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Abstract: Tissue acidosis plays a pivotal role in tumor progression: in particular, interstitial acidosis
promotes tumor cell invasion, and is a major contributor to the dysregulation of tumor immunity
and tumor stromal cells. The cell membrane and integral membrane proteins commonly act as
important sensors and transducers of altered pH. Cell adhesion molecules and cation channels are
prominent membrane proteins, the majority of which is regulated by protons. The pathophysiological
consequences of proton-sensitive ion channel function in cancer, however, are scarcely considered in
the literature. Thus, the main focus of this review is to highlight possible events in tumor progression
and tumor immunity where the pH sensitivity of cation channels could be of great importance.

Keywords: ion channel; membrane potential; tumor immunity; pH homeostasis; protonation; cancer
physiology; tumor microenvironment; cell adhesion molecules

1. Introduction

The acidification of the tumor microenvironment (TME) is a prominent environmental driver
of cancer progression. One major cause of acidification is a metabolic shift of tumor cells towards
glycolysis and lactate production, ultimately leading to accumulation of metabolic acids in the
tissue [1,2]. The interstitial acidosis can reach pH values of <6.5 in highly fibrotic tumors such
as pancreatic cancer [3]. Thus, the concentration of free protons can be ten times higher than at
physiological pH values of ~7.4. Acidosis in the TME is linked to tumor progression via a large variety
of factors including among others: extracellular matrix remodeling; the promotion of invasion and
metastasis by affecting cell adhesion; and it instigates many immunosuppressive processes, which
result in a significant dampening of the immune response. These phenomena have been widely
discussed in comprehensive reviews in multiple types of cancer, e.g., breast cancer [4,5], melanoma [6–8]
and pancreatic cancer [9]. In contrast, in well-vascularized regions of a tumor sufficient perfusion is
ensured to nurture the cancer cells as well as to wash out the produced metabolic acids. This contrast
between differentially perfused areas of a tumor gives rise to pH gradients facilitating invasion of the
surrounding tissues and metastasis.
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The intracellular pH (pHi) of cancer cells is usually slightly (0.1–0.2 pH units) more alkaline than
the extracellular pH (pHo) [10]. It is important to point out that this is only a relative intracellular
alkalinization; in the poorly vascularized, highly acidic regions of a tumor (e.g., pHo 6.5), the pHi

would still be acidic in absolute terms (e.g., pHi 6.7). The importance of pH in cellular physiology
is straightforward as many proteins function in a pH-dependent manner having a very small
spectrum of optimal pH. Prolonged acidification of pHi severely affects cell fate, as it inhibits
cell metabolism, migration, proliferation and induces cell death. Therefore, it is vital for the cell
to have high-sensitivity pH sensors in order to respond according to pH alterations using different
effector proteins. Transmembrane proteins, such as ion channels, are optimal cellular sensors as
they can be affected by both pHo and pHi [11]. Ion channels have a key role in cancer progression
affecting every hallmark of cancer, as pointed out in numerous comprehensive reviews, e.g., [12–15].
However, our critical review of the literature revealed that most of the studies investigating the role
of ion channels in cancer do not consider the pH landscape of tumors. Therefore, the present review
specifically emphasizes the complex interplay between pH and individual ion channels in cancer
pathophysiology. We propose multiple mechanisms of how ion channel function and interaction with
the cell adhesion machinery in cancer cells and in tumor immunity can be affected by pH. We discuss
possible pathophysiological consequences of pH-dependent ion channel activity and highlight the
need for further studies in this direction. For limiting the scope of this review, we will only focus on
cation channels for which functional data in tumors is available.

2. pH Homeostasis Is Tightly Coupled to Changes in Membrane Potential

The membrane potential is a characteristic feature of every cell and one of the most fundamental
signaling modules. In 1971, Cone postulated that there is a functional correlation between the baseline
(resting) membrane potential of cells and their mitotic activity [16]. Notably, the resting membrane
potential of cancer cells ranges from −5 to −55 mV, whereas noncancer cells usually have a more
negative resting membrane potential of −35 to −95 mV [17,18]. The more positive membrane potential
is indeed beneficial for tumor progression, since it enhances tumor growth along with invasive and
metastatic capabilities [17]. This concept is endorsed by the discovery that membrane hyperpolarization
of tumor foci induced by the light-gated nonselective cation channel ChR2D156A—that passes mostly
H+ at physiological pH or by the proton pump Arch,—suppresses tumor progression and induces
tumor regression in zebrafish [18].

Changes in membrane potential are closely related to pHi alterations. Generally, cellular
alkalization leads to membrane hyperpolarization, whereas acidification leads to depolarization.
However, there are exceptions depending on the expression pattern of channels and transporters in the
respective cells (see below). Acidification produces more pronounced effects on membrane potential
than alkalization: acidification from pHi 7.4 to 6.5 leads to a depolarization of up to +20–+60 mV,
whereas alkalization changes the membrane potential by−5 to−20 mV per unit of pH. This phenomenon
is frequent in eukaryotic cells (reviewed in [19]), and has also been described in multiple human cancer
cell lines [20,21]. Changes of pHo have no immediate extracellular effects on membrane potential, only
after prolonged exposure, presumably because of subsequent intracellular acidification [22]. The central
role of K+ channels in this phenomenon is revealed by the fact that the pH-dependent depolarization
can be abolished with K+ channel inhibitors [19,21,23,24]. However, it should be noted that there
are exceptions to this rule [25] and that changes of the pH homeostasis can also affect the potential
of intracellular membranes such as that of the inner mitochondrial membrane [26–28]. Considering
that depolarization frequently accompanies pHi acidification and vice versa, it is remarkable that
depolarized cancer cells can maintain their pHi elevated compared to environmental pH. To understand
this phenomenon, we need to discuss how cells handle surrounding H+. Overall, cells are facing a
constant passive load of H+ towards the intracellular side of the plasma membrane [29]. The main
reasons for this are the high membrane H+ permeability, as well as the electrochemical driving force for
H+ pointing to the intracellular direction. The driving force of protons depends on their equilibrium
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(Nernst-) potential, which is about EH = −12 mV at physiological pH in somatic cells (pHi = 7.2,
pHo = 7.4) [29]. Assuming a membrane potential of −70 mV, there is a driving force for H+ influx of
−58 mV. As outlined in the previous section, cancer cells have a slightly more alkaline pHi compared
to pHo [3], so the EH could become positive, generating a slightly higher chemical driving force for H+.
However, as the resting membrane potential of tumor cells is highly depolarized compared to somatic
cells, they would still have a reduced driving force for H+ influx. Thus, the depolarized membrane
potential of cancer cells will reduce the electrochemical driving force for the extrusion of metabolic
acid and thus help the cells to cope with the intracellular and environmental acid load.

The membrane potential of cells is temporally highly dynamic, and its changes accompany
fundamental processes such as proliferation, migration, volume control, secretion and contractility [30,31].
Membrane potential and pHi changes go hand in hand throughout the life of a cell and contribute to
the fine-tuning of cell proliferation, migration and metabolism:

(I). The plasma membrane is hyperpolarized during DNA synthesis, in the S phase, and depolarized
in the G2/M phase [32,33]. Interestingly, pHi has an alkaline peak of ∆pHi ≈ 0.2 in lymphocyte
populations in the S phase of the cell cycle [34,35], whereas an acidification in G2/M has not been
shown to date. Since pH changes alter microtubule stability, it has been proposed that pHi may
be a “clock” for mitosis [36].

(II). Migrating cells have a pHi gradient with the leading edge of the cells having a higher pHi [37,38].
Such local pH-microenvironments could also affect the function of ion channels involved in
cell migration.

(III). Glycolysis acidifies the intracellular milieu, whereas oxidative phosphorylation induces an
alkalinization [26,27]. Aerobic glycolysis is prominent in the lamellipodia of multiple cancer cell
types [39], which can act as a local source of metabolically produced acid during migration and
further depolarize the plasma membrane. Additionally, the mitochondrial membrane potential
depolarizes during glycolysis, and hyperpolarizes during oxidative phosphorylation [40,41]. It is
conceivable that the plasma membrane potential is altered concordantly, as the mitochondrial
membrane potential is in the phase with the plasma membrane potential [28]. Therefore, the
enhanced aerobic glycolysis of cancer cells can contribute to their depolarized membrane potential.

In summary, eukaryotic cells alter their membrane potential and pHi harmoniously, and changes
in each one of them can affect cancer invasiveness. Ion channels are key players in linking pHi to the
membrane potential and vice versa, as they are sensitive sensors for both. By altering the activity of
pH-sensitive ion channels in cancer cells, it could be possible to dysregulate the membrane potential
of the tumor cells and render them inactive. Additionally, in case of tumor immunity, it would be
critical to enhance the antitumor effects of immune cells in the acidic milieu of poorly perfused tumor
areas. Therefore, to improve our understanding of tumor pathophysiology, it is vital to evaluate the
individual families of ion channels and how they respond to changes in pH or, conversely, how they,
themselves, modify pHi.

3. Ion Channels Are Modulated Directly and Indirectly by Changes in pH

Acidification of both pHi and pHo can modulate channel function through multiple
mechanisms—outlined in Section 3.1. Moreover, acidification can indirectly modulate ion channel
function, among others, through alteration of cell–extracellular matrix interactions, as described in
Section 3.2.

3.1. Direct Interaction between Protons and Ion Channels

Proteins can coordinate H+ to specific proton-binding sites that involve titratable side chains with
pKa values close to the physiological pH. Thus, the pHo-sensitivity of the voltage-gated potassium
channel KV1.5 is attributed to a histidine residue located in the linker between S5 and the pore
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domain [42]. However, other residues (e.g., arginine and lysine) can form interaction sites for protons
as well.

Moreover, H+ competes with other cation-binding sites and can thereby alter channel function.
Competition arises primarily between divalent cations and H+. For example, Ca2+ ions modulate
the pH-dependent gating of ASIC channels (detailed in Section 4.4.3). The apparent pH sensitivity of
mammalian ASIC1 and ASIC3 is reduced with an increase in the extracellular Ca2+ concentration [43].
Ca2+ and H+ compete for ASICs, with Ca2+ binding favoring the closed state and H+ binding leading
to the open state [44]. A similar competition between Ca2+ and H+ has been postulated in the case of
the KV11.1 (hERG1) channel (Section 4.1.1). However, protons render this channel towards a closed
state [45]. Lastly, competition between Zn2+ and H+ is well established for the HV1 proton channel [46].

Protons, similarly to Ca2+ [47], from the extracellular side can also provide an electrical shielding
biasing the closed-open equilibrium of voltage-sensitive channels. This is known as the surface
charge screening effect [48]. Thus, it is crucial to differentiate the screening effect from the specific
inhibitory effects of protons. The change in surface potential following pHo acidification shifts the
activation threshold of ion channels towards more depolarized voltages [49–51]. This indicates that in
the hypoxic–acidic regions of solid tumors, surface charge screening could be relevant in inhibiting
voltage-gated ion channels.

3.2. pH-Dependent Interaction of Cell Adhesion Proteins with Ion Channels

A principal mechanism for cells to crosstalk with the TME is via integrins. Integrins are
transmembrane proteins formed by the noncovalent association of α and β subunits. So far, 18 α and
18 β subunits have been identified in mammals which can assemble in multiple combinations to form
at least 24 different functional heterodimers with distinct specificities [52]. The conformation of each
integrin and its binding to the ECM is regulated by the interaction of the cytoplasmatic domain with
intracellular signaling and cytoskeletal proteins [53].

Integrins are more than just cell adhesion molecules, since they are able to transmit signals
bidirectionally across the plasma membrane through “inside-out” and “outside-in” signaling,
respectively. In the resting (“bent”) state, integrins are usually in the low affinity conformation
and they are activated (“extended”) by the “inside-out” signaling pathway. Two intracellular activators
(talin and kindlin) are crucial in this process, and the binding of talin to the cytoplasmatic tail of the β
subunit is believed to be the final step of integrin activation [54]. Talin contains specific binding domains
for the cytoplasmic tail of integrin, for filamentous actin and for other regulators of focal adhesions
such as focal adhesion kinase (FAK) [55]. The binding of the integrin receptor to its extracellular
ligands leads to the “outside-in” signaling that exerts crucial regulation of key cellular processes such
as cell mobility, proliferation and differentiation [56].

Several integrins, namely α2β1, α5β1 or αvβ3, are pH-dependent in melanoma and other cell
types [57–59]. Importantly, both pHi and pHo modify “inside-out” and “outside-in” signaling of
integrins. Talin binding to actin filaments is pH-sensitive, and this association is decreased at a
pHi > 7.2, allowing faster focal adhesion turnover and thus increased migration [60]. Migration and
focal adhesion remodeling is also regulated by pH-dependent FAK autophosphorylation which is
conferred by the protonation of His58 [61]. Furthermore, the ability of integrin receptors to bind to
their extracellular ligands is regulated by pHo [10,60,62,63]. Low extracellular pH leads to increased
cell adhesiveness, which can be explained by several possible mechanisms. First, conformational
changes in acidic pHo increase the avidity of the integrin headpieces to ECM proteins [59]. Another
mechanism could be a pH-dependence of the mechanical stability of focal adhesions [64]. Lastly,
protons themselves could compete with divalent cations such as Ca2+ bound to integrin and thereby
influence integrin activation.

Increasing evidence shows that ion channels [52,65–67] are able to form signaling complexes with
cell adhesion proteins including integrins. Following their association, integrins and channels regulate
their function bidirectionally [65]. They co-assemble in the plasma membrane and form supramolecular
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complexes that can recruit further cytosolic signaling proteins to orchestrate downstream intracellular
signals [66]. These cytoplasmic messengers include Ca2+ or protein kinases [52,68]. Moreover, Ca2+

mediates the transmission of mechanical forces at focal adhesion sites triggered by integrins via the
activation of FAK and c-Src [69].

Integrin–ion channel complexes coordinate several cellular processes relevant in cancer, namely
adhesiveness, migration and differentiation [70–72]. By forming complexes with integrins, K+

channels regulate several proteins implicated in cell movement such as FAK, cortactin and integrins
themselves [73–75]. It is well recognized that multiple Ca2+-activated and voltage-dependent K+

channels are involved in integrin-directed cell migration [76,77]. In prostate cancer, a KCa/αvβ3
integrin complex recruits FAK and promotes its phosphorylation, resulting in increased cancer cell
proliferation [78]. β1 integrins can also bind to other K+ channels, such as KV1.3 and KV11.1, in tumor
cells but not in cardiac cells [79–82]. Additionally, the KV1.3 channel involved in the immune response
of T lymphocytes can be modulated by β1 integrins, which could be crucial for tumor immunity [83].
In colorectal cancer cells, the ability of KV11.1 to form a complex with β1 integrin correlates with
increased in vitro invasiveness [84]. Moreover, in acute myeloid leukemic cells, the KV11.1–β1 complex
couples with FLT-1, a receptor for vascular endothelial growth factor. This interplay is crucial for cell
migration, triggers chemoresistance or modulates angiogenesis and cancer progression [81,85,86].

The interplay between integrins and ion channels also regulates cell differentiation. In the PC12
pheochromocytoma cell line, the shift to a neuronal phenotype caused by the neural cell adhesion
molecules and N-cadherins is facilitated by voltage-gated Ca2+ channels [87]. Moreover, integrins
seem to be important in the regulation of erythroleukemic cell differentiation and neurite extension in
certain neuroblastoma cells through the activation of K+ channels [70,71].

Given the pH sensitivity of integrins and many ion channels, it is plausible to assume that their
interaction itself may be pH-dependent as well. However, the experimental proof of whether and
how the interaction, its kinetics and the downstream activity of these two classes of transmembrane
proteins is indeed pH-dependent still remains to be established. One could for example mutate
pH-sensitive residues on one protein class (e.g., an integrin) and observe the changes in expression,
phosphorylation state, trafficking, intracellular signaling systems, binding capacity to the partner
protein and downstream function of the ”partner” protein (e.g., an ion channel) both in vitro and in vivo.
A study following a similar logic [37] could be performed to understand the role of the intratumoral
and intercellular pH gradients in determining the specificity of integrin subunit interactions and the
resulting downstream effects.

4. pH-Dependent Regulation of Ion Channels in Cancer Cells

As summarized by Figure 1 and detailed in Table 1, protonation by an acidic environment often
results in a loss-of-function of cation channels involved in cancer cells and thereby to an inhibition of
ion fluxes, similarly to what Prevarskaya et al. proposed [13]. This general phenomenon, however,
shows a huge variability depending on how strongly pH-sensitive a channel is, ranging from almost
insensitive to markedly pH-dependent. What is also noticeable from Table 1 is beyond some primarily
proton-sensory channels (e.g., HV1 and K2P channels), there is limited information to date on how pHi

modifies ion channel function as opposed to pHo. The section below briefly summarizes our knowledge
about the pH-dependence of cation channels involved in cancer cells and details the involvement of
the pH-sensitive function of cation channels in cancer pathogenesis and progression.
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Table 1. pH-dependence of ion channels involved in cancer.

Gene Name Channel Name Cancer Type Functions in Cancers pHo Acidification pHi Acidification

KCNA3 KV1.3

colorectal (cell line) ↑migration, adhesiveness [88]

slight
inhibition [89,90]

breast (cell line) ↑migration, adhesiveness, proliferation [88,91]

melanoma (T lymphocyte) ↑ antitumor immunity in tumor-bearing mice [92]

head and neck (T lymphocyte) defects are associated with diminished cytotoxicity [93]

KCNA5 KV1.5

lung (cell line, tumor) apoptosis, H2O2 production, ↓ tumor growth [27]
strong inhibition,

pKa = 7.2 [94] inhibition [27,95]cervical (cell line) apoptosis, H2O2 production [95]

gastric (cell line) ↑ proliferation [96]

KCNB1 KV2.1 uterine (cell line) ↑ cell cycle progression [97] slight inhibition [94]

KCNQ1 KV.7.1 colorectal (cell line) ↑ proliferation [98] slight inhibition,
pKa = 5.5 [99]

inhibition, BUT
stimulation in presence

of KCNE1 [100]

KCNH1 KV10.1 (hEAG1)

glioblastoma (cell line, tumor) ↑ tumor growth and metastasis [101]

inhibition,
pKa ≈ 6.5 [102]

colorectal (cell line) ↑ proliferation [103]

gastric (cell line) ↑ proliferation [104]

breast (cell line, tumor) ↑ tumor progression and hypoxia signaling [105]

osteosarcoma (cell line) ↑ proliferation, cell cycle progression [106]

osteosarcoma (endothelium) knockdown inhibitis tumor angiogenesis and VEGF-signaling [107]

KCNH2 KV11.1 (hERG1)
pancreatic (cell line) ↑ EGFR-signaling, proliferation, migration [85] slight inhibition,

pKa = 5.1 [45,108]
slight stimulation [109]

gastric (cell line, tumor) ↑ PI3K/Akt pathway, promotes angiogenesis, proliferation,
migration and tumor growth [110]

KCNN4 KCa3.1

glioblastoma (cell line, tumor) ↑migration, swelling, invasion, radiotherapy resistance, tumor
growth (reviewed in [111]

possibly insensitive
between pH 6.5 and

pH 8 [112]

inhibition [113]

breast (cell line, tumor) ↑ cell cycle progression, proliferation and tumor growth [114,115]

pancreatic (cell line) ↑migration, invasion, proliferation [116]

inhibition [113]pancreatic (stromal cell) ↑migration, chemotaxis [117]

melanoma (T lymphocyte) ↑ antitumor immunity in tumor-bearing mice [92,118]

head and neck cancer (T lymphocyte) ↑ tumor infiltration [119,120]
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Table 1. Cont.

Gene Name Channel Name Cancer Type Functions in Cancers pHo Acidification pHi Acidification

KCNJ1 Kir1.1 renal (cell line) ↓ cancer cell growth, invasion and promotes cancer cell
apoptosis [121]

strong inhibition
pKa = 6.9 [122]

KCNJ10 Kir4.1 glioblastoma (cell line) ↓ cell cycle progression [123] inhibition
pKa = 6 [124]

KCNK2 K2P2.1 (TREK1) prostate (cell line) ↑ proliferation, contributes to setting the membrane potential [125] strong inhibition
pKa = 7.35 [126]

slight stimulation [127]

pancreatic (cell line) ↑ proliferation, migration, contributes to setting the membrane
potential [128]

KCNK3,
KCNK9

K2P3.1(TASK1),
K2P9.1(TASK3)

glioblastoma (cell line) ↑ apoptosis and hypoxia resistance, contribute to setting the
membrane potential [129] inhibition [126]

lung (cell line) ↑ proliferation, contribute to setting the membrane potential [130]

KCNK5 K2P5.1(TASK2) breast (cell line) ↑ proliferation, contribute to setting the membrane potential [131] inhibition [132] inhibition [132,133]

TRPC4,
TRPC5 TRPC4, TRPC5 renal (cell line) activation leads to cancer cell death [134] stimulation [135]

TRPC6 TRPC6

glioblastoma (U373MG cell line) ↑ cancer cell proliferation, invasion, angiogenesis [136]

slight inhibition [135]
liver (cell line) ↑ proliferation [137]

pancreatic (tumor-associated
immune cell) ↑ CXCL1/CXCR2 induced neutrophil infiltration [138,139]

pancreatic (stromal cell) ↑migration, hypoxia response [140]

TRPM2 TRPM2
breast (cell lines and murine model) mediates H2O2 cytotoxicity [141,142] inhibition

pKa = 6.5 [143]
complete inhibition by

pH = 6 [143]prostate (cell lines) ↑ proliferation [144]

TRPM7 TRPM7

nasopharyngeal (cell lines) ↑migration [145]

inhibition
pKa = 6.32 [146]

lung (A549 cell line) ↑migration [147]

pancreatic (cell line) ↑migration [148]

breast ↑ proliferation and migration (overexpressed in cancer tissue) [149]

TRPV1 TRPV1

breast (cell line) apoptosis, tumor suppressor (mRNA overexpression) [150]

stimulation [151]
gastric and colorectal (cell line) apoptosis, tumor suppressor (decreased expression in cancer

tissues) [152]

astrocytoma (murine model) apoptosis, tumor suppressor [153]

endometrial (cell line) apoptosis, tumor suppressor [154]
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Table 1. Cont.

Gene Name Channel Name Cancer Type Functions in Cancers pHo Acidification pHi Acidification

TRPV4 TRPV4

lung (murine model) ↓ endothelial tumor cell migration, normalization of tumor
vascularization [155]

stimulation [156]
breast (tumor-derived EC, cancer

cell line)
↑ promotes tumor-derived endothelial cell migration and

metastasis [157]

hepatocellular carcinoma (cell line
and murine model) TRPV4 inhibition leads to cell apoptosis [158]

gastric (cell line) ↑ cancer proliferation, migration and invasion [159]

HVCN1 HV1

breast (cell line, tumor) promotes cell migration, tumor growth, pHi regulation [160,161]

pHo/pHi relation and membrane-potential
dependent, detailed in Section 4.3

colorectal (cell line) promotes cell migration, pHi regulation [162,163]

glioblastoma (cell line) promotes cell migration, survival, pHi regulation [164]

B-cell lymphoma (patient samples,
cell line)

short variant of HV1 promotes cell migration and
proliferation [165]

CRAC channel
(ORAI-STIM)

inhibition
pKa = 8.3 [166] iinhibition [166]

ORAI1/STIM1 CRAC channel

renal (primary cells) ↑migration and proliferation [167]

inhibition
pKa = 8.3 [168]

inhibition
pKa = 7.5 [166]

breast (primary cells, cell line) ↑migration, invasion [169]

esophageal (cell line) ↑migration and proliferation [170]

glioblastoma (primary cells, cell line) ↑migration, invasion, proliferation and ↓ apoptosis [171,172]

lung (cell line) ↑ proliferation [173]

melanoma (cell line) ↑ proliferation, migration and invasion; metastasis formation [174]

pancreatic (cell line) apoptosis resistance [175]

gastric (cell line) ↑ proliferation, migration, invasion [176]

acut myeloid leukemia (cell line) ↑ proliferation and migration [177]

liver (cell line) ↑ proliferation [178]

colorectal (primary cells, cell line) ↑ proliferation, invasion and metastasis [179]

colorectal (T lymphocyte) ↑ tumor cell killing by CD8+ T cells, regulates antitumor
immunity [180]

melanoma (T lymphocyte) ↑ tumor cell killing by CD8+ T cells, regulates antitumor
immunity [180]

leukemia (T lymphocyte and NK cell) ↓ tumor cell killing due to verly high Ca2+ signals [181]
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Table 1. Cont.

Gene Name Channel Name Cancer Type Functions in Cancers pHo Acidification pHi Acidification

ORAI2/STIM1 CRAC channel acut myeloid leukemia (cell line) ↑ proliferation and migration [177] inhibition
pKa = 8.3 [168]

ORAI3/STIM1 CRAC channel
breast (cell line) ↑ proliferation [182] inhibition

pKa = 8.5 [168]prostate (primary cells, cell line) ↑ tumor growth, apoptosis resistance [183]

SCN5A NaV1.5 breast (cell line, biopsies) ↑migration, invasion and cancer progression [33,184,185] inhbition
pKa = 6.1 [186]

PIEZO1 Piezo1

gastric (cell line) ↑ proliferation, migration, chemotherapy resistance [187]

inhibition [188,189] inhibition [189]

synovial (cell line) ↑ viability and migration [190]

gliobastoma (cell line) ↑ cell proliferation [191]

breast (cell line) ↑ invasion, cell migration [192]

prostate (cell line) ↑ proliferation, migration [193]

pancreatic (stromal cell) ↑migration and invasiveness [189]

ASIC1 ASIC1 breast (cell line and murine model) ↑ invasion, metastasis and ROS production [4]

stimulation (reviewed
in [44])

ASIC1,
ASIC3 ASIC1/3 pancreatic (cell lines) ↑ epithelial–mesenchymal transition [171,194]

ASIC2 ASIC2 colorectal (cell line and murine
model) ↑ cancer proliferation, invasion and metastasis [195]

ASIC1a lung (cell line) ↑ proliferation and migration [196]

P2X7 P2X7

melanoma (murine model) ↑ tumor growth, reduced apoptosis, increased angiogenesis [197]

inhibition
pKa = 6.7 [198]

cervical cancer (cell line) ↑ cancer cell apoptosis [199]

pancreatic (cell line) ↑ tumor progression [200]

neuroblastoma (tumor-associated
immune cell) promotion of MDSCs; CCL2 release, macrophage recruitment [201]

↑ indicates increase, whereas ↓ indicates decrease of a given function.
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Figure 1. Response of ion channels to an acidic environment. The left side indicates physiological
interstitial pH condition (pHo = 7.4), whereas the right side depicts an acidic environment prevalent in
tumors (pHo = 6.5). The size of the arrows represents ion flux rate.

4.1. Modulation of K+ Channels in Cancer by pH

The tumor interstitial fluid can reach extreme potassium concentrations of 40 mm or higher [92].
This high [K+]o depolarizes the tumor cell membrane and increases the open probability of voltage-gated
ion channels. On the other hand, the outward electrochemical gradient for K+ is largely decreased
under such conditions which will lead to a low single-channel conductance for outward rectifying
K+ channels. Furthermore, as shown in Table 1 and Figure 1, most cancer-relevant K+ channels are
inhibited by pHo and/or pHi acidification. This is aggravated by the fact that the voltage-dependence
of ion channels is generally shifted towards more positive membrane potentials in the case of an acidic
pHo due to surface charge screening (discussed in Section 3.1). Together, these factors could mean
that in poorly perfused regions of a tumor, K+ channels are largely nonfunctional. Along these lines,
overexpression of K+ channels in tumors can be seen as a compensatory mechanism to enable at least
some K+ efflux even in the unfavorable K+ gradient (similarly to lymphocytes, proposed in [49]).
Therefore, it is likely that the sensory function of K+ channels could come into play when cancer cells
steer from hypoxic areas to well-perfused regions, where the K+ and pH gradient are more favorable.
For a deeper understanding of how K+ channels contribute to cancer progression in a pH-dependent
manner, this section discusses the individual families of K+ channels.

4.1.1. KV Channels

Acidification of pHo potently inhibits KV channels, as demonstrated exhaustively in the
literature [45,49,89,90,202]. However, the exact molecular mechanisms are so heterogeneous and
often controversially discussed that it would warrant a separate systematic review.

The pHi-dependence of KV channels is more confusing and is considerably less well studied.
Intracellular alkalinization leads to the activation of KV1.3 in lymphocytes [49], whereas KV channels
are inhibited by alkaline pHi in canine pulmonary arterial smooth muscle cells [203]. Moreover, the
KV11.1 currents are not affected by pHi when overexpressed in HEK293 cells [109]. This indicates that
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different KV channels are differentially regulated by pHi so that it is not yet possible to extrapolate the
pHi dependence of KV channels onto cancer cells.

Another distinguishing feature of KV channels is that their voltage-dependent gating largely
depends on the presence of charged amino acids in their transmembrane domains, e.g., arginine
residues of the S4 domain [204]). Mutation of particular arginine residues in this domain creates a
proton conducting pore through the voltage-sensor domain of KV channels (giving rise to so-called
ω-currents). Since cancer cells carry a multitude of somatic mutations, such mutations could also
be possible in cancer cells giving rise to functionally aberrant KV channels. Indeed, a recent study
shows an enrichment of mutations in the S4 domain of KV7.x (KCNQ) channels in gastrointestinal
cancers [205].

As indicated by Table 1, several pH-sensitive KV channels have been associated with tumors.
Their function could be drastically modified along the heterogeneous pH-landscape of a solid tumor.
However, the exact mechanism on how the pH-dependence manifests itself in cancer has yet to be
experimentally discovered. One study assessing KV channels and pH in cancer cells was performed in
the T-84 colon cancer cell line [103]. Here, the authors showed that inhibition of KV10.1 by astemizole
in T-84 cells inhibits pHi regeneration after an NH4

+ prepulse, which points to an inhibition of the
H+ extrusion pathways upon K+ channel inhibition. Their study concludes that KV channels (namely
KV1.5, KV3.4 and KV10.1) control T-84 cell proliferation by maintenance of pH regulation and Ca2+

signaling through hyperpolarization of the membrane potential. Furthermore, two studies about the
KV1.5 channel show increased expression of KV1.5 in cancer cells treated with dichloracetate (DCA),
accompanied by an increased pHi, and the generation of H2O2 that induces apoptosis in A549 and
Hela cells [27,95].

4.1.2. KCa Channels

There are three major groups of KCa channels: the large conductance KCa1.1 (BKCa), the small
conductance KCa2.1–2.3 (SKCa) and the intermediate conductance KCa3.1 (IKCa) channels. KCa3.1
channels have been linked to several tumor entities [206]. Some studies also revealed that KCa channels
are pH-sensitive (summarized in Table 1). Intracellular acidification in the range of pHi 6.4–5.4 reduces
channel open probability in C6 glioma cells of the rat [113]. Similar results were observed in pancreatic
β-cells [207], and in HEK-293 cells overexpressing KCa3.1 [208]. Here, the authors also identified that
changes in pHo in the range of pH 6.0 to 8.2 do not affect KCa3.1 current. Two other studies support
the idea that intracellular acidification inhibits the activity KCa channels. In smooth muscle cells of the
rabbit trachea, nearly no channel activity was observed even at slight acidification to pHi 7.0 [209].
In the ventricular membrane of choroid plexus, it was found that lowering of the pHi from 7.4 to 6.4
also reduced the channel open probability of Ca2+-activated K+ channels [210].

Certainly, most of the existing studies are not directly connected to cancer cells, but they show very
similar effects to the findings of Strupp et al. on C6 glioma cells [113]. In conclusion, the present studies
give evidence that KCa channel activity depends on the regulation by intracellular pH. It remains to be
determined how this channel property modulates its impact on tumor pathophysiology.

4.1.3. Kir Channels

Some inwardly rectifying potassium channels (Kir) such as Kir1.1, Kir4.1, Kir4.2 and the heteromeric
Kir4.x/Kir5.1 are sensitive to changes of the intracellular pH [211]. Kir 4.1, Kir 5.1, Kir 1.1 and Kir

2.3 channels are inhibited by lowering the pHi [212]. Several studies showed that Kir channels are
also expressed in cancer cells, as in glioma cells [213], as well as in lung and prostate cancer cells [214].
These channels act primarily as tumor suppressors by hyperpolarizing the membrane potential of
cancer cells. Notably, there is a strong correlation between Kir4.1 expression and the pathologic grade
of astrocytic tumors [215]. However, to the best of our knowledge, there are no additional studies
showing a link between the pH-dependent function of Kir channels in cancer cells. Yet, the importance
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of local regulation of Kir4.2 channels for migration illustrates how channel regulation by local pH
microdomains might affect tumor cell behavior [216].

4.1.4. K2P Channels

K2P channels conduct outwardly directed background K+ currents, which are crucial for setting
the resting membrane potential [133]. Eight members of the K2P family are regulated by changes in
pHo and/or pHi (detailed in Table 1). Among these, K2P2.1 (TREK-1), K2P3.1 (TASK-1), K2P5.1 (TASK-2)
and K2P9 (TASK-3) have already been confirmed to be functionally involved in solid tumors; while
for other members of the family, only differential expression patterns have been observed to date, as
summarized by [217].

K2P2.1 (TREK-1) is only active in the narrow physiological pH range [128]. Its current is potently
inhibited by an extracellular acidification to pHo 6.9 [126] and alkalization above pHo 7.4 [128]. On the
other hand, a similar degree of intracellular acidification, especially in the presence of lactate [127,218],
activates the channel through the protonation of a conserved glutamate in the C-terminal domain [219].
As pHo and pHi acidification have opposite consequences to channel function, it would be important
to investigate how a chronic interstitial acidosis also involving pHi acidification would affect channel
function. The exact role of K2P2.1 in cancer development is still unclear. However, it has been postulated
that K2P2.1 expression might be linked to different stages of cancer, and its regulatory effect on the
membrane potential might be strongly connected with the progression of the cell cycle during cancer
proliferation [141]. K2P2.1 overexpression is associated with a poor prognosis for the patients with
prostate cancer, but not with ovarian cancer [125]. In both prostate [125] and ovarian cancer [220],
the inhibition or knockdown of K2P2.1 inhibits proliferation by inducing cell cycle arrest at the G1/S
checkpoint. On the contrary, in the pancreatic cancer cell line BxPC-3, a small-molecule activator of
K2P2.1, BL-1249 has an inhibitory effect on cell proliferation and migration, observed at both pHo 6.7
and 8.5 [128]. This argues for a tumor-specific role of K2P2.1 channels in cancer. It remains to be seen
whether this is due to potentially different pH landscapes in these tumor entities. K2P9 (TASK-3) and
K2P3.1(TASK-1) are inhibited by an extracellular acidification through the protonation of conserved
histidines [221–223]. K2P9 is inhibited by more acidic pHo (6.5–6.7) [222], while K2P3.1 is already
partially inhibited at physiological pHo (7.2–7.4) [130,224]. K2P3.1 and K2P9 are important for apoptosis.
Experiments on rat cerebellar granule neurons show decreased apoptosis due to the inhibition of
these channels through high extracellular K+ (25 mm) and extracellular acidification. Similarly, K2P9
has been linked to the death of human glioma cells [129]. K2P9 and K2P3.1 have oncogenic potential
for their ability to respond to pH and hypoxia. It has been postulated that either K2P9 or K2P3.1 are
pH-sensors in glioma. K2P9 has been also found to be relevant for glioma cell death [129]. Prolonged
interstitial acidification prevents glioma cells from passing through the hyperpolarization-dependent
G1-to-S phase cell cycle [21]. Overexpression of K2P9 increases the resistance to hypoxia and apoptosis,
enhancing its tumorigenic potential in embryonic fibroblast cells. Similarly, as discussed in case
of KV channels, a possible mechanism could be that K2P9 overexpression compensates for acidic
pH-induced channel inhibition. K2P9 contributes to proliferation when a loss-of-function mutation
of K2P9, K2P9G95E, is introduced in a partially transformed mouse embryonic fibroblast cell line,
C8 [130]. K2P9G95E expressing cells show tumor necrosis factor-induced apoptosis, followed by a loss
of oncogenic properties inhibiting the tumor growth.

K2P5.1 (TASK-2), in contrast to K2P9 or K2P3.1, is almost completely closed in acidic pHo,
and activated by extracellular and intracellular alkalization above the physiological pH (detailed
in [133,221]). This channel plays a role in the proliferation of estrogen α receptor positive breast
cancer cell. Additionally, the gene enhancer of K2P5.1 can bind to estrogen α receptor through its
estrogen-responsive elements [131]. While there is yet no functional data on K2P5.1 in other types of
cancer, its exquisite regulation by pH suggests that it could be relevant considering the alkaline pHi in
tumor cells and points to important future studies.
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In summary, evidence highlights the role that K2P channels have in the apoptotic
process [129,130,220,222]. It is likely that there is a functional interplay between pH and K2P channels
in cell cycle and apoptosis, where differential pH-sensitivity of the K2P channels could either induce or
prevent cell death in tumors. While there is promising evidence in this respect for K2P2.1, K2P3.1 and
K2P9, the full scale of the pH-dependence of K2P channels in cancer remains to be investigated.

4.2. TRP Channel in Tumors: Multimodal pH-Depencence

Transient receptor potential (TRP) channels are a large family of proteins often involved in
the cellular sensing of external cues. Several TRP channels are sensitive to changes in intra- and
extracellular pH (see Table 1 and Figure 1) [225]. Protons can activate (TRPV1, TRPV4, TRPC4, TRPC5)
or inhibit the channels (TRPC6, TRPM2, TRPM7) (reviewed in: [143,156,226]). Their presence and
function was also shown in multiple malignancies [13,227]. Here, we focus specifically on TRP channels
which are pH sensitive and play a role in cancer progression.

TRPV1 mediates acute as well as chronic pain perception, also elicited by the acidic environment
of cancer [228]. Extracellular protons can potentiate the effects of other stimuli (pH = 6.3) [151] and
also directly open the channel (pH ≤ 5.9) [229]. Proton-induced modulations depend on glutamic
acid and phenylalanine residues where the negative charge of Glu appears to be crucial for proton
sensing [230,231]. Moreover, TRPV1 may itself cause cytoplasmic acidification, since in low pHo, the
channel becomes highly permeable for protons [232].

The prognostic value of TRPV1 channels in cancer often depends on the cancer type, stage
and two-sided nature of [Ca2+]i elevation, which can either induce cancer cell apoptosis or enhance
proliferation [233–235]. In breast cancer tissues and cell lines, TRPV1 mRNA is highly overexpressed.
Immunocytochemical staining demonstrated TRPV1 protein expression in SUM149PT cells, a model
of triple-negative (PR−, ER−, HER2−) breast cancer. Treating these cells with capsaicin, a TRPV1
activator, induces [Ca2+]i increase, reduced cell proliferation and migration, and leads to cell death [150].
Expression of functional TRPV1 was also observed in human hyperplastic prostate tissue and prostate
cancer cell lines [236]. In agreement with channel activity being beneficial for disease outcome, a case
report of a prostate cancer patient regularly ingesting capsaicin suggested that TRPV1 activation slows
prostate-specific antigen increase [237]. It is noteworthy that tumor acidification favoring channel
opening occurs predominantly in aggressive breast cancers [238] and late-stage prostate cancer [239].
This suggests that in these cases, the pH dependence of TRPV1 could be addressed therapeutically.
However, the heterogeneity of breast and prostate cancer cells and possibility of channel desensitization,
casts doubts on TRPV1 targeting in malignancies [240]. In other types of cancers, i.e., gastric and
colorectal cancer, astrocytoma and bladder carcinoma, altered TRPV1 expression is also observed, but
putative therapeutical benefits of the channel modulation still needs in vivo validation [152,153,241,242].
Lastly, TRPV1 is already considered as a therapeutic target in cancers because of its involvement in
pain sensation. For example, chronic pain induced by acidosis in bone cancer can be diminished by the
inhibition of TRPV1 [228].

TRPV4 is activated by H+ in a dose-dependent manner. Accordingly, TRPV4 can mediate
acid-sensing at a low pH (pH < 6) [156]. Concerning the disrupted ionic composition and the high
pressure of solid tumors, TRPV4 osmo- and mechanosensitivity is an additional important modulatory
aspect. Activation and/or overexpression of TRPV4 induces normalization of the tumor vasculature
and decreases tumor endothelial cell migration. The restored vascularization led to diminished tumor
growth in a murine model of Lewis lung carcinoma [155]. In contrast, in breast cancer, TRPV4 activity
promoted cancer cell invasion, transendothelial migration and metastasis. Thus, its expression is
associated with poor prognosis [157,243]. Pharmacological inhibition of TRPV4 in patient-derived
hepatocellular carcinoma cells leads to increased apoptosis [158] and in gastric cancer, TRPV4 activity
augments oncogenic potential [159]. Thus, inhibition of the TRPV4 seems to be predominantly (but
not exclusively) favorable for cancer treatment.
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The activity of TRPC4 (β isoform) and TRPC5 is potentiated by low extracellular pH (~6.5). They
can assemble into homo- or heteromultimers (also with TRPC1). Channel modulation shows biphasic
characteristics, since further lowering of the pHo (<6.5) inhibits the currents [135]. Involvement of
these channels in cancer development is rather poorly investigated; however, they may play a role
in tumor angiogenesis, ovarian carcinoma proliferation, multidrug resistance and induce cancer cell
death. Findings that cytotoxicity of (−)-englerin A on renal cell carcinoma cells is mediated by TRPC4/5,
triggered promising new investigations. However, in vivo application will require the development of
metabolically stable (−)-englerin A derivatives [134,244].

Nondestructive low pHo inhibits several TRP channels. TRPC6 lacks glutamate residues common
for TRPC4 and TRPC5, so that it is inhibited at pHo ~6.5 and lower [135]. TRPC6 involvement in cancer
is based on its Ca2+ permeability. Channel activity predominantly promotes cell proliferation and
migration. TRPC6 expression was shown in multiple malignancies; however, its prognostic value is not
well described. High TRPC6 expression is present in glioblastoma, prostate cancer and in esophageal
squamous cell carcinoma where it correlates with poor prognosis [245]. Inhibition of TRPC6 by low pH
of the tumor environment could be an advantageous factor, considering that this channel is also highly
expressed in cancer-infiltrating immune cells (see Section 5.1) and in stromal cells such as pancreatic
stellate cells [140].

TRPM2 is a Na+- and Ca2+-permeable channel. The inhibition of TRPM2 by low pH may
be due to ion competition [246] or induced by H+ binding causing conformational changes in a
state-dependent manner [247,248]. An intricate feature of this channel is its sensitivity to reactive
oxygen species (ROS). In the context of cancer, oxidative stress is an important aspect but challenging
to fully comprehend. Cancer cells often produce high amounts of ROS and at the same time they
overexpress cellular antioxidants [249]. ROS accumulation may introduce mutagenic DNA damage,
but conversely, oxidative stress is cytotoxic against malignant cells. TRPM2 expression in cancer cells
was mostly reported to correlate with poor prognosis, as shown in neuroblastoma, squamous cells
carcinoma, T-cell leukemia, breast, gastric, lung, pancreatic and prostate cancer cell lines and in patient
samples. In all these cases, inhibition of TRPM2 displays antitumorigenic effects (reviewed in [250]).
However, this general conclusion needs to be seen with a considerable amount of caution because of
the frequent use of highly unspecific TRPM2 inhibitors (e.g., 2-APB, ACA). A recent study indicated
that TRPM2 in cancer cells mediates H2O2-induced neutrophil cytotoxicity and the authors proposed
that activation of the channel initiates cancer cell apoptosis [141]. Concerning the inhibitory action of
low pH, the expression of the TRPM2 channel in immune cells rather than cancer cells might play a
more decisive role (see below).

TRPM7 is among the most thoroughly examined TRP channels in cancer. TRPM7 is pivotal for
Mg2+ homeostasis. At physiological membrane potentials, TRPM7 shows small inward current, which
is potentiated by extracellular protons when pH is greatly reduced (pH < 6.0). Negatively charged
glutamic acid residues serve as molecular proton sensors, similarly to TRPV1 [251,252].

TRPM7 is permeable for Mg2+, Ca2+ and monovalent ions. Mg2+ permeability is a distinguishing
feature of this channel [253]. Cancer cells often accumulate these ions through TRPM7 activity [254].
TRPM7 overexpression in cancer was shown mainly in breast cancer but also in prostate and pancreatic
cancer. In nasopharyngeal, lung and pancreatic cancer cells, TRPM7 promotes cell migration. ([149]).
TRPM7 channel inhibition in cancer cells is almost unequivocally beneficial for disease outcome.
However, the ubiquity of TRPM7 in healthy tissues makes it a difficult therapeutic target [150]. An
alternative approach, but still challenging, would be to target the acidic tumor environment. Acidic
pHi blocks the activity of TRPM7 [146], as does acidic pHo. However, the inhibition of TRPM7 by pHo

appears to be dependent on the absence of Ca2+ and Mg2+ [255].

4.3. Voltage-Gated Proton Channel HV1

The voltage-gated proton channel HV1 is ubiquitously expressed in the human body. It has a very
similar structure to the voltage-sensing domain of voltage-gated ion channels [256]. In the context
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of this review, it is highly relevant that HV1 channels can gate according to the pH gradient between
the intracellular and the extracellular space (detailed in [257]). Because of their outward rectification,
HV1 channels essentially only mediate outwardly directed H+ flux. The rate of H+ flow through HV1
is ~6000 H+ per second under physiological circumstances [258], which is high enough to cause an
intracellular H+ depletion in the vicinity of the channel. In this way, HV1 can create localized alkaline
pH microdomains within the cell [259] which in turn may steer cell polarity and actin cytoskeleton
remodeling in comparison with Ca2+ microdomains [260]. Additionally, the voltage-dependence of
the channel could be easily exploited by cancer cells which already have a depolarized membrane
potential. Lastly, as HV1 is sensitive to mechanical stress [261], the channel may be more likely to open
even without strong depolarizing signals in solid tumors that give rise to a multitude of mechanical
stressors [262]. Taken together, HV1 can be a potent factor in acidifying solid tumors, as well as being a
pro-invasive factor in well-perfused perivascular regions of a tumor and in metastatic cancer cells.

The potentially important role of HV1 in cancer is not sufficiently recognized in the literature, which
is surprising as other H+ extruders—H+-carriers and pumps—are well established (summarized e.g.,
in [263–265]). The pathophysiological role of HV1 is mainly proton extrusion and intracellular
pH recovery, which has been described in multiple colorectal cancer [162] and glioblastoma
cell lines [163,164]. In these studies, the consequence of channel inhibition by Zn2+ or siRNA
restrains intracellular pH-recovery, as well as decreases cell proliferation and transwell chemotaxis.
In breast cancer, high mRNA expression levels correlate with an unfavorable prognosis and cancer
progression [161]. In a recent study concerning the triple-negative breast cancer cell line MDA-MB-231,
both HV1 knockdown (using short hairpin RNA) and knockout (by CRISPR-Cas9) were performed.
HV1 knockout, but not knockdown, leads to a higher rate of glycolysis as well as decreased migration
and H2O2 production. Xenograft tumor growth rate is decreased in tumors from HV1 KO cells,
likely due to accompanying loss of the cell adhesion molecule CD171/LCAM-1 [160]. Additionally, in
B-cell chronic lymphocytic leukemia, the high expression of the short variant of HV1 correlates with
decreased overall survival [165]. Recurring mutations in the gene encoding HV1 (HVCN1), ranging
from nonsense mutations to splice sites, were found in follicular lymphoma patients. These HV1
mutations are associated with a favorable prognosis in lymphoma patients [266]. As the two studies
above are somewhat contradictory, it is necessary to conduct investigations in larger patient cohorts to
clarify the prognostic role of HV1 variants.

4.4. Other Channels

4.4.1. NaV Channels

Voltage-gated Na+ channels (NaV) have similar modes of interaction with protons as voltage-gated
K+ channels (Section 4.1.1). They can conduct protons themselves through their gating pore when a
S4 arginine mutation is introduced [267]. In addition, NaV channels are generally inhibited by acidic
pHo, although the pH-dependence of NaV1.6–1.9 has not been evaluated yet [268,269]. The most
pHo-sensitive NaV channel is NaV1.5 [186,270], while the skeletal muscle isoform NaV1.4 is largely
proton-insensitive [271]. How altered pHi affects human NaV channels is not known to date. Similarly,
the physiological consequence of an intracellular acidosis on NaV channels in cancer remains to be
elucidated. So far, it is only known that changes of pHi do not alter current amplitude, but slow
inactivation parameters in NaV channels of frog skeletal muscle and invertebrate giant axons [272].

NaV channels are highly expressed in multiple types of carcinomas, including those of the
colon, lung, breast, prostate, ovary and skin [273–275]. Primarily, NaV1.5 and NaV1.7 regulate the
migratory and invasive properties of cancer cells [275,276]. In breast cancer cells, NaV activity leads to
intracellular alkalinization and pericellular acidification. It has been proposed that NaV1.5 forms a
functional complex with auxiliary β subunits and the Na+/-H+ exchanger NHE1 and thus affects pHi

regulation [276,277]. However, as both NaV1.5 and NHE1 lead to an intracellular Na+ load, it is still
unclear how the cells provide the necessary driving force for H+ efflux.
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The neonatal splice variant of NaV1.5 is more resistant to extracellular acidosis than the adult
NaV1.5: under acidic pHo conditions, voltage-dependent activation of the neonatal form is shifted less
towards more depolarized voltages than that of the adult form [278]. This differential pHo-sensitivity
may be relevant as the neonatal NaV1.5 is normally not detectable in adult tissues. It becomes
functionally expressed in metastatic breast and colon cancer, as well as in neuroblastoma cells,
promoting tissue invasion and in vivo metastasis [184,279–281]. It remains to be established whether
NaV inhibitors with increasing activity at acidic pH, such as ranolazine, would have a beneficial effect
in cancer therapy [282].

4.4.2. Piezo1

Since its characterization in 2010 [283], the Piezo channel family has been extensively studied, as
Piezo1 and Piezo2 are key mechanosensors in the human body. They are ubiquitously expressed and
are able to sense multiple forms of mechanical stimuli and transduce them into appropriate responses
depending on the cell type. For example, Piezo1 is vital for sensing vascular shear stress and regulating
of red blood cell volume, whereas Piezo2 is crucial for proprioception (for greater detail see [284–286]).

The Piezo1 channel enhances the invasive phenotype in multiple tumors, namely breast,
colorectal and prostate cancers [193,287,288]. An electrophysiological study described that
heterologously expressed Piezo1 channels are inhibited by extracellular protons [188]. These
results have been confirmed and extended by our group. We showed channel inhibition also
by an intracellular acidification in pancreatic stellate cells that are key stromal cells in pancreatic ductal
adenocarcinoma [189]. According to our findings, the Piezo1 channel is likely to be in a nonconducting
state in acidic, poorly perfused regions of solid tumors. This could protect the cells from cell death
due to harmful Ca2+ overload. On the other hand, Piezo1 would be fully responsive to mechanical
stimuli in well-perfused areas of the tumor, when it is relieved from the protonation-dependent
channel inhibition.

4.4.3. Acid-Sensing Ion Channels (ASICs)

Acid-sensing ion channels (ASICs) are members of the degenerin/epithelial sodium channel
(ENaC) family and are widely expressed in the nervous system [289]. They are sensitive to extracellular
acidosis and are involved in acid-induced nociception. In humans, four genes (ASIC1-4) give rise to at
least six distinct subunits, [290]. ASICs are sensitive to inhibition by amiloride and are permeable to
Na+ to a much greater extent than to K+ and Ca2+.

For a long period, ASIC channels remained enigmatic ”brain” Na+ channels with known ENaC
homology. The discovery of H+-gating of these channels propelled subsequent research. Low
extracellular pH (pH ~6.5 for ASIC1a and ASIC3; ~6.1 for ASIC1b and ~4.5 for ASIC2a) induces channel
opening. The current is transient and followed by rapid channel desensitization [291]. ASIC3 and
some heteromers do not fully desensitize, showing small, sustained currents [292]. ASIC3 activation
by H+ results from a competition of Ca2+ and multiple protons at the activation site of the channel in a
manner that low [Ca2+]o (10 µM) allows channel gating at a pH close to physiological [43].

ASICs sense acidic pH in the tumor environment and are thereby involved in tumor progression [13].
The expression of functional ASIC1 was shown in breast cancer cells, where it induces acidosis-induced
ROS production, cancer invasion and growth. The underlying mechanism is possibly based on
ASIC1-mediated Ca2+ influx [4]. ASIC1 and ASIC3 are overexpressed in pancreatic cancer and support
acidosis-induced epithelial–mesenchymal transition (EMT). In this instance, the authors also suggest
the Ca2+ permeability of ASIC1/3 as a pivotal mechanism which leads to subsequent activation of
RhoA signaling [194]. In colorectal cancer, ASIC2 promotes metastasis and its expression correlates
with poor prognosis [195]. In a nonsmall cell lung cancer line, A549, several ASIC members are
expressed and mediate cell proliferation and migration [196]. Overall, based on these few studies,
the role of ASIC channels in an acidic tumor environment appears to depend mainly on the Ca2+

permeability of the channel.
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4.4.4. P2X

Purinergic receptors are ATP-gated Na+-, K+- and Ca2+-permeable channels. There are seven
receptor subunits described (P2X1-7), among which P2X1–4 are modulated by pHo [293]. pH-induced
inhibition of P2X7 depends on acidification and duration of the low pHo exposure [198,294]. Antagonists
of this channel are already used in therapy of neuropathic pain, and there is evidence of an inhibitory
impact on cancer growth and metastasis [295]. In melanoma, colon cancer and PDAC cell lines, P2X7

activity promotes tumor progression [197,200]. P2X7 receptor is gaining more attention, especially due
to its expression in tumor-infiltrating immune cells [197,296], detailed in Section 5.1. Whether or not
the pH-sensitive P2X1–4 channels are involved in cancer development still remains unclear.

5. pH Dependence of Ion Channels in Tumor Immunity

One aspect which the literature has consistently highlighted in orchestrating a powerful immune
reaction is that immune cells require intact ion channels in the cell membrane. Nondisruption of those
ion channels is pivotal for the immune system’s ability to efficiently carry out its function of destroying
cancer cells. This applies to cells of both the innate and adaptive immunity.

5.1. Innate Immunity

Cells of innate immunity make up an important part of the tumor milieu. Tumor-associated
neutrophils and macrophages, dendritic cells (DC) and myeloid-derived suppressor cells (MDSC)
are potential targets of immune-based therapies [297–300]. Although the innate immune response is
generally associated with leukocytes of myeloid lineage, descendants of the lymphoid lineage such as
natural killer (NK), natural killer T-cells (NKT) and γδ T cells also fall into this category [301]. A high
number of myeloid cells in the TME and in the blood circulation predominantly correlates with poor
prognosis [302]. In contrast, effector cells of lymphoid lineage (such as NK cells) display beneficial
antitumorigenic characteristics [303]. However, different tumors and varied immunomodulatory
microenvironments often require tailored approaches.

Low extracellular pH of solid tumors is an important modulator of the immune response. Several
Ca2+ permeable, pH-sensitive ion channels are expressed in neutrophils, macrophages and DCs,
including STIM/Orai, TRP channels and purinergic P2X receptors. These channels, detailed below
and in Table 1, are generally inhibited by protons. Inhibition of the Ca2+ fluxes in the acidic tumor
environment may, therefore, result in the retention of compromised (protumorigenic) immune cells in
the tumor microenvironment and ultimately in disease aggravation.

Infiltrating neutrophils are unequivocally cellae non gratae in varied tumors [302,304]. Neutrophil
migration and recruitment are based on CXCR2 signaling and require concurrent activity of the
TRPC6 channel [139]. Inhibition of the TRPC6 channel by extracellular protons may hinder neutrophil
chemotaxis. TRPM2, which is inhibited at low extra- and intracellular pH, and TRPM7, may be
involved in neutrophil migration [305–309]. However, the underlying mechanisms and consequences
of channel inhibition in neutrophils are not well described to date. Other neutrophil functions such as
production of ROS and release of neutrophil extracellular traps also rely on undisturbed Ca2+ fluxes.
Moreover, the activity of phagocyte NADPH oxidase NOX2 requires constant charge compensation
which is provided by HV1 [310]. As mentioned in Section 4.3, HV1 opens when there is a considerable
H+ gradient across the plasma membrane. Therefore, an extracellular acidification may inhibit this
channel and disrupt NOX2 activity and hence, impair the killing capacity of neutrophils.

In the case of macrophages, plasticity plays an important role in the TME. Macrophage
polarization into the so-called M2 type, is one of the mechanisms for rendering the tumor milieu
immunosuppressive [311]. The pH-sensitive TRP channels, namely TRPM2, TRPM7 and TRPC1 are
involved in modulating macrophage phenotype, and therefore, extracellular pH also indirectly controls
this process [312–314].
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The purinergic P2X7 receptor is expressed in a variety of immune cells in the TME. For instance, P2X7

is involved in phagocyte migration and ROS production [315]. Targeting P2X7 in inflammation-related
diseases is already implemented in clinical trials [316]. In dendritic cells, STIM/Orai -mediated Ca2+

fluxes are also pivotal for presenting antigens. Inhibition of STIM/Orai channels in dendritic cells in
the acidic TME may contribute to the fact that low pHo disrupts the activation of lymphocytes.

In addition, not-fully differentiated myeloid-derived suppressor cells (MDSCs) contribute to TME
immune anergy. Two major populations resemble granulocytes and monocytes/macrophages and
have strong immunosuppressive features [317]. In MDSCs, purinergic P2X7 mediates CCL2 release,
macrophage recruitment and contributes to MDSC expansion [201]. In the case of hepatitis, TRPV1
activity induced or potentiated by acidic pHo stimulates MDSCs and results in the resolution of the
inflammatory process [318]. Not much else is known about pH-sensitive ion channels expressed in
MDSCs. It remains to be seen whether the immunosuppressive MDSC function can be overcome by
channel modulation through alteration of the microenvironment.

5.2. Acquired Immunity

Ca2+ influx mediated by ion channels is a precondition for triggering lymphocyte metabolism,
activation and a range of downstream signaling pathways [319].

Regarding metabolism, naïve T cells are in a “quiescent” state and dependent on oxidative
phosphorylation as a source of energy [320]. Antigen-stimulated T cells shift their metabolism to
aerobic glycolysis [321]. In this context, it is notable that T cell metabolism is also regulated by Ca2+

signaling through the Ca2+/calcineurin/NFAT pathway, which is involved in controlling the expression
of many different elements involved in glycolysis, such as glucose transporters GLUT1 and GLUT3,
glycolytic enzymes and transcription factors HIF1α, IRF4 and c-Myc [322]. There is a number of ways
in which T cells can be inhibited in the acidic TME due to the fact that both cancer cells and activated T
cells use aerobic glycolysis as their primary form of metabolism. For example, having high amounts
of lactate production (from the cancer cells) in the TME prevents activated T cells from effluxing
lactate thus blocking the glycolytic metabolism in the T cells [323]. Cancer cells and immune cells
must, therefore, compete for the available glucose which is limited in the established tumor region.
Whilst cancer cells are highly adaptable, T cells are unable to adapt and subsequently enter an anergic
state [321,324].

T lymphocyte activation occurs when the T cell antigen receptors (TCRs) recognize and bind
antigens, with this antigen–receptor engagement eliciting a response from the phospholipase Cγ
(PLCγ)/inositol 1,4,5-triphosphate (IP3) pathway which provokes Ca2+ release from the endoplasmic
reticulum (ER). The eventual depletion of those Ca2+ stores stimulates the opening of Ca2+-release
activated Ca2+ channels (CRAC) in the plasma membrane [325,326]. The substantial increase in [Ca2+]i

activates NFAT transcription complexes which are used to assemble and mediate the transcription
of the crucial genes involved in T cell activation, such as IL-2. Rapid Ca2+ influxes, however, cause
depolarization of the membrane potential, which, if not regulated, would act to prevent a further
build-up of Ca2+. This is prevented by the counterbalancing efflux of potassium ions out of the cell.
This K+ efflux, mainly mediated by the (pH-sensitive) voltage-gated KV1.3 and Ca2+-activated KCa3.1
channels, is essential in maintaining the hyperpolarized membrane potential state which is in turn
pivotal in sustaining the Ca2+ influx [68,326].

As observed from the examples above, ion channels orchestrating the initiation, intensity
and duration of the Ca2+ signal are critical for an effective immune response, also in the case of
tumor immunity. With respect to the antigen–receptor engagement for T lymphocytes, the CRAC
(ORAI-STIM) channels constitute the dominant pathway involved in mediating the store-operated
Ca2+ entry (SOCE) regulated Ca2+ influx [188,327]. Opening of the CRAC channels occurs by the STIM
proteins binding to the Orai subunits that form the Ca2+ selective conducting pore. Depending on the
activation and the subtype of T lymphocytes, KV1.3 channels or KCa3.1 channels are the main channels
involved in regulating the membrane potential in order to sustain SOCE [328].
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The general pH-sensitivity of KV and KCa channels is detailed in Section 4.1, where we already
pointed out that an acid-induced inhibition of the K+ conductance might be compensated by an
upregulation in the respective channels (in lymphocytes), with the result that the net K+ conductance
is maintained [49]. Consequently, one reason for K+ remaining in the T lymphocytes is due to this
pH blockage of the efflux of K+. Additionally, the increased concentration of K+ in the interstitial
fluid leads to an increased intracellular concentration of K+ in T cells. The elevated extracellular K+

concentration, in turn, is due to the fact that in both human and mouse tumors, cell death (necrosis
or apoptosis) leads to the release of high levels of K+ ions into the interstitial fluid, with this action
impairing the effector function of T cells [92]. The higher concentration of K+ in the T cells inhibits
the transcription of the genes involved in stimulating the Akt-mTOR pathway (a central regulator
of cell growth and metabolism) which is heavily involved in regulating the effector T cell function.
Overexpressing KV1.3 in tumor-specific T cells lowers intracellular K+ concentrations by increasing K+

efflux into the interstitial fluid and thereby improves the functioning of the effector T cells by increasing
Akt-mTOR activation and the production of IFN-γ [92].

CRAC channel activity is reduced by both intra- and extracellular acidic pH [329,330]. For the pH
sensitivity of Orai1, Glu190 and Glu106 residues are pivotal when Na+ or Ca2+ are the main current
contributors, respectively [166,168]. Many studies have shown that blocking/deleting Orai1 attenuates
the SOCE process in T cells [331]. Age is associated with a marked decrease in the expression of the
Orai and STIM proteins in the CD8+ T cells which reduces Ca2+ current through the Orai channels [332].
This decrease in Ca2+ signaling is linked to the resistance of cytotoxic lymphocyte (CTL) cytotoxicity
efficiency. This can be an explanation for the preponderance of tumors with age. It also suggests a
reduced efficiency of the antitumorigenic CD8+ response to tumor cells, if Ca2+ influx is consistently
blocked by the acidic TME. Many of CTL’s mechanisms of killing tumor cells are dependent on Ca2+

flux [333]. A study proposed a bell-shaped dependence of CTL cytotoxicity on Ca2+, where partial
inhibition of Orai1 in CTLs decreases Ca2+ signaling but improves the cytotoxicity of the T cells [181].
Whether such partial inhibition can be achieved therapeutically by fine-tuning the environmental pH
of the TME is a subject of further studies.

Other pH-sensitive Ca2+ permeable channels such as members of the TRP family (detailed
in Section 4.2) also contribute to Ca2+ influx in lymphocytes [325]. TRPM7 is important in T cell
development and functioning [334]. TRPM7 channels can be impaired by the presence of protons.
One study shows that TRPM7 channels, functionally cooperating with KCa3.1, are localized at the
rear part (uropod) of migrating T lymphocytes and regulate cell migration. Inhibiting KCa3.1 and
downregulating TRPM7 hinders T cell motility. It is suggested that this process is executed through
the regulation of Ca2+ influx, with KCa3.1 maintaining the membrane potential and with the TRPM7
channel facilitating the influx of Ca2+ [335]. As acidic pHi and pHo inhibit TRPM7 function, the channel
is not likely to be functional in lymphocytes residing in acidic areas of tumors, resulting in impaired
cell migration. TRPC1 and TRPC3, which are involved in Ca2+ entry in T lymphocytes, have yet to
be investigated in this aspect [336–339]. TRPV1 and TRPV4 are also involved in Ca2+ signaling in T
cells [340]. Being activated by both extra- and intracellular protons, they would enable cation influx
and possibly Ca2+ signaling in an acidic environment. Overall, the TRP family members contribute
to many of the crucial pathways needed in T cell activation and function. Yet, it needs to be further
studied how pH may affect their activity and function.

A particular focus in this section was on the role of ion channels in T lymphocytes. However,
more information is needed on the different subpopulations of T cells affected by these channels.
The expression of K+ channels—such as KV1.3 and KCa3.1-as well as CRAC and other ion
channels—varies in different T lymphocyte types and cell subsets also depending on their state
of activation. Similarly, evidence of the involvement of cation channels in the effective functioning
of B lymphocytes is still scarce. Many of the ion channels discussed above show some evidence of
overlapping in B cell function, namely the role of CRAC channels in Ca2+ influx [326]. The proton



Cancers 2020, 12, 2484 20 of 37

channel HV1 promotes B cell signaling, and B cells deficient in HV1 have impaired ROS generation,
which in turn affects their metabolism, modulating mitochondrial respiration and glycolysis [341].

To summarize, dysregulated pH impairs T-cell activation and T-cell function. The acidic TME may
block the CRAC and K+ channels in tumor-infiltrating immune cells. Diminished Ca2+ influx into the T
cell in turn blocks the crucial dephosphorylation of NFAT, thereby preventing the production of several
cytokines, such as IL-2 and IFN-γ, which are needed for effective T cell functioning [323]. Furthermore,
intratumoral acidosis through lactate could prevent the expression of the pivotal proteins needed for
the metabolism of activated T cells. In addition, there may be an overlap of metabolic dysfunctions,
which are acting together with the acidic pHo to dampen the T cell function. Hypoxia-driven metabolic
dysfunctions cause adenosine accumulation in the extracellular tumor microenvironment and together
with acidic pHo could negatively affect T-cell function through the immunosuppressive effects of
adenosine A2A receptors [342,343]. If this hypothesis is correct, then it could suggest an overlap with
KCa3.1, which is adenosine sensitive and required for T cell motility. Along these lines, blockage of
KCa3.1 could contribute to causing T cell anergy in the acidic pHo [119,120,342,343].

6. Conclusions

Studying pH and pH-dependent processes in cancer is a timely task. Its relevance becomes
particularly evident when considering that some of the cancers with the worst prognosis originate from
tissues with an extreme acid-based homeostasis. Prominent examples include gastric and pancreatic
cancer whose host organs generate enormous acid-based fluxes after each meal that in turn cause
marked changes in the interstitial pH. To understand how these alterations in pH can ultimately push
cells into forming a malignant tumor and favor its progression is a prerequisite for developing new
pH-oriented diagnostic as well as therapeutic options. To achieve this, a lot of groundwork is still
required such as intense pH-imaging at the cellular, tissue and organism levels.

Such information is indispensable for decoding the role of pH-sensitive ion channels in the
crosstalk between the cancer cells, cells of the tumor immunity and the components of the TME.
Remarkably, the family of ion channels shows a large heterogeneity on how they respond to different
pH. For example, most K+ channels are inhibited in an acidic environment typical for hypoxic, poorly
vascularized areas inside a tumor, thereby affecting every cell type in this environment. Whether
this acidic pH-dependent inhibition of channels results in T cell anergy and ineffective innate tumor
immunity still remains an open question. On the other hand, cation flux is probably maintained by an
upregulation of many acid-inhibited channels and by a number of channels that are activated by an
acidic environment (for example, TRPV1). In this way, Ca2+ signals needed for cell migration to escape
the unfavorable acidic environment could still be generated.

In summary, our review was aimed at promoting studies that deepen our understanding of the
complex pH landscape of the tumor microenvironment and to understand the role of ion channels
in cancer in a more holistic view. This is indeed one of the major conclusions of our review. There is
still a large gap of knowledge in understanding the mutual interplay between ion channels in cancer
and the pH landscape of solid tumors. The latter applies not only to the channels themselves but how
their biophysical properties confer mutual dependencies. There is still a lot to learn about ion channels
regulating the function of the different cell types that make up a tumor. Intriguingly, we frequently
find the same channel types in different cells of the tumor microenvironment. For example, KCa3.1
channels are expressed not only in tumor cells but also in stromal and endothelial cells as well as in
tumor-infiltrating immune cells such as lymphocytes, macrophages and neutrophils. Complex tumor
models are needed in order to disclose the therapeutic benefits or side effects of such a “multiple-hit”
ion channel-targeting therapy. While this is certainly a challenging endeavor, we should keep in mind
that ~15% of all clinically prescribed drugs are already targeting ion transport proteins, many of which
can be repurposed for use in cancer therapy. Larger inter-/national consortia should be created to
advance this exciting research field further.
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