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Abstract. The identity principle for analytic functions predicts the value of an analytic
function on a connected open subset at any point if the germ of the function is known
at one given point. Therefore, in higher dimension, it can happen that the domain of
definition of analytic functions on a connected open subset G of a polydisc Dn is larger
than the given G. It depends on the geometry of G. For example, if G is the periphery of
a 2-dimensional polydisc, then every analytic function on G is actually defined on the whole
polydisc. Such a property is true for many other objects which are analytically defined, such
as meromorphic functions, closed analytic subsets, vector bundles or coherent sheaves. The
property of continuity depends on different parameters. The concavity of G inside a polydisc
in relation to the dimension of the surrounding space plays an important role. The extension
property of analytic objects depends on the balance between concavity on the one hand and
on parameters of the analytic object such as the dimension of the closed analytic subset or
the homological dimension of a coherent sheaf on the other hand. In complex analysis, these
subjects were studied by Siu and Trautmann; for a systematic account, see [32].

In rigid geometry, John Tate has introduced a topology such that the identity principle
holds for rigid analytic functions. Therefore, one can expect that statements on continuity
are true in rigid geometry as well. In the first section, § 1, we present all the extension prop-
erties precisely and describe the shape of concavity for the different problems. The shape
of a domain G inside a polydisc were suggested by Hans Grauert who advised W. Barten-
werfer around 1970 to study the problem for meromorphic functions. In complex analysis,
these geometric constellations were well-known; cp. the thesis of Riemenschneider [29]. Then
Bartenwerfer published a series of papers concerning such problems. Later on, the author
contributed to these questions also. The hardest part is the extension problem for vec-
tor bundles which was solved in [27] by the author. In an unpublished paper, the author
completed the picture by showing the continuity for coherent sheaves.

The intention of this paper is to present a single organized treatment of the extension
properties of analytic objects. Some results are known but spread across the literature and
mostly hard to access, especially the results on extension of meromorphic functions and of
analytic subsets. In this paper, we provide simplifications and improvements of their proofs.
The results in Sections 5 and 7 are due to the author and published many years ago. Since
they are so central, they should not be omitted in this treatment. The results in Section 8
are partly new. The appendix is certainly of more general interest since the given proofs
bring the real arguments to light.

It is a pleasure for me to express my gratitude to Wolfgang Bartenwerfer for discussions
and careful reading of the manuscript. Especially I want to thank the referee for his attentive

consideration of the manuscript and his many suggestions.
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It is not surprising that after so many years the proofs can be strengthened and organized
in a straight line as it is done in this paper which is self-contained except for general results
in rigid geometry; cp. [9]. We should mention that the analysis of the geometry of ball figures
and of Hartogs figures was completely developed by Bartenwerfer. The new ingredients of this
paper are the use of descent theory, which makes the extension properties for meromorphic
functions more transparent and also allows to show the continuity for coherent sheaves in
an accessible way. One word concerning étale descent: if one looks at Hartogs figures, one
has to reduce the geometric situation to a standard one by finite morphisms. But usually,
one meets only quasi-finite maps. So, by étale base change, one can transform the situation
into finite maps, and afterwards, one has to descend to the original setting.
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A short advice concerning the notation: in this paper, we denote by K
a complete field with respect to a nontrivial nonarchimedean valuation | · |, by
|K×| its value group, by R its valuation ring, by Spf(R) the formal spectrum
of R and by k its residue field. We list some often used notations:

Tn := K〈ζ1, . . . , ζn〉

:=
{
f =

∑

ν∈Nn

cνζ
n ∈ K[[ζ]]; cν → 0

}
Tate algebra,

An
K := MaxSpecK[ζ1, . . . , ζn] affine n-space,

Dn
K := {x ∈ An

K ; |ζν(x)| ≤ 1 for ν = 1, . . . , n} n-dimensional unit ball,

Dn
K(ε) := {x ∈ An

K ; |ζν(x)| ≤ ε for ν = 1, . . . , n} n-ball of radius ε,

∂Dn
K := {x ∈ Dn; |ζν(x)| = 1 for some ν} periphery of Dn

K ,

Dn
+ := {x ∈ Dn; |ζν(x)| < 1 for ν = 1, . . . , n} formal fiber at 0 of Dn

K .

In our notation Dn
K for the n-dimensional unit ball, we usually drop the sub-

index K since it is always clear what the base field is; we need this subindex
for other purposes. An affinoid K-algebra is a residue algebra of some Tn.
We denote by Sp(A) the affinoid space associated to A whose points are the
maximal ideals of A. Especially, we have Sp(Tn) = Dn

K .
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If X := Sp(A) is an affinoid space, we denote by | · | the spectral norm on A
as well, and by A◦ ⊂A the R-algebra of power bounded functions; its canonical
reduction is Ã, and usually, ρ : A◦ → Ã is the reduction map. Reduced objects
are usually denoted by a ˜ on top. Note that we omit the sign ˜ in the case of
variables, so the reduction of the Tate algebra Tn = K〈ζ1, . . . , ζn〉 is denoted
by k[ζ1, . . . , ζn]

We assume that the reader is familiar with the basic theory of rigid analytic
spaces in the sense of Tate [34]; cp. [9]. In particular, Weierstraß theory is often
used; cp. [9, § 2.2]. At some places, we use formal geometry; for a reference
see [9] as well.

1. Introduction

Let us first explain the several problems we deal with in this paper.

Extension problems. In the following, let X be a rigid space, mostly being
affinoid of pure dimension, let G⊂X be a nonempty open subset of X , and let
n∈N be a natural number. Now we consider the following extension properties
with respect to the pair (G,X).

(Hn) Let S ⊂ X be an irreducible closed analytic subset of X with dimS ≥
n+1. Equip S with its reduced structure. Denote by O′ the entire clo-
sure of the structure sheaf O in the sheaf M of meromorphic functions.
Then the restriction map O′(S)

∼

→ O′(S ∩G) is bijective.

(Mn) Let S ⊂ X be an irreducible closed analytic subset of X with dimS ≥
n + 1. Equip S with its reduced structure. Then the restriction
M(S)

∼

→ M(S ∩G) is bijective.1

(An) For any closed analytic subset S ⊂G with irreducible components Si of
dimension dimSi ≥ n+ 1, there exists a closed analytic subset S ⊂ X
with S ∩G = S.
The extension S is unique in the sense that any closed analytic subset
T ⊂X with T ∩G=S and with irreducible components Tj of dimension
dim Tj ≥ n+ 1 equals S; i.e., T = S.

(Un) For any coherent sheaf G on X and any coherent subsheaf F ⊂G := G|G
with F = F[n]G , there is a coherent subsheaf F ⊂ G with F|G = F and
F = F [n]G .

2 For any further coherent subsheaf extension H ⊂ G of F

with H[n−1]G = H, it holds H = F .

1A meromorphic function on a reduced rigid space is a element which can, locally with
respect to the Grothendieck topology, be represented by a fraction of two affinoid functions
where the denominator is a nonzero divisor; cp. Definition 2.1.

2A coherent subsheaf F of a coherent sheaf G satisfies F = F[n]G if, for every open
subset U and every closed analytic subset A of U with dim A ≤ n, it holds Γ(U, F) =
Γ(U,G) ∩ Γ(U −A,F); cp. Definition 4.1.

Münster Journal of Mathematics Vol. 15 (2022), 83–166



86 Werner Lütkebohmert

(Gn) For any coherent sheaf G on G with G = G[n], there exists a coherent

sheaf G on X with G|G = G and G = G[n].3

If H =H[n−1] is a further extension of G, then the isomorphism H
∼

→G
over G extends to an isomorphism H

∼

→ G over X .

(G(n)) For every m ≥ n and for any coherent sheaf G on G with G = G[n]

satisfying 0[m+1]G = 0 and 0[m+2]G = G, there exist a coherent sheaf

G = G[n] on X and an isomorphism G|G
∼

→ G over G.

Property (G(n)) is stated only for technical reasons. It is a special case used
for proving property (Gn). The uniqueness assertion is mostly a consequence
of the following property.

(En) Any irreducible closed analytic subset S of X with dim S ≥ n meets
the subdomain G.

In the next section, we will introduce ball figures and Hartogs figure of
dimension n. Then the main goal of this paper is to show that ball figures of
dimension (n− 1) resp. Hartogs figures of dimension n fulfill all these properties
at level n; cp. Proposition 3.3, Theorem 8.4, Theorem 4.6 resp. Theorem 3.6,
Theorem 8.11 resp. Theorem 8.12. Moreover, the extension properties are
shown for complements of closed analytic subvarieties in Theorem 8.5.

Ball figures. We will study the extension properties for special pairs (G,X)
which will be introduced in the following. The standard ball figure is the
following configuration.

Definition 1.1. Let d ≥ 1 and n ≥ 0 be integers. Let X := Dn+d be the
(n+ d)-dimensional unit polydisc, and set

B := Dn × ∂Dd.

The pair (B,X) is called standard ball figure of dimension n inside the (n+ d)-
dimensional unit polydisc.

The basic fact about extension problems is the following proposition.

Proposition 1.2. Let (B, X) be a standard ball figure of dimension n in
the (n + 2)-dimensional polydisc X := Dn+2. Then the restriction morphism
OX(X)

∼

→ OX(B) is bijective.

Proof. Due to the identity principle, the restriction map is injective. For show-
ing the surjectivity, denote by ζ1, ζ2 the coordinate function on D2 and by
ξ := (ξ1, . . . , ξn) the coordinate functions on Dn. Then any affinoid function
f ∈ O(Dn × D1 × ∂D1) has a Laurent series expansion

f =
∑

µ∈N,ν∈Z

aµ,ν(ξ) · ζ
µ
1 · ζν2 .

3A coherent sheaf G satisfies G = G[n] if, for every open subset U and every closed analytic
subset A of U with dimA ≤ n, the restriction map Γ(U, G) → Γ(U − A, G) is bijective;
cp. Definition 6.6.
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If f ∈ O(B), then the restriction of f to Dn × ∂D1 × D1 has the Laurent
expansion

f =
∑

µ∈Z,ν∈N

aµ,ν(ξ) · ζ
µ
1 · ζν2 .

This shows that the coefficients aµ,ν(ξ) = 0 if µ < 0 or ν < 0. Thus we see that
f is induced by a function on Dn+2. �

The standard ball figure can be generalized to arbitrary affinoid space by
using the notion of reductions of affinoid algebras. We begin by recalling some
basic facts.

Reminder 1.3. Let A be an affinoid K-algebra. We denote by

A◦ := {a ∈ A; |a| ≤ 1} ⊃ A∨ := {a ∈ A; |a| < 1}

the R-subalgebra of A consisting of all power bounded elements of A and by
A∨ ⊂ A◦ the ideal of all topologically nilpotent elements. Then Ã := A◦/A∨

is a reduced affine k-algebra; cp. [10, § 1.2.5]. Recall [10, § 6.3] that A  Ã is

a functor and that a morphism ϕ : A → B is finite if and only if ϕ̃ : Ã → B̃
is finite. If dimA = n, then we also have dim Ã = n, and moreover, if A is of
pure dimension, then Ã is as well.

If we denote by X = Sp(A) the associated affinoid space, then X̃ := Spec(Ã)
is the associated affine space; this space is called the (standard) reduction of X .

There is a reduction map ρ : A◦ → Ã; a 7→ ã. For affinoid spaces, we also write
ρX : X → X̃ which maps a maximal ideal x ∈ X to the maximal ideal x ∩ A◦

mod A∨. If no confusion is possible, we will write ρ instead of ρX . If S ⊂ X
is a closed analytic subset of dimension m, then ρ(S) ⊂ X̃ is a Zariski-closed

subset of X̃ of the same dimension m. In particular, if S is of pure dimension,
then S̃ is too. Indeed, due to [10, Prop. 7.1.5/2], we have a commutative
diagram

S X

S̃ ρ(S) X̃

ι

ρS ρX

ι̃

where ι : S → X is the inclusion map. The map ι̃ is finite and surjective.
Mostly, we will identify S̃ with its image ρ(S) ⊂ X̃, and hence we write S̃

for ρ(S̃).
Finally, we add a fact which will often be used in this article.

Let X := Sp(A) be an affinoid space and Y := Sp(B)⊂X ×D1 a closed analytic
subvariety. If Y ∩ (X × ∂D1) = ∅, then the projection ϕ : X × D1 → X gives
rise to a finite morphism ϕ|Y : Y → X.

Indeed, the reduction map ϕ̃ : Ã〈ζ〉 = Ã[ζ̃] → B̃ is finite as A〈ζ〉 → B is

surjective. Since ϕ̃(ζ̃) = 0, we see that Ã → B̃ is finite, and hence ϕ|Y is
finite. �
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Definition 1.4. Let d ≥ 1 and n ≥ 0 be integers, and let X := SpA be an
affinoid space of pure dimension n+ d with standard reduction X̃ := Spec(Ã).
A ball figure B of dimension n in X is given by functions fσ ∈ A with spectral
norm |fσ| = 1 and numbers εσ ∈ |K×| with εσ ≤ 1 for σ = 1, . . . , s such that
B equals the set

B = Xf,ε :=

s⋃

σ=1

{x ∈ X ; |fσ(x)| ≥ εσ},

where the locus Ñ := V (f̃1, . . . , f̃s) on the reduction X̃ of the reduced functions

f̃1, . . . , f̃s has dimension dim Ñ ≤ n.
For a better understanding, it might be reasonable to consider the codimen-

sion d of Ñ in X̃. Namely, the larger the codimension, the bigger is the ball
figure. These figures were first considered by Bartenwerfer in [3, p. 205].

If the numbers ε1, . . . , εs are equal to 1, then B depends only on Ñ ; in this
case, we will write B :=XÑ . If Ñ = V (f̃) for a single function f ∈ A◦, we will
also write Xf̃ instead of XÑ . The affinoid ring associated to Xf̃ is A〈f−1〉,
and its reduction is Ãf̃ ; cp. [10, Prop. 7.2.6/3]

The simplest example is given by the standard ball figure. So let X be the
unit ball Dn+d with coordinate functions ξ1, . . . , ξn; ζ1, . . . , ζd. The standard
ball figure is given by the functions fσ := ζσ and εσ := 1 for σ = 1, . . . , d. Then
we have B := Dn × ∂Dd = Xζ,1.

The most important example is the case XÑ where Ñ ⊂ X̃ is the image of
a closed analytic subset N ⊂ X of an affinoid space under the reduction map
X → X̃.

If S ⊂ XÑ is a purely m-dimensional closed analytic subset of a ball fig-
ure XÑ , then the image of S under the reduction map XÑ → X̃ − Ñ is purely
m-dimensional too; cp. Reminder 1.3. Then we denote by S̃ the Zariski closure
of this image in X̃ .

Lemma 1.5. Let d, m, n ∈ N be natural numbers with n + d ≥ m > n. Let
X = Sp(A) be an affinoid space of pure dimension (n+ d), let B ⊂X be a ball
figure of dimension n as in Definition 1.4, and let S ⊂ B be a closed analytic
subset with dimS =m. Then there exists a finite morphism φ: X →Dn+d such
that

φ−1(Dn × ∂Dd) ⊂ XÑ ⊂ B and φ−1(Dm × ∂Dn+d−m) ∩ S = ∅.

Let p := Dn+d → Dm be the projection onto the first coordinates; then the re-
striction

ψ := p ◦ φ|... : S ∩ (p ◦ φ)−1(Dn × ∂Dm−n) → Dn × ∂Dm−n

is finite. Moreover, the induced map p̃ : S̃ → Am
k is finite; cp. Reminder 1.3

for the notation.

Proof. Let Ñ ⊂ X̃ be the algebraic n-dimensional subset of X̃ associated to B,
and let S̃ ⊂ X̃ be the m-dimensional algebraic subset induced by S ∩ XÑ ;
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cp. Reminder 1.3. Due to [31, Thm. III-20], there exists a finite morphism

φ̃ : X̃ → An+d
k with the following properties:

φ̃(S̃) ⊂ V (ζ̃m+1, . . . , ζ̃n+d) and φ̃(Ñ) ⊂ V (ζ̃n+1, . . . , ζ̃n+d),

where (ζ̃1, . . . , ζ̃n+d) are the coordinate functions of An+d
k . Lifting everything

to the affinoid site, we obtain a morphism φ : X → Dn+d which fulfills all the
assertions. �

In particular, we obtain the following proposition.

Proposition 1.6. Any n-dimensional ball figure satisfies property (En+1).

Even more is true.

Lemma 1.7. If B′ ⊂ B ⊂ X = Sp(A) are ball figures of dimension n, then
any closed analytic subset S of B with dimS ≥ n+ 1 meets B′ as well.

Proof. Let B =Xf,ε be the n-dimensional ball figure. Let S ⊂ B of dimension

m > n, and assume that

S ∩ {x ∈ X ; ε1 ≤ |f1(x)| ≤ 1} 6= ∅.

Now let φ : X → Dn+d be a finite morphism as in Lemma 1.5. Then consider
the map

ψ := (φ, f1) : S ∩ {x ∈ X ; ε1 ≤ |f1(x)| ≤ 1} → Dn+d ×A(ε1, 1),

where A(ε1, 1) is the annulus with radii ε1, 1. Then ψ is finite. If the image
ψ(S) does not meet Dn × ∂Dd × A(ε1, 1), then the projection along Dd to
Dn ×A(ε1, 1), restricted to ψ(S), is finite due to Reminder 1.3 and surjective
by reasons of dimensions. So there exists a point x ∈ S with |f1(x)| = 1.
Since φ−1(Dn × ∂Dd) ⊂ XÑ , there always exists a point x ∈ S ∩XÑ , meaning

S ∩XÑ 6= ∅. Thus the algebraic subset S̃ induced by the subset S ∩XÑ 6= ∅

is of dimension m. If now Ñ ′ ⊂ X̃ is the algebraic subset associated to B′ of
dimension n, then by reasons of dimension, there is a point s̃ ∈ S̃ − (Ñ ′ ∪ Ñ).
Thus we see that S ∩B′ 6= ∅. �

With these lemmata, we will be able to prove all the extension properties on
level n+1 for n-dimensional ball figures by reducing the questions to problems
of the standard ball figure.

Hartogs figures. We will distinguish two types of Hartogs figures, rectilinear
respectively affinoid ones. If we will talk about Hartogs figures in general, then
we mean both types.

Definition 1.8. Let Y be an irreducible, reduced rigid space of dimension n,
and let V ⊂ Y be a nonempty open subdomain. Let d ≥ 1 be an integer.
Consider the rigid space

H := (V × Dd) ∪ (Y × ∂Dd).

The pair (H,X) is called a rectilinear Hartogs figure of dimension n inside the
rigid space X := Y × Dd which is of dimension (n+ d).

Münster Journal of Mathematics Vol. 15 (2022), 83–166
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Obviously, the standard ball figure of dimension n is a rectilinear Hartogs
figure of dimension n + 1. The basic fact about extension problems is the
following proposition.

Proposition 1.9. Let (H,X) be a rectilinear Hartogs figure of dimension n
in the (n+ 1)-dimensional space X := Y × D1 as in Definition 1.8. Then the
restriction map O(X)

∼

→ O(H) is bijective.

Proof. Due to the identity principle the restriction map is injective. For show-
ing the surjectivity, denote by ζ the coordinate function on D1. Then any
f ∈ O(Y × ∂D1) has a Laurent series expansion

f =
∑

ν∈Z

aν(ξ) · ζ
ν .

If f ∈ O(H), the restriction of f to V × D1 shows that the coefficients aν = 0
for all ν < 0. Thus we see that f is induced by a function on X = Y ×D1. �

As in the case of ball figures, one can introduce more general Hartogs figures.

Definition 1.10. Let X = Sp(A) be an affinoid space of pure dimension

(n + d). Let B ⊂ X be a ball figure of dimension n in X . Let Ñ ⊂ X̃ be

the algebraic subset associated to B; cp. Definition 1.4. Let Ñ1, . . . , Ñr be
the irreducible components of Ñ . For any irreducible component Ñj of dimen-
sion n, there is a complete intersection

M̃j = V (g̃j,1, . . . , g̃j,n) with gj,ν ∈ A◦

of codimension n in X̃ such that dim Ñ ∩ M̃j = 0 for j = 1, . . . , r and such

that, for every irreducible component Ñi of dimension n, there exists at least
one M̃j with Ñi ∩ M̃j 6= ∅. Note dim M̃j = d. Let T be the union of the tubes

Tj := {x ∈ X ; |gj,ν(x)| ≤ δj,ν for 1 ≤ ν ≤ n},

where δj,ν ∈ |K×| with 0 < δj,ν < 1. The subset H := T ∪ B is called an
affinoid Hartogs figure of dimension n. The tubes are called maximal if the Tj

are defined by |gj,ν(x)| < 1 instead of |gj,ν(x)| ≤ δj,ν .

Obviously, a Hartogs figure H ⊂ X of dimension n contains a ball figure
of dimension n. A rectilinear Hartogs figure is an affinoid Hartogs figure if
the open subset V ⊂ Y can be described by n functions g1, . . . , gn; this is not
always possible. Of course, in the case Y = Dn, this is satisfied. The situation
for these more general affinoid Hartogs figures seems more difficult because we
do not have a projection statement like Lemma 1.5 for ball figures. In this
paper, we will show that any Hartogs figure of dimension n satisfies all the
extension properties of level n. Historically, the notion of an affinoid Hartogs
figure was introduced by Bartenwerfer in [5, p. 90] for general d and earlier in
[4, p. 157] for d = 1.

Lemma 1.11. Let H = T ∪B be a Hartogs figure of dimension n as defined
in Definition 1.10. Then, for every tube Tj of T , there exist the functions

Münster Journal of Mathematics Vol. 15 (2022), 83–166
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(hn+1, . . . , hn+d) such that φj := (gj,1, . . . , gj,n, hn+1, . . . , hn+d) gives rise to
a finite morphism

φj : X ∩ {x ∈ X ; |gj,ν(x)| < 1 for 1 ≤ ν ≤ n} → Dn
+ × Dd

satisfying φ−1
j (Dn

+ × ∂Dd) ⊂ B, where Dn
+ is the subset of Dn consisting of all

z ∈ Dn with coordinates (z1, . . . , zn) and |zν | < 1 for all ν = 1, . . . , n.

Proof. Denote by g the tuple (gj,1, . . . , gj,n). As V (g̃) is of codimension n in X̃

and dim M̃j ∩ Ñ = 0, by Noether’s Normalization Theorem [31, Thm. III-20],
there exist functions hn+1, . . . ,hn+d in OX(X) with spectral norm |hδ| ≤ 1 such

that their reductions belong to the vanishing ideal of Ñ and such that the map
h̃ : X̃ ∩ V (g̃) → Ad

k is finite. This yields the assertion by Reminder 1.3. �

Proposition 1.12. Any Hartogs figure of dimension n has property (En).

Proof. Let H = T ∪ B be defined in Definition 1.10. Let S ⊂ X be an ir-
reducible closed analytic subset of dimension m ≥ n. If m ≥ n + 1, then S
meets B due to Proposition 1.6. So we may assume dim S = n. Let Ñ ⊂ X̃
be the algebraic subset of X̃ associated to B, and let S̃ ⊂ X̃ be the algebraic
subset induced by S via the reduction map. Then S̃ is also of dimension n.
If S̃ 6⊂ Ñ , then S meets B obviously. So we may assume that S̃ ⊂ Ñ . Then
there exists an irreducible component S̃0 of S̃ such that S̃0 coincides with an
irreducible component Ñi of Ñ . Due to the definition of a Hartogs figure, there
is a complete intersection M̃j with M̃j ∩ Ñi 6= ∅. In particular, we also have

M̃j ∩ S̃0 6= ∅. Now consider the maximal tube T+
j associated to M̃j . Since

S̃ ∩XÑ = ∅, the morphism of Lemma 1.11 gives rise to a finite morphism

(gj,1, . . . , gj,n) : S ∩ T+
j → Dn

+

Since S̃ ∩ M̃j 6= ∅, the source S ∩ T+
j is not empty. By reasons of dimensions,

this map is surjective. Thus we see that S ∩ Tj 6= ∅ and hence that S meets
the Hartogs figure H .

The case of a rectilinear Hartogs figure goes similarly. �

We will need a preliminary tool on finite projections which is due to Barten-
werfer; cp. [4, Satz 4.1] and [5, Satz 5.3]. After that, we will lift the result to
the affinoid site.

Lemma 1.13. Assume that k has infinitely many elements. Let X be an
affine k-scheme of finite type of pure dimension n + d with n ≥ 1 and d ≥ 1.
Let M = V (g1, . . . , gn) be a complete intersection defined by regular functions
g := (g1, . . . , gn), and let N ⊂ X be a closed subset of dimension n such that
dim(M ∩ Ni) = 0 for every irreducible component Ni of N . Then there ex-
ists a finite morphism φ : X → Ad+n with the following properties, where the
coordinate functions on Ad+n are denoted by ζ1, . . . , ζd+n:

(o) φ−1(V (ζd+1, . . . , ζd+n)) is a complete intersection on X̃ and on Ñ ;
(i) φ−1(V (ζd+1, . . . , ζd+n)) = M ∪̇ M ′ is a disjoint union of closed subsets

of X;
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(ii) φ(Ni)∩ V (ζd+1, . . . , ζd+n)) = {0} for every irreducible component Ni of N ;
(iii) φ(N ∩M ′) is disjoint from φ(N ∩M).
In particular, there is a polynomial h ∈ k[ζ1] such that φ∗h vanishes identically
on N ∩M ′ and is invertible over N ∩M .

Proof. Due to Noether’s Normalization Theorem [31, Thm. III-20], there exists
a finite morphism ψ : X → Ad+n such that
(a) ψ(M) = V (ξd+1, . . . , ξd+n),
(b) ψ(M ∩N) = V (ξ1, . . . , ξd, ξd+1, . . . , ξd+n),
where (ξ1, . . . , ξd, ξd+1, . . . , ξd+n) are the coordinate functions of Ad+n. Then
we obtain a finite morphism X → Ad ×An ×An with the additional functions
g1, . . . , gn for the middle factor. Obviously, we can replace X with its image
ψ(X) and M by V (ξd+1, . . . , ξd+n) and N by ψ(N) for our problem. Thus we
may assume that
(c) M = X ∩ V (ξd+1, . . . , ξd+n, ξd+n+1, . . . , ξd+2n) = X ∩ V (ξd+1, . . . , ξd+n).

Now we proceed by descending induction on r = d+ 2n to reduce the num-
ber of variables ξ1, . . . , ξd+2n to new variables ζ1, . . . , ζd+n via projections for
fulfilling the properties of the assertion. At each induction step, we can replace
X , M and N for our problem as done above. The beginning of the induction
is trivial with M ′ = ∅.

Now consider the case r > d+ n. Let a = I(X) ⊂ k[ξ1, . . . , ξr ] be the van-
ishing ideal of X . Due to Hilbert’s Nullstellensatz, condition (c) implies

(1) rad(a+ (ξd+1, . . . , ξd+n)) = rad(a + (ξd+1, . . . , ξr)).

Now consider transformations ψ of Ar of the type

ψ∗ξr = ζr and ψ∗ξν = ζν − βν · ζtνr for ν = 1, . . . , r − 1,

with βν ∈ k× and tν ∈ N. Due to (1), we have

ψ∗(ξd+1, . . . , ξr) ⊂ rad(ψ∗a+ (ψ∗ξd+1, . . . , ψ
∗ξd+n)).

For sufficiently large t ∈ N, we obtain an equation

ζtr = ψ∗ξtr = ψ∗g + hd+1 · ψ
∗ξd+1 + · · ·+ hn+d · ψ

∗ξd+n

with some g ∈ a and hd+ν ∈ k[ζ] for ν = 1, . . . , n. Now replace ψ∗ξν by
ζν − βνζ

tν
r . We choose tν > t. So we obtain

ζtr ·

(
1 +

d+n∑

ν=d+1

βν · hν · ζ
tν−t
r

)
∈ ψ∗a+ (ζd+1, . . . , ζd+n).

Since the expression in the brackets is invertible over M due to assumption (c)
and ζr = ξr, we have that X ∩ V (ζd+1, . . . , ζd+n) = M ∪̇ M ′ is a disjoint
union. Moreover, we can choose t large enough such that there is a poly-
nomial in ψ∗a which is monic in the variable ζr. The induced morphism
π := pr ◦ ψ : X → Ar−1 is finite, and

π(M) = V (ζd+1, . . . , ζd+n) and π−1(π(M)) = M ∪̇M ′.

Thus we have a finite morphism φ: X →Ar−1 satisfying conditions (i) and (ii).
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Till now, we are free to choose the coefficients β1, . . . , βr−1 ∈ k×. At first,
we choose the constants βd+1, . . . , βd+n ∈ k× to satisfy condition (o). Since
ξr|M = 0, we have ζi|M = ξi|M for all i = d + 1, . . . , r − 1. Thus we see
M ⊂ V (ζd+1, . . . , ζd+n) for any choice of the β’s. We will stepwise choose
βd+1, . . . , βd+n ∈ k× such that dimX ∩ V (ζd+1, . . . , ζd+j) = d + n − j and
dimN ∩ V (ζd+1, . . . , ζd+j) = n − j. Assume that we have already chosen
βd+1, . . . , βd+j. If there exists an irreducible component

M ′
j of X ∩ V (ζd+1, . . . , ζd+j) with dimM ′

j = (d+ n− j) and ξr |M ′

j
= 0,

then for any choice of βd+j+1, . . . , βd+n, we have that

M ′
j ∩X ∩ V (ζd+1, . . . , ζd+n) ⊂ V (ξd+1, . . . , ξd+n)

is a complete intersection by hypothesis. If there is an irreducible component
Nj of the intersection N ∩ V (ζd+1, . . . , ζd+j) with dimNj = (n− j) such that
ξr vanishes on Nj , then

Nj ∩ V (ζd+1, . . . , ζd+n) ⊂ N ∩ V (ξd+1, . . . , ξd+n),

and hence its dimension is 0 for any choice of βd+j+1, . . . , βd+n as well. If
ξr does not vanish on an irreducible component of V (ζd+1, . . . , ζd+j) resp. of
N ∩ V (ζd+1, . . . , ζd+j), there are only finitely many β’s for which the dimension

of the intersection with the vanishing locus V (ξd+j+1 − β · ξ
td+j+1

d+j+1) does not
drop by 1. So, by excluding these finitely many elements β’s in k, there exists
some βd+1, . . . , βd+j+1 ∈ k such that the dimension of V (ζd+1, . . . , ζd+j+1) and
of N ∩ V (ζd+1, . . . , ζd+j+1) drops by 1. Proceeding by induction similarly,
we can find constants βd+1, . . . , βd+n ∈ k× to satisfy condition (o) and the
condition dimN ∩ V (ζd+1, . . . , ζd+n) = 0.

Since it holds that M ∩M ′ = ∅ and N ∩ M = V (ζ1, . . . , ζr), there exist
constants β1, . . . , βd, βd+n+1, . . . , βr−1 such that the projection Ar → Ad with
respect to the coordinate function ζ1, . . . , ζd maps N ∩M to the origin and
the finitely many points of N ∩M ′ to points different from the origin. Thus
condition (iii) is satisfied as well. �

Proposition 1.14. Assume that k has infinitely many elements. Let X be an
affinoid space of pure dimension n+ d with n ≥ 1 and d ≥ 1. Let H ⊂ X be
a Hartogs figure of dimension n as defined in Definition 1.10 but with precisely
one maximal tube; i.e., the complete intersection M̃ meets all irreducible com-
ponents of Ñ and H = ρ−1(M̃) ∪XÑ , where ρ : X → X̃ is the reduction map.
Then there exists a finite morphism φ : X → Dd+n and a polynomial h ∈K[ζ1]
with |h| = 1 such that the following properties are satisfied:

(o) φ−1(V (ζd+1, . . . , ζd+n)) is a complete intersection on X̃ and on Ñ ;
(i) φ−1(V (ζd+1, . . . , ζd+n)) = M ∪̇M ′ is a disjoint union of closed subsets;
(ii) φ(Ni) ∩ V (ζd+1, . . . , ζd+n) = {0} for all irreducible components Ni of N ;

(iii) φ̃(Ñ ∩ M̃ ′) ⊂ V (h̃) and h̃ is invertible over φ̃(Ñ ∩ M̃).
In particular,

H ′ := ((Dd × Dn
+) ∪ Dd+n

φ̃(Ñ)
) ∩ Dd+n

h̃
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is a Hartogs figure of dimension n in Dd+n

h̃
with φ−1(H ′)⊂H, and Ñ ∩ V (φ̃∗h̃)

gives rise to a ball figure of dimension n+ 1 in X.

Proof. This follows by lifting the result of Lemma 1.13. �

Some results on affinoid smoothness. The main tool here is the following
result of Kiehl; cp. [23, Satz 1.12 and Thm. 1.18].

Proposition 1.15. Let X be a smooth affinoid space of dimension d + n,
and let A ⊂ X be a smooth closed analytic subset of dimension n. Then there
exists an open neighborhood of A which is a union of finitely many open affinoid
subsets U1, . . . , Ur such that there are isomorphisms

φi : Ui
∼

→ Vi × Dd for i = 1, . . . , r,

with φi(A ∩ Ui) = Vi × {0} for i = 1, . . . , r.

For further applications, we have to improve an result of Kiehl [23, Satz 1.12
and 1.14]. In the following, we call a morphism ψ a perturbation of a morphism

ϕ between affinoid spaces if ψ̃ = ϕ̃. It is clear that such a ψ is finite if ϕ is
finite; cp. Reminder 1.3.

Proposition 1.16. Let X = Sp(A) be a d-dimensional smooth affinoid space.
(a) Fix a finite morphism ϕ : X = Sp(A) → Dd = Sp(T ) of rank n. For any

point x ∈ X, there is a perturbation ψ of ϕ such that ψ : X → Dd is étale
at all points of the fiber of x.

(b) Let ϕ : X → Y = Sp(B) be a finite morphism which is étale over an open
subvariety V of Y . Then there exists a finite covering V = {V1, . . . ,Vn}
of V by Zariski-open subsets Vi such that X ×Y Vi is isomorphic to V (ωi)⊂
Vi ×D1, where ωi ∈ B[η] is a Weierstraß polynomial and its derivative ω′

i

has no zeros on V (ωi) for i = 1, . . . , n.
(c) Assume that the module of differential form Ω1

X/K is a free A-module of
rank d and has a basis given by total differentials. If the characteristic
of k is positive, then there exists a finite étale morphism ϕ : X → Dd.

Proof. (a) This follows similarly to [23, Satz 1.12]. We fix a point x ∈ X .
Then there exist total differentials dy1, . . . , dyd which generate the module
Ω1

X/K,xi
for all points x1, . . . , xs in the fiber ϕ−1(ϕ(x)). Then there is small

perturbation ψ of ϕ such that the number of points in ψ−1(ψ(x)), where ψ
is étale is maximal, since the total number of points in a fiber is bounded by
the degree of ϕ̃. Then we claim that ψ is étale at all the points of the fiber
ψ−1(ψ(x)). Indeed, if ψ is étale at the points x1, . . . , xr and not étale at all
the other points in the fiber, then φ remains étale in a neighborhood of the
points x1, . . . , xr for any small perturbation φ of ψ. Now look at some point x′

in the fiber ψ−1(ψ(x)), where ψ is not étale if there is any; otherwise, we are
done. By adding suitable small c1y1, . . . , cdyd to each component of ψ with
small ci ∈K×, we obtain a new perturbation φ such that dφ1, . . . , dφd generate
Ω1

X/K,x′ . Since this remains true in a small neighborhood of x′, x1, . . . , xr, we

get a perturbation such that φ is étale at all the points of the neighborhood of
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x′, x1, . . . , xr. So φ is étale at least r + 1 points of φ−1(φ(x). This contradicts
the maximality.

(b) This assertion follows from the local structure of étale morphisms;
cp. [30, Chap. V, Thm. 1].

(c) This part is mainly contained in [23, Satz 1.12]. Let df1, . . . , dfd be
total differentials which generate the module Ω1

X/K of differential forms. We
may assume |fi| < 1 for i = 1, . . . , d. Now choose a finite morphism given
(h1, . . . , hd) : Xi → Dd. Then the morphism

(f1 + hpt

1 , . . . , fd + hpt

d ) : X → Dd

with a high power pt of p yields the assertion. �

Proposition 1.17. Assume that X = Sp(A) has smooth reduction X̃ of di-
mension d.
(a) Then, for every point x ∈ X, there exists a finite morphism ϕ : X → Dd

which is formally étale at any point of the fiber ϕ−1(ϕ(x)).
(b) Assume that Ω1

X/K is a free A-module of rank d and that it has a basis
given by total formal differentials. If the characteristic of k is positive,
there exists a finite formally étale morphism φ : X → Dd.

Formally, étale at a given point x ∈ X here means that the induced formal
morphism ϕ : Spf(A◦) → Spf(R〈ζ1, . . . , ζn〉) is a formal étale morphism at the
specialization x̃ of the point x in question.

Proof. (a) This follows by lifting from Lemma 1.18 below.
(b) This follows in the same manner as Proposition 1.16 (c). �

Lemma 1.18. Let X = Spec(A) ⊂ An
k be a smooth irreducible subvariety of

dimension d. Let x0 = 0∈X be the origin. Then there exists a finite morphism
φ : X → Ad

k such that φ is étale at all the points of the fiber φ−1(φ(x0)).

Proof. Denote by ζ1, . . . , ζn the coordinate functions of An
k . We may assume

that dζ1, . . . , dζd generate the module of differential forms Ω1
X/k at x0. We

will proceed by descending induction on n. For n ≥ d+ 2, we claim that there
exists a linear transformation

ξn 7→ ζn and ξν 7→ ζν − aνζn for ν = 1, . . . , n− 1

such that the following holds for the projection φ : X → An−1
k with respect to

the new coordinate functions ξ1, . . . , ξn−1:
(i) φ : X → An−1

k is finite;
(ii) dξ1, . . . , dξd generate Ω1

X/k at x0;
(iii) φ−1(φ(x0)) = {x0}.
It is well-known that the set of points a := (a1, . . . , an−1) ∈ kn−1 which satisfy
condition (i) is Zariski-open and dense in kn−1. Indeed, take a nonzero poly-
nomial vanishing on X . Let fm be the homogenous component of f of highest
degree. Then, for any b := (a, 1) with fm(b) 6= 0, the associated map φ is fi-
nite. Moreover, there is dense open subset of kn−1 such the total differentials
dζ1 − a1dζn, . . . , dζd − addζn generate Ω1

X/k ⊗A k. Both conditions are fulfilled
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by a dense open subset of kn−1. After having chosen (a1, . . . , ad), there is dense
open subset of (ad+1, . . . , an−1) such that (aνζν − ζn)(x) 6= 0 at least for one
ν ∈ {d+ 1, . . . , n− 1} for the finitely many points with ξ1(x) = · · · = ξd(x) = 0
and x 6= x0.

Now assume n = d+ 1. In this case, X = V (f) is a locus of a prime polyno-
mial f . Let fm be as above. The points a ∈ kn with fm(a) 6= 0 are a dense open
subset W ⊂ kn. Let S be the singular locus of X . Since X is smooth at x0, the
dimension of S is less than d. Any a ∈ kn gives rise to a line La := k · a ⊂ kn.
Then there is a dense open subset V ⊂ kn such that La ∩ S = ∅ for all a ∈ V .
The tangent spaces Ta of X at a point a ∈ X are defined by the locus of the
linear form

df(a) · ζ := ζ1
∂f

∂ζ1
(a) + · · ·+ ζn

∂f

∂ζn
(a).

At smooth points a of X , this linear form is not degenerated. So there exists
a dense open subset U ⊂ kn such that df(a) · a 6= 0 for a ∈ U . Combining the
three conditions, we see that there exists a dense subset Z ⊂ kn such that all
three conditions are fulfilled for a ∈ Z. After an eventually renumbering of the
coordinates, there is a linear transformation as above such that the projection

ψ := (ξ1, . . . , ξd) : X = V (f) → Ad
k

is finite and étale at all points of the fiber ψ−1(ψ(x0)). Composing ψ with the

morphism ϕ : X → Ad+1
k , we obtain the desired morphism. �

2. Meromorphic functions

Let us first recall the definition of a meromorphic function.

Definition 2.1. We denote by M the sheaf (with respect to the Grothendieck
topology) of meromorphic functions on a reduced rigid space X which asso-
ciates to an open affinoid subdomain U = Sp(A) of X the total field of frac-
tions Frac(A) consisting of all fractions f/g with f, g ∈ A, where g is a nonzero
divisor of A. The restriction maps are the canonical ones.

A meromorphic function on X is a global section of M. Such a section is
given by an admissible covering of X by affinoid subdomains {Ui, i ∈ I} and
fractions mi = fi/gi on Ui = Sp(Ai) of affinoid functions, where the denomi-
nator gi is a nonzero divisor on Ai such that the functions mi coincide on the
overlaps Ui ∩ Uj for all i, j ∈ I.

It follows from Kiehl’s Theorem A [22] that any meromorphic function m on
an affinoid space X = Sp(A) is (globally) a fraction f/g of affinoid functions
f, g ∈ A, where g is a nonzero divisor on A.

Let us first clarify the relationship of properties (Mn) and (Hn).

Proposition 2.2. If a couple (G,X) satisfies properties (Mn) and (En), then
it satisfies property (Hn) as well.

Proof. Consider a function f on S ∩ G which belongs to O′(S ∩ G) and is
meromorphic on S. If f does not belong to O′(S), then its pole divisor on
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the normalization S′ of S is of codimension 1. Due to property (En), the
pole divisor has to meet S ∩G, and hence f is neither holomorphic on S′ nor
on S. �

I guess that (Mn) implies (Hn) without property (En). Indeed, consider
a function f as above. Now consider a series h :=

∑∞
ν=1c

νfν for some c ∈ K×

with |c| < |f |. Then h gives rise to an element of O′(S ∩ G), but h is not
extendable to S as a meromorphic function. Of course, some details have to
be filled in, but we leave it to the reader since, in this paper, our couples (G,X)
usually satisfy (En); cp. Proposition 1.6 and Proposition 1.12.

Now we turn to showing the extension property for ball and Hartogs fig-
ures. The extension property for meromorphic functions is based on an old
observation by Levi.

Lemma 2.3. Let Y = Sp(A) be an irreducible and reduced rigid space. Let
(H,X) be a rectilinear Hartogs figure as defined in Definition 1.8 with X =
Y × D1 and

H := (V × D1) ∪ (Y × ∂D1).

Let f ∈ M(H) be a meromorphic function such that f is holomorphic on
B := Y × ∂D1. Then f extends to a meromorphic function on X. Actually, it
is sufficient that the function f is holomorphic on Y × ∂D1 and that the restric-
tion f |{y}×∂D1 extends to {y} × D1 for all points y of V . In particular, if Y
is normal, there is a monic polynomial p ∈ A[η] such that p · f is holomorphic
on Y × D1 and V (p) ∩ (Y × ∂D1) = ∅.

Proof. Restricted to Y × ∂D1, the function f has a Laurent series expansion

f =
∑

ν∈Z

aν · ην ∈ OY (Y )〈η, 1/η〉.

Since f is meromorphic on V × D1, there is a monic polynomial

p := b0 + · · ·+ brη
r ∈ OY (V )[η]

such that p · f is holomorphic on V ×D1. This means that the system of linear
equations

r∑

ν=0

a−s−ν · βν = 0 for all s = −1,−2,−3, . . .

has a nontrivial solution b := (b0, . . . , br) ∈ OY (V )r+1. This is a system of
linear equations over the smaller ring OY (Y ). Then it follows by simple linear
algebra that there exists also a nontrivial solution (c0, . . . , cr) ∈ OY (Y )r+1 of
this system of linear equations. Thus, putting q := c0 + · · ·+ crη

r ∈ OY (V )[η],
we see that q · f extends to a holomorphic function on Y × D1, and hence f
extends to a meromorphic function on X .

For the additional assertion, consider the determinants dn given by the
determinant of the matrices (n × n)-matrices which are defined by the rows
(a−s, . . . , a−s−n) for s = 1, . . . , n. Since f |{y}×∂D1 extends to {y} × D1 for all
points y of V , all these determinants dn(y) = 0 have to vanish for large n ∈ N
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and y ∈ V . Then we have that dn = 0 for large n. Now one can proceed as
above. The pole set Pol(f)⊂ Y ×D1 is a divisor and the projection Pol(f)→ Y
is finite. So there is a monic polynomial vanishing on Pol(f). Since Y is normal,
Pol(f) is the locus of monic polynomial; cp. Proposition A.13. �

Lemma 2.4. Let φ : X = Sp(A) → Y = Sp(B) be a finite morphism of irre-
ducible and reduced affinoid spaces of dimension n. Let V ⊂ Y be an open
subspace, and set U := φ−1(V ). If any meromorphic function on V extends
uniquely to a meromorphic function on Y , then any meromorphic function
on U extends uniquely to a meromorphic function on X, too.

Proof. Denote by M the sheaf of meromorphic functions. The rings A and B
are domains. If the degree of φ is r, then there exists a B-linearly independent
set {e1, . . . , er} in A such that

M(X) = M(Y ) · e1 ⊕ · · · ⊕M(Y ) · er.

Moreover, we also have

M(U) = M(V ) · e1 ⊕ · · · ⊕M(V ) · er.

Since M(Y )
∼

→ M(V ) is bijective, the restriction map M(X)
∼

→ M(U) is bi-
jective, too. �

For further applications, we add the following fact which will be used in the
proof of the following proposition. There exists a function b ∈ B − {0} such
that

b ·A ⊂ B · e1 ⊕ · · ·B · er.

Then we also have

b · OX(U) ⊂ OY (V ) · e1 ⊕ · · · ⊕ Oy(V ) · er.

Proposition 2.5. Let (B,X) be a ball figure in dimension n on an irreducible
and reduced affinoid space X of dimension n + 2. Then the restriction map
M(X)

∼

→ M(B) is bijective; i.e., property (Mn+1) is fulfilled by the couple
(B,X). If X is normal, then the same is true for the holomorphic functions.

Proof. Let Ñ ⊂ X̃ be the n-dimensional algebraic subset induced by B. Let
f ∈ M(B) be a nonzero meromorphic function on B. Denote by S ⊂ XÑ the
set of poles of f |XÑ

. Then S is at most of dimension n + 1. Now S induces

an algebraic subset S̃ ⊂ X̃ via the Zariski closure of the image of S under the
reduction map. By Lemma 1.5, there exists a finite morphism

φ : X → Dn × D2 with φ−1(Dn × ∂D2) ⊂ B.

Moreover, we can also assume that φ−1(Dn+1 × ∂D1) ∩ S = ∅. Now we can
apply Lemma 2.3 and Lemma 2.4 and its additional remark. Thus we see
that any meromorphic function on B extends to meromorphic function on X .
The uniqueness follows from Lemma 1.7. The assertion on holomorphic func-
tions follows from Proposition 1.6 since, on a normal space, the set of poles
of a meromorphic function is either empty or of pure codimension 1; i.e., of
dimension n+ 1 in this case. So it has to meet B if it is not empty. �
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Now we turn to Hartogs figures.

Proposition 2.6. Let Y = Sp(A) be an irreducible and reduced affinoid space
of dimension n. Consider the rectilinear Hartogs figure

H := (V × D1) ∪ (Y × ∂D1)

on X := Y × D1, where V ⊂ Y is a nonempty open subset of Y . Then any
meromorphic function on H extends to a meromorphic function on X.

Proof. Consider a meromorphic function f ∈ M(Y × ∂D1). It can be written
in the form f = h/g with h, g ∈ OX(Y × ∂D1).

Let us first assume that V (h, g) = ∅. Then there exist elements a, b ∈
OX(Y × ∂D1) such that 1 = ah + bg. Now we can approximate a resp. b by
A-rational functions α and β such that α · h+ β · g is still a unit. Next consider
the function4 m := α · f + β ∈ M(H). Since g ·m = α · h + β · g is a unit in
OX(Y × ∂D1), the function m−1 has no poles on Y × ∂D1. Then it follows by
Lemma 2.3 that m−1, and hence f extends to X := Y × D1.

Now assume that dimV (h, g) = n− 1. If n = 1, then the image φ(V (h, g))
of V (h, g) under the projection φ : (Y × ∂D1) → Y is a finite set of points
in Y . Then one concludes as above that m extends to a meromorphic function
on YÑ × D1, where Ñ ⊂ Ỹ is an algebraic subset of dimension 0. Thus we
obtain the extension of f to the ball figure (YÑ × D1) ∪ (Y × ∂D1). Finally,
we succeed by Proposition 2.5. The case n = 1 can be used to show the
more general result. Namely, one can restrict the function f on C × ∂D1,
where C ⊂ Y is any irreducible curve. Due to the result above, we know that
f |C×∂D1 extends to a meromorphic function on C × D1. So f |{y}×∂D1 extends
to {y}×D1 for all y ∈C except finitely many points of C. Then we spread this
result by restricting meromorphic functions to irreducible curves in Y ; for more
details, see the proof of Proposition 3.12. So we obtain that the given function
f on Y × ∂D1 has the property that, for any point y ∈ Y , the restriction of
m|{y}×∂D1 extends to a meromorphic functions on {y} × D1. Then one can
conclude by the additional assertion in Lemma 2.3. Finally, we obtain the
result by Proposition 2.5.

In the general case, one can proceed as before by restricting f to curves C
contained in Y . Except for finitely many points of C, the local rings at points
of C × ∂D1 are factorial. So one can write f in the form we discussed above,
and we can proceed with the restriction of f to C × D1. So we can finish the
proof of the general case as above. �

Corollary 2.7. Let Y = Sp(A) be an irreducible and reduced affinoid space,
and let V ⊂ Y be an open nonempty subset. Let p ∈A[η] be a monic polynomial
with |p| = 1. Set

H := (V × D1) ∪ (Y × D1)p̃.

4This trick was introduced by Bartenwerfer in [3, proof of Satz 1.2].
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Then every meromorphic function m ∈M(H) extends uniquely to a meromor-
phic function on X := Y × D1. If, in addition, X is normal, the same holds
for holomorphic functions.

Proof. The induced map φ := (id× p) : Y × D1 → Y × D1 is finite. Then the
assertion follows from Proposition 2.6 by Lemma 2.4. The case of holomorphic
functions follows in the same way as Proposition 2.5. �

Next we will treat a special case of a Hartogs figure which settles the crucial
point of the proof in the case of a general Hartogs figure. We start with
a lemma on descent.

Lemma 2.8. Let Y = Spf(A) be a smooth affine formal R-space with irre-

ducible reduction Ỹ of dimension n. Let p ∈ A[η] be a polynomial with |p| = 1

such that the coefficients of p̃ generate the unit ideal of Ã. Let Y ′ =Spf(B)→ Y

be a formally étale surjective map such that its reduction Ỹ ′ is irreducible as
well. Denote by φ: Y ′ ×D1 → Y ×D1 the induced morphism. Let Z ⊂ Y ′ ×D1

be a formal open subscheme such that φ : Z → Y × D1 is surjective. Consider
a holomorphic function m ∈M((Y ×D1)p̃). If φ∗m extends to a meromorphic
function on Z, then m extends to a meromorphic function on Y × D1.

Proof. By a meromorphic function on a formal scheme, we mean a function
that is locally a fraction of two formal functions where the denominator is
a nonzero divisor on the special fiber. The symbol D1 here denotes the formal
affine line over Spf(R). In the following, we have to distinguish between the
formal scheme Y and its associated rigid analytic space which we denote by YK .
Let π ∈ R be nonzero with |π| < 1. We denote the reduction mod πν+1 by the
subindex ν at the symbols for the formal schemes; i.e., Yν := Y ×R (R/Rπν+1)
for ν ∈ N. The same applies to Y ′, and Z, etc.

At first, we assume in addition that φ∗m extends to a holomorphic function
on Z. We may assume |φ∗m| = 1 and hence that φ∗m ∈ OZ(Z). Since the

coefficients of p̃ generate the unit ideal of Ã, the function m gives rise to
a Y -rational map

mν : (Y × D1)ν 99K D1
ν = A1

R/Rπν+1 ,

where A1 is the formal affine line over Spf(R). Indeed, mν is defined on the
subset (Y × D1

ν)p̃. Its pullback φ∗mν is defined on Zν due to the additional
assumption. Due to the descent of the domain of definition of a rational mor-
phism [12, Prop. 2.5.6], the map mν is defined on (Y × D1)ν for all ν ∈ N.
Thus we have that m extends to a holomorphic function on YK × D1.

Now we turn to the meromorphic case. Since ZK is locally regular and
hence factorial, then φ∗m gives rise to a well-defined pole divisor S and hence
to a divisor ideal J ⊂ OZK

. In the following, let

pi : Z
′
K := ZK ×Y×D1 ZK → ZK

be the i-th projection for i = 1, 2. Then we can consider p∗iφ
∗m for i = 1, 2.

Since m is defined on (YK ×D1)p̃, we have p
∗
1φ

∗m = p∗2φ
∗m. Note that p∗iφ

∗m
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has a well-defined pole divisor Si ⊂ Z ′
K for i = 1,2 since the rigid spaces under

consideration are locally regular and hence factorial. Because of p∗1φ
∗m =

p∗2φ
∗m, the associated ideals Ji of Si inherit a canonical descent datum on J .

This descent is effective due to [11, Thm. 3.1]. So there exists a divisor ideal
I ⊂ OY ×D1 which induces J = φ∗I. Now put IK := I(YK ×D1), and set I :=
IK ∩ A〈η〉. Then A〈η〉/I is free of R-torsion since Y × D1 is formally smooth
over R. Thus A〈η〉/I is flat over R. Then it follows from [24, Lem. 6.2.3]
that IK extends to a formal Cartier divisor on Y × D1; actually, the reflexive
closure I∗∗ is the extension. Now we want to show that IK is locally trivial
over YK in the formal sense; i.e., there is a formal open covering {Y1, . . . , Yr}
of Y such that IK |Yi×D1 is free for i = 1, . . . , r. For doing this, it suffices to

show that the restriction of I∗∗ ⊗R k to Ỹ × A1
k is locally free over Ỹ . The

latter is clear since the local rings of Ỹ are factorial. Then we divide out the
pole of m. So we can assume that φ∗m extends to a holomorphic function on
ZK ×Y Yi for i = 1, . . . , r. Then we obtain the assertion by the first case we
discussed before. �

Lemma 2.9. Let Y = Spf(A) be a smooth affine formal R-space with irre-

ducible reduction Ỹ . Let p ∈ A[η] be a polynomial with |p| = 1 such that the

coefficients of p̃ generate the unit ideal of Ã. Let ỹ ∈ Ỹ be a closed point,
and assume that every irreducible component of V (p̃) intersects {ỹ} × A1

k in
a nonempty set of finitely many points. Let V ⊂ YK be a nonempty open sub-
set which specializes into ỹ under the reduction map. Then every holomorphic
function on (YK × D1)p̃ extends to a meromorphic function on YK × D1 if it
extends to a meromorphic function on V × D1.

Proof. As in Lemma 2.8, the notation D1 here means the formal affine line
over Spf(R), and YK is the rigid space associated to Y . There exists an étale

neighborhood ϕ̃ : (Ỹ ′, ỹ′) → (Ỹ , ỹ) of ỹ such that ϕ̃−1V (p̃) decomposes into
two sets ϕ̃−1V (p̃) = V (q̃1) ∪ V (q̃2), where q̃1 is a monic polynomial and q̃2 is
a polynomial with V (q̃2) ∩ ({ỹ′} ×A1) = ∅; cp. [12, Prop. 2.3/8]. In addition,
we may assume that V (q̃1) is disjoint from V (q̃2). Now we lift the étale exten-
sion and obtain a formal étale extension Y ′ × D1 → Y × D1, which covers the
tube associated to {ỹ} × A1

k. Since V (q̃1) ∩ V (q̃2) = ∅, we can decompose the
holomorphic function

m|(Y ′×D1)p̃ =
∑

ν∈N

aνp
−ν =

∑

ν∈N

aν,1q
−ν
1 +

∑

ν∈N

aν,2q
−ν
2 .

The second summand is holomorphic on (Y ′ × D1)q̃2 ; the first summand is
holomorphic on (Y ′ ×D1)q̃1 and meromorphic on the tube associated to ỹ′ ×A1

since V (q̃2) does not meet the tube ỹ′ × A1. So, due to Corollary 2.7, we have
that ϕ∗m extends to a meromorphic function on (Y ′ × D1)q̃2 . Since an étale
map is open, there exists a function a ∈ O(Y ) with |a| = 1 and ã(x̃) 6= 0 such
that Y ′

ã → Yã is surjective. Then the morphism (Y ′
ã × D1)q̃2 → Yã × D1 is also

surjective. Indeed, V (q̃1) → V (p̃) is surjective as follows by our assumption on
the irreducible components of V (p̃) and V (q̃1) ∩ V (q̃2) = ∅. By the descent
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argument, Lemma 2.8, we have that m extends to a meromorphic function on
(Yã ×D1)∪ (Y ×D1)p̃. The latter is a ball figure of dimension (n− 1). Finally,
the assertion follows from Proposition 2.5. �

Lemma 2.10. Let ξ := (ξ1, . . . , ξn) be the coordinate functions of Dn, and let η
be the coordinate function of D1. Let p, q ∈ O(Dn+1) be holomorphic functions
on the (n + 1)-dimensional unit polydisc with |p| = |q| = 1, and assume that

V (ξ̃1, . . . , ξ̃n) intersects V (p̃) in finitely many points and does not meet V (q̃).
Let p̃ = p̃1 · . . . · p̃r be the prime decomposition of p̃, and assume that the locus
V (p̃j) meets V (ξ̃1, . . . , ξ̃n) for every j = 1, . . . , r. Then every meromorphic
function m on the Hartogs figure (Dn(ε) × D1) ∪ Dn+1

q̃p̃ extends uniquely to
a meromorphic function on Dn+1

q̃ .

Proof. From Corollary 2.7, we deduce that m extends to a meromorphic func-
tion on Dn

+ × D1, by using Lemma 1.11. Namely, the restriction of p̃ behaves
like a polynomial in one variable. Furthermore, we may assume that m = f/g
with f, g in O(Dn+1

q̃p̃ ) with |f | = |g| = 1. The ring O(Dn+1
q̃p̃ ) is factorial, as

seen by arguments similar to the ones used in [24, Lem. 6.2.3], because the
reduction of O(Dn+1

q̃p̃ ) is factorial. So we can choose f and g in such a way that
V (f, g) has dimension at most (n − 1). So there exists a function r ∈ O(Dn)
with |r| = 1 such that the reduction of V (f, g) is contained in V (r̃). Unfor-

tunately, it can happen that r̃(x̃) = 0 for x̃ ∈ V (ξ̃1, . . . , ξ̃n, p̃). Otherwise, we
would succeed by Lemma 2.9 with the trick as in the proof of Proposition 2.6.

Due to the maximum principle, there exists some ε ∈ |K×| with ε < 1 such
that V (f, g) is contained in {x ∈ Dn+1; |r(x)| < ε}. If we stick to the domain
{|r(x)| ≥ ε}, then V (f, g) is empty over that subdomain. So, as in the proof
of Proposition 2.6, we may assume that m is holomorphic on the subdomain
{x ∈ Dn+1; |r(x)| ≥ ε and |qp(x)| = 1}.

Due to [12, Prop. 2.3/8], there is a formal étale neighborhood (Y =Spf(B), ỹ)

of (Dn, 0) such that p̃ splits into a product p̃ = q̃1 · q̃2 over B̃ such that

q̃1 is monic and V (q̃2) is disjoint from V (ξ̃1, . . . , ξ̃n). In addition, we may

assume that the two polynomials generate the unit ideal in B̃[η̃]. Indeed,
since dim V (q̃, p̃) ≤ n − 1, there is a function s ∈ O(Dn) with |s| = 1 and
V (q̃, p̃)⊂ V (s̃) and s̃(x̃) 6= 0. So the polynomials p̃ and q̃ are comaximal on An

s̃ .

Thus, over Dn+1
s̃ , we can split

m|{x; |s(x)|=1, |r(x)|≥ε} =
∑

µ∈N

aµ · q−µ +
∑

ν∈N

bν · p
−ν .

Leaving the first summand aside, we see that the second sum is defined on
(Ys̃ × D1)p̃ and also on Dn

+ ∩ {|r(x)| ≥ ε} which is nonempty and open. Now,
over Ys̃ × D1, we can split the second series

∑

ν∈N

bν · p−ν =
∞∑

ν=0

bν,1 · q
−ν
1 +

∞∑

ν=1

bν,2 · q
−ν
2 .
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Denote by m1 resp. m2 the first resp. the second summand. So m1 is a mero-
morphic function on (Ys̃ × D1)p̃ ∪ φ−1({x ∈ Dn; 1 > |r(x)| ≥ ε} × D1). Now it
follows from Corollary 2.7 and Lemma 2.4 that m1 extends to Ys̃ × D1. Then
set Z := (Ys̃ × D1)q̃2 . Now φ∗m is meromorphic on Z. The restricted map
φ : Z → Dn

s̃ × D1 is formally étale and surjective since φ(V (q̃2)) is contained
in V (p̃) and φ(V q̃1) equals V (p̃) as every irreducible component of p̃ meets

V (ξ̃1, . . . , ξ̃n). Then it follows from Corollary 2.7 that the second sum is de-
fined on (Y × D1)s̃r̃ and hence on Y × D1 due to Proposition 2.5. Then, by
the descent argument, Lemma 2.8, we deduce as in Lemma 2.9 that m can be
extended to Dn+1

q̃s̃r̃ . Finally, m is extendable to a meromorphic function Dn+1
q̃

due to Proposition 2.5. �

Theorem 2.11. Let X be a reduced affinoid space of pure dimension n+ 1,
and let H ⊂ X be a Hartogs figure H of dimension n. Then any meromorphic
function m on H extends to a meromorphic function on X, and the extension
is unique; i.e., the restriction map M(X)

∼

→ M(H) is bijective. So (H,X)
has property (Mn). If, in addition, X is normal, then the restriction map for
holomorphic functions O(X)

∼

→ O(H) is bijective, too.

Proof. Consider a Hartogs figure as in Definition 1.10. In the following, we
keep the notions introduced in Definition 1.10. At first, we discuss the case
where there is only one tube; i.e., there is one complete intersection M̃ which
meets any irreducible component of Ñ . Due to Proposition 1.14, we have
a finite morphism φ : X → Dn+1 and a Hartogs figure H ′ ⊂ Dn+1

h̃
of dimen-

sion n in Dn+1

h̃
with φ−1(H ′) ⊂ H . Then it follows from Lemma 2.4 that

M(Xh̃) → M(H ∩ Xh̃) is bijective due to Lemma 2.10, where q̃ has to be

replaced by h̃. Moreover, V (h̃) intersects any irreducible component of Ñ at

most in a closed subset of dimension n− 1 since h̃ does not meet M̃ and any
irreducible component of Ñ meets M̃ . So we obtain the extension by Propo-
sition 2.5.

In the general case, where there are more tubes, we make induction on
the number of tubes. So pick one of the tubes M̃1. Let Q̃1 be the union of
all irreducible components of Ñ which meet M̃ , and let Q̃2 the union of the
remaining components. Then there exists a function q ∈ O(X) with |q| = 1

such that V (q̃) does not meet M̃1 ∩ Q̃1 and contains Q̃2. So H ∩ Xq̃ gives

rise to a Hartogs figure on Xq̃ with exactly one tube defined by M̃1. Due
to the case discussed above we have that any meromorphic function m on H
extends to Xq̃. Since the dimension of Q̃1 ∩ V (q̃) is less than n, it follows
from Proposition 2.5 that m extends to XQ̃2

. Now it remains to show that m
extends to X . But this follows by the induction hypothesis.

This is the proof for a Hartogs figure as defined in Definition 1.10; for
rectilinear Hartogs figures, the proof was done in Proposition 2.6.

The uniqueness follows from Proposition 1.12. In the case where X is nor-
mal, the extension of holomorphic functions follows from that in the meromor-
phic case and Proposition 1.12 since the set of poles is empty or of dimension n.
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In the latter case, it has to meet the Hartogs figure due to Proposition 1.12.
Thus we see that the set of poles is empty. �

Remark 2.12. In the proof, we made use of Proposition 1.14 which requires
that the residue field k has infinitely many elements. This assumption is ac-
tually not necessary for this application. Indeed, we can choose a base field
extension K ′/K in such a way that the residue field k′ of K ′ has infinitely
many elements. So we obtain the extension of meromorphic functions after
such a field extension. Then an easy descent argument shows the extension
property over the given base field.

Concerning the extension of functions through closed analytic subsets, this
easily follows from Proposition 1.15. We have the following properties.

Proposition 2.13. Let X be an irreducible reduced rigid space, and let A⊂X
be a closed analytic subset of X.
(a) If dimA ≤ dimX − 2, then any meromorphic function on X −A extends

to a meromorphic function on X. If, in addition, X is normal, the analog
is true for holomorphic functions.

(b) If dimA = dimX − 1 and X is normal, then any bounded holomorphic
function on X −A extends to a holomorphic function on X.

Proof. (a) follows directly from Proposition 2.5.
(b) We may assume that X is affinoid. If X = Y × D1 and A = Y × {0},

the assertion follows by looking at the Laurent expansion of the given bounded
function. Due to Proposition 2.5, it suffices to show that there exists a ball
figure B of codimension 2 in X such that a given bounded function extends to
a holomorphic function on B. If X is geometrically normal, the set of singular
points is of codimension 2. Furthermore, due to Galois decent, we may assume
that A is geometrically reduced, so its set of singular points is of codimension 1
in A and hence of codimension 2 in X . The set of singular points of X and A
give rise to a ball figure B in X of codimension 2 such that X ∩B and A ∩B
are smooth. Then, due to Proposition 1.15, we are reduced to the special case
discussed at the very beginning of this proof.

Now we turn to the general case. There exists a finite field extension K ′/K
such that the reduced space (X ⊗K K ′)red of X ⊗K K ′ is geometrically re-
duced and that its normalization is geometrically normal. Thus we have that
our bounded function f extends to a meromorphic function on (X ⊗K K ′)red.
Since f is defined on X − A, one easily shows that f actually extends to
a meromorphic function on X . Next we choose a finite map ϕ : X → Dn for
n = dimX . The characteristic polynomial of f with respect to ϕ has bounded
coefficients on X − ϕ(A), and hence they extend to affinoid functions on X ,
due to what we have proved above. Since X is normal, f belongs to O(X). �

Theorem 2.11 is essentially due to Bartenwerfer; cp. [3, 4]. His proof is very
long and hard to follow. The proof given here runs smoothly because of the
use of formal étale extensions and descent theory [11].
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3. Analytic subsets

The proof of the extension property (An) will be reduced to the extension
of holomorphic functions due to the following lemma.

Lemma 3.1. Let φ: X =Sp(A)→Y =Sp(B) be a morphism of affinoid spaces.
Assume that Y is normal and connected and that Y has dimension n. Let
V ⊂ Y be an open nonempty subspace, and set U := φ−1(V ). Assume that any
bounded holomorphic function on V extends to a holomorphic function on Y .

Let S ⊂ U be an irreducible closed analytic subset of dimension n. Assume
that the induced morphism φ|S : S → V is finite. Then there exists a closed
irreducible analytic subset S ⊂ X with S ∩ U = S. In particular, the induced
morphism φ : S → Y is finite.

Endow S with its reduced structure. Then any meromorphic function on S
extends uniquely to a meromorphic function on S if any meromorphic function
on V extends to a meromorphic function on Y .

Proof. We endow S with its reduced structure. Let t be the degree of the
morphism φ|S . For a holomorphic function f ∈ O(X), we denote by

Pf (η) = ηt + ct−1 · η
t−1 + · · ·+ c0 ∈ OY (V )[η]

the characteristic polynomial of f |S. The coefficients are meromorphic func-
tions on V . Since Y is normal, the coefficients are holomorphic on V . More-
over, the coefficients are elementary symmetric functions in the values f(x) for
x ∈ φ−1(v) for all v ∈ V . So they are bounded, and hence, due to our assump-
tion, they are holomorphic on Y . Thus we have Pf (η) ∈ OY (Y )[η], and Pf (f)
vanishes on S for all f ∈ OX(X). Thus the locus of (Pf (f); f ∈ OX(X)) is
a closed analytic subset S⊂X ofX with S ∩U =S. Note that the ideal (Pf (f);
f ∈ OX(X)) is finitely generated because OX(X) is noetherian. The assertion
concerning the meromorphic functions on S follows from Lemma 2.4. �

Corollary 3.2. Let φ : X = Sp(A) → Y = Sp(B) be a morphism of affinoid
spaces. Let V ⊂ Y be an open nonempty subspace, and set U := φ−1(V ). Let
S ⊂ U be an irreducible closed analytic subset of dimension m ≥ n + 1. As-
sume that φ|S : S → V is finite. If the couple (V, Y ) satisfies properties (An)
and (Mn), then S extends to an irreducible closed analytic subset S ⊂X. More-
over, (S, S) satisfies properties (An) and (Mn).

In particular, if φ : X → Y is finite, then (U,X) satisfies (An) and (Mn) if
(V, Y ) does.

Proof. Let T := φ(S) ⊂ V be the image of S and T ⊂ Y its extension to Y
which exists due to (An). Let T ′ → T be its normalization. The induced
morphism φ|S : S → T is finite. As in the proof of Lemma 3.1, consider the
characteristic polynomial Pf (η) ∈O′

T (T ) for any f ∈OX(X). Due to condition

(Mn) and implicitly (Hn), we have that Pf (η) ∈ O′
T (T ). Then the locus of

(Pf (f); f ∈ OX(X)) gives rise to a closed analytic subset S ⊂ X of X with
S ∩U =S. Indeed, firstly, we obtain an extension in the fiber productX ×Y T ′,
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and hence, by the projection to X , we obtain the extension S. The assertion
concerning (Mn) follows by Lemma 2.4 from property (Mn) of (V, Y ). �

Proposition 3.3. Let (B,X) be a ball figure in dimension n on an affinoid
space X of dimension n+ d with d ≥ 2. Then the couple (B,X) has properties
(An+1) and (Mn+1).

Proof. We apply the projection lemma, Lemma 1.5. Then the assertion follows
from Proposition 2.5 by using Lemma 3.1 respectively Corollary 3.2. The
uniqueness follows from Proposition 1.6. �

The case of Hartogs figure is much harder to prove since we do not know
such a nice projection lemma as in the case of ball figures. Let H ⊂ X be
a Hartogs figure of dimension n in an affinoid space of pure dimension n+ d,
and let S ⊂ H be a closed analytic subset of pure dimension n+ t with t ≥ 1.
If one wants to show the extension of S to a closed analytic subset S of X , we
usually reduce the problem by finite projection to a standard Hartogs figure in
Dn+t by using Lemma 3.1 and extension properties for meromorphic functions.
In the last proposition, we have seen how it works. Similarly, it works for all
the other extension properties as we will see in the sequel. We only have the
projection type Proposition 1.14 which yields a map to a standard Hartogs
figure in a polydisc, but it does not induce a finite map from a given analytic
subset S ⊂ H of dimension n + t to a Hartogs figure of dimension n+ t. So
we need a new type of projection result which gives additional information for
the standard Hartogs figure obtained in Proposition 1.14. Let us start with
the case of the standard Hartogs figure.

The following two results are more or less contained in [5, § 3].

Lemma 3.4. Let ζ1, . . . , ζn, η1, . . . , ηd be the coordinate functions on Dn+d

with d ≥ 2. Consider the Hartogs figure H := T ∪B ⊂ X := Dn+d, where

T := (Dn(ε)× Dd) and B := Dn × ∂Dd.

Then (H,X) has properties (An) and (Mn).

Proof. Let S ⊂ H be a closed analytic subset whose irreducible components
have dimension m = n + t with t ≥ 1. The case t ≥ 2 is covered by Proposi-
tion 3.3. So we may assume that t = 1 and d ≥ 2. For ε = (ε1, . . . , εn), we
will stepwise increase each εν to 1 for ν = 1, . . . , n. So we may assume that
ε2 = 1, . . . , εn = 1. Then we have to extend S to a closed analytic subset
of Dn+d. Consider the reduction S̃ ⊂ An+d

k in the sense of Reminder 1.3.
If d ≥ 3, there exists a polynomial g̃ ∈ k[ζ2, . . . , ηd] with 0 6= g̃ such that

S̃ ⊂ V (g̃). After a transformation of type ζν 7→ ζν + ηsνd for 1 ≤ ν ≤ n and

ηi 7→ ηi + ηtid for 1 ≤ i < d and ηd 7→ ηd, we may assume that g̃ is monic in ηd.
So we have a finite map S → H ′ := (T ′ ∪B′), where T ′ := Dn(ε)× Dd−1 and
B′ := Dn × ∂Dd−1. Then, by Corollary 3.2, we reduce to d− 1.

So it remains to deal with the case d = 2. Then we arrange the irreducible
components of S̃ into subsets S̃1 and S̃2 such that S̃ = S̃1 ∪ S̃2 satisfying
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S̃1 ⊂ V (ζ̃1) and dim(S̃2 ∩ V (ζ̃1)) ≤ n. Now there exists a nonzero polynomial

f̃ ∈ k[ζ2, . . . , ηd] such that (S̃2 ∩ V (ζ̃1))⊂ V (f̃). After a transformation of type
ζν 7→ ζν + ηsν2 for 1 ≤ ν ≤ n and η1 7→ η1 + ηt12 and η2 7→ η2, we may assume

that f̃ is monic in η2. Again by applying Lemma 3.1, we may assume that
(S̃2 ∩ V (ζ̃1)) ⊂ V (η̃2). Due to the maximum principle, there exist numbers

δ1, δ2 ∈
√
|K×| less than 1 such that

S ∩ {x ∈ X, |ζ1(x)| ≥ δ1, |η2(x)| ≥ δ2(x)} = ∅.

Then the projection by the coordinate functions ζ2, . . . , ζn, η1, η2,

p|... : S ∩ p−1(H ′) → H ′ := T ′ ∩B′ ⊂ Dn−1 × D2
|η2(x)|≥δ2

,

is finite, where

T ′ := Dn−1+2
η̃2

and B′ := Dn−1 × ∂D1 ×A(δ2, 1).

Thus, by Corollary 3.2 and Proposition 2.6, we obtain the extension to the set
Dn ×A(δ2, 1).

Now we have more freedom on the geometry of the Hartogs figure. We
have S̃ = V (f̃) for some polynomial f ∈ K[ζ, η] with |f | = 1. Then we choose
a transformation Φ of type

ζν 7→ ζν + ηsν2 for 1 ≤ ν ≤ n; η1 7→ η1 + ηt12 and η2 7→ η2

such that δs12 < ε1 such that f̃ becomes a Weierstraß divisor with respect to η2.
The inverse image of the figure H ′′ := T ′′ ∪ B′′ under Φ is contained in the
domain of definition of S, where

T ′′ := (Dn(ε)× D2) and B′′ := Dn × ∂D2.

In particular, the projection by the coordinate functions ζ1, . . . , ζn, η1,

p|... : S ∩ p−1(H ′) → H ′ := (Dn(ε)× D1) ∪ (Dn × ∂D1),

is finite. Thus the extension property follows from Corollary 3.2 and Proposi-
tion 2.6. �

Lemma 3.5. Let ζ1, . . . , ζn, η1, . . . , ηd be the coordinate functions on Dn+d with
d ≥ 2. Consider the Hartogs figure H := T ∪B ⊂ X := Dn+d of dimension n,
where

T := (Dn(ε)× Dd)h̃ and B := Dn+d
Ñ

with ε = (ε1, . . . , εn), where h̃ ∈ k[η1] is monic polynomial with h̃(0) 6= 0. As-

sume that Ñ is of dimension n with dim Ñ ∩ V (ζ) = 0 and that every irre-

ducible component of Ñ contains the origin. Then (H,X) has properties (An)
and (Mn).

Proof. Let S ⊂ H be a closed analytic subset whose irreducible components
have dimension m = n + t with t ≥ 1. The case t ≥ 2 is covered by Propo-
sition 3.3. So we may assume that t = 1 and d ≥ 2. As in the proof of
Lemma 3.4, we will stepwise increase the radii ε1, . . . , εn to 1. So we may
assume that ε2 = 1, . . . , εn = 1. Also by the same procedure, we can reduce
to the case d = 2 and Ñ = V (g̃, η2), where g̃ ∈ k[ζ, η1] and every irreducible
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component of g̃ meets the origin and g̃(0, η1) 6= 0 does not vanish identically.

Indeed, the projection of Ñ to An−1
k × A2 is of dimension less than or equal

to n < n− 1 + 2 and hence contained in a hypersurface V (f̃). After a trans-

formation of coordinates, we may assume that f̃ is monic in ηd. By the usual
application of Corollary 3.2, we may assume that f̃ = ηd. Note that we can
arrange the transformations in such a way that the polynomial h can be re-
placed by some other polynomial with the same property. So we still have
V (ζ̃ , η̃2) ∩ V (g̃) = {0, ỹ1, . . . , ỹr} ⊂ A1

k.

Now we proceed as in the proof of Lemma 3.4. For the reduction S̃ ⊂ An+2
k

of S, we have a decomposition S̃ = S̃1 ∪ S̃2 as a union of Zariski-closed subsets
of An+2

k such that S̃1 ⊂ V (ζ̃1) and dim(S̃2 ∩ V (ζ̃1))< n+ 1. In a first step, one
shows the extension to the domain Dn × A(δ2, 1) for some δ2 ∈

√
|K×| with

δ2 < 1. In a second step, we can start a transformation as at the end of the
proof of Lemma 3.4. So we obtain a finite map

p|... : S ∩ p−1(H ′) → H ′ := T ′ ∪Dn+1
g̃ ,

where T ′ := Dn(ε1)h̃ ×D1. Since H ′ gives rise to a Hartogs figure in Dn+1

h̃
due

to the condition on g̃, we obtain the extension to Dn+d
h̃

by Corollary 3.2 and
Proposition 2.6. Thus we have the extension to the union Dn+d

Ñ
∪ Dn+d

h̃
which

is ball figure of dimension (n− 1). Finally, we succeed by Proposition 3.3. �

We want to stress the fact that the problem of extending S is reduced
to showing it in cases where there is a finite map of some shrinking of S to
a Hartogs figure of dimension n in an (n+ 1)-dimensional space.

Theorem 3.6. Let (H,X) be a Hartogs figure of dimension n in an affinoid
space of pure dimension n + d. Then the couple (H,X) has properties (An)
and (Mn).

Proof. We may assume that S is irreducible of dimension m with m ≥ n+ 1.
If m ≥ n + 2, the assertion follows from Proposition 3.3. So we assume that
m= n+1. Let Ñ ⊂ X̃ be the Zariski-closed subset associated to the ball figure
contained in H . The subset S ⊂ XÑ gives rise to a Zariski-closed algebraic
subset S̃ ⊂ X̃ − Ñ . We denote by S̃ ⊂ X̃ its closure in X̃ as well since no
confusion can happen. Now S̃ is of pure dimension m = n+ 1.

At first, we apply Lemma 1.11 and Lemma 3.4 to obtain the extension
of S to the maximal tubes. As in the proof of Theorem 2.11, we may assume
that there is only one tube present. Then we apply the projection lemma,
Proposition 1.14. So there is a finite morphism φ: X →Dn+d and a polynomial
h̃ ∈ k[η1] with the following properties.
(o) Set H ′ := T ∪B ⊂ Dn+d with T := (Dn(ε)× Dd) and B := Dn+d

Ñ
.

(i) H ′ ⊂ Dn+d
h̃

is a Hartogs figure in Dn+d
h̃

with φ−1(H ′) ⊂ H .

(ii) The induced map φ : φ−1(H ′) → H ′ is finite.
Then the assertion follows by Corollary 3.2 from Lemma 3.5. �
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Remark 3.7. As in the proof of Theorem 2.11, we made use of Proposi-
tion 1.14 which requires that the residue field k has infinitely many elements.
This assumption is actually not necessary for this application. Indeed, we can
choose a base field extension K ′/K in such a way the residue field k′ of K ′ has
infinitely many elements. So we obtain the extension of closed analytic subsets
after such a field extension. Then an easy Galois descent argument shows the
extension property over the given base field.

The extension theorem for closed analytic subsets on rectilinear Hartogs
figures like H := (V × Dd) ∪ (Y × ∂Dd) is more delicate, because here we do
not know such a nice projection lemma as the one we used in the proof of
Theorem 3.6. Of course, any closed analytic subset of pure dimension m ≥
2 + dim Y extends due to Proposition 3.3. So it remains to study the case
of pure dimension dim S = 1 + dim Y . The case d = 2 will easily be solved
with a completely different method in Remark 5.8 and Corollary 5.9 which is
of interest for itself. But that proof does not allow to show property (Mn).
Therefore, we introduce a new method.

In the following, we consider a rectilinear Hartogs figure

H := (V × Dd) ∪ (Y × ∂Dd) ⊂ X := (Y × Dd),

where Y is an irreducible affinoid space and V ⊂ Y is a nonempty open subset.

Lemma 3.8. Assume that dimY =1. If S⊂H is an irreducible closed analytic
subset of dimension dimY +1, then S uniquely extends to an irreducible closed
analytic subset S ⊂ X.

Proof. If d = 2, then the assertion follows from Corollary 5.9. In the following,
assume d ≥ 3. We proceed by descending induction on d. Consider the Zariski
closure S̃ ⊂ (Ỹ × Ad

k) of the reduction of S. We know that S̃ is of pure di-

mension 2. Then the projection q : Ỹ ×Ad
k → Ad

k maps S̃ into a Zariski-closed
subset of dimension of at most 2 < d. So there exists a nonzero polynomial
g̃ ∈ k[η1, . . . , ηd] such that q(S̃)⊂ V (g̃). After a suitable transformation of coor-
dinates of type ηi 7→ ηi + ηtid for 1≤ i≤ d− 1 and ηd 7→ ηd, we may assume that

g̃ is monic in ηd. Then consider the projection p : Y × Dd → Y ×Dd−1. Its re-
striction p: S ∩ p−1(H ′)→H ′ is finite, whereH ′ := (V ×Dd−1)∪ (Y × ∂Dd−1).
So p(S) ⊂ H ′ is a closed analytic subset of dimension 2. Due to the induction
hypothesis, p(S) extends to a closed analytic subset T ⊂ Y × Dd−1. So we
see that S ⊂ p−1(T ) is a subset of a closed analytic subset p−1(T ) of codi-
mension 1 in Y × Dd. Obviously, we can find projections p such that a given
point x ∈ H − S is outside p−1(p(T ). Then the intersection of the p−1

i (T ) for
suitable projections pi : Y × Dd → Y × Dd−1 yields an extension of S. �

For generalizing the last result to higher dimension, we start with some
preparations.

Definition 3.9. The lines L ⊂ Dn through the origin can be parameterized
by the points of Pn−1

K . A family of such lines is called dense if the set of reduc-
tions of its members to An

k induce a subset of Pn−1
k which is not contained in
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a countable union of proper closed subsets of Pn−1
k . We remark that the set of

lines L⊂ Dn through the origin is dense if the residue field k of K is not count-
able. Moreover, the complement of a countable union of proper closed subsets
of Pn−1

k is a dense family as well.

Lemma 3.10. Assume that the residue field k of K is not countable. Let
p ∈K[[η1, . . . , ηn]] be a formal power series which converges on Dn(ε) for some
ε> 0. If the restriction p|L converges for a dense family of lines L⊂Dn through
the origin and satisfies |p|L| ≤ 1, then p converges on Dn.

Proof. Let p :=
∑∞

m=0pm be the expansion with respect to the total degree. It
means

pm =
∑

|µ|=m

cµ · ηµ1

1 · . . . · ηµn
n ∈ K[η1, . . . , ηn]

is a homogenous polynomial of degree m. Let πm ∈ K× with |πm| := |pm| be
the spectral norm of pm if pm 6= 0. Now look at the reduction p̃m of pm/πm.

Note that any L gives rise to a point [L̃] in Pn−1
k and V (p̃m) gives rise to proper

closed subset of Pn−1
k . Then [L̃] /∈ V (p̃m) is equivalent to |pm|L| = |πm|.

Due to our assumption, there exists a line L in our family such that |pm|L|=
|πm|. Since |p|L ≤ 1, we have that |pm| ≤ 1 for all m ∈ N. Let I ⊂ N be the
subset consisting of all m∈N with πm 6= 0. Due to our assumption, there exists
a dense family of lines L such that L̃ is not contained in

⋃
m∈I V (p̃m). Since

p|L converges, we have that πm converges to 0. Thus we see that p=
∑

m∈N
pm

belongs to K〈η1, . . . , ηn〉. �

Lemma 3.11. Assume that the residue field k of K is non-countable. Let
P ∈ Tn〈η〉 be an irreducible Weierstraß polynomial. Set X = V (P ), and let
φ : X → Dn be the projection. Assume that φ is étale over the origin 0 ∈ Dn

and that its fiber consists of rational points. Then there exists a dense family,
Definition 3.9, of lines L through 0 in Dn such that φ−1(L) ⊂X is irreducible.

Proof. Let x1, . . . ,xs ∈X be the points with φ(xi) = 0. Since φ is étale above 0,
there exists an ε > 0 such that φ−1(Dn(ε)) decomposes into sheets U1, . . . , Us.
So we can write

P = (η − a1) · . . . · (η − as) ∈ ODn(Dn(ε)).

Set I := {1, . . . ,s}, and consider, for any nonempty subset σ⊂ I, the polynomial

Pσ :=
∏

i∈σ

(η − ai) =

tσ∑

j=0

bj,ση
j ∈ ODn(Dn(ε))[η].

Any bj,σ ∈ ODn(Dn(ε)) is a power series. If, for some proper subset σ ⊂ I, the
restriction of all the coefficients bj,σ|L to a dense family of lines L is holomorphic
on L, then Pσ ∈ Tn[η] due to Lemma 3.10, and hence the polynomial P ∈
Tn[η] cannot be irreducible. Thus we see that φ−1(L) is an irreducible curve
contained in X for a dense family of lines through 0. �
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Proposition 3.12. Keep the situation introduced above Lemma 3.8. If S ⊂H
is an irreducible closed analytic subset of dimension dimY +1, then S uniquely
extends to an irreducible closed analytic subset S ⊂ X.

Proof. The case dim Y = 1 was settled in Lemma 3.8 which will be used in
the sequel. Now we turn to the general case n = dim Y > 1. Consider the
projection p : (Ỹ ×Ad

k) → Ỹ . Look at the generic points ỹ1, . . . , ỹr of Ỹ which

are associated to the irreducible components Ỹ1, . . . , Ỹr. If p is not dominant
over Ỹi, then there exists an element ãi ∈ Ã such that all the geometric fibers
over Yãi

are empty. If p|S̃ is dominant over Ỹi, the fiber of ỹi is of dimension 1
by reasons of dimensions. Then there exists a transformation of coordinates
as above and a function ãi ∈ Ã such that the projection pi : S̃ ∩ (Ỹãi

× Ad
k) →

Ỹãi
× A1

k is finite and p−1
i (Ỹãi

× (A1
k − {0})) ⊂ (Ỹãi

× (Ad
k − {0})). Then, for

any function f ∈ OX(Yãi
× Dd), we have the characteristic polynomial

Pf (η) = ηt + ct−1 · η
t−1 + · · ·+ c0 ∈ OY (Yãi

× ∂D1)[η]

of f |S. Its coefficients cτ are bounded holomorphic functions on Yãi
× ∂D1.

Now we perform a base field extension K → K ′ such that the residue field
of K ′ is not countable. Due to Lemma 3.11 and Lemma 3.8, there is dense
subset of Yãi

such that S ∩ ({y} × Dd) extends to {y} × Dd. Then it follows
from Lemma 2.3 that the coefficients cτ extend to holomorphic functions on
Yãi

× D1. One easily shows that the coefficients are actually defined over the
base field K. Thus S is extended by the locus of the functions (Pf (f)), where
f runs over all functions f ∈ OX(Yãi

× Dd). So S extends to the ball figure
(Y × ∂Dd) ∪ (Yã × Dd)) of dimension n − 1. Then the assertion follows from
Proposition 3.3. �

Proposition Proposition 3.12 does not show the full property (Mn); the part
concerning the extension of meromorphic functions is missing. This lack is due
to the fact that we proved Proposition 3.12 by using the method of § 5 instead
of the standard technique of Lemma 3.1. Nevertheless, property (Mn) holds
for any rectilinear Hartogs figure of dimension n. Although we now know the
extension property for closed analytic subsets S in rectilinear Hartogs figures,
the extension property for meromorphic functions on S requires more involved
methods.

Lemma 3.13. Let Y be a smooth connected curve, and let V ⊂ Y be a non-
empty open subdomain. Consider the rectilinear Hartogs figure

H := (V × Dd) ∪ (Y × ∂Dd),

and let S ⊂ Y × Dd be an irreducible closed analytic subset of dimension 2.
Then any meromorphic function on S ∩H extends to a meromorphic function
on S.

Proof. Let us first discuss the case where Y has a smooth formal model. Then
H contains an affinoid Hartogs figure H ′ ⊂ H of dimension n. Indeed, let
y0 ∈ V be a point. Then it follows from [24, Prop. 4.1.12] that there exists
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a function g ∈ OY (y) such that V (g) ∩ Y ′ = {y0}, where Y ′ ⊂ Y is a formal
open neighborhood of ỹ0. So, for a small ε ∈ |K×|, the figure

H ′ := {x ∈ Y ′ × Dd; |g(x)| ≤ ε} ∪ (Y ′ × ∂Dd) ⊂ H ∩ (Y ′ × ∂Dd)

is a Hartogs figure in Y ′ × ∂Dd. So property (Mn) for Hartogs figures implies
the extension for meromorphic functions on S ∩ (Y ′ × ∂Dd). Then the assertion
follows by Theorem 3.6.

In the general case, we use the stable reduction theorem for curves [24,
Thm. 4.5.3]. So we may assume that Y has a semi-stable reduction where
no irreducible component has a self-intersection. Assume firstly that V is
contained in the formal fiber of a double point ỹ0. By what we have shown
already, we may assume that V is a concentric annulus of height 1 contained in
the formal fiber. Let Ỹ1 and Ỹ2 be the components which contain ỹ0. Then it
is easy to see that we have a Hartogs figure in Y ′ ×Dd, where Y ′ is the formal
open part Z which reduces into the smooth part of Ỹ1 ∪ Ỹ2 and ỹ0 and where
the tube is given by a function g ∈ OY ′(Z) such that V := {y ∈ Z; |g(y)| ≤ δ}.
So we obtain the extension of the meromorphic function to S ∩ (Z × Dd). If
one or both of these components are complete, we blow them down. Then we
can continue as above since we can define new Hartogs figures where the tube
is given by the blown-down part. �

So, due to Lemma 3.13, we have properties (An) and (Mn) in the case where
Y is a smooth curve without using Corollary 5.9, but we used the more involved
existence of a semi-stable reduction for smooth curves. Then the general case
follows as in the proof of Proposition 3.12. Moreover, one can add in that
proof the extension property for meromorphic functions once it is known for
curves. So we arrive at the full assertion for rectilinear Hartogs figures.

Proposition 3.14. The rectilinear Hartogs figure H := (V ×Dd) ∪ (Y × ∂Dd)
has properties (An) and (Mn).

Next we turn to the case of extension through closed analytic subsets which
was studied by Thullen, Remmert and Stein in complex analysis.

Theorem 3.15. Let X be a rigid analytic space and A ⊂ X a closed analytic
subset of dimension n. Then the following holds.
(a) Any closed analytic subset S ⊂ X − A of pure dimension dim S ≥ n+ 1

extends to a closed analytic subset of X.
(b) Any closed analytic subset S ⊂ X − A of pure dimension n extends to

a closed analytic subset of X if S extends to U ∪ (X − A), where U ⊂ X
is an open subset which meets every irreducible component of A.

Proof of Theorem 3.15 (a). The case where S is of pure dimension dim S ≥
n+ 2 follows directly from the case where one considers a ball figure of dimen-
sion n defined by Ã; cp. Proposition 3.3.

Let us now consider the case where S is of pure dimension n+ 1. Obviously,
we may assume that X is affinoid and hence that X = DN for some N ∈ N.
By Galois decent, we may assume that A are geometrically reduced. So A

Münster Journal of Mathematics Vol. 15 (2022), 83–166



On extension of rigid analytic objects 113

is smooth outside a closed subvariety T of dimension n− 1. Due to Proposi-
tion 3.3, it suffices to show that S ∩XT̃ extends to XT̃ . Then we may assume
that X = Y × Dd and A = Y × {0} due to Proposition 1.15.

Denote by Ñ ⊂ X̃ the locus V (ζ̃1, . . . , ζ̃d). Let S̃ ⊂ X̃ − Ñ be the closed
algebraic subset induced by S ∩XÑ . Due to Proposition 3.3, it suffices to show
that S extends to V ×Dd, where V is a formal open subscheme of X such that
Ṽ contains all the generic points of Ỹ . Thus we may assume that Ỹ is irre-
ducible. Now consider the projection p̃ : Ỹ × Ad

k → Ỹ . If p̃|S̃ is not dominant,

then there is a formal dense open part V of Y such that p̃(S̃) ⊂ Ỹ − Ṽ . More-
over, due to Lemma 1.5, we may assume that S does not meet p−1(V ), where
p : Y ×Dd → Y is a lifting of p̃. So we are done by Proposition 3.3. Otherwise,
p̃(S̃) contains the generic point ỹ of X̃. In this case, the fiber p̃|S̃ over ỹ has di-

mension 1. Then there exists a coordinate transformation of type ζi 7→ ξtii + ξd
for i = 1, . . . , d − 1 and ζd 7→ ξd such that the projection of S̃ ∩ ({ỹ} × Ad

k)
to {ỹ} × Ad−1

k is finite. One can repeat this process until we arrive at a fi-
nite projection to {ỹ} ×A1

k. Since only finitely many coefficients are involved,

there exists an open neighborhood Ṽ of ỹ in Ỹ where everything is defined.
Since these projections do not effect the set A, by lifting to the affinoid site,
we arrive at a situation of a finite morphism p : S → V × (D1 − {0}) studied in
Lemma 3.1. So the assertion follows in this case by Proposition 2.13 (b). �

For the proof of part (b), which is much harder to show, we provide some
preparations. Before we start the proof of Theorem 3.15 (b), we recall two
types of the Weierstraß Division Theorem.

Proposition 3.16. Let B be a reduced affinoid algebra, and set Y := Sp(B).
Let D1(r) be the 1-dimensional disc of radius r ∈ |K×|. Let g =

∑
ν∈N

bν · ην

be a power series in B〈η〉r which converges on X := Y × D1(r). Assume that
there exists an integer n ∈ N such that, for all y ∈ Y ,

|bn(y)| · r
n ≥ |bν(y)| · r

ν for all ν ∈ N,

|bn(y)| · r
n > |bν(y)| · r

ν for all ν > n.

Such a power series is called a Weierstraß divisor on Y × D1(r). Then one
can uniquely write g = u · ω, where u ∈ OX(Y ×D1(r)) is a unit and ω ∈ B[η]
is a monic polynomial of degree n which satisfies estimates for the coefficients
similar to the ones above.

Proof. First one reduces to r = 1 and bn = 1 by dividing g by bn which is unit
in B. Then one follows the usual method; cp. [9, Thm. 2.2.8]. �

Proposition 3.17. Let B be a reduced affinoid algebra, and set Y := Sp(B).
Let A(r1, r2) be an annulus with radii r1 ≤ r2 for r1, r2 ∈ |K×|. Then let g =∑

i∈Z
bi · ηi ∈Br1〈η

±〉r2 be a Laurent series which converges on the space X :=
Y ×A(r1, r2). Assume that there are integers n1 ≤ n2 such that, for all y ∈ Y ,

|bn1
(y)| · rn1

1 ≥ |bi(y)| · r
i
1 for all i ∈ Z,

|bn1
(y)| · rn1

1 > |bi(y)| · r
i
1 for all i < n1;
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|bn2
(y)| · rn2

2 ≥ |bi(y)| · r
i
2 for all i ∈ Z,

|bn2
(y)| · rn2

2 > |bi(y)| · r
i
2 for all i > n2.

Such a Laurent series is called a Weierstraß divisor on Y × A(r1, r2). Then
one can uniquely write f = u · ω, where u ∈ OX(Y × A(r1, r2)) is a unit and
ω ∈ B[η] is a monic polynomial of degree n = n2 − n1 which satisfies similar
estimates for the coefficients as above.

Proof. For the proof of this type of Weierstraß Theorem, one follows the usual
method; cp. [9, Thm. 2.2.8]. At first, one reduces to the case n1 = 0. Then we
show the division theorem with estimates for elements f ∈ OX(Y ×A(r1, r2))
in the following style.

Decompose f = q · g + r + f1, where q ∈ OX(Y × A(r1, r2)) satisfying the
conditions |q|y ≤ |f |y/min{|g|y,r1, |g|y,r2}, where r ∈ B[η] is a polynomial of
degree less than n with |r|y ≤ |f |y and where f1 ∈ OX(Y × A(r1, r2)) with
|f1|y ≤ ε · |f |y for all y ∈ Y with

ε := max
y∈Y

{
max
j>n

{
|bj(y)/bn(y)| · r

j−n
2 ,max

j<0
{|bj(y)/b0(y)| · r

j
1}
}}

< 1.

Here | · |y denotes the spectral norm of the function on the fiber {y}×A(r1, r2)
and | · |y,ri denotes the spectral norm on {y} ×A(ri, ri) for i = 1, 2. Then one
iterates this division fi = qi · g + ri + fi+1 as above. The remaining parts fi
converge to 0. Thus one obtains f = q · g + r in the limit. Finally, one applies
the division to ηn, and hence one gets ηn = v · g + r. Now one easily shows
that the Laurent series of v satisfies the conditions of our proposition with
n1 = n2 = 0. Then it is clear that v is a unit of the form v = v0 · (1 + h), where
v0 ∈ B× is a unit and |h|y < 1 for all y ∈ Y . Finally, this yields g = u · ω with
u = 1/v and ω = bnη

n − r. �

The following corollary follows from a well-known fact in commutative al-
gebra; cp. Proposition A.13.

Corollary 3.18. Keep the situation of Proposition 3.17. Assume that B is
normal. Let S ⊂ Y × A(r1, r2) be a closed analytic subset of pure dimension
dim Y . If f ∈ O(Y × A(r1, r2)) vanishes on S and satisfies the conditions of
Proposition 3.17, then S = V (p) is the locus of a monic polynomial p ∈ B[η]
whose coefficients satisfy conditions similar to the ones of f .

Proof. The vanishing ideal a of S is a divisor ideal which contains a monic
polynomial ω. Due to the inequalities, S = V (a) can be regarded as a closed
algebraic subset of Y × A1

K . Since the monic polynomial ω is contained in a,
the ideal a is generated by a monic polynomial p which divides ω, because B
is normal; cp. Proposition A.13. �

We add a general method to construct rational coverings which is often
used.

Lemma 3.19. Let B be a reduced affinoid algebra, and set Y := Sp(B). Let
r1 < r2 ≤ 1 be numbers of

√
|K×|. Let f =

∑∞
ν=−∞ bν · ην ∈ B[[η, 1/η]] be
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a Laurent series over an affinoid algebra B which converges on the relative
annulus Y × A(r1, r2). Assume that the coefficients (bν ∈ B; ν ∈ Z) have no
common zeros. Then there exists a finite affinoid covering V = {V0, . . . , Vn}
of Y = Sp(B) and numbers ρ0, . . . , ρn ∈

√
|K×| with ρν > r1 close to r1 and

numbers ̺0, . . . , ̺n ∈
√
|K×| with ̺ν < r2 close to r2 such that f has no zeros

on Vν × A(ρν , ρν) and on Vν × A(̺ν , ̺ν) for ν = 0, . . . , n. In particular, the
projection p : V (f) ∩ (Vν ×A(ρν , ̺ν)) → Vν is finite for ν = 0, . . . , n.

Proof. Since the coefficients (bν ; ν ∈ N) have no common zeros, there exist
indices n1, n2 with n1 ≤ n2 such that bn1

, . . . , bn2
have no common zeros. So

there exists a positive number b such that

b < max{|bn1
(y)|, . . . , |bn2

(y)|} for all y ∈ Y.

Since the sequence (|bν | · rν1 ) converges to 0 for ν→−∞ and (|bν | · rν2 ) converges
to 0 for ν → ∞, we may assume that, for all ν ∈ Z− {n1, . . . , n2},

|bν(y)| · r
ν
1 < max{|bn1

(y)| · rn1

1 , . . . , |bn2
(y)| · rn2

1 } for all y ∈ Y,

|bν(y)| · r
ν
2 < max{|bn1

(y)| · rn1

2 , . . . , |bn2
(y)| · rn2

2 } for all y ∈ Y.

Moreover, there exist numbers ρ, ̺ ∈
√
|K×| with ρ > r1 close to r1 and ̺ < r2

and close to r2 such that, for all ν ∈ Z− {n1, . . . , n2},

|bν(y)| · ρ
ν < max{|bn1

(y)|ρn1 , . . . , |bn2
(y)|ρn2} and all y ∈ Y,

|bν(y)| · ̺
ν < max{|bn1

(y)|̺n1 , . . . , |bn2
(y)|̺n2} and all y ∈ Y.

Of course, we may assume n1 = 0 and put n := n2. For m = n1, . . . , n2, put

Y ̺
m := {y ∈ Y ; |bi(y)| · ̺

i ≤ |bm(y)| · ̺m for i ≤ m}.

Then f restricted to Y ̺
n × D1(̺) is a Weierstraß divisor of degree n. So, if we

increase ̺ a little bit, then bnη
n becomes a dominating term of f |Y ̺

n ×D
1(̺),

and hence f has no zeros on Y ̺
n × A(̺, ̺); cp. [24, Prop. 1.3.4]. Due to the

maximum principle, there exists a number c ∈
√
|K×| with c > 1 such that f

has no zeros on Y c
n ×A(̺, ̺). Now we can look at the union

Z :=

n−1⋃

ν=1

{y ∈ Y ; |bν(y)| · ̺
ν ≥ cn−ν |bn(y)| · ̺

n}.

Note that Z is disjoint from Y ̺
n . Proceeding by decreasing induction on n,

we obtain a rational covering V of Y which satisfies the assertion for the
higher radius. In the analog way, one deals with the lower radius. A common
refinement of the coverings yields the assertion. �

Lemma 3.20. Let Y be a smooth affinoid space, and set D1
0 := D1 − {0}.

Let S ⊂ Y × D1
0 be a closed analytic subset of pure dimension dim Y with

S ∩ (Y × A(1, 1)) = ∅. Assume that S ⊂ V (f) with a holomorphic function
f =

∑
ν∈Z

aν · ην ∈ O(Y ×D1
0) such that the coefficients of f have no common

zeros on Y .

Münster Journal of Mathematics Vol. 15 (2022), 83–166



116 Werner Lütkebohmert

Then there exists a covering {Y1, . . . , Ym} of Y by finitely many connected
open affinoid subdomains Yµ such that S ∩ (Yµ × D1

0) = V (fµ) is a principal
divisor of a suitable function fµ =

∑∞
i=0bµ,i · 1/η

i ∈ O(Yµ × D1
0).

Proof. Let L be the line bundle associated to S. Since L|Y ×A(1,1) is prin-
cipal, we can glue it with the trivial line bundle to obtain a line bundle on
Y × P1

0, where P1
0 is a projective line punctured at the origin. Obviously, P1

0

is isomorphic to the affine line A1
K . Since L|Y ×{∞} is trivial, it follows from

Theorem A.17 that there exists {Y1, . . . , Ym} of Y by connected affinoid sub-
domains Yµ such that L|Yµ×P

1
0
is trivial. �

Proof of Theorem 3.15 (b). At first, we discuss the special case X = Y × D1

and A := Y × {0}, where Y is a connected normal affinoid space. Moreover, we
choose a nonzero function f =

∑
ν∈Z

aν · ην ∈ O(Y ×D1
0) which vanishes on S.

By reason of dimension and in view of Theorem 3.15 (a), we may assume that
the coefficients of f have no common zeros on Y and that Y is smooth. Over
U × D1, the subset S extends a closed subset S of U × D1. After shrinking U
to a nonempty open subset set U0, we may assume that S ∩ (U0 × D1) is the
vanishing locus V (ω0) for some monic polynomial which is a Weierstraß poly-
nomial. Due to Lemma 3.20, there exists an admissible covering {Y1, . . . , Ym}
of Y by connected affinoid subdomains Yµ such that S ∩ (Yµ ×D1

0) = V (fµ) is
a principal divisor for µ = 1, . . . , n.

For a moment, we replace f by fµ, Y by Yµ and U by U ∩ Yµ if U ∩ Yµ 6= ∅.
Then the restriction of f =

∑
ν∈Z

aν · ην onto U × D1 can be written in the
form f = u · ω, where ω ∈ O(U)[η] is a monic polynomial with |ω| = 1 and u is
invertible on U ×D1

0. Now u is of the form u = ηN · ε, where ε ∈ O(U ×D1) is
a unit. So the coefficients aν = 0 vanish for all ν < N . Thus we see that f/ηN

is holomorphic on Y ×D1. This also happens to each fµ if Yµ ∩ U 6= ∅. So we
see that S extends to Yµ × D1 for such µ. Since Y is connected, this is passed
to all the Yµ. Finally, this shows the extension of S to the whole Y × D1.

It remains to reduce the general case to the special case just discussed. As
exercised in the proof of Theorem 3.15 (a), due to Proposition 1.15, we may
assume that X = Y × Dd, where Y is smooth and A := Y × {0}. The case
d = 1 was settled above. So assume that d ≥ 2 and S ⊂ Y × Dd

0 is irreducible
of dimension dim Y with Dd

0 := Dd − {0}. Let p : Y × Dd → Y × Dd−1 be the
projection. If S ⊂ p−1(Y × {0}), then the assertion follows by the induction

hypothesis. So we may assume that p(S) ∩ (Y × Dd−1
0 ) 6= ∅ is not empty. It

suffices to find a closed irreducible analytic subset T ⊂ Y × Dd−1 of dimen-
sion dim Y such that p(S) ⊂ T . The dimension of T ∩ (Y × {0}) is at most
dimY − 1, and hence we are done due to Theorem 3.15 (a) since S is an analytic
subset of p−1((Y × {0}) ∩ T )× Dd

0.
Now we want to show that there exists a finite covering Y = {Y1, . . . , Ym}

of Y and for each Yµ numbers ρµ, ̺µ ∈
√
|K×| such that

p : Yµ × Dd−1
0 (ρµ)× D1(̺µ) → Yµ × Dd−1

0 (ρµ)
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restricts to a finite morphism p|S . Let r1, r2 ∈
√
|K×| with r1 < r2. We choose

an affinoid function f ∈ OX(Y × Dd−1 ×A(r1, r2)) with

S ∩ (Y × Dd−1 ×A(r1, r2)) ⊂ V (f).

As above, we may assume that f does not vanish on {y} × {0} × A(r1, r2)
identically for any y ∈ Y . Then we look at the Laurent series

f =
∑

ν∈Z

hν · η
ν ∈ O(Y × Dd−1)〈r1/η, η/r2〉.

Now we apply Lemma 3.19 to the restriction of f to Y × {0} ×A(r1, r2). So
there exist a covering {Y1, . . . , Ym} and numbers ̺µ ∈

√
|K×| with r1 < ̺µ < r2

for µ = 1, . . . ,m such that f has no zeros on Yµ × {0}×A(̺µ, ̺µ). Then there
is an index n ∈ Z such that

|hν(y, 0)| · ̺
ν
µ < |hn(y, 0)| · ̺

n
µ for all ν 6= n and all y ∈ Yµ.

Due to the maximum principle, these inequalities remain true in a small neigh-
borhood of {0},

|hν(y, x)| · ̺
ν
µ < |hn(y, x)| · ̺

n
µ for all ν 6= n, for all (y, x) ∈ Yµ × Dd−1(ρµ),

for a small radius ρµ > 0. Then the projection

p : S ∩ (Yµ × Dd−1
0 (ρµ)× D1(̺µ)) → Yµ × Dd−1

0 (ρµ)

is finite. So, by the argument given above, it suffices to show the extension
of p(S). Hence we are finished by the induction hypothesis and finally by the
special case Y × D1

0. �

Theorem 3.15 was first shown in [25]. The more elegant proof given here
was made possible by the recent result of Kerz, Saito and Tamme [20] which
is explained in Theorem A.17.

4. Subsheaves

The extension property for subsheaves (Un) is a formal consequence of prop-
erties (Mn) and (An). By a precise analysis of the primary decomposition of
a coherent subsheaf F of a given coherent sheaf G, the proof of (Un) will be
reduced to a special extension problem for coherent subsheavesN ⊂Op

S , where
S ⊂ G is an irreducible analytic subset of G of dimension dimS ≥ n+ 1 and
where Op

S/N is a torsion-free OS-module.

Relative gap-sheaves. In this section, let X := Sp(A) be an affinoid space,

let M := M̃ be the coherent sheaf associated to a finitely generated A-mod-
ule M , and let N = Ñ ⊂ M̃ be the coherent subsheaf associated to an A-sub-
module N ⊂ M . If S ⊂ X is a closed analytic subset, then the relative gap-
subsheaf with respect to S is the subsheaf N [S]M ⊂ M which associates to an
open subset U ⊂ X the submodule of Γ(U,M) given by

Γ(U,N [S]M) := {s ∈ Γ(U,M); sx ∈ Nx for all x ∈ U − S}.

Münster Journal of Mathematics Vol. 15 (2022), 83–166



118 Werner Lütkebohmert

Definition 4.1. For an integer n ∈ N, the n-th (relative) gap-subsheaf N[n]M

is the subsheaf which associates to an open subset U ⊂ X the submodule of
Γ(U,M) given by

Γ(U,N[n]M) := {s ∈ Γ(U,M); sx ∈ Nx for all x ∈ U − T
for a closed analytic subset T ⊂ U

with dimT ≤ n}.

Next we will show that these functors are sheaves and that they are coherent.
For an affinoid subdomain U = Sp(B) of X = Sp(A) and a finitely generated

A-module M , we define MB :=M ⊗A B = Γ(U,M̃). For a submodule P ⊂M ,

we write M ∩ (PB) for the preimage Γ(U, P̃ ) ⊂ Γ(U, M̃) under the restriction

Γ(X, M̃) → Γ(U, M̃).

Lemma 4.2. Let Q ⊂ M be a primary submodule; then Q = M ∩ Q̃x for all
x ∈ Supp(M̃/Q̃).

Proof. Since Q ⊂ M is primary, the canonical map M/Q → (M/Q)x to its
localization with respect to the maximal ideal associated to x is injective for
x ∈ Supp(M̃/Q̃). Moreover, the map (M/Q)x → (M̃/Q̃)x is injective, too. �

Lemma 4.3. Let N =
⋂

i∈I Qi be a reduced primary decomposition of N
in M . Now consider a reduced primary decomposition QiB =

⋂
j∈Ji

Pi,j of
QiB in MB. Then NB has the primary decomposition NB =

⋂
i∈I′

⋂
j∈Ji

Pi,j

in MB which is reduced as well, where

I ′ := {i ∈ I; Supp(M̃/Q̃i) ∩ U 6= ∅}.

Let S ⊂ X be a closed analytic subset. Then it holds
(a) dimSupp(M̃/Q̃i) = dimSupp(M̃/P̃i,j) for all j ∈ Ji and i ∈ I ′.

(b) If Supp(M̃/Q̃i) 6⊂ S, then Supp(M̃/P̃i,j) 6⊂ S for all j ∈ Ji.

Proof. Since A → B is flat, we have NB =
⋂

i∈I′

⋂
j∈Ji

Pi,j . If qi ⊂ A resp.
pi,j ⊂ B are the prime ideals associated to Qi resp. Pi,j , then the set of asso-
ciated primes is given by

AssMB NB =
⋃

i∈I

AssB qiB =
⋃

i∈I′

{pi,j; j ∈ Ji};

cp. [31, Prop. 15, p. IV-25]. Since, for x ∈ U , the completions Âx = B̂x are
canonically isomorphic and since the localizations Ax resp. Bx are residue
rings of regular rings, we have dimB/pi,j = dimA/qi for i ∈ I ′ and j ∈ Ji.
The loci V (pi,j) are the irreducible components of V (qi) ∩ U for i ∈ I ′. So the
primes (pi,j ; j ∈ Ji, i ∈ I ′) are pairwise different. Thus NB =

⋂
i∈I′

⋂
j∈J′ Pi,j

is a reduced primary decomposition of NB in MB. Assertion (b) follows
implicitly. �

Proposition 4.4. If N = Ñ ⊂ M = M̃ is a coherent subsheaf of a coherent
sheaf M, then the gap-subsheaves N[n]M and N [S]M are coherent.

More precisely, if N =
⋂

i∈I Qi is a reduced primary decomposition of N
in M , then N[n]M resp. N [S]M is equal to the coherent sheaf associated to the
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submodule

N[n]M :=
⋂

i∈K

Qi with K := {i ∈ I; dim Supp(M̃/Q̃i) ≥ n+ 1}

respectively to

N [S]M =
⋂

i∈L

Qi with L := {i ∈ I; dim Supp(M̃/Q̃i) 6⊂ S}.

In particular, it holds N[n]M = N [T ]M with T :=
⋃

i∈I−K Supp(M̃/Q̃i).

Proof. By Lemma 4.2, it is clear that Γ(X, Ñ[n]M ) = Γ(X,N[n]M). Due to
Lemma 4.3, we have for any open affinoid subdomain U = Sp(B) of X that
the primary decomposition of N[n]B is of the same type as the one of N[n].
Thus we see that Γ(U, Ñ[n]M ) = Γ(U, Ñ[n]M). The assertion for N [S]M can be
shown in the same way. �

Corollary 4.5. For any x ∈ X, the associated prime ideals p ⊂ OX,x of the
OX,x-module N[n+1]M/N[n]M are of dimension n+ 1 exactly.

Extension of subsheaves. In this section, let X = Sp(A) be an affinoid
space, G ⊂X a nonempty open subset, and let n ∈ N be an integer. Moreover,
we consider a coherent sheaf G on X and a coherent subsheaf F ⊂ G := G|G.
We assume that F satisfies the condition F = F[n]G .

Theorem 4.6. If the couple (G,X) has properties (Mn), (An) and (En), then
it also has property (Un). In particular, ball figures of dimension (n− 1) and
Hartogs figures of dimension n have property (Un).

For the proof, we have only to show that there is a coherent subsheaf F ⊂ G
with F|G = F . The assertion of the uniqueness follows from (En), explained
in § 1. For proving the existence, we firstly concentrate on a special case;
this part is due to Siu and Trautmann in the complex case; cp. [33]. For
completeness, we discuss it here with full proofs.

So let S ⊂ G be an irreducible closed analytic subset of dimension dimS =
m+1≥ n+1. Due to property (An), the subset S extends to a closed analytic
subset S ⊂ X . Next we equip S and S with their reduced structure. So, for
any section f ∈ OS(U) over an open subset U ⊂ S, the following holds.
(a) If dimSupp(fOS) ≤ m, then f = 0.
(b) If dimSupp(OS/fOS) ≤ m, then f is a nonzero divisor in OS(U).

Lemma 4.7. Keep the situation introduced above. Let S be a coherent sheaf
on S, and let ϕ : Or

S → S be a morphism. If there is a point x ∈ S such that
φx is an isomorphism, then ϕ is injective and there is a unique factorization

Or
S S

Mr
S

ϕ

ψ
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into the r-fold product of meromorphic functions MS on S. Especially, the
kernel of ψ has dimension dimSupp(ker(ψ)) ≤ m.

Proof. Since S is irreducible, the injectivity of ϕ follows from the above remark
since ϕx is an isomorphism. For T := Supp(coker(ϕ)), we have dimT ≤ m as
well. Thus any factorization ψ′ coincides with ψ and S − T . Since MS has
no sections with support of lower dimension, we have ψ = ψ′. This settles the
uniqueness.

Concerning the existence, note that, for any open affinoid subset U ⊂ S,
there exists a nonzero section f ∈ OS(U) such that f · S|U ⊂ Im(ϕ|U ) since
S(U) is finitely generated. Then we define ψU (s) := f−1ϕ−1(f · s) for sections
s ∈ S(U). It is clear that ψU is well-defined and gives rise to a morphism
ψ : S → Mr

S . The kernel of ψ is contained in T . �

Lemma 4.8. Keep the situation of Lemma 4.7. Let R be a coherent sheaf
on X. If H ⊂R :=R|G is a coherent subsheaf on G such that R/H is an OS-
module which is free of torsion, then there exists a coherent subsheaf H ⊂ R
such that R/H is an OS-module which is free of torsion with H|G = H.

Proof. Let (r1, . . . , rp) be a system of generators of R. Then S := R/H is
generated by the residue classes s1, . . . , sp of r1, . . . , rp. Since the flat locus of
a torsion-free OS-module is open and not empty over a domain, there exists
a point x ∈ S such that Sx is free. We may assume that s1, . . . , sq is an
OS,x-basis of Sx. Due to Lemma 4.7, there exists a commutative diagram

Oq
S =

⊕q
i=1 OS · ei S = R/H R Op

X =
⊕p

i=1 OS · ei

Mq
S =

⊕q
i=1 MS · ei

ϕ′

ψ

ϕ

χ

where ϕ′(ei) := si for i = 1, . . . , q and ϕ(ei) := ri for i = 1, . . . , p. Since
the couple (G, X) satisfies property (Mn), any element ψ(si) extends to an
element ti ∈ Mq

S(S) for i = 1, . . . , p. So we obtain a coherent OS-module

S :=OS · t1 + · · ·+OS · tp which is free of torsion. Now we define a morphism

χ : Op
X → S by setting χ(ei) := ti for i = 1, . . . , p. Then H := ϕ(ker(χ)) ⊂ R

is the desired extension of H, where ϕ : Op
X → R is defined by ϕ(ei) := ri for

i = 1, . . . , p. Indeed, by Lemma 4.7, we know that ψ is injective and hence that
H = ϕ(ker(χ)), where χ := χ|S . �

Proof of Theorem 4.6. If m≥ dimX , then we have F = F[m]G . Now let m ∈ N

be the largest number with F = F[m]G . We proceed by descending induction
onm, and we may assumem<n := dimX . Due to the induction hypothesis, we
may assume that F[m+1]G extends to a coherent sheaf onX . So we may assume
that G = F[m]G . Then, due to Corollary 4.5, we know that S := Supp(G/F)
has pure dimension m+ 1. Because of m ≥ n and property (An), the closed
analytic subset S extends to a closed analytic subset S of X which is of pure
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dimension m+ 1. Denote by S1, . . . ,Sr the irreducible components of S. Then
Si := Si ∩G for i = 1, . . . , r are the irreducible components of S. Now we set

F i := F
[⋃

j 6=i

Sj

]
G
, and hence F =

r⋂

i=1

F i

by Proposition 4.4. So it suffices to show that the subsheaves F1, . . . , Fr

extend to X . Thus we may assume that S = Supp(G/F) is irreducible. Now
let I ⊂ OX be the reduced sheaf of ideals associated to S. There exists an
integer ℓ ∈ N with Iℓ · G ⊂ F . Then we consider the quotients

G = (F : Iℓ) ⊃ · · · ⊃ Ft := (F : It) ⊃ · · · (F : I) ⊃ · · · ⊃ F .

Due to [31, Prop. 4, p. I-13], it holds (Ft)[m]G = Ft. The successive quo-
tients Ft+1/Ft are OS-modules which are free of torsion. By Lemma 4.8 and
descending induction, we see that each Ft extends to a coherent subsheaf
F t ⊂ F t+1 ⊂ Fℓ = G.

The uniqueness follows by property (En). Indeed, consider two extensions F
and H of F . Then consider the subsheaf R := (H+F)/H. Since H = H[n−1],
the support Supp(R) is at least of dimension n or empty. So, by property (En),
we have F ⊂ H and, by symmetry, H ⊂ F as well. The assertion concerning
ball figures follows from Proposition 2.5, Proposition 3.3 and Proposition 1.12.
The ones for Hartogs figures follow from Theorem 2.11 and Theorem 3.6. �

5. Invertible sheaves

In the following, let A be an affinoid domain, Y := Sp(A) the associated
affinoid space and V ⊂ Y a nonempty open subset of Y . At first, we recall two
well-known facts; cp. [24, Prop. 1.3.4]

Lemma 5.1. The following statements hold.
(a) A function f =

∑∞
i=0 fi · η

i ∈ A〈η〉 has no zeros if and only if f0 ∈ A× is

unit and |fi · f
−1
0 | < 1 for all i ≥ 1.

(b) A function f =
∑∞

i=−∞ fi · ηi ∈ A〈η±1〉 has no zeros if and only if there

exists an m ∈ Z such that fm ∈ A× is a unit and |fi · f−1
m | < 1 for all

i 6= m.

Lemma 5.2. Any invertible function h ∈ A〈η±1〉× can be written as a product
h = ηm · h+ · h−, where h+ ∈ A〈η〉× and h− ∈ A〈η−1〉× are units.

Lemma 5.3. If an invertible function

e =
∑

i≤0,j≤0

ei,j · η
i
1 · η

j
2 ∈ A〈η−1

1 , η−1
2 〉×

has a representation e = f1 · f2 in A〈η±1
1 , η±1

2 〉× by units f1 ∈ A〈η±1
1 , η2〉×

and f2 ∈ A〈η1, η
±1
2 〉×, then e can be presented in the form e = g−1 · g−2 with

units g−i ∈ A〈η−1
i 〉× for i = 1, 2. Furthermore, the coefficients ei,j of e satisfy

ei,j = ei,0 · e
−1
0,0 · e0,j for all i, j.
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Proof. Due to Lemma 5.2, the unit e= f1 · f2 can be decomposed into a product

e = ηm1 · ηn2 · f++ · f+− · f−+ with units f∗∗ ∈ A〈η∗1 , η
∗
2〉

×.

Since the coefficient e0,0 dominates the other coefficients, we have m = n = 0.
Then we obtain

f++ · f+− = e · (f−+)−1 ∈ A〈η1, η
±1
2 〉 ∩ A〈η−1

1 , η±1
2 〉× = A〈η±1

2 〉.

Again by Lemma 5.2, we have that f++ · f+− = g+2 · g−2 with g∗2 ∈ A〈η∗12 〉. So
it follows

g−1 := f−+ · g+2 = e · (g−2 )
−1 ∈ A〈η−1

1 , η2〉 ∩ A〈η−1
1 , η−1

2 〉 = A〈η−1
1 〉.

Thus we obtain e = g−1 · g−2 . The formula for the coefficients follows by com-
puting the coefficients of e = g−1 · g−2 . �

Theorem 5.4. Let Y = Sp(A) be an irreducible and reduced affinoid space.
Let L be a line bundle on X := Y × ∂D2. Assume that L|Xi

is free on Xi :=
{x = (y, z1, z2) ∈ X ; |zi| = 1} for i = 1, 2. If there is an open nonempty subset
V ⊂ Y such that L|V ×∂D2 is trivial, then L is free.

Proof. We may assume that V = Sp(B) is irreducible. Since L|Xi
is trivial,

L is presented by a unit e ∈ B〈η±1
1 , η±1

2 〉. Due to Lemma 5.2, the unit e can
be written in the form

e = ηm1 · ηn2 · e++ · e+− · e−+ · e−−

with units e∗∗ ∈ A〈η∗1 , η
∗
2〉

×. Now we transform the basis of Γ(X1,L) by the
units ηm1 · e++ · e−+ and the basis of Γ(X2,L) by the unit ηn2 · e+−. Thus we
see that L can be represented by

e = e−− =
∑

i≤0,j≤0

ei,j · η
i
1 · η

j
2 ∈ A〈η−1

1 , η−1
2 〉×.

Since L is trivial over V × D2, the formula of Lemma 5.3 can be applied. So
we have ei,j = ei,0 · e

−1
0,0 · e0,j for all i, j in the ring B. By the identity principle,

this equation holds in A already. Therefore, e decomposes into a product
e = g−1 · g−2 with g−i ∈ A〈η−i 〉 for i = 1, 2. �

Corollary 5.5. There are line bundles on ∂D2 which are not extendable onto
D2 even as a coherent sheaf.

Proof. Let e ∈ K〈η−1
1 , η−1

2 〉× be a unit such that its coefficients do not satisfy
the rule of Lemma 5.3. Such a unit defines a line bundle on ∂D2. If L would
be extendable as a coherent sheaf L on D2, then its bi-dual L∗∗ would be
an extension of L as well. But in dimension 2, any reflexive coherent sheaf
is locally free. Therefore, L would be extendable as a line bundle and hence
as the trivial line bundle. Thus the coefficients ei,j would have to satisfy
the rule of Lemma 5.3. Contradiction! There even exist units e such that
the associated line bundle has only the trivial global section; for example, set
e := 1 +

∑∞
ν=1 c

νη−ν
1 η−ν

2 for some c ∈ K× with |c| < 1. �
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Remark 5.6. Any line bundle on D2 − {0} is free.

Proof. Any line bundle on D2 − {0} is associated to an invertible function
e ∈ Γ(D2 − V (η1η2),OD2). Now it easily follows from Lemma 5.1 that there
exist integers m,n ∈ N such that e · ηm1 · ηn2 is an invertible function on D2. �

Remark 5.7. There exist vector bundles of rank 2 on D2 − {0} which are not
extendable to D2 as a coherent sheaf.

Proof. Let ci ∈K× be constants such that e :=
∑−∞

i=1 ci · ηi1 · η
i
2 is holomorphic

on D2 −V (η1 · η2). Let F be the vector bundle on D2 −{0} given by the matrix(
1 e
0 1

)
. Now, if F would be extendable to a coherent sheaf on D2, passing to

the reflexive closure which is locally free over a regular ring of dimension 2,
we see that F would be extendable to a vector bundle on D2. So there would
exist sections si := (ai, bi) ∈ Γ(D2 − {0},OD2) for i = 1, 2 generating F ; i.e.,
ai, bi ∈ Γ(D2 − V (η1),OD2) such that the sections ai − e · bi and bi belong
to Γ(D2 − V (η2),OD2). In particular, the section bi necessarily belongs to
Γ(D2,OD2) and the locus V (b1, . . . , bn) must be contained in V (η1). Then there
exist functions h1, h2 in Γ(D2,OD2) such that a power η1 has a representation

ηr1 = h1 · b1 + h2 · b2.

Then we obtain

s = h1 · s1 + h2 · s2 = (a, ηr1) ∈ Γ(D2 − {0},F).

This implies a − e · ηr1 ∈ Γ(D2 − V (η2),OD2). The latter is impossible since
a belongs to Γ(D2 − V (η1),OD2) and the term e · ηr1 has infinitely many non-
vanishing terms ci · η

i+r
1 · ηi2 with i ≤ 0. �

Remark 5.8. Theorem 5.4 reproves a special case of the already known re-
sult Theorem 3.6: any hypersurface S ⊂ (Dn × ∂D2) ∪ (U ×D2) of the Hartogs
figure (Dn × ∂D2) ∪ (U × D2) extends to a hypersurface S ⊂ Dn+2, and the
extension is unique.

Using the result [27, Satz 2] that any line bundle on X ×D1 × ∂D1 is locally
free over X , we obtain the more general result from Theorem 5.4, first shown
in [26].

Corollary 5.9. Let X be an irreducible affinoid space and U ⊂X a nonempty
open subset. Consider the Hartogs figure H := (X × ∂D2) ∪ (U × D2). Then
any hypersurface S ⊂H extends to a closed hypersurface S ⊂X ×D2 uniquely.

Proof. We may assume that X is reduced. So X is regular outside a closed
subset A of codimension 1. Due to Proposition 3.3, it suffices to show that S
extends to (X −A)×D2. Note that X −A meets U . Since any regular ring is
factorial, the local rings of (X −A)× D2 are factorial, and hence the sheaf of
ideals associated to S is a divisor ideal. Thus we can apply Theorem 5.4, and
hence we see that S extends to a closed analytic subset of (X −A)× D2. �
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6. Cohomology of ball figures

In this section, we will provide some technical tools which are necessary to
treat the extension of coherent sheaves. We will study local cohomology of
coherent sheaves, absolute gap sheaves and the torsion of the cohomology of
ball figures.

Local cohomology. In the following, let X be a rigid space, mostly an affi-
noid space, and let Y ⊂X be a closed analytic subset, and set U :=X − Y ; we
denote by j : Y →֒ X its embedding. As in [18], one defines local cohomology
groups Hq

Y (X, G) with support in Y for n ∈ N on the category of coherent
sheaves; i.e., this is the derived functor of ΓY (G) := ker(G(X) → G(U)). In
the same way, one introduces local cohomology sheaves Hq

Y (G) resp. the direct
images Rqj∗(G) for q ∈ N. In the complex analytic case, the following result
of Frenkel [1, p. 218] or [32, Lem. 3.2] is essential which can be proved in rigid
geometry by the same arguments.

Proposition 6.1. Let X = Sp(A) be an affinoid space assumed to be con-
nected and U = Sp(B) ⊂ X a nonempty open affinoid subdomain. Consider
the Hartogs figure H := (U × Dd) ∪ (X × ∂Dd) with d ≥ 1. Then we have that
(a) H0(X × Dd,OX×Dd)

∼

→ H0(H,OX×Dd) is bijective and
(b) the cohomology groups Hq(H,OX×Dd) = 0 vanish for all 1 ≤ q < d.
These results hold for locally free OX×Dd-modules as well.

Proof. (a) The assertion follows from Proposition 1.9.
(b) In principle, the assertion is shown by splitting the Laurent expansions.

Indeed, let η1, . . . , ηd be the coordinates on Dd. Let V := {V0, . . . , Vd} with

V0 := U × Dd and Vi := {z ∈ X × ∂Dd; |ηi(z)| = 1} for i = 1, . . . , d.

For q = 1, . . . , d− 1 and i0 < · · · < iq, set Vi0,...,iq := Vi0 ∩ · · · ∩ Viq . For a func-
tion f on Vi0,...,iq with Laurent expansion f =

∑
ν∈Z

bνη
ν
j for j ≥ 1, set

ej(f) =
∑

ν∈N

bνη
ν
j .

For ξ = (ξi0,...,iq ) ∈ Cq(V,O), we have (1 − e1) · . . . · (1 − ed)(ξ) = 0. Indeed,
for j /∈ {i0, . . . , iq}, it is obvious for the component ξi0,...,iq and hence for ξ if

1 ≤ q < d− 1. For (i1, . . . , iq) = (1, . . . , d) and ξ ∈ Zd−1(V,O), we have

0 = ∂d−1(ξ) = ξ1,...,d +

d∑

j=1

(−1)jξ0,1,...,ĵ,...,d on V0 ∩ · · · ∩ Vd.

Thus we see (1− e1) · . . . · (1 − ed)ξ1,...,d = 0. So we obtain the identity

ξi0,...,iq = (1− e2) . . . (1− ed)e1ξi0,...,iq(2)

+ (1− e3) . . . (1− ed)e2ξi0,...,iq + · · ·+ edξi0,...,iq .
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Now we define the section σq : Z
q(V,O) → Cq−1(V,O) by mapping ξ to

σq(ξ) = ζ := (ζi0,...,iq−1
), where

ζi0,...,iq−1
:= (1 − e2) . . . (1 − ed)e1ξ1,i0,...,iq−1

+ (1− e3) . . . (1− ed)e2ξ2,i0,...,iq−1
+ · · ·+ edξd,i0,...,iq−1

for every ξ ∈ Zq(V,O) and every q = 1, . . . , d− 1.
Since 0 = (∂qξ)j,i0,...,iq = ξi0,...,iq +

∑q
ℓ=0(−1)ℓ+1ξj,i0,...,îℓ,...,iq , we have

ejξi0,...,iq =

q∑

ℓ=0

(−1)ℓejξj,i0,...,îℓ,...,iq .

Then, by using (2), we obtain ∂q−1ζ = ξ for ξ ∈ Zq(V,O) and 1 ≤ q ≤ d− 1.
The additional assertion holds since any finitely generated locally free mod-

ule is a direct summand of a finitely generated free module. �

For a coherent sheaf F , we define the depth or homological codimension

cdh(F) := min{cdh(Fx); x ∈ X},

where cdh(M) of a finitely generated moduleM over a local ring is the maximal
length of an M -sequence; i.e., (a1, . . . , ap) are elements in the maximal ideal
such that each ai is a nonzero divisor on M/(a1, . . . , ai−1)M ; cp. [31, p. IV-12].

We remark that cdh(M) = cdh(M̂) for the completion M̂ ofM ; cp. [31, Prop. 8,
p. IV-16]. Therefore, if X = Sp(A) is an affinoid space and if a coherent OX -
module F is associated to a finitely generated A-module M , then cdh(Fx) =
cdh(Mx) coincide, whereMx is the localization ofM with respect to a maximal
ideal x of A.

Corollary 6.2. Keep the situation of Proposition 6.1, and assume that the
local rings of X are regular. Let F be a coherent sheaf on X × Dd. Then the
following canonical maps are
(a) (a.0) H0(X × Dd,F)

∼

→ H0(H,F), bijective for 0 < cdh(F)− dimX,
(a.1) Hq(H,F) = 0 for 1 ≤ q < cdh(F)− dimX,

(b) (b.0) H0(X ×Dd,F)
∼

→H0(X × ∂Dd,F), bijective for 1< cdh(F)− dimX,
(b.1) Hq(X × ∂Dd,F) = 0 for 1 ≤ q < cdh(F)− dimX − 1.

Proof. (a) Since the local rings ofX ×Dd are regular, too, we have the following
formula for the homological dimension [31, Prop. 21, p. IV-36]:

dh(Fz) = (dimX + d)− cdh(Fz) for all z ∈ X × Dd.

We choose short exact sequences

0 → Qi → Oti
X×Dd → Qi−1 → 0

for i = 0, . . . , r with r := (dimX + d)− cdh(F) starting with Q0 := F . Then
the sheaf Qr is locally free. Due to Proposition 6.1, we know that the canonical
morphism

Hq(H,F)
∼

→ Hq+r(H,Qr) = 0 for all 1 ≤ q < d− r = cdh(F)− dimX
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is bijective. The case q = 0 follows by Proposition 1.9 since H1(H,Q1) =
Hr(H,Qr) = 0. The latter is true due to Proposition 6.1 since r = dimX −
cdh(F) + d < d.

Part (b) follows from (a) because X × ∂Dd is a Hartogs figure of dimension
dimX + 1. �

Corollary 6.3. Let F be a coherent sheaf on an affinoid space X of pure
dimension n+ d.
(a) Let B ⊂X be a ball figure of dimension n. Then

(a.0) the restriction H0(X,F)
∼

→H0(B,F) is bijective for 1< cdh(F)−n,
(a.1) Hq(B,F) = 0 for 1≤ q < cdh(F)− dimX − 1.

(b) Let Y ⊂X be a closed analytic subspace with dimY < dimX. Then
(b.0) H0(X,F)

∼

→H0(X − Y,F) is bijective if 1< cdh(F)− dimY ,
(b.1) Hq(X − Y,F) = 0 for 1≤ q ≤ cdh(F)− dimY − 1.

(c) The cohomology sheaves Hq
Y F = 0 vanish for 0≤ q < cdh(F)− dimY .

Proof. (a) Let B := Xf,ε be a ball figure with f = (f1, . . . , fs). Due to Lem-
ma 1.5, there is a finite map φ : X → Dn+d with φ−1(Dn × ∂Dd) ⊂ B. Then
the map

ψ := (φ, f) : X → Dn+d+s

is finite as well, and we have ψ−1(B′) ⊂ B, where

B′ := (Dn × ∂Dd × Ds) ∪ (Dn+d × ∂Ds(ε, 1)).

Then we apply Corollary 6.2 (b) to ψ∗F and B′, where ∂Ds(ε,1) denotes Ds(1)
minus the open disc Ds

+(ε). Note that Proposition 6.1 remains true if ∂Ds(1)
is replaced by ∂Ds(ε, 1).

Assertion (b) follows in a similar way by replacing ∂Ds(ε, 1) by Ds − {0} if
f is chosen such that Y = V (f) and |fσ| ≤ 1.

Part (c) follows from (b) since Hq(X,F) = 0 for all q ≥ 1 and there are
no nonzero sections of F with support contained in Y for q = 0 if we have
cdh(F) > dimY . �

For a coherent OX -module F , we define

Sm(F) := {x ∈ X ; cdh(Fx) ≤ m}.

If X = Sp(A) and F is associated to an A-module M ; i.e., F = M̃ , then we
have

Sm(F) = {x ∈ X ; cdh(Mx) ≤ m},

where Mx is the localization of M with respect to the maximal ideal x ⊂ A.
Thus we know that Sm(F) is a closed analytic subset of X since the subset,
where a sequence of elements is an M -sequence, is open. Moreover, we have
that dim Sm(F) ≤ m. Indeed, we may assume that A = Tn is regular. Then
consider a resolution with finitely generated free A-modules Li,

0 → K → Ln−m−2 → · · · → L0 → M → 0.
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Consider now a prime ideal p∈ Spec(S) with dimA/p=m+1. For the localiza-
tion of A with respect to p, we have dimAp = n− (m+ 1). So the localization
Kp is a free Ap-module since Ap is a regular ring. Then there exists a maximal
ideal x ∈ X with x ∈ V (p) such that Kx is a free Ax-module. Then it follows
by [31, Prop. 21, p. IV-35] that

cdh(Mx) ≥ n− (n− (m+ 1)) = m+ 1.

In particular, x does not belong to Sm(F). Thus every irreducible component
of Sm(F) has dimension at most m.

Due to the vanishing result Corollary 6.3, all theorems about local coho-
mology in algebraic geometry remain true in rigid geometry; cp. [18, Exps. II
and III].

Proposition 6.4. Let F be a coherent sheaf on an affinoid space X and Y ⊂X
a closed analytic subset. Denote by ι : X − Y → X the inclusion map. Then
we have the following:
(a) Hq

Y F is coherent for all q with 0 ≤ q < cdh(F|X−Y )− dimY ;
(b) Rqι∗(F) is coherent for all q with 0 ≤ q < cdh(F|X−Y )− dimY − 1.

Proof. At first, we remark that H0
Y F = 0[Y ]F is always coherent due to Propo-

sition 4.4.
(a) We may assume that X = Dn. Let us first consider the case where F is

locally free on X − Y . In this case, we consider the canonical map F → F∗∗

from F to its bi-dual F∗∗; this morphism is bijective on X − Y . Then we have
an exact sequence

0 → K → F
α
→ F∗∗ → C → 0.

The sheaves K = H0
Y F and the cokernel C of α are coherent as well, and their

support is contained in Y . Therefore, we have Hq
Y K = 0 and Hq

Y C = 0 for all
q ≥ 1.

Now we consider q ≥ 1. So we may assume dimX − dimY ≥ 2. The canon-
ical map F∗∗ ∼

→ ι∗F∗∗ is bijective. Thus we obtain Hq
Y F = Hq

Y F
∗∗ for all

q ≥ 1. So it suffices to show the coherence of Hq
Y (F

∗∗). Now look at an exact
sequence

0 → K → Ot
X → F∗ → 0.

This sequence gives rise to an exact sequence

0 → F∗∗ → Ot
X → Q1 → 0.

The sheaf Q1 is locally free on X − Y . Due to Corollary 6.3, the coherence
of Hq

Y (F
∗∗) is equivalent to the coherence of Hq−1

Y Q1 for 1 ≤ q < n− dim Y .
This shows the coherence of H1

Y F . Next we apply the same process to Q1. So
we obtain the coherence of H2

Y F and so on.
For the general case, we proceed by descending induction on cdh(F|X−Y ).

The beginning at n = cdh(F|X−Y ) was done above. For the induction step,
consider an exact sequence

0 → Q → L → F → 0,
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where L is locally free on X . Then cdh(Q|X−Y ) ≥ cdh(F|X−Y ) + 1. Due to

Corollary 6.3 (c), we have Hq−1
Y Q=Hq

Y F for 1≤ q < n− dimY . By the induc-

tion hypothesis, we obtain the coherence of Hq−1
Y Q for 1 ≤ q < cdh(Q|X−Y )−

dim Y and hence the coherence of Hq
Y F for 0 ≤ q < cdh(F|X−Y )− dimY .

(b) It remains to show the coherence of Rqι∗F . Due to [18, Exp. II,
Cor. 2.11], we have the exact sequences

0 → H0
Y F → F → ι∗F → H1

Y F → 0,

0 → Rqι∗F → Hq+1
Y F → 0.

The coherence of H1
Y F implies the coherence of ι∗F . For q ≥ 1, we have the

identification Rqι∗F = Hq+1
Y F , and hence the coherence of Rqι∗F follows for

q + 1 < cdh(F|X−Y )− dimY . �

Lemma 6.5. Let F be a coherent sheaf on Sp(A) associated to a finitely gen-
erated A-module M . Then we have dimSk+j(F) ≤ k for r ≤ k < m if and only
if cdh(Mp) ≥ j for all p ∈ Spec(A) with r + 1 ≤ dim(A/p) ≤ m.

Proof. We may assume that A = Tn is the n-dimensional Tate algebra. Then
we consider a resolution with free Tn-modules L∗,

0 → K → Ln−k−j−2 → · · · → L0 → M → 0.

Since Tn is regular, we obtain, for the homological dimension of the localization
of K at x,

dh(Kx) = n− cdh(Mx)− (n− k − j − 1).

If p ∈ Spec(A) satisfies r + 1 ≤ dim(Tn/p) = k + 1 ≤ m, then there is a point
x ∈ V (p) − Sk+j(F). Since Kx is free module, Kp is free, too, and hence
cdh(Mp) = n− k − 1− dh(Mp) ≥ j.

Conversely, if Kp is free for a p∈ Spec(Tn) with r+1≤ dim(Tn/p) = k+1≤
m, then there exists an x ∈ V (p) such that Kx is free. So we have cdh(Fx) ≥
k + j + 1. Thus we see that dimSk+j(F) ≤ k for all r ≤ k < m. �

Definition 6.6. For a coherent sheaf F on X , we define the m-th absolute
gap sheaf F [m] of F as the sheafification of the presheaf which associates the
direct limit lim→F(U − S) to an open subdomain U , where the limit runs over
all closed analytic subsets S ⊂ X of dimension dimS ≤ m.

Proposition 6.7. Let F = M̃ be a coherent sheaf on an affinoid space X, and
let m ∈ N be an integer. Then we have the following.
(a) dimSupp(0[m](F) ≤ m− 1 if and only if dimSm(F) ≤ m− 1.

(b) If dimSm+1(F) ≤ m, then F [m] is coherent.
(c) F = F [m] is true if and only if dimSk+2(F) ≤ k holds for all k < m.
(d) If dimSupp(0[m+2]F) ≤ m+ 1, then F [m] is coherent.
(e) If F = F [m], then 0[m+1]F = 0.

Proof. We may assume that X = Dn.
(a) Due to Corollary 4.5, the module M has no associated prime ideals

with dim p ≥ m if and only if dim Supp(0[m]F ) ≤ m − 1. So the assertion is
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equivalent to asking that cdh(Mp) ≥ 1 for all prime ideals of dimension m.
By Lemma 6.5, the assertion follows.

(b) The assertion follows from Corollary 6.3 and Proposition 6.4 applied to
Y := Sm+1(F). Indeed, by Corollary 6.3, F [m] = ι∗F , where ι : (X − Y ) → X
is the inclusion. By Proposition 6.4, the sheaf ι∗F = F [m] is coherent.

(c) If F = F [m], then for any prime ideal p ⊂ Tn with dim(Tn/p) ≤ m,
the canonical map Γ(Spec(Tn),M

a)
∼

→ Γ(Spec(Tn)− V (p),Ma) is bijective as
well, where Ma is the algebraic sheaf on Spec(Tn) associated to M . Due to [18,
Exp. III, Cor. 3.5], the latter is equivalent to cdh(Mp) ≥ 2 for all p ∈ Spec(Tn)
with dim(Tn/p) ≤ m. Then the “only if” is clear by Lemma 6.5.

For the converse implication, we have that G := F [m] is coherent due to (b)
since dim Sm+1(F) ≤ m. Then we will show by decreasing induction that
the canonical morphism F → G is an isomorphism over X − Sk+1(F) for
k = m, . . . , 1. For k = m, we have cdh(Fx) − dim Y ≥ m + 2 − m = 2 for
x ∈X − Sm+1F and dimY ≤m. Then we have F(U) =F(U − Y ) for any open
subdomain U of X and any closed subvariety Y of U of dimension dimY ≤ m
due to Corollary 6.3 (b). Thus we have that F →G is bijective overX −Sm(F).
Now we turn to the induction step. So we assume that F → G is bijective over
X − Sk+1(F). Since cdh(Fx)≥ k+1 for X − Sk(F) and dimSk+1(F)≤ k− 1,
we have cdh(Fx)− dimSk+1(F) ≥ 2. Then it follows by Corollary 6.3 (b) that
F → G is bijective over X − Sk(F). Because of S1(F) = ∅, the assertion
follows.

(d) This follows from (a) and (b).
(e) This follows from (a) and (c). �

Extension of sections in coherent sheaves. For the assertion on the
uniqueness in (Gn), we need extension properties for morphism between co-
herent sheaves of type G = G[m]. A morphism is a section of H :=Hom(F ,G).
If F = F [m] and G = G[m], then it also holds H = H[m]. Therefore, it suffices
to study extension properties of coherent sheaves G fulfilling G = G[m].

Proposition 6.8. Let X be an affinoid space of pure dimension n + d with
d ≥ 2 and B ⊂ X a ball figure of dimension n. If F = F [n] is a coherent sheaf
on X, then the restriction map Γ(X,F) → Γ(B,F) is bijective.

Proof. Due to Proposition 6.7 (e), the condition F = F [n] implies that the sup-
port of any nonzero section of F has dimension at least n+2. So the restriction
map Γ(B,F) → Γ(B′,F) is injective for any ball figure B′ of dimension n by
Lemma 1.7. Thus it suffices to show the assertion for a special ball figure
B′ ⊂ B. Since F = F [n], we have dimSn+1 ≤ n− 1 due to Proposition 6.7 (c).
Then there exists a finite map φ : X → Dn+d by Lemma 1.5 such that

B′ := φ−1(Dn × ∂Dd) ⊂ B and Sn+1(F) ∩ φ−1(Dn−1 × ∂Dd+1) = ∅.

So it remains to show that the restriction map

Γ(Dn+d, φ∗F) → Γ(Dn−1 × ∂Dd, φ∗F)
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is bijective. If n = 0, then S1(F) = ∅, and hence the assertion follows from
Corollary 6.2 (b.0). If n ≥ 1, then it follows from Corollary 6.2 (b.0) that any
section of Γ(Dn × ∂Dd, φ∗F) can be extended to a section on Dn−1 × ∂D1 ×Dd;
i.e., to a section of Γ(Dn−1 × ∂Dd+1, φ∗F). Thus we see that the assertion
follows by induction. �

Moreover, we still need a sharper version of Proposition 6.8 in the following
situation:

X := Dn−1 ×A(ε, 1) ⊃ U = Dn−1 × ∂D1,

A(ε, 1) := {z ∈ D1; ε ≤ |z| ≤ 1} for some ε ∈ |K×|,

H := (U × Dd) ∪ (X × ∂Dd).

Proposition 6.9. Keep the situation introduced above. Let F = F [n−1] be
a coherent sheaf on X ×Dd; then the restriction map Γ(X × Dd,F)

∼

→ Γ(H,F)
is bijective.

Proof. Since dim Sn(F) ≤ n − 2 due to Proposition 6.7 (c), there exists an
h ∈ Tn−1 with |h| = 1 such that the reduction S̃n(F) of Sn(F) is contained

in the locus of h̃. By Corollary 6.2 (a.0), we have that the restriction map
Γ(Xh̃ ×Dd,F)

∼

→ Γ(Hh̃,F) is bijective. Since (Xh̃ ×Dd) ∪ (X × ∂Dd) is a ball
figure of dimension (n− 1), the assertion follows from Proposition 6.8. �

Proposition 6.10. Let X = Sp(A) be an affinoid space of dimension n whose
local rings are Cohen–Macaulay. Assume that X is irreducible, and let U ⊂X
be a nonempty open subdomain. Let g̃ ∈ Ã[η] be a monic polynomial, and let
F = F [n−1] be a coherent sheaf on X × D1. Assume that F is locally free on
(X × D1)g̃. Then the restriction morphism

Γ(X × D1,F)
∼

→ Γ(H,F) for H := (U × D1) ∪ (X × D1)g̃

is bijective.

Proof. Let g ∈ A[η] be a monic lifting of g̃. Then g gives rise to a finite
morphism φ: X ×D1 →X ×D1 such that φ−1(X × ∂D1)= (X ×D1)g̃. Because
of dim Sn(F) ≤ n − 2 due to Proposition 6.7 (c), its image S ⊂ X under the
projection to X is a closed subset of dimension n − 2 in X . Namely, Sn(F)
reduces into V (g̃), and hence the projection is finite when restricted to Sn(F).
So there exists a nonzero element a ∈ A such that Sn(F) ⊂ V (a). Due to
Proposition 6.8, we may assume a = 1. Then F is associated to a locally
free module P . Then there exists a direct summand Q such that P ⊕ Q is
a free A[η]-module. Now the assertion follows by the extension property of
holomorphic functions; cp. Lemma 2.3. �

Proposition 6.11. Let X be an affinoid space of pure dimension n+ d with
d ≥ 2, and let B′ ⊂ B := Xf,ε be ball figures of dimension n. If F = F [n] is
a coherent sheaf on X, then the restriction map Γ(B,F)

∼

→Γ(B′,F) is bijective.
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Proof. The restriction map is injective; cp. Lemma 1.7. By Lemma 1.5, there
exists a finite morphism φ : X → Dn+d with φ−1(Dn × ∂Dd) ⊂ B′. We may
assume that B′ = φ−1(Dn × ∂Dd). For any g ∈ OX(X) with |g| = 1, the
set B′

g̃ ⊂ Xg̃ is a ball figure of dimension n. By Proposition 6.8, we have

Γ(Xf̃σ ,F) = Γ(Bfσ ,F) for any fσ in f . So every z ∈ Γ(B′,F) has an extension
z′σ ∈ Γ(Xf̃σ ,F) and hence an extension zσ ∈ Γ(Xfσ,εσ ,F). Since the differences
(zσ − zτ ) vanish on Xf̃σ f̃τ , they vanish also on Xfσ,εσ ∩Xfτ ,ετ . Note that the
support of (zσ − zτ ) is at least of dimension (n + 2). Thus these sections fit
together to build a section of Γ(B,F) extending z. �

Corollary 6.12. Let B′ ⊂ B be ball figures of dimension n on an affinoid
space X. If F = F [n] and G = G[n] are coherent sheaves on B, then any
morphism resp. isomorphism ψ′ : F|B′ → G|B′ extends to a morphism resp.
isomorphism ψ : F → G over B.

Proof. Put H := Hom(F , G). Then H satisfies H = H[n]. Thus the assertion
follows from Proposition 6.11. �

Corollary 6.13. Keep the situation of Corollary 6.12. Let F = F [n] be a co-
herent sheaf on B, and let G be a coherent sheaf on X. If ψ′ : F|B′

∼

→ G|B′ is

an isomorphism, then G[n] is coherent and the isomorphism ψ′ extends to an

isomorphism ψ : F
∼

→ G [n]|B over B.

Proof. Since B′ is a ball figure of dimension n, it follows by Lemma 1.7 that
dimSn+1(G)≤n. Now the assertion follows from Proposition 6.7 (b) and Corol-
lary 6.12. �

Torsion of cohomology groups of ball figures. The study of the torsion
of the cohomology groups will be an important tool to switch from property
(G(m)) for all m ≥ n to property (Gn) in Section 8.

Lemma 6.14. Let X be a smooth connected affinoid space of dimension n+ d,
and let B ⊂ X be a ball figure of dimension n. Let Q be a coherent sheaf
on X such that Q|B is locally free. Put S := Sn+d−1(Q) and a := Id(S) ⊂
OX(X) the vanishing ideal of S. Then there exists an integer k ∈ N such that
ak ·Hq(B,Q) = 0 for 1 ≤ q ≤ d− 2.

Proof. We may assume that Q = Q∗∗ is reflexive. Then we obtain exact se-
quences

0 → K → Ot
X → Q∗ → 0 and 0 → Q → Ot

X → R → 0,

where R ⊂ K∗ := Hom(K,OX) is coherent with Supp(K∗/R) ⊂ S. So there
exists an integer k ∈ N with ak · (K∗/R) = 0. Since R|B = K∗|B and K∗ =
(K∗)[n], we have the commutative diagram with exact rows

Γ(X,Ot
X) Γ(X,K∗) Γ(X,K∗/R) 0

Γ(B,Ot
X) Γ(B,R) H1(B,Q) 0
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Due to Corollary 6.3 (a.1), the group H1(B,OX ) = 0 vanishes since d≥ 3. Due
to Proposition 6.8, the first two vertical arrows are bijective, and hence the
third vertical map is bijective. So we have

0 = ak · Γ(X,K∗/R) = ak ·H1(B,Q).

The assertion for i = 2, . . . , d − 2 follows by induction and the canonical iso-
morphism Hq−1(B,R) = Hq(B,Q) since Hq(B,Ot

X) = 0 for q = 1, . . . , d− 2
by Corollary 6.3. Indeed, we have the exact sequence

Hq−1(B,K∗/R) → Hq(B,R) → Hq(B,K∗) → Hq(B,K∗/R).

For q ≥ 2, the first and the last term are killed by some power ak, and one can
apply the induction hypothesis to Hq(B,K∗) for q ≤ d− 3. �

For proving the extension property (Gn) for Hartogs figures of dimension n,
we need a result which is stronger than Lemma 6.14. Let us fix the situation
for the following. Let X be a smooth connected affinoid space, and let U ⊂ X
be a nonempty open subdomain. Set B := X × ∂Dd and BU := U × ∂Dd for
some d ∈ N with d ≥ 2.

Lemma 6.15. The group Hd−1(B,OX×∂Dd) can be computed directly as in
Proposition 6.1 by

Hd−1(B,OX×∂Dd) = OX(X)〈η±1
1 , . . . , η±1

d 〉
/ d⊕

j=1

OX(X)〈η±1
1 , . , η+1

j , . , η±1
d 〉.

Therefore, any ξ ∈ Hd−1(B,OX×∂Dd) is uniquely represented by a Laurent
series

ξ =
∑

ν1<0,...,νd<0

aν1,...,νd · η
ν1
1 · . . . · ηνdd ∈ OX(X)〈η−1

1 , . . . , η−1
d 〉.

If the restriction of such a cohomology class onto BU is annihilated by
a nonzero function fj of OX(U)〈ηj〉, then this implies, for any index ν( · ) =
(ν1, . . . , ν̂j , . . . , νd〉,

fj · ξν(·) = fj ·
∑

µ<0

aν(µ)η
µ
j ∈ OX(U)〈ηj〉, where ξν(·) :=

∑

µ<0

aν(µ)η
µ
j .

Thus we have that each ξν(·)|U×D1 is meromorphic on U ×D1. Since ξν(·)|X×∂D1

is holomorphic, there exists a monic polynomial pj ∈ OX(X)[ηj ] satisfying
V (pj) ∩ (X × ∂D1) = ∅ such that pj · ξν(·) extends to a holomorphic function

on X × D1; cp. Lemma 2.3.

Lemma 6.16. If the restriction of a class ξ ∈ Hd−1(B,OX×D
d) onto BU

is annihilated by a nonzero function fj ∈ OX(U)〈ηj〉 in Hd−1(BU ,OX×D
d),

then there exists a monic polynomial pj ∈ OX(X)[ηj ] such that pj · ξ = 0 in
Hd−1(B,OX×Dd) and the intersection V (pj) ∩ (X × ∂D1) = ∅ is empty.
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Proof. Keep the notations from above. We have seen that all the functions ξν(·)
are meromorphic. Since there is a single fj ∈ OX(U)〈ηj〉 such that fj · ξν(·) is
meromorphic onX ×D1 for all indices ν( ·), a single polynomial pj ∈OX(X)[ηj ]
will do as well. Namely, pj must be a divisor of fj, and there are only finitely
many divisors. �

Proposition 6.17. Let X be a smooth connected affinoid space of dimen-
sion n, and let U ⊂ X be a nonempty open subdomain. Set B := X × ∂Dd

and BU := U × ∂Dd with d ≥ 2. Let G = G[n] be a coherent sheaf on X × Dd

with cdh(G|B)≥ n+ 2. Let a := Id(Sn+1(G)) be the vanishing ideal of Sn+1(G).
Then there exists an integer k ∈ N with the following property.

If the restriction of a cohomology class ξ ∈ H1(B, G) onto BU is annihi-
lated by a nonzero function fj ∈ O(U)〈ηj〉, then there even exists a polynomial
pj ∈ O(X)[ηj ] such that its locus V (pj) does not meet X × ∂D1 and pj anni-
hilates akξ; i.e., pj · akξ = 0.

Proof. Starting with Q0 := G, there are exact sequences

0 → Qi+1 → Oti
X×Dd → Qi → 0

for i=0, . . . , d− 2. SinceHi(B,OX×Dd)= 0 for i=1, . . . , d− 2 by Corollary 6.3,
we have an isomorphism H1(B,G) =Hd−2(B,Qd−3). We have a commutative
diagram with exact rows

0 Hd−2(B,Qd−3) Hd−1(B,Qd−2) Hd−1(B,O
td−3

X×Dd)

0 Hd−2(BU ,Qd−3) Hd−1(BU ,Qd−2) Hd−1(BU ,O
td−3

X×Dd)

δ

δU

Since δ and δU are injective, it suffices to show the assertion forHd−1(B,Qd−2).
Now the module B :=Qd−2 is reflexive because B = B[n+d−2] and B|B is locally
free. Thus we have exact sequences

0 → K → Ot
X×D

d → B∗ → 0 and 0 → B → Ot
X×D

d → Q → 0,

where Q ⊂ K∗ is a subsheaf of the dual, the sheaf Q|B is locally free and
Sn+d−1(Q) ⊂ Sn+1(G). By Lemma 6.14, there exists an integer k ∈ N with

ak ·Hd−2(B,Q) = 0.

Furthermore, we have the commutative diagram with exact rows

0 Hd−2(B,Q) Hd−1(B,B) Hd−1(B,Ot
X×Dd)

0 Hd−2(BU ,Q) Hd−1(BU ,B) Hd−1(BU ,Ot
X×Dd)

δ

δU

Then the assertion follows from Lemma 6.16. �
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7. Locally free sheaves

In Section 5, we have seen that any line bundle on a rectilinear Hartogs
figure H := (U × D2) ∪ X × D2 extends to a line bundle on X × D2. In the
case of vector bundles, such an assertion is false; one can only expect that
vector bundles on H extend to coherent sheaves on X × D2. For example, let
F be the second syzygy module of a free resolution of T3/(η1, η2, η3). Then

the coherent sheaf associated to F := F̃ on D3 has the properties that F is
locally free on D3 − {0} and that the homological codimension cdh(F0) = 2 at
the origin. Thus we have F = F [1] by Proposition 6.7, and hence F|D1×∂D2 is
not extendable as a vector bundle on D3.

Coherence theorem. Whereas the extension of line bundles from the Hartogs
figure H to X ×D2 could be proved by a simple formula, the proof in the case
of vector bundles F of rank rankF ≥ 2 requires more involved techniques. The
substantial part of the proof will be the following result.

Theorem 7.1. Let (D,OD) be an affinoid space of pure dimension n, and
assume that all local rings OD,x are Cohen–Macaulay. Set

Y := {(z1, z2) ∈ P1 × P1; |z1| ≥ 1 or |z2| ≥ 1}.

Denote by p : X :=D × Y →D the canonical projection. Then, for any locally
free sheaf F on X, the direct image p∗F is a coherent OD-module.

The proof of this theorem will fill the whole section. For the following, we
fix the notion for the whole section right now. We define

T affinoid algebra, Cohen–Macaulay of dimension n,

D = Sp(T ) associated affinoid space assumed to be connected,

S := Tn →֒ T is a Noether normalization,

Yi := {(z1, z2) ∈ P1 × P1; |zi| ≥ 1} for i = 1, 2,

Xi := D × Yi for i = 1, 2,

ηi the coordinate function on the i-th factor P1 of P1 × P1,

V := X1 ∩X2
∼

→ D × D2 with the coordinate functions η−1
1 , η−1

2 on D2,

Xi := D × Yi
∼

→ D × D1 × P1 with the coordinate function η−1
i on D1.

For the definition of Cohen–Macaulay, see [31, p. IV-18]. Over a local noether-
ian ring A, an A-module E is Cohen–Macaulay if and only if its comple-
tion Ê is Cohen–Macaulay as Â-module; cp. [31, Cor. 2, p. IV-36]. So if
Sp(T ′) ⊂ Sp(T ) is an affinoid subdomain and if T is Cohen–Macaulay, then T ′

is Cohen–Macaulay, too. Namely, the completion of T ′ at a maximal ideal m′

coincides with the completion of T at m := m′ ∩ T .
Furthermore, we remark that T is Cohen–Macaulay if and only if T is

Cohen–Macaulay as a finitely generated S-module by [31, Prop. 22, p. IV-18].
Since S = Tn is a regular ring, the finitely generated S-module T is locally free
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if T is a Cohen–Macaulay ring. This follows from [31, Prop. 10, p. IV-18]. De-
note by π : D = Sp(T ) → Dn := Sp(S) the associated morphism of the affinoid
spaces. Then (π × id)∗F is locally free on Dn × Y .

Now we start the proof of Theorem 7.1. Due to the finiteness theorem of
Kiehl [21], we have the following claim.

Claim 1. For every q ∈ N, the T 〈η−1
i 〉-module Hq(Xi,F) is finitely generated.

Due to [27, Satz 1], we may assume that F|D×V =Or
X |D×V is free of rank r.

We fix further notations

G := Γ(D × V,F) =

r⊕

j=1

T 〈η−1
1 , η−1

2 〉 · ej ,

Fi := Im(ρi : Γ(Xi,F) → G) =
s∑

σ=1

T 〈η−1
i 〉 · giσ ⊂ G,

G(m1,m2) := G/(η−m1

1 G+ η−m2

2 G) for m1,m2 ∈ N,

G(m,∞) := G/(η−m
1 G) and G(∞,m) := G/(η−m

2 G) for m ∈ N,

pm1,m2
: G → G(m1,m2) residue map for m1,m2 ∈ N ∪ {∞}.

Since F has no torsion, the restriction maps ρ1 and ρ2 are injective.

Claim 2. In the situation defined above, the following holds.
(i) There exists an integer m0 ∈ N such that, for all m ≥ m0, the residue

maps p∞,m|F1
and pm,∞|F2

are injective.
(ii) The T -module F = F1 ∩ F2 = Γ(X,F) is finitely generated.

Proof. (i) We show the assertion for F1. We set Km := F1 ∩ η−m
2 G ⊂ F1. By

Claim 1, we know that F1 ⊃Km ⊃Km+1 are noetherian T 〈η−1
1 〉-modules. Let

S → T be a noetherian normalization. Note that S is a domain. Then there
exists an integer m0 ∈ N such that the S〈η−1

1 〉-ranks rankKm = rankKm0
for

all m ≥m0 become stationary. Then, for any t ∈Km0
, there exists an element

a = a(m) ∈ S〈η−1
1 〉 with a 6= 0 such that a · t ∈ Km. Now G/η−m

2 G has no

S〈η−1
1 〉-torsion. So we have t ∈ Km0

. Since
⋂

m≤m0
Km = {0}, we see that

p∞,m0
|F1

is injective.
(ii) It suffices to show that pm,∞(F ) is a finitely generated T -module for

m ≥ m0. By Claim 1, there is a generating system g11 , . . . , g
1
s of F1 as T 〈η−1

1 〉-
module. Then the image pm,∞(F1) is generated by pm,∞(g11), . . . , pm,∞(g1s) as

T 〈η−1
1 〉/(η−m

1 )-module and hence finitely generated as T -module. Thus we see
that pm,∞(F ) ⊂ pm,∞(F1) is finitely generated as T -module. �

Claim 3. Let m := m0 be as in Claim 2. Then there exists an integer k ∈ N

such that

F1 ∩ p−1
∞,m(η−ℓ−k

1 G(∞,m)) ⊂ η−ℓ
1 F1 for all ℓ ∈ N,

F2 ∩ p−1
m,∞(η−ℓ−k

2 G(m,∞)) ⊂ η−ℓ
2 F2 for all ℓ ∈ N.

Proof. We show the assertion for F1. Since G(∞, m) is a finitely generated
T 〈η−1

1 〉-module, due to the lemma of Artin–Rees [2, Prop. 10.9], there exists
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an integer k ∈ N such that

p∞,m(F1) ∩ η−ℓ−k
1 G(∞,m) ⊂ η−ℓ

1 p∞,m(F1) for all ℓ ∈ N.

Since p∞,m|F1
is injective, the assertion is clear. �

Claim 4. There exists an integer m1 ∈ N with m1 ≥ m0 such that, for any
nonzero divisor ai ∈ T 〈η−1

i 〉 with ai 6= 0 for i = 1, 2, the residue maps

ψ1 : F1/a1F1 → G(∞,m)/a1G(∞,m),

ψ2 : F2/a2F2 → G(m,∞)/a2G(m,∞)

are injective for all m ≥ m1.

Proof. We putM1(m) :=G(∞,m)/p∞,m(F1) form≥m0 withm0 as in Claim 2

and let ρ : M1(m) → M1(m0) be the residue map. There exists an a ∈ S〈η−1
1 〉

with a 6= 0 such that a annihilates all the torsion of M1(m0). As in Claim 1,
there exists an integer m1 ∈ N with m1 ≥ m0 such that

ψ : F1/aF1 ⊂ Γ(X1,F/aF) → G(∞,m)/aG(∞,m)

is injective for all m ≥ m1. Now consider x ∈ F1 with ψ1(x) = a1g for some
g ∈ G(∞,m). Then a1g = 0 in M1(m), and hence a1ρ(g) = 0 in M1(m0). Due
to the choice of a, we have aρ(g) = 0; i.e., ag = p∞,m0

(h) for some h ∈ F1.
Since ψ is injective, we can write h = ah′ for an h′ ∈ F1. Thus we have that
ag = ap∞,m0

(h′) in G(∞, m0), and hence g = p∞,m0
(h′) as G(∞, m0) has no

S〈η−1
1 〉-torsion. So we obtain p∞,m0

(x) = p∞,m0
(a1h

′). Since the morphism
p∞,m0

: F1 → G(∞, m0) is injective, we see x = a1h
′. This shows that ψ1 is

injective for m ≥ m1. Analogously for ψ2. �

Claim 5. There exists an integer q ∈ N with the following property: if h1 ∈ F1

and h2 ∈ F2 satisfy h1 − h2 ∈ η−q
1 η−q

2 G, then h1 = h2 ∈ F is a global section
of F over X.

Proof. Let m0 ∈ N be as in Claim 2. For m ∈ N with m ≥ m0, we define the
T -modules

Km := {h1 ∈ F1; h1 = h2 + η−m
1 η−m

2 g with h2 ∈ F2, g ∈ G}.

Then we claim that Km is a finitely generated T -module.
Since p∞,m|F1

is injective, it suffices to show that p∞,m(Km) is finitely gen-

erated. Because of η−m
2 p∞,m(F2) = 0, the T -module p∞,m(F2) is a finitely

generated T -module. So p∞,m(Km) is a finitely generated T -module as sub-
module of p∞,m(F2). Let S →֒ T be a Noether normalization. Then p∞,m(F2)
is a finitely generated S-module as well. Thus we see that there exists an
integer q ≥ m0 such that rankKm = rankKq as S-module for all m ≥ q. If
h1 ∈ Kq, then for any m ≥ q, there exists an a = a(m) ∈ S with a 6= 0 such
that ah1 ∈ Km. Thus we have

h1 = h2 + η−q
1 η−q

2 g′ with h2 ∈ F2, g
′ ∈ G,

ah1 = h′
2 + η−m

1 η−m
2 g′′ with h′

2 ∈ F2, g
′′ ∈ G.
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Since pq,∞|F2
is injective, we obtain h′

2 = ah2. Then g′′ is divisible by a; i.e.,
g′′ = ag. Therefore, h1 = h2 + η−m

1 η−m
2 g. Since m ≥ q was arbitrary, we have

h1 = h2. �

Claim 6. Let k∈N be the integer of Claim 3. There exists an integer s∈N with
the following property: if h1 ∈ F1 and h2 ∈ F2 satisfy the following conditions:

h1 − h2 = η−s
1 g1 + η−s

2 g2 ∈ η−s
1 G+ η−s

2 G,

then there exists a global section h ∈ F = F1 ∩ F2 such that

h1 − h = η−s+k
1 h′

1 ∈ η−s+k
1 F1 for some h′

1 ∈ F 1,

h2 − h = η−s+k
2 h′

2 ∈ η−s+k
2 F2 for some h′

2 ∈ F 2.

Proof. Let r ≥max{m0 + k,m1}, where mi is from Claim 1 resp. Claim 4. We
define

M1
m := p∞,r(F1) + η−m

1 G(∞, r), K1
m := M1

m ∩ p∞,r(F2),

M2
m := pr,∞(F2) + η−m

2 G(r,∞), K2
m := M2

m ∩ pr,∞(F1),

and then we set

M1 :=
∞∐

m=0

M1
m/M1

m+1 and M2 :=
∞∐

m=0

M2
m/M2

m+1.

Now M1 is the graded S[η−1
1 ]-module with respect to the ideal η−1

1 of the
S〈η−1

1 〉-module G(∞, r)/p∞,r(F1). So M1 is a noetherian S[η−1
1 ]-module;

cp. [2, Prop. 10.22]. The analog assertion is true for M2. By Claim 1, it
follows that the S-modules pr,∞(F1) and p∞,r(F2) are finitely generated and
hence noetherian. Thus K1

m and K2
m are finitely generated S-modules, and

their ranks are decreasing. So they become stationary. Thus there exists an
integer s ∈ N such that, for m ≥ s, the submodules K1

m/K1
m+1 ⊂ M1 and

K2
m/K2

m+1 ⊂ M2 are S-torsion modules. Therefore,

Ki :=

∞∐

i=s

Ki
m/Ki

m+1 ⊂ M i for i = 1, 2

are S-torsion submodules. Since M i are noetherian S[η−1
i ]-modules and S is

a domain, there exists an a ∈ S with a 6= 0 such that a ·Ki
m ⊂Ki

m+1 for m ≥ s
and i = 1, 2.

If h1 ∈ F1 and h2 ∈ F2 satisfy the identity

(3) h1 − h2 = η−s
1 g1 + η−s

2 g2 with g1, g2 ∈ G,

then we have pr,∞(h1) ∈ K2
s and p∞,r(h2) ∈ K1

s . Thus it follows

pr,∞(h1) ∈
⋂

m∈N

(
η−m
2 G(r,∞) + pr,∞(F2)

)
a
,

p∞,r(h2) ∈
⋂

m∈N

(
η−m
1 G(∞, r) + p∞,r(F2)

)
a
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for the localizations with respect to the element a. Due to Claim 4, the
S〈η−1

2 〉-module G(r,∞)/pr,∞(F2) is free of torsion, and the S〈η−1
1 〉-module

G(∞, r)/p∞,r(F1) is free of torsion, too. Thus, due to Krull’s intersection
theorem [2, Thm. 10.17], we obtain

h1 = h′
2 + η−r

1 g′1 with h′
2 ∈ F2, g

′
1 ∈ G,

h2 = h′
1 + η−r

2 g′2 with h′
1 ∈ F1, g

′
2 ∈ G.

(4)

By equation (3), this yields

h1 − h′
1 = (h1 − h2) + (h2 − h′

1) = η−s
1 g1 + (η−s

2 g2 + η−r
2 g′2),

h2 − h′
2 = (h2 − h1) + (h1 − h′

2) = η−s
2 g2 + (η−s

1 g1 + η−r
1 g′1).

Since hi, h
′
i ∈ Fi, it follows, by Claim 3,

h1 − h′
1 = η−s+k

1 h′′
1 with h′′

1 ∈ F1,

h2 − h′
2 = η−s+k

2 h′′
2 with h′′

2 ∈ F2.
(5)

Then, by combining (4) and (5), we arrive at the equations

h′
1 − h′

2 = (h′
1 − h1) + (h1 − h′

2) = η−r
1 g′1 − η−s+k

1 h′′
1 ,

h′
1 − h′

2 = (h′
1 − h2) + (h2 − h′

2) = η−r
2 g′2 − η−s+k

2 h′′
2 .

Finally, we have that h′
1 − h′

2 ∈ η−t
1 η−t

2 G for t := min{r, s− k}. By Claim 5,
it follows

(6) h := h′
1 = h′

2 ∈ Γ(X,F).

Equations (5) and (6) yield the assertion. �

Claim 7. For any nonzero divisor a ∈ T , there exists an integer b ∈ N with
the following property: if h1 ∈ F1 and h2 ∈ F2 satisfy h1 − h2 = aℓg ∈ aℓ ·
Γ(X1 ∩ X2, F) for some ℓ ≥ b, then there exist h′

1 ∈ F1 and h′
2 ∈ F2 with

h1 − h2 = aℓ−b(h′
1 − h′

2).

Proof. Let q ∈ N be the integer of Claim 5 and s ∈ N the integer of Claim 6.
Due to the lemma of Artin–Rees [2, Prop. 10.9], there exists an integer j ∈ N

such that, for all ℓ ≥ j,

(ps,s(F1) + ps,s(F2)) ∩ aℓG(s, s) ⊂ aℓ−j(ps,s(F1) + ps,s(F2)),

(pm,∞(F2)) ∩ aℓG(m,∞) ⊂ aℓ−j(pm,∞(F2)),

(p∞,m(F1)) ∩ aℓG(∞,m) ⊂ aℓ−j(p∞,m(F1)),

(7)

where m=m0 is the integer of Claim 2. Thus we can write, for suitable h′
i ∈ Fi

and gi ∈ G,
(h1 − h2) = aℓ−j(h′

1 − h′
2) + η−s

1 g1 + η−s
2 g2.

Due to Claim 6, there exists a global section h ∈ Γ(x,F) such that

h1 − aℓ−j · h′
1 = h+ η

(−s+b)
1 h′′

1 for some h′′
1 ∈ F1,

h2 − aℓ−j · h′
2 = h+ η

(−s+b)
2 h′′

2 for some h′′
2 ∈ F2.

Münster Journal of Mathematics Vol. 15 (2022), 83–166



On extension of rigid analytic objects 139

Combining with the assumption, we obtain

h2 − h = (h2 − h1) + (h1 − h) = −aℓg + aℓ−jh′
1 + η−s+k

1 h′′
1 .

With the similar relation for h1 − h, this yields

p∞,m(h1 − h) ∈ aℓ−jG(∞,m) and p(m,∞)(h2 − h) ∈ aℓ−jG(m,∞).

Since p∞,m|F1
and pm,∞|F2

are injective, due to (7), there exist sections h′
i ∈ Fi

for i = 1, 2 such that h1 − h = aℓ−2jh′
1 and h2 − h = aℓ−2jh′

2. With b := 2j,
we obtain the assertion

h1 − h2 = (h1 − h)− (h2 − h) = aℓ−b(h′
1 − h2). �

Claim 8. For any nonzero divisor a ∈ T , there exists an integer k := k(a) ∈ N

with the following property: if ξ ∈ H1(X,F) fulfills aℓ · ξ = 0, then it already
holds ak · ξ = 0.

Proof. Consider the Mayer–Vietoris sequence associated to X = X1 ∪X2,

0 −→ Γ(X,F) −→ Γ(X1,F)⊕ Γ(X2,F)
ψ
−→ Γ(X1 ∩X2,F)

δ
−→ H1(X,F)

φ
−→ H1(X1,F)⊕H1(X2,F) −→ 0.

Since X1 ∩X2 is affinoid, the groupH1(X1 ∩X2,F) = 0 vanishes. The T 〈η−1
i 〉-

modules H1(X1,F) are noetherian, so the a-torsion vanishes at finite index;
i.e., ak · φ(ξ) = 0. Then there is a g ∈Γ(X1 ∩X2,F) such that δ(g) = akξ. Since
aℓ−kδ(g)= 0, there exist elements fi ∈Γ(Xi,F) for i=1,2 with aℓ−kg= f1 − f2.
Therefore, by Claim 6, we can write aℓ−kg in the form aℓ−kg = aℓ−k−b(h1 − h2)
for some hi ∈ Γ(Xi,F) for i = 1,2. Since a is a nonzero divisor, we finally have
abg = h1 − h2. Finally, we obtain

0 = δ ◦ ψ(h1, h2) = δ(h1 − h2) = abδ(g) = abakξ.

Thus we see that k(a) := k + b satisfies the assertion. �

Finally, we put together all our claims and start the proof of Theorem 7.1.

Proof of Theorem 7.1. After the reduction explained at the beginning, we may
assume that D = Sp(T ) is an affinoid space, where T is Cohen–Macaulay of
pure dimension n and F|D×V is free. Then we have to show the following.
(a) Γ(D × Y,F) is a finitely generated T -module.
(b) For any affinoid subdomain D′ = Sp(T ′) of D, the canonical morphism

Γ(D × Y,F)⊗T T ′ → Γ(D′ × Y,F)

is bijective.
Assertion (a) follows from Claim 1.

(b) We proceed by induction on n = dim T . In the case n = 0, there is
nothing to show.

Now assume n ≥ 1. Put M := Γ(D × Y,F) and M ′ := Γ(D′ × Y,F). Since
M ⊗T T ′ and M ′ are noetherian T ′-modules, it suffices to show that, for any
maximal ideal n of T ′, the n-adic completion M̂ ′ and M̂ ⊗T T ′ are canonically
isomorphic. The ideal n is of the form mT ′ for a maximal ideal m of T . Let
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Tn →֒ T be a Noether normalization. Since T is of pure dimension n, any
a ∈ Tn with a 6= 0 gives rise to nonzero divisor of T . Let now a ∈m ∩ Td. Since
T/aiT is Cohen–Macaulay as well and dimT/aiT = n− 1, due to the induction
hypothesis, the canonical morphism

Γ(D × Y,F/aiF)⊗T T ′ ∼

→ Γ(D′ × Y,F/aiF)

is bijective for all i ≥ 1. For any i ∈ N, we have the exact sequence

0 −→ F
ai

−→ F −→ F/aiF −→ 0.

For i ∈ N, we define the modules

Gi := Γ(D × Y,F)/aiΓ(D × Y,F) ⊂ Fi := Γ(D × Y,F/aiF),

Qi := coker(Gi → Fi) = Pi := {ξ ∈ H1(D × Y,F); aiξ = 0}.

Denote by G′
i,F

′
i ,Q

′
i,P

′
i the corresponding modules overD′ × Y . Since T → T ′

is flat, we obtain the exact sequences

0 → Gi → Fi → Qi → 0,

0 → G′
i → F ′

i → Q′
i → 0,

0 → Gi ⊗T T ′ → Fi ⊗T T ′ → Qi ⊗T T ′ → 0.

We have canonical residue maps Gi → Gi−1 and Fi → Fi−1, resp. G
′
i → G′

i−1

and F ′
i → F ′

i−1. For the third term Qi → Qi−1 resp. Q′
i → Q′

i−1, the induced
map is the multiplication by a. Due to Claim 8, the systems (Qi → Qi−1) and
(Q′

i → Q′
i−1) are zero-systems, and hence (Qi ⊗T T ′ → Qi−1 ⊗T T ′) as well.

By applying the projective limit, we receive the a-adic completions M̂ ′ of M ′

resp. M̂ ⊗T T ′ of M ⊗T T ′,

M̂ ⊗T T ′ = lim
←−

(Gi ⊗T T ′) = lim
←−

(Fi ⊗T T ′),

M̂ ′ = lim
←−

(G′
i) = lim

←−
(F ′

i ).

Due to the induction hypothesis, Fi ⊗T T ′ ∼

→ F ′
i is bijective, so M̂ ⊗T T ′ ∼

→ M̂ ′

is bijective. This implies by faithfully flat descent the assertion; cp. the proof
in [21]. �

Remark 7.2. We would like to remark that Claim 8 is obviously true if the

sheaf F extends to a coherent sheaf F =F [n] on D×D2. Indeed, F is reflexive.
So there are exact sequences

(8) 0 → K → L → F∗ → 0 and 0 → F = F∗∗ → L∗ → Q → 0

with a free module L and a submoduleQ⊂K∗. Moreover, we haveK∗ =(K∗)[n]

since K∗ can be represented as the kernel of a morphism between two finitely
generated free modules. Hence we have H0(D×D2,K∗) = H0(B,K∗) for B =
D × ∂D2 by Proposition 6.8. So H0(B,K∗) is a noetherian T 〈η1, η2〉-module,
and hence the T 〈η1, η2〉-submodule H0(B,Q) of H0(B,K∗) is noetherian as
well. Now look at the long exact cohomology sequence

H0(B,L∗) → H0(B,Q) → H1(B,F) → H1(B,L∗).
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We know that H1(B, L∗) has no T -torsion since L∗ is a finitely generated
free T 〈η1, η2〉-module. Namely, for free T 〈η1, η2〉-modules, we know from Lem-
ma 6.15 that H1(B,OD×D2 ) has no T -torsion. Thus the T -torsion of H1(B,F)
is the image of a T 〈η1, η2〉-submodule ofH0(B,Q) and hence finitely generated.
Thus the T -torsion of H1(B,F) vanishes at finite index.

In the case D × Y , one proceeds similarly. At first, one obtains the analog
of the sequences (8) overD× P1 × P1 after twisting F by a suitable very ample
invertible sheaf. One computes as in Lemma 6.15 that H1(D × Y,O) has no
T -torsion. As above, one obtains the result for the twisted sheaf F(n) and
hence for F .

Extension of locally free sheaves. Theorem 7.1 provides the essential tool
to show the extension for locally free sheaves.

Proposition 7.3. Keep the situation of Theorem 7.1. Let U ⊂ D be an
open subdomain of D which meets each irreducible component of D. Set
P := P1 × P1. Set H := (D × Y ) ∪ (U × P). If F = F [n] for n = dimD is
a coherent sheaf on H which is locally free on D× Y , then F is the restriction

of a coherent sheaf F on D × P with F = F [n].

Proof. The Segre embedding P := P1 × P1 →֒ P3 shows that P is projective. Let
L denote a relatively ample sheaf on D× P→D. Due to the GAGA Theorem,
there exists an integerm∈N such that F ⊗L⊗m is generated by global sections
over U × P. Since p∗(F ⊗L⊗m) is coherent by Theorem 7.1, there exist finitely
many sections h1, . . . , hr ∈ Γ(D× Y,F ⊗L⊗m) generating Γ(U × Y,F ⊗ L⊗m).
The restriction map Γ(U × P,F ⊗L⊗m)→ Γ(U × Y,F ⊗L⊗m) is bijective due
to Proposition 6.8. So the extensions of h1, . . . , hr generate F ⊗L⊗m|U×P. So
we obtain a morphism

φ : Or
D×P|H → F ⊗L⊗m with coker(φ|U×P) = ∅.

The kernel K := ker(φ) ⊂ Or
D×P

is a coherent sheaf on H , and it obviously

satisfies K = K[n].
Due to Theorem 4.6, the subsheaf K extends to a subsheaf K on D× P satis-

fying K = K[n]. Then put Q := (Or
D×P

/K)⊗L⊗−m. Now consider the induced
morphism φ: Q→F . Due to Proposition 6.7, the sheaf Q[n] is coherent. Since
F = F [n], we also have that Q := Q|H is a coherent subsheaf of F . So we may
assume Q = Q[n]. Now the quotient F/Q satisfies Supp(F/Q|U×P)) = ∅ due
to our construction. Then the support S := Supp(F/Q|U×P)) is either empty
or has pure dimension n+ 1. Due to Theorem 3.6, the closed analytic subset S
extends to a hypersurface S ⊂ (D × P). Since S ∩ (U × P) = ∅, its projection
is a closed analytic subset p(S)⊂D unequal to D. Thus there exists a nonzero
divisor a ∈ OD(D) such that a · F/Q = 0. So we can regard F ∼= a · F ⊂ Q as
a subsheaf of Q = Q|H . Then the assertion follows by the subsheaf extension;
cp. Theorem 4.6. �

By the following lemma, we will reduce the extension property for rectilinear
Hartogs figure to the special case just treated.
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Lemma 7.4. Let A be an artinian ring with maximal ideal m, and let n⊂A be
an m-primary ideal. If a locally free sheaf on Spec(A/m)× P1 is trivial, then
F is already trivial.

Proof. Since F/mF is trivial, the restriction of the sheaves F/nF onto affine
parts of Spec(A)× P1 is trivial. Thus F is given by an invertible matrix I +M ,
where M is a matrix with entries in mA[η−1, η]. Since there is an integer ℓ with
mℓ ⊂ n, we can split the matrix in the form I +M = (I +M+) · (I +M−),
where M+ has entries in mA[η] and M− has entries in mA[η−1]. �

Lemma 7.5. Let D := Sp(A) be an affinoid space, and let F be a locally
free sheaf on D × P1. Let x ∈ D be a point. Assume that OD,x is Cohen–
Macaulay and that F(x) := F|x×P1 is trivial on the fiber {x} × P1. Then there
exists a function h ∈ A with h(x) 6= 0 such that F|(D−V (h))×P1 is trivial over
D − V (h).

Proof. Let m ⊂ A be the maximal ideal associated to x. For any m-primary
ideal n ⊂ A, the sheaf F ⊗A (A/n) is trivial as well by Lemma 7.4. Since
Am is Cohen–Macaulay, after a localization of A by an element a ∈ A with
a(x) 6= 0, there exists a sequence t1, . . . , td ∈ A of successive nonzero divisors
which generates an m-primary ideal n ⊂ A. After localization by a, we may
assume a = 1. Denote by p : D × P1 → D the canonical projection. Now
we want to show that Γ(D × P1, F/nF) is generated by global sections of
Γ(D × P1,F). We show this by induction on the length d of the sequence
(t1, . . . , td). For d = 1, consider the exact sequence

0 −−→ F
·t1−−→ F −−→ F/t1F −−→ 0.

Since F/t1F = F/nF is trivial, we have that H1(D× P1,F/t1F) = 0 vanishes
and Γ(D× P1,F/t1F)) generates each stalk in the fiber p−1(x). Then consider
the associated long exact cohomology sequence. By the lemma of Nakayama,
we have (R1p∗F)x = 0, and hence the sections of p∗(F/t1F) are induced by
sections f1, . . . , fr of Γ(D× P1,F), where r is the rank of F . Now the support
of F/(f1, . . . , fr) is a closed analytic subset of D × P1 and does not meet
{x} × P1. Due to the proper mapping theorem [21], the image of this support
is a closed analytic subset which does not contain x. Then there is an element
h ∈ A with h(x) 6= 0 such that the support is contained in the locus V (h)
of h. For the induction step, one argues in a similar way. Indeed, due to the
induction hypothesis, we have a basis of F/t1F . This can be lifted due to the
same argument as above. �

Lemma 7.6. Let D := Sp(A) be an affinoid space, and let F be a locally free
sheaf on D × ∂D2. Then, after a finite field extension, there exists a finite
rational covering {V1, . . . , Vs} such that each F|Vσ×∂D2 is the restriction of
locally free sheaf Fσ on Vσ × Y , where Y is as in Theorem 7.1.

Proof. Due to [27, Satz 2], we may assume that F|D×D1×∂D1 is free. Then, by
trivial extension, we can enlarge the domain of definition of F to the domain
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D ×D1 ×A(1, c), where A(1, c) is the annulus with radii 1 and c ∈ |K×| with
1 < c. Again by [27, Satz 2], we may assume that F|D×∂D1×D1(c) is trivial
as well.

Let f := (f1, . . . , fr) be a basis of F|D×∂D1×D1(c), and let e := (e1, . . . , er)
be a basis of F|D×D1×A(1,c). Now let w := (x, z2) ∈ D × A(1, c). Then there

is an invertible matrix M in GL(r, k(w)〈η1, η
−1
1 〉) such that M · f = e for the

restriction on {w}× ∂D1. We may assume that w is a rational point; otherwise,
we perform a base field extension. Then we can regard M as an invertible
matrix on D × ∂D1 ×D1(c), and hence the basis f can be transformed by M .
If M = I is the unit matrix, then we extend F by the free sheaf with the basis
f on D × D1

− × D1(c), where D1
− := {z1 ∈ P1, |z1| ≥ 1}. Due to Lemma 7.5,

for this new locally free sheaf, there exists a function

h =
∑

ν∈Z

aνη
ν
2 ∈ Γ(D ×A(1, c),O) with h(w) 6= 0

such that F =Or|(D×P1×A(1,c))−V (h) is free. Furthermore, we may assume that
the coefficients (aν ; ν ∈ Z) have no common zeros. Otherwise, we pick a new
point in the zero set of the coefficients and start the same process; by reasons
of dimension, we will find a finite Zariski-open covering U := {U1, . . . , Un} of D
and for each Ui a function hi as above such that its coefficients have no com-
mon zeros on Ui. Due to [23, Folgerung 1.3], we can shrink the Zariski-open
covering U by an affinoid covering. Thus we see that the asserted reduction
is justified. Now, due to Lemma 3.19, there exists a finite rational covering
{V1, . . . , Vs} and numbers εσ with 1 < εσ < c such that h|Vσ×∂D1(εσ) is invert-
ible since F|Vσ×P1×A(εσ,εσ) is free. Then, by trivial extension, we enlarge the
domain of definition of F to Vσ × Y . �

Proposition 7.7. Let D be a connected affinoid space of dimension n, and let
U ⊂ D be a nonempty open subdomain. Assume that D is smooth.

Consider the Hartogs figure H := (U ×D2) ∪ (D × ∂D2), and let F be a co-
herent sheaf on H. If F satisfies that F = F [n] and cdh(F|D×∂D2) = n + 2,

then F is the restriction of a coherent sheaf F on D × D2 with F = F [n].

Proof. Since D is smooth, its local rings OD,x are regular. Then F|D×∂D2 is
a locally free sheaf; cp. [31, Cor. 2, p. IV-36]. Let K ′ ⊃ K be the finite field
extension of Lemma 7.6. Then D′ := D ⊗K K ′ is Cohen–Macaulay, and there
exists a finite affinoid covering {V1, . . . , Vs} of D′ such that F ′ := F|D′×∂D2 is
the restriction of a coherent sheaf F ′

σ on Vσ × Y . Then it follows by Proposi-
tion 7.3 that F ′

σ extends to a coherent sheaf F ′
σ on Vσ × P such that F ′

σ =F
′[n]
σ .

Due to Proposition 6.8, these sheaves fit together to build a coherent sheaf F ′

on D′ × D2.
Since Γ(D× ∂D2,F)⊗K K ′ = Γ(D′ × ∂D2,F ′) and Γ(D′ × ∂D2,F ′) gener-

ates every stalk of F ′|D′×D2 , the same is true for F . Thus we have a surjective
morphism φ : Ot

X |H → F . The kernel K := ker(φ) satisfies K = K[n]Ot
X
, and

hence it extends to a coherent subsheaf K of Ot
X due to Theorem 4.6. Thus
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the quotient F := Ot
X/K is a coherent sheaf on D × D2 with F|H = F . Due

to Proposition 6.7, the sheaf F [n] is coherent and extends F . �

Remark 7.8. In the case of a ball figure, e.g. D × ∂D3, the analog assertion
of Proposition 7.7 is much easier to prove. Indeed, at first, one shows that the
locally free sheaf F can be extended to a locally free sheaf F ′ on the subset
D × (D3(c) − D3

+), where c > 1 and D3
+ is the open polydisc. Then the re-

striction map H1(D× (D3(c)−D3
+),F

′)→H1(D× (D3(1)−D3
+),F

′) is bijec-
tive by Proposition 6.8 and properly continuous as an OD×(D3(c))(D ×D3(c))-

module. ThusH1(D× (D3(c)−D3
+),F

′) is a noetherianOD×(D3(c)(D×D3(c))-
module; cp. [21, Kor. 2.5]. Then it is clear that the a-torsion for every nonzero
divisor is of finite index. This replaces the hard part, Claim 8, in the proof of
Theorem 7.1. Then one can continue as above.

8. Coherent sheaves

We have all the tools at our disposal. So it remains to put things together.

Extension properties of ball figures. Let us start with the ball figures.

Lemma 8.1. Let X be an affinoid space of pure dimension n+ d with d ≥ 3.
Let B ⊂X be a ball figure of dimension n; then the couple (B,X) has property
(G(n+ 1)).

Proof. Let G = G[n+1] be a coherent sheaf on B with 0[m+1]G = 0, 0[m+2]G = G
for some m≥ n+ 1. Then F := G[m] is coherent by Proposition 6.7 (a) and (d),
and the subsheaf G ⊂ F fulfills the condition G[n+1]F = G. Because (B,X) has
property (Un+1) by Theorem 4.6, it suffices to show the assertion for F . In
particular, we have dim Sm+1(F) ≤ m− 1 by Proposition 6.7 (c).

The support S := Supp(F) is of pure dimension m+ 2. By Proposition 3.3,
the closed analytic set S extends to a pure dimensional closed analytic subset
S of X . Due to Lemma 1.5, there exists a morphism ψ : X → Dm+2 such that
ψ|S : S → Dm+2 is finite and such that it holds B′ := ψ−1(Dm−1 × ∂D3) ⊂ B
and B′ ∩ Sm+1(F) =∅. Then ψ∗(F|B′) is coherent on Dm−1 × ∂D3 and locally
free because of B′ ∩ Sm+1(F) = ∅. Then we know by Proposition 7.7 that
ψ∗(F|B′) extends to a coherent sheaf on Dm−1 ×D3. This implies that Γ(B′,F)
generates each fiber Fx for x∈B′. Since (S ∩B′,S) is a ball figure of dimension
m− 1≥ n, the extension of F|B′ follows by Theorem 4.6. The final step follows
from Lemma 8.2 below. �

Lemma 8.2. Let B ⊂ X be a ball figure as in Lemma 8.1, and let F = F [n]

be a coherent sheaf on B. If there exists a ball figure B′ ⊂ B of dimension n
in X such that Γ(B′,F) generates any stalk Fx for x ∈ B′, then there exists

a coherent sheaf F = F [n] on X and an isomorphism F|B
∼

→ F .

Proof. By the assumptions, there is a surjective morphism φ : Ot
X |B′ → F|B′ .

Because of 0[n+1]F = 0, the kernel ker(φ) satisfies the property K = K[n+1]Ot
X
.

By Theorem 4.6, the subsheaf K extends to a coherent subsheaf K with the
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property K = K[n+1]Ot
X
. Then G := Ot

X/K is a coherent sheaf which coincides

with F|B′ on B′. Then G|B and F coincide on B as well; cp. Corollary 6.13. �

Lemma 8.3. Let D be a regular connected affinoid space of dimension n, and
let U ⊂ D be a nonempty open subset. Set X := D ×Dd with d ≥ 3. Consider
the rectilinear Hartogs figure

H := T ∪B with T := (U × Dd) and B := D × ∂Dd.

Let F be a coherent sheaf on H satisfying F = F [n]. Set G = 0[m+2]F for some
m ≥ n and R := F/G. Assume that cdh(G|B) ≥ n+ 2 and R|B = R[n]|B.

If the coherent sheaves G = G[n] resp. H := R[n] extend to coherent sheaves

G = G[n] resp. H=H[n] on D×Dd, then there exists a coherent sheaf F = F [n]

on D × Dd such that F|H = F over H.

Proof. Because of 0[m+2]R = 0, the sheaf R[n] is coherent due to Proposi-
tion 6.7 (d). Now we set BT := B ∩ T . Consider the commutative diagram
with exact rows

Γ(B,G) Γ(B,F) Γ(B,R) Γ(B,H) H1(B,G)

Γ(BT ,G) Γ(BT ,F) Γ(BT ,R) Γ(BT ,H) H1(BT ,G)

δ

δ′

The identifications are due to the assumption R|B = H|B. Since T is affinoid
and hence the Γ-functor is exact, the exact sequence F →H→H/R→ 0 gives
rise to the exact sequence

Γ(T,F) Γ(T,H) Γ(T,H/R) 0

Γ(BT ,F) Γ(BT ,R) H1(BT ,G)

∼= ∼=

δ′

The first two vertical down-arrows are isomorphism due to Proposition 6.8

because ofH=H[n] and H|B =R|B . Put A := Supp(H/R)∩ T . Then we have
A ∩ BT = ∅ because of R|B = H|B. Thus there even exist nonzero elements
fj ∈ OD(U)〈ηj〉 with fj · Im(δ′) = 0 for j = 1, . . . , d. Due to Proposition 6.17,
there exist nonzero polynomials pj ∈ OD(D)[ηj ] for j = 1, . . . , d such that
akpj Im(δ) = 0 and V (pj) ∩ (D × ∂D1) = ∅, where a := Id(Sn+1(G)) is the
vanishing ideal of Sn+1(G). Note Sn+1(G)∩B =∅. So, for x ∈B, the following
sequences are exact:

0 Γ(B,G)⊗Ox Γ(B,F)⊗Ox Γ(B,R) ⊗Ox 0

0 Gx Fx Rx 0

α β γ

Since G extends to D × Dd, the canonical morphism α is bijective. Since
R|B = H|B , the morphism γ is bijective. Then β has to be bijective. Now the
assertion follows from Lemma 8.2. �
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Theorem 8.4. Every ball figure B ⊂ X of dimension n has property (Gn+1).

Proof. The assertion on the uniqueness follows by Corollary 6.13.
Now consider a coherent sheaf F = F [n+1]. Let m < dimX be the greatest

integer with 0[m+1]F = 0. Obviously, we have n+ 1 ≤ m since, for n+ 1 ≥ m,
we have F = 0. Otherwise, set G := 0[m+2]F and R := F/G. By Lemma 8.1,
we know that G = G[n+1] extends to a coherent sheaf on X . Since 0[m+2]R = 0,
the sheaf R[n+1] is coherent by Proposition 6.7 (d) and satisfies the induction
hypothesis. SoR[n+1] extends to a coherent sheaf onX . Put S := Sn+2(R) and
T := Sn+2(G). Then we have dimS ≤ n+1 and dimT ≤ n; cp. Proposition 6.7.
Due to Lemma 1.5, there exists a finite morphism ψ : X → Dn+d with

ψ−1(Dn × ∂Dd) =: B′ ⊂ B and T ∩B′ = ∅,

ψ−1(Dn+1 × ∂Dd−1) ∩ S = ∅.

By Lemma 8.3, we obtain that ψ∗(F|B′) extends to a coherent sheaf on Dn+d.
Then Γ(B′,F) generates each stalk Fx for x ∈ B′. The assertion follows by
Lemma 8.2. �

Theorem 8.5. Let X be a rigid space, and let S ⊂ X be a closed analytic
subset of X of dimension n. Then the couple (X − S,X) has all the properties
(En+1), (Mn+1), (An+1), (Un+1), (Gn+1).

Proof. We may assume that X is affinoid. Then B := XS̃ ⊂ X is a ball figure
of dimension n. Due to property (En+1), established in Theorem 4.6, and due
to Lemma 8.2, it suffices to know that (B,X) has all the asserted properties.
So the assertion follows from Theorem 4.6 and Theorem 8.4. �

Extension properties of Hartogs figures. The first step towards the ex-
tension property (G(n)) for the n-dimensional Hartogs figure is the following
lemma which settles the case of the special Hartogs figure discussed in Proposi-
tion 1.14. In contrast to Proposition 1.14, for technical reasons, we will denote
the coordinate functions of Dn+d by ζ1, . . . , ζn, η1, . . . , ηd; i.e., we switch the
factors of Dn+d = Dn × Dd. The tube of the Hartogs figure is always given by
the first coordinate functions ζ1, . . . , ζn.

Lemma 8.6. Denote by (ζ1, . . . , ζn, η1, η2) the coordinate functions on Dn+2.
Consider the following figure of Hartogs type of dimension n in Dn+2:

H = T ∪B with T := (Dn
+ × D2)h̃ and B := Dn+2

Ñ
,

where Dn
+ := {x ∈ Dn; |ζi(x)| < 1 for i = 1, . . . , n}. Assume that the following

is satisfied.
(o) Ñ ⊂ An+2 is of dimension n.

(i) Ñ ∩ V (ζ̃1, . . . , ζ̃n) consists of finitely many points {0, ỹ1, . . . , ỹr}.
(ii) Every irreducible component of Ñ contains the origin {0}.
(iii) h̃ ∈ k[η1] is a polynomial with h̃(0) 6= 0 and h̃(ỹi) = 0 for i = 1, . . . , r.
Let F be a coherent sheaf on H with F =F [n], and assume that F is locally free

on Dn+2

Ñ
. Then F extends to coherent sheaf F on Dn+2 satisfying F = F [n].
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Proof. Since dim Ñ = n < n + 1, there exists a polynomial f ∈ K[ζ, η2] with

|f |= 1 and Ñ ⊂ V (f̃). At first, we perform a transformation of the coordinates

ζi 7→ ζi − ηti2 and η2 7→ η2 such that f̃ is monic (up to a unit) in η2. Moreover,
we can arrange the transformation in such a way that V (ζ̃1 − η̃t12 , . . . , ζ̃n − η̃tn2 )

intersects Ñ in finitely many points. Note that the origin always belongs to
this intersection. Then f gives rise to a finite map φ : Dn+2 → Dn+2 such that
φ̃(Ñ) ⊂ An+1 × (A1 − {0}). Then we have φ̃(Ñ) = V (g̃, η̃2), where g̃ ∈ k[ζ, η1].

After a linear transformation η2 7→ η2 and η1 7→ η2 + ηs11 , we may assume that
conditions (o) to (iii) are fulfilled for the target situation. So we may assume

that Ñ ⊂ V (η̃2) since it suffices to show the extension of φ∗F . Namely, then F
is generated by global sections, and the extension follows from Theorem 4.6.
Moreover, we may have that Ñ ⊂ V (g̃, η̃2), where g̃ ∈ k[ζ, η1] and all irreducible
factors of g̃ have a zero at the origin of An+1

k . Furthermore, we remind that
φ∗F is locally free on Dn+1 × ∂D1 due to [31, Cor. 2, p. IV-36].

Then we can extend F to a coherent sheaf F on Dn+1
g̃ × P1 by trivial exten-

sion since F is associated to a free module over Dn+1 × ∂D1 due to [27, Satz 2].
Due to GAGA, we know that F|Dn+1

g̃ ×A
1
K

is algebraic over Tn〈η1, 1/g〉[η2].
Due to the famous theorem of Quillen [28], we have that F|Dn+1

g̃ ×A
1
K

is ex-
tended from a projective Tn〈η1, 1/g〉-module P of finite type. Now we apply
Lemma 8.7 below. So there exists a function a ∈ Tn with |a| = 1 such that P
is free over {x ∈ Dn; |a(x)| ≥ c} for a suitable c ∈ |K×| with c < 1.

As in the proof of Lemma 2.10, there is an étale extension (D̃, x̃) → (An
k , 0̃)

such that g̃ decomposes into factors g̃= g̃1 · g̃2 over D̃×A1
k such that V (g̃1)→ D̃

is finite, V (g̃1) contains (x̃, 0̃) and V (g̃2) does not contain (x̃, 0̃); cp. [12,

Prop. 2.3/8]. After shrinking D̃, we may assume that V (g̃1) and V (g̃2) are

disjoint. Let D → Dn be a lifting of D̃ → An
k .

Let P be the sheaf associated to P . Since P is free over the subdomain
Da,c := {x ∈D; |a(x)| ≥ c}, we can extend P and hence F across V (g̃2) by the
free sheaf to a locally free sheaf F1 on

H1 := ((Da,c ∩Dn
+)× D2) ∪ ((Da,c × D2)g̃1 ∪ (Da,c × D1 × ∂D1)).

Note that (Da,c ∩ D+) 6= ∅, where D+ is the formal fiber of D at x̃. Now
we obtain the extension of F1 on D × D2 with F1 = F

[n]
1 by Proposition 7.7.

Indeed, we perform the finite projection ψ : H1 → H2 by g1 onto the Hartogs
figure H2 as in Proposition 7.7 satisfying ψ−1(H2) ⊂ H1. This shows that
F2 := ψ∗F1 is generated by global sections. So the extension of F1 to Da,c ×D2

follows by the extension property for coherent subsheaves, Theorem 4.6. By
the extension property for ball figures, Theorem 8.4, we see that F1 extends
to a coherent sheaf F1 on D × D2 satisfying the property F1 = F

[n]
1 .

It remains to descend the coherent sheaf F1 to Dn+2. Let X ⊂ Dn+1 be
the image of X ′ := (D × D1)g̃2 . This is a formal open subset of Dn+1. Due to
the conditions on the irreducible components of g̃, we have that X contains
a dense formally open part of V (g̃). Set Y :=X ×D1 and Y ′ :=X ′ ×D1. Then
we will consider a descent datum with respect to p : Y ′ → Y on the coherent
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sheaf G′ := F1|Y ′ . Denote by pi : Y
′′ := Y ′ ×Y Y ′ → Y ′ the i-th projection for

i = 1, 2. We have a canonical descent datum

ϕ : p∗1G
′|Y ′

g̃

∼

→ p∗2G
′|Y ′

g̃

which is also defined on D+ × D2. Then, due to Proposition 6.10, the map ϕ
extends to a descent datum

ϕ : p∗1G
′|Y ′

∼

→ p∗2G
′|Y ′ .

By [11, Thm. 3.1], this descent is effective. So there exists a coherent sheaf F
on Y which extends F|Y . Since Ỹ contains V (g̃1) except for a lower-dimen-

sional closed subset, Ỹ contains Ñ except for a lower-dimensional closed subset.
Finally, the assertion follows from Theorem 8.4. �

Lemma 8.7. Let A :=K〈ζ1, . . . , ζn〉 and B :=A〈η〉〈1/g〉, where g ∈ A〈η〉 with
|g|= 1. Let P be a finitely generated projective B-module of rank r. Then there
exist a free submodule F ⊂ P of rank r and an element a ∈ A with |a| = 1 such
that the support of the quotient P/F is contained in {x ∈ Sp(A); |a(x)| ≤ c}
for some c ∈ |K×| with c < 1.

Proof. We remark that B is factorial in any dimension of A as it follows from
[24, Lem. 6.2.3].

In the case of dimA = 1, we can prove more; namely, the assertion is true
for c = 0. So let us explain this case first. We successively choose elements
t1, . . . , tr ∈ P such that F := Bt1 + · · ·+Btr satisfies our assertion. We start
with a nonzero element s1 ∈ P . Since B is factorial, we can write s1 = b1t1 such
that the vanishing locus V (t1) is of codimension 2. Since B is 2-dimensional,
V (t1) consists of finitely many points. Thus there exists a nonzero a1 ∈ A such
that V (t1) ⊂ V (a1). Now we look at P1 := P/Bt1 which is projective after
localizing by a1. Since Ba1

is factorial, by the same argument as above, there
exists t2 ∈ P such that the locus of t2 in P1 is of codimension 2. Then we
choose a nonzero element a2 ∈ A such that P2 := P/(Bt1 + Bt2) localized by
a1a2 is projective. We continue in this way, and hence we arrive at sequence
t1, . . . , tr ∈ P and a1 · . . . · ar ∈ A such that F := Bt1 + · · ·+Btr satisfies our
assertion with a := a1, . . . , ar.

Now we consider the general case. At first, we proceed in the same way as
above, but instead of the affine localization, we use the affinoid localization.
Since the reduction of the projection of V (t1) is contained in an algebraic subset
of codimension 1, there is an a1 ∈ A with |a1| = 1 such that V (t1) ⊂ {x ∈ X ;
|a1(x)| < 1}. Then we look at the subset {y ∈ Sp(B); |a1(y)| = 1} instead of
the affine localization Ba1

. So, by a procedure similar to above, we end up with

elements t′1, . . . , t
′
r ∈ Γ(Sp(B)ã, P̃ ), where P̃ is the coherent sheaf associated to

P on Sp(B) such that F ′ := Bãt
′
1 + · · ·+Bãt

′
1 = Γ(Sp(B)ã, P̃ ) is free. Now we

can approximate t′1, . . . , t
′
r by elements t1, . . . , tr in Pa. After multiplying these

sections by a certain power of a, we may assume that t1, . . . , tr ∈ P belong
to P and generate P over Sp(Bã). The function a takes its maximum on the
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support of P/F with F := Bt1 + · · ·+Btr which is a certain number c ∈ |K×|
with c < 1. Thus the assertion is clear. �

Lemma 8.8. Let X = Sp(A) be an affinoid space of pure dimension (n + d)
with d ≥ 2, and let H = T ∪B ⊂ X be a Hartogs figure of dimension n as in
Definition 1.10. Then (H,X) has property (G(n)).

Proof. Let G = G[n] be a coherent sheaf on H with 0[m+1]G = 0, 0[m+2]G = G
for some m ≥ n. Then F := G[m] is coherent by Proposition 6.7 (d), and the
subsheaf G ⊂ F fulfills the condition G[n]F = G. If m ≥ n+ 1, then the asser-
tion for F is covered by Lemma 8.1 since the Hartogs figure contains a ball
figure of dimension n. Because (H,X) has property (Un) by Theorem 4.6, the
assertion for G is clear. The extension of an isomorphism ϕ : G|B → G|B to an
isomorphism over the tube T follows from Proposition 6.8 since B ∩ T is a ball
figure of dimension n in T by Lemma 1.11.

So we assume that m = n and 0[n+1]F = 0 and 0[n+2]F = F . In particular,
we have dimSn+1(F)≤ n− 1. The support S := Supp(F) is of pure dimension
n+2. By Theorem 3.6, the closed analytic set S extends to a pure dimensional
closed analytic subset S of X .

We want to project the subset S to a Hartogs figure in Dn+2 such that we
can apply our result Lemma 8.6. For doing so, we proceed as in the proof of
Theorem 3.6. At first, assume that we have to consider only one tube. Then
we may assume that this tube is maximal. Namely, by using Lemma 1.11, we
can directly reduce the assertion to the special Hartogs figure (Dn(ε)× D2) ∪
(Dn × ∂D2) in Dn+2, and we are done by Lemma 8.6 and Theorem 4.6 as usual.
After that, due to Proposition 1.14, we have a finite morphism φ : X → Dn+d

and a polynomial h̃ ∈ k[η1] with h̃(0) 6= 0 satisfying the following properties.
(o) Set H ′ := T ∪B ⊂ Dn+d with T := (Dn(ε)× Dd)h̃ and B := Dn+d

Ñ
.

(i) H ′ ⊂ Dn+d
h̃

is a Hartogs figure of dimension n in Dn+d
h̃

with φ−1(H ′) ⊂H .

(ii) The induced map φ : φ−1(H ′) → H ′ is finite.
At this point, it is eventually necessary to extend the base field. Since we
only need to know that F is generated by global sections, the extension of
the base field poses no problem. Furthermore, it suffices to show that φ∗F
is generated by global sections. Namely, then the assertion follows from the
extension property for subsheaves, Theorem 4.6. Now we proceed as in the
proof of Lemma 3.5 where we enlarge the radii ε = (ε1, . . . , εn) step by step
to εν = 1 for 1 ≤ ν ≤ n. In each step, we obtain the extension of φ∗F by
applying Lemma 8.6. Namely, as exercised in Lemma 3.5, at each step, there
is a finite covering map of S to a Hartogs figure of dimension n in a space of
dimension n+ 2.

For the general case, we have to reduce the number of tubes. For that,
one can choose a function a ∈ A with |a| = 1 such that ã vanishes on all the
irreducible components which do not meet the given complete intersection
defining one fixed tube. Then we look at Xã. So we arrive at a situation
where we can apply the procedure of above. Doing so for all tubes, we obtain
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the extension on a ball figure of dimension n − 1. Finally, we succeed by
Theorem 8.5. �

The proof of the extension property (Gn) for Hartogs figures follows in
a similar way as in the case of ball figures, Theorem 8.4. As preparation,
we need an analog of Lemma 8.3 adjusted to the special Hartogs figure we
mentioned in Lemma 8.6.

Lemma 8.9. As in Lemma 8.6, consider the following figure of Hartogs type
of dimension n in Dn+d:

H = T ∪B with T := (Dn
+ × Dd)h̃ and B := Dn+d

Ñ
,

where h̃ ∈ k[η1] is a monic polynomial. Let h ∈ K[η1] be a monic lifting of h̃.
Let F be a coherent sheaf on H satisfying F = F [n]. Set G = 0[m+2]F for

some m≥ n and R := F/G. Assume that cdh(G|B)≥ n+ 2 and R|B =R[n]|B.
If the coherent sheaves G = G[n] resp. H := R[n] extend as coherent sheaves

G = G [n] resp. H = H[n] on Dn+d, then there exists a coherent sheaf F = F [n]

on Dn+d such that F|H = F over H.

Proof. Due to Theorem 8.4, we may assumem= n. Set BT :=B ∩ T . Consider
the following commutative diagram with exact rows:

Γ(B,G) Γ(B,F) Γ(B,R) Γ(B,H) H1(B,G)

Γ(BT ,G) Γ(BT ,F) Γ(BT ,R) Γ(BT ,H) H1(BT ,G)

δ

δ′

The identifications are due to the assumption R|B = H|B. Since T is affinoid,
the exact sequence F → H → H/R → 0 gives rise to the exact sequence

Γ(T,F) Γ(T,H) Γ(T,H/R) 0

Γ(BT ,F) Γ(BT ,R) H1(BT ,G)

∼= ∼=

δ′

The vertical down-arrows are isomorphisms due to Proposition 6.10 because of

H=H[n] andH|B =R|B. Set S := Supp(H/R)∩ T . Then we have S ∩BT =∅

because of R|B = H|B. So there exist nonzero elements f ′
j ∈ OY (U)〈ηj〉 with

f ′
j · Im(δ′) = 0 and V (fj) ∩ (U × ∂D1) = ∅ for j = 1, . . . , d.
Now we apply Lemma 8.10 from below. So there is a formal étale neigh-

borhood (Y, ỹ) → (Dn, 0̃) satisfying all the properties mentioned there. Due
to Proposition 6.17, there exist nonzero polynomials pj ∈ OY (Y )[ηj ] for j =
1, . . . , d such that akpj Im(δ) = 0 and V (pj) ∩ (Y × ∂D1) = ∅, where a :=
Id(Sn+1(G)) is the vanishing ideal of Sn+1(G). Note Sn+1(G) ∩B = ∅. So, for
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x ∈ B, the following sequences are exact:

0 Γ(B,G)⊗Ox Γ(B,F)⊗Ox Γ(B,R) ⊗Ox 0

0 Gx Fx Rx 0

α β γ

Since G extends to YK × Dd, the canonical morphism α is bijective. Since
R|B = H|B , the morphism γ is bijective. Then β has to be bijective. Thus
F is generated by global sections over (YK × Dd), and hence F extends to
a coherent sheaf FY on (YK × Dd) due to the extension property for coherent
subsheaves, Theorem 4.6.

Since YK → Dn is quasi-compact and faithfully flat onto a formally dense
open subset Dn

ã with ã(0) 6= 0 of Dn, by a descent argument, it follows that F
extends to (Dn

ã × Dn). Indeed, the canonical descent datum on F extends to
a descent datum on FY as seen by an argument similar to the one applied in
the proof of Lemma 8.6. This descent is effective due to [11, Thm. 3.1]. So
we obtain an extension of F to the (n− 1)-dimensional ball figure Dn+d

Ñ∩V (ã)
in

Dn+d. Finally, the assertion follows from Theorem 8.4. �

Lemma 8.10. Keep the situation of Lemma 8.9. Let G = G[n] be a coherent

sheaf on Dn+d with cdh(G|B) ≥ n+ 2. Let a := Id(Sn+1(G)) be the vanishing

ideal of Sn+1(G). Then there exist a formal étale neighborhood (Y, ỹ) → (Dn, 0̃)
and a constant k ∈ N with the following properties.

If the restriction of a cohomology class ξ ∈ H1(B,G) onto BT is annihilated
by monic polynomials f ′

j ∈O(Dn
+)〈ηj〉 for j =1, . . . , d, then there exist functions

fj ∈ O(YK)〈ηj〉 for j = 1, . . . , d satisfying
(i) V (fj) ∩ (YK × ∂D1) = ∅ for j = 1, . . . , d,
(ii) fj · a

k · ξ = 0 in H1(BY , G), where BY ⊂ B ×Dn YK is a ball figure of
dimension n in YK ×Dn Dn+d.

Proof. Since Ñ → An
k is quasi-finite at the origin {0}, there exists an étale

neighborhood ϕ : Ỹ → An
k of 0 such that the pullback ϕ∗Ñ → Ỹ is finite due

to [12, Prop. 2.3/8]. Then the coordinate functions η̃1, . . . , η̃d satisfy monic
polynomial minimal equations

P̃j(η̃j) := η̃
tj
j + ãj,tj−1η̃

tj−1
j + · · ·+ ãj,0 = 0

with coefficients ãj,i ∈ OỸ (Ỹ ). Then we obtain a finite morphism

Φ̃ := (P̃1(η̃1), . . . , P̃1(η̃1)) : Ỹ ×An
k
An+d

k → Ỹ × Ad
k

satisfying Φ̃−1({ỹ0} × (Ad
k − {0}))⊃ Ñ . Then we lift all the data to the formal

level, and hence we obtain a finite map Φ : Y ×Dn Dn+d → Y × Dd on the
affinoid site.

We have to compute the cohomology group Hd−1((Y ×Dd)Ñ ,OY ×Dd). Set
X := Y ×Dd and set C :=OY (Y ). Then we have A :=OX(X) = C〈η1, . . . , ηd〉.
Let hj ∈ C[ηj ] be a monic polynomial of degree tj for j = 1, . . . , d such that
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h̃j ∈ C̃[η] is the minimal polynomial of η̃j |Ñ . Now consider the ball figure
BY :=XV (h̃1,...,h̃d) of dimension n in X . We want to compute Hd−1(BY ,OX).

At first, we remark the following. If h ∈ C[η] is a monic Weierstraß polyno-
mial of degree t ≥ 1, then any element f ∈ OX(Xh̃) has a unique representa-
tion f =

∑
ν≤0 rν · h

ν , where rν ∈ C[η] is a polynomial of deg rν ≤ t− 1 for all
ν < 0 and r0 ∈ A. Then, as in Lemma 6.15, we have the following description
of Hd−1(B,OX):

Hd−1(BY ,OX) = A〈h−1
1 , . . . , h−1

d 〉

/ d⊕

j=1

A〈h−1
1 , . . . , ĥ−1

j , . . . , h−1
d 〉.

So any ξ ∈ Hd−1(BY ,OX) has unique representation

ξ =
∑

ν1<0,...,νd<0

cν1,...,νd · h
ν1
1 . . . hνd

d ,

where cν1,...,νd ∈ C[η1, . . . , ηd] are polynomials with degηj
cν1,...,νd < tj for

j = 1, . . . , d.
Let Y ′ ⊂ Y be a nonempty open affinoid subdomain which reduces to

ỹ0 ∈ Ỹ , which lies over the origin in An
k . Set B′

Y := (Y ′ × Dd) ∩ BY and

T ′ := (Y ′ × Dd) ∩ Xh̃; regard h̃ as a factor of h̃1. Set C′ := OY (Y
′). Con-

sider a cohomology class ξ ∈ Hd−1(B,OX) such that the restriction ξ|C′ is
annihilated by some nonzero f ′

j ∈ C′〈ηj〉 for some j ∈ {1, . . . , d} such that

V (f ′
j) ∩ (Y × D1)h̃j

= ∅ and f ′
j · ξ = 0. Then there exists an fj ∈ C[ηj ] such

that V (fj) ∩ (Y × D1)h̃j
= ∅ and fj · ak · ξ = 0. Indeed, as in Lemma 6.17,

this follows by the extension property of meromorphic functions on Hartogs
figures, Theorem 2.11. �

Theorem 8.11. Let X be an affinoid space of pure dimension n+ d, and let
H ⊂X be a Hartogs figure of dimension n in X in the sense of Definition 1.10.
Then (H,X) has property (Gn).

Proof. The assertion on the uniqueness follows by Corollary 6.12 and Theo-
rem 4.6. Indeed, let F be a coherent sheaf with F = F [n] on X , and let
H = H[n−1] be another coherent sheaf such that there is an isomorphism
φ : H|H → F|H over an Hartogs figure H of dimension n. Then we con-
sider Sn+1(H). Since dim Sn+1(F) ≤ n − 1 by Proposition 6.7 (c), we have
dimSn+1(H|H)≤ n− 1 due to the isomorphism. By property (En) for Hartogs
figures, we obtain dim Sn+1(H|H) ≤ n− 1. Thus H satisfies H = H[n] due to
Proposition 6.7 (c) as H = H[n−1]. Then the uniqueness follows from Corol-
lary 6.12.

Then the proof of the extension follows similarly to the proof of Theorem 8.4.
Consider a coherent sheaf F = F [n]. Let m < dimX be the greatest integer
with 0[m+1]F = 0. Obviously, we have n ≤m since, for n ≥ m, we have F = 0.
Otherwise, set G := 0[m+1]F and R := F/G. Due to Lemma 8.8, we know that
G = G[n] extends to a coherent sheaf on X . Since 0[m+1]F = 0, the sheaf R[n]
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is coherent by Proposition 6.7 (d) and satisfies the induction hypothesis. So
R[n] extends to a coherent sheaf on X .

Put A := Sn+1(R) and B := Sn+1(G). Then we have dimA≤ n and dimB ≤
n − 1; cp. Proposition 6.7. Therefore, due to Proposition 1.14, there exists
a finite morphism ψ : X → Dn+d with ψ−1(H ′) ⊂ H , where

H ′ := T ′ ∪B′ with T ′ := (Dn
+ × Dd)h̃ and B′ := Dn+d

Ñ

is a figure of Hartogs type as in Lemma 8.6. By Lemma 8.9, we obtain that
ψ∗(F|B′) extends to a coherent sheaf on Dn+d. Then Γ(B′, F) generates
each stalk Fx for x ∈ B′, where B′ := Dn+d

Ñ
. The assertion now follows by

Lemma 8.2. �

Extension properties of rectilinear Hartogs figures. In the following,
we consider a rectilinear Hartogs figure

H := (V × Dd) ∪ (Y × ∂Dd) ⊂ X := (Y × Dd),

where Y is an irreducible affinoid space and V ⊂ Y is a nonempty open subset.
We will only sketch the procedure of the proof and leave details to the reader.

Theorem 8.12. The rectilinear Hartogs figure of dimension n satisfies all the
extension properties (En), (Mn), (An), (Un), (Gn).

Proof. We already know that the rectilinear Hartogs figure satisfies properties
(En), (Mn), (An) resp. (Un); cp. Proposition 1.12, Proposition 2.6, Proposi-
tion 3.14, resp. Theorem 4.6.

For the proof of (Gn), we proceed as in the proof of Proposition 3.14 by
reducing the assertion to the case where Y is a curve, which follows from the
case of Hartogs figures, Theorem 8.11, in the sense of Definition 1.10 by using
the stable reduction theorem of curves. Indeed, instead of restricting to a closed
analytic subset of Y of dimension 1, one can use tubular neighborhoods of such
curves in the sense of Proposition 1.15. By this method, one obtains nonempty
open subsets Vi ⊂ Y ′

i , where the reduction of Y ′
i is a formal open part of an

irreducible component of Ỹ such that Y ′
1 ∪ · · · ∪ Y ′

r is a formal dense open

part of Ỹ . Moreover, as in the proof of Proposition 3.14, one can assume that
there exist finite projections S ∩ (Y ′

i × Dd) → Y ′
i × Dt for t := dimS − dim Y

whenever a closed analytic subvariety S ⊂ Y × Dd shows up in the several
reduction steps like in Lemma 8.8 and Lemma 8.9. So we obtain the extension
of coherent sheaves F = F [n] to a ball figure of dimension n− 1. The latter
case is handled by Theorem 8.5. �

We add a historical note. The crucial point for proving (Gn) is the coherence
result, Theorem 7.1, which was published in [27]. In an unpublished paper of
the author, this result was used to show property (Gn) for the rectilinear
Hartogs figure (Dn(ε)× Dd) ∪ (Dn × ∂Dd). Moreover, the technicalities of § 4
and § 6 were provided in that notes. Later, Bartenwerfer used these latter
results in [8] to generalize the results for the full assertions of this section.
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Unfortunately, he avoided the use of Theorem 7.1, and so it appeared a fatal
gap in his paper just at the beginning.

Appendix A

In this appendix, we provide Theorem A.17 which allows us to give a smooth
proof of Theorem 3.15 (b). For this purpose, we reprove some results of Barten-
werfer which are difficult to access; cp. [6, 7]. There is also a contribution by
van der Put [35]. They follow different methods, but they both make essential
use of enlarged coverings; see below. So they get the vanishing result, Theo-
rem A.7, only for O∨

X but not for O◦
X as we do. Our method is completely

different from theirs. In the following, we assume that K is algebraically closed.
We will use the following notations: let c ∈

√
|K×| and c < 1.

Let O◦
X be the subsheaf of OX consisting of the functions f with spectral

norm |f | ≤ 1. Let O∨
X be the subsheaf of OX consisting of the functions f

with spectral norm |f | < 1. Let OX(c) be the subsheaf of OX consisting of the
functions f with spectral norm |f | < c.

Metric cohomology of the polydisc. Let us start by recalling some stan-
dard definitions. A rational covering U= {U0, . . . ,Un} ofX is given by function
f0, . . . , fn ∈ A without a common zero such that

Ui = {x ∈ X ; |fj(x)| ≤ |fi(x)| for j = 0, . . . , n}.

Such subsets are called rational domains.
If U = {U0, . . . , Un} is a rational covering as defined above, an enlargement

of U is a covering U̺ := {U̺
0 , . . . , U

̺
n}, where ̺ ∈

√
|K×| and ̺ > 1 and

U̺
i = {x ∈ X ; |fj(x)| ≤ ̺ · |fi(x)| for j = 0, . . . , n}.

We cite the result of Gerritzen and Grauert [16], which is often used.

Lemma A.1. Let X be a finite covering of X = Sp(A) by open affinoid sub-
domains. Then there exists a rational covering U of X which is a refinement
of the covering X.

Proof. See [9, Thm. 4.2/10]. �

Proposition A.2. Let X be an affinoid space, and let U be a finite covering
by affinoid subdomains of X. Then there exists an element t ∈ K× such that
t ·Hq(U,O◦

X) = 0 for all q ∈ N with q ≥ 1.

Proof. The spaces Cq(U,O◦
X) and Zq(U,O◦

X) are Banach spaces. Since it holds
that Hq(U,OX) = 0 for q ≥ 1, the coboundary map

∂q−1 : Cq−1(U,OX) → Zq(U,OX)

is surjective for q ≥ 1. So the map is open due to Banach’s theorem. Thus
there exists an element t ∈ K× such that t · Zq(U,O◦

X) is contained in the
image of ∂q−1|Cq−1(U,O◦

X). Thus we see that t ·Hq(U,O◦
X) = 0 for all q ∈ N

with q ≥ 1. Note that Hq(U,O◦
X) = 0 if q is larger than the number of members

of the covering U; cp. Remark A.3. �
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Remark A.3. In the situation of Proposition A.2, we have an exact sequence

Hq(U,O◦
X)

·t
−→ Hq(U,O◦

X)
̺
−→ Hq(U,O◦

X/t · O◦
X)

δ
−→ Hq+1(U,O◦

X)
·t
−→ Hq+1(U,O◦

X),

where the maps · t are zero for q ≥ 1 due to Proposition A.2 and hence ̺ is
injective and δ is surjective for q ≥ 1. Thus the vanishing of Hq(U,O◦

X) for all
q ≥ 1 is equivalent to the vanishing of Hq(U,O◦

X/t · O◦
X) for all q ≥ 1. So, if we

later work with formal models, the vanishing of Hq(U,O◦
X) becomes a question

in algebraic geometry of finite presentation over the ring R/Rt.

Next we concentrate on the vanishing ofH1(Dd,O◦
Dd). In contrast to Propo-

sition A.2, we also have to deal with the limit of all rational coverings of X .

Proposition A.4. Let X =Dd =Sp(Td) be the unit polydisc. For any rational
covering V of X, we have the short exact sequence

0 −→ Td

ι
−→←−
π

C0(V,OX)
∂0

−→ Z1(V,OX).

The map ι has a left inverse π on the submodule ker(∂0) ⊂ C0(V,OX), and
∂0|kerπ is an isometry with respect to the spectral norm.

Proof. Assume that V is a rational covering given by g1, . . . , gn ∈ Td. After
a suitable transformation of the variables, we may assume that each gi ∈ Td

is a Weierstraß divisor. So we can write gi = ui · ωi for i = 1, . . . , n, where
ωi ∈ Td−1[η] is a Weierstraß polynomial and ui ∈ T×

d is a unit. The coordinate

functions of Dd are named by ζ1, . . . , ζd−1, η. The unit ui can be written in the
form ui = ci · ei, where ei is a unit with absolute value |ei| = 1 and ci ∈ K×

is a constant. Note that the units e1, . . . , en have constant absolute value
functions 1. Furthermore, we may assume that |c1| = 1 ≥ max{|c1|, . . . , |cn|}.

A typical member Vi of V has the form

Vi := {x ∈ X ; |c1ω1(x)| ≤ |ciωi(x)|, . . . , |cnωn(x)| ≤ |ciωi(x)|}.

We put ω := ω1 · . . . · ωn. So we have

V0 := {x ∈ X ; |ω(x)| = 1} = {x ∈ X ; |ω1(x)| = 1, . . . , |ωn(x)| = 1}.

Note that V0 ⊂ V1 is a subset of V1 and it is connected and not empty since
the polynomials are monic with absolute value |ωi| = 1 for all i = 1, . . . , n.
Since we are free to refine the covering V, we add V0 to our covering V. By
abuse of notation, we denote the new covering by V, too. Any f0 ∈ OX(V0)
has a unique representation

f0 = h+

∞∑

ν=1

aν/ω
ν, where h ∈ Td, aν ∈ Td−1[η] with deg aν < degω,

|f0|V0
= max{|h|, |ℓ0|} with Laurent tail ℓ0 :=

∞∑

ν=1

aν/ω
ν,

|ℓ0| = max{|aν|; ν ∈ N}.
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Then we define the section π : C0(V,OX) → Td for f = (fi) via

π((fi)) = π(f0) = h ∈ Td.

We will show that |f | = |∂0(f)| for f ∈ ker(π). It suffices to work on the fibers
{y} × D1 for y ∈ Dd−1. Thus, from now on, we may assume that d = 1 and
that the base field K is algebraically closed. In this case, we have a precise
description of the affinoid subdomains; cp. [24, Prop. 2.4.8]. Moreover, we know
its formal models and its reductions. The reduction is a tree-like configuration
of smooth projective lines which meet transversally, and it has a refinement
such that the components meet in ordinary double points. Then the assertions
follow from the lemma below. �

Lemma A.5. Let k be algebraically closed. Let P be a reduced connected al-
gebraic curve whose irreducible components are smooth projective lines which
meet transversally in ordinary double points and constitute a tree-like configu-
ration. Let x0 ∈ P be a closed point which is smooth. Set D := P − {x0}.

(a) For any open affine covering V = {V1, . . . , Vn} of P , the sequence

0 −→ k
ι

−→←−
π

C0(V,OP )
∂0

−→ Z1(V,OP ) −→ 0

is exact. The map ι maps c ∈ k to the constant function (c|Vi
) ∈ C0(V,OP ).

There is a left inverse π on ker(∂0) of the map ι by sending (fi) to f1(x1),
where x1 ∈ V1 is a closed smooth point of P .

(b) Denote by η the coordinate function on the projective line L0 which
contains x0. Assume that η has a pole at x0. Then, for any open affine
covering V = {V1, . . . , Vn} of D, the sequence

0 −→ k[η]
ι

−→←−
π

C0(V,OD)
∂0

−→ Z1(V,OD) −→ 0

is exact. Any polynomial f ∈ k[η] gives rise to a regular function f |L0
on L0

which determines values at the intersection points of L0 with the remaining
components. By each of these values, one extends f |L0

onto the other compo-
nents on the subsequent subtree following the given intersection point by con-
stant functions, and hence one gets a global function h on D. The map ι maps
a polynomial f ∈ k[η] to the cocycle (h|Vi

) ∈ C0(V,OD).
There is a left inverse π on ker(∂0) of the map ι by sending an element

f := (fi) ∈ ker(∂0) to π(f |L0
), where π(f |L0

) ∈ k[η] is the polynomial defined
by the partial fraction decomposition of the rational function f |L0

.

Proof. We know that ι is an isomorphism to ker(∂0) in both cases. Moreover,
we have thatH1(V,OP )= 0 andH1(V,OD) = 0 since it holds for the projective
line resp. the affine line and hence for a tree-like configuration where all the
components are projective lines except for the initial component L0 which is
an affine line, respectively. �

Remark A.6. Actually, one can generalize this method. It also works for
a relative annulus X := Y ×A(r,1) if there is a covering X of X := Y ×A(r,1)
such that (Y × ∂D1(r))ω1

resp. (Y × ∂D1(1))ω0
is contained in a member V1
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resp. V0 of our covering, where ω1 resp. ω0 are Weierstraß polynomials in r/η
resp. η/1. In that case, one defines the section π via

π : C0(X,O◦
X) → O◦

X(X); π((f)) = h0 + ℓr,

where fr ∈OX(V1) is written as f1 = h1 + ℓr, where ℓr is the Laurent tail given
by the hole |η|< r, and h0 is given by the part of f0 belonging to OX(Y ×D1).

Proposition A.4 yields the first step of an induction process for proving the
following vanishing theorem.

Theorem A.7. Let X = Dd be the d-dimensional unit disc, and let O◦
X be the

sheaf of holomorphic functions with |f | ≤ 1. Then we have Hq(X,O◦
X) = 0 for

all q ≥ 1.

Proof. The vanishing of H1(X,O◦
X) = 0 follows directly from Proposition A.4.

For q ≥ 2, we proceed by induction on d to show the assertion. In the
1-dimensional case, consider a rational covering V of X . Then there exists
a flat formal R-model X of X such that V is induced by an open covering of
that model; cp. [24, Thm. 3.3.4]. Then look at the sheaf of power bounded
functions O◦

X . Due to Remark A.6, it suffices to show Hq(X ,O◦
X /t · O◦

X ) = 0
for all q ≥ 2 and a suitable t ∈ K×. Since X is 1-dimensional, the assertion
follows by a theorem of Grothendieck; cp. [17] or [19, Thm. III, 2.7]. So we are
done in the case d = 1.

Now consider the case d ≥ 2, and assume that the assertion is true in the
lower-dimensional case. As in the proof of Proposition A.4, we may assume
that we have to consider a rational covering given by functions g0, . . . , gn ∈ Td.
We may assume that |gi| ≤ |g0| = 1 for i = 1, . . . , n and that g0 is a Weierstraß
polynomial of positive degree. Note that {V0, . . . , Vn, V∞} with

V∞ := {x ∈ Dd−1 × P1; |g0(x)| ≥ 1},

Vi := {x ∈ Dd−1 × D1; |g0(x)| ≤ |gi(x)|, . . . , |gn(x)| ≤ |gi(x)|}

gives rise to an admissible covering of P := Dd−1 × P1 by affinoid domains.
Then any cocycle (f) ∈Cq(V,O◦

X) of degree q ≥ 1 can be regarded as a cocycle
on P . Let p : P → Y := Dd−1 and p′ : X := Dd−1 × D1 → Y := Dd−1 be the
projections. We have

p∗O
◦
X = O◦

Y and p′∗O
◦
X =

⊕̂

ν∈N

O◦
Y · ην ,

where η is the coordinate function on P1. Since Hq commutes with the forma-

tion of
⊕̂

, we obtain Hq(Y, p∗O◦
P ) = 0 and Hq(Y, p′∗O

◦
X) = 0 for all q ≥ 1 by

the induction hypothesis.
Next we want to show Rqp∗O◦

P = 0 for all q ≥ 1. It suffices to show that,
for any open affinoid subdomain U ⊂ Y and any finite open affinoid covering
V = {V1, . . . , Vm} of p−1(U), there exists a finite open affinoid covering U =
{U1, . . . , Un} such that Hq(VUi

,O◦
P ) = 0, where VUi

denotes the covering
V restricted to Ui × P1. For doing so, we choose an R-model π : P → Y of
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p : P → Y = Dd−1 such that V is induced by formal open subsets of P and
such that π is flat; cp. [13, Cor. 5.10]. Since π is flat, the fibers of π are of
dimension 1. Let O◦

P be the normalization of OP . Then O◦
P is a coherent

OP -module. Namely, for any open affine subset V of P , the normalization
O◦

P(V) is a finite OP(V)-module due to the theorem of Grauert and Remmert;
cp. [10, Cor. 6.4.1/5]. Moreover, the formation of normalization is compatible
with formal localizations. So, due to the theorem of Grothendieck loc. cit.,
the cohomology groups Hq(π−1(y),O◦

P |π−1(y)) = 0 vanish for all q ≥ 2 and
for all closed points of Y since the fibers are of dimension 1. Thus we have
Rqp∗O◦

P = 0 for all q ≥ 2 due to the theorem on cohomology and base change.
Now we consider the case q = 1. We want to show that R1p∗O◦

P = 0.
Keep the notation of above. Since we have that H0(P,OP ) = OY (U) and
Hq(P,OP ) = 0 for all q ≥ 1, the sequence

0 −→ OY (U)
ι

−→ C0(V,OP )
∂0

−→ Z1(V,OP ) −→ 0

is exact. The map ι maps an h ∈ OY (U) to the 0-chain (h|Vj
) ∈ C0(V,OP )

which is constant on the fibers. The map ι admits local sections πi with respect
to the finite affinoid covering U := {σ∗(V1), . . . , σ

∗(Vn)}, where σ : U → P1 is
the point at infinity. The section πi pulls back a 0-chain f by evaluating at
infinity. The kernel ker(πi) is mapped to Z1(Vi,OP ) by ∂0 in an isometric
way, as follows from Lemma A.5. Thus we see H1(VUi

,O◦
P ) = 0. This in turn

implies R1p∗O◦
P = 0.

Concluding, we obtained Rqp∗O◦
P = 0 for all q ≥ 1. By the Leray spectral

sequence, we finally obtain Hq(P,O◦
P ) = 0 for all q ≥ 1. As we said at the

beginning of the proof, Hq(P,O◦
P ) = Hq(X,O◦

X) for all q ≥ 1. Finally, we
obtain Hq(X,O◦

X) = 0 for all q ≥ 1. �

More generally, we have the following result.

Theorem A.8. Let X be an affinoid space. The following holds for all q ≥ 1.
(a) If X is smooth, there exists a constant c ∈ K× with c ·Hq(X,O◦

X) = 0.
(b) If X admits a smooth formal model, then Hq(X,O◦

X) = 0.

For the proof of Theorem A.8, we need preliminary results. Assertion (a)
will follow from Proposition A.11 (iii). Assertion (b) will be shown at the end
of this subsection.

Lemma A.9. Let φ : XK := Sp(A) → YK = Sp(B) be a finite flat morphism.
Then, for every finite affinoid covering U of X, there exists a finite affinoid
covering V of YK such that φ∗V is finer than U. Here φ∗V denote the covering
induced by the connected components of all φ−1(V ) for V ∈ V.

Proof. Let ϕ: X := Spf(A◦)→ Y = Spf(B◦) be the morphism of the associated
affine formal models. There exists a formal blowing up X ′′ →X such that the
covering U is induced by a formal covering of X ′′; cp. [24, Thm. 3.3.4]. Since
ϕ is flat, there exists an admissible formal blowing up Y ′ → Y such that the
induced morphism ϕ′ : X ′ → Y ′ is flat and finite [13, Cor. 5.10]. As a flat
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morphism ϕ′ is open, for every point x ∈ X ′, there is an open neighborhood
V of ϕ′(x) in Y such that each connected component of ϕ−1(V ) is contained
in some U which belongs to the covering U. �

Lemma A.10. Let X =Sp(A) be a smooth irreducible affinoid space of dimen-
sion d. Consider a finite morphism ϕ : X = Sp(A) → Dd = Sp(T ) of rank n.
(i) Then there exists a T -basis e1, . . . , en of A with e1, . . . , en ∈ A◦. Set

F := ϕ∗T ◦ · e1 ⊕ · · · ⊕ ϕ∗T ◦ · en.

(ii) For any small perturbation ψ of ϕ, see Proposition 1.16, we also have

F = ψ∗T ◦ · e1 ⊕ · · · ⊕ ψ∗T ◦ · en.

(iii) If the perturbation ψ is étale over Dd − V (h) for some nonzero function h
on Dd, then there exist a c ∈ K× and an exponent α ∈ N such that

c · hα · ψ∗O
◦
X ⊂ O◦

Dd · e1 ⊕ · · · ⊕ O◦
Dd · en.

(iv) With the notation of (iii), we have c · ψ∗hα ·Hq(X,O◦
X) = 0 for all q ≥ 1.

(v) One can choose c ∈ K× such that c · A◦ ⊂ F .

Proof. (i) The map ϕ is flat since the local rings of the source and the target
are regular, and hence the homological dimension is 0 due to [31, Prop. 21,
p. IV-35]. So ϕ∗OX is locally free of rank n. Since locally free T -modules are
free due to [27, Satz 1], there exists such a basis.

(ii) Since pullbacks of the coordinate functions ζ1, . . . , ζd by ϕ and ψ satisfy
the inequality |ϕ∗ζi − ψ∗ζi| < 1 for i = 1, . . . , d, we obtain the assertion by
iteration.

(iii) Let U be an open subdomain of Dd. At first, assume that ψ−1(U) is
isomorphic to V (ω)⊂ U ×D1, where ω ∈ T [η] is a Weierstraß polynomial. Any
f ∈ ψ∗OX(U) can be represented in the form

f = a1η
0 + · · ·+ anη

n−1 modulo ω.

Thus the values of f on the fiber of ψ−1(y) are given by

f = (f(β1), . . . , f(βn))
t = M · (a1(y), . . . , an(y))

t,

where M is the van de Monde matrix. Thus we see that the coefficients
a1, . . . , an can be bounded by spectral norm of f via the adjoint matrix M∗

of M and the determinant of M−1,

(a1(y), . . . , an(y))
t = (detM)−1 ·M∗ · (f(β1), . . . , f(βn))

t.

The basis η0, . . . , ηn−1 mod ω is related to our basis e1, . . . , en by a matrix N ,

(η0, . . . , ηn−1)t = N · (e1, . . . , en)
t.

Starting with a representation f = b1 · e1 + · · ·+ bn · en, we have

(b1, . . . , bn)
t = (det(NM))−1 ·N∗ ·M∗ · (f(β1), . . . , f(βn))

t.

Note that N has bounded entries since e1, . . . , en is basis of φ∗OX . The deter-
minant det(NM) is invertible on Dd − V (h). Moreover, there exists a power
hα such that (det(NM))−1 · hα is bounded by 1. Due to Proposition 1.16 (b),
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over Dd
h,ε, there are finitely many representation of X as V (ωi) ⊂ Ui × D1,

where {U1, . . . , Un} is an open affinoid covering of Dd
h,ε. Thus we can bound

the factors det(NM),M∗,N∗. This shows that there exist an element c ∈K×

and an exponent α ∈ N as claimed.
(iv) We have the exact sequence

0 → (O◦
Dd)

n → ψ∗O
◦
X → ψ∗O

◦
X/(O◦

Dd)
n → 0.

This sequence induces the long exact sequences, for q ≥ 1,

→ Hq(Dd, (O◦
Dd)

n) → Hq(Dd, ψ∗O
◦
X) → Hq(Dd, ψ∗O

◦
X/(O◦

Dd)
n)

→ Hq+1(Dd, (O◦
Dd)

n) → .

Due to Theorem A.7, we have Hq(Dd,O◦
Dd) = 0 for q ≥ 1, and hence both

exterior terms vanish. The third term is annihilated by c ·ψ∗hα, and hence the
second term is also. Due to Lemma A.9, we haveHq(Dd,ψ∗O◦

X) =Hq(X,O◦
X),

and hence Hq(X,O◦
X) is annihilated by c · ψ∗hα.

(v) If c ·A◦ ⊂ F , the entries of N have spectral norm less than or equal to 1.
The entries of M also have spectral norm less than or equal to 1. �

Proposition A.11. Let X be a smooth irreducible affinoid space of dimen-
sion d. Fix a finite morphism ϕ : X = Sp(A) → Dd = Sp(T ) and a T -basis
(e1, . . . , en) of A. Then there exist finitely many small perturbations ψi : X →
Dd of ϕ and functions hi on Dd for i = 1, . . . , n such that
(i) ψ∗

1h1, . . . , ψ
∗
nhn have no common zeros,

(ii) (ψ, hi) satisfy the assertion of Lemma A.10 with ci, αi,
(iii) there exists an element c ∈ K× such that c ·Hq(X,O◦

X) = 0 for q ≥ 1.

Proof. Since X is smooth, for any point x ∈ X , there exists a perturbation
ψ : X → Dd of ϕ such that ψ is étale over ψ(x); cp. Proposition 1.16 (a). Since
the étale locus of a morphism is open, there exists a function h on Dd such
that ψ is étale over Dd − V (h). In particular, we have ψ∗h(x) 6= 0. Then,
by a noetherian argument, there are finitely many perturbations satisfying (i)
and (ii).

(iii) Due to (i), there exist functions g1, . . . , gn ∈ A◦ such that

b = g1ψ
∗hα1

1 + · · ·+ gnψ
∗hαn

n

for some b ∈ K×. Then, by Lemma A.10 (iv), we can conclude

c · b ·Hq(X,O◦
X) = 0 for all q ≥ 1. �

Now we turn to the proof of Theorem A.8 (b).

Proof of Theorem A.8 (b). We proceed as in the proof of (a) by using formal
coverings. Due to Proposition 1.17 (a), there exist morphisms φi : X → Dd

for i = 1, . . . , n which are finite and formally étale over Dd
g̃i

with gi ∈ Td and

|gi| = 1 such that the subdomains Xi = Xφ∗

i g̃i
for i = 1, . . . , n cover X . In

particular, φ̃i : X̃ → Ad
k is finite and flat. Indeed, the local rings of the source

and the target are regular, and hence the homological dimension is 0 due to
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[31, Prop. 21, p. IV-35]. So the direct image φ̃i,∗OX̃ is locally free and hence

free due to [28]. Since we can lift the basis of φ̃i,∗OX̃ to a basis of O◦
X(X), we

have

A◦ = T ◦ · e1 ⊕ . . .⊕ T ◦ · en.

As in the proof of Lemma A.10, we obtain

(9) gαi

i · φ∗O
◦
X(X) ⊂ O◦

Dd · e1 ⊕ · · · ⊕ O◦
Dd · en.

The constant c in Lemma A.10 is equal to 1 in this case due to Proposi-
tion A.11 (v). Actually, one has to replace gi by the determinant hi of the
van de Monde matrix associated to φi. Since φi is formally étale over Dd

g̃i
,

we have that |hi| = 1 with V (h̃i) ⊂ V (g̃i). So we can directly assume that
hi = gi without loss of generality. As in Lemma A.10, relation (9) implies
φ∗gαi

i ·Hq(X,O◦
X) = 0 for all q ≥ 1. Since g1, . . . , gn is a formal covering, there

exist functions f1, . . . , fn ∈ O◦
Dd(D

d) with 1 = f1 · g
α1

1 + · · ·+ fn · gαn
n . So we

finally get

Hq(X,O◦
X) = f1 · g

α1

1 ·Hq(X,O◦
X) + · · ·+ fn · gαn

n ·Hq(X,O◦
X) = 0

for all q ≥ 1. This completes the proof of Theorem A.8. �

Theorem A.12. Let Y := Sp(B) be an affinoid space which admits a smooth
formal model. Let X = Y ×

∏n
i=1 A(r1,i, r2,i) be a product of Y and n annuli

A(r1,i, r2,i), where r1,i ≤ r2,i for i = 1, . . . , n. Then we have the vanishing
Hq(X,O◦

X) = 0 for all q ≥ 1.

Proof. We proceed by induction on the number n of the involved annuli. The
case n = 0 is settled by Theorem A.8 (b). Now assume n ≥ 1 and that the
assertion is true for all numbers less than n. Denote A = A(r1,1, r1,1). Then

the affinoid space Y ×A has smooth reduction. Now look at a cocycle (fi,j) ∈
Z1(U,O◦

X). At first, we look at the restriction of this cocycle onto

X := Y ×A(r1,1, r1,1)×
n∏

i=2

A(r1,i, r2,i) = (Y ×A)×
n∏

i=2

A(r1,i, r2,i).

In order to keep notation simple, set P :=
∏n

i=2 A(r1,i, r2,i). Due to the in-
duction hypothesis, we have Hq(X,O◦

X) = 0. Thus there exists a 0-chain
h ∈ C0(U|X ,O◦

X) with ∂0(h) = (fi,j)|X . Now we define a new cocycle on
Y × D1(r2,1) × P with respect to the covering W := U ∪ {U0} with U0 :=
Y ×D1(r1,1)×P by setting gi,0 = hi on Ui ∩U0 for i 6= 0 and gi,j := fi,j if i 6= 0
and j 6= 0. Then g := (gi,j) ∈ Z1(W,O◦

X). Thus, by the induction hypothesis,
we can solve (gi,j) by a 0-chain ℓ ∈ C0(W,O◦

X). This settles the assertion for
H1(X,O◦

X). The assertion for Hq(X,O◦
X) with q ≥ 2 follows similarly. �

Analytic Picard group of X × A1

K
. The aim of this subsection is the rigid

analytic version of the following well-known result in commutative algebra;
cp. [14, Chap. VII, § 1, Prop. 18].
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Proposition A.13. Let A be a normal noetherian ring, and let A[ξ] be the
polynomial ring over A in one variable ξ. Then the canonical morphism
Pic(A)

∼

→ Pic(A[ξ]) from the Picard group of A to the one of the polynomial
ring over A is bijective. The canonical morphism Pic(A)

∼

→ Pic(A[ξ, ξ−1]) is
also bijective.

The prime ideals p of A[ξ] resp. of A[ξ, ξ−1] of height 1 are either induced by
prime ideals of height 1 from A or p∩A= (0) and p is generated by a primitive
polynomial. In particular, any divisor ideal a of A[ξ] which contains a monic
polynomial is principal.

Proof. The assertion follows by the Lemma of Gauß for normal rings. �

Let us first concentrate on the statement for Pic(X × D1) resp. the one for
Pic(X × ∂D1); cp. [15] for similar results.

Theorem A.14. Let X = Sp(A) be an affinoid space which admits a smooth
formal model. Then the following holds.
(a) The canonical morphism Pic(X) → Pic(X × D1) is bijective.
(b) The canonical morphism Pic(X) → Pic(X × ∂D1) is bijective.
(c) H1(X,Z) = 0 and H1(X,K×) = 0.

Proof. Due to [24, Lem. 6.2.4], any line bundle LK on X × D1 resp. on X ×
∂D1 extends to a formal line bundle L on the smooth model of X × D1 resp.
X × ∂D1. So the reduction L̃ gives rise to a line bundle on X̃ × A1

k resp.

on X̃ × Gm,k. The canonical maps Pic(X̃)
∼

→ Pic(X̃ × A1
k) and Pic(X̃)

∼

→

Pic(X̃ × Gm,k) are bijective by Proposition A.13 since X̃ is smooth. So the

reduction L̃ is locally trivial over X̃ . Since one can lift a generator of L̃|Ũ
to a true generator of L|U for any formal affine open subset U of X , we see
that LK trivializes over an open formal covering of X . Thus any line bundle
L on X × D1 resp. on X × ∂D1 is equivalent to a cocycle given by transition
functions λi,j ∈ OX(Ui ∩ Uj)〈η〉× resp. by λi,j ∈ OX(Ui ∩ Uj)〈η, 1/η〉×, where
U = {U1, . . . , Un} is a formal open covering of X .

Due to the unique decomposition of units, we can write

λi,j = ci,j · (1 + hi,j),

where (ci,j) ∈ Z1(U,O×
X) and (1 + hi,j) ∈ Z1(U,O×

X×D1), where |hi,j | < 1 with

hi,j(0) = 0. Moreover, any line bundle L on X × ∂D1 is equivalent to a cocycle

λi,j = ci,j · η
ni,j · (1 + hi,j),

where (ci,j)∈Z1(U,O×
X) and (ni,j)∈Z1(U,Z×) and (1+ hi,j)∈Z1(U,O×

X×∂D1),

where |hi,j | < 1 with hi,j(1) = 0. Since X̃ has irreducible connectedness com-
ponents, we have H1(U, Z×) = 0. The units of the form 1 + h with h ∈
OX×∂D1(U × ∂D1) with |h| < 1 can be decomposed into two factors

1 + h = (1 + h+) · (1 + h−),

where h∗ ∈ OX(U)〈η∗1〉) with |h∗| < 1. The vanishing of H1(U, 1 + O∨
X×D1)

will be shown in the following lemma by using Theorem A.8. �
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Now you will apply our result Theorem A.8 to show a similar vanishing
statement for certain cocycles of invertible functions. In the following, we
denote by O×

X(r) the subsheaf of O×
X consisting of all the invertible functions f

which can be written as f = 1 + h, where |h| < r. Furthermore, we denote by
OX(r1, r2) the quotient OX(r1)/OX(r2) for 0 < r2 < r1 < 1.

Lemma A.15. Let X be a smooth affinoid space. Assume that there exists
a c ∈ K× with s := |c| ≤ 1 such that c ·Hq(X,OX(1)) = 0 for q = 1, 2. Then
the canonical map H1(ι) : H1(X,O×

X(s2r)) → H1(X,O×
X(r)) induced by the

inclusion ι : O×
X(s2r) →֒ O×

X(r) vanishes for all r ∈ (0, s2).

In particular, for s = 1, we have H1(X,O×
X(1)) = 0. Due to Theorem A.8,

the latter is fulfilled if X has a smooth formal model.

Proof. Consider c ∈K× with s := |c|. For 0< r2 ≤ r′ < r, we have the following
isomorphism:

O×
X(r)/O×

X(r′) = OX(r)/OX(r′) =: OX(r, r′).

Put r0 := r < s2 and ε := r/s2. Then put rn = εnr. We have the following
commutative diagram with exact rows:

H1(X,OX(rn)) H1(X,OX(rn, rn+1)) H2(X,OX(rn+1))

H1(X,OX(rn)) H1(X,OX(rn, rn+1)) H2(X,OX(rn+1))

·c

∂

·c ·c

ρ ∂

Consider a cocycle ξ = (1 + c2 · hi,j) ∈ Z1(U,O×(s2r0)), and set h := (hi,j) ∈
Z1(U,OX(r0, sr1)). Thus we obtain ∂(c · h) = 0 in H2(U,OX(r1)) since the last
vertical map is 0 due to our assumption. So there exists an f in H1(U,OX(r0))
such that c · h = ρ(f). Since c · f vanishes in H1(U,OX(r0)) due to our as-
sumption, there exist functions gi ∈ OX(Ui)(r0) such that

c · fi,j = gi − gj.

Then we obtain

c2 · hi,j = ρ(c · fi,j) = ρ(gi − gj) in OX(Ui ∩ Uj)(r0, r1).

Now we have

ξ · (1− gi) · (1 + gj) = (1 + c2hi,j) · (1− gi) · (1 + gj) ∈ Z1(U,O×(r0))

= 1 + (c2h− (gi − gj)) mod OX(r20)

= 1 + h′ ∈ Z1(U,O×(r20))

which is homologous to H1(ι)(ξ) ∈ H1(U,O×(r1)). Moreover, we have

1 + h′ = 1 + c2h(1) with h(1) ∈ C0(U,OX(ε · r)

since r20/c
2 = (r/c2) · r = ε · r.

Now we repeat this procedure with rn instead of r0 and rn+1 instead of r1
and a cycle ξ(0) := ξ = (1 + c2h) ∈ Z1(U,O×(s2r0)). By induction, we obtain
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that the image of H1(ι)(ξ) is homologous to a cocycle ξn := (1 + c2h
(n)
i,j ) in

H1(X,O×(, rn)), where

ξn+1 = (1 + c2h
(n+1)
i,j ) = (1 + c2h

(n)
i,j ) · (1 + g

(n)
i ) · (1− g

(n)
j )

with g
(n)
i ∈OX(rn)(Ui). The sequences g

(n)
i ∈OX(rn)(Ui) converge for n→∞,

and in the limit, we obtain that

H1(ι)(ξ) =

∞∏

n=1

(1 + g
(n)
i ) ·

∞∏

n=1

(1− g
(n)
j ).

The infinite products converge in Z1(U,O×(r)) to a coboundary. For the
additional statement, it obviously suffices to treat the case r < 1 due to the
very definition of O×

X(1). �

With this result, we are more or less done by the following observation.

Lemma A.16. Let Y be a smooth affinoid space. Then there exists an r∈ |K×|
with r ≥ 1 such that the following holds. Let L be any holomorphic invertible
sheaf on Y × D1(r). If L|Y ×0 is trivial, then the restriction L|Y ×D1(1) to the

subdomain Y × D1(1) is trivial.

Proof. Any line bundle on Y × D1 trivializes locally over Y ; cp. the proof of
Corollary 3.18. So L can be given by a cocycle

(1 + hi,j) ∈ H1(X, 1 +OX×D(ρ)(r)) with hi,j(0) = 0

since L|X×0 = OX . The functions hij , which are defined on (Ui ∩Uj)×D1(r),
satisfy |hi,j |(Ui∩Uj)×D(1) < 1/r when restricted to the subset (Ui ∩ Uj)×D(1).
So the hi,j have small absolute value. Now the assertion follows from Lem-
ma A.15 with r := 1/s2, where s := |c| is provided by Theorem A.8 (a). �

Now our main result about the analytic Picard group follows immediately.

Theorem A.17. Let Y be a smooth affinoid space. Then the canonical map
of the analytic Picard groups Pic(Y ) → Pic(Y × A1

K) is bijective, which pulls
back line bundles via the projection Y × A1

K → Y .

Proof. We can assume that the invertible sheaf L on X ×A1
K satisfies L|X×0 =

OX . By Lemma A.16, we see that L|X×D
1
K(r) is trivial for any r ∈ |K×|. Now

choose an increasing sequence of radii (ri; i ∈ N) tending to ∞. Due to the
above result, we find generators ℓi of L|XK×D

1
K(ri). We normalize them at the

zero section by ℓ0|XK×{0} = ℓi|XK×{0}. Then ℓ := limi→∞ ℓi ∈ L(XK × A1
K)

exists since ℓj = ei,jℓi for j ≥ i for invertible functions ei,j of type 1 + fi,j
with fi,j(0) = 0 and |fi,j |XK×D

1
K(r) < r/ri for all r ≤ ri. So ℓ yields a global

generator of L. �

There is another interesting application of Lemma A.15.

Proposition A.18. Let X be an affinoid space which admits a smooth formal
model. Then there is a canonical isomorphism PicX

∼

→ Pic X̃ from the Picard
group of X to the one of its reduction X̃.
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Proof. We may assume that X is connected. Due to [24, Lem. 6.2.3], any
line bundle LK on X has a formal model L defined over the smooth model
of X . It follows from [24, Prop. 3.4.1] that the extension L is unique up
to a principal divisor (t), where t ∈ K× is a nonzero constant, since X has
a smooth formal model and X is connected. This gives rise to a well-defined
map PicX → Pic X̃. This map is injective since a generator of the reduction
L̃ can be lifted to a true generator of L. For showing the surjectivity, one has
to show that H2(U,O×

X(1)) = 0 for any formal covering U of X . This follows
in a way similar to the one exercised in the proof of Lemma A.15 due to the
vanishing of Hq(U,O◦

X) for all q ≥ 1. Of course, the latter is used only for
formal coverings, and then it is much easier to establish. �

Note that the assertion does not hold if X is not affinoid. For example,
even for a nontrivial abelian variety with good reduction, the assertion of
Proposition A.18 fails to be true.

Finally, we want to mention that the last result is due to Kerz, Saito
and Tamme; cp. [20]. In that paper, the authors give a different proof of
Theorem A.8 (a) following ideas of van der Put [35]. But their methods are
much more complicated and do not suffice to prove Theorem A.8 (b). Theo-
rem A.8 (b) was mentioned by Bartenwerfer in [7], but it is difficult to follow
his proof; see also the English translation of [6] by Shizhang Li, especially his
30 footnotes and appendix.
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locaux et globaux, Fasc. I: Exposés 1—8; Fasc. II: Exposés 9—13. Séminaire de Géométrie
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