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i

Abstract

In this thesis, we study the links between combinatorial complexity of first-order theories of
fields and algebraic properties of fields, and most notably, the role henselianity plays.

To start, we study valuations, and we expose several classical methods to define them with
a first-order formula in specific cases. If a valuation happens to be definable in a pure field,
then the first-order theories of the valued field and the pure field have the same complexity;
this is notably the case in algebraic extensions of Qp.

We continue by studying links between Artin-Schreier extensions of fields in positive char-
acteristic and combinatorial complexity. The study of these links started with a result by
Thomas Scanlon on stable fields, and was later on studied in other complexity classes in sev-
eral papers by Thomas Scanlon himself, as well as by Artem Chernikov, Nadja Hempel, Itay
Kaplan, Pierre Simon and Frank Wagner. We reformulate these results by exhibiting explicit
formulas witnessing combinatorial patterns; this gives us new ways to witness complexity in
henselian valued fields of mixed characteristic, and to conclude that fields which lie in some
classes have strong algebraic properties. Most notably, we extend results of Franz-Viktor
Kuhlmann and Anna Rzepka to prove that NTP2 henselian valued fields are tame, semitame,
or finitely ramified by parts, and that NIPn henselian valued fields are separably algebraically
maximal Kaplansky or finitely ramified by parts, exactly as NIP henselian valued fields.

Conversely, we also study so-called transfer theorems, which state that henselian valued
fields with certain algebraic properties are not more complex than their residue fields. The
method we use to obtain transfer was developed by Artem Chernikov and Martin Hils in
the NTP2 context and extended to the NIP context by Franziska Jahnke and Pierre Simon.
We, in turn, extend it to the NIPn context, and deduce a complete classification of NIPn

henselian valued fields down to their residue fields, generalizing a result of Sylvy Anscombe
and Franziska Jahnke for NIP henselian valued fields. We also state a transfer theorem for
NTP2 henselian valued fields as a first step towards a complete classification.

All these results are illustrated in algebraic extensions of Qp, where we provide examples
and classifications of all usual complexity classes.
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Notations

• We write “⊂” for subsets, proper or not. We write “⊊” for proper subsets and “ ̸⊂” for
non-subsets.

• Given two sets A and B, we let A+B = {a+ b | a ∈ A ∧ b ∈ B}, assuming we work in
a structure where “+” makes sense, and similarly for A−B.

• We write ch(K) for the characteristic of the field K.

• We do not use different fonts to distinguish a structure and its base set, in fact, we do
not distinguish them.

• When we do not specify, “definable” means “definable with parameters”.

• Lowercase letters x, y, z, . . . can represent single variables or tuples of variables, and
a, b, c, . . . can represent fixed single elements or tuples of elements. We almost never
write x to represent a tuple, as we prefer to use the overline to denote the residue of an
element.

• We write “we” for “long rainy nights in Münster, long uncomfy nights in commute, long
though short-seaming nights in Paris, many other nights and I”.
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Introduction

The broad subject of this dissertation is the study of model theory of valued fields. More
precisely, we study the links between model-theoretic complexity of first-order theories of
valued fields and the algebraic properties of these valued fields.

0.1 Combinatorial complexity

Dating back to the 70s and the work of Saharon Shelah in [She78], model theorists have found
that more often than not, meaningful dividing lines between somewhat easy-to-study theories
and more complex ones can be expressed in terms of combinatorial configurations that may
or may not be encoded in these theories. The prototypical example of this phenomenon is
stability: at first studied in terms of the number of different types a theory can have, an
equivalent definition is to say that stable theories can not encode an infinite linear order.

This global-local duality between the behavior of the whole theory and the combinatorial
properties of individual formulas gives rise to different approaches to study these notions of
complexity. One of these approaches is to study the links with algebraic structures. This goes
both ways: given an algebraic structure, we want to know how complex it is, a contrario, if
we know that some structure has a certain complexity, we want to describe it algebraically.

We like to think about all these notions as a ladder that we try to climb in order to
understand theories which are more and more complex. A nice example of this ladder-climbing
is the study of Artin-Schreier extensions, we will say more later.

Finite

Stable

NIP

NIPn

Simple

NTP2

Figure 1: The ladder.

In order to gain some understanding of the model theory of fields, we quote some classical
results:
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• infinite ω-stable fields and superstable fields are algebraically closed [Mac71, CS80];

• separably closed fields are stable [Woo79];

• pseudo-algebraically closed field are simple iff they are bounded [Hru02, Cha99];

• non separably closed PAC fields have IPn for all n [Dur80, Hem14];

• Qp is NIP.

0.2 Complexity of fields and Artin-Schreier extensions

This story starts in 1999, with the following remarkable result:

Fact 1 ([Sca00]). Infinite stable fields of characteristic p > 0 have no Artin-Schreier exten-
sions.

It is in fact conjectured that infinite stable fields have no separable extensions whatsoever;
this result tells us that, in characteristic p, they at least have no separable extension of degree
p.

In 2011, this result was pushed up the ladder:

Fact 2 ([KSW11]). Infinite NIP fields of characteristic p > 0 have no Artin-Schreier exten-
sions; simple fields of characteristic p > 0 have finitely many distinct Artin-Schreier exten-
sions.

We see here a good example of ladder-climbing; starting with a result in the stable context,
it can be extended, sometimes exactly as it is, sometime to a slightly weaker result.

But the ladder continues:

Fact 3 ([CKS12]). NTP2 fields of characteristic p > 0 have finitely many distinct Artin-
Schreier extensions.

Fact 4 ([Hem14]). Infinite NIPn fields of characteristic p > 0 have no Artin-Schreier exten-
sions.

In Chapter 2, we study in detail those results, explaining the proof strategy. We then
“localize” them, in the following sense: given a field, if it has an Artin-Schreier extension,
then it has IPn, and if it has infinitely many, then it has TP2; by definition, this then means
that there is a formula witnessing IPn or TP2 in this field. This fact is not explicit in the
original papers. We exhibit these formulas, and prove in fact the following:

Theorem. Let K be an infinite field of characteristic p > 0. Then

φ(x, y1,· · ·, yn) : ∃t x = y1· · ·yn(tp − t)

has IPn iff K has an Artin-Schreier extension, and

ψ(x, yz) : ∃t x+ z = y(tp − t)

has TP2 iff it has infinitely many distinct Artin-Schreier extensions.

This formula is positive existential, therefore, in a henselian valued field, we know that it
witnesses a combinatorial pattern in the field iff it does so in the residue field.



0.3. VALUED FIELDS 3

0.3 Valued fields

It is sometimes useful to study augmented structures in order to then deduce results for
restricted structures. In our case, the study of valued fields, notably henselian, has proven
useful to the study of pure fields, notably towards the NIP side of the ladder.

We will open this dissertation with a collection of definitions and classical facts about
valuation theory, with a model-theoretic point of view. We notably study definability of
valuations: when one adds a valuation to a field, it naturally comes with a definable topology,
a residue field, and other new definable sets. However, if the valuation ring is already definable
in the pure field, then adding valuation does not yield new definable sets. This is famously
the case in Qp.

To this regard, henselian valuations are of much more interest. Henselianity allows to lift
simple roots of polynomials from the residue field to the original field. This fact gives us a lot
of control over the definable sets of the valued field. Since many pure fields define a henselian
valuation – it is in fact conjectured that most unstable NIP fields do so –, the studies of
henselian valued fields and of pure fields are intertwined.

The most famous example is the Ax-Kochen/Ershov (AKE) transfer principle. Discovered
independently at the same time, it states that henselian valued fields of residue characteristic 0
are elementarily equivalent iff their residue fields and value groups are elementarily equivalent.
In particular, non principal ultraproducts of Qp and of Fp((t)) are elementary equivalent,
which means that for all prime p but finitely many, a given first order formula holds for Qp

iff it holds for Fp((t)).

0.4 Complexity of henselian valued fields

In the spirit of the aforementioned AKE transfer principle, more transfer theorems have been
established in different settings. They are of the form “if we know enough about the residue
field and the value group, then we also know a lot about the valued field”.

NIP transfer theorems have been established as early as 1980, and little by little in more
and more cases. They culminated in 2019, with Anscombe-Jahnke’s classification of NIP
henselian valued fields, that we repeat here and will study precisely in Chapter 3:

Theorem (Anscombe-Jahnke, [AJ19a]). Let (K, v) be a henselian valued field. Then (K, v)
is NIP iff the following holds:

1. k is NIP, and

2. either

(a) (K, v) is of equicharacteristic and is either trivial or SAMK, or
(b) (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v) checks

2a, or
(c) (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

This is as good as it can get; since it is an equivalence, establishing NIP transfer theorems
in cases outside of this list is not needed.

Now that we know what the optimal NIP transfer theorem is, we aim to push it up the
ladder. Some key ingredients of the proof have already been pushed up: the Artin-Schreier
closure of NIP fields, which we already mentioned, and the method used for transfer; in fact,
this is rather a case of trickling down the ladder, since this method was first established for
NTP2 transfer, and only afterwards adapted for NIP transfer.
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One other key ingredient is Shelah’s expansion theorem, which does not hold outside of
NIP theories, as we will recall in appendix section B. It is used in mixed characteristic together
with the standard decomposition: a mixed characteristic valuation can be decomposed as an
equicharacteristic 0 part, a small – rank 1 – jump from characteristic 0 to characteristic p,
and an equicharacteristic p part. This decomposition is externally definable, thus, adding it
to the structure preserves NIP by Shelah’s expansion theorem. We can then argue part by
part to obtain the result.

It is however possible to bypass this argument: instead of trying to prove that each part
is NIP, we can use the explicit formula witnessing IP in fields with Artin-Schreier extensions,
and lift complexity to the field. This way, there’s no need to add intermediate valuations to
the language, at least to prove that relevant part are p-closed or p-divisible.

This strategy can then be adapted to NIPn and to NTP2 henselian valued fields. Together
with a NIPn transfer argument, we generalize Anscombe-Jahnke to NIPn fields in Chapter 3:

Theorem. Let (K, v) be a henselian valued field. Then (K, v) is NIPn iff the following holds:

1. k is NIPn, and

2. either

(a) (K, v) is of equicharacteristic and is either trivial or SAMK, or

(b) (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v) checks
2a, or

(c) (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

This gives, among others, the following corollary:

Corollary. Let (K, v) be a NIPn henselian valued field. If k is NIPm for some m ⩽ n, then
(K, v) is NIPm. In particular, if k is NIP, (K, v) is NIP.

As for NTP2 henselian valued fields, we prove in Section 2.5 on the one hand that NTP2
transfer holds in the same algebraic configuration as in Anscombe-Jahnke’s theorem:

Proposition. Let (K, v) be henselian. Suppose k is NTP2. If either

1. (K, v) is of equicharacteristic and SAMK or trivial, or

2. (K, v) is of mixed characteristic with vp finitely ramified and (kp, v) SAMK or trivial,
or

3. (K, v) is of mixed characteristic with (k0, v) AMK;

then (K, v) is NTP2.

On the other hand, using explicit formulas, we prove that NTP2 henselian valued fields
obey strong tameness conditions:

Proposition. Let K be NTP2 and v be henselian. Then (K, v) is either

1. of equicharacteristic 0, hence tame, or

2. of equicharacteristic p and semitame, or

3. of mixed characteristic with (k0, v) semitame, or

4. of mixed characteristic with vp finitely ramified and (kp, v) semitame.
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In particular, (K, v) is gdr.

This is as far as we could push Anscombe-Jahnke for NTP2 henselian valued fields. Though
this allows us to give new examples of TP2 or NTP2 algebraic extensions of Qp, open questions
remain, most notably, whether Fp((Q)) is NTP2.

0.5 Algebraic extensions of Qp

In Chapter 4, we study algebraic extensions of Qp, and by applying the previously obtained
results, we classify them in terms of their complexity. Of course, the classifications we dis-
cussed are classification of henselian valued fields, and not of pure fields. Fortunately, the
p-adic valuation is definable in any non-algebraically closed algebraic extension of Qp, a fact
that is well-known but for which we provide a self-standing argument. On the NIPn side of
the spectrum, we obtain the following:

Theorem. An algebraic extension of Qp is NIPn iff it is NIP, and iff it is in one of the
following mutually exclusive cases:

1. it is a finite extension of Qp,

2. it is a finite extension of Qt
p,

3. it is an algebraic extension of (Qt
p)

k, where (Qt
p)

k is any Qt
p-complement of Qv

p.

We also study in detail other classes of complexity and present in Section 4.3 a state of
art of complexity of algebraic extensions of Qp.
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Chapter 1

Algebra and Model Theory of Valued
Fields

Many textbooks on valued fields exist, whether it be of algebraic, number-theoretic or model-
theoretic flavor. We write this chapter in order to lay the ground for what comes next,
assembling definitions and theorems from, among other sources, [EP10, Hil18, Jah18].

1.1 Valuation theory

This section is mainly a rewriting of [EP10, sec. 4] and [Jah18]. We will often omit proofs,
especially when the argument follows directly from definitions.

1.1.1 Dictionary of valuations

In order to properly define valuations, we should first define ordered abelian groups and how
to extend them by a point at infinity; we let that aside for now and will come back to it in
Section 1.3.1, when we study their model theory in details.

Definition 1.1.1. Let K be a field and (Γ,+, <) an ordered abelian group. A valuation on
K is a group epimorphism v : (K×,×) ↠ (Γ,+) such that v(x + y) ⩾ min(v(x), v(y)) for all
x, y ∈ K× with x+ y ̸= 0.

We extend v to K by setting v(0) = ∞ and we sweep details under the carpet.

Example 1.1.2.

• On any field K, we can define the trivial valuation by setting v(x) = 0 for any x ∈ K×.

• The p-adic valuation vp : Q → Z is defined by vp(p) = 1 and vp(q) = 0 for q ̸= p prime;
this uniquely determines it by multiplicity – in particular, vp(1) = 0 and vp(0) = ∞.

• Given a field K and an irreducible polynomial P ∈ K[t], we define the P -adic valuation
vP : K(t) → Z by letting vP (P ) = 1 and vP (Q) = 0 for Q ∈ K[t] coprime with P .
When P = t, we have the special case of the t-adic valuation.

• Finally, given a field K and an ordered abelian group Γ, we consider the Hahn field
K((Γ)) of formal series

∑
γ∈Γ aγt

γ such that {γ ∈ Γ | aγ ̸= 0} is a well-ordered set. The
t-adic valuation vt : K((Γ)) → Γ is defined by letting v(

∑
γ∈Γ aγt

γ) = min {γ | aγ ̸= 0}.

Definition 1.1.3. A valuation ring is a subring of a field such that for any non-zero x in the
field, either x or x−1 is in the valuation ring.
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Proposition 1.1.4.

• Given a valuation v, we define the set Ov = {x ∈ K | v(x) ⩾ 0}; it is a valuation ring.

• Given a valuation ring O, we define a relation on K× by writing x ∼ y iff x−1y ∈ O×;
it is an equivalence relation, and the projection v : K× → (K×/∼) is a valuation – with
value group (Γ,+) = (K×/∼,×), ordered by writing x/∼ ⩽ y/∼ iff x−1y ∈ O.

• Let v and w be two valuations on the same field. We have Ov = Ow iff v and w are
equivalent, that is, v(x) > v(y) iff w(x) > w(y) for all x, y ∈ K.

The proof is omitted; it follows quite directly from definitions.

Definition 1.1.5. Given a valuation ring O and the corresponding valuation v, we define
M = O \ O× = {x ∈ K | v(x) > 0}. It is the unique maximal ideal of O, thus k = O/M is
a field; we call it the residue field of the valuation. We call the projection from O to k the
residue map of the valuation. We can extend it to a map from K to k ∪ {∞} by sending any
element x /∈ O to ∞, we call this extended residue map a place.

Thus, any valuation comes with a valuation ring O, a value group Γ and a residue field
k – we will denote them be these letters usually, sometimes with v as a subscript to prevent
ambiguity.
Example 1.1.6. We encourage readers not familiar with valuations to determine the value
groups, the valuation rings and the residue fields of valuations defined in Example 1.1.2.

Lemma 1.1.7. Let (K, v) be a valued field with residue field k. If ch(K) = p, then ch(k) = p.
If ch(K) = 0, then for any prime p, ch(k) = p iff v(p) > 0; in particular ch(k) = 0 iff v(p) = 0
for all primes p.

When ch(K) = ch(k), we say (K, v) is of equicharacteristic, and specify 0 or p. If ch(K) ̸=
ch(k), we know that ch(K) = 0 and ch(k) = p > 0, and we say (K, v) is of mixed characteristic.

1.1.2 Extensions of valuations

Theorem 1.1.8 (Chevalley’s extension theorem). Let K be a field and R ⊂ K a subring with
a prime ideal I ⊂ R. Then there is a valuation ring O ⊂ K such that R ⊂ O and M∩R = I.

Corollary 1.1.9. Let K ⊂ L be fields and v a valuation on K, then there is a valuation w
on L extending v – in the sense that w|K is equivalent to v.

Furthermore, the value group and residue field of (K, v) can be naturally embedded in those
of (L,w).

Proposition 1.1.10. Let L/K be algebraic and w be a valuation on L. Let v = w|K . Then
we have Γv ⊂ Γw ⊂ Div(Γv) and kv ⊂ kw ⊂ kalgv .

Div(Γ) is the divisible hull of Γ, it is constructed by adding to Γ, if necessary, γ/n for
every γ ∈ Γ and every n ∈ N \ {0}. See section 1.3.1 for more details.

Theorem 1.1.11 (Fundamental equality). Let (K, v) be a valued field and L/K be a finite
extension. Up to equivalence, there are only finitely many different extensions of v to L. Let
(wi)i<n be all the extensions of v to L. For each i let ei = (Γwi : Γv) and fi = [kwi : kv]. Then
there is (di)i<n ∈ ωn such that:

[L : K] =
∑
i<n

dieifi.

Furthermore:
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• In residue characteristic 0, di = 1;

• In residue characteristic p, there is (mi) ∈ ωn such that di = pmi ;

• If L/K is a Galois extension, the quantities di, ei and fi do not depend on i, and
[L : K] = ndef .

The quantities di, ei and fi are called respectively the defect, the ramification index and
the inertia degree of the extension (L,wi)/(K, v). For a proof of the fundamental equality in
the form stated here, we refer to [Kuh11, Lem. 11.2].

Definition 1.1.12. An extension (L,w)/(K, v) is called immediate if Γw = Γv and kw = kv.
If a valued field has no proper immediate extension, it is called maximal. Similarly, if a valued
field has no algebraic or separable algebraic immediate extension, we call it algebraically or
separably algebraically maximal.

Definition 1.1.13. A valued field of residue characteristic p > 0 is Kaplansky if its value
group is p-divisible and its residue field is p-closed and perfect, that is, it admits no extension
(separable or not) of p-power degree.

Combining these two notions give (separably) algebraically maximal Kaplansky fields,
abridged as (S)AMK, which will play an important role in Chapter 3.

1.1.3 Decomposition of valuations

Definition 1.1.14. Let O1 and O2 be two valuation rings on the same field K. We call them
comparable if one is included in the other and incomparable otherwise. If O1 ⊂ O2, we call
O1 a refinement of O2 and O2 a coarsening of O1.

Note that two valuation rings always have a smallest common coarsening, namely, their
product.

Definition 1.1.15. Let (K, v) be a valued field and w be a valuation on kv. The lift of Ow

to K, that is, {x ∈ K | x ∈ Ow ⊂ kv} is a valuation ring; we call the corresponding valuation
the composition of w and v and we denote it w ◦ v.

Since each valuation comes with a place, we usually draw the following diagram, where
we denote by the same letter the place and the valuation:

K
v−→ kv

w−→ kw

The residue field of (K,w ◦ v) is kw. The valuation ring Ow◦v is a refinement of Ov, and
we have Γw◦v ≡ Γv ⊕ Γw, where ⊕ is the lexicographic sum:

Definition 1.1.16. Let Γ and ∆ be ordered abelian groups. Γ⊕∆ is the group (Γ×∆,+)
ordered lexicographically: (γ, δ) > (γ′, δ′) if and only if either γ > γ′ and δ, δ′ are arbitrarily
ordered, or γ = γ′ and δ > δ′.

Proposition 1.1.17. Refinements of valuation rings correspond exactly to valuations on the
residue field.

Coarsenings of valuation rings correspond exactly to convex subgroups of the value group.
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Proof. We’ve seen that a valuation on a residue field gives a refinement by composition.
Now, given a refinement O ⊂ Ov, take the residue O ⊂ kv, it is a valuation ring. This
correspondence gives a bijection.

Now for coarsenings. Given a convex subgroup ∆ of Γv, the valuation w sending x
to v(x)/∆ is a coarsening of v. Finally, given a coarsening w of v, the set v(O×w ) =
{γ ∈ Γv | ∃x w(x) = 0 ∧ v(x) = γ} is a convex subgroup of Γv. This correspondence is again
bijective.

With this, we can now decompose valuations; given a convex subgroup ∆ of Γv, we can
see a valuation v as a composition of two valuations:

K
Γv/∆−−−→ k∆

∆−→ kv

Definition 1.1.18. Let (K, v) be a valued field and fix t ∈ Ov. The standard decomposition
around t is defined by fixing two convex subgroups:

∆0 =
⋂

v(t)∈∆
∆⊂Γ convex

∆ & ∆t =
⋃

v(t)/∈∆
∆⊂Γ convex

∆

And performing the following decomposition:

K
Γv/∆0−−−−→ k0

∆0/∆t−−−−→ kt
∆t−−→ kv

We immediately remark that ∆0/∆t is of rank 1 – meaning that it has no non-trivial proper
convex subgroup – and that t ̸= 0 in k0 and t = 0 in kt. Most notably, when (K, v) is of
mixed characteristic, we will perform this decomposition with t = p, decomposing a valuation
into two equicharacteristic parts and a mixed characteristic rank 1 part in the middle.

Because the jump from characteristic 0 to characteristic p happens exactly at the value of
p, the properties of the interval [0, v(p)] play an important role.

Definition 1.1.19. Let (K, v) be a mixed characteristic valued field. We call it unramified
if v(p) is the minimal positive element of Γ, finitely ramified if the interval [0, v(p)] ⊂ Γ is
finite, and inifinitely ramified otherwise.

If the interval [0, v(p)] is n-divisible, we call Γ roughly n-divisible.

1.2 Henselianity

1.2.1 Hensel’s lemma

Similarly to an absolute value, a valuation induces a topology on a field, called a V-topology.
In the same way as R is the completion of (Q, <), one can for each prime p define Qp as
the completion of (Q, vp); that is, any sequence which is Cauchy according to the topology
induced by vp converges in Qp.

However, completeness is not a first-order property. A first-order counterpart of comple-
tion is henselianity:

Definition 1.2.1. A valuation v on a field K is called henselian if it extends uniquely – up
to equivalence – to the algebraic closure Kalg. We also say that a field is henselian if it admits
a non-trivial henselian valuation.

Henselianity can be expressed via several equivalent properties:
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Proposition 1.2.2 (Hensel’s lemma). For a valued field (K, v), the following are equivalent:

1. v is henselian;

2. For all P ∈ Ov[X], if P has a simple zero α ∈ k, then P has a zero a ∈ Ov with a = α;

3. For all P ∈ Ov[X], if there is a ∈ Ov such that v(P (a)) > 2v(P ′(a)), then there is a
unique b ∈ Ov with P (b) = 0 and v(b− a) > v(P ′(a));

4. For any P ∈ Mv[X] of degree d, Xd+2 +Xd+1 + P has a root in K.

The proof is once more omitted, see for example [EP10, Thm. 4.1.3].

Example 1.2.3.

• The trivial valuation is always henselian. Since Fp can only be trivially valued, algebraic
extensions of Fp themselves can only be trivially valued.

• As stated, the p-adic valuation on Qp is henselian, but not on Q; for example, X2 + 1
admits a simple root in F5 but not in Q.

• Somewhat similarly, the t-adic valuation is henselian on K((t)) – i.e. K((Z)) – but not
on K(t).

Corollary 1.2.4 (Henselian fundamental equality). Let (K, v) be a henselian valued field, let
L/K be finite and w be the unique extension of v to L; then:

[L : K] = d(Γw : Γv)[kw : kv]

where d = 1 if ch(k) = 0 and d = pm for some m ∈ ω when ch(k) = p.

1.2.2 The canonical henselian valuation

We highlight the following facts; they are not hard to prove and will be useful, we refer to
[EP10, sec. 4.2].

Proposition 1.2.5. Let (K, v) be a valued field.

1. If K = Ksep (and v is non-trivial), then kv = kalgv ;

2. If v is the composition of two valuations v1 and v2, then v is henselian iff v1 and v2 are
henselian.

Since any two valuation rings are included in a bigger valuation ring, namely their prod-
uct, and coarsenings of a valuation are linearly ordered, valuations are always arranged in a
tree. Henselian valuation rings are well behaved regarding this tree structure, forming two
meaningful components. There, in the middle, lies one ring; one ring to compare them all
and in the darkness define them.

All of the results of this subsection are based on [EP10, sec. 4.4].

Proposition 1.2.6. We call two valuation rings of K independent if they are incomparable
and if their only common coarsening is K itself.

If a field K admits two independent henselian valuation rings, then K is separably closed.
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Note that by Proposition 1.2.5 any coarsening of a henselian valuation is still henselian.
Now split the set H of all henselian valuation rings of K in two:

H1 = {Ov | v is henselian and kv ̸= ksepv }
H2 = {Ov | v is henselian and kv = ksepv }

Since K itself is a valuation ring H is never empty.

Proposition 1.2.7. Let K be a field, then H1 is linearly ordered by inclusion; furthermore,
for any O1 ∈ H1 and O2 ∈ H2, we have O2 ⊂ O1.

It is now clear what we ought to define as the canonical henselian valuation: the finest
valuation which does not branch, see Figure 1.1.

Definition 1.2.8. The canonical henselian valuation of a field K, denoted by vK , is the
coarsest valuation of H2 if H2 is non-empty, and the finest valuation of H1 if H2 is empty.

Note that this valuation exists by Zorn’s lemma in the first case and is just the intersection
of all valuations of H1 in the second case.

Proposition 1.2.9. It follows from the definition:

1. Every henselian valuation is comparable with vK and with every coarsening of it;

2. vK is non-trivial iff K ̸= Ksep and K is henselian;

3. No proper coarsening of vK has separably closed residue field;

4. All proper refinements of vK have separably closed residue field.

K

...

OvK

H1

H2

Figure 1.1: The tree structure of H.

1.3 Model theory of valued fields

Most of the results of this section can be found in [Hil18].
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1.3.1 Ordered abelian groups

We call OAG the first-order theory of ordered abelian groups in the language LOAG =
{0,+, <}. It is axiomatized by:

• Abelian group axioms,

• Linear order axioms,

• ∀x∀y∀z(x < y → x+ z < y + z).

When talking about valued fields, we need to augment the structure of the value group
by a point at infinity; the theory OAG+ in the language LOAG+ = LOAG ∪ {∞} is OAG (on
all x ̸= ∞) plus ∀x(x+∞ = ∞) and ∀x(x ̸= ∞ → x <∞).

Because these two theories are bi-interpretable, we jump from one to the other without
too much care; we will work with OAG when talking about pure ordered abelian groups and
OAG+ when talking about the structure of a value group of a valued field.

Finally, we consider the theory DOAG – or DOAG+ – of divisible ordered abelian groups,
consisting of OAG and ∀x∃y(x = y +· · ·+ y  

n

) for each n > 1.

We usually allow the trivial group {0} to be a model of both OAG and DOAG, especially
since we need to be able to talk about trivial valuations; however, this trivial structure is
sometimes an annoying counterexample, so we exclude it when needed by adding ∃x(x ̸= 0)
or ∃x(x ̸= 0 ∧ x ̸= ∞) to the theories.

As a < a+b
2 < b for any a < b, we have – except for the trivial group – the following:

Lemma 1.3.1. DOAG ⊢ DLO

Lemma 1.3.2. Any ordered abelian group has a divisible hull unique up to isomorphism.

By the divisible hull of Γ ⊨ OAG, we mean F ⊨ DOAG such that F/Γ is torsion. The
existence and uniqueness of such a divisible hull is an easy exercise (mimic the construction
of Q from Z).

We write Div(Γ) for the divisible hull.

Proposition 1.3.3. DOAG has QE and is complete.

Completeness follows from QE, and QE can be seen easily by extending partial embed-
dings.

Corollary 1.3.4. DOAG is o-minimal.

Finally, let us mention the following, which will be usefull later:

Theorem 1.3.5 (Gurevich-Schmitt, [GS84]). OAG is NIP.

1.3.2 Languages of valued fields

There are many different languages for valued fields. The four we present here do not contain
more than what is needed, and expressing the theory of valued fields in those four languages
result in four bi-interpretable theories.

• LO is Lring plus a unary predicate O for a valuation ring,

• Ldiv is Lring plus a binary relation | which is to be interpreted as x|y iff v(x) ⩽ v(y),
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• LΓ is a two-sorted language with a sort K equipped with Lring and a sort Γ equipped
with LOAG, plus a function symbol v : K → Γ,

• LΓk is a three-sorted language containing the previous one as well as a copy of Lring for
the third sort k and a function R : K2 → k which is to be interpreted as the function
sending (a, b) to the residue of b−1a if it is in O, and 0 otherwise.

The reason why we specifically consider these languages is a QE result (see Theorem 1.3.9).
Most of the time, a valued field has more structure than the same field without valuation

– in the sense that more sets are definable. However, it might happen that the valuation is
definable, in the sense that O is a ring-definable set; this is true for example for vp in Qp or
vt in K((t)).

Definition 1.3.6. We define open balls of center a ∈ K and of radius γ ∈ Γv as B>γ(a) =
{x ∈ K | v(x− a) > γ} and closed balls as B⩾γ(a) = {x ∈ K | v(x− a) ⩾ γ}.

We can consider singletons as closed balls of infinite radius and K as an open ball of
negative infinite radius.

Open balls are a basis for a field topology – that is, a topology making field operations
continuous.

Note that O = B⩾0(0) and M = B>0(0).
Since balls form a definable family, this topology is said to be definable in a valued field.

This topology is discrete iff the valuation is trivial. Topologies induced by valuations or
archimedean absolute values are called V-topologies. They can be characterized in first-order:

Lemma 1.3.7. Let τ a collection of open neighborhoods of 0 forming a basis for a topology.
Then τ is a V-topology iff:

•
⋂

U∈τ U = {0} but {0} /∈ τ ;

• For any pair U, V ∈ τ , there is W ∈ τ such that W ⊂ U ∩ V ;

• For every U ∈ τ there is W ∈ τ for which W −W ⊂ U ;

• For all U ∈ τ and every pair x, y ∈ K there is W ∈ τ satisfying (x+W )(y+W ) ⊂ xy+U ;

• For U ∈ τ and x ∈ K×, there exists W ∈ τ such that (x+W )− 1 ⊂ x− 1 + U ;

• For all W ∈ τ there exists U ∈ τ such that x, y ∈ K and xy ∈ U implies x ∈ W or
y ∈W .

If τ is a definable family, then these conditions are first-order.

See [EP10, Annex B] for more details on V-topologies, including a proof of the result
above.

1.3.3 Algebraically closed valued fields

Definition 1.3.8. We call ACVF the valued-field-theory of algebraically closed valued fields.
We write ACVF(ch(K),ch(k)) for the theory ACVF with a fixed characteristic for the field and
the residue field.

Theorem 1.3.9 (Robinson). ACVF has QE in any of the four languages. Its completions
are ACF0 and ACFp with trivial valuations, ACntVF(0,0), ACVF(0,p) and ACntVF(p,p) when
“ntVF” stands for non-trivially valued fields.
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No need to specify “nt” for mixed characteristic since trivial valuations are always equichar-
acteristic. Again, we refer to [Hil18] for details and proof of the result above and all the
corollaries below.

Corollary 1.3.10. ACVF is C-minimal: every definable subset of K ⊨ ACVF is a finite
disjoint union of Swiss Cheeses, that is, sets of the form B \ ∪i<nBi for balls B and (Bi)i<n.

Corollary 1.3.11. (Any completion of) ACVF is NIP.

Note that (any completion of) ACF is stable, even strongly minimal; adding a valuation
gives a definable order and thus instability, but nonetheless remains NIP. See Chapter 2 for
definitions of these notions, precisely Definitions 2.1.1 and 2.2.1.

Corollary 1.3.12. In K ⊨ ACVF, the value group and the residue fields are stably embedded
and orthogonal (that is, definable subsets of Γn × km are of the form X × Y for X ⊂ Γn

definable and Y ⊂ km definable).

1.3.4 The AKE principle

A cornerstone in the model theory of valued fields is the following result, obtained indepen-
dently by Yuri Ershov and by James Ax and Simon Kochen:

Theorem 1.3.13 (Ax-Kochen [AK65], Ershov [Ers65]). Let (K, v) and (L,w) be henselian
valued fields of equicharacteristic 0, then (K, v) ≡ (L,w) iff Γv ≡ Γw and kv ≡ kw.

In particular, this implies the following:

Corollary 1.3.14. Let φ be a first-order sentence of valued fields, then for almost all p,
Qp ⊨ φ iff Fp((t)) ⊨ φ.

Indeed, an ultraproduct of Qp and of Fp((t)) – regarding the same non-principal ultrafilter
on the set of primes numbers – have the same residue field and same value group, and are of
equicharacteristic 0, and we conclude by Łoś’ theorem.

At the time of publication of this result, in 1965, it was considered as a mere lemma, used to
obtain the main theorem, namely, an approximate answer to Artin’s conjecture. Nowadays,
AKE-like results are an important part of the model-theoretic study of valued fields. The
AKE-philosophy can be summarized by: if I know many properties of the residue field and
the value group, what can I say about the valued field itself?

Modern proofs of the AKE principle can be found in [Sim15, app. A.2] and [Hil18, sec. 6],
we give a summary of these arguments here.

Definition 1.3.15. Let (K, v) be a valued field. An angular component is a map ac: K → k
such that ac(xy) = ac(x) ac(y) and extending the residue map, in the sense that if v(x) = 0,
ac(x) = res(x).

Angular components can be obtained by cross sections of the valuation: given a group
homomorphism s : Γ → K× such that v ◦ s = id, the map acs(x) = res( x

s(v(x))) is an angular
component.

Not all valued fields have angular components, however, any ℵ1-saturated valued field does
so – because its valuation then has a cross section.

The three-sorted language of valued fields with an angular component instead of the usual
residue map is called the Denef-Pas language, and was proven to be an interesting language
for the model theory of valued fields by Johan Pas:
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Theorem 1.3.16 (Pas, [Pas89]). Let (K, v, ac) be a henselian valued field of equicharacteristic
0 equipped with an angular component. Then (K, v, ac) eliminates K-quantifiers in the Denef-
Pas language.

The AKE principle then follows. Note that this modern proof does not say anything about
other characteristics, whereas, as noted by Françoise Delon in [Del80], Ershov’s proof actually
does apply to any algebraically maximal Kaplansky henselian valued field; in particular, it
applies to equicharacteristic 0 fields, but not only.

1.4 Definability of valuations

In general, adding a valuation to a pure field can significantly change its model-theoretic
properties, by adding new definable sets; as we’ve seen, a general algebraically closed valued
field is NIP and unstable if the valuation is non-trivial, whereas an algebraically closed field
is strongly minimal.

However, in some cases, adding the valuation does not change anything, because it was
already definable: we call a valuation definable when the set Ov ⊂ K is a definable set in the
pure field structure (K, 0, 1,+,−,×). Whether it is definable with or without parameters is
mostly not relevant for us. The best example, also significant historically, is the p-adic field,
on which the p-adic valuation is definable by a formula of Julia Robinson.

In this section, we compile definability results which will be useful for the rest of our work;
none of them are new.

1.4.1 Robinson’s formula

A very beautiful formula dating back to Julia Robinson can define vp in Qp:

φ(x) : ∃y 1 + pxq = yq

Here q is a prime number different from p. Indeed, if vp(x) < 0 then vp(1 + pxq) = vp(px
q) =

qvp(x)+ 1; hence v(1+ pxq) ̸= v(yq) for all y and Qp ̸⊨ φ(x). On the other hand, if vp(x) ⩾ 0
then vp(px2) > 0 and X2 − (1 + px2) has a root by Hensel’s lemma, so Qp ⊨ φ(x).

This formula works mainly because there is an element of minimum positive valuation,
namely p, and because there is a polynomial to which we can easily apply Hensel’s lemma.

Proposition 1.4.1. Let (K, v) be a henselian valued field. Suppose there is t ∈ Ov such that
v(t) is not p-divisible for some p ̸= ch(k). Then the formula

φp(x, t) : ∃y 1 + txp = yp

defines the set I = B>−v(t)/p(0), and the formula

ψp(x, t) : ∀y(φp(y, t) → φp(xy, t))

defines a non-trivial coarsening of Ov.

This is a quite well-known generalization of Robinson’s formula which can be attributed
to Thomas Scanlon, see for example [Jah19, Prop. 3.6].

Proof. Let x ∈ K be such that v(t) + pv(x) > 0. Then v(1 + txp) = 0, and the polynomial
Y p − (1 + txp) has a root by Hensel’s lemma. Note: this is why we need p ̸= ch(k). Now let
x ∈ K such that v(t) + pv(x) < 0. Then v(1 + txp) = v(t) + pv(x) is not p-divisible, hence x
cannot realize φp. The case v(t) + pv(x) = 0 cannot happen since v(t) is not p-divisible.
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Therefore we have that φp(x, t) holds iff pv(x) > −v(t). In particular, it holds for all
elements of Ov.

The formula ψp defines the multiplicative stabilizer of I. This gives us a ring, containing
Ov, but not equal to the whole field since ψp(t

−1, t) doesn’t hold.

We will be more precise as to exactly which coarsening this formula defines.

Lemma 1.4.2. Let (K, v) and t be as above, and consider a convex subgroup ∆ of Γ. Let
R = ψp(x, t). Then ∆ ⊂ vR iff v(t) ∈ Γ/∆ is not p-divisible, that is, there is no ε ∈ ∆ such
that v(t) + ε is p-divisible (in Γ).

Proof. Let ε ∈ ∆ be such that v(t) + ε is p-divisible. If ε is negative, then v(t) + ε − pε is
also p-divisible and thus, possibly replacing ε with (1 − p)ε, we might assume ε > 0. Now,
v(t) − (p − 1)ε is also p-divisible, and is smaller than v(t). Let δ = −v(t)−(p−1)ε

p . We have
pδ > −v(t) so δ ∈ vI. But p(δ − ε) = −v(t)− ε < −v(t), so δ − ε /∈ vI; hence −ε /∈ vR.

Now assume that there is ε ∈ ∆>0 such that −ε /∈ vR. This means that there is δ ∈ Γ
such that pδ > −v(t) but p(δ − ε) < −v(t). Hence 0 < pδ + v(t) < pε: v(t) + pδ ∈ ∆ and
v(t)− (v(t) + pδ) is p-divisible.

Here’s a tentative explanation of the phenomenon: replace your parameter t by at in ψp

for some a with v(a) = ε ∈ ∆; if it remains non-p-divisible, well then this shifted parameter
should define the same set, so there is no way to tell ε and 0 apart in the value group.

Corollary 1.4.3. Let (K, v) be henselian. If Γ has a rank 1 convex subgroup which is not
p-divisible for some p ̸= ch(k), then v is definable.

In particular, if Γ has a minimal positive element, then v is definable.

1.4.2 Fehm’s method

Robinson’s formula gives, in particular, an existential definition of the t-adic valuation in
K((t)) using one parameter, namely, t. In 2013, Sylvy Anscombe and Jochen Koenigsmann
gave an existential parameter-free formula defining the t-adic valuation in Fq((t)), using the
fact that the residue field, being finite, is qf-∅-definable. Arno Fehm then generalized their
result to other cases. Their motivation was to ensure existential ∅-definability, however, here
we will allow parameters, making the argument more direct but weaker. All of the results
below come from Fehm’s paper [Feh15].

Lemma 1.4.4. Let (K, v) be henselian, and suppose the residue field k is not separably closed.
Let f ∈ O[X] be a monic polynomial such that f ∈ k[X] has no root and f ′ is not zero. Then
the set U = 1

f(K) −
1

f(K) is definable and we have M ⊂ U ⊂ O.

Proof. U is definable via the formula φ(x, a) : ∃y∃zf(y)− f(z) = xf(y)f(z), where a are the
coefficients of f . To prove the inclusions, note that:

• If v(x) ⩾ 0, then f(x) ̸= 0 by the choice of f ; this means f(x) ∈ O× and thus 1
f(x) ∈ O×.

• If v(x) < 0, then v(f(x)) < 0, so 1
f(x) ∈ M.

Hence, if we take u ∈ U , u is a sum of two elements of O and thus is in O.
Now, by our choice of f there is a ∈ O such that f ′(a) ̸= 0. Now fix m ∈ M and consider

the polynomial P (X) = mf(a)f(X) + f(X)− f(a). Its residue is P (X) = f(X)− f(a). a is
a simple root of P ; by henselianity P has a root b ∈ O, and thus m = f(a)−f(b)

f(a)f(b) ∈ U .
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It remains to add to this set U a lift of the residue field, that is, a set T ⊂ O such
that T = k. Indeed, given such a T , fix any x ∈ O; there is t ∈ T such that t = x. Now
(x− t) ∈ M ⊂ U , so x = (x− t) + t ∈ U + T , and we have U + T = O.

Lemma 1.4.5. Let (K, v) be henselian with residue field k not separably closed. If k is finite
or PAC∗, then there is a definable T ⊂ O such that T = k.

Proof. If k is finite, then we can find a finite T , which is then definable – with parameters.
If k is PAC, then we fix a monic polynomial f ∈ O[X] such that f is square-free, has no

root, and f
′ ̸= 0. Then the set T = 1

f(K) ·
1

f(K) works: indeed, as above, T ⊂ O. Now fix
c ∈ k×; the polynomial f(X)f(Y ) − 1

c is absolutely irreducible in k[X,Y ], therefore it has a
rational point, that is to say, 1

c ∈ f(k) · f(k), or equivalently, c ∈ 1
f(K) ·

1
f(K) , which means

k = T .

Corollary 1.4.6. Let (K, v) be henselian with residue field k. If k is finite or PAC and not
separably closed, then v is definable.

1.4.3 Non-explicit definability

In 2014, Franziska Jahnke and Koenigsmann proved that canonical p-adic valuations are
definable in a wide class of fields, using a method that gives no explicit formula, or rather,
that cannot give one. We do not define here vpK , the canonical p-henselian valuation, or its
spin-off v2∗K , as we will do so later in section A, where all notations are explained.

Theorem 1.4.7 (Jahnke-Koenigsmann, [JK14]). For any prime number p ̸= 2, there is a ∅-
ring-formula φp such that if either ch(K) = p or K contains a pth-root of unity, then φp(K) =
OvpK

; and for p = 2 there is a ∅-ring-formula φ2 such that if K ⊨ T2, then φ2(K) = Ov2K
when

kv2K
is not euclidean and φ2(K) = Ov2∗K

when kv2K
is euclidean.

This result was first announced in a 1995 paper by Koenigsmann alone, however, the
proof was incomplete. Jahnke and Koenigsmann, not yet aware of the incompleteness, used
the result to define henselian valuations in fields with non-universal Galois groups. Afterwards,
they published a paper fixing the proof, and ended up publishing those two papers in reverse
order, making sure everything is well-founded. Nevertheless, a slight gap remained in a
jump from equicharacteristic p to mixed characteristic; this was spotted and fixed by Zoé
Chatzidakis and Milan Perera.

Thus, the complete and (hopefully) correct proof of the definability of canonical p-henselian
valuations can be found in [Koe95, JK14, JK15, CP17]; one should read them in antichrono-
logical order to know which result from the previous papers are being fixed.

Because of this sinuous literature, we assembled a complete proof, as well as definitions
and discussion around p-henselianity, which we will provide in appendix A.

For our purpose, what matters truly is the definability of henselian valuations, rather than
p-henselian valuations. We will use the following theorem by Jahnke and Koenigsmann, of
which we only give a proof heuristic here.

Corollary 1.4.8 ([JK15, Thm. 3.15]). If the Galois group of a field K is non-universal and
if kvK is neither separably closed nor real closed, then vK is ∅-definable in K.

∗A field is called pseudo-algebraically closed, or PAC, if it is existentially closed in each of its regular
extensions. This is equivalent to saying that every irreducible variety has a rational point.
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Proof heuristic. The assumptions are here to make sure that vK is the finest henselian valua-
tion on K. Now, if the residue field has only Galois extensions of p-power degree, then we will
have vpK = vK , and we can then check that K satisfies the needed assumptions and ensure
that vpK is ∅-definable.

If the residue field has Galois extension of degree divisible by 2 different primes p < q,
then – potentially going there and back again as in section 4.1.3 – vpK and vqK are definable.
Because the residue is neither p nor q closed, both vpK and vqK are refinements of vK . It turns
out that vpK and vqK are comparable, and that the coarsest one is henselian; thus, because vK
is the finest henselian valuation, it must be equal to one of vpK and vqK and is thus definable.

It might seem that the non-universality of the Galois group is not used in the proof. But
saying “it turns out that vpK and vqK are comparable” is not a proof; and the reason why it
turns out like that involves non-universality. We refer to the original paper for more details,
most notably [JK15, Prop. 3.13].
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Chapter 2

Artin-Schreier Extensions &
Combinatorial Complexity

The study of combinatorial complexity and its link with algebraic properties of fields can
be traced back to the 70’s, when Angus Macintyre showed that infinite ω-stable fields are
separably closed [Mac71]. This result has since been extended to superstable fields [CS80]
and recently to large stable fields [JTWY21].

The study of NIP fields has gained more interest in the recent years. To the extent of
current knowledge, unstable NIP fields seem to be o-minimal or henselian. This is known for
dp-finite fields by the work of Will Johnson [Joh20], furthermore, NIP henselian fields are
classified by a result of Anscombe and Jahnke [AJ19a], as we will see in Theorem 3.1.1.

On the other hand, it is believed that fields are NIPn exactly when they are NIP. Many
properties of NIP fields can be generalized to NIPn fields, for example by work of Nadja
Hempel and Artem Chernikov [Hem14, CH21].

Finally, NTP2 fields have seen many recent developments, including transfer from residue
field in equicharacteristic 0 by Chernikov [Che14], extensive study of valued difference NTP2
fields by Chernikov and Martin Hils [CH12], and a proof of NTP2 for bounded PRC and PpC
fields by Samaria Montenegro [Mon17].

This chapter introduces relevant complexity classes of first-order structure and presents
the most important results and the main conjectures. It focuses in detail on the relationship
between Artin-Schreier extensions and these complexity classes. The starting point is a well-
known result by Itay Kaplan, Scanlon and Frank Wagner, stating that infinite NIP fields of
characteristic p > 0 have no Artin-Schreier extension [KSW11]. This has been shown to also
hold for NIPn (n-dependent) fields by Hempel [Hem14], and Chernikov, Kaplan and Pierre
Simon extended this result to the NTP2 setting, proving that an NTP2 field of characteristic
p > 0 has finitely many Artin-Schreier extensions [CKS12].

These conditions can be used to check whether a given field fails to be NIP(n) or NTP2:
Fp((Z)) has TP2, Fp((Q)) has IP(n). But this is rather unsatisfying: being NIP(n) or NTP2
is a global property, whereas proving that some theory has IP(n) or TP2 should be done by
exhibiting a specific formula witnessing it. Such explicit formulas can be found by reversing the
original arguments, they are exposed in Corollary 2.2.14, Corollary 2.3.12 and Corollary 2.5.9.

2.1 Stable fields

In this section we present stable theories as a first example of a combinatorial complexity
class of first-order structure. Historically, stable theories have been extensively studied before
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introducing most other complexity classes, and mathematically, most of these classes are
generalizations of stable theories. Thus, even though as we will quickly note, valued fields are
always unstable, and therefore nothing in this section is used elsewhere in the text; it makes
sense for us to at least define them and develop some understanding of their behavior.

Definition 2.1.1. Fix a complete theory T and a monster model M ⊨ T .
A formula φ(x, y) is said to have the order property (OP) in T if there are (ai)i<ω, (bi)i<ω

in M such that
M ⊨ φ(ai, bj) ⇔ i < j.

A formula which doesn’t have the order property is called NOP, and a theory is called NOP
if all formulas are.

Example 2.1.2. Any infinite ordered theory, such as (N, <) or DLO, and any theory with
a definable order such as (the theory of the pure fields) Q or R have OP. In particular,
(non-trivial) OAG and (non-trivially) valued fields have OP.

On the other hand, ACF is a NOP theory – it is even strongly minimal.

Many other classes of complexity can be defined by studying whether or not a given theory
expresses some pattern, here an infinite linear order, but in other cases a random graph, or
a infinite tree. In order to understand why this is a relevant notion, we will present another
equivalent definition of stability and a forking calculus result.

Definition 2.1.3. A complete theory is called κ-stable if over any set of parameters A ⊂ M
of size κ and any n < ω, |Sn(A)| = κ.

A theory is called stable if it is κ-stable for some κ and superstable if it κ-stable for all κ
large enough.

Proposition 2.1.4 ([Che15, Prop. 2.10]). A theory is NOP iff it is stable.

Usually, “stable” is a more standard term than “NOP”, despite its lack of consistency with
the rest of the important classes, and its vagueness – other mathematical objects can be called
stable, whereas as far as our knowledge go, NOP has only one meaning. Do not be afraid, we
follow the standard notation here; à charge de revanche.

Theorem 2.1.5. T is stable iff there is a ternary relation |⌣ (defined on subsets of a suffi-
ciently saturated model M) such that:

• |⌣ is invariant under automorphism;

• A |⌣C
B iff a |⌣C

b for any finite tuples a ∈ A and b ∈ B;

• For A |⌣C
B and any D, there is σ ∈ Aut(M) such that σ(A) |⌣C

BD;

• For any tuple a and set B, there is C ⊂ B with |C| ⩽ |T | such that a |⌣C
B;

• A |⌣C
B and A |⌣CB

D iff A |⌣C
BD;

• A |⌣C
B iff B |⌣C

A;

• If A |⌣C
A then A ⊂ acleq(C);

• If stp(a/A) = stp(b/A) and a |⌣A
B and b |⌣A

B, then stp(a/AB) = stp(b/AB).

Furthermore, |⌣ then corresponds to the usual non-forking independence relation.

We refer to [Pal18, Thm. 4.14] for a proof and a definition of the strong type “stp”.
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Conjecture 2.1.6 (Stable fields conjecture). A pure field is stable iff it is finite or separably
closed.

Theorem 2.1.7.

• Separably closed fields are stable (Wood, [Woo79]).

• ω-stable fields are finite or algebraically closed (Macintyre, [Mac71]).

• Superstable fields are finite or algebraically closed (Cherlin-Shelah, [CS80]).

• Large∗stable fields are finite or separably closed (Johnson-Tran-Walsberg-Ye, [JTWY21])

Finally, let us mention one important result:

Theorem 2.1.8. Infinite stable fields of characteristic p are Artin-Schreier closed.

This was shown by Scanlon in a short note on his personal website, see [Sca00]. This
sparked interest in the research on links between Artin-Schreier extensions and combinatorial
complexity.

However, looking at stability in a combinatorial manner yields the following line of reason-
ing: take an infinite field of characteristic p with Artin-Schreier extensions, we thus know that
it is unstable, hence there exists a formula with the order property. However, this formula is
not explicited in Scanlon’s work. Later, we will settle this in the study of NIP fields, by giv-
ing a formula which has IP – and thus also the order property – in fields with Artin-Schreier
extensions.

2.2 NIP fields

Consider DLO. It is clearly unstable, since it has the order property – one can also see that
|S1(A)| = ded(|A|) > |A|. But it is a very well-behaved theory. In order to study theories
“like DLO”, another property which they do not witness has been introduced, namely the
independence property. Definitions go back to Shelah, but we present them in a modern
form, mostly based on Simon’s book [Sim15].

2.2.1 The independence property

Definition 2.2.1. Let T be a complete theory and M ⊨ T a monster. A formula φ(x, y) is said
to have the independence property (IP) if there are (ai)i<ω, (bJ)J⊂ω such that M ⊨ φ(bJ , ai)
iff i ∈ J .

A formula is said to be NIP if it doesn’t have IP, and a theory is called NIP if all formulas
are NIP.

It is easy to see that NOP formulas are NIP.
As for stability, this definition can seem arbitrary. Therefore, we give some general results

to try and build intuition, and to see how they can, or can’t, be extended later to NIPn

theories.

Definition 2.2.2. The Vapnik-Chervonenkis dimension (dimVC) of a formula φ(x, y) (in a
given complete theory T ) is ⩾ N if we can find (ai)i<N and (bJ)J⊂N in a model M ⊨ T such
that M ⊨ φ(bJ , ai) iff i ∈ J .

If dimVC(φ) ⩾ N for all N , we write dimVC(φ) = ∞. It is then clear that dimVC(φ) = ∞
iff φ has IP.

∗A field is called large if any curve having at least one smooth rational point has infinitely many rational
points. Henselian fields and PAC fields are examples of large fields, see [Pop14].
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Lemma 2.2.3 ([Sim15, Lem. 2.5 & 2.9]). NIPity is preserved under boolean combinations
and under swapping x and y.

In particular, this means one could define IP with ai on the first tuple of variables, and
bJ on the second one; this is what is usually done. The reason why we set it up in reverse
order is to prepare the terrain for a generalization of IP, called IPn, that we will define in the
next section.

Lemma 2.2.4 ([Sim15, Lem. 2.7]). A formula φ(x, y) has IP iff there exists (ai)i<ω indis-
cernible (over ∅) and b such that φ(b, ai) holds iff i is even.

Lemma 2.2.5 ([Sim15, Lem. 2.11]). A theory is NIP iff all formulas φ(x, y) with |x| = 1 are
NIP.

Lemma 2.2.6 ([Sim15, Prop. 2.43]). A theory T is called dependent if and only if for all
M ⊨ T and for all p ∈ Sn(M), p has at most 2|M |+|T | global coheirs.

T is dependent iff it is NIP.

Thus, once again, two names cohabit for these theories. “NIP” is the most common name
in today’s literature, and the one we use. We think of this notion and all other in terms of
truth patterns that can or can’t be witnessed, and it thus makes more sense to us. Maybe
the best practice would be to use “NIP”, “NOP”, “NTP” etc. when working with those truth
patterns, and “dependent”, “stable”, “simple” etc. when working globally, doing for example
type-counting or forking-calculus.

2.2.2 NIP fields

Conjecture 2.2.7 (Shelah’s conjecture). NIP fields are either finite, separably closed, real
closed, or henselian.

We will discuss some aspects of this conjecture later in Section 2.2.6. For now, we state
some results which have been obtained by Johnson and which make this conjecture somewhat
believable.

Definition 2.2.8. A complete theory is said to have dp-rank ⩾ n if there are formulas
φ1(x, y)· · ·φn(x, y) and mutually indiscernible sequences (a1i )i<ω· · ·(ani )i<ω such that for any
i1· · ·in, the type

{
φk(x, a

k
ik
)
⏐⏐ k ⩽ n

}
∪
{
¬φk(x, a

k
i )
⏐⏐ k ⩽ n, i ̸= ik

}
is consistent.

The theory is called dp-minimal if it has dp-rank 1 and dp-finite if it has finite dp-rank.

Proposition 2.2.9. dp-finite theories are NIP.

Proof. Let φ(x, y) have IP. Then by Lemma 2.2.4 there is (ai)i<ω indiscernible and b such
that φ(b, ai) holds iff i is even. By Ramsey and compactness, we can find another sequence
with the same property but of length nω, thus thinking of it as n mutually indiscernible
sequences. Fix N , fix i0, · · · , in−1, and consider the finite type {φ(x, akω+2ik) | k = 0, · · · , n}∪
{¬φ(x, akω+2i+1) | k = 0, · · · , n, i ̸= ik, i < N}. It is satisfied by b. Thus, moving the indices
to ik and i respectively, by indiscernability the finite type {φ(x, akω+ik) | k = 0, · · · , n} ∪
{¬φ(x, akω+i) | k = 0, · · · , n, i ̸= ik, i < N} is satisfiable, and the theory has dp-rank ⩾ n for
any n.

Theorem 2.2.10 (Johnson in [Joh20]). dp-finite fields are either finite, algebraically closed,
real closed, or henselian.

Remember that separably closed fields are NIP (even stable); but dp-infinite by this
theorem, providing a counterexample to the converse of Proposition 2.2.9.
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Theorem 2.2.11 (Johnson again but this time in [Joh21]). Let (K, v) be NIP and ch(K) = p.
Then v is henselian.

The main course of this chapter concerns Artin-Schreier extensions. Building from Scan-
lon’s work, Kaplan and Wagner studied Artin-Schreier extensions of NIP and simple fields.

Theorem 2.2.12 (Kaplan-Scalon-Wagner in [KSW11]). Infinite NIP fields of characteristic
p are Artin-Schreier closed.

Once again, no formula having IP is explicited in their paper. In order to find one, let’s
summarize the argument: In a NIP theory, definable families of subgroups check a certain
chain condition, namely, Baldwin-Saxl’s. In an infinite field of characteristic p > 0, the family
{a℘(K) | a ∈ K}, where ℘(X) is the Artin-Schreier polynomial Xp −X, is a definable family
of additive subgroups; thus it checks Baldwin-Saxl, and this is only possible if ℘(K) = K.
The complexity of this argument is mainly hidden in the very last affirmation; it needs a
whole paper to prove it, namely [KSW11]. One can also look at [CH21, Appendix] for a more
explicit proof.

2.2.3 Baldwin-Saxl condition for NIP formulas

Let T be an L-theory, we work in a monster M ⊨ T . Let G be a type-definable set, and · be
a definable group law on G. Example: in a field K, we can take G = K and · = +.

Let φ(x, y) be an L-formula, and let A ⊂ M be a set of parameters such that Ha =
φ(M,a) ∩G is a subgroup of G for any a ∈ A.

Proposition 2.2.13 (Baldwin-Saxl). The VC-dim of φ is finite†iff the family (Ha)a∈A checks
the BS-condition: there is N (depending only on φ) such that for any finite B ⊂ A, there is
a B0 ⊂ B of size ⩽ N such that: ⋂

a∈B
Ha =

⋂
a∈B0

Ha

That is, the intersection of finitely many H’s is the intersection of at most N of them.

This is a classical result first studied in [BS76]. Modern versions can be found in many
model theory textbooks, for example [Sim15]; however, it is usually not stated as an equiva-
lence, since “in a NIP theory, all definable families of groups check a specific chain condition”
is much more useful than “if a specific family checks this hard-to-check chain condition, a
specific formula is NIP, but some others might have IP”. We give a proof here for convenience.

Proof.

⇒: Suppose that the family (Ha)a∈A fails to check the BS-condition for a certain N , that
is, we can find a0,· · ·, aN ∈ A such that:⋂

0⩽i⩽N

Hi ⊊
⋂

0⩽i⩽N & i ̸=j

Hi

for all j ⩽ N , and where we write Hi for Hai . We take bj /∈ Hj but in every other Hi and we
define bI =

∏
j∈I bj , where the product denote the group law of G – the order of operations

doesn’t matter. We have M ⊨ φ(bI , ai) iff i /∈ I, so the VC-dim of ¬φopp is > N .
Thus, if the VC-dim of φ is finite, the VC-dim of ¬φopp is also finite, and there is a

maximal such N .
†Precisely, the VC-dim of φ|y∈A, which is φ with the range of y restricted to A (which need not be a

definable set). We can either do this by adding a predicate for A, adding a sort for A, or even by restricting
to the case where A is the whole model, which is our case in the rest of the section. If we do not restrict,
left-to-right still holds, but right-to-left might fail, which is also a reason why it’s usually not stated.
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⇐: Suppose that (Ha)a∈A checks the BS-condition for a given N , and suppose that we
can find a0,· · ·, aN ∈ A and (bI)I⊂{0,···,N} ∈ G such that M ⊨ φ(bI , ai) iff i ∈ I. Now by
BS,

⋂
0⩽i⩽N Hi =

⋂
0⩽i<N Hi (maybe reindexing it). But now, let b = b{0,···,N−1}; we know

that M ⊨ φ(b, ai) for i < N , which means that b ∈
⋂

0⩽i<N Hi, thus b ∈ HN , and thus
M ⊨ φ(b, aN ), which contradicts the choice of a and b.

2.2.4 Artin-Schreier closure and local NIPity

We can now state the original result by Kaplan-Scanlon-Wagner as an equivalence:

Corollary 2.2.14 (Local KSW). In an infinite field K of characteristic p > 0, the formula
φ(x, y) : ∃t x = y(tp − t) is NIP iff K has no AS-extension.

Proof. Apply previous result with (G, ·) = (K,+) and A = K: φ is NIP iff φ has finite
VC-dim iff the family Ha = a℘(K) checks the BS-condition. This then implies that K is
AS-closed as discussed in the paragraph following Theorem 2.2.12. The opposite direction is
quite trivial: if K is AS-closed, then ℘(K) = K, so the BS-condition is obviously checked.

2.2.5 Lifting

The formula we obtained is existential, so if it witnesses IP in the residue field of a henselian
valued field, we can lift this pattern to the field itself.

Lemma 2.2.15. Let (K, v) be henselian and suppose kv is infinite, of characteristic p, and
not AS-closed; then K has IP as a pure field witnessed by φ(x, y) : ∃t x = (tp − t)y.

Proof. By assumption and by Corollary 2.2.14, there are (ai)i<ω and (bJ)J⊂ω such that kv ⊨
φ(bJ , ai) iff i ∈ J , that is, Pi,J(T ) = ai(T

p − T ) − bJ has a root in kv iff i ∈ J . But by
henselianity, taking any lift αi, βJ of ai and bJ , Pi,J(T ) = αi(T

p − T ) − βJ has a root in K
iff i ∈ J , thus K ⊨ φ(βJ , αi) iff i ∈ J .

This gives explicit IP formulas in some fields, for example, in complements of Qv
p over

Qp, see Proposition 4.2.6 and Theorem 4.2.7: they have residue Fp, value group Z[ 1
p∞ ], and

are defectless; going to a sufficiently saturated extension, we can find a non-trivial proper
coarsening w of v with residue characteristic p, thus (kw, v) is a non-trivial valued field of
equicharacteristic p with residue Fp, thus it is not AS-closed, and we apply the previous
Lemma to (K,w): K has IP as a pure field.

Apart from an explicit formula, this is not new, and can be argued in a slightly more
general way, to the cost of explicitness:

Lemma 2.2.16 (Jahnke). Let K be NIP and v be henselian, then (K, v) is NIP.

Corollary 2.2.17. Let (K, v) be henselian, if (K, v) has IP, then K has IP as a pure field.
In particular, if k has IP, K has IP.

At heart of Jahnke’s result is Shelah’s expansion theorem, since her strategy was to prove
that, in most cases, v is externally definable. We refer to [Jah19] for details.

So, in fact, the main interest of explicit Artin-Schreier lifting is that it skips Shelah’s
expansion theorem, which only works for NIP theories. We will study Shelah’s expansion in
more details in appendix B.

We end this section by discussing Shelah’s conjecture, Conjecture 2.2.7, with a specific
goal, namely, to explicitly define a henselian valuation on NIP fields under Shelah’s conjecture;
to do so, we use Anscombe-Jahnke’s classification of NIP henselian valued fields.
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2.2.6 Explicit Shelah’s conjecture

Shelah’s conjecture state that if a pure field is NIP, then it is finite, SCF, RCF, or henselian.
As a first remark, note that this is not an equivalence, as henselian valued fields can have IP.
It can however be turned into an equivalence by using the following theorem:

Theorem 2.2.18 (Anscombe-Jahnke). Let (K, v) be a henselian valued field. Then (K, v) is
NIP iff the following holds:

1. k is NIP, and

2. either

(a) (K, v) is of equicharacteristic and is either trivial or SAMK, or
(b) (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v) checks

2a, or
(c) (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

It is the main theorem of [AJ19a]. We will discuss it in more details in Chapter 3, for
now, we only apply it.

A second remark is that in Shelah’s conjecture, we assume that a pure field is NIP, and we
end up – when it’s not finite, SCF or RCF – with a henselian valuation; morally, if it always
exists, it should be definable. This holds; it is a consequence of Corollary 1.4.8. Here we will
prove that we can explicitly define it, by using Robinson’s generalized formula:

Conjecture 2.2.19 (Explicit Shelah’s conjecture). Let K be a NIP field, then K is either
finite, RCF, SCF, or there is a prime q and a parameter t ∈ K such that ψq(K, t), as defined
in Proposition 1.4.1, is a non-trivial henselian valuation ring.

Proposition 2.2.20. Conjecture 2.2.7 ⇔ Conjecture 2.2.19.

Proof. Let’s take K NIP, not SCF nor RCF nor finite. We want to use Robinson’s generalized
formula to define a non-trivial henselian valuation on K – assuming Shelah’s conjecture.

By the definition of the canonical henselian valuation, see Definition 1.2.8, K admits a
non-trivial valuation iff vK is non-trivial. Let k and Γ be the residue field and value group of
vK .

By Lemma 2.2.16, (K, vK) is NIP.‡ Let k be the residue of (K, vK). We know that k is
NIP, so we can apply Conjecture 2.2.7 to it: k is SCF, RCF, or finite. It can also be henselian;
but by definition of vK this can only happen in the case k ⊨ SCF, so it’s redundant. We now
study the cases in Theorem 3.1.1; our goal is to prove that there is an element t ∈ K which
has value not divisible (by some prime q ̸= ch(k)). We can then use this element as the
parameter for Robinson’s generalized formula.

• If (K, vK) is of equicharacteristic (0, 0), then k is SCF or RCF. Assume Γ is divisible
and take L/K algebraic. Then [L : K] = [kL : k] = 1 or 2, and K itself is SCF or RCF,
which can’t be by assumption. Thus, Γ is not divisible.

• If (K, vK) is of equicharacteristic (p, p), then k is SCF or finite. But by Theorem 3.1.1,
(K, vK) is SAMK; in particular k is perfect and not finite, so ACF, and Γ is p-divisible.
If Γ is divisible, then Ksep/K is immediate, but since K is separably algebraically
maximal this yields K = Ksep, which again can’t happen by assumption; hence Γ is not
divisible by some q ̸= p.

‡Let us note that apart from this fact, our argument about definability could be generalized to NIPn fields;
as of now, we could only obtain a NIPn version of Lemma 2.2.16 when the residue characteristic is p, see
Corollary 3.4.10.
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• If (K, vK) is of mixed characteristic (0, p) and (K, vp) is finitely ramified, then Γ/∆p

admits a smaller positive element γ; any lift γ of which checks that γ + nδ /∈ ∆p for all
δ ∈ Γ and all n > 1. In particular γ is not n-divisible for all n.

• If (K, vK) is of mixed characteristic (0, p) and (k0, vK) is AMK, then again k is ACF and
∆0 is p-divisible. If ∆0 is not divisible, we are done. Otherwise, (k0)alg/k0 is immediate,
hence trivial by algebraic maximality; so k0 is ACF. Now (K, v0) ∼= (k0((Γ/∆0)), vΓ/∆0

),
and we are back to the equicharacteristic (0, 0) case.

In summary, under our assumptions:

• If (K, vK) is of equicharacteristic (0, 0), then Γ is not divisible.

• If (K, vK) is of equicharacteristic (p, p), then Γ is p-divisible but not divisible.

• If (K, vK) is of mixed characteristic (0, p), then either Γ is not q-divisible for all q, or
∆0 is p-divisible but not divisible, or Γ/∆0 is not divisible.

In all cases, we can find a parameter t and a prime q such that ψq(K, t) is a non-trivial
coarsening of vK .

2.2.7 Consequences on other conjectures

There are many classical conjectures around NIP fields, most of them can be seen as inter-
mediate steps towards Shelah’s conjecture. We quote some of them here and see how they
depend on each other.

Conjecture 2.2.21 (Henselianity conjecture (HC)). Let (K, v) be NIP. Then v is henselian.

Conjecture 2.2.22 (Weak henselianity conjecture (WHC)). Let K be NIP, and v be defin-
able. Then v is henselian.

Conjecture 2.2.23 (Definability conjecture (DC)). Let K be NIP. Then K is SCF, RCF,
finite, or admits a non-trivial definable valuation.

Since we proved that SC (Conjecture 2.2.7) is equivalent to an explicitly definable version
of it, it is clear that SC implies DC. Thus, we formulate here an explicit version of DC:

Conjecture 2.2.24 (Explicit definability conjecture (EDC)). Let K be NIP. Then K is SCF,
RCF, finite, or there is a prime q and a parameter t ∈ K such that ψq(K, t) is a non-trivial
valuation ring.

The logical relations between those conjectures are shown in Figure 2.1.
Of all these relations, the non-trivial ones are “SC ⇔ ESC” and “ESC ⇒ HC”. We already

proved the first one. The second one was obtained in [HHJ20], we summarize the proof here:

Proof. Assume SC holds, thus also ESC. Let (K, v) be NIP. If K is SCF, RCF or finite, then
v is henselian – for RCF, see [HHJ20, Prop. 5.7]. Now assume K is not one of these. Let v†

be the intersection of all henselian valuation rings which are externally definable in (K, v).
We use the following result:
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ESC

SCEDC

DC

HC

WHCDC & WHC

by [HHJ20]

Figure 2.1: Relations between conjectures on NIP fields.

Fact [HHJ20, Cor. 5.4]. If K is a field, v1 is a henselian valuation, v2 is a valuation and
v1 and v2 are incomparable; then (K, v1, v2) has IP.

(K, v) is NIP and v† is henselian.
If v† is externally definable, then (K, v, v†) is NIP by Shelah’s expansion; but then v and

v† are comparable by the fact above.
Now assume that v† is not externally definable and that v and v† are incomparable.

Consider their common coarsening: it is a coarsening of v, thus externally definable in (K, v),
and henselian. But since v† is a strict refinement, there must be an externally definable
henselian valuation between them; this valuation is incomparable with v, which contradicts
the fact above. Thus, v and v† must be comparable.

If v is a coarsening of v† then it is henselian. If it is a refinement, then v is a valuation on
kv† . But kv† is NIP:

If kv† is not RCF, SCF, nor finite, then it admits a non-trivial definable valuation w by
Robinson’s generalized formula – remember that we assumed Shelah’s conjecture. Now if v is
a coarsening of w, v is henselian and thus v as well. If v is a refinement, then v is a refinement
of the lift of w to K and thus w is externally definable in (K, v), despite being finer than v†

– that is not possible.
Lastly, if kv† is RCF, SCF or finite, then v is henselian on kv† , and v is henselian.

Around EDC We care about EDC because the class of fields which are neither finite, RCF,
SCF and such that no φq(x, t) defines a valuation is elementary; but adding “henselian” to it
makes it non-elementary – and even more when not giving a formula to define a valuation.

So, a counterexample of this conjecture is much better defined than any other conjecture,
and proving that it can’t have IP seem to be a much more achievable task – even though it
remains to be done.

2.2.8 dp-finite fields

As mentioned before, it is known, by the work of Johnson, that Shelah’s conjecture holds for
dp-finite fields; that is, a dp-finite field is SCF, RCF, finite, or admits a non-trivial henselian
valuation.

The proof above can be easily adapted to see that dp-finite fields have explicitly definable
henselian valuations. Right now, the proof reads:

• Let K be NIP but not SCF, RCF or finite; then (assuming SC) it is henselian.
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• By Lemma 2.2.16, (K, vK) is NIP, hence the residue k is NIP.

• k itself is thus either SCF, RCF or finite, and with the help of Theorem 2.2.18, we
obtain that in all these cases a valuation is definable.

If we naively try to adapt the proof for dp-finite, the only roadblock is that from knowing
that K is dp-finite, we only get that (K, vK) is NIP, and thus k is NIP. However, in order to
say that k is SCF, RCF or finite, we need to know that it is dp-finite. So, the only thing we
need is the following lemma:

Lemma 2.2.25. If K is a dp-finite (pure) field and v is henselian, then the residue field k is
dp-finite.

Proof. We adapt the original argument of Jahnke, itself building from an argument of Scanlon,
to prove that adding any henselian valuation to any field preserves dp-finiteness in some cases,
and then to crush the other cases.

First, note that the Shelah expansion of a dp-finite theory remains dp-finite – in fact, it
keeps exactly the same dp-rank. This is a direct corollary of quantifier elimination in the
Shelah expansion of a NIP theory, see [Sim15, Prop. 3.23].

Let K be any field and v any henselian valuation on K.

Case 1: k is not SCF or RCF k thus has a Galois extension of degree d > 1. Choose p
prime dividing d. We go there and back again, as in section 4.1.3: we find a finite extension of
the residue field that is not p-closed. Let (L,w) be a finite extension of (K, v) having this non
p-closed residue. L itself is non p-closed. vpL is thus definable on L, and because its residue is
non p-closed, we have vpL ⩽ w. The restriction of vpL to K is also definable, and thus there is
a definable refinement of v. v is then externally definable in K.

Therefore if K is dp-finite, then (K, v) also.

Case 2: k RCF v2∗K is thus definable, and its residue is euclidean. If we can prove that the
induced valuation v on this residue is externally definable, then we will have proven that v is
externally definable in K. Thus we may restrict to the case where K is euclidean. Now the
unique order on K is defined by saying that the positive elements are exactly the squares.
Any valuation ring must contain the convex hull of Z, which is itself an externally definable
valuation ring; hence v is externally definable in (K,w), and if K is dp-finite, (K, v) also.

Case 3: k SCF We use Lemma 3.2.2: if v has a proper coarsening of residue characteristic
p, then k is perfect. Thus, if v is non-trivial and ch(K) = p, k is perfect, thus ACF and
dp-minimal. If v of mixed characteristic, then either it is finitely ramified, in which case it
is definable in K by Corollary 1.4.3 and thus (K, v) is dp-finite, or it is infinitely ramified.
Going to a sufficiently saturated elementary extension (K∗, v∗) ≽ (K, v), we see that v∗ has
a non-trivial coarsening of residue characteristic p, and thus k∗ is perfect; because this is
first-order, k itself is perfect, hence ACF and dp-minimal. Note that here, we only obtain
that k is dp-minimal, not (K, v).

Now it is just a matter of re-reading the proof above but replacing NIP by dp-finite, and
we obtain explicit definability of valuations in dp-finite fields.
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2.3 NIPn fields

2.3.1 The n-independence property

NIPn theories are the most natural generalization of NIP. They were first defined and studied
for n = 2 by Shelah in [She05]. Their behavior is erratic, sometimes very similar to NIP
theories, sometimes wildly different.

Definition 2.3.1. Let T be a complete theory and M ⊨ T a monster model. A for-
mula φ(x; y1, . . . , yn) is said to have the independence property of order n (IPn) if there
are (aki )

1⩽k⩽n
i<ω and (bJ)J⊂ωn such that M ⊨ φ(bJ , a1i1 , . . . , a

n
in
) iff (i1, . . . , in) ∈ J . A formula

is said to be NIPn if it doesn’t have IPn, and a theory is called NIPn if all formulas are NIPn.
We also write “strictly NIPn” for “NIPn and IPn−1”.

Note that having IPn+1 implies having IPn and that IP1 corresponds to the usual IP.
Example 2.3.2. The random graph is strictly NIP2. The random n-hypergraph, which is the
Fraïssé limit of the class of all finite n-hypergraphs – which are sets of vertices equipped with
a symmetrical irreflexive n-ary relation –, is strictly NIPn.

As for NIP, the study of NIPn formulas can be reduced significantely by considering only
atomic formulas with one singleton variable, and can also be reformulated in terms of indis-
cernibles – though we only quote that result in Proposition 3.3.3.

Proposition 2.3.3 ([CPT19, Prop. 6.5]). Being NIPn is preserved under boolean combina-
tions: if φ(x; y1, . . . , yn) and ψ(x; y1, . . . , yn) are NIPn, so are φ ∧ ψ and ¬φ.

Being NIPn is preserved under permutation of the variables, as long as we keep the same
partitioning – recall that x and each yi can be tuples.

Finally, a theory is NIPn iff all formulas φ(x, y1,· · ·, yn) with x a singleton are NIPn.§

Random n-hypergraphs have quantifier elimination and no function symbol, thus only the
hyperedge relation needs to be studied. Because it is n-ary, it can’t have IPn.

On the other hand, fix N and consider the finite hypergraph composed of (n−1)N+2N
n−1

vertices, named (aki )
1⩽k<n
i<N and (bJ)J⊂Nn−1 , with a hyperedge relation that holds for n points

iff one of them is bJ , the others are a1i1 , . . . , a
n−1
in−1

, and (i1, . . . , in−1) ∈ J . We can embed this
graph into the random hypergraph, hence, it has IPn−1.

However, these random hypergraphs are simple – another complexity notion that we will
study in Section 2.4 –, thus, contrary to the NIP case, when n ⩾ 2 a theory can be NIPn,
simple, and unstable. The NIPn hierarchy overlaps with other complexity classes in all possible
ways:
Example 2.3.4.

• For n ⩾ 2, the random n-hypergraph Rn is simple, unstable, and strictly NIPn.

• Let M be a NIP unstable L-structure, such as DLO. Then the disjoint pair (M, Rn) is
strictly NIPn, non-simple, and NTP2 – see Section 2.5.

• The triangle-free random graph is strictly NIP2 and has TP2. Adjoining Rn to it as
above, we get a TP2 and strictly NIPn structure.

These structures might seem artificial; they are specifically constructed to fit in all this
cases. However, with the Mekler construction, we can interpret all these structures in a pure
group:

§In fact, one can reduce further, and only consider the formulas with all but one variable being singletons,
see [CH21, Thm. 2.12]; however, we only use this weaker version in this dissertation.
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Theorem 2.3.5 (Mekler, Baudisch-Pentzel, Chernikov-Hempel; see [CH17]). Let M be a
structure in a finite relational language. There is a pure group G(M) which is 2-nilpotent, of
exponent p, and which interprets M. Furthermore, G is κ-stable (resp. NIP, NIPn, simple,
NTP2) iff M is κ-stable (resp. NIP, NIPn, simple, NTP2).

Thus, by doing this construction on previously exhibited structures, we know that strictly
NIPn pure groups exist; and they can be NIPn, unstable and simple, or NIPn, non-simple and
NTP2, or NIPn and TP2 – for n ⩾ 2.

Let us also note an important example: consider the 2-sorted structure with one sort for
the group (F<ω

p ,+), one sort for the field Fp, together with a function · : F<ω
p → Fp which

is to be interpreted as to a · b =
∑
aibi. This structure appears in Wagner’s book on Simple

Theories, [Wag00], where he proves that it has IP. Hempel later proved that it was NIP2, giving
the first example of an explicit algebraic structure strictly which is NIP2, and demonstrating
that understanding NIPn theories can help study these structures.

2.3.2 NIPn fields

Hopefully by now we managed to convince you that NIPn is a proper generalization of NIP,
definitely not reducible to the NIP case... right?

Conjecture 2.3.6. For n ⩾ 2, strictly NIPn pure fields do not exist; that is, a pure field is
NIPn iff it is NIP.

This is for pure fields. Augmenting fields with structure – for example by adding a relation
for a random hypergraph – will of course break this conjecture, however, natural extensions
of field structure such as valuation or distinguished automorphism are believed to preserve it.
Let us state this conjecture:

Conjecture 2.3.7. Strictly NIPn henselian valued fields do not exist.

It is clear that Conjecture 2.3.7 implies Conjecture 2.3.6 since the trivial valuation is
henselian.

We quote some results which make this conjecture somewhat believable:

Proposition 2.3.8 (Duret [Dur80], Hempel [Hem16]). Let K be PAC and not separably
closed. Then, K has IPn for all n.

Proposition 2.3.9 (Chernikov-Hempel, [CH21]). Let (K, v) be NIPn and ch(K) = p, then v
is henselian.

Theorem 2.3.10 (Hempel, [Hem14]). Infinite NIPn fields of characteristic p are Artin-
Schreier closed.

Overall, as soon as interesting results are obtained about or in the context of NIP fields,
some people (mostly Hempel and Chernikov as you can see) work hard to sneakily add n

after NIP in these results. They succeed most of the time, though not always taking a
straightforward route. Conjecture 2.3.6 arose naturally from their work and can be attributed
to Hempel, in duo with Chernikov.

Going back to Theorem 2.3.10, as for NIP fields, we want to know the formula witnessing
IPn in infinite fields with Artin-Schreier extensions; and, that is a promise, this time there
will be a nice application; namely, Theorem 3.1.1.

The proof of Theorem 2.3.10 is similar to Kaplan-Scanlon-Wagner’s argument, as one
expects: in a NIPn theory, definable families of subgroups check a certain analog of Baldwin-
Saxl’s condition. In characteristic p, {a1 · · · an℘(K) | a ∈ Kn} is a definable family of additive
subgroups. In order for it to check the aforementioned chain condition, we must have ℘(K) =
K.
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2.3.3 Baldwin-Saxl-Hempel’s condition for NIPn formulas

Let T be an L-theory, M ⊨ T a monster. Let G be a type-definable set, and · be a definable
group law on G. Example: if K is a field, G = K and · = +.

Let φ(x, y1,· · ·, yn) be an L-formula, and let A ⊂ M be a set of parameters such that
Ha1,···,an = φ(M,a1,· · ·, an) ∩G is a subgroup of G for any (a1,· · ·, an) ∈ A.

Proposition 2.3.11 (Hempel). A formula φ is said to check the BSHn-condition if there is N
(depending only on φ) such that for any d greater or equal to N and any array of parameters
(aij)

1⩽i⩽n
j⩽d , there is k = (k1,· · ·, kn) ∈ {0,· · ·, N}n such that:⋂

j

Hj =
⋂
j ̸=k

Hj

with Hj = Ha1j1
,···,anjn

.

The formula φ checks the BSHn condition iff φ is NIPn.¶

Proof. This is a very natural NIPn version of Baldwin-Saxl, first stated by Hempel in [Hem14].
However, as for Baldwin-Saxl, it is usually not stated as an equivalence.

⇐: Suppose that the BSHn condition is not checked for N , so one can find (aij)
1⩽i⩽n
j⩽N ∈ A

such that ⋂
j

Hj ⊊
⋂
j ̸=k

Hj

for any k ∈ {0,· · ·, N}n.
We take bj /∈ Hj but in every other Hk. Then for any J ⊂ {0,· · ·, N}n, we define

bJ =
∏

j∈J bj , where the product denotes the group law of G – the order of operation doesn’t
matter. We have M ⊨ φ(bJ , a

1
j1
,· · ·, anjn) iff bJ ∈ Hj (by definition of H), and it is the case

iff j /∈ J . If this were to hold for arbitrarily large N , we would have IPn for φ. Thus, if φ is
NIPn, there is a maximal such N .

⇒: Suppose that φ checks the BSHn condition for N , and suppose we can find (aij)
1⩽i⩽n
j⩽N ∈ A

and (bJ)I⊂{0,···,N}n ∈ G such that M ⊨ φ(bJ , a1j1 ,· · ·, a
n
jn
) iff j ∈ J . Now by assumption, there

is k such that
⋂

j Hj =
⋂

j ̸=kHj . But now, let b = bJ\{k}; we know that M ⊨ φ(b, a1j1 ,· · ·, a
n
jn
)

iff j ̸= k, which means that b ∈
⋂

j ̸=kHj . But this means b ∈ Hk, which yields M ⊨

φ(b, a1k1 ,· · ·, a
n
kn
) and contradicts the choice of b.

2.3.4 Artin-Schreier closure of NIPn fields

Corollary 2.3.12 (Local KSWH). In an infinite field K of characteristic p > 0, the formula
φ(x; y1,· · ·, yn) : ∃t x = y1y2 · · · yn(tp − t) is NIPn iff K has no AS-extension.

Proof. Apply the previous result with (G, ·) = (K,+) and A = K: φ is NIPn iff the family
Ha1,···,an = a1a2 · · · an℘(K) checks the BSHn condition. This then implies that K is AS-closed,
see [Hem14] – again, this is the hard part of the proof. The opposite direction is quite trivial:
if K is AS-closed, then ℘(K) = K, so the BSHn condition is obviously checked.

¶As before, we technically need to restrict the domain of φ to A. If we do not restrict, right to left still
holds.
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2.3.5 Lifting

Ideally, we would like a NIPn version of Corollary 2.2.17. But this relies on Lemma 2.2.16, the
proof of which needs Shelah’s expansion theorem, which fails in general for NIPn structures;
notably, it fails for the random graph. We will study the Shelah expansion of the random
graph in appendix B and provide details about this fact.

However, thanks to the explicit formula obtained before and with the help of henselianity,
we can lift IPn in the case where it is witnessed by Artin-Schreier extensions:

Lemma 2.3.13. Suppose (K, v) is henselian and has a residue field k infinite, of characteristic
p, and not AS-closed; then K has IPn witnessed by φ(x; y1,· · ·, yn) : ∃t x = y1 · · · yn(tp − t).

Proof. By assumption, there are (aij)1⩽i⩽n,j<ω and (bJ)J⊂ωn such that k ⊨ φ(bJ , a1j1 ,· · ·, a
n
jn
)

iff j ∈ J , that is, Pj,J(T ) = a1j1 · · · a
n
jn
(T p − T ) − bJ has a root in k iff j ∈ J . But by

henselianity, since roots of this polynomial are all simple, taking any lift αi
j , βJ of aij and bJ ,

Pj,J(T ) = α1
j1
· · ·αn

jn
(T p − T ) − βJ has a root in K iff j ∈ J , thus K ⊨ φ(βJ , α1

j1
,· · ·, αn

jn
) iff

j ∈ J .

So, in this specific case, we don’t need the valuation to witness IPn. This fact will have
fruitful applications in Section 3.2.

2.4 Simple fields

It would be possible for us to ignore simple theories completely. Indeed, as we will note later,
they are completely orthogonal to NIP theories, and are irrelevant to the study of valued
fields; however, both historically and mathematically, they play an important role. Thus, we
quickly introduce them and the main conjecture on simple fields.

Definition 2.4.1. A formula φ(x, y) has the tree property (TP) if there are (as)s∈ω<ω and
some k such that for each σ ∈ ωω,

{
φ(x, aσ|0), φ(x, aσ|1), φ(x, aσ|2), . . .

}
is consistent, but for

any s ∈ ω<ω, {φ(x, as0), φ(x, as1), φ(x, as2) . . .} is k-inconsistent.
A formula without the tree property is said to be NTP and a complete theory is NTP if

all formulas are.

Note that NTP is not preserved under boolean combinations.

φ(x, a0)

· · ·φ(x, a01)

· · ·φ(x, a011)φ(x, a010)

φ(x, a00)

· · ·φ(x, a001)φ(x, a000)

φ(x, a1) · · ·

k-inconsistent consistent

Figure 2.2: A TP pattern.
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Lemma 2.4.2 ([TZ12, Prop. 7.2.5]). A theory T is called simple if for all sets of parameters
B and for all types p ∈ Sn(B) there is A ⊂ B with |A| ⩽ |T | such that p does not divide over
A.

A theory is simple iff it is NTP.

Again, these two names are competing, but “simple” dominates. We argue, as before, that
good usage should be to prefer one or the other depending on whether one thinks locally
or globally. We are however too weak to object against the entire literature, and settle on
“simple” – for now.

Proposition 2.4.3 (Shelah). If a theory is both simple and NIP, then it is stable.

Shelah proved it with a larger class than simple, namely, NSOP. We refer to [Che15,
Thm. 2.4].

Note that this doesn’t work locally: a formula can be NIP, NTP, and have OP, for example,
x < y in DLO. However, y1 < x < y2 has TP in DLO; which also gives an example of a boolean
combination of NTP formulas which has TP.

Note also that some theories can be unstable, simple and NIPn for some n ⩾ 2, as discussed
before.

Proposition 2.4.4 ([KP97, Thm. 4.2]). Let T be a complete theory. If there exists a ternary
relation |⌣ between sets with the following properties:

• |⌣ is invariant under automorphisms.

• A |⌣B
CD iff A |⌣B

C and A |⌣BC
D.

• A |⌣B
C iff C |⌣B

A.

• A |⌣B
C iff a |⌣B

C for all finite a ⊂ A.

• There is a cardinal κ such that for any finite A and any B, there is B0 ⊂ B of size ⩽ κ
and such that A |⌣B0

B.

• For all tuple a and sets B and C there is a′ such that tp(a′/B) = tp(a/B) and a′ |⌣B
C.

• Let M be a model. If a |⌣M b, a |⌣M a′ and b |⌣M b′, and if tp(a′/M) = tp(b′/M);
then there is some c such that tp(c/Ma) = tp(a′/Ma), tp(c/Mb) = tp(b′/Mb) and
c |⌣M ab.

Then T is simple and |⌣ is the usual forking independence.

We now give a (very brief) overview of the study of simple fields, starting with the main
conjecture:

Conjecture 2.4.5. A pure field K is simple iff it is bounded and PAC (or finite).

As far as we know, this conjecture can be traced back to Anand Pillay – although it is
usually stated only for supersimple fields.

Note that Jean-Louis Duret’s result, Proposition 2.3.8, implies that PAC fields which are
not SCF are unstable, therefore this conjecture implies the stable fields conjecture.

Proposition 2.4.6 ([Hru02, Cha99]). PAC fields are simple iff they are bounded.

The other direction of the conjecture is still open, though some intermediate results are
known, most notably:
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Proposition 2.4.7 (Kaplan-Scanlon-Wagner, [KSW11]). Simple fields of characteristic p
have finitely many Artin-Schreier extensions.

This was obtained in the same paper as for NIP fields, still generalizing Scanlon’s note.
Indeed, no formula having TP was explicited. We will expose one when studying NTP2 fields,
for which the same result holds.

Simple pure fields are very interesting, but simple valued fields are boring:

Lemma 2.4.8. Let (K, v) be simple, then v is trivial.

Indeed, since any OAG is a NIP theory, if (K, v) is simple then its value group is both
simple and NIP, thus stable; but this means it is trivial.

2.5 NTP2 fields

We now turn towards the very last relevant notion of combinatorial complexity. Many more
exist which we do not study here.

2.5.1 The tree property of order 2

Definition 2.5.1. A formula φ(x, y) is said to have the tree property of order 2 (TP2) if
there is (aij)(i,j)∈ω2 and k such that for any i < ω, {φ(x, aij) | j < ω} is k-inconsistent, but
for any f : ω → ω,

{
φ(x, aif(i))

⏐⏐ i < ω
}

is consistent.
A formula is NTP2 if it doesn’t have TP2, and a theory is NTP2 if all its formulas are

NTP2.

Note that each of stable, NIP, and simple implies NTP2. Also, as for NTP, NTP2 is not
preserved under boolean combinations.

φ(x, a00) φ(x, a01) · · ·
φ(x, a10) φ(x, a11) · · ·

...
...

consistent

k-inconsistent

Figure 2.3: A TP2 pattern

Example 2.5.2. Bounded PAC, PRC and PpC fields are NTP2, see [Mon17].
As pure rings, Z and thus also Q have TP2: in Z, the formula “x divides y and x ̸= 1”

has TP2. However its negation does not, since rows can’t be k-inconsistent.

2.5.2 NTP2 fields

No standard conjecture for NTP2 fields is known, but based on known examples, we formulate
the following:

Conjecture 2.5.3 (Pseudoconjecture). NTP2 fields are either pseudofinite, pseudo alge-
braically closed, pseudo real closed, or “pseudohenselian”.
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Note that “pseudostuff” usually means “existentially closed in extensions compatible with
stuff”; here, “K is pseudohenselian” means “K admits a valuation v such that (K, v) is ex-
istentially closed in (Kh, vh)”. However, “pseudofinite” means “a model of the theory of all
finite fields”. For the purpose of stating this conjecture concisely, finite fields are considered
pseudofinite – and thus not completely redundant with PAC fields.

If you accept Shelah’s conjecture, the pseudoconjecture then reads “an NTP2 field is
pseudo-NIP”.

Theorem 2.5.4 (Chernikov-Kaplan-Simon in [CKS12]). NTP2 fields of characteristic p are
AS-finite, also called p-bounded – they have only finitely many distinct Artin-Schreier exten-
sions.

The Chernikov-Kaplan-Simon argument is very similar to Kaplan-Scanlon-Wagner. First,
one needs to find a suitable chain condition for definable families of subgroups in NTP2
theories, and then apply it to the Artin-Schreier additive subgroup. Namely, instead of saying
that the intersection of N+1 subgroups is the same as just N of them, this condition is saying
that the intersection of all but one of them is not quite the whole intersection, but is of finite
index in it. Then, one shows that in a field K with infinitely many Artin-Schreier extensions,
the family a℘(K) fails this condition.

2.5.3 Chernikov-Kaplan-Simon condition for NTP2 formulas

Theorem 2.5.5 ([CKS12, Lem. 2.1]). Let T be NTP2, M ⊨ T a monster and suppose that
(G, ·) is a definable group. Let φ(x, y) be a formula, for i ∈ ω let ai ∈ M be such that
Hi = φ(M,ai) is a normal subgroup of G. Let H =

⋂
i∈ωHi and H ̸=j =

⋂
i ̸=j Hi. Then there

is an i such that [H ̸=i : H] is finite.

It turns out that, once again, we do not need T to be completely NTP2: the proof goes
by contradiction and shows that if this finite index condition is not respected, the formula
ψ(x; y, z) : ∃w (φ(w, y) ∧ x = w · z) has TP2. Thus we need only to assume NTP2 for this ψ.
As in the NIP case for Baldwin-Saxl, we establish an equivalence between one specific formula
being NTP2 and this condition.

Remark 2.5.6. This condition says that in a given family of subgroups, one of them has
finitely many distinct cosets witnessed by elements which lie in the intersection of every other
subgroup. By compactness, we can cap this finite number, and consider only finite families:
there is k and N , depending only on φ, such that given k many subgroups defined by φ, one
of them has no more than N cosets witnessed by elements in the intersection of the k − 1
other subgroups.

Porism 2.5.7 (CKS-condition for fomulas). Let T be an L-theory, M ⊨ T a monster and
(G, ·) a definable group. Let φ(x, y) be a formula such that for any a ∈M , Ha = φ(M,a) is a
normal subgroup of G. Let ψ(x; y, z) be the formula ∃w (φ(w, y)∧x = w · z). We will suppose
for more convenience that ·, or rather, the formula defining {x, y, z | x · y = z} contains, or at
least implies, x, y, z ∈ G; thus ψ doesn;t hold if z /∈ G. Then ψ(x; yz) is NTP2 iff the CKS-
condition holds: for any (ai)i∈ω, there is i such that [H ̸=i : H] is finite, where H =

⋂
i∈ωHi

and H ̸=j =
⋂

i ̸=j Hi.

Note that since −1 is definable, ψ(x; y, z) is equivalent to φ(x · z−1, y).

Proof. The formula ψ(x; yz) holds iff x ∈ Hy · z. Also, we use Hi to denote Hai and later Hj
i

to denote Haij because it is much more convenient.
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We work in 4 steps, but truly, only the 4th step is an actual proof, and it is technically
self-sufficient. The raison d’être of step 1 to 3 is to – hopefully – make the proof strategy
clearer.

Step 1: true equivalence, from CKS. In their paper, Chernikov, Kaplan and Simon
prove that given some (ai)i∈ω, if the family Hi does not check the CKS-condition, then ψ has
TP2. They do this by explicitly witnessing TP2 by cij = (ai, bij), with a for y and b for z,
and with bij ∈ H ̸=i. Reversing their argument, we prove the following equivalence:

ψ has TP2 witnessed by some cij = (ai, bij) with bij ∈ H ̸=i iff the family Hi does not check
the CKS-condition.

Right-to-left is exactly given by the original paper. Now let ai and bij be as wanted.
ψ(x; cij) says that x ∈ Hi · bij . So the TP2-pattern is as follows:

H0b00 H0b01 H0b02 H0b03 · · ·
H1b10 H1b11 H1b12 H1b13 · · ·
H2b20 H2b21 H2b22 H2b23 · · ·

...
...

...
...

For a given i, k-inconsistency of the rows says that a given coset of Hi might only appear
k− 1 times. So there are infinitely many cosets of Hi, witnessed by elements bij ∈ H ̸=i. This
means that H · bij = H · bij′ iff Hi · bij = Hi · bij′ . But that gives infinitely many cosets of H
in H ̸=i, for any i, proving that CKS-condition is not checked.

Note that we did not use at any time consistency of the vertical paths. We can use it to
loosen our assumption. Let’s keep in mind that our final goal is to prove this equivalence with
a depending on i and j (right now it depends only on i) and with bij not necessarily lying in
H ̸=i.

Step 2: going outside H ̸=i. We now want to prove:
ψ has TP2 witnessed by some cij = (ai, bij) with iff the family Hi does not check the

CKS-condition.
We already know right-to-left. Let cij = (ai, bij) witness TP2 for ψ. Consistency of the

vertical paths implies that there is λ ∈
⋂

i∈ωHi · bi0. Now write b′ij = bij · λ−1. Replacing b
by b′ won’t alter TP2, but will ensure that Hibi0 = Hi. So we might as well take b′i,0 to be
the neutral element of G.

Fix i, j. Consider the vertical path f = δij : ω → ω such that δij(i) = j and δij(i′) = 0 for
i′ ̸= i. Consistency yields: Hi · b′ij ∩

⋂
i′ ̸=iHi′ = Hi · b′ij ∩H ̸=i ̸= ∅. Thus we can witness this

coset of Hi by an element b′′ij ∈ H ̸=i. Thus c′′ij = (ai, b
′′
ij) still witnesses TP2.

H0 H0b01 · · ·
...

...
Hi Hibi1 · · · Hibij · · ·
...

...
...

...

Thus, we reduced to the case in step 1, and we can drop the assumption on b. We still have
to drop the assumption on a. We used k-inconsistency of rows in step 1, we used consistency
of (some) vertical paths in step 2, we didn’t yet use normality.
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Step 3: arbitrary a, 2-inconsistency. An example of such a TP2 pattern in Z:

2Z 4Z+ 1 8Z+ 3 16Z+ 7 · · ·
3Z 9Z+ 1 27Z+ 4 81Z+ 13 · · ·
5Z 25Z+ 1 125Z+ 6 625Z+ 31 · · ·
...

...
...

...

Note that none of these subgroups have infinitely many cosets, let alone in the intersection
of the others! But, for any N , some of them will have more cosets than N .

We aim to prove the following, of which once again we know right to left:
There is some cij = (aij , bij) forming a TP2 pattern for ψ with 2-inconsistency of the rows

iff the family Hi does not check the CKS-condition.
Let Hj

i be the subgroup φ(M,aij). Suppose ψ has TP2, witnessed by cij = (aij , bij).
As noted before, by compactness we do not need to find an infinite family such that every
subgroup has infinitely many cosets in the intersection of the rest, but merely for each finite m
and N , a family of m sugroups such that each of them has at least N cosets in the intersection
of the rest.

First, we apply the reduction as before: by consistency of vertical paths, we may take
bi0 to be the neutral element for each i. Then, looking at the path f = δij , we may assume
bij ∈ H0

̸=i.

Claim. Let N ∈ ω. For each i, there is j such that (bij′)j′<ω witnesses at least N cosets of
Hj

i : #
{
Hj

i bij′
⏐⏐⏐ j′ ∈ ω

}
⩾ N .

Before proving this claim, let’s see why it is enough for our purpose: let N ∈ ω. For a fixed
i, we find ji such that Hji

i has ⩾ N cosets witnessed by some bij . Now by vertical consistency,
considering the path δiji , we find an element λ ∈ H0

̸=i ∩H
ji
i biji . Compose everything by λ−1,

re-index the sequence by switching ci0 and ciji ; this makes it so we can assume that H0
i has

⩾ N many cosets in H0
̸=i. When we compose by λ, nothing changes: b and b′ generate the

same coset of H iff b′b−1 ∈ H iff (b′λ)(bλ)−1 ∈ H. So we do this row by row, and we might
assume that for any i, H0

i has ⩾ N many cosets witnessed by elements from H0
̸=i. This implies

that some family will fail the CKS condition by compactness.
Now to prove the claim, fix i and N . If there is j such that Hj

i has infinitely many cosets,
witnessed in the row i, then we’re done. Otherwise, for each j, all Hj

i have finitely many
cosets. We will reduce the problem in the following way:

H0
i has finitely many cosets in an infinite row, so by pigeonhole, one of them appears

infinitely many times. Ignore all the rest, rename them; we may thus assume that H0
i bij =

H0
i bi1 for any j ⩾ 1. We can do the same thing with any j, ensuring that Hj

i bik = Hj
i bi,j+1 for

any k > j ∈ ω. Note that we only assume that cosets of a given Hj
i witnessed by b appearing

after j are identical, not before, since we already modified things before. In short, we have
bijb
−1
ik ∈ Hj−1

i for any i, j, and k > j.
Up to this point, we didn’t use 2-inconsistency, so everything will still hold for the k-

inconsistent case.
Because of 2-inconsistency, cosets of Hj

i appearing before j cannot be the same: let j1 <
j2 < j3. By our reduction, we have bij3b

−1
ij2

∈ Hj1
i . Suppose furthermore that bij2b

−1
ij1

∈ Hj3
i ,

so 2 cosets of Hj3
i appearing before j3 are the same. Now bij3b

−1
ij2
bij1 = (bij3b

−1
ij2

)bij1 ∈ Hj1
i bij1

on one hand, and bij3b
−1
ij2
bij1 = bij3(b

−1
ij2
bij1) ∈ bij3H

j3
i = Hj3

i bij3 by normality on the other
hand, contradicting 2-inconsistency.
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Thus, if we take j ⩾ N , we are sure that Hj
i has ⩾ N many cosets witnessed in the row

i, proving the claim.

Step 4: k-inconsistency. We now are ready to prove Porism 2.5.7. We already know one
direction, so we now prove that if ψ has TP2 witnessed by some cij = (aij , bij), then the
family Hi does not check the CKS condition.

We follow the argument of step 3 until the point where 2-inconsistency enters the party.
We aim to prove the claim. First, we fix i; since the argument now does not depend on i, we
stop writing the subscripts i; readers attached to formal correctness are invited to take a pen
and scribble them back in place.

Let j1 < j2 < · · · < j2k−1 ∈ ω. Suppose that bj1 and bj2 spawn the same coset of
Hj3 , Hj5 ,· · ·, Hj2k−1 , so bj1b

−1
j2

∈ Hj3 ∩ Hj5 ∩ · · · ∩ Hj2k−1 . Similarly, suppose bj3 and bj4
spawn the same coset of all the odd indexed groups above them, and again for all the rest. Let
b = bj1b

−1
j2
bj3b

−1
j4

· · · bj2k−3
b−1j2k−2

bj2k−1
. We claim that b ∈ Hj1bj1 ∩Hj3bj3 ∩ · · · ∩Hj2k−1bj2k−1

,
contradicting k-inconsistency: Fix n ∈ {1, 3,· · ·, 2k − 1}. By the reduction, all the products
bjb
−1
j′ on the right of bjn are in Hjn , and by assumption, all the products on the left also.

Thus b = hbjnh
′, where h, h′ ∈ Hjn . So b ∈ HjnbjnH

jn , and by normality we conclude.
Therefore, we know that as soon as j1 < j2 < · · · < j2k−1, there is a pair bjn , bjn+1 , with

odd n, that do not spawn the same coset of some Hj′n , jn′ > jn+1. We want to show that
some Hjn must have at least N many different cosets, for arbitrary N ∈ ω.

Fix N . Let j2k−1 > C, where C is a big enough constant we will explicit later. We
construct a graph with N vertices, which are the j such that j2k−1 − (N + 1) < j < j2k−1,
and j, j′ are connected iff bj and bj′ generate different cosets of Hj2k−1 . This forces C ⩾ N .
If it is a complete graph, then Hj2k−1 has at least N many pairwise disjoint cosets, so we are
done. Otherwise, there are j2k−1 − (N + 1) < j2k−3 < j2k−2 < j2k−1 such that bj2k−3

and
bj2k−2

generate the same coset of Hj2k−1 .
We now look back R2(N) points before j2k−3. Here we call Rr(s) the smallest number

V ∈ N such that if a complete colored graph with r many colors has at least V many vertices,
there’s a monochromatic s-clique. Rr(s) is guaranteed to exist for any r, s ∈ N by Ramsey’s
theorem, see [Ram30].

Since j2k−3 > C − N , we take C ⩾ N + R2(N). We construct a bi-colored graph with
R2(N) vertices, which are the j such that j2k−3−(R2(N)+1) < j < j2k−3. j, j′ are connected
by a blue edge iff bj and bj′ generate 2 different cosets of Hj2k−3 , and they are connected by
a red edge iff they generate different cosets of Hj2k−1 . They might be connected by both
a red and blue edge at the same time, this does not break the argument. If you don’t like
when edges coincide, choose one color arbitrarily. As before, if this graph is complete, then
by Ramsey’s theorem, there must be a monochromatic N -clique, ensuring that one of Hj2k−1

or Hj2k−3 have at least N many different cosets. Otherwise, we find a pair j2k−5 < j2k−4
generating the same coset of both Hj2k−1 and Hj2k−3 , we fix them, and continue.

We now construct a tri-colored graph with R3(N) vertices, corresponding to the R3(N)
indices preceding j2k−5, blue edge between vertices if they generate different cosets of Hj2k−1 ,
red if they generate different cosest of Hj2k−3 , green if they generate different cosets of Hj2k−5 .
Again, by Ramsey’s theorem, we either can find an N -clique, in which case we stop here, or
we can find j2k−7 and j2k−6 not connected (hence generating the same coset of all of the
previously fixed groups). This construction is illustrated in Figure 2.4.

We continue doing this strategy for as long as we can; either we stop when we find a
monochromatic N -clique, or we end up with j1 < j2 < · · · < j2k−1 such that all consecutive
pairs generate the same coset of all subgroups above them; but as seen before, this contradicts
k-inconsistency. Therefore, this process must stop before, which means we found a clique at
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some point, and that guarantees a subgroup with at least N many different cosets.
As for the value of C, the construction requires C ⩾ N +R2(N) +R3(N) + · · ·+Rk(N),

and any such C works.

.
.

.
.
.
.
.
.
.
. . . . . . .

j2k−5 −R3(N)

j2k−5 − 1

j2k−5 − 2

j2k−5 − 3

j2k−5 − 4

j j′

Hj2k−1bj ̸= Hj2k−1bj′

j j′

Hj2k−3bj ̸= Hj2k−3bj′

j j′

Hj2k−5bj ̸=Hj2k−5bj′

Figure 2.4: After finding j2k−5,· · ·, j2k−1, we connect the R3(N) many points j2k−5 −
1,· · ·, j2k−5 − R3(N) with edges colored as indicated; we seek either a monochromatic N -
clique or two non-connected points that we then name j2k−6 and j2k−7.

Remark 2.5.8. CKS asked whether normality is a necessary assumption. In our proof as well
as in theirs, it is useful to assume it, and doesn’t seem avoidable. It seems to us that this
assumption is necessary, but as of yet, no argument exists to assert or refute this claim.

2.5.4 Artin-Schreier finiteness of NTP2 fields

Corollary 2.5.9 (Local CKS). In a field K of characteristic p > 0, the formula

ψ(x; y, z) : ∃t x− z = y(tp − t)

is NTP2 iff K has finitely many AS-extensions.

Proof. Apply Porism 2.5.7 with (G, ·) = (K,+) and with φ(x, y) : ∃t x = (tp − t)y, which
means “x ∈ y℘(K)”. If the formula is NTP2 then it checks CKS and thus K has finitely many
AS-extensions, by the original CKS argument – which goes by contraposition, and again,
takes a whole paper to be properly done. Now if K has finitely many AS-extensions, then
[K : ℘(K)], as additive groups, is finite. Thus any additive subgroup of the form a℘(K) has
finitely – and boundedly – many cosets in the whole K, so in particular in any intersection
of any family. Thus CKS is checked and ψ is NTP2.

Remark 2.5.10. As Philip Dittmann pointed out, “finitely many” is an optimal bound, since
NTP2 fields with an arbitrarily large number of AS-extensions exist: given a profinite free
group with n generators, there exists a PAC field of characteristic p having this group as
absolute Galois group. Such a field will have finitely many Galois extension of each degree,
that is, it is bounded and hence simple; but if one takes n large enough, it will have an
arbitrarily large number of Artin-Schreier extensions.

We now discuss two applications of local CKS: one is, as for NIPn, lifting complexity, and
the other one is only a potential programme to obtain NTP2 of some fields, most notably,
Fp((Q)).



42 CHAPTER 2. A.S.-EXTENSIONS & COMBINATORIAL COMPLEXITY

2.5.5 Lifting

Let (K, v) be henselian of residue characteristic p > 0. Shelah’s expansion doesn’t work in
general in NTP2 theories, so adding coarsenings to the language might disturb NTP2. Note
however that some weaker versions hold, for example [MOS18, Annex A], where one needs
to ensure that the value group is NIP and stably embedded before adding coarsenings to the
theory. Meanwhile, we can apply the same trick as above to lift complexity and derive some
conditions on NTP2 fields.

Lemma 2.5.11. Let (K, v) be henselian of residue characteristic p and suppose k has infinitely
many AS-extensions, then K has TP2 witnessed by ψ(x; y, z) : ∃t x− z = y(tp − t).

Proof. Since k has infinitely many AS-extensions, we know that there are (aij , bij)i,j<ω in k
witnessing TP2 for ψ. Take any lift αij , βij in K, we claim that they witness a TP2 pattern
for ψ in K.

Vertical consistency: Let f : ω → ω be a vertical path. We know that there is c in k such
that k ⊨ ψ(c; aif(i)bif(i)) for all i.∥ This means aif(i)(T p−T )− c− bif(i) has a root in f . Take
any lift γ of c, then αif(i)(T

p − T )− γ − βif(i) has a root in K by henselianity, which means
K ⊨ ψ(γ;αif(i), βif(i)).

Horizontal m-inconsistency: let’s name Pij(T, x) = aij(T
p−T )−bij−x. Now the residue

field k ⊨ ψ(c; aij , bij) iff Pij(T, c) has a root. Fix i and j1,· · ·, jm. m-inconsistency means that
for any choice of t1,· · ·, tm and c, one of Pijl(tl, c) is not 0. Instead of fixing x and pondering
at T , let’s fix t1 to tm and name fl(x) = Pijl(tl, x). m-inconsistency is equivalent to saying
that for any choice of tl, the family (fl)1⩽l⩽m of polynomials can’t have a common root.

Since k is not AS-closed, we can find a separable polynomial d with no root in k. Write
d(z) = rnz

n + · · · + r1z + r0, and fix a lift δ(z) = ρnz
n + · · · + ρ1z + ρ0 to K. δ also has no

root in K. Let D(z1, z2) = rnz
n
1 + rn−1z

n−1
1 z2 + · · · + r1z1z

n−1
2 + r0z

n
2 be the homogenized

version of d and similarly ∆(z1, z2) be the homogenized version of δ.
Now D(z1, z2) = 0 iff z1 = 0 = z2 by the choice of d, and same goes for ∆. Let f, g be two

polynomials. Then f, g have a common root iff D(f(x), g(x)) has a root. Thus we have m-
inconsistency in k iff the family (fl)1⩽l⩽m has no common root in k iff D(f1(x), D(f2(x), · · · ))
has no root in k iff, by henselianity, ∆(f1(x),∆(f2(x, · · · )) has no root in K iff the family
(fl)1⩽l⩽m has no common root in K, the latter exactly giving m-inconsistency of the pattern
in K.

Thus, given an NTP2 henselian field (K, v), if we take a coarsening of v with residue
characteristic p, we know its residue field has finitely many AS-extensions, without having to
ponder at external definability or anything.

2.5.6 Tame & semitame

Recently, Franz-Viktor Kuhlmann proved in [Kuh21] that valued fields of characteristic p with
finitely many Artin-Schreier extensions are semitame, which is a notion he studied in detail
in a joint paper with Anna Rzepka. In particular, contrary to the NIP case, where AS-closure
implies defectlessness, NTP2 fields could have defect, only, no dependent defect:

Definition 2.5.12. Let (L,w)/(K, v) be a purely defect Galois extension of degree p. Let
σ ∈ Gal(L/K) \ {id}. Consider the set Σ =

{
w(σ(x)−xx )

⏐⏐⏐ x ∈ L×
}

. If there is a convex

∥This is only true if K is ℵ1-saturated, so let’s assume it is.
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subgroup ∆ ⊂ Γ such that Σ = {γ ∈ Γ | γ > ∆}, we call (L,w)/(K, v) an independent defect
extension. Otherwise, we call it a dependent defect extension.

Definition 2.5.13. A non-trivially valued field (K, v) of residue characteristic p is called tame
if Γ is p-divisible, k is perfect, and (K, v) is defectless. Valued fields of residue characteristic 0
are also called tame. Here we will furthermore let trivially valued fields, of any characteristic,
be called tame.

A non-trivially valued field (K, v) of residue characteristic p is called semitame if Γ is
p-divisible, k is perfect, and (K, v) has no dependent defect extension. Again, we also call
trivially valued fields and equicharacteristic 0 fields semitame.

Note that tame and semitame are first-order properties. Equivalent definitions can be
found in [Kuh21], as well as a proof of the following result:

Theorem 2.5.14. Let (K, v) be a valued field of equicharacteristic p. If K is AS-finite, then
(K, v) is semitame.

We will also need the following lemma:

Lemma 2.5.15 ([KR21, Prop. 1.4]). A composition of two (semi)tame henselian valuation,
each of residue characteristic p, is (semi)tame.

Note that the statement by Kuhlmann and Rzepka that we reference is formulated for
“generalized deeply ramified” fields (gdr) without restricting to residue characteristic p, and
is then claimed to also hold in the (semi)tame context; as stated, it is slightly wrong, as
one needs to avoid some stupid counterexample: if (K, v) is of equicharacteristic 0 with a
non-divisible value group, say, Z, and (kv, w) is mixed-characteristic tame; then (K,w ◦ v)
is not tame, nor semitame, because its value group is not p-divisible. Thus, Kuhlmann and
Rzepka’s proof appears to have a hidden assumption, namely, residue characteristic p, that
we made explicit here.

This very fact, that compositions of (semi)tame fields are not always (semi)tame, together
with the non-(semi)tameness of finitely ramified fields which are noughtwithstanding very well
behaved, lead to the definition of gdr fields. We will not define what they are here, instead,
we refer to the aforementionned paper [KR21].

We prove a quick but very useful lemma – an NTP2 version of Lemma 3.2.2:

Lemma 2.5.16. Let K be NTP2, let v be henselian of residue characteristic p, and suppose
kv is imperfect; then v is the coarsest valuation with residue characteristic p. In particular,
there is at most one imperfect residue of characteristic p.

Proof. Suppose w is a non-trivial proper coarsening of v with residue characteristic p. Then
(kw, v) is a non-trivial equicharacteristic p henselian valued field with imperfect residue. By
Theorem 2.5.14, since semitame fields have residue perfect, kw is not semitame and thus has
infinitely many AS-extensions. But, by AS-lifting, that means K has TP2. Thus v can’t have
any proper coarsening of residue characteristic p.

We combine all this with the standard decomposition around p, written in terms of places
K

v0−→ k0
vp−→ kp

v−→ kv as in Definition 1.1.18, and obtain:

Proposition 2.5.17. Let K be NTP2 and v be henselian. Then (K, v) is either

1. of equicharacteristic 0, hence tame, or

2. of equicharacteristic p and semitame, or
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3. of mixed characteristic with (k0, v) semitame, or

4. of mixed characteristic with vp finitely ramified and (kp, v) semitame.

In particular, (K, v) is gdr.

We will discuss afterwards how close – or rather, how far – this is to an Anscombe-Jahnkish
equivalence.

Proof. Most cases follow directly from Theorem 2.5.14 and Artin-Schreier lifting, we only give
details for case 3.

Let (K, v) be of mixed characteristic such that vp is infinitely ramified, that is, ∆0/∆p

is dense. This is an elementary statement, that is, going to (K∗, v∗) ≽ (K, v) sufficiently
saturated and doing the standard decomposition in this new structure, ∆∗0/∆∗p remains dense;
see [AJ19a, Lem. 2.6]. Furthermore, (k∗0, v∗p) is defectless and has value group R. These facts
come directly from saturation, see [AK16].

By Artin-Schreier lifting, kp is AS-finite, and thus (kp, v) is semitame. Finally, an argument
similar to the aforementioned proof allows us to obtain perfection of kp: going to yet another
sufficiently saturated elementary extension (L, u) of (k0, vp) – in a language of valued fields
–, we know that the value group has a proper convex subgroup below u(p); thus there is a
non-trivial coarsening of u with residue characteristic p, and by Lemma 2.5.16 ku is perfect.
This is a first-order statement, so kp is also perfect.

So, (k0, vp) is defectless, has divisible value group, and perfect residue, that is, it is tame;
and (kp, v) is semitame. By Lemma 2.5.15, (k0, v) is semitame, as wanted.

Corollary 2.5.18. Let (K, v) be henselian, of mixed characteristic, and infinitely ramified. If
K is NTP2, then (K, v) is roughly p-divisible, of perfect residue, and has no dependent defect
extension.

2.5.7 Towards a classification

As far as we know, Proposition 2.5.17 is as strong as it gets. It is unclear how we could get
anything stronger than semitame for equicharacteristic p. The question now is to try and
determine if semitame fields have transfer, which is far beyond what can be done now.

We know that transfer happens at least in the same cases as in NIP fields, that is:

Proposition 2.5.19. Let (K, v) be henselian. Suppose k is NTP2. If either

1. (K, v) is of equicharacteristic and SAMK or trivial, or

2. (K, v) is of mixed characteristic with vp finitely ramified and (kp, v) SAMK or trivial,
or

3. (K, v) is of mixed characteristic with (k0, v) AMK;

then (K, v) is NTP2.

Proof. We only sketch the proof, since it is just a reinterpretation of the NIP case done by
Anscombe-Jahnke; indeed, if the value group and residue field are stably embedded, and if the
type of immediate extensions is determined by NTP2 formulas, then we have NTP2 transfer.
This was obtained by Chernikov and Hils in [CH12]. We will say more about this result and
how it has been extended to other contexts in section 3.1.1. By the work of Jahnke-Simon and
Anscombe-Jahnke, see [AJ19a, Prop. 4.1 & Lem. 4.4], we know SAMK fields and unramified
fields satisfy those conditions – in fact, the types of immediate extensions are even implied by
NIP formulas. It is now just a matter of composing valuations, which can be done in a slight
different way than for NIPn fields:
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Claim. Let (K, v) be a valued field and w a coarsening of v. Assume that kw is stably
embedded (as a pure field) in (K,w). Then (kw, v) is stably embedded in (K,w).

This is a direct consequence of [CS15, Lem. 46]. In the NIPn context, we then proceed
to prove that, under stable embeddedness assumptions, a composition of NIPn valuations is
NIPn. We could not achieve such a powerful result in NTP2, however, we can take a shortcut
and argue directly by transfer; sadly, this shortcut ends up being more tedious:

• If (K, v) is of mixed characteristic and (k0, v) is AMK, then (k0, v) has NTP2 transfer, as
noted above. Now (K, v0) is of equicharacteristic 0 and thus trivially SAMK, therefore,
it also has transfer; specifically, it has stably embedded value group and (pure) residue
field, and the type of immediate extensions is implied by NTP2 formulas. By the claim,
(k0, v) is still stably embedded, and thus the structure (K, v0, (k0, v)) also has transfer.
Thus, if k is NTP2, (K, v) is NTP2.

• If (K, v) is of mixed characteristic, (kp, v) is SAMK or trivial and (K, vp) is finitely
ramified, then vp is definable by Robinson’s generalized formula, see Corollary 1.4.3.
Moving to (K∗, v∗) ≽ (K, v) sufficiently saturated, v∗p is still definable and (k∗p, v

∗) is
still SAMK or trivial. Now (k∗0, v

∗
p) can be seen as a finite extension of an unramified

field (L,w) with same residue k∗p, see [War93, Thm. 22.7]. Unramified fields have trans-
fer, and as above, it is a resplendent transfer. Thus, if k is NTP2, (k∗p, v

∗) is NTP2
by SAMK transfer, (L,w, (k∗p, v∗)) is NTP2 by unramified transfer, (k∗0, v∗p, (k∗p, v∗)) is
NTP2 since it is a finite extension of an NTP2 field, and finally (K, v∗0, (k

∗
0, v
∗)) is NTP2

by equicharacteristic 0 transfer.

In short, the current situation is: if a henselian valued field is AS-closed – or rather, if its
standard decomposition is AS-closed or finitely ramified by parts –, then it has transfer. In
NIP or NIPn settings, this is enough, as NIPn fields are known to be AS-closed (or finitely
ramified by parts); however, we only know that NTP2 fields are AS-finite (or finitely ramified
by parts), and thus tame or semitame (or finitely ramified by parts), and this gives not enough
information to ensure transfer under the known theorems.

We ask two questions with no answer yet:

• Can an NTP2 field have defect?

• Do SAMAK henselian valued fields have NTP2 transfer?

Here “SAMAK” means sep. alg. max. almost Kaplansky; we still assume that Γ is p-
divisible and k is perfect, but we only assume that k is AS-finite, and not necessarily AS-
closed.

Regarding defect, we know that semitame fields can not have dependent defect. It is
likely that NTP2 fields indeed can have defect, but an example remains to be exhibited – and
proving transfer theorems for defect fields is yet another task.

2.5.8 What about Fp((Q))?

If we had NTP2 transfer for SAMAK fields, we would know that Fp((Q)) is NTP2. This is
believable; the only reason why this field has IP is because it has exactly 1 Artin-Schreier
extension, other than that, it has divisible value group, finite residue field, is henselian and
maximal.
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We give a three step programme to try and prove this without using transfer. Note that
the t-adic valuation is definable in Fp((Q)) by Corollary 1.4.6.

Step 1: Fp((Q)) has QE down to predicates for roots of additive polynomials.
To be precise, we let Sn be an n + 1-ary predicate, to be interpreted in K ≡ Fp((Q)) as
K ⊨ Sn(a0,· · ·, an−1, b) ↔ ∃x(xpn + an−1x

pn−1
+ · · ·+ a0x = b). We would like to prove

that Fp((Q)) has QE in the language of valued fields augmented with these predicates. We
give three reasons to believe that this language is exactly the one we need: first of all, the
predicates Sn cannot be equivalent to a quantifier free formula in any valued field language,
because Sn has IP in Fp((Q)) – and because quantifier free formulas of valued fields are NIP
in any henselian valued field, because ACVF is NIP. For example, S1(−1, xy ) is equivalent to
∃t x = y(tp − t), which has IP by Corollary 2.2.14.

Secondly, we believe the study of all polynomials can be reduced to an argument about
additive polynomials. This is mainly because of the following standard result:

Lemma 2.5.20 (Ore’s lemma, [Lis21, Lem. 2.1.2]). Let K be a field of characteristic p and
fix P (X) ∈ K[X]. Then there is an additive polynomial Q(X) ∈ K[X] which is divisible by
P .

Then, if we know that P has a root, we know that Q has a root. However, we’re more
interested by the other direction; we would like to reduce the study of the roots of an arbi-
trary polynomial P to the study of the roots of this additive polynomial divisible by P . In
some sense, this is possible, for example, it was used by Victor Lisinski in [Lis21] to obtain
decidability of, among other, Fp((Q)) – with a constant symbol for t.

The third and last reason is that we believe Fp((Q)) has QE down to predicates for root of
all polynomials: indeed, Ingo Brigandt proved this exact result for tame extensions of Qp, and
their method can be adapted to tame extensions of Fp((Z)), since it only relies on tameness
and on certain properties of residue fields and value groups which are exactly the same in
those settings. We refer to [Bri01] for the proof above Qp.

Step 2: These predicates have TP2 iff the field has infinitely many Artin-Schreier
extensions. Indeed, write Ha0,···,an−1 = {b ∈ K | K ⊨ Sn(a0,· · ·, an−1, b)}. Then H is a de-
finable family of subgroups of K. In the proof of Corollary 2.5.9, apart from additivity,
there’s nothing special about the Artin-Schreier polynomial, it probably could be replaced
by any other additive polynomial; however, the devil is in the details, and a more general –
furthermore local – version of the proof needs to be carefully done.

Let us be more precise: keeping notation consistent, the exact formulas which would then
be known to be NTP2 would be Sn(y0,· · ·, yn−1, x − z) – with the variable partition (x; yz).
Setting z to 0 can only decrease complexity, so this gives NTP2 for Sn with variables as
inputs, but it does not say anything if we input arbitrary terms.

Step 3: Term inputs and boolean combination are well-behaved. This is the most
ill-defined of the steps. It is of course necessary, since atomic formulas can comprise arbitrary
terms, and since boolean combinations do not preserve NTP2; but there’s no clear method
on how to do it. It is possible that the methods developed during the first two steps can
significantly reduce the complexity of this step, but it is also possible that it would have to
be tackled frontally, without any sleight of hand.
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Chapter 3

NIPn Henselian Valued Fields

3.1 Overview

3.1.1 Transfer theorems: from world 0-0 to the final boss

Our main result is the following extension Anscombe & Jahnke’s characterization of NIP
henselian valued field:

Theorem 3.1.1 (The Final Boss of transfer theorems). Let (K, v) be a henselian valued field.
Then (K, v) is NIPn iff the following holds:

1. k is NIPn, and

2. either

(a) (K, v) is of equicharacteristic and is either trivial or SAMK, or
(b) (K, v) has mixed characteristic (0, p), (K, vp) is finitely ramified, and (kp, v) checks

2a, or
(c) (K, v) has mixed characteristic (0, p) and (k0, v) is AMK.

The case n = 1 is the main theorem of [AJ19a], which we already stated as Theorem 2.2.18.
For definitions of (S)AMK see Definition 1.1.12 and Definition 1.1.13 and for a definition of
v0 and vp see Definition 1.1.18. We give a short history of transfer theorems.

Transfer theorems are of the form “Assume (K, v) has good properties; if k (and Γ) are
noice, then (K, v) is noice”. In our case, noice would be NIP or NIPn, but in general, it could
be any model-theoretic property. The goal is to assume as little as possible for (K, v), but often
“henselian” is a minimum, as well usually as tameness assumptions in residue characteristic p
such as p-divisibility, Kaplansky, defectlessness...

Normally, one needs to assume that both the residue and the value group are noice, but
bear in mind that all OAG are NIP.

In some sense, one can see AKE as a transfer theorem, transfering elementary equivalence.
But if we focus on combinatorial complexity, the first transfer theorem was proven in 1981 by
Delon in [Del79]: Assume (K, v) is henselian of equicharacteristic 0, then it has NIP transfer.
Because we assume so little, it is already optimal, in some sense.

In 1999 in [Bé99], Luc Bélair obtained transfer in two cases: when (K, v) is henselian,
equicharacteristic p, and AMK – so in particular perfect; and when (K, v) is henselian, mixed
characteristic, unramified and of residue perfect.

In 2012 in [Che14], Chernikov extended Delon’s result to obtain NTP2 transfer in henselian
valued field of equicharacteristic 0; this sparked interest towards NTP2 valued fields, and
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conducted Chernikov and Hils to determine 2 conditions, later named (SE) and (Im), which
were shown to be sufficient to have NTP2 transfer in [CH12]. These conditions were then
studied in the NIP context by Jahnke and Simon in [JS20], and were used to extend Bélair’s
results to non-perfect fields, partly in the same article, and also by Anscombe and Jahnke in
[AJ19a]. The unramified case was then generalized into a finitely ramified case by Anscombe
and Jahnke, using the study of Cohen rings, which they themselves did in [AJ19b], and
obtaining the aforementioned theorem for NIP.

We give a summary of the proof before generalizing it to the NIPn case:

⇒: In equicharacteristic 0, the requirement is empty. In equicharacteristic p, it is a conse-
quence of KSW, see Theorem 2.2.12.

In mixed characteristic, with the help of the standard decomposition – see Definition 1.1.18
–, we reduce to the equicharacteristic case and to a dichotomy on the rank 1 part: either it is
discrete or dense. This gives the two cases in mixed characteristic. This doesn’t disturb NIP
thanks to Shelah’s expansion theorem.

⇐: Equicharacteristic 0 has been done by Delon. One now uses Chernikov-Hils conditions
to prove transfer in the remaining cases:

• separably algebraically maximal Kaplansky fields check Chernikov-Hils conditions,

• unramified fields check Chernikov-Hils conditions,

• finitely ramified fields can be seen, with some caveats, as finite extension of unramified
fields.

To conclude that transfer holds in all cases of the theorem, we need to be able to compose
valuations without disturbing NIP, which is possible when the residue field is stably embedded.

Towards arbitrary n: As mentioned before, KSW has been generalized to arbitrary n
by Hempel in [Hem14], see Theorem 2.3.10, so “⇒” holds for equicharacteristic p – and
for equicharacteristic 0 alike. In mixed characteristic however, we can’t use the standard
decomposition as such, since the argument uses Shelah’s expansion theorem, which fails in
general for NIPn theories, though some weaker version holds, similar to what exists for NTP2,
see [MOS18, Annex] and Corollary 3.4.6. But, we saw before than some p-closure results can
be obtained via explicit Artin-Schreier lifting, and this will allow us to skip Shelah’s expansion.
Then we will proceed to prove that Chernikov-Hils conditions, adapted to the NIPn setting,
are sufficient to have NIPn transfer, and that composing valuations preserves NIPn. This will
yield transfer in all cases of the theorem.

3.2 Left-to-right

Let (K, v) be henselian, and suppose it is NIPn (as a valued field). Since the residue field is
interpretable in a NIPn structure, it is also NIPn. In equicharacteristic 0, there is nothing to
prove. We do the equicharacteristic p case in the same way as for NIP fields:

Lemma 3.2.1. If (K, v) is NIPn, henselian, and of equicharacteristic p, then it is SAMK or
trivial.

This is a NIPn version of [AJ19a, 3.1].
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Proof. If v is trivial, then we’re done. Assume not. By Theorem 2.3.10, K is AS-closed; this
implies that it has no separable algebraic extension of degree divisible by p (see [KSW11,
4.4]). Then it is clearly separably defectless, it has p-divisible value group, and AS-closed
residue. Remains to prove that the residue is perfect. Suppose α ∈ k has no pth-root in k,
and consider Xp −mX − a, where v(m) > 0 (but non-zero; remember than v is non-trivial)
and where a is a lift of α. Then this polynomial has no root, thus K is not AS-closed.

Now, for the mixed characteristic case, we will follow Anscombe-Jahnke’s proof for the
most part, except we swap Shelah’s expansion for explicit Artin-Schreier lifting.

Lemma 3.2.2. Let (K, v) be a NIPn henselian valued field. Then v has at most one coarsening
with imperfect residue field. If such a coarsening exists, then it is the coarsest coarsening w
of v with residue characteristic p.

This is a NIPn version of [AJ19a, 3.4].

Proof. Let w be a proper coarsening of v, name kw its residue. Suppose kw is of characteristic
p. Then (kw, v) is a non-trivial equicharacteristic p henselian valued field. If its residue is
imperfect, then kw is not AS-closed by the proof of Lemma 3.2.1; then K has IPn as a pure
field by explicit Artin-Schreier lifting.

So, if v has a coarsening with imperfect residue field, this coarsening can’t in turn have
any proper coarsening of residue characteristic p; thus the only coarsening of v that could
possibly have imperfect residue is the coarsest coarsening of residue characteristic p (possibly
trivial).

Proposition 3.2.3. Let (K, v) be a NIPn henselian valued field of mixed characteristic. Then
either 1. (K, vp) is finitely ramified and (kp, v) is SAMK or trivial, or 2. (k0, v) is AMK.

This is a NIPn version of [AJ19a, 3.1].

Proof. Consider (kp, v). If its valuation is non-trivial, kp must be AS-closed, otherwise K
would have IPn by explicit Artin-Schreier lifting. So, (kp, v) is either SAMK or trivial by (the
proof of) Lemma 3.2.1.

We now make the following case distinction: if ∆0/∆p is discrete, then (K, vp) is finitely
ramified, and since we already know that (kp, v) is SAMK or trivial, case 1 holds. Otherwise,
∆0/∆p is dense. We go to an ℵ1-saturated extension (K∗, v∗) of (K, v), and redo the standard
decomposition there. ∆∗0/∆

∗
p is still dense (see [AJ19a, Lem. 2.6]), and by saturation, it is

equal to R; in particular, ∆∗0/∆∗p is p-divisible. Now, as before, if (k∗p, v∗) is non-trivial, then
it is SAMK. It is clearly non-trivial by saturation, since we assumed (K, vp) was infinitely
ramified. Thus, (k∗0, v

∗) is Kaplansky. We can state this in first order by saying that k is
perfect and AS-closed (the valuation v is in our language for now), and that Γ is roughly
p-divisible, i.e. if γ ∈ [0, v(p)] ⊂ Γ, then γ is p-divisible.

Remains to prove that (k0, v) is algebraically maximal. First, we prove that kp is perfect.
Consider the henselian valued field (K∗, v∗p) (so this time we have v∗p in the language, and
not v∗) and an ℵ1-saturated extension (K ′, u′) of it. Since (K∗, v∗p) is infinitely ramified, by
saturation u′ admits a proper coarsening of residue characteristic p, so by Lemma 3.2.2, its
residue field is perfect; going down to (K∗, v∗p), this means k∗p is perfect. Since we already
know that (k∗p, v∗) is separably algebraically maximal, because it is perfect we now know it is
algebraically maximal.

Now by saturation (k∗0, v
∗
p) is maximal; in particular it is defectless, see [AK16]. Now v∗ is

a composition of defectless valuations, thus it is defectless (see [AJ19a, Lem. 2.8]). By [AJ19a,
Lem. 2.4], defectlessness is a first-order property, so (K, v) is also defectless, and thus (k0, v)
is defectless. Because defectlessness implies algebraic maximality, we conclude.
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3.3 Transfer theorems

As we will discuss later, the first step for transfer is to study usual characterizations of NIPn

in terms of indiscernible sequences and obtain an array extension lemma.

3.3.1 NIPn & generalized indiscernibles

Definition 3.3.1. Let M be an L-structure and I be an L0-structure, where L and L0 are
possibly different languages. A sequence (ai)i∈I of tuples of M is said to be I-indiscernible
over a set A ⊂ M if for any i0,· · ·, in and j0,· · ·, jn in I, qftpL0(i0,· · ·, in) = qftpL0(j0,· · ·, jn)
implies tpL(ai0 ,· · ·, ain/A) = tpL(aj0 ,· · ·, ajn/A).

Remark 3.3.2. We call two tuples of elements of a structure a and b “of the same mould” if
they are of the same length n and if for all i < n, ai and bi are in the same sort. Given a tuple
a, we say that a tuple of variable x is “a mould” of a if they are of the same length n and for
all i < n, xi is a variable on the sort containing ai. A contrario, given a tuple of variables x,
we say that a tuple of elements a is “a cast” of x if x is a mould of a, and we say similarily
that 2 tuples of variables x and y are “identical as moulds”.

The reason we care about it is that there’s no need for (ai)i∈I to be a sequence of tuples
of the same mould; and for a generalized indiscernible sequence, we do not need to compare
the type of ai and aj if i and j have different types; so they might be of different lengths and
of different sorts.

We denote by Gn an ordered random n-partite n-hypergraph; it is a structure in the
language {<,P1,· · ·, Pn, R} and is axiomatized as follows:

• Gn = P1 ⊔ · · · ⊔ Pn,

• < is a dense linear order without endpoints on each Pi,

• P1 < · · · < Pn,

• R is an n-ary relation on P1 ×· · ·× Pn – the hyperedge relation,

• For any finite disjoint A0, A1 ⊂ P1×· · ·×Pj−1×Pj+1×· · ·×Pn and for any b0 < b1 ∈ Pj ,
there is b ∈ Pj such that b0 < b < b1 and if you fix (g1,· · ·, gj−1, gj+1,· · ·, gn) ∈ A0, then
(g1,· · ·, gj−1, b, gj+1,· · ·, gn) is an edge; and same goes for A1 with non-edges.

We name On the reduct of Gn to the language {<,P1,· · ·, Pn}, that is, we ignore the edges;
On is thus just {1,· · ·, n} ×DLO, lexicographically ordered.

Proposition 3.3.3 ([CPT19, Prop. 5.2], [CH21, Prop. 2.8]). A formula φ(x; y0,· · ·, yn) has
IPn iff there exists (in a sufficiently saturated model M) a tuple b and a sequence (ag)g∈Gn

which is On-indiscernible over ∅ and Gn-indiscernible over b such that φ(b; y) encodes the
edges of the graph; that is:

M ⊨ φ(b, ag1 ,· · ·, agn) iff Gn ⊨ R(g1,· · ·, gn).

Note that considering a sequence indexed by Gn which is On-indiscernible is the same as
considering n mutually indiscernible sequences indexed by each Pi.
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P1 P2 P3 P4

b0

b1

b

Figure 3.1: An ordered random 4-hypergraph. Each Pi is represented by a vertical line. Sets
A0 and A1 are represented in red and in green respectively. Such a graph will have many
more edges which are not drawn here.

3.3.2 Chernikov-Hils’ Im Plus SE conditions

In 2014, Chernikov and Hils defined 2 conditions under which NTP2 transfer happens. We
already mentioned these conditions in section 2.5.7. Later, they were studied by Jahnke and
Simon in the NIP settings, and proved to be interesting conditions to consider, in general, to
obtain transfer theorems. They are the following:

(SE): The residue field and the value group are stably embedded.

(Im): For any small model K and any singleton b (from a monster model) such that K(b)/K
is immediate, we have that tp(b/K) is implied by instances of NTP2 formulas, that is,
there is p ⊂ tp(b/K) closed under conjunctions and such that:

• any formula φ(x, y) ∈ p – where x is the cast for b and y for (a finite subtuple of)
K – is NTP2,

• for any ψ(x, y) ∈ L, ψ(b,K) holds iff p ⊢ ψ(x,K).

We say a valued field has NTP2 CHIPS if it checks Chernikov-Hils’ Im Plus SE conditions.
These conditions are sufficient to obtain transfer:

Theorem 3.3.4 (NTP2 CHIPS transfer, [CH12, Thm. 4.1]). Let (K, v) have NTP2 CHIPS,
then (K, v) is NTP2 iff k is NTP2.

In 2018, Jahnke and Simon proved a NIP CHIPS transfer, using a modified condition (Im)
with NIP formulas instead of NTP2, see [JS20]. Our goal is to prove a NIPn CHIPS transfer.∗

We give a heuristic about why CHIPS is sufficient to obtain transfer: most of the time,
combinatorial complexity can be witnessed by indiscernibles, so if a formula φ has TP2, IP or
IPn, there’s a (potentially generalized) indiscernible sequence (ai)i∈I and a singleton b such
that φ(b, ai) witnesses some pattern. By Ramsey and compactness, we can extend (ai)i∈I

∗This joke has been partially funded by the Sylvy Anscombe Foundation on Acronymic Research and
Interaction.
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until each ai is a small model Ki. Now, of course, φ is in the type of b over some Ki, say K0

(otherwise it’s always false, and that’s not a pattern), but K0(b)/K0 might not be immediate.
Well, whatever; let’s append an enumeration of the value groups and residue field of K0(b)
to K0. We would like to also be able to append to the rest of the sequence Ki so that the
now augmented sequence keeps the indiscernability properties it had before; because the value
group and residue field are stably embedded, this can be done via an array extension lemma.
In the end, we have indeed that K0(b)/K0 is immediate, so φ is implied by NTP2, NIP or
NIPn formulas, and thus is itself NTP2, NIP or NIPn– which contradicts the choice of φ.

3.3.3 NIPn CHIPS transfer

In this section, we put in place the argument summarized above in the NIPn context. As
such, we first need to obtain an array extension lemma. We do so in an arbitrary complete
theory T with a given monster model M.

Definition 3.3.5. Let D be a ∅-definable set. We say that D is n-hanced stably embedded
if for all formulas φ(x, y1,· · ·, yn) and for all sequences (aki )

1⩽k⩽n
i∈I ∈ M such that each aki is a

cast of yk, there is a formula ψ(x, z1, · · · , zn) and a sequence (bki )
1⩽k⩽n
i∈I ∈ D – with each bki a

cast of zk – such that:
φ(D, a1i1 ,· · ·, a

n
in) = ψ(D, b1i1 ,· · ·, b

n
in).

The usual definition of stable embeddedness is that any M-definable subset of D is D-
definable. A priori, this D-definition depends wildly on the original M-definition, however,
with compactness and coding tricks, this can be strengthened to a uniform version. This is
discussed in great details in [Tou20, sec. 1].

Our version is semi-uniform – ψ depends on φ and also on the choice of the sequence
(ai)i∈I , but does not change when going from ai to ai′ –, and more importantly, it works on
n variables at once. It might be that this is equivalent to being stably embedded, assuming
D is infinite, via a coding trick and a compactness argument; but it remains to be proved.
We note the following:

Lemma 3.3.6. If every automorphism of Dn lifts to an automorphism of Mn, then D is
n-hanced stably embedded.

Proof. This can be obtained by adapting the proof of [CH99, App. Lem. 1], specifically, the
proof of (6) implies (5). Note that if D is not n-hanced stably embedded, then there exists
an M-definable family Sa1,···,an = {b ∈ D | M ⊨ φ(b, a1,· · ·, an)} which is not a D-definable
family. Following the original proof with this definable family instead of a mere definable set
yields the wanted result.

In order to study n-hanced stable embeddedness in more detail, we ideally would want
an n-hanced version of the aforementioned lemma [CH99, App. Lem. 1], this has not been
achieved as of yet.

Lemma 3.3.7. Let (ag)g∈Gn be On-indiscernible over a set A. Suppose D is a ∅-definable set
which is n-hanced stably embedded and fix d ∈ D. If the induced structure on D is NIPn, then
no formula with parameters in Ad can encode the hyperedges of (ag)g∈Gn .

This is a NIPn version of [JS20, Lem. 2.1].

Proof. Let φ(d; y1,· · ·, yn) be a formula with non-written parameters in A and encoding the
hyperedges of (ag)g∈Gn . By n-hanced stable embeddedness, we can find ψ(x, z1,· · ·, zn) and
(bg)g∈Gn ∈ D such that φ(D; ag1 ,· · ·, agn) = ψ(D; bg1 ,· · ·, bgn) for all g.
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Claim. For any J ⊂ P1 × · · · × Pn, we can find dJ ∈ D such that φ(dJ ; ag1 ,· · ·, agn) holds
iff (g1,· · ·, gn) ∈ J .

Given such dJ , we immediately have that ψ(dJ ; bg1 ,· · ·, bgn) holds iff (g1,· · ·, gn) ∈ J , which
yields IPn on D; thus proving the claim is enough to prove the lemma.

To prove the claim, let f enumerate P1 × · · · × Pn in such a way that f(i) and f(i + 1)
always differ in exactly one coordinate – here we take Gn countable. We will prove that one
can find a dN ∈ D such that φ(dN ; af(i)1 ,· · ·, af(i)n) holds iff f(i) ∈ J for i < N . For N = 1,
either f(0) is in J or not. We can find (g1,· · ·, gn) ∈ P1 × · · · × Pn such that φ(d; ag1 ,· · ·, agn)
holds (or not), so M ⊨ ∃x ∈ D(¬)φ(d; ag1 ,· · ·, agn), and by On-indiscernability, M ⊨ ∃x ∈
D(¬)φ(d; af(0)1 ,· · ·, af(0)n).

Now assume such a dN exists for some N . We do the case f(N) ∈ J , the other one is
similar. We need to find (g1,· · ·, gn) in the same place as f(N) regarding f(i), i < N (that
is, gj < f(i)j iff f(N)j < f(i)j , etc.), forming a hyperedge, and not colluding with previous
choices.

By our choice of f , f(N − 1)i = f(N)i for all i but 1. Then we take gi = f(N − 1)i, and
for the remaining gj , we use the properties of Gn:

If f(N)j has never appeared before, we just need to choose a gj in the correct place such
that (g1,· · ·, gn) forms a hyperedge. This is possible.

If f(N)j has appeared before, then fixing gj = f(N)j might cause trouble, since (g1,· · ·, gn)
might not be connected. Instead, we let I be the set of i such that f(i)j = f(N)j . We let
b0 = max {f(i)j | f(i)j < f(N)j} and b1 = min {f(i)j | f(i)j > f(N)j}. We let A0 be the set
of (f(i)1,· · ·, f(i)j−1, f(i)j+1,· · ·, f(i)n) such that (f(i)1,· · ·, f(i)j−1, f(N)j , f(i)j+1,· · ·, f(i)n)
forms a hyperedge, for i ⩽ N , and A1 be the counterpart with non-hyperedges. Then by the
properties of Gn, there is b between b0 and b1, forming edges with all points of A0 and no
points of A1; we now let f ′(i) = f(i) for i /∈ I, f ′(i)k = f(i)k for k ̸= j, and f ′(i)j = b for
i ∈ I. We conclude by indiscernibility as before.

Lemma 3.3.8 (NIPn array extension lemma). Let D be n-hanced stably embedded and let
(ag)g∈Gn be On-indiscernible over ∅ and Gn-indiscernible over some tuple b. Fix an edge
(g1,· · ·, gn) ∈ P1 ×· · ·× Pn. For each gi let cgi ∈ D be a small tuple. Then, we can interpolate
the rest of the sequence, that is, we can find (cg)g ̸=gi and (a′g)g∈G such that:

• a′gi = agi ,

• tp((a′g)g∈Gn/b) = tp((ag)g∈Gn/b),

• (a′gcg)g∈Gn is On-indiscernible over ∅ and Gn-indiscernible over b.

This is a NIPn version of [JS20, Lem. 2.2] and [CH12, Lem. 3.8].

Proof. We do it part by part, mimicking the strategy of the NIP case. We fix an edge
g = (g1,· · ·, gn) ∈ Gn, and we fix i. In the NIP case, we do even and odd separately; here we
define the set of “even” indices to be Ei = {g ∈ Pi | (g1,· · ·gi−1, g, gi+1,· · ·, gn) is an edge}.
Because (ag)g∈Gn is Gn-indiscernible over b, we can find cg for each g ∈ Ei such that
agcg ≡b,ag1 ,···,agi−1 ,agi+1 ,···,agn ag1cg1 . Now, by Ramsey, we may assume (agcg)g∈Gn,g /∈(Pi\Ei)

is On-indiscernible over ∅ and Gn-indiscernible over b.
Now, because this is true for any sequence with these properties, we move to a new

sequence where Pi is now P ∗i and is very long. Any “even” element of P ∗i has already been
extended by a c.
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For each element of g ∈ Ei (the original, short version) we chose a representation λg ∈ P ∗i .
We make sure to take them very far apart from each other.

Pi\Ei injects into the set of cuts of Ei. Fix an “odd” index h, and look at the corresponding
cut Ch (in P ∗i ) of {λg | g ∈ Ei}. Now P1 ⊔· · ·⊔ Pi−1 ⊔ Ch ⊔ Pi+1 ⊔· · ·⊔ Pn is itself a random
graph.

Take a formula φ(agi , cgi) ∈ tp(agicgi/b(ag)g/∈Pi
). By the previous lemma, φ(ak, ck)k∈Ch

can’t encode all the random graph; so except for discretely many points, it’s either always
true or always false.

If we exclude those discretely many points from Ch, after having done that for all formulas,
we still have points, because P ∗i is really long. Chose any “even” point in what remains; we
will call it λh.

Now we take an automorphism σ over b(ag)g/∈Pi
taking each aλgcλg to agcg. We define

a′hch = σ(aλh
cλh

). Now the sequence with extended points in the ith part and a′ for “odd”
indices satisfy the theorem.

We now suppose T is a complete theory of valued fields (possibly with additional struc-
ture), and we consider the following properties:

(SE)n: The residue field and the value group are n-hanced stably embedded.

(Im)n: For any models K1,· · ·,Kn ⊨ T , writing L for the compositum of all of them, and for any
singleton b ∈ M, if L(b)/Ki is immediate for all i, then we have that tp(b/K1,· · ·,Kn)
is implied by instances of NIPn formulas, that is, there is a p ⊂ tp(b/K1,· · ·,Kn) such
that:

• any formula φ(x; y1,· · ·, yn) ∈ p – where x is the cast for b and yi for Ki – is NIPn,
and

• ψ(b,K1,· · ·,Kn) holds iff p ⊢ ψ.

We say that (the complete theory of) a valued field, potentially with augmented structure,
has NIPn CHIPS if it checks these two conditions.

Theorem 3.3.9 (NIPn CHIPS transfer). If T is a complete theory of valued fields with NIPn

CHIPS, then T has NIPn transfer; that is, T is NIPn iff the theories of the residue field and
the value group are NIPn.

This is a NIPn version of [JS20, 2.3]. Let us also note that in the case where the structure
is augmented, when checking whether a theory has CHIPS – whether it be of NIP, NIPn or
NTP2 flavour –, we need to be careful on exactly what is the structure we consider on the
residue field and on the value group; if for example k is NIPn as a pure field, but we only
know that an augmented structure of k is (SE)n, augmented structure for which we don’t
know NIPn, then this theorem does not guarantee transfer.

Proof. Assume T has IPn. Then we can find a formula φ(x; y1,· · ·, yn) with x unary, a singleton
b and a sequence (ag)g∈Gn On-indiscernible over ∅ and Gn-indiscernible over b, such that
φ(b; ag1 ,· · ·, agn) holds iff Gn ⊨ R(g1,· · ·, gn).

By Ramsey and compactness, we can extend each ag until it enumerates a small model
Kg. We refer to [CPT19], specifically the appendix, for the study of Ramsey properties in
NIPn theories.

We fix an edge g = (g1,· · ·, gn) ∈ P1 ×· · ·× Pn. Let k′ and Γ′ be the residue and value
group of Kg1 · · ·Kgn(b), let cgi and dgi be enumerations of k′ \ kgi and Γ′ \ Γgi . Apply the
previous lemma twice to obtain a sequence (a′gcgdg)g∈Gn such that:
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• a′gi = agi ,

• tp((a′g)g∈Gn/b) = tp((ag)g∈Gn/b),

• (a′gcgdg)g∈Gn is On-indiscernible over ∅ and Gn-indiscernible over b.

We now start over: we extend each (a′gcgdg) to enumerate a model, add the residue and value
group of this model plus b, and interpolate. After ω iterations, we have a sequence (Ng)
of small models, On-indiscernible over ∅, Gn-indiscernible over b, such that tp((Ng)g∈Gn/b),
restricted to the correct subtuple, equals tp((ag)g∈Gn/b), and such that Ng1 · · ·Ngn(b)/Ngi is
immediate. Now by (Im)n, tp(b/Ng1 ,· · ·, Ngn) is implied by instances of NIPn formulas. By
Gn-indiscernability, such a formula will also hold for any edge. But by NIPn-ity, it can’t also
not hold for all non-edges, in fact it can only not hold for finitely many of them. Hence we
must have a non-edge (g′1,· · ·, g′n) such that all the NIPn formulas implying tp(b/Ng1 ,· · ·, Ngn)
hold, and thus φ(b, ag′1 ,· · ·, ag′n) holds, which contradicts the initial choices of φ, b, and a.

3.4 Right-to-left

We now use Theorem 3.3.9 to get NIPn transfer in all cases. We still follow Anscombe-Jahnke’s
strategy.

Proposition 3.4.1. SAMK henselian valued fields have (SE)n.

Proof. By Lemma 3.3.6, it is enough to show that every automorphism of Γn lifts to Kn,
and similarly for every automorphism of kn. This follows directly from adapting the proof of
Anscombe-Jahnke in the case n = 1, see [AJ19b, Thm. 12.6].

Proposition 3.4.2. If (K, v) is SAMK with NIPn residue, then it is NIPn.

Proof. For n = 1, this was done by Jahnke and Simon in the case of finite degree of imper-
fection, and Anscombe and Jahnke for the rest; see [JS20, Thm. 3.3] and [AJ19a, Prop. 4.1].

The previous proposition tells us (K, v) has (SE)n, we now prove it has (Im)n: let
K1,· · ·,Kn be small models of the theory of (K, v) – as always we are working in a mon-
ster model, thus all valuations are restriction of a given valuation on the monster – and b a
singleton such that K1· · ·Kn(b)/Ki is immediate. We let L be the henselization of the relative
perfect hull of K1· · ·Kn(b). By the properties of the henselization, L is uniquely determined
by the isomorphism type of b over K1· · ·Kn.

Now we consider L′, the relative tame closure of L. This is uniquely determined up to
isomorphism by [KPR86, Thm. 5.1] because L is Kaplansky. By [Del82, Thm. 5.1], L′ is an
elementary extension of Ki (for any i).

Thus, the isomorphism type of b over K1,· · ·,Kn (that is, its qf type) uniquely determines
a model containing it, so it implies the full type. Quantifier free formulas in the language of
valued fields are NIP, thus in particular NIPn; which means (K, v) has (Im)n, and we have
transfer by Theorem 3.3.9.

Note that we did not specify the characteristic – the way we wrote it assumes the residue
characteristic is p, but in equicharacteristic 0, it’s even simpler, since K1· · ·Kn(b) ≡ k((Γ)) ≡
Ki.

In equicharacteristic, we already proved that NIPn henselian valued fields are SAMK (or
trivial), so this suffices to have the equivalence, and only the mixed characteristic case remains.

Lemma 3.4.3. If (K, v) is henselian, of mixed characteristic and unramified, then it has
(SE)n.
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Proof. As before, it is an easy adaptation of the proof in the case n = 1, see [JS20, Lem. 3.1]
and [AJ19a, Prop. 4.1], using Lemma 3.3.6.

Lemma 3.4.4. If (K, v) is (mixed-char) unramified with NIPn residue, then it is NIPn.

Proof. Again, NIP1-transfer has been proved using (SE)1+(Im)1 by Anscombe and Jahnke,
see [AJ19a, Lem. 4.4]. We now go towards arbitrary n.

We let K1,· · ·,Kn be small models – of a given monster model, as above – and b be a
singleton such that K1· · ·Kn(b)/Ki is immediate for each i. We also assume that one of them,
say K1, is ℵ1-saturated. Each of them is equipped with a valuation which is the restriction
of the monster’s valuation and that we denote v in each of them.

Let L = K1· · ·Kn(b), by assumption L/K1 is immediate, so we write Γ for the value
group and k for the residue field. By unramification, Γ = ∆ ⊕ Z, with ∆ = Γ/Z and
v(p) = (0, 1) ∈ ∆ ⊕ Z, and we let w be the coarsening of v corresponding to Z. We denote
the residue field of (·, w) by ·.

Now (L, v) is an immediate extension of (K1, v). But by ℵ1-saturation, (K1, v) is spheri-
cally complete, hence maximal. So, L = K1.

Finally, we consider the henselization Lh of L. It is immediate over L – and over K1.
Decomposing it into its ∆ part and its Z part, we have that Lh = L

h
= L, since it is equal

to K1 which is henselian.

K1 K1 k

L L k

Lh Lh k

∆

∆

∆

Z

Z

Z

=

=

The Z part of Lh and K1 are exactly the same, this implies that (K1, v) is an elementary
substructure of (Lh, vh) by [AJ19b, Cor. 12.5]†.

This means that the quantifier free type of b over K1 completely determines a model
containing K1 · · ·Kn(b), that is, it implies the full type tp(a/K1,· · ·,Kn). Note that we fixed
K1 but we could have worked over any Ki instead.

We need to go from unramified to finitely ramified, and to study compositions of valuations
in the standard decomposition. The following results will be useful:

Proposition 3.4.5. Let L be relational, let M be a NIPn L-structure, let D be ∅-definable
and n-hanced stably embedded. Consider an extension D′ of Dind to a relational language Lp,
and let M ′ be the corresponding extension of M to L′ = L ∪ Lp.

Then, D′ is n-hanced stably embedded in M ′, and if furthermore D′ is NIPn, then so is
M ′.

†This paper by Anscombe and Jahnke is still in the preprint stage, and has changed structure and numbering
many times; in fact, we refer to the second version on arXiv, which is not the most recent one.
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Before proving it, let us specify how we will use it: we aim to obtain a NIPn version of
[AJ19a, Prop. 3.3]. To do so, we apply the proposition above with L a relational version of the
language of valued fields, M = (K,w), D = kw, and Lp containing a predicate for a valuation
v on D = kw, and we get:

Corollary 3.4.6. Let (K, v) be a valued field and w be a coarsening of v. Assume that (K,w)
and (kw, v) are both NIPn and that kw is n-hanced stably embedded (as a pure field) in (K,w).
Then (K, v) is NIPn.

Proof of Proposition 3.4.5. We may assume that D′ has QE in Lp and M in L; then (the proof
of) [CS15, Lem. 46] implies that every L′-formula is equivalent to a D-bounded formula, that
is, a formula of the form:

Qy ∈ D
⋁
i<m

φi(x, y) ∧ ψi(x, y)

with Q a tuple of quantifiers, φi qf-L-formulas and ψi qf-Lp-formulas (with x restricted to
D).

Thus, D′ is n-hanced stably embedded in M ′, and its induced structure is exactly coming
from Lp.

We now assume D′ is NIPn and we prove by induction on the number of quantifiers that
every D-bounded formula is NIPn. If it has no quantifier, it is NIPn by assumption. Now let
φ(x, y1,· · ·, yn) = ∃z∈Dψ(x, y1,· · ·, ynz), where ψ is D-bounded and NIPn.

Suppose φ has IPn. Then, in a sufficiently saturated model, we can find (ag)g∈Gn and b such
that (ag)Gn is Gn-indiscernible over b and On-indiscernible over ∅. Fix an edge (g1,· · ·, gn),
now ∃z ∈ Dψ(b, ag1 ,· · ·, agnz) holds and we can find cgn ∈ D witnessing it. Interpolate the
sequence using Lemma 3.3.8 to get (a′g)g∈Gn and (cg)g∈Gn such that:

• a′gi = agi ,

• tp((a′g)g∈Gn/b) = tp((ag)g∈Gn/b),

• (a′gcg)g∈Gn is On-indiscernible over ∅ and Gn-indiscernible over b.

By Gn-indiscernability over b, since ψ(b, ag1 ,· · ·, agncgn) holds, it also holds for any edge. By
assumption, ∀z ∈ D¬ψ(b, ag′1 ,· · ·, ag′nz) holds for any non-edge, thus in particular not for
z = cg′n .

Hence there is an IPn pattern for ψ, which contradicts our induction hypothesis.

Proposition 3.4.7. Let (K, v) be henselian of mixed characteristic such that (K, vp) is finitely
ramified and (kp, v) is NIPn; then (K, v) is NIPn.

Proof. Since vp is finitely ramified, it is definable by the generalized Robinson formula, see
Corollary 1.4.3. Thus, if we consider an ℵ1-saturated extension (K∗, v∗) of (K, v), we have
that (K∗, v∗p) is also finitely ramified, and (k∗p, v

∗) is also NIPn. Furthermore, (K, v) is NIPn

iff (K∗, v∗) is NIPn; thus we may assume that (K, v) is ℵ1-saturated.
As usual, we consider the standard decomposition. By ℵ1-saturation, (k0, vp) is complete;

it is also rank-1 by definition and finitely ramified by assumption. By [War93, Thm. 22.7],
there is a field L such that k0/L is finite and such that, writing w = vp|L, we have that (L,w)
is complete, unramified, and has residue field kw = kp.

K k0 kp k

L

v0 vp v

wfinite
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Since we know that kp is NIPn, by Lemma 3.4.4, (L,w) is NIPn; we also know that kp is
n-hanced stably embedded in (L,w). We are thus in the setting of Corollary 3.4.6, so (L, v◦w)
is NIPn. Since k0 is a finite extension of L, we conclude that (k0, v) is NIPn as well.

Finally, we apply Lemma 3.4.4 once more to the fields (K, v0) and (k0, v): because (K, v0)
is of equicharacteristic 0, k0 is n-hanced stably embedded, and since it is NIPn, we know
(K, v0) is NIPn by equicharacteristic 0 transfer. Since we just proved that (k0, v) is NIPn,
(K, v) itself is NIPn.

We are now finally ready to prove our main theorem.

Proof of Theorem 3.1.1. Let (K, v) be henselian. If (K, v) is NIPn, then k is NIPn by inter-
pretability. If it is of equicharacteristic, then (K, v) is SAMK or trivial, by Lemma 3.2.1. If
it is of mixed characteristic, then by Proposition 3.2.3 either (K, vp) is finitely ramified and
(kp, v) is SAMK or trivial, or (k0, v) is AMK. This proves one direction.

In the other direction, assume that k is NIPn. If v is trivial then (K, v) is NIPn. Assume v is
non-trivial. If K is of equicharacteristic and SAMK, then (K, v) is NIPn by Proposition 3.4.2.
If K is of mixed characteristic, (K, vp) finitely ramified, and (kp, v) SAMK or trivial; then
(K, v) is NIPn by Proposition 3.4.7. Finally, if K is of mixed characteristic and (k0, v) is
AMK, then (k0, v) is NIPn by Proposition 3.4.2 – since AMK and SAMK are the same thing
for a characteristic 0 field such as k0. Finally, we conclude that (K, v) is NIPn by applying
Corollary 3.4.6: (K, v0) is of equicharacteristic 0 so k0 is stably embedded in it, (k0, v) is
NIPn, hence (K, v) is NIPn.

Note that the theorem reads: “a henselian valued field is NIPn iff its residue is NIPn and
it satisfies algebraic conditions”. In particular, these algebraic conditions do not depend on
n, so we have the following:

Corollary 3.4.8. Let (K, v) be a NIPn henselian valued field. If k is NIPm for some m < n,
then (K, v) is NIPm. In particular, if k is NIP, (K, v) is NIP.

It also yields the following:

Corollary 3.4.9. Conjecture 2.3.6 and Conjecture 2.3.7 are equivalent, that is, if no strictly
NIPn pure field exists, no strictly NIPn henselian valued field exists.

We also know some new examples of cases where these conjectures hold: there are no
strictly NIPn algebraic extensions of Qp or of Fp((t)), as we will see in the next chapter.

Finally, we partly generalize the main result from [Jah19] which says that augmenting the
structure of a NIP pure field by an arbitrary henselian valuation preserves NIP:

Corollary 3.4.10. Let (K, v) be henselian of residue characteristic p. Suppose K is NIPn as
a pure field, then (K, v) is NIPn as a valued field.

Proof.

Step 1: we may assume (K, v) is SAMK. There are 3 cases. In equicharacteristic p, we
are SAMK – or trivial, but in case the valuation is trivial, there is nothing to prove.

In mixed characteristic, if vp is finitely ramified, we know that it is definable, thus we
know that (K, vp) is NIPn and in particular that kp is NIPn. Now, (kp, v) is SAMK; assuming
we can prove the result for it, we can now apply Proposition 3.4.7 and conclude.

Finally, in the other mixed characteristic case, we have that (k0, v) is AMK. Assuming we
can prove that (k0, v) is NIPn, since we know equicharacteristic 0 henselian valued fields have
(SE)n by Proposition 3.4.1, we know (K, v0) is NIPn and we can apply Corollary 3.4.6.
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Step 2: we only need to define a henselian refinement of v. Assume w is a definable
henselian refinement of v. Hence, (K,w) is NIPn. Because (kv, w) is an equicharacteristic
p non-trivially valued field (if it is trivially valued, v = w and we’re done), it must be
SAMK by explicit Artin-Schreier lifting (up to K). Hence, since we took (K, v) SAMK,
(K,w ◦ v) = (K,w) is SAMK itself, its value group is stably embeded. Bearing in mind that
any OAG is NIP, we can augment it by the convex subgroup ∆v corresponding to v, preserving
its NIPity by Shelah’s expansion theorem; so by Proposition 3.4.5, (K,w,∆v) remains NIPn,
and in particular (K, v).

Step 3: well then let’s define vK . We know that the absolute Galois group of K is
non-universal since K is SAMK and thus can’t have Galois extension of degree divisible by p.

We can apply Corollary 1.4.8: if kvK is neither SCF nor RCF, then vK is definable in K.
In which case, by the definition of vK , it is the finest henselian valuation on K. In particular,
it is a refinement of v, and we conclude.

If kvK is SCF, then, by step 1, (K, vK) is NIPn. Assume first that vK is a refinement of
v. Now, (K, v) is SAMK by step 2, and (kv, vK) is equicharacteristic p, hence also SAMK
by AS-lifting. Because its residue is NIPn, (kv, vK) is NIPn; in particular kv is NIPn. On the
other hand, if vK is a coarsening of v, then kv is SCF, thus also NIPn. Now because SAMK
fields have NIPn transfer, we conclude.

Finally, kvK can’t be RCF; indeed, vK is still a refinement of v; so (kv, vK) would have
RCF residue. But this is an equicharacteristic p valuation, so it can’t be.

As of now, there is no proof for the equicharacteristic 0 case as a whole; indeed, in
equicharacteristic 0, there is no way to prove that the Galois group of K is non-universal – to
the extent of our knowledge.
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Chapter 4

Combinatorial Complexity in
Algebraic Extensions of Qp

4.1 Definability of vp in algebraic extensions of Qp

When talking about combinatorial complexity of a valued field, there is always a possibility
that the pure field and the valued field structures differ in their complexity. In algebraic
extensions of Qp though, the p-adic valuation is always definable, as we will prove.

4.1.1 Explicit definitions

Let (K, v) be an algebraic extension of Qp. We have:

Z ⊂ Γ ⊂ Q & Fp ⊂ k ⊂ Falg
p .

In the following cases, v is definable in K:

• If Γ is not q-divisible for some q ̸= p, we can use Robinson’s generalized formula, see
Corollary 1.4.3.

• If k ̸= F
alg
p , it is either finite or PAC; in both cases, we can use Fehm’s method, see

Corollary 1.4.6.

However, both definitions fail when Γ is divisible by all q ̸= p and k = F
alg
p . For these

fields, no explicit definition is known; yet we can still show that vp is ring-definable – except,
of course, in the algebraic closure itself – by using the canonical ℓ-henselian valuations.

4.1.2 Canonical ℓ-henselian valuations on extensions of Qp

Let’s first look at Qp in itself. Since vp is henselian, it is in particular ℓ-henselian for any
prime ℓ. It must therefore be comparable with the canonical ℓ-henselian valuation (which is
non-trivial since Qp is henselian and not p-closed), and we have to look at two cases:

• If Ovp ⊂ Ovℓ
Qp

, then there must be a convex subgroup of Γ corresponding to this coars-
ening; but since Γ = Z, the only possibility is Ovℓ

Qp
= Ovp .

• If Ovℓ
Qp

⊂ Ovp , then Ovℓ
Qp
/Mvp is a valuation ring of k = Fb, which has no non-trivial

valuation, so again OvellQp
= Ovp .
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The argument works in the same manner for an algebraic extension (K, v) of (Qp, vp),
since Z ⊂ Γ ⊂ Div(Z) = Q has no non-trivial convex subgroup, and Fp ⊂ k ⊂ F

alg
p has no

non-trivial valuation; note however that if K were to be ℓ-closed then vℓK would be trivial.
Therefore vp is the canonical ℓ-henselian valuation on any non ℓ-closed algebraic extension

of the p-adics, and is in particular definable in any such extension containing an ℓth-root of
unity.

4.1.3 There and back again

In order to deal with arbitrary algebraic extensions, we will need to go “there” by, among
other things, adjoining a root of unity when needed, and then “back again” by interpreting
this field extension in the original one.

Let K/Qp be algebraic, and K ̸= Kalg. Then there exists a finite algebraic extension of
L of degree n ⩾ 2, which can be extended to a Galois extension N of degree at most n!. If
ℓ divides [N : K], then Gal(N/K) has an ℓ-Sylow subgroup Sℓ; denote F its fixed field. Now
N/F is a Galois extension of ℓ-power degree, therefore F is not ℓ-closed, and F/K is finite.
Consider M = F [ζℓ]: we are there. M is still not ℓ-closed since it is a finite extension of F (if
ℓ = 2 then we have to argue that Qp is not orderable and therefore no extension of it can be
euclidean), so ψℓ defines vp on M . Finally, we interpret M in L (with coefficients of minimal
polynomials of generators of M as parameters), and the restriction of vp to L is therefore
definable: we are back again.

4.2 NIPn-ity of algebraic extensions of Qp

As an immediate consequence of the definability of the valuation, we know that an algebraic
extension K of Qp is NIPn as a pure field iff (K, vp) is NIPn as a valued field (except Qalg

p , since
in it the valuation is not definable; but we know that ACF is strongly minimal and ACVF is
NIP). Hence, we can use the NIPn version of Anscombe-Jahnke’s classification, Theorem 3.1.1,
to understand NIPn extensions of Qp. As we will note later however, residue fields of these
fields are either finite and thus NIP, SCF and thus NIP, or PAC not SCF and thus IPn for any
n; in other words, Corollary 3.4.8 tells us that algebraic extensions of Qp are NIPn iff they
are NIP, so we will set n = 1 and phrase everything in terms of NIP for this section.

4.2.1 Applying Anscombe-Jahnke’s classification

If K is an algebraic extension of Qp equipped with the p-adic valuation v, then several sim-
plifications occur in Anscombe-Jahnke’s classification: we can obviously ignore the equichar-
acteristic case, and since we are in rank 1, the standard decomposition gives v0 trivial and
vp = v, so k0 = K and kp = k. Furthermore, since Z ⊂ Γ ⊂ Q, (K, v) is finitely ramified iff
Γ is isomorphic to Z. Parsing these properties together:

Corollary 4.2.1. Let K/Qp be algebraic and let v be the p-adic valuation on K. Then (K, v)
is NIP if and only if the following holds:

(1) k is NIP, and

(2) either (b) Γ ≃ Z, or (c) (K, v) is AMK.

We will reformulate this characterization of NIP extensions of Qp in somewhat more
concrete terms.

A first easy case to consider is when k is finite. Then it is NIP, which takes care of (1). All
finite fields have extensions of degree p, so (K, v) can’t be Kaplansky and can’t satisfy (2c).
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We must then have Γ ≃ Z for K to check (2), so both the ramification and inertia degrees
are finite, which is equivalent to having K/Qp finite. Such a K immediately checks (1) and
(2b); it is also obviously NIP by interpretability of finite extensions. The following lemma is
therefore not very insightful:

Lemma 4.2.2. Let K/Qp be algebraic with k finite. Then K is NIP iff K/Qp finite.

This tackles the finite case. Now if k is infinite, by (1) it must be separably closed,
since infinite extensions of finite fields are PAC, and PAC not SC fields have IP and IPn, see
Proposition 2.3.8. So k = F

alg
p . Remains for this field to check (2), which gives two distinct

cases, and we then have the following case distinction:

1. k finite & Γ ≃ Z,

2. k = F
alg
p & Γ ≃ Z,

3. k = F
alg
p & K AMK.

These are the three types of NIP algebraic extensions of Qp. We will now study cases 2
and 3 and reformulate them with the help of Galois theory.

4.2.2 Inertia and ramification groups

Let (K, v) be any valued field. Let G = Gal(Ksep/K) be its absolute Galois group. Let’s
fix an extension of v to Ksep and denote it by vsep. We will define several interesting closed
subgroups of G with their corresponding extensions and list their properties without proving
them. Details can be found in [EP10].

Definition 4.2.3 (Closed subgroups of G of interest).

• The decomposition subgroup Gh and the associated field extension Kh are defined as
follows:

Gh = {σ ∈ G | σ(Ovsep) = Ovsep}

Kh = Fix(Gh), vh = vsep|Kh

(Kh, vh) is called the henselization of K, hence the h.

• The inertia subgroup Gt and the associated inertia extension of K are defined as follows:

Gt = {σ ∈ G | σ(x)− x ∈ Mvsep ∀x ∈ Ovsep}

Kt = Fix(Gt), vt = vsep|Kt

The t stands for “träge”.

• The ramification subgroup and the associated ramification extension of K are defined
as follows:

Gv = {σ ∈ G | σ(x)− x ∈ xMvsep ∀x ∈ Ksep}

Kv = Fix(Gv), vv = vsep|Kv

The v stands for “verzweigt”.

Looking at the definitions, it is clear that these are ordered as follows:

Gv ⊂ Gt ⊂ Gh ⊂ G K ⊂ Kh ⊂ Kt ⊂ Kv ⊂ Ksep

Let us study them in order:
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Proposition 4.2.4 (Henselization, [EP10, Thm. 5.2.2]). (Kh, vh) is a henselian valued field.
It also uniquely embeds in any henselian extension of (K, v). Kh is trivial iff (K, v) is al-
ready henselian. A priori Kh depends on the choice of vsep, but these choices give extensions
conjugate over K. (Kh, vh) is an immediate extension of (K, v).

Proposition 4.2.5 (Inertia field, [EP10, Thm. 5.2.7]). Gt is a normal subgroup of Gh, so
Kt is a Galois extension of Kh. (Kt, vt) is also a purely inertial extension of (Kh, vh), in
the following sense: if Kh ⊂ L ⊂ M ⊂ Kt with M/L finite, then [M : L] = [kM : kL].∗We
also have Γvt = Γ and kvt = ksep. Finally, if an extension L/Kh is such that ksep ⊂ kL, then
already Kt ⊂ L.

Proposition 4.2.6 (Ramification field, [EP10, Thm. 5.3.3]). Gv is a normal subgroup of Gt,
so Kv is a Galois extension of Kt. (Kv, vv) is a purely ramified extension of (Kt, vt), in the
following sense: if Kt ⊂ L ⊂ M ⊂ Kv with M/L finite, then [M : L] = [ΓM : ΓL]. We also
have kvv = ksep and Γvv =

⋃
q ̸=ch(k)Divq(Γ), the q-divisible hull of Γ for all q prime different

form ch(k). If k is of characteristic 0 then it is the full divisible hull, and Kv = Ksep = Kalg.
If k is of characteristic p then Gv is the unique p-Sylow subgroup of Gt.

We summarize some of this information in Figure 4.1.

K Γ k

Kh Γ k

Kt Γ ksep

Kv
⋃

q ̸=ch(k)Divq(Γ) ksep

Ksep Div(Γ) kalg†

Figure 4.1: Special extensions of a valued field and their corresponding value groups and
residue fields.

The last field extension we will define and study is the complement of the ramification
group, represented in Figure 4.2. Its existence is guaranteed by the following theorem:

Theorem 4.2.7 (Kuhlmann-Pank-Roquette, [KPR86]). Let (K, v) be a valued field and fix
an extension of v to the separable closure. Then there exists at least one Gh-complement of
Gv, that is, a closed subgroup Gk ⊂ Gh such that GkGv = Gh and Gk ∩Gv = {id}. Denoting
Kk = Fix(Gk), we then have KkKv = Ksep and Kk ∩Kv = Kh.

Note that this theorem states existence of such complements, but a priori not uniqueness.
A lot of these complements could exist. Complements are better understood via diagrams
drawings, see Figure 4.2. In these drawings anything going up (straight or slanted) is a field
extension, and there will be a lot of “diamonds”:

∗Since vh is henselian, any extension of Kh is canonically associated with a unique valuation.
†or ksep if v is trivial.
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A ∩B

AB

AB

Anytime such a diamond appears, it will be drawn such that the bottom vertex is the inter-
section of the left and right vertices, and the top vertex is their compositum.

Kh

KvKk

Ksep

Figure 4.2: Complement of ramification group

4.2.3 Special extensions of Qp

We can now apply this to Qp. Since it is henselian, we know Gh = G and Qh
p = Qp. We

also have F
sep
p = F

alg
p , and Q

sep
p = Q

alg
p . We conclude that an algebraic extension K/Qp has

residue F
alg
p iff Qt

p ⊂ K.
Our goal is to classify NIP infinite algebraic extensions of Qp. We already know that they

must have residue F
alg
p , that is, they must contain Qt

p. To be NIP, such an extension still
needs to check condition (2) of Corollary 4.2.1.

Lemma 4.2.8. Let K/Qp be algebraic with k = F
alg
p . Then Γ ≃ Z iff K/Qt

p is finite.

This tackles the case (2b) of Corollary 4.2.1. The last remaining case is (2c), when (K, v)
is AMK. In our case, since k is already algebraically closed, to be Kaplansky we need only to
worry about the value group. Furthermore, we need to make sure that (K, v) is algebraically
maximal. Looking at Qv

p, we see that its value group is everything but p-divisible, and has no
reason to be algebraically maximal. On the other hand, complements of Qv

p are exactly in the
inverse situation, so they should have p-divisible value group and no defect, which will imply
algebraic maximality. More precisely, we apply Theorem 4.2.7 to Qt

p and find (Qt
p)

k such that
(Qt

p)
kQv

p = Q
alg
p and Qv

p∩ (Qt
p)

k = Qt
p. We claim that any extension of any complement (Qt

p)
k

is AMK, and that any AMK extension of Qt
p will contain a complement:

Lemma 4.2.9. Let K/Qp be algebraic with k = F
alg
p – so Qt

p ⊂ K. Then the following are
equivalent:

1. K contains some Qt
p-complement of Qv

p,

2. KQv
p = Q

alg
p ,

3. K is AMK.

Proof.
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1 ⇒ 2 This is by definition of a complement. This implication is not needed to prove the
lemma since the route we’re taking is 1 ⇒ 3 ⇒ 2 ⇒ 1.

1 ⇒ 3 Let (Qt
p)

k be a Qt
p-complement of Qv

p such that (Qt
p)

k ⊂ K. Let L/K be finite, and
write L = K(a), where a ∈ Q

alg
p . Let b be the tuple of coefficients of the minimal polynomial

of a over K. Take K ′ = (Qt
p)

k(b) and L′ = K ′(a), then [L′ : K ′] = [L : K] = n and K ′/(Qt
p)

k

is finite; denote its degree by m. Finally, since a and b lie in Q
alg
p = (Qt

p)
kQv

p, we might write
them as elements of (Qt

p)
k(Qv

p). Take c any finite tuple of Qv
p containing every element of Qv

p

appearing in a and b. Then L′ ⊂ (Qt
p)

k(c), and let N be the degree of c over (Qt
p)

k and l its
degree over L′. We have:

N = [(Qt
p)

k(c) : (Qt
p)

k] = [(Qt
p)

k(c) : L′][L′ : K ′][K ′ : (Qt
p)

k] = nml

This information is compiled in the following diagram:

(Qt
p)

k

K ′ = K(b)

K

L = K(a)

L′ = K ′(a)

(Qt
p)

k(c)

m

arbitrary

n

n

l

N

We will prove that N is not divisible by p, hence giving n = [L : K] not divisible by p.
We will thus have defectlessness, hence algebraic maximality, and p-divisibility of Γ; since k
is already algebraically closed, this will also yield Kaplansky.

Claim. (Qt
p)

k and Qv
p are linearly disjoint‡over Qt

p.

Indeed, for any x ∈ (Qt
p)

k and y ∈ Qv
p:

Qt
p

Qt
p(x) Qt

p(y)

Qt
p(x, y)

(Qt
p)

k Qv
p

r s

s′ r′

‡Several equivalent definitions of linear disjointness exist. Here, we say that L and M are linearly disjoint
over K ⊂ L ∩ M iff any time we have K ⊂ L0 ⊂ L and K ⊂ M0 ⊂ M with [L0 : K] = l and [M0 : K] = m,
then [L0M0 : M0] = l and [L0M0 : L0] = m.
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Now we have r = pd and s coprime with p. By definition rs′ = r′s, so pd divides r′s, thus it
divides r′. Finally, s′ ⩽ s, giving:

s′ =
r′

pd
s ⩽ s

Thus s′ = s, r′ = r, and we have linear disjointness.
Now let d be a tuple in (Qt

p)
k containing coefficients of the minimal polynomials of elements

in c over (Qt
p)

k. We know have by linear disjointness:

N = [(Qt
p)

k(c) : (Qt
p)

k] = [Qt
p(d, c) : Q

t
p(d)] = [Qt

p(c) : Q
t
p]

So in the following diagram, we know the top N and deduce the bottom N :

Qt
p

Qt
p(d) Qt

p(c)

Qt
p(c, d)

(Qt
p)

k Qv
p

N

N

Hence N correspond to an extension inside Qv
p. We know those extensions have degree

prime to p, thus p does not divide N and K is AMK.

3 ⇒ 2 Let K containing Qt
p be AMK. Consider L = KQv

p. It must have divisible value
group and algebraically closed residue field, thus Q

alg
p /L must be an immediate extension.

Now take a ∈ Q
alg
p and consider L(a)/L. It is finite and immediate, hence purely defect; so

[L(a) : L] = pn. Now consider K ′ which is obtained by adding to K the coefficients of the
minimal polynomial of a over L. We have [L(a) : L] = [K ′(a) : K ′] = pn, and [K ′(a) : K] =
[K ′(a) : K ′][K ′ : K] = pn[K ′ : K]. But K is AMK, hence defectless; see [Kuh13, Cor. 3.11].
No finite extension of K can have degree divisible by p, thus n = 0 and a ∈ L; so to say,
L = Q

alg
p .

2 ⇒ 1 Let K containing Qt
p be big enough to have KQv

p = Q
alg
p . In terms of Galois group,

keeping the same notation as in section 4.2.2, we have that H = Gal(Qalg
p /K) is a closed

subgroup of Gt, and the “big enough” condition on K yields H ∩Gv = {id}. Recall that Gv

is the unique p-Sylow of Gt. Thus H is a p′-subgroup, meaning that its order is not divisible
by p.

Fact. In a prosolvable group, p′-subgroups can be extended into p′-Hall-subgroup, and
the later are G-complements of p-Sylow subgroups.

This is a reformulation of known results about profinite groups, details can be found in [RZ00,
sec. 2.3].
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Since G = Gal(Qalg
p /Qp) is a prosolvable group§ and Gt is a normal and closed subgroup,

Gt is also prosolvable, and we can extend H into a Gt-complement of Gv; denote it by Gk

and let (Qt
p)

k = Fix(Gk). Now H ⊂ Gk yields (Qt
p)

k ⊂ K, and (Qt
p)

k is indeed the wanted
complement.¶

We can now state the characterization of NIP algebraic extensions of Qp:

Theorem 4.2.10 (NIPity of extensions of Qp). The class of all NIP algebraic extensions of
Qp is the disjoint union of the three following classes:

1. finite extensions of Qp,

2. finite extensions of Qt
p,

3. algebraic extensions of (Qt
p)

k, where (Qt
p)

k is any Qt
p-complement of Qv

p.

Figure 4.3 shows where those NIP extensions lie compared with the usual Qp ⊂ Qt
p ⊂

Qv
p ⊂ Q

alg
p tower. Note that this is a bit of a misdirection, since there are many possible

choices of (Qt
p)

k, but the picture represents only 1.

Qp

Qt
p

Qv
p(Qt

p)
k

Q
alg
p

K/Qp finite

K/Qt
p finite

any K/(Qt
p)

k

Figure 4.3: NIP algebraic extensions of Qp.

§This is a well-known fact, but it turns out to be quite hard to provide a good reference for it, or even
to know when exactly was it first stated. An argument can be found in [HJP05, Prop. 7.2] for all p-adically
closed fields, and a more elementary argument of algebraic flavour can be found in [Bos03, Cor. 3.9].

¶Most of this argument was obtained after discussing complements of p-Sylow subgroups with Tim Clausen.
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4.3 State of art for some complexity classes

Remember that in any non-algebraically closed algebraic extension of Qp, the p-adic valuation
is definable; thus its combinatorial complexity as a pure field or as a valued field is the same.

4.3.1 Complete classifications

Stable and refinements The algebraic closure Q
alg
p is stable as a pure field; it is even

strongly minimal. On the other hand, in any other algebraic extension of Qp, the valuation is
definable, and the valuation witnesses the order property. Thus, there is no middle ground:
it’s either strongly minimal or completely unstable.

NIP and NIPn We studied extensively this case in Section 4.2, so let us summarize: an
algebraic extension of Qp is NIPn for some n iff it is NIP iff it is a finite extension of Qp, a
finite extension of the inertial extension Qt

p, or an algebraic extension of a Qt
p-complement of

Qv
p. Note that Q

alg
p is strongly minimal as a pure field but NIP (and unstable) as a valued

field.

dp-minimal and dp-finite We have the following theorem by Johnson, from [Joh20]:

Theorem 4.3.1. A field is dp-finite iff it is perfect and admits a (potentially trivial) henselian
valuation v which is defectless, has “almost almost divisible” value group, and has residue field
either of characteristic 0 and elementarily equivalent to a local field or of characteristic p and
algebraically closed, in which case we also require the value group to be roughly p-divisible.

Furthermore, a field is dp-minimal iff all of the above holds with “almost divisible” instead
of “almost almost divisible”.

Here, “almost divisible” means (Γ: nΓ) <∞ for all n, and “almost almost divisible” means:

• (Γ: pΓ) <∞ for almost all prime p, and

• if (Γ: pΓ) = ∞ then |Γ/∼p| <∞; where δ ∼p γ means δ is p-divisible modulo ∆ iff γ is
also p-divisible modulo ∆, for each convex subgroup ∆.

In our case, the value group is a subgroup of Div(Z) = Q, and is thus always almost divisible
– and a fortiori almost almost divisible; we therefore know that an algebraic extension of Qp

is dp-finite iff it is dp-minimal.
Let’s be more precise. Take a non-ACF algebraic extension of Qp: it is equipped with

exactly two henselian valuations, the trivial one and the p-adic one. Consider first the trivial
one: it’s defectless and has residue characteristic 0, so in order to be dp-minimal, the residue
field – which is the field itself – must be equivalent to a local field; that is, it must be a finite
extension of Qp.

Now consider an infinite extension of Qp. Equipping it with the trivial valuation won’t
work, so let’s consider the p-adic valuation. Its value group is always almost divisible. Its
residue is of characteristic p, so it must be ACF, so the field must contain the inertial extension
Qt

p. Its value group must be roughly p-divisible, but since it is of rank 1, it must be completely
p-divisible. Finally, it must be defectless; the field is now AMK, and by the NIP classification,
we know it’s exactly those containing a complement of Qv

p, the ramified extension, over Qt
p.

Thus, out of the three classes of NIP extensions of Qp, exactly two are dp-finite and,
equivalently, dp-minimal: finite extensions and extensions containing a Qt

p-complement of
Qv

p.
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Simple As noted in Lemma 2.4.8, a valued field is simple iff its valuation is trivial, so by
definability of the p-adic valuation, no algebraic extension of Qp is simple – except Qalg

p .

4.3.2 Partial results for NTP2

No complete classification of NTP2 henselian valued fields is known, but some partial results
have been discussed in section 2.5.7. In particular, NTP2 transfer holds in Anscombe-Jahnke’s
setup. The good news is that, above Qp, any residue field is NTP2, since bounded PAC fields
are NTP2 (even simple, see [Cha99]). Hence, we know that:

• Finitely ramified extensions of Qp are NTP2,

• SAMK extensions of Qp are NTP2.

Reformulating it in terms of special extensions, any field contained in Qt
p is NTP2 – and

so are its finite extensions. Now let K ⊂ Qt
p be the unique algebraic extension of Qp with

residue Fp(p), the p-closure of Fp. Consider Kk, a K-complement of Qv
p. Going back to the

argument for the NIP case, the same proof shows that an algebraic extension of Qp is SAMK
iff it contains some Kk. All of these fields are thus NTP2.

The only question remaining is: did we hit all of them? Probably not; take Qk
p, a com-

plement of Qv
p taken directly above Qp. Its residue is just Fp, whereas its value group is

p-divisible; furthermore, it is defectless. It is neither SAMK nor finitely ramified, and as of
yet, we do not know if it has NTP2 transfer, but it should.

On the other side, around Qv
p, we have a much clearer understanding. We know that if a

henselian valued field is infinitely ramified, it must be roughly p-divisible; Qv
p is “as ramified

as possible for everthing but for p”, so it is NTP2. If a field lies between Qt
p and Qv

p, either it
is a finite extension of Qt

p and thus NTP2 (even dp-minimal), or it is infinitely ramified and
thus TP2. An algebraic extension of Qv

p will be TP2 as long as it doesn’t have value group
Q; if it has, then the only thing standing between it and Q

alg
p is defect, and once more, we’re

uncertain.

NTP2

dp-min dp-fin NIP

Stable

TP2
unknown
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1
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1
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Q
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F
alg
p

Figure 4.4: Combinatorial complexity in algebraic extensions of Qp.
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Appendix

A Defining the canonical p-henselian valuation

In this appendix, we give an argument, as self-standing as possible, as to why the canonical p-
henselian valuation is definable in some fields. This fact was first announced by Koenigsmann
in [Koe95], however, his proof was incomplete. The first complete proof was given by Jahnke
and Koenigsmann in [JK14]. However, their argument does rely on previous results coming
from Koenigsmann’s original paper, and another gap has been fixed by Chatzidakis and
Perera. Because the proof is strewn about the literature, we decided to restate the argument
here.

A.1 The canonical p-henselian valuation

Definition A.1. A valuation v on a field K is called p-henselian if it extends uniquely to the
p-closure K(p), which is the compositum of all p-power degree extensions of K. We also say
that a field is p-henselian if it admits a non-trivial p-henselian valuation.

Similar to the henselian case, we have a number of properties equivalent to p-henselianity.

Proposition A.2 (p-Hensel’s lemma). For a valued field (K, v), the following are equivalent:

1. v is p-henselian;

2. For all P ∈ Ov[X] splitting in K(p), if P has a simple zero α ∈ k, then P has a zero
a ∈ Ov with a = α;

3. For all P ∈ Ov[X] splitting in K(p), if there is a ∈ Ov such that v(P (a)) > 2v(P ′(a)),
then there is a unique b ∈ Ov with P (b) = 0 and v(b− a) > v(P ′(a));

4. If Kh is a henselization∗of K, then K = Kh ∩K(p).

Let us now state properties derived from the study of K(p):

Proposition A.3. Let (K, v) be a valued field.

1. v is p-henselian iff it extends uniquely to every Galois extension of degree p;

2. If K = K(p) (and v is non trivial), then k = k(p)perf ;

3. If v is the composition of two valuations v0 and vp, then v is p-henselian iff v0 and vp
are p-henselian.

Now we can apply the same reasoning than for the henselian case to obtain a canonical
valuation.

∗See Proposition 4.2.4.
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Proposition A.4. If a field K admits two independent p-henselian valuation rings, then K
is p-closed.

Note that by Proposition A.3 any coarsening of a p-henselian valuation is still p-henselian.
Now split the set Hp of all p-henselian valuation rings of K in two:

Hp
1 = {Ov | v is p-henselian and k ̸= k(p)}

Hp
2 = {Ov | v is p-henselian and k = k(p)}

Since K itself is a p-henselian valuation ring Hp is never empty.

Proposition A.5. Let K be a field, then Hp
1 is linearly ordered by inclusion; furthermore,

for any O1 ∈ Hp
1 and O2 ∈ Hp

2 , we have O2 ⊂ O1.

We can now draw the same picture as in the henselian case, see Figure 1.1. Note that
henselian valuations are p-henselian, so this new tree contains the previous one.

Definition A.6. The canonical p-henselian valuation of a field K, denoted by vpK , is the
coarsest valuation of Hp

2 if Hp
2 is non-empty, and the finest valuation of Hp

1 if Hp
2 is empty.

Proposition A.7. It follows from the definition:

1. Every p-henselian valuation is comparable with vpK and with every coarsening of it;

2. vpK is non-trivial iff K ̸= K(p) and K is p-henselian;

3. No proper coarsening of vpK has p-closed residue field;

4. All proper refinements of vpK have p-closed residue field.

Because vK is in particular p-henselian, vK and vpK are comparable, but depending on
cases, their order varies.

A.2 p-henselianity is a first order property

The first step in our quest to ring-define the canonical p-henselian valuation is to show how
p-henselianity can be described by first-order valued-field formulas.

Most of the results of this section were obtained by Koenigsmann in [Koe95].
Recall that by Proposition A.3 1 we only care about Galois extensions of degree p. In

general, those extensions can be quite wild; but when the field is of characteristic p they are
exactly of the form K(α), where α is a root of an Artin-Schreier polynomial Xp −X − a. In
other characteristics, if K contains a primitive pth-root of unity – which we will denote by
ζp from now on – then all Galois extensions of degree p are of the form K(α) for a root of
Xp − a. This leads to a first description of p-henselianity:

Lemma A.8. Let (K, v) be a valued field such that ch(k) ̸= p and ζp ∈ K, then:

v is p-henselian ⇔ 1 +Mv ⊂ (K×)p.

Proof. If v is p-henselian, take m ∈ Mv and consider Xp − (1 +m); it has a root by Propo-
sition A.2 2, so 1 +Mv ⊂ (K×)p.

Conversely, suppose 1+Mv ⊂ (K×)p, let L/K be a Galois extension of degree p such that
L ⊂ Kh, and take w = vh|L. Since ζp ∈ K, L = K( p

√
a) for some a ∈ K \ (K×)p. Now since

Kh is an immediate extension, L ⊂ Kh is also immediate, so Γw = Γv and w( p
√
a) = v(b) for

some b ∈ K; we may therefore replace a by b−pa in order to assume a ∈ O×v . On the other
hand kv = kw, thus p

√
a = c for some c ∈ K; now we may replace a by c−pa and assume

a ∈ 1+Mv ⊂ (K×)p, which contradicts [L : K] = p. Therefore there is no extension of degree
p inside Kh, which means K(p) ∩Kh = K; therefore v is p-henselian.
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Lemma A.9. Let (K, v) be a valued field such that ch(K) = p, then:

v is p-henselian ⇔ Mv ⊂ ℘(K)

where ℘(K) = {y ∈ K | ∃x ∈ K(y = xp − x)}.

Proof. If v is p-henselian, take m ∈ Mv and consider Xp −X −m; it has a root by Proposi-
tion A.2 2, so Mv ⊂ ℘(K).

The proof of the converse direction is due to Chatzidakis and Perera in [CP17]: suppose
Mv ⊂ ℘(K), let L/K be an immediate Galois extension of degree p, and take w any extension
of v to L. Since ch(K) = p, L = K(α) with αp − α = a /∈ ℘(K).

Step 1: we may assume (L,w)/(K, v) immediate. Since L/K is Galois, the fundamental
equality Theorem 1.1.11 gives p = [L : K] = ndef , where n is the number of extensions of v
to L. If (L,w)/(K, v) is not immediate, then either e or f is bigger than 1, hence equal to p,
thus n = 1 and we have p-henselianity.

Step 2: the set C = v(K(p)− a) admits 0 as a (strict) upper bound but has no max
element. Suppose v(xp − x − a) > 0 for some x ∈ K. Then, since Mv ⊂ ℘(K), we have
xp−x−a = yp−y for some y ∈ K, and thus a = (x−y)p− (x−y) ∈ ℘(K), which contradicts
our choice of α. So 0 is a (large) upper bound of C.

Now let b ∈ K and γ = v(bp − b− a). We have w(b−α) ∈ Γw = Γv, so there exists x ∈ K

such that w(b − α) = v(x). Now w( b−αx ) = 0, thus b−α
x ∈ kw = kv and there exists y ∈ K

such that b−α
x = y. This yields w( b−αx − y) > 0, or w(b− xy − α) > v(x) = w(b− α). Write

c = −xy.
We claim that w(b − α) < 0. Indeed, if w(b − α) ⩾ 0, then w(b + c − α) > 0. But

w((b+ c−α)p− (b+ c−α)) = v((b+ c)p− (b+ c)− a) ∈ C can’t be positive as shown before.
Note: since there is nothing special about b, the same argument would work for any z ∈ K,
in particular for b+ c: w(b+ c− α) < 0.

Now γ = v(bp− b− a) = w((b−α)p− (b−α)) = pw(b−α), and v((b+ c)p− (b+ c)− a) =
w((b + c − α)p − (b + c − α)) = pw(b + c − α) > pw(b − α) = γ. Thus, C can’t have a max
element; in particular 0 is a strict upper bound.

Step 3: we define a “good” sequence in K. Our purpose is to apply the following,
which is a reformulation of [Kap42, Thm. 3]:

Fact. Let (xλ)λ<κ be a pseudo-Cauchy sequence without pseudo-limit in K such that
(v(f(xλ)))λ<κ is stritcly increasing for some f ∈ K[X]. Let P (X) ∈ K[X] non-constant be
of minimal degree such that (P (xλ))λ<κ admits 0 as a pseudo-limit. Then there exist an
immediate extension (K(x∞), ṽ) of (K, v), which checks and is uniquely determined by the
conditions P (x∞) = 0 and x∞ is a pseudo-limit of (xλ)λ<κ.

So we aim to find such a sequence, with α as a pseudo-limit. Let (cλ)λ<κ increasingly
enumerate C, and choose xλ for each λ < κ such that cλ = v(xpλ−xλ−a). By what was done
before, we know cλ = v(xpλ − xλ − a) = pw(xλ − α). For all λ < µ < κ, we know cλ < cµ,
hence:

v(xλ − xµ) = w(xλ − α− xµ + α) =
1

p
cλ

So (xλ)λ<κ is pseudo-Cauchy, and we note γλ = v(xλ − xµ) =
1
pcλ. Furthermore, if f(X) =

Xp −X − a, we have v(f(xλ)) = cλ strictly increasing.
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Finally, if l ∈ K is a pseudo-limit of (xλ)λ<κ, then v(lp − l − a) ⩾ cλ for all λ < κ. But
then it is a max element of C, which can’t be. So (xλ)λ<κ does not have a pseudo-limit in
K, and thus we can apply the previous fact to it. We would like to apply it while taking
P (X) = Xp−X−a. For that, we need to show that P (xλ)λ<κ admits 0 as pseudo-limit, and
that no polynomial of smaller degree does.

Step 4: if Q ∈ Kp−1[X], then v(Q(xλ))λ<κ is eventually constant. Clearly, this is true
for polynomials of degree 0 or 1. Let 1 < n < p, suppose it is true for all polynomials of degree
smaller than n, and take Q of degree n. Suppose v(Q(xλ))λ<κ is not eventually constant. For
λ < κ, we then have eventually:

v(Q(xλ)) = v(Q′(λ)) + γλ = δ′ + γλ

This is a consequence of [Kap42, Lem. 8], and recall that Q′ is of degree < n so δ′ = v(Q′(λ))
does not depend on λ. We then write:

P (X) = Xp −X − a =

p−n∑
i=1

Ri(X)Q(X)i

with Ri ∈ Kn−1[X]. Thus, v(Ri(xλ)) = δi is eventually constant, and v(Ri(xλ)Q(xλ)
i) =

δi + i(δ′ + γλ) eventually. Thus, eventually:

v(P (xλ)) = v(

p−n∑
i=1

Ri(xλ)Q(xλ)
i) = δi0 + i0(δ

′ + γλ)

For some 1 ⩽ i0 ⩽ p − n (see [Kap42, Lem. 4]). But v(P (xλ)) = cλ = pγλ, so eventually
(p− i0)γλ = δi0 , which is impossible since γλ is strictly increasing.

Hence, if Q ∈ Kp−1[X], then v(Q(xλ))λ<κ is eventually constant, so it can’t have 0 as
a pseudo-limit. On the other hand, v(P (xλ))λ<κ is strictly increasing, thus admits 0 as a
pseudo-limit; we can then apply the fact to (xλ)λ<κ with this P . It is clear that x∞ = α
will work. We thus get an immediate extension (K(a), ṽ) of (K, v). Since (L,w) checks the
conditions uniquely determining (K(a), ṽ), they must be the same. Now any other extension
w′ of v to L also checks those properties, hence w′ = w and v is p-henselian.

Lemma A.10. Let (K, v) be a valued field such that ch(K) = 0, ch(kv) = p, ζp ∈ K and v is
of rank 1, then:

v is p-henselian ⇔ 1 + p2Mv ⊂ (K×)p.

Proof. If v is p-henselian, take m ∈ Mv and consider f = Xp − (1 + p2m); now v(f(1)) =
v(−p2m) > 2v(p) = 2v(f ′(1)), so it has a root by Proposition A.2 3. Note that this also
works when v is not of rank 1.

Conversely, suppose 1 + p2Mv ⊂ (K×)p, and take L = K( p
√
a) as before; we may assume

a ∈ 1 +Mv. Now consider the Cauchy completion (K̂, v̂) of (K, v) which exists since v is of
rank 1. The completion is always henselian, thus (Kh, vh) embeds uniquely in (K̂, v̂); we may
therefore assume L ⊂ K̂.

By density of K in K̂, we can take b ∈ K such that v̂(b − p
√
a) > v(p2), so to say

b ∈ p
√
a + p2Mv̂. Then bp ∈ a + p2Mv̂, and since b and a are in K, bp ∈ a + p2Mv =

a(1+p2Mv) ⊂ a(K×)p. This means a ∈ (K×)p, and therefore L = K and v is p-henselian.

We will then combine the three cases in order to have a criterion for any (K, v) of char-
acteristic p or containing ζp. The most troublesome case will be when (K, v) is of mixed
characteristic (0, p) with valuation of rank bigger than 1; in which case we perform the stan-
dard decomposition around p, as defined in Definition 1.1.18 and the remark following it.
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Proposition A.11. Let (K, v) be a valued field of characteristic p or containing ζp, then v
is p-henselian iff 1 + p2Mv ⊂ (K×)p and Mv ⊂ ℘(K) + pMv.

Proof. If (K, v) is not of mixed characteristic (0, p), then it is an immediate consequence of the
previous lemmas: when ch(k) ̸= p, v(p) = 0 so pMv = Mv and we conclude by Lemma A.8;
and when ch(k) = p, p = 0 so pMv = {0} and we conclude by Lemma A.9.

If (K, v) is of mixed characteristic (0, p), then we construct v0 and vp as above (note that
v and vp may be trivial if v is already of rank 1). Now, by composition, v is p-henselian iff v,
v0 and vp are p-henselian, and by the three previous lemmas:

v is p-henselian ⇔

⎧⎨⎩
1 +Mvp ⊂ (K×)p

1 + p2Mv0 ⊂ (k×p )
p

Mv ⊂ k
(p)
0

We know that if v is p-henselian, then 1 + p2Mv ⊂ (K×)p by the proof of Lemma A.10.
Now, since Mvp ⊂ Mv0 ⊂ Mv and vp(p) = 0, we have that:

1 + p2Mv ⊂ (K×)p ⇒
{

1 +Mvp ⊂ (K×)p

1 + p2Mv0 ⊂ (k×p )
p

Furthermore, lifting on one way and projecting to residues on the other, we see that:

Mv ⊂ k
(p)
0 ⇔ Mv ⊂ ℘(K) +Mv0 .

We thus have:

v is p-henselian ⇔
{

1 + p2Mv ⊂ (K×)p

Mv ⊂ ℘(K) +Mv0

We now use a completion method to establish that Mv ⊂ ℘(K) +Mv0 ⇔ Mv ⊂ ℘(K) +
pMv: suppose Mv ⊂ ℘(K)+Mv0 and take a ∈ Mv. Let f = Xp−X−a ∈ K[X] and let f1,
f2 be the residues of f in k0 and kp. Since a = xp − x+m for some x ∈ K and m ∈ Mv0 , we
have that f1 has a root, and since (kp, v0) is of rank 1, f2 will have a root α in the completion
(k̂p, v̂0). We can approximate α by some b ∈ kp such that v̂0(b − α) > p. Now b = α + pm′

for some m′ ∈ Mv̂0
, therefore:

bp − b = (α− pm′)p − (α− pm′)

= (αp − pαp−1pm′ + · · ·+ (−pm′)p)− α+ pm′

= αp − α+ p(−αp−1pm′ + · · ·+ (−m′)ppp−1 +m′)

= a+ pm′′

where v̂0(m′′) > 0, and since b, a ∈ kp, also m′′ ∈ kp. So a = bp − b− pm′′ ∈ k
(p)
p + pMv0 , and

lifting it we have a ∈ ℘(K) + pMv0 . Finally pMv0 ⊂ pMv ⊂ Mv0 , and we conclude.

A.3 p-henselianity of a field

Definition A.12. The p-topology of a field K, denoted τp, is defined in the following way:

1. If ζp ∈ K, τp is the coarsest topology for which (K×)p is open and all linear transfor-
mations are continuous; a subbase for τp is given by sets a(K×)p + b for a ∈ (K×)p and
b ∈ K;
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2. If ch(K) = p, τp is the coarsest topology for which ℘(K) is open and all Möbius trans-
formations are continuous; a subbase for τp is given by sets

{
ax+b
cx+d

⏐⏐⏐ x ∈ ℘(K), x ̸= −d
c

}
for a, b, c, d ∈ K with ad ̸= bc.

Theorem A.13. Let v be a non-trivial valuation on K inducing the topology τv, then τp = τv
iff some non-trivial coarsening w of v is p-henselian.

In this case, τp admits a nice base: when ch(K) ̸= p, this base is formed by all the sets
(a(K×)p + b) ∩ (c(K×)p + d) with c, d ̸= 0; when ch(K) = p, it is formed by all the sets{

ax+b
cx+d

⏐⏐⏐ x ∈ ℘(K), x ̸= −d
c

}
with ad ̸= bc.

Proof. Suppose τv = τp. In the case ch(K) ̸= p, then (K×)p must be open for τv, so there is
a τv-open neighbourhood of 1 included in (K×)p; so there is an Ov-ideal non-trivial A such
that 1 +A ⊂ (K×)p, let’s suppose it maximal for this property. We start with a preliminary
statement:

b2 ∈ A ⇒ pb ∈ A

Since A is an Ov-ideal, a ∈ A implies aOv ⊂ A, in particular any c ∈ K such that v(c) ⩾ v(b)
verify c2 ∈ A, and since 1 + (−1) = 0 /∈ (K×)p, we know that A ⊂ Mv, so v(c) ⩾ v(b) > 0.
Now:

(1 + c)p = 1 + pc+

(
p

2

)
c2 + · · ·+ cp

Since v(1 + pc) = 0, (1 + pc)A = A. Now
(
p
2

)
c2 + · · ·+ cp ∈ A, so

(1 + c)p ∈ (1 + pc) +A = (1 + pc)(1 +A) ⊂ (1 + pc)(K×)p

Therefore 1 + pc ∈ (K×)p for each c ∈ bOv, therefore 1 + pbOv ⊂ (K×)p, and by maximality
pbOv ⊂ A; this proves the statement.

If pA = A, then A is stable by square roots; so A is a radical ideal, therefore prime:
if ab ∈ A, suppose with v(a) ⩾ v(b), then ab−1 ∈ Ov so abab−1 = a2 ∈ A, thus a ∈
A. Take w the coarsening of v such that Mw = A, now ch(Kw) ̸= p: if w(p) > 0 then
inf(w(A)) = inf(w(pA)) > inf(w(A)). This coarsening is p-henselian since 1 +Mw ⊂ (K×)p

(see Lemma A.8).
If pA ⊊ A, we must have v(p) > 0, so to say ch(kv) = p. Consider the coarsening w of

v with Mw =
√
pA. Then p2Mw ⊂ A. Indeed, take m ∈ Mw, we have m2 ∈ pA ⊊ A,

thus pm ∈ A and p2m ∈ pA ⊊ A. Now using the same technique than in the proof of
Proposition A.11, we can reduce to the case where w is of rank 1, and then w is p-henselian
by Lemma A.10, and we are done with the case ch(K) ̸= p.

In the case ch(K) = p, then ℘(K) must be open for τv, so there is a τv-open neighbourhood
of 0 included in ℘(K); so there is an Ov-ideal non-trivial A such that A ⊂ ℘(K), let’s suppose
it maximal for this property.

Now if bp ∈ A then any c with v(c) ⩾ b checks c = cp − (cp − c) ∈ A + ℘(K) = ℘(K).
So bOv ∈ ℘(K) and thus bOv ∈ A by maximality. So A is a radical ideal, hence prime, and
taking Mw = A yields w p-henselian.

For the converse, suppose w is a non-trivial p-henselian coarsening of v. Then τv = τw, so
we may as well take v = w. Then in case ch(K) = p, Mv ⊂ ℘(K) =

⋃
x∈℘(K)(x+Mv), and

in case ch(K) ̸= p, 1 + p2Mv ⊂ (K×)p =
⋃

x∈(K×)p x(1 + p2Mv). So we have τp ⊂ τv.
To see that τp ⊂ τv, it suffices to check Mv ⊂ τp; and for this it suffices to find an open

τp-neighbourhood of 0 U ⊂ Mv, since then Mv =
⋃

x∈Mv
(x+ U).
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In case ch(K) ̸= p, then we choose a ∈ p2Mv \Kp, and U = a(1− (K×)p)∩a2(1− (K×)p)
works.

In case ch(K) = p, then we choose a ∈ K \ (Mv ∪ ℘(K)), and U =
{

a2x
x+a−1

⏐⏐⏐ x ∈ ℘(K)
}

works.
All the details and (long) calculations can be found in the original paper [Koe95] by

Koenigsmann.

Let Tp be the theory of fields together with a sentence which says “the characteristic is p
or there is a p-th root of unity”.

Corollary A.14. When p ̸= 2, there is a first-order ring-sentence expressing the fact that
a field K ̸= K(p), K ⊨ Tp is p-henselian; namely, this sentence reads “τp is a V-topology”,
which is first-order by Lemma 1.3.7.

When p = 2, the sentence “τp is a V-topology” might not work when K is euclidean, but
it still expresses p-henselianity for fields K ̸= K(2), K ⊨ T2 which are non-euclidean.

Proof. V-topologies are exactly the topologies induced by valuations or archimedean absolute
values. Since we threw the euclidean case out of the window, no archimedean absolute value
can exist, therefore τp is a V-topology iff τp = τv for some valuation v, and by Theorem A.13
K is p-henselian.

We still have to check that this is a first-order-ring-sentence, but once again Theorem A.13
gives us a nice base for τp, and being a V-topology is expressible just in term of the base. All
the claims above and more information on V -topologies can be found in [EP10, App. B].

A.4 Ring-defining vpK

Overview of the proof Following Jahnke and Koenigsmann in [JK14], the final step in
our quest will be to exhibit a valued-field-sentence characterizing vpK , and apply afterwards
Beth’s definability theorem:

Theorem A.15 (Beth, [Hod93, Thm. 6.6.4]). Let L be a language and T an L-theory. Let
LP = L ∪ {P}, where P is a new unary predicate symbol, and let TP ⊇ T be an LP -theory.

If every model M of T can be extended uniquely to a model MP = (M, P ) of TP , then P
is already L-definable modulo T : there is an L-formula φ such that if M ⊨ T , then φ(M) =
PMP .

Taking Lring for L, Tp for T and adding a new predicate symbol Ov, we want to axiomatize
the property Ov = OvpK

; we claim that this is done in the case p ̸= 2 by the following
parameter-free sentence ψp:

1. If K = K(p) then Ov = K, and

2. if K ̸= K(p) then:

(a) Ov is a valuation ring of K, and

(b) v is p-henselian, and

(c) if k ̸= k(p), then k is not p-henselian, and

(d) if k = k(p), then:

i. Γ has no non-trivial p-divisible convex subgroup, or
ii. it has one and:

A. ch(K) = p and ∀x ∈ Mv \ {0} , x−1Ov ̸⊂ ℘(K), or
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B. (K, v) is of mixed characteristic and k is not perfect, or
C. (K, v) is of mixed characteristic, k is perfect and ∀x ∈ Mv \ {0} , 1 +

x−1(ζp − 1)pOv ̸⊂ (K×)p.

We can already check that this is of first-order: K = K(p) can be expressed by saying
that K = Kp or K = ℘(K), p-henselianity of a valuation and a field are of first-order as
seen before†, and ring-properties of the residue field as well as ordered-group-properties of the
value group can be expressed by interpretability of those structures in the valued field.

ψp characterizes vpK The next 5 lemmas will be a long series of calculations, grouping them
together will yield the result.

Lemma A.16. Let (K, v) be a valued field, let K ⊨ Tp, and suppose:

1. Γv has no non-trivial convex p-divisible subgroup, or

2. ch(kv) = p and kv is not perfect.

Then for any non-trivial proper coarsening w of v, we have kw ̸= kw(p).

Proof. Let w be a proper coarsening of v and let ∆ < Γv be the corresponding non-trivial
convex subgroup of Γv, so we have Γw = Γv/∆, and v : kw → ∆ is a valuation with residue
field kv = kv. We aim to find a Galois extension of kw of degree p.

In case 1, we have ∆ ̸= p∆. Thus there is x ∈ kw with v(x) /∈ p∆. Now if ch(kw) ̸= p,
then ζp ̸= 1 is a pth-root of unity in kw, so kw[ p

√
x] is a Galois extension of kw of degree p.

On the other hand if ch(kw) = p, then we may assume v(x) < 0 by possibly replacing x by
x−1. Consider the polynomial Xp−X−x, the roots of which can not be in kw: if αp−α = x,
then v(α) < 0; therefore v(αp − α) = pv(α) = v(x). Now kw[α] is a Galois extension of kw of
degree p.

In case 2, (kw)v = kv is not perfect. Thus we can choose some a /∈ (kv)
p and any

corresponding a ∈ O×v is also not in (kw)
p. If ch(kw) ̸= p, then as before kw[ p

√
a] is a

Galois extension of kw of degree p. If ch(kw) = p, take any x ∈ Mv and consider the
polynomial Xp −X − ax−p, a root of which in kw would satisfy v(α) = −v(x), which yields
(αx)p − a = αxp ∈ Mv. In the residue field, we would then have (αx)p + a, contradicting our
choice of a. Therefore any root α of the polynomial generates a Galois extension of degree
p.

Corollary A.17. Let (K, v) be a p-henselian valued field containing ζp. Suppose K ̸= K(p),
ch(k) ̸= p and k = k(p) hold, then:

v = vpK ⇔ Γ has no non-trivial p-divisible subgroup.

Proof. Right-to-left follows immediately from Lemma A.16 1: if Γ has no non-trivial p-divisible
convex subgroup, then v has no proper coarsening with p-closed residue field, so to say v is
the coarsest valuation with p-closed residue field; by definition, this means v = vpK .

Conversely if Γ has a non-trivial p-divisible subgroup ∆, then the corresponding coarsening
w of v has p-closed residue field: take a ∈ kw. If v(a) ⩽ 0, then replace it by a−1. Now if
v(a) > 0, then by p-divisibility of ∆, v(a) = pv(b) for some b ∈ kw. So replacing a by ab−p if
necessary, we can assume v(a) = 0. But then Xp − a has a (simple) root in kv = k since it is
p-closed by assumption, and applying p-Hensel’s lemma A.2, we get a root of Xp − a in kw.
Since ζp ∈ K, any Galois extension of degree p is generated by pth-roots, so kw is p-closed;
therefore v is not the coarsest p-henselian valuation with p-closed residue field.

†This is true only when p ̸= 2, we will see what can be done for p = 2 later.
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Lemma A.18. Let (K, v) be a p-henselian valued field of equicharacteristic p with p-closed
residue field. Then:

v = vpK ⇔ ∀x ∈ Mv \ {0} , x−1Ov ̸⊂ ℘(K).

Proof. If K is p-closed, then vpK is trivial and ℘(K) = K. Therefore, if v = vpK then v is trivial
and Mv = {0}, so the statement on the right reads “∀x ∈ ∅, . . . ” and trivially holds; now for
the converse take x ∈ K \ {0}, then obviously x−1Ov ⊂ ℘(K) = K, so for the statement on
the right side to hold, the only possibility is Mv = {0}. Thus we can assume from now on
K ̸= K(p).

From p-henselianity we can deduce that under the assumptions of the lemma, Ov ⊂ ℘(K):
take a ∈ Ov and consider Xp −X − a, which has a root in kv. What the statement expresses
if that v = vpK iff no proper coarsening w of v satisfy Ow ⊂ ℘(K).

First we show “⇒” by contradiction: suppose ∃x ∈ Mv \ {0} such that x−1Ov ⊂ ℘(K).
x−1Ov is an Ov-fractional-ideal – an Ov-submodule I of the fraction field of Ov (here K) such
that there exists an a ∈ Ov with aI ⊂ Ov. Furthermore, if v(y) ⩽ v(x), then y−1Ov ⊂ x−1Ov.

Now let N =
⋃

x∈A x
−1Ov, where A =

{
x ∈ Mv

⏐⏐ x−1Ov ⊂ ℘(K)
}
. We claim that ∃a ∈ K

such that v(a) > v(A): if not, then ∀x ∈ K, ∃y ∈ A such that v(y) ⩾ v(x); therefore
x−1Ov ⊂ y−1Ov ⊂ ℘(K) and K = ℘(K), so K = K(p).

N is an Ov-fractional-ideal since aN ⊂ Ov, better still, it is the maximal one such that
Ov ⊊ N ⊂ ℘(K): for any z ∈ ℘(K) \N , take Z any Ov-fractional-ideal containing z. It must
contain zOv, which is not contained in ℘(K) since z /∈ N , so Z ̸⊂ ℘(K).

Let ∆ be the convex hull of the subgroup of Γ generated by v(N \ Ov):

• ∆ is non-trivial by assumption.

• Any γ ∈ v(N \ Ov) is p-divisible in Γ: take x ∈ N such that v(x) = γ, now since
N ⊂ ℘(K), there is a y ∈ K such that yp − y = x. We have v(x) = v(yp − y) < 0, so
pv(y) = v(x) = γ.

• ∆ is p-divisible: let δ ∈ ∆, assume δ < 0. By definition there are a finite number of
ni ∈ Z, αi ∈ v(N \ Ov) such that: ∑

niαi ⩽ δ < 0

Take α = min(αi) and n =
∑
ni; now nα ⩽ δ < 0. δ lies in exactly one interval of the

form [(k + 1)α, kα[, therefore for some k, β = δ − kα ∈ [α, 0[. Now since α ∈ v(N )
and α ⩽ β, also β ∈ v(N ). By what we’ve seen, both α and β are p-divisible in Γ, and
δ = β + kα as well. Since ∆ is convex, δ

p ∈ ∆.

Now we assume v = vpK and aim towards a contradiction.
Since any coarsening of v has non p-closed residue field, N does not contain any coarsening

of Ov: if Ow ⊂ N ⊂ ℘(K), then Xp −X − a has a root in K for any a ∈ Ow, so it has a root
in Ow since valuation rings are integrally closed, and therefore Xp −X − a has a root in kw;
thus kw(p) = kw and w cannot be a proper coarsening of v.

We claim that ∆ is of rank 1: take any {0} < � < ∆ convex, and let w be the associated
proper coarsening of v. We know that Ow ̸⊂ N , so there is z ∈ Ow \ N , in particular,
z /∈ Ov. Suppose there exists x ∈ Mw such that 0 < v(x) ⩽ v(z−1), then z−1x−1 ∈ Ov ⊂ Ow.
But now x−1 ∈ zOw ⊂ Ow, which contradicts the choice of x ∈ Mw. This means that
v(z) ∈ � = {γ ∈ Γ | 0 ⩽ ±γ < v(x) ∀x ∈ Mw}. Since z /∈ N , we know that v(z) < v(y) < 0
for any y ∈ N \ Ov, so v(N \ Ov) ⊂ �; and by definition of ∆, we have ∆ ⊂ �, which
contradicts our choice of �.
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Thus, ∆ is of rank 1, which means it must embed in R, and we can fix α ∈ R and consider
the following set:

Nα = {x ∈ K | v(x) ⩾ αv(y) for some y ∈ N}

It is an Ov-fractional ideal which strictly contains N if α > 1:

• Let x ∈ N : if v(x) ⩾ 0 then v(x) ⩾ αv(1), and if v(x) < 0 then v(x) ⩾ αv(x).

• Since v(N \ Ov) ⊂ ∆, we know that γ = inf(v(N )) exists in R. We also know that ∆
is a p-divisible subgroup of R, therefore it must be dense. This means that the interval
]αγ, γ[ contains an element of ∆, which is of the form v(x). Now x ∈ Nα but x /∈ N .

• Nα is clearly an Ov-module, and any b ∈ Ov such that v(b) > −αγ will verify bN ⊂ Ov.
Such a b exists since ∆ is dense.

Recall that by construction N is the maximal Ov-fractional ideal such that N ⊂ ℘(K). To
get a contradiction, we take α ∈]1, 2− 1

p [ and prove that Nα ⊂ ℘(K):
Let z ∈ Nα \ N , so there is y ∈ N such that v(y) > v(z) ⩾ αv(y). Note that αv(y) < 0,

so v(y) < 0. Now 0 > v(zy−1) ⩾ (α− 1)v(y) > v(y) since α < 2. This means zy−1 ∈ N \Ov,
so v(zy−1) ∈ ∆ is p-divisible: v(zy−1) = v(ap), thus v(za−p) = v(y), which means za−p ∈ N .
Finally, since N ⊂ ℘(K), there is b ∈ K such that bp − b = za−p, and we can write z =
(ab)p − apb, and we have:

v(apb) = v(ap) + v(b)

= v(zy−1) + 1
pv(b

p)

= v(z)− v(y) + 1
pv(za

−p)

= v(z)− v(y) + 1
pv(y)

⩾ (α− 1 + 1
p)v(y)

⩾ v(y) ∈ N

Therefore apb ∈ N ⊂ ℘(K), now since v(ab) > v(apb) also ab ∈ N ⊂ ℘(K), and z =
(ab)p − ab+ ab− apb is a sum of elements of ℘(K) which is stable by addition: z ∈ ℘(K), so
N can’t be maximal.

Lastly, we prove “⇐” by contraposition: suppose v ̸= vpK , then by definition vpK is a proper
coarsening of v with p-closed residue field. As done before for v, OvpK

⊂ ℘(K). Now take any
x ∈ Mv \MvpK

, in particular x ∈ O×
vpK

and:

x−1Ov ⊂ x−1OvpK
= OvpK

⊂ ℘(K)

which means ∃x ∈ Mv \ {0} , x−1Ov ⊂ ℘(K).

The cases ch(k) ̸= p and equicharacteristic p have been taken care in the previous lemmas,
but the most tedious case of mixed characteristic (0, p) is yet to be dealt with; this will require
two lemmas.

Lemma A.19 (Koenigsmann, [Koe99, lemma 3.2]). Let (K, v) be a p-henselian valued field
of mixed characteristic (0, p) containing ζp. Then for any a ∈ Ov we have:

1 + (1− ζp)
pa ∈ (K×)p ⇔ ∃x ∈ k, xp − x− a = 0
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Proof. The proof relies on a good choice of polynomial: if we have f(X) such that 1 + (1 −
ζp)

pa ∈ (K×)p iff f has a zero in K and such that f(X) = Xp −X − a, the lemma holds by
p-hensel’s lemma.

We claim that the following polynomial is a good choice:

f(X) =

(
X +

1

1− ζp

)p

−
(

1

(1− ζp)p
+ a

)
Now f(α) = 0 ⇔ (1 − ζp)

pf(α) = 0 ⇔ (α(1 − ζp) + 1)p = 1 + (1 − ζp)
pa. In order to obtain

f , we need to calculate coefficients of f :

f(X) =

p∑
k=0

[(
p

k

)
Xk 1

(1− ζp)p−k

]
− 1

(1− ζp)p
− a

= Xp +

p−1∑
k=2

[
(p− 1)!

(p− k)!k!
Xk p

(1− ζp)p−1
(1− ζp)

k−1
]
+

p

(1− ζp)p−1
X − a

It is still unclear what the residue of f is but believe it or not, we are almost here. First note
that ζp = 1 since 1 is the only root of unity in characteristic p. Let g(X) be the minimal
polynomial of ζp over Q: g(X) = Xp−1 + · · ·+ 1 =

∏p−1
k=1(1− ζkp ). Now:

p = g(1) = (1− ζp)(1− ζ2p ) · · · (1− ζp−1p )

p

(1− ζp)p−1
=

1− ζp
1− ζp

×
1− ζ2p
1− ζp

× · · · × 1− ζp−1p

1− ζp

= (1 + ζp)(1 + ζp + ζ2p ) · · · (1 + ζp + ζ2p + · · ·+ ζp−2p )

Therefore p
(1−ζp)p−1 has residue 2×3×· · ·×p−1 = (p−1)!, but since ch(k) = p, (p−1)! = −1

in k. This implies v(p) = (p− 1)v(1− ζp) > 0, and we can look again at the coefficients of f :

• for 2 ⩽ k < p, v( (p−1)!
(p−k)!k!) ⩾ 0 since it is an integer;

• v( p
(1−ζp)p−1 ) = 0;

• for k ⩾ 2, (k − 1)v(1− ζp) =
k−1
p−1v(p) > 0.

Therefore coefficients in front of X2, X3, . . . , Xp−1 all have positive valuation and are con-
sequently null in the residue field. Since the coefficient in front of X is p

(1−ζp)p−1 which has
residue −1, we have f(X) = Xp −X − a and we conclude.

We now prove a final lemma very similar to Lemma A.18 but for the mixed characteristic
case:

Lemma A.20. Let (K, v) be a p-henselian valued field of mixed characteristic (0, p) containing
ζp with residue field perfect and p-closed, and with no non-trivial convex p-divisible subgroup
of its value group. Then:

v = vpK ⇔ ∀x ∈ Mv \ {0} , 1 + x−1(ζp − 1)pOv ̸⊂ (K×)p

Proof. Once again, if K = K(p) then vpK is trivial, and if v = vpk then Mv = {0} and the
statement on the right side reads “∀x ∈ ∅,. . . ” and holds. Conversely, if v is non-trivial, then
p ∈ Mv \{0} and v(p) < p

p−1v(p) = v((ζp−1)p); so to say p−1(ζp−1)pOv ⊂ Mv ⊂ K \{−1},
and 1 + p−1(ζp − 1)pOv ⊂ K× = (K×)p. We can thus assume K ̸= K(p).
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“⇒”: We assume v = vpK . Consider first the case where there exists a proper coarsening
w of v such that ch(kw) = p. Since v = vpK , any proper coarsening u of v lifts to a proper
coarsening u of v, and ku = ku is not p-closed by definition of vpK . Likewise, any proper
refinement of v has p-closed residue field. We then have (and this holds for any field K and
valuations Ov ⊂ Ow):

v = vpK ⇒ v = vpkw

In our case, (kw, v) is a valued field of equicharacteristic p with p-closed residue field, so we
can apply Lemma A.18 to it:

v = vpkw ⇒ ∀x ∈ Mv \ {0} , x−1Ov ̸⊂ kww
(p)

Given a x ∈ Mv \Mw, we then know that for some a ∈ Ov, x−1a /∈ k
(p)
w , and by Lemma A.19

we have 1 + x−1(1 − ζp)
pa /∈ (K×)p. Doing this with x = 1 gives us an a ∈ Ov such that

1+ (1− ζp)pa /∈ (K×)p. Finally, for x ∈ Mw \ {0}, we have 1+x−1(ζp− 1)pxa /∈ (K×)p, with
xa ∈ Ov; parsing everything together, we have:

v = vpK ⇒ ∀x ∈ Mv \ {0} , 1 + x−1(ζp − 1)pOv ̸⊂ (K×)p

Thus in the case where a coarsening of v has residue characterisitc p, the proof of left-to-right
is done.

Assume now that all coarsenings of v have residue characteristic 0. Then, we claim that
1 + Mv ̸⊂ (K×)p: consider the coarsening w of v corresponding to the maximal convex p-
divisible subgroup of Γ, which is non-trivial by assumption. We know that ch(kw) = 0, v is
p-henselian, has p-divisible value group and perfect residue field. If 1 + Mv ⊂ (K×)p, then
also 1+Mv ⊂ (k×w )

p. Note also that ζp ̸= 1 ∈ kw, since otherwise the calculation of w(ζp− 1)

in the proof of Lemma A.19 would yield w(ζp − 1) = w(p)
p−1 = 0, contradicting ζp − 1 ∈ Mw.

Take now a ∈ kw, by p-divisibility of Γv we can find b ∈ kw such that v(ab−p) = 0. Since
kv is perfect, ab−p = cp for some c ∈ kv, and lifting it we have ab−p ∈ cp(1 +Mv) and thus
a ∈ kpw. This means that w is a proper coarsening of v with p-closed residue field, contradicting
v = vpK .

Now, we assume the following and aim for a contradiction:

∃x ∈ Mv, 1 + x−1(ζp − 1)pOv ⊂ (K×)p

As before, v(y) ⩽ v(x) implies 1 + y−1(ζp − 1)pOv ⊂ (K×)p, and we can define N =⋃
x∈A x

−1Ov, where A =
{
x ∈ Mv

⏐⏐ 1 + x−1(ζp − 1)pOv ⊂ (K×)p
}
.

Let a = −(ζp − 1)p. Now 1 + a−1(ζp − 1)p = 0 /∈ (K×)p, therefore a /∈ A and any
x ∈ K with v(x) ⩾ v(a) is also not in A. Thus any y ∈ N has value v(y) > v(a−1), so
aN ⊂ Mv ⊂ Ov and N is an Ov-fractional-ideal.

Furthermore, N is the maximal Ov-fractional-ideal such that 1+(ζp−1)pN ⊂ (K×)p: for
any z ∈ (K×)p \ N , take any Ov-fractional-ideal Z containing it. Z must contain zOv, but
1 + (ζp − 1)pzOv ̸⊂ (K×)p since z−1 /∈ A, so 1 + (ζp − 1)pZ ̸⊂ (K×)p.

Note also that since 1 +Mv ̸⊂ (K×)p, we have N ⊊ a−1Mv = (ζp − 1)−pMv.
Let ∆ be the convex hull of the subgroup of Γ generated by v(N \ Ov):

• ∆ is non-trivial by assumption.

• Any γ ∈ v(N \ Ov) is p-divisible: take x ∈ N such that v(x) = γ < 0, then since
1 + (ζp − 1)pN ⊂ (K×)p we have 1 + (ζp − 1)px = ap for some a ∈ K, and since
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N ⊊ (ζp−1)−pMv we have ap = 1+(ζp − 1)px = 1 ∈ k and thus a = 1 since ch(k) = p.
Hence, for some b ∈ Mv:

1 + (ζp − 1)px = (1 + b)p =

p∑
i=0

(
i

p

)
bk

Recall that v(ζp − 1) = v(p)
p−1 , therefore:

min
i=1,p

((
p

i

)
iv(b)

)
⩽ v

(
p∑

i=1

(
p

i

)
bi

)
= v (x(ζp − 1)p)

= v(x) + p
v(p)

p− 1
< p

v(p)

p− 1

min
i=1,p

(
p!

i!(p− i)!
iv(b)

)
< p

v(p)

p− 1

min
i=1,p

(
(p− 1)!

(i− 1)!(p− i)!
v(b)

)
<

v(p)

p− 1

v(b) = min
i=1,p

((
p− 1

i− 1

)
v(b)

)
<

v(p)

p− 1

This then yields v(bp) < p
p−1v(p) < v(p), therefore v(bp) < v(

(
p
i

)
v(bi)) since p divides

the cofficient. Thus v(x(ζp − 1)p) = v(bp), which means γ is p-divisible.

• ∆ is p-divisible: the argument in the proof of Lemma A.18 actually shows that any
convex hull of a subgroup generated by a set is p-divisible as soon as the set of generators
is p-divisible.

N does not contain any proper coarsening of v: suppose Ov ⊊ Ow ⊂ N . We know that
ch(kw) = 0, therefore w(ζp − 1) = 0, and:

1 +Mv ⊂ 1 +Ow = 1 + (ζp − 1)pOw ⊂ 1 + (ζp − 1)pN ⊂ (K×)p

Which as seen before contradicts v = vpK .
Following the proof of Lemma A.18, we have ∆ ⩽ R and for 1 < α ∈ R, the following is

an Ov-fractional ideal stricly containing N :

Nα = {x ∈ K | v(x) ⩾ αv(y) for some y ∈ N}

Recall that (ζp − 1)pN ⊊ Mv. If v((ζp − 1)−p) = inf(v(N )), then any x ∈ K with v(x) >
v((ζp − 1)−p) would be in N , and therefore (ζp − 1)pN would equal Mv. Therefore we take
α such that α > 1, α < 2 − 1

p and α <
v((ζp−1)−p)
inf(v(N )) , the later being strictly bigger than 1.

This yields Nα ⊂ (ζp − 1)−pMv, and we aim to contradict the maximality of N by proving
1 + (ζp − 1)pNα ⊂ (K×)p.

Let z ∈ Nα \ N , so there is some y ∈ N with 0 > v(y) > v(z) ⩾ αv(y). Then 0 >
v(zy−1) ⩾ (α − 1)v(y) > v(y), thus zy−1 ∈ N \ Ov. Therefore by p-divisibility of Γ there is
a ∈ K \ Ov such that v(zy−1) = v(ap), which gives v(za−p) = v(y), so za−p ∈ N \ Ov, and
there is b ∈ Mv such that:

1 + za−p(ζp − 1)p = (1 + b)b

z(ζp − 1)p = ap(bp + · · ·+ pb)

1 + z(ζp − 1)p = 1 + (ab)p + · · ·+ papb

and as before v(bp) = v(za−p(ζp − 1)p). Note also that z(ζp − 1)p ∈ Mv thanks to our choice
of α, so (ab)p ∈ Mv and ab also. We will first finish the proof modulo the following claim:
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Claim.
papb ∈ (ζp − 1)pN .

This implies the following:

1 + z(ζp − 1)p = 1 + (ab)p + · · ·+ papb

= (1 + ab)p−pab− · · · − p(ab)p−1  
∈Mv

+ papbp−1 + · · ·+ papb  
∈papbOv

∈ (1 + ab)p +Mv + papbMv ⊂ (1 + ab)p + papbMv

⊂ (1 + ab)p + (ζp − 1)pNMv

⊂ (1 + ab)p + (ζp − 1)pN
⊂ (1 + ab)p(1 + (ζp − 1)pN )

⊂ (K×)p

Since this holds for any z ∈ Nα, we have 1+(ζp−1)pNα ⊂ (K×)p, contradicting the minimality
of N .

Remains the claim to prove. Recall that we have:

v(bp) = v(za−p(ζp − 1)p)

We first aim to prove apb ∈ (ζp − 1)N . Since y ∈ N , we just need to show v(apb(ζp − 1)−1) >
v(y):

v(apb(ζp − 1)−1) = pv(a) + v(b)− v(ζp − 1)

= pv(a) +
1

p
v(z)− v(a)

= (p− 1)v(a) +
1

p
v(z)

We chose y, z and α such that 0 > v(y) > v(z) ⩾ αv(y) > (2 − 1
p)v(y). This yields

v(zp) > v(y2p−1), and from that:

v((zy−1)p−1z) = v(y1−p) + v(zp) > v(yp)

v((ap)p−1z) > v(yp)

(p− 1)v(ap) + v(z) > pv(y)

(p− 1)v(a) +
1

p
v(z) > v(y)

Hence we have apb ∈ (ζp − 1)N . Finally, we write apb = (ζp − 1)x for some x ∈ N . Now:

papb = p(ζp − 1)p(ζp − 1)p−1x

v(papb(ζp − 1)−p) = v(p)− (p− 1)v(ζp − 1) + v(x)

= v(p)− (p− 1)
v(p)p− 1

+
v(x)

= v(x)

Thus papb(ζp − 1)−p ∈ N and the claim is proven. ⇒
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“⇐”: We assume ∀x ∈ Mv \ {0} , 1+x−1(ζp− 1)pOv ̸⊂ (K×)p, so ∀x ∈ Mv there is a ∈ Ov

such that 1 + (ζp)x
−1a /∈ (K×)p. We first suppose that there exists a proper coarsening

w of v with residue characteristic p. Then, Lemma A.19 tells us that ∀x ∈ Mv \ Mw,
1 + (ζp)x

−1a /∈ (K×)p ⇒ x−1a /∈ k
(p)
w , so we have:

∀x ∈ Mw \ {0} , x−1Ov ̸⊂ k(p)w

Now by Lemma A.18 applied to (kw, v), we have v = vpkw , which then yields v = vpK .
Therefore we can assume that all proper coarsenings of v have residue characteristic 0. Let

w be a proper coarsening of v. Since p ∈ Mv, there is a ∈ Ov such that 1+ 1
p(ζp−1)pa /∈ (K×)p.

But p /∈ Mw since w has residue characteristic 0, so Ov[
1
p ] ⊂ Ow, so 1

p(ζp − 1)pa ∈ Ow. But
by p-hensel’s lemma A.2, we have 1+Mw ⊂ (K×)p, and therefore 1

p(ζp−1)pa /∈ Mw. Taking

the residue, 1
p(ζp − 1)pa ̸= 0 ∈ kw, and it cannot have a proot, otherwise we would lift it to K.

This means kw ̸= kw(p), so v is the coarsest valuation with p-closed residue field: v = vpK .

We now have to parse every result together to understand why ψp characterizes vpK , mean-
ing that if K ⊨ Tp, then (K, v) ⊨ ψp iff v = vpK . Let us go through the sentence step by step:

1. If K = K(p) then Ov = K

In the case where K is p-closed, (K, v) ⊨ ψp iff v is trivial iff v = vpK .

2. And if K ̸= K(p) then:

(a) Ov is a valuation ring of K, and

(b) v is p-henselian, and

(c) if k ̸= k(p), then k is not p-henselian

In the case where K and k are not p-closed, then vpK is a refinement of v, and in k, vpK = vpk,
thus v = vpK iff vpK is trivial iff k is not p-henselian (since it is not p-closed).

(d) And if k = k(p), then:

i. Γ has no non-trivial p-divisible convex subgroup

By Corollary A.17, in the case where ch(k) ̸= p we are done, so we can restrict ourselves to
the case ch(k) = p in the next statement (note that this is a disjunction).

ii. Or it has one and:
A. ch(K) = p and ∀x ∈ Mv \ {0} , x−1Ov ̸⊂ ℘(K)

This is the equicharacteristic p case, handled in Lemma A.18.

B. Or (K, v) is of mixed characteristic and k is not perfect

This is thanks to Lemma A.16 2. This is not an equivalence: if k is not perfect (and all the
previous assumptions) then v = vpK . Now if v = vpK , then either k is not perfect, or it is
perfect and we fall in the next (and last) clause:

C. Or (K, v) is of mixed characteristic, k is perfect and ∀x ∈ Mv \ {0} , 1 +
x−1(ζp − 1)pOv ̸⊂ (K×)p.

This is the mixed characteristic case, handled in Lemma A.20.
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A.5 When p = 2

Until there we conveniently dodged the case p = 2, for a very good reason: Corollary A.14
gives us a first-order-ring-sentence saying that a field is p-henselian, but it need not work when
p = 2 for euclidean fields. The sentence ψp that we wrote previously would still characterize
vpK even for p = 2, but now “k is 2-henselian” is not writable in first-order. And there’s
no hope to be as general as for p ̸= 2: R((Q)) contains a primitive square root of unity,
its canonical 2-henselian valuation is the t-adic valuation. But it is real closed; hence no
non-trivial valuation is definable.

However, we can still characterize a 2-henselian valuation; not quite v2K but something
close enough:

Definition A.21. On a field K, if kv2K is not euclidean then we let v2∗K = v2K ; and if kv2K is
euclidean then we let v2∗K be the coarsest 2-henselian valuation with euclidean residue field.

This is well defined, since if a valuation has euclidean residue field then any refinement
does too; therefore v2∗K is always a coarsening of v2K . We can now use a tweaked version of ψ2

to characterize v2∗K for all K ⊨ T2; let ψ∗2 be the following valued-field-sentence:

• If k is not euclidean, then ψ2, and

• If k is euclidean, then Ov is a 2-henselian valuation ring and no non-trivial convex
subgroup of Γ is 2-divisible.

We claim that if K ⊨ T2, then (K, v) ⊨ ψ∗2 iff v = v2∗: consider first the case kv2K non-
euclidean, then v = v2∗K iff v = v2K iff k is non euclidean and (K, v) ⊨ ψ2, the later being truly
first-order.

Now in the case kv2K euclidean, v = v2∗K iff k is euclidean, v is a 2-henselian valuation and
no coarsening of v have euclidean residue field. It remains to check that this is equivalent to
the property of Γ given above:

Lemma A.22. Let (K, v) be a 2-henselian valued field and suppose k euclidean, then:

v = v2∗K ⇔ Γ has no non-trivial convex 2-divisible subgroup.

Proof. Let ∆ ⩽ Γ be a convex subgroup, and denote w the corresponding coarsening, so that
v : kw → ∆. We want to show that kw is euclidean iff ∆ is 2-divisible:

• Suppose kw euclidean and let δ ∈ ∆. Take x ∈ kw such that v(x) = δ. Since kw is
euclidean, either x or −x admits a square root, the image of which by v is δ

2 .

• Suppose ∆ is 2-divisible, and let x ∈ kw. Since v(x) ∈ ∆, there is y ∈ kw such that
v(y2) = v(x), so a = xy−2 ∈ Ov× and a ̸= 0 ∈ k. Since k is euclidean, either a or −a
has a square root in k, so to say one polynomial X2 ± a has a simple root in k (since
euclidean implies characteristic 0), and by 2-henselianity we lift it to a square root of
±a = ±xy−2. Finally if −1 was a square in kw, by taking the residue we would have a
square root of −1 in k as well; so kw is indeed euclidean.

Since by definition v2∗K is the only valuation having no coarsening with euclidean residue field,
we have the equivalence.

We can now apply Beth’s definability theorem, and grouping everything together we have
the following:
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Theorem A.23 (Jahnke-Koenigsmann, [JK14]). For any prime number p ̸= 2, there is a
∅-ring-formula φp such that if K ⊨ Tp then φp(K) = OvpK

; and for p = 2 there is a ∅-
ring-formula φ2 such that if K ⊨ T2, then φ2(K) = Ov2K

when kv2K
is not euclidean and

φ2(K) = Ov2∗K
when kv2K

is euclidean.

B Shelah’s expansion and the random graph

B.1 Shelah’s expansion theorem

We first recall the definition of the Shelah expansion and, without proof, Shelah’s expansion
theorem. They are adapted from [Sim15, Def. 3.6 & 3.9, Prop. 3.23, Cor. 3.24].

Definition B.1. Let M be an L-structure, φ(x, y) an L-formula, N ≽ M be |M|+-saturated,
and b ∈ N . We consider a new relation symbol Sy←b

φ(x,y)(x), and we extend M to M′ by

interpreting this new symbol as as M′ ⊨ Sy←b
φ(x,y)(a) iff N ⊨ φ(a, b). We say that X ⊂ Mk

is externally definable if there is φ and b such that X =
{
a ∈ M

⏐⏐⏐M′ ⊨ Sy←b
φ(x,y)(a)

}
, or

equivalently X = {a ∈ M | N ⊨ φ(a, b)}.
If we do this for all formulas and all external parameters, we obtain the language LSh =

L ∪
{
Sy←b
φ(x,y)

⏐⏐⏐ φ(x, y) an L-formula, b ∈ N
}

, and the structure MSh in this language, which
we call the Shelah expansion.

Note that the structure MSh depends on the choice of N ; however, the definable sets
of MSh, that is, the externally definable sets of M, are exactly the same, regardless of the
choice of N – as long as it is |M|+-saturated.

Theorem B.2 (Shelah’s expansion theorem). Let M be NIP, then MSh has quantifier elim-
ination in LSh. It follows that MShSh and MSh have the same definable sets, and that MSh

is NIP.

It is folklore that Shelah’s expansion theorem fails for NTP2 or NIPn structures, and
notably, for the random graph. We now expose this lore and explain how this failure happens.

B.2 The RSh lore

Let R be (a model of the theory of) the random graph, in the language containing only one
binary relation symbol E which stands for the edges of the graph. R is the prototypical
example of a structure having IP. It is nonetheless simple and NIP2, but as we will see, its
Shelah expansion is as wild as it gets. The following is a folklore result:

Lemma B.3. Any subset of RSh is definable, that is, any subset of R is externally definable.

Proof. Let A ⊂ R. Consider the type {E(x, a) | a ∈ A} ∪ {¬E(x, b) | b /∈ A}. This type is
finitely consistent, thus it is realized in a saturated model by some b. Now, x ∈ R is connected
to b iff x ∈ A, and thus A is externally definable: A = Sy←b

E(x,y)(R).

It is often quoted as a reason why RSh should be very wild, namely, TP2 and/or IPn;
however, this is not per se enough to ensure so:

Example B.4. Let L = {PJ | J ⊂ ω} and consider the L-structure N having base set ω and
such that N ⊨ PJ(i) iff i ∈ J . Any subset of N is definable. Nonetheless, N has QE and is
stable.



88 APPENDIX

Of course, this example is very different from RSh. Most notably, it is true that any subset
is definable in N , but not in a sufficiently saturated extension of N .

But bear in mind that subsets of RSh have an induced structure which can be very wild.
In fact, reformulating slightly the previous folklore, we get:

Proposition B.5. Any structure in a finite relational language is interpretable in RSh.

Proof. Any structure in a finite relational language is bi-interpretable with a graph. This
fact is well known, see for example [Hod93, Thm. 5.5.1]. Any graph can be embedded in (a
sufficiently saturated model of the theory of) the random graph R. The base set of the image
of this embedding is definable in RSh, and its induced structure is exactly the structure of
the graph we wanted to embed. Therefore, the original structure is interpretable in RSh.

Corollary B.6. RSh has IPn and TP2.

Proof. We just need to find a structure in a finite relational language that has TP2 or IPn.
Of course, Peano’s Arithmetic or even ZFC are examples, but we prefer to use this proof as
an excuse to discuss how random graphs can provide such examples.

The random n-hypergraph has IPn−1: indeed, an IPn−1 pattern of finite length can be
seen as a finite n-hypergraph. In the Fraïssé limit, an infinite IPn−1 pattern exists.

The triangle-free random graph has TP2, as noted in [Che14, ex. 3.13]. We repeat the
argument here. Consider the formula φ(x; yz) : E(x, y) ∧ E(x, z). Let (aij , bij)i,j∈ω2 be such
that aij and bkℓ are connected iff i = k but j ̸= ℓ. This array then witnesses TP2 for φ, as
one can see on this drawing:

a00

b00

a01

b01

a02

b02

a03

b03

a10

b10

a11

b11

a12

b12

a13

b13

a20

b20

a21

b21

a22

b22

a23

b23

c

d

Any vertical path is consistent, as illustrated in green with c, and any row is 2-inconsistent,
as illustrated in red with d.

This means that Shelah’s expansion theorem fails wildly outside of NIP theories: there
are structures which are NIPn and/or simple, the Shelah expansion of which has IPn, TP2,
etc. Even worse: adding one externally definable set is enough, at least in the random graph,
to break Shelah’s expansion theorem.
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