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Abstract. We introduce a subclass of recursive subhomogeneous algebras, in which each
of the pullback maps is diagonal in a suitable sense. We define the notion of a diagonal
map between two such algebras and show that every simple inductive limit of these algebras
with diagonal bonding maps has stable rank one. As an application, we prove that, for any
infinite compact metric space T and minimal homeomorphism h : T → T , the associated
dynamical crossed product C∗(Z, T, h) has stable rank one. This affirms a conjecture of
Archey, Niu, and Phillips. We also show that the Toms–Winter Conjecture holds for such
crossed products.

1. Introduction

With the aim of formulating a notion of dimension for a C∗-algebra, in [20],
Rieffel introduced the concept of stable rank. The stable rank of a unital C∗-
algebra A is the least natural number n for which the set of all n-tuples of A
that generate A as a left ideal is dense in An; if no such integer exists, the
stable rank is said to be ∞. Of particular note is the instance when the stable
rank is one. In [20, Prop. 3.1], it is shown that a unital C∗-algebra has stable
rank one if and only if the set of invertible elements is dense within the algebra.
An important problem in the field has been to determine when a C∗-algebra
has stable rank one.

In [21], Rørdam supplied one of the first major results concerning stable
rank. He showed that the tensor product of a simple unital stably finite C∗-
algebra and a UHF algebra has stable rank one. This was followed by a result
of Dădărlat, Nagy, Némethi, and Pasnicu, who proved in [5] that a simple
unital inductive limit of full matrix algebras (those of the form C(X,Mn(C))
for a compact Hausdorff space X) always has stable rank one assuming there is
a uniform upper bound on the dimensions of the base spaces in the finite stage
algebras. Later, in [22], Rørdam also showed that every simple unital finite C∗-
algebra that absorbs the Jiang–Su algebra, Z, tensorially has stable rank one.
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Villadsen proved in [24] that the converse to the result in [5] does not hold
by constructing a unital simple limit of full matrix algebras, whose base space
dimensions were not uniformly bounded above, yet which nonetheless still had
stable rank one. He went on, in [25], to construct a class of simple unital
AH algebras—inductive limits of homogeneous C∗-algebras (those whose irre-
ducible representations all have the same dimension)—of arbitrary stable rank,
thereby affirming the subtleties present in the problem of stable rank.

Given compact metric spaces X and Z, together with continuous func-
tions λ1, . . . , λk : Z → X , there is a naturally induced ∗-homomorphism from
C(X,Mn(C)) to C(Z,Mnk(C)) given by

f 7→ diag(f ◦ λ1, . . . , f ◦ λk).

These induced maps between full matrix algebras are referred to as diagonal.
They have been used to construct a rich class of examples in the field, including
those of Goodearl in [11] and Villadsen in [24].

Just over a decade ago, another stable rank one result was obtained by
Elliott, Ho, and Toms in [8]. Their paper, which stemmed from Ho’s work
in [12], showed that the condition of bounded dimension in [5] could be replaced
with the assumption that all of the bonding maps in the inductive limit are
diagonal.

In this present paper, we extend the AH stable rank one result of Elliott,
Ho, and Toms in [8] to a suitable class of approximately subhomogeneous
(ASH) algebras—inductive limits of subhomogeneous C∗-algebras (those whose
irreducible representations all have dimension at most some fixed integer).

The building-block algebras in the AH setting are full matrix algebras, whose
primitive quotients are intrinsically matrix unit compatible. This internal com-
patibility is crucial to obtaining the stable rank one result in [8]. To achieve
this for the subhomogeneous building blocks in the ASH setting, it is necessary,
therefore, to consider only subhomogeneous algebras whose primitive quotients
fit together in a compatible (i.e., matrix unit compatible) way. We restrict our
attention to a subclass of recursive subhomogeneous algebras.

Recursive subhomogeneous algebras are a particularly tractable class of uni-
tal subhomogeneous algebras introduced by Phillips in [17], which are iterative
pullbacks of full matrix algebras. In order to ensure the aforementioned com-
patibility, it is necessary that all the pullback maps be diagonal in a suitable
sense, and we call such algebras diagonal subhomogeneous (DSH) algebras.
We are then able to define the notion of a diagonal map between two DSH
algebras, which sends each point in the spectrum of the range algebra to an
ordered list of eigenvalues in the domain algebra. It turns out that this set-up
is enough to extend the results in [8]; more specifically, every simple inductive
limit of DSH algebra with diagonal bonding maps has stable rank one (see
Theorem 3.30).

DSH algebras arise naturally in the study of dynamical crossed products.
The orbit-breaking subalgebras of crossed products introduced by Q. Lin in [13]
(see also [14, 15]) following the work of Putnam in [19] are examples of DSH
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algebras. Using our stable rank one theorem for inductive limits and results
of Archey and Phillips developed in [3], we are able to prove a conjecture of
Archey, Niu, and Phillips stated in the same paper [3, Conj. 7.2]; namely,
that, for an infinite compact metric space T and a minimal homeomorphism
h : T → T , the dynamical crossed product C∗(Z, T, h) has stable rank one (see
Corollary 3.36). Using a result of Thiel in [23], we are also able to show that, for
such crossed products, classifiability is determined solely by strict comparison,
thereby affirming the Toms–Winter Conjecture for simple dynamical crossed
products (see Corollary 3.37).

This paper is organized as follows. Section 2 is dedicated to structure and
basic properties of DSH algebras. In Section 2.1, we formally introduce the
class of DSH algebras, the notion of a diagonal map between two such alge-
bras, and we prove some basic lemmas concerning this class, which are used
throughout the remainder of the paper. The aim of Section 2.14 is to show
that quotients of DSH algebras remain DSH, and that diagonal maps between
two DSH algebras remain diagonal when passing to quotients; this allows one
to assume that the bonding maps in Theorem 3.30 are injective. Finally, in
Section 2.20, we show that every homogeneous DSH algebra is a full matrix
algebra.

Section 3 contains the main results of the paper. The proof of Theorem 3.30
is quite technical and relies on several lemmas, which are established in Sec-
tion 3.2 and Section 3.18. In Section 3.1, we outline the significance of these
lemmas and illustrate how they come together to prove Theorem 3.30 in Sec-
tion 3.29. Lastly, in Section 3.31, we discuss the significance of Theorem 3.30
in the setting of minimal dynamical crossed products, and we establish Corol-
laries 3.36 and 3.37.

Throughout the paper, we use N to denote the set of strictly positive integers
and the symbol ⊂ to denote non-strict set inclusion. Given a C∗-algebra A, we
let Â denote the set of equivalence classes of nonzero irreducible representations
of A equipped with the hull-kernel topology. If A is unital, we use 1A to
denote the unit of A. For n ∈ N, we use the shorthand Mn to refer to the
matrix algebra Mn(C). When speaking about a matrix D ∈ Mn, we denote
the (i, j)-entry of D by Di,j , and we let 1n denote the identity matrix in Mn.

2. Diagonal subhomogeneous (DSH) algebras

In this section, we introduce the class of diagonal subhomogeneous (DSH)
algebras that we deal with in this paper and examine their basic properties and
structure. In Section 2.1, we define what a DSH algebra is and the notion of
a diagonal map between two such algebras. We discuss some basic properties
and notions concerning these algebras that are used throughout the remainder
of the section and beyond. The chief purpose of Section 2.14 is to prove that,
given any inductive limit of DSH algebras with diagonal bonding maps, one
may always assume the maps in the sequence are injective.
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In [17, Cor. 1.8], Phillips shows that every unital homogeneous C∗-algebra
(regardless of its Dixmier–Douady class) has a recursive subhomogeneous de-
composition. This follows by using the pullback maps to appropriately adjoin
various pieces of the spectrum over which the algebra is locally trivial. In the
DSH setting, where the pullback maps preserve the matrix units of the prim-
itive quotients in a very strong sense, such a bonding is possible only if the
homogeneous algebra is in fact a full matrix algebra, as we show in Section 2.20.

2.1. Introductory definitions and basic properties. Let us start off by
recalling the definition of a recursive subhomogeneous algebra.

Definition 2.2 ([17, Def. 1.1]). A recursive subhomogeneous algebra is a C∗-
algebra given by the following recursive definition.
(i) If X is a compact metric space and n ≥ 1, then C(X,Mn) is a recursive

subhomogeneous algebra.
(ii) If A is a recursive subhomogeneous algebra, X is a compact metric space,

Y ⊂ X is closed, ϕ : A → C(Y, Mn) is a unital ∗-homomorphism, and
ρ : C(X,Mn) → C(Y,Mn) is the restriction ∗-homomorphism, then the
pullback

A⊕C(Y,Mn) C(X,Mn) := {(a, f) ∈ A⊕ C(X,Mn) | ϕ(a) = ρ(f)}

is a recursive subhomogeneous algebra.

Therefore, if A is a recursive subhomogeneous algebra, there are compact
metric spaces X1, . . . , Xl (the base spaces of A), closed subspaces Y1 := ∅,
Y2 ⊂ X2, . . . , Yl ⊂ Xl, positive integers n1, . . . , nl, C

∗-algebras

A(i) ⊂
i⊕

j=1

C(Xj ,Mnj
) for 1 ≤ i ≤ l,

and unital ∗-homomorphisms ϕi : A
(i) → C(Yi+1,Mni+1

) for 1 ≤ i ≤ l− 1 such
that
(i) A(1) = C(X1,Mn1

);
(ii) for all 1 ≤ i ≤ l− 1,

A(i+1) = {(a, f) ∈ A(i) ⊕ C(Xi+1,Mni+1
) | ϕi(a) = f |Yi+1

};

(iii) A = A(l).
Simply put,

A =
[
· · · [[C1 ⊕C′

2
C2]⊕C′

3
C3] · · ·

]
⊕C′

l
Cl,

where Ci := C(Xi,Mni
), C′

i := C(Yi,Mni
), and the maps ϕ1, . . . , ϕl−1 are used

in the pullback. In this case, we say the length of the composition sequence is l.
As shown in [17], the decomposition of a recursive subhomogeneous is highly
non-unique. We make the same tacit assumption adopted in that paper: unless
otherwise specified, every recursive subhomogeneous algebra comes equipped
with a decomposition of the form given above. In particular, we refer to the
number l above as the length of A.
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Since, for all 1 ≤ i ≤ l, we have A(i) ⊂
⊕i

j=1 C(Xj , Mnj
), we can view

each element f ∈ A(i) as (f1, . . . , fi), where fj ∈ C(Xj ,Mnj
) for all 1 ≤ j ≤ i.

For 1 ≤ i ≤ l and x ∈ Xi, we have the usual evaluation map evx : A → Mni

given by evx(f) := fi(x) for all f ∈ A. We let s(A) := min{n1, . . . , nl} and
S(A) := max{n1, . . . , nl}.

The chief reasons for working with recursive subhomogeneous algebras are
that they are very convenient computationally and they also allow us to carry
forward much of the structure intrinsic to a full matrix algebra. There is,
however, no restriction on the pullback maps used to join together the full
matrix algebras in the recursive decomposition. In particular, the pullback
maps need not piece together the matrix units of the various primitive quotients
in a compatible way. Therefore, in order to harness the internal matrix unit
compatible structure of a full matrix algebra, one must ensure that the pullback
maps used in the recursive decomposition preserve the matrix units of each full
matrix algebra. An effective way to achieve this is to require the pullback maps
to be diagonal in an appropriate sense, which we now make clear.

Definition 2.3 (DSH algebras). A C∗-algebra A is a diagonal subhomogeneous
(DSH) algebra (of length l) provided that it is a recursive subhomogeneous
algebra (of length l) (with a decomposition as described above), and for all
1≤ i≤ l− 1 and y ∈ Yi+1, there is a list of points x1 ∈Xi1 \ Yi1 , . . . ,xt ∈Xit \ Yit

such that, for all f ∈ A(i),

ϕi(f)(y) = diag
(
fi1(x1), . . . , fit(xt)

)
.

We say y decomposes into x1, . . . ,xt, that each xj is a point in the decomposition
of y, and that xj begins at index 1 + ni1 + · · ·+ nij−1

down the diagonal of y.
Given 1 ≤ j ≤ i and y′ ∈ Yj , we say that y′ is in the decomposition of y if there
exists a 1 ≤ k ≤ ni with the property that, for all f ∈ A(i), there are matrices
P ∈ Mk−1 and Q ∈ Mni−nj−(k−1) such that fi(y) = diag(P, fj(y

′), Q).

Whenever we work with a DSH algebra of length l, we adopt, unless other-
wise specified, the same notation for the decomposition used above. Thus, if A
is a DSH algebra of length l, we can view A as the set of all f := (f1, . . . , fl) ∈
⊕l

i=1 C(Xi,Mni
) such that, for all 1 ≤ i < l and y ∈ Yi+1,

fi+1(y) = diag
(
fi1(x1), . . . , fit(xt)

)
.

As is shown in Lemma 2.7 below, the decomposition of y is unique up to the
reindexing of identical points; that is, if y decomposes into x1, . . . , xt and
z1, . . . , zs, then s = t and, for 1 ≤ j ≤ s, xj = zj .

Definition 2.4 (Diagonal maps between DSH algebras). Given two DSH al-
gebras A1 and A2 of lengths l1 and l2 and with base spaces X1

1 , . . . , X
1
l1

and

X2
1 , . . . ,X

2
l2
, respectively, we say that a ∗-homomorphism ψ : A1 → A2 is diag-

onal provided that, for all 1 ≤ i ≤ l2 and x ∈ X2
i , there are points x1, . . . , xt
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with xj ∈ X1
ij

such that, for all f ∈ A1,

ψ(f)i(x) = diag
(
fi1(x1), . . . , fit(xt)

)
.

We say that x decomposes into x1, . . . , xt.

Note that if Y 1
1 ⊂ X1

1 , . . . , Y
1
l1
⊂ X1

l1
and Y 2

1 ⊂ X2
1 , . . . , Y

2
l2
⊂ X2

l2
are the

corresponding closed subsets of the base spaces in Definition 2.4, then, owing
to the decomposition structure of A1 and A2, we get an equivalent definition
by replacing X2

i and X1
ij
above with X2

i \ Y
2
i and X1

ij
\ Y 1

ij
, respectively. Note,

too, that, by definition, diagonal maps are automatically unital.
For the remainder of Section 2.1, let us assume that A is a DSH algebra of

length l. The following lemma provides us with a description of the spectrum
of A.

Lemma 2.5 ([17, Lem. 2.1]). The map x 7→ [evx] defines a continuous bijection

ℓ⊔

i=1

(Xi \ Yi) → Â,

(where, recall, Y1 := ∅) whose restriction to each Xi \ Yi is a homeomorphism
onto its image. In particular, every irreducible representation of A is unitarily

equivalent to evx for some x ∈
⊔ℓ

i=1(Xi \ Yi).

We often tacitly refer to a given irreducible representation evx simply as x
since we view such an element both as an irreducible representation and as
a point in Xi.

Remark 2.6. A subset D ⊂Xi \ Yi can be viewed as a subset both of Xi and

of Â. We denote by DXi the closure of D with respect to the topology on Xi.
With one or two exceptions, when speaking about open and closed subsets
of Xi in this paper, we mean with respect to the topology on Xi; such subsets
could, in general, include points in Yi, in which case they would not even be
a subset of the spectrum. In any case, for subsets of Xi \ Yi, the topology is
always made explicit.

Lemma 2.7. Suppose 2 ≤ i ≤ l and y ∈ Yi. If y decomposes into x1, . . . , xt

and z1, . . . , zs, then s = t and, for 1 ≤ j ≤ s, xj = zj.

Proof. By Lemma 2.5, A is liminary and x1 = z1 if and only if evx1
= evz1 .

Hence, if x1 6= z1, [7, Prop. 4.2.5] furnishes a function f ∈ A such that evx1
(f)

and evz1(f) are the 0 and identity matrix of appropriate sizes, respectively.
This contradicts the assumption that

(1) diag
(
evx1

(f), . . . , evxt
(f)

)
= fi(y) = diag

(
evz1(f), . . . , evzs(f)

)
.

Therefore, x1 = z1. Continuing inductively, we see that if s < t, s > t, or xj 6= zj
for some j, then equation (1) is violated. Hence, Lemma 2.7 follows. �

By Lemma 2.5 and Definition 2.3, given y ∈
⊔l

i=1 Xi, either evy is an irre-
ducible representation of A or, if y is in some Yi, evy splits up into irreducible

Münster Journal of Mathematics Vol. 15 (2022), 167–220



The stable rank of diagonal ASH algebras 173

representations of A. The following definition categorizes the elements in the
base spaces depending on the indices at which these irreducible representations
occur.

Definition 2.8. Given 1 ≤ i ≤ l and 1 ≤ k ≤ ni, we define Bi,k to be the set
of points in Xi that have an irreducible representation beginning at index k
down their diagonal. For k ≤ 0, we set Bi,k := ∅.

The following rudimentary observations about the Bi,k’s defined above will
be very helpful in the proofs of the lemmas in Section 3.2 and Section 3.18.

Lemma 2.9.

(i) Bi,1 = Xi for all 1 ≤ i ≤ l.
(ii) If 1 ≤ i ≤ l and k > 1, then Bi,k ⊂ Yi. In particular, B1,k = ∅ for k > 1.
(iii) If 2 ≤ i ≤ l and y ∈ Yi decomposes into x1 ∈ Xi1 \ Yi1 , . . . , xt ∈ Xit \ Yit ,

then y ∈ Bi,k if and only if k = 1 + ni1 + · · ·+ nij−1
for some 1 ≤ j ≤ t.

In particular, Bi,k = ∅ for all ni − (s(A) − 1) < k ≤ ni, where, recall,
s(A) := min{nj | 1 ≤ j ≤ l}.

Proof. Fix 1 ≤ i ≤ l, and suppose y ∈ Xi. If y belongs to Yi and decomposes
into x1, . . . , xt, then by Definition 2.3, x1 begins at index 1 down the diagonal
of y, and so y ∈ Bi,1. If y /∈ Yi, then by Lemma 2.5, y is irreducible and
trivially begins at index 1 down its diagonal and, moreover, cannot have any
irreducible representation beginning at any index k≥ 2. This proves (i) and (ii).
To prove (iii), suppose y belongs to Yi and decomposes into x1 ∈Xi1 \ Yi1 , . . . ,
xt ∈ Xit \ Yit . By Definition 2.3, y ∈ Bi,k if k = 1 + ni1 + · · ·+ nij−1

for some
1 ≤ j ≤ t. Since Lemma 2.7 shows that the decomposition of y is unique, it
follows that y cannot belong to any other Bi,k, which establishes (iii). �

The following lemma allows us to approximate any point in some Yi by
irreducible representations in Xi \ Yi (with respect to the topology on Xi).

Lemma 2.10. For each 2 ≤ i ≤ l, we may assume int(Yi) = ∅.

Proof. Fix 1≤ i≤ l− 1. Let Y ′
i+1 := Yi+1 \ int(Yi+1), X

′
i+1 :=Xi+1 \ int(Yi+1).

Then we have the following commutative diagram of restriction ∗-homomor-
phisms:

C(Xi+1,Mni+1
) C(Yi+1,Mni+1

)

C(X ′
i+1,Mni+1

) C(Y ′
i+1,Mni+1

).

ρ

λ τ

ρ′

Let

B(i+1) := A(i) ⊕C(Y ′

i+1,Mni+1
) C(X ′

i+1,Mni+1
),

where the connecting ∗-homomorphism is ϕ′
i := τ ◦ ϕi : A

(i) → C(Y ′
i+1,Mni+1

).

Let us show that A(i+1) is isomorphic to B(i+1). Given a ∈ A(i) and f ∈
C(Xi+1,Mni+1

) with (a, f) ∈ A(i+1), define Γ : A(i+1) → B(i+1) by Γ((a, f)) :=
(a, λ(f)). Note that ϕ′

i(a) = τ(ϕi(a)) = τ(ρ(f)) = ρ′(λ(f)) so that Γ is well
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defined. It is easy to see that Γ is a ∗-homomorphism. To see that Γ is
injective, suppose (a, f) ∈ A(i+1) with (a, λ(f)) = Γ((a, f)) = (0, 0). Then
a = 0, and so f |Yi+1

= ϕi(a) = 0, which, together with the fact that λ(f) = 0,

yields that f = 0. For surjectivity, suppose a ∈ A(i) and g ∈ C(X ′
i+1,Mni+1

)

with (a, g) ∈ B(i+1). Then ϕi(a)|Y ′

i+1
= g|Y ′

i+1
so that the function h : Xi+1 →

Mni+1
defined to be ϕi(a)(x) for x ∈ Yi+1 and g(x) for x ∈X ′

i+1 is well defined

and continuous. Moreover, ϕi(a) = h|Yi+1
, which implies (a, h) ∈ A(i+1) and

Γ((a, h)) = (a, λ(h)) = (a, g), proving surjectivity. �

The lemma following guarantees that a function in A will be invertible
provided it is an invertible matrix in every primitive quotient of A.

Lemma 2.11. Suppose f ∈ A and that, for all 1 ≤ i ≤ l and x ∈ Xi \ Yi, the
matrix fi(x) is invertible in Mni

. Then f is invertible in A.

Proof. Owing to the diagonal decomposition at points in Yi, we may assume
that fi(x) is an invertible matrix for all 1 ≤ i ≤ l and x ∈ Xi. Define g ∈
⊕l

i=1 C(Xi, Mni
) to be (g1, . . . , gl), where for 1 ≤ i ≤ l and z ∈ Xi, gi(z) :=

fi(z)
−1. Since g is the inverse of f in

⊕l
i=1 C(Xi,Mni

), to prove the lemma,
we need only to verify that g ∈ A. Suppose 1 ≤ i ≤ l − 1 and that y ∈ Yi+1

decomposes into x1 ∈ Xi1 \ Yi1 , . . . , xt ∈ Xit \ Yit . Then

gi+1(y) = fi+1(y)
−1 = diag

(
fi1(x1), . . . , fit(xt)

)−1

= diag
(
fi1(x1)

−1, . . . , fit(xt)
−1

)

= diag
(
gi1(x1), . . . , git(xt)

)

so that g ∈ A. �

This next lemma illustrates a particular circumstance in which a set which
is open in one of the base spaces of A is open when viewed as a subset of the
spectrum.

Lemma 2.12. Suppose 1 ≤ i ≤ ℓ. If U ⊂ Xi \ Yi is open with respect to
the topology on Xi and has the property that no point in U appears in the
decomposition of any point in Yj for any j > i, then U is open with respect to

the hull-kernel topology on Â.

Proof. Let x ∈ U be arbitrary. Put gj ≡ 0 for j < i, and define gi ∈ C(Xi,Mni
)

to be any function such that gi(x) 6= 0 and gi|Xi\U ≡ 0. Since Yi ⊂ Xi \ U ,
gi vanishes on Yi so that ϕi−1((g1, . . . ,gi−1))= 0= gi|Yi

; thus, (g1, . . . ,gi)∈A(i).
For j > i, set gj ≡ 0. Since no point in U is in the decomposition of any point
in Yj for any j > i, it follows inductively that g := (g1, . . . , gℓ) ∈ A. This proves

that U is open in Â. �

The final lemma in this subsection shows that if a point x ∈ Xi is not
in the decomposition of any point in some Yj , then there must be an open
neighborhood of x in Xi consisting only of points which also do not appear in
the decomposition of any point in Yj .
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Lemma 2.13. Suppose 1 ≤ i < j ≤ ℓ, and let F ⊂ Xi denote the set of points
that are in the decomposition of a point in Yj. Then F is closed in Xi.

Proof. Suppose (zn)n is a sequence of points in F converging to x ∈ Xi. For
each n ∈ N, there is a yn ∈ Yj with the property that zn is in the decompo-
sition of yn. Since Yj is compact, we may pass to a subsequence to conclude
that there is a y ∈ Yj such that yn → y. Passing to a further subsequence,
we may assume that there is a 1 ≤ k ≤ nj such that, for all n ∈ N, the rep-
resentation evzn begins at index k down the diagonal of evyn

. Suppose y
decomposes into x1 ∈ Xi1 \ Yi1 , . . . , xt ∈ Xit \ Yit . Let us show that x ∈ F
by proving it is in the decomposition of y. Let f ∈ A be arbitrary. For
each n ∈ N, there are matrices Pn ∈ Mk−1 and Qn ∈ Mnj−ni−(k−1) such that
fj(yn) = diag(Pn, fi(zn),Qn). Since limn→∞ fj(yn) = fj(y), there are matrices
P ∈ Mk−1 and Q ∈ Mnj−ni−(k−1) such that

(2) fj(y) = diag(P, fi(x), Q).

If x ∈ Yi, it follows by definition that x is in the decomposition of y. If x ∈
Xi \ Yi and x is not in the decomposition of y, then we may use [7, Prop. 4.2.5]
to find a function g ∈ A that is nonzero at x, but vanishes at all points in the
decomposition of y, which implies that gj(y) = 0 and contradicts equation (2).
Thus, x is in the decomposition of y and, hence, x ∈ F . �

2.14. Quotients of DSH algebras. In [17, Prop. 3.1], Phillips shows that
the class of (separable) recursive subhomogeneous algebras is closed under the
taking of quotients. The recursive decomposition of the quotient is not explic-
itly constructed from that of the original algebra, but rather is furnished using
a characterization of (separable) recursive subhomogeneous algebras (see [17,
Thm. 2.16]).

We show in this subsection that, associated to any quotient B of a DSH
algebra A, there is a DSH algebra (see Proposition 2.17) whose decomposition
is canonically obtained from the decomposition of A, and which is isomorphic
to B (see Proposition 2.18). We are then able to prove (see Proposition 2.19)
that the diagonality of maps between two DSH algebras is preserved when
passing to quotients, thus allowing us to assume that the bonding maps in
Theorem 3.30 are injective.

Let A be a DSH algebra of length l. Suppose we have a nonzero C∗-algebra
B and a surjective ∗-homomorphism ρ : A→B. This yields an injective single-
valued map ρ̂ : B̂ → Â given by ρ̂([π]) := [π ◦ ρ]. For 1 ≤ i ≤ l, define X ′

i :=

Xi ∩ ρ̂(B̂)Xi and Y ′
i := X ′

i ∩ Yi. Recall that these definitions make sense by
Lemma 2.5.

Lemma 2.15. ρ̂(B̂) is closed in Â.

Proof. Suppose [π] ∈ ρ̂(B̂). Then

kerπ ⊃
⋂

[σ]∈ρ̂(B̂)

kerσ =
⋂

[τ ]∈B̂

ker ρ̂([τ ]) =
⋂

[τ ]∈B̂

ker(τ ◦ ρ).
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Note that a ∈
⋂

[τ ]∈B̂ ker(τ ◦ ρ) if and only if ρ(a) ∈
⋂

[τ ]∈B̂ ker τ if and only
if ρ(a) = 0. Hence, ker π ⊃ ker ρ. Thus, the irreducible representation τ of B
given by τ(b) := π(a), where a is any lift of b under ρ, is well defined. Therefore,

[π] = [τ ◦ ρ] = ρ̂([τ ]) ∈ ρ̂(B̂) so that ρ̂(B̂) ⊂ ρ̂(B̂). �

Lemma 2.16. Suppose 1 ≤ i ≤ l and y ∈ Y ′
i . If 1 ≤ j < i and x ∈ Xj \ Yj is

in the decomposition of y, then x ∈ Xj ∩ ρ̂(B̂) ⊂ X ′
j.

Proof. Since y ∈ Y ′
i , we have y ∈ X ′

i = Xi ∩ ρ̂(B̂)Xi . Choose a sequence (zn)n
in Xi ∩ ρ̂(B̂) such that zn → y with respect to the topology on Xi. Let us show

that (evzn)n → evx, with respect to the hull-kernel topology on Â. Suppose U is

an open set in Â containing evx. Then there is a function f ∈A that is nonzero
at x, but vanishes at each point in Â \ U . Since x is in the decomposition of y,
this implies that fi(y) 6= 0. Since zn → y in Xi and since fi is continuous, there
is an n0 such that, for all n≥ n0, fi(zn) 6= 0. In particular, this means that, for

all n ≥ n0, evzn ∈ U . Therefore, evzn → evx in Â. Now, by Lemma 2.15, ρ̂(B̂)

is closed and, hence, what we have shown implies that evx ∈ ρ̂(B̂). Therefore,

x ∈ Xj ∩ ρ̂(B̂) ⊂ X ′
j. �

In the following lemma, we construct a DSH algebra from A over the base
spaces X ′

i, where the pullback maps are just restrictions of the pullback maps
in the definition of A (the ϕi’s). We show afterwards (see Proposition 2.18)
that this new DSH algebra is isomorphic to the quotient B.

Proposition 2.17. There is a DSH algebra D of length l with the following
properties:
(i) D(1) = C(X ′

1,Mn1
);

(ii) for all 1 ≤ i ≤ l, D(i) ⊂
⊕i

j=1 C(X ′
j ,Mnj

);

(iii) for all 1 ≤ i < l, the pullback map τi : D
(i) → C(Y ′

i+1,Mni+1
) is given by

τi(f)(y) := diag(fi1(x1), . . . , fit(xt)), where x1, . . . , xt are the points in the
decomposition of y coming from the definition of A;

(iv) for 1 ≤ i < l, D(i+1) = D(i) ⊕C(Y ′

i+1,Mni+1
) C(X ′

i+1,Mni+1
) with pullback

map τi;
(v) for all 1 ≤ i ≤ l, if (f1, . . . , fi) ∈ D(i), there is a (g1, . . . , gi) ∈ A(i) such

that, for all 1 ≤ j ≤ i, gj|X′

j
= fj.

Proof. Let us proceed by induction on i. Define D(1) :=C(X ′
1,Mn1

) so that (i)
holds. Since X ′

1 is closed in X1, we may extend a function in D(1) to a function
in A(1) = C(X1,Mn1

) so that (v) holds when i = 1. Now, fix 1 ≤ i ≤ l− 1, and
assume that we have definedD(1), . . . ,D(i) and τ1, . . . , τi−1 satisfying conditions
(i) to (v). Let us show how to define τi and D(i+1). Given (f1, . . . , fi) ∈ D(i),
use (v) to get (g1, . . . , gi) ∈ A(i) such that gj |X′

j
= fj for 1 ≤ j ≤ i. Define

τi : D
(i) → C(Y ′

i+1,Mni+1
) by τi((f1, . . . , fi)) := ϕi((g1, . . . , gi))|Y ′

i+1
.

To see that τi is a well-defined ∗-homomorphism satisfying (iii), suppose
(h1, . . . , hi) ∈ A(i) also restricts coordinate-wise to (f1, . . . , fi). If y ∈ Y ′

i+1

Münster Journal of Mathematics Vol. 15 (2022), 167–220



The stable rank of diagonal ASH algebras 177

decomposes into x1 ∈ Xi1 \ Yi1 , . . . , xt ∈ Xit \ Yit , then by Lemma 2.16, we
have x1 ∈ X ′

i1
, . . . , xt ∈ X ′

it
. Hence,

ϕi

(
(g1, . . . , gi)

)
(y) = diag

(
gi1(x1), . . . , git(xt)

)

= diag
(
fi1(x1), . . . , fit(xt)

)

= diag
(
hi1(x1), . . . , hit(xt)

)

= ϕi

(
(h1, . . . , hi)

)
(y).

Therefore, τi satisfies (iii) and is independent of the choice of extension used.
Moreover, τi((f1, . . . , fi)) is continuous, being the restriction of a continuous
function. Thus, τi is well defined, and it is clearly a ∗-homomorphism since
ϕi is.

Next, define D(i+1) := D(i) ⊕C(Y ′

i+1,Mni+1
) C(X ′

i+1,Mni+1
), using τi as the

pullback map. This ensures that (ii) and (iv) hold, and so we just need to
verify (v). Suppose (d, f) ∈ D(i+1), where d ∈ D(i) and f ∈ C(X ′

i+1,Mni+1
).

By the inductive hypothesis, we may apply (v) to d to obtain a b ∈ A(i) such
that bj|X′

j
= dj for all 1 ≤ j ≤ i. Let g := ϕi(b) ∈ C(Yi+1, Mni+1

). If y ∈

X ′
i+1 ∩ Yi+1 = Y ′

i+1, then g(y) = ϕi(b)(y) = τi(d)(y) = f(y). Thus, since X ′
i+1

and Yi+1 are both closed in Xi+1 and since f and g agree on their intersection,
they have a common extension h ∈ C(Xi+1,Mni+1

). Since ϕi(b) = g = h|Yi+1
,

we have (b, h) ∈ A(i+1), and since h|X′

j+1
= f , it follows that (v) holds. �

Proposition 2.18. Let D = D(l) be the DSH algebra constructed in Propo-
sition 2.17. There is a ∗-isomorphism Γ : B → D given coordinate-wise by
Γ(b)i := ai|X′

i
for 1 ≤ i ≤ l, where a ∈ A is any lift of b under ρ. In particular,

the quotient B is a DSH algebra.

Proof. Let us first show that Γ(b) is independent of the choice of lift. Fix
1 ≤ i ≤ l, and suppose g, h ∈ A satisfy ρ(g) = ρ(h). We must show that gi|X′

i
=

hi|X′

i
. Note that X ′

i \ Y
′
i
Xi = X ′

i. Indeed, X ′
i is closed with respect to the

topology on Xi, and so the fact that X ′
i \ Y

′
i
Xi is a subset of X ′

i is clear;

for the reverse inclusion, if z ∈ X ′
i, there is a sequence (zn)n ⊂ ρ̂(B̂) ∩ Xi ⊂

X ′
i \ Yi ⊂ X ′

i \ Y
′
i that converges to z in Xi. Hence, by continuity, it suffices

to show that gi|X′

i\Y
′

i
= hi|X′

i\Y
′

i
. To this end, suppose x ∈ X ′

i \ Y
′
i . Then

x ∈ Xi ∩ ρ̂(B̂)Xi = (Xi \ Yi) ∩ ρ̂(B̂)Xi and x /∈ Yi.

By Lemma 2.15 and Lemma 2.5, (Xi \ Yi) ∩ ρ̂(B̂) is closed in Xi \ Yi in the
subspace topology coming from Xi. Thus,

x ∈ (Xi \ Yi) ∩ ρ̂(B̂)Xi ∩ (Xi \ Yi) = (Xi \ Yi) ∩ ρ̂(B̂)Xi\Yi

= (Xi \ Yi) ∩ ρ̂(B̂) ⊂ ρ̂(B̂).

Therefore, there is a [π] ∈ B̂ such that [π ◦ ρ] = ρ̂([π]) = [evx]. But this implies
that g − h ∈ ker evx since g − h ∈ ker ρ. Hence, gi(x) = hi(x), as desired.
Moreover, Γ(b)i belongs to C(X ′

i, Mni
), being the restriction of a continuous
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function. To see that Γ(b) respects the decomposition structure of D, suppose
y ∈ Y ′

i decomposes into x1 ∈ X ′
i1
\ Y ′

i1
, . . . , xt ∈ X ′

it
\ Y ′

it
. Then

Γ(b)i(y) = ai(y) = diag
(
ai1(x1), . . . , ait(xt)

)

= diag
(
Γ(b)i1(x1), . . . ,Γ(b)it(xt)

)
.

Therefore, Γ is well defined and it is straight-forward to check that it is a
∗-homomorphism. We have left only to check that it is a bijection.

To see that Γ is injective, suppose b ∈ B and a ∈ A is such that ρ(a) = b.
Assume that Γ(b) = 0. Let π be an arbitrary irreducible representation of B.
To show that b = 0, it suffices to show that π(b) = 0. Note that [π ◦ ρ] =

ρ̂([π]) ∈ ρ̂(B̂). Thus, for some 1 ≤ i ≤ l, there is an x ∈ (Xi \ Yi) ∩ ρ̂(B̂) ⊂ X ′
i

such that [π ◦ ρ] = [evx]. Since evx(a) = ai(x) = Γ(b)i(x) = 0, it follows that
π(b) = π(ρ(a)) = 0. Thus, Γ is injective.

To see that Γ is surjective, suppose d ∈ D. By property (v) in Proposi-
tion 2.17, there is a g ∈A such that gi|X′

i
= di for all 1≤ i≤ l. Let h= ρ(g)∈B,

and observe that, for all 1 ≤ i ≤ l, we have Γ(h)i = gi|X′

i
= di. Thus, Γ(h) = d,

so Γ is surjective.
We have shown that Γ is a ∗-isomorphism, from which it follows that B is

a DSH algebra. �

Proposition 2.19. Given an inductive limit

A1
ψ1
−→ A2

ψ2
−→ A3

ψ3
−→ · · · −→ A := lim

−→
Ai

of DSH algebras with diagonal maps, there exist DSH algebras D1, D2, . . . and
injective diagonal maps ψ′

i : Di → Di+1 such that

D1
ψ′

1−→ D2
ψ′

2−→ D3
ψ′

3−→ · · · −→ A.

Proof. For n ∈ N, let µn : An → A denote the map in the construction of the
inductive limit, and consider the surjective map κn : An → An/kerµn =: Bn.
The induced map νn : Bn → Bn+1 given by νn(κn(a)) := κn+1(ψn(a)) for all
a ∈An is well defined and injective. Furthermore, we have lim

−→
(Bn,{νn}n) =A.

Let Xn
1 , . . . ,X

n
l(n) denote the base spaces of An, and let Y n

1 , . . . ,Y n
l(n) denote the

corresponding closed subsets. Let Dn denote the DSH algebra given by Propo-

sition 2.17 and isomorphic to Bn (with base spaces Xn
i ∩ κ̂n(B̂n)

Xn
i =: Zn

i and
corresponding closed subsets Zn

i ∩ Y n
i =: Wn

i for 1 ≤ i ≤ l(n)). By Proposi-
tion 2.18, the injective map νn drops down to an injective map ψ′

n :Dn →Dn+1

given by ψ′
n(d)i := ψn(a)i|Zn+1

i
for all 1 ≤ i ≤ l(n + 1), where a ∈ An is any

coordinate-wise extension of d. Moreover, lim
−→

(Dn, {ψ
′
n}n) = A.

We need to check that ψ′
n is diagonal. Fix 1 ≤ i ≤ l(n + 1), and suppose

x ∈ Zn+1
i \ Wn+1

i ⊂ Xn+1
i \ Y n+1

i decomposes into x1 ∈ Xn
i1
\ Y n

i1
, . . . , xt ∈

Xn
it
\ Y n

it
under the diagonal map ψn. We need to show that xj ∈ Zn

ij
\Wn

ij

for all 1 ≤ j ≤ t. Since evx ◦ ψ′
n is a ∗-representation of Dn, it is unitarily
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equivalent to a finite direct sum of irreducible representations

evz1 , . . . , evzk ∈

l(n)
⊔

s=1

(Zn
s \Wn

s ) ⊂ Ân.

Fix 1 ≤ j ≤ t. If xj /∈ {z1, . . . , zk}, then by [7, Prop. 4.2.5], there is a function
a ∈ An such that evzs(a) = 0 for all 1 ≤ s ≤ k, but evxj

(a) 6= 0. Since xj is
in the decomposition of x under ψn, this implies that evx(ψn(a)) is both zero
and nonzero simultaneously. Therefore, it must be that xj ∈ {z1, . . . , zk} and,
thus, that xj ∈ Zn

ij
\Wn

ij
, as desired. �

2.20. Homogeneous DSH algebras. Suppose A is an n-homogeneous DSH
algebra. We show in this subsection that there is a compact metric space X
such that A is isomorphic to C(X,Mn).

Proposition 2.21. Let X1, X2 be compact metric spaces. Let Y2 be a closed
subset of X2. Let ϕ : C(X1,Mn) → C(Y2, Mn) be a unital ∗-homomorphism,
and suppose that the associated pullback C(X1, Mn) ⊕C(Y2,Mn) C(X2, Mn) is
a DSH algebra. Then there exists a compact metric space Z∗ such that

C(X1,Mn)⊕C(Y2,Mn) C(X2,Mn)

is isomorphic to C(Z∗,Mn).

Proof. For a given y ∈ Y2, we know by Lemma 2.7 that the point it decomposes
into is unique; alternatively, note that if there were two distinct points in the
decomposition of y under ϕ, then these two points could not be separated by
any function in C(X1,Mn). Denote this unique point by τ(y). We claim that
τ : Y2 → X1 is a closed and continuous map.

To see that τ is continuous, suppose that (yn)n is a sequence in Y2 converging
to a point y, and let f ∈ C(X1,Mn1

) be arbitrary. As ϕ(f) is continuous,

lim
n

f(τ(yn)) = lim
n

ϕ(f)(yn) = ϕ(f)(y) = f(τ(y)),

which proves that (τ(yn))n converges to τ(y) since functions in C(X1, Mn1
)

separate points. Thus, τ is continuous.
To see that τ is closed, fix a closed subset F of Y2, and suppose that (xn)n

is a sequence in τ(F ) converging to a point x ∈X1. Choose, for each n, a point
yn ∈ F with τ(yn) = xn. Since F is compact, we may assume (by passing to
a subsequence) that (yn)n converges to a point y in F . Letting f ∈C(X1,Mn1

)
be arbitrary, it follows that

f(x) = lim
n

f(xn) = lim
n

f(τ(yn))

= lim
n

ϕ(f)(yn) = ϕ(f)(y) = f(τ(y)).

Since this holds for all f ∈ C(X1,Mn1
), it must be that x= τ(y) ∈ τ(F ), which

proves that τ is closed.
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Now, let Z := X1 ⊔X2. Then Z is a compact metric space. Given z ∈ Z,
we define [z] as follows:

[z] :=







{z} if z ∈ X2 \ Y2,

{z} ∪ τ−1(z) if z ∈ X1,

{τ(z)} ∪ τ−1(τ(z)) if z ∈ Y2.

Let Z∗ := {[z] | z ∈ Z}, and let p : Z → Z∗ denote the canonical surjection
p(z) := [z]. Then Z∗ is a collection of sets that partition Z. We equip it with
the quotient topology induced by p; that is, a set U ⊂ Z∗ is open in Z∗ if and
only if p−1(U) is open in Z. Since Z is compact, so is Z∗. To establish that
Z∗ is in fact a metric space, it suffices to ensure that it is Hausdorff. Indeed,
letting w(Y ) denote the smallest cardinality of a basis for a given topological
space Y , it follows by [10, Thm. 3.1.22] that w(Z∗) ≤ w(Z). Since a compact
Hausdorff space is metrizable if and only if it has a countable basis, showing
that Z∗ is Hausdorff would guarantee that it is also metrizable.

To this end, let us now verify that Z∗ is Hausdorff. Suppose z1, z2 ∈ Z with
[z1] 6= [z2]. Let us show that [z1] and [z2] can be separated by open sets in Z∗.
Without loss of generality, we must be in one of the following four cases.

Case one: z1, z2 ∈ (X2 \ Y2)∪ (X1 \ τ(Y2)). In this case, it is easy to see (since
Y2 and τ(Y2) are closed) that we may choose open sets U1 ∋ z1 and U2 ∋ z2 in Z
that are disjoint and such that Ui ⊂X2 \ Y2 if zi ∈X2 \ Y2 and Ui ⊂X1 \ τ(Y2)
if zi ∈ X1 \ τ(Y2). Since p|(X2\Y2)∪(X1\τ(Y2)) is a bijection, the sets p(U1) and
p(U2) are open in Z∗, disjoint, and contain [z1] and [z2], respectively.

Case two: z1 ∈X1 \ τ(Y2) and z2 ∈ Y2 ∪ τ(Y2). Choose disjoint sets U1 ∋ z1 and
U2 ⊃ τ(Y2) that are open in X1. Let V1 := p(U1) ∋ [z1] and V2 := p(U2 ∪X2) ∋
[z2], and note that V1 ∩ V2 = ∅. Since p−1(V1) = U1 and p−1(V2) = U2 ∪X2

are both open in Z, it follows that V1 and V2 are open in Z∗.

Case three: z1 ∈X2 \ Y2 and z2 ∈ Y2 ∪ τ(Y2). Choose disjoint sets U1 ∋ z1 and
U2 ⊃ Y2 that are open in X2. Let V1 := p(U1) ∋ [z1] and V2 := p(X1 ∪U2) ∋ [z2],
and note that V1 ∩ V2 = ∅. Since p−1(V1) = U1 and p−1(V2) = X1 ∪ U2 are
both open in Z, it follows that V1 and V2 are open in Z∗.

Case four : z1, z2 ∈ Y2 ∪ τ(Y2). We may assume without loss of generality that
z1, z2 ∈ τ(Y2). Choose sets U1 ∋ z1 and U2 ∋ z2, which are open in X1 and
satisfy U1 ∩ U2 = ∅. Since τ is continuous, there are open subsets V1 and V2

of X2 such that τ−1(U1) = V1 ∩ Y2 and τ−1(U2) = V2 ∩ Y2. Choose disjoint
open subsets W1 and W2 of X2 containing τ−1(U1) and τ−1(U2), respectively.
Put O1 := V1 ∩W1 and O2 := V2 ∩W2, and let E1 := p(O1 ∪ U1) and E2 :=
p(O2 ∪ U2). Note that [z1] ∈ E1 and [z2] ∈ E2. Let us show that E1 and E2 are
disjoint and open in Z∗. Suppose t1 ∈ O1 ∪U1 and t2 ∈ O2 ∪ U2. Assume first
that t1 ∈U1. If t2 ∈U2 ∪ (X2 \ Y2), then [t1] 6= [t2] since U1 ∩U2 =∅. If instead
t2 ∈ O2 ∩ Y2, then τ(t2) ∈ U2 so that we again have [t1] 6= [t2]. A symmetric
analysis shows that [t1] 6= [t2] if t2 ∈ U2. Thus, we may assume t1 ∈ O1 and
t2 ∈ O2. If either t1 or t2 is in X2 \ Y2, then [t1] 6= [t2] since t1 6= t2, as O1

and O2 are disjoint. If instead t1 ∈ O1 ∩ Y2 and t2 ∈ O2 ∩ Y2, then τ(t1) ∈ U1,
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τ(t2) ∈ U2, and once again, [t1] 6= [t2]. It follows that E1 ∩ E2 = ∅. It remains
to be shown that E1 and E2 are open in Z∗. Owing to the symmetry of the
set-up, we only show that E1 is open in Z∗, and to do this, it is sufficient
to prove that p−1(E1) ∩ X1 = U1 and p−1(E1) ∩ X2 = O1. Assume we are
given t ∈ p−1(E1) ∩X1. Thus, [t] ∈ p(O1) ∪ p(U1). If there is an s ∈ U1 such
that [t] = [s], then, since both t and s lie in X1, it must be that t = s. If
instead there is an s ∈ O1 such that [t] = [s], then it follows that s ∈ Y2 and,
hence, that τ(s) ∈ U1. Thus, [t] = [s] = [τ(s)], from which we deduce as before
that t = τ(s) ∈ U1. Therefore, we may conclude that p−1(E1) ∩X1 ⊂ U1, and
hence, p−1(E1) ∩X1 = U1. Now, suppose that we are given t ∈ p−1(E1) ∩X2.
As before, [t] ∈ p(O1) ∪ p(U1). Suppose first that there is an s ∈ O1 such that
[t] = [s]. If either t or s is in X2 \ Y2, then t = s ∈ O1; otherwise, it must be
that s, t ∈ Y2 and, in particular, τ(t) = τ(s) ∈ U1. Therefore, t ∈ V1 ∩W1 =O1.
If instead there is an s ∈ U1 such that [t] = [s], then it must be that t ∈ Y2 and
τ(t) = s ∈ U1, which implies (as above) that t ∈ O1. Thus, p

−1(E1) ∩X2 ⊂O1,
and hence, p−1(E1) ∩X2 = O1. Therefore, by our analysis, this implies that
E1 and E2 are open in Z∗. This completes the proof that Z∗ is Hausdorff and,
hence, a compact metric space.

Now, define Λ : C(X1,Mn)⊕C(Y2,Mn) C(X2,Mn) → C(Z∗,Mn) by

Λ((f, g))([z]) :=

{

f(z) if z ∈ X1,

g(z) if z ∈ X2.

To conclude the proof, let us show that Λ is a well-defined ∗-isomorphism.
To see that Λ is well defined, suppose z1, z2 ∈ Z and that [z1] = [z2]. Unless
z1 = z2, this implies that one of the two points is in the decomposition of the
other. Assume without loss of generality that τ(z2) = z1. Then, for all (f, g) ∈
C(X1,Mn)⊕C(Y2,Mn) C(X2,Mn), we have g(z2) =ϕ(f)(z2) = f(τ(z2)) = f(z1).
This shows that Λ is well defined. It is clear that Λ is an injective ∗-homo-
morphism. To see surjectivity, suppose h ∈ C(Z∗, Mn), and define f := h ◦
p|X1

∈ C(X1,Mn) and g := h ◦ p|X2
∈ C(X2,Mn). Given y ∈ Y2, we have

g(y) = h([y]) = h([τ(y)]) = f(τ(y)) = ϕ(f)(y)

so that (f, g) ∈ C(X1, Mn) ⊕C(Y2,Mn) C(X2, Mn). Moreover, Λ((f, g)) = h,
proving that Λ is surjective. The proof of Proposition 2.21 is now complete. �

Applying Proposition 2.21 inductively, we obtain the following corollary.

Corollary 2.22. Every n-homogeneous DSH algebra is isomorphic to a full
matrix algebra, i.e., isomorphic to C(X,Mn) for some compact metric space X.

3. Stable rank

This section focuses on simple inductive limits of DSH algebras with diag-
onal bonding maps. Section 3.29 contains the principal result, which states
that every limit algebra of this type necessarily has stable rank one (see Theo-
rem 3.30). In Section 3.31, Theorem 3.30 is applied to obtain two results about
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simple dynamical crossed products. Given an infinite compact metric space T
and a minimal homeomorphism h : T → T , we show that every orbit-breaking
subalgebra of the induced dynamical crossed product C∗(Z, T, h) associated
to any non-isolated point is a simple inductive limit of DSH algebras with
diagonal maps (see Theorem 3.35). Consequently, we are able to show that
C∗(Z, T, h) has stable rank one (see Corollary 3.36) and that Z-stability is
determined for such an algebra by strict comparison of positive elements (see
Corollary 3.37).

The proof of Theorem 3.30 is quite technical and requires several lemmas,
which are developed in Section 3.2 and Section 3.18. In Section 3.2, facts
concerning continuous paths of unitary matrices are established. These results
are used in Section 3.18 to construct certain unitary elements in DSH algebras
that are needed to prove Theorem 3.30. Before formulating these lemmas, in
Section 3.1, we provide a more detailed overview of how they come together to
prove Theorem 3.30, and we compare and contrast our approach to that used
by Elliott, Ho, and Toms in [8].

3.1. Outline of the proof of the main theorem. Section 3.18 consists of
all of the lemmas that are used in the proof of Theorem 3.30 in Section 3.29,
with the following dependency diagram:

Theorem 3.30

Lemma 3.24

Lemma 3.26

Lemma 3.27

Lemma 3.28

Lemma 3.19

Lemma 3.20

Lemma 3.23

Lemma 3.22Lemma 3.21

Figure 1. Dependency chart for the main lemmas used in
the proof of Theorem 3.30.

Let us now outline the importance of each of these lemmas and give a brief
overview of how they are used to prove Theorem 3.30.

Our general strategy for proving that a simple inductive limit of DSH alge-
bras with diagonal maps has stable rank one is essentially the one in [8]. We
start with a given element f in the limit algebra A, which may be assumed
to lie in some finite-stage building block Aj . If f is invertible, then there is
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nothing to prove, and so we may assume that f is not invertible. The goal is
then to show that the image ψj′,j(f) of f in a later stage algebra Aj′ is close
to an invertible in Aj′ .

If we approximate ψj′,j(f), multiply this approximation by unitaries, ap-
proximate again, multiply the new approximation by unitaries, and show that
an element thus obtained is close to an invertible, then, upon unpacking the
approximations, it follows that ψj′,j(f) is close to an invertible in Aj′ . Finally,
as Rørdam observed in [21], every nilpotent element of a unital C∗-algebra is
close to an invertible. Therefore, it suffices to show that an element, obtained
from ψj′,j(f) as above, is nilpotent.

To execute this strategy, we proceed as follows. In Lemma 3.20, we first use
Lemma 2.11 to show that there is a point in one of the base spaces Xi of Aj at
which fi is a non-invertible matrix. After multiplying by unitary matrices on
the left and right, we obtain a new matrix whose first row and column contain
only zeros (or one that has a zero cross at index 1 (see Definition 3.3)). We
show that, after perturbing f slightly, we may multiply this perturbation f ′

on the left and right by unitaries w, v ∈ Aj so that wf ′v has a zero cross at
index 1 not just at one point, but over a whole open subset of the spectrum
of Aj .

By Proposition 2.19, we may assume that the maps in the given sequence
are injective. Hence, in Lemma 3.24, we may apply our simplicity criterion
(Lemma 3.19) with the open subset of the spectrum obtained above to con-
clude that, in some later stage algebra Aj′ , the diagonal image ψj′,j(wf

′v) has
“many” (see the following paragraphs) zero crosses at every point in each base
space of Aj′ ; because of simplicity and the fact that the maps in the sequence
are diagonal, this “many” may be taken (using Lemma 3.23) to be as large
as desired. We are then able to construct unitaries V, V ′ ∈ Aj′ that organize
the location of these zero crosses so that the element f ′′ = V ψj′,j(f

′)V ′ has
“many” zero crosses occurring at tractable locations at each point in every
base space of Aj′ .

We use Lemma 3.26 to approximate f ′′ by a function g ∈ Aj′ that preserves
the zero crosses of f ′′ at each point and, in addition, extends the block-diagonal
structure of the algebra to neighborhoods of the closed subsets of the base
spaces (the Yi’s in the definition of Aj′ ). This allows us, in Lemma 3.27,
to conjugate g by a unitary W ∈ Aj′ so that, in the resulting conjugation
g′ = WgW ∗, the zero crosses of g are grouped together into block zero crosses
at every point in each of the base spaces of Aj′ .

The unitaries V , V ′, and W above are constructed in such a way that,
at every point in each base space, the bandwidth, which measures how far
a nonzero entry can occur from the diagonal in a matrix (see Definition 3.4),
of g′ at that point is bounded above by a quantity independent of j′. Thus, by
ensuring that the “many” above is at least as large as this upper bound, we
are able to construct a unitary W ′ in Lemma 3.28 that shifts the block zero
cross mentioned above so that g′W ′ is strictly lower triangular at each point.
This ensures that g′W ′ is nilpotent and yields the desired result.
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The unitaries V , V ′, W , and W ′ above are all defined using continuous
paths of unitaries between permutation matrices (see Definitions 3.5 and 3.11).
In Lemma 3.21, we construct certain indicator-function-like elements of DSH
algebras, the final versions of which (Lemma 3.22) help to define V , V ′, W ,
and W ′ by allowing us to implement the continuous paths of unitary matrices
constructed in Section 3.2 in the DSH framework. Their job is to tell the
continuous paths used in defining these unitaries which rows and columns to
shift around, so as to ensure that they respect the decomposition structure of
the algebra and that the zero crosses are achieved in the target locations.

The proof of Theorem 3.30 shares many similarities with the original AH
proof of Elliott, Ho, and Toms found in [8]. In particular, in the case that all
of the DSH algebras in the context of Theorem 3.30 are homogeneous (hence,
by Corollary 2.22, full matrix algebras), the unitaries V , V ′, W , and W ′ con-
structed above essentially reduce the those constructed in [8]. For a more
in-depth analysis of this, see [1, Sec. 5.1], where it is also observed that the AH
proof does not require the full matrix algebra building blocks in the inductive
limit to be separable. In our ASH setting, however, separability is necessary
since the indicator-function-like elements constructed in Lemma 3.22, which
are not required in the AH case, rely on the assumption that the base spaces
of any given DSH algebra are metrizable.

3.2. Preliminary lemmas. The purpose of this subsection is to introduce
some continuous paths of unitary matrices and prove certain facts about them.
These paths will be used in the sequel to construct the unitaries in the DSH
algebras used in the proof of the main result.

Definition 3.3 (Zero cross). Given a matrix D ∈ Mn and 1 ≤ k ≤ n, we say
that D has a zero cross at index k provided that each entry in the kth row and
column of D is 0.

Definition 3.4 (Bandwidth of a matrix). Given a matrix D ∈ Mn, we let

r(D) := min{m ≥ 0 | Di,j = 0 whenever |i− j| ≥ m}

if it exists, and r(D) := n otherwise, and we call this number the bandwidth
of D.

Definition 3.5 (see [8]). Given n ∈ N and a permutation π ∈ Sn, let U [π]
denote the permutation unitary in Mn obtained from the identity matrix by
moving the ith row to the π(i)th row. If we are given a transposition (i j)∈Sn,
let u(i j) : [0, 1] → U(Mn) denote a continuous path of unitaries with the fol-
lowing properties:
(i) u(i j)(0) = 1n;

(ii) u(i j)(1) = U [(i j)];
(iii) for all 0 ≤ θ ≤ 1, u(i j)(θ) may only differ from the identity matrix at

entries (i, i), (i, j), (j, i), and (j, j).
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Lemma 3.6. Let n,M, l ∈ N with l +M − 1 ≤ n, and let (ξl, . . . , ξl+M−1) be
a vector in [0, 1]M . Put

U :=

M−1∏

t=1

u(l l+t)(ξl+t) ∈ U(Mn),

where each u(l l+t) : [0, 1] → Mn is a connecting path of unitaries as described
in Definition 3.5.
(a) Suppose D ∈ Mn, ξ ∈ [0, 1], and (l1 l2) ∈ Sn. If D has a zero cross at

index l 6= l1, l2, then so does u(l1 l2)(ξ)Du(l1 l2)(ξ)
∗.

(b) Suppose D ∈ Mn. If D has a zero cross at index l′ ∈ {1, . . . , n} \ {l, . . . ,
l+M − 1}, then so does UDU∗.

(c) Suppose D ∈ Mn is such that, for all l ≤ l′ ≤ l + M − 1, D has a zero
cross at index l′ whenever ξl′ > 0. If at least one of ξl, . . . , ξl+M−1 is 1,
then UDU∗ has a zero cross at index l.

Proof. Let us start by proving (a). SupposeD has a zero cross at index l 6= l1, l2.
By property (iii) of Definition 3.5, the l1th and l2th columns ofDu(l1 l2)(ξ)

∗ are
linear combinations of the l1th and l2th columns ofD, while every other column
is identical to its corresponding column in D. Since l 6= l1, l2 and since every
entry in the lth row of D is zero, it follows that Du(l1 l2)(ξ)

∗ has a zero cross
at index l. A similar analysis involving rows shows that u(l1 l2)(ξ)Du(l1 l2)(ξ)

∗

has a zero cross at index l, which proves (a). Looking at the definition of U ,
we see that (b) follows from M − 1 applications of (a).

Let us now prove (c). Suppose that D has a zero cross at index l′ whenever
ξl′ > 0 and that at least one of ξl, . . . , ξl+M−1 is 1. Let

T := {l + 1 ≤ q ≤ l +M − 1 | ξq > 0}.

If ξl+t = 0, we have u(l l+t)(ξl+t) = 1n. Hence,

U :=

{

u(l l1)(ξl1) · · ·u(l lr)(ξlr ) if T = {l1 < · · · < lr},

1n if T = ∅.

If T = ∅, then, since at least one of ξl, . . . , ξl+M−1 is 1, it must be that ξl = 1.
Hence, UDU∗ =D has a zero cross at index l in this case by the assumption in
the lemma. Thus, we may assume T 6= ∅ so that D has zero crosses at indices
l1, . . . , lr. We consider two cases.

Case one: ξls < 1 for all 1 ≤ s ≤ r. In this case, as we argued above, it must
be that D has a zero cross at index l. When conjugating D by u(l lr)(ξlr ), we
can see by property (iii) of Definition 3.5 that u(l lr)(ξlr ) is only acting on two
zero crosses (the one at index l and the one at index lr) of D and, hence,

u(l lr)(ξlr )Du(l lr)(ξlr )
∗ = D.

From this, we can inductively see that UDU∗ = D, which has a zero cross at
index l.

Münster Journal of Mathematics Vol. 15 (2022), 167–220



186 Mihai Alboiu and James Lutley

Case two: ξls = 1 for some 1 ≤ s ≤ r. Let

D′ :=

( r∏

p=s+1

u(l lp)(ξlp)

)

D

( r∏

p=s+1

u(l lp)(ξlp)

)∗

.

Then r− s applications of (a) show thatD′ has zero crosses at indices l1, . . . , ls.
Note that

UDU∗ =

( s∏

p=1

u(l lp)(ξlp)

)

D′

( s∏

p=1

u(l lp)(ξlp)

)∗

=

(s−1∏

p=1

u(l lp)(ξlp)

)

E

(s−1∏

p=1

u(l lp)(ξlp)

)∗

,

where E := U [(l ls)]D′U [(l ls)]∗. Since D′ has a zero cross at index ls, conju-

gating it by U [(l ls)] brings this zero cross to index l so that the matrix E has
zero crosses at indices l, l1, . . . , ls−1. Hence, as in the argument used in case
one, the matrixE is unaltered when conjugated by

∏s−1
p=1u(l lp)(ξlp). Therefore,

UDU∗ = E, which has a zero cross at index l. This proves (c) and establishes
the lemma. �

Definition 3.7. Let n ∈ N. For 1 ≤ i ≤ j ≤ n, let δij : [0, 1] → [0, 1] be given
by the following definition:

δij(ξ) :=







0 if 0 ≤ ξ ≤ i−1
j
,

linear if i−1
j

≤ ξ ≤ i
j
,

1 if i
j
≤ ξ ≤ 1.

Moreover, for 1 ≤ i < j ≤ n, let wi
j ∈ C([0, 1],Mn) be the unitary defined by

wi
j(ξ) := u(i i+1)(δ

j−i
j−i(ξ))u(i+1 i+2)(δ

j−i−1
j−i (ξ)) · · · u(j−1 j)(δ

1
j−i(ξ)),

where the unitaries u(k k+1) : [0, 1] → Mn are those of Definition 3.5, and set

wi
i ≡ 1n. In particular,

(3) wi
j(1) = u(i i+1)(1) · · ·u(j−1 j)(1) = U [(i i+ 1 · · · j)].

Lemma 3.8. Suppose that D ∈ Mn has a zero cross at index j. Then

r(w1
j (1)Dw1

j (1)
∗) ≤ r(D),

r(wi
j(1)Dwi

j(1)
∗) ≤ r(D) + 1 for 2 ≤ i ≤ j.

Proof. By equation (3), w1
j (1)=U [(1 2 · · · j)]. Consider the matrixD broken

up into the four regions created by the zero cross at j, together with the matrix
w1

j (1)Dw1
j (1)

∗:
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0

0

D1 0 D2

0

0

0 0 0 0 0 0 0 0 0

0

D3 0 D4

0

j

j

Figure 2. The matrix D

0 0 0 0 0 0 0 0 0

0

0

0 D1 D2

0

0

0

0 D3 D4

0

j

j

Figure 3. The matrix w1
j (1)Dw1

j (1)
∗

Since no nonzero entry gets shifted away from the diagonal, it follows that
r(w1

j (1)Dw1
j (1)

∗) ≤ r(D).
Suppose now that 2 ≤ i ≤ j. If i = j, then the desired inequality is trivial,

so we may assume that i < j. By equation (3), wi
j(1) = U [(i i+ 1 · · · j)].

Consider the matrix D broken up into the following nine regions created by
the zero cross at j and the ith row and column, together with the matrix
wi

j(1)Dwi
j(1)

∗:

D7 D8

D4

D1 D2

D5

D9

D6

D3
0

0

0

0

0

0 0 0 0 0 0 0 0 0

0

0

0

j

j

i

i

Figure 4. The matrix D

D7 D8

D4

D1 D2

D5

D9

D6

D3
0

0

0 0 0 0 0 0 0 0 0

0

0

0

0

0

0

j

j

i

i

Figure 5. The matrix wi
j(1)Dwi

j(1)
∗

With the exception of D2 and D4, which get shifted one unit away from the
diagonal, no entry in the other seven regions is moved away from the diagonal.
Therefore, r(wi

j(1)Dwi
j(1)

∗) ≤ r(D) + 1, which proves Lemma 3.8. �

Lemma 3.9. Suppose D ∈ Mn has a zero cross at index j. If 1 ≤ i ≤ j and
ξ ∈ [0, 1], then r(wi

j(ξ)Dwi
j(ξ)

∗) ≤ r(D) + 2.
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Proof. Fix 1 ≤ i ≤ j and ξ ∈ [0,1]. If ξ = 0 or if i = j, then wi
j(ξ) = 1n and the

result is trivial. Hence, we may assume i < j and ξ ∈ (0, 1]. Let 1 ≤ k ≤ j − i
be the unique integer such that ξ ∈

(
k−1
j−i

, k
j−i

]
. Then

wi
j(ξ) = u(i i+1)(0) · · ·u(j−k−1 j−k)(0)(4)

· u(j−k j−k+1)(δ
k
j−i(ξ))u(j−k+1 j−k+2)(1) · · ·u(j−1 j)(1)

= u(j−k j−k+1)(δ
k
j−i(ξ))w

j−k+1
j (1).

Let D′ := wj−k+1
j (1)Dwj−k+1

j (1)∗. By Lemma 3.8, r(D′) ≤ r(D) + 1. Now,

consider the conjugation of D′ by u(j−k j−k+1)(δ
k
j−i(ξ)), which we denote by E.

The entries of D′ affected by this conjugation lie in one of the following three
shaded regions:

j − k
↓

j − k →

Figure 6. Region A

j − k
↓

j − k →

Figure 7. Region B

j − k
↓

j − k →

Figure 8. Region C
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We make the following observations:
• an entry in E lying in Figure 6 will be a linear combination of the two

corresponding shaded entries in D′ lying in the same row;
• an entry in E lying in Figure 7 will be a linear combination of the two

corresponding shaded entries in D′ lying in the same column;
• an entry in E lying in Figure 8 will be a linear combination of the four

shaded entries in D′ lying in Figure 8.
We see that, in all instances, a nonzero entry in E never appears more than
one unit further away from the diagonal than a nonzero entry in D′. Thus,

r
(
u(j−k j−k+1)(δ

k
j−i(ξ))D

′u(j−k j−k+1)(δ
k
j−i(ξ))

∗
)
≤ r(D′) + 1 ≤ r(D) + 2,

which proves Lemma 3.9. �

Lemma 3.10. Suppose n ∈ N and 1 ≤ z1 < z2 < · · · < zm ≤ n. There is
a unitary W ∈ C([0, 1],Mn) with the following properties:
(a) W (0) = 1n;
(b) if T ∈ Mn has zero crosses at indices z1, . . . , zm, then W (1)TW (1)∗ has

zero crosses at indices 1, 2, . . . ,m and r(W (ξ)TW (ξ)∗) ≤ r(T ) + 2 for all
ξ ∈ [0, 1];

(c) if b ∈N, T ∈Mn×b, and the rows of T at indices z1, . . . , zm consist entirely
of zeros, then the first m rows of W (1)T consist entirely of zeros and, for
all ξ ∈ [0, 1],

r

((
0n×n W (ξ)T
0b×n 0b×b

))

≤ r

((
0n×n T
0b×n 0b×b

))

;

(d) if b ∈ N, T ∈ Mb×n, and the columns of T at indices z1, . . . , zm consist
entirely of zeros, then the first m columns of TW (1)∗ consist entirely of
zeros and, for all ξ ∈ [0, 1],

r

((
0n×n 0n×b

TW (ξ)∗ 0b×b

))

≤ r

((
0n×n 0n×b

T 0b×b

))

.

Proof. For 1 ≤ i ≤ j ≤ n, let δij and wi
j ∈ C([0, 1],Mn) be given as in Defini-

tion 3.7. Define

W := (w1
zm

◦ δmm) · · · (w1
z1

◦ δ1m),

which is a unitary in C([0, 1],Mn).
By Definitions 3.5 and 3.7, W (0) = w1

zm
(0) · · ·w1

z1
(0) = 1n so that (a) holds.

Since (d) follows immediately from (c) by taking adjoints, only (b) and (c)
remain to be verified. Let σ denote the permutation

(1 2 · · · zm)(1 2 · · · zm−1) · · · (1 2 · · · z1) ∈ Sn,

and note that σ(zk) = m− k + 1 for 1 ≤ k ≤ m. Hence, if T is any matrix in
Mn (resp. Mn×b) with zero crosses (resp. rows) at indices z1, . . . , zm, then
U [σ]TU [σ]∗ (resp. U [σ]T ) has zero crosses (resp. rows) at indices 1, . . . , m.
Since W (1) = U [σ] by equation (3), this proves the first half of (b) and (c).
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Let us now establish the bandwidth approximations in (b) and (c). Fix
ξ ∈ [0, 1]. If ξ = 0, the results are trivial, and so we may assume ξ ∈ (0, 1]. Let
1 ≤ k ≤ m be the unique integer such that ξ ∈

(
k−1
m

, k
m

]
. Then we may write

W (ξ) = w1
zm

(0) · · ·w1
zk+1

(0)w1
zk
(δkm(ξ))w1

zk−1
(1) · · ·w1

z1
(1)

= w1
zk
(δkm(ξ))w1

zk−1
(1) · · ·w1

z1
(1).

Suppose first that T ∈ Mn has zero crosses at indices z1, . . . , zm. Then, by
Lemma 3.8, r(w1

z1
(1)Tw1

z1
(1)∗)≤ r(T ) as T has a zero cross at index z1. More-

over, z1 − 1 applications of part (a) of Lemma 3.6 show that w1
z1
(1)Tw1

z1
(1)∗

has a zero cross at indices z2, . . . , zm since z2, . . . , zm are not among the in-
dices affected by the conjugation. Hence, we may apply Lemma 3.8 again to
conclude that

r
(
w1

z2
(1)w1

z1
(1)Tw1

z1
(1)∗w1

z2
(1)∗

)
≤ r

(
w1

z1
(1)Tw1

z1
(1)∗

)
≤ r(T ).

Continuing inductively in this way, it follows that r(D) ≤ r(T ), where

D = w1
zk−1

(1) · · ·w1
z1
(1)Tw1

z1
(1)∗ · · ·w1

zk−1
(1)∗

and, moreover, D has a zero cross at indices zk, . . . , zm. Thus, by Lemma 3.9,

r
(
W (ξ)TW (ξ)∗

)
= r

(
w1

zk
(δkm(ξ))Dw1

zk
(δkm(ξ))∗

)
≤ r(D) + 2 ≤ r(T ) + 2,

which yields the approximation in (b).
To complete the proof of (c), suppose T ∈ Mn×b and that the rows of T at

indices z1, . . . , zm consist entirely of zeros. Following the lines of the proof of
Lemma 3.8, we have

r

((
0n×n w1

zk−1
(1) · · ·w1

z1
(1)T

0b×n 0b×b

))

≤ r

((
0n×n T
0b×n 0b×b

))

by equation (3) since only rows of zeros are shifted up when multiplying T
on the left by w1

zk−1
(1) · · ·w1

z1
(1), while nonzero entries remain in place or

are shifted down towards the diagonal. Similar reasoning to that used when
deducing equation (4) shows that there exist β ∈ [0,1] and 1 ≤ p ≤ zk − 1 such
that

w1
zk
(δkm(ξ)) = u(zk−p zk−p+1)(β)w

zk−p+1
zk

(1).

Since the zkth row of a given matrix remains unchanged when multiplying on
the left by w1

zk−1
(1) · · ·w1

z1
(1), the zkth row of w1

zk−1
(1) · · ·w1

z1
(1)T contains

only zeros. Hence, multiplying this given matrix on the left by wzk−p+1
zk

(1) =

U [(zk − p+ 1 · · · zk)] shifts the zero row from index zk to index zk − p + 1,
while shifting the rows zk − p+1, . . . , zk − 1 down by one towards the diagonal.
Thus,

r

((
0n×n E
0b×n 0b×b

))

≤ r

((
0n×n w1

zk−1
(1) · · ·w1

z1
(1)T

0b×n 0b×b

))

≤ r

((
0n×n T
0b×n 0b×b

))

,
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where E := U [(zk − p+ 1 · · · zk)]w1
zk−1

(1) · · ·w1
z1
(1)T . Now, the matrices E

and u(zk−p zk−p+1)(β)E may differ only on rows zk − p and zk − p+ 1, where
these two rows of the latter matrix are linear combinations of the same two
rows of E. From this and the fact that the zk − p+ 1 row of E consists only of
zeros, it is clear that, for a given column λ, the (zk − p, λ)- or (zk − p+ 1, λ)-
entry of u(zk−p zk−p+1)(β)E can be nonzero only if the (zk − p, λ) entry of E
is nonzero. Hence,

r

((
0n×n u(zk−p zk−p+1)(β)E
0b×n 0b×b

))

≤ r

((
0n×n E
0b×n 0b×b

))

≤ r

((
0n×n T
0b×n 0b×b

))

.

Since W (ξ)T = u(zk−p zk−p+1)(β)E, this establishes the bandwidth approxi-
mation in (c), thus completing the proof of the lemma. �

Definition 3.11. Let N ∈ N. For j, k, n ∈ N satisfying N ≤ j ≤ k ≤ n, we
define

σn
j,k := (j −N + 1 k −N + 1) · · · (j k) ∈ Sn.

We define un
j,k : [0, 1] → Mn to be the unitary

un
j,k(ξ) := u(j−N+1 k−N+1)(ξ) · · · u(j k)(ξ),

where u(i i′) : [0, 1] → Mn is a continuous path of unitaries defined as in Defi-
nition 3.5.

Remark 3.12. Note that, in the definition above, if j ≤ n−N , then σn
j,n is

the permutation in Sn that interchanges j −N +1, . . . , j and n−N + 1, . . . , n;
moreover, in this case, all of the factors in the definition of un

j,n(ξ) (for any
ξ ∈ [0, 1]) commute with each other by Definition 3.5.

Lemma 3.13. Suppose N, n, k, i ∈ N satisfy N ≤ k ≤ i − N and i ≤ n−N ,
and that ξ ∈ [0, 1]. Then

un
k,n(ξ) = U [σn

i,n]u
n
k,i(ξ)U [σn

i,n],

where un
k,n(ξ), u

n
k,i(ξ), and σn

i,n are each products of N factors as defined in
Definition 3.11.

Proof. By definition,

(5) U [σn
i,n]u

n
k,i(ξ) =

( 0∏

j=−(N−1)

U [(i+ j n+ j)]

)( 0∏

j=−(N−1)

u(k+j i+j)(ξ)

)

.

Note that, for any −(N − 1) ≤ j, j′ ≤ 0,

i+ j ≤ i < n− (N − 1) ≤ n+ j′

and

k + j ≤ i−N + j ≤ i−N < i− (N − 1) ≤ i+ j′.
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Thus, when −(N − 1) ≤ j, j′ ≤ 0 with j 6= j′, the permutations (i+ j′ n+ j′)

and (k + j i+ j) are disjoint, and hence, U [(i+ j′ n+ j′)] and u(k+j i+j)(ξ)
commute. Hence, equation (5) can be restated as

U [σn
i,n]u

n
k,i(ξ) =

0∏

j=−(N−1)

U [(i + j n+ j)]u(k+j i+j)(ξ).

By the same reasoning,

U [σn
i,n]u

n
k,i(ξ)U [σn

i,n]

=

0∏

j=−(N−1)

U [(i + j n+ j)]u(k+j i+j)(ξ)

0∏

j=−(N−1)

U [(i+ j n+ j)]

=
0∏

j=−(N−1)

U [(i + j n+ j)]u(k+j i+j)(ξ)U [(i + j n+ j)].

It is elementary to see that U [(a b)]u(c b)(ζ)U [(a b)] = u(c a)(ζ) whenever c ≤
b ≤ a and ζ ∈ [0, 1]. Hence,

U [σn
i,n]u

n
k,i(ξ)U [σn

i,n] =

0∏

j=−(N−1)

u(k+j n+j)(ξ) = un
k,n(ξ),

which proves the lemma. �

Definition 3.14. For integers 1 ≤ j ≤ k ≤ n, define

γn
j,k := (j j + 1 · · · k) ∈ Sn.

Lemma 3.15. Assume that N,n, t ∈ N with 1 ≤ N < t ≤ n−N , and suppose
(ξN+1, . . . , ξt−1) is a vector in [0, 1]t−1−N whose final N − 1 entries consist
only of zeros. Then

U [γn
1,n]

N

( t−2∏

k=N

un
k,n(ξk+1)

)

U [σn
t−1,n]

= U [γn
1,t−1]

N

( t−2∏

k=N

un
k,t−1(ξk+1)

)

U [γn
t,n]

N ,

where un
k,n(ξk+1), u

n
k,t−1(ξk+1), and σn

t−1,n are each products of N factors as
defined in Definition 3.11.

Proof. If t− 1 = N , then the products on either side of the equality above are
empty and the equation reduces to

(6) U [γn
1,n]

NU [σn
t−1,n] = U [γn

1,t−1]
NU [γn

t,n]
N .

By Remark 3.12, it is elementary to see that equation (6) holds. Therefore,
for the remainder of the proof, we may assume that t− 2 ≥ N .
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For any N ≤ k ≤ t − 1 − N , we may apply Lemma 3.13 (recalling that
t− 1 ≤ n−N) to conclude that

(7) un
k,n(ξk+1) = U [σn

t−1,n]u
n
k,t−1(ξk+1)U [σn

t−1,n].

In fact, equation (7) holds for all N ≤ k ≤ t− 2. Indeed, if t−N ≤ k ≤ t− 2,
then by the assumption of the lemma, it must be that ξk+1 = 0. In this case,
equation (7) reduces to 1n = U [σn

t−1,n]
2, which holds by Remark 3.12.

Therefore,

t−2∏

k=N

un
k,n(ξk+1) =

t−2∏

k=N

U [σn
t−1,n]u

n
k,t−1(ξk+1)U [σn

t−1,n]

= U [σn
t−1,n]

( t−2∏

k=N

un
k,t−1(ξk+1)

)

U [σn
t−1,n],

which, together with equation (6), yields that

U [γn
1,n]

N

t−2∏

k=N

un
k,n(ξk+1)(8)

= U [γn
1,t−1]

NU [γn
t,n]

N

( t−2∏

k=N

un
k,t−1(ξk+1)

)

U [σn
t−1,n].

Moreover, for each k = N, . . . , t− 2, the indices in each transposition-like uni-
tary factor in un

k,t−1(ξk+1) are distinct from t, . . . , n. Hence, U [γn
t,n]

N and
∏t−2

k=N un
k,t−1(ξk+1) commute, and so, using equation (8), it follows that

U [γn
1,n]

N

t−2∏

k=N

un
k,n(ξk+1) = U [γn

1,t−1]
N

( t−2∏

k=N

un
k,t−1(ξk+1)

)

U [γn
t,n]

NU [σn
t−1,n].

Lemma 3.15 then follows by multiplying U [σn
t−1,n] on the right of both sides

in the above expression. �

Definition 3.16. Let N ∈N. Given n∈N (n≥N), define Wn ∈C([0,1]n,Mn)
to be the unitary

(9) Wn(ξ1, . . . , ξn) := U [γn
1,n]

N

(n−1∏

k=N

un
k,n(ξk+1)

)

,

where un
k,n is the product of N factors as in Definition 3.11. We adopt the

convention that Wn := 1n if n = N .

Lemma 3.17. Let N ∈ N. Suppose n is an integer greater than N and ~ξ :=
(ξ1, . . . , ξn) is a vector in [0, 1]n with the property that ξ1 = 1, the final N
entries are all zero, and for any consecutive N entries, at most one is nonzero.
Suppose K = {1 = k1 < k2 < · · · < km} is any set of indices, containing 1, at

which ~ξ is 1; put km+1 := n+ 1. Then

Wn(~ξ) = diag
(
Wk2−k1

(ξk1
, . . . , ξk2−1), . . . ,(10)

Wkm+1−km
(ξkm

, . . . , ξkm+1−1)
)
,
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where N is the fixed positive integer used to define Wn,Wk2−k1
, . . . ,Wkm+1−km

in Definition 3.16.

Proof. Fix an integer n > N , a vector ~ξ, and an associated set K, satisfying
the hypotheses of the lemma. Let us proceed by induction on the size m of K.
If m = 1, there is nothing to show. Fix m ≥ 2, and suppose that Lemma 3.17
holds for every natural number n′ > N , vector ζ, and associated set K ′ of size
m− 1, provided they satisfy the required hypotheses. Assume that |K| = m.
Let us show equation (10) holds in this case.

Note that, by assumption, ξk2−(N−1), . . . , ξk2−1 = 0 and

(11) N < k2 ≤ n−N.

Therefore, we may apply Lemma 3.15 with N , n, k2, and (ξN+1, . . . , ξk2−1) to
conclude that

U [γn
1,n]

N

(k2−2∏

k=N

un
k,n(ξk+1)

)

U [σn
k2−1,n](12)

= U [γn
1,k2−1]

N

(k2−2∏

k=N

un
k,k2−1(ξk+1)

)

U [γn
k2,n

]N .

By equation (9) and inequality (11),

Wn(~ξ) = U [γn
1,n]

N

(n−1∏

k=N

un
k,n(ξk+1)

)

= U [γn
1,n]

N

(k2−2∏

k=N

un
k,n(ξk+1)

)

un
k2−1,n(ξk2

)

( n−1∏

k=k2

un
k,n(ξk+1)

)

.

Since un
k2−1,n(ξk2

) = un
k2−1,n(1) = U [σn

k2−1,n], we may apply equation (12) to
obtain

(13) Wn(~ξ) = U [γn
1,k2−1]

N

(k2−2∏

k=N

un
k,k2−1(ξk+1)

)

U [γn
k2,n

]N
( n−1∏

k=k2

un
k,n(ξk+1)

)

.

Let ~ξ′ := (ξ1, . . . , ξk2−1) and ~ξ′′ := (ξk2
, . . . , ξn). By inequality (11), |~ξ′| ≥N

so that

(14) Wk2−k1
(~ξ′) = U [γk2−1

1,k2−1]
N

((k2−1)−1
∏

k=N

uk2−1
k,k2−1(ξk+1)

)

∈ Mk2−k1
.

Furthermore, | ~ξ′′| > N so that

Wn+1−k2
( ~ξ′′) = Wn+1−k2

(ξk2
, . . . , ξn)(15)

= U [γn+1−k2

1,n+1−k2
]N

(n+1−k2−1∏

k=N

un+1−k2

k,n+1−k2
(ξk2+k)

)
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= U [γn+1−k2

1,n+1−k2
]N

(n−k2∏

k=1

un+1−k2

k,n+1−k2
(ξk2+k)

)

= U [γn+1−k2

1,n+1−k2
]N

( n−1∏

k=k2

un+1−k2

k+1−k2,n+1−k2
(ξk+1)

)

∈ Mn+1−k2
,

where the penultimate equality follows since ξk2
= 1 and at most one of any

N consecutive entries of ~ξ is nonzero. Therefore,

diag
(
Wk2−k1

(~ξ′),Wn+1−k2
( ~ξ′′)

)

= diag
(
Wk2−k1

(~ξ′), 1n+1−k2

)
diag

(
1k2−k1

,Wn+1−k2
( ~ξ′′)

)

= U [γn
1,k2−1]

N

((k2−1)−1
∏

k=N

un
k,k2−1(ξk+1)

)

U [γn
k2,n

]N
( n−1∏

k=k2

un
k,n(ξk+1)

)

,

where in the last equality the indices in the γ’s and u’s have been altered ap-
propriately from the ones in equation (14) and equation (15) to accommodate
for the identity factors in the diagonal. Combining this with equation (13)
yields that

(16) Wn(~ξ) = diag
(
Wk2−k1

(~ξ′),Wn+1−k2
( ~ξ′′)

)
.

We may apply the inductive hypothesis to n′ = | ~ξ′′| > N , vector ~ξ′′, and asso-
ciated set K ′ = {k2, . . . , km} of size m− 1 to conclude that

Wn+1−k2
( ~ξ′′) = diag

(
Wk3−k2

(ξk2
, . . . , ξk3−1), . . . ,

Wkm+1−km
(ξkm

, . . . , ξkm+1−1)
)
.

Substituting this into equation (16) yields that

Wn(~ξ) = diag
(
Wk2−k1

(ξk1
, . . . , ξk2−1), . . . ,Wkm+1−km

(ξkm
, . . . , ξkm+1−1)

)
,

which proves Lemma 3.17. �

3.18. The main lemmas. With the results of Section 3.2 in hand, we are
now in position to prove the lemmas listed in Figure 1, which are needed to
prove Theorem 3.30 in the sequel.

We start with a lemma that characterizes when a unital injective limit of
subhomogeneous algebras is simple in terms of the corresponding maps between
their spectra. This is essentially [5, Prop. 2.1], except that ours discusses the
general unital subhomogeneous case. The proof is very similar.

Given any unital subhomogeneous C∗-algebrasA andB and a unital ∗-homo-
morphism ψ : A → B, an irreducible representation π of B yields a represen-
tation π ◦ ψ of A. The finite-dimensional representation π ◦ ψ is unitarily
equivalent to a direct sum τ1 ⊕ · · · ⊕ τs of irreducible representations of A. In

this way, we get a map ψ̂ : B̂ → P(Â) given by ψ̂([π]) := {[τ1], . . . , [τs]}, where
multiplicities are ignored.
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Lemma 3.19. Suppose we have an inductive limit of the form

A1
ψ1
−→ A2

ψ2
−→ A3

ψ3
−→ · · · −→ A := lim

−→
Ai,

where A is unital and, for each i∈N, Ai is subhomogeneous and ψi is injective.
Let ψj,i := ψj−1 ◦ · · · ◦ ψi. Then the following statements are equivalent.
(i) A is simple.

(ii) For all i ∈ N and all nonempty open U ⊂ Âi, there is a j > i such that

ψ̂j,i([π]) ∩ U 6= ∅ for all [π] ∈ Âj.
(iii) For all i ∈ N, if f ∈ Ai is nonzero, there is a j > i such that π(ψj,i(f)) 6= 0

for every nonzero irreducible representation π of Aj .

Proof. For n ∈ N, let µn : An → A denote the map in the construction of the
inductive limit. Since the ψj ’s are injective and A is unital, we may assume
that the Aj ’s are all unital and that the µj ’s are injective and unit-preserving.

Let us start by showing that (i) implies (ii). Suppose that (ii) is false. To
show (i) is false, let us construct a closed proper nonzero two-sided ideal of A.

Choose i ∈ N and a nonempty open set U ⊂ Âi such that, for all j > i there is

a [π] ∈ Âj with ψ̂j,i([π]) ∩ U = ∅. We may assume that U 6= Âi. For j > i, set

Fj := {[π] ∈ Âj | ψ̂j,i([π]) ∩ U = ∅}, and set Ij := {f ∈ Aj | f ∈
⋂

[π]∈Fj
kerπ}.

It is straight-forward to verify that, for all j > i, Ij is a closed proper nonzero
two-sided ideal of Aj .

For k > j > i and [π] ∈ Âk, we have ψ̂k,i([π]) = ψ̂j,i(ψ̂k,j([π])), from which

it follows that ψ̂k,j(Fk) ⊂ Fj . Thus, ψk,j(Ij) ⊂ Ik for all k > j > i. Hence,
{µj(Ij)}j>i is an increasing sequence of C∗-algebras, and so I :=

⋃

j>i µj(Ij)
is a sub-C∗-algebra of A. It is not hard to see that I is a closed two-sided ideal
of A. Since the µj ’s are injective and the Ij ’s are nonzero, I 6= {0}. If 1A ∈ I,
then for large enough j, Ij contains 1Aj

, contradicting that Ij is proper. Hence,
I is the desired closed proper nonzero two-sided ideal of A. This proves that
(i) implies (ii).

Let us now show that (ii) implies (iii). Fix i ∈ N, and suppose 0 6= f ∈ Ai.

Let U := {[ρ]∈ Âi | ρ(f) 6= 0}. Observe that U is a nonempty open subset of Âi.

By (ii), there is a j > i such that ψ̂j,i([π]) ∩ U 6= ∅ for all [π] ∈ Âj . Thus, if π
is any irreducible representation of Aj , π(ψj,i(f)) 6= 0, which proves (iii).

Finally, let us prove that (iii) implies (i). Suppose J is a nonzero closed
two-sided ideal of A. For j ∈ N, put Jj := µ−1

j (J). Then, for all j ∈ N, Jj is
a closed two-sided ideal of Aj . It will be shown that Jj = Aj for some j ∈ N.
Take 0 6= a ∈ J . It is well known that

J =

∞⋃

j=1

(µj(Aj) ∩ J).

Hence, there must be an i and an ai ∈Ai such that 0 6= µi(ai)∈ J . Thus, ai 6=0.
By (iii), there is a j > i such that, for all irreducible representations π of Aj ,
π(ψj,i(ai)) 6= 0. Since µj(ψj,i(ai)) = µi(ai) ∈ J , it follows that ψj,i(ai) ∈ Jj .
The bijective correspondence between closed two-sided ideals of Aj and closed
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subsets of Âj thus forces Jj to be all of Aj . Hence, 1A = µj(1Aj
) ∈ J , which

shows that J = A. Therefore, A is simple, which proves (i). �

Lemma 3.20. Let A be a DSH algebra of length l. Let ǫ > 0. Suppose that
f ∈ A is not invertible. Then there is an f ′ ∈ A with ‖f − f ′‖ ≤ ǫ and there
are unitaries w, v ∈ A such that, for some 1 ≤ i ≤ l, (wf ′v)i has a zero cross

at index 1 everywhere on some nonempty set U ⊂ Â ∩ (Xi \ Yi), which is open

with respect to the hull-kernel topology on Â. Moreover, there is a ∆ ∈ A such
that, for every 1 ≤ j ≤ l and x ∈ Xj, ∆j(x) is a diagonal matrix with entries
in [0, 1], where ∆j(x)k,k > 0 implies (wf ′v)j(x) has a zero cross at index k;
moreover, ∆i(z)1,1 = 1 for all z ∈ U .

Proof. Using Lemma 2.11, choose 1 ≤ i ≤ l and x ∈ Xi \ Yi such that fi(x) is
a non-invertible matrix. We break the proof up into two cases.

Case one: x is not in the decomposition of any point in Yj for any j > i. By
Lemma 2.13, there is set U1 ⊂ Xi containing x, which is open in Xi and has
the property that no point in it is in the decomposition of any point in Yj for
any j > i. Since Yi is closed in Xi, the set U1 ∩ (Xi \ Yi) is open in Xi. By
shrinking U1, we may assume that ‖fi(x) − fi(z)‖ ≤ ǫ for all z ∈ U1. Choose
a set U2 that is open in Xi and satisfies x ∈ U2 ⊂ U2

Xi ⊂ U1 ∩ (Xi \ Yi).
Using Urysohn’s Lemma, we can define a function h ∈ C(Xi,Mni

) such that
h|U2

Xi ≡ fi(x), h|Xi\(U1∩(Xi\Yi)) = fi|Xi\(U1∩(Xi\Yi)), and ‖fi − h‖ ≤ ǫ. Define
f ′ coordinate-wise by f ′ := (f1, . . . , fi−1, h, fi+1, . . . , fl). Since h|Yi

= fi|Yi
, we

have (f1, . . . , fi−1, h)∈A(i). Since no point in U1 is in the decomposition of any
point in Yj for any j > i, and because h may only differ from fi on U1 ∩ (Xi \
Yi) ⊂ U1, this perturbation does not violate the diagonal decomposition at
any point. Thus, f ′ ∈ A since f ∈ A, and ‖f − f ′‖ ≤ ǫ because ‖fi − h‖ ≤ ǫ.
Since fi(x) is a non-invertible matrix, there are unitary matrices W and V
in Mni

with the property that Wfi(x)V has a zero cross at index 1. Since
the unitary group in Mni

is connected, we may, using the same reasoning
as above, define unitaries w, v ∈ A coordinate-wise with wj = vj ≡ 1nj

for
all j 6= i and wi, vi ∈ C(Xi, Mni

) satisfying wi|U2
Xi ≡ W , vi|U2

Xi ≡ V , and
wi|Xi\(U1∩(Xi\Yi)) = vi|Xi\(U1∩(Xi\Yi)) ≡ 1ni

. Finally, choose a set U3 that is

open in Xi and satisfies x ∈ U3 ⊂ U3
Xi ⊂ U2. Define ∆ ∈ A coordinate-wise as

follows: ∆j ≡ 0 for j 6= i; let g :Xi → [0,1] be any continuous function such that
g|U3

Xi ≡ 1 and g|Xi\U2
≡ 0, and put ∆i := diag(g, 0, . . . , 0) ∈ C(Xi,Mni

). As
argued above for f ′, we have ∆ ∈ A. Take U := U3. Applying Lemma 2.12, we
conclude U is open in Â. Since (wf ′v)i has a zero cross at index 1 everywhere
on U2 and since ∆ vanishes outside U2, the lemma holds in this case.

Case two: There is a j > i such that x is in the decomposition of some point
in Yj . In this case, we cannot define f ′ as above because we are not guaranteed
a neighborhood around x in which we may freely perturb f while remaining
in A. Let i′ denote the largest integer for which x is in the decomposition of
some point in Yi′ . Choose y ∈ Yi′ such that x is in the decomposition of y.
Then fi′(y) is a non-invertible matrix. Since x is not in the decomposition of
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any point in Yj′ for any j′ > i′, neither is y. Hence, by Lemma 2.13, there is
a set U1 ⊂Xi′ containing y that is open in Xi′ with the property that no point
in U1 is in the decomposition of any point in Yj′ for any j′ > i′. Hence, as in
case one, we are able to perturb f on U1 ∩ (Xi′ \ Yi′ ), while remaining in A.
By shrinking U1, we may assume that ‖fi′(y)− fi′(z)‖ ≤ ǫ for all z ∈ U1. By
Lemma 2.10, we may assume that Yi′ has empty interior and, thus, that there is
a point x′ ∈ U1 ∩ (Xi′ \ Yi′). Choose a set U2 which is open in Xi′ and satisfies
x′ ∈ U2 ⊂ U2

Xi′ ⊂ U1 ∩ (Xi′ \ Yi′). As in case one, we may define f ′ ∈ A with
‖f − f ′‖ ≤ ǫ, f ′

j′ = fj′ for j
′ 6= i′, f ′

i′ |U2
X

i′ ≡ fi′(y), and f ′
i′ |Xi′\(U1∩(Xi′\Yi′ )) =

fi′ |Xi′\(U1∩(Xi′\Yi′ )). Choose unitary matricesW,V ∈Mni′
such that Wfi′(y)V

has a zero cross at index 1. Then the rest of the proof proceeds verbatim as
the proof of case one with i′ in place of i and x′ in place of x. �

The following two lemmas guarantee the existence of certain indicator-
function-like elements in DSH algebras. As outlined in Section 3.1, these
unitaries are used, together with the results from Section 3.2, in the proofs
of future lemmas to construct the unitaries needed to prove Theorem 3.30. It
is for these two key lemma that we require the base spaces of a given DSH
algebra to be metrizable.

Lemma 3.21. Suppose A is a DSH algebra of length l. Suppose M ∈ N and
K := {K1 < K2 < · · · < Km} are such that K1 ≥ 0, Km < s(A) − M , and
Kt+1 −Kt ≥ M for 1 ≤ t < m. Then there is a function Φ ∈ A such that
(i) for all 1 ≤ i ≤ l and x ∈ Xi, Φi(x) is a diagonal matrix with entries in

[0, 1] whose final M diagonal entries are all 0, and such that at most one
of every M consecutive diagonal entries is nonzero;

(ii) for all 1 ≤ i ≤ ℓ and 1 ≤ j ≤ ni, Φi(x)j,j = 1 if and only if there is a
1 ≤ t ≤ m such that x ∈ Bi,j−Kt

.

Proof. We define Φ coordinate-wise inductively. Start off by putting Φ1 ≡
diag(χK(0), . . . ,χK(n1 − 1)), where χK is the indicator function corresponding
to the set K = {K1, . . . ,Km}. By the assumption on the set K, condition (i)
holds for Φ1. To see that (ii) holds, suppose Φ1(x)j,j = 1. Then χK(j − 1) = 1,
so there is a 1 ≤ t ≤m such that j = Kt + 1. By Lemma 2.9, x ∈ X1 = B1,1 =
B1,j−Kt

. Conversely, if there is a 1 ≤ t ≤ m such that x ∈ B1,j−Kt
, then by

Lemma 2.9, j −Kt = 1 so that Φ1(x)j,j = χK(j − 1) = 1, which proves (ii).
Now, suppose that we have a fixed 1< i≤ l and assume that we have defined

(Φ1, . . . ,Φi−1) ∈ A(i−1) such that, for all i′ < i and x ∈ Xi′ ,
(I) the matrix Φi′(x) satisfies the properties of conditions (i) and (ii);
(II) Φi′(x)j,j = χK(j − 1) for all 1 ≤ j ≤ s(A).
Let Φ′

i := ϕi−1((Φ1, . . . ,Φi−1)) ∈C(Yi,Mni
). Fix y ∈ Yi, and suppose y decom-

poses into x1 ∈Xi1 \ Yi1 , . . . ,xr ∈Xir \Yir . Let us first check that conditions (i)
and (ii) hold for Φ′

i(y) = diag(Φi1(x1), . . . ,Φir (xr)). By the inductive hypoth-
esis, Φi(y) is a diagonal matrix with entries in [0, 1] and the last M diagonal
entries of Φ′

i(y) are all 0. Given M consecutive entries down the diagonal of
Φ′

i(y), if they are all contained in one of the diagonal blocks, then by the in-
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ductive hypothesis applied to that one block, at most one of these entries is
nonzero. If instead the M consecutive entries span two blocks Φiq (xq) and
Φiq+1

(xq+1), then by the inductive hypothesis, the last M diagonal entries of
Φiq (xq) are 0 and at most 1 of the first M diagonal entries of Φiq+1

(xq+1) can
be nonzero. This shows that (i) holds for Φ′

i(y). Let us now show that (ii)
holds for Φ′

i(y). Fix 1 ≤ j ≤ ni. Let 1 ≤ q ≤ r and 1 ≤ j′ ≤ niq be such that
Φ′

i(y)j,j = Φiq (xq)j′,j′ . Note that j = ni1 + · · ·+ niq−1
+ j′. Given 1 ≤ t ≤ m,

we know by Lemma 2.9 that y ∈Bi,j−Kt
if and only if there is a 1 ≤ p≤ r such

that

(17) j′ −Kt + ni1 + · · ·+ niq−1
= j −Kt = 1 + ni1 + · · ·+ nip−1

(the right-hand side is 1 if p = 1). We claim that if equation (17) holds, then
p = q. Indeed, using the upper and lower bounds on j′ and Kt, we have

1− s(A) < 1− (s(A)−M − 1) ≤ j′ −Kt ≤ niq ,

whence

1 + ni1 + · · ·+ niq−1
− s(A) < 1 + ni1 + · · ·+ nip−1

≤ ni1 + · · ·+ niq−1
+ niq .

The first inequality and the definition of s(A) imply that q ≤ p, while the
second inequality forces q ≥ p so that p = q. Therefore, since xq ∈ Xiq \ Yiq ,
the above and Lemma 2.9 show that

y ∈ Bi,j−Kt
⇐⇒ j −Kt = 1+ ni1 + · · ·+ niq−1

⇐⇒ j′ −Kt = 1

⇐⇒ xq ∈ Biq ,j′−Kt
.

Since the matrix Φiq (xq) satisfies (ii) by the inductive hypothesis, it follows that
there is a 1 ≤ t ≤ m with y ∈ Bi,j−Kt

if and only if Φ′
i(y)j,j = Φiq (xq)j′,j′ = 1,

which proves that (ii) holds for Φ′
i(y).

Let us now define Φi ∈ C(Xi,Mni
) to be a suitable extension of Φ′

i. Write
Φ′

i = diag(h′
1, . . . , h

′
ni
), where h′

j ∈ C(Yi, [0, 1]) for 1 ≤ j ≤ ni. We define

Φi = diag(h1, . . . , hni
) by specifying each hj to be a continuous function hj :

Xi → [0,1] that extends h′
j . For 1≤ j ≤ s(A), put hj ≡ χK(j − 1) to insure that

(II) in the inductive hypothesis is verified, and set hj ≡ 0 for ni −M +1≤ j≤ni

(since (I) and (II) hold for Φ1, . . . ,Φi−1, these hj ’s do indeed extend the cor-
responding h′

j ’s). We define hj for s(A) + 1 ≤ j ≤ ni −M inductively. Fix

s(A) + 1 ≤ j ≤ ni −M , and assume we have defined h1, . . . , hj−1 so that the
following property holds:

(♣)

M−1⋃

t=1

supp(hj−t) ⊂ Xi is disjoint from supp(h′
j) ⊂ Yi.

Note that
⋃M−1

t=1 supp(h
s(A)+1−t) = ∅, and so (♣) holds for the base case

j = s(A) + 1. Since Xi is a metric space and, hence, perfectly normal, we
may use (♣) to extend h′

j to a function fj in C(Xi, [0, 1]) that vanishes on
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⋃M−1
t=1 supp(hj−t) and is strictly less than 1 on Xi \ Yi. Define

g0j := h′
j −

M−1∑

t=1

h′
j+t ∈ C(Yi).

Then the range of g0j is contained in [−1, 1] since by (I) at most one of
h′
j , . . . , h

′
j+M−1 is nonzero at any given point in Yi. Extend g0j to a function

g′j in C(Xi, [−1, 1]). Put gj := max(g′j , 0), and note that gj|Yi
= h′

j. Since

h′
j(y) = 0 for each y ∈

M−1⋃

t=1

supp(h′
j+t),

we may choose an open subset U ⊃
⋃M−1

t=1 supp(h′
j+t) of Xi on which g′j is

strictly negative so that gj|U ≡ 0. Define hj := min(fj , gj) ∈ C(Xi, [0, 1]), and
note that hj |Yi

= h′
j . Since hj |U ≡ 0, we have supp(hj) ∩U = ∅, from which it

follows that supp(hj) ∩
(⋃M−1

t=1 supp(h′
j+t)

)
= ∅. This ensures that (♣) holds

with j + 1 in place of j and, hence, that Φi := diag(h1, . . . , hni
) is well defined.

To conclude the proof, let us check that Φi satisfies (i) and (ii). In light of the
analysis above, we may restrict ourselves to the diagonal entries s(A) + 1 ≤
j ≤ ni − M . By definition, the range of each hj is contained in [0, 1]. If
hj(x) > 0 for some x ∈ Xi, then fj(x) > 0 and, hence, by the definition of fj ,
x /∈

⋃M−1
t=1 supp(hj−t). This proves that at most one of any M consecutive

entries down the diagonal of Φi(x) is nonzero. Hence, (i) is established. To
prove (ii), suppose x ∈ Xi satisfies hj(x) = 1. Then fj(x) = 1, which implies
that x ∈ Yi. Thus, h

′
j(x) = 1, and we already established that x ∈ Bi,j−Kt

for
some t in this case. Conversely, suppose x ∈ Bi,j−Kt

for some t. If j −Kt 6= 1,
then by Lemma 2.9, x ∈ Yi, and we already concluded in this case that hj(x) =
h′
j(x) = 1. If instead j − Kt = 1, then it must be that j < s(A), and we

previously defined hj ≡ 1 in this case. Therefore, property (ii) holds.
We verified that both (I) and (II) hold for Φi = diag(h1, . . . , hl), and since

Φi|Yi
=Φ′

i = ϕi−1((Φ1, . . . ,Φi−1)), it follows that (Φ1, . . . ,Φi) ∈ A(i). Thus, by
induction, we obtain Φ := (Φ1, . . . ,Φl) ∈ A, which satisfies the requirements of
the lemma. �

Lemma 3.22. Suppose A is a DSH algebra of length l. Suppose M ∈ N and
K := {K1 < K2 < · · · < Km} are such that K1 ≥ 0, Km < s(A) − M , and
Kt+1 −Kt ≥M for 1≤ t < m. Suppose that, for each 1≤ i ≤ l and 1≤ j ≤ ni,
we have a set Fi,j ⊂Xi that is closed in Xi and disjoint from each set Bi,j−Kt

(see Definition 2.8) for 1 ≤ t ≤ m. Then there is a function Θ ∈ A such that
(i) for all 1 ≤ i ≤ l and x ∈ Xi, Θi(x) is a diagonal matrix with entries in

[0, 1] whose final M diagonal entries are all 0, and such that at most one
of every M consecutive diagonal entries is nonzero;

(ii) for all 1 ≤ i ≤ l, 1 ≤ j ≤ ni, and x ∈ Fi,j, we have Θi(x)j,j = 0;
(iii) for all 1 ≤ i ≤ l and 1 ≤ j ≤ ni, there is a (possibly empty) open subset

Ui,j ⊂ Xi containing Bi,j with the property that if x ∈ Ui,j, then

Θi(x)j+Kt,j+Kt
= 1 for all 1 ≤ t ≤ m.
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Proof. Using the hypotheses of this lemma, Lemma 3.21 furnishes a function
Φ ∈ A such that
(a) for all 1 ≤ i ≤ l and x ∈ Xi, Φi(x) is a diagonal matrix with entries in

[0, 1] whose final M diagonal entries are all 0, and such that at most one
of every M consecutive diagonal entries is nonzero;

(b) for all 1≤ i≤ ℓ and 1≤ j≤ ni, Φi(x)j,j =1 if and only if there is a 1≤ t≤m
such that x ∈ Bi,j−Kt

.
Let us use Φ to construct a function Θ ∈ A satisfying conditions (i) to (iii).

Given δ ∈ [0, 1), define g : [0, 1] → [0, 1] by

g(x) :=







0 if 0 ≤ x ≤ δ,

linear if δ ≤ x ≤ 1+δ
2 ,

1 if 1+δ
2 ≤ x ≤ 1.

For 1 ≤ i ≤ l, define Θi : Xi → Mni
by

Θi(x) := diag
(
g(Φi(x)1,1), . . . , g(Φi(x)ni,ni

)
)
.

Then Θ :=
⊕l

i=1 Θi ∈
⊕l

i=1 C(Xi, Mni
). Since each diagonal entry of Φ is

modified in the same way in the definition of Θ, it is straight-forward to check
that Θ is compatible with the diagonal structure of A. Hence, Θ ∈ A. More-
over, since Θi(x)j,j = 0 whenever Φi(x)j,j = 0, it is clear that Θ satisfies (i)
since Φ satisfies (a).

To see that Θ satisfies (ii), fix 1 ≤ i ≤ l and 1 ≤ j ≤ ni. Since Fi,j is disjoint
from each Bi,j−Kt

(for 1≤ t≤m), condition (b) guarantees that Φi(x)j,j < 1 for
all x ∈ Fi,j . Since Fi,j is compact, there is a δi,j ∈ [0,1) such that Φi(x)j,j ≤ δi,j
for all x ∈ Fi,j . On choosing δ := max{δi,j | 1≤ i ≤ l, 1≤ j ≤ ni} ∈ [0,1) in our
definition of g above, it follows that Θi(x)j,j = 0 whenever 1≤ i≤ l, 1≤ j ≤ ni,
and x ∈ Fi,j , which proves (ii).

Finally, to see that Θ satisfies (iii), fix 1 ≤ i ≤ l and 1 ≤ j ≤ ni. If j >
ni − (s(A)− 1), we may take Ui,j = ∅ since Bi,j = ∅ by Lemma 2.9 for such j.
For j ≤ ni − (s(A)− 1), note that if x ∈ Bi,j , then by (b), Φi(x)j+Kt,j+Kt

= 1
for all 1≤ t≤m. Since g is 1 in a neighborhood of 1, it follows that, for each t,
there is an open set Ut ⊃Bi,j on which the function Θi( · )j+Kt,j+Kt

:Xi → [0,1]
is equal to 1. Taking Ui,j :=

⋂

1≤t≤m Ut yields (iii) and proves the lemma. �

Given a sequence of DSH algebras A1, A2, . . ., we denote by l(j) the length
of the DSH algebra Aj . We denote the base spaces of Aj by Xj

1 , . . . , X
j

l(j) and
the corresponding closed subspaces by Y j

1 , . . . , Y
j

l(j). We denote the size of the
matrix algebras in the pullback definition of Aj by nj

1, . . . , n
j

l(j). Finally, we

denote the sets defined in Definition 2.8 corresponding to Aj by Bj
i,k.

Lemma 3.23. Suppose

A1
ψ1
−→ A2

ψ2
−→ A3

ψ3
−→ · · · −→ A := lim

−→
Ai
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is a simple limit of infinite-dimensional DSH algebras with injective diagonal
maps. Then, for all j,m ∈ N, there is a j′ > j such that s(Aj′ ) > m (where,

recall, s(Aj) = min{nj
t | 1 ≤ t ≤ l(j)}).

Proof. Since Aj is infinite-dimensional, at least one of the base spaces must

be infinite. Let 1 ≤ i ≤ l(j) be the largest integer for which Xj
i is infinite.

By Lemma 2.10, Xj
i \ Y j

i is also infinite and Y j
i′ = ∅ for i < i′ ≤ l(j). Choose

pairwise-disjoint open in Xj
i sets O1, . . . ,Om+1 ⊂ Xj

i \ Y
j
i . Lemma 2.12 guar-

antees that O1, . . . ,Om+1 are all open with respect to the hull-kernel topology

on Âj . By Lemma 3.19, there is a j′ > j such that, for all x ∈ Âj′ , ψ̂j′,j(x) con-
tains a point from each ofO1, . . . ,Om+1. Hence, n

j′

i ≥m+1 for all 1≤ i≤ l(j′),
which proves the lemma. �

Lemma 3.24. Suppose

A1
ψ1
−→ A2

ψ2
−→ A3

ψ3
−→ · · · −→ A := lim

−→
Ai

is a simple limit of infinite-dimensional DSH algebras with injective diagonal
maps. Suppose that f is a non-invertible element belonging to some Aj and
that ǫ > 0. Then there exist f ′ ∈Aj with ‖f − f ′‖ ≤ ǫ and M ∈N such that, for
all N ∈ N, there exist j′ > j satisfying s(Aj′ ) > NM and unitaries V, V ′ ∈ Aj′

with the following properties:

(i) for any 1≤ i≤ l(j′) and 1≤ k≤ nj′

i , there is a (possibly empty) open subset

Ui,k of Xj′

i containing Bj′

i,k such that, for all x ∈ Ui,k, (V ψj′,j(f
′)V ′)i(x)

has zero crosses at indices k, k +M,k + 2M, . . . , k + (N − 1)M ;

(ii) for all 1≤ i ≤ l(j′) and x ∈Xj′

i , we have r((V ψj′,j(f
′)V ′)i(x)) ≤S(Aj) +

M − 1 (where, recall, S(Aj) = max{nj
t | 1 ≤ t ≤ l(j)}).

Proof. Let f ′, w, v,∆ ∈ Aj and U ⊂ Âj be given as in Lemma 3.20 (when
applied to f and ǫ), and set g := wf ′v. Then, at every point in U , g has a zero
cross at index 1 and the (1,1)-entry of ∆ is 1. By Lemma 3.19 and Lemma 2.5,

there is a j′′ > j such that ψ̂j′′,j([evx]) contains a point in U for all

x ∈

l(j′′)
⊔

i=1

(Xj′′

i \ Y j′′

i ).

Since ψj′′,j is diagonal, this means that, for 1 ≤ i ≤ l(j′′) and x ∈ Xj′′

i \ Y j′′

i ,
at least one of the points x decomposes into under ψj′′,j lies in U so that the
matrices ψj′′,j(g)i(x) and ψj′′,j(∆)i(x) have a zero cross and a 1, respectively,
at the same index along their respective diagonal. Owing to the decomposition

structure ofAj′′ , these two results hold, in fact, for all 1≤ i≤ l(j′′) and x∈Xj′′

i .
Take M := 2S(Aj′′ ), and let N ∈ N be arbitrary.

By Lemma 3.23, there is a j′ > j′′ such that

(18) s(Aj′) > NM.

Münster Journal of Mathematics Vol. 15 (2022), 167–220



The stable rank of diagonal ASH algebras 203

Let

∆′ := ψj′,j(∆) = ψj′,j′′(ψj′′,j(∆)),

g′ := ψj′,j(g) = ψj′,j′′ (ψj′′,j(g)).

Given 1 ≤ i ≤ l(j′) and x ∈ Xj′

i and regarding ∆′ as a diagonal image under
ψj′,j′′ , it follows from the definition of M that any M consecutive entries
down the diagonal of ∆′

i(x) must contain a 1. Moreover, regarding g′ and ∆′

as diagonal images under ψj′,j shows that g′i(x) has a zero cross at index k
whenever ∆′

i(x)k,k > 0 (as a consequence of the conclusion of Lemma 3.20)
and that r(g′i(x)) ≤ S(Aj).

We now apply Lemma 3.22 with the natural numberM , withm=N ,K1=0,

K2 = M, . . . ,KN = (N − 1)M , and Fi,k = ∅ for 1 ≤ i ≤ l(j′) and 1 ≤ k ≤ nj′

i

(note that KN < s(Aj′ ) − M by inequality (18)). This furnishes a function
Θ ∈ Aj′ with the following properties:

(I) for all 1 ≤ i ≤ l(j′) and x ∈ Xj′

i , Θi(x) is a diagonal matrix with entries
in [0, 1] whose final M diagonal entries are all 0, and such that at most
one of every M consecutive diagonal entries is nonzero;

(II) for all 1 ≤ i ≤ l(j′) and 1 ≤ k ≤ nj′

i , there is a (possibly empty) open

subset Ui,k ⊂ Xj′

i containing Bj′

i,k with the property that if x ∈ Ui,k, then

Θi(x)k+aM,k+aM = 1 for all 0 ≤ a ≤ N − 1.

Fix 1 ≤ i ≤ l(j′). Given x ∈ Xj′

i and 1 ≤ k ≤ nj′

i − (M − 1), let

ui
k(x) :=

M−1∏

t=1

ui
(k k+t)

(
Θi(x)k,k∆

′
i(x)k+t,k+t

)
∈ Mn

j′

i
,

where each ui
(k k+t) : [0,1]→Mn

j′

i
is a connecting path of unitaries as described

in Definition 3.5. Define Wi ∈ C(Xj′

i ,Mn
j′

i
) to be the unitary

Wi(x) :=

n
j′

i
−M
∏

k=1

ui
k(x).

Set W := (W1, . . . , Wl(j′)), and take V := Wψj′,j(w) and V ′ := ψj′,j(v)W
∗.

Before showing that W ∈ Aj′ , let us prove that statements (i) and (ii) of
Lemma 3.24 hold.

Fix x ∈Xj′

i . Note that if Θi(x)k′,k′ = 0, then ui
k′(x) = 1nj′

i
. Let {k1 < · · ·<

ks} denote the set of indices r at which Θi(x)r,r > 0. Then

Wi(x) = ui
k1
(x) · · · ui

ks
(x),

where, by (I) above, kp+1 − kp ≥ M for 1 ≤ p < s and ks ≤ nj′

i − M . Note
that conjugating any matrix by ui

kp
(x) only affects the kp, . . . , kp + (M − 1)

rows and columns of that matrix. Thus, for p 6= q, the indices of the rows and
columns affected when conjugating by ui

kp
(x) do not overlap with the indices of

the rows and columns affected when conjugating by ui
kq
(x). This observation

will be used to prove (i) and (ii) below.
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To prove (i), fix 1 ≤ k ≤ nj′

i , and assume x ∈ Ui,k. For p = s, s− 1, . . . , 1,
let

Dp := ui
kp
(x) · · ·ui

ks
(x)g′i(x)u

i
ks
(x)∗ · · ·ui

kp
(x)∗

(setting Ds+1 := g′i(x)), and apply part (b) of Lemma 3.6 with M , n = nj′

i ,
l = kp, ξl+t = Θi(x)l,l∆

′
i(x)l+t,l+t for t = 0, 1, . . . ,M − 1, D = Dp+1, and U =

ui
kp
(x) to conclude that Dp has a zero cross at any index among {1, . . . , nj′

i } \

{kp, . . . , kp +M − 1} whenever Dp+1 does.
Now, fix an integer 0 ≤ a ≤ N − 1. Let us show that Wi(x)g

′
i(x)Wi(x)

∗ has
a zero cross at index k+ aM . By (II) above, Θi(x)k+aM,k+aM =1. Let r denote
the unique integer such that kr = k + aM . Applying the result obtained just
above inductively s− r times, it follows that, for every q ∈ {kr, . . . , kr +M − 1},
Dr+1 has a zero cross at index q whenever g′i(x) does; in particular, for any
such q, Dr+1 has a zero cross at index q provided that ∆′

i(x)q,q > 0. Hence,
since any M consecutive entries along the diagonal of ∆′

i(x) must contain a 1,
the assumptions of part (c) of Lemma 3.6 are satisfied with M , n= nj′

i , l= k+
aM , ξl+t =Θi(x)l,l∆

′
i(x)l+t,l+t =∆′

i(x)l+t,l+t for t=0,1, . . . ,M − 1, D=Dr+1,
and U = ui

kr
(x). Thus, we may apply that part of the lemma to deduce that Dr

has a zero cross at index k + aM . Appealing to the conclusion of the previous
paragraph inductively r − 1 times, it follows that D1 = Wi(x)g

′
i(x)Wi(x)

∗ has
a zero cross at index k + aM since k + aM = kr is not among the indices
affected upon conjugation by ui

k1
(x) · · · ui

kr−1
(x). This proves (i).

Next, recall that g′ is the diagonal image of g, which has bandwidth at most
S(Aj) at every point. To prove (ii), therefore, it suffices to show that, for any
given matrix D = (Dq,t) ∈ Mn

j′

i
, we have r(Wi(x)DWi(x)

∗) ≤ r(D) +M − 1.
This is most easily seen by drawing a picture and examining which rows and
columns are potentially affected upon conjugation by the ui

kp
’s:

· · ·

.

.

.
. . .

.

.

.

· · ·k1 k2 ks
k1

k2

ks

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

Figure 9. Affected rows/columns
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Since the sets {kp, . . . , kp +(M − 1)} for 1≤ p≤ s are disjoint, the block rows
and columns are disjoint. Suppose we are given an index (q, t) that lies in the
shaded region of the diagram in Figure 9, and suppose that λ is the number at
entry (q, t) of Wi(x)DWi(x)

∗. Upon partitioning this shaded region, it follows
that the index (q, t) lies in one of the following three shaded subregions:

· · ·

.

.

.
. . .

.

.

.

· · ·k1 k2 ks
k1

k2

ks

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

Figure 10. Region A

· · ·

.

.

.
. . .

.

.

.

· · ·k1 k2 ks
k1

k2

ks

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

Figure 11. Region B

· · ·

.

.

.
. . .

.

.

.

· · ·k1 k2 ks
k1

k2

ks

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

}

M

︸︷︷︸

M

Figure 12. Region C

On Figure 10, the matrices Wi(x)DWi(x)
∗ and DWi(x)

∗ are equal. Hence,
if (q, t) lies in Figure 10 and p is such that kp ≤ t ≤ kp + M − 1, then λ is
a linear combination of Dq,kp

, . . . , Dq,kp+M−1. Thus, λ can be nonzero only if
one of Dq,kp

, . . . ,Dq,kp+M−1 is nonzero. Hence, no nonzero entry in this region
is more than M − 1 indices away from a nonzero entry in D. On Figure 11, the
matrices Wi(x)DWi(x)

∗ and Wi(x)D are equal, and so a symmetrical analysis

Münster Journal of Mathematics Vol. 15 (2022), 167–220



206 Mihai Alboiu and James Lutley

shows that the same is true also for nonzero entries in this region. If (q, t)
lies in one of the s2 disjoint M ×M blocks in Figure 12, then λ is a linear
combination of the corresponding entries in D lying in that block. Hence,
in this case, λ is 0 unless that M ×M block in D contains a nonzero entry.
Thus, no nonzero entry of Wi(x)DWi(x)

∗ in Figure 12 is more than M − 1
units further away from the diagonal than a nonzero entry of D. This analysis
proves that r(Wi(x)DWi(x)

∗) ≤ r(D) +M − 1, yielding (ii).
To conclude, let us show that W ∈ Aj′ . Fix 1 ≤ i ≤ l(j′), and suppose that

y ∈ Y j′

i decomposes into

x1 ∈ Xj′

i1
\ Y j′

i1
, . . . , xs ∈ Xj′

is
\ Y j′

is
.

For 1 ≤ k ≤ s, let pk := 1 + nj′

i1
+ · · · + nj′

ik−1
. Note that, by inequality (18),

ps ≤ nj′

i − s(Aj′ ) + 1 ≤ nj′

i −M . Thus, we may write

(19) Wi(y) =

n
j′

i −M
∏

k=1

ui
k(y) =

s−1∏

m=1

pm+1−1
∏

k=pm

ui
k(y)×

n
j′

i −M
∏

k=ps

ui
k(y).

Fix 1 ≤ m < s. Then

pm+1−1
∏

k=pm

ui
k(y) =

pm+1−1
∏

k=pm

M−1∏

t=1

ui
(k k+t)

(
Θi(y)k,k∆

′
i(y)k+t,k+t

)
.

By (I), the last M entries of Θim(xm) are zero. Hence, on account of the
diagonal decomposition of Θi(y), the quantity above is equal to

pm+1−1−M
∏

k=pm

M−1∏

t=1

ui
(k k+t)

(
Θim(xm)k−pm+1,k−pm+1∆

′
im
(xm)k−pm+1+t,k−pm+1+t

)
,

which, upon relabeling indices, becomes

(20)

pm+1−pm−M
∏

q=1

M−1∏

t=1

ui
(q+pm−1 q+pm−1+t)

(
Θim(xm)q,q∆

′
im
(xm)q+t,q+t

)
.

For each 1 ≤ q ≤ pm+1 − pm −M and 1 ≤ t ≤ M − 1, note that

ui
(q+pm−1 q+pm−1+t) = diag(1pm−1, u

im
(q q+t), 1n

j′

i
−pm+1+1).

Hence, we may rewrite (20) as

diag

(

1pm−1,

pm+1−pm−M
∏

q=1

uim
q (xm), 1nj′

i
−pm+1+1

)

= diag
(
1pm−1,Wim(xm), 1nj′

i
−pm+1+1

)
.

Therefore, for all 1 ≤ m < s,

pm+1−1
∏

k=pm

ui
k(y) = diag

(
1pm−1,Wim(xm), 1nj′

i
−pm+1+1

)
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and, similarly,
n
j′

i
−M
∏

k=ps

ui
k(y) = diag

(
1ps−1,Wis(xs)

)
.

Plugging this into equation (19) yields Wi(y) = diag(Wi1(x1), . . . , Wis(xs)),
which proves that W ∈ A. The proof of Lemma 3.24 is now complete. �

Definition 3.25 (Block point). Given a matrix D ∈ Mn and 1 ≤ k ≤ n, we
say that D has a block point at index k provided that Di,j = 0 if either i ≥ k
and j < k or i < k and j ≥ k.

Lemma 3.26. Suppose A is a DSH algebra of length l. Suppose f ∈ A and
ǫ > 0. Then there is a g ∈A with ‖g− f‖ ≤ ǫ and with the property that, for all
1≤ i≤ l and 1 ≤ k ≤ ni, there are (possible empty) open sets Oi,k ⊃ Bi,k in Xi

such that gi(x) has a block point at index k whenever x ∈ Oi,k. Moreover, g
can be chosen so that, for each 1 ≤ i ≤ l and x ∈ Xi, gi(x) has a zero cross at
index k whenever fi(x) does, and r(gi(x)) ≤ r(fi(x)).

Proof. Given 1≤ i≤ l and 1≤ s, t≤ ni, let fi( · )s,t ∈C(Xi) denote the function
taking x into fi(x)s,t. Let δ = ǫ/S(A)2. Define h ∈ C(C) by

h(z) :=
z

|z|
·max(0, |z| − δ),

where it is understood that h(0) = 0. Note that, for any z ∈ C, if |z| ≤ δ, then
|h(z)− z| = |z| ≤ δ, and if |z| > δ, then

|h(z)− z| =

∣
∣
∣
∣

z

|z|
(|z| − δ)− z

∣
∣
∣
∣
=

∣
∣
∣
∣

z

|z|
δ

∣
∣
∣
∣
= δ.

Thus, for all z ∈ C, |h(z)− z| ≤ δ and, hence, |fi(x)s,t − h(fi(x)s,t)| ≤ δ given
any 1 ≤ i ≤ l, 1 ≤ s, t ≤ ni, and x ∈ Xi. Define gi(x)s,t := h(fi(x)s,t), and
denote by gi the matrix-valued function in C(Xi,Mni

) given by (gi( · )s,t)s,t.
Set g := (g1, . . . , gl) ∈

⊕l
i=1 C(Xi,Mni

). For x ∈ Xi,

‖fi(x)− gi(x)‖ ≤
∑

1≤s,t≤ni

‖fi(x)s,t − gi(x)s,t‖ ≤ n2
i δ ≤ ǫ.

Hence, ‖f − g‖ ≤ ǫ.
To see that g ∈ A, observe that if y ∈ Yi decomposes into x1 ∈Xi1 \ Yi1 , . . . ,

xt ∈ Xit \ Yit , then fi(y) = diag(fi1(x1), . . . , fit(xt)). Applying h to each
coordinate yields that gi(y) = diag(gi1(x1), . . . , git(xt)). Furthermore, since
h(0) = 0, gi(x) must have a zero cross at any index that fi(x) does, and
r(gi(x)) ≤ r(fi(x)).

Lastly, fix 1 ≤ i ≤ l and 1 ≤ k ≤ ni. Let us show how to construct Oi,k. If
Bi,k = ∅, take Oi,k :=∅. Otherwise, suppose x ∈ Bi,k. Then fi(x) has a block
point at index k. Let I ⊂ {1, . . . , ni}

2 denote the set of indices (s, t) such
that s ≥ k and t < k or such that s < k and t ≥ k. Given (s, t) ∈ I, it follows
that fi(x)s,t = 0 and, hence, that gi( · )s,t is 0 on an open set Us,t(x) ⊂ Xi

containing x. Then Us,t :=
⋃

x∈Bi,k
Us,t(x) is an open set containing Bi,k on
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which gi( · )s,t vanishes. Take Oi,k :=
⋂

(s,t)∈I Us,t. By construction, then
gi(x)s,t = 0 whenever x ∈ Oi,k and (s, t) ∈ I. Thus, gi(x) has a block point at
index k provided that x ∈ Oi,k, which completes the proof. �

Lemma 3.27. Suppose A is a DSH algebra of length l and that M,N ∈ N

with NM < s(A). Suppose f is an element of A with the property that, for all
1 ≤ i ≤ l and 1 ≤ j ≤ ni, there is a (possibly empty) open set Ui,k ⊃ Bi,k in
Xi such that if x ∈ Ui,k, then fi(x) has zero crosses at indices k, k +M, . . . ,
k + (N − 1)M and a block point at index k. Then there exists a unitary V ∈ A
with the following properties:
(i) for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, there are open sets Oi,k ⊃ Bi,k in Xi such

that Vi(x)fi(x)Vi(x)
∗ has zero crosses at indices k, k + 1, . . . , k + N − 1

whenever x ∈ Oi,k;
(ii) r(Vi(x)fi(x)Vi(x)

∗) ≤ r(fi(x)) + 2 for all 1 ≤ i ≤ l and x ∈ Xi.

Proof. Apply Lemma 3.22 with the natural number NM , the index set K =
{0}, and closed sets Fi,k := Xi \ Ui,k for 1 ≤ i ≤ l and 1 ≤ k ≤ ni to obtain
a function Θ ∈ A possessing the following properties:
(I) for all 1 ≤ i ≤ l and x ∈ Xi, Θi(x) is a diagonal matrix with entries in

[0,1] whose final NM diagonal entries are all 0 and such that at most one
of any NM consecutive diagonal entries is nonzero;

(II) for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, if x /∈ Ui,k, then Θi(x)k,k = 0;
(III)for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, there is a (possibly empty) open subset

Oi,k ⊂ Xi containing Bi,k with the property that Θi(x)k,k = 1 whenever
x ∈ Oi,k.

Now, fix 1≤ i≤ l. For 1≤ k ≤ ni −NM , let uk ∈C(Xi,Mni
) be the unitary

uk(x) := diag
(
1k−1,W (Θi(x)k,k), 1ni−(NM+k−1)

)
,

where W is the unitary in C([0, 1],MNM ) given by Lemma 3.10 with z1 := 1,
z2 := 1 +M, . . . , zN := 1 + (N − 1)M . For ni −NM < k ≤ ni, set uk ≡ 1ni

.
Define Vi ∈ C(Xi,Mni

) to be the unitary

Vi :=

ni∏

k=1

uk.

For x ∈ Xi, let K(x) := {1 ≤ k ≤ ni | Θi(x)k,k > 0}, and write K(x) =
{k1, . . . , ks}, where k1 < · · · < ks, and put ks+1 := ni + 1. Note that k1 = 1 by
(III) above since Bi,1 = Xi by Lemma 2.9, and for 1 ≤ t ≤ s, kt+1 − kt ≥ NM
by (I) above. If k /∈ K(x), then uk ≡ 1ni

. Hence, we may write

Vi(x) =

s∏

t=1

ukt
(x) = diag

(
W (Θi(x)k1,k1

), 1d1
,W (Θi(x)k2,k2

), 1d2
, . . . ,(21)

W (Θi(x)ks,ks
), 1ds

)
,

where dt := kt+1 − (kt +NM) for 1 ≤ t ≤ s.
Let V := (V1, . . . , Vl). In order to prove Lemma 3.27, let us show that (i)

holds, then that (ii) holds, and finally that V ∈ A.
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To prove (i) and (ii), fix 1 ≤ i ≤ l and x ∈ Xi, and let K(x) = {k1, . . . , ks}
and ks+1 be defined as above. For 1≤ t≤ s, we have Θi(x)kt,kt

> 0. Hence, by
(II) above, it must be that x ∈ Ui,kt

and, thus, fi(x) has a block point at index
kt and zero crosses at indices kt, kt +M, . . . , kt + (N − 1)M by the assumption
of the lemma. Thus, fi(x) = diag(Q1, Q2, . . . , Qs), where Qt is a kt+1 − kt
block for 1 ≤ t ≤ s and has zero crosses at 1,1 +M, . . . ,1 + (N − 1)M . There-
fore, in light of the decomposition of Vi(x) in equation (21), we may view
Vi(x)fi(x)Vi(x)

∗ as a block-diagonal matrix diag(B1, . . . , Bs) with

Bt = diag
(
W (Θi(x)kt,kt

), 1dt

)
·Qt · diag

(
W (Θi(x)kt,kt

), 1dt

)∗
.

Thus, to prove (ii), it suffices to show that r(Bt) ≤ r(Qt) + 2. Furthermore, if
x ∈ Oi,k for some 1 ≤ k ≤ ni, then by (III), Θi(x)k,k = 1 > 0, and so k = kt
for some 1 ≤ t ≤ s. Since the block Bt begins at index kt down the diagonal
of Vi(x)fi(x)Vi(x)

∗, to prove (i), it suffices to show that Bt has zero crosses at
indices 1, 2, . . . , N whenever Θi(x)kt,kt

= 1.
To this end, fix 1 ≤ t ≤ s, and write

Qt =

(
D11 D12

D21 D22

)

,

where D11 ∈ MNM , D22 ∈ Mdt
, and D12 and D21 are NM × dt and dt ×NM

matrices, respectively. Note that D11 has zero crosses at indices 1, 1 +M, . . . ,
1 + (N − 1)M , while the rows of D12 and the columns of D21 at these same
indices consist entirely of zeros. We may write

Bt =

(
W (Θi(x)kt,kt

) 0NM×dt

0dt×NM 1dt

)(
D11 D12

D21 D22

)(
W (Θi(x)kt,kt

)∗ 0NM×dt

0dt×NM 1dt

)

=

(
W (Θi(x)kt,kt

)D11W (Θi(x)kt,kt
)∗ W (Θi(x)kt,kt

)D12

D21W (Θi(x)kt,kt
)∗ D22

)

.

If Θi(x)kt,kt
= 1, then

Bt =

(
W (1)D11W (1)∗ W (1)D12

D21W (1)∗ D22

)

.

By our definition of W ,it follows by Lemma 3.10 that W (1)D11W (1)∗ has zero
crosses at indices 1,2, . . . ,N and that the first 1,2, . . . ,N rows of W (1)D12 and
columns of D21W (1)∗ consist only of zeros. It follows that Bt has zero crosses
at indices 1, 2, . . . ,N , which, based on the aforementioned analysis, proves (i).

Let us now prove (ii) by showing that r(Bt) ≤ r(Qt) + 2. By our definition
of W , we may apply Lemma 3.10 to obtain the following estimates:

r
(
W (Θi(x)kt,kt

)D11W (Θi(x)kt,kt
)∗
)
≤ r(D11) + 2,

r

((
0NM×NM W (Θi(x)kt,kt

)D12

0dt×NM 0dt×dt

))

≤ r

((
0NM×NM D12

0dt×NM 0dt×dt

))

,

r

((
0NM×NM 0NM×dt

D21W (Θi(x)kt,kt
)∗ 0dt×dt

))

≤ r

((
0NM×NM 0NM×dt

D21 0dt×dt

))

.
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Combining these estimates gives

r(Bt) = r

((
W (Θi(x)kt,kt

)D11W (Θi(x)kt,kt
)∗ W (Θi(x)kt,kt

)D12

D21W (Θi(x)kt,kt
)∗ D22

))

≤ r(Qt) + 2,

which proves (ii).
Finally, let us verify that V ∈ A. Suppose y ∈ Yi decomposes into x1 ∈Xi1 \

Yi1 , . . . ,xr ∈Xir \ Yir . We have to show that Vi(y) = diag(Vi1 (x1), . . . ,Vir (xr)).
Let K(y) = {1 ≤ k ≤ ni | Θi(y)k,k > 0}, as defined above. Write K(y) =
{k1, . . . , ks}, where 1 = k1 < · · · < ks, and put ks+1 := ni + 1. As before, let
dt := kt+1 − (kt +NM) for 1 ≤ t ≤ s. Define B(y) := {1 ≤ k ≤ ni | y ∈ Bi,k}.
By (III) above, B(y) ⊂ K(y). Hence, by Lemma 2.9, for each 1 ≤ j ≤ r, there
is a tj ∈ {1, . . . , s} such that 1 + ni1 + · · ·+ nij−1

= ktj (where kt1 = 1 = k1 so
that t1 = 1); set tr+1 := s+ 1 so that ktr+1

= ks+1 = ni + 1.
Now, fix 1 ≤ j ≤ r, and observe that Θij (xj)k,k = Θi(y)ktj

+k−1,ktj
+k−1.

Therefore,

K(xj) = {1 ≤ k ≤ nij | Θij (xj)k,k > 0}

= {k − ktj + 1 | k ∈ K(y) and ktj ≤ k < ktj+1
}

= {kt − ktj + 1 | tj ≤ t < tj+1}.

Moreover, if tj ≤ t < tj+1, then (kt+1 − ktj + 1)− (kt − ktj + 1 +NM) = dt.
Given matrices E1, . . . , Ep, let

⊕p
q=1 Eq := diag(E1, . . . , Ep). Then, by the

computation of K(xj) above and equation (21), it follows that

Vij (xj) =
⊕

tj≤t<tj+1

diag
(
W (Θij (xj)kt−ktj

+1,kt−ktj
+1),

1(kt+1−ktj
+1)−(kt−ktj

+1+NM)

)

=
⊕

tj≤t<tj+1

diag
(
W (Θi(y)kt,kt

), 1dt

)
.

Therefore,

diag
(
Vi1 (x1), . . . , Vir (xr)

)
=

⊕

1≤j≤r

⊕

tj≤t<tj+1

diag
(
W (Θi(y)kt,kt

), 1dt

)

=
⊕

1≤t≤s

diag
(
W (Θi(y)kt,kt

), 1dt

)
= Vi(y),

where the last equality follows by equation (21). This shows that V ∈ A. The
proof of Lemma 3.27 is now complete. �

Lemma 3.28. Suppose A is a DSH algebra of length l and that 1≤N < s(A).
Suppose f ∈ A is such that, for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, there is an open
subset Ui,k ⊂ Xi containing Bi,k with the property that if x ∈ Ui,k, then fi(x)
has zero crosses at indices k, k + 1, . . . , k +N − 1, and such that r(fi(x)) ≤ N
for all x ∈ Xi. Then there is a unitary V ∈ A such that, for all 1 ≤ i ≤ l and
x ∈ Xi, the matrix (fV )i(x) is strictly lower triangular.
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Proof. Apply Lemma 3.22 with the natural number N , the index set K = {0},
and the closed sets Fi,k := Xi \ Ui,k for 1 ≤ i ≤ l and 1 ≤ k ≤ ni. This yields
a function Θ ∈ A with the following properties:
(I) for all 1 ≤ i ≤ l and x ∈ Xi, Θi(x) is a diagonal matrix with entries in

[0, 1] whose final N entries are all 0 and such that at most one of every N
consecutive diagonal entries is nonzero;

(II) for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, if x /∈ Ui,k, then Θi(x)k,k = 0;
(III)for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, if x ∈ Bi,k, then Θi(x)k,k = 1.

Since N < s(A), we may, for each 1 ≤ i ≤ l, define Wni
∈ C([0,1]ni ,Mni

) as
in Definition 3.16. For 1≤ i≤ l and x ∈Xi, define the unitary Vi ∈C(Xi,Mni

)
by

Vi(x) := Wni
(Θi(x)1,1, . . . ,Θi(x)ni,ni

),

and set V := (V1, . . . , Vℓ). Let us first argue that (fV )i(x) is strictly lower
triangular for all 1 ≤ i ≤ l and x ∈ Xi, and then show that V ∈ A.

Fix 1 ≤ i ≤ l and x ∈ Xi. From equation (9), we have

(fV )i(x) = fi(x)Wni
(Θi(x)1,1, . . . ,Θi(x)ni,ni

)(22)

= fi(x)U [γni

1,ni
]N

ni−1∏

k=N

uni

k,ni
(Θi(x)k+1,k+1).

If we write fi(x) = [C1 | · · · |Cni
], where Cj is the jth column of fi(x), then

fi(x)U [γni

1,ni
]N = [CN+1 | · · · |Cni

|C1 | · · · |CN ]. By the assumption of the

lemma, r(fi(x)) ≤ N . Hence, all nonzero entries in the first ni −N columns
of the matrix fi(x)U [γni

1,ni
]N must lie strictly below the diagonal. But by

Lemma 2.9, x ∈ Bi,1 and, hence, by the assumptions of the lemma, fi(x) has
zero crosses at indices 1, . . . ,N . In particular, the columns C1, . . . , CN consist
entirely of zeros. Therefore, fi(x)U [γni

1,ni
]N is strictly lower triangular. To

show that (fV )i(x) is strictly lower triangular, we thus only need to verify
that (fV )i(x) = fi(x)U [γni

1,ni
]N . To do this, it is enough, by equation (22), to

check that, for each integer N ≤ k ≤ ni − 1,

(23) fi(x)U [γni

1,ni
]Nuni

k,ni
(Θi(x)k+1,k+1) = fi(x)U [γni

1,ni
]N .

To this end, fix N ≤ k ≤ ni − 1. If Θi(x)k+1,k+1 = 0, then there is noth-
ing to show, since uni

k,ni
(Θi(x)k+1,k+1) = 1ni

in this case. So we may assume
Θi(x)k+1,k+1 > 0. Then, by (II) above, necessarily, x ∈ Ui,k+1. Hence, by the
assumption of the lemma, fi(x) has zero crosses at indices k + 1, . . . , k + N ,
from which it follows that the columns Ck+1, . . . ,Ck+N consist entirely of zeros.
As noted above, these correspond to the columns of fi(x)U [γni

1,ni
]N at indices

k + 1−N, . . . , k. By Definition 3.11, the columns of

fi(x)U [γni

1,ni
]Nuni

k,ni
(Θi(x)k+1,k+1)

at indices k−N +1, . . . , k and ni −N +1, . . . ,ni are linear combinations of the
same set of columns of fi(x)U [γni

1,ni
]N (i.e., of Ck+1, . . . , Ck+N , C1, . . . , CN ).

But every column in this latter set consists entirely of zeros. Hence, since
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multiplying by uni

k,ni
(Θi(x)k+1,k+1) on the right only alters columns at indices

k −N + 1, . . . , k and ni −N + 1, . . . , ni, equation (23) holds.
Let us now ensure that V ∈ A. Suppose that 2 ≤ i ≤ l and that y ∈ Yi

decomposes into x1 ∈ Xi1 \ Yi1 , . . . , xs ∈ Xis \ Yis . Then

(Θi(y)1,1, . . . ,Θi(y)ni,ni
) = (Θi1(x1)1,1, . . . ,Θi1(x1)ni1

,ni1
, . . . ,

Θis(xs)1,1, . . . ,Θis(xs)nis ,nis
).

Define B(y) := {1≤ k ≤ ni | y ∈Bi,k}. By Lemma 2.9, B(y) = {1 = k1 < · · ·<
ks}, where kt = 1 + ni1 + · · · + nit−1

for 1 ≤ t ≤ s. Set ks+1 := ni + 1, and
note that kt+1 − kt = nit for all 1 ≤ t≤ s. By assumption, ni ≥ s(A) >N , and
so, in light of (I) and (III) above, we may apply Lemma 3.17 with the vector
(Θi(y)1,1, . . . ,Θi(y)ni,ni

) and the set B(y) to obtain

Vi(y) = Wni
(Θi(y)1,1, . . . ,Θi(y)ni,ni

)

=

s⊕

j=1

Wnij
(Θij (xj)1,1, . . . ,Θij (xj)nij

,nij
)

= diag
(
Vi1 (x1), . . . , Vis(xs)

)
,

where
⊕s

j=1 Ej := diag(E1, . . . , Es). Therefore, V ∈ A. This completes the
proof of Lemma 3.28. �

3.29. Proof of the main theorem.

Theorem 3.30. Suppose

A1
ψ1
−→ A2

ψ2
−→ A3

ψ3
−→ · · · −→ A := lim

−→
Ai

is a simple inductive limit of DSH algebras with diagonal bonding maps. Then
A has stable rank one.

Proof. For n ∈ N, let µn : An → A denote the map in the construction of the
inductive limit, which is unital (since the bonding maps are) and, by Propo-
sition 2.19, we may assume, injective. Furthermore, we may assume that the
Aj ’s are infinite-dimensional.

Fix ǫ > 0 and a ∈ A. Our goal is to find an invertible element a′ ∈ A with
‖a− a′‖ ≤ ǫ. To start, choose j ∈ N and f ∈ Aj such that ‖a− µj(f)‖ ≤ ǫ/4.
If f is invertible in Aj , then µj(f) is invertible in A, in which case we are
finished. Thus, we may assume that f is not invertible in Aj .

Since Aj is infinite-dimensional, we may apply Lemma 3.24 with f , ǫ/4,
and N = S(Aj) + M + 1, where M is the natural number depending on f
and ǫ/4, coming from the statement of Lemma 3.24. This yields a function
f ′ ∈ Aj with ‖f − f ′‖ ≤ ǫ/4, a j′ > j such that s(Aj′ ) > NM , and unitaries
V, V ′ ∈ Aj′ with the following two properties (we adopt the same notation for
the decomposition of Aj′ introduced just above Lemma 3.24):
(i) for any 1 ≤ i ≤ l and 1 ≤ k ≤ ni, there is a (possibly empty) open subset

Ui,k of Xi containing Bi,k such that (V ψj′,j(f
′)V ′)i(x) has zero crosses at

indices k, k +M,k + 2M, . . . , k + (N − 1)M ;
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(ii) for all 1 ≤ i ≤ l and x ∈ Xi, we have r((V ψj′,j(f
′)V ′)i(x)) ≤ S(Aj) +

M − 1.
Let f ′′ := V ψj′,j(f

′)V ′ ∈ Aj′ .
Next, apply Lemma 3.26 with Aj′ , f ′′, and ǫ/4. This yields a function

g ∈ Aj′ with ‖g − f ′′‖ ≤ ǫ/4 and, for 1 ≤ i ≤ l and 1 ≤ k ≤ ni, open sets
Oi,k ⊂ Xi containing Bi,k on which gi always has a block point at index k;
moreover, for all 1 ≤ i ≤ l and x ∈ Xi, the matrix gi(x) has a zero cross at
every index that f ′′

i (x) does, and r(gi(x)) ≤ r(f ′′
i (x)) ≤S(Aj) +M − 1. Thus,

intersecting the Oi,k’s with the Ui,k’s, we may assume that gi(x) has zero
crosses at indices k, k +M, . . . , k + (N − 1)M whenever x ∈ Oi,k.

Since s(Aj′ ) > NM , we may now apply Lemma 3.27 on Aj′ with g and the
Oi,k’s above to obtain a unitary W ∈ Aj′ with the following properties:
(I) for all 1 ≤ i ≤ l and 1 ≤ k ≤ ni, there are open sets O′

i,k ⊃ Bi,k in Xi such

that Wi(x)gi(x)Wi(x)
∗ has zero crosses at indices k, k + 1, . . . , k +N − 1

whenever x ∈ O′
i,k;

(II) r(Wi(x)gi(x)Wi(x)
∗)≤ r(gi(x)) + 2≤S(Aj) +M + 1 =N for all 1≤ i≤ l

and x ∈ Xi.
Let g′ := WgW ∗ ∈ Aj′ .

Using these properties and the fact that s(Aj′ ) > NM ≥ N , we may apply
Lemma 3.28 on Aj′ with g′ and the O′

i,k’s to conclude that there is a unitary

W ′ ∈ Aj′ such that, for all 1 ≤ i ≤ l and x ∈ Xi, the matrix (g′W ′)i(x) is
strictly lower triangular. Thus, g′W ′ is a nilpotent element. As observed
in [21, Sec. 4], every nilpotent element of a unital C∗-algebra is arbitrarily
close to an invertible element. Thus, there is an invertible element h ∈ Aj′

such that ‖g′W ′ − h‖ ≤ ǫ/4.
Take a′ := µj′(V

∗W ∗h(W ′)∗W (V ′)∗), and observe that a′ is invertible in A.
Then, since the µn’s are injective,

‖µj(f
′)− a′‖ = ‖ψj′,j(f

′)− V ∗W ∗h(W ′)∗W (V ′)∗‖

= ‖V ∗W ∗[WV ψj′,j(f
′)V ′W ∗W ′ − h](W ′)∗W (V ′)∗‖

≤ ‖V ∗W ∗‖‖Wf ′′W ∗W ′ − h‖‖(W ′)∗W (V ′)∗‖

= ‖Wf ′′W ∗W ′ − h‖

≤ ‖Wf ′′W ∗W ′ −WgW ∗W ′‖+ ‖WgW ∗W ′ − h‖

≤ ‖W‖‖f ′′ − g‖‖W ∗W ′‖+ ‖g′W ′ − h‖

≤
ǫ

4
+

ǫ

4
=

ǫ

2
,

and

‖a− µj(f
′)‖ ≤ ‖a− µj(f)‖ + ‖µj(f)− µj(f

′)‖ ≤
ǫ

4
+ ‖f − f ′‖ ≤

ǫ

2
.

Therefore,

‖a− a′‖ ≤ ‖a− µj(f
′)‖+ ‖µj(f

′)− a′‖ ≤
ǫ

2
+

ǫ

2
= ǫ,

as desired. �
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3.31. Applications to dynamical crossed products. Let T be an infinite
compact metric space, and let h : T → T be a minimal homeomorphism. In
the final portion of this paper, we present two applications of Theorem 3.30,
both concerning the dynamical crossed product A := C∗(Z, T, h). We show
that A has stable rank one (see Corollary 3.36), thereby affirming a conjecture
of Archey, Niu, and Phillips (see [3, Conj. 7.2]). We also apply a result of Thiel
from [23] to conclude that classification for A is determined by strict compar-
ison (see Corollary 3.37), which establishes the Toms–Winter Conjecture for
minimal dynamical crossed products.

The Toms–Winter Conjecture dates back to 2008 and stipulates that, for
separable, unital, simple, non-elementary, nuclear C∗-algebras, three different
notions of regularity are equivalent. Below is a precise statement of the con-
jecture.

Conjecture 3.32 (Toms–Winter [9, 27]). Let A be a separable, unital, simple,
non-elementary, nuclear C∗-algebra. The following statements are equivalent.
(i) A has finite nuclear dimension.
(ii) A is Z-stable; that is, A⊗Z ∼= A.
(iii) A has strict comparison of positive elements.

At the time, part of this conjecture had already been established by Rørdam,
who, in [22, Thm. 4.5 and Cor. 4.6], proved that (ii) implies (iii). Winter
showed in [26, Cor. 7.3] that (i) implies (ii). The work of various hands estab-
lished that (ii) implies (i) in special cases, but very recently, in [4, Thm. A],
this implication was shown to hold in full generality. Therefore, to establish
the conjecture for a given C∗-algebra, one needs only to check that strict com-
parison of positive elements yields Z-stability.

Let σ : C(T ) → C(T ) denote the automorphism arising from h given by
σ(f) := f ◦ h−1. Let u denote the unitary in the associated crossed product A
implementing the σ action, i.e., ufu∗ = σ(f) for all f ∈ C(T ). Then A is the
C∗-algebra generated by C(T ) and u. Given a closed set S ⊂ T with nonempty
interior, let AS denote the orbit-breaking sub-C∗-algebra of A associated to S,
first introduced by Putnam in [19] for Cantor minimal systems and later by
Q. Lin and Phillips for more general minimal systems (see [13, 14, 15]); that is,
AS is the C∗-algebra generated by {f, ug | f ∈ C(T ), g ∈ C0(T \ S)}, where we
adopt the shorthand C0(T \ S) := {g ∈ C(T ) | g|S ≡ 0}. In [13, 14, 15], Q. Lin
and Phillips showed that AS is a recursive subhomogeneous algebra, and in
fact a DSH algebra. We outline this below. For a more in-depth discussion,
see [14, Thms. 3.1–3.3].

Given s ∈ S, let λS(s) := min{n > 0 | hn(s) ∈ S} (the first return time
of s to S). Since T is compact, it follows that sups∈S λS(s) is finite (see
also [15, Lem. 2.2]). Thus, there exist 1 ≤ nS

1 < nS
2 < · · · < nS

l(S) such that
{λS(s) | s ∈ S} = {nS

i | 1 ≤ i ≤ l(S)}. For 1 ≤ i ≤ l(S), let

XS
i := λ−1

S (nS
i ) and Y S

i := XS
i \ λ−1

S (nS
i ).
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Then, for given 1 ≤ i ≤ l(S) and y ∈ Y S
i , there are indices 1 ≤ i1, . . . , ip < i

with y ∈ XS
i1
\ Y S

i1
such that nS

i1
+ · · ·+ nS

ip
= nS

i and such that hk(y) ∈ S if
and only if k = nS

i1
+ · · ·+ nS

ij
for some 1 ≤ j ≤ p. Note, too, that

hnS
i1
+···+nS

ij−1 (y) ∈ XS
ij
\ Y S

ij
for all 2 ≤ j ≤ p.

Then AS is isomorphic to a sub-C∗-algebra of
⊕l(S)

i=1 C(XS
i , MnS

i
), where an

element (f1, . . . , fl(S)) of
⊕l(S)

i=1 C(XS
i ,MnS

i
) is in AS if and only if, for given

1 ≤ i ≤ l(S) and y ∈ Y S
i ,

fi(y) = diag
(
fi1(y), fi2(h

nS
i1 (y)), . . . , fip(h

nS
i1

+···+nS
ip−1 (y))

)
,

where i1, . . . , ip are as described above. It follows that AS is a DSH algebra.

Lemma 3.33. Suppose R ⊂ S ⊂ T . Let 1 ≤ i ≤ l(R) and x ∈ XR
i \ Y R

i =
λ−1
R (nR

i ). Then there are indices 1 ≤ i1, . . . , iq ≤ l(S) such that
(i) nS

i1
+ · · ·+ nS

iq
= nR

i ;

(ii) for all 1 ≤ k ≤ nR
i , h

k(x) ∈ S if and only if k = nS
i1
+ · · ·+ nS

ij
for some

1 ≤ j ≤ q;
(iii) x ∈ XS

i1
\ Y S

i1
and, for all 2 ≤ j ≤ q, hnS

i1
+···+nS

ij−1 (x) ∈ XS
ij
\ Y S

ij
.

Proof. Since R ⊂ S and the sets XS
j \ Y S

j for 1 ≤ j ≤ l(S) partition S, there
is a unique 1 ≤ i1 ≤ l(S) such that x ∈ XS

i1
\ Y S

i1
. Moreover, nS

i1
= λS(x) ≤

λR(x) = nR
i . If nS

i1
= nR

i , then there is nothing to show. Otherwise, there is

an i2 such that hnS
i1 (x) ∈ XS

i2
\Y S

i2
. Note that nS

i2
= λS(h

nS
i1 (x)) ≤ nR

i −nS
i1
.

If nS
i2

= nR
i − nS

i1
, the desired result follows. Otherwise, we let i3 be such

that hnS
i1
+nS

i2 (x) ∈ XS
i3
\ Y S

i3
and proceed as before. Eventually, this process

terminates (when nS
i1
+ · · · + nS

iq
= nR

i ) and yields indices with the desired
properties. This proves the lemma. �

By [15, Prop. 2.4], there is a unique homomorphism

γS : AS →

l(S)
⊕

i=1

C(XS
i ,MnS

i
)

with the property that, for f ∈ C(T ) and g ∈ C0(T \ S),

(24) γS(f)i = diag
(
f ◦ h|XS

i
, f ◦ h2|XS

i
, . . . , f ◦ hnS

i |XS
i

)

and

(25) γS(ug)i =












0
g ◦ h|XS

i
0

g ◦ h2|XS
i

. . .

. . . 0

g ◦ hnS
i −1|XS

i
0












for 1 ≤ i ≤ l(S).
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Now, fix R ⊂ S ⊂ T . By examining the generating sets, it follows that AS

is contained in AR. Let ψ : AS → AR denote the inclusion map.

Lemma 3.34. ψ is a diagonal map (see Definition 2.4) between DSH algebras.

Proof. Fix 1 ≤ i ≤ l(R) and x ∈ XR
i \ Y R

i = λ−1
R (nR

i ). By Lemma 3.33, there
are indices 1 ≤ i1, . . . , iq ≤ l(S) such that
(i) nS

i1
+ · · ·+ nS

iq
= nR

i ;

(ii) for all 1 ≤ k ≤ nR
i , h

k(x) ∈ S if and only if k = βj for some 1 ≤ j ≤ q,
where βj := nS

i1
+ · · ·+ nS

ij
;

(iii) for all 1 ≤ j ≤ q, hβj−1(x) ∈ XS
ij
\ Y S

ij
(here β0 := 0 so that x ∈ XS

i1
\ Y S

i1
).

Let us show that x decomposes into hβ0(x) = x, hβ1(x), . . . , hβq−1(x) under ψ.
Suppose that f ∈ C(T ). Let us begin by verifying that

γR(ψ(f))i(x) = diag
(
γS(f)i1(x), γS(f)i2(h

β1(x)), . . . ,(26)

γS(f)iq (h
βq−1 (x))

)
.

Fix 1 ≤ j ≤ q. By equation (24),

γS(f)ij (h
βj−1(x)) = diag

(
f(h(hβj−1(x))), . . . , f(h

nS
ij (hβj−1(x)))

)

= diag
(
f(hβj−1+1(x)), . . . , f(hβj (x))

)
.

Hence,

diag
(
γS(f)i1(x), γS(f)i2 (h

β1(x)), . . . , γS(f)iq (h
βq−1(x))

)

= diag
(
f(hβ0+1(x)), . . . , f(hβ1(x)), . . . , f(hβq−1+1(x)), . . . , f(hβq (x))

)

= diag
(
f(h(x)), . . . , f(hnR

i (x))
)

= γR(f)i(x),

which yields equation (26).
Next, suppose g ∈ C0(T \ S). Let us show that

γR(ψ(ug))i(x) = diag
(
γS(ug)i1(x), γS(ug)i2(h

β1(x)), . . . ,(27)

γS(ug)iq (h
βq−1(x))

)
.

By equation (25),

γR(ug)i(x) =











0
g(h(x)) 0

g(h2(x))
. . .

. . . 0

g(hnR
i −1(x)) 0











.

For 1≤ j ≤ q, we have hβj(x) ∈ S by property (ii) above so that g(hβj(x)) = 0.
Hence, partitioning {1,2, . . . , nR

i } into the sets {βj−1 + 1, . . . , βj} for 1≤ j ≤ q,
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we may view γR(ug)i(x) as a block-diagonal matrix diag(B1, . . . , Bq), where

Bj :=











0
g(hβj−1+1(x)) 0

g(hβj−1+2(x))
. . .

. . . 0
g(hβj−1(x)) 0











= γS(ug)ij (h
βj−1(x)),

which yields equation (27).
We have shown that x decomposes into hβ0(x) = x, hβ1(x), . . . , hβq−1(x)

under ψ on the generators of AS . Let us now use continuity to prove that this
decomposition is maintained for all elements of AS . Let a ∈ AS be arbitrary.
By definition, we may write a= limn→∞wn, where for each n∈N, wn is a word
in C(T ) ∪ uC0(T \ S) ∪ C0(T \ S)u∗. By equations (26) and (27),

γR(ψ(wn))i(x) = diag
(
γS(wn)i1(x), γS(wn)i2(h

β1(x)), . . . ,

γS(wn)iq (h
βq−1(x))

)

for all n ∈ N. Hence, by continuity of ∗-homomorphisms,

γR(ψ(a))i(x) = lim
n→∞

γR(ψ(wn))i(x)

= lim
n→∞

diag
(
γS(wn)i1(x), γS(wn)i2(h

β1(x)), . . . ,

γS(wn)iq (h
βq−1 (x))

)

= diag
(
γS(a)i1(x), γS(a)i2 (h

β1(x)), . . . , γS(a)iq (h
βq−1(x))

)
,

which yields the desired diagonal decomposition and completes the proof of
Lemma 3.34. �

Theorem 3.35. Let T be an infinite compact metric space, and let h : T → T
be a minimal homeomorphism. Given a non-isolated point x ∈ T , the orbit-
breaking subalgebra A{x} of A := C∗(Z, T, h) is a simple inductive limit of DSH
algebras with diagonal maps. In particular, A{x} has stable rank one.

Proof. Choose a sequence S1 ⊃ S2 ⊃ · · · of closed sets with nonempty interior
such that

⋂∞
n=1 Sn = {x}. For each n ∈ N, let ASn

⊂ A denote the subalgebra
as described above, and let ψn : ASn

→ ASn+1
denote the canonical inclusion.

Since
⋃∞

n=1 ASn
= A{x}, it follows by Lemma 3.34 that A{x} is an inductive

limit of DSH algebras with diagonal maps. Moreover, by [14, Thm. 1.2], A{x}

is simple (see [16, Prop. 2.5] for a proof). Therefore, by Theorem 3.30, A{x}

has stable rank one. �

Corollary 3.36 (cp. [3, Conj. 7.2]). Let T be an infinite compact metric space,
and let h : T → T be a minimal homeomorphism. The dynamical crossed prod-
uct A := C∗(Z, T, h) has stable rank one.
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Proof. Let x be any non-isolated point in T . By Theorem 3.35, A{x} has stable
rank one. Since h is minimal and T is infinite, hn(x) 6= x for all n∈N. Thus, on
combining [18, Thm. 7.10] with [3, Thm. 4.6], it follows that A{x} is a centrally
large subalgebra of A. But by [3, Thm. 6.3], any infinite-dimensional unital
simple separable C∗-algebra containing a centrally large subalgebra with stable
rank one must itself have stable rank one. �

Corollary 3.37. Let T be an infinite compact metric space, and let h : T → T
be a minimal homeomorphism. The dynamical crossed product A := C∗(Z, T,h)
is Z-stable if and only if it has strict comparison of positive elements.

Proof. Let x be any non-isolated point in T . By Theorem 3.35, A{x} has
stable rank one. Thus, by [23, Thm. 9.6], the Toms–Winter Conjecture (Con-
jecture 3.32) holds for A{x}. In particular, A{x} is Z-stable if and only if it has
strict comparison of positive elements. But by [2, Thm. 3.3 and Cor. 3.5], A is
Z-stable if and only if A{x} is. Furthermore, by [18, Thm. 6.14], A has strict
comparison if and only if A{x} does. Therefore, Corollary 3.37 follows. �

Remark 3.38. Using the same ideas as those in the proof of Theorem 3.35,
one can show that the orbit-breaking simple subalgebras constructed by Deeley,
Putnam, and Strung in [6] also have stable rank one, despite possibly not
being Z-stable. Although, the closed subset of the underlying infinite compact
metric space used in their construction need not be a singleton set, it still
has the property that it meets every orbit exactly once and, thus, is a simple
inductive limit of DSH algebras with diagonal maps.
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