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Abstract. The identity principle for analytic functions predicts the value of an analytic
function on a connected open subset at any point if the germ of the function is known
at one given point. Therefore, in higher dimension, it can happen that the domain of
definition of analytic functions on a connected open subset G of a polydisc D™ is larger
than the given G. It depends on the geometry of G. For example, if G is the periphery of
a 2-dimensional polydisc, then every analytic function on G is actually defined on the whole
polydisc. Such a property is true for many other objects which are analytically defined, such
as meromorphic functions, closed analytic subsets, vector bundles or coherent sheaves. The
property of continuity depends on different parameters. The concavity of G inside a polydisc
in relation to the dimension of the surrounding space plays an important role. The extension
property of analytic objects depends on the balance between concavity on the one hand and
on parameters of the analytic object such as the dimension of the closed analytic subset or
the homological dimension of a coherent sheaf on the other hand. In complex analysis, these
subjects were studied by Siu and Trautmann; for a systematic account, see [32].

In rigid geometry, John Tate has introduced a topology such that the identity principle
holds for rigid analytic functions. Therefore, one can expect that statements on continuity
are true in rigid geometry as well. In the first section, § 1, we present all the extension prop-
erties precisely and describe the shape of concavity for the different problems. The shape
of a domain G inside a polydisc were suggested by Hans Grauert who advised W. Barten-
werfer around 1970 to study the problem for meromorphic functions. In complex analysis,
these geometric constellations were well-known; cp. the thesis of Riemenschneider [29]. Then
Bartenwerfer published a series of papers concerning such problems. Later on, the author
contributed to these questions also. The hardest part is the extension problem for vec-
tor bundles which was solved in [27] by the author. In an unpublished paper, the author
completed the picture by showing the continuity for coherent sheaves.

The intention of this paper is to present a single organized treatment of the extension
properties of analytic objects. Some results are known but spread across the literature and
mostly hard to access, especially the results on extension of meromorphic functions and of
analytic subsets. In this paper, we provide simplifications and improvements of their proofs.
The results in Sections 5 and 7 are due to the author and published many years ago. Since
they are so central, they should not be omitted in this treatment. The results in Section 8
are partly new. The appendix is certainly of more general interest since the given proofs
bring the real arguments to light.

It is a pleasure for me to express my gratitude to Wolfgang Bartenwerfer for discussions
and careful reading of the manuscript. Especially I want to thank the referee for his attentive
consideration of the manuscript and his many suggestions.
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It is not surprising that after so many years the proofs can be strengthened and organized
in a straight line as it is done in this paper which is self-contained except for general results
in rigid geometry; cp. [9]. We should mention that the analysis of the geometry of ball figures
and of Hartogs figures was completely developed by Bartenwerfer. The new ingredients of this
paper are the use of descent theory, which makes the extension properties for meromorphic
functions more transparent and also allows to show the continuity for coherent sheaves in
an accessible way. One word concerning étale descent: if one looks at Hartogs figures, one
has to reduce the geometric situation to a standard one by finite morphisms. But usually,
one meets only quasi-finite maps. So, by étale base change, one can transform the situation
into finite maps, and afterwards, one has to descend to the original setting.
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A short advice concerning the notation: in this paper, we denote by K
a complete field with respect to a nontrivial nonarchimedean valuation |- |, by
| K*| its value group, by R its valuation ring, by Spf(R) the formal spectrum
of R and by k its residue field. We list some often used notations:

Tn = K<<1,,<n>

= {f = Z (" e K([C]; ¢ — 0} Tate algebra,
veN”
A% = MaxSpec K[(1,...,¢n] affine n-space,
D% :={x € A%; |¢(z)| <1forv=1,...,n} n-dimensional unit ball,
Di(e) :={xz € Ak; |((z)] <eforv=1,...,n} n-ball of radius ¢,
OD% = {x € D"; |(,(x)| =1 for some v} periphery of D,

DY :={xeD"; |(,(z)] <1lforv=1,...,n} formal fiber at 0 of D%.

In our notation DY for the n-dimensional unit ball, we usually drop the sub-
index K since it is always clear what the base field is; we need this subindex
for other purposes. An affinoid K-algebra is a residue algebra of some T,.
We denote by Sp(A) the affinoid space associated to A whose points are the
maximal ideals of A. Especially, we have Sp(T,,) = D%.
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If X :=Sp(A) is an affinoid space, we denote by |- | the spectral norm on A
as well, and by A° C A the R-algebra of power bounded functions; its canonical
reduction is A, and usually, p: A° — A is the reduction map. Reduced objects
are usually denoted by a - on top. Note that we omit the sign Z in the case of
variables, so the reduction of the Tate algebra T,, = K{(1,...,(,) is denoted
by k[cla s aCW«]

We assume that the reader is familiar with the basic theory of rigid analytic
spaces in the sense of Tate [34]; cp. [9]. In particular, Weierstra$ theory is often
used; cp. [9, §2.2]. At some places, we use formal geometry; for a reference

see [9] as well.

1. INTRODUCTION

Let us first explain the several problems we deal with in this paper.

Extension problems. In the following, let X be a rigid space, mostly being
affinoid of pure dimension, let G C X be a nonempty open subset of X, and let
n € N be a natural number. Now we consider the following extension properties
with respect to the pair (G, X).

(H,) Let S C X be an irreducible closed analytic subset of X with dim S >
n+ 1. Equip S with its reduced structure. Denote by O’ the entire clo-
sure of the structure sheaf O in the sheaf M of meromorphic functions.
Then the restriction map O’(S) = O’(S N G) is bijective.

(M,,) Let S C X be an irreducible closed analytic subset of X with dim S >
n+ 1. Equip S with its reduced structure. Then the restriction
M(S) = M(SNG) is bijective.!

(A,,) For any closed analytic subset S C G with irreducible components S; of
dimension dim S; > n + 1, there exists a closed analytic subset S C X
with SNG = 6S.

The extension S is unique in the sense that any closed analytic subset
T Cc X withT' NG = S and with irreducible components 7; of dimension
dim 7} > n + 1 equals S; i.e., ' = S.

(U,) For any coherent sheaf G on X and any coherent subsheaf F C G := G|
with F = F,g, there is a coherent subsheaf 7 C G with F|¢ = F and
F=Fg 2 For any further coherent subsheaf extension # C G of F
with 2, _yjg = H, it holds X = F.

1A meromorphic function on a reduced rigid space is a element which can, locally with
respect to the Grothendieck topology, be represented by a fraction of two affinoid functions
where the denominator is a nonzero divisor; cp. Definition 2.1.

2A coherent subsheaf F of a coherent sheaf G satisfies F = Fin)g if, for every open
subset U and every closed analytic subset A of U with dim A < n, it holds I'(U, ) =
T'(U,G)NT(U — A, F); cp. Definition 4.1.
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(Gn) For any coherent sheaf G on G with G =G [”], there exists a coherent
sheaf G on X with G|lq = G and G = g") 3
If H = H" Y is a further extension of G , then the isomorphism H = G
over G extends to an isomorphism H = G over X.

(G(n)) For every m > n and for any coherent sheaf G on G with G = Gl
satisfying Opn41jg = 0 and Opny21g = G, there exist a coherent sheaf
G = 6™ on X and an isomorphism G|¢ = G over G.

Property (G(n)) is stated only for technical reasons. It is a special case used
for proving property (Gy,). The uniqueness assertion is mostly a consequence
of the following property.

(En)  Any irreducible closed analytic subset S of X with dim .S > n meets
the subdomain G.

In the next section, we will introduce ball figures and Hartogs figure of
dimension n. Then the main goal of this paper is to show that ball figures of
dimension (n — 1) resp. Hartogs figures of dimension n fulfill all these properties
at level n; cp. Proposition 3.3, Theorem 8.4, Theorem 4.6 resp. Theorem 3.6,
Theorem 8.11 resp. Theorem 8.12. Moreover, the extension properties are
shown for complements of closed analytic subvarieties in Theorem 8.5.

Ball figures. We will study the extension properties for special pairs (G, X)
which will be introduced in the following. The standard ball figure is the
following configuration.

Definition 1.1. Let d > 1 and n > 0 be integers. Let X := D"te be the
(n + d)-dimensional unit polydisc, and set

B:=D" x oD%
The pair (B, X) is called standard ball figure of dimension n inside the (n + d)-
dimensional unit polydisc.

The basic fact about extension problems is the following proposition.

Proposition 1.2. Let (B, X) be a standard ball figure of dimension n in
the (n + 2)-dimensional polydisc X :=D"*2. Then the restriction morphism
Ox(X) > Ox(B) is bijective.

Proof. Due to the identity principle, the restriction map is injective. For show-
ing the surjectivity, denote by (i, (> the coordinate function on D? and by
& :=(&,...,&,) the coordinate functions on D™. Then any affinoid function
f € O(D" x D! x OD') has a Laurent series expansion

F= Y (@&

pEN,VEZ
3A coherent sheaf G satisfies G = g™ if, for every open subset U and every closed analytic

subset A of U with dim A < n, the restriction map I'(U,G) — I'U — A, G) is bijective;
cp. Definition 6.6.
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If f € O(B), then the restriction of f to D" x D! x D! has the Laurent
expansion

F= Y (& &

HEZ,veEN
This shows that the coefficients a,, ,,(§) =0 if u < 0 or v < 0. Thus we see that
f is induced by a function on D12, O

The standard ball figure can be generalized to arbitrary affinoid space by
using the notion of reductions of affinoid algebras. We begin by recalling some
basic facts.

Reminder 1.3. Let A be an affinoid K-algebra. We denote by
A°:={a€ A;la| <1} DAY :={a€ A;l|a| <1}

the R-subalgebra of A consisting of all power bounded elements of A and by
AV C A° the ideal of all topologically nilpotent elements. Then A := A°/AY
is a reduced affine k-algebra; cp. [10, §1.2.5]. Recall [10, §6.3] that A ~ A is
a functor and that a morphism ¢: A — B is finite if and only if 3: A — B
is finite. If dim A = n, then we also have dim A = n, and moreover, if A is of
pure dimension, then A is as well.

If we denote by X = Sp(A) the associated affinoid space, then X := Spec(A)
is the associated affine space; this space is called the (standard) reduction of X.
There is a reduction map p: A° — A; a '+ a. For affinoid spaces, we also write
px: X — X which maps a maximal ideal # € X to the maximal ideal z N A°
mod AY. If no confusion is possible, we will write p instead of px. If S C X
is a closed analytic subset of dimension m, then p(S) C X is a Zariski-closed
subset of X of the same dimension m. In particular, if S is of pure dimension,
then S is too. Indeed, due to [10, Prop. 7.1.5/2], we have a commutative
diagram

S - X
Jes o
S —— p(S) X

where ¢: S — X is the inclusion map. The map ¢ is finite and surjective.
Mostly, we will identify S with its image p(S) C X, and hence we write S
for p(9).

Finally, we add a fact which will often be used in this article.

Let X :=Sp(A) be an affinoid space and Y :=Sp(B) C X x D' a closed analytic
subvariety. If Y N (X x ODY) = &, then the projection p: X x D! — X gives
rise to a finite morphism |y : Y — X.

Indeed, the reduction map @: A(() = A[C] — B is finite as A(C) — B is

surjective. Since $(¢) = 0, we see that A — B is finite, and hence ¢|y is
finite. O
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Definition 1.4. Let d > 1 and n > 0 be integers, and let X := Sp A be an
affinoid space of pure dimension n + d with standard reduction X := Spec(A).
A ball figure B of dimension n in X is given by functions f, € A with spectral
norm |f,| = 1 and numbers &, € |K*| with &, <1 for 0 = 1,..., s such that
B equals the set

S

Xfe U €X; [fo(2)] = &5},

where the locus N := V(fi,. .. s fs) on the reduction X of the reduced functions
fi,..., fs has dimension dim N < n.

For a better understanding, it might be reasonable to consider the codimen-
sion d of N in X. Namely, the larger the codimension, the bigger is the ball
figure. These figures were first considered by Bartenwerfer in [3, p. 205].

If the numbers €1, ...,e5 are equal to 1, then B depends only on N; in this
case, we will write B := Xy. If N = V(f) for a single function f € A°, we will
also write X7 instead of X5. The affinoid ring associated to X7 is A(f~1),
and its reduction is Af; cp. [10, Prop. 7.2.6/3]

The simplest example is given by the standard ball figure. So let X be the
unit ball D"+ with coordinate functions i, ..., &n;Ci, ..., Cq. The standard
ball figure is given by the functions f, :=(, and ¢, :==1for c =1,...,d. Then
we have B := D" x D% = Xea.

The most important example is the case X5 where N C X is the image of
a closed analytic subset NV C X of an affinoid space under the reduction map
X = X.

If S C Xy is a purely m-dimensional closed analytic subset of a ball fig-
ure X 5, then the image of S under the reduction map Xy — X —Nis purely
m-~dimensional too; cp. Reminder 1.3. Then we denote by S the Zariski closure
of this image in X.

Lemma 1.5. Let d,m,n € N be natural numbers with n +d > m >n. Let
X = Sp(A4) be an affinoid space of pure dimension (n+d), let B C X be a ball
figure of dimension n as in Definition 1.4, and let S C B be a closed analytic
subset with dim S = m. Then there exists a finite morphism ¢: X — D"+ such
that
1D x DY) C Xy C B and ¢ H(D™ x ID"TITM)NS = 2.
Let p :=D"t4 5 D™ be the projection onto the first coordinates; then the re-
striction
Yi=pog|. SN (pod) (D" x oD™™) — D" x D™ "

is finite. Moreover, the induced map p: S — A" is finite; cp. Reminder 1.8
for the notation.

Proof. Let N C X be the algebraic n-dimensional subset of X associated to B,
and let S C X be the m-dimensional algebraic subset induced by S N Xp;
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cp. Reminder 1.3. Due to [31, Thm. ITI-20], there exists a finite morphism
¢: X — A'kﬂ'd with the following properties:

g(g) - V(€m+17 v 7C~’n+d) and (FZ;(N) - V(CN’I’L+17 ceey §n+d)7

where (51, ce €n+d) are the coordinate functions of AZH. Lifting everything
to the affinoid site, we obtain a morphism ¢: X — D"*¢ which fulfills all the
assertions. O

In particular, we obtain the following proposition.
Proposition 1.6. Any n-dimensional ball figure satisfies property (E,41).
Even more is true.

Lemma 1.7. If B’ ¢ B C X = Sp(A) are ball figures of dimension n, then
any closed analytic subset S of B with dim S > n + 1 meets B’ as well.

Proof. Let B = Xy . be the n-dimensional ball figure. Let S C B of dimension
m > n, and assume that

Sn{zeX;er < [fi(z)] <1} #£ 2.

Now let ¢: X — D"*9 be a finite morphism as in Lemma 1.5. Then consider
the map

vi=(,f1): SN{z e X;e1 <|fi(z)| <1} = Dt x Aler, 1),

where A(e1, 1) is the annulus with radii e, 1. Then ¢ is finite. If the image
¥(S) does not meet D" x dD? x A(eq, 1), then the projection along D¢ to
D™ x A(ey, 1), restricted to ¥(S), is finite due to Reminder 1.3 and surjective
by reasons of dimensions. So there exists a point z € S with |fi(x)] = 1.
Since ¢~ 1(D™ x OD?%) C Xy, there always exists a point 2 € SN Xy, meaning
SN Xy # @. Thus the algebraic subset S induced by the subset SN Xy # @
is of dimension m. If now N’ C X is the algebraic subset associated to B’ of
dimension 7, then by reasons of dimension, there is a point § € § — (N’ U N)
Thus we see that SN B’ # &. O

With these lemmata, we will be able to prove all the extension properties on
level n + 1 for n-dimensional ball figures by reducing the questions to problems
of the standard ball figure.

Hartogs figures. We will distinguish two types of Hartogs figures, rectilinear
respectively affinoid ones. If we will talk about Hartogs figures in general, then
we mean both types.

Definition 1.8. Let Y be an irreducible, reduced rigid space of dimension n,
and let V C Y be a nonempty open subdomain. Let d > 1 be an integer.
Consider the rigid space

H:= (V x D)UY x oD%).
The pair (H, X) is called a rectilinear Hartogs figure of dimension n inside the
rigid space X := Y x D? which is of dimension (n + d).

Minster Journal of Mathematics VoL. 15 (2022), 83-166
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Obviously, the standard ball figure of dimension n is a rectilinear Hartogs
figure of dimension n 4+ 1. The basic fact about extension problems is the
following proposition.

Proposition 1.9. Let (H, X) be a rectilinear Hartogs figure of dimension n
in the (n + 1)-dimensional space X :=Y x D' as in Definition 1.8. Then the
restriction map O(X) = O(H) is bijective.

Proof. Due to the identity principle the restriction map is injective. For show-
ing the surjectivity, denote by ¢ the coordinate function on D'. Then any
f € O(Y x OD') has a Laurent series expansion

= Z av(§)
vEZL
If f € O(H), the restriction of f to V x D' shows that the coefficients a, = 0
for all v < 0. Thus we see that f is induced by a function on X =Y x D!, O

As in the case of ball figures, one can introduce more general Hartogs figures.

Definition 1.10. Let X = Sp(A4) be an affinoid space of pure dimension
(n+d). Let B C X be a ball figure of dimension n in X. Let N C X be
the algebraic subset associated to B; cp. Definition 1.4. Let Nl, ..., N, be
the irreducible components of N. For any irreducible component N of dlmen—
sion n, there is a complete intersection

Mj = V(gj,la . ;gj,n) with 9jv c A°

of codimension n in X such that dim N N M =0 for j=1,...,r and such

that, for every irreducible component N; of dimension n, there exists at least
one M with N; N M # . Note dlmM =d. Let T be the union of the tubes

Ty = {x € X; |g;u(2)] < 8, for 1 < v < n},

where 60, € |[K*| with 0 < ¢;,, < 1. The subset H :=T U B is called an
affinoid Hartogs figure of dimension n. The tubes are called mazimal if the T}
are defined by |g;.(x)| < 1 instead of |g; . (z)| < §;..

Obviously, a Hartogs figure H C X of dimension n contains a ball figure
of dimension n. A rectilinear Hartogs figure is an affinoid Hartogs figure if
the open subset V' C Y can be described by n functions g1, ..., g,; this is not
always possible. Of course, in the case Y = D", this is satisfied. The situation
for these more general affinoid Hartogs figures seems more difficult because we
do not have a projection statement like Lemma 1.5 for ball figures. In this
paper, we will show that any Hartogs figure of dimension n satisfies all the
extension properties of level n. Historically, the notion of an affinoid Hartogs
figure was introduced by Bartenwerfer in [5, p. 90] for general d and earlier in
[4, p. 157] for d = 1.

Lemma 1.11. Let H =T U B be a Hartogs figure of dimension n as defined
in Definition 1.10. Then, for every tube 1 of T, there exist the functions
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(hntty .o Pnga) such that ¢; = (gj1,--- 5 9jn: Pnti, - Rnta) gives rise to
a finite morphism

¢j: XN {z € X;|gju(z)] <1forl<v<n}—D7 xD?

satisfying (;Sj_l(]D’}r x ODY) C B, where D7 is the subset of D™ consisting of all
z € D™ with coordinates (z1,...,2n) and |2,] <1 for allv=1,...,n

Proof. Denote by g the tuple (g; 1,...,9j). As V(g) is of codimension n in X
and dim Mj N N = 0, by Noether’s Normalization Theorem [31, Thm. ITI-20],
there exist functions hp41,. . ., hntd in Ox (X) with spectral norm |hs| < 1 such
that their reductions belong to the vanishing ideal of N and such that the map
h: XN V(g) — Al is finite. This yields the assertion by Reminder 1.3. d

Proposition 1.12. Any Hartogs figure of dimension n has property (E;).

Proof. Let H =T U B be defined in Definition 1.10. Let S C X be an ir-
reducible closed analytic subset of dimension m > n. If m > n + 1, then §
meets B due to Proposition 1.6. So we may assume dim .S = n. Let NcX
be the algebraic subset of X associated to B, and let S C X be the algebraic
subset induced by S via the reduction map. Then S is also of dimension n.
If S ¢ N, then S meets B obviously. So we “may assume that S c N. Then
there exists an irreducible component So of S such that Sy coincides with an
irreducible component N; of N. Due to the definition of a Hartogs figure, there
is a complete intersection M with M N N; # @. In particular, we also have
M; N Sy # @. Now consider the maximal tube TjJr associated to M;. Since

SNXy= &, the morphism of Lemma 1.11 gives rise to a finite morphism
(gj,la e ;gj,n): SN T]+ — D:L_

Since S N Mj # &, the source SN TjJr is not empty. By reasons of dimensions,
this map is surjective. Thus we see that S NT; # @ and hence that S meets
the Hartogs figure H.

The case of a rectilinear Hartogs figure goes similarly. O

We will need a preliminary tool on finite projections which is due to Barten-
werfer; cp. [4, Satz 4.1] and [5, Satz 5.3]. After that, we will lift the result to
the affinoid site.

Lemma 1.13. Assume that k has infinitely many elements. Let X be an
affine k-scheme of finite type of pure dimension n+d with n >1 and d > 1.
Let M =V (g1,...,9n) be a complete intersection defined by regular functions
g:=1(91,.--,9n), and let N C X be a closed subset of dimension n such that
dim(M N N;) = 0 for every irreducible component N; of N. Then there ex-
ists a finite morphism ¢: X — A% with the following properties, where the
coordinate functions on AYT™ are denoted by (i, ..., Cagn:

(0) ¢ 2 (V(Cag1,---,Capn)) is a complete intersection on X and on N;

() ¢ Y (V(Cas1, .-, Caun)) = M UM’ is a disjoint union of closed subsets

of X;
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(i) d(N:)NV(Cat1,---:Ca+n)) = {0} for every irreducible component N; of N;
(i) ¢(IN N M) is disjoint from ¢(N N M).

In particular, there is a polynomial h € k[(1] such that ¢*h vanishes identically
on NN M’ and is invertible over N N M.

Proof. Due to Noether’s Normalization Theorem [31, Thm. IT1-20], there exists
a finite morphism 1: X — A%t" such that
(a) ¢(M) = V(£d+l7 S 7§d+n)a
(b) ¢(M n N) = V(€17 s 7§d7€d+17 s 7§d+n)7
where (&1,...,&4,€441,---,&4+n) are the coordinate functions of A", Then
we obtain a finite morphism X — A% x A™ x A™ with the additional functions
g1, - -, 9gn for the middle factor. Obviously, we can replace X with its image
Y(X) and M by V(€g+1,---,&a+n) and N by ¢(N) for our problem. Thus we
may assume that
() M=XNV(Eit+1s---s&dtnsEdtntts---r&aran) = X NV (a1, Edin)
Now we proceed by descending induction on r = d + 2n to reduce the num-
ber of variables &1, ..., 412, to new variables (1, ..., (4+n via projections for
fulfilling the properties of the assertion. At each induction step, we can replace
X, M and N for our problem as done above. The beginning of the induction
is trivial with M’ = @.
Now consider the case r > d +n. Let a = I(X) C k[&,...,& | be the van-
ishing ideal of X. Due to Hilbert’s Nullstellensatz, condition (c¢) implies

(1) rad(a + (g+1, - -+, &asn)) =rad(a + (Eat1,---,&))-
Now consider transformations 1 of A” of the type
P =¢ and Y, =( — B, forv=1,....r -1,
with 5, € k* and t, € N. Due to (1), we have
U (Eat1s -, &) Crad(@ a+ (P71, - - Y Eatn))-
For sufficiently large ¢t € N, we obtain an equation
G =" = g+ hayr - a1+ -+ Pngd - 0 Eain

with some g € a and hgy, € k[(] for v =1,...,n. Now replace *¢, by
¢, — Bu,Ctv. We choose t, > t. So we obtain

d+n
Cf’ <1+ Z BV -hV.C’I)Eut> € w*a+(4d+17~~a4d+n)'

v=d+1
Since the expression in the brackets is invertible over M due to assumption (c)
and (. = &, we have that X NV ((gs1,---,Carn) = M UM’ is a disjoint
union. Moreover, we can choose t large enough such that there is a poly-
nomial in ¥*a which is monic in the variable (.. The induced morphism
mi=prot: X — A" ! is finite, and
(M) = V(Cat1,--sCarn) and 7 ' (m(M)) = M UM,

Thus we have a finite morphism ¢: X — A"~ satisfying conditions (i) and (ii).
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Till now, we are free to choose the coefficients f1,..., 8,1 € k*. At first,
we choose the constants Bgi1, ..., Ba+n € k* to satisfy condition (o). Since
& v =0, we have Gy = &y for all i=d+1,...,r — 1. Thus we see
M C V(lit1,---,Cdatn) for any choice of the 8’s. We will stepwise choose
Bd+1, -+ Bagn € kX such that dim X NV ((aq1,...,Catj) =d+n—j and
dim N NV (Ca41,---5Catrj) =n — j. Assume that we have already chosen
Ba+1,- -+, Bar;. If there exists an irreducible component

Mj of X NV (Cati,- -, Garg) with dim Mj = (d+n —j) and &[n; = 0,
then for any choice of B44j+1,- .., Bdtn, Wwe have that

M; nxn V(Cd+l7 o '7Cd+n) - V(€d+17 e 7§d+n)

is a complete intersection by hypothesis. If there is an irreducible component
N; of the intersection N NV ((441,. - .,Cat;) with dim N; = (n — j) such that
& vanishes on IVj, then

Nj N V(Cd+l7 .. '7Cd+n) CNN V(€d+17 s 7§d+n)7

and hence its dimension is 0 for any choice of Bgyjt1,..., Batn as well. If
& does not vanish on an irreducible component of V((441, ..., (atj) resp. of
NNV (Cat1;---,ld+j), there are only finitely many 3’s for which the dimension
of the intersection with the vanishing locus V(44,41 — f - 52‘:’;:1) does not
drop by 1. So, by excluding these finitely many elements 5’s in k, there exists
some Ba11,...,Bat+j+1 € k such that the dimension of V({41 ..., a+j+1) and
of NNV (Cat1s---,Catj+1) drops by 1. Proceeding by induction similarly,
we can find constants SBg41, ..., Bdtn € kK to satisfy condition (o) and the
condition dim N NV (a+1,- -, Catn) = 0.

Since it holds that M " M’ =& and NN M =V((1,...,( ), there exist
constants 31, ..., Bd, Bitnils- - Br_1 such that the projection A" — A? with

respect to the coordinate function (i, ...,(s; maps N N M to the origin and
the finitely many points of N N M’ to points different from the origin. Thus
condition (iii) is satisfied as well. O

Proposition 1.14. Assume that k has infinitely many elements. Let X be an
affinoid space of pure dimension n+d withn >1 andd > 1. Let H C X be
a Hartogs figure of dimension n as defined in Definition 1.10 but with precisely
one maximal tube; i.e., the complete intersection M meets all irreducible com-
ponents of N and H = p‘l(M) U Xy, where p: X — X is the reduction map.
Then there exists a finite morphism ¢: X — D™ and a polynomial h € K|[(1]
with |h| = 1 such that the following properties are satisfied:
(0) ¢V (Cast,.--+Casn)) is a complete intersection on X and on N;
(i) 1 (V(Cat1s---,Catn)) = M UM’ is a disjoint union of closed subsets;
(ii) ¢(N;) NV (Cat1s---sCarn) = {0} for all irreducible components N; of N;
(iii) (N N M') C V(R) and h is invertible over ¢(N N M).
In particular,

H':= (D" x DY) UDSHE ) nDg+"
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is a Hartogs figure of dimension n in D‘;f” with ~*(H') C H, and NN V(qz*ﬁ)
gives rise to a ball figure of dimension n+ 1 in X.

Proof. This follows by lifting the result of Lemma 1.13. g

Some results on affinoid smoothness. The main tool here is the following
result of Kiehl; cp. [23, Satz 1.12 and Thm. 1.18].

Proposition 1.15. Let X be a smooth affinoid space of dimension d + n,
and let A C X be a smooth closed analytic subset of dimension n. Then there
exists an open neighborhood of A which is a union of finitely many open affinoid
subsets Uy, ...,U, such that there are isomorphisms

Gi: Uy SV x D fori=1,...,r,
with ¢;(ANU;) =V; x {0} fori=1,...,r.

For further applications, we have to improve an result of Kiehl [23, Satz 1.12
and 1.14]. In the following, we call a morphism ¢ a perturbation of a morphism
¢ between affinoid spaces if ¢ = @. It is clear that such a v is finite if ¢ is
finite; cp. Reminder 1.3.

Proposition 1.16. Let X = Sp(A) be a d-dimensional smooth affinoid space.

(a) Fir a finite morphism p: X = Sp(A) — D¢ = Sp(T) of rank n. For any
point x € X, there is a perturbation v of ¢ such that v¥: X — D? is étale
at all points of the fiber of x.

(b) Let p: X =Y = Sp(B) be a finite morphism which is étale over an open
subvariety V' of Y. Then there exists a finite covering U = {U,,..., Ty}
of V' by Zariski-open subsets V; such that X xy V; is isomorphic to V(w;) C
V; x DY, where w; € B[n] is a Weierstrafy polynomial and its derivative w,
has no zeros on V(w;) fori=1,... ,n.

(¢) Assume that the module of differential form Qﬁ( K 18 a free A-module of
rank d and has a basis given by total differentials. If the characteristic
of k is positive, then there exists a finite étale morphism p: X — D?.

Proof. (a) This follows similarly to [23, Satz 1.12]. We fix a point = € X.
Then there exist total differentials dyi, ..., dyq which generate the module
Q%) k ., for all points @1,..., 2, in the fiber ¢~ !(p(x)). Then there is small
perturbation v of ¢ such that the number of points in ¥ ~1(z(z)), where ¥
is étale is maximal, since the total number of points in a fiber is bounded by
the degree of . Then we claim that v is étale at all the points of the fiber
Y~ 1(p(x)). Indeed, if ¢ is étale at the points z1,..., 2, and not étale at all
the other points in the fiber, then ¢ remains étale in a neighborhood of the
points x1,...,x, for any small perturbation ¢ of 1. Now look at some point x’
in the fiber ¥ ~!(¢)(z)), where 9 is not étale if there is any; otherwise, we are
done. By adding suitable small ciy1, ..., cqyq to each component of ¢ with
small ¢; € K*| we obtain a new perturbation ¢ such that d¢s,...,d¢, generate
Qﬁf/Km:/' Since this remains true in a small neighborhood of 2/, z1, ..., z,, we
get a perturbation such that ¢ is étale at all the points of the neighborhood of
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2’ x1,..., 2. So ¢ is étale at least 7 + 1 points of ¢~!(¢(z). This contradicts
the maximality.

(b) This assertion follows from the local structure of étale morphisms;
¢cp. [30, Chap. V, Thm. 1].

(c) This part is mainly contained in [23, Satz 1.12]. Let dfi,...,dfs be
total differentials which generate the module Qﬁ( K of differential forms. We
may assume |f;| <1 for i =1,...,d. Now choose a finite morphism given
(h1,...,hq): X; — D Then the morphism

(fi+h2 . fa+h): X = DO
with a high power p! of p yields the assertion. O

Proposition 1.17. Assume that X = Sp(A) has smooth reduction X of di-

mension d.

(a) Then, for every point x € X, there exists a finite morphism ¢: X — D?
which is formally étale at any point of the fiber o~ (p(x)).

(b) Assume that Qk/K is a free A-module of rank d and that it has a basis
given by total formal differentials. If the characteristic of k is positive,
there exists a finite formally étale morphism ¢: X — D%,

Formally, étale at a given point © € X here means that the induced formal
morphism ¢: Spf(A°) — Spf(R{((1,...,()) is a formal étale morphism at the
specialization Z of the point = in question.

Proof. (a) This follows by lifting from Lemma 1.18 below.
(b) This follows in the same manner as Proposition 1.16 (c). O

Lemma 1.18. Let X = Spec(A) C A} be a smooth irreducible subvariety of

dimension d. Let o =0 ¢€ X be the origin. Then there exists a finite morphism
¢: X — A such that ¢ is étale at all the points of the fiber ¢~ (¢p(x0)).

Proof. Denote by (i, ...,(, the coordinate functions of A}. We may assume
that d¢y,...,d¢s generate the module of differential forms Q% /At To. We
will proceed by descending induction on n. For n > d + 2, we claim that there
exists a linear transformation

anCn and fyHCy—aycn fOI'l/Zl,...,’rl—l

such that the following holds for the projection ¢: X — AZ*I with respect to
the new coordinate functions &;,...,&,—1:

(i) ¢: X — AP is finite;

(i) déi,...,d¢a generate Q% at @o;

(it}) & L(6(20)) — {wo}.

It is well-known that the set of points a := (a1, ...,a,_1) € k"~ which satisfy
condition (i) is Zariski-open and dense in k"~!. Indeed, take a nonzero poly-
nomial vanishing on X. Let f,,, be the homogenous component of f of highest
degree. Then, for any b := (a, 1) with f,,(b) # 0, the associated map ¢ is fi-
nite. Moreover, there is dense open subset of k" ~! such the total differentials
d¢y — a1dCp, . . . ,dCq — aqd(, generate Qﬁ(/k ® 4 k. Both conditions are fulfilled
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by a dense open subset of k"~ 1. After having chosen (a1, . ..,aq), there is dense
open subset of (agt1,...,an—1) such that (a,(, — (,)(x) # 0 at least for one
ve{d+1,...,n—1} for the finitely many points with &;(x) =+ =&4(x) =0
and x # xg.

Now assume n = d + 1. In this case, X = V() is a locus of a prime polyno-
mial f. Let f,, be as above. The points a € k™ with f,,(a) # 0 are a dense open
subset W C k™. Let S be the singular locus of X. Since X is smooth at xg, the
dimension of S is less than d. Any a € k™ gives rise to a line L, :=k -a C k™.
Then there is a dense open subset V' C k™ such that L, NS =@ for alla € V.
The tangent spaces T, of X at a point a € X are defined by the locus of the
linear form of o7

d(a) - Ci= Gge(a) +o t Gug (o)
At smooth points a of X, this linear form is not degenerated. So there exists
a dense open subset U C k™ such that df (a) - a # 0 for a € U. Combining the
three conditions, we see that there exists a dense subset Z C k™ such that all
three conditions are fulfilled for a € Z. After an eventually renumbering of the
coordinates, there is a linear transformation as above such that the projection

Y= (6., 8): X =V (f) > Af
is finite and étale at all points of the fiber ¢»~! (3 (z¢)). Composing ¢ with the
morphism ¢: X — AZH, we obtain the desired morphism. U

2. MEROMORPHIC FUNCTIONS
Let us first recall the definition of a meromorphic function.

Definition 2.1. We denote by M the sheaf (with respect to the Grothendieck
topology) of meromorphic functions on a reduced rigid space X which asso-
ciates to an open affinoid subdomain U = Sp(A) of X the total field of frac-
tions Frac(A) consisting of all fractions f/g with f,g € A, where g is a nonzero
divisor of A. The restriction maps are the canonical ones.

A meromorphic function on X is a global section of M. Such a section is
given by an admissible covering of X by affinoid subdomains {U;, i € I} and
fractions m; = f;/g; on U; = Sp(A4;) of affinoid functions, where the denomi-
nator g; is a nonzero divisor on A; such that the functions m; coincide on the
overlaps U; N U; for all 4,5 € I.

It follows from Kiehl’s Theorem A [22] that any meromorphic function m on
an affinoid space X = Sp(A) is (globally) a fraction f/g of affinoid functions
fyg € A, where g is a nonzero divisor on A.

Let us first clarify the relationship of properties (M,,) and (H,).

Proposition 2.2. If a couple (G, X) satisfies properties (M,,) and (E,,), then
it satisfies property (Hy,) as well.

Proof. Consider a function f on S N G which belongs to O'(S N G) and is
meromorphic on S. If f does not belong to O'(S), then its pole divisor on
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the normalization S’ of S is of codimension 1. Due to property (E,), the
pole divisor has to meet S N G, and hence f is neither holomorphic on S’ nor
on S. O

I guess that (M,,) implies (H,,) without property (E,). Indeed, consider
a function f as above. Now consider a series h:= Y7 ¢” f” for some c € K*
with |¢| < |f|. Then h gives rise to an element of O'(S N G), but h is not
extendable to S as a meromorphic function. Of course, some details have to
be filled in, but we leave it to the reader since, in this paper, our couples (G, X)
usually satisfy (E,); cp. Proposition 1.6 and Proposition 1.12.

Now we turn to showing the extension property for ball and Hartogs fig-
ures. The extension property for meromorphic functions is based on an old
observation by Levi.

Lemma 2.3. Let Y = Sp(A) be an irreducible and reduced rigid space. Let
(H, X) be a rectilinear Hartogs figure as defined in Definition 1.8 with X =
Y x D! and
H:=(V xD"Yu( xoD").

Let f € M(H) be a meromorphic function such that f is holomorphic on
B:=Y x OD'. Then f extends to a meromorphic function on X. Actually, it
is sufficient that the function f is holomorphic on'Y x OD' and that the restric-
tion f|{yyxap' extends to {y} x D! for all points y of V. In particular, if Y
is normal, there is a monic polynomial p € Aln] such that p- f is holomorphic
onY x D! and V(p) N (Y x oD') = @.

Proof. Restricted to Y x dD!, the function f has a Laurent series expansion
F=Y av-n" €Oy(Y)(n1/n).
VEZ
Since f is meromorphic on V' x D!, there is a monic polynomial
pi=bo+ -+ bm" € Oy (V)]

such that p - f is holomorphic on V' x D!. This means that the system of linear
equations

Za,s,u B, =0 forall s=-1,-2-3,...
v=0

has a nontrivial solution b := (b, ...,b,) € Oy (V) 1. This is a system of
linear equations over the smaller ring Oy (Y'). Then it follows by simple linear
algebra that there exists also a nontrivial solution (cg,...,c.) € Oy (Y)" "1 of

this system of linear equations. Thus, putting g :=co+ -+ + ¢n" € Oy (V)[n],
we see that ¢ - f extends to a holomorphic function on Y x D', and hence f
extends to a meromorphic function on X.

For the additional assertion, consider the determinants d, given by the
determinant of the matrices (n x n)-matrices which are defined by the rows
(a—gy... a_s_p) for s =1,...,n. Since f|fy}xon' extends to {y} x D! for all
points y of V| all these determinants d,(y) = 0 have to vanish for large n € N
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and y € V. Then we have that d,, = 0 for large n. Now one can proceed as
above. The pole set Pol(f) CY x D! is a divisor and the projection Pol(f) — Y
is finite. So there is a monic polynomial vanishing on Pol(f). Since Y is normal,
Pol(f) is the locus of monic polynomial; c¢p. Proposition A.13. O

Lemma 2.4. Let ¢: X = Sp(4) = Y = Sp(B) be a finite morphism of irre-
ducible and reduced affinoid spaces of dimension n. Let V CY be an open
subspace, and set U := ¢~ (V). If any meromorphic function on V extends
uniquely to a meromorphic function on Y, then any meromorphic function
on U extends uniquely to a meromorphic function on X, too.

Proof. Denote by M the sheaf of meromorphic functions. The rings A and B
are domains. If the degree of ¢ is r, then there exists a B-linearly independent
set {e1,...,e,} in A such that

M(X) = M(Y)-e1 @ & M(Y) - er.
Moreover, we also have
MU)=MV) - e1@®---dM(V) -e,.

Since M(Y) = M(V) is bijective, the restriction map M(X) = M(U) is bi-
jective, too. O

For further applications, we add the following fact which will be used in the
proof of the following proposition. There exists a function b € B — {0} such
that

b-ACB-e1®---B-e,.
Then we also have
b-Ox(U)COy(V)-e1®--- @ Oy(V) -er.

Proposition 2.5. Let (B, X) be a ball figure in dimension n on an irreducible
and reduced affinoid space X of dimension n+ 2. Then the restriction map
M(X) S M(B) is bijective; i.e., property (My11) is fulfilled by the couple
(B, X). If X is normal, then the same is true for the holomorphic functions.

Proof. Let N C X be the n-dimensional algebraic subset induced by B. Let
f € M(B) be a nonzero meromorphic function on B. Denote by S C X the
set of poles of f|x5. Then S is at most of dimension n 4+ 1. Now S induces
an algebraic subset S C X via the Zariski closure of the image of S under the
reduction map. By Lemma 1.5, there exists a finite morphism

p: X - D" xD? with ¢~ (D" x 0D?) C B.

Moreover, we can also assume that ¢~ 1(D"*! x D) N S = @. Now we can
apply Lemma 2.3 and Lemma 2.4 and its additional remark. Thus we see
that any meromorphic function on B extends to meromorphic function on X.
The uniqueness follows from Lemma 1.7. The assertion on holomorphic func-
tions follows from Proposition 1.6 since, on a normal space, the set of poles
of a meromorphic function is either empty or of pure codimension 1; i.e., of
dimension n + 1 in this case. So it has to meet B if it is not empty. g
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Now we turn to Hartogs figures.

Proposition 2.6. Let Y = Sp(A) be an irreducible and reduced affinoid space
of dimension n. Consider the rectilinear Hartogs figure

= (VxDYHu (Y x oDp')

on X ;=Y x D!, where V CY is a nonempty open subset of Y. Then any
meromorphic function on H extends to a meromorphic function on X.

Proof. Consider a meromorphic function f € M(Y x dD!). It can be written
in the form f = h/g with h,g € Ox (Y x dD').

Let us first assume that V(h,g) = @. Then there exist elements a,b €
Ox (Y x ODY) such that 1 = ah + bg. Now we can approximate a resp. b by
A-rational functions o and § such that «- h + - ¢ is still a unit. Next consider
the function* m :=a - f + 3 € M(H). Since g-m =a-h+ - g is a unit in
Ox (Y x dD'), the function m~! has no poles on Y x 9D!. Then it follows by
Lemma 2.3 that m ™!, and hence f extends to X :=Y x D!,

Now assume that dim V' (h,g) =n — 1. If n = 1, then the image ¢(V'(h,g))
of V(h, g) under the projection ¢: (Y x dD') — Y is a finite set of points
in Y. Then one concludes as above that m extends to a meromorphic function
on Yy x D, where N C Y is an algebraic subset of dimension 0. Thus we
obtain the extension of f to the ball figure (Y x D) U (Y x dD'). Finally,
we succeed by Proposition 2.5. The case n = 1 can be used to show the
more general result. Namely, one can restrict the function f on C x 9D,
where C' C Y is any irreducible curve. Due to the result above, we know that
flexapt extends to a meromorphic function on C' x D!. So fliyyxont extends
to {y} x D! for all y € C except finitely many points of C. Then we spread this
result by restricting meromorphic functions to irreducible curves in Y’; for more
details, see the proof of Proposition 3.12. So we obtain that the given function
f onY x OD! has the property that, for any point y € Y, the restriction of
m|{y}xon' extends to a meromorphic functions on {y} x D'. Then one can
conclude by the additional assertion in Lemma 2.3. Finally, we obtain the
result by Proposition 2.5.

In the general case, one can proceed as before by restricting f to curves C'
contained in Y. Except for finitely many points of C, the local rings at points
of C' x OD! are factorial. So one can write f in the form we discussed above,
and we can proceed with the restriction of f to C' x D!. So we can finish the
proof of the general case as above. O

Corollary 2.7. Let Y = Sp(A) be an irreducible and reduced affinoid space,
and let V CY be an open nonempty subset. Let p € Aln] be a monic polynomial
with [p| = 1. Set

=V xDHu (Y x DY

4This trick was introduced by Bartenwerfer in [3, proof of Satz 1.2].
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Then every meromorphic function m € M(H) extends uniquely to a meromor-
phic function on X :=Y x D'. If, in addition, X is normal, the same holds
for holomorphic functions.

Proof. The induced map ¢ := (id x p): ¥ x D! — Y x D! is finite. Then the
assertion follows from Proposition 2.6 by Lemma 2.4. The case of holomorphic
functions follows in the same way as Proposition 2.5. g

Next we will treat a special case of a Hartogs figure which settles the crucial
point of the proof in the case of a general Hartogs figure. We start with
a lemma on descent.

Lemma 2.8. Let Y = Spf(A) be a smooth affine formal R-space with irre-
ducible reduction Y of dimension n. Let p € A[n] be a polynomial with |p| = 1
such that the coefficients of p generate the unit ideal of A. LetY' = Spf(B) =Y
be a formally étale surjective map such that its reduction Y' is irreducible as
well. Denote by ¢: Y' x D' =Y x D! the induced morphism. Let Z CY' x D!
be a formal open subscheme such that ¢: Z — Y x D' is surjective. Consider
a holomorphic function m € M((Y x DY)z). If *m extends to a meromorphic
function on Z, then m extends to a meromorphic function on'Y x D'.

Proof. By a meromorphic function on a formal scheme, we mean a function
that is locally a fraction of two formal functions where the denominator is
a nonzero divisor on the special fiber. The symbol D! here denotes the formal
affine line over Spf(R). In the following, we have to distinguish between the
formal scheme Y and its associated rigid analytic space which we denote by Y .
Let m € R be nonzero with |7| < 1. We denote the reduction mod 7*** by the
subindex v at the symbols for the formal schemes; i.e., Y, :=Y xr (R/Rr"*1)
for v € N. The same applies to Y’, and Z, etc.

At first, we assume in addition that ¢*m extends to a holomorphic function
on Z. We may assume |¢*m| =1 and hence that ¢*m € Oz(Z). Since the
coefficients of p generate the unit ideal of A, the function m gives rise to
a Y-rational map

my (Y X Dl)y - ]D)Ilj = AlR/Rﬂy+1,

where Al is the formal affine line over Spf(R). Indeed, m, is defined on the
subset (Y x DL);. Its pullback ¢*m, is defined on Z, due to the additional
assumption. Due to the descent of the domain of definition of a rational mor-
phism [12, Prop. 2.5.6], the map m, is defined on (Y x D), for all v € N.
Thus we have that m extends to a holomorphic function on Yx x D?'.

Now we turn to the meromorphic case. Since Zk is locally regular and
hence factorial, then ¢*m gives rise to a well-defined pole divisor S and hence
to a divisor ideal J C Oz, . In the following, let

Di: Z}( = ZK Xy D1 ZK — ZK

be the i-th projection for ¢ = 1,2. Then we can consider p;¢*m for ¢ =1, 2.
Since m is defined on (Yx x D1);, we have pj¢*m = pi¢*m. Note that pf¢*m
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has a well-defined pole divisor S; C Zj for i = 1,2 since the rigid spaces under
consideration are locally regular and hence factorial. Because of pj¢*m =
ps¢*m, the associated ideals J; of S; inherit a canonical descent datum on J.
This descent is effective due to [11, Thm. 3.1]. So there exists a divisor ideal
T C Oy ypr which induces J = ¢*Z. Now put Ix := Z(Yx x D), and set I :=
Ik NA(n). Then A(n)/I is free of R-torsion since ¥ x D! is formally smooth
over R. Thus A(n)/I is flat over R. Then it follows from [24, Lem. 6.2.3]
that I extends to a formal Cartier divisor on Y x D'; actually, the reflexive
closure I** is the extension. Now we want to show that Ix is locally trivial
over Y in the formal sense; i.e., there is a formal open covering {Y7,...,Y;.}
.,r. For doing this, it suffices to
show that the restriction of I** @ k to ¥ x A}, is locally free over Y. The
latter is clear since the local rings of Y are factorial. Then we divide out the
pole of m. So we can assume that ¢*m extends to a holomorphic function on
Zyx Xy Y; for i =1,...,r. Then we obtain the assertion by the first case we
discussed before. O

Lemma 2.9. Let Y = Spf(A) be a smooth affine formal R-space with irre-
ducible reduction Y. Let p € Aln] be a polynomial with |p| =1 such that the
coefficients of p generate the unit ideal of A. Let § €Y be a closed point,
and assume that every irreducible component of V(p) intersects {g} x A} in
a nonempty set of finitely many points. Let V C Y be a nonempty open sub-
set which specializes into y under the reduction map. Then every holomorphic
function on (Y x D)5 extends to a meromorphic function on Yi x Db if it
extends to a meromorphic function on V x DI,

Proof. As in Lemma 2.8, the notation D' here means the formal affine line
over Spf(R), and Yk is the rigid space associated to Y. There exists an étale
neighborhood @: (Y7, /) — (Y,§) of § such that ¢~'V () decomposes into
two sets ¢~V (p) = V(G1) UV (G2), where ¢ is a monic polynomial and g, is
a polynomial with V(g2) N ({§'} x A') = &; cp. [12, Prop. 2.3/8]. In addition,
we may assume that V(G;) is disjoint from V' (G2). Now we lift the étale exten-
sion and obtain a formal étale extension Y’ x D! — Y x D!, which covers the
tube associated to {§} x Aj. Since V(G1) NV (g2) = @, we can decompose the
holomorphic function

m|yrxpr); = Z ayp™" = Z%,lﬁ” + Zawzq;”

veN veN veN

The second summand is holomorphic on (Y’ x D!)4,; the first summand is
holomorphic on (Y’ x D)4, and meromorphic on the tube associated to §’ x Al
since V(¢2) does not meet the tube §’ x A'. So, due to Corollary 2.7, we have
that ¢*m extends to a meromorphic function on (Y’ x D!)s,. Since an étale
map is open, there exists a function a € O(Y) with |a] =1 and a(Z) # 0 such
that Y7 — Y; is surjective. Then the morphism (Y7 x D)z, — Y; x D! is also
surjective. Indeed, V' (g1) — V(p) is surjective as follows by our assumption on
the irreducible components of V(p) and V(¢1) NV (§2) = @. By the descent
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argument, Lemma 2.8, we have that m extends to a meromorphic function on
(Ya x DY) U (Y x D');. The latter is a ball figure of dimension (n — 1). Finally,
the assertion follows from Proposition 2.5. g

Lemma 2.10. Let & :=(&1,...,&,) be the coordinate functions of D™, and let 7
be the coordinate function of D'. Let p,q € O(D"1) be holomorphic functions

on the (n + 1)-dimensional unit polydisc with |p| = |q| = 1, and assume that
V&, ..., &) intersects V(p) in finitely many points and does not meet V(q).
Letp=p1-...-Dr be the prime decomposition of p, and assume that the locus

V(p;) meets V(&i,...,&n) for every j =1,...,r. Then every meromorphic
function m on the Hartogs figure (D"(¢) x D) U Dggl extends uniquely to
a meromorphic function on ]DZH.

Proof. From Corollary 2.7, we deduce that m extends to a meromorphic func-
tion on D7 x D!, by using Lemma 1.11. Namely, the restriction of p behaves
like a polynomial in one variable. Furthermore, we may assume that m = f/g
with f, g in (’)(]D)g;l) with |f| = |g| = 1. The ring O(Dggl) is factorial, as
seen by arguments similar to the ones used in [24, Lem. 6.2.3], because the
reduction of (’)(]D)ggr 1) is factorial. So we can choose f and g in such a way that
V(f,g) has dimension at most (n — 1). So there exists a function r € O(D")
with |r| = 1 such that the reduction of V(f,g) is contained in V(7). Unfor-
tunately, it can happen that 7(Z) = 0 for Z € V(él, ... ,én,pﬁ). Otherwise, we
would succeed by Lemma 2.9 with the trick as in the proof of Proposition 2.6.

Due to the maximum principle, there exists some ¢ € |K*| with € < 1 such
that V(f, g) is contained in {z € D"*; |r(z)| < e}. If we stick to the domain
{lr(z)| > €}, then V(f,g) is empty over that subdomain. So, as in the proof
of Proposition 2.6, we may assume that m is holomorphic on the subdomain
{z € D" |r(2)| > € and |gp(z)| = 1}.

Due to [12, Prop. 2.3/8], there is a formal étale neighborhood (Y = Spf(B), 9)
of (D™, 0) such that p splits into a product p = ¢1 - g2 over B such that
1 is monic and V(G) is disjoint from V (&1, ...,&,). In addition, we may
assume that the two polynomials generate the unit ideal in B[ﬁ] Indeed,
since dim V(¢,p) < mn — 1, there is a function s € O(D™) with |s| =1 and
V(g,p) C V(8) and 5(&) # 0. So the polynomials p and § are comaximal on AZ.
Thus, over D! we can split

M {a; |s(a)|=1, |r(x)|>c} = Z a,-q "+ Z by -p".
pneN vEN

Leaving the first summand aside, we see that the second sum is defined on
(Vs x D)5 and also on D'} N {|r(x)| > ¢} which is nonempty and open. Now,
over Yz x D!, we can split the second series

S S
Zbu 'p_l/ = Zbu,l 'QIV‘FZbu,Q 'QEV-
v=0 v=1

veN
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Denote by my resp. mo the first resp. the second summand. So m; is a mero-
morphic function on (Y x Dq1); U¢~ ({z € D" 1 > |r(x)| > e} x D'). Now it
follows from Corollary 2.7 and Lemma 2.4 that m extends to Yz x D!. Then
set Z := (Yz x D)g,. Now ¢*m is meromorphic on Z. The restricted map
¢: Z — D2 x D! is formally étale and surjective since ¢(V (Gz)) is contained
in V(p) and ¢(V§1) equals V(p) as every irreducible component of p meets
V(&, e ,én) Then it follows from Corollary 2.7 that the second sum is de-
fined on (Y x D)z and hence on Y x D! due to Proposition 2.5. Then, by
the descent argument, Lemma 2.8, we deduce as in Lemma 2.9 that m can be
extended to Dg;;l. Finally, m is extendable to a meromorphic function Dq@“
due to Proposition 2.5. (]

Theorem 2.11. Let X be a reduced affinoid space of pure dimension n + 1,
and let H C X be a Hartogs figure H of dimension n. Then any meromorphic
function m on H extends to a meromorphic function on X, and the extension
is unique; i.e., the restriction map M(X) = M(H) is bijective. So (H,X)
has property (M,,). If, in addition, X is normal, then the restriction map for
holomorphic functions O(X) = O(H) is bijective, too.

Proof. Consider a Hartogs figure as in Definition 1.10. In the following, we
keep the notions introduced in Definition 1.10. At first, we discuss the case
where there is only one tube; i.e., there is one complete intersection M which
meets any irreducible component of N. Due to Proposition 1.14, we have
a finite morphism ¢: X — D! and a Hartogs figure H' C D" of dimen-
sion n in ID)ZJrl with ¢=!(H') C H. Then it follows from Lemma 2.4 that
M(X;) — ./\/l(H N X;) is bijective due to Lemma 2.10, where ¢ has to be
replaced by h. Moreover, V (h) intersects any irreducible component of N at
most in a closed subset of dimension n — 1 since & does not meet M and any
irreducible component of N meets M. So we obtain the extension by Propo-
sition 2.5.

In the general case, where there are more tubes, we make induction on
the number of tubes. So pick one of the tubes M;. Let Qi be the union of
all irreducible components of N which meet M and let QQ the union of the
remaining components. Then there exists a function ¢ € O(X) with |¢| =1
such that V' (g) does not meet M; N Q; and contains Q3. So H N X; gives
rise to a Hartogs figure on Xy with exactly one tube defined by M. Due
to the case discussed above we have that any meromorphic function m on H
extends to Xj. Since the dimension of Q1 N V(q) is less than n, it follows
from Proposition 2.5 that m extends to Xg,. Now it remains to show that m
extends to X. But this follows by the induction hypothesis.

This is the proof for a Hartogs figure as defined in Definition 1.10; for
rectilinear Hartogs figures, the proof was done in Proposition 2.6.

The uniqueness follows from Proposition 1.12. In the case where X is nor-
mal, the extension of holomorphic functions follows from that in the meromor-
phic case and Proposition 1.12 since the set of poles is empty or of dimension n.
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In the latter case, it has to meet the Hartogs figure due to Proposition 1.12.
Thus we see that the set of poles is empty. O

Remark 2.12. In the proof, we made use of Proposition 1.14 which requires
that the residue field k has infinitely many elements. This assumption is ac-
tually not necessary for this application. Indeed, we can choose a base field
extension K’/K in such a way that the residue field &’ of K’ has infinitely
many elements. So we obtain the extension of meromorphic functions after
such a field extension. Then an easy descent argument shows the extension
property over the given base field.

Concerning the extension of functions through closed analytic subsets, this
easily follows from Proposition 1.15. We have the following properties.

Proposition 2.13. Let X be an irreducible reduced rigid space, and let A C X

be a closed analytic subset of X .

(a) Ifdim A <dim X — 2, then any meromorphic function on X — A extends
to a meromorphic function on X. If, in addition, X is normal, the analog
1s true for holomorphic functions.

(b) If dim A =dim X — 1 and X is normal, then any bounded holomorphic
function on X — A extends to a holomorphic function on X .

Proof. (a) follows directly from Proposition 2.5.

(b) We may assume that X is affinoid. If X =Y x D! and A =Y x {0},
the assertion follows by looking at the Laurent expansion of the given bounded
function. Due to Proposition 2.5, it suffices to show that there exists a ball
figure B of codimension 2 in X such that a given bounded function extends to
a holomorphic function on B. If X is geometrically normal, the set of singular
points is of codimension 2. Furthermore, due to Galois decent, we may assume
that A is geometrically reduced, so its set of singular points is of codimension 1
in A and hence of codimension 2 in X. The set of singular points of X and A
give rise to a ball figure B in X of codimension 2 such that X N B and AN B
are smooth. Then, due to Proposition 1.15, we are reduced to the special case
discussed at the very beginning of this proof.

Now we turn to the general case. There exists a finite field extension K'/K
such that the reduced space (X ®p K')ieq of X ®k K’ is geometrically re-
duced and that its normalization is geometrically normal. Thus we have that
our bounded function f extends to a meromorphic function on (X @ K')red-
Since f is defined on X — A, one easily shows that f actually extends to
a meromorphic function on X. Next we choose a finite map ¢: X — D" for
n = dim X. The characteristic polynomial of f with respect to ¢ has bounded
coefficients on X — ¢(A4), and hence they extend to affinoid functions on X,
due to what we have proved above. Since X is normal, f belongs to O(X). O

Theorem 2.11 is essentially due to Bartenwerfer; cp. [3, 4]. His proof is very
long and hard to follow. The proof given here runs smoothly because of the
use of formal étale extensions and descent theory [11].
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3. ANALYTIC SUBSETS

The proof of the extension property (A,) will be reduced to the extension
of holomorphic functions due to the following lemma.

Lemma 3.1. Let ¢: X =Sp(A4) =Y =Sp(B) be a morphism of affinoid spaces.
Assume that Y is normal and connected and that Y has dimension n. Let
V CY be an open nonempty subspace, and set U := ¢~ (V). Assume that any
bounded holomorphic function on V extends to a holomorphic function on Y.

Let S C U be an irreducible closed analytic subset of dimension n. Assume
that the induced morphism ¢|s: S — V is finite. Then there exists a closed
irreducible analytic subset S C X with SNU = S. In particular, the induced
morphism ¢: S — Y is finite.

Endow S with its reduced structure. Then any meromorphic function on S
extends uniquely to a meromorphic function on S if any meromorphic function
on V' extends to a meromorphic function on Y.

Proof. We endow S with its reduced structure. Let ¢ be the degree of the
morphism ¢|s. For a holomorphic function f € O(X), we denote by

Pi(m)=n"+ci—1-n" 4+ o € Oy (V)]

the characteristic polynomial of f|s. The coeflicients are meromorphic func-
tions on V. Since Y is normal, the coefficients are holomorphic on V. More-
over, the coefficients are elementary symmetric functions in the values f(z) for
x € ¢~ 1(v) for all v € V. So they are bounded, and hence, due to our assump-
tion, they are holomorphic on Y. Thus we have P¢(n) € Oy (Y)[n], and P(f)
vanishes on S for all f € Ox(X). Thus the locus of (P¢(f); f € Ox(X)) is
a closed analytic subset S C X of X with SNU = S. Note that the ideal (Pf(f);
f € Ox (X)) is finitely generated because Ox (X) is noetherian. The assertion
concerning the meromorphic functions on S follows from Lemma 2.4. U

Corollary 3.2. Let ¢: X = Sp(A) = Y = Sp(B) be a morphism of affinoid
spaces. Let V C'Y be an open nonempty subspace, and set U := ¢~ (V). Let
S C U be an irreducible closed analytic subset of dimension m >n+ 1. As-
sume that ¢|ls: S — V is finite. If the couple (V,Y) satisfies properties (Ay,)
and (My,), then S extends to an irreducible closed analytic subset S C X. More-
over, (S,S) satisfies properties (A,) and (M,,).

In particular, if ¢: X — 'Y is finite, then (U, X) satisfies (A,) and (M,,) if
(V,Y) does.

Proof. Let T := ¢(S) C V be the image of S and T’ C Y its extension to ¥
which exists due to (A,). Let 7" — T be its normalization. The induced
morphism ¢|g: S — T is finite. As in the proof of Lemma 3.1, consider the
characteristic polynomial Py(n) € OF(T) for any f € Ox(X). Due to condition
(M,,) and implicitly (H,), we have that P;(n) € O%(T). Then the locus of
(Pr(f); f € Ox(X)) gives rise to a closed analytic subset S C X of X with
SNU=S. Indeed, firstly, we obtain an extension in the fiber product X xy 17,
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and hence, by the projection to X, we obtain the extension S. The assertion
concerning (M,,) follows by Lemma 2.4 from property (M,,) of (V,Y). O

Proposition 3.3. Let (B, X) be a ball figure in dimension n on an affinoid
space X of dimension n+ d with d > 2. Then the couple (B, X) has properties
(An—i-l) and (Mn+1)~

Proof. We apply the projection lemma, Lemma 1.5. Then the assertion follows
from Proposition 2.5 by using Lemma 3.1 respectively Corollary 3.2. The
uniqueness follows from Proposition 1.6. O

The case of Hartogs figure is much harder to prove since we do not know
such a nice projection lemma as in the case of ball figures. Let H C X be
a Hartogs figure of dimension n in an affinoid space of pure dimension n + d,
and let S C H be a closed analytic subset of pure dimension n + ¢t with ¢t > 1.
If one wants to show the extension of S to a closed analytic subset S of X, we
usually reduce the problem by finite projection to a standard Hartogs figure in
D"+t by using Lemma 3.1 and extension properties for meromorphic functions.
In the last proposition, we have seen how it works. Similarly, it works for all
the other extension properties as we will see in the sequel. We only have the
projection type Proposition 1.14 which yields a map to a standard Hartogs
figure in a polydisc, but it does not induce a finite map from a given analytic
subset S C H of dimension n + ¢ to a Hartogs figure of dimension n 4 ¢. So
we need a new type of projection result which gives additional information for
the standard Hartogs figure obtained in Proposition 1.14. Let us start with
the case of the standard Hartogs figure.

The following two results are more or less contained in [5, § 3].

Lemma 3.4. Let (1,...,C(n,m1,---,Ma be the coordinate functions on Dntd
with d > 2. Consider the Hartogs figure H := T U B C X := D", where

T :=(D"(g) x DY) and B:=D" x oD%
Then (H, X) has properties (A,) and (M,,).

Proof. Let S C H be a closed analytic subset whose irreducible components
have dimension m = n +t with ¢t > 1. The case t > 2 is covered by Proposi-

tion 3.3. So we may assume that ¢t =1 and d > 2. For ¢ = (e1,...,6,), we
will stepwise increase each €, to 1 for v =1,...,n. So we may assume that
eg=1,...,6, = 1. Then we have to extend S to a closed analytic subset

of D"+, Consider the reduction S C A7 in the sense of Reminder 1.3.

If d > 3, there exists a polynomial g € k[Ca,...,n4] with 0 # § such that
S C V(j). After a transformation of type ¢, — ¢, + ny for 1 <v <n and
n; — 0+ ngi for 1 <1 < d and ng — ng, we may assume that g is monic in 7.
So we have a finite map S — H' := (T’ U B’), where T’ := D" (g) x D! and
B’ :=D" x D!, Then, by Corollary 3.2, we reduce to d — 1.

So it remains to deal with the case d = 2. Then we arrange the irreducible
components of S into subsets 5'1 and 5'2 such that S = 5'1 U 5’2 satisfying
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S; c V(¢1) and dim(S; NV(¢)) < n. Now there exists a nonzero polynomial
f€k[Ca, ... na] such that (S, NV ((1)) € V(f). After a transformation of type
GG +nyy forl<v<nandm—m+ 7731 and 7y — 72, we may assume
that f is monic in 72. Again by applying Lemma 3.1, we may assume that
(S2 NV ((1)) € V(7). Due to the maximum principle, there exist numbers
01,02 € y/|K*| less than 1 such that

S{z € X, [Q1(z)] = 01, [m2(2)] = ba2(2)} = @.
Then the projection by the coordinate functions (s, ..., (u, 11, 12,
pl..: S ﬂp_l(H/) —H =T'nB' cD" ! x ]D)|2n2(a:)|252a
is finite, where
T :=Dp 2 and B :=D""' x D' x A(d, 1).
Thus, by Corollary 3.2 and Proposition 2.6, we obtain the extension to the set
D™ x A((SQ, 1)
Now we have more freedom on the geometry of the Hartogs figure. We

have S = V(f) for some polynomial f € K[, 7] with |f| = 1. Then we choose
a transformation ® of type

G =Gty forl<v<m 7711—>771+77§1 and 79 > 1o

such that 05' < &1 such that f becomes a Weierstraf divisor with respect to 7s.
The inverse image of the figure H” := T” U B” under ® is contained in the
domain of definition of S, where

T" := (D"(g) x D?) and B”:=D" x D%
In particular, the projection by the coordinate functions (1, ..., (s, M,
pl.:SNp Y(H') = H := (D"(e) x D) U (D" x D),

is finite. Thus the extension property follows from Corollary 3.2 and Proposi-
tion 2.6. |

Lemma 3.5. Let Cy,...,Cn, 11, - - -, 0a be the coordinate functions on D" with
d > 2. Consider the Hartogs figure H := T U B C X := D"t of dimension n,
where

T:=(D"() xDY); and B:=DE
with € = (e1,...,e,), where h € k[n] is monic polynomial with h(0) # 0. As-
sume that N is of dimension n with dim N N V(¢) = 0 and that every irre-

ducible component of N contains the origin. Then (H, X)) has properties (Ay,)
and (M,,).

Proof. Let S C H be a closed analytic subset whose irreducible components
have dimension m = n + ¢t with ¢ > 1. The case t > 2 is covered by Propo-
sition 3.3. So we may assume that t =1 and d > 2. As in the proof of
Lemma 3.4, we will stepwise increase the radii €1,...,&, to 1. So we may
assume that eo = 1,...,g, = 1. Also by the same procedure, we can reduce
to the case d = 2 and N = V/(§,72), where § € k[¢,m] and every irreducible
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component of § meets the origin and §(0,71) # 0 does not vanish identically.
Indeed, the projection of N to AZ*I x A? is of dimension less than or equal
ton <mn— 142 and hence contained in a hypersurface V( f) After a trans-
formation of coordinates, we may assume that f is monic in 74. By the usual
application of Corollary 3.2, we may assume that f = 1n4. Note that we can
arrange the transformations in such a way that the polynomial h can be re-
placed by some other polynomial with the same property. So we still have

V(C i) N V(3) = {0,G1,- .5} C AL

Now we proceed as in the proof of Lemma 3.4. For the reduction S C A"”
of S, we have a decompom‘mon S = 51 U SQ as a union of Zariski-closed subsets
of AZ” such that S; € V(¢1) and dim(S2 V(1)) < n+ 1. In a first step, one
shows the extension to the domain D™ x A(dz,1) for some d5 € /|K*| with
09 < 1. In a second step, we can start a transformation as at the end of the
proof of Lemma 3.4. So we obtain a finite map

pl.:SNp Y H) = H = T’UD;H,

where T" := D"(g1); x D'. Since H’ gives rise to a Hartogs figure in D?** due
to the condition on g, we obtain the extension to ]D)}l“rd by Corollary 3.2 and
Proposition 2.6. Thus we have the extension to the union D%+ U ]D)Z*d which
is ball figure of dimension (n — 1). Finally, we succeed by Proposition 3.3. O

We want to stress the fact that the problem of extending S is reduced
to showing it in cases where there is a finite map of some shrinking of S to
a Hartogs figure of dimension n in an (n + 1)-dimensional space.

Theorem 3.6. Let (H,X) be a Hartogs figure of dimension n in an affinoid
space of pure dimension n+ d. Then the couple (H, X) has properties (Ay,)
and (M,,).

Proof. We may assume that S is irreducible of dimension m with m > n + 1.
If m > n + 2, the assertion follows from Proposition 3.3. So we assume that

=n+1. Let N C X be the Zariski-closed subset associated to the ball figure
contamed in H. The subset S C XJ gives rise to a Zariski-closed algebraic
subset S C X — N. We denote by S C X its closure in X as well since no
confusion can happen. Now S is of pure dimension m =n + 1.

At first, we apply Lemma 1.11 and Lemma 3.4 to obtain the extension
of S to the maximal tubes. As in the proof of Theorem 2.11, we may assume
that there is only one tube present. Then we apply the projection lemma,
Proposition 1.14. So there is a finite morphism ¢: X — D"+ and a polynomial
h € k[n] with the following properties.

(0) Set H':=TuUB C D" with T := (D"(g) x D?) and B := D?{rd.

(i) H' CD?*?is a Hartogs figure in D¢ with ¢~ (H') C H.

(ii) The induced map ¢: ¢~*(H') — H' is finite.

Then the assertion follows by Corollary 3.2 from Lemma 3.5. g
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Remark 3.7. As in the proof of Theorem 2.11, we made use of Proposi-
tion 1.14 which requires that the residue field £ has infinitely many elements.
This assumption is actually not necessary for this application. Indeed, we can
choose a base field extension K’/K in such a way the residue field k' of K’ has
infinitely many elements. So we obtain the extension of closed analytic subsets
after such a field extension. Then an easy Galois descent argument shows the
extension property over the given base field.

The extension theorem for closed analytic subsets on rectilinear Hartogs
figures like H := (V x D?) U (Y x 9D?) is more delicate, because here we do
not know such a nice projection lemma as the one we used in the proof of
Theorem 3.6. Of course, any closed analytic subset of pure dimension m >
2+ dimY extends due to Proposition 3.3. So it remains to study the case
of pure dimension dim S =1+ dimY. The case d = 2 will easily be solved
with a completely different method in Remark 5.8 and Corollary 5.9 which is
of interest for itself. But that proof does not allow to show property (M,,).
Therefore, we introduce a new method.

In the following, we consider a rectilinear Hartogs figure

H:=(VxDYH)U(Y x oD% C X := (Y x DY),
where Y is an irreducible affinoid space and V' C Y is a nonempty open subset.

Lemma 3.8. Assume that dimY =1. If S C H is an irreducible closed analytic
subset of dimension dAimY + 1, then S uniquely extends to an irreducible closed
analytic subset S C X.

Proof. If d = 2, then the assertion follows from Corollary 5.9. In the following,
assume d > 3. We proceed by descending induction on d. Consider the Zariski
closure S C (Y x A¢) of the reduction of S. We know that S is of pure di-
mension 2. Then the projection ¢: Y x A¢ — A¢ maps S into a Zariski-closed
subset of dimension of at most 2 < d. So there exists a nonzero polynomial
G €k[n,...,n4) such that ¢(S) C V(§). After asuitable transformation of coor-
dinates of type n; — n; + nfj for 1 <i<d—1and g+ 14, we may assume that
G is monic in 1g. Then consider the projection p: Y x D¢ — Y x D4~1. Its re-
striction p: SNp~(H') — H'is finite, where H' := (V x D4~ 1) U (Y x 9D41).
So p(S) C H' is a closed analytic subset of dimension 2. Due to the induction
hypothesis, p(S) extends to a closed analytic subset 7 C Y x D?"!. So we
see that S C p~1(T) is a subset of a closed analytic subset p~1(T') of codi-
mension 1 in Y x D?. Obviously, we can find projections p such that a given
point z € H — S is outside p~*(p(T'). Then the intersection of the p;*(T) for
suitable projections p;: Y x D¢ — Y x D% yields an extension of S. O

For generalizing the last result to higher dimension, we start with some
preparations.

Definition 3.9. The lines L C D™ through the origin can be parameterized
by the points of ]P’}‘(_l. A family of such lines is called dense if the set of reduc-
tions of its members to A} induce a subset of ]P’Z_1 which is not contained in
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a countable union of proper closed subsets of ]P’Zfl. We remark that the set of
lines L C D™ through the origin is dense if the residue field k of K is not count-
able. Moreover, the complement of a countable union of proper closed subsets
of P! is a dense family as well.

Lemma 3.10. Assume that the residue field k of K is not countable. Let
p € K|[[m,...,n]] be a formal power series which converges on D™ (e) for some
e > 0. If the restriction p|, converges for a dense family of lines L C D™ through
the origin and satisfies |p|r| < 1, then p converges on D™.

Proof. Let p:=Y_°_ pm be the expansion with respect to the total degree. It
means

P = Z -t € Klm, ..oy
lnl=m
is a homogenous polynomial of degree m. Let m,, € K> with |m,| := |pm| be

the spectral norm of p,, if p,, # 0. Now look at the reduction p,, of py,/mm.
Note that any L gives rise to a point [E] in ]P’Z_1 and V' (p,,) gives rise to proper
closed subset of P~1. Then [L] ¢ V (jn) is equivalent to ||| = |mm]-

Due to our assumption, there exists a line L in our family such that |p,, || =
|7 |. Since |p|r < 1, we have that |p,| <1 for all m € N. Let I C N be the
subset consisting of all m € N with m,,, # 0. Due to our assumption, there exists
a dense family of lines L such that L is not contained in Umer V(Pm). Since
p|r converges, we have that 7, converges to 0. Thus we see that p=>__ _\ Pm
belongs to K(n1,...,nn)-

Lemma 3.11. Assume that the residue field k of K is mon-countable. Let
P e T,(n) be an irreducible Weierstrafi polynomial. Set X = V(P), and let
¢: X — D™ be the projection. Assume that ¢ is étale over the origin 0 € D"
and that its fiber consists of rational points. Then there exists a dense family,
Definition 3.9, of lines L through 0 in D™ such that ¢~ (L) C X is irreducible.

Proof. Let x1,...,zs € X be the points with ¢(x;) = 0. Since ¢ is étale above 0,
there exists an € > 0 such that ¢~1(D"(¢)) decomposes into sheets Uy, ..., Us.
So we can write

P=mn—-a1) ...-(n—as) € Opn (D" (¢)).

Set I:={1,...,s}, and consider, for any nonempty subset o C I, the polynomial

to
Py= [ —ai) =) bjor’ € Oon(D"(e)) 1.

1€0 7=0
Any b; , € Opn (D™ (¢)) is a power series. If, for some proper subset o C I, the
restriction of all the coefficients b; , |1, to a dense family of lines L is holomorphic
on L, then P, € T,,[n] due to Lemma 3.10, and hence the polynomial P €
T,[n] cannot be irreducible. Thus we see that ¢~1(L) is an irreducible curve
contained in X for a dense family of lines through 0. g
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Proposition 3.12. Keep the situation introduced above Lemma 3.8. If S C H
is an irreducible closed analytic subset of dimension dimY + 1, then S uniquely
extends to an irreducible closed analytic subset S C X.

Proof. The case dimY = 1 was settled in Lemma 3.8 which will be used in
the sequel. Now we turn to the general case n = dimY > 1. Consider the
projection p: (Y X Ad) — Y. Look at the generlc pomts U1y - .-, Yr Of Y which
are associated to the irreducible components Yi,...,Y,. If p is not dominant
over Y, then there exists an element @; € A such that all the geometric fibers
over Yz, are empty. If p|5 is dominant over Y;, the fiber of §; is of dimension 1
by reasons of dimensions. Then there exists a transformation of coordinates
as above and a function d; € A such that the projection p;: SN (}7&1 x Ad) —
Ya, x A} is finite and p; ' (Ya, x (Af — {0})) C (Ya, x (A¢ —{0})). Then, for
any function f € Ox(Yz, x D?), we have the characteristic polynomial

Pr(m)=n"+cim1-n" + -+ e € Oy (Ya, x 9D

of f|s. Its coefficients ¢, are bounded holomorphic functions on Yz, x D!,
Now we perform a base field extension K — K’ such that the residue field
of K’ is not countable. Due to Lemma 3.11 and Lemma 3.8, there is dense
subset of Yz, such that SN ({y} x DY) extends to {y} x D¢ Then it follows
from Lemma 2.3 that the coefficients ¢, extend to holomorphic functions on
Yz, x DL One easily shows that the coefficients are actually defined over the
base field K. Thus S is extended by the locus of the functions (P¢(f)), where
f runs over all functions f € Ox(Ys, x D?). So S extends to the ball figure
(Y x 0D%) U (Yz x D)) of dimension n — 1. Then the assertion follows from
Proposition 3.3. U

Proposition Proposition 3.12 does not show the full property (M,,); the part
concerning the extension of meromorphic functions is missing. This lack is due
to the fact that we proved Proposition 3.12 by using the method of § 5 instead
of the standard technique of Lemma 3.1. Nevertheless, property (M,,) holds
for any rectilinear Hartogs figure of dimension n. Although we now know the
extension property for closed analytic subsets S in rectilinear Hartogs figures,
the extension property for meromorphic functions on S requires more involved
methods.

Lemma 3.13. Let Y be a smooth connected curve, and let V CY be a non-
empty open subdomain. Consider the rectilinear Hartogs figure

H:=(V xDY) U (Y x oD%,
and let S CY x D¢ be an irreducible closed analytic subset of dimension 2.

Then any meromorphic function on SN H extends to a meromorphic function
on S.

Proof. Let us first discuss the case where Y has a smooth formal model. Then
H contains an affinoid Hartogs figure H' C H of dimension n. Indeed, let
yo € V be a point. Then it follows from [24, Prop. 4.1.12] that there exists
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a function g € Oy (y) such that V(g) "Y' = {yo}, where Y’ C Y is a formal
open neighborhood of gg. So, for a small € € |K*|, the figure

H :={zeY' xD% |g(z)| <e}uU (Y’ x DY) c HN (Y x oD%)

is a Hartogs figure in Y’ x 9D?. So property (M,,) for Hartogs figures implies
the extension for meromorphic functions on SN (Y’ x D). Then the assertion
follows by Theorem 3.6.

In the general case, we use the stable reduction theorem for curves [24,
Thm. 4.5.3]. So we may assume that Y has a semi-stable reduction where
no irreducible component has a self-intersection. Assume firstly that V is
contained in the formal fiber of a double point g§y. By what we have shown
already, we may assume that V' is a concentric annulus of height 1 contained in
the formal fiber. Let }71 and 172 be the components which contain gy. Then it
is easy to see that we have a Hartogs figure in Y’ x D%, where Y” is the formal
open part Z which reduces into the smooth part of Y; U Y> and 7o and where
the tube is given by a function g € Oy/(Z) such that V :={y € Z; |g(y)| < d}.
So we obtain the extension of the meromorphic function to S N (Z x D?). If
one or both of these components are complete, we blow them down. Then we
can continue as above since we can define new Hartogs figures where the tube
is given by the blown-down part. g

So, due to Lemma 3.13, we have properties (A,,) and (M,,) in the case where
Y is a smooth curve without using Corollary 5.9, but we used the more involved
existence of a semi-stable reduction for smooth curves. Then the general case
follows as in the proof of Proposition 3.12. Moreover, one can add in that
proof the extension property for meromorphic functions once it is known for
curves. So we arrive at the full assertion for rectilinear Hartogs figures.

Proposition 3.14. The rectilinear Hartogs figure H := (V x D) U (Y x oD%)
has properties (Ay) and (M,,).

Next we turn to the case of extension through closed analytic subsets which
was studied by Thullen, Remmert and Stein in complex analysis.

Theorem 3.15. Let X be a rigid analytic space and A C X a closed analytic

subset of dimension n. Then the following holds.

(a) Any closed analytic subset S C X — A of pure dimension dim S > n + 1
extends to a closed analytic subset of X .

(b) Any closed analytic subset S C X — A of pure dimension n extends to
a closed analytic subset of X if S extends to U U (X — A), where U C X
is an open subset which meets every irreducible component of A.

Proof of Theorem 3.15(a). The case where S is of pure dimension dim S >
n + 2 follows directly from the case where one considers a ball figure of dimen-
sion n defined by A; cp. Proposition 3.3.

Let us now consider the case where S is of pure dimension n 4 1. Obviously,
we may assume that X is affinoid and hence that X = DV for some N € N.
By Galois decent, we may assume that A are geometrically reduced. So A
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is smooth outside a closed subvariety 1" of dimension n — 1. Due to Proposi-
tion 3.3, it suffices to show that S N X7 extends to X7. Then we may assume
that X =Y x D% and A =Y x {0} due to Proposition 1.15.

Denote by N € X the locus V((i,...,¢q). Let S € X — N be the closed
algebraic subset induced by SN X 5. Due to Proposition 3.3, it suffices to show
that S extends to V' x D¢, where V is a formal open subscheme of X such that
V contains all the generic points of Y. Thus we may assume that Y is irre-
ducible. Now consider the projection p: Y x Ak S Y. If Dl s 5 is not dominant,
then there is a formal dense open part V' of Y such that p(S ) C Y — V. More-
over, due to Lemma 1.5, we may assume that S does not meet p~!(V'), where
p: Y xD? =Y is a lifting of . So we are done by Proposition 3.3. Otherwise,
p(S ) contains the generic point § of X . In this case, the fiber p|g over g has di-
mension 1. Then there exists a coordinate transformation of type (; — fl + &4
for i=1,...,d —1 and (g4 — &; such that the projection of SN ({§} x Ad)
to {g} x Ai_l is finite. One can repeat this process until we arrive at a fi-
nite projection to {§} x Ai. Since only finitely many coefficients are involved,
there exists an open neighborhood V of Y in Y where everything is defined.
Since these projections do not effect the set A, by lifting to the affinoid site,
we arrive at a situation of a finite morphism p: S — V' x (D! — {0}) studied in
Lemma 3.1. So the assertion follows in this case by Proposition 2.13 (b). O

For the proof of part (b), which is much harder to show, we provide some
preparations. Before we start the proof of Theorem 3.15(b), we recall two
types of the Weierstrafl Division Theorem.

Proposition 3.16. Let B be a reduced affinoid algebra, and set Y := Sp(B).
Let D(r) be the 1-dimensional disc of radius r € |[K*|. Let g =, by - 0"
be a power series in B(n), which converges on X :=Y x D'(r). Assume that
there exists an integer n € N such that, for ally € Y,

[bn ()| - ™ > by (y)| - ¥ for allv €N,

[bn ()| - ™ > by ()| - ¥ for all v > n.
Such a power series is called a Weierstrafl divisor on Y x D(r). Then one
can uniquely write g = u - w, where u € Ox (Y x D(r)) is a unit and w € Bn]
is a monic polynomial of degree n which satisfies estimates for the coefficients
similar to the ones above.
Proof. First one reduces to r = 1 and b, = 1 by dividing g by b,, which is unit
in B. Then one follows the usual method; cp. [9, Thm. 2.2.8]. O

Proposition 3.17. Let B be a reduced affinoid algebra, and set Y := Sp(B).
Let A(r1,72) be an annulus with radii r1 < ro for ri,ry € |[K*|. Then let g =
ez bi ' € Br (nF)r, be a Laurent series which converges on the space X :=
Y x A(r1,7r2). Assume that there are integers ny < ng such that, for ally €Y,

bry ()| - 77 > [bi(y)| - 7} for alli € Z,
bry ()] - 77 > [bi(y)] - 7} for all i < ny;

Minster Journal of Mathematics VoL. 15 (2022), 83-166



114 WERNER LUTKEBOHMERT

bry ()| - 752 > |bi(y)| - v for all i € Z,
by ()| - 752 > |bi(y)| - 7 for all i > na.

Such a Laurent series is called a Weierstrafl divisor on Y x A(ry,r2). Then
one can uniquely write f = u-w, where u € Ox (Y x A(r1,r2)) is a unit and
w € Bln] is a monic polynomial of degree n = ny —ny which satisfies similar
estimates for the coefficients as above.

Proof. For the proof of this type of Weierstrafl Theorem, one follows the usual
method; cp. [9, Thm. 2.2.8]. At first, one reduces to the case ny = 0. Then we
show the division theorem with estimates for elements f € Ox (Y x A(ry,72))
in the following style.

Decompose f =gq-g+r+ f1, where ¢ € Ox (Y x A(ry,r2)) satisfying the
conditions |q|, < |fly/ min{|gly.r,,|9ly,r.}, Where r € Bn| is a polynomial of
degree less than n with |r|, <|f|, and where f; € Ox(Y x A(r1,rz)) with
[fily <e-|f]y for all y € Y with

e 1= max{max{[b; (y)/ba(y)| - v max{Jb; (v) /bo(w)| - T} }} < 1.

Here | - |, denotes the spectral norm of the function on the fiber {y} x A(ri,r2)
and |- |y,r, denotes the spectral norm on {y} x A(r;,r;) for i = 1,2. Then one
iterates this division f; = ¢; - g + 7; + fi+1 as above. The remaining parts f;
converge to 0. Thus one obtains f = ¢ - g + r in the limit. Finally, one applies
the division to ™, and hence one gets n™ = v - g+ r. Now one easily shows
that the Laurent series of v satisfies the conditions of our proposition with
ny =mngz = 0. Then it is clear that v is a unit of the form v = vy - (1 + h), where
vo € B* is a unit and |h|, < 1 for all y € Y. Finally, this yields g = v - w with
u=1/vand w = b,n" — r. O

The following corollary follows from a well-known fact in commutative al-
gebra; cp. Proposition A.13.

Corollary 3.18. Keep the situation of Proposition 3.17. Assume that B is
normal. Let S CY X A(ry,r2) be a closed analytic subset of pure dimension
dimY. If f € O(Y x A(r1,7r2)) vanishes on S and satisfies the conditions of
Proposition 3.17, then S =V (p) is the locus of a monic polynomial p € B|n)]
whose coefficients satisfy conditions similar to the ones of f.

Proof. The vanishing ideal a of S is a divisor ideal which contains a monic
polynomial w. Due to the inequalities, S = V(a) can be regarded as a closed
algebraic subset of Y x Al.. Since the monic polynomial w is contained in a,
the ideal a is generated by a monic polynomial p which divides w, because B
is normal; cp. Proposition A.13. g

We add a general method to construct rational coverings which is often
used.

Lemma 3.19. Let B be a reduced affinoid algebra, and set Y := Sp(B). Let
r1 < ry <1 be numbers of \/IK*|. Let f=5""__ b,-n” € Bn,1/n]] be
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a Laurent series over an affinoid algebra B which converges on the relative
annulus Y X A(ri,r2). Assume that the coefficients (b, € B; v € Z) have no
common zeros. Then there exists a finite affinoid covering U = {Vp,...,Vp}
of Y = Sp(B) and numbers po, ..., pn € \/|K*| with p, > r1 close to r1 and
numbers go, . .., 0n € /| K| with 0, < ro close to ro such that f has no zeros
on V, X A(py, pv) and on V, x A(oy, 0,) for v=0,...,n. In particular, the
projection p: V()N (V, x A(py,0.)) = V., is finite for v =0,...,n.

Proof. Since the coefficients (b,; v € N) have no common zeros, there exist
indices ni,ng with n1 < ng such that b,,, ..., b,, have no common zeros. So
there exists a positive number b such that

b < max{|bn, (¥)|,-- -, [bn,(y)|} forallyeY.

Since the sequence (|b,| - r}) converges to 0 for v — —oo and (|b, | - r¥) converges
to 0 for v — 0o, we may assume that, for all v € Z — {ny,...,na},

[bu ()| - 7 <max{[bn, (Y)| - 71" by ()| - 712} forally €,

[bu ()| - 5 <max{[bn, (Y)| - 3", by (y)| - 3%} forally €Y.

Moreover, there exist numbers p, o € 4/|K*| with p > r1 close to r; and ¢ < ro
and close to rg such that, for all v € Z — {nq,...,n2},

b, (y)| - p” < max{|bn, (y)[p", ... by (y)[p"?} and all y €Y,
b, (y)| - 0 < max{|bn, (y)[e™, ..., b, (y)[@"*} and ally €Y.

Of course, we may assume n; = 0 and put n :=ng. For m = nq,...,ng, put
Ve = {y e Y; |bi(y)|- o' < |bm(y)| - o™ for i <m}.

Then f restricted to Y,2 x D1(p) is a Weierstraf} divisor of degree n. So, if we
increase ¢ a little bit, then b,n™ becomes a dominating term of f |ynexml(g),
and hence f has no zeros on Y,2 x A(p, 0); cp. [24, Prop. 1.3.4]. Due to the
maximum principle, there exists a number ¢ € /| K*| with ¢ > 1 such that f
has no zeros on Y,? x A(p, ¢). Now we can look at the union

n—1
Z=JyeY; bl o > " lou(y)l - 0"}
v=1

Note that Z is disjoint from Y,2. Proceeding by decreasing induction on n,
we obtain a rational covering U of Y which satisfies the assertion for the
higher radius. In the analog way, one deals with the lower radius. A common
refinement of the coverings yields the assertion. O

Lemma 3.20. Let Y be a smooth affinoid space, and set D} := D! — {0}.
Let S CY x D} be a closed analytic subset of pure dimension dimY with
SN(Y x A(1,1)) = @. Assume that S C V(f) with a holomorphic function
f=> ez aw-n" €O xDy) such that the coefficients of f have no common
zeros on 'Y .
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Then there exists a covering {Y1,..., Y} of Y by finitely many connected
open affinoid subdomains Y, such that SN (Y, x D) =V (f.) is a principal
divisor of a suitable function f, = o bui-1/n" € O(Y, x D}).

Proof. Let L be the line bundle associated to S. Since Ly 4(1,1) is prin-
cipal, we can glue it with the trivial line bundle to obtain a line bundle on
Y x P}, where P} is a projective line punctured at the origin. Obviously, P}
is isomorphic to the affine line AL.. Since Lly x {o0} is trivial, it follows from
Theorem A.17 that there exists {Y1,...,Y;,} of Y by connected affinoid sub-
domains Y, such that L]y, xp3 is trivial. O

Proof of Theorem 3.15(b). At first, we discuss the special case X =Y x D!
and A:=Y x {0}, where Y is a connected normal affinoid space. Moreover, we
choose a nonzero function f =3 ., a, -n” € O(Y x D§) which vanishes on S.
By reason of dimension and in view of Theorem 3.15 (a), we may assume that
the coefficients of f have no common zeros on Y and that Y is smooth. Over
U x D', the subset S extends a closed subset S of U x D!. After shrinking U
to a nonempty open subset set Uy, we may assume that SN (Uy x D) is the
vanishing locus V(wg) for some monic polynomial which is a Weierstrafl poly-
nomial. Due to Lemma 3.20, there exists an admissible covering {Y7,...,¥,,}
of Y by connected affinoid subdomains Y, such that SN (Y, x D{) = V(f,) is
a principal divisor for p=1,... n.

For a moment, we replace f by f,, Y by Y, and U by UNY, ifUNY, # @.
Then the restriction of f = ZVEZ a, -1’ onto U x D! can be written in the
form f = u-w, where w € O(U)[n] is a monic polynomial with |w| =1 and u is
invertible on U x D}. Now u is of the form u =n" - ¢, where ¢ € O(U x D!) is
a unit. So the coefficients a, = 0 vanish for all ¥ < N. Thus we see that f/n"
is holomorphic on Y x D!. This also happens to each f, if Y, NU # @. So we
see that S extends to Y, x D! for such p. Since Y is connected, this is passed
to all the Y. Finally, this shows the extension of S to the whole Y x D!.

It remains to reduce the general case to the special case just discussed. As
exercised in the proof of Theorem 3.15 (a), due to Proposition 1.15, we may
assume that X =Y x D¢ where Y is smooth and A :=Y x {0}. The case
d = 1 was settled above. So assume that d >2and S CY x ]D)g is irreducible
of dimension dimY with DZ := D? — {0}. Let p: ¥ x D¢ = Y x D?~! be the
projection. If S C p~}(Y x {0}), then the assertion follows by the induction
hypothesis. So we may assume that p(S) N (Y x D7) # @ is not empty. It
suffices to find a closed irreducible analytic subset T C Y x D4~ of dimen-
sion dimY such that p(S) C T. The dimension of T'N (Y x {0}) is at most
dimY — 1, and hence we are done due to Theorem 3.15 (a) since S is an analytic
subset of p~1((Y x {0})NT) x Dg.

Now we want to show that there exists a finite covering 9 = {¥1,..., Y}
of Y and for each Y}, numbers p,, 0, € y/|K*| such that

p: Y x DG (pu) x D' (0) = Y x DG (py)
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restricts to a finite morphism p|g. Let 1,79 € \/|K*| with r; < ry. We choose
an affinoid function f € Ox (Y x D41 x A(r1,72)) with

SN xDx A(ry, o)) € V(f).

As above, we may assume that f does not vanish on {y} x {0} x A(r1,r2)
identically for any y € Y. Then we look at the Laurent series

F= hn” € O x D) (r/n,n/rs).
VEZL
Now we apply Lemma 3.19 to the restriction of f to ¥ x {0} x A(r1,7r2). So
there exist a covering {Y1,...,Y;, } and numbers g, € /| K| with r < g, <72
for p=1,...,m such that f has no zeroson Y, x {0} x A(ou,0u). Then there
is an index n € Z such that

[P (y,0)] - 0, < [hn(y,0)] - 0, forallv#nandallye€Y,.

Due to the maximum principle, these inequalities remain true in a small neigh-
borhood of {0},

[P (y, )| - 0, < |hn(y, )| - 0 for all v # n, for all (y,z) € Y, x ]D)d_l(p#),
for a small radius p,, > 0. Then the projection
p: SN (Y, x Dg_l(l)u) x D' (0u)) = Yy % Dg_l(l)u)

is finite. So, by the argument given above, it suffices to show the extension
of p(S). Hence we are finished by the induction hypothesis and finally by the
special case Y x D{. O

Theorem 3.15 was first shown in [25]. The more elegant proof given here
was made possible by the recent result of Kerz, Saito and Tamme [20] which
is explained in Theorem A.17.

4. SUBSHEAVES

The extension property for subsheaves (U,,) is a formal consequence of prop-
erties (M,,) and (A,). By a precise analysis of the primary decomposition of
a coherent subsheaf F of a given coherent sheaf G, the proof of (U, ) will be
reduced to a special extension problem for coherent subsheaves N C O%, where
S C @ is an irreducible analytic subset of G of dimension dim S > n + 1 and
where O% /N is a torsion-free Og-module.

Relative gap-sheaves. In this section, let X := Sp(A) be an affinoid space,
let M := M be the coherent sheaf associated to a finitely generated A-mod-
ule M, and let N'= N C M be the coherent subsheaf associated to an A-sub-
module N C M. If S C X is a closed analytic subset, then the relative gap-
subsheaf with respect to S is the subsheaf N[S]y C M which associates to an
open subset U C X the submodule of I'(U, M) given by

T(U,N[SIm) :i={s e (U, M); s, € N for all z € U — S}.
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Definition 4.1. For an integer n € N, the n-th (relative) gap-subsheaf Nnjm
is the subsheaf which associates to an open subset U C X the submodule of
I'(U, M) given by
F(U,Nmm) :i={s € T(U,M); sy e N forallz e U =T
for a closed analytic subset T' C U
with dimT < n}.

Next we will show that these functors are sheaves and that they are coherent.
For an affinoid subdomain U = Sp(B) of X = Sp(A) and a finitely generated
A-module M, we define MB := M ®4 B=T(U, M) For a submodule P C M,
we write M N (PB) for the preimage I'(U, P) € I'(U, M) under the restriction
[(X, M) — T(U, M).

Lemma 4.2. Let () C M be a primary submodule; then @ = M N Q. for all
z € Supp(M/Q).

Proof. Since @@ C M is primary, the canonical map M/Q — (M/Q). to its
localization with respect to the maximal ideal associated to z is injective for
x € Supp(M/Q). Moreover, the map (M/Q), — (M/Q), is injective, too. O

Lemma 4.3. Let N = (),c; Q; be a reduced primary decomposition of N
in M. Now consider a reduced primary decomposition Q;B = mjeJi P ; of
QiB in MB. Then NB has the primary decomposition NB = (\;cp (e, Pij
in M B which is reduced as well, where

I':={ieI;Supp(M/Q;)NU # &}.

Let S C X be a closed analytic subset. Then it holds

(a) dimSupp(M/Q;) = dim Supp(M /P, ;) for all j € J; and i € I'.

(b) If Supp(M/Q;) ¢ S, then Supp(M /P, ;) ¢ S for all j € J;.

Proof. Since A — B is flat, we have NB = ;. (e, - If 9; C A resp.
pi,; C B are the prime ideals associated to @); resp. P; ;, then the set of asso-
ciated primes is given by

ASSMB NB = UASSB qu = U {p1‘7j; ] S Ji},
iel el
cp. [31, Prop. 15, p. IV-25]. Since, for z € U, the completions A, = B, are
canonically isomorphic and since the localizations A, resp. B, are residue
rings of regular rings, we have dim B/p; ; = dim A/q; for ¢ € I’ and j € J;.
The loci V(p;,;) are the irreducible components of V(q;) N U for i € I'. So the
primes (p; ;; j € J;, i € I') are pairwise different. Thus NB = ;. (e Pij
is a reduced primary decomposition of NB in M B. Assertion (b) follows
implicitly. |

Proposition 4.4. If N = N C M = M is a coherent subsheaf of a coherent
sheaf M, then the gap-subsheaves Nipja and N'[S|p are coherent.

More precisely, if N = (;c; Qi is a reduced primary decomposition of N
in M, then Nipjm resp. N[S]am is equal to the coherent sheaf associated to the
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submodule

N = ﬂ Q; with K :={iel, dimSupp(M/Qi) >n+1}
ieK

respectively to

N[S|m = ﬂ Qi with L:={i e I; dimSupp(M/Q;) ¢ S}.

i€l
In particular, it holds Nya = N[T)y with T = J;c;_x Supp(M/Q;).

Proof. By Lemma 4.2, it is clear that I'(X, N[H]M) =I'(X, Nipjm). Due to
Lemma 4.3, we have for any open affinoid subdomain U = Sp(B) of X that
the primary decomposition of N[,|B is of the same type as the one of Np,.
Thus we see that I'(U, Njyjar) = I'(U, Njyjam). The assertion for N'[S]aq can be
shown in the same way. O

Corollary 4.5. For any x € X, the associated prime ideals p C Ox , of the
Ox z-module Nip1jm/Nimjam are of dimension n+ 1 ezactly.

Extension of subsheaves. In this section, let X = Sp(A) be an affinoid
space, G C X a nonempty open subset, and let n € N be an integer. Moreover,
we consider a coherent sheaf G on X and a coherent subsheaf F C G := G|q.
We assume that F satisfies the condition F = Fiug.

Theorem 4.6. If the couple (G, X) has properties (My,), (Ay) and (E,,), then
it also has property (U,,). In particular, ball figures of dimension (n — 1) and
Hartogs figures of dimension n have property (Uy,).

For the proof, we have only to show that there is a coherent subsheaf 7 C G
with F|g = F. The assertion of the uniqueness follows from (E,,), explained
in §1. For proving the existence, we firstly concentrate on a special case;
this part is due to Siu and Trautmann in the complex case; cp. [33]. For
completeness, we discuss it here with full proofs.

So let S C G be an irreducible closed analytic subset of dimension dim S =
m+1>n+ 1. Due to property (A,,), the subset S extends to a closed analytic
subset S C X. Next we equip S and S with their reduced structure. So, for
any section f € Og(U) over an open subset U C S, the following holds.

(a) If dim Supp(fOs) < m, then f =0.
(b) If dim Supp(Os/fOg) < m, then f is a nonzero divisor in Og(U).

Lemma 4.7. Keep the situation introduced above. Let S be a coherent sheaf
on S, and let ¢: Og — S be a morphism. If there is a point x € S such that
@z 1S an isomorphism, then ¢ is injective and there is a unique factorization

o, —~£-58

N

M
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into the r-fold product of meromorphic functions Mg on S. Especially, the
kernel of ¢ has dimension dim Supp(ker(e))) < m.

Proof. Since S is irreducible, the injectivity of ¢ follows from the above remark
since ¢, is an isomorphism. For T := Supp(coker(y)), we have dim T < m as
well. Thus any factorization 1’ coincides with 1) and S — T. Since Mg has
no sections with support of lower dimension, we have 1) = 1)’. This settles the
uniqueness.

Concerning the existence, note that, for any open affinoid subset U C S,
there exists a nonzero section f € Og(U) such that f -S|y C Im(yp|y) since
S(U) is finitely generated. Then we define ¢y (s) := f~1p~1(f - s) for sections
s € S(U). It is clear that 9y is well-defined and gives rise to a morphism
Y: S — M. The kernel of 9 is contained in 7. a

Lemma 4.8. Keep the situation of Lemma 4.7. Let R be a coherent sheaf
on X. If H C R :=R|¢ is a coherent subsheaf on G such that R/H is an Og-
module which is free of torsion, then there exists a coherent subsheaf H C R
such that R/H is an Og-module which is free of torsion with H|g = H.

Proof. Let (r1,...,rp) be a system of generators of R. Then & :=R/H is

generated by the residue classes s1,...,s, of r1,...,7,. Since the flat locus of
a torsion-free Og-module is open and not empty over a domain, there exists
a point x € S such that S, is free. We may assume that s;,...,s, is an

Og,z-basis of S;. Due to Lemma 4.7, there exists a commutative diagram

OL=@L,05-¢, ——— S=R/H+—— R O =@_,0s-¢;

\ Jw /
MG =D, Ms - e

where ¢'(e;) :=s; for i =1,...,q and ¢(e;) :=r; for i =1,...,p. Since
the couple (G, X) satisfies property (M,,), any element 1(s;) extends to an
element t; € M%(S) for i =1,...,p. So we obtain a coherent Og-module
S:=0g-t; +- S Os - L, which is free of torsion. Now we define a morphism
x: O% — S by setting x(e;) :=t; for i =1,...,p. Then H := p(ker(x)) CR
is the desired extension of H, where ¢: O% — R is defined by ¢(g;) = r; for
1=1,...,p. Indeed, by Lemma 4.7, we know that 1) is injective and hence that
H = p(ker(x)), where x := x|s. O

Proof of Theorem 4.6. If m > dim X, then we have F = Fj;,)g. Now let m € N
be the largest number with F = F,;jg. We proceed by descending induction
on m, and we may assume m < n :=dim X. Due to the induction hypothesis, we
may assume that Fj,,;1]g extends to a coherent sheaf on X. So we may assume
that G = Fjm)g. Then, due to Corollary 4.5, we know that S := Supp(G/F)
has pure dimension m + 1. Because of m > n and property (A,,), the closed
analytic subset S extends to a closed analytic subset S of X which is of pure
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dimension m + 1. Denote by S,...,.S, the irreducible components of S. Then
Si:=8,NG for ¢ =1,...,r are the irreducible components of S. Now we set

F'i= ]—'[U SJ}G, and hence F = m]—“
JF#i i=1
by Proposition 4.4. So it suffices to show that the subsheaves F!,..., F"
extend to X. Thus we may assume that S = Supp(G/F) is irreducible. Now
let Z C Ox be the reduced sheaf of ideals associated to S. There exists an
integer £ € N with Z¢ - G C F. Then we consider the quotients

G=(F:I)> - D F=(F:I) > (F:I)>--- D F.

Due to [31, Prop. 4, p. I-13], it holds (F;)jmjg = F¢. The successive quo-
tients Fiq1/F; are Og-modules which are free of torsion. By Lemma 4.8 and
descending induction, we see that each F; extends to a coherent subsheaf
F,CEpnCcE =6

The uniqueness follows by property (E, ). Indeed, consider two extensions F
and H of F. Then consider the subsheaf R := (H + F)/H. Since H = H,, 4,
the support Supp(R) is at least of dimension n or empty. So, by property (E,,),
we have F C H and, by symmetry, H C F as well. The assertion concerning
ball figures follows from Proposition 2.5, Proposition 3.3 and Proposition 1.12.
The ones for Hartogs figures follow from Theorem 2.11 and Theorem 3.6. O

5. INVERTIBLE SHEAVES

In the following, let A be an affinoid domain, Y := Sp(A) the associated
affinoid space and V C Y a nonempty open subset of Y. At first, we recall two
well-known facts; cp. [24, Prop. 1.3.4]

Lemma 5.1. The following statements hold.

(a) A function f ==y fi-n" € A(n) has no zeros if and only if fo € A% is
unit and |f; - fo'| < 1 for all i > 1.

(b) A function f =350 _ fi-n' € Aln*') has no zeros if and only if there
exists an m € Z such that f,, € A* is a unit and |f; - f;,}| < 1 for all
i #£m.

Lemma 5.2. Any invertible function h € A(n*t)* can be written as a product

h=mn™-h*-h~, where hT™ € A(n)* and h= € A(n™")* are units.

Lemma 5.3. If an invertible function
e= Y ejnionie Al tng ")
1<0,5<0

has a representation e = fi - fa in AL, nEY)* by units fi € A(EL, na)*
and fo € A{ny, néﬂ)x, then e can be presented in the form e =gy - g5 with
units g; € A<n;1>X for i =1,2. Furthermore, the coefficients e; ; of e satisfy
€ij = €i,0" eaé ~eg,j foralli,j.
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Proof. Due to Lemma 5.2, the unit e = f; - fo can be decomposed into a product
e=mni"-ny - fYTfTTf7T with units £ € A(ny,n5) %

Since the coefficient ey o dominates the other coefficients, we have m = n = 0.
Then we obtain

o= (Y e Ay N Al 0t = A ).

Again by Lemma 5.2, we have that f™+ . f*= = g - g; with g5 € A(n3*). So
it follows

g =1 g3 = e (g2)T € Alur ) N AQT g ) = Al ).
Thus we obtain e = g; - g, . The formula for the coefficients follows by com-
puting the coefficients of e = g7 - g5 . O

Theorem 5.4. Let Y = Sp(A) be an irreducible and reduced affinoid space.
Let L be a line bundle on X :=Y x 0D?. Assume that L|x, is free on X; :=
{z = (y,21,22) € X; |zi| =1} fori=1,2. If there is an open nonempty subset
V CY such that L]y wop2 is trivial, then L is free.

Proof. We may assume that V = Sp(B) is irreducible. Since L|x, is trivial,
L is presented by a unit e € B{nF', ni'). Due to Lemma 5.2, the unit e can
be written in the form

+7

e=nl"-ny-ett et e e

with units e** € A(n},n3)*. Now we transform the basis of I'(X7, £) by the
units 77" - et - e~ T and the basis of I'( X3, £) by the unit % - e*~. Thus we
see that £ can be represented by

e=e "= > emi-meAm )
1<0,5<0
Since L is trivial over V x D2, the formula of Lemma 5.3 can be applied. So
we havee; ;j =e; - 657(1) -eg,j for all 7,7 in the ring B. By the identity principle,
this equation holds in A already. Therefore, e decomposes into a product
e=yg; -9y with g; € A(n;) fori=1,2. O

Corollary 5.5. There are line bundles on OD? which are not extendable onto
D? even as a coherent sheaf.

Proof. Let e € K{n;',n5')* be a unit such that its coefficients do not satisfy
the rule of Lemma, 5.3. Such a unit defines a line bundle on dD?. If £ would
be extendable as a coherent sheaf £ on D?, then its bi-dual £** would be
an extension of £ as well. But in dimension 2, any reflexive coherent sheaf
is locally free. Therefore, £ would be extendable as a line bundle and hence
as the trivial line bundle. Thus the coeflicients e; ; would have to satisfy
the rule of Lemma 5.3. Contradiction! There even exist units e such that
the associated line bundle has only the trivial global section; for example, set
e:=1+> " cny"ny" for some ¢ € K* with |¢| < 1. O
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Remark 5.6. Any line bundle on D? — {0} is free.

Proof. Any line bundle on D? — {0} is associated to an invertible function
e € T(D? — V(nin2), Opz). Now it easily follows from Lemma 5.1 that there
exist integers m,n € N such that e - 77" - n% is an invertible function on D?. [

Remark 5.7. There exist vector bundles of rank 2 on D? — {0} which are not
extendable to D? as a coherent sheaf.

Proof. Let ¢; € K* be constants such that e := .7 ¢; -} - % is holomorphic
onD? — V(- n2). Let F be the vector bundle on D? — {0} given by the matrix
(35)- Now, if F would be extendable to a coherent sheaf on D?, passing to
the reflexive closure which is locally free over a regular ring of dimension 2,
we see that F would be extendable to a vector bundle on D?. So there would
exist sections s; := (a;, b;) € I'(D? — {0}, Ope) for i = 1,2 generating F; i.e.,
a;,b; € T(D? — V(11), Opz) such that the sections a; — e - b; and b; belong
to I'(D? — V(n2), Op2). In particular, the section b; necessarily belongs to
I'(D?, Op2) and the locus V (by, . . ., b,) must be contained in V' (11). Then there
exist functions hy, he in I'(D?, Op2) such that a power 77; has a representation

n{zhl'bl‘FhQ'bQ.
Then we obtain
s=hy-s1+hy-s2 = (a,n]) € T(D* - {0}, F).

This implies a — e -0} € I'(D? — V(n2), Opz). The latter is impossible since
a belongs to I'(D? — V(m),Op2) and the term e - n{ has infinitely many non-
vanishing terms ¢; - n}™" - % with i < 0. O

Remark 5.8. Theorem 5.4 reproves a special case of the already known re-
sult Theorem 3.6: any hypersurface S C (D" x dD?) U (U x D?) of the Hartogs
figure (D" x OD?) U (U x D?) extends to a hypersurface S C D"*2, and the
extension is unique.

Using the result [27, Satz 2] that any line bundle on X x D! x D! is locally
free over X, we obtain the more general result from Theorem 5.4, first shown
in [26].

Corollary 5.9. Let X be an irreducible affinoid space and U C X a nonempty
open subset. Consider the Hartogs figure H := (X x OD?)U (U x D?). Then
any hypersurface S C H extends to a closed hypersurface S C X x D? uniquely.

Proof. We may assume that X is reduced. So X is regular outside a closed
subset A of codimension 1. Due to Proposition 3.3, it suffices to show that S
extends to (X — A) x D?. Note that X — A meets U. Since any regular ring is
factorial, the local rings of (X — A) x D? are factorial, and hence the sheaf of
ideals associated to S is a divisor ideal. Thus we can apply Theorem 5.4, and
hence we see that S extends to a closed analytic subset of (X — A) x D?. O
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6. COHOMOLOGY OF BALL FIGURES

In this section, we will provide some technical tools which are necessary to
treat the extension of coherent sheaves. We will study local cohomology of
coherent sheaves, absolute gap sheaves and the torsion of the cohomology of
ball figures.

Local cohomology. In the following, let X be a rigid space, mostly an affi-
noid space, and let Y C X be a closed analytic subset, and set U := X — Y'; we
denote by j: Y < X its embedding. As in [18], one defines local cohomology
groups Hy (X, G) with support in Y for n € N on the category of coherent
sheaves; i.e., this is the derived functor of 'y (G) := ker(G(X) — G(U)). In
the same way, one introduces local cohomology sheaves H{(G) resp. the direct
images R%j,(G) for ¢ € N. In the complex analytic case, the following result
of Frenkel [1, p. 218] or [32, Lem. 3.2] is essential which can be proved in rigid
geometry by the same arguments.

Proposition 6.1. Let X = Sp(A) be an affinoid space assumed to be con-
nected and U = Sp(B) C X a nonempty open affinoid subdomain. Consider
the Hartogs figure H := (U x D?) U (X x OD?) with d > 1. Then we have that
(a) HY(X xD? Oxypa) = HO(H,Oxypa) is bijective and

(b) the cohomology groups HY(H,Ox ypa) = 0 vanish for all 1 < g < d.
These results hold for locally free Ox ypa-modules as well.

Proof. (a) The assertion follows from Proposition 1.9.
(b) In principle, the assertion is shown by splitting the Laurent expansions.
Indeed, let 71, ...,nq be the coordinates on D?. Let U := {Vj, ..., Vy} with

Vo:=UxD? and V;:={ze€ X xaD% |n;(z)] =1} fori=1,...,d.

Forg=1,...,d—1and ip <--- <igset Vi, _; =V;;N---NV,. For a func-
i, with Laurent expansion f =3 byny for j > 1, set

ej(f) = Z buﬁ;

VEZ

.....

veN
For & = (&,,....1,) € CU(B,0), we have (1 —e1)-...- (1 —eq)(§) = 0. Indeed,
for j ¢ {io,...,iq}, it is obvious for the component & ... ;, and hence for £ if

1<g<d—1. For (i1,...,is) = (1,...,d) and £ € Z471(V, ), we have

d
0=0"1¢ = §1,..d+ Z(—l)j§0,17...,37...,d onVoN---NVy.
j=1
Thus we see (1 —e1) ... (1 —eq)é1,....a = 0. So we obtain the identity

(2) Sigig = (L —e2) ... (L —eq)eréi,,..i,
+(1—e3)...(1—eq)exbiy,..iy + -+ eaio,..i,-
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Now we define the section o,: Z(0, 0) — C971(0, 0) by mapping £ to
04(§) = ¢ = (Cig,... iy, )» Where

Gigyronig—r = (L —€2) ... (1 = €q)e1iio,....ig_s
+ (1 —e3)... (1 —ed)eakaio,.sig_s ++* + €aldjio,enig—s

for every £ € Z9(0,0) and every ¢ =1,...,d — 1.

Since 0 = (99€)jio,....ig = Sio,...riq + EZ:o(—1)“1@71'07...,@,...71',,, we have

q
)
€5&ig,..ig = Z(_l) ejfj,io,...7i}7...,iq-
=0

Then, by using (2), we obtain 9971¢ = ¢ for £ € Z9(0,0) and 1 < ¢ < d — 1.
The additional assertion holds since any finitely generated locally free mod-
ule is a direct summand of a finitely generated free module. O

For a coherent sheaf F, we define the depth or homological codimension
cdh(F) := min{cdh(F,); z € X},

where cdh(M) of a finitely generated module M over a local ring is the maximal
length of an M-sequence; i.e., (a1,...,ap) are elements in the maximal ideal
such that each a; is a nonzero divisor on M/(aq,...,a;—1)M; cp. [31, p. IV-12].
We remark that cdh(M) = cdh(M) for the completion M of M; cp. [31, Prop. 8,
p. IV-16]. Therefore, if X = Sp(A) is an affinoid space and if a coherent Ox-
module F is associated to a finitely generated A-module M, then cdh(F,) =
cdh(M,,) coincide, where M, is the localization of M with respect to a maximal
ideal x of A.

Corollary 6.2. Keep the situation of Proposition 6.1, and assume that the

local rings of X are regular. Let F be a coherent sheaf on X x D. Then the

following canonical maps are

(a) (a.0) HO(X x DY, F) = HO(H, F), bijective for 0 < cdh(F) — dim X,
(a.l) HI(H,F) =0 for 1 < g < cdh(F) —dim X,

(b) (b.0) HY(X x D4, F) = HO(X x oD%, F), bijective for 1 < cdh(F) —dim X,
(b.1) HY(X x OD4, F) =0 for 1 < ¢ < cdh(F) — dim X — 1.

Proof. (a) Since the local rings of X x D are regular, too, we have the following
formula for the homological dimension [31, Prop. 21, p. IV-36]:

dh(F,) = (dim X + d) — cdh(F,) for all z € X x D%
We choose short exact sequences
0= Qi — 0% pui— Qi1 >0

for i =0,...,r with r := (dim X + d) — cdh(F) starting with Qy := F. Then
the sheaf Q, is locally free. Due to Proposition 6.1, we know that the canonical
morphism

HY(H,F) > H™"(H,Q,)=0 foralll<g<d—r=cdh(F)—dimX
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is bijective. The case ¢ = 0 follows by Proposition 1.9 since H'(H, Q1) =
H"(H, Q,) = 0. The latter is true due to Proposition 6.1 since r = dim X —
cdh(F) +d < d.

Part (b) follows from (a) because X x dD? is a Hartogs figure of dimension
dim X + 1. g

Corollary 6.3. Let F be a coherent sheaf on an affinoid space X of pure
dimension n + d.
(a) Let B C X be a ball figure of dimension n. Then
(a.0) the restriction HO(X, F) = HY(B,F) is bijective for 1 < cdh(F) —n,
(a.1) HY(B,F)=0 for 1 <q<cdh(F)—dimX —1.
(b) Let Y C X be a closed analytic subspace with dimY < dim X. Then
(b.0) HY(X,F) > HY(X =Y, F) is bijective if 1 <cdh(F)—dimY,
(b.1) H(X —-Y,F)=0 for 1 <q<cdh(F)—dimY —1.
(c) The cohomology sheaves HYF =0 vanish for 0 < ¢ < cdh(F) —dimY.

Proof. (a) Let B := X . be a ball figure with f = (f1,..., fs). Due to Lem-
ma 1.5, there is a finite map ¢: X — D" with ¢~ (D" x 9DY) C B. Then
the map

Y= (9, £): X — DUt

is finite as well, and we have ¢~"1(B’) C B, where
B’ := (D" x oD% x D*) U (D" x 9D*(g, 1)).

Then we apply Corollary 6.2 (b) to ¥.F and B’, where 9D*(g,1) denotes D*(1)
minus the open disc D% (g). Note that Proposition 6.1 remains true if 0D*(1)
is replaced by 9D*(g, 1).

Assertion (b) follows in a similar way by replacing 0D%(g, 1) by D* — {0} if
f is chosen such that Y = V(f) and |f,| < 1.

Part (c) follows from (b) since H4(X,F) =0 for all ¢ > 1 and there are
no nonzero sections of F with support contained in Y for ¢ = 0 if we have
cdh(F) > dim Y. O

For a coherent Ox-module F, we define
Sm(F) :=={z € X; cdh(F,;) < m}.

If X =Sp(A) and F is associated to an A-module M; i.e., F = M, then we
have

Sm(F) = {z € X; cdh(M,) < m},
where M, is the localization of M with respect to the maximal ideal x C A.
Thus we know that S,,(F) is a closed analytic subset of X since the subset,
where a sequence of elements is an M-sequence, is open. Moreover, we have
that dim S,,,(F) < m. Indeed, we may assume that A = T,, is regular. Then
consider a resolution with finitely generated free A-modules L;,

0—+K—=Lpmo—-—Lo—M—=0.
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Consider now a prime ideal p € Spec(S) with dim A/p =m + 1. For the localiza-
tion of A with respect to p, we have dim A, =n — (m + 1). So the localization
K, is a free Ap-module since A, is a regular ring. Then there exists a maximal
ideal z € X with = € V(p) such that K, is a free A,-module. Then it follows
by [31, Prop. 21, p. IV-35] that

cdh(Mz) >n—(n—(m+1)) =m+1.

In particular,  does not belong to S,,(F). Thus every irreducible component
of S;,(F) has dimension at most m.

Due to the vanishing result Corollary 6.3, all theorems about local coho-
mology in algebraic geometry remain true in rigid geometry; cp. [18, Exps. II
and IIIT].

Proposition 6.4. Let F be a coherent sheaf on an affinoid space X andY C X
a closed analytic subset. Denote by 1: X —Y — X the inclusion map. Then
we have the following:

(a) HLF is coherent for all ¢ with 0 < g < cdh(F|x_y)—dimY;

(b) RY.(F) is coherent for all ¢ with 0 < ¢ < cdh(F|x_y) —dimY — 1.

Proof. At first, we remark that H3.F = 0[Y] £ is always coherent due to Propo-
sition 4.4.

(a) We may assume that X = D". Let us first consider the case where F is
locally free on X — Y. In this case, we consider the canonical map F — F**
from F to its bi-dual F**; this morphism is bijective on X — Y. Then we have
an exact sequence

0= K—FSF*—=C—0.

The sheaves K = H$.F and the cokernel C of o are coherent as well, and their
support is contained in Y. Therefore, we have H{. K = 0 and H{.C = 0 for all
q=>1.

Now we consider ¢ > 1. So we may assume dim X — dimY > 2. The canon-
ical map F** = (. F** is bijective. Thus we obtain H{F = HL F** for all
¢ > 1. So it suffices to show the coherence of Hi, (F**). Now look at an exact
sequence

0—=K— 0 = F =0

This sequence gives rise to an exact sequence
0— F* = 0% — Q1 — 0.

The sheaf Q; is locally free on X — Y. Due to Corollary 6.3, the coherence
of H{ (F**) is equivalent to the coherence of H;I,_lQl for1<g<n-—dimY.
This shows the coherence of H{-F. Next we apply the same process to Q1. So
we obtain the coherence of H%F and so on.

For the general case, we proceed by descending induction on cdh(F|x_y).
The beginning at n = cdh(F|x_y) was done above. For the induction step,
consider an exact sequence

0=-Q90—=L—=F—=0,
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where L is locally free on X. Then c¢dh(Q|x_y) > cdh(F|x—y) + 1. Due to
Corollary 6.3 (c), we have 7—[;171 Q=H{Fforl<g<n-—dimY. By the induc-
tion hypothesis, we obtain the coherence of 7—['{71 Qforl1<g<ecdh(Q|x_y)—
dimY" and hence the coherence of H{ F for 0 < ¢ < cdh(F|x_y) —dimY.

(b) It remains to show the coherence of R%,F. Due to [18, Exp. II,
Cor. 2.11], we have the exact sequences

0= HYF - F = u.F = HyF =0,
0 — RU,F — HE'F — 0.

The coherence of Hi F implies the coherence of 1. F. For ¢ > 1, we have the
identification R91,F = H&T'F, and hence the coherence of R%t,F follows for
¢+ 1<cdh(Flx_y)—dimY. O

Lemma 6.5. Let F be a coherent sheaf on Sp(A) associated to a finitely gen-
erated A-module M. Then we have dim Sy ;(F) <k for r <k <m if and only
if cdh(My) > j for all p € Spec(A) with r +1 < dim(A/p) < m.

Proof. We may assume that A = T,, is the n-dimensional Tate algebra. Then
we consider a resolution with free T),-modules L,

0+ K — Lp_p—j—o—-+—Lo—M—0.

Since T, is regular, we obtain, for the homological dimension of the localization
of K at x,
dh(K,)=n—cdh(M,) —(n—k—j—1).

If p € Spec(A) satisfies r + 1 < dim(T,,/p) = k + 1 < m, then there is a point
z € V(p) — Sk (F). Since K, is free module, K, is free, too, and hence
cdh(M,) =n — k — 1 — dh(M,) > j.

Conversely, if K, is free for a p € Spec(T},) with r +1 < dim(7,,/p) =k +1 <
m, then there exists an € V(p) such that K, is free. So we have cdh(F,) >
k+ j+ 1. Thus we see that dim Si4;(F) < k for all r <k < m. O

Definition 6.6. For a coherent sheaf F on X, we define the m-th absolute
gap sheaf FI™ of F as the sheafification of the presheaf which associates the
direct limit lim_, F(U — S) to an open subdomain U, where the limit runs over
all closed analytic subsets S C X of dimension dim S < m.

Proposition 6.7. Let F = M be a coherent sheaf on an affinoid space X, and
let m € N be an integer. Then we have the following.

(a) dim Supp(Opy,r) < m — 1 if and only if dim S, (F) <m — 1.

(b) If dim S, 41 (F) < m, then FU" is coherent.

(c) F=Flis true if and only if diim Sy o(F) < k holds for all k < m.

(d) If dim Supp(Opm+2)7) < m+ 1, then Flml s coherent.

(e) If F = Fml, then Oppy1)r = 0.

Proof. We may assume that X = D".
(a) Due to Corollary 4.5, the module M has no associated prime ideals
with dimp > m if and only if dim Supp(0p,)7) < m — 1. So the assertion is
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equivalent to asking that cdh(M,) > 1 for all prime ideals of dimension m.
By Lemma 6.5, the assertion follows.

(b) The assertion follows from Corollary 6.3 and Proposition 6.4 applied to
Y :=S,,41(F). Indeed, by Corollary 6.3, FI™l = 1, F, where 1: (X —Y) = X
is the inclusion. By Proposition 6.4, the sheaf 1, F = FI" is coherent.

(c) If F = FI™l then for any prime ideal p C T, with dim(7},/p) < m,
the canonical map I'(Spec(T},), M%) = T'(Spec(T},,) — V(p), M®) is bijective as
well, where M“ is the algebraic sheaf on Spec(7},) associated to M. Due to [18,
Exp. III, Cor. 3.5], the latter is equivalent to cdh(M,) > 2 for all p € Spec(T},)
with dim(7,,/p) < m. Then the “only if” is clear by Lemma 6.5.

For the converse implication, we have that G := FI"™ is coherent due to (b)
since dim Sp41(F) < m. Then we will show by decreasing induction that
the canonical morphism F — G is an isomorphism over X — Spi1(F) for
k=m,...,1. For k =m, we have cdh(F,) —dimY >m +2 —m =2 for
r€X — Sy F and dimY <m. Then we have F(U) = F(U —Y) for any open
subdomain U of X and any closed subvariety Y of U of dimension dimY < m
due to Corollary 6.3 (b). Thus we have that F — G is bijective over X — S, (F).
Now we turn to the induction step. So we assume that F — G is bijective over
X — Si+1(F). Since cdh(F;) > k+1 for X — Si(F) and dim Sp41(F) <k —1,
we have cdh(F,) — dim Si41(F) > 2. Then it follows by Corollary 6.3 (b) that
F — G is bijective over X — Si(F). Because of S1(F) = &, the assertion
follows.

(d) This follows from (a) and (b).

(e) This follows from (a) and (c). O

Extension of sections in coherent sheaves. For the assertion on the
uniqueness in (G,), we need extension properties for morphism between co-
herent sheaves of type G = G™l. A morphism is a section of H := Hom(F,G).
If F=FM and G = g[ml, then it also holds H = H[™. Therefore, it suffices
to study extension properties of coherent sheaves G fulfilling G = Gl".

Proposition 6.8. Let X be an affinoid space of pure dimension n + d with
d>2 and B C X a ball figure of dimension n. If F = F" is a coherent sheaf
on X, then the restriction map I'(X, F) — T'(B, F) is bijective.

Proof. Due to Proposition 6.7 (e), the condition F = F ["] implies that the sup-
port of any nonzero section of F has dimension at least n 4+ 2. So the restriction
map I'(B, F) — I'(B’, F) is injective for any ball figure B’ of dimension n by
Lemma 1.7. Thus it suffices to show the assertion for a special ball figure
B’ C B. Since F = FI"| we have dim S,,41 < n — 1 due to Proposition 6.7 (c).
Then there exists a finite map ¢: X — D"? by Lemma 1.5 such that

B :=¢ '(D"x DY) c B and S,;1(F)N¢ (D" x oD = &
So it remains to show that the restriction map

L+ ¢, F) — DD x oD%, ¢, F)
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is bijective. If n =0, then S;(F) = @, and hence the assertion follows from
Corollary 6.2 (b.0). If n > 1, then it follows from Corollary 6.2 (b.0) that any
section of I'(D" x D%, ¢, F) can be extended to a section on D"~ x gD x D?;
i.e., to a section of T(D"~1 x D! ¢, F). Thus we see that the assertion
follows by induction. O

Moreover, we still need a sharper version of Proposition 6.8 in the following
situation:

X:=D"!'x A(,1) DU =D""! x gD,
Ae,1):={z €D e<|z| <1} forsomee € |K*|
H:= (U xD¥) U (X x aD%).

Proposition 6.9. Keep the situation introduced above. Let F = F—1 pe
a coherent sheaf on X x D?; then the restriction map T'(X x D¢, F) = I'(H, F)
1s bijective.

Proof. Since dim S, (F) < n — 2 due to Proposition 6.7 (c), there exists an
h € T,,—1 with |h| = 1 such that the reduction S,,(F) of S, (F) is contained
in the locus of h. By Corollary 6.2 (a.0), we have that the restriction map
I(X; x D4, F) 5 T'(Hj, F) is bijective. Since (X; x D?) U (X x 9D?) is a ball
figure of dimension (n — 1), the assertion follows from Proposition 6.8. g

Proposition 6.10. Let X = Sp(A) be an affinoid space of dimension n whose
local rings are Cohen—Macaulay. Assume that X is irreducible, and let U C X
be a nonempty open subdomain. Let g € 121[77] be a monic polynomial, and let
F = F"=1 be a coherent sheaf on X x D'. Assume that F is locally free on
(X x DY)5. Then the restriction morphism

(X xDYF) S T(H,F) for H:= (U xD" U (X xDh);

18 bijective.

Proof. Let g € A[n] be a monic lifting of g. Then g gives rise to a finite
morphism ¢: X x D! — X x D! such that ¢! (X x 9D') = (X x D');. Because
of dim S, (F) < n — 2 due to Proposition 6.7 (c), its image S C X under the
projection to X is a closed subset of dimension n — 2 in X. Namely, S, (F)
reduces into V(§), and hence the projection is finite when restricted to Sy, (F).
So there exists a nonzero element a € A such that S, (F) C V(a). Due to
Proposition 6.8, we may assume a = 1. Then F is associated to a locally
free module P. Then there exists a direct summand () such that P ® Q is

a free A[n]-module. Now the assertion follows by the extension property of
holomorphic functions; cp. Lemma 2.3. g

Proposition 6.11. Let X be an affinoid space of pure dimension n + d with

d>2, and let B' C B := Xy, be ball figures of dimension n. If F = Flnl s
a coherent sheaf on X, then the restriction map I'(B,F) = (B, F) is bijective.
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Proof. The restriction map is injective; cp. Lemma 1.7. By Lemma 1.5, there
exists a finite morphism ¢: X — D"*¢ with ¢~1(D" x 9D?) C B’. We may
assume that B’ = ¢~ (D" x OD?%). For any g € Ox(X) with |g| = 1, the
set Bg C Xj is a ball figure of dimension n. By Proposition 6.8, we have
I'(Xjf,,F)=T(By,,F) for any f, in f. So every z € I'(B’, F) has an extension
2! € '(Xf,,F) and hence an extension z, € I'(Xy, ., F). Since the differences
(26 — 2r) vanish on X7 7 , they vanish also on X7, . N Xy . . Note that the
support of (z, — z;) is at least of dimension (n + 2). Thus these sections fit
together to build a section of T'(B, F) extending z. O

Corollary 6.12. Let B’ C B be ball figures of dimension n on an affinoid
space X. If F=FIM and G = G are coherent sheaves on B, then any
morphism resp. isomorphism ' : F|p: — G|p extends to a morphism resp.
isomorphism ¢: F — G over B.

Proof. Put H := Hom(F,G). Then H satisfies H = H["l. Thus the assertion
follows from Proposition 6.11. (]

Corollary 6.13. Keep the situation of Corollary 6.12. Let F = FI™ be a co-
herent sheaf on B, and let G be a coherent sheaf on X. If ¢': Flg = G|p: is
an isomorphism, then Q["] s coherent and the isomorphism 1)’ extends to an
isomorphism 1 F = Q["HB over B.

Proof. Since B’ is a ball figure of dimension n, it follows by Lemma 1.7 that

dim S,,+1(G) <n. Now the assertion follows from Proposition 6.7 (b) and Corol-
lary 6.12. O

Torsion of cohomology groups of ball figures. The study of the torsion
of the cohomology groups will be an important tool to switch from property
(G(m)) for all m > n to property (G,) in Section 8.

Lemma 6.14. Let X be a smooth connected affinoid space of dimension n + d,
and let B C X be a ball figure of dimension n. Let Q be a coherent sheaf
on X such that Q|p is locally free. Put S := Sp+4-1(Q) and a :=1d(5) C
Ox (X) the vanishing ideal of S. Then there exists an integer k € N such that
a¥ - HY(B,Q)=0for1<q<d-—2.

Proof. We may assume that Q = Q** is reflexive. Then we obtain exact se-
quences
0+K—-0% =90 =0 and 0—Q — 0% =R —0,

where R C K* := Hom(K,Ox) is coherent with Supp(KX*/R) C S. So there
exists an integer k € N with a* - (K*/R) = 0. Since R|p = K*|p and K* =
(K*)I", we have the commutative diagram with exact rows

I'(X,0%) — T(X,K*) — T(X,K*/R) — 0

r(B,0%) — I'(B,R) —— HY(B,Q) —— 0
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Due to Corollary 6.3 (a.1), the group H!(B,Ox ) = 0 vanishes since d > 3. Due
to Proposition 6.8, the first two vertical arrows are bijective, and hence the
third vertical map is bijective. So we have

0=d" T'(X,K*/R)=d"-HYB, Q).

The assertion for ¢ = 2,...,d — 2 follows by induction and the canonical iso-
morphism H?1(B,R) = HY(B, Q) since H(B,0%)=0forq=1,...,d—2
by Corollary 6.3. Indeed, we have the exact sequence

HY(B,K*/R) — HY(B,R) — HY(B,K*) — HY(B,K*/R).

For ¢ > 2, the first and the last term are killed by some power a¥, and one can
apply the induction hypothesis to H4(B,K*) for ¢ < d — 3. O

For proving the extension property (G,,) for Hartogs figures of dimension n,
we need a result which is stronger than Lemma 6.14. Let us fix the situation
for the following. Let X be a smooth connected affinoid space, and let U C X
be a nonempty open subdomain. Set B := X x dD¢ and By := U x 0D? for
some d € N with d > 2.

Lemma 6.15. The group HY(B, Oxyopa) can be computed directly as in
Proposition 6.1 by

d
H*™(B, Oxyope) = Ox(X)(ni", .. -,n§1>/EB0x(X)<n1ﬂ, it gt
j=1

Therefore, any & € HY(B, Oxyopa) is uniquely represented by a Laurent
series

E= > e € Ox(X) g ).
v1<0,...,v4<0

If the restriction of such a cohomology class onto By is annihilated by
a nonzero function f; of Ox(U)(n;), then this implies, for any index v(-) =
(Ul,...,l)j,...,yd>,

Fi- &y =Fi- Y avqn! € Ox(U)(n;), where &) =Y ay(n)-
n<0 n<0

Thus we have that each &, ()| xpr is meromorphic on U x D!, Since &, ()| x xop?
is holomorphic, there exists a monic polynomial p; € Ox(X)[n;] satisfying
V(p;j) N (X x OD') = & such that p; - &,(.y extends to a holomorphic function
on X x D!; cp. Lemma 2.3.

Lemma 6.16. If the restriction of a class ¢ € H (B, Oxxpi) onto By
is annihilated by a nonzero function f; € Ox(U)(n;) in H¥Y(By, Oxxp4),
then there exists a monic polynomial p; € Ox(X)[n;] such that pj - £ =0 in
H¥Y(B,Oxypa) and the intersection V(p;) N (X x DY) = & is empty.
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Proof. Keep the notations from above. We have seen that all the functions §,.)
are meromorphic. Since there is a single f; € Ox (U)(n;) such that f; - &, is
meromorphic on X x D! for all indices v/(-), a single polynomial p; € Ox (X)[n;]
will do as well. Namely, p; must be a divisor of f;, and there are only finitely
many divisors. O

Proposition 6.17. Let X be a smooth connected affinoid space of dimen-
sion n, and let U C X be a nonempty open subdomain. Set B := X x D¢
and By := U x 0D with d > 2. Let G = G be a coherent sheaf on X X D4
with cdh(G|g) > n+2. Let a:=1d(S,+1(G)) be the vanishing ideal of Sy+1(G).
Then there exists an integer k € N with the following property.

If the restriction of a cohomology class € € H'(B,G) onto By is annihi-
lated by a nonzero function f; € O(U)(n;), then there even exists a polynomial
p; € O(X)[n;] such that its locus V (pj) does not meet X x dD' and p; anni-
hilates ak¢; d.e., pj - ak& = 0.

Proof. Starting with Qg := G, there are exact sequences
0= Qit1 = 0% pa— Qi —0

fori=0,...,d—2. Since H(B,Ox ypa) =0fori=1,...,d — 2 by Corollary 6.3,
we have an isomorphism H'(B,G) = H2(B,Q4_3). We have a commutative
diagram with exact rows

0 —— H'*(B,Qu-3) —— H'"}(B,Qu-») — H'"'(B,0Y %)

| J |

0 — H2(By, Qa_3) SLLAN HY¥Y By, Qq—2) — Hdil(BU’Oig;?Dd)

Since 6 and &7 are injective, it suffices to show the assertion for H4~1(B, Q4 _»).
Now the module B:= Q45 is reflexive because B = B*+t4-2] and B|p is locally
free. Thus we have exact sequences

0= K= O%ypt = B"—=0 and 0—B— Ok,pt — Q—0,

where Q C K* is a subsheaf of the dual, the sheaf Q| is locally free and
Sn+d—1(Q) C Sp+41(G). By Lemma 6.14, there exists an integer k € N with

a* - H"*(B, Q) = 0.
Furthermore, we have the commutative diagram with exact rows

0 — HY?*(B,Q) —>— HYY(B,B) —— H"(B,0% )

| | |

S
00— Hd_Q(BU, Q) LN Hd_l(BU,B) — Hd_l(BU,Og(XDd)

Then the assertion follows from Lemma 6.16. O
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7. LOCALLY FREE SHEAVES

In Section 5, we have seen that any line bundle on a rectilinear Hartogs
figure H := (U x D?) U X x D? extends to a line bundle on X x D2 In the
case of vector bundles, such an assertion is false; one can only expect that
vector bundles on H extend to coherent sheaves on X x D?. For example, let
F be the second syzygy module of a free resolution of T3/(n1,n2,73). Then
the coherent sheaf associated to F := F on D?® has the properties that F is
locally free on D® — {0} and that the homological codimension cdh(Fp) = 2 at
the origin. Thus we have F = F[U by Proposition 6.7, and hence Flpixope 18
not extendable as a vector bundle on D3,

Coherence theorem. Whereas the extension of line bundles from the Hartogs
figure H to X x D? could be proved by a simple formula, the proof in the case
of vector bundles F of rank rank F > 2 requires more involved techniques. The
substantial part of the proof will be the following result.

Theorem 7.1. Let (D,Op) be an affinoid space of pure dimension n, and
assume that all local rings Op 5 are Cohen—Macaulay. Set

Y = {(21,22) € P x PY; |21] > 1 or |2o| > 1}.

Denote by p: X := D xY — D the canonical projection. Then, for any locally
free sheaf F on X, the direct image p.JF is a coherent Op-module.

The proof of this theorem will fill the whole section. For the following, we
fix the notion for the whole section right now. We define
T affinoid algebra, Cohen—Macaulay of dimension n,
D =Sp(T) associated affinoid space assumed to be connected,
S : =T, — T is a Noether normalization,
Y; i={(21,20) € P! x P*; || > 1} fori=1,2,
X, =DxY; fori=1,2,
n; the coordinate function on the i-th factor P' of P! x P!,
V:i=X;NXy > DxD? with the coordinate functions n;*,7; * on D?,
X;:=DxY; 3 DxD'xP' with the coordinate function 77;1 on D'.
For the definition of Cohen—Macaulay, see [31, p. IV-18]. Over a local noether-
ian ring A, an A-module FE is ACohenfMacaulay if and only if its comple-
tion E is Cohen-Macaulay as A-module; cp. [31, Cor. 2, p. IV-36]. So if
Sp(T”) C Sp(T) is an affinoid subdomain and if 7" is Cohen—Macaulay, then 7"
is Cohen—Macaulay, too. Namely, the completion of 77 at a maximal ideal m’
coincides with the completion of T at m:=m'NT.
Furthermore, we remark that 7' is Cohen—Macaulay if and only if T is

Cohen—Macaulay as a finitely generated S-module by [31, Prop. 22, p. IV-18].
Since S =T, is a regular ring, the finitely generated S-module T is locally free
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if T is a Cohen—Macaulay ring. This follows from [31, Prop. 10, p. IV-18]. De-
note by m: D = Sp(T) — D" := Sp(S) the associated morphism of the affinoid
spaces. Then (7 x id),F is locally free on D™ x Y.

Now we start the proof of Theorem 7.1. Due to the finiteness theorem of
Kiehl [21], we have the following claim.

Claim 1. For every q € N, the T(ni_l)-module HY(X;,F) is finitely generated.

Due to [27, Satz 1], we may assume that F|pxv = O%|pxv is free of rank r.
We fix further notations

G:=T(DxV,F)= @T Lt e,
F; :=1Im(p;: (Xl,]-' —>G ZT ). gi C @,

G(mi,ma) :==G/(ny ™G +n;, ™G) for mi, mg € N,
G(m,00) :=G/(n;"G) and G(oo,m):=G/(n,"G) formeN,
Dimyms: G — G(mi,ma) residue map for mq,me € NU {oo}.
Since F has no torsion, the restriction maps p; and ps are injective.

Claim 2. In the situation defined above, the following holds.

(i) There exists an integer mo € N such that, for all m > mg, the residue
maps ]9007m|p1 and Pm,co|F, are injective.

(ii) The T-module F = Fy N Fy = T(X, F) is finitely generated.

Proof. (i) We show the assertion for F;. We set K, := Fy Nn, "G C Fi. By
Claim 1, we know that Fy D K, D K, 11 are noetherian 7'(n; *)-modules. Let
S — T be a noetherian normalization. Note that S is a domain. Then there
exists an integer mo € N such that the S(n; 1>—ranks rank K, = rank K, for
all m > mg become stationary. Then, for any ¢t € K,,,, there exists an element
a=a(m) € S(n;') with a # 0 such that a -t € K,,. Now G/n; ™G has no
S(ny)-torsion. So we have t € K,,,. Since K,, = {0}, we see that
Doo,mo |1y 18 injective.

(ii) It suffices to show that p., oo(F') is a finitely generated T-module for
m > mg. By Claim 1, there is a generating system gi,...,g! of F; as T<nf1>—
module. Then the image py, oo (F1) is generated by prm.co(91), - - -, Pm.co(gl) as
T(n;Y)/(ny™)-module and hence finitely generated as T-module. Thus we see
that pm oo (F) C Pm,oo(F1) is finitely generated as T-module. O

m<mg

Claim 3. Let m :=myg be as in Claim 2. Then there exists an integer k € N
such that
F ﬂpgol’m(nl_e_kG(oo, m)) Cny“Fy for all £ €N,

Fy ﬁp,_n%oo(nngkG(m, 00)) Cny “Fy  for all £ € N.

Proof. We show the assertion for Fy. Since G(oo,m) is a finitely generated
T(n;')-module, due to the lemma of Artin-Rees [2, Prop. 10.9], there exists
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an integer k € N such that
Poomn(F1) N G (00, m) C 07 poo.m(F1) for all £ € N.
Since poo,m|r is injective, the assertion is clear. O

Claim 4. There exists an integer my € N with my > mq such that, for any
nonzero divisor a; € T(r];1> with a; # 0 for i = 1,2, the residue maps

P1: Fy /a1 Fy — G(oo,m)/a1G(c0, m),
Yo Fy/asFy — G(m, 00)/asG(m, 00)
are injective for all m > m;.

Proof. We put M7 (m) :=G(00,m)/Poo,m (F1) for m > mg with mg as in Claim 2
and let p: My (m) — Mj(mo) be the residue map. There exists an a € S{(n; ')
with a # 0 such that a annihilates all the torsion of Mj(mg). As in Claim 1,
there exists an integer my € N with mq > mg such that

Y: Fi/aFy C (X1, F/aF) = G(oo,m)/aG(c0, m)

is injective for all m > my. Now consider z € Fy with ;1 (z) = a1g for some
g € G(oco,m). Then a;g =0 in M;(m), and hence a1p(g) = 0 in M;(myg). Due
to the choice of a, we have ap(g) = 0; i.e., ag = Poo,m,(h) for some h € F}.
Since 1 is injective, we can write h = ah’ for an h' € F;. Thus we have that
a9 = APoo,my(R') In G(00,mg), and hence g = Poo,m,(h’) as G(oco, mg) has no
S(ny H)-torsion. So we obtain Pog mg () = Poo,me(@1h’). Since the morphism
Doo,me © F1 — G(00, mg) is injective, we see & = a;h’. This shows that t; is
injective for m > my. Analogously for ;. O

Claim 5. There exists an integer ¢ € N with the following property: if hy € Fy
and he € Fo satisfy hy — ha € ] I, 'G, then hy = ha € F is a global section
of F over X.

Proof. Let mg € N be as in Claim 2. For m € N with m > mg, we define the
T-modules

K,, = {hl € Fi; h1 = ho +T]1_m772_mg with hy € Fo, g e G}

Then we claim that K, is a finitely generated T-module.

Since Poo,m|F, is injective, it suffices to show that peo m (K, is finitely gen-
erated. Because of 15 "Poo,m(F2) = 0, the T-module poo m(F2) is a finitely
generated T-module. S0 poo,m(Ky,) is a finitely generated T-module as sub-
module of poo m (F2). Let S < T be a Noether normalization. Then peo m (F2)
is a finitely generated S-module as well. Thus we see that there exists an
integer ¢ > mg such that rank K, = rank K; as S-module for all m > ¢. If
hi € Kg, then for any m > ¢, there exists an a = a(m) € S with a # 0 such
that ahi € K,,. Thus we have

hl = h2 —+ ’I];q’l?;qg/ with h2 S F2, g/ S G,
ahy = hh +n7"ny™g"  with bl € Fy, ¢" € G.
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Since py,00|F, is injective, we obtain hy = aho. Then ¢ is divisible by a; i.e.,
g" = ag. Therefore, hy = hy + 1y "'ny ™g. Since m > q was arbitrary, we have
hi = ho. O

Claim 6. Let k € N be the integer of Claim 3. There exists an integer s € N with
the following property: if h1 € F1 and ho € Fy satisfy the following conditions:
hi—he =091 +n5°g2 €y °G + 13 °G,

then there exists a global section h € F' = Fy N Fy such that
hi—h=n7""h, e n " Ey for some W) € F*,
hg — h=ny T*nl € ng *TFFy  for some bl € F2.

Proof. Let r > max{mg + k, m }, where m; is from Claim 1 resp. Claim 4. We
define

My, = poo,r(F1) + . "G(oo, ), K, =M, N Pos,r(F2),
Mgm = pT,OO(FQ) + nQ_mG(Tv 00), K?n = Mgm ﬁphOO(Fl)v

and then we set

M'i= ] My/M), ., and M? = ] M2/M7 .
m=0 m=0

Now M' is the graded S[n;!]-module with respect to the ideal 7' of the
S(nyY)-module G(00,7)/Poor(F1). So M?' is a noetherian S[n; ']-module;
cp. [2, Prop. 10.22]. The analog assertion is true for M2. By Claim 1, it
follows that the S-modules p, o (F1) and peo r(F2) are finitely generated and
hence noetherian. Thus K}, and K2, are finitely generated S-modules, and
their ranks are decreasing. So they become stationary. Thus there exists an
integer s € N such that, for m > s, the submodules K} /K} ., C M" and
K2 /K2 ., C M? are S-torsion modules. Therefore,

K :=]]K./K C M' fori=1,2

are S-torsion submodules. Since M? are noetherian S[n; !]-modules and S is
a domain, there exists an a € S with a # 0 such that a - K’ C K}, form >s
and 1 =1,2.

If hy € Fy and hy € F5 satisfy the identity
(3) hl - h2 = 771_591 + 772_592 with 91,92 € Ga
then we have p, o (h1) € K2 and peo(h2) € K!. Thus it follows

Proo(h1) € () (0 ™G(r,00) + pr.oo(F2)),,,
meN

Poo,r(ha) € (1) (07 ™ G(00,7) + poor(F2)),,
meN
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for the localizations with respect to the element a. Due to Claim 4, the
S(ny H)-module G(r,00)/proo(Fe) is free of torsion, and the S(n;')-module
G(00, 7') /Poo,r(F1) is free of torsion, too. Thus, due to Krull’s intersection
theorem [2, Thm. 10.17], we obtain

@ hy = hy +n; gy with by € Fy, g] € G,
ha = hy +ny"gy with b} € Fy, g € G.
By equation (3), this yields
hy =y = (ha = ha) + (ha = By) = 0y g1 + (03 "g2 + ny " g3),
hy = hy = (ha — ha) + (h1 — h3) =0y "g2 + (0 g1 + 01 " 91).-
Since h;, bl € F;, it follows, by Claim 3,
) hy — Ry =0y STFRY with b € Fy,
hy — hly =1y *TFhY  with hj € Fy.
Then, by combining (4) and (5), we arrive at the equations
hy = hy = (hy = ha) + (ha = hy) = ;791 — 0 *HEg,
hy = by = (hy = ha) + (ha — ) =13 "g5 — ny **E .
Finally, we have that h} — h) € ", ‘G for t := min{r, s — k}. By Claim 5,
it follows

(6) him G = b € T(X, F).
Equations (5) and (6) yield the assertion. O

Claim 7. For any nonzero divisor a € T, there exists an integer b € N with
the following property: if hy € Fy and ho € Fy satisfy hy — ho = a’g € a® -
I'(X1 N Xg, F) for some € > b, then there exist by € Fi and hy € Fy with
hi—ho = ae_b(hll — hé)

Proof. Let q € N be the integer of Claim 5 and s € N the integer of Claim 6.
Due to the lemma of Artin—Rees [2, Prop. 10.9], there exists an integer j € N
such that, for all £ > j,

(ps,s(Fl) +ps7s(F2)) N GZG(Sa 5) C CLZij (Ps7s(F1) + Ps,s(F2))7
(7) (P o0 (F2)) N a*G(m, 00) C a" 7 (pm oo (F2)),
(poan(Fl)) N GZG(Oovm) C CLZij(p<>o,m(Fl))7

where m = my is the integer of Claim 2. Thus we can write, for suitable h, € F;
and g; € G,

(h1 = ha) = a" =7 (R — hy) + 07 °g1 + 15 *go.
Due to Claim 6, there exists a global section h € T'(x, F) such that

hi—a' ™0 =h+0\ TR for some hY € Fy,

hy — a0 bl =h+ S TRY for some bl € Fy.
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Combining with the assumption, we obtain
hg —h = (hg — hy) + (hy — h) = —a‘g + a" IR0} + ny *TFRY.
With the similar relation for hy — h, this yields
Poom(hy —h) € a*IG(co,m) and P(m,o00)(h2 — h) € a*~IG(m, o0).
Since Poo,m|Fp, and pm ool r, are injective, due to (7), there exist sections b} € F;

for i = 1,2 such that hy — h = a*~2/h} and hy — h = a*~2/ ). With b := 27,
we obtain the assertion

hi —ho = (h1 — h) — (hy — h) = a*~b(h} — hy). O

Claim 8. For any nonzero divisor a € T, there exists an integer k :=k(a) € N
with the following property: if € € HY(X,F) fulfills a® - ¢ = 0, then it already
holds a* - € = 0.

Proof. Consider the Mayer—Vietoris sequence associated to X = X3 U Xo,
0 — I(X,F) — [(X1, F) & T(Xs, F) % T(X1 N Xa, F)
2 HY(X,F) & HY(X,, F) @ H (X3, F) — 0.

Since X; N X is affinoid, the group H'(X; N X5, F) = 0 vanishes. The T'(n; )-
modules H! (X7, F) are noetherian, so the a-torsion vanishes at finite index;
i.e., a® - $(€) =0. Then thereis a g € I'(X; N Xy, F) such that 6(g) = a*¢. Since
a*=*5(g) =0, there exist elements f; € I'(X;, F) fori=1,2 with a* *g= f; — fo.
Therefore, by Claim 6, we can write ‘=g in the form a*~*g = a*~*=2(h; — hy)
for some h; € I'(X;, F) for i = 1,2. Since a is a nonzero divisor, we finally have
a’g = h1 — hy. Finally, we obtain

0=080(h1,hg) = 6(h1 — ha) = abd(g) = a’a®€.
Thus we see that k(a) := k + b satisfies the assertion. g
Finally, we put together all our claims and start the proof of Theorem 7.1.

Proof of Theorem 7.1. After the reduction explained at the beginning, we may
assume that D = Sp(7") is an affinoid space, where T' is Cohen—Macaulay of
pure dimension n and F|pxy is free. Then we have to show the following.
(a) T(D xY,F) is a finitely generated T-module.
(b) For any affinoid subdomain D’ = Sp(T”) of D, the canonical morphism
I'(DxY,F)@rT' —T(D' xY,F)

is bijective.
Assertion (a) follows from Claim 1.

(b) We proceed by induction on n = dim7. In the case n = 0, there is
nothing to show.

Now assume n > 1. Put M :=T(D x Y, F) and M’ :=T(D’ x Y, F). Since
M @7 T" and M" are noetherian T'-modules, it suffices to show that, for any
maximal ideal n of T”, the n-adic completion M’ and M ® T’ are canonically
isomorphic. The ideal n is of the form m7T” for a maximal ideal m of T'. Let
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T, — T be a Noether normalization. Since T is of pure dimension n, any
a € T, with a # 0 gives rise to nonzero divisor of T'. Let now ¢ € m NTy. Since
T/a'T is Cohen-Macaulay as well and dimT'/a*T = n — 1, due to the induction
hypothesis, the canonical morphism

T(DxY,F/a'F)@r T S T(D' xY,F/a'F)

is bijective for all ¢ > 1. For any i € N, we have the exact sequence

0—F < F— FlaiF —0.
For ¢ € N, we define the modules
Gi=T(DxY,F)/a'T(D xY,F) C F;:=T(D xY,F/a'F),
Qi == coker(G; — F;) = P, == {¢ € HY(D x Y, F); a'€ = 0}.
Denote by G}, F/,Q’;, P/ the corresponding modules over D’ x Y. Since T'— T”
is flat, we obtain the exact sequences
0—-G;— F,—Q;—0,
0—- G, — F - Q. —0,
0> G orT - F,0rT — Q;@r T — 0.

We have canonical residue maps G; — G;—1 and F; — F;_1, resp. G}, — G_,
and F] — F]_,. For the third term @Q; — Q;—1 resp. Q; — @Q}_;, the induced

i—1»
map is the multiplication by a. Due to Claim 8, the systems (Q; — @Q;—1) and
(Q; — Qj_,) are zero-systems, and hence (Q; ®7 1" — Q;—1 @7 T") as well.
By applying the projective limit, we receive the a-adic completions M’ of M !
resp. M @1 T’ of M @1 T,

Mer T = hm(G; @7 T = im(F; @ T'),
AI _1: ANERT ’
M = 1im(G}) = lim(EY).
Due to the induction hypothesis, F; @ T" = F! is bijective, so MTEQT\T’ > MY
is bijective. This implies by faithfully flat descent the assertion; cp. the proof
in [21]. O

Remark 7.2. We would like to remark that Claim 8 is obviously true if the
sheaf F extends to a coherent sheaf F = F "l on D x D2. Indeed, F is reflexive.
So there are exact sequences

(8) 0->K—=>L—->F"—=0 and 0>F=F"=>L"-Q0—0

with a free module £ and a submodule Q € K*. Moreover, we have KC* = (K*)["]
since K* can be represented as the kernel of a morphism between two finitely
generated free modules. Hence we have H(D x D? K*) = H°(B,K*) for B =
D x 0D? by Proposition 6.8. So H°(B, K*) is a noetherian T'(n;, n2)-module,
and hence the T(n;, n2)-submodule H°(B, Q) of H°(B,K*) is noetherian as
well. Now look at the long exact cohomology sequence

H°(B,L*) — H°(B,Q) — H(B,F) = H'(B, L").
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We know that H'(B, £*) has no T-torsion since £* is a finitely generated
free T'(n1,n2)-module. Namely, for free T'(n;, n2)-modules, we know from Lem-
ma 6.15 that H*(B,Opyp2) has no T-torsion. Thus the T-torsion of H! (B, F)
is the image of a T'(n;, 72 )-submodule of H°(B, Q) and hence finitely generated.
Thus the T-torsion of H!(B, F) vanishes at finite index.

In the case D x Y, one proceeds similarly. At first, one obtains the analog
of the sequences (8) over D x P! x P! after twisting F by a suitable very ample
invertible sheaf. One computes as in Lemma 6.15 that H'(D x Y, Q) has no
T-torsion. As above, one obtains the result for the twisted sheaf F(n) and
hence for F.

Extension of locally free sheaves. Theorem 7.1 provides the essential tool
to show the extension for locally free sheaves.

Proposition 7.3. Keep the situation of Theorem 7.1. Let U C D be an
open subdomain of D which meets each irreducible component of D. Set
P:=P!' xP'. Set H:=(DxY)U(U xP). If F=F" for n=dimD is
a coherent sheaf on H which is locally free on D XY, then F is the restriction
of a coherent sheaf F on D x P with F = £[”],

Proof. The Segre embedding P :=P! x P! < P3 shows that P is projective. Let
L denote a relatively ample sheaf on D x P — D. Due to the GAGA Theorem,
there exists an integer m € N such that F ® £®™ is generated by global sections
over U x P. Since p,(F ® £LZ™) is coherent by Theorem 7.1, there exist finitely
many sections hi,...,h, € (D x Y, F @ L®™) generating ['(U x Y, F @ L®™).
The restriction map I'(U x P, F @ LZ™) —» T'(U x Y, F ® LZ™) is bijective due
to Proposition 6.8. So the extensions of hy, ..., h, generate F @ LZ"|yxp. So
we obtain a morphism

¢: Ohyplag = F@ LZ™  with coker(¢luxp) = .

The kernel K := ker(¢) C OF,p is a coherent sheaf on H, and it obviously
satisfies K& = K",

Due to Theorem 4.6, the subsheaf I extends to a subsheaf I on D x P satis-
fying K = K", Then put Q:=( hhyp/K) ® LP7™. Now consider the induced
morphism ¢: Q — F. Due to Proposition 6.7, the sheaf g["] is coherent. Since
F=F [”], we also have that Q := Q| is a coherent subsheaf of F. So we may
assume Q = Q™. Now the quotient F/Q satisfies Supp(F/Q|uxp)) = @ due
to our construction. Then the support S := Supp(F/Q|uxp)) is either empty
or has pure dimension n + 1. Due to Theorem 3.6, the closed analytic subset S
extends to a hypersurface S C (D x P). Since SN (U x P) = &, its projection
is a closed analytic subset p(S) C D unequal to D. Thus there exists a nonzero
divisor a € Op (D) such that a - F/Q = 0. So we can regard F 2 a-F C Q as
a subsheaf of Q = Q|g. Then the assertion follows by the subsheaf extension;
cp. Theorem 4.6. (]

By the following lemma, we will reduce the extension property for rectilinear
Hartogs figure to the special case just treated.
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Lemma 7.4. Let A be an artinian ring with mazimal ideal m, and let n C A be
an m-primary ideal. If a locally free sheaf on Spec(A/m) x P! is trivial, then
F is already trivial.

Proof. Since F/mF is trivial, the restriction of the sheaves F/nF onto affine
parts of Spec(A) x P! is trivial. Thus F is given by an invertible matrix I + M,
where M is a matrix with entries in mA[n~!,n]. Since there is an integer ¢ with
mf C n, we can split the matrix in the form I+ M = (I + M*) - (I + M),
where M has entries in mA[y] and M~ has entries in mA[n~']. O

Lemma 7.5. Let D := Sp(A) be an affinoid space, and let F be a locally
free sheaf on D x P'. Let x € D be a point. Assume that Op , is Cohen—
Macaulay and that F(z) := F|,xpr is trivial on the fiber {x} x PL. Then there

exists a function h € A with h(x) # 0 such that F|p_vn))xpr is trivial over
D —-V(h).

Proof. Let m C A be the maximal ideal associated to . For any m-primary
ideal n C A, the sheaf 7 ®4 (A/n) is trivial as well by Lemma 7.4. Since
Ay, is Cohen—Macaulay, after a localization of A by an element a € A with
a(z) # 0, there exists a sequence t1,...,tq € A of successive nonzero divisors
which generates an m-primary ideal n C A. After localization by a, we may
assume ¢ = 1. Denote by p: D x P! — D the canonical projection. Now
we want to show that I'(D x P!, F/nF) is generated by global sections of
I'(D x P, F). We show this by induction on the length d of the sequence
(t1,...,tq). For d =1, consider the exact sequence

0— F % F— F/tuF — 0.

Since F/t1F = F/nF is trivial, we have that H!(D x P!, F/t;F) = 0 vanishes
and I'(D x Pt, F/t1 F)) generates each stalk in the fiber p~*(x). Then consider
the associated long exact cohomology sequence. By the lemma of Nakayama,
we have (R'p,F), = 0, and hence the sections of p.(F/t1F) are induced by
sections f1,..., fr of (D x P!, F), where r is the rank of 7. Now the support
of F/(fi,..., fr) is a closed analytic subset of D x P! and does not meet
{z} x PL. Due to the proper mapping theorem [21], the image of this support
is a closed analytic subset which does not contain x. Then there is an element
h € A with h(z) # 0 such that the support is contained in the locus V(h)
of h. For the induction step, one argues in a similar way. Indeed, due to the
induction hypothesis, we have a basis of F/t1F. This can be lifted due to the
same argument as above. 0

Lemma 7.6. Let D := Sp(A) be an affinoid space, and let F be a locally free
sheaf on D x OD?. Then, after a finite field extension, there exists a finite
rational covering {V1,...,Vs} such that each Fly, «xop2 is the restriction of
locally free sheaf F, on V, XY, where Y is as in Theorem 7.1.

Proof. Due to [27, Satz 2], we may assume that F|pxpixap: is free. Then, by
trivial extension, we can enlarge the domain of definition of F to the domain
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D x D! x A(1,c), where A(1,c) is the annulus with radii 1 and ¢ € |K*| with
1 <ec. Again by [27, Satz 2], we may assume that F|pyapixpi(e) is trivial
as well.

Let f:= (f1,..., fr) be a basis of F|pxaptxpi(c), and let e := (e1,...,e.)
be a basis of F|pyxpixa(i,e). Now let w := (v,22) € D x A(1,¢). Then there
is an invertible matrix M in GL(r, k(w)(n1,n; ') such that M - f = e for the
restriction on {w} x ID!. We may assume that w is a rational point; otherwise,
we perform a base field extension. Then we can regard M as an invertible
matrix on D x D! x D!(c), and hence the basis f can be transformed by M.
If M = I is the unit matrix, then we extend F by the free sheaf with the basis
fon DxD! x D!(c), where D := {z; € P!, |z;] > 1}. Due to Lemma 7.5,
for this new locally free sheaf, there exists a function

h=>Y ams €T(D x A(1,¢),0) with h(w) # 0
VEZL

such that 7 = O"|(pxp1 x A(1,¢))— v (n) is free. Furthermore, we may assume that
the coefficients (a,; v € Z) have no common zeros. Otherwise, we pick a new
point in the zero set of the coefficients and start the same process; by reasons
of dimension, we will find a finite Zariski-open covering 4l := {Uy,..., Uy} of D
and for each U; a function h; as above such that its coefficients have no com-
mon zeros on U;. Due to [23, Folgerung 1.3], we can shrink the Zariski-open
covering i by an affinoid covering. Thus we see that the asserted reduction
is justified. Now, due to Lemma 3.19, there exists a finite rational covering
{V1,...,Vs} and numbers ¢, with 1 < e, < ¢ such that hly, xop1(,) is invert-
ible since Fly, xpix A(e, e,) is free. Then, by trivial extension, we enlarge the
domain of definition of F to V, x Y. [l

Proposition 7.7. Let D be a connected affinoid space of dimension n, and let
U C D be a nonempty open subdomain. Assume that D is smooth.

Consider the Hartogs figure H := (U x D?) U (D x 0D?), and let F be a co-
herent sheaf on H. If F satisfies that F = F" and cdh(F|pyop2) =n + 2,
then F is the restriction of a coherent sheaf F on D x D? with F = £["].

Proof. Since D is smooth, its local rings Op , are regular. Then F|pygp2 is
a locally free sheaf; cp. [31, Cor. 2, p. IV-36]. Let K’ D K be the finite field
extension of Lemma 7.6. Then D' := D ® K’ is Cohen—Macaulay, and there
exists a finite affinoid covering {V1,...,V5} of D’ such that F' := F|p:xap2 is
the restriction of a coherent sheaf F. on V, x Y. Then it follows by Proposi-
tion 7.3 that F extends to a coherent sheaf F/ on V,, x P such that F/ = £f7[n].
Due to Proposition 6.8, these sheaves fit together to build a coherent sheaf F’
on D' x D2.

Since I'(D x 0D?, F) @ K' =T(D’ x 0D?, F') and I'(D’ x oD% F') gener-
ates every stalk of F'|p/xp2, the same is true for F. Thus we have a surjective
morphism ¢: O%|g — F. The kernel K := ker(¢) satisfies K = Kinjor, , and
hence it extends to a coherent subsheaf K of O% due to Theorem 4.6. Thus
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the quotient F := O% /K is a coherent sheaf on D x D? with F|g = F. Due
to Proposition 6.7, the sheaf F (] is coherent and extends F. O

Remark 7.8. In the case of a ball figure, e.g. D x D3, the analog assertion
of Proposition 7.7 is much easier to prove. Indeed, at first, one shows that the
locally free sheaf F can be extended to a locally free sheaf ' on the subset
D x (D?(c) — D), where ¢ > 1 and D3 is the open polydisc. Then the re-
striction map H*(D x (D3(c) —D3),F’') = HY(D x (D*(1) — D3), F') is bijec-
tive by Proposition 6.8 and properly continuous as an Opy s () (D X D3(c))-
module. Thus H*(D x (D3(c) — DY), F’) is a noetherian O py 3 () (D x D3(c))-
module; cp. [21, Kor. 2.5]. Then it is clear that the a-torsion for every nonzero
divisor is of finite index. This replaces the hard part, Claim 8, in the proof of
Theorem 7.1. Then one can continue as above.

8. COHERENT SHEAVES
We have all the tools at our disposal. So it remains to put things together.
Extension properties of ball figures. Let us start with the ball figures.

Lemma 8.1. Let X be an affinoid space of pure dimension n + d with d > 3.
Let B C X be a ball figure of dimension n; then the couple (B, X) has property
(G(n+1)).

Proof. Let G = G+ be a coherent sheaf on B with Opm4116 =0, Opm2i6 =G
for some m > n + 1. Then F := Gl is coherent by Proposition 6.7 (a) and (d),
and the subsheaf G C F fulfills the condition G}, 417 = G. Because (B, X) has
property (U,+1) by Theorem 4.6, it suffices to show the assertion for F. In
particular, we have dim S,,,+1(F) < m — 1 by Proposition 6.7 (c).

The support S := Supp(F) is of pure dimension m + 2. By Proposition 3.3,
the closed analytic set S extends to a pure dimensional closed analytic subset
S of X. Due to Lemma, 1.5, there exists a morphism v: X — D™*+2 such that
Pls: S — D™*? is finite and such that it holds B’ := ¢~ 1(D™~! x oD?%) C B
and B’ N S;,41(F) = @. Then 1, (F|p/) is coherent on D™~ x 9D? and locally
free because of B’ N S,,41(F) = @. Then we know by Proposition 7.7 that
1. (F|pr) extends to a coherent sheaf on D™ ~! x D3. This implies that I'(B’, F)
generates each fiber F, for z € B’. Since (SN B’,S) is a ball figure of dimension
m — 1> n, the extension of F|p: follows by Theorem 4.6. The final step follows
from Lemma 8.2 below. g

Lemma 8.2. Let B C X be a ball figure as in Lemma 8.1, and let F = F
be a coherent sheaf on B. If there exists a ball figure B’ C B of dimension n
in X such that T'(B', F) generates any stalk F, for x € B’, then there exists
a coherent sheaf F = F™ on X and an isomorphism F|p = F.

Proof. By the assumptions, there is a surjective morphism ¢: O% |g — F|p.
Because of 0,117 = 0, the kernel ker(¢) satisfies the property K = K[n+1]0§('
By Theorem 4.6, the subsheaf K extends to a coherent subsheaf K with the
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property K =Ky, ot - Then G := O% /K is a coherent sheaf which coincides
with F|p on B’. Then G|p and F coincide on B as well; cp. Corollary 6.13. O

Lemma 8.3. Let D be a reqular connected affinoid space of dimension n, and
let U C D be a nonempty open subset. Set X := D x D¢ with d > 3. Consider
the rectilinear Hartogs figure

H:=TUB withT := (U xD?) and B := D x oD,
Let F be a coherent sheaf on H satisfying F = FI"l. Set G = Ofm42)7 for some
m>n and R := F/G. Assume that cdh(G|g) > n + 2 and R|p = R 5.
If the coherent sheaves G = gl resp. H = R extend to coherent sheaves
G = Q[”] resp. H = H™ on D x D?, then there exists a coherent sheaf F = Flnl
on D x D? such that F|lg = F over H.

Proof. Because of Opnq2r = 0, the sheaf R is coherent due to Proposi-
tion 6.7 (d). Now we set By := BNT. Consider the commutative diagram
with exact rows

I'(B,G) — I'(B,F) —— I'(B,R) =—— I'(B,H) —>— H'(B,g)
I'(Br,G) — (B, F) — I(Bp,R) =—— D(Br, 1) > H'(Br,g)

The identifications are due to the assumption R|p = H|p. Since T is affinoid
and hence the I-functor is exact, the exact sequence F — H — H/R — 0 gives
rise to the exact sequence

(T, F) — T(T,H) — T(T,1/R) — 0

PR

I'(Br,F) — (B, R) —— H'(Br.G)

The first two vertical down-arrows are isomorphism due to Proposition 6.8
because of H = H™ and |z = R|5. Put A :=Supp(H/R)NT. Then we have
AN Br = @ because of R|p = H|p. Thus there even exist nonzero elements
f; € Op(U)(n;) with f; -Im(é") =0 for j =1,...,d. Due to Proposition 6.17,
there exist nonzero polynomials p; € Op(D)[n;] for j =1,...,d such that
akp; Im(8) = 0 and V(p;) N (D x OD') = &, where a := 1d(S,+1(G)) is the
vanishing ideal of S,,+1(G). Note S,,+1(G) N B =@. So, for « € B, the following
sequences are exact:

0— I(B,6)®0, — I(B,F)® 0y — [(B,R)® 0y — 0
J{a LB b
0 Gx Fa Rz 0

Since G extends to D x D?, the canonical morphism « is bijective. Since
R|s = H| B, the morphism + is bijective. Then § has to be bijective. Now the
assertion follows from Lemma 8.2. O
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Theorem 8.4. Every ball figure B C X of dimension n has property (Gpi1).

Proof. The assertion on the uniqueness follows by Corollary 6.13.

Now consider a coherent sheaf F = FI"t1l Let m < dim X be the greatest
integer with Opy,1)7 = 0. Obviously, we have n + 1 < m since, for n +1 > m,
we have F = 0. Otherwise, set G := O 4217 and R := F/G. By Lemma 8.1,
we know that G = "1 extends to a coherent sheaf on X. Since Omi2r =0,
the sheaf RI"™U is coherent by Proposition 6.7 (d) and satisfies the induction
hypothesis. So RI"*! extends to a coherent sheaf on X. Put S :=S,,,2(R) and
T :=S,42(G). Then we have dimS <n + 1 and dim7" < n; cp. Proposition 6.7.
Due to Lemma 1.5, there exists a finite morphism 1: X — D¢ with

D" x DY) =:B'c B and TNB =g,
PO x DN S = 2.

By Lemma 8.3, we obtain that 1, (F|p:) extends to a coherent sheaf on D"+
Then I'(B’, F) generates each stalk F, for x € B’. The assertion follows by
Lemma 8.2. g

Theorem 8.5. Let X be a rigid space, and let S C X be a closed analytic
subset of X of dimension n. Then the couple (X — S, X) has all the properties

(En+1): (Mn+1)7 (An+1)7 (Un+1): (Gn+1)~

Proof. We may assume that X is affinoid. Then B := Xg C X is a ball figure
of dimension n. Due to property (E, 1), established in Theorem 4.6, and due
to Lemma 8.2, it suffices to know that (B, X) has all the asserted properties.
So the assertion follows from Theorem 4.6 and Theorem 8.4. g

Extension properties of Hartogs figures. The first step towards the ex-
tension property (G(n)) for the n-dimensional Hartogs figure is the following
lemma which settles the case of the special Hartogs figure discussed in Proposi-
tion 1.14. In contrast to Proposition 1.14, for technical reasons, we will denote
the coordinate functions of D"+ by (1,..., (M1, .-, Na; i-€., we switch the
factors of D"t¢ = D" x D¢, The tube of the Hartogs figure is always given by
the first coordinate functions (i, ..., (..

Lemma 8.6. Denote by (C1,...,C,m1,12) the coordinate functions on D2,
Consider the following figure of Hartogs type of dimension n in D"12:

H=TUB withT:= (D} xD?); and B := D",
where DY := {x € D"; |(;(x)| <1 fori=1,...,n}. Assume that the following
18 satisfied.
(o) N c A2 is of dimension n.
(i) NNV(C,...,C) consists of finitely many points {0, G, . .., }.
(ii) Every irreducible component of N contains the origin {0}.
(iii) h € k[n] is a polynomial with h(0) # 0 and h(§;) =0 fori=1,...,7.
Let F be a coherent sheaf on H with F = F™ | and assume that F is locally free
on ID)’]%”, Then F extends to coherent sheaf F on D"2 satisfying F = Fnl,
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Proof. Since dim N = n < n + 1, there exists a polynomial f € K¢, 7] with
|f|=1and N C V(f). At first, we perform a transformation of the coordinates
Ci = ¢ —nb and 1y — 7 such that f is monic (up to a unit) i in 7. Moreover
we can arrange the transformation in such a way that V(Cl 772 e Cn )
intersects N in finitely many points. Note that the origin always belongs to
this intersection. Then f gives rise to a finite map ¢: D"*2 — D"*+2 such that
G(N) c A1 x (A' — {0}). Then we have ¢(N) = V (g, 7j2), where § € k[¢,m].

After a linear transformation g — 72 and ny — 12 + 77*, we may assume that
conditions (o) to (iii) are fulfilled for the target situation. So we may assume
that N C V (712) since it suffices to show the extension of ¢, F. Namely, then F
is generated by global sections, and the extension follows from Theorem 4.6.
Moreover, we may have that N C V/(§,7z), where § € k[¢, 7] and all irreducible
factors of ¢ have a zero at the origin of AZH. Furthermore, we remind that
¢ F is locally free on D"t x 9D! due to [31, Cor. 2, p. IV-36].

Then we can extend F to a coherent sheaf F on Dg“ x P! by trivial exten-
sion since F is associated to a free module over D" ™! x 9D! due to [27, Satz 2].
Due to GAGA, we know that ]-"|Dn+le1 is algebraic over T,,(n1, 1/g)[n2)-
Due to the famous theorem of Quﬂlen [28], we have that F Ipr+ixal is ex-
tended from a projective T, (n1,1/g)-module P of finite type. Now we apply
Lemma 8.7 below. So there exists a function a € T;, with |a| = 1 such that P
is free over {z € D"; |a(x)| > ¢} for a suitable ¢ € |[K*| with ¢ < 1.

As in the proof of Lemma 2.10, there is an étale extension (D, Z) — (Ak,O)
such that g decomposes into factors § = g - g2 over D x A}C such that V(§1) — D
is finite, V(§1) contains (#,0) and V(j2) does not contain (Z,0); cp. [12,
Prop. 2.3/8]. After shrinking D, we may assume that V(§;) and V(jz) are
disjoint. Let D — D" be a lifting of D — Ay

Let P be the sheaf associated to P. Since P is free over the subdomain
D, :={z € D; |a(z)| > ¢}, we can extend P and hence F across V(g2) by the
free sheaf to a locally free sheaf F; on

Hi :=((Dq,c N D) x D*) U ((Dg,e x D?)g, U (Dg,c x D' x oDY)).

Note that (Dg.NDy) # @, where Dy is the formal ﬁber of D at . Now
we obtain the extension of ]-"1 on D x D? with F; = by Proposition 7.7.
Indeed, we perform the finite projection ¢: H; — Hs by g1 onto the Hartogs
figure Hy as in Proposition 7.7 satisfying ¢~1(Hs) C H;. This shows that
Fo =1, F1 is generated by global sections. So the extension of F; to Dy . x D2
follows by the extension property for coherent subsheaves, Theorem 4.6. By
the extension property for ball figures, Theorem 8.4, we see that ]-"1 extends
to a coherent sheaf F, on D x D? satisfying the property F; = .7-'1 .

It remains to descend the coherent sheaf F; to D"*2. Let X C D"*! be
the image of X' := (D x D')g,. This is a formal open subset of D"*!. Due to
the conditions on the irreducible components of g, we have that X contains
a dense formally open part of V(§). Set Y := X x D' and Y’ := X’ x D!. Then
we will consider a descent datum with respect to p: Y/ — Y on the coherent
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sheaf G’ := F|y+. Denote by p;: Y : =Y’ xy Y’ — Y” the i-th projection for
i = 1,2. We have a canonical descent datum

v: 101G v = P39y

which is also defined on D, x D?. Then, due to Proposition 6.10, the map ¢
extends to a descent datum

0 piG [y = p3G'lyr.

By [11, Thm. 3.1], this descent is effective. So there exists a coherent sheaf F
on Y which extends Fl|y. Since Y contains V(§1) except for a lower-dimen-
sional closed subset, Y contains N except for a lower-dimensional closed subset.
Finally, the assertion follows from Theorem 8.4. g

Lemma 8.7. Let A:=K{(1,...,¢,) and B:= A{n)(1/g), where g € A(n) with
|gl =1. Let P be a finitely generated projective B-module of rank r. Then there
exist o free submodule F C P of rank r and an element a € A with |a] =1 such
that the support of the quotient P/F is contained in {x € Sp(A); |a(z)| < ¢}
for some ¢ € |K*| with ¢ < 1.

Proof. We remark that B is factorial in any dimension of A as it follows from
[24, Lem. 6.2.3].

In the case of dim A = 1, we can prove more; namely, the assertion is true
for ¢ = 0. So let us explain this case first. We successively choose elements
t1,...,t, € P such that F := Bty + - -- + Bt, satisfies our assertion. We start
with a nonzero element s; € P. Since B is factorial, we can write s; = b1t1 such
that the vanishing locus V(¢1) is of codimension 2. Since B is 2-dimensional,
V' (t1) consists of finitely many points. Thus there exists a nonzero a; € A such
that V(t1) C V(a1). Now we look at Py := P/Bt; which is projective after
localizing by a;. Since B,, is factorial, by the same argument as above, there
exists to € P such that the locus of ¢ in P; is of codimension 2. Then we
choose a nonzero element as € A such that P, := P/(Bt; + Bts) localized by
ajag is projective. We continue in this way, and hence we arrive at sequence
t1,...,tr€ Panday-...-a, € Asuch that F := Bt + --- + Bt, satisfies our
assertion with a :=aq, ..., a,.

Now we consider the general case. At first, we proceed in the same way as
above, but instead of the affine localization, we use the affinoid localization.
Since the reduction of the projection of V'(¢1) is contained in an algebraic subset
of codimension 1, there is an a; € A with |a1]| = 1 such that V(¢;) C {z € X
|a1(z)| < 1}. Then we look at the subset {y € Sp(B); |ai(y)| = 1} instead of
the affine localization B,,. So, by a procedure similar to above, we end up with
elements t},. . .,t. € T(Sp(B)a, P), where P is the coherent sheaf associated to
P on Sp(B) such that F’ := Bat| + - - - + Bat) = T'(Sp(B)a, P) is free. Now we
can approximate t},...,t. by elements t1,...,¢, in P,. After multiplying these
sections by a certain power of a, we may assume that ¢1,...,t. € P belong
to P and generate P over Sp(Bj). The function a takes its maximum on the
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support of P/F with F := Bty + - - - + Bt, which is a certain number ¢ € |K*|
with ¢ < 1. Thus the assertion is clear. O

Lemma 8.8. Let X = Sp(A) be an affinoid space of pure dimension (n + d)
with d > 2, and let H =T U B C X be a Hartogs figure of dimension n as in
Definition 1.10. Then (H,X) has property (G(n)).

Proof. Let G = GI™ be a coherent sheaf on H with Opmt116 =0, Opmy2ig = G
for some m > n. Then F := GI"™ is coherent by Proposition 6.7 (d), and the
subsheaf G C F fulfills the condition G = G. If m > n + 1, then the asser-
tion for F is covered by Lemma 8.1 since the Hartogs figure contains a ball
figure of dimension n. Because (H, X) has property (U,,) by Theorem 4.6, the
assertion for G is clear. The extension of an isomorphism ¢: G|p — G|p to an
isomorphism over the tube T follows from Proposition 6.8 since BN T is a ball
figure of dimension n in T' by Lemma 1.11.

So we assume that m = n and O, 4117 = 0 and Op,42)7 = F. In particular,
we have dim S,,1(F) <n — 1. The support S := Supp(F) is of pure dimension
n+ 2. By Theorem 3.6, the closed analytic set S extends to a pure dimensional
closed analytic subset S of X.

We want to project the subset S to a Hartogs figure in D"*2 such that we
can apply our result Lemma 8.6. For doing so, we proceed as in the proof of
Theorem 3.6. At first, assume that we have to consider only one tube. Then
we may assume that this tube is maximal. Namely, by using Lemma 1.11, we
can directly reduce the assertion to the special Hartogs figure (D" () x D?) U
(D™ x 9D?) in D"*2, and we are done by Lemma 8.6 and Theorem 4.6 as usual.
After that, due to Proposition 1.14, we have a finite morphism ¢: X — Dn+4
and a polynomial € k[n;] with A(0) # 0 satisfying the following properties.
(0) Set H' :=TUB C D" with T := (D"(¢) x D¥); and B := D%er.

(i) H' c Dt is a Hartogs figure of dimension n in D?*¢ with ¢~ (H') C H.
(ii) The induced map ¢: ¢~ (H') — H' is finite.

At this point, it is eventually necessary to extend the base field. Since we
only need to know that F is generated by global sections, the extension of
the base field poses no problem. Furthermore, it suffices to show that ¢.F
is generated by global sections. Namely, then the assertion follows from the
extension property for subsheaves, Theorem 4.6. Now we proceed as in the
proof of Lemma 3.5 where we enlarge the radii ¢ = (e1,...,€,) step by step
to e, =1 for 1 <v <n. In each step, we obtain the extension of ¢.F by
applying Lemma 8.6. Namely, as exercised in Lemma 3.5, at each step, there
is a finite covering map of S to a Hartogs figure of dimension n in a space of
dimension n + 2.

For the general case, we have to reduce the number of tubes. For that,
one can choose a function a € A with |a| = 1 such that @ vanishes on all the
irreducible components which do not meet the given complete intersection
defining one fixed tube. Then we look at X;. So we arrive at a situation
where we can apply the procedure of above. Doing so for all tubes, we obtain
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the extension on a ball figure of dimension n — 1. Finally, we succeed by
Theorem 8.5. U

The proof of the extension property (G,) for Hartogs figures follows in
a similar way as in the case of ball figures, Theorem 8.4. As preparation,
we need an analog of Lemma 8.3 adjusted to the special Hartogs figure we
mentioned in Lemma 8.6.

Lemma 8.9. As in Lemma 8.6, consider the following figure of Hartogs type
of dimension n in D**e:

; . n d . n+d
H=TuUB withT:= (D} xD; andB.:DN+,

where h € k[n] is a monic polynomial. Let h € K[n] be a monic lifting of h.

Let F be a coherent sheaf on H satisfying F = F". Set G = Ofm+2)F7 for
somem >n and R = F/G. Assume that cdh(G|g) >n +2 and R|p = RM|p.
If the coherent sheaves G = G resp. H = RI™ extend as coherent sheaves
g= Q["] resp. H = H on D"t then there exists a coherent sheaf F = Fli
on D"+ such that F|g = F over H.

Proof. Due to Theorem 8.4, we may assume m =n. Set By := BNT. Consider
the following commutative diagram with exact rows:

I'(B,G) — I'(B,F) — I'(B,R) —— I'(B,H) —— H'(B,G)
I(Br,g) — T(Br, F) — T(Br,R) = T'(Br, ") -+ H'(Br,Q)

The identifications are due to the assumption R|g = H|pg. Since T is affinoid,
the exact sequence F — H — H/R — 0 gives rise to the exact sequence

I(T,F) — T(T,H) — T(T,H/R) —— 0

PR

F(BTv‘F) . F(BTaR) L Hl(BT7g)

The vertical down-arrows are isomorphisms due to Proposition 6.10 because of
H=H" and H|p =R|p. Set S :=Supp(H/R)NT. Then we have SN By = &
because of R|p = H|p. So there exist nonzero elements f; € Oy (U)(n;) with
fi-Im(¢") = 0 and V(f;) N (U x dD') = @ for j =1,...,d.

Now we apply Lemma 8.10 from below. So there is a formal étale neigh-
borhood (Y,§) — (D", 0) satisfying all the properties mentioned there. Due
to Proposition 6.17, there exist nonzero polynomials p; € Oy (Y)[n;] for j =
1,...,d such that a*p; Im(§) = 0 and V(p;) N (Y x OD') = @, where a :=
Id(Sp+1(G)) is the vanishing ideal of S,,11(G). Note Sp+1(G) N B = @. So, for
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x € B, the following sequences are exact:

0—T(B,G)®0, — T(B,F)® 0y — T(B,R)® Oy — 0

J» Js b

0 Gu Fa Ra 0

Since G extends to Yx x D? the canonical morphism « is bijective. Since
R|s = H|p, the morphism < is bijective. Then / has to be bijective. Thus
F is generated by global sections over (Yx x D), and hence F extends to
a coherent sheaf Fy on (Yx x D) due to the extension property for coherent
subsheaves, Theorem 4.6.

Since Yx — D" is quasi-compact and faithfully flat onto a formally dense
open subset D? with a(0) # 0 of D™, by a descent argument, it follows that F
extends to (DZ x D™). Indeed, the canonical descent datum on F extends to
a descent datum on Fy as seen by an argument similar to the one applied in
the proof of Lemma 8.6. This descent is effective due to [11, Thm. 3 1] So
we obtain an extension of F to the (n — 1)-dimensional ball figure ]D v @) in
D"+4, Finally, the assertion follows from Theorem 8.4.

Lemma 8.10. Keep the situation of Lemma 8.9. Let G = Q["] be a coherent
sheaf on D"+ with cdh(G|g) > n + 2. Let a:=1d(S,+1(G)) be the vanishing
ideal of Sp41(G). Then there exist a formal étale neighborhood (Y,4) — (D™, 0)
and a constant k € N with the following properties.

If the restriction of a cohomology class ¢ € HY(B,G) onto Br is annihilated
by monic polynomials fJ’ € O(D% )(n;) for j=1,...,d, then there exist functions
fi € O(Yk)(n;) for j =1,...,d satisfying
i) V()N Yxx0DY) =@ forj=1,...,d,

(i) fj-af-&=0in H'(By,G), where By C B xpn Yi is a ball figure of
dimension n in Yi xpn D,

Proof. Since N — AT is quasi-finite at the origin {0}, there exists an étale
neighborhood ¢: Y — A} of 0 such that the pullback ©*N — Y is finite due
to [12, Prop. 2.3/8]. Then the coordinate functions 7, ..., 7q satisfy monic
polynomial minimal equations

[~ ~t; ~ ~t;j—1 ~

Pi(n;) =1 + a7, +-+aj0=0
with coeflicients a;; € (9);(}7). Then we obtain a finite morphism

(i) = (Pl(ﬁ1)7 .. -7151(771)): }N/ XAZ AZer — Y X AZ

satisfying @' ({fio} x (A¢ — {0})) D N. Then we lift all the data to the formal
level, and hence we obtain a finite map ®: Y xp. D" — Y x D¢ on the
affinoid site.

We have to compute the cohomology group H?~'((Y x D%) x5, Oy xpa). Set
X :=Y xD?and set C := Oy (Y). Then we have A := Ox(X) = C(n1,...,74)-
Let h; € C[n;] be a monic polynomial of degree ¢; for j =1,...,d such that
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h; € C[n] is the minimal polynomial of 7;|5. Now consider the ball figure
By := Xv(j,,..., iy of dimension n in X. We want to compute H¥Y(By,Ox).

At first, we remark the following. If h € C[n] is a monic Weierstrafl polyno-
mial of degree ¢ > 1, then any element f € Ox(Xj) has a unique representa-
tion f=3", . 7 - h”, where r, € C[n] is a polynomial of degr, <t — 1 for all
v <0 and ry € A. Then, as in Lemma 6.15, we have the following description
of Hdil(B, Ox)I

HYY(By,0x) = A(hyY, ... by /@Ah;,..., hit,o L hgt).

So any ¢ € H¥!(By,Ox) has unique representation

v 14
5 = E CIJ17...,IId : h]_l LR hdd7

v1<0,...,v4<0

where ¢y, € Clm, ..., ng] are polynomials with deg, Cuy,vy <1tj for
j=1,....d

Let Y/ C Y be a nonempty open affinoid subdomain which reduces to
fo € Y, which lies over the origin in A7. Set Bj := (Y' x D?) N By and
T := (Y’ x DY) N X;; regard h as a factor of hy. Set C’:= Oy (Y’). Con-
sider a cohomology class ¢ € H?"!(B, Ox) such that the restriction &|c is
annihilated by some nonzero f; € C'(1;) for some j € {1,...,d} such that
V(fj)n (Y x D), = @ and f]- &= 0. Then there exists an f; € C[n;] such
that V(f;) N (Y x DY);, = @ and f; - a¥ - £ = 0. Indeed, as in Lemma 6.17,
this follows by the extension property of meromorphic functions on Hartogs
figures, Theorem 2.11. g

Theorem 8.11. Let X be an affinoid space of pure dimension n+ d, and let
H C X be a Hartogs figure of dimension n in X in the sense of Definition 1.10.
Then (H, X) has property (Gy,).

Proof. The assertion on the uniqueness follows by Corollary 6.12 and Theo-
rem 4.6. Indeed, let F be a coherent sheaf with F = F™ on X, and let
H = H"U be another coherent sheaf such that there is an isomorphism
¢: H|lg — Flg over an Hartogs figure H of dimension n. Then we con-
sider S,4+1(H). Since dimS,,11(F) < n —1 by Proposition 6.7 (c), we have
dim S, +1(H|m) < n — 1 due to the isomorphism. By property (E,,) for Hartogs
figures, we obtain dim S, 41 (#H|z) <n — 1. Thus H satisfies % = " due to
Proposition 6.7 (c) as % = #"~ 1. Then the uniqueness follows from Corol-
lary 6.12.

Then the proof of the extension follows similarly to the proof of Theorem 8.4.
Consider a coherent sheaf F = F[™. Let m < dim X be the greatest integer
with Ofm41)7 = 0. Obviously, we have n < m since, for n > m, we have F = 0.
Otherwise, set G := O[y,41]7 and R := F/G. Due to Lemma 8.8, we know that
G = GI" extends to a coherent sheaf on X. Since Opm4117 = 0, the sheaf R
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is coherent by Proposition 6.7 (d) and satisfies the induction hypothesis. So
RI™ extends to a coherent sheaf on X.

Put A:=S,4+1(R) and B :=S,,41(G). Then we have dim A <n and dim B <
n — 1; cp. Proposition 6.7. Therefore, due to Proposition 1.14, there exists
a finite morphism ¢: X — D"*+9 with «»~!(H') C H, where

H =T UB with T = (D% x ]Dd);L and B’ := ]D)%;rd

is a figure of Hartogs type as in Lemma 8.6. By Lemma 8.9, we obtain that
Y. (F|p) extends to a coherent sheaf on D"*¢. Then I'(B’, F) generates
each stalk F, for x € B’, where B’ := D;?rd. The assertion now follows by
Lemma 8.2. (]

Extension properties of rectilinear Hartogs figures. In the following,
we consider a rectilinear Hartogs figure

H:=VxDY)U(Y x oD% c X := (Y x D),

where Y is an irreducible affinoid space and V' C Y is a nonempty open subset.
We will only sketch the procedure of the proof and leave details to the reader.

Theorem 8.12. The rectilinear Hartogs figure of dimension n satisfies all the
extension properties (E,), (My,), (An), (Un), (G,).

Proof. We already know that the rectilinear Hartogs figure satisfies properties
(En), (My,), (Ay) resp. (Uy); cp. Proposition 1.12, Proposition 2.6, Proposi-
tion 3.14, resp. Theorem 4.6.

For the proof of (G, ), we proceed as in the proof of Proposition 3.14 by
reducing the assertion to the case where Y is a curve, which follows from the
case of Hartogs figures, Theorem 8.11, in the sense of Definition 1.10 by using
the stable reduction theorem of curves. Indeed, instead of restricting to a closed
analytic subset of Y of dimension 1, one can use tubular neighborhoods of such
curves in the sense of Proposition 1.15. By this method, one obtains nonempty
open subsets V; C Y/, where the reduction of Y; is a formal open part of an
irreducible component of ¥ such that Y/ U---UY/ is a formal dense open
part of Y. Moreover, as in the proof of Proposition 3.14, one can assume that
there exist finite projections S N (Y] x D4) — Y/ x D! for ¢ := dim S — dim Y’
whenever a closed analytic subvariety S C Y x D? shows up in the several
reduction steps like in Lemma 8.8 and Lemma 8.9. So we obtain the extension
of coherent sheaves F = FI™ to a ball figure of dimension n — 1. The latter
case is handled by Theorem 8.5. (]

We add a historical note. The crucial point for proving (G,,) is the coherence
result, Theorem 7.1, which was published in [27]. In an unpublished paper of
the author, this result was used to show property (G,) for the rectilinear
Hartogs figure (D"(¢) x D) U (D™ x dD?). Moreover, the technicalities of §4
and §6 were provided in that notes. Later, Bartenwerfer used these latter
results in [8] to generalize the results for the full assertions of this section.
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Unfortunately, he avoided the use of Theorem 7.1, and so it appeared a fatal
gap in his paper just at the beginning.

APPENDIX A

In this appendix, we provide Theorem A.17 which allows us to give a smooth
proof of Theorem 3.15 (b). For this purpose, we reprove some results of Barten-
werfer which are difficult to access; cp. [6, 7]. There is also a contribution by
van der Put [35]. They follow different methods, but they both make essential
use of enlarged coverings; see below. So they get the vanishing result, Theo-
rem A.7, only for OY% but not for O% as we do. Our method is completely
different from theirs. In the following, we assume that K is algebraically closed.
We will use the following notations: let ¢ € \/|K*| and ¢ < 1.

Let O% be the subsheaf of Ox consisting of the functions f with spectral
norm |f| < 1. Let O% be the subsheaf of Ox consisting of the functions f
with spectral norm | f| < 1. Let Ox/(c) be the subsheaf of Ox consisting of the
functions f with spectral norm |f| < c.

Metric cohomology of the polydisc. Let us start by recalling some stan-
dard definitions. A rational covering = {Uy,..., Uy} of X is given by function
foy -+, fn € A without a common zero such that

Ui ={z € X; |f;(@)| < |fi(z)| for j =0,...,n}.

Such subsets are called rational domains.
If 4 ={Uy,...,U,} is a rational covering as defined above, an enlargement
of L is a covering {¢ := {U{, ..., U2}, where p € \/|K*| and ¢ > 1 and
Uf ={z € X; [f;(x)| < o-|fi(x)] for j =0,...,n}.

We cite the result of Gerritzen and Grauert [16], which is often used.

Lemma A.1. Let X be a finite covering of X = Sp(A) by open affinoid sub-
domains. Then there exists a rational covering 4 of X which is a refinement
of the covering X.

Proof. See [9, Thm. 4.2/10]. O

Proposition A.2. Let X be an affinoid space, and let L be a finite covering
by affinoid subdomains of X. Then there exists an element t € K* such that
t-HI(U,0%) =0 for all ¢ € N with ¢ > 1.

Proof. The spaces C9(4, 0% ) and Z9(4, O% ) are Banach spaces. Since it holds
that HI(4, Ox) = 0 for ¢ > 1, the coboundary map

o171 T, Ox) = Z9(4, Ox)

is surjective for ¢ > 1. So the map is open due to Banach’s theorem. Thus
there exists an element ¢ € K such that ¢ - Z9(4, O%) is contained in the
image of 997|C771 (4, 0% ). Thus we see that ¢ - HI(8,0%) =0 for all ¢ € N
with ¢ > 1. Note that H9(4U, 0% ) = 0 if ¢ is larger than the number of members
of the covering il; cp. Remark A.3. g
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Remark A.3. In the situation of Proposition A.2, we have an exact sequence
H(U,0%) = HIW,0%)  HI(4,0%/t- 0%)
2 HITY (8, 0%) 5 HITY (8L, 0%),

where the maps -t are zero for ¢ > 1 due to Proposition A.2 and hence p is
injective and ¢ is surjective for ¢ > 1. Thus the vanishing of H?(U, O%) for all
q > 1 is equivalent to the vanishing of H1({, 0% /t- O%) for all ¢ > 1. So, if we
later work with formal models, the vanishing of H7({, 0% ) becomes a question
in algebraic geometry of finite presentation over the ring R/Rt.

o

Next we concentrate on the vanishing of H!(D?,Op,). In contrast to Propo-
sition A.2, we also have to deal with the limit of all rational coverings of X.

Proposition A.4. Let X =D = Sp(Ty) be the unit polydisc. For any rational
covering U of X, we have the short exact sequence
L 0
0 — Ty 7= C°(V,0x) L5 71(B,0x).

The map ¢ has a left inverse m on the submodule ker(9°) C C°(U, Ox), and
80|ker7‘r is an isometry with respect to the spectral norm.

Proof. Assume that U is a rational covering given by ¢1,...,gn € Tq. After
a suitable transformation of the variables, we may assume that each g; € Ty
is a Weierstrafl divisor. So we can write g; = u; - w; for i = 1,...,n, where
w; € Ty—1[n] is a Weierstraf polynomial and u; € de is a unit. The coordinate
functions of D? are named by C1,...,(4—1,n. The unit u; can be written in the
form u; = ¢; - e;, where e; is a unit with absolute value |e;| =1 and ¢; € K*
is a constant. Note that the units e1,..., e, have constant absolute value
functions 1. Furthermore, we may assume that |c¢i1| = 1 > max{|c1|,..., |cal}
A typical member V; of U has the form

Vii={z € Xj |awi(2)] < |ciwi(2)], ..., |enwn(@)] < |ciwi(x)[}
We put w:=wj - ... wy. So we have
={reX;lwk)|=1}={zre X;|lwvi(x)]=1,...,|wn(x)] =1}

Note that Vi C V; is a subset of V; and it is connected and not empty since
the polynomials are monic with absolute value |w;| =1 for all i =1,...,n.
Since we are free to refine the covering U, we add Vj to our covering 2U. By
abuse of notation, we denote the new covering by U, too. Any fo € Ox (W)
has a unique representation

fo=h+ Z%/W where h € Ty, a, € Td,l[ | with dega, < degw,

| folvy = max{|h| |¢o|} with Laurent tail £y := Z ayJw”,
|¢o| = max{|a,|; v € N}. v=l
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Then we define the section 7: C%(0,0x) — T, for f = (f;) via

m((fi)) = 7(fo) = h € Tq.
We will show that |f| = |0°(f)| for f € ker(). It suffices to work on the fibers
{y} x D! for y € D471, Thus, from now on, we may assume that d = 1 and
that the base field K is algebraically closed. In this case, we have a precise
description of the affinoid subdomains; cp. [24, Prop. 2.4.8]. Moreover, we know
its formal models and its reductions. The reduction is a tree-like configuration
of smooth projective lines which meet transversally, and it has a refinement
such that the components meet in ordinary double points. Then the assertions
follow from the lemma below. O

Lemma A.5. Let k be algebraically closed. Let P be a reduced connected al-
gebraic curve whose irreducible components are smooth projective lines which
meet transversally in ordinary double points and constitute a tree-like configu-
ration. Let xo € P be a closed point which is smooth. Set D := P — {x¢}.
(a) For any open affine covering U = {Vi,...,V,} of P, the sequence
0 — k&= C°(W,0p) L5 21(0,0p) — 0

™

is exact. The map v maps ¢ € k to the constant function (c|v.) € C°(U, Op).
There is a left inverse m on ker(0°) of the map ¢ by sending (fi) to fi(z1),
where x1 € V1 is a closed smooth point of P.
(b) Denote by n the coordinate function on the projective line Lo which
contains xg. Assume that n has a pole at xy. Then, for any open affine
covering B = {Vi,...,V,} of D, the sequence

0 —s k) == C°(0,0p) L5 210, 0p) — 0

is exact. Any polynomial f € k[n] gives rise to a regular function f|p, on Lg
which determines values at the intersection points of Lo with the remaining
components. By each of these values, one extends f|r, onto the other compo-
nents on the subsequent subtree following the given intersection point by con-
stant functions, and hence one gets a global function h on D. The map v maps
a polynomial f € k[n] to the cocycle (hly,) € C°(B, Op).

There is a left inverse ™ on ker(9°) of the map ¢ by sending an element
f = (fi) € ker(8°) to n(f|L,), where w(f|L,) € k[n] is the polynomial defined
by the partial fraction decomposition of the rational function f|r,.

Proof. We know that ¢ is an isomorphism to ker(9") in both cases. Moreover,
we have that H*(0,0p) =0 and H'(0,0p) = 0 since it holds for the projective
line resp. the affine line and hence for a tree-like configuration where all the
components are projective lines except for the initial component Ly which is
an affine line, respectively. O

Remark A.6. Actually, one can generalize this method. It also works for
a relative annulus X :=Y x A(r,1) if there is a covering X of X :=Y x A(r, 1)
such that (Y x dD'(r)),, resp. (Y x dD!(1))y, is contained in a member V;

Miinster Journal of Mathematics VoL. 15 (2022), 83-166



ON EXTENSION OF RIGID ANALYTIC OBJECTS 157

resp. Vp of our covering, where w; resp. wy are Weierstrafl polynomials in 7/n
resp. /1. In that case, one defines the section 7 via

T C%(X,0%) = O%(X); 7((f)) = ho + &y,

where f,. € Ox (V1) is written as fi; = hy + £,., where £, is the Laurent tail given
by the hole || < r, and hy is given by the part of fy belonging to Ox (Y x D).

Proposition A.4 yields the first step of an induction process for proving the
following vanishing theorem.

Theorem A.7. Let X =D? be the d-dimensional unit disc, and let O% be the
sheaf of holomorphic functions with |f| < 1. Then we have H1(X,0%) =0 for
all ¢ > 1.

Proof. The vanishing of H'(X,0%) = 0 follows directly from Proposition A.4.

For q > 2, we proceed by induction on d to show the assertion. In the
1-dimensional case, consider a rational covering U of X. Then there exists
a flat formal R-model X of X such that U is induced by an open covering of
that model; cp. [24, Thm. 3.3.4]. Then look at the sheaf of power bounded
functions O%. Due to Remark A.6, it suffices to show HY(X, 0% /t- O%) =0
for all ¢ > 2 and a suitable t € K*. Since X is 1-dimensional, the assertion
follows by a theorem of Grothendieck; cp. [17] or [19, Thm. III, 2.7]. So we are
done in the case d = 1.

Now consider the case d > 2, and assume that the assertion is true in the
lower-dimensional case. As in the proof of Proposition A.4, we may assume
that we have to consider a rational covering given by functions go, ..., gn € T4.
We may assume that |g;| < |go] =1 for i =1,...,n and that go is a Weierstraf}
polynomial of positive degree. Note that {Vp,..., V,, Voo } with

Voo i= {2 € D1 x P |go(z)] > 1},
Vii={z e D" x D |go(@)] < |gi()l; .- [gn(2)] < |gi(a)[}

gives rise to an admissible covering of P := D91 x P! by affinoid domains.
Then any cocycle (f) € C9(U, 0% ) of degree ¢ > 1 can be regarded as a cocycle
on P. Let p: P =Y :=D%1!and p': X :=D%1 x D' - Y := D! be the
projections. We have

pO% =0y and p.O% =POY -1,
veN
where 7 /1\5 the coordinate function on P'. Since HY commutes with the forma-
tion of €, we obtain HI(Y,p,0%) =0 and HY(Y,p,O%) =0 for all ¢ > 1 by
the induction hypothesis.

Next we want to show RIp,0% =0 for all ¢ > 1. It suffices to show that,
for any open affinoid subdomain U C Y and any finite open affinoid covering
U ={Vi,...,Vin} of p~1(U), there exists a finite open affinoid covering 4 =
{U1,...,Uyp} such that HY(Uy,, O%) = 0, where Ly, denotes the covering
0 restricted to U; x P'. For doing so, we choose an R-model 7: P — ) of
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p: P =Y =D such that U is induced by formal open subsets of P and
such that 7 is flat; cp. [13, Cor. 5.10]. Since 7 is flat, the fibers of m are of
dimension 1. Let O% be the normalization of Op. Then O% is a coherent
Op-module. Namely, for any open affine subset V of P, the normalization
0% (V) is a finite Op(V)-module due to the theorem of Grauert and Remmert;
cp. [10, Cor. 6.4.1/5]. Moreover, the formation of normalization is compatible
with formal localizations. So, due to the theorem of Grothendieck loc. cit.,
the cohomology groups HY(m~!(y), Op|.-1(,)) = 0 vanish for all ¢ > 2 and
for all closed points of ) since the fibers are of dimension 1. Thus we have
Rip,0% =0 for all ¢ > 2 due to the theorem on cohomology and base change.

Now we consider the case ¢ = 1. We want to show that Rlp.0% = 0.
Keep the notation of above. Since we have that H°(P, Op) = Oy (U) and
HY(P,0p) =0 for all ¢ > 1, the sequence

0 — Oy (U) - CO(W,0p) L5 71(0,0p) — 0

is exact. The map ¢ maps an h € Oy (U) to the 0-chain (hly,) € C°(U,Op)
which is constant on the fibers. The map ¢ admits local sections 7; with respect
to the finite affinoid covering 4 := {o*(V4),...,0*(V,)}, where o: U — P! is
the point at infinity. The section 7; pulls back a 0-chain f by evaluating at
infinity. The kernel ker(m;) is mapped to Z'(%;, Op) by 9° in an isometric
way, as follows from Lemma A.5. Thus we see H!(Uy,,0%) = 0. This in turn
implies R'p.0% = 0.

Concluding, we obtained Rip,0% = 0 for all ¢ > 1. By the Leray spectral
sequence, we finally obtain HY(P,0%) =0 for all ¢ > 1. As we said at the
beginning of the proof, H1(P, 0%) = H1(X, O%) for all ¢ > 1. Finally, we
obtain H9(X,0%) =0 for all ¢ > 1. O

More generally, we have the following result.

Theorem A.8. Let X be an affinoid space. The following holds for all ¢ > 1.
(a) If X is smooth, there exists a constant ¢ € K* with ¢- H1(X,0%) =0
(b) If X admits a smooth formal model, then H1(X,0%) = 0.

For the proof of Theorem A.8, we need preliminary results. Assertion (a)
will follow from Proposition A.11 (iii). Assertion (b) will be shown at the end
of this subsection.

Lemma A.9. Let ¢: Xk := Sp(A) = Yx = Sp(B) be a finite flat morphism.
Then, for every finite affinoid covering i of X, there exists a finite affinoid
covering U of Yi such that ¢*0 is finer than . Here ¢*0 denote the covering
induced by the connected components of all ¢~1(V') for V € 0.

Proof. Let p: X :=Spf(A°) =Y = Spf(B°) be the morphism of the associated
affine formal models. There exists a formal blowing up X" — X such that the
covering 4l is induced by a formal covering of X”; cp. [24, Thm. 3.3.4]. Since
o is flat, there exists an admissible formal blowing up Y’ — Y such that the
induced morphism ¢’: X’ — Y’ is flat and finite [13, Cor. 5.10]. As a flat
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morphism ¢’ is open, for every point x € X', there is an open neighborhood
V of ¢'(x) in Y such that each connected component of p~1(V) is contained
in some U which belongs to the covering 1. O

Lemma A.10. Let X = Sp(A) be a smooth irreducible affinoid space of dimen-
sion d. Consider a finite morphism ¢: X = Sp(A) — D% = Sp(T) of rank n.
(i) Then there exists a T-basis e, ..., e, of A withey,...,e, € A°. Set
F=p"T° 1B P "T° - e,.
(ii) For any small perturbation v of ¢, see Proposition 1.16, we also have
F=y"T®-e1®---®Y*T° - e,.
(iii) If the perturbation ) is étale over D — V (k) for some nonzero function h
on D?, then there exist a ¢ € K* and an exponent o € N such that
c-h® 0% COpa-e1 PP OFa - en.
(iv) With the notation of (iii), we have c-¢¥*h® - H1(X,0%) =0 for all¢ > 1.
(v) One can choose c € K* such that c- A° C F.
Proof. (i) The map ¢ is flat since the local rings of the source and the target
are regular, and hence the homological dimension is 0 due to [31, Prop. 21,
p. IV-35]. So ¢.Ox is locally free of rank n. Since locally free T-modules are
free due to [27, Satz 1], there exists such a basis.

(ii) Since pullbacks of the coordinate functions (,...,{s by ¢ and ¥ satisfy
the inequality |p*(; — ¢*(;| < 1 for i = 1,...,d, we obtain the assertion by
iteration.

(iii) Let U be an open subdomain of D?. At first, assume that 1 (U) is
isomorphic to V(w) C U x D!, where w € T[n] is a Weierstraf polynomial. Any
f € ¥.Ox(U) can be represented in the form

f=an’+---+a,n"!' modulo w.
Thus the values of f on the fiber of ¢»~1(y) are given by

f= (f(ﬁl)v i 7.f(ﬁn))t =M- (al(y)v i '7an(y))tv

where M is the van de Monde matrix. Thus we see that the coefficients
ai,-..,an can be bounded by spectral norm of f via the adjoint matrix M*
of M and the determinant of M1,

(@(H)s- -y an(y))! = (det M)™1- M* - (F(B)s -, F(Ba))-
The basis 7°,...,7" ! mod w is related to our basis ey,...,e, by a matrix N,
..., D =N (eq,...,en)t.
Starting with a representation f = b, -e; + -+ b, - €, we have
(b, - ba)! = (det(NM)) - N* - M* - (F(Bu)- -, F(Ba))-

Note that IV has bounded entries since e, ..., e, is basis of »,.Ox. The deter-
minant det(N M) is invertible on D¢ — V(h). Moreover, there exists a power
h® such that (det(NM))~! - h® is bounded by 1. Due to Proposition 1.16 (b),
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over D¢ » there are finitely many representation of X as V(w;) C U; x D!,
where {Ul, ..., Uy} is an open affinoid covering of ]D)d Thus we can bound
the factors det(N M), M*, N*. This shows that there exmt an element ¢ € K*
and an exponent o € N as claimed.

(iv) We have the exact sequence

0 = (Opa)" = 0% — 9.0%/(Opa)" — 0.
This sequence induces the long exact sequences, for ¢ > 1,
— HI1(D?, (05.)") = HY(D?, 4. 0%) — HI(D, $.0%/(Of4)")
Hq+1(Dd ( o )n) .

Due to Theorem A.7, we have H%(D? Og,) =0 for ¢ > 1, and hence both
exterior terms vanish. The third term is anmhilated by c¢-¥*h®, and hence the
second term is also. Due to Lemma A.9, we have H?(D?,1,.0%) = H1(X,0%),
and hence H9(X, 0% ) is annihilated by ¢ - ¢p*h®.

(v) If ¢- A° C F, the entries of N have spectral norm less than or equal to 1.
The entries of M also have spectral norm less than or equal to 1. O

Proposition A.11. Let X be a smooth irreducible affinoid space of dimen-
sion d. Fiz a finite morphism ¢: X = Sp(A) — DY = Sp(T) and a T-basis
(e1,...,en) of A. Then there exist finitely many small perturbations ¥;: X —
D? of ¢ and functions h; on D¢ fori=1,...,n such that

(i) Yihi,..., Y%k, have no common zeros,

(i) (4, hy) satisfy the assertion of Lemma A.10 with ¢;, o,

(ili) there exists an element ¢ € K* such that c- H1(X,0%) =0 for ¢ > 1.

Proof. Since X is smooth, for any point z € X, there exists a perturbation
Y: X — D? of o such that 1 is étale over ¢(z); cp. Proposition 1.16 (a). Since
the étale locus of a morphism is open, there exists a function h on D? such
that ¢ is étale over D? — V/(h). In particular, we have ¥*h(x) # 0. Then,
by a noetherian argument, there are finitely many perturbations satisfying (i)
and (ii).

(iii) Due to (i), there exist functions g1, ..., g, € A° such that

b=g1p"hi™ + -+ gnp"hy"
for some b € K*. Then, by Lemma A.10 (iv), we can conclude
c-b-HI(X,0%)=0 forallqg>1. O
Now we turn to the proof of Theorem A.8 (b).

Proof of Theorem A.8(b). We proceed as in the proof of (a) by using formal
coverings. Due to Proposition 1.17 (a), there exist morphisms ¢;: X — D?
for i = 1,...,n which are finite and formally étale over ID)d with ¢g; € Ty and
lgil =1 such that the subdomains X; = Xy+5, for i =1,...,n cover X. In
particular, ¢;: X — A¢ is finite and flat. Indeed, the 1oca1 rings of the source
and the target are regular and hence the homological dimension is 0 due to
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[31, Prop. 21, p. IV-35]. So the direct image q~5i7*0)~( is locally free and hence
free due to [28]. Since we can lift the basis of ¢; O« to a basis of O%(X), we
have

A°=T° - e1D...8T° -e,.
As in the proof of Lemma A.10, we obtain
(9) 95" 9. 0% (X) CORa-e1 @@ O - €.

The constant ¢ in Lemma A.10 is equal to 1 in this case due to Proposi-
tion A.11(v). Actually, one has to replace g; by the determinant h; of the
van de Monde matrix associatqd to ¢;. Since ¢; is formally étale over Dgi,
we have that |h;| =1 with V(h;) C V(g;). So we can directly assume that
h; = g; without loss of generality. As in Lemma A.10, relation (9) implies
¢*gi - H1(X,0%) =0 for all ¢ > 1. Since ¢1,...,gn is a formal covering, there
exist functions f1,..., fn € Ofa (DY) with 1= f1 - g + -+ fn - g2". So we
finally get

HY(X,0%) = fi-g97" - HI(X,0%) + -+ fo - gy" - HI(X,0%) =0
for all ¢ > 1. This completes the proof of Theorem A.8. (]

Theorem A.12. Let Y := Sp(B) be an affinoid space which admits a smooth
formal model. Let X =Y x [[;_; A(r1,;,72,) be a product of Y and n annuli
A(ri4,72,), where r1; <1, for i =1,...,n. Then we have the vanishing

HY(X,0%) =0 forall ¢ > 1.

Proof. We proceed by induction on the number n of the involved annuli. The
case n = 0 is settled by Theorem A.8 (b). Now assume n > 1 and that the
assertion is true for all numbers less than n. Denote A = A(ri,1,711). Then
the affinoid space Y x A has smooth reduction. Now look at a cocycle (f; ;) €
ZY (U, O%). At first, we look at the restriction of this cocycle onto

X =Y x A(r11,71.1) X HA(TLi,TZi) = (Y x A) x HA(TM?T?J)'
i=2 1=2
In order to keep notation simple, set P := H?:Q A(ri4,72,:). Due to the in-
duction hypothesis, we have H9(X,0%) = 0. Thus there exists a 0-chain
h € C°(U]s, O%) with 0°(h) = (fi ;)5 Now we define a new cocycle on
Y x D'(ra1) x P with respect to the covering 2 := $lU {Up} with Up :=
Y x DY(rq11) x P by setting g; o = h; on U; N Uy for i # 0 and gij=fi;ifi#0
and j # 0. Then g := (g ;) € Z'(2, 0% ). Thus, by the induction hypothesis,
we can solve (g; ;) by a 0-chain £ € C° (20, O%). This settles the assertion for
H'(X,0%). The assertion for H?(X, 0%) with ¢ > 2 follows similarly. O

Analytic Picard group of X x A}.. The aim of this subsection is the rigid
analytic version of the following well-known result in commutative algebra;

cp. [14, Chap. VII, §1, Prop. 18].
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Proposition A.13. Let A be a normal noetherian ring, and let A[¢] be the
polynomial ring over A in one wvariable £&. Then the canonical morphism
Pic(A) = Pic(A[€]) from the Picard group of A to the one of the polynomial
ring over A is bijective. The canonical morphism Pic(A) = Pic(A[£,£7Y) is
also bijective.

The prime ideals p of A[€] resp. of A[€,€7Y] of height 1 are either induced by
prime ideals of height 1 from A or pN A= (0) and p is generated by a primitive
polynomial. In particular, any divisor ideal a of A[€] which contains a monic
polynomial is principal.

Proof. The assertion follows by the Lemma of Gauf} for normal rings. g

Let us first concentrate on the statement for Pic(X x D) resp. the one for
Pic(X x 0D'); cp. [15] for similar results.

Theorem A.14. Let X = Sp(A) be an affinoid space which admits a smooth
formal model. Then the following holds.
(a) The canonical morphism Pic(X) — Pic(X x D) is bijective.
(b) The canonical morphism Pic(X) — Pic(X x OD') is bijective.
(¢) HYX,Z)=0 and H'(X,K*) = 0.
Proof. Due to [24, Lem. 6.2.4], any line bundle £z on X x D! resp. on X x
OD! extends to a formal line bundle £ on the smooth model of X x D! resp.
X x dD'. So the reduction £ gives rise to a line bundle on X x Al Tesp.
on X x G, 5. The canonical maps Pic(X) = Pic(X x A}) and Pic(X) =
Pic(X x Gy, ) are bijective by Proposition A.13 since X is smooth. So the
reduction £ is locally trivial over X. Since one can lift a generator of /3|U
to a true generator of L|y for any formal affine open subset U of X, we see
that L trivializes over an open formal covering of X. Thus any line bundle
L on X x D! resp. on X x D! is equivalent to a cocycle given by transition
functions A; ; € Ox (U; NU;)(n)* resp. by Aij € Ox(U; NU;){n,1/n)*, where
U= {Uy,...,U,} is a formal open covering of X.

Due to the unique decomposition of units, we can write

Aijj = Cijg - (1+hij),
where (¢; ;) € ZH(4,0%) and (1 + h; ;) € ZH (U, O 1), where |h; ;| < 1 with
h;,;(0) = 0. Moreover, any line bundle £ on X x D' is equivalent to a cocycle
Aij = cCig 0" (1+ hij),
where (¢; ;) € Z1(4,0%) and (n; ;) € Z' (4, Z%) and (1 + hi ;) € Z' (U, 0% op1 )
where |h; ;| < 1 with h; j(1) = 0. Since X has irreducible connectedness com-

ponents, we have H!(4,Z*) = 0. The units of the form 1+ h with h €
Ox xapt (U x DY) with |h] < 1 can be decomposed into two factors

l+h=0+h")-1+n7),
where h* € Ox(U)(n*')) with |h*| < 1. The vanishing of H' (£, 1+ O% 1)
g

will be shown in the following lemma by using Theorem A.8.
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Now you will apply our result Theorem A.8 to show a similar vanishing

statement for certain cocycles of invertible functions. In the following, we
denote by O%(r) the subsheaf of O% consisting of all the invertible functions f
which can be written as f = 1 + h, where |h| < r. Furthermore, we denote by
Ox(r1,7r2) the quotient Ox (r1)/Ox(rs) for 0 < re <m < 1.
Lemma A.15. Let X be a smooth affinoid space. Assume that there exists
ace K* with s :=|c| <1 such that ¢- H1(X,0x (1)) =0 for ¢ =1,2. Then
the canonical map H'(1): HY(X, 0% (s*r)) = HY(X, O%(r)) induced by the
inclusion v: O%(s*r) < O%(r) vanishes for all r € (0, s%).

In particular, for s =1, we have H'(X, 0% (1)) = 0. Due to Theorem A.8,
the latter is fulfilled if X has a smooth formal model.

Proof. Consider ¢ € K* with s :=|c|. For 0 < r? <7’ <r, we have the following
isomorphism:

0% (r))0x(r') = Ox(r)/Ox (1) = Ox (r,1").

Put g :=7 < s2 and € := r/sQ. Then put 7, = "r. We have the following
commutative diagram with exact rows:

HY(X,O0x(rm)) —— HY(X,0x(rn, 1)) —2— H2(X,Ox(rns1))

Hl(X7 Ox(rn)) — Hl(X7 Ox (Tn,Tn+1)) —2 H2(X7 Ox(rn+1))
Consider a cocycle & = (1+¢2 - h; ;) € Z1 (84, 0% (s?1¢)), and set h := (h; ;) €
ZY (84, Ox (rg,sr1)). Thus we obtain d(c-h) =0 in H?(8,Ox(r1)) since the last
vertical map is 0 due to our assumption. So there exists an f in H! (4, Ox (1))
such that c-h = p(f). Since c- f vanishes in H'(4, Ox(rg)) due to our as-
sumption, there exist functions g; € Ox (U;)(ro) such that

¢ fij=9i — 9j-

Then we obtain

¢ hij = ple- fij) =plgi—g;) n Ox(UiNUj)(ro,m1).
Now we have
€ (1—gi) (L+g) =1 +chig) - (1—gi) (1+g5) € Z'(4,0%(r0))
=1+ (c*h — (9: — g;)) mod Ox(rp)
=1+1 € Z 0% (1))
which is homologous to H'(:)(§) € H (4, O*(r1)). Moreover, we have
1+ 40 =1+2hY  with Y € ¢, Ox (e - 7)

since r3/c? = (r/c?)-r =€ -r.
Now we repeat this procedure with r,, instead of ry and 7,41 instead of r;
and a cycle £ := ¢ = (1 + ¢2h) € Z' (U4, 0*(s?rp)). By induction, we obtain

Miinster Journal of Mathematics VoL. 15 (2022), 83-166



164 WERNER LUTKEBOHMERT

that the image of H'(:)(¢) is homologous to a cocycle &, := (1 + thgz)) in
HY(X,0*(,ry)), where

Enrr = (L4 Ry = 1+ 2h()) - (14 g0) - (1 - g5™)

i J
with g™ € Ox (rn)(U;). The sequences g™ € Ox (r")(U;) converge for n — oo,
and in the limit, we obtain that

H'()©) = [[a+a™) T -g").
n=1 n=1

The infinite products converge in Z'(4, O*(r)) to a coboundary. For the
additional statement, it obviously suffices to treat the case r < 1 due to the
very definition of O%(1). O

With this result, we are more or less done by the following observation.

Lemma A.16. LetY be a smooth affinoid space. Then there exists anr € | K™ |
with v > 1 such that the following holds. Let L be any holomorphic invertible
sheaf on' Y x DY(r). If Ly xo is trivial, then the restriction L]y «pr(1y to the
subdomain Y x D(1) is trivial.

Proof. Any line bundle on Y x D! trivializes locally over Y; cp. the proof of
Corollary 3.18. So L can be given by a cocycle

(1 + hi,j) S Hl(X, 1+ OXXD(p)(T)) with hi,j(O) =0

since L] xxo = Ox. The functions h;;, which are defined on (U; N U;) x D*(r),
satisfy |hi j|(v,nu,)xp(1y < 1/r when restricted to the subset (U; N U;) x D(1).
So the h;; have small absolute value. Now the assertion follows from Lem-
ma A.15 with r := 1/s%, where s := |¢| is provided by Theorem A.8 (a). O

Now our main result about the analytic Picard group follows immediately.

Theorem A.17. Let Y be a smooth affinoid space. Then the canonical map
of the analytic Picard groups Pic(Y) — Pic(Y x AL.) is bijective, which pulls
back line bundles via the projection Y x A}, — Y.

Proof. We can assume that the invertible sheaf £ on X x A}( satisfies £]xxo =
Ox. By Lemma A.16, we see that L|xxp! () is trivial for any r € |[K*|. Now
choose an increasing sequence of radii (r;; ¢ € N) tending to oco. Due to the
above result, we find generators /; of L|x, xp? (r,). We normalize them at the
zero section by o] x, x 01 = lil xx x{0}- Then £ :=1lim; o l; € L(Xg x Aj)
exists since ¢; = e; j¢; for j >4 for invertible functions e;; of type 1+ f; ;
with f; ;(0) = 0 and |fi j|x,xpt (r) < 7/7; for all » < r;. So £ yields a global
generator of L. g

There is another interesting application of Lemma A.15.

Proposition A.18. Let X be an affinoid space which admits a smooth formal
model. Then there is a canonical isomorphism Pic X = Pic X from the Picard
group of X to the one of its reduction X.
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Proof. We may assume that X is connected. Due to [24, Lem. 6.2.3], any
line bundle £x on X has a formal model £ defined over the smooth model
of X. It follows from [24, Prop. 3.4.1] that the extension £ is unique up
to a principal divisor (t), where t € K* is a nonzero constant, since X has
a smooth formal model and X is connected. This gives rise to a well-defined
map Pic X — Pic X. This map is injective since a generator of the reduction
L can be lifted to a true generator of £. For showing the surjectivity, one has
to show that H2(4, O% (1)) = 0 for any formal covering $f of X. This follows
in a way similar to the one exercised in the proof of Lemma A.15 due to the
vanishing of HY(U, O%) for all ¢ > 1. Of course, the latter is used only for
formal coverings, and then it is much easier to establish. O

Note that the assertion does not hold if X is not affinoid. For example,
even for a nontrivial abelian variety with good reduction, the assertion of
Proposition A.18 fails to be true.

Finally, we want to mention that the last result is due to Kerz, Saito
and Tamme; cp. [20]. In that paper, the authors give a different proof of
Theorem A.8 (a) following ideas of van der Put [35]. But their methods are
much more complicated and do not suffice to prove Theorem A.8 (b). Theo-
rem A.8(b) was mentioned by Bartenwerfer in [7], but it is difficult to follow
his proof; see also the English translation of [6] by Shizhang Li, especially his
30 footnotes and appendix.
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