association rule mining.
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5.3.2 Translating Sequential Patterns or Rules to Declare
Constraints

In the simplest case, the sequential pattern mining algorithm outputs a
pattern with two transactions and two items, whereby both items are
activities. This pattern can be translated to a RESPONSE constraint in
the Declare notation, meaning that whenever the first activity is executed,
the second one has to follow eventually. Figure 5.14 shows a graphical
representation of the RESPONSE constraint in Declare based on the
{register request, check ticket} pattern in Table 5.7.

register request check ticket
RESPONSE

Figure 5.14: RESPONSE Constraint for Sequential Pattern with Two

Activities.

A similar transformation approach is possible for patterns with three
transactions and three items, all of them being an activity. Figure 5.15
shows the graphical representation in the Declare notation with three
activities, based on the same data as before. The former example represents
a subset of the transformation shown here.

register request check ticket
RESPONSE

decide
RESPONSE

Figure 5.15: Chained RESPONSE Constraints for Sequential Pattern

with Three Activities.

Theoretically, it is possible to have a pattern with an infinite amount
of activities, each of them representing a single transaction, and then
transform them to a chain of RESPONSE constraints. However, the
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more activities a pattern consists of, the more confusing it potentially is.
Thereby, the advantages and strengths of the declarative representation
compared to an imperative model in, for instance, Petri net or BPMN
notation would not emerge sufficiently. Figure 5.16 shows a declarative
representation of the same pattern as in Figure 5.15 assuming that it is
interpreted as a rule {register request}→ {check ticket, decide} by extending
the original Declare notation set. The additional challenge here, compared
with transforming association rules, is to avoid the loss of information
about the sequential order of activities.

register request

check ticket

RESPONSE

decide

Figure 5.16: Unchained RESPONSE Constraint for Sequential Pattern

with Three Activities (1 Premise, 2 Conclusions).

Figure 5.16 demands that whenever activity register request appears,
both activities check ticket and decide have to be executed eventually after-
wards. The blank arrow leading to the check ticket activity indicates that it
still always precedes decide even though both are part of the consequent
of the sequential rule representation. Figure 5.17 depicts the opposite
case where the appearance of two activities leads to execution of another
activity at a later time. The blank circle at the register request activity
indicates that it precedes check ticket. In this way, the information about
the overall sequential order can be preserved.
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register request

check ticket

RESPONSE

decide

Figure 5.17: Unchained RESPONSE Constraint for Sequential Pattern

with Three Activities (2 Premises, 1 Conclusion).

Finally, the model elements in Figure 5.16 and 5.17 can be combined into
sequential rules with two activities in both antecedent and consequent.
Figure 5.18 shows such a constraint in adapted Declare notation. It results
from the sequential pattern {register request, check ticket, decide, reject

request} (not included in Figure Table 5.7), transformed to the sequential
rule {register request, check ticket} → {decide, reject request} and has a
support of 0.5.

Modelers will most likely not include this pattern in their Declare model
because in 50 percent of the cases, the course of the process follows the
pattern {register request, check ticket, decide, pay compensation}, indicating
rejected compensation requests.
Constructs with more than four activities are theoretically possible.

However, the question arises whether they are still useful for being in-
cluded in a declarative model. Such large sequences should most likely be
split up into, for instance, constructs of three and two activities. Again,
domain knowledge about the process can help find the most appropriate
representation that delivers the most benefit for users to understand the
process while keeping the model lucid.

Consider that still combiningRESPONSE constraints does not have the
semantics as a description in a declarative process modeling notation like
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decide

reject request

register request

check ticket

RESPONSE

Figure 5.18: Unchained RESPONSE Constraint for Sequential Pattern

with Four Activities (2 Premises, 2 Conclusions).

BPMN or Petri nets. The RESPONSE constraints, in contrast to control
flow descriptions, do not enforce the execution of two activities directly
after each other, though, CHAIN RESPONSE or CHAIN SUCCESSION

constraints can do this. However, such semantics are not intended here
and cannot originally be derived from the GSP output.
The previous transformations and model constructs are all based on

sequential patterns that only consist of activities, with no additional
attributes included. RESPONSE constraints are adequate to depict the
sequential order of the process activities. However, patterns where such
constraints are included, may often be more interesting for users. The
multi-perspective Declare extension is very capable of representing them.
Therefore, the following provides sample translations based on the types
of patterns shown in Table 5.7.
The most simplistic pattern with an activity and additional attribute

proportion consists of only one transaction but two items whereby one
item is an activity and the other an optional attribute such as resource
information. Line 6 of Table 5.7 holds such a pattern. This constraint type
requires the multi-perspective extension of Declare (MP-Declare) like
used in the RuM tool [ADCH+]. Optional attribute information cannot
be translated to activation or correlation conditions of multi-perspective
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Declare constraints here. The sequential pattern {decide/Sara} can be trans-
lated to an EXISTENCE constraint for the decide activity including an
activation condition. It may, similar to the multi-perspective EXISTENCE
case in association rule mining, be interpreted as a demand that every
appearance of the decide activity should be associated to resource (i.e.,
person or employee) Sara.

Figure 5.19 shows such a constraint in Declare notation. Here, introduc-
ing the EXISTENCE constraint without any activation condition would
also be uncritical since the pattern has a support of one. For cases of
lower support, like for the RESPONDED EXISTENCE and RESPONSE

constraint types, users should carefully consider whether they want to in-
clude it in the declarative model because no activation condition prevents
the general validity statement that comes with it.

decide

EXISTENCE
[A.resource == Sara]

Figure 5.19: EXISTENCE Constraint for decide Activity with Activation

Condition.

Another type of sequential pattern consists of an activity/attribute
combination followed or preceded by a single activity. One representative
of such a pattern is {check ticket, decide/Sara}, shown in line 10 of Table 5.7.
In multi-perspective Declare models, such patterns are represented by a
RESPONSE constraint with an activation condition between the check
ticket and decide activity. Figure 5.20 depicts such a construct. Variants of
this model element are analogue to the multi-perspective RESPONDED
EXISTENCE representations for association rules (Figure 5.8 to 5.11).
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If the resource information is part of the first activity, the activation
condition of the RESPONSE constraint is A.resource == Sara.
Figure 5.21 shows a Declare RESPONSE constraint with resource in-

formation for both activities. It originates from the sequential pattern
{register request/Pete, decide/Sara}. Since it has a support of only 0.33, it is
somewhat unlikely to be included in the declarative model. Nevertheless,
it nicely illustrates the case where a sequential pattern consists of two
activity/attribute combinations. Like for the RESPONDED EXISTENCE

constraint based on association rules, there are two possibilities to rep-
resent them using either activation or correlation condition. Figure 5.21
depicts the activation condition case while the correlation conditions with
same or different identifiers is used analogue to Figure 5.11, just replacing
the RESPONDED EXISTENCE with a RESPONSE constraint.

check ticket decide

RESPONSE
[T.resource == Sara] []  

Figure 5.20: RESPONSE Constraint for Sequential Pattern with One

Activity/Attribute Combination.

check ticket decide

RESPONSE

[A.resource == Pete ∧

T.resource == Sara] []  

Figure 5.21: RESPONSE Constraint for Sequential Pattern with Two

Activity/Attribute Combinations.

Multi-perspective Declare model elements can also represent sequen-
tial patterns with more than two activities. Consider the pattern {register
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request, check ticket, decide/Sara} with a support of one. A graphical visu-
alization results in constraint like depicted in Figure 5.22.
The RESPONSE constraint between the check ticket and decide ac-

tivities is only active in case resource Sara is associated with the decide
activity. Moreover, it is independent of the RESPONSE constraint be-
tween register request and check ticket. This means that the Declare process
model (or the specific model part in Figure 5.22) could (in case Sara is not
associated with decide) enforce a RESPONSE relation between register

request and check ticket but not between check ticket and decide. Like for
the non-multi-perspective case without the additional attributes, the pat-
terns can be transformed to sequential rules that are finally represented
as unchained model constructs like in Figures 5.16 to 5.18.

register request check ticket
RESPONSE

decide

RESPONSE
[T.name == Sara]

Figure 5.22: Chained RESPONSE Constraints with Multi-perspective

Part.

Things are only slightly more complex for the multi-perspective case
here because the activation and correlation conditions of a binary con-
straint can address more than the activation (abbreviated with A) and
target (abbreviated with T) activities (there are three activities). Activities
on the left and right sides of the rule have to be differentiated from each
other. One pragmatic approach is to number them in the form of A1, A2, T1,
and T2. Figure 5.23 presents an alternative representation of Figure 5.22.
The sequential pattern {register request, check ticket, decide/Sara} is inter-
preted as a sequential rule {register request, check ticket}→ {decide/Sara}

with a support and confidence of one.
Like before, the blank and filled dots indicate that register request pre-

cedes check ticket in the sequential order. Unlike before, the whole con-
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struct is only active when the activation condition T.resource == Sara is
fulfilled, nothing is said about the relation between register request and
check ticket in case the condition does not hold. Again, there is a tradeoff
between the preciseness and detail degree and the loss of information for
advanced model elements.

register request

check ticket

RESPONSE
[T.resource == Sara][]

decide

Figure 5.23: Unchained RESPONSE Constraints for Three Activities

(Multi-perspective).

Like for the standard Declare model constructs, similar to Figures 5.16
and 5.18, also rules with only one activity in the antecedent and two in
the consequent as well as two in both parts can be represented. Figure
5.24 shows a DeclareRESPONSE construct for four activities, two in both
parts of the underlying rule, in a generalized way. Even when dramatically
decreasing the minimum support of the GSP operator, the RapidMiner
process does not find sequential patterns with four activity/attribute com-
binations. Still, this could happen for other (most likely larger) processes.
Therefore, Figure 5.18 provides an appropriate pattern for their transla-
tion to a Declare construct. As before, blank dots and arrows indicate
the precedence relationship between the activities in the antecedent and
consequent parts. With four activities involved, the activation condition
can consist of an AND-concatenation of up to four expressions if the
sequential pattern contains four activity/attribute combinations. The attr
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part in the expression refers to the name of the attribute, for instance,
resource like in the examples shown previously. Correlation conditions
can also be used to describe the relationship between the attributes asso-
ciated with the activities, for instance, using same or different identifiers.
A condition same resource affects four activities at once. Therefore, corre-
lation conditions of, for instance, the form T1.resource == T2.resource or
T3.resource != T4.resource are probably more likely to appear in practice.

Activity C

Activity D

Activity A

Activity B

RESPONSE

[A.attr == a ∧ B.attr == b ∧
C.attr. == c ∧ D.attr == d][]

Figure 5.24: Generalized Unchained RESPONSE Constraint

(Four Activities).

Another special type of sequential patterns resulting from the GSP
process includes optional attributes standing alone, without being associ-
ated with an activity. Such attributes can be followed or preceded by any
combination of other elements. These patterns occur because activities
and other optional attributes are both equally input to the GSP algorithm.
An example is {Mike, decide} which can be derived from line 7 of Table 5.7.
Contentwise, it describes that the appearance of resource Mike at any
time in the process must eventually be followed by the decide activity.
The question arises whether such constraints are meaningful and benefit
the understanding of the underlying process.

There may, however, be processes where such a relationship is impor-
tant (e.g., special cases of the process that definitely have to be detected
to treat them accordingly). Figure 5.25 shows how such a pattern can
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be represented by extending the MP-Declare notation set using a stan-
dard RESPONSE constraint with an activation condition demanding that
resource Mike is associated with the activation activity with the differ-
ence that the activating activity is not concretely specified. Any activity
with resource Mike associated can activate this constraint. The reverse
constraint with the blank activity on the right side of the RESPONSE is
also possible. Moreover, applying the GSP operator on the compensation
request process event log results in patterns that only consist of resources
such as {Mike, Sara}. Such patterns are not meaningful in the process
context and should normally not be considered further for a declarative
representation.

decide

RESPONSE
[A.resource == Mike] []  

Figure 5.25: RESPONSE Constraint for Sequential Pattern with Stand-

alone Resource Attribute.

All previously introduced sequential rules and patterns with attributes
(as the one represented in Figure 5.25) contain attributes that are solely
related to one particular activity, so-called event attributes. In practice,
however, case attributes related to one execution of a process (i.e., case)
may also play an important role. Even though the RapidMiner process
as depicted in Figure 5.13 does not directly support case attributes, there
can be de-facto case attributes whenever, on the one hand, the attributes
themselves and on the other hand, their values are equal for every activity
belonging to one instance of the process. Furthermore, process model-
ers may want to enrich the declarative model with their observations
and knowledge about the domain. Thus, there should be a possibility to
represent relationships including case attributes.
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Figure 5.26 shows one proposal of how to include case attributes in
Declare model constructs. Case attributes are visualized with hexagons
whereby their names and values are placed inside the hexagons. The
example shown here is artificially constructed and cannot be derived from
the original compensation request process event log or the output of the
GSP RapidMiner process. Consider an event log that contains another
attribute Risk with possible values Low, Medium, and High whose value is
based on historical customer and insurance case data assessing the risk or
likeliness that some compensation request may be a fraud. Then, the GSP
operator may generate a sequential pattern {High, examine thoroughly}

meaning whenever the risk was assessed to be high, there was a more
detailed inspection of the case in the past.

There is no temporal order between case attributes and activities; thus,
the construct adopts theRESPONDEDEXISTENCE connection type. An-
other type of sequential pattern with case attributes is a case followed by
two activities. An example for such a pattern is {High, examine thoroughly,

decide}, interpreted as a rule {High}→ {examine thoroughly, decide}. In this
case, there is an EXISTENCE relation between attribute Risk with value
High but also the RESPONSE relation between examine thoroughly and
decide remains and should be depicted in the Declare model. A user should
never forget that there cannot be any relations between case attributes
and activities that involve temporal orders to avoid misinterpretation.
In the third type of pattern, the case attributes are combined with

activities. For instance, pattern {examine thoroughly/High, decide} could be
transformed to the Declare construct shown in Figure 5.28. To differentiate
between event and case attributes, the Risk attribute part of the pattern’s
first item does not lead to an activation condition of the RESPONSE

constraint but is depicted as an independent hexagon attached to the
constraint’s connection line. If the case attribute Risk with value High
was combined with the decide activity, the dot at the line connecting the
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case attribute with the RESPONSE constraint would be replaced by an
arrow pointing towards the hexagon. In this way, it is made clear that the
Risk attribute is combined with the decide activity. Patterns with single
case attributes at the last place or in the consequent part of a sequential
rule are not meaningful and should not be considered for being included
in a declarative process model.

Furthermore, like for event attributes, process modelers should neglect
patterns that only consist of case attributes without any attachment to
activities. They most likely do not deliver any useful information about
the process. All meaningful sequential patterns and rules that include
case attributes can be translated to appropriate Declare constructs. Even
though the RapidMiner process does not explicitly support them, they can
deliver valuable information when integrated into a declarative model.

examine thoroughly
EXISTENCE []Risk = 

High

Figure 5.26: EXISTENCE Constraint for Sequential Pattern with Case

Attribute.

Some tools like theMP-Declare Editor of the RuM application [ADCH+]
additionally allow introducing time conditions between the activities. A
time condition describes the time range in which the second activity
is executed after the first, e.g., [2,5,h] means that an activity has to be
executed between two and five hours after the first one. However, it
is impossible to generate such conditions from an event log with the
RapidMiner process shown. The reason is that the timestamp information
cannot be translated to a binominal value. It is used as the time attribute
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examine thoroughly
EXISTENCE [],
RESPONSE [][]Risk = 

High

decide

Figure 5.27: EXISTENCE/RESPONSE Constraints for Sequential Pattern

with Case Attribute and Two Activities.

of the GSP algorithm but not as a defining attribute that contributes to
understanding the (data-related) relationships of a process.
Moreover, with the output of the sequential pattern at hand, it is not

possible to introduce constraints with negative semantics, such as AB-
SENCE or NOT RESPONSE. The simple reason is that association rule
and sequential pattern mining algorithms can only detect existing patterns
and rules and none that are not. This is a general shortcoming of process
mining: it cannot generate analyses of absent behavior, which, however,
is highly desirable to exploit the advantages of the declarative modeling
paradigm fully. Introducing this information into a process model often
requires human knowledge and interaction or more advanced algorithms.

Also, the sequential patterns or rules cannot lead to introducing some of
the strengthened constraints in the Declare notation set, such as ALTER-
NATE RESPONSE,ALTERNATE PRECEDENCE orCHAIN SUCCES-

SION. The reason is that ALTERNATE RESPONSE and ALTERNATE

PRECEDENCE demand that once some activity appears, another activity
must directly follow or precede without any other activities allowed in
between. This setting, however, cannot be derived from the GSP output
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decide
RESPONSE [][]

Risk = 
High

examine thoroughly

Figure 5.28: RESPONSE Constraints for Sequential Pattern with Case

Attribute/Activity Combination.

because the sequential patterns can skip activities that do not appear in
the patterns but are still part of the process. The CHAIN SUCCESSION

constraint is a logical conclusion when both other constraints hold; there-
fore, it is also not possible to introduce it based on the output of the GSP
algorithm.

All the previously introduced transformation approaches of sequential
rules or patterns to Declare model elements with all kinds of variants
have in common that they result in single instances or combinations of
EXISTENCE, RESPONDED EXISTENCE or RESPONSE constraints.
However, there is also PRECEDENCE as another main type of constraint
in the Declare notation set. Consider a sequential rule with two activities
(without any optional attributes) like {register request, check ticket}. In
contrast to RESPONDED EXISTENCE or RESPONSE, the PRECE-

DENCE constraint is activated by the activity that appears later, meaning
that it is part of the consequent in a sequential rule. When the single
activating activity or the multiple activating activities are not part of a
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process execution, the RESPONSE constraint is not active, meaning that
it does not introduce any restrictions on the process.

One can estimate the preciseness of the constraint with the confidence
of the underlying sequential rule. For PRECEDENCE, the support of the
underlying sequential pattern is known, but one cannot estimate in how
many cases the second activity is present without the appearance of the
first activity and in how many cases the second is also not present at all.
Therefore, it is not possible to assess the preciseness of a PRECEDENCE
constraint, and process modelers should be cautious about including them
into a declarative model, especially when the support of the underlying
pattern is not that high.
There are two exceptions. If the support of the underlying sequential

pattern is one, it is immediately apparent that both activities appear to-
gether in all instances of the process, and it behoves the modeler’s design
choice whether he or she wants to include a RESPONSE or PRECE-
DENCE constraint. Moreover, if the confidence of the reverse sequential
rule (in this example {check ticket} → {register request} is known and high
(preferably close to or exactly one), introducing a PRECEDENCE con-
straint is also uncritical. While the confidence of the reverse rule may be
easy to determine for only two activities, things will get more complicated
for larger rules with possibly several activity/attribute combinations. For
these reasons, however, the use of RESPONSE should be the first choice
and will be more frequent. Figure 5.29 shows a graphical representation
of a PRECEDENCE constraint in Declare notation for the register request
and check ticket activities.

All previous sample patterns, rules, and transformations use the resource
attribute as it is a typical example for an event attribute and frequently
found in process event logs. The RapidMiner process with the GSP algo-
rithm works the same for other nominal event attributes. Things are only
slightly more complicated for non-nominal types of attributes. One very
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register request check ticket
PRECEDENCE

Figure 5.29: PRECEDENCE Constraint for Sequential Pattern with Two

Activities.

common information in an event log describing process executions is an
activity execution’s costs. Costs are typically stated in a numerical value
in a specific currency (e.g., dollars, euros).
In such a format, cost attributes are not suitable for analysis with se-

quential pattern mining because there are too many (possibly infinitely)
different cost values that would result in an infinite amount of binominal
values. Therefore, the values of the cost attribute have to be discretized
before using them in the GSP algorithm. A typical approach for discretiza-
tion is to introduce ranges of costs that evaluate their level in the process
context. For the compensation request process, in a first approach, the
following ranges are selected:

■ Very low costs: 0-50

■ Low costs: 51-100

■ Medium costs: 101-200

■ High costs: >200

In the same way as the resource attribute, the categories of costs have
to be transformed to a binominal attribute. When adding using both the
costs and resource attribute at the same, the GSP operator produces a great
number of patterns. The costs attribute can also be used alone. Sorting the
list so that patterns with more items are at the top lets the users instantly
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see patterns with up to four activity/attribute combinations and a support
of one. Besides, the RapidMiner process outputs the following transaction
pattern with a support of one:

{register request}, {check ticket/low}, {decide/Sara/medium}, {medium}

register request check ticket

RESPONSE
[T.costs == medium][]

decide

RESPONSE

[A.costs == low ∧ T.costs == medium
∧ T.resource == Sara][]

RESPONSE
[T.costs == low][]

Figure 5.30: Chained RESPONSE Constraints with Costs Attributes.

Figure 5.30 shows a straightforward translation of this pattern to amulti-
perspective Declare model. It demonstrates that the multi-perspective
Declare elements work the same for one, two, or even more attributes
associated with an activity. The more attributes are part of a combina-
tion, the more complex and potentially confusing the model. The use of
correlation conditions is possible and advisable here, for instance using
the different identifier for the costs of check ticket and decide or same for
decide and the unknown activity. Alternatively, the four-activity construct
depicted in Figure 5.18 is eligible for representing this pattern or rule.

Chapter 6 will directly take up the transformations shown in this chap-
ter by applying them all together. It shows a full declarative model for
the compensation request and other, larger, and more complex processes
like production or O2C that are more similar to real-world processes in
the industry. Simultaneously, the chapter will show how process model-
ers and various other stakeholders of the process could benefit from the
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declarative representation. Also, it provides recommendations for oper-
ator settings and attributes inclusion in RapidMiner and more detailed
design and transformation choices for the resulting association rules and
sequential patterns.
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6 Evaluation

This chapter evaluates the approach presented in Chapter 5. In the first
step, the evaluation comprises an application of association rule and
sequential pattern mining on three sample event datasets. They vary
in the domain of the process they describe and a size ranging from the
already known insurance compensation request process to a large real-
world purchase order process of a multi-national company with more than
one million events. For each application, the necessary steps, including
pre-processing of the operators’ event data and settings, are shown. Then,
the resulting patterns and rules are translated into a Declare notation
representation. This can result in independent constraints or a complete,
coherent declarative process model depending on whether connections
between the most relevant rules and patterns can be established.

Finally, the constraints and patterns are evaluated regarding their use-
fulness in the domain context and their understandability for various
stakeholders. In this context, stakeholders are all involved in a particular
business process, e.g., managers, process owners, process analysts, and
employees performing human labor for one more activity of this process.
The ultimate goal is to produce an evaluation of whether and how the data
mining techniques can improve process discovery using the declarative
modeling paradigm. There is a general discussion of the results in the end.
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6.1 Evaluation Method

The evaluation follows a pragmatic approach meaning that it provides
best-effort answers to questions addressing the application of association
rule and sequential pattern mining to event logs. There is no real-world
study with many companies; however, a detailed look at the RapidMiner
output and the transformations to Declare constraints can already provide
an adequate impression of the potential benefits. One aspect of the evalu-
ation determines whether there is the general possibility of applying the
techniques and, secondly, whether they produce an output that provides
the ability to derive relationships about the process. Thereby, the evalu-
ation checks on the one hand whether the applications are technically
possible whereby performance issues caused by too large datasets could
theoretically constitute an obstacle here.

One the other hand, the chapter investigates whether the RapidMiner
processes find a sufficient number of rules and patterns with reasonable
support and confidence values. A second aspect measures the usefulness
of these rules and patterns to understand the processes themselves or their
suitableness for constructing process-related Declare constraints. Here,
the goal is to evaluate whether the rules and patterns can collectively
form a meaningful Declare representation that includes coherent model
elements or they do not have any connection to each other. The following
shows the application of the approach in this thesis on three event logs
from web repositories.

6.2 Application on Sample Event Data

First, a very small compensation request process serves as a blueprint for
a straightforward application of the approach. Second, a more extensive
dataset describing the execution of a larger production process is used
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as an example for applying the fundamental data mining techniques on
data exports that are similar to datasets in practice. Third, the approach
is applied to a multi-national production firm’s very large real-world
purchase

6.2.1 Compensation Request Process

The first sample dataset is very small and publicly available on the web [9].
It consists of process instances from a synthetic insurance claim or com-
pensation request process. Table 6.1 shows an overview of its properties.
Both Resource and Costs are event attributes, i.e., they describe which
(human) resource was responsible for executing a step and how much
costs that caused. This particular dataset is used to demonstrate the ap-
proach’s applicability generally; the benefit of understanding the domain
and process through the approach in this thesis compared to standard
process mining applications is expected to be relatively low.

Table 6.1: Key Facts of Compensation Request Process.

Domain Insurance claim process

#Activities 8
#Cases 6
#Activity Executions 42
Optional Attributes 2 (Resource, Costs)

The log describes the execution of a compensation request or insurance
claim process with eight activities. Figure 3.10 and 3.11 in Chapter 3 show
process models discovered from the event data using the Disco tool [4].
In the happy path case, after registering, a request is either examined
casually or thoroughly. Then, the ticket is checked and forwarded to the
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decision step, and the compensation is paid. Alternatively, the deciding
person initiates a re-initiation of the request, e.g., when there is a need for
another examination or check of the ticket. Furthermore, the insurance
company can reject requests.

Association Rule Mining

Table 5.2 and 5.1 in Chapter 5 present intermediate results of the frequent
itemsets generation and the association rules that result from them. The
minimum number of frequent itemsets is set to ten. When not enforcing
any minimum number of frequent itemsets and setting the minimum
support to 0.6, the minimum and maximum numbers of items per itemset
to two and three, the operator finds the four frequent patterns shown in
Table 6.2. Based on these itemsets, twelve association rules (shown again
in Table 6.3) are constructed using a minimum confidence setting of 0.6.

Table 6.2: Frequent Itemsets for Compensation Request Process (No

Minimum).

Size Support Item 1 Item 2 Item 3

2 1.000 check ticket register request
2 1.000 check ticket examine casually
2 1.000 register request examine casually
3 0.667 check ticket register request examine casually

All association rules have a support and confidence value of one. As
stated in Chapter 5, association rules cannot determine anything about
the temporal order of the activities. They can be translated to EXIS-

TENCE, CO-EXISTENCE, and RESPONDED EXISTENCE constraints
(PRECEDENCE in exceptional cases) in the Declare notation. Figure 6.1
presents one possible translation of the association rules to a declarative
process model. With these settings of the RapidMiner operators, the set
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6.2 Application on Sample Event Data

Table 6.3: Association Rules for Compensation Request Process.

Premises Conclusion Supp. Conf.

check ticket, decide register request 1.0 1.0
check ticket, register re-
quest

decide 1.0 1.0

decide, register request check ticket 1.0 1.0
check ticket decide 1.0 1.0
decide check ticket 1.0 1.0
check ticket register request 1.0 1.0
register request check ticket 1.0 1.0
decide register request 1.0 1.0
register request decide 1.0 1.0
check ticket decide, register request 1.0 1.0
decide check ticket, register re-

quest
1.0 1.0

register request check ticket, decide 1.0 1.0

of association rules only contains three activities (register request, check
ticket, decide) with each of them being in the antecedent or consequent of
the rule in many variants. One transformation between the association
rules and the Declare notation can introduce an EXISTENCE constraint
for each activity. This can be derived from a single rule that contains
the three activities, e.g., {check ticket, decide} −→ {register request}, with a
support value of one. Each of the three activities has a RESPONDED
EXISTENCE relation with the two other activities in both directions. The
two lines representing the RESPONDED EXISTENCE relation show
that both directions of the constraint hold; for visualization reasons they
could be combined into one connection with dots at both ends.

For every combination of the three activities, there is an association rule
with one activity as the premise and the others as the conclusion that has
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register request decide

check ticket

EXISTENCE

EXISTENCE

EXISTENCE

RESPONDED EXISTENCE

R
E
S
P
O
N
D
E
D
 E

X
IS

T
E
N
C
E

R
E
S
P
O
N
D
E
D
 E

X
IS

T
E
N
C
E

Figure 6.1: EXISTENCE and RESPONDED EXISTENCE Constraints for

Compensation Request Process.

a support and confidence value of one. Thus, they could theoretically be
represented by a construct like shown in Figure 5.3 whereby, it makes most
likely the most sense to use {register request, check ticket} −→ {decide} as
the underlying rule. The model in Figure 6.1, however, has the advantage
that it depicts all the relations among each of the three activities. Even
though the temporal order of the three activities is apparent, it cannot
originally be derived from the association rules. Overall, support values
alone are the decisive factor here, leading to confidence values of one as
well. There are no cases in which one of the activities is not present; thus,
the RESPONDED EXISTENCE constraint is perfectly appropriate.
The declarative model shown in Figure 6.1 can be reduced to a model

that only consists of CO-EXISTENCE constraints. Figure 6.2 presents
such an alternative representation. In this model, the two lines represent-
ing the RESPONDED EXISTENCE and EXISTENCE constraints are
combined into one line representing the CO-EXISTENCE constraint.
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6.2 Application on Sample Event Data

Because of its conciseness, the second model may be preferred over the
first one. It delivers the information that the three activities always oc-
cur together in explicitly. The imperative model (Figure 3.10) implicitly
contains the same information because without all three activities in one
case, successful execution of the process from start to end is not possible.

register request decide

check ticket
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C
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Figure 6.2: CO-EXISTENCE Representation of Association Rules for

Compensation Request Process.

Inclusion of Attributes. The models in Figure 6.1 and 6.2 can be en-
riched with resource and costs attributes. Table 6.4 shows an excerpt of
the association rules for the compensation request process when includ-
ing the resource attribute into the frequent itemset and rule generation
operators and setting the minimum support to 0.6. The process finds over
100 association rules whereby most of them have a support of one and
contain a decide/Sara item indicating that Sara always decides about the
compensation request. Other rules, including resource Mike, only have a
support and confidence value of 0.667 while the resource is part of the
consequent. Therefore, the information will most likely not be included
in the declarative model. Figure 6.3 enriches the model in Figure 6.2 with
resource information whereby check ticket is the activation and decide the
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target activity for the CO-EXISTENCE constraint between them. The
model could be extended further by including the Costs attribute. As the
significance of association rules and their Declare representation is rela-
tively limited, the following demonstrates the application of sequential
pattern mining.

Table 6.4: Association Rules for Compensation Request Process (w/ Re-

source Attributes).

Premises Conclusion Supp. Conf.

check ticket, register re-
quest

decide/Sara 1.0 1.0

check ticket, decide decide/Sara 1.0 1.0
register request, decide decide/Sara 1.0 1.0
... ... ... ...
decide, register request check ticket/Mike 0.667 0.667
decide check ticket/Mike 0.667 0.667
decide check ticket, check tick-

et/Mike
0.667 0.667

... ... ... ...

Sequential Pattern Mining

Applying association rule mining on event logs can only find relations
of activities without information about temporal orders. Table 6.5 shows
the resulting patterns when applying the GSP algorithm with a minimal
support of 0.6, a window size of zero, a maximum gap of Infinity, and a
minimum gap of zero. In this case, the only input for the GSP operator is
the set of activities in binominal format without any additional attributes.
The process finds seven patterns whereby four of them have a support
of one and the other three a support of 2

3 . Five patterns consist of two
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Figure 6.3: CO-EXISTENCE Representation of Association Rules for

Compensation Request Process (w/ Resource Attributes).

transactions and items. Two patterns consist of three transactions and
items. Figure 6.4 shows a translation of the sequential patterns to RE-

SPONSE constraints in the Declare notation. This declarative process
model contains one activity more (examine casually) when compared to
the translation of the association rules in Figure 6.1 or 6.2. It expresses that
whenever someone registers a request, there has to be a check of the ticket,
a casual examination, and a decision. Moreover, a casual examination and
ticket check necessarily lead to a decision.

Modelers should exercise restraint regarding translating sequential pat-
terns with a support lower than one. Introducing aRESPONSE constraint
between examine casually and decide is reasonable because whenever the
request is examined (thoroughly or casually), there has to be a decision
about the ticket. Conversely, for the RESPONSE constraint between reg-

ister request and examine casually, the situation is different. Registering a
request does not always lead to a casual examination. In 1

3of the cases, a
request is examined thoroughly. Therefore, this connection of the activi-
ties in the declarative process model may lead to misunderstandings and
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Table 6.5: Sequential Patterns for Compensation Request Process.

Support Trans-

actions

Items T1 T2 T3

0.667 2 2 register re-
quest

examine
casually

0.667 2 2 examine
casually

decide

0.667 3 3 register re-
quest

examine
casually

decide

1 2 2 register re-
quest

check
ticket

1 2 2 register re-
quest

decide

1 2 2 check
ticket

decide

1 3 3 register re-
quest

check
ticket

decide

wrong interpretations. The support value of association rules or sequential
patterns is crucial for deciding about their translation to Declare.
Increasing the minimum support value of the GSP algorithm to 0.8

removes three sequential patterns from the result set (all those that include
the examine casually activity). The resulting process model in Declare
notation looks exactly like the one in Figure 6.1 with the difference that the
CO-EXISTENCE connections are replaced by RESPONSE types. Other
parameter variations for the GSP operator are not useful for this dataset.
In the process context, the window size should usually be zero because
activities can happen one millisecond after another, and they should be
treated independently. For vast datasets, a minimum or maximum gap
variation may be useful.
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Figure 6.4: Declarative Representation of Sequential Patterns for Com-

pensation Request Process.

Besides the complete view on the activities only, sequential pattern
mining can also take into account the optional attributes, Resource and
Costs in case of the event log used here. Beforehand, the costs attribute has
to be discretized: Costs are very low up to 50, low up to 100, and medium

up to 200. They are high above a value of 200. Setting the minimum
support to 0.9 leads to a result set of more than 300 patterns. Table 6.6
provides an excerpt of the result set when including both the resource
and costs information in the GSP operator. The output should be sorted
so that larger patterns with longer sequences and more items (activities,
resources, costs) appear on top of the result set so modelers can primarily
translate them to Declare elements.
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All patterns have a support value of one; thus, any one can be selected
for transformation without the risk of constructing a model that describes
infrequent process states or non-accurate behavior for many cases. Pat-
terns including activities can be translated to RESPONSE constraints,
analogously to the former sample without the resource and cost informa-
tion. Note that both attributes are event attributes, i.e., they are related to
a single activity and not the whole process instance. Therefore, patterns
with transactions that only consist of resource or costs information have
only subordinate importance for describing a process.

For instance, the pattern {check ticket, Sara} indicates that whenever the
check ticket activity is executed, the value “Sara” is assigned as a resource
for another activity afterwards. The (multi-perspective) standard set of
Declare constraints has no matching constraint template for this pattern,
though the information may be helpful for domain experts. For this reason,
Chapter 5 has introduced RESPONDED EXISTENCE and RESPONSE

constraints with indefinite activities that nevertheless can be addressed
by an activation or correlation condition that involves attributes.

Single transactions with activity and resource information can be trans-
formed to EXISTENCE templates of the respective activities. Consecutive
combinations form activation or correlation conditions between two ac-
tivities. Table 6.6 presents various patterns indicating that activity register
request is eventually followed by check ticket and decide and another un-
defined activity. The first two activities are associated with very low or
low costs, whereas the latter have medium costs. Resource Sara is associ-
ated with the decide activity. In sum, these types of patterns can form a
RESPONSE construct in extended Declare notation like introduced in
Chapter 5.

Another type of pattern includes the single resource Mike without any
connection to an activity. An investigation of the event log reveals the
reason for that: After registering the request, Mike is either responsible
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for a casual examination or check of the ticket. Thus, a sequential pattern
withMike connected to one of these activities does not fulfill the minimum
support of 0.9. Theoretically, these patterns can also be translated to a
RESPONSE construct. However, as the first type of patterns contains one
activity more (check ticket) and the information of the cost, it should be
preferred over the patterns with resource Mike. Figure 6.5 shows a model
construct based on the pattern {register request, check ticket} −→ {decide,

Activity D} in Table 6.6, which has a confidence value of one whereby
the last activity in the sequential order is undefined. The attributes in
combination with activities are represented as an activation condition of
the whole construct. The following discusses the results of applying asso-
ciation rule and sequential pattern mining on the compensation request
process dataset.

decide

Activity D

register request

check ticket

RESPONSE

[A.costs == very low ∧

B.costs == low ∧ C.costs == 
medium ∧ D.costs == medium][]

Figure 6.5: Declarative Representation of Sequential Patterns for Com-

pensation Request Process with Resource Information (based

on Table 6.6).

Results Discussion

Applying association rule and sequential pattern mining on this very small
demonstrates the approach’s applicability and verifies that the RapidMiner
processes produce correct results. By comparing the declarative models
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Table 6.6: Sequential Patterns for Compensation Request Process Includ-

ing Resource and Costs Information.

Supp. T1 T2 T3 T4

1 register
request/very
low

check
ticket/low

decide/medium medium

1 register
request/very
low

check
ticket/low

Sara/medium medium

... ... ... ... ...
1 register

request/very
low

decide/Sara/
medium

medium

1 ... ... ... ...
1 register

request/very
low

Mike decide/medium medium

1 register
request/very
low

Mike decide/Sara

... ... ... ... ...
1 decide/Sara ... ... ...
... ... ... ... ...

with the discovered imperative model in Disco (Figure 3.10 and 3.11),
one can see that declarative representations provide nearly no under-
standability advantages. Quite the contrary, they do not contain the same
information, and it is harder to capture the properties of the process. The
imperative model (see Figure 3.11 in Chapter 3) can display all information
of the event log and, humans can capture their meaning very well.

150



6.2 Application on Sample Event Data

Still, the inclusion of resource and costs attributes in the sequential
patterns is beneficial as it provides information about their relations to
the activities at first sight. However, with the attributes included, the result
set of the GSP algorithm gets significantly larger (more than 300 patterns
even for high support values), which complicates the transformation
process. It includes, as shown in part in Table 6.6, many patterns that
represent the same information with for instance one activity or attribute
more or less (cf. line 1 and 3 of Table 6.6). Their combined transformation
to a Declare model element is relatively straightforward; however, it may
overstrain employees who are not familiar with the data mining output.
Applying association rule and sequential pattern mining on the com-

pensation request process supports the general hypothesis that declarative
process models can cause some understandability problems [FLM+09].
More specifically, it provides evidence for the assumption that the declar-
ative paradigm can play out its advantages better for larger and more
complex processes. For the compensation request event log, association
rule mining provides no significant advantages in addition to sequential
pattern mining. The evaluation continues with a more extensive produc-
tion process with more than 5000 events.

6.2.2 Production Process

Table 6.7 presents the key facts of the production process event log. It is
derived from a data repository of the Eindhoven University of Technology

[20] and is considerably larger than the compensation request dataset.
The dataset contains five additional event attributes suitable for applying
the data mining techniques in this thesis and process mining in general.
Each activity is associated with a Resource attribute that indicates the
machine on which the particular production step was executed. Attribute
Part Desc. determines the product part that was manufactured in one
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Table 6.7: Key Facts of Production Process [20].

Domain Production

#Activities 27
#Cases 225
#Activity Executions 4543

Optional Attributes
5 (Resource, Part Desc., Worker ID,
Report Type, Qty Completed )

run of the production process. It remains the same for every activity
of one instance, i.e., case of the process, but several cases produce the
same part. TheWorker ID is comparable to the resource attribute of the
compensation request process and assigns an (anonymized) worker to
each activity. There are three Report Types (B, D, and S) whose exact
meanings are not specified. Report Type D is by far the most frequent one
(83 %), followed by S (16%) and B (1%), which leads to the presumption
that D represents a success, S a review, and B a failed status. Finally,
the Qty Completed attribute indicates an output quantity produced by a
production step. Originally, the data originates from an export of an ERP
system and describes a production process in the industry.

Process Mining in Disco

Figure 6.6 depicts the output of process discovery in Disco with standard
settings (100% of the activities and minimum amount of paths shown).
Applying process mining on this event log leads to a large process model
with 27 activities and many paths between them. Users have a hard time
understanding and capturing the process but can still manage to do so by
thoroughly examining the process model. In particular, they can identify
the happy path of the process. After Turning & Milling, the result of the
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production step is checked (Turning & Milling Q.C.). Afterwards, the laser
is set up (Laser Marking) so that lapping (Lapping) and grinding (Round
Grinding) machines can perform their work. It follows a quality control
(activity Final Inspection Q.C.) and the product is packaged (Packing). At
last, the product package goes through a final inspection again for most
cases. Activities that are not in the happy path perform setup, rework, or
additional quality checks.
The 225 cases have 217 variants, i.e., 217 different process flows from

the first to the last activity. By inspecting the variants more detailedly,
users find out that 211 variants only include one case (i.e., execution of
the process), two variants include three cases, and four variants consist of
two cases. Setting the paths in Disco to 67% while leaving the number of
activities at maximum makes the process model even more confusing, as
shown in Figure 6.7. Now, the process model changes to a “spaghetti-like”
diagram. The main problem is many paths between the activities, making
it almost impossible to grasp the process flow. The resulting model is
confusing for users with the maximum number of path setting.
Again, the hope is that a declarative modeling style can help get an

overview of the most crucial relations of the process. As it did not deliver
substantial benefit for the compensation request process, association rule
mining results on this production process are omitted. Instead, the follow-
ing presents the patterns resulting from sequential pattern mining right
away. Like before, the resulting patterns are combined to transform them
to a declarative representation in (multi-perspective) Declare notation.

Sequential Pattern Mining

The RapidMiner process for applying sequential pattern mining on the
production process event generally stays the same as for the small com-
pensation request process except for some minor additional preprocessing
steps. Both Activity and Resource contain the respective other informa-
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Figure 6.6: Discovery of Production Process in Disco [4].

tion concatenated with a hypen, e.g., Turning & Milling - Machine 4 and
Machine 4 - Turning & Milling. Therefore, the attribute must be split so
that either the activity or resource information remains. Table 6.8 shows
the result of the GSP process with no additional attributes included and a
minimum support value of 0.6. The patterns include five different activi-
ties. As the support value is significantly lower than one, the sequential
patterns must be translated into sequential rules. Their confidence val-
ues determine whether they are eligible to be included in a declarative
representation.

Table 6.9 provides the confidence values for the rule representations of
the sequential patterns in Table 6.8. Based on these rules, a declarative
model that consists of a set of RESPONSE constraints can be constructed.
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Figure 6.7: Discovery of Production Process in Disco [4] with Maximum

Number of Activities and 67% of Paths.

The support values are relatively low, meaning that not all activities of the
patterns or rules are present for a larger number of cases, however; the
confidence values are still on an acceptable level. Therefore, a constraint
resulting from the patterns is satisfied in many cases if the activating
activity is part of the process instance. For these reasons, all patterns in
Table 6.8 can be part of a transformation to a Declare model like shown
in Figure 6.8.

The model concisely demonstrates the sequential dependencies derived
from the happy path and summarizes them into one representation. Users
should keep in mind that it does not show an absolute order of the activ-
ities. The packing could theoretically, even though this does not make
sense for the real-world process, happen before laser marking as long
as the RESPONSE constraint between Laser Marking and Packing holds.
Another point to consider is that the activities are not present in every
process case. Even if they are, the constraint does not always hold due to
support and confidence values lower than one. Therefore, the declarative
model should not be seen as a one-to-one connection to the event log.
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Table 6.8: Sequential Patterns for Production Process (No Optional At-

tributes).

Support T1 T2 T3

0.68 Turning &
Milling

Turning &
Milling

0.649 Turning &
Milling

Turning &
Milling Q.C.

0.644 Turning &
Milling

Laser Marking

0.636 Laser Marking Final Inspection
Q.C.

0.631 Turning &
Milling

Turning &
Milling

Turning &
Milling

0.622 Turning &
Milling

Turning &
Milling

Turning &
Milling Q.C.

0.613 Turning &
Milling

Laser Marking

0.6 Laser Marking Packing

Here, including five optional attributes in the GSP algorithm is even
more interesting than for the compensation request process. When provid-
ing the Resource attribute as an additional input and setting the minimum
support to 0.7, it produces 15 sequential patterns whereby their maximum
sequence length is two, and none of them includes an activity in both
transactions of the pattern.

Examples are {Laser Marking/Machine 7} (support equals 0.742), {Turning
& Milling, Quality Check 1} (support equals 0.707, Quality Check 1 is a
resource), or {Quality Check 1, Laser Marking/Machine 7}. It is not useful
to construct a Declare model from this output. Therefore, the next step is
to provide all four attributes as an input for the GSP operator.
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Table 6.9: Sequential Rules and Confidence Values (based on Table 6.8).

Support Sequential Rule Confidence

0.68 Turning & Milling −→ Turning & Milling 0.68

0.72
= 0.94

0.649 Turning & Milling −→ Turning & Milling Q.C. 0.649

0.72
= 0.9

0.644 Turning & Milling −→ Laser Marking 0.644

0.72
= 0.89

0.636 Laser Marking −→ Final Inspection 0.636

0.74
= 0.86

0.631 Turning & Milling −→ Turning & Milling,
Turning & Milling

0.631

0.72
= 0.88

0.622 Turning & Milling −→ Turning & Milling,
Turning & Milling Q.C.

0.622

0.72
= 0.86

0.613 Turning & Milling −→ Laser Marking 0.613

0.72
= 0.85

0.6 Laser Marking −→ Packing Packing 0.6

0.74
= 0.81

To do so, theQty Completed attribute is discretized as follows: Class zero
is assigned to activities that produce zero products. Production quantities
are low up to 50 and medium up to 100 products, everything above is
considered as high. With minimum support set to 0.6 and every attribute
except Qty Completed included, the RapidMiner process already runs for
approximately 90 seconds (i7-7700 CPU, 3.6 GHz) and produces over 2000
patterns. Raising the support to 0.7 significantly reduces the runtime and
number of patterns, but over 300 of them remain. With these settings,
attributesWorker ID and Part Desc. do not appear in any of the patterns;
thus, they can be excluded from the GSP operator. They do not play any
role in finding sequential patterns with decent support values.
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Turning & Milling
Turning & Milling

Q.C.

RESPONSE [][]  

Laser Marking

RESPONSE [][]  

Final Inspection

Packing

RESPONSE [][]  

RESPONSE [][]  

Figure 6.8: Declare Representation of Sequential Patterns in Table 6.8.

Conversely, the Report Type attribute is part of a multitude of patterns.
Table 6.10 shows a small excerpt of the result set. The R in brackets after
Quality Check 1 clarifies that it is a resource attribute and not an activity.
TheD value originates from the Report Type attribute. When users take the
output in Table 6.10 in isolation, it is not possible to produce a standalone
declarative model. The reason is that the RapidMiner process does not
find any patterns where a transaction that contains an activity follows
another one of the same type. However, the resulting patterns could
enrich the model depicted in Figure 6.8. Overall, the support values of the
patterns with values of the Resource and Report Type attributes are even
higher than for those with activities only. They could be introduced as
activation conditions of the RESPONSE constraints even though they are
not combined originally with the patterns in Table 6.8. Modelers should,
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Table 6.10: Sequential Patterns for Production Process (Four Optional

Attributes).

Support Transaction 1 Transaction 2 Transaction 3

0.858 Quality Check 1
(R)

Quality Check 1
(R)

0.782 Final Inspection
Q.C./Quality
Check 1

0.742 Laser Marking Machine 7
... ... ... ...

0.778 Packing/D
0.747 Turning & Milling

Q.C./D
... ... ... ...

0.742 Laser Marking/Ma-
chine 7/D

0.724 D D Packing

however, consider that even though the support values are higher, there
can still be cases in which the activation condition prevents an activation
of the RESPONSE constraint that holds for this particular instance of the
process. Figure 6.9 makes a proposal for a joined representation of both
result sets.

Adding the Qty Completed attribute as an input dramatically increases
the runtime of the process (several hours). However, the attribute does
not appear in combination with activities. Instead, there are sequential
patterns of the form {Quality Check 1, low}, {Turning & Milling, low}, {low,
D}, or {zero, low} whereby zero and low are discretized values of the Qty
Completed attribute. Moreover, these sequential patterns cannot usefully
be included in the Declare model depicted in Figure 6.9 as connections to
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[T.Report Type == D][]  

Laser Marking
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[T.resource == Quality Check 1][]  

Figure 6.9: Declare Representation of Sequential Patterns in Table 6.8

Enriched with Results in Table 6.10.

the activities are missing. The following discusses the overall results of
applying sequential pattern mining to the production process event log.

Results Discussion

In sum, applying the approach of this thesis on the production process
event log seems to come with promising benefits. The output shown in
Table 6.8 delivers a fast understanding of the essential activities of a pro-
cess (part of the happy path) and their sequential dependencies. Process
mining in traditional tools can also provide this information, but it comes
with more effort for a manual investigation of the somehow confusing
process models in Figures 6.6 and 6.7. Including the five optional attributes
requires some additional preprocessing (discretization and splitting) of
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attributes. Here, the challenge is finding the optimal support value that de-
livers meaningful patterns while keeping their number adequate. Adding
optional attributes to the GSP operator and setting too low support values
quickly leads to rapid growth, whereby many of them have solid com-
monalities and differ from others only in single or few parts. This could
confuse and overstrain the users because they require effort to combine
them into Declare model elements.

In general, combining two result sets like in Tables 6.8 and 6.10 to the
model in Figure 6.9 should, for stated reasons, be accompanied critically.
The output shows that the Part Desc. and Worker ID attributes are not
included in the pattern; therefore, they can be excluded from the process.
In this way, sequential pattern mining on the production process event log
delivers information about which attributes commonly appear with which
other attributes and which do not. These attributes are candidates for a
further, more detailed investigation to identify performance improvement
potentials or critical parts leading to bottlenecks. For the sample process
here, for instance, this could mean that the company puts a special focus
on the maintenance of Machine 7 because downtime could cause severe
problems for the whole production.
Process mining tools like Disco [4] also provide statistics about the

process variants and the optional attributes (e.g., their relative frequency)
but cannot establish connections between attributes and activities. While
Disco can determine and analyze full process variants, sequential patterns
usually shed light on parts of process executions. The production process
event log contains data from threemonths. Process analysis for one quarter
is already a realistic and practical scenario, but typically, unfiltered exports
from essential information systems of a company like ERP, CRM, or
production-related systems can be much larger. Therefore, the following
evaluates the application of this thesis’ approach on a vast, real-world
ERP system export of a purchase order process.
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6.2.3 Purchase Order Process of Production Firm

Table 6.11: Key Facts of Purchase Order Process.

Domain Purchase Order

#Activities 42
#Cases 251,734
#Activity Executions 1,595,923
Optional Attributes 3 (Resource, Vendor, Document Type)

Table 6.11 presents the key facts of the purchase order process that was
already touched in the motivating example in Chapter 1. The dataset orig-
inated from a real-world process of a multi-national Dutch company and
was used for the BPI Challenge in 2019 [18]. First, it has to be transformed
from the XES [Gro16] to a table-based format to be stored in RapdMiner.
Van der Aalst et al. [vdABvZ17, 21] have developed RapidProM, a Rapid-
Miner extension that brings functionality from ProM [7] to RapidMiner.
Applying the Import Event Log operator allows importing an event log
in XES format into RapidMiner. Afterwards, it can be stored as a dataset
that eventually can be used like the compensation request and production
process event logs.
The event log contains several additional attributes, whereby three of

them seem to be suitable for being included in process mining activities.
Similar to the previous event logs, the Resource attribute specifies either
a human user or a batch job that executed one step of the process. For
each case, there is a Vendor from which the company purchases the
products. This attribute is a case attribute as it is the same for every
activity of one process instance. At last, another case attribute Document

Type specifies the type of purchase order. The overwhelming majority of
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activity executions are associated with Standard POs (over 1.5 million),
the share of the other two values EC Purchase Order and Framework Order

is under 5%.

Process Mining in Disco

Importing the dataset in Disco is straightforward because the tool au-
tomatically reads out all meta-information indicating which attributes
represent which roles (e.g., case IDs, timestamps, other attributes) directly
from the file in XES format. The process discovery results in the model
depicted in Figure 6.10. Case and variants inspection in Disco finds that
the most frequent variant of the process has a share of 20% of the cases.
First, the company creates a purchase order item for which a selected
vendor creates an invoice. Next, goods and invoice receipts are recorded
and stored in the ERP system. Finally, the purchase order case is closed
and archived (activity Clear Invoice). This sequence of events can also
be derived from the process model in Figure 6.10 because the activities
appear with a blue background color. In contrast to Figure 1.1 in Chapter 1
it is less confusing because it includes fewer less frequent paths between
the activities.

Sequential Pattern Mining

Applying sequential pattern mining on the purchase order process with
no further attributes included and a minimum support of 0.6 results in
a runtime of approximately 15 seconds and 18 sequential patterns. This
proves that the approach of this thesis is still applicable even for an event
log with over one million activity executions. Table 6.12 presents an
excerpt of the output for a minimum support of 0.7, which consists of
sixteen sequential patterns in total. They can be transformed into a set
of RESPONSE constraints in Declare. Such transformations can result
in different model representations, one of which is shown in Figure 6.11.
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Figure 6.10: Discovery of Purchase Order Process in Disco [4].

Since the confidence values are relatively high, the choice of a particular
representation is user-dependent and may vary given the actual context
in practice.
When providing an optional attribute as an input of the GSP opera-

tor, the RapidMiner process runs out of memory (8 GB available) and
terminates. Like in many comparable cases, one could apply the “kill-
it-with-iron” principle and increase the hardware resources or run the
process on high-performance servers. However, it is also possible to just
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Table 6.12: Sequential Patterns for Purchase Order Process (No Optional

Attributes).

Support Transaction 1 Transaction 2 Transaction 3

0.926 Create Purchase
Order Item

Record Goods
Receipt

0.84 Create Purchase
Order Item

Record Invoice
Receipt

0.812 Create Purchase
Order Item

Vendor Creates
Invoice

Record Invoice
Receipt

0.775 Record Goods
Receipt

Record Invoice
Receipt

0.728 Vendor Creates
Invoice

Clear Invoice

0.724 Create Purchase
Order Item

Record Goods
Receipt

Clear Invoice

use less data by splitting it up into samples. RapidMiner supports various
sampling strategies. Randomized approaches are not possible because
the process data has a sequential order that must not be broken up. The
Filter Example Range operator delivers what is needed here. It has two
parameters that allow the users to specify a range of rows that should
be kept. For the purchase order process, the range [1; 200,000] is chosen
in a first approach, which includes the process data from approximately
two months. The more performance a system on which the RapidMiner
process runs has, the more data can be processed at once. When applying
sequential pattern mining on such large datasets, analysts should ensure
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Figure 6.11: Declare Representation of Sequential Patterns in Table 6.12.

that every row of the entire dataset is processed at least once to avoid
detecting process changes over time.
There should be more runs for the purchase order process with data

of the ranges [200,001; 400,000], [400,001; 600,000], and so forth. When
including only the Resource attribute, the runtime is about 30 seconds for
a minimum support of 0.6 and 15 seconds for a minimum support of 0.7.
A run with all three optional attributes and a support setting of 0.8 takes
around two minutes and generates over 500 patterns. Table 6.13 presents
an excerpt of the output. The Vendor attribute is not part of any pattern.
Figure 6.12 shows one possible transformation to a multi-perspective
Declare model. Confidence values are as follows: For instance, the rule
{Create Purchase Order Item/Standard PO} −→ {Record Invoice Receipt} has
a confidence of 0.859

0.98 = 0.88. The rule {Record Goods Receipt} −→ {Clear

Invoice/Standard} has a confidence of 0.847
0.93 = 0.91.

One major difference to all previous Declare models based on sequential
patterns from the sample datasets is that it includes a case attribute.
The Standard PO value originating from the Document Type attribute
states that standard purchase orders require a purchase order item, an
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invoice by the vendor, and the recording of goods and invoice receipts.
Creating an invoice for standard purchase orders is often not associated
with any resource. Process or domain experts can decide whether this is
expected and intended because the invoice creation is an outside activity
or there should still be a resource assigned. In contrast to the production
process (Figure 6.9), a full Declare model can be constructed from the
sequential patterns with attributes alone; a combination with a Declare
model without any activation or correlation conditions is not necessary.

Table 6.13: Sequential Patterns for Purchase Order Process (Three Op-

tional Attributes).

Support Transaction 1 Transaction 2 Transaction 3

0.859 Standard PO Record Goods Re-
ceipt

0.836 Standard PO Vendor Creates In-
voice

0.728 Vendor Creates In-
voice

Clear Invoice

0.859 Create Purchase
Order Item/Stan-
dard PO

Record Invoice Re-
ceipt

0.847 Vendor Creates
Invoice/ Standard
PO/NONE

0.847 Record Goods Re-
ceipt

Clear Invoice/Stan-
dard PO

... ... ... ...
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Figure 6.12: Declare Representation of Sequential Patterns in Table 6.13.

Results Discussion

Applying the RapidMiner sequential pattern mining algorithm on the pur-
chase order process of a multi-national production company has proven
that the approach of this thesis also works for large event logs, which
commonly appear in practice. Furthermore, the GSP algorithm delivers
patterns with reasonable support values that can be transformed to mean-
ingful Declare constraints. It was shown that the approach works with
case attributes. In practice, such attributes could even deliver the most
interesting results because they apply for the whole process instances in-
stead of only single events. The RapidMiner process finds that the attribute
Vendor does not play any role in explaining the processes’ coherences.
However, like for the other two datasets, the Resource attribute seems to
be closely connected to some activities.

After applying this thesis’s approach to three diverse sample event logs,
the following continues with a discussion about the overall findings and
insights. This is accompanied by an evaluation of the general research
questions introduced in Chapter 1.
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6.3 Overall Evaluation Results Discussion

The application on the three sample datasets has provided a general imple-
mentation for association rule and sequential pattern mining on process
event logs. Process analysts only have to adapt some preprocessing steps
depending on the shape of the attributes and can quickly run the Rapid-
Miner process. With the RapidProM extension [21], this is even possible
for datasets that come in the XES format. Chapter 5 has contributed an
implementation with which process analysts or other employees of a com-
pany can apply association rule and sequential pattern mining to all event
logs suitable for process mining. With the transformation approaches
shown in Chapter 5, Chapter 6 puts them to practice. The applications
deliver several findings.
Process analysts face a challenge in choosing the minimum support

parameter of the GSP operator. For larger processes and lower support val-
ues, the size of the result set can quickly increase to hundreds of patterns
so that users cannot directly identify those worth considering for translat-
ing them to Declare model elements. However, setting the support value
higher removes some possibly larger, but interesting patterns that are
worth to be represented in the declarative process model. The applications
to the three sample sets indicate that the support value should usually
be between 0.6 and 0.8. Process analysts should most likely test different
values within this range to achieve an acceptable tradeoff. Moreover, an
automated approach that creates one possible Declare model based on the
GSP output could support users and relieve them from finding the most
reasonable choice of patterns. Also, automating the confidence calculation
could help to simplify the overall approach for users who are not familiar
with process or data mining techniques.

Furthermore, the applications have shown that declarative process min-
ing, in general, should probably be combined with traditional process

169



6 Evaluation

mining projects. One of the advantages of the approach in this thesis is
that it can connect activities and several optional attributes and represent
them in a multi-perspective Declare model. The Disco tool, for instance,
provides statistics about the relative frequency or the place in a process
execution for activities and attributes. It is, however, not possible to es-
tablish connections between attributes and attributes. Another reason to
use imperative and declarative process mining in combination is that it
helps to calculate confidence values of sequential rules. Disco allows to
set up filters for events and attributes that only select cases in which, for
instance, particular activities appear and attributes have specific values.
Filtering for, for instance, Create Purchase Order Item and Standard PO

leaves 98% of cases. Dividing the support of a sequential rule constructed
from the pattern in line 4 of Table 6.13 by 0.98 leads to a confidence value
of 0.859

0.98 = 0.88.
Applying the data mining techniques on three sample event logs has

also shown that association rule mining is less useful than sequential
pattern mining. Although it may be slightly easier to set up and under-
stand the construction of the output, these advantages do not outweigh
the lack of sequential order for the association rules it produces. Also, it
does not deliver any crucial additional constraint types. With sequential
pattern mining, modelers can introduce EXISTENCE constraints and RE-
SPONSE as well, which should usually be preferred over RESPONDED
EXISTENCE in the process context. Thus, whenever possible, process
analysts can apply sequential pattern mining alone in RapidMiner or
any data-aware programming language like Python without losing es-
sential results. Only in exceptional cases, when the focus is on specific
co-existence relations of activities, association rule mining may produce
superior output.

The following Chapter 7 shows research related to the contribution of
this thesis. The goal is to delineate the approach of this thesis to other
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approaches for declarative process discovery in the literature and high-
light its advantages, also for the multi-perspective case. Furthermore, the
chapter relates the approach with general contributions in the declarative
process mining and modeling research field.

171





Part III
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Part 3 (“Related Research and Conclusions”) categorizes the approach
of this thesis into the research context. Chapter 7 presents related re-
search. Besides a differentiation to other approaches for declarative pro-
cess discovery, it consists of an elaboration of research in the field of
multi-perspective declarative modeling and mining as well as other re-
lated research in general.

Chapter 8 concludes the thesis. Thereby, it summarizes the main contri-
butions and points out again the main benefits of combining data mining
and process mining. Finally, it takes a look at possible future research
interests. Examples for such interests could be improvements for the ap-
proach like an automatic transformation of the rules and patterns or a
real-world study to evaluate its usefulness and user satisfaction based on
practical experiences in the industry.

175





7 Related Work

This chapter encompasses related work and research starting with prior
work on declarative process discovery that only considers the control flow
perspective. Thereby, alternative algorithms, approaches, or processes that
in some way are related to declarative process discovery based on business
process event data are introduced. The goal is to delineate the approach
of this thesis from others and point out its advantages and drawbacks.
Next, the research area is extended to approaches that also take into
account additional attributes. Section 7.2 presents various contributions
for multi-perspective declarative process mining or modeling. At last, the
chapter focuses on related research that does not contribute a concrete
approach but, for instance, applies declarative process mining or modeling
in practice. These experiences can be of prime importance to understand
the benefits of the declarative paradigm.

7.1 Prior Work on Declarative Process Discovery

Declarative Discovery in ProM

Maggi et al. [MMvdA11] present an approach for the automatic discovery
of declarative models (in Declare notation) from process event logs. Their
application is implemented as a plugin in ProM [7]. The algorithm requires
a set of user-defined Declare templates and an event log. Then, the ap-
proach generates a set of candidate constraints which are then translated
to LTL formulas. Afterwards, it is checked whether the LTL rules hold
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on the event log. Fulfilled rules are included in a Declare process model.
To reduce the runtime of the algorithm, a parameter Percentage of Events
(PoE) can be defined that makes the algorithms only generate a certain
percentage of the most frequent event classes. Additionally, the Percentage
of Instances (POI) parameter defines a certain minimum support value
that is acceptable for constraints under which they still get discovered.
The authors also address the problem of truncated process logs, i.e.,

situations where only an excerpt of the examined process is available in
an event log, and the problem of constraints that are vacuously (trivially)
satisfied. They state that Apriori-like approaches [AS+94] cannot generate
negative constraints and full model from an event log and apply their
approach to a case study (vessel navigation process) in the maritime sector.

In contrast to the approach in this thesis, Maggi et al. generate a set of
candidate constraints beforehand and then achieve a reduction by check-
ing them on the event log. Also, the user involvement happens at the start
of the generation process with the selection of the Declare template set.
Users can influence the size of the result set through two parameters. One
advantage is that the algorithm can also find the strengthened versions
of the base constraints, e.g., ALTERNATE RESPONSE and those with
negative semantics like NOT CO-EXISTENCE. Like many others, their
approach is based on candidate set generation, which does not allow the
user to retrace the introduction of a particular Declare constraint.
Maggi et.al [MBvdA12] continue their work with the development of

an Apriori-based approach for declarative process discovery. Their second
approach is two-fold: A set of candidate constraints is generated in the
first step. Afterwards, this set is pruned by measuring confidence, support,
and other more advanced metrics. In contrast to the approach presented
in this thesis, however, the Apriori algorithm is not used for the actual
generation of the Declare constraints but for the generation of frequent
activity sets, leading to a set of candidate Declare constraints on them.

178



7.1 Prior Work on Declarative Process Discovery

Thereby, the Apriori algorithm drastically reduces the search space by
using the property that all non-empty subsets of a set are also frequent
and all supersets of infrequent sets are also infrequent.

Like their first approach [MMvdA11], it can consider negative or non-
occurring events. A post-processing procedure follows after the set of
Declare constraints has been generated based on the frequent activity sets.
The authors define support, confidence, interest factor, and conditional-
probability increment ratio (CPIR). These metrics are used further to
reduce the amount of interesting and fitting Declare constraints. The
paper uses an insurance claim process and an excerpt from a request
process in the Dutch municipality to evaluate the described techniques.
Results show that the advanced approach of Maggi et al. significantly
reduces the size and complexity of the resulting Declare model compared
to the former naive approach. Still, the described approach is based on the
generation of candidate constraints which are then reduced using pruning
techniques. The found constraints are not directly justified contentwise
based on sequential patterns or rules. This could lead to difficulties for
users to comprehend why particular constraints have been included in
the declarative process model, and others have not.

Westergaard et al. [WSR13] contribute another approach for the discov-
ery of declarative models from event logs. It is implemented in ProM [7]
as well. They state that their UnconstrainedMiner technique addresses
the shortcomings of existing approaches. One limitation they identify is
the unclear semantics of Declare constraints for finite traces. Therefore,
the authors propose introducing regular expressions as new semantics
for Declare constraints. Regular expressions can be expressed as finite
automatons; hence, a transformation from Declare constraints to finite
automatons is possible. The approach generates candidate sets by com-
bining all process activities with all Declare constraints. For each log
trace, the algorithm checks whether the finite automaton of the particular
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constraints ends in an end state. In this case, the constraint is fulfilled
for the process instance. Moreover, the authors criticize other declara-
tive discovery approaches for making the user specify a particular set of
constraint types, which the algorithm then searches for on the log.

The authors claim that their approach can discover all constraints and
includes post-pruning techniques to reduce the number of constraints.
It takes the ProM Declare Miner [Mag13] plugin as a starting point and
applies four different techniques that improve the efficiency of the algo-
rithm. Westergaard et al. claim that even their base implementation is
faster than competing solutions, and improvements significantly enhance
the performance. This is achieved by several pruning methods like sym-
metry reduction, prefix sharing, or parallelization. The technique is also
based on the generation of candidate sets and shifts their checking to an
intermediate automaton representation.

ProM-independent Implementations of Declarative Discovery

Di Ciccio and Mecella [DCM13] contribute an implementation of declar-
ative process discovery outside ProM [7]. Their Minerful++ algorithm is
rather complex and requires the event data to be in string format, e.g.,
bcaac whereby a, b, c denote activities. The authors introduce a regular
expression for each Declare constraint, for instance, [^a]*(a.*b)*[^a]* for
a RESPONSE constraint between activities a and b. Minerful++ consists
of two main phases. In the first phase, a knowledge base is constructed
based on applying distance and appearance functions on the event log.
Phase two discovers the declarative constraints. Functions that include
the distance and appearance sets calculate the support values of poten-
tial constraints. The regular expression of the constraint determines the
concrete shape of such a function it is assigned to. Di Ciccio and Mecella
claim that their algorithm achieves results comparable to the approach
by Maggi et al. [MBvdA12].
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Declarative Discovery for Alternative Notations

Debois et al. [DHLU17] propose an algorithm for the generation of declar-
ative process in the Dynamic Condition Response (DCR) graph notation.
DCR graphs are a graph-based notation that describes the process through
a set of activities, boolean values indicating the status of activities, and
relationships between the activities [HM11]. An activity can have three
different status, namely executed, included, and pending. Four templates
(response, condition, exclusion, inclusion) define the relationship between
activities. Starting from four well-known metrics (fitness, precision, sim-

plicity, generality) the authors present the DCR mining algorithm.
The algorithm, like others, generates a set of candidate constraints and

then checks whether they are fulfilled on the log or not. In this case, the
start set of candidate constraints encompasses condition, exclusion and
response relations. Afterwards, the algorithm performs a search space run
by setting included states, checking for response fulfillments, and removing
conditions according to certain principles described by the algorithm.
Based on support and confidence measures, constraints are weighted and
potentially removed from the candidate set. In a post-processing step,
redundant constraints are removed. An application on a sample log and a
comparison with the Declare Maps Miner [Mag13] shows that Debois et
al.’s approach generates comparable output in DCR graph notation.

Declarative Discovery Based on Textual Input

Van der Aa et al. [vdADCLR19] propose an approach for the automatic
generation of declarative process models from textual input. Textual input,
in this case, means a description of the process created by a human, e.g., an
employee who is part of the process or a consultant who has interviewed
in a company. Their work represents one of the first contributions that
outputs declarative model elements based on process descriptions instead
of event logs. Several contributions result in imperative process models
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such as Petri nets or BPMN. Thereby, the authors make use of well-known
techniques of Natural Language Processing (NLP). The approach focuses
on five Declare constraints (INIT, END, RESPONSE, PRECEDENCE,
SUCCESSION) and consists of three steps. In a linguistic preprocessing
step, NLP techniques are applied to structure the sentences concerning the
semantics of their single components, for instance, part-of-speech-tagging
classifies verbs, subjects, objects as well as interrelations of a sentence.
Afterwards, the activities and their names are extracted. Van der Aa et
al. [vdABMN20] also make a first contribution for the use of speech recog-
nition for constructing declarative models, Alman et al. [ABMvdA20]
present a chatbot for the specification of Declare constraints.
In a final step, unary and binary Declare constraints are constructed

based on the activities found and their semantic relationships. The authors
evaluate their approach by comparing automatically found constraint
patterns with manually created ones. Precision and recall values lead to an
overall F1-score of 0.74. The crucial difference to the approach presented
in this thesis is the input format (textual process descriptions instead of
event logs). Also, it solely considers the control flow and no additional data
perspectives. Like other declarative process discovery approaches, van der
Aa et al. focus on extracting a limited set of Declare templates. The authors
state that the extension of the approach to other, more sophisticated
templates, like for instance ALTERNATE PRECEDENCE, is part of
their future work [vdADCLR19].

7.2 Multi-perspective Declarative Process

Modeling and Mining

Maggi et al. [MDGBM13] develop a technique for the discovery of declar-
ative constraints from event logs that are enriched with data conditions,
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representing them by using an extended Declare notation. Like the other
approaches by Maggi et al. ([MMvdA11], [MBvdA12]), this data-aware
declarative process mining approach is based on the generation of candi-
date constraints. In the next step, the constraints are squared with traces
of the log, and it is determined whether and where an assignment of a
data value holds. Afterwards, supervised learning techniques like decision
trees are applied to the set of candidate constraints to find the right values
for the data. Non-relevant candidates, selected based on a threshold of
activation, are pruned. In a second step, the remaining constraints are
evaluated regarding their violation or fulfillment on the log. Again, the
user has to select a particular type of constraint that she or he is interested
in (binary relation templates).

Burattin et al. [BMS16] contribute a technique for conformance check-
ing using the declarative model paradigm and a multi-perspective exten-
sion of the Declare notation (MP-Declare). Their approach takes an event
log and an MP-Declare model (as introduced in Chapter 2) as input and
then iteratively checks the fulfillment of constraints on the traces. The
authors illustrate their approach using the RESPONSE, ALTERNATE
RESPONSE and CHAIN RESPONSE constraint template of Declare.
The algorithms are implemented as a plugin for ProM [7]. Applications
on three real-life case studies have shown their general operability.
Schönig et al. [SCJM15] propose an approach for the discovery of

constraints that deal with resource assignments considering both work-
flow and data perspective, using the Process Intermediate Language
(DPIL) [ZSJ14] as the process notation. DPILis an alternative to other
declarative modeling languages like Declare or DCR graphs. It allows a
textual description of activity, resource, and organizational unit relation-
ships through a set of patterns. The DpilMiner relies on the principle of
candidate sets generation as well and can output a set of constraints when
applied to an event log, whereby pre- and post-processing techniques
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reduce the number of candidate constraints that have to be checked. The
authors evaluate their approach on a dataset of a business trip manage-
ment system of a university, considering the organizational perspective
alone and together with the control flow perspective.
They claim that their approach achieves results that are comparable

to the DeclareMiner [Mag13]. In the case study, 85 percent of the rules
found with resource bindings (one particular resource has to perform an
activity), organizational bindings (some role has to perform an activity,
e.g., supervisor), and role-sequence bindings (mandatory or recommended
sequence of a process part depending on the role of the resource) were
rated as relevant. In contrast to the approach of this thesis, Schönig et
al. [SCJM15] use the DPIL notation for declarative process models and
intensively focus on the organizational perspective or only a special
additional attribute of the event log like role or resource. Competing multi-
perspective declarative process mining approaches consider all kinds of
attributes. However, the results have similar semantics when compared
with the activation and correlation conditions of multi-perspective process
models that are, for instance, used in RuM [ADCH+].
Schönig et al. [SRSC+16] develop a declarative discovery algorithm

based on SQL queries, this time using the Declare notation [PSVdA07] as
the output format. The event data is stored in a relational database using
the RelationalXES format [vDS15]. A general query template is adapted
depending on the constraint type (e.g., RESPONSE) and support and
confidence desired. It also allows discovering strengthened versions of
the base constraints, such as CHAIN RESPONSE.

Like for their approach using the DPIL notation, they address the chal-
lenge of including additional attributes into the constraints, whereby they
take the resource attribute as an example for the organizational perspec-
tive. The authors go even one step further and explain how the query can
be adapted to find role-based RESPONSE constraints. Such constraints
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include a condition that activates it only in case a particular role is as-
signed to the activating activity. They closely match the representation
of RESPONSE constraints with activation conditions on the activating
activity in a Declare model like introduced and used in Chapters 5 and 6.
The SQL-based approach is evaluated on two real-life event logs. It

performs slightly worse than the competing approaches of Di Ciccio and
Mecella [DCM13] and Westergaard et al. [WSR13] but significantly better
than the DeclareMiner by Maggi et al. [MBvdA12]. Schönig et al. state
that the lower performance level is compensated through expressiveness
and customizability of the SQL queries. The most apparent difference to
the approach of this thesis is the storage format of the event data. Starting
from logs in XES [Gro16] format, the approach requires an implementation
that loads the data into a database so that it can be accessed with the SQL
queries. Users must be fairly skilled and experienced in constructing SQL
statements to extract the most out of the event database.
In another work, Schönig et al. [SDCMM16] present a generalized

framework for discovering multi-perspective process models also taking
other types of attributes into account. The multi-perspective extension
of Declare describes four kinds of conditions, namely activation, target,
correlation, and time conditions. Activation conditions have to hold to
activate a particular constraint, i.e., to include it into the set of relevant
declarative model elements for a specific trace of the process. Target
conditions introduce value requirements for executing a particular activity,
whereas correlation conditions define relationships between attribute
values of two activities. Time conditions define time windows in which a
second activity has to be executed after the first one.

The framework uses the Structured Query Language (SQL) and allows
querying relational databases that are filled with event log data using the
RXES format [vDS15] architecture. This is possible for standard declara-
tive discovery and the multi-perspective case and results in overviews of
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existing constraints with related attribute conditions as well as Support
and Confidence values. The framework is evaluated using three event logs.
Thereby the authors show the general applicability and the generation of
the different kinds of constraints. Schönig et al.’s approach is one of few
ones that uses SQL to extract declarative constraints from event data. One
disadvantage is that a person who wants to generate constraints must be
skilled in creating complex SQL statements, which may not be the case
for persons with a non-technical background. Like before [SRSC+16], the
RXES architecture is not a standard format for the storage of process event
data. Usually, the event data is extracted from the information systems
that support the business processes and transformed and integrated to an
event log in a CSV, XES or any other XML-based file format.
Navarin et al. [NCB+20] present a technique for discovering multi-

perspective declarative process models on streamed event data. In contrast
to offline event data in the form of event logs, streaming event data is not a
fixed set of data but is constantly changing and growing. Application areas
are, for instance, the live monitoring of process executions. Application
areas are for instance the live monitoring of process executions. The
authors use Hoeffding decision trees suitable for the analysis of data
streams. In the first step, rules are created using the Lossy Counting
algorithm. Then, these rules and satisfying and violating events are the
input for a Hoeffding tree structure that learns a classifier with data
conditions. Finally, data conditions are derived from this model. Navarin
et al.’s approach is limited to RESPONSE and PRECEDENCE Declare
constraints. Their evaluation with datasets shows that if the budget for
constructing the tree structure is high enough, the approach achieves
results that are comparable to other offline discovery techniques like
presented by Maggi et al. [MDGBM13].

Alman et al. [ADCH+, ADCM+21] present an application called RuM
that implements various techniques for process mining with the declar-
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ative paradigm. RuM implements declarative process discovery, confor-
mance, and logs generation using the Declare notation. Both discovery
and conformance work together with multi-perspective Declare models,
including a data perspective. The log generation functionality allows the
generation of an event log when providing a (multi-perspective) Declare
model as input. A multi-perspective Declare editor provides the possibility
to change the data-ware constraint types (activation, correlation, time) as
well as to add, remove or edit attributes of the respective activities. This
may be useful for cases when the multi-perspective discovery algorithm
does not perfectly find the data-aware conditions or the user has more
domain knowledge about the process and wants to add some information
manually. In its total, RuM is one of the first tools that combines a large
set of declarative process mining functionality. It implements various
previously mentioned algorithms and approaches and presents them in a
user-friendly graphical interface.
The declarative process mining approaches introduced in Section 7.1

do not consider additional perspectives, i.e., they do not include additional
event log attributes into the constraints they produce. Some produce
constraints in alternative notations (DPIL, DCR graphs) or require dif-
ferent input formats (e.g., event data relational database tables). Several
techniques use candidate set generation and check whether they hold for
the event log. Highly-complex algorithms make it impossible for users to
retrace the reason for which a particular constraint has been introduced.
Things are similar for the multi-perspective modeling and mining ap-

proaches in Section 7.2. Schönig et al. [SDCMM16] contribute one of the
first SQL-based approaches for discovering multi-perspective Declare
constraints. Like their previous discovery approaches, it requires event
data in RXES format [vDS15] and custom SQL queries created by a user.
One significant advantage is that it generates constraints, including acti-
vation, correlation, and time conditions. The RuM application by Alman
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et al. [ABMvdA20] provides a user-friendly environment for all kinds of
declarative process activities. However, it is not clear which declarative
mining algorithm it implements. Multi-perspective mining does not seem
to be included. Section 7.3 introduces, inter alia, case study applications
of declarative process mining. The goal is to derive insights into practical
benefits, challenges, and implications for future research efforts.

7.3 Related Research for Declarative Process

Modeling and Mining

Rojas et al. [RMGSC16] perform a literature review about process mining
applications and case studies in healthcare, a typical application area for
process mining in general. The result summarizes applications in health-
care in Germany and The Netherlands in oncology and surgery. Some
aspects examined in the survey are the types of processes and data, the
techniques or algorithms used, and the perspectives considered. One of
the publications found is a work from Rovani et al. [RMDLVDA15] about
the use of declarative process mining in healthcare. Although the doctors
participating in the case study needed some time to grasp the Declare no-
tation fully, the authors report successful conformance checking between
normative models and the actual executions with benefits for the patient
treatment process.

Pichler et al. [PWZ+11] perform an experimental comparison of imper-
ative and declarative process modeling approaches. Students of a business
management class participated in a study and were confronted with se-
quential and circumstantial tasks about sets of declarative and imperative
process models. The Findings suggest that the imperative process models
were understandable more easily. Although the results cannot be taken as
face value because of the relatively small group of students and their prior
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experience with imperative approaches, the study confirms the subjec-
tively experienced tendency that declarative process models come with
a certain difficulty for model understanding. Hence, it delivers another
reason for research to develop ideas to tackle this challenge. This thesis
delivers a contribution as it shows an approach for declarative process
discovery with a transparent illustration of the patterns and rules (as well
as their translation) leading to the declarative model constraints.
Debois et al. [DS15] contribute a report about the use of declarative

process modeling notations in practice. Their paper has two main research
questions. On the one hand, they evaluate whether practitioners using
the declarative process modeling paradigm use its advantages and adapt
their work routines. On the other hand, the authors assess whether it is
always possible to construct a flow-based model that represents the same
information as the set of declarative constraints. By analyzing the DCR
graph model and the corresponding execution traces regarding variability,
the authors conclude that the flexibility advantages of the declarative
paradigm in fact have been used by the company.

The authors apply several implementations of process discovery algo-
rithms on the event log and conclude that none of them can produce an
appropriate imperative representation. However, this does not mean that
such a flow-based model does not exist. The creation of hand-made models
could be a topic for further research. Finally, Debois et al. refer to the field
of hybrid process modeling notations where some parts of a process are
modeled using declarative and others using imperative notations. Overall,
the paper contributes a real-world application scenario in practice and
shows that the advantages of declarative notations can be exploited in
companies. Thus, the case study could serve as a role model or manual
and guide other firms that plan to employ such techniques.
Prescher at al. [PDCM14] contribute a further investigation of the

second research question of Debois et al. [DS15]. The authors develop

189



7 Related Work

a framework for transforming Declare models to Petri nets. Their ap-
proach works in a three-step procedure, wherein a first step declarative
constraints are translated to regular expressions that are then further
transformed to finite state automatons that can be represented as Petri
nets. The conclusion is that it is always possible to construct behaviorally
equivalent Petri nets from a set of Declare constraints. Prescher et al.
provide an implementation of their approach and evaluate it on a sample
data set from the BPI challenge 2013 [8]. The finding is not necessarily in
conflict with Debois et al.’s [DS15] paper because Prescher et al. do state
anything about the resulting Petri net’s generalization, precision, or com-
pactness. In the broad research field, the paper plays a role in transforming
declarative process models to imperative notations like Petri nets and vice
versa and their interaction in hybrid business process representations.

All in all, the practical application and other related research contribu-
tions show that declarative notations can indeed be employed in practical
scenarios. More research should be conducted, especially about their com-
bination in hybrid process representations. After having introduced and
discussed related work and research, Chapter 8 concludes this thesis and
points out possible directions for future research.
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This thesis has shown an approach for applying association rule and
sequential patternmining to process event logs. The following summarizes
the main aspects and contributions and provides implications for practice.
Next, Section 8.2 makes a first proposal for integrating process mining
in general and the declarative discovery of this thesis in particular into
the Horus method. It addresses the conceptual level and discusses the
relationships between attributes of an event log, object stores (places) of
the Petri net procedure model, and the data model. Finally, the chapter
gives an outlook to possible future work and research interests, focusing
on practical applications of the fundamental data mining techniques.

8.1 Summary and Implications

One of the main contributions of this thesis is a detailed manual for
applying association and sequential pattern mining on event logs. Starting
from event data with three mandatory attributes preprocessing steps
prepare an event log for either frequent itemset generation or the GSP
algorithm. This thesis uses RapidMiner as one representative of a GUI-
based data mining and machine learning application. Both association rule
and sequential pattern mining processes can be reused by importing other
event logs and, if necessary, adapting the preprocessing steps. However,
other tools that can deal with datasets like Knime [22] or SAS [23], or
programming languages like R or Python are also suitable.
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Chapter 5 shows several types of association rules and sequential that
can result from both techniques and how they can be translated to some
declarative constraints in the Declare notation. Moreover, the Declare
language is extended to capture some of the rules and patterns better. In
Chapter 6, both techniques are applied to three sample datasets from web
repositories. The datasets differ in size and complexity of the process they
describe. For all of them, running the RapidMiner processes is successful
and leads to a (more extensive) set of rules or patterns.
Here, one of the challenges of the approach to appropriately set the

minimum support and confidence parameters arises. Too low values let
the techniques produce results of enormous size, too high values come
with the danger of pruning interesting relations. Applying the approach
on the sample datasets has shown that support values should usually
be between 0.6 and 0.8. Additionally, it can be seen that in most cases,
association rules do not deliver substantial benefits for constructing a
declarative model in comparison to sequential patterns.

This thesis puts a special focus on the practical relevance of declarative
process mining. The straightforward application of association rule and
sequential pattern mining on event logs comes with several advantages
and drawbacks. One of the drawbacks is that performance (time and space
complexity) is directly connected to the size of the datasets. No further
pruning or other optimization techniques are implemented apart from
those included in Apriori-based frequent itemset generation or the GSP
algorithm.

However, the sample applications have shown that the approach is still
feasible even for very large event logs with more than one million events.
There are two ways to deal with performance problems. Either the dataset
is split into several periods (e.g., months) and processed successively
or the hardware resources are upgraded (“kill-it-with-iron”). Since the
RapidMiner processes only run for approximately oneminute with 200,000
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events on an ordinary personal computer, high-performance servers will
most likely resolve all performance problems.
One of the advantages of the approach in this thesis is that it clearly

demonstrates the transformation processes to modelers or any employee
concerned with the declarative process discovery task. They can decide
which constraints they want to include and base their decisions on pro-
cess domain knowledge. This flexibility comes with the drawback that
modelers must first have this domain knowledge and second must be
trained in handling association rules, sequential rules, and declarative
process models in general. Furthermore, additional attributes are included
in the association rules and sequential patterns. They can directly be
translated to multi-perspective Declare constraints as well, whereby the
set of Declare templates is extended to match larger rules and patterns
more closely.

Companies face a challenge integrating process mining into the estab-
lished BPM life cycles. In an ideal world, process modeling and mining
activities run side by side, and the results of both techniques are com-
bined for optimal analysis results and actions derived from them. Not only
companies for their internal processes, but also consultancies that offer
process consulting have to adapt their portfolio to survive in competition
with other firms. The following makes a first proposal to integrate process
mining into the Horus method. A particular focus is put on how declar-
ative process mining and the approach of this thesis can be combined
with process modeling using the Horus notation and Horus Business
Modeler [10].

8.2 Integration into the Horus Method

Figure 8.1 shows an adapted procedure model of the Horus method (cf.
Figure 3.1 in Chapter 3). The Prepare and Strategy & Architecture phases
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Figure 8.1: Procedure Model of the Horus Method Including Process

Mining.

remain as before. For simplicity reasons, Figure 8.1 only depicts the Proce-
dure Analysis part of the Business Process Analysis phase. After the first
two phases, a decision must be made whether process modeling or mining
shall be performed. The basis of this decision-making is, among other
things, based on the availability of event data, the effort it takes to extract
and transform them to a suitable event log, or the expertise of potential
interviewees. In both cases, either hand-made process models or process
analysis results (process models, KPI values) are input into the Use phase
of the Horus method. If process management, implementation, or perfor-
mance management can be executed properly, actions derived from the
analyses are put into practice. If this is not possible, employees have to
analyze the uncertainties and identify the analysis needs or combinations
potentials between process modeling and mining results. In the former
case, there has to be a decision to perform process modeling or mining
again. Process mining and modeling results are combined if employees
identify such potentials.
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Enrichment of Horus Procedure Models

Process modeling results in models, usually in the form of a process graph
like in Figure 8.1, whereby process mining discovery delivers models in
either the imperative or declarative form like produced by the approach
of this thesis. In the context of the Horus method, one of the goals of
combining the techniques’ results is to create a comprehensive procedure
model. Horus allows specifying resources, roles, and costs for each activity.
As seen in this thesis’s previous chapter, this information is commonly
part of an event log.

The approach of this thesis can provide the basis for multi-perspective
Declare models where such attributes can be included in activation or
correlation conditions. Therefore, the resource, roles, and costs property
of an activity in Horus could be derived from a multi-perspective model.
This has the advantage that these properties are set based on actual
process executions. However, as the process models in Horus are usually
normative, modelers should carefully decide whether the property values
found by analyzing the event logs differ from their expectations or not.
In this way, combining process mining and modeling results leads to
conformance checking between the output of both.

Enrichment of Declarative Process Models

Enriching declarative models resulting from mining activities is possible
as well. The approach of this thesis suffers from the drawback that the asso-
ciation rules and sequential patterns can only be translated to a limited set
of Declare constraints, e.g., RESPONSE, EXISTENCE, or RESPONDED
EXISTENCE. In particular, the introduction of strengthened versions of
the base constraints like CHAIN RESPONSE or ALTERNATE PRECE-

DENCE is not possible. With domain knowledge about the process and
a Horus model at hand, modelers can convert base constraints to the
strengthened version if, for instance, they know that some activity must
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necessarily appear directly after another or can only appear if another
activity has appeared before without the activity itself in between.

Conformance Checking

The approach of this thesis can also contribute to conformance checking.
Assuming that the declarative process models are normative, modelers
can check whether the declarative constraints hold on the Horus proce-
dure model. Consider a RESPONSE constraint between two activities.
An execution path must eventually always lead to the constraint’s target
activity. Note that procedural models could also offer other paths that do
not come across the second activity of the constraint without misdescrib-
ing the process. However, depending on support and confidence values,
such constraints could trigger a rethinking of the Horus model. Modelers
may rearrange parts of the model so that the constraints are satisfied in
more cases or, for instance, delete paths that could violate them.

8.3 Outlook

The thesis leaves some questions that can inspire future research efforts,
especially regarding the practical implications of the approach and its
integration in current BPM structures.

Automation of Declare Model Construction

In the current version of the approach, humans have to manually select
the association and rules and sequential patterns they want to transform
to Declare model elements. For patterns with support lower than one,
the confidence value has to be determined to assess their significance
for process descriptions. Such selections require some effort, domain
knowledge, and expertise in translating the rules and patterns to Declare
model elements. Since at least initially, most likely process analysts are
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responsible for such activities, it may be an acceptable procedure. However,
even for them an automatic transformation approach that constructs a
first version of the declarative model that they can adapt afterwards would
be convenient. This is even more true when employees with no or only
limited data mining or process analysis background apply the techniques
on event logs.

Further Integration in BPM Activities

Section 8.2 has provided a first impression of how an integration of declar-
ative process mining into current BPM structures could look like. Fahland
et al. [FLM+09, FMR+09] address the issues of understandability and
maintainability for the imperative and declarative paradigm and touch
psychological and social work theory aspects. Andaloussi et al. [ADB+20]
go in a similar direction and investigate the quality of declarative mod-
els. The result is a framework including several dimensions for quality
assessment.
Although these contributions cover essential aspects of the relation-

ship between the imperative and declarative paradigm, they do not focus
on implications for practical use. More research should be conducted to
develop guidelines for combining declarative modeling with the exist-
ing BPM activities of a company through, for instance, hybrid process
specifications. For this purpose, case studies about the application of such
integration should be analyzed to develop a general framework or similar
concept. In sum, an inductive research approach with trial-and-error in
practice and theory formation afterwards may be most promising here.

Quantifying the Benefit of Declarative Process Mining in Practice

Another aspect related to the integration into the BPM structure is a quan-
tification of the benefit it brings. Chapter 1 has raised whether applying
association rule and sequential pattern mining is beneficial and for whom.
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Besides process performance (e.g., lead time, error rate) and long-term
costs aspects, there are more direct measurements to evaluate the benefit
of declarative mining techniques. One could be the average time of an
analysis project for a new process. An alternative idea is to establish
proxies that measure satisfaction with declarative techniques. Surveys
with process analysts and employees with no BPM expertise could deliver
quantitative estimations about the benefits of declarative process mining
in practice.

All in all, applying fundamental data mining techniques like association
rule and sequential pattern mining to event logs in the way described in
this thesis may have promising benefits for BPM and the digitalization
progress of business processes. In the future, case studies that apply the
approach to real-world event logs could deliver more substantial insights
regarding its use and advantages in practice.
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A Overview of the Declare

Template Set

Table A.1: Unary Relations in the Declare Template Set

(based on [DCM13, KMDCDF16, FG19]).

Template Definition

EXISTENCE (A) A has to occur at least once.

EXISTENCE2 (A) A has to occur at least twice.

ABSENCE (A) A can never happen.

ABSENCE2 (A) A can happen at most once.

INIT (A) A process has to start with activity A.

END (A) A process has to end with activity A.
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A Overview of the Declare Template Set

Table A.2: Binary Relations in the Declare Template Set

(based on [DCM13, KMDCDF16, FG19]).

Template Definition

CHOICE (A,B) A or B or both must occur.

EXCLUSIVE CHOICE (A,B) Either A or B must occur.

CO-EXISTENCE (A,B) If A or B occurs, the respective other
one must occur.

PRECEDENCE (A,B) B can only occur if A has occurred
before.

SUCCESSION (A,B) If A occurs, B must eventually fol-
low and B cannot occur if A has not
occurred before.

RESPONSE (A,B) If A occurs, B must eventually fol-
low, without any other A in be-
tween.

ALTERNATE RESPONSE (A,B) If A occurs, B must eventually fol-
low, without any other A in be-
tween.

ALTERNATE PRECEDENCE (A,B) B can occur only if A has occurred
before, without any other B in be-
tween.

ALTERNATE SUCCESSION (A,B) If A occurs, B must eventually fol-
low, without any other A in be-
tween and B can occur only if A has
occurred before, without any other
B in between.

CHAIN RESPONSE (A,B) If A occurs, B must occur next.
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Table A.3: Binary Relations in the Declare Template Set

(based on [DCM13, KMDCDF16, FG19]), continued.

Template Definition

CHAIN PRECEDENCE (A,B) B can only occur immediately
after A.

CHAIN SUCCESSION (A,B) If A occurs, B must occur next
and B can only occur immedi-
ately after A.

NOT CO-EXISTENCE (A,B) If A occurs, B cannot occur and
the other way around.

NOT SUCCESSION (A,B) If A occurs, B cannot eventually
follow and A cannot occur be-
fore B.

NOT CHAIN SUCCESSION (A,B) If A occurs, B cannot occur next
and A cannot occur immediately
before B.
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Fundamental Data Mining Techniques for 
Declarative Process Mining

Nico Grohmann

Process mining is a Business Process Management (BPM) technique 
that uses execution data of business processes for their analysis. By 
transforming the data to so-called event logs, process mining tools 
generate process models that describe the executions as close as pos-
sible. Process discovery can result either in graph-based notations 
(e.g., Petri nets or BPMN) or declarative ones like Declare. One hypo-
thesis in this work is that declarative constraint templates can support 
model understanding in case process mining results in large, confu-
sing “spaghetti” diagrams. Overall, this work contributes an approach 
including a prototypical implementation for applying association rule 
and sequential pattern mining to event logs for discovering declarative 
process models. Preprocessing steps and the transformation of rules 
and patterns to constraints in Declare are addressed explicitly. In this 
way, analysts receive transparent insights into the basis of the overall 
declarative model.
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