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C*-algebras from partial isometric

representations of LCM semigroups
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(Communicated by Joachim Cuntz)

Abstract. We give a new construction of a C*-algebra from a cancellative semigroup P

via partial isometric representations, generalizing the construction from the second named
author’s thesis. We then study our construction in detail for the special case when P is
an LCM semigroup. In this case, we realize our algebras as inverse semigroup algebras and
groupoid algebras, and apply our construction to free semigroups and Zappa–Szép products
associated to self-similar groups.

1. Introduction

Background. C*-algebras associated to semigroups are the subject of an ac-
tive area of research in operator algebras. If P is a left cancellative semigroup,
its reduced C*-algebra is generated by the image of the left regular represen-
tation λ : P → B(ℓ2(P )) given by λp(δq) = δpq. In his study of Wiener–Hopf
operators, Nica [32] defined a suitable universal C*-algebra for semigroups P
with a group embedding P ⊆ G which induce a quasi-lattice ordering on G. Li
generalized Nica’s construction in [24] to left-cancellative semigroups which do
not necessarily embed in groups. Research on these algebras and their natural
quotients is fruitful and ongoing. In contrast with the group case, picking the
left regular representation (rather than the right) affects the construction and
puts left and right multiplication on unequal footing; see the closing remark
of [9] and [8, Rem. 7.5] for discussions on choosing the left over the right.

In the algebras above, P is represented by isometries. This paper concerns
representing semigroups in C*-algebras by partial isometries. A representation
of a semigroup P in a C*-algebra A is a multiplicative map π : P → A, and
π is called partial isometric if π(p) is a partial isometry for all p ∈ P . Multi-
plicativity of π implies that π(p) will be a power partial isometry, i.e. π(p)n is
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a partial isometry for all n. A key example of a power partial isometry is the
truncated shift

(1) Jn : Cn → C
n, Jn(ei) =

{
ei+1, i < n,

0, i = n,

where (ei)i≤n is the standard basis for Cn. Hancock and Raeburn [18] consid-
ered the operator

(2) J =

∞⊕

n=2

Jn :

∞⊕

n=2

C
n →

∞⊕

n=2

C
n

and showed that C∗(J) is the universal C*-algebra generated by a power partial
isometry.

Said another way, C∗(J) is the universal C*-algebra for partial isometric
representations of the semigroup N. The second named author’s PhD the-
sis [40] sought to generalize Hancock and Raeburn’s work to other semigroups,
specifically those which induce quasi-lattice orders. The pair (Z,N) is quasi-
lattice ordered with respect to the usual ordering on N, and (2) is a direct sum
over the principal order ideals In = {m ∈ N |m≤ n} with each summand equal
to ℓ2(In).

If P is a subsemigroup of a group G and P ∩ P−1 = {1G}, then P induces
two partial orders on G: u ≤l v ⇔ u−1v ∈ P and u ≤r v ⇔ vu−1 ∈ P . Note
that ≤l is invariant under left multiplication, while ≤r is invariant under right
multiplication. Such semigroups are typically represented by left multiplication
operators, so the focus is usually on ≤l. The order ≤l (or ≤r) is a quasi-lattice
order if every finite set in G which is bounded above has a least upper bound.

A key insight of [40, Sec. 1.3.2] is that, for partially ordered groups (G,P )
which are not necessarily commutative, the map analogous to (1),

(3) Ja : P → B(ℓ2(Ia)), Ja
p (δq) =

{
δpq, pq ∈ Ia,

0 otherwise,

will not be a representation unless Ia is taken to be an order ideal in the right-
invariant partial order (this distinction is wiped out in commutative cases
like N). So, to generalize Hancock and Raeburn’s work, [40] starts with (G,P )
which is doubly quasi-lattice ordered (i.e. both ≤l and ≤r are quasi-lattice
orders) and defines a C*-algebra C∗ts(G, P, P op) generated by direct sums of
operators (3), and also defines a suitable universal algebra C∗(G, P, P op). It
is also shown that the two coincide when G is amenable.

Motivation. Here we show that one can generalize the construction above to
general cancellative semigroups P . Our motivation is twofold:
(i) increase the scope of the construction to include a larger class of semi-

groups, and
(ii) to construct a C*-algebra from semigroup which puts the left and right

multiplication structure on equal footing.
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For the first point, we note that the relations above can be presented on P
without mentioning G or the inverse:

(4) p ≤l q ⇐⇒ qP ⊆ pP, p ≤r q ⇐⇒ Pq ⊆ Pp,

and so we can make the same definition (3) in cases where P does not embed
into a group (but note that these relations may no longer be reflexive).

In the usual isometric construction, one particular generalization of Nica’s
quasi-lattice ordered groups has received a lot of attention: the right LCM
semigroups. These are semigroups for which the intersection of any two prin-
cipal left ideals is either empty or another principal left ideal, and their C*-
algebras have been considered by many authors; see [1, 2, 4, 5, 7, 19, 20, 23,
31, 37, 38, 39]. Their study is aided by the observation of Norling [33] that
if P is a right LCM semigroup, then C∗(P ) can be realized as the universal
C*-algebra for a certain enveloping inverse semigroup Il(P ) ⊇ P .

Because our construction is incorporating the right multiplication as well,
we consider semigroups which satisfy the LCM property for both right ideals
and left ideals—we call these LCM semigroups. Many right LCM semigroups
studied in the literature (free semigroups, Baumslag–Solitar monoids, Zappa–
Szép products associated to self-similar groups) happen to also be left LCM.
While our construction makes sense for an arbitrary cancellative monoid, all
our results are for the LCM case.

For the second point, as we note above, choosing the left regular represen-
tation over the right can give different C*-algebras, i.e. C∗(P ) is not always
isomorphic to C∗(P op). One of our motivations then is to produce a C*-
algebra from a cancellative semigroup which equally expresses the right and
left multiplication structure of P .

Outline. After giving the general definition of our C*-algebras (which we
call C∗ts(P ) and C∗,rts (P )), we restrict our attention to LCM monoids (Defini-
tion 2.10). In this case, we show that one obtains isomorphic algebras from P
and P op (Proposition 2.26). We also crucially show our algebras are generated
by an inverse semigroup SP containing P—this realization is the main source of
our results. It turns out that SP is always E∗-unitary (Lemma 2.24). We show
that C∗ts(P ) is isomorphic to the universal C*-algebra of SP (Theorem 3.3) and
that C∗,rts (P ) is isomorphic to the reduced C*-algebra of SP (Theorem 3.6). We
then, by definition, take Qts(P ) to be Exel’s tight C*-algebra of SP (as defined
in [12]). Realization of these algebras as inverse semigroup algebras also gives
them étale groupoid models.

We close the paper by considering some natural examples in Section 4.
The first is that of free monoids. When one applies Li’s construction to free
monoids (and considers their natural boundary quotient) one obtains the Cuntz
algebras On. Our construction yields a very different algebra—the crossed
product associated to the full shift (Theorem 4.3). Our other main example
is that of self-similar actions. We show that our construction results in the
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same boundary quotient as Li’s (Theorem 4.10) because in this case tight
representations do not see the left ideal structure at all.

2. Partial isometric representations of semigroups

2.1. Preliminaries and notation. We will use the following general nota-
tion. If X is a set and U ⊆X , let IdU denote the map from U to U which fixes
every point, and let 1U denote the characteristic function on U , i.e. 1U :X →C

defined by 1U (x) = 1 if x ∈ U and 1U (x) = 0 if x /∈ U . If F is a finite subset
of X , we write F ⊆fin X .

2.2. Semigroups and the universal algebra C
∗

ts
(P ). A semigroup P is

left cancellative if pq = pr ⇒ q = r for p, q, r ∈ P , it is right cancellative if
qp = rp ⇒ q = r for p, q, r ∈ P , and it is cancellative if it is both left and
right cancellative. A monoid is a semigroup with an identity element. If P is
a monoid, we let U(P ) denote the set of invertible elements of P . For p ∈ P ,
the set pP = {pq | q ∈ P} is a right ideal, and right ideals of this form are
called principal right ideals. Similarly, Pp = {qp | q ∈ P} is a left ideal, and
left ideals of this form are called principal left ideals.

As mentioned in the introduction, a map π : P → A from a semigroup P to
a C*-algebra A is called a representation of P if it is multiplicative, it is called
(partial) isometric if π(p) is a (partial) isometry for each p ∈ P .

An inverse semigroup is a semigroup S such that, for each s∈ S, there exists
a unique element s∗ such that ss∗s = s and s∗ss∗ = s∗. For such a semigroup,
we let E(S) = {e ∈ S | e2 = e} and call this the set of idempotents. A zero in
S is an element 0 such that 0s = s0 = 0 for all s ∈ S. An inverse semigroup
with such a (necessarily unique) element is called an inverse semigroup with
zero, and if S is such, we write S× := S \ {0}. We say that S is E*-unitary if
s ∈ S, e ∈ E(S)×, and se = e implies s ∈ E(S).

The product in an inverse semigroup induces a natural partial order ≤ on S,
by saying s ≤ t if and only if there exists e ∈ E(S) such that se = t. With this
ordering, E(S) is a (meet-)semi-lattice with meet e ∧ f = ef .

For a set X , the symmetric inverse monoid on X is

I(X) := {s : U → V | U, V ⊆ X, f is a bijection}

and is an inverse semigroup when given the operation of composition on the
largest possible domain, and when s∗ = s−1. Since st must be an element
of S for all s, t ∈ S and it could be that the range of t does not intersect the
domain of s, I(X) contains the empty function which we denote 0. It satisfies
0f = f0 = 0 for all f ∈ I(X) so that I(X) is an inverse semigroup with zero.
Here f ≤ g if and only if g extends f as a function.

For s ∈ I(X), let Ds ⊆ X denote its domain. Then it is easy to see that
Ds = Ds∗s and that s is a bijection from Ds∗s to Dss∗ . Every s ∈ I(X)
determines a partial isometry Vs in B(ℓ2(X)) with initial space spanned by
{δx | x ∈ Ds∗s} and final space spanned by {δx | x ∈ Dss∗} determined by
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Vs(δx) = δs(x). It is straight-forward to check that the map

(5) V : I(X) → B(ℓ2(X)), s 7→ Vs

is an injective inverse monoid homomorphism (i.e. Vst = VsVt and Vs∗ = V ∗s
for all s, t ∈ I(X)).

The assignment Y 7→ IdY is a monoid isomorphism from P(X) (the power
set of X , which is a monoid when given set intersection) to E(I(X)). For
s ∈ I(X) and Y ⊆ X , the elements s IdY s

∗ and s∗ IdY s are both idempotents,
and hence the identity functions on subsets of X . It is straight-forward to
check that if we set

(6) Y |s := s∗(Y ) ∩Dss∗ ,

then we have s IdY s
∗ = IdY |s∗ , s

∗ IdY s = IdY |s . For Y ⊆X , let eY ∈ B(ℓ2(X))

be the orthogonal projection onto ℓ2(Y ). Then, because V is a homomorphism,
we have

(7) VseY V
∗
s = eY |s∗ , V ∗s eY Vs = eY |s .

Let P be a left cancellative semigroup. For a ∈ P , we consider the elements
of P which are ≤r below a (see (4)):

Ia := {x ∈ P | Pa ⊆ Px} = {x ∈ P | x ≤r a}.

Note that xy ∈ Ia implies y ∈ Ia (because then Pa⊆ Pxy ⊆ Py). Left cancella-
tivity implies that left multiplication by p induces a bijection from {x | px ∈ Ia}
to {px | px ∈ Ia}. Thus if we define

Ja
p δx =

{
δpx if px ∈ Ia,

0 otherwise,

we have that Ja
p is a partial isometry in B(ℓ2(Ia)).

Lemma 2.3. Let P be a left cancellative semigroup. Then, for each a ∈ P ,
the map p 7→ Ja

p is a partial isometric representation of P .

Proof. Suppose that we have p, q, a, x ∈ P with x ∈ Ia. If pqx ∈ Ia, then as we
noted above, we also have qx ∈ Ia, and thus Ja

p J
a
q δx = Ja

p δqx= δpqx = Ja
pqδx. If

pqx /∈ Ia, then both Ja
p J

a
q δx and Ja

pqδx are zero. In both cases, JpJq = Ja
pq. �

We now consider the direct sum of these representations

J : P → B
(⊕

a∈P

ℓ2(Ia)
)
, Jp :=

⊕

a∈P

Ja
p .

Let

(8) ∆ = {(a, x) ∈ P × P | x ∈ Ia}.

We naturally identify
⊕

a∈P ℓ2(Ia) with ℓ2(∆) via ℓ2(Ia) ∋ δax 7→ δ(a,x) ∈ ℓ2(∆).

We will then write the standard orthonormal basis of ℓ2(∆) as {δax | x ∈ Ia},
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and using this identification, we have

(9) Jp(δ
a
x) =

{
δapx if px ∈ Ia,

0 otherwise,
J∗p (δ

a
x) =

{
δap1

if x = pp1,

0 otherwise.

Definition 2.4. Let P be a left cancellative semigroup, and let J be as above.
We let C∗,rts (P ) denote the C*-algebra generated by the set {Jp | p ∈ P} ⊆
B(ℓ2(∆)), and call this the reduced truncated shift C*-algebra of P .

Similar to [40, Def. 2.15], both the name and the subscript “ts” are meant
to indicate that it is generated by generalized truncated shift operators, as
described in [40, Lem. 2.12].

To make Definition 2.4, we have only needed to assume left cancellativity
of P . Our motivation (discussed in the introduction) requires P to be right
cancellative as well. In addition, the following description of the universal
algebra is clearest when P is assumed to have an identity. Therefore, for
the rest of the paper, we will consider only the case where P is
a cancellative monoid.

Fix a cancellative monoid P now, with identity 1. Take ∆ as in (8), and
note that, in this case, we have

∆ = {(bx, x) ∈ P × P | b, x ∈ P}.

Then, taking X := ∆ in (5), we have that Jp is in the image of V for all p ∈ P
so that we can define vp := V −1(Jp). Note that, because Jpq = JpJq for all
p, q ∈ P , we have

(10) vpq = V −1(Jpq) = V −1(JpJq) = V −1(Jp)V
−1(Jq) = vpvq.

From (9), we see that

(11) Dv∗

pvp
= {(bpx, x) | b, x ∈ P}, Dvpv∗

p
= {(bpx, px) | b, x ∈ P},

and vp(bpx, x) = (bpx, px).

Lemma 2.5. Let Y ⊆ ∆, and set Yp := Y |vp and Y p := Y |v∗

p
; see (6). Then

(12) Yp = {(bpx, px) | (bpx, x) ∈ Y }, Y p = {(bpx, x) | (bpx, px) ∈ Y }.

Proof. We prove the statement for Yp, Y
p is similar. For b,x ∈ P , we have γ :=

(bpx, px) and (bpx, x) ∈ Y if and only if γ = v∗p(bpx, x) ∈ v∗p(Y ) and γ ∈ Dvpv∗

p

by (11). �

Definition 2.6. Let P be a cancellative monoid. Then the set of constructible
subsets of ∆, denoted J (P ), is the smallest collection of subsets of ∆ which is
closed under finite intersections, contains Yp and Y p whenever Y ∈ J (P ) and
p ∈ P , and contains ∆ and ∅.

Using notation (12), for each p ∈ P , we have

(13) vp : ∆p → ∆p, vp(bpx, x) = (bpx, px),
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and putting (7) and (12) together, we have

vpIdY v
∗
p = IdYp

, v∗pIdY vp = IdY p for all Y ⊆ ∆, p ∈ P,(14)

JpeY J
∗
p = eYp

, J∗p eY Jp = eY p for all Y ⊆ ∆, p ∈ P,(15)

and so eY ∈ C∗,rts (P ) for all Y ∈ J (P ).
Our goal is to define a universal algebra for partial isometric representations

of P , but in analogy with [24], we want our definition to include a set of
projections isomorphic to J (P ) satisfying relations (15). Before giving our
definition, we will give another description of J (P ) as the idempotent semi-
lattice of the inverse monoid generated by the vp. Define

Il
r(P ) = (the inverse semigroup(16)

generated by {vp | p ∈ P} inside I(∆)) ∪ {0}.

Lemma 2.7. E(Il
r(P )) = {IdY | Y ∈ J (P )}. Hence E(Il

r(P )) and J (P ) are
isomorphic as semi-lattices.

Proof. By (10), we can write a general nonzero element s ∈ Il
r(P ) in the form

s = vp1v
∗
q1
vp1v

∗
q1
· · · vpn

v∗qn

for some p1, . . . , pn, q1, . . . , qn ∈ P . So we calculate

ss∗ = vp1v
∗
q1
vp1v

∗
q1
· · · vpn

v∗qnvqnv
∗
pn

· · · vq1v
∗
p1

= vp1v
∗
q1
vp1v

∗
q1
· · · vpn

Id∆qn v∗pn
· · · vq1v

∗
p1

= vp1v
∗
q1
vp1v

∗
q1
· · · vq∗

n−1
Id(∆qn)pn

vqn−1 · · · vq1v
∗
p1

...

= Id(···(∆qn )pn)qn−1 )pn−1
)··· )p1

.

Hence ss∗ is of the form IdY for some Y ∈ J (P ), and since E(Il
r(P )) coincides

with the set of all such elements (together with zero), we have E(Il
r(P )) ⊆

{IdY | Y ∈ J (P )}.
Now letB= {Y ⊆∆ | IdY ∈E(Il

r(P ))}. Then B satisfies all of the conditions
of Definition 2.6, and since J (P ) is the smallest such set, we have J (P ) ⊆ B,
and so {IdY | Y ∈ J (P )} ⊆ E(Il

r(P )). �

Definition 2.8. Let P be a cancellative monoid. Then we define C∗ts(P ) to
be the universal unital C*-algebra generated by a set of partial isometries
{Sp | p ∈ P} and projections {fY | Y ∈ J (P )} such that
(i) SpSq = Spq for all p, q ∈ P ,
(ii) fY fZ = fY ∩Z for all Y, Z ∈ J (P ),
(iii) f∆ = 1, f∅ = 0,
(iv) SpfY S

∗
p = fYp

for all Y ∈ J (P ), p ∈ P , and
(v) S∗pfY Sp = fY p for all Y ∈ J (P ), p ∈ P .

We claim that the sets {eY | Y ∈ J (P )} and {Jp | p ∈ P} satisfy the re-
lations in Definition 2.8. First, Lemma 2.3 implies (i) is satisfied. Items (ii)
and (iii) are clearly satisfied. Furthermore, (15) implies that eY ∈ C∗,rts (P ) for
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all Y ∈J (P ) and also that items (iv) and (v) are satisfied. Since the generators
all have norm one and the relations are satisfied in the particular C*-algebra
C∗,rts (P ), the universal algebra defined in Definition 2.8 exists by [3, Sec. 1].

In what follows, we study this C*-algebra for LCM monoids.

2.9. LCM monoids. The works [1, 2, 4, 5, 7, 19, 20, 23, 31, 37, 38, 39] and
others focus on a special class of left cancellative semigroups, called the right
LCM semigroups. Here we define a natural corresponding notion in our setting.

Definition 2.10. A monoid P is called right LCM if, for all p, q ∈ P , pP ∩ qP
is either empty or equal to rP for some r ∈ P . It is called left LCM if, for all
p, q ∈ P , Pp ∩ Pq is either empty or equal to Pr for some r ∈ P . We say P is
an LCM monoid if it is both right LCM and left LCM.

Example 2.11 (Doubly quasi-lattice ordered groups). These are the prototype
for our definition and were defined in [40]. These are a special class of Nica’s
quasi-lattice ordered groups [32].

Let G be a group, and suppose P ⊆ G is a subsemigroup of G such that
P ∩ P−1 = {1G}. One defines two partial orders on G as follows:
(i) u ≤l v ⇔ u−1v ∈ P ⇔ v ∈ uP ⇔ vP ⊆ uP .
(ii) u ≤r v ⇔ vu−1 ∈ P ⇔ v ∈ Pu ⇔ Pv ⊆ Pu.
Then (G,P ) is said to be a doubly quasi-lattice ordered group (see [40, Def. 2.2])
if both of the following are satisfied.
(i) Every finite set with a common upper bound for ≤l has a least upper

bound for ≤l.
(ii) Every finite set with a common upper bound for ≤r has a least upper

bound for ≤r.
Given such a pair (G, P ), P is an LCM monoid. To see this, first notice

that P must be cancellative by virtue of being contained in a group, and that
P ∩P−1 = {1G}means that P is a monoid. The two conditions in the definition
applied to the finite set {p, q} for p, q ∈ P imply that pP ∩ qP is either empty
or equal to rP , where r is the least upper bound of p and q with respect to ≤l.
Likewise, Pp ∩ Pq is either empty or equal to Ps, where s is the least upper
bound with respect to ≤r. Hence P is an LCM monoid.

Notice in this case that the elements r and s are unique. This is not nec-
essarily true for general LCM monoids, as rP = ruP and Ps = Pus for any
invertible element u.

Example 2.12 (Free semigroups). Assume that X is a finite set (or alphabet).
For n ∈ N, we write an element (a1, a2, . . . , an) ∈ Xn in the condensed way
a1a2 · · · an and call these elements words of length n. For α ∈ Xn, we write
|α| = n. Define X0 = {ǫ}, call ǫ the empty word, and let

X∗ =
⋃

n≥0

Xn.
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Partial isometric representations of LCM semigroups 249

Then X∗ becomes a monoid when given the operation of concatenation: if
α, β ∈ X∗, their product is

αβ = α1α2 · · ·α|α|β1β2 · · ·β|β|.

If w = αβ, we say that α is a prefix of w and that β is a suffix of w. We also
say that w starts with α and ends with β. We will say that α and β agree if
either α is a prefix of β or β is a prefix of α.

This semigroup is clearly cancellative. For α ∈ X∗, αX∗ is the set of words
which begin with α, and αX∗ ∩ βX∗ is empty unless α is a prefix of β (in which
case αX∗ ∩ βX∗= βX∗) or β is a prefix of α (in which case αX∗ ∩βX∗=αX∗).
Hence X∗ is right LCM.

Similarly, X∗α is the set of words which end with α, and X∗α ∩ X∗β is
empty unless α is a suffix of β (in which case X∗α ∩ X∗β = X∗β) or β is
a suffix of α (in which case X∗α ∩X∗β = X∗α). Thus X∗ is left LCM and
hence an LCM monoid.

Example 2.13 (Self-similar actions). We now describe an example which is
not a doubly quasi-lattice ordered group. Let X∗ be as in Example 2.12,
and let G be a group. Suppose that G acts on X∗ on the left faithfully by
length-preserving bijections, i.e.

G×X∗ → X∗, (g, α) 7→ g · α, g ·Xn = Xn for all g ∈ G, n ≥ 0.

Suppose also that we have a restriction map

G×X∗ → G, (g, α) 7→ g|α

which satisfies

g · (αβ) = (g · α)(g|α · β)

for all α, β ∈ X∗ and for all g ∈ G. Then we call the pair (G,X) a self-similar
action. We record two properties which a self-similar action might satisfy.

Definition 2.14. Let (G,X) be a self-similar action.
(i) [16, Def. 5.4] (G, X) is called pseudo-free if g · α = α and g|α = 1G for

some α ∈ X∗ implies that g = 1G.
(ii) [28, p. 13] (G,X) is called recurrent if, for any h ∈G and for any α,β ∈X∗

with |α| = |β|, there exists g ∈ G such that

g · α = β and g|α = h.

To any self-similar action, one can associate a right LCM semigroup. The
Zappa–Szép product X∗ ⊲⊳ G is the set X∗ ×G with the operation

(α, g)(β, h) = (α(g · β), g|βh).

It was shown in [6, Thm. 3.8] that X∗ ⊲⊳ G is always a right LCM semigroup.
It is well-known that X∗ ⊲⊳ G is right cancellative if and only if (X, G) is
pseudo-free; see [22, Prop. 3.11] or [17, Lem. 3.2] for proofs.

We have the following characterization for X∗ ⊲⊳ G to be LCM.
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Lemma 2.15. Let (G, X) be a self-similar action. Then, for any principal
left ideals, their intersection X∗ ⊲⊳ G(α, g) ∩X∗ ⊲⊳ G(β, h) is either empty or
equal to X∗ ⊲⊳ G(α, g) or X∗ ⊲⊳ G(β, h). In particular, X∗ ⊲⊳ G is a left LCM
monoid if and only if (G,X) is pseudo-free.

Proof. Let (α, g), (β, h) ∈ X∗ ⊲⊳ G, and suppose that X∗ ⊲⊳ G(α, g) ∩ X∗ ⊲⊳
G(β, h) 6= ∅. We suppose, without loss of generality, that |α| ≥ |β|. We claim
that

X∗ ⊲⊳ G(α, g) ∩X∗ ⊲⊳ G(β, h) = X∗ ⊲⊳ G(α, g).

Since X∗ ⊲⊳ G(α, g) ∩X∗ ⊲⊳ G(β, h) 6= ∅, we must have some (γ, j), (λ, k) ∈
X∗ ⊲⊳ G such that

(γ, j)(α, g) = (λ, k)(β, h),

(γ(j · α), j|αg) = (λ(k · β), k|βh).

This implies γ(j ·α) = λ(k · β) and j|αg = k|βh. This indicates that X
∗(j ·α)∩

X∗(k · β) 6= ∅. Since the action is length preserving, |j · α| ≥ |k · β|; therefore,
X∗(j · α) ∩X∗(k · β) =X∗(j · α) from the properties of the free monoid. Thus
there exists some θ ∈ X∗ such that (j · α) = θ(k · β).

We now can prove our claim by showing that (α, g) ∈ X∗ ⊲⊳ G(β, h) and
hence X∗ ⊲⊳ G(α, g) ⊆ X∗ ⊲⊳ G(β, h).

We will show that (α, g) = ((j−1 · θ), j−1|θk)(β, h). Compute, using the
Zappa–Szép properties in [6, Lem. 3.1],

((j−1 · θ), j−1|θk)(β, h) =
(
(j−1 · θ)((j−1|θk) · β), (j

−1|θk)|βh
)
.

To make this easier to follow, we handle the two components separately:

(j−1 · θ)((j−1|θk) · β) = (j−1 · θ)(j−1|θ · (k · β)) by (B2)

= j−1 · (θ(k · β)) (B5)

= j−1 · (j · α) because θ(k · β) = j · α

= (j−1j) · α = α,

(j−1|θk)|βh = (j−1|θ)|k·βk|βh (B8)

= j−1|θ(k·β)k|βh (B6)

= j−1|j·αk|βh because θ(k · β) = j · α

= j−1|j·αj|αg k|βh = j|αg by assumption

= (j−1j)|αg (B8)

= e|αg = g.

Therefore, ((j−1 · θ), j−1|θk)(β, h) = (α, g). We have thus proved our claim
and shown that X∗ ⊲⊳ G(α, g) ∩X∗ ⊲⊳ G(β, h) = X∗ ⊲⊳ G(α, g).

So, in any case, we have thatX∗ ⊲⊳G satisfies the LCM property on both the
right and left, and is always left cancellative. Therefore, it is an LCM monoid
if and only if it is right cancellative. By [22, Prop. 3.11], this is equivalent to
(G,X) being pseudo-free. �
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In the case that (G, X) is recurrent, the principal left ideals are linearly
ordered by inclusion.

Lemma 2.16. Let (G,X) be a self-similar action. If (G,X) is recurrent, then
the set of principal left ideals of X∗ ⊲⊳ G is given by

{In | n ∈ Z, n ≥ 0}, where In = {(β, h) | |β| ≥ n}.

In particular, the set of principal left ideals of X∗ ⊲⊳ G is linearly ordered by
inclusion.

Proof. Take (α, g) ∈ X∗ ⊲⊳ G. We claim that X∗ ⊲⊳ G(α, g) = I|α|. That X
∗ ⊲⊳

G(α, g) ⊆ I|α| is clear because multiplying elements of X∗ ⊲⊳ G increases the
length of the first coordinate. So suppose that (β, h) ∈ In, and write β = γδ
with |δ| = α. Find k ∈ G such that k · α = δ and k|α = hg−1. Then

(γ, k)(α, g) = (γ(k · α), k|αg) = (γδ, hg−1g) = (β, h).

Hence (β, h) ∈ X∗ ⊲⊳ G(α, g), proving that X∗ ⊲⊳ G(α, g) = In.
To complete the proof, we simply notice that In ∩ Im = Imin{m,n}, so the

intersection of two principal left ideals is another principal left ideal. �

We will not go into further detail on self-similar actions here—the interested
reader is directed to [29, 30, 21, 6, 17].

A natural question to ask about a given cancellative semigroup is: does it
embed into a group? Lawson and Wallis proved in [22, Thm. 5.5] that X∗ ⊲⊳ G
embeds into a group if and only if it is cancellative, and this occurs if and only if
(G,X) is pseudo-free. Hence all of our examples above are group-embeddable.

We are thankful to an anonymous referee for pointing out that not every
LCM semigroup embeds into a group: in their paper about interval monoids
arising from posets, Dehornoy and Wehrung [10, Prop. B] constructed an LCM
monoid which does not.

We now prove some general facts about LCM monoids and the transforma-
tions (13).

Lemma 2.17. Let P be an LCM monoid, and let p, q, r ∈ P . Then
(i) ∆p = ∆q ⇔ pP = qP ⇔ p = qu for some u ∈ U(P ),
(ii) ∆p = ∆q ⇔ Pp = Pq ⇔ p = uq for some u ∈ U(P ),

(iii) ∆p ∩∆q =

{
∆r if pP ∩ qP = rP,

∅ if pP ∩ qP = ∅,

(iv) ∆p ∩∆q =

{
∆r if Pp ∩ Pq = Pr,

∅ if Pp ∩ Pq = ∅,

(v) (∆p ∩∆q)r =

{
∆rp ∩∆r1 if Pr ∩ Pq = Pk with r1r = q1q = k,

∅ if Pr ∩ Pq = ∅,

(vi) (∆p ∩∆q)r =

{
∆r1 ∩∆qr if pP ∩ rP = kP with pp1 = rr1 = k,

∅ if pP ∩ rP = ∅.

Münster Journal of Mathematics Vol. 15 (2022), 241–278



252 Charles Starling and Ilija Tolich

Hence the set of constructible ideals J (P ) has the closed form

(17) J (P ) = {∆p ∩∆q | p, q ∈ P} ∪ {∅},

Proof. (i) First suppose that ∆p = ∆q. Thus, for every (bpx, px) ∈ ∆p, there
exists (aqy, y) ∈ ∆ such that (aqy, qy) = (bpx, px). Since px ∈ qP for all x,
we have pP ⊆ qP . By a symmetric argument, we get qP ⊆ pP , so we have
pP = qP . If pP = qP , then q ∈ pP and p∈ qP implies p= qu and q= pv for some
u, v ∈ P . Hence p = pvu, and cancellativity implies vu = 1, so u is invertible.
Finally, if p = qu for some u ∈ U(P ), then ∆p ∋ (bpx,x) = (bqux,x) ∈∆q. But
since q = pu−1, a symmetric argument gives ∆q ⊆ ∆p.

(ii) Similar to (i).
(iii) First, suppose that pP ∩ qP = rP , and therefore, we can find p1, q1 ∈ P

such that pp1 = qq1 = r. The intersection ∆p ∩∆q = {(bpx, px) | b, x ∈ P} ∩
{(aqy, qy) | a, y ∈ P} is nonempty because the element (pp1, pp1) = (qq1, qq1) =
(r, r) is common to both (taking a = b = 1, x = p1, and y = q1). We claim that
∆p ∩∆q = ∆r. Suppose (bpx, px) = (aqy, qy) ∈∆p ∩∆q. Then, since px = qy,
this element is in pP ∩ qP = rP , so there exists c ∈ P such that px = qy = rc.
Hence (bpx, px) = (brc, rc) ∈ ∆r. On the other hand, if (brc, rc) ∈ ∆r, then
(brc, rc) = (bpp1c, pp1c) = (bqq1c, qq1c) is clearly in ∆p ∩∆q. Hence we have
∆p ∩∆q = ∆r. If pP ∩ qP = ∅, then the above shows that ∆p ∩∆q = ∅, and
hence the first product is zero.

(iv) Similar to (iii).
(v) If γ ∈∆p ∩∆q, then γ = (bpx, px) = (cqy, y) for some b, c, x, y ∈ P . This

implies y = px and hence b = cq. Thus

(18) ∆p ∩∆q = {(cqpx, px) | c, x ∈ P},

which implies that

(∆p ∩∆q)r = {(arz, rz) | (arz, z) = (cqpx, px) for some a, c, z, x ∈ P}

= {(arpx, rpx) | ar = cq and a, c, x ∈ P}

If Pr ∩ Pq = ∅, then no such a, c ∈ P can exist, so (∆p ∩ ∆q)r is empty.
Otherwise, take γ = (arpx, rpx) = (cqpx, rpx) ∈ (∆p ∩∆q)r so that ar = cq.
Then, since P is LCM, there exists k, r1, q1 ∈ P such that Pr ∩ Pq = kP and
r1r = q1q = k. Since ar = cq is an element of Pk, there exists k1 ∈ P such that
ar = cq = k1k. Thus ar = k1r1r and hence a = k1r1. So γ = (k1r1rpx, rpx),
which is an element of both ∆r1 and ∆rp. So we have (∆p ∩∆q)r ⊆∆rp ∩∆r1 .
To show ∆rp ∩∆r1 ⊆ (∆p ∩∆q)r in the case of a nonempty intersection, take
γ ∈ ∆rp ∩∆r1 . Then γ = (brpx, rpx) = (cr1y, y) for some b, x, c, y ∈ P , which
implies y = rpx so that brpx = cr1rpx = cq1qpx and hence br = cq1q. Thus
γ = (brpx, rpx) with br = (cq1)q, implying γ ∈ (∆p ∩∆q)r.

(vi) Similar to (v).
Statement (17) at the end of the lemma now follows immediately since

(iii)–(vi) imply that {∆p ∩∆q | p, q ∈ P} ∪ {∅} is a subset of J (P ) which is
closed under intersections and the operations Y 7→ Yp and Y 7→ Y p. �
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We note that it is necessary to take the union with {∅} in (17) because it
may be that the intersection of two sets of that type never results in the empty
set.

Now we describe the inverse semigroup generated by the vp given in (13).

Lemma 2.18. Let P be an LCM monoid, and let p, q, r ∈ P .
(i) Suppose pP ∩ qP = rP and that pp1 = qq1 = r. Then

v∗pvq = vp1v
∗
rvq(19)

= v∗pvrv
∗
q1
.

Furthermore, if instead pP ∩ qP = ∅, this product is zero.
(ii) Suppose Pp ∩ Pq = Pr and that p2p = q2q = r. Then

vpv
∗
q = vpv

∗
rvq2(20)

= v∗p2
vrv
∗
q .(21)

Furthermore, if instead Pp ∩ Pq = ∅, this product is zero.

Proof. (i) If pP ∩ qP = ∅, then ∆p ∩∆q = ∅ by Lemma 2.17 (iii). Hence the
domain of v∗p does not intersect the range of vq, so v∗pvq = 0.

If pP ∩ qP = rP and pp1 = qq1 = r, then Lemma 2.17 (iii) implies that
∆p ∩∆q = ∆r, and so

v∗pvq = v∗pvpv
∗
pvqv

∗
qvq

= v∗pId∆p
Id∆q

vq

= v∗pId∆r
vq

= v∗pvrv
∗
rvq

= v∗pvpvp1v
∗
rvq

= v∗pvpvp1v
∗
p1
vp1v

∗
rvq since vp1v

∗
p1
vp1 = vp1

= vp1v
∗
p1
v∗pvpvp1v

∗
rvq since idempotents commute

= vp1v
∗
pp1

vpp1v
∗
rvq

= vp1v
∗
rvq since pp1 = r and v∗r = v∗rvrv

∗
r .

This establishes the first equality. For the second,

v∗pvq = v∗pvrv
∗
rvq as above

= v∗pvrv
∗
q1
v∗qvq

= v∗pvrv
∗
q1
vq1v

∗
q1
v∗qvq since v∗q1vq1v

∗
q1

= v∗q1
= v∗pvrv

∗
q1
v∗qvqvq1v

∗
q1

since idempotents commute

= v∗pvrv
∗
qq1

vqq1v
∗
q1

= v∗pvrv
∗
q1

since qp1 = r and vr = vrv
∗
rvr.

(ii) These calculations are very similar to those in (i) and are left to the
reader. �
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Proposition 2.19. Let P be an LCM monoid, and let Il
r(P ) be as in (16).

Then

(22) Il
r(P ) = {vpv

∗
qvr | p, q, r ∈ P, q ∈ rP ∩ Pp} ∪ {0}.

Furthermore, we have that

E(Il
r(P )) = {vpv

∗
qpvq | p, q ∈ P} ∪ {0}.

Proof. Let C denote the right-hand side of (22). Then C ⊆ E(Il
r(P )) is trivial

because Il
r(P ) is generated by the vp.

We show C ⊆E(Il
r(P )) by showing that the given elements are closed under

product and inverse, and hence form an inverse semigroup containing vp for
each p (vp ∈ Il

r(P ) because vp = vpv
∗
pvp). Since Il

r(P ) is the smallest such
inverse semigroup, we will be done.

Take p, q, r ∈ P with q ∈ rP ∩ Pp. Then there exist r1, p1 ∈ P such that
q = rr1 = p1p. We calculate

(vpv
∗
qvr)

∗ = v∗rvqv
∗
p

= vr1v
∗
qvqv

∗
p by (19)

= vr1v
∗
qvqv

∗
qvp1 by (20)

= vr1v
∗
qvp1 ,

and so the right-hand side of (22) is closed under taking inverses.
To show it is closed under taking products, take p, q, r, a, b, c ∈ P such that

q ∈ rP ∩ Pp and b ∈ cP ∩ Pa. Then there exist r1, p1, a1, c1 ∈ P such that
q = rr1 = p1p and b = cc1 = a1a. If the product (vpv

∗
qvr)(vav

∗
b vc) is zero, we

are done, so at every step in the calculation below, we will assume the product
is nonzero, i.e. that raP ∩ qP = kP and Pra ∩ Pb = Pl. We have

(vpv
∗
qvr)(vav

∗
bvc) = vpv

∗
qvrav

∗
b vc

= vp(vq1v
∗
kvra)v

∗
b vc by (19) with raa2 = qq1 = k

= vpq1v
∗
k(vrav

∗
l vb1)vc by (21) with r2ra = b1b = l

= vpq1v
∗
a2
v∗ravrav

∗
rav
∗
r2
vb1c

= vpq1v
∗
a2
v∗rav

∗
r2
vb1c

= vpq1v
∗
r2raa2

vb1c

for some a2, q1, k, r2, b1, l ∈ P . Furthermore, since

rr2aa2 = r2qq1 = r2p1pq1 ∈ Ppq1,

rr2aa2 = b1ba2 = b1cc1a2 ∈ b1cP,

the product is of the form given in (22), so we have proven the first statement.
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Let s = vpv
∗
qvr for p, q, r ∈ P with q ∈ Pp ∩ rP so that q = p1p = rr1 for

some r1, p1 ∈ P . Then

ss∗ = vpv
∗
qvrv

∗
rvqv

∗
p

= Id((∆r)q)p by (14)

= Id(∆1∩∆q)p by (vi) with q1 = rr1

= Id∆p∩∆p1 by (v) with 1q = p1p

= vpv
∗
pv
∗
p1
vp

= vpv
∗
p1p

vp.

Every idempotent is of the form ss∗ for some s ∈ Il
r(P ), so we are done. �

We now show that the form of the elements of Il
r(P ) given in (22) is essen-

tially unique.

Lemma 2.20. Let P be an LCM monoid, and suppose that q ∈ Pp ∩ rP and
b∈ Pa∩ cP . Then vpv

∗
qvr = vav

∗
bvc if and only if there exist invertible elements

u, v ∈ U(P ) such that p = au, q = vbu, and r = vc.

Proof. Take p, q, r, a, b, c ∈ P such that q ∈ rP ∩ Pp and b ∈ cP ∩ Pa. Then
there exist r1, p1, a1, c1 ∈ P such that q = rr1 = p1p and b= cc1 = a1a. Suppose
that the maps vpv

∗
qvr and vav

∗
bvc are equal. Then, since

vpv
∗
qvr(q, r1) = (q, p) = vav

∗
bvc(q, r1),

there must exist u, v ∈ P such that q = vbu, au = p, and c1u = r1. Similarly,
since

vav
∗
b vc(b, c1) = (b, a) = vpv

∗
qvr(b, c1),

there must exist x, y ∈ P such that b = yqx, px = a, and r1x = c1. Since

a = px = aux, r1 = c1u = r1xu,

cancellativity gives us that ux = 1 = xu. Furthermore, we have q = vbu =
vyqxu = vyq, which implies that yv = 1 = vy. So u, v are invertible elements
of P and p = au, q = vbu, and r = vc.

To get the other direction, clearly, if such invertible elements exist, then
vpv
∗
qvr = vauv

∗
vbuvvc = vavuv

∗
uvbv

∗
vvvvc = vav

∗
b vc. �

Lemma 2.20 allows us to give an abstract characterization of Il
r(P ).

Proposition 2.21. Let P be an LCM monoid, and consider the equivalence
relation on P × P × P given by

(p, q, r) ∼ (a, b, c) ⇐⇒ there exist u, v ∈ U(P )(23)
such that p = au, q = vbu, r = vc,

and let [p, q, r] denote the equivalence class of (p, q, r) under this relation. Then
the set

(24) SP = {[p, q, r] | p, q, r ∈ P, q ∈ rP ∩ Pp} ∪ {0}
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is an inverse semigroup when given the operations

[p, q, r]∗ = [r1, q, p1], where q = rr1 = p1p,

and

[p, q, r][a, b, c](25)

=





[pq1, r1raa1, b1c] if raP ∩ qP = kP, raa1 = qq1 = k,
and Pra ∩ Pb = Pl, r1ra = b1b = l,

0 otherwise.

The map vpv
∗
qvp 7→ [p, q, r] and 0 7→ 0 is an isomorphism of inverse semigroups

between Il
r(P ) and SP . The set of idempotents of this inverse semigroup is

given by
E(SP ) = {[p, qp, q] ∈ SP | q, p ∈ P} ∪ {0}.

Proof. All the statements follow from Lemma 2.20 and the calculations in the
proof of Proposition 2.19. �

From now on, we will work with elements in the form (24).

Lemma 2.22. Let P be an LCM monoid, let SP be as in (24), and let
p, q, a, b ∈ P . Then

(26) [p, qp, q][a, ba, b] =

{
[r, sr, s] if rP = pP ∩ aP and Ps = Pb ∩ Pq,

0 otherwise.

In particular, we have

[p, qp, q] ≤ [a, ba, b] ⇐⇒ pP ⊆ aP and Pq ⊆ Pb.

Proof. To verify (26), we calculate

[p, qp, q][a, ba, b] = [p, p, 1][1, q, q][a, a, 1][1, b, b]

= [p, p, 1][a, a, 1][1, b, b][1, q, q]

=

{
[r, r, 1][1, s, s] if rP = pP ∩ aP and Ps = Pb ∩ Pq,

0 otherwise

=

{
[r, sr, s] if rP = pP ∩ aP and Ps = Pb ∩ Pq,

0 otherwise,

where the third line is by Lemma 2.17 and Proposition 2.21. Now we suppose
[p, qp, q] ≤ [a, ba, b], that is [p, qp, q][a, ba, b] = [p, pq, q]. Then, by (26), we have
that pP = pP ∩ aP and Pq = Pq ∩Pb, i.e. pP ⊆ aP and Pq ⊆ Pb. Conversely,
if pP ⊆ aP and Pq ⊆ Pb, then one easily sees by (26) that [p, qp, q][a, ba, b] =
[p, qp, q]. �

It will frequently be convenient to use the following shorthand notation for
often-used elements of SP :

[p] := [p, p, p]

This corresponds to vp above, and elements of this form generate SP .
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Lemma 2.23. For an LCM monoid P and [p, q, r] ∈ SP , we have

[p, q, r][p, q, r]∗ = [p, p1p, p1], [p, q, r]∗[p, q, r] = [r1, rr1, r],

where q = p1p = rr1. In addition, for all p, q ∈ P , we have

[p]∗ = [p, p, p]∗ = [1, p, 1], [p][q] = [pq], [p]∗[q]∗ = [qp]∗.

Proof. Left to the reader. �

Lemma 2.24. Let P be an LCM monoid, and let SP be as in (24). Then SP

is E∗-unitary.

Proof. We must show that, for s ∈ SP and e ∈ E(SP ) \ {0}, se = e implies
s is an idempotent. Let s = [p, q, r], and suppose we have such an e. Since
se = e, we must have e ≤ s∗s, so e = [b, cb, c] for some b ∈ r1P and c ∈ Pr,
where rr1 = q = p1p. Hence b = r1b1 and c = c1r. Calculating se, we have

se = [p, q, r][b, cb, c]

= [p][q]∗[r][b][b]∗[c]∗[c]

= [p][q]∗[r][c]∗[c][b][b]∗

= [p][q]∗[r][c1r]
∗[c1r][b][b]

∗

= [p][q]∗[r][c1r]
∗[c1r][b][b]

∗

= [p][q]∗[r][r]∗[c1]
∗[c1][r][b][b]

∗ since [c1r]
∗[c1r] = [r]∗[c1]

∗[c1][r]

= [p][q]∗[c1]
∗[c1][r][r]

∗[r][b][b]∗ because idempotents commute

= [p][q]∗[c1]
∗[c1][r][b][b]

∗

= [p][r1]
∗[r]∗[c1]

∗[c1][r][b][b]
∗

= [p][r1]
∗[c]∗[c][b][b]∗

= [p][r1]
∗[b][b]∗[c]∗[c] because idempotents commute

= [p][r1]
∗[r1][b1][b1]

∗[r1]
∗[c]∗[c]

= [p][b1][b1]
∗[r1]

∗[r1][r1]
∗[c]∗[c]

= [p][b1][b1]
∗[r1]

∗[c]∗[c]

= [pb1, cr1b1, c],

where the last line is because cr1 = c1rr1 = c1p1p ⇒ cr1b1 ∈ Ppb1 ∩ cP . Now
if se = e, the above element is an idempotent. Hence cpb1 = cr1b1, whence
cancellativity implies that p= r1. Thus [p, q, r] = [p, rr1, r] = [p, rp, r] ∈ E(SP ).

�

Lemma 2.25. Let P be an LCM monoid. Then

{SpS
∗
qSr | p, q, r ∈ P, q ∈ Pp ∩ rP} ∪ {0}

is closed under multiplication and adjoint, and so forms an inverse semigroup
of partial isometries in C∗ts(P ). In particular, its span is dense in C∗ts(P ), and
the span of {JpJ

∗
q Jr | p, q, r ∈ P, q ∈ Pp ∩ rP} is dense in C∗,rts (P ).
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Proof. It is enough to show that {SpS
∗
qSr | p, q, r ∈ P, q ∈ Pp ∩ rP} ∪ {0}

is closed under products because it contains each Sp and S∗p . But the same
calculations as in the proofs of Lemma 2.18 and Proposition 2.19 hold because

SpS
∗
pSqS

∗
q = Spf∆S

∗
pSqf∆S

∗
q = f∆p

f∆q
= f∆p∩∆q

=

{
f∆r

, pP ∩ qP = rP,

0, pP ∩ qP = ∅,

S∗pSpS
∗
qSq = S∗pf∆SpS

∗
q f∆Sq = f∆pf∆q = f∆p∩∆q =

{
f∆r , Pp ∩ Pq = Pr,

0, Pp ∩ Pq = ∅.

All that was needed in those proofs was the above relations and the fact that
idempotents commute, but all the idempotents there were of the form IdY for
a constructible set Y , and the corresponding fY commute by Definition 2.8 (ii).
That the same holds in C∗,rts (P ) follows from the universal property of C∗ts(P ).

�

As mentioned in the introduction, the choice of left regular representation
over the right affects Li’s construction. We can now show that, in the LCM
case, our construction puts the left and right multiplication on equal footing,
similar to [40, Cor. 3.5]. In what follows, P op denotes the opposite semigroup
of P , which has the same elements as P with multiplication p · q = qp. It is
clear that P is LCM if and only if P op is.

Proposition 2.26. Let P be an LCM monoid. Then C∗ts(P ) ∼= C∗ts(P
op).

Proof. Let {Sp}p∈P ∪ {fY }Y ∈J (P ) and {Tp}p∈P op ∪ {gZ}Z∈J (P op) be the uni-
versal generating sets for C∗ts(P ) and C∗ts(P

op) respectively. Also, write

∆ = {(bx, x) | b, x ∈ P}, Γ = {(c · y, y) | c, y ∈ P op}.

Define h : J (P ) →J (P op) by h(∆p ∩∆q) = Γp ∩ Γq and h(∅) = ∅. We claim
that the sets {T ∗p }p∈P and {gh(Y )}Y ∈J (P ) satisfy (i)–(v) in Definition 2.8.
Points (i) and (iii) are straight-forward, and (v) is similar to (iv). We prove (ii)
and (iv).

For (ii), if Y, Z ∈ J (P ), with Y = ∆p ∩∆q, Z = ∆a ∩∆b, then

gh(Y )gh(Z) = gΓp∩Γq
gΓa∩Γb

= g(Γp∩Γa)∩(Γq∩Γb).

If either P · p ∩ P · a or q · P ∩ b · P is empty, then one of pP ∩ aP or Pq ∩ Pb
is empty, so both sides are zero. On the other hand, if P · p∩ P · a = P · k and
q · P ∩ b · P = ℓ · P , then

gh(Y )gh(Z) = gΓk∩Γℓ
= gh(∆k∩∆ℓ) = gh(Y∩Z).

For (iv), let p, q, r ∈ P and let Y = ∆p ∩∆q. If Pr ∩ Pq = Pk for some k ∈ P
with r1r = q1q = k, then Lemma 2.17 implies (∆p ∩∆q)r = ∆rp ∩∆r1 . Since
we also have r · r1 = q · q1 = k, it also implies (Γp ∩ Γq)

r = Γp·r ∩ Γr1 . Thus
we have

T ∗p gh(Y )(T
∗
p )
∗ = T ∗p gΓp∩Γq

Tp = gΓp·r∩Γr1
= gh(∆rp∩∆r1) = gh((∆p∩∆q)r)

= gh(Yr).
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Furthermore, if Pr ∩ Pq = ∅, then the above calculation and Lemma 2.17
imply that both sides of Definition 2.8 (iv) are zero.

Since {T ∗p }p∈P and {gh(Y )}Y ∈J (P ) satisfy (i)–(v) in Definition 2.8, we can
find a ∗-homomorphism Φ : C∗ts(P ) → C∗ts(P

op) such that Φ(Sp) = T ∗p and
Φ(fY ) = gh(Y ). This argument can be repeated (because (P op)op = P ) giv-
ing us a ∗-homomorphism Ψ : C∗ts(P

op) → C∗ts(P ) such that Ψ(Tp) = S∗p and
Ψ(gY ) = fh−1(Y ). Since Φ ◦ Ψ and Ψ ◦ Φ are the identity on the respective
generating sets, both Φ and Ψ must be isomorphisms. �

2.27. Actions of inverse semigroups on their spectra and the associ-
ated groupoids. In this section, we recall the definitions of the spectrum and
tight spectrum of a semi-lattice. We also recall the definitions of the universal
and tight groupoid of an inverse semigroup. The discussion here attempts to
summarize the important points of [12]—see there for a more detailed exposi-
tion. For references on étale groupoids, see [35, 36].

Let E be a semi-lattice, or equivalently a commutative inverse semigroup
where every element is idempotent. We assume that E has a bottom element 0.
A filter in E is a nonempty proper subset ξ ⊆ E which is
• upwards closed, i.e. e ∈ ξ and fe = e implies f ∈ ξ, and
• downwards directed, i.e. e, f ∈ ξ implies ef ∈ ξ.
We let Ê0 denote the set of filters in E. We identify the power set of E with
the product space {0, 1}E and give Ê0 ⊆ {0, 1}E the subspace topology. With

this topology, Ê0 is called the spectrum of E.
Given e ∈ E and F ⊆fin E, the set

U(e, F ) = {ξ ∈ Ê0 | e ∈ ξ, ξ ∩ F = ∅}

is a clopen subset of Ê0, and sets of this type generate the topology on Ê0.
A filter is called an ultrafilter if it is not properly contained in another filter.

The subspace of ultrafilters is denoted Ê∞ ⊆ Ê0, and its closure is denoted
Ê∞ = Êtight and is called the tight spectrum of E.

Let S be an inverse semigroup with idempotent semi-lattice E, and let X
be a topological space. An action of S on X is a pair θ = ({θs}s∈S, {De}e∈E),
where De ⊆X is open for all e ∈ E, θs : Ds∗s → Dss∗ is a homeomorphism for
all s ∈ S, θs ◦ θt = θst for all s, t ∈ S and θ−1s = θs∗ . We also insist that θ0 is the
empty map and

⋃
De =X . When θ is an action of S on X , we write θ : S yX .

Given an action θ : S y X , one puts an equivalence relation on the set
{(s, x) ∈ S ×X | x ∈ Ds∗s} stating (s, x) ∼ (t, y) if and only if x = y and there
exists e ∈ E such that x ∈ De and se = te. We write [s, t] for the equivalence
class of (s, t). Then the transformation groupoid for θ is the set of equivalence
classes

Gθ = {[s, x] | s ∈ S, x ∈ Ds∗s}

with range, source, inverse, and partially defined product given by

r[s, x] = θs(x), d[s, x] = x, [s, x]−1 = [s∗, θs(x)], [t, θs(x)][s, x] = [ts, x].
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This is an étale groupoid when given the topology generated by sets of the
form

Θ(s, U) = {[s, x] ∈ Gθ | x ∈ U}, s ∈ S, U ⊆ Ds∗s open.

An inverse semigroup acts naturally on its spectrum. If S is an inverse

semigroup with idempotent semi-lattice E, we define an action α : S y Ê0 by

De = {ξ ∈ Ê0 | e ∈ ξ} = U(e,∅), αs :Ds∗s →Dss∗ , αs(ξ) = {ses∗ | e ∈ ξ}↑,

where the superscript ↑ indicates the set of all elements above some element
in the set. The transformation groupoid associated to α is called the universal
groupoid of S.

The space of tight filters is invariant under this action, so we get an action
α : S y Êtight. The transformation groupoid for this action is called the tight
groupoid of S.

If E and F are semi-lattices with zero, then E × F is a semi-lattice with
pointwise meet (product). Consider the equivalence relation ∼ on E ×F given
by

(0, 0) ∼ (e, 0) ∼ (0, f) for all e ∈ E, f ∈ F.

Then ∼ is easily seen to be a congruence, that is as∼ at and sa∼ ta whenever
s ∼ t and a ∈ E × F . We denote the set of equivalence classes

E × F/∼ := E ×0 F

and denote [(0, 0)]∼ := 0. Then we have

E ×0 F = {(e, f) | e ∈ E \ {0}, f ∈ F \ {0}} ∪ {0},

which is a semi-lattice under the inherited operation

(e1, f1)(e2, f2) =

{
(e1e2, f1f2) if e1e2 6= 0 and f1f2 6= 0,

0 otherwise.

Lemma 2.28. Let E and F be semi-lattices each with top and bottom ele-
ments. Then there is a homeomorphism ϕ : ̂(E ×0 F )0 → Ê0 × F̂0 which sends
ultrafilters onto ultrafilters. In particular, the tight spectrum of E ×0 F is
homeomorphic to Êtight × F̂tight.

Proof. Since filters are by definition proper subsets, a filter in E ×0 F must be
a subset of E × F . For any subset U ⊆ E × F , we write

Ul = {e ∈ E | (e, f) ∈ U for some f},

Ur = {f ∈ F | (e, f) ∈ U for some e}.

Note that if U is a filter, then e ∈ Ul ⇔ (e, 1) ∈ U and f ∈ Ur ⇔ (1, f) ∈ U
because filters are upwards closed.

Now define ϕ : ̂(E ×0 F )0 → Ê0 × F̂0 by

ϕ(ξ) = (ξl, ξr), ξ ∈ ̂(E ×0 F )0.

It is clear that both ξl and ξr are filters, so ϕ is well-defined.
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To see that ϕ is injective, suppose ϕ(ξ) = ϕ(η) so that ξl = ηl and ξr = ηr.
Then (e, f) ∈ ξ implies e ∈ ξl and f ∈ ξr. This implies that e ∈ ηl and f ∈ ηr,
which gives (e, 1), (1, f) ∈ η and so (e, f) ∈ η. By a symmetric argument, we
get ξ = η.

To see that ϕ is surjective, take filters ξ ⊆ E and η ⊆ F , and consider
ξ × η ⊆ E ×0 F . It straight-forward to check that ξ × η is a filter and that
ϕ(ξ × η) = (ξ, η).

To show continuity, take e ∈E, Y ⊆fin E, f ∈ F , and Z ⊆fin F , and consider
the open set

U = U(e, Y )× U(f, Z) = {(ξ, η) ∈ Ê0 × F̂0 | e ∈ ξ ⊆ Y c, f ∈ η ⊆ Zc}.

Then we have

ϕ−1(U) = {ξ × η ∈ ̂(E ×0 F )0 | e ∈ ξ ⊆ Y c, f ∈ η ⊆ Zc}

= U((e, f), (Y × {1}) ∪ ({1} × Z)).

To see the last equality, we have ξ × η ∈ ϕ−1(U) if and only if e ∈ ξ, f ∈ η, and
Y ∩ ξ = ∅ = Z ∩ η. If y ∈ Y , then y /∈ ξ, and so (y, 1) /∈ ξ × η; we similarly see
that (1, z) /∈ ξ × η for all z ∈ Z. Hence ξ × η ∈ U((e, f), (Y ×{1})∪ ({1}×Z)),
and we have one containment. Conversely, if ξ × η ∈ U((e, f), (Y × {1}) ∪
({1}×Z)), we have that e ∈ ξ, f ∈ η, and ((Y ×{1})∪ ({1}×Z))∩ ξ × η =∅.
If y ∈ Y , then (y, 1) /∈ ξ × η implies y /∈ ξ, and so ξ ∈ U(e, Y ). We similarly
have η ∈ U(f, Z) and so ξ × η ∈ ϕ−1(U). This shows that ϕ is continuous.

Now, given a basic open set U((e, f), Y ) in the spectrum of E ×0 F , it
is similarly checked that ϕ(U((e, f), Y )) = U(e, Yl) × U(f, Yr). Hence ϕ is
a homeomorphism.

Finally, if ξ ⊆ E ×0 F is an ultrafilter, then ξl and ξr are clearly ultrafilters
too. Conversely, if ξ ⊆ E and η ⊆ F are ultrafilters, then ξ × η is as well. Since
ϕ is a homeomorphism, we have

ϕ( ̂(E ×0 F )tight) = ϕ( ̂(E ×0 F )∞) = ϕ( ̂(E ×0 F )∞) = Ê∞ × F̂∞

= Êtight × F̂tight. �

2.29. The action of SP on its spectra. In what follows, we let

Pr = {pP | p ∈ P} ∪ {∅}, Pl = {Pp | p ∈ P} ∪ {∅},

which are both semi-lattices under intersection (due to P being LCM).

Lemma 2.30. Let P be an LCM monoid, and let SP be as in (24). Then
E(SP ) and Pl ×0 Pr are isomorphic as semi-lattices, via the map φ : E(SP )→
Pl ×0 Pr defined by

φ[p, qp, q] = (Pq, pP ), φ(0) = 0.

Proof. To start, note that φ is well-defined: if u, v ∈ U(P ), we have

φ[pu, vqpu, vq] = (Pvq, puP ) = (Pq, pP ) = φ[p, qp, q] for all p, q ∈ P.
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If pP ∩ aP = ∅ or Pq ∩ Pb = ∅, then

φ([p, qp, q][a, ba, b]) = φ(0) = 0,

while φ[p, qp, q]φ[a, ba, b] = 0 as well. Otherwise, if they are both nonempty,
say rP = pP ∩ aP and Ps = Pb ∩ Pq, then

φ([p, qp, q][a, ba, b]) = φ[r, sr, s] (Lemma 2.22)

= (Ps, rP )

= (Pb ∩ Pq, pP ∩ aP )

= (Pq, pP )(Pb, aP )

= φ[p, qp, q]φ[a, ba, a].

Surjectivity is clear, and if φ[p,qp,q] =φ[a,ba,b], we have aP = pP and Pb=Pq,
which implies there exist u, v ∈ U(P ) such that a = pu and b = vq, giving us
that [p, qp, q] = [a, ba, b]. �

Remark 2.31. We note that our definition of φ may seem strange given that,
up to this point, idempotents have been written in the form vpv

∗
pv
∗
qvq. Since

vpv
∗
p corresponds to pP and v∗qvq to Pq, it might seem more natural to send

this idempotent to (pP, Pq). We switch the order for two reasons. The first
is so that the semi-lattice of principal left ideals is written on the left (and
likewise for the right). The other is to make things more clear in Example 4.1.

For p ∈ P , define

Dl
p = U({Pp},∅) ⊆ (̂Pl)0,(27)

Dr
p = U({pP},∅) ⊆ (̂Pr)0.(28)

For p ∈ P and any right ideal X ⊆ P , the set

p−1X = {y ∈ P | py ∈ X}

is also a right ideal. If X = qP for some q ∈ P , then

p−1qP =

{
p1P if pP ∩ qP = rP, pp1 = qq1 = r,

∅ if pP ∩ qP = ∅.

Similarly, if Y ⊆ P is a left ideal, the set

Y p−1 = {x ∈ P | xp ∈ Y }

is also a left ideal. If Y = Pq for some q ∈ P , then

Pqp−1 =

{
Pp1 if Pp ∩ Pq = Pr, p1p = q1q = r,

∅ if Pp ∩ Pq = ∅.

We then define, for p ∈ P , the following maps:

Rp : Dr
1 → Dr

p, Lp : Dl
p → Dl

1,

Rp(ξ) = pξ, Lp(ξ) = ξp−1.
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Since every filter contains 1, we have Dl
1 = (̂Pl)0 and Dr

1 = (̂Pr)0. Then the
intrinsic action of SP on its spectrum, viewed through the homeomorphism
given in Lemma 2.28 is given by

θ[p] : D
l
p ×Dr

1 → Dl
1 ×Dr

p, θ[p](ξ, η) = (ξp−1, pη),

which implies θ[p]∗ = θ−1[p] (ξ, η) = (ξp, p−1η).

For general elements [p, q, r] ∈ SP , since [p, q, r] = [p][q]∗[r], the action is
given by

(29) θ[p,q,r] : D
l
r ×Dr

r1
→ Dl

p1
×Dr

p, θ[p,q,r](ξ, η) = (ξr−1qp−1, pq−1rη),

where q = p1p = rr1.

3. The C*-algebras associated to P

3.1. C*-algebras associated to inverse semigroups. To an inverse semi-
group S, one may associate several C*-algebras. Some are defined in terms
of groupoids associated to S and some using representations. We recall their
definitions here.

A representation of S on a C*-algebra A is a function π : S → A such that
π(st) = π(s)π(t) for all s, t ∈ S, π(s∗) = π(s)∗ for all s ∈ S and π(0) = 0.
The universal C*-algebra of S, denoted C∗u(S), is the universal C*-algebra for
representations of S. This means that there is a representation πu : S → C∗u(S)
such that if π : S → A is any other representation, there exists a ∗-homo-
morphism ϕ : C∗u(S) → A such that ϕ ◦ πu = π. We call πu the universal
representation of S.

There is a map Λ : S → B(ℓ2(S)) defined by

Λ(s)δt =

{
δst if s∗st = t,

0 otherwise,

which can be shown to be a representation of S. The image of Λ generates
a C*-algebra C∗r (S), called the reduced C*-algebra of S.

For a semi-lattice E, we say that a set C ⊆E is a cover of e∈E if c≤ e for all
c ∈ C and, for all f ≤ e, there exists c ∈ C such that cf 6= 0. A representation
π of a unital semi-lattice is tight if, whenever C is a cover of E, we have∨

c∈C π(c) = π(e). If S is an inverse monoid, a unital representation of S is
tight if its restriction to E(S) is. Note that this is not the original definition
of tight as given by Exel in [12], but is equivalent in this setting; see [12,
Prop. 11.8], [11, Cor. 2.3], and [15].

Then the tight C*-algebra of S (see [12]), denoted C∗tight(S), is universal
for tight representations of S. That is, there is a tight representation πt :
S → C∗tight(S), and if π : S → A is any other tight representation, there exists

a ∗-homomorphism ϕ : C∗tight(S) → A such that ϕ ◦ πt = π. We call πt the
universal tight representation of S.
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These C*-algebras have realizations as groupoid C*-algebras. We have that
C∗u(S)

∼= C∗(Gu(S)) and C∗tight(S)
∼= C∗(Gtight(S)), and under these isomor-

phisms, we have

πu(s) = 1Θ(s,Ds∗s), πt(s) = 1Θ(s,Ds∗s∩Êtight).

3.2. C
∗

ts
(P ) as a groupoid C*-algebra.

Theorem 3.3. Let P be an LCM monoid, let SP be as in (24), and recall that
Gu(SP ) is the universal groupoid of SP . Then

C∗ts(P ) ∼= C∗u(SP ) ∼= C∗(Gu(SP )).

Proof. As mentioned above, C∗u(SP ) ∼= C∗(Gu(SP )) is established in [12]. We
will obtain the first isomorphism using the universal properties of the algebras.
For p, q ∈ P and ∆p ∩∆q ∈ J (P ), let

Tp = πu([p]), E∆p∩∆q = πu([p, qp, q]), E∅ = 0.

We first notice that the latter is well-defined since ∆p = ∆a and ∆q = ∆b if
and only if pP = aP and Pq = Pb, which implies [p, qp, q] = [a, ba, b]. We claim
that these elements satisfy Definition 2.8. That each Tp is a partial isometry,
each EY is a projection, and that (i) and (ii) in Definition 2.8 are satisfied is
clear. Noticing that ∆ = ∆1 ∩∆1 shows that E∆ = 1, so we have (iii).

To show (iv), we take p, q, r ∈ P . If Pr ∩ Pq = Pk with r1r = q1q = k, then
by Lemma 2.17, we have

TrE∆p∩∆qT ∗r = πu([r][p, qp, q][r]
∗)

= πu([r][p][p]
∗[q]∗[q][r]∗[r][r]∗)

= πu([r][p][p]
∗[k]∗[k][r]∗)

= πu([r][p][p]
∗[r]∗[r1]

∗[r1][r][r]
∗)

= πu([r][p][p]
∗[r]∗[r1]

∗[r1])

= πu([rp, r1rp, r1])

= E∆rp∩∆r1 = E(∆p∩∆q)r .

The calculation for (v) is similar. Hence, by the universal property of C∗ts(P ),
there exists a ∗-homomorphism Ψ : C∗ts(P ) → C∗u(SP ) such that Ψ(Sp) = Tp

and Ψ(eY ) = EY for all p ∈ P and Y ∈ J (P ).
For the other direction, we claim that the map π : SP → C∗ts(P ) given by

π([p, q, r]) = SpS
∗
qSr π(0) = 0

is a representation of SP . It is straight-forward to check that π is well-defined.
Looking at Definition 2.8 and Proposition 2.19 shows that the elements of
{SpS

∗
qSr | p, q, r ∈ P, q ∈ Pp ∩ rP} multiply in the same way as the elements

of SP . The same arguments as in their proofs show that π is a represen-
tation. Hence, by the universal property, there exists a ∗-homomorphism
Φ : C∗u(SP ) → C∗ts(P ) such that Φ(Tp) = Sp and Φ(EY ) = eY for all p ∈ P
and Y ∈ J (P ). Hence Φ ◦ Ψ = IdC∗

ts(P ) and Ψ ◦ Φ = IdC∗

u(SP ), implying that
Ψ and Φ are isomorphisms. �
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3.4. C
∗,r
ts

(P ) as a reduced groupoid C*-algebra.

Lemma 3.5. Let P be an LCM monoid, and let p, q, p1, qi ∈ P for i= 1, . . . , n.
If ∆p ∩∆q =

⋃n
i=1∆pi

∩∆qi , then there exists i∈ {1, . . . ,n} such that ∆p =∆pi

and ∆q = ∆qi .

In the words of [24, Def. 2.26], J (P ) is independent.

Proof. We have that (qp, p) ∈ ∆p ∩ ∆q, so (qp, q) ∈ ∆pi
∩ ∆qi for some i ∈

{1, . . . , n}. Since (qp, p) ∈ ∆pi
∩∆qi , it must have the form (bqipix, pix) for

some b, x ∈ P ; see (18). Thus p= pix and q = bqi, which implies pP ⊆ piP and
Pq ⊆ Pqi. Lemma 2.17 and its proof then imply that ∆p ∩∆q ⊆ ∆pi

∩∆qi ,
and since the other containment is assumed, we have equality. �

Theorem 3.6. Let P be an LCM monoid, and let SP be as in (24). Then
C∗,rts (P ) ∼= C∗r (SP ) ∼= C∗r (Gu(SP ))

Proof. Define an operator T : ℓ2(∆) → ℓ2(SP ) by

T (δbxx ) = δ[x,bx,bx].

It is straight-forward to check that its adjoint is given by

T ∗(δ[p,q,r]) =

{
δqupu, qu = r for some u ∈ U(P ),

0 otherwise,

and that T ∗T = Idℓ2(∆) so that T is an isometry. Now define h : B(ℓ2(SP )) →

B(ℓ2(∆)) by h(a) = T ∗aT . If we have p, q, r ∈ P with q ∈ Pp ∩ rP , then

h(Λ([p, q, r]))δbxx

= T ∗Λ([p])Λ([q]∗)Λ([r])Tδbxx

= T ∗Λ([p])Λ([q]∗)Λ([r])δ[x,bx,bx]

=

{
T ∗Λ([p])Λ([q]∗)δ[rx,bx,bx], b ∈ Pr,

0 otherwise

=

{
T ∗Λ([p])δ[q1,bx,bx], b ∈ Pr and rx = qq1,

0 otherwise

=

{
T ∗δ[pq1,bx,bx], b ∈ Pr, rx = qq1, and bx ∈ Ppq1,

0 otherwise

=

{
δbxpq1 , b ∈ Pr, rx = qq1, and bx ∈ Ppq1,

0 otherwise

= JpJ
∗
q Jrδ

bx
x .

Hence, restricted to the dense ∗-subalgebra generated by Λ(SP ), h is multi-
plicative and preserves adjoints, so is a ∗-homomorphism there. As defined,
h is continuous, and its image is a dense subalgebra of C∗,rts (P ), so h extends
to a ∗-homomorphism h : C∗r (SP ) → C∗,rts (P ). This ∗-homomorphism must be
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surjective since h(C∗r (SP )) is a C*-algebra, hence closed, and contains a dense
subalgebra of C∗,rts (P ).

To show injectivity, we use conditional expectations. Let E∆ : B(ℓ2(∆)) →
ℓ∞(∆) be the canonical faithful conditional expectation determined by the
formula 〈E∆(a)δ

bx
x , δbxx 〉 = 〈a(δbxx ), δbxx 〉. Here we are identifying ℓ∞(∆) with

the subalgebra of B(ℓ2(∆)) of operators determined by pointwise multiplication
by bounded functions. We claim that

E∆(JpJ
∗
q Jr) =

{
JpJ

∗
q Jr, q = rp,

0 otherwise.

Indeed, from the definition of E∆, we see that E∆(JpJ
∗
q Jr) will be zero unless

JpJ
∗
q Jr fixes some δbxx . This occurs when x = pq1, where rx = qq1. But then

qq1 = rx = rpq1, which implies q = rp. To finish the claim, then we should
show that if q = rp, then E∆(JpJ

∗
rpJr) = JpJ

∗
rpJr, but this is immediate.

Since SP is E*-unitary, there is also a conditional expectation on C∗r (SP )
onto the commutative C*-algebra D(SP ) generated by Λ(E(SP )) (see [33,
Prop. 3.7]). It is given on generators by

E(Λ(s)) =

{
Λ(s), s ∈ E(SP ),

0 otherwise.

A short calculation shows that h ◦ E = E∆ ◦ h.
Finally, if h(a) = 0, then h(a∗a) = 0, and so E∆(h(a

∗a)) = 0. Thus we have
h(E(a∗a)) = 0, but [33, Prop. 3.5] and Lemma 3.5 combine to show that h is
injective on the image of E, hence E(a∗a) = 0. Since E is faithful, a = 0, so h
is injective. This establishes the first isomorphism.

The second isomorphism is standard; see [34, 33]. �

3.7. The boundary quotient. The results of [39] suggest that the natural
boundary quotient for C∗ts(P ) should be the tight C*-algebra of SP . Hence we
take this to be the definition of the boundary quotient.

Definition 3.8. Let P be an LCMmonoid, and let SP be as in (24). We define
the boundary quotient of C∗ts(P ), denoted Qts(P ), to be the tight C*-algebra
of SP ,

Qts(P ) := C∗tight(SP ).

Here we always have a conditional expectation onto the diagonal subalgebra.

Proposition 3.9. Let P be an LCM monoid. Then the map ϕ : Qts(P ) →
Qts(P ) defined on generators of Qts(P ) by

ϕ(πt([p, q, r])) =

{
πt([p, rp, r]) if q = rp,

0 otherwise,

extends to a conditional expectation onto the subalgebra of Qts(P ) generated
by πt(E(SP )).
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Proof. By Lemma 2.24, the tight groupoid is Hausdorff. Since Gtight(SP ) is
second countable and étale, we know from [35] that there is a conditional expec-
tation from C∗tight(SP ) to C(Gtight(SP )

(0)) which is given on Cc(Gtight(SP )) by

function restriction, f 7→ f |Gtight(SP )(0) . On the generators (which are elements
of Cc(Gtight(SP ))), the given map ϕ is exactly restriction to Gtight(SP )

(0) =

Êtight(SP ), which is the C*-algebra generated by πt(E(SP )). �

Proposition 3.10. Let P be an LCM monoid, and suppose that P embeds
into an amenable group G. Then C∗ts(P ) and Qts(P ) can be realized as partial
crossed products of commutative C*-algebras by G, and hence are nuclear.

Proof. Let SP be as in (24), and define

ψ : S×P → G, ψ([p, q, r]) = pq−1r.

It is straight-forward to check that ψ is well-defined. Suppose that we have
p, q, r, a, b, c ∈ P such that [p, q, r][a, b, c] 6= 0. Then, by (25), there exist
k, a1, q1, l, r1, b1 ∈ P such that raP ∩ qP = kP , Pra ∩ Pb = Pl, and

raa1 = qq1 = k,(30)

r1ra = b1b = l,(31)

and [p, q, r][a, b, c] = [pq1, r1raa1, b1c]. Hence

ψ([p, q, r][a, b, c]) = ψ[pq1, r1raa1, b1c]

= pq1(r1raa1)
−1b1c

= pq1a
−1
1 a−1r−1r−11 b1c

= p(raa1q
−1)−1r−11 b1c

= pq−1r−11 b1c since raa1q
−1 = q by (30)

= pq−1rab−1c since r−11 b = rab−1 by (31)

= ψ[p, q, r]ψ[a, b, c]

So ψ is multiplicative away from zero. Furthermore, if ψ[p, q, r] = 1G, we
have q−1 = p−1r−1, which implies q = rp, and so [p, q, r] is an idempotent.
Hence ψ is what is usually termed an idempotent pure prehomomorphism of
the inverse semigroup SP , and so, by [26, Cor. 3.4] (see also [27]), both C∗ts(P ) =
C∗(SP ) and Qts(P ) = C∗tight(SP ) can be expressed as partial crossed products

of commutative C*-algebras by G. Since G is amenable, the conclusion follows
from [26, Cor. 3.4] (see also [14]). �

4. Examples

4.1. Free semigroups. We retain notation from Example 2.12 above. Let X
be a finite set, and let X∗ be the free semigroup over X . We show that the
boundary quotient Qts(X

∗) is isomorphic to the crossed product associated to
the two-sided full shift over X .
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For x ∈ X∗ ∪XN and m,n ∈ N with m < n, define

x[m,n] := xmxm+1 · · ·xn,

x[n] := x[1,n].

For α ∈ X∗, we also let

←−α := α|α|α|α|−1 · · ·α2α1.

If x ∈ XN, the set

ξx = {x[n]X
∗ | n ∈ N} ∪ {X∗}

is an ultrafilter in the semi-lattice X∗r of principal right ideals. Likewise,

ηx = {X∗←−−x[n] | n ∈ N} ∪ {X∗}

is an ultrafilter in the semi-lattice X∗l of principal left ideals. Furthermore,
the map x 7→ ξx (resp. x 7→ ηx) is a homeomorphism from XN onto Ê∞(X∗r ) =

Êtight(X
∗
r ) (resp. onto Ê∞(X∗l ) = Êtight(X

∗
l )). Referring to (27) and (28), we

have

Dl
α = {η←−αx | x ∈ XN}, Dr

α = {ξαx | x ∈ XN}.

If α ∈ X∗, x ∈ Êtight(X
∗
r ), and y ∈ Êtight(X

∗
l ), then

αξx = ξαx, ηy
←−α = ηαy.

We view XN ×XN as the Cantor space of bi-infinite sequences in X , and so,
for x, y ∈ XN, we use the identification

(32) (x, y) = . . . x3x2x1.y1y2y3 . . . ,

where we are dropping the 0th entry for convenience. For α, β ∈ X∗, let

C(α, β) = {(αx, βy) | x, y ∈ XN}.

Sets of this form generate the product topology on XN × XN, and they are
clopen in this topology.

In identifying Êtight(X
∗
l ) × Êtight(X

∗
r ) with XN ×XN, we get an action of

SX∗ on XN ×XN. Since X∗ has no invertible elements, a given [α, β, γ] ∈ SX∗

is a one-element equivalence class. For such an element, we have that β =
α1α = γγ1 for some α1, γ1 ∈ X∗. Then, referring to (29), the action of SX∗ on
XN ×XN is given by

θ[α,β,γ] : C(←−γ, γ1) → C(←−α1, α), θ[α,β,γ](
←−γx, γ1y) = (←−α1x, αy).

When viewed with the identification given in (32), the map is given by

θ[α,β,γ](. . . x2x1

β︷︸︸︷
γ.γ1 y1y2 . . . ) = . . . x2x1

β︷︸︸︷
α1.α y1y2 . . . .

In words, an element [α, β, γ] being in SX∗ indicates that γ is a prefix of β
and α is a suffix of β. Then θ[α,β,γ] acts on two-sided infinite sequences which
have the word β at the origin situated so that the prefix γ is to the left of the
origin. The map θ[α,β,γ] then shifts this sequence so that the suffix α is to the
right of the origin.
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Lemma 4.2. The map h : S×X∗ → Z given by

h[α, β, γ] = |β| − |α| − |γ|

is an idempotent-pure prehomomorphism.

Proof. Let p, q, r, a, b, c ∈ X∗, and suppose that [p, q, r][a, b, c] 6= 0. Then (25)
implies there exist a1, q1, r1, b1 ∈ X∗ such that raa1 = qq1 and r1ra = b1b
and [p, q, r][a, b, c] = [pq1, r1raa1, b1c]. Then, since |r1ra| − |b1| = |b|, |a1| =
|qq1| − |r| − |a|, and |qq1| − |q1| = |q|, we have

h([p, q, r][a, b, c]) = |r1raa1| − |pq1| − |b1c|

= |r1ra| + |a1| − |pq1| − |b1| − |c|

= |b|+ |a1| − |pq1| − |c|

= |b|+ |qq1| − |r| − |a| − |p| − |q1| − |c|

= |b|+ |q| − |r| − |p| − |c| − |a|

= h[p, q, r] + h[a, b, c].

Furthermore, if h[p, q, r] = 0, we have that |q|= |p|+ |r|, and together with the
fact that q ∈X∗p ∩ rX∗, we have that q = rp so that [p, q, r] is an idempotent.

�

The left shift map σ : XN → XN is the homeomorphism given by

σ(x, y) = (y1x, y2y3 · · · ) = . . . x3x2x1y1.y2y3 . . . .

Lemma 4.2 and the discussion before it show that

θs(x, y) = σh(s)(x, y), s ∈ S×X∗ .

Let Gσ be the transformation groupoid associated to the Z action on XN ×XN

so that
Gσ = {(n, (x, y)) | n ∈ Z, x, y ∈ XN}.

Theorem 4.3. Let X be a finite set. and let X∗ be the free monoid on X.
Then the tight groupoid associated to SX∗ is isomorphic to Gσ. In particular,

Qts(X
∗) ∼= C(XN ×XN)⋊σ Z.

Proof. Define Φ : Gtight(SX∗) → Gσ by

Φ([s, (x, y)]) = (h(s), (x, y)).

We first show Φ is well-defined. Suppose that [s, (x, y)] = [t, (x, y)], which
means there is an idempotent e such that se = te. Since h(e) = 0 for every
idempotent e, we have

h(s) = h(s) + h(e) = h(se) = h(te) = h(t),

which implies Φ([s, (x, y)]) = Φ([t, (x, y)]).
Given [t, θs(x, y)], [s, (x, y)] ∈ Gtight(SX∗), we have

Φ([t, θs(x, y)][s, (x, y)]) = Φ([ts, (x, y)])

= (h(ts), (x, y))

Münster Journal of Mathematics Vol. 15 (2022), 241–278



270 Charles Starling and Ilija Tolich

= (h(t) + h(s), (x, y))

= (h(t), σh(s)(x, y))(h(s), (x, y))

= (h(t), θs(x, y))(h(s), (x, y))

= Φ([t, θs(x, y)])Φ([s, (x, y)]),

Φ([s, (x, y)]−1) = Φ([s∗, θs(x, y)])

= (h(s∗), σh(s)(x, y))

= (−h(s), σh(s)(x, y))

= (h(s), (x, y))−1

= Φ([s, (x, y)])−1,

which shows that Φ is a groupoid homomorphism.
To show that Φ is injective, we suppose that Φ([s, (x, y)]) = Φ([t, (z, w)]),

which implies (x, y) = (z, w) and h(s) = h(t). Since the domains of θs and θt
contain a common ultrafilter, this implies s∗st∗t 6= 0, and so st∗ and ts∗ are
both nonzero. But then, by Lemma 4.2, we have h(st∗) = h(s) − h(t) = 0,
which implies st∗ is an idempotent (and is hence equal to its adjoint ts∗). We
then have

st∗ts∗s = ts∗ts∗s = ts∗s = tt∗ts∗s = ts∗st∗t,

so taking e = t∗ts∗s = s∗st∗t in the transformation groupoid definition gives
[s, (x, y)] = [t, (x, y)].

To show that Φ is surjective, let g = (n, (x, y)) ∈ Gσ. If n = 0, then we have
Φ(1, (x,y)) = g. If n> 0, then Φ([ǫ,x[n], ǫ], (x,y)) = (|x[n])|, (x,y)) = g. If n < 0,
then Φ([x[n], x[n], x[n]], (x, y)) = (−|x[n])|, (x, y)) = g. Hence Φ is surjective.

Finally, if Θ(s, U) is a basic open set in Gtight(SX∗), we have Φ(Θ(s, U)) =
{h(s)} × U , which is clearly open in Gσ, so that Φ is an open map. On the
other hand, if U ⊆ XN ×XN is open and n ∈ Z, we have

Φ−1({n} × U) =
⋃

s∈h−1(n)

Ds ∩ U,

which is open. Hence Φ is a homeomorphism, and we are done. �

Remark 4.4. The existence of an idempotent-pure prehomomorphism into
Z implies that Gtight(SX∗) can be expressed as a partial action groupoid Z ⋉

Êtight(SX∗); see [26, Cor. 3.4] and [27]. In this case, the action ends up being
a full action because the domains of the elements of h−1(n) have union equal

to the whole of Êtight(SX∗).

Remark 4.5. Recall from [25, Sec. 8.2] that the boundary quotient Q(X∗) of
Li’s C∗(X∗) is canonically isomorphic to O|X|, which is purely infinite and sim-
ple. In contrast, our construction applied to the free semigroup gives something
much different—the crossed product C(XN ×XN) ⋊ Z is far from simple (as
the full shift has many periodic points and is hence not minimal). In addition,
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the full shift has many invariant measures which in turn gives C(XN ×XN)⋊Z

many traces, making it stably finite.

4.6. Self-similar actions. To a self-similar action (G,X) as defined in Ex-
ample 2.13, Nekrashevych associated a C*-algebra O(G,X) universal for a set
of isometries {sx | x ∈ X} and a set of unitaries {ug | g ∈ G} satisfying
(SS1)

∑
x∈X sxs

∗
x = 1 and s∗xsy = 0 for x 6= y,

(SS2) uguh = ugh for all g, h ∈ G,
(SS3) u∗g = u−1g for all g ∈ G,
(SS4) ugsx = sg·xug|x for all g ∈ G, x ∈ X .

Let (G,X) be a pseudo-free self-similar action. To make what follows more
readable, we will write

P := X∗ ⊲⊳ G.

By Lemma 2.15, P is an LCM monoid. In what follows, we also assume that
(X,G) is recurrent. Although this is not needed to make P an LCM monoid, it
does seem to be satisfied by many important examples. The group of invertible
elements is U(P ) = {(ǫ, g) | g ∈ G} and readily identified with G.

By Lemma 2.16, we have that Pl is linearly ordered by inclusion; this has
some important consequences for the tight C*-algebra. Firstly, its space of
ultrafilters is a singleton, so the space of ultrafilters of E(SP ) can be identified
with (̂Pr)tight

∼=XN. Secondly, given two nonempty elements of Pl, one is dense
in the other (recall that e is dense in f if e≤ f and g ≤ f implies ge 6= 0.) This
means that [1, p, p] is dense in [1, 1, 1] for all p ∈ P , and so, by [13, Prop. 2.10],

π[1, p, p] = π(1) for any tight representation π : SP → A in a C*-algebra A.

So the tight C*-algebra of SP does not see its action on the (space of ultrafilters
of the) left ideals, leaving only its action on the (space of ultrafilters of the)
right ideals. It is this action which gives Nekrashevych’s O(G,X). Evidence is
mounting that C∗tight(SP ) ∼= O(G,X), and this indeed ends up being the case.
In the remainder of this paper, we prove this isomorphism by showing that the
underlying groupoids are isomorphic, although it is possible to prove it using
the universal properties of the algebras.1

Lemma 4.7. Let (G,X) be a pseudo-free and recurrent self-similar action, let
P = X∗ ⊲⊳ G, and let SP be as in (22). Then

E(SP ) = {[(α, 1G), (α, 1G), 1][1, (β, 1G), (β, 1G)] | α, β ∈ X∗} ∪ {0}.

Furthermore, we have that

[(α, 1G), (α, 1G), 1] = [(δ, 1G), (δ, 1G), 1] ⇐⇒ α = δ,(33)

[1, (β, 1G), (β, 1G)] = [1, (γ, 1G), (γ, 1G)] ⇐⇒ |β| = |γ|.(34)

Proof. For the first statement, it is enough to show that each idempotent can
be written in the given form since each given element is clearly an idempotent.
Suppose [(α, g), (β, h)(α, g), (β, h)] = [(α, g), (α, g), 1][1, (β, h), (β, h)] ∈ E(SP ).

1We took this approach in an earlier preprint version of this work; see 2001.00156 v3 on
the arXiv.
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Since (G,X) is recurrent, we can find k ∈ G such that k|β = h−1, and since
U(X∗ ⊲⊳ G) = {ǫ} ×G, we have

[(α, g), (α, g), 1] = [(α, g)(ǫ, g−1), (α, g)(ǫ, g−1), 1] = [(α, 1G), (α, 1G), 1)],

[1, (β, h), (β, h)] = [1, (ǫ, k)(β, h), (ǫ, k)(β, h)] = [1, (k · β, 1G), (k · β, 1G)].

For (33), if [(α, 1G), (α, 1G), 1] = [(δ, 1G), (δ, 1G), 1], then in particular, we can
find g ∈ G such that (α, g) = (δ, 1G), and so α = δ. The other implication is
clear.

For (34), if [1, (β,1G), (β,1G)] = [1, (γ,1G), (γ,1G)], then we can find g,h∈G
with (ǫ, g) = 1, (h · β, h|βg) = (γ, 1G) and (h · β, h|β) = (γ, 1G); these equa-
tions imply |β| = |γ|. On the other hand, if |β| = |γ|, we use the fact that
(G, X) is recurrent to find h ∈ G such that h · β = γ and h|β = 1G so that
[1, (β, 1G), (β, 1G)] = [1, (ǫ, h)(β, 1G), (ǫ, h)(β, 1G)] = [1, (γ, 1G), (γ, 1G)]. �

In light of the above, we will write

Aα := [(α, 1G), (α, 1G), 1], α ∈ X∗,

Bn := [1, (β, 1G), (β, 1G)], β ∈ Xn,

so that E(SP ) = {AαBn | α ∈ X∗, n ≥ 0} ∪ {0}. Note also that this means
[(β,g)]∗[(β,g)] =B|β| for all g ∈G, and thatBnBm =Bmax{m,n} for allm,n≥ 0.

Lemma 4.8. Let (G,X) be a pseudo-free and recurrent self-similar action, let
P = X∗ ⊲⊳ G, and let SP be as in (24). Then

SP = {[(α, g)][(γ, 1G)]
∗Bn | α, γ ∈ X∗, g ∈ G, n ≥ 0} ∪ {0}.

Furthermore, [(α, g)][(γ, 1G)]
∗Bn = [(δ, h)][(σ, 1G)]

∗Bm if and only if α = δ,
g = h, γ = σ, and n = m.

Proof. We first show that every element can be written in the form

(35) [(α, g), (βγ, 1G), (β, 1G)] for some α, β, γ ∈ X∗, |βγ| ≥ |α|.

Note that |βγ| ≥ |α| is equivalent to saying (βγ,1G) ∈ P (α, g) by Lemma 2.15.
Take [(α, g), (β, h), (γ, k)] ∈ SP . Taking u = (ǫ, h−1) and v = 1 in (23)

and renaming variables shows we can assume, without loss of generality, that
h = 1G. We can also assume that γ is a prefix of β since (β, 1G)P ⊆ (γ, k)P .
Hence, up to renaming variables, our generic element of SP can be taken in
the form [(α, g), (βγ, 1G), (β, k)]. Since (G,X) is recurrent, there exists a ∈ G
such that a|β = k−1. Then taking u = (ǫ, (a|βγ)

−1) and v = (ǫ, a) in (23) gives
that

[(α, g), (βγ, 1G), (β, k)] = [(α, g)u, v(βγ, 1G)u, v(β, k)]

= [(α, g(a|βγ)
−1), (a · (βγ), 1G), (a · β, 1G)],

which is of the form (35) since a · β is a prefix of a · (βγ).
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Now suppose we have an element in the form (35). We have two possibilities.
If |γ| ≥ |α|, then [(α, g), (γ, 1G), 1] ∈ SP , and so we have

[(α, g)][(γ, 1G)]
∗B|β| = [(α, g), (γ, 1G), 1][1, (β, 1G), (β, 1G)]

= [(α, g), (βγ, 1G), (β, 1G)]

with |βγ| ≥ |γ| ≥ |α|.
On the other hand, if |γ| < |α|, we cannot proceed as above because the

element [(α, g), (γ,1G),1] is not in SP . However, one can check using (25) that

[(α, g)][(γ, 1G)]
∗ = [(α, g), (α, g), (α, g)][1, (γ, 1G), 1] = [(α, g), (α, g), (ξ, k)],

where ξ is the prefix of α of length |α| − |γ| and k ∈ G satisfies k|γ = 1G and
k · γ is the suffix of α of length |γ| (we can always find such a k because (G,X)
is recurrent). Note that |βγ| ≥ |α| and |ξ| + |γ| = |α| implies |β| ≥ |ξ|. Thus
we can compute

[(α, g), (α, g), (γ, k)][1, (β, 1G), (β, 1G)] = [(α, g), (β, 1G)(γ, 1G), (β, 1G)]

= [(α, g), (βγ, 1G), (β, 1G)]

using (25) with p = q = (α, g), r1r = b = c = (β, 1G), and a = q1 = b1 = 1. So,
in either case, we have written a generic element of SP in the claimed form.

To prove the second statement, if we have that [(α, g), (βγ, 1G), (β, 1G)] =
[(δ, h), (στ, 1G), (στ, 1G)], then there exist s, t ∈ G such that

(α, g) = (δ, h)(ǫ, s), (βγ, 1G) = (ǫ, t)(στ, 1G)(ǫ, s), (β, 1G) = (ǫ, t)(σ, 1G).

The last equation implies t · σ = β (establishing |σ| = |β|) and t|σ = 1G. To-
gether with the second equation, this implies τ = γ and s = 1G, and hence, by
the first equation, we have α = δ and g = h.

On the other hand, since (G,X) is recurrent if |σ| = |β|, we can find t ∈ G
such that t · σ = β and t|σ = 1G, and so the previous calculation shows

[(α, g), (βγ, 1G), (β, 1G)] = [(δ, h), (στ, 1G), (στ, 1G)]. �

Since the set {Bn | n ≥ 0} is linearly ordered, it admits only one ultrafilter.
Hence, referring to (29) and its section, we can identify the space of ultrafilters
of E(SP ) with XN. The action of SP viewed through this identification is then
given by

θ[(α,g)] : X
N → C(α), θ[(α,g)](x) = α(g · x)

with Bn = IdXN for all n. More generally, we have

θ[(α,g)][(γ,1G)]∗Bn
: C(γ) → C(α), θ[(α,g)][(γ,1G)]∗Bn

(γx) = α(g · x).

It was proven in [16] that O(G,X) arises from the tight groupoid of another
inverse semigroup associated to (G,X). We show that the two groupoids are
isomorphic, which will then imply C∗tight(SP ) ∼= O(G,X).

The inverse semigroup defined in [16] is given by

(36) S(G,X) = {(α, g, β) | α, β ∈ X∗, g ∈ G} ∪ {0}
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with inverse given by (α, g, β)∗ = (β, g−1, α) and product given by

(37) (α, g, γ)(δ, k, σ) =





(α(g · γ1), g|γ1 , σ), δ = γγ1,

(α, g(k−1|δ1)
−1, σ(k−1 · δ1)), γ = δδ1,

0, δX∗ ∩ γX∗ = ∅,

and all products involving 0 equal to 0.

Lemma 4.9. Let (G,X) be a pseudo-free and recurrent self-similar action, let
P =X∗ ⊲⊳ G, let SP be as in (24), and let S(G,X) be as in (36). Then the map
ϕ : SP → S(G,X) defined by

ϕ([(α, g)][(γ, 1G)]
∗Bn) = (α, g, β), ϕ(0) = 0

is an inverse semigroup homomorphism.

Proof. Lemma 4.8 shows that ϕ is well-defined. First we claim that

(38) Bn[(α, g)] = [(α, g)]Bn+|α|, (α, g) ∈ P, n ≥ 0.

Picking some β ∈ Xn, we have

Bn[(α, g)] = [1, (β, 1G), (β, 1G)][(α, g), (α, g), (α, g)]

= [(α, g), (βα, g), (βα, g)]

= [(α, g)][(βα, g)]∗[(βα, g)]

= [(α, g)]Bn+|α|

with the second line obtained from (25) with p,a1, r1 = 1, a, b, c, q1 = (α,g), and
q = r = b1 = (β, 1G). Since we always have [(α, g)] = [(α, g)]B|α|, this implies
that

[(α, g)]Bm = Bmax{0,m−|α|}[(α, g)], (α, g) ∈ P, m ≥ 0.

In particular,

Bm[(α, g)]∗ = ([(α, g)]Bm)∗ = (Bmax{0,m−|α|}[(α, g)])
∗(39)

= [(α, g)]∗Bmax{0,m−|α|}.

Now we show

(40) [(γ, 1G)]
∗[(δ, 1G)] =





[(γ1, 1G)]B|δ|, δ = γγ1,

[(δ1, 1G)]
∗B|δ| γ = δδ1,

0 otherwise,

γ, δ ∈ X∗, g ∈ G.

If δ = γγ1, we have

[(γ, 1G)]
∗[(δ, 1G)] = [(γ, 1G)]

∗[(γ, 1G)][(γ1, 1G)] = B|γ|[(γ1, 1G)]

= [(γ1, 1G)]B|γ|+|γ1| = [(γ1, 1G)]B|δ|

by (38). If γ = δδ1, then

[(γ, 1G)]
∗[(δ, 1G)] = [(δ1, 1G)]

∗[(δ, 1G)]
∗[(δ, 1G)] = [(δ1, 1G)]

∗B|δ|

by (38). If neither of the above are true, then AγAδ = 0, which implies that
[(γ, 1G)]

∗[(δ, 1G)] = [(γ, 1G)]
∗AγAδ[(δ, 1G)] = 0. This establishes (40).
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We now give a formula for the product of two arbitrary elements. For
α, γ, δ, σ ∈ X∗, g, k ∈ G, and m, n ≥ 0, let M = max{n + |δ| − |σ|, m}, and
label our two arbitrary elements

C = [(α, g)][(γ, 1G)]
∗Bn, D = [(δ, k)][(σ, 1G)]

∗Bm.

Then we have

(41) CD =





[(α(g · γ1), g|γ1)][(σ, 1G)]
∗BM , δ = γγ1,

[(α, g(k−1|δ1)
−1)][(σ(k−1 · δ1), 1G)]

∗BM , γ = δδ1,

0 otherwise.

We show the case γ = δδ1; the other case is similar but more straight-forward.
Note that Bn[(δ, k)][(σ,1G)]

∗Bm = [(δ, k)][(σ,1G)]
∗Bmax{n+|δ|−|σ|,0}Bm, so this

is equal to [(σ, 1G)]
∗BM . Thus

CD = [(α, g)][(γ, 1G)]
∗[(δ, k)][(σ, 1G)]

∗BM

= [(α, g)][(δ1, 1G)]
∗B|δ|[(ǫ, k)][(σ, 1G)]

∗BM by (40)

= [(α, g)][(δ1, k)]
∗[(ǫ, k−1)]∗[(σ, 1G)]

∗B|δ|−|σ|BM by (38), (39)

= [(α, g)][(σ, 1G)(ǫ, k
−1)(δ1, 1G)]

∗BM

= [(α, g)][(σk−1 · δ1, k
−1|δ1)]

∗BM

= [(α, g)][(ǫ, k−1|δ1)]
∗[(σk−1 · δ1, 1G)]

∗BM

= [(α, g)][(ǫ, (k−1|δ1)
−1)][(σk−1 · δ1, 1G)]

∗BM

= [(α, gk−1|−1δ1
)][(σ(k−1 · δ1), 1G)]

∗BM .

In the above, we have used the easy-to-check fact that [(ǫ, k)]∗ = [(ǫ, k−1)].
One also uses this to show

([(α, g)][(γ, 1G)]
∗)∗ = [(γ, 1G)][(α, g)]

∗ = [(γ, 1G)][(ǫ, g)]
∗[(α, 1G)]

∗

= [(γ, g−1)][(α, 1G)]
∗.

Comparing this and (41) with (37) and the inverse above, it shows that ϕ is
an inverse semigroup homomorphism. �

Theorem 4.10. Let (G,X) be a pseudo-free and recurrent self-similar action,
let P = X∗ ⊲⊳ G, let SP be as in (24), and let S(G,X) be as in (36). Then the
map Φ : Gtight(SP ) → Gtight(S(G,X)) defined by

Φ[s, x] = [ϕ(s), x], s ∈ SP , x ∈ Ds∗s,

is an isomorphism of topological groupoids. In particular,

Qts(P ) ∼= O(G,X).

Proof. If [s, x] = [t, x], then there exists a prefix α of x such that sAα = tAα,
and so ϕ(s)ϕ(Aα) = ϕ(t)ϕ(Aα). Since ϕ(Aα) = (α, 1G, α) is an idempotent
and x is in its domain, [ϕ(s), x] = [ϕ(t), x] so that Φ is well-defined.

To prove that Φ is injective, suppose that we have α, γ, δ, σ ∈ X∗, x ∈ XN,
and g, k ∈ G such that Φ[[(α, g)][(γ, 1G)]

∗Bn, x] = Φ[[(δ, k)][(σ, 1G)]
∗Bm, x],
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i.e. [(α, g, γ), x] = [(δ, k, σ), x]. Then there exists a prefix µ of x with µ =
γγ1 = σσ1 and (α, g, γ)(µ, 1G, µ) = (δ, k, σ)(µ, 1G, µ). Multiplying this out
gives (α(g · γ1), g|γ1 , µ) = (δ(k · σ1), k|σ1 , µ). But then the same calculation
shows that

[(α, g)][(γ, 1G)]
∗BnAµBmax{m,n} = [(δ, k)][(σ, 1G)]

∗BmAµBmax{m,n},

and since µ is a prefix of x, we have

[[(α, g)][(γ, 1G)]
∗Bn, x] = [[(δ, k)][(σ, 1G)]

∗Bm, x]

so that Φ is injective. Surjectivity is clear, and that Φ is a groupoid homo-
morphism follows directly from Lemma 4.9. Sets of the form Ω(s, C(α)) gen-
erate the topology on Gtight(SP ), and it is straight-forward to see that Φ maps
Ω(s,C(α)) bijectively onto Ω(ϕ(s), C(α)). Since sets of this type generate the
topology on Gtight(S(G,X)), Φ is a homeomorphism.

Since Qts(P ) is by definition equal to C∗(Gtight(SP )) and O(G,X) is isomor-
phic to C∗(Gtight(S(G,X))) by [16, Cor. 6.4], we have the second statement. �
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Math. 170, Birkhäuser Boston, Inc., Boston, MA, 1999. MR1724106

[35] J. Renault, A groupoid approach to C∗-algebras, Lecture Notes in Math. 793, Springer,
Berlin, 1980. MR0584266
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Birkhäuser/Springer, Cham, 2020 2020. MR4321941

[37] N. Stammeier, On C∗-algebras of irreversible algebraic dynamical systems, J. Funct.
Anal. 269 (2015), no. 4, 1136–1179. MR3352767

Münster Journal of Mathematics Vol. 15 (2022), 241–278



278 Charles Starling and Ilija Tolich

[38] N. Stammeier, A boundary quotient diagram for right LCM semigroups, Semigroup
Forum 95 (2017), no. 3, 539–554. MR3735641

[39] C. Starling, Boundary quotients of C∗-algebras of right LCM semigroups, J. Funct.
Anal. 268 (2015), no. 11, 3326–3356. MR3336727

[40] I. Tolich, C*-algebras generated by semigroups of partial isometries, PhD thesis, Uni-
versity of Otago, Otago, 2017.

Received August 10, 2021; accepted May 5, 2022

Charles Starling
Carleton University, School of Mathematics and Statistics,
4215 Herzberg Laboratories,
1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
E-mail: cstar@math.carleton.ca
URL: http://people.math.carleton.ca/~cstar/

Ilija Tolich
University of Otago, Department of Mathematics and Statistics,
PO Box 56, Dunedin 9054, New Zealand
E-mail: itolich@maths.otago.ac.nz

Münster Journal of Mathematics Vol. 15 (2022), 241–278


