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Chapter 1

Introduction

Hong Kong English is one of the emerging or new varieties of English which has its own
phonetic and phonological features. Previous studies on Hong Kong English suggested some
characteristics such as a lack of long/short vowel contrasts and a lack of voiced/voiceless
consonant contrasts (e.g. Bolton and Kwok, 1990; Hung, 2000; Setter et al., 2010). Hung
(2000) also proposed an inventory of Hong Kong English with respect to vowels (see Figure
1.1) and consonants (see Table 1.1).

Figure 1.1 Vowel chart of Hong Kong English proposed by Hung (2000, p. 354)

Table 1.1 Consonant chart of Hong Kong English proposed by Hung (2000, p. 354)

Bilabial Labio- (Inter-) Alveolar Palato/Post- Palatal Velar Labio- Glottal
dental dental alveolar velar

Stop p b t d
Affricate Ù Ã
Fricative f T s S h
Lateral- lapproximant
Approximant r j w
Nasal m n ŋ

Note: In the original study, /h/ was labelled as glottal approximant

As can be seen in Figure 1.1, the vowel inventory of Hong Kong English is smaller
when compared to standard British or American English. Hung (2000) also conducted a
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formant analysis of the vowels and found that there are mergers of /i:/-/I/, /e/-/æ/, /u:/-
/U/, and /O:/-/6/ in Hong Kong English. Among consonants, fricatives seem to be the
most interesting group because of its smaller inventory, as shown in Table 1.1, compared
to standard British/American English. There is also a high variability in the realisations of
fricatives in Hong Kong English as proposed by previous work (Hung, 2000; Hansen Edwards,
2019; Deterding, 2006).

Nevertheless, many predictions and hypotheses regarding Hong Kong English fricatives
and their variants have not yet been tested systematically and quantitatively using a large
dataset. One possible reason is that Hong Kong English alongside other new varieties of
English is one of the low-resource language varieties and there are simply not enough tools
accessible for linguists. By investigating the phonology of Hong Kong English, the com-
putational methods which are desired for building speech and language technologies for
low-resource languages and varieties can also be explored.

This study concerns the topics of phonetics and phonology, acoustic phonetics, variation
of Hong Kong English fricatives, and computational methods for researching low-resource
language varieties. Although some phonological theories and World Englishes models are
touched on to facilitate the conceptualisation of Hong Kong English, this study concentrates
on enriching the documentation of Hong Kong English phonology. Apart from the theoretical
contributions to the field of Hong Kong English phonetics and phonology, the present study
also attempts to apply the findings in automatic speech recognition (ASR) systems so as to
improve the automatic phone recognition of Hong Kong English.

There are six major aims of this study, namely

(i) to determine the inventory of Hong Kong English fricatives and their variants

(ii) to investigate the acoustic characteristics of Hong Kong English fricatives and their
variants

(iii) to examine the distribution and systematic variation of Hong Kong English fricatives

(iv) to generate phonological rules regarding Hong Kong English fricatives

(v) to establish a pipeline for speech data processing and acoustic analysis

(vi) to build an automatic speech recognition (ASR) model for Hong Kong English by
adapting a state-of-the-art ASR system

This study is a large-scale quantitative study of Hong Kong English fricatives and can
substantiate the phonological features of Hong Kong English reported in previous studies
with statistical evidence. This study is one of the very few studies which examines the
acoustic aspects of fricatives and their variants in Hong Kong English to provide more fine-
grained details of the sound. Moreover, this study is the first study which attempts to i)
build a classification model specific to Hong Kong English fricatives and their variants using
neural networks, and ii) generate weighted pronunciation rules and apply them in an existing
ASR model of English to improve phone recognition accuracy of Hong Kong English. The
methods and findings of this study are not only beneficial to Hong Kong English researchers
but all researchers who study new varieties of English and low-resource language varieties.

The structure of the rest of the dissertation is as follows.
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Chapter 2 starts with a description of the sociolinguistic background of Hong Kong. It
is followed by a brief overview of some popular World Englishes model, namely Kachru’s
Three Circles model and Schneider’s Dynamic model. Then, different models on the con-
ceptualisation of Hong Kong English are introduced. How variation in Hong Kong English
phonology can be approached is discussed and it serves as a general framework of analysis for
the present study. Finally, previous studies on Hong Kong English fricatives are discussed.

Chapter 3 is about the acoustics of English fricatives. First, the mechanical model of
production of fricatives is introduced. It helps explain fricatives produced at different places
of articulation. Then, the acoustic properties with respect to spectral, amplitudinal, and
temporal properties of fricatives as well as the DCT coefficients, are presented. Since there
is no previous research on the acoustic properties of Hong Kong English fricatives, the
discussions are based on the comparison with standard American English fricatives. Finally,
the methods of classifying fricatives in previous studies are discussed.

Chapter 4 gives an outline of the common procedures in a feature-based statistical ASR
system. The Munich AUtomatic Segmentation System (MAUS), which is a forced align-
ment tool for phonetic segmentation and labelling, is introduced. The syntax of the MAUS
pronunciation rule set is also delineated.

Chapter 5 lists the research questions and predictions based on the findings of previous
studies and the discussions in previous chapters.

Chapter 6 details the method employed in this study with participants, materials, and
data collection procedures. In terms of data processing, a pipeline was created in order to
automate several steps in acoustic analysis. Acoustic analysis using the subset of the word
list data was conducted and auditory analysis was conducted using the full set of word list
data. Classification models of place of articulation, voicing, and phones were trained using
convolutional neural networks. The statistical models used in this study and the architecture
of the convolution neural networks are described in this chapter.

Chapter 7 presents the results of the acoustic analysis of fricatives and their variants. The
smoothed spectra using discrete cosine transform (DCT) coefficients are plotted to provide
visual evidence. The findings are discussed with respect to the research questions stated in
Chapter 5.

Chapter 8 reports the classification performances of Hong Kong English fricatives and
their variants with respect to place of articulation, voicing, and phone symbols. Results of
the error analysis of the classifications are also discussed.

Chapter 9 reports the findings from the auditory analysis of the full word list dataset.
The findings are discussed with respect to the research questions stated in Chapter 5. An
inventory of Hong Kong English fricatives is also proposed. Potential phonological rules of
Hong Kong English fricatives derived from the findings of this study are presented.

Chapter 10 discusses applicability of the results of this study in automatic speech recog-
nition (ASR) systems. Results of the adapted acoustic and language model of (standard)
British English in MAUS with Hong Kong English fricatives pronunciation rules are pre-
sented. The possibility of applying phonological features in ASR systems to improve recog-
nition performance is also discussed.

Chapter 11 concludes the present study. The contributions of this study and future
research directions are presented.
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Chapter 2

Hong Kong English phonology

2.1 Sociolinguistic background of Hong Kong
Hong Kong is a city located in the southern coast of China, adjacent to the Pearl River Delta
(Setter et al., 2010). The official name of Hong Kong is Hong Kong Special Administrative
Region of the People’s Republic of China (HKSAR). Although Hong Kong is a city in China,
it is very different from other cities in mainland China in various ways such as law, currency,
official languages, and education system. Over the past centuries, the political, economic, and
social environments, as well as the education system and language policy in Hong Kong, have
been constantly changing. Hence, Hong Kong is no-doubt an exciting place for conducting
sociolinguistic research. Hong Kong experienced several changes of sovereignty: i) ceded to
Britain after the Opium War in 1842, ii) occupied by Japan during 1941-1945, iii) resumed
to be a British colony since 1945, and iv) handed over to China in 1997. That is to say,
Hong Kong was a British colony for more than a hundred years. During the British colonial
period, Hong Kong had transformed from an entrepôt into an industrial and manufacturing
center in the 1950s and evolved into an international financial center in the 1980s. Since
the 2010s, there have been various protests and movements against the Central and local
government, such as the protests against the National Education in 2011-2012, the Umbrella
Movement in 2014, and Anti-Extradition Law Amendment Bill Movement in 2019-2020.
These sovereignty, economic, and political changes not only affect the language policies but
also the language use, attitudes, and identity (Hansen Edwards, 2018).

The mother tongue or first language of the majority of Hong Kong people is Cantonese,
which is a variety of Chinese. With regards to English, English was first introduced during the
British colonial period. Bolton and Kwok (1990) described the linguistic situation back then
as "a case of societal bilingualism in which two largely monolingual communities co-exist,
with a small group of bilingual Cantonese functioning as ‘linguistic middlemen’" (p. 148).
Luke and Richards (1982) referred to the linguistic situation as diglossia without bilingualism.
During the colonial period, English was considered a high language, and was mainly used in
government bodies like courts and Legislative Council, official bills and documents, and at
university, whereas Cantonese was considered a low language and was mainly used in private
domains such as home, among friends, and for intranational communication (Groves, 2011).
Nevertheless, English has been widely spread by being a compulsory subject in the primary
and secondary school curriculum. There are also many schools which use English as the
medium of Instruction (EMI). As a result, there is an increasing population who are able to
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speak English. Due to the handover to China, the Biliterate and Trilingual language policy,
meaning biliterate in written Chinese and English, and trilingual in Cantonese, English,
and Mandarin, was introduced in 1997. Since then, Mandarin has been introduced as a
compulsory subject in primary and secondary schools.

According to the population census in 2016, Hong Kong population reached 7.3 million
(Census and Statistics Department, 2016). The literacy rate was 96% and almost one-third
of the population received post-secondary education. Cantonese remained the most common
language with 88.9% of the population speaking Cantonese at home. 53.2% of the population
were able to speak English and 48.6% of the population were able to speak Mandarin.
What is particularly interesting with respect to the present study is the linguistic profile of
the population who received education in the post-colonial period. Over 95% of full-time
students aged between 6 and 24 (as of 2016) were bilingual in Cantonese and English, and
over 60% of full-time students aged between 6 and 24 were trilingual in Cantonese, English,
and Mandarin (Census and Statistics Department, 2016). For this specific population, it is
surprising to see that the rate of trilingualism was only around 60% since both English and
Mandarin were taught in primary and secondary schools. One speculation is that Cantonese
and English are the dominant languages in everyday life while Mandarin is seldom used
except when communicating with people from mainland China. Another speculation is that
the discontent over the Central and local government alongside the political protests and
movements in the 2010s is also reflected in the language use, attitudes, and identity of this
population.

2.2 Conceptualisation of Hong Kong English
Hong Kong English generally refers to the English spoken by people from Hong Kong. There
have always been debates about whether Hong Kong English exists (Luke and Richards,
1982) or whether it can be regarded as a new or emerging variety of English (Groves, 2009).
The status and usage of English as well as the developmental processes of a new variety of
English can be described by different frameworks and models. Although there is no single
model which can perfectly define a language variety or fully capture how a language variety
is developed, looking into different models helps better understand the complexity of the
issue and how Hong Kong English can be conceptualised. In this section, Kachru’s classic
Three Circles model, Schneider’s Dynamic model, and Buschfeld and Kautzsch’s Extra- and
Intra-territorial Forces model are briefly reviewed. Previous studies on how to model and
conceptualise Hong Kong English (Bolton and Kwok, 1990; Hung, 2000; Q. Zhang, 2013)
are also examined.

Kachru’s Three Circles model classifies countries into Inner Circle, Outer Circle, and
Expanding Circle based on the spread and usage of English (Kachru, 1985). Inner Circle
refers to traditional English-speaking countries such as the USA, the UK, Canada, Australia,
and New Zealand in which English is used as a first language and in almost all domains
(both high and low). Outer Circle concerns countries where English is spread and used as
a second language (ESL), mostly through colonisation. Examples of Outer Circle countries
include Nigeria, India, and Singapore. English is usually an official language in Outer Circle
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countries and "has undergone some acculturation and nativisation" (Groves, 2009, p. 56).
Expanding Circle countries include Japan, Korea, and China, in which English is used as a
foreign language (EFL). In the EFL classrooms, often Inner Circle Englishes are taught as
the norm.

With regards to the status and usage of English in Hong Kong, it is true that Hong Kong
was a colony of Britain, and English is mainly used as a second language. Hence, Hong
Kong can be considered as one of the Outer Circle countries. Nevertheless, when compared
to other Outer Circle countries like Singapore and Malaysia in which English serves as a
lingua franca between ethnically and linguistically diverse groups (Bolton and Kwok, 1990),
English in Hong Kong is mostly spoken in school or work settings but seldom in private
settings. Instead, English is heavily mixed in Cantonese speech (Bolton and Kwok, 1990).
It is because the population is relatively homogeneous. More than 90% of the population is
ethnic Chinese and speak Cantonese as their primary language (Groves, 2009). Therefore,
Kachru’s Three Circles model lacks the flexibility to describe English in Hong Kong as the
sociolinguistic situations are more complex and dynamic (Schneider, 2007). Another critique
of the model is that the Three Circles model fails to address the ‘pluricentrality’ of English
nowadays for the norms should no longer be determined by Inner Circle countries (Schneider,
2003).

Schneider (2007) proposed that post-colonial Englishes generally undergo similar con-
secutive developmental stages, namely i) foundation, ii) exonormative stabilisation, iii) na-
tivisation, iv) endonormative stabilisation, and v) differentiation. In the foundation stage,
English is brought to a new territory by a dominant group of settlers. A clear dichotomy
between ‘other’ and ‘us’ exists, meaning there are two separate social groups: the settler
strand and the colonised/indigenous strand. The two groups are distinct from each other
in terms of not only ethnicity but also the languages they use and their social networks.
In the exonormative stabilisation stage, English is officially established as the language of
administration, education, the legal system, etc. Segregational elitism can be found with the
settlers dominating the higher governing positions. There is also a form of language elitism.
Standard British or American English is held as the exonormative model of English and is
generally preferred. Also, if people from the indigenous strand can speak or use English,
they are considered elite and have a higher social status. In this stage, linguistic transfer on
the levels of phonology and structure starts to occur due to the inevitable language contact
of English and the indigenous group’s vernacular. In the nativisation stage, a marked local
accent of English is shown among the indigenous strand speakers as a result of language con-
tact, and code-mixing of English and the vernacular is observed. Debates and discussions on
the legitimacy of the endonormative form of English begin to emerge. In the endonormative
stabilisation stage, the local linguistic norm is accepted also in formal contexts and high
domains. A linguistic independency and political independency (Groves, 2009) is achieved,
meaning the endonormative variety of English can claim its independency from the exonor-
mative Englishes in all domains and achieve "a cultural self-reliance" (Schneider, 2007, p.
48) with the full acceptance from the indigenous strand. In this stage, "X English" substi-
tutes the label of "English in X", which signals "different conceptualizations of the status
of the language" (Schneider, 2007, p. 50). According to Schneider (2007), Singapore and
Jamaica are examples of this stage. Finally, in the differentiation stage, internal and in-
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dividual differentiation begins to bloom. Individuals from the indigenous group can exert
their "personal predilections" and create their own forms of English within the "new nation"
(Schneider, 2007, p. 53), which represents the new social identities (Groves, 2009).

One emphasis of Schneider’s Dynamic model is that the development of a new variety is
not static, and it is not solely dependent on the linguistic effects but also on the sociopolitical
background, identity construction, and socialinguistic conditions. Over the past few decades,
Hong Kong English scholars have been probing into these factors by conducting attitudinal
and language identity studies (e.g. Hansen Edwards, 2015; Hansen Edwards, 2018; Q. Zhang,
2013), and documenting the phonological, lexical, syntactic, and discoursal features of Hong
Kong English (e.g. Bolton, 2002; Setter et al., 2010; Deterding et al., 2008). The claim by
Luke and Richards (1982) that "there is no societal basis for ‘indigenisation’ or ‘nativisation’
of English in Hong Kong" has been refuted. Schneider (2007) has categorised Hong Kong
to the nativisation stage. Recent studies have found that Hong Kong English may have
entered the endonormative stabilisation stage in the Dynamic model, as the endonormative
linguistic features are relatively stabilised (Setter et al., 2010) and there is growing acceptance
of the Hong Kong English accent by viewing it as a local identity marker (Hansen Edwards,
2015). At the same time, Hong Kong English is still not preferable in formal contexts
(e.g. news broadcast and business meeting) when compared to Inner Circle varieties of
English (Jim Y.H. Chan, 2016), suggesting that Hong Kong English has not fully reached
the endonormative stabilisation stage in the Dynamic model.

Although the development of Hong Kong English is, to a large extent, influenced by the
settler (British colonial) strand, other external and internal factors should also be taken
into consideration. Buschfeld and Kautzsch (2017) suggested a model of extra- and intra-
territorial forces, in which five major subcategories of forces were proposed, namely i) coloni-
sation or attitudes towards colonisation, ii) language policies, iii) globalisation, iv) foreign
policies, and v) the sociodemographic background of a country. Globalisation as an extra-
and intra-territorial force refers to the "linguistic and also cultural influences coming from
the Internet, US popular culture, and modern media as well as trading relations between
countries...[and] to whether and to what extent they accept or even admit these facets of
globalisation" (Buschfeld and Kautzsch, 2017, p. 11). This is particularly relevant to Hong
Kong as Hong Kong is perceived as one of the international cities. Deterding et al. (2008)
also noted that while the English accent of many people from Hong Kong was based on
British English, there were clear American influences in their speech data.

When it comes to the modelling of a new variety of English, what recent studies have
advocated is that instead of a static handling, the developmental processes of a variety
should be conceptualised as a continuum (Schneider, 2007; Buschfeld and Kautzsch, 2017).
In the case of Hong Kong, regardless of which stage Hong Kong English is in, there is
always variability, especially when it comes to accent (Hung, 2000). Therefore, the dynamic
handling can be applied to the phonological system of Hong Kong English. Bolton and Kwok
(1990) is one of the very first studies that proposed a dynamic model of Hong Kong English
accent (see Figure 2.1). According to the model, speakers generally share some localised
features of Hong Kong English (represented in bold triangle) and the features are subject
to "a good deal of variation" (Bolton and Kwok, 1990, p. 166). Apart from the Hong
Kong English features, the speakers may also use "phonological forms that approximate
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to the reference systems of [British] English and American English" (Bolton and Kwok,
1990, p. 166) (represented in triangles with solid lines at two ends). What Bolton and
Kwok (1990) observed in their speech data was that instead of an either-or decision between
different forms, there was clustering of items of Hong Kong English features and (standard)
British English or American English forms (represented in triangles with dashed lines). This
model contrasts with previous postulates by Luke and Richards (1982), which assumed that
speakers (or "learners" in the original study) would unanimously move towards the norm of
a British or American English accent when their English proficiency increased.

Figure 2.1 The dynamics of a Hong Kong accent (Bolton and Kwok, 1990, p. 166)

Similarly, Hung (2000) studied the phonology of Hong Kong English and stated that
"[the] internalised phonological system of an individual speaker of [Hong Kong English] is,
like any interlanguage system, dynamic and evolving rather than static" (p. 339). He also
proposed a continuum with an idealised Hong Kong English phonology which consisted of all
endonormative phonological features at one end, and the standard American or British En-
glish phonology at the other end (Hung, 2000). He acknowledged that speakers of Hong Kong
English might spread across the continuum and differ in how many phonological features of
the idealised Hong Kong English were present in their speech.

In line with Hung (2000), Q. Zhang (2013) who studied attitudes towards Hong Kong
English accent conceptualised Hong Kong English phonology as a continuum with broad
accent (HKbr) at one end and educated accent (HKed) on the other. The broad accent
was similar to the "mesolect...marked by a high frequency of [Hong Kong English] features"
and the educated accent was similar to the "acrolect" spoken by people who were close to
the "exonormativity of the American or British English accent but with localised features
remained" (Q. Zhang, 2013, p. 10). Figure 2.2 is an illustration of the continuum of Hong
Kong English phonology.

The present study adapts the proposed model in Q. Zhang (2013) and conceptualises
Hong Kong English phonology as a continuum. This study also expects a certain variability
in the system. It would be interesting to review how previous studies approached variability
(see Section 2.3) and to know if the variation or the use of variants are due to internal or
linguistic factors (e.g. syllable position and stress) or due to external or non-linguistic factors
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(e.g. gender, age, and proficiency) (see Section 2.4).

Figure 2.2 The continuum of Hong Kong English (HKE) phonology (Q. Zhang,
2013, p. 113)

2.3 Towards variation and Hong Kong English phonology
Language variation can be studied differently based on three different interpretations. The
first line of research into new varieties of English focuses on identifying specific localised
features, and how they are different from the phonological systems of Inner Circle Englishes.
Schneider (2007) explained that such a kind of variation can be identified as "transfer phe-
nomena from the phonology of indigenous languages" (p. 44). In the context of Hong Kong,
although Cantonese is the indigenous language, due to the trilingual language policy, Man-
darin also starts to play an important role in the linguistic repertoire of speakers who were
born in the post-colonial period. Therefore, the phonological system of Cantonese and/or
Mandarin is often referenced and compared (such as in A. Y. Chan and D. C. Li, 2000;
Setter et al., 2010; Hansen Edwards, 2019; Hung, 2000). Based on this interpretation of
variation, previous studies on Hong Kong English phonology also examined the uniqueness
of the localised features by comparing them with other new varieties of English in South-
East Asia, such as Singapore English, Malaysian English, Mainland Chinese English, and
Vietnam English (Hansen Edwards, 2016; Deterding et al., 2008; Hung, 2000).

The second interpretation of variation is an extension of the first interpretation and exam-
ines the internal or linguistic system such as under which conditions variation in the phonetic
realisations occurs. Previous studies on Hong Kong English phonology have attempted to
investigate a vast number of linguistic factors which influence the realisation of fricatives,
such as syllable position, word position, stress, singleton or consonant cluster, preceding and
following phonetic environments, morphological conditioning, and lexical frequency (Hansen
Edwards, 2016; Hung, 2000; Deterding et al., 2008).

The final interpretation of variation is also an extension of the first interpretation and
it looks into the inter-speaker levels. Studies along this line examine the variation between
different speaker groups, usually based on a number of social variables such as age, gen-
der, status, and education level (Hansen Edwards, 2019). What Schneider (2007) generally
observed in many post-colonial communities is "a range of sociolinguistic variation...with
proximity to native speakers’ pronunciation forms increasing in correlation with status, edu-
cation, and frequency of interaction with them" (p. 44). It should be noted that apart from
inter-speaker variation, there is also variation in the intra-speaker level as studies on new or
emergent varieties of English also found variation or inconsistencies within a single speaker
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(Deterding et al., 2008). Schneider (2003) predicted that in the course of time, the amount
of such kind of intra-speaker variability will be reduced.

To sum up, studying variation using the above interpretations helps provide a more
holistic understanding of the phonological system of Hong Kong English. While studying
the inter-speaker variation is equally important, the present study focuses on inspecting
the internal linguistic variation in the Hong Kong English phonology. To probe this issue,
this study adopts the three main components listed in Hung (2000, p. 338) as a general
framework of analysis and discussion, namely:

1. An inventory of phonemes, or sound segments which contrast with each other.

2. Systematic variation in the phonetic realisations of these phonemes, i.e. alternation.

3. The distribution of individual segments in relation to other segments.

In the next section, findings of the phonological features from previous studies on Hong
Kong English are mainly discussed with respect to these three components.

2.4 Previous studies on Hong Kong English fricatives
Bolton and Kwok (1990) is one of the earliest studies which described the phonological
features of Hong Kong English. The aim of their study was to illustrate as many of the
localised features as possible based on impressionistic or intuitive judgement. They presented
findings from an interview with a university student, whom they referred to as a "mid-range"
speaker of Hong Kong English. Received Pronunciation (RP) was adopted as a reference
for comparison. The consonant features were classified by three main types of phonological
processes:

(i) Deletion

(ii) Substitution

(iii) Devoicing of voiced consonants

Generally, it was found that the realisation of consonants was influenced by the phonology
of Cantonese, to a large extent. Table 2.1 is an overview of English and Cantonese consonants
extracted from A. Y. Chan and D. C. Li (2000, p. 68). Regarding dental fricatives, Bolton
and Kwok (1990) found that /T/ was substituted by [f]. This phenomenon is also called
TH-fronting. /ð/ was replaced by [d] in word-initial position. This phenomenon is also
called TH-stopping. /ð/ was also substituted by [v

˚
] (presumably [f]) in word-final position.

Regarding labiodental fricatives, /v/ was replaced by [w]. The process can also be called
gliding. Postalveolar fricative /S/ was substituted by [s] since there was no /S/ in Cantonese
but /s/ (see Table 2.1). In terms of deletion, only non-release of plosives in the word-
final position was noted but the deletion of fricatives was not reported. Bolton and Kwok
(1990) explained that it might be due to the unreleased /p, t, k/ in checked syllables in the
Cantonese phonology. There was also devoicing of voiced consonants for fricatives, as well
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as for plosives. Nevertheless, findings from their study have limited generalisability. Not
many conclusions can be drawn based on the speech of only one speaker and without any
frequency count of each realisation. There also lacked an in-depth phonological analysis of
the realisation of fricatives.

Table 2.1 An overview of English and Cantonese consonants adapted from A. Y.
Chan and D. C. Li (2000, p. 68)

Manner of Place of articulation
articulation Bilabial Labiodental Dental Alveolar Postalveolar Palatal Velar Labiovelar Glottal
Plosive E p b t d k g

C p b t d k g kw gw

Fricatives E f v T ð s z S Z h
C f s h

Affricates E Ù Ã
C ts dz

Nasals E m n ŋ
C m n ŋ

Lateral E l
C l

Approximants E w ô j
C w j

E: English C: Cantonese

Hung (2000) conducted a comprehensive study of Hong Kong English phonology, in which
variation was systematically studied. He collected the speech data of 15 university students
using a word list with minimal or similar-sounding pairs. The reason why he employed a word
list instead of a reading passage was to limit the effects from other linguistic variables such
as "differences in sentence structure, word and sentence stress, intonation" (Hung, 2000, p.
339). He also preferred a word list to spontaneous speech because it was challenging to elicit
all possible "phonemic contrasts and allophonic variation in a speaker’s phonological system
from this sort of random data" (Hung, 2000, p. 339). What he found was that there was
no evidence of a voiced/voiceless contrast of fricatives for most of the speakers. Specifically,
there were no tokens of [z] and [Z] in all word-initial, -medial, and -final position. They were
substituted by [s] and [S] respectively. /v/ also did not exist in Hong Kong English, and it
was realised as [f] and [w]. It is surprising to see /v/ realised as [w] in word-medial and
intervocalic position regardless of stress pattern (e.g. province ["pôoUwins] and provincial
[pôoU"winS@l]) in his data. It is contrary to previous proposition by Edge (1991) that /v/ was
only realised as devoiced [v

˚
] (or [f]) even in intervocalic position. Regarding dental fricatives,

more than half of the speakers produced instances of [T], whereas for other speakers, they
produced [f] instead (TH-fronting), and in all phonetic environments. It showed that for
these speakers, /T/ was not part of their phonological system. As for /ð/, there was no
evidence of it and the tokens were pronounced as [d] in word-initial or intervocalic position
(TH-stopping), and as [T] in word-final position.

Although it is generally noted that voiced consonants are devoiced in Hong Kong English,
the behaviour of fricatives is different from that of plosives. For example, Hung (2000) found
that the voiced/voiceless contrast of plosives remained. He suggested that the voiced plosives
were distinguishable from the voiceless plosives by aspiration and voice onset time in word-
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initial position. Voiced plosives were non-aspirated and had shorter voice onset time. Since
the difference was phonemic, he continued to adopt the conventional voiced/voiceless labels
for plosives. As for fricatives, there were no distinctions between the voiced and voiceless
fricatives. Therefore, he proposed the consonant chart regarding plosives and fricatives as
shown in Table 2.2.

Table 2.2 Inventory of Hong Kong English plosives and fricatives proposed by Hung
(2000, p. 355)

Bilabial Labiodental (Inter-)dental Alveolar Palato-/Post-alveolar Velar
Stop/Plosive p b t d k g
Fricative f T s S

Hung (2000) provided a solid foundation for studying the variation in Hong Kong English
phonology and suggested some linguistic factors (mainly word position). Nevertheless, it was
not known how the realisation would be in connected speech.

Deterding et al. (2008) examined the pronunciations of 15 Hong Kong university students
using interview data. The measurements and frequency counts of the features were reported.
The findings were also compared with the features of other varieties of English in Southeast
Asia. Regarding dental fricatives, /T/ (or voiceless TH used in the original study) appeared
61 times in total (42 times in word-initial position, 10 times in word-medial position, and
9 times in word-final position). In word-initial position, the majority (around 60%) were
pronounced as [T], around one-third of the tokens as [f], and one token as [t]; in word-medial
position, [T] is most common (60%), two occurrences as [t] and as omission respectively; and
in word-final position, [f] was most common (around two-third). It was noted that for some
speakers, the use of [f] was consistent in all positions, meaning only /f/ but not /T/ was in
their phonological systems.

The realisation of /T/ as [f] in word-initial position was different from the realisation as [s]
in (mainland) China English (Deterding, 2006; Rau et al., 2009). One possible explanations
is that the acoustics of Cantonese /f/ is more similar to English /T/ than the acoustics of
Cantonese /s/ to English /T/ (Deterding et al., 2008; Hansen Edwards, 2019). In fact, there
are more acoustic similarities between /f/ and /T/ (which are both non-sibilant fricatives)
than /s/ and /T/ in Inner Circle varieties of English (Jongman et al., 2000). The realisation
of /T/ as [t] might be an "exception rather than the norm" (Deterding et al., 2008, p. 155),
unlike in Singapore English, in which [t] occurred more frequently (Deterding, 2007). As
for /ð/ (or voiced TH), /ð/ was generally pronounced as [d] in the word-initial position.
Since there were no instances of /ð/ in word-medial and word-final position, not much can
be concluded.

Although Deterding et al. (2008) touched on many aspects of Hong Kong English such
as vowels, consonants, rhythm, and sentence stress, with respect to fricatives, only the
phenomenon of TH-fronting and TH-stopping was reported and discussed in the original
paper. The problems in Deterding et al.’s study were well-pinpointed by Hung (2000). The
analyses and discussions were limited due to the scarce data, which is one of the pitfalls of
using spontaneous data. The scarce data was also due to small sample size, as there were
only 15 speakers and the averaged interview duration per speaker was only 160s. The authors
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also acknowledged this limitation: "[w]e would need more extensive data from each speaker
in our Hong Kong data to check whether Hong Kong speakers really are mostly consistent
in their usage" (Deterding et al., 2008, p. 155).

There are other studies which attempt to delineate the phonology of Hong Kong En-
glish in a broad manner, meaning they looked into different aspects of Hong Kong English
phonology (see Setter et al., 2010; Sewell and J. Chan, 2010). Together, previous studies
seem to suggest some systematic variation regarding fricatives, which can be statistically
tested. Hansen Edwards (2019) is one of the very few studies, if not the only study, which
inspected Hong Kong English phonology using VARBRUL analysis. VARBRUL is basically
an implementation of multiple logistic regression of variable data and is developed for soci-
olinguistic and language variation studies (Bayley, 2002; Paolillo, 2002). Hansen Edwards
(2019) examined the realisation of voiceless dental fricatives /T/ with respect to both linguis-
tic factors (syllable position, linguistic environment, and stress) and social factors (gender,
medium of instruction, and proficiency) using interview and reading data from 44 university
students. Results showed that significantly more participants with advanced proficiency had
/T/ in their phonological system than participants with low intermediate proficiency. TH
variation also occurred more often in low intermediate participants. It implied that TH
variation might be a developmental phenomenon (Hansen Edwards, 2019). Among the 44
participants, 24 of them demonstrated TH variation and their data were further analysed
(n=1680). 67% of TH were realised as [T], 29% as [f], and 5% as [s]. VARBRUL analy-
sis demonstrated that stress and word position were not significant predictors. Regarding
the social factors, gender, task style, and educational background were also not significant.
Nevertheless, for the realisation as [f], lexical category (numerals), following linguistic envi-
ronment (/r/), syllable position (onset), and preceding labial (e.g. /m/) in the same word
were found to be significant. As for the realisation as [s], following linguistic environment
(vowel and /r/), preceding labial in the same word, proficiency (advanced), and preceding
linguistic environment (preceding obstruent) were found to be significant factors.

That TH variation is a developmental phenomenon in Hong Kong English is not surprising
as research on both first language and second language acquisition of English also found that
the realisation of /T/ as [f] was more common in early stages of acquisition (Hansen Edwards,
2019). It is also in line with the conceptualisation of Hong Kong English as a continuum
that there are more occurrences of localised features when moving towards the lower end of
the continuum. There was a small amount of instances of [s], suggesting that this variation
might be due to the influence of Mandarin (Deterding, 2006; Rau et al., 2009). While the
realisation of /T/ as [f] or [s] were governed by several linguistic and social factors, [f] and
[s] were not allophonic variation in Hong Kong English "but rather emerge[d] at different
stages in the acquisition of TH" (Hansen Edwards, 2019, p. 26). Nevertheless, it is hard to
explain why advanced participants were more likely to produce [s] than high intermediate
and low intermediate participants, given that all participants in the study received education
of English and Mandarin at school. It was postulated that "as speakers of English in Hong
Kong gain higher levels of proficiency in Mandarin Chinese, features of Mandarin Chinese
will emerge in Hong Kong English" (Hansen Edwards, 2019, p. 26). Nevertheless, being
proficient in English does not necessarily imply that the participant was also proficient in
Mandarin. Such an assumption requires more support.
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The lexical analysis in Hansen Edwards’s study was a discussion of findings with respect
to the linguistic factors and per lexical items. Hansen Edwards (2019) demonstrated the
difficulty in interpreting the results such as why the realisation as [f] occurred more fre-
quently in the numerals third, thirty, thirteen and [f] was favoured more in think than in
thinking. Rau et al. (2009), who studied the variation of English voiceless dental fricatives
by Chinese speakers, found that lexical frequency had an effect on the realisation of /T/.
A proposition can be devised that speakers are more familiar with high frequency words
than the low frequency words, and different lexical familiarity will affect the realisation of
fricatives. Nevertheless, the underlying assumption is that the dataset is large enough to
cover various English fricatives. Similar to the study by Deterding et al. (2008), there were
many scarce data in the study by Hansen Edwards (2019), in which many lexical items only
appeared once or just a few times.

To conclude, most studies on Hong Kong English phonology adopted a more impression-
istic or exploratory approach without providing much quantitative support. Nevertheless,
their findings suggest that there seems to be systematic variation with respect to fricatives in
the phonology of Hong Kong English. For example, the variation of /w/ and /ð/ is related by
word position; the realisation of /T/ as [T] remains the majority and the variation is related
to syllable position, as well as the preceding and following phonetic environment. English
proficiency also affects the realisation of /T/. The substitution for /z/ and /Z/ occurs in all
contexts. Table 2.3 is a summary of the findings and discussions from previous studies.

Table 2.3 Features and potential linguistic factors/hypotheses of fricatives sug-
gested by previous studies on Hong Kong English Phonology

Feature Description Potential factors/hypotheses
/v/ substitution /v/ is substituted by [f] or [w] There is no phoneme /v/

[w]: word-initial position and intervocalic position
[f]: word-final position

/T/ variation /T/ is realised as either [T] or [f]/[s] [f]/[s]: syllable onset position, followed by /r/,
preceding labial in the same word, English proficiency,
lexical item

/ð/ substitution /ð/ is substituted by either [T] or [d] There is no phoneme /ð/
[d]: word-initial or intervocalic position
[T]: word-final position

/S/ substitution /S/ is substituted by [s] Substitution takes place in all contexts

/z/ devoicing/ /z/ is substituted by [s] There is no phoneme /z/
Substitution takes place in all contexts.

/Z/ devoicing/ /Z/ is substituted by [S] There is no phoneme /Z/
Substitution takes place in all contexts.

(Bolton and Kwok, 1990; A. Y. Chan and D. C. Li, 2000; Deterding et al., 2008; Hansen Edwards, 2019; Hung, 2000;
Sewell and J. Chan, 2010)

Although Hansen Edwards (2019) proposed some social factors, most studies suggest that
the realisation of fricatives is governed by linguistic factors. Therefore, this study focuses
on examining the variation with respect to linguistic factors. The present study aims to
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evaluate the realisation of fricatives (mainly /v/, /T/, /ð/, /S/, /z/, and /Z/ as shown in
Table 2.3) with respect to different linguistic factors (mainly syllable position and preceding
labial in the same word) using a quantitative approach.

There are several takeaways from the previous studies, which help devise the method for
this study, namely:

(i) to test the potential factors/hypotheses listed in Table 2.3 requires a large corpus of
data so that statistical inferences can be made,

(ii) in terms of the materials used to elicit speech data, although it is important to examine
the production in spontaneous speech data, what previous studies demonstrated are
challenges to collect utterances in different phonetic environments and with sufficient
instances from spontaneous speech data,

(iii) it is difficult to eliminate the lexical frequency and lexical familiarity effect when using
real-word data

Therefore, this study used a word list comprising of different pseudo-words embedded in a
carrier phrase. By doing so, the production of fricatives in various phonetic environments can
be elicited systematically. In addition, a reading passage was employed to collect real-word
data to complement the findings from the word list. Moreover, almost all previous studies
conducted only an impressionistic and auditory analysis of fricatives. The fine-grained details
of fricatives, especially of the non-sibilant fricatives, could not be captured. Therefore, this
study also conducts acoustic analysis of the fricatives. Details of the method and materials
are presented in Chapter 6.
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Chapter 3

Acoustics of English fricatives

3.1 The production of fricatives
Fricatives are produced when air passes through a narrow constriction in the vocal tract.
Turbulence, which is irregular and random air molecule motion, is created during the produc-
tion of fricatives. Turbulence results in an aperiodic acoustic wave form, which is different
from the complex periodic wave form generated by the vibrating vocal folds during voicing.
The occurrence of turbulence is dependent on two major factors, namely the size of the vocal
tract and the volume velocity of airflow (Shadle, 1985). It was found that when the vocal
tract is constricted to around 10 mm2, turbulence noise can be produced (assuming normal
volume velocity of airflow) (Johnson, 2011). Mechanical models demonstrated that when
the volume velocity of airflow increases, the turbulence noise also increases and at higher
frequencies and amplitude (Shadle, 1985). Apart from the constriction, noise is generated
when the jet of turbulence hits a downstream obstacle (see Figure 3.1), which is usually an
articulator in the oral cavity, such as the teeth. Even though the production of fricatives in-
volves a constriction and/or an obstacle, it is not completely blocking the airstream. Hence,
the speech sound produced is a continuant, which is contrary to an occlusive such as a stop.

Figure 3.1 Tube model of an obstacle fricative adapted from Johnson (2011, p.
155)

Most English fricatives involve an obstacle, except for /h/, for which the fricative con-
striction is located at the glottis and the shape of the constriction is almost parallel to the
airflow. For other articulators, they act as an obstacle which is more perpendicular-like to the
airflow. In terms of acoustics, such kind of obstacles produce "periodic vortices" which "con-
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tribute high-frequency components to the spectrum" of that sound (Johnson, 2011, p.156).
At the same time, there may be a dampening effect caused by the obstacle that affects the
frequency responses of the cavity.

Place of articulation
English fricatives (excluding /h/) can be categorised into four places of articulation, namely
labiodental, (inter-)dental, alveolar, and postalveolar (which is sometimes used interchange-
ably with palato-alveolar).

/f/ and /v/ are labiodental fricatives, meaning that the lower lip and the upper teeth
form a constriction, while the upper lip acts as an obstacle, and the turbulence is made at
the lips. Since /f/ and /v/ are produced at the lips, which is probably the furthest part of
the vocal tract, there is not much room left for the front cavity to filter1 the sound. Hence,
a more diffuse and flat spectrum is expected for labiodental fricatives.

/T/ and /ð/ are dental fricatives. They are produced by placing the tip of the tongue at
the back of the upper teeth. Dental fricatives are also called interdental fricatives because
they can be produced by placing the tongue between the upper and lower teeth as well.
Compared with other fricatives, dental fricatives sound weaker because the noise source of
dental fricatives is close to the constriction area, as illustrated in Figure 3.2. It encounters
higher "acoustic impedance" than the noise source located further to the constriction, and
is less effective in "exciting the front cavity" (Zhao, 2010, p. 128). Moreover, there is no
obstacle in the front cavity to create additional turbulence.

Figure 3.2 Tube approximation of a dental fricative adapted from Zhao (2007,
p. 20) which shows that the turbulent noise source, denoted as Ps, is close to the
constriction.

/s/ and /z/ are alveolar fricatives, for which the constriction is formed by placing the
tip or blade of the tongue close to the alveolar ridge. The air escapes along the centre of
the tongue (Roach, 2009). The teeth function as an obstacle which produces additional
turbulence. Therefore, the noise created is relatively intense and generates a loud hissing
sound, compared to the labiodental and dental fricatives.

/S/ and /Z/ are postalveolar fricatives, meaning the blade of the tongue is close to the
postalveolar ridge area (Roach, 2009). Similar to /s/ and /z/, the teeth act as an obstacle,

1That the vocal tract can act as a filter is based on the source-filter theory of speech production. For a
detailed explanation, see Stevens (2000).
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which produces extra turbulence noise. However, unlike for /s/ and /z/, the blade of the
tongue moving behind the alveolar ridge creates a small room between the teeth and the
bottom of the tongue. This room is called sublingual cavity. The sublingual cavity "adds
length to the front cavity of the vocal tract, and thus lowers its resonance frequency" (John-
son, 2011, p. 159). Therefore, although the place of articulation of /s, z/ and that of /S,
Z/ are adjacent to each other, these two groups of fricatives sound quite different. In fact,
these two places of articulation mark the distinction [+anterior] and [−anterior] (Evers et al.,
1998; F. Li, Edwards, et al., 2007: F. Li, Munson, et al., 2011).

In addition, lip rounding (or lip protrusion) has an acoustic effect of lowering the formant
frequencies due to the enlarged or extended oral cavity (Johnson, 2011, p. 159). Likewise,
when pronouncing an alveolar fricative followed by the close back rounded vowel /u/, the
lips are also rounded as a result of coarticulation. Therefore, the alveolar fricative in this
phonetic environment sounds similar to a postalveolar fricative.

3.2 The acoustic properties of fricatives
As mentioned briefly in Section 3.1, the overall spectrum of a fricative is determined by
the size and shape of the front cavity, and whether there is an obstacle to produce addi-
tional turbulence noise. Although the eight English fricatives are distinct in terms of place
of articulation and voicing, there is not an acoustic cue which can single out a fricative
from the others (Jongman et al., 2000). Nevertheless, previous studies have identified a
number of spectral, amplitudinal, and temporal properties of the frication noise which can
distinguish different English fricatives (Jongman et al., 2000; Maniwa et al., 2009; Nissen
and Fox, 2005). Spectral properties include peak, slope, centre of gravity, standard devia-
tion/variance, skewness, kurtosis, and F2 onset frequency. Amplitudinal properties include
normalised root-mean-square amplitude, relative amplitude, and harmonics-to-noise ratio
(or called harmonicity). Temporal properties include normalised noise duration. In the fol-
lowing sections, each acoustic property of fricatives is discussed with respect to the spectral,
amplitudinal, and temporal aspect. The effects of place of articulation, gender, voicing, and
vowel from previous studies are also reported.

3.2.1 Spectral properties

Peak location

The peak is defined as the highest location of a wave. Previous studies showed that sibilants
have distinct peaks while there are no well-defined peaks in the spectra of non-sibilants
(Maniwa et al., 2009; Jongman et al., 2000). The spectra of non-sibilant fricatives are
also relatively flat, compared to that of sibilant fricatives. Jongman et al. (2000) measured
the spectral peak as the highest amplitude of a FFT spectrum (with a pre-emphasis factor
of 98%). All the acoustic analyses in their study were conducted on the production of
20 American English speakers. All the recordings were sampled at 22 kHz with a 16-bit
quantization and 11 kHz low-pass filter applied. The audio signals were transformed using
the fast Fourier transform (FFT) algorithm and a 40 ms Hamming window was generally
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applied to extract the acoustic features. The acoustic properties were then subjected to a
four-way analysis of variance (ANOVA) (i.e. place x voicing x vowel x gender), which was
basically a factorial ANOVA. It was found that labiodental fricatives had the highest peak
value (7733 Hz), followed by dental fricatives (7470 Hz), then by alveolar fricatives (6839
Hz) and postalveolar fricatives (3820 Hz). Bonferroni post hoc tests showed that all four
places of articulation were significantly different from each other (Jongman et al., 2000).

Jongman et al. (2000) also found a main effect of voicing in that voiceless fricatives had
a significantly higher spectral peak value than voiced fricatives, and an interaction effect of
place and voicing. Post hoc tests suggested that "the difference in spectral peak location
between voiceless and voiced fricatives was carried by the non-sibilant fricatives" but not the
sibilant fricatives (Jongman et al., 2000, p. 1256). There was also a main effect of gender
that the spectral peak value of female speakers was significantly higher than that of male
speakers. As for the following vowel, there was no main effect but there was an interaction
effect of place and vowel. Post hoc tests revealed that the spectral peak for /s, z/ was
significantly lower if the following phonetic environment was back rounded vowels (/o, u/).

In the study by Maniwa et al. (2009), the fricative production of 20 American English
speakers were examined. The goal of their study was to compare the fricatives in clear
speaking and conversational styles. The speech signal was converted using discrete Fourier
transform (DFT), which was presumably FFT, and a 20 ms Hamming window. Regarding
the spectral peak, it was defined as "the frequency bin corresponding to the largest value in
[the spectrum] X(f)" (Maniwa et al., 2009). The mean peak frequency was measured for the
centre three window locations in the DFT spectra with a pre-emphasis factor of 98%. Mixed-
model factorial ANOVAs (style x fricative x gender) were then computed. They found that
generally labiodental and dental fricatives had a high mean peak frequency below 10 kHz
(Maniwa et al., 2009). The mean peak frequency of postalveolar fricatives was particularly
low (around 3500-4000 Hz) in comparison with alveolar fricatives.

Both Jongman et al. (2000) and Maniwa et al. (2009) suggested that the mean spectral
peak frequency decreases as the place of articulation moves further back in the oral cavity.
Moreover, the postalveolar fricatives generally have a lower/mid-frequency spectral peak
than the anterior fricatives. This is due to the sublingual cavity and the enlarged front
cavity when producing postalveolar fricatives (Johnson, 2011). It also explains why the
peak value of the alveolar fricatives /s, z/ is lower when followed by back rounded vowels
than the front vowels. In summary, the spectral peak location is effective in distinguishing
all four places of articulation. Voicing, gender, and place x vowel are potential predictors.

Centre of gravity

The centre of gravity, which is also called the first spectral moment or M1, is the average
energy concentration of a spectrum. Jongman et al. (2000) calculated the spectral moments
at four different window locations (onset, middle, end, offset) using a 40 ms Hamming
window. The offset window was the last 20 ms of the fricative and the first 20 ms of the
next sound. They found that the centre of gravity of FFT spectra was highest for alveolar
fricatives (6133 Hz), followed by labiodental (5108 Hz) and dental fricatives (5137 Hz), and
was lowest for postalveolar fricatives (around 4229 Hz). The difference of centre of gravity
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was not significant enough to differentiate between labiodental and dental fricatives. That
is to say, the mean values of centre of gravity of sibilants and non-sibilants were significantly
different, and the differences between alveolar and postalveolar fricatives were also significant.
Nevertheless, the centre of gravity at the second and fourth window locations were able to
distinguish all four places of articulation (Jongman et al., 2000).

Nissen and Fox (2005) examined the acoustic characteristics of voiceless (General Amer-
ican) English fricatives /f, T, s, S/ by young children. Only the monosyllabic words with
an initial syllable CV(C)(C) were investigated. Similarly, the recordings were sampled at
44.1 kHz using a 16-bit quantization and a 22.05 kHz low-pass filter. The spectral moments
were measured only for those fricatives longer than 80 ms. Three 40 ms windows located
at the beginning, middle, and end of the fricative was applied to extract the measurements.
Each window was pre-emphasised by first-differencing. The signals were converted using
FFT algorithm with a fixed number of points (n=2048). Zero-padding, which is a technique
used to increase the length of FFT by adding zeros, was applied when necessary. The centre
of gravity values were transformed to the Equivalent Rectangular Bandwidth (ERB) scale
before running the statistical analysis. ERB is a psychophysical metric, "which employs a
‘notched-noise’ method rather than traditional masking procedures to measure the auditory
filter bandwidth of the human auditory system" (Nissen and Fox, 2005, p. 2572). ANOVA
results indicated that the centre of gravity differed significantly across place of articulation.
Post hoc results showed that the significant difference held for all comparisons except be-
tween /T/ and /S/. It is surprising to see such a finding since one would expect that the
difference was not significant between non-sibilants (/f, T/) but not between sibilant fricative
/S/ and non-sibilant fricative /f/. It could be the case that there is a mistype of symbol in
the original article. In the general discussion, spectral mean was said to be able to separate
non-sibilant from sibilant fricatives, and also between sibilant fricatives (/s, S/).

It is generally expected that there is a correlation between the length of the front cav-
ity and the resonating frequency. F. Li, Munson, et al. (2011, p. 1001) explained that
"the longer the front resonating cavity is, the lower the overall resonating frequencies in the
fricative spectrum will be, which is reflected in a lower M1 value". This prediction is par-
tially confirmed except between the labiodental and dental fricatives (Jongman et al., 2000;
Maniwa et al., 2009; Nissen and Fox, 2005). Theoretically speaking, the vowel context may
also have an effect on the centre of gravity of the fricatives due to coarticulation effects. For
example, Nittrouer et al. (1989) showed that the centre of gravity of the voiceless alveolar
fricative in close front unrounded vowel /i/ contexts was higher than in close back rounded
vowel /u/ contexts. However, the following vowel was not a significant indicator of centre of
gravity in the study by Jongman et al. (2000).

Regarding other factors, both Jongman et al. (2000) and Maniwa et al. (2009) reported
that voiceless fricatives generally had a higher center of gravity than voiced fricatives. This
effect was particularly evident in non-sibilants (Maniwa et al., 2009). A main effect of
gender was also found that female speakers had a higher centre of gravity than male speakers
(Jongman et al., 2000).
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Standard deviation/Variance

The standard deviation of a spectrum, which is also called the second spectral moment or
M2, refers to how dispersed the spectrum is from the mean frequency. In the study by
Jongman et al. (2000), the variance was reported instead of the standard deviation, which
is the square root of the variance. Place of articulation had a main effect. Post hoc results
indicated that the variance for non-sibilants (6.37 MHz for /f, v/ and 6.19 MHz for /T, ð/)
was significantly larger than for sibilants (2.92 MHz for /s, z/ and 3.38 MHz for /S, Z/).
Among the sibilants, the postalveolar fricatives had a significantly larger variance than the
alveolar fricatives. There was no significant difference between the variance of labiodental
fricatives and dental fricative. Nevertheless, when taking the window locations into account,
the variance distinguished all places of articulation except for the second window location
(Jongman et al., 2000).

Similar to Jongman et al. (2000), Nissen and Fox (2005) also found a main effect of place
of articulation. Post hoc results showed that all four places of articulation were significantly
different with respect to variance. The descending order of variance values was: labiodental
fricative (6.26 MHz), dental fricative (5.38 MHz), alveolar postalveolar fricative (3.30 MHz),
and fricative (2.39 MHz). Unlike Jongman et al. (2000), the variance difference between
non-sibilant fricatives was significant in the study by Nissen and Fox (2005).

In addition, a main effect was found for voicing that voiced fricatives had a greater vari-
ance than voiceless fricatives but the effect size was relatively small (η2 = 0.069) (Jongman
et al., 2000). Female speakers were also found to have a larger variance than male speakers
(Jongman et al., 2000).

Skewness

Skewness is a measure of the asymmetry of the spectral shape (i.e. the spectral tilt). It
is also called the third spectral moment or M3. Zero skewness suggests a symmetrical
distribution. White noise is an example which has zero skewness (Boersma and Weenink,
2004). Positive skewness indicates "a negative tilt with a concentration of energy in the
lower frequencies", whereas negative skewness suggests "a positive tilt and a predominance
of energy in the higher frequencies" (Jongman et al., 2000, p. 1253). Jongman et al.
(2000) found that skewness distinguished all four places of articulation in fricatives. It was
difficult to comprehend the mixed results of skewness values in the study by Jongman et
al. (2000), namely why labiodental fricatives (0.077) and postalveolar fricatives (0.693) had
positive skewness (i.e. left tilted), whereas dental fricatives (-0.083) and alveolar fricatives
(-0.229) had negative skewness (i.e. right tilted). It would be expected that among non-
sibilant fricatives and among sibilant fricatives, there would be a similar concentration of
energy. In terms of absolute value, the ascending order according to place of articulation was:
labiodental, dental, alveolar, and postalveolar. It can only be concluded that the distribution
of energy was mainly concentrated on the lower frequencies for postalveolar fricatives.

Nissen and Fox (2005) also found a main effect of place of articulation for skewness. The
effect came from the postalveolar fricative. Unlike the findings in the study by Jongman
et al. (2000), the skewness values for /f/ (-2.23), /T/ (-2.18), /s/ (-1.88) were all negative,
meaning they were positively tilted, except for /S/ (0.21), meaning it was negatively tilted
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to the lower frequencies.
Voicing and gender were reported to have a main effect on skewness. It was found that

voiceless fricatives generally had a higher skewness value than voiced fricatives; and male
speakers generally had a larger skewness than female speakers (Jongman et al., 2000; Maniwa
et al., 2009).

Kurtosis

The spectral kurtosis, which is also called the fourth spectral moment or M4, is a measure
of tailedness. It denotes "how much the shape of the spectrum around the centre of gravity
is different from a Gaussian shape" (Boersma and Weenink, 2004, p. 780). The kurtosis
of a standard normal distribution is three. Therefore, it is conventional to subtract three
when reporting the kurtosis (such as in Maniwa et al., 2009). Following this measurement,
positive kurtosis suggests heavy tails; whereas negative kurtosis indicates light tails.

Jongman et al. (2000) found a main effect of the place of articulation. Labiodental (2.11)
and alveolar (2.36) fricatives had the highest kurtosis, followed by dental fricatives (1.27)
and postalveolar fricatives (0.42). All pairwise comparisons were significant, except between
labiodental and alveolar fricatives. Nissen and Fox (2005) reported slightly different results.
It was found that although there was a main effect of place of articulation, the effect mainly
came from the particularly small kurtosis value of postalveolar fricatives (1.46), while the
values were similar for labiodental (3.78), dental (3.77) and alveolar (3.54) fricatives.

In terms of voicing, Jongman et al. (2000) found that voiceless fricatives had larger
kurtosis than the voiced fricatives but the effect size was small (η2 = 0.001). There was
also an effect of gender that female speakers had a higher value of kurtosis than the male
speakers (Jongman et al., 2000).

F2 onset

Jongman et al. (2000) measured the second formant (F2) at the following vowel onset using a
23.3 ms Hamming window. ANOVA results revealed a four-way interaction effect of place of
articulation, voicing, vowel, and gender. Nevertheless, it was complicated to interpret what
such an interaction actually implied. Jongman et al. (2000) did not discuss this interaction
in detail. There was a main effect of place of articulation on the estimation of F2 onset
frequency. A general pattern was that F2 onset values increased as place of articulation
moved further back in the vocal tract. Nevertheless, the difference between dental and
alveolar fricatives was not significant. There was a place x vowel interaction and the F2
onset values differed significantly for labiodental and alveolar fricatives. Another significant
interaction was between voicing and place of articulation: the F2 onset value was significantly
higher for dental and postalveolar fricatives when followed by /i, e/. In addition, there was a
main effect of vowel in that the mean F2 values were higher for front vowels (/i, e, æ/) than
back vowels (/u, o, A/), and the F2 values increased when the vowel height increased. All
the comparisons among vowels were significant except between /o/ and /A/. A main effect of
gender was found and post hoc tests showed that the F2 onset value was significantly higher
for females than males.
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Slope

Jongman et al. (2000), Maniwa et al. (2009), and Nissen and Fox (2005) all measured slope
but of different parts in the spectrum. Jongman et al. (2000) was more interested in the
locus equation, which is a measurement of the transition information based on the F2 onset
and midpoint value of the vowel. The slope and y-intercept were calculated, following the
method in the study by Sussman, McCaffrey, et al. (1991) and Sussman, Hoemeke, et al.
(1993). It was found that only the slope of labiodental fricatives was significantly different
from other fricatives; while the y-intercept of labiodental and postalveolar fricatives were
distinctive, the y-intercept of dental and alveolar fricatives was not (Jongman et al., 2000).
An effect of gender was found with the y-intercept for females being higher than for males.

Maniwa et al. (2009) measured the two spectral slopes, namely one low-frequency slope
and one high frequency slope, following the method by Jesus and Shadle (2002). The average
peak frequency was first computed in the logged DFT spectrum with a pre-emphasis factor
of 98%. Two linear regression lines were fitted based on the average peak frequency (i.e.
below the peak frequency and above the peak frequency till 15 kHz) using the least square
method. It was found that the low-frequency slope was higher for sibilant fricatives than
non-sibilant fricatives, and the low-frequency slope of postalveolar fricatives was higher than
that of alveolar fricatives.

Nissen and Fox (2005) measured the slope by fitting a linear regression line based on
a fixed range of frequency (i.e. 1-15 kHz) in the power spectrum. There was an effect of
place of articulation for the spectral slope. The slope values in ascending order by place
of articulation were: 3.40 for /T/, 3.42 for /f/, 5.46 for /s/, and 9.08 for /S/. Post hoc
tests revealed that the spectral slopes between sibilant fricatives and non-sibilant fricatives,
and between sibilant fricatives were significantly different from each other. The difference
between non-sibilant fricatives was not significant. The small values of non-sibilant fricatives
confirm previous findings that the spectra of non-sibilant fricatives are relatively flat. Also,
the slope of postalveolar fricatives was significantly steeper than alveolar fricatives.

3.2.2 Amplitudinal properties

Normalised root-mean-square amplitude

Root-mean-square amplitude is the amplitude of a sound signal multiplied by the square
root of the mean square. Jongman et al. (2000) measured the normalised root-mean-square
amplitude of fricatives by subtracting the vowel root-mean-square amplitude from the root-
mean-square amplitude of the entire fricative. The vowel amplitude was defined as the
root-mean-square amplitude "averaged over three consecutive pitch periods at the point of
maximum vowel amplitude" (Jongman et al., 2000, p. 1256), following the same approach by
Behrens and Blumstein (1988). By doing so, the intensity differences among speakers were
normalised. A main effect of place of articulation was found for the normalised amplitude.
Post hoc tests showed that the amplitudes of all four places of articulation were significantly
different from each other (Jongman et al., 2000). In terms of magnitude, postalveolar frica-
tives were the loudest, followed by alveolar fricatives, and then by labiodental fricatives and
dental fricatives. This result is in line with the mechanical model of fricative production as
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described in Section 3.1. There was also an effect of voicing that voiceless fricatives had a
significantly larger amplitude. An effect of vowel context was also reported but the effect
mainly came from the difference between /i/ and /A/. It indicated that the even after nor-
malising the root-mean-square amplitude by using the vowel root-mean-square amplitude,
the effect of vowel was still significant. In addition, there was an interaction effect of place
and voicing and post hoc tests revealed that the amplitude difference between voiced and
voiceless non-sibilant fricatives was significantly higher than for voiced and voiceless sibilant
fricatives. There was no significant effect of gender.

Similarly, Nissen and Fox (2005) measured the normalised amplitude also by subtracting
the root-mean-square amplitude of the entire frication segment from that "of the strongest
component within the initial 40 ms of the following vowel" (p. 2572). An effect of place of
articulation was found and post hoc results indicated that the effect came from the differences
between non-sibilant and sibilant fricatives. Unlike the findings in the study by Jongman
et al. (2000), there was not much difference between /f/ (-13.7 dB) and /T/ (-11.9 dB),
and between /s/ (-3.6 dB) and /S/ (-3.0 dB). There was also an effect for vowel in that
the normalised amplitude values significantly decreased when the following vowel was /A/.
An interaction effect of place and vowel was found and post hoc results indicated that the
following vowel /A/ and /f, T, s/ had an interaction effect but not /A/ and /S/.

Relative amplitude

Jongman et al. (2000) and Maniwa et al. (2009) measured the relative amplitude by sub-
tracting the vowel amplitude from the fricative amplitude. Unlike the root-mean-square
amplitude, the vowel amplitude was measured as the third formant (F3) region for sibilants
and as the fifth formant (F5) region for non-sibilants, while the fricative amplitude was mea-
sured at the centre of the fricative. The findings in the study by Jongman et al. (2000) were
complicated. In general, there was a main effect of place of articulation and post hoc tests
demonstrated that the relative amplitudes of all four places were different from each other.
Alveolar fricatives had the largest amplitude, followed by dental fricatives, then by labio-
dental fricatives, and lastly by postalveolar fricatives. There were also interactions between
place and vowel, place and voicing, and place and gender (Jongman et al., 2000).

Harmonics-to-noise ratio

Harmonics-to-noise ratio measures the ratio between periodic (harmonics) and aperiodic
(noise) components of a speech sound (Fernandes et al., 2018). In the study by Maniwa et
al. (2009), the harmonics-to-noise ratio was calculated by measuring the difference between
the amplitude of the periodic part of the fricative and the amplitude of the noise of the
fricative. Maniwa et al. (2009) found that the harmonics-to-noise ratios of voiced fricatives
were higher than those of the voiceless fricatives. Moreover, the harmonics-to-noise ratios of
voiced non-sibilants were higher than those of the voiced sibilants.

24



3.2.3 Temporal properties

Normalised noise duration

Noise duration is the length of the frication noise. Instead of the absolute duration of the
frication noise, Nissen and Fox (2005) and Jongman et al. (2000) calculated the normalised
noise duration using the ratio of fricative duration over word duration. They argued that
the absolute duration may vary, based on the speaking rate. Jongman et al. (2000) found a
main effect of place of articulation. The mean duration by place of articulation in ascending
order was: 0.333 ms for labiodental fricatives, 0.340 for dental fricatives, 0.382 for alveolar
fricatives, and 0.393 for postalveolar fricatives. Post hoc tests showed that all duration
differences were significant except between labiodental and dental fricatives. There was
also a main effect of voicing in that voiceless fricatives were significantly longer than voiced
fricatives. An interaction effect between place and voicing was found: the effect of voicing
was more evident for non-sibilant fricatives than sibilant fricatives. Regarding gender, there
was a main effect that male speakers had a longer normalised duration than female speakers.

Nissen and Fox (2005) measured the absolute duration of the fricative segments. It was
found that place of articulation had a main effect and it was due to the decreased duration of
/f/. Interestingly, there was an effect of vowel and post hoc tests suggested that the duration
decreases significantly when followed by /A/ comparing that by /i/.

In summary, most spectral properties were significantly different i) between sibilants and non-
sibilants, ii) between alveolar fricatives and postalveolar fricatives, but not between dental
fricatives and labiodental fricatives (except for spectral peak and normalised root-mean-
square amplitude). Gender and voicing were predictor variables for most of the spectral
properties, while vowel was also an indicator for F2 onset frequency and normalised root-
mean-square amplitude. Several interactions among place of articulation, voicing, gender,
and vowel were reported. The amplitudinal and temporal properties were able to distinguish
the place of articulation and voicing. Harmonics-to-noise ratio was particularly useful to
distinguish between voiced and voiceless fricatives of the same place of articulation. The
normalised root-mean-square amplitude, the relative amplitude, and noise duration were only
able to distinguish sibilants from non-sibilants. Vowel was reported an significant indicator
of the amplitude but it was only limited to certain vowel contexts. All these findings were
based on (standard) American English and it would be interesting to see if these acoustic
properties were able to distinguish Hong Kong English fricatives with respect to place of
articulation and voicing.

3.2.4 DCT coefficients

As mentioned briefly in Section 3.2.1, to measure the aforementioned acoustic and spectral
properties, the majority of the studies convert the speech signals into a DFT (amplitude)
spectrum using the FFT algorithm, which is a fast version of Fourier Transform. Fourier
transformation is a decomposition process of a finite signal sequence from the time-domain.
The output is a representation in the frequency domain composed of a set of complex sinu-
soids at integer cycles (i.e. k = 0, 1, 2, ..., N − 1) (Harrington, 2010). Theoretically speak-
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ing, the summation of the sinusoids can reconstruct the original signal. There is another
strand of study on the acoustic and spectral properties using the Discrete Cosine Trans-
formation (DCT) (amplitude) spectrum. The DCT analysis of fricatives has been gaining
more and more popularity over the past two decades (see Bukmaier and Harrington, 2016;
Guzik and Harrington, 2007; Harrington, 2010; Jannedy and Weirich, 2017; Stuart-Smith,
2020). The DCT algorithms decompose a signal into a set of cosine waves at half cycles
(i.e. k = 0, 0, 5, 1.0, 1.5, ..., 1/2(N − 1)) (Harrington, 2010), unlike the full integer cycles in
FFT. Moreover, the output of the DCT is a set of sinusoids with no phase, which equals to
a cosine wave. Therefore, this operation is named discrete cosine transformation. For these
studies (Bukmaier and Harrington, 2016; Guzik and Harrington, 2007; Jannedy and Weirich,
2017; Stuart-Smith, 2020), DCT coefficients were measured and discussed with respect to
the features of fricatives. DCT coefficients are the resulting amplitudes of the cosine waves
at the respective frequencies (Jannedy and Weirich, 2017). The zeroth coefficient (k0) is the
amplitude of the cosine wave at frequency k = 0, and is proportional (but not equal) to
the signal’s mean; the first coefficient (k1) is the amplitude of the cosine wave at frequency
k = 0.5, and is inversely proportional to the signal’s slope; the second coefficient (k2) is the
amplitude of the cosine wave at frequency k = 1, and is proportional to the signal’s curvature
(Harrington, 2010; Jannedy and Weirich, 2017). The list continues till the (N − 1)th coeffi-
cient, which is the frequency k = 0.5(N − 1). Most studies only reported and discussed the
first three or four coefficients as they encode more global and general properties of the signal
shape. In the following, the methods and findings from previous studies on the acoustic
aspect of fricatives, though not limited to English fricatives, are reviewed.

Jannedy and Weirich (2017) studied the acoustic differences between the voiceless palatal
fricative /ç/ and the voiceless postalveolar fricative /S/ of different German speaker groups
using by examining both the four spectral moments (i.e. centre of gravity, standard deviation,
skewness, and kurtosis) and the first four DCT coefficients (i.e. k0-k1). 130 speakers from
three different groups were recruited to read aloud a word list with minimal pairs embedded in
a carrier phrase. The recordings were sampled at 48 kHz. The spectral analysis was limited
to 500 Hz to 12 kHz. The DCT coefficients were extracted after the spectral frequency
were converted to the Bark scale. Linear mixed effect models were computed with the
Euclidean distances between the fricatives in the four-dimensional spectral moments space
as the dependent variable and repetition, speaker group, minimal pair, and their interactions
as the fixed effects. A random intercept for the speaker and a by-speaker random slope
for minimal pair were applied. A forced choice perception test from another group of 12
participants was also conducted. It was found that the DCT analysis mirrored the perception
results better than the spectral moment analysis and was able to capture the slight differences
observed in the spectral shapes. It demonstrated that DCT coefficients were a more reliable
measurement of the acoustic properties than the spectral moments using window functions.
Jannedy and Weirich (2017, p. 404) explained that it was because "the DCT coefficients
quantify the entire shape of the spectrum rather than just the central frequency or the
weighting of the higher or lower frequencies".

Stuart-Smith (2020) investigated the production of the voiceless alveolar fricative /s/ and
voiceless postalveolar fricative /S/ in the Glasgow dialect and the gender effect over time.
Word-initial target fricatives from interviews and causal conversations were examined using
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the DCT analysis. Some of the reasons for adopting DCT analysis are stated as follows
(Stuart-Smith, 2020, p. 3):

• DCT analysis can be applied to tracks of variable length, without arbitrary decisions
about how many points to take for a track, or time normalisation (Watson and Har-
rington, 1999).

• DCT coefficients are continuous, mathematically-independent measures, amenable to
linear mixed modelling to test for the influence of fixed and random factors, separately
and in interaction.

• agent-based modelling of sound change which reduces acoustic trajectories, also for
/s/-retraction, to a three-point multidimensional space using DCT analysis is proving
effective (Harrington and Schiel, 2017; Harrington, Kleber, et al., 2018).

It is interesting to see how the static and dynamic measurements were performed by
Stuart-Smith (2020). First, the static centre of gravity was calculated using a 10 ms Ham-
ming window, which was applied in the central 70% of the fricative segment, in a presumably
FFT spectrum. It was very different from the 40 ms full Hamming window adopted in the
study by Jongman et al. (2000). The static spectral slope was computed in a Long-Term
Average Spectrum (LTAS), which "represents the logarithmic power spectral density as a
function of frequency" (Boersma and Weenink, 2004, p. 631). The dynamic measurements
were calculated by first extracting the track of values of centre of gravity using a sequence of
10 ms Hamming window in the central 70% of the fricative segment. Then, the DCT coeffi-
cients were calculated using the tracks of centre of gravity measures. The same process was
applied to slope. This approach was similar to Watson and Harrington (1999), in which the
formant trajectories or contours of vowels in Australian English were compressed into DCT
coefficients. In the study by Watson and Harrington (1999), it made sense to probe into the
DCT coefficients of the each extracted formant trajectory in a vowel segment. Nevertheless,
it was hard to understand what the DCT coefficients of a sequence of extracted spectral
means and spectral slopes represented in the study by Stuart-Smith (2020). Since the DCT
coefficients are already a form of compression with dynamic information of the spectrum en-
coded, methodologically, it would be more straightforward to compute the DCT coefficients
from the whole FFT fricative segment and to interpret the first coefficient corresponding
to the sequence’s mean and the second coefficient corresponding to the sequence’s slope, as
demonstrated in (Jannedy and Weirich, 2017). Similar to the study by Jannedy and Weirich
(2017), all the static and dynamic measures of centre of gravity and slope were estimated
using the mixed linear regression models with respect to gender and age group in the study
by Stuart-Smith (2020).

Bukmaier and Harrington (2016) studied the physiological and acoustic characteristics
of three sibilant fricatives /s, ù, C/ in Polish from nine speakers. A Mel-scaled DCT-
transformation was adopted. First, the speech signals were converted to a 256 point DFT
spectrum "with a 40 Hz frequency resolution, 5 ms Blackman window, and a frame shift of
5 ms" (Bukmaier and Harrington, 2016, p. 5). Then, the DFT spectrum’s frequency axis
was converted into Mel. After that, the DCT coefficients were derived from the Mel-scaled
DFT spectrum at the midpoint of the frication. Harrington (2010) explained that converting
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the Hz scale into an auditory scale (e.g. Bark or Mel) was not just because the scale was
"more closely related to the way in which the frequency [was] perceived" by human ears,
but also because the Mel-scaled coefficients such as the Mel Frequency Cepstral Coefficients
(MFCC) were used more frequently in automatic speech recognition; mel-scaled coefficients
were needed "to distinguish effectively between different phonetic categories than when DCT
coefficients [were] derived from a Hz scale" (Harrington, 2010, p. 213).

In the present study, both acoustic properties of the FFT spectrum and the DCT coef-
ficients (k0, k1, k2, and k3) of fricatives are examined. Most previous studies adopted the
DCT analysis of sibilant fricatives, and it would be interesting to see if this analysis can be
extended to study non-sibilant fricatives. Since the DCT analysis is dependent on the spec-
tral shape, and previous studies using other acoustic characteristics already demonstrated
that it is hard to distinguish between the spectra of labiodental and dental fricatives, it is
questionable if DCT analysis is suitable for studying non-sibilant fricatives. Nevertheless,
the findings in the study by Jannedy and Weirich (2017) showed that the slight difference in
the spectral shape could be captured by the DCT coefficients but not the spectral moments.
The DCT analysis might be able to show differences between non-sibilant fricatives as well.

This study examines the following acoustic and spectral properties: the four spectral
moments (centre of gravity, standard variation, skewness, kurtosis), spectral peak, spectral
slope, normalised amplitude, F2 onset frequency, harmonic-to-noise ratio, as well as the first
four DCT coefficients (k0, k1, k2, k3). The advantages of using the Mel-scale mentioned by
Harrington (2010) for automatic speech recognition can be best manifested when using them
together with a log power spectrum, which is actually MFCC. Therefore, it does not make
a huge difference whether the DCT coefficients at this stage is Hz-scaled or Mel-scaled. For
the acoustic analysis, this study sticks with the Hz-scaled DCT coefficients. The algorithms
and methods adopted for each acoustic property are discussed in Section 6.3.3. The effects
of place of articulation, voicing, and gender are also examined.

3.3 Classification of fricatives
One of the goals of conducting acoustic analysis is to find out the relevant acoustic features
and build a classification model that can be comparable to human perception. Therefore,
many studies conducted a classification analysis of fricatives using the acoustic characteristics
being investigated (e.g. Forrest et al., 1988; Jongman et al., 2000; Nissen and Fox, 2005;
Bukmaier and Harrington, 2016).

One common classification method noted in previous studies is discriminant analysis,
which is similar to a regression analysis except that the output variable is a discrete and mu-
tually exclusive class, usually by the four places of articulation (i.e. quadratic discriminant
analysis). A set of linear equations or discriminant functions are derived in discriminant
analysis (Nissen and Fox, 2005). The discriminant algorithms model the conditional distri-
bution of y given x p(x|y). Jongman et al. (2000) conducted a step-wise linear discriminant
analysis using 21 predictors (i.e. spectral peak location, the four spectral moments x the
four window locations, F2 onset frequency, normalised root-mean-square amplitude, rela-
tive amplitude, and normalised duration). The jackknife resampling technique was applied,
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"whereby each speaker in turn was used as the testing speaker with training being done on
the 19 remaining speakers" (Jongman et al., 2000, p. 1260). The final classification scores
were averaged across the 20 testing speakers. Preliminary results showed that the accuracy
rates were 88% for sibilant fricatives and 66% for non-sibilant fricatives. The standardised
canonical discriminant function coefficients were analysed to evaluate the predictive effect of
each input variable. A new classification model was built using the suggested features. And
these two procedures continued until a best model was built. The final classification accuracy
was 53% for labiodental fricatives, 48% for dental fricatives, 81% for alveolar fricatives, and
88% for postalveolar fricatives. It would also be interesting to know the classification rate
in terms of voicing since Jongman et al. (2000) reported a main effect of voicing for many
acoustic properties. Unfortunately, Jongman et al. (2000) did not include it in their paper.

Nissen and Fox (2005) adopted a similar approach described in the study by Jongman
et al. (2000). The predictor variables were frication noise duration, normalised root-mean-
square amplitude, spectral slope and the four spectral moments (i.e. centre of gravity,
standard deviation, skewness, and kurtosis). Validation results in the training model indi-
cated that the classification rates for sibilant fricatives were 95%, and 70% for non-sibilant
fricatives. Error analysis revealed that confusions mainly came from misrecognising /T/ as
/f/ or /f/ as /T/ but "rarely crossed the sibilant/non-sibilant distinction" (Nissen and Fox,
2005, p. 2577).

Other studies adopted a Gaussian classification, which is a generative classifier. A gen-
erative learning algorithm models the p(x|y) and p(y) as opposed to p(y|x), and often Bayes
Rule (see Equation 3.1) is used to predict the conditional probability distribution p(y|x). A
class posterior is calculated based on the class conditional density (which is assumed to have
a Gaussian distribution) and the class prior.

p(y|x) = p(x|y)p(y)
p(x)

(3.1)

Bukmaier and Harrington (2016) built a Gaussian model to classify the Polish fricatives
of nine speakers using the two Mel-scaled DCT coefficients (k1 and k2). Leave-one-out cross-
validation was applied, and the process was similar to the jackknife method in the studies by
Jongman et al. (2000) and Nissen and Fox (2005). The difference was that in the leave-one-
out cross-validation, "a given speaker’s data were classified following training on the data
of the other eight speakers" (Bukmaier and Harrington, 2016, p. 6) and is iterated for all
speakers in turn, while the jackknife method computed statistics only from the kept samples.
Results indicated that in the slow speech rate, the classification accuracy was 96% for /s/,
77% for /ù/, and 63% for /C/. There was a high degree of confusion for /C/ and /ù/.

Abdelatty Ali et al. (2001) studied the effect of acoustic-phonetic features for the au-
tomatic classification of fricatives. First, the input fricative was classified into voiced or
voiceless based on the duration threshold of the unvoiced portion of the frication. Then the
fricative was further classified into three places of articulation, namely alveolar, postalveo-
lar, and dental (combining both labiodental and interdental) using five main features: i) the
maximum normalised spectral slope, ii) the location of the most dominant spectral slope,
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iii) the location of the most dominant spectral peak, iv) the spectral centre of gravity, and
v) the dominance relative to the highest filter, which "describes the amplitude roll-off in the
high-frequency filters relative to the dominant peak" (Abdelatty Ali et al., 2001, p. 2228).
The model was clear and intelligible as knowledge-based decision-tree-like algorithms were
employed. Statistical discriminant analysis and Bayesian classification, which used the max-
imum posterior probability (similar to the approach described in the study by Bukmaier
and Harrington (2016)) was carried out. The overall classification accuracy for voicing was
93%. The overall classification accuracy for place of articulation was 91%. The overall
classification accuracy of fricatives was 87%.

To further evaluate the acoustic-phonetic feature-based model, an artificial neural net-
works (ANN) using 12 MFCCs as input features was built for comparison in the study by
Abdelatty Ali et al. (2001). MFCCs were obtained by applying the DCT to the filter banks
and only keeping some of the resulting coefficients while the rest being discarded. Multilayer
perceptron, which is a class of feedforward artificial neural network, and the back-propagation
algorithm were used to build the network. There was one input layer, one hidden layer, and
one output layer. Results showed that the the accuracy rate for voicing classification was
77% and that for place of articulation classification was 86%. The findings suggested that use
of acoustic-phonetic feature-based approach could improvement classification performance.
One possible explanation was that the number of input features were more for the ANN,
while some of the features might not be relevant for the classification of voicing and place
of articulation of fricatives, and hence, created confusion for the algorithms. On the other
hand, the input acoustic features were carefully selected when modelling.

In recent years, there are more uses of convolutional neural networks (CNNs) and recur-
rent neural network (RNN) (e.g. Anjos et al., 2020; Arora et al., 2018; Patgiri et al., 2013).
Convolution neural networks take the name from a mathematical linear operation between
matrices called convolution (Albawi et al., 2017). A CNN uses convolution to extract high
level-features, usually used in image recognition but can also be applied to speech and voice
recognition.

A basic CNN architecture is sketched in Figure 3.3 (Phung and Rhee, 2019). Basically,
the convolutional layer extracts the features from the input data using the mathematical
operation of convolution. A filter (also called kernel) is applied and shifts through the input
data to perform this convolutional operation. The output of the convolutional layer is a learnt
feature map. A pooling layer decreases the size of the convolved feature map. Usually, max
pooling is performed which takes the largest element from the feature map. The pooling
layer helps reduce the computational costs. A fully connected layer primarily performs the
classification. It also carries the weights and biases of the features and the classes. A weight
decides how important the input is between two neurons. All of a neuron’s inputs are
multiplied by their weights and added together before being turned into an activation value.
A bias value, which is a constant, is an additional input into the next layer. It helps ensure
there is always an activation in the neuron regardless of the input values. In the classification
stage, the number of neurons in the final output layer is the same as the number of classes
or labels. For model training, two hyper-parameters, namely epoch and batch size, need to
be defined. An epoch defines how many times the learning algorithm will work through the
entire training dataset, and a batch size decides the number of samples to be propagated
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through the network.

Figure 3.3 Schematic diagram of a basic convolutional neural network (CNN) ar-
chitecture (Phung and Rhee, 2019, p. 3)

In the study by Anjos et al. (2020), two models using CNN and log Mel filter banks were
built to classify fricatives by place of articulation (labiodental, alveolar, and postalveolar) and
by voicing (voiced and voiceless). The models were trained on European Portuguese speech
samples from 356 children.The same architecture was deployed for both networks. The input
features were matrices of log Mel filter banks, from which MFCCs could be computed, and
they were 80 (bins) x 9 (frames) matrices extracted by a 25 ms window function and 10 ms
shift size. There were two convolutional layers, each followed by a pooling layer. The first
convolution layer used 50 kernel filters (size: 10 x 2) and a 2 x 1 stride. Max pooling with a
2 x 2 window (stride = 1) was then applied. The second convolutional layer used 25 kernel
filters (stride = 1), followed by max pooling. The output pooled feature maps were flattened
before feeding into the fully connected network with four hidden layers (with 1000, 500, 100,
and 10 neurons respectively). The output layers have three neurons for place of articulation
and two neurons for voicing. "The models were trained for 100 epochs, with a batch size of
10" (Anjos et al., 2020, p. 3158). The overall accuracy for place of articulation was 90.4%
and that for voicing was 90.9%. The overall F1-score for place of articulation was 88.0%
for labiodental fricatives, 87.6% for alveolar fricatives, and 93.1% for postalveolar fricatives.
The overall F1-score was 83.3% for voiced fricatives and 93.8% for voiceless fricatives.

To conclude, different classification methods and algorithms were reviewed in this sec-
tion. Regardless of which method, it was generally found that the classification accuracy of
non-sibilant fricatives was lower than that of sibilant fricatives. Also, the accuracy rate was
lower for voiced fricatives than voiceless fricatives. Regarding the input features, the main
difference between different approaches is whether the features are imposed by the researcher
or learnt. Deep neural networks, in general, are more suitable to learn more complex repre-
sentations in the data. Nevertheless, it is widely known that one of the disadvantages of deep
neural networks is that the internal logic is opaque. It is unlike the decision-tree-like model
demonstrated in the study by Abdelatty Ali et al. (2001). For the purpose of the present
study, classification models using convolutional neural network were built and applied for
the classification of fricatives and their variants.
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Chapter 4

Automatic speech recognition (ASR)
and the Munich AUtomatic
Segmentation (MAUS) system

4.1 General review of feature-based ASR systems
Automatic speech recognition (ASR) systems differ a lot, especially in recent decades in
which End-to-End (E2E) systems are gaining more popularity. Nevertheless, many main-
stream ASR systems are still using the statistical acoustic-language model approach. The
mechanism of this approach is briefly introduced in this section in order to have an over-
all understanding of the ASR pipeline and what the function of each component is in this
process.

Figure 4.1 A statistical ASR system adapted from C. Zhang (2017, p. 10)

The statistical approach of ASR generally involves an acoustic model, a language model,
and a decoder, as demonstrated in Figure 4.1. First, the speech signal is converted into a
sequence of acoustic vectors, A = a1, a2, a3, ..., at. Each vector contains representations of
the speech signal of a certain period of time (at). One common type of acoustic features
is the Mel-scale frequency cepstral coefficients (MFCCs), as already mentioned in Section
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3.2.4. How MFCCs are computed is described in Section 6.6.1. An alternative to MFCCs is
perceptual linear prediction (PLP). The language model proposes the sequence of n words
W = w1, w2, w3, ..., wn and the sequence gets converted into basic speech units such as
phones based on the pronunciation dictionary which provides the prior probability of each
word sequence. According to Jelinek (1997), if P (W |A) denotes the probability of the
words W being spoken, given the acoustic evidence A observed, the function of ASR can be
presented as follows:

Ŵ = argmax
w

P (W |A) (4.1)

Basically, the argmax operation returns the word sequence of the highest probability,
which is also considered as the "maximum a posteriori (MAP) decoding rule" (C. Zhang,
2017, p. 10). The Bayes’ Rule (see also Section 3.2.4) can be applied so that:

P (W |A) = P (W )P (A|W )

P (A)
(4.2)

Since the maximisation in Equation 4.1 is using a fixed acoustic sequence A, P(A) in this
case is a constant. Therefore, Equation 4.1 and Equation 4.2 can be simplified as:

Ŵ = argmax
w

P (W )P (A|W ) (4.3)

The a prior probability of observing a word sequence P (W ) is determined by the language
model which is usually an n-gram model. A pronunciation dictionary, which contains the
pronunciations of words and tagged attributes is often used in the process to convert words
into speech units. The probability of observing the acoustic sequence A given the word
sequence W (i.e. P (A|W ) is determined by the acoustic model which usually consists of
hidden Markov models (HMMs) (Jelinek, 1997). The scores of the language model and
acoustic model are further processed in the decoder, which consists of finite state transducers
(FSTs), "to estimate the final output in the form of sequences of phonemes, words, or
sentences" (Arora et al., 2018, p. 99).

Figure 4.2 A schematic representation of GMM-HMM for the phone hh, cited from
C. Zhang (2017, p. 18).

Specifically, in a phone-based acoustic model, the probabilistic distribution of the features
for a phone can be modelled with a Gaussian Mixture Model (GMM), whereas the transition
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between phones and the respective acoustic features of the speech signal can be modelled
with the Hidden Markov Model (HMM) (Hui, 2019). It is assumed that "the properties
of its associated signals can be characterised by a discrete time Markov process or Markov
chain" (C. Zhang, 2017), which is also known as discrete-time Markov chain (DTMC). It
means that the speech signal can randomly change its state in time and each state is one of
the finite distinct states. The change of state is based on the probability distribution stored
in the current and preceding states. This kind of model is called GMM-HMM and is often
seen in the literature. A schematic representation of a GMM-HMM is illustrated in Figure
4.2.

Another crucial component of a feature-based ASR system is the language model. As
mentioned earlier, the language model is usually an n-gram model which stores the prior
probability that P (W ) of each word sequence W dependent on n − 1 preceding word (C.
Zhang, 2017). The product P (W ) can be formally presented as Equation 4.4 (Jelinek, 1997,
p. 57), where P (wi|w1, ..., wi) is the probability wi will be spoken given the words spoken
before w1, ..., wi.

P (W ) =
n∏

i=1

P (wi|w1, ..., wi) (4.4)

The number of n differs in each language model and different n yields different ASR
results. It is typical to use a 3-gram or 4-gram model. What needs to be noted is that each
n-gram unit is devised based on the training data, which usually comprises multiple corpora.
Unseen n-gram units with zero frequency in the training data can cause errors in the ASR
output Ŵ regardless of the acoustic signal, due to Equation 4.3 (C. Zhang, 2017).

The acoustic model, pronunciation dictionary, and language model are integrated in the
decoder, which creates a finite state graph structure. In technical terms, the task of ASR is
to find the most likely path in the created graph that "will have generated the utterance to
be decoded according to the MAP decoding rule" in Equation 4.3 (C. Zhang, 2017, p. 24).
To do so, the Viterbi algorithm (Viterbi, 1967) is often employed. The Viterbi path is the
maximum a posteriori probability estimate of the maximising state sequence of the hidden
states (Jelinek, 1997, p. 23).

To sum up, this section provides an overview of a feature-based ASR system, which uses
a statistical approach. Major components, namely the acoustic model and the language
model, were reviewed. The common algorithms and techniques were also briefly introduced.
Although the above discussions are primarily based on word recognition, the theories form
the backbone of many state-of-the-art forced alignment tools (see Section 4.2).

4.2 Forced alignment and MAUS
Forced alignment refers to the process of which orthographic transcriptions are automatically
aligned to the time intervals in the audio files to generate the sentence, word, or phone level
segmentation. It is different from speech recognition which generates the text transcription
based on the audio file. In phonetics research, often the phone segmentation and phone
recognition are of interest. For example, since the present study is interested in analysing
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the relation between fricatives and the corresponding signal (e.g. acoustic and spectral
signal) as well as the relation between the realisation of fricatives and linguistic factors,
phone segmentation and phone labelling are crucial for this study. Nevertheless, manually
segmenting the phone and auditorily labelling each phone is very time-consuming, especially
when the dataset is large. A forced alignment tool is required.

There are many open-source forced alignment tools, as shown in Table 4.1 (Pettarin,
2018). As can be seen, most forced alignment tools use the hidden Markov model (HMM)
as the base statistical model and the HMMs are created using the hidden Markov toolkit
(HTK) which supports density mixture Gaussians (GMMs). It can be assumed that most
tools are based on speech recognition algorithms, such as those mentioned in Section 4.1.

Table 4.1 Open-source forced alignment tools (Pettarin, 2018)

Name Algorithm Supported Language(s) Interface
aeneas DTW 30+ CLI, LIB, Web
CMU Sphinx HMM (own), RNN 11 CLI, LIB
DARLA HMM (HTK) English Web
FAVE-align HMM (HTK) English CLI, (Web)
Gentle HMM (Kaldi) English CLI, Web
Julius HMM (own) English, Japanese CLI, LIB
Kaldi HMM (own), DNN, RNN English CLI, LIB
kaldi-dnn-ali-gop HMM(Kaldi), DNN(Kaldi nnet3) English CLI, LIB
LaBB-CAT HMM (HTK) English Web
MAUS HMM (HTK) 21 CLI, Web
Montreal Forced Aligner HMM (Kaldi) English CLI
Penn Forced Aligner (P2FA) HMM (HTK) English CLI, Web
Prosodylab-Aligner HMM (HTK) English CLI
SailAlign HMM (HTK) English, Greek, Spanish CLI
SPPAS HMM (Julius) 12+ CLI, GUI

CLI: command line interface
DTW: Dynamic Time Warping
DNN: Deep Neural Network
GUI: graphical interface
HMM: Hidden Markov Model
HTK: Hidden Markov Toolkit
LIB: library callable by third party software
RNN: Recurrent Neural Network

Among the state-of-the-art forced alignment tools, the Munich Automatic Segmentation
System (MAUS) (Schiel, 1999) was adopted for the present study because it allows a high
degree of custom configuration. The custom configuration is suitable for processing different
types of speech data as well as testing different linguistic hypotheses as demonstrated by
Kisler et al. (2017). Nevertheless, the command line interface (CLI) of MAUS, which is
in C language, only supports German. The English models are only available in the web
interface. Therefore, WebMAUS (Kisler et al., 2017), which is the web service for MAUS,
was employed.

The workflow of MAUS is illustrated in Figure 4.3. As can be seen, the processes in
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Figure 4.3 Workflow of MAUS cited from Kisler et al. (2017)

MAUS are similar to the ASR mechanism mentioned in Section 4.1. If the text is an ortho-
graphic transcript, it passes to the Grapheme-to-Phoneme (G2P) model which transforms
the text into the "most-likely standard pronunciation combined with a number of (optional)
annotations" (Kisler et al., 2017, p. 14). It mainly relies on pronunciation dictionary lookup.
Classifiers which were trained using decision tree algorithms are also applied. If the input text
is a phonetic transcription in Speech Assessment Methods Phonetic Alphabets (SAMPAs),
the G2P process is not necessary. The phones from the G2P model or SAMPA transcrip-
tion are then passed to a language specific Markov model (MM). The MM calculates the
probabilities of all pronunciation variants for a given canonical phone symbol. This can be
done by applying the "statistically weighted rewrite rules" based on the language specific
rule set (Kisler et al., 2017, p. 11). The rewrite rules are automatically learnt from a large
(phonetically transcribed) corpus. How the rewrite rules are generated is discussed in greater
detail in Section 4.3.

The pronunciation variants and the conditional probabilities are then "transformed into
a Markov process, in which the nodes represent phonetic segments and the arc between them
represent transition probabilities" (Kisler et al., 2017, p. 11). An example of an a priori
pronunciation Markov Model of MAUS for the German word ‘Abend’ (‘evening’) is illustrated
in Figure 4.4. As can be seen, if there is only one transition path, the probability is 1 (e.g.
/P/→/a:/, /n/→/t/, /m/→/t/). If there are more than one paths, the sum of all transition
paths is always 1 (e.g. /a:/→/b/+/a:/→/m/ and /b/→/@/+/b/→/n/+/b/→/m/). The
Markov model is then passed to the decoder.
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Figure 4.4 A priori pronunciation Markov Model of MAUS for the German word
‘Abend’ (‘evening’) cited from Kisler et al. (2017, p. 38). The phone symbols are
SAMPAs.

The decoder is actually a hidden Markov Model (HMM) in which the underlying Markov
chain is usually hidden. MAUS uses the Viterbi alignment, which is the maximum likelihood
alignment, as the estimate. The pre-processed speech signals are also passed to the decoder.
The MFCCs features (n = 12) are first extracted from the input audio files. Apart from
the MFCCs, MAUS also uses Energy and the first and second derivative (presumably of the
spectrum) (Kisler et al., 2017) as the acoustic features. The decoder uses the backtracking
algorithm to search for the most probable path. This is how the phone segmentation and
labelling are conducted in MAUS.

Almost all components of the ASR system can be configured in MAUS except the SAMPA
phone symbols which have to conform to the phonemic symbols recognised by MAUS for
a particular language. For example, as shown in Figure 4.3, MAUS supports two types of
input transcription: the orthographic transcription and the SAMPA phonemic transcription.
A rule set file and the phone insertion probability (INSPROB) can be added which directly
affects the probability of the transition path in the Markov chain. The pron model weight,
which gives more weights to the scores of the pronunciation model than the acoustic model,
can be specified. Higher weight means the path of canonical pronunciation from the pronun-
ciation dictionary is more likely to be selected, whereas lower weight means that the path of
pronunciation from the acoustic model (based on the acoustic evidence) is more likely to be
selected.

In the present study, the SAMPA phonemic transcription was used as the input tran-
scription for the acoustic analysis and the pronunciation rule set for Hong Kong English
fricatives was devised. For the purposes of comparison, the same pron model weight was
used. Formulating the probabilistic pronunciation rule set is not a trivial task. In the next
Section, the MAUS rule set is discussed in more detail using the example of the British
English rule set.
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4.3 The MAUS pronunciation rule set
In MAUS, the purpose of a pronunciation rule is to constrain the graph in the Markov model
(e.g. Figure 4.4 in Section 4.2). Therefore, the probability of each pronunciation rule needs
to be specified. MAUS uses two types of pronunciation rule set (Schiel, 2015): i) without
statistical information (hand-crafted) and ii) with statistical information (data-driven). For
the former type, the probability is based on the findings from the literature and empirical
studies. If previous studies did not provide any statistical information, it is hard to calculate
the probability. Therefore, the rule probabilities of this type are, by default, set to 1. For
the latter type, the a posteriori probability is derived from the observation frequency in the
corpus data (typically 1 hour of speech) (Schiel, 1999). Whether MAUS uses the former or
latter rule set is dependent on whether there are sufficient annotated training data for that
language. In the language inventory in WebMAUS, details of the rule set is generally listed
for each language.

The general syntax of a pronunciation rule in the rule set with statistical information is
as follows (Schiel, 1999):

L,B,R > L,N,R;P (4.5)

where L, B, R and L, N, R are sequences of SAMPA symbols, and L and R denote the
left and right context of B and N respectively. The left and right context must be exactly
one symbol. P is the rule probability: P (L,B,R|L,N,R). Each symbol is separated by a
comma. In this rule, B is replaced by N. To denote the word boundary, usually in the case
of word-initial or word-final phone, the hashtag ‘#’ can be used. To denote the beginning
of an utterance, ‘<’ can be used. If the SAMPA symbol contains a backslash, the backslash
has to be rewritten as ‘-’ (ASCII 45) (Schiel, 2021). If the SAMPA symbol contains a digit
(e.g. ‘2:’ and ‘9:’ in the German inventory), it has to be preceded by ‘P’. The P, here, is
a real alphabet, whereas the P in Equation 4.5 denotes probability. The rule probability P
uses natural log.

Here is an example of a pronunciation rule in MAUS (Schiel, 2021):

d, n =,# > d,@, n,# − 0.693100 0.000000 (4.6)

This rule denotes that if the word-final syllabic nasal /n=/ is preceded by /d/, it will
be replaced by a schwa /@/ (IPA: /@/) followed by the alveolar nasal /n/. The a prior
probability of this rule is -0.6931. Assuming there is only one rule given the condition
(d,n=,#), the probability of the P(match|match) rule is 1 - p(replacement|match). This rule
does not have to be set explicitly as it is automatically computed in MAUS.

In the rule set without statistical information, the general syntax of a pronunciation rule
is as follows:

..., L− B −R, ... > ..., L−N −R, ... (4.7)

The a prior probability does not need to be written explicitly since it is assumed to be
1 for each rule set. It also implies that there can only be one matching and replacement
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condition per rule. The rule set without statistical information uses ‘-’ as the context separa-
tor. Hence, any SAMPA symbol which contains a backslash (which is encoded as ‘-’ as well)
cannot be used. Nevertheless, this rule set has less constraints on the number of SAMPA
symbols. For example, more SAMPA symbols can be added on top of the left and right
context, as shown in Equation 4.8. The left and/or right context can also be not specified
at all, as shown in Equation 4.9 (Schiel, 2021) .

aI − C − s, t,# > aI − k − s, t,# (4.8)

The above rule replaces /C/ (IPA: /ç/) with /k/ in /aICst/ (IPA: aIçst) in word final
position.

−N, k− > −N, g− (4.9)

The above rule replaces /Nk/ (IPA: /ŋk/) with /Ng/ (IPA: /ŋg/) at any arbitrary posi-
tion.

Both types of rule set have their own advantages and disadvantages. If there are enough
data, the statistically weighted rule set is generally preferred as it yields better performance
for the pronunciation model (Schiel, 2015). Therefore, the present study attempts to create
statistically weighted rules for Hong Kong English fricatives based on the auditory analysis
results and the phone recognition results are evaluated.
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Chapter 5

Research questions

The present study seeks to answer the following research questions (RQs) with respect to
the phonetics and phonology of Hong Kong English fricatives:

RQ1 a) Which fricatives can be found in Hong Kong English and what are their distributions
in terms of frequency?

RQ1 b) Which variants of fricatives can be found in Hong Kong English and what are their
distributions in terms of frequency?

RQ2 a) Which acoustic properties of Hong Kong English fricatives can distinguish all four
places of articulation (i.e. labiodental, dental, alveolar, and postalveolar) and voicing
(i.e. voiced and voiceless)? Are these acoustic properties for classification the same as
those for Inner Circle English fricatives?

RQ2 b) What are the acoustic characteristics of Hong Kong English fricatives? Do they
share the same pattern as the Inner Circle English fricatives?

RQ3 Which linguistic factors (i.e. syllable position, stress, preceding labial consonants,
preceding /u/, and following /u/) influence the realisation of Hong Kong English frica-
tives?

RQ4 To what extent can the findings of this study be applied to an existing state-of-the-
art automatic speech recognition (ASR) system and improve the phone recognition of
Hong Kong English fricatives and their variants?

Regarding RQ1a, it is predicted that the voiceless fricatives /f, T, s, S/ will be mainly
found in Hong Kong English, as suggested by Hung (2000). While the realisations of /f,
s, S/ will be primarily the same as the phonemic representation, it is predicted that only
two-third of the realisations of /T/ will be [T]. The remaining one-third will be variants of
/T/ (Deterding et al., 2008; Hansen Edwards, 2019; Hung, 2000). As for the voiced fricatives
/v, ð, z, Z/, it is predicted that their occurrences will be marginal.

Regarding RQ1b, it is predicted that the main variants of /v/ will be the voiceless [f] and
the voiced labialised velar approximant [w] (Bolton and Kwok, 1990; Hung, 2000). As for
/T/, the variants will include [f] and [s], as reported by Hansen Edwards (2019). Specifically,
the majority of the variants of /T/ will be [f] and only a small proportion of variants will
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be [s]. /z/ and /Z/ will be unanimously realised as the voiceless counterparts [s] and [S]
respectively. Although Bolton and Kwok (1990) observed that /S/ was also realised as [s],
other studies did not seem to share the same view (Hung, 2000; Setter et al., 2010). In the
current study, it is predicted that not much variation will be observed for /S/, meaning /S/
will be mostly realised as [S].

Regarding RQ2a, it is predicted that similar to previous studies on (standard) American
English fricatives (Jongman et al., 2000; Maniwa et al., 2009; Nissen and Fox, 2005), most
acoustic properties will be able to distinguish between sibilant and non-sibilant fricatives,
but not between non-sibilant fricatives (/f, v, T, ð/). Only a small number of properties
will be able to distinguish all four places of articulation. Since the acoustic properties
which distinguished all four places were different in previous studies on (standard) American
English fricatives, for the present study, it is predicted that the acoustic properties will also
be different from those reported in previous studies. With regards to voicing, previous studies
found that most acoustic properties were able to distinguish between voiced and voiceless
fricatives (Jongman et al., 2000; Maniwa et al., 2009; Nissen and Fox, 2005). Therefore, it
is predicted that voicing is also a main predictor for most acoustic properties of Hong Kong
English fricatives.

As for RQ2b, no previous studies have suggested that there is an acoustic difference
between the fricatives in Hong Kong English and Inner Circle Englishes. Hence, it is predicted
that the patterns of acoustic properties with respect to place of articulation will be the same.
For example, the spectral peak value will be highest for labiodental fricatives, followed by
dental fricatives, then by alveolar fricatives, and lastly by postalveolar fricatives in Hong
Kong English.

With respect to RQ3, it is hypothesised that syllable position will be a main predictor
for the realisation of Hong Kong English fricatives. TH-fronting is more likely to occur in
syllable onset position than in coda position, as suggested by Hansen Edwards (2019). It is
also hypothesised that TH-fronting is more likely to occur when there is a preceding labial
consonant in the same word. The realisation of /s/ and /z/ will be more susceptible to the
co-articulation effect from the following vowel. It is speculated that /s/ and /z/ are more
likely to be pronounced as [S] when followed by back rounded vowels (Johnson, 2011). The
realisation of /ð/ as [d] (TH-stopping) is more likely to occur in syllable onset position and
the variant [f] is more likely to occur in syllable coda position, as proposed by Bolton and
Kwok (1990). As for stress, it is speculated that stress will have no effect on the realisation
of fricatives based on the findings reported by Hansen Edwards (2019).

With respect to RQ4, since it is expected that systematic variation of the realisation
of Hong Kong English fricatives can be found, the findings of RQ3 can be transformed into
phonological rules with a priori probabilities and applied to an actual ASR system. As there
is not yet a well-trained acoustic model of Hong Kong English and based on the predictions
in RQ2b, an existing model of English (e.g. standard British English) can be adapted. It is
predicted that with the adaptation, the phone recognition of Hong Kong English fricatives
and their variants will be improved.
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Chapter 6

Method

6.1 Participants
106 students (F51M55, mean age 20.5) from tertiary institutions in Hong Kong were re-
cruited as the participants for this study. All of them were raised and educated in Hong
Kong and spoke Cantonese as their first and dominant language. They also learnt English
and Mandarin in primary and secondary school. They did not have any long-term study
abroad experience in English-speaking countries. Table 6.1 summarises the information of
the participants1.

Table 6.1 Summary of the participants’ background information

N = 106 n %
Gender
-Female 51 48.1
-Male 55 51.9
Birthplace
-Hong Kong 102 96.2
-Mainland China 4 3.8
English proficiency
-High (HKDSE 5*/5**) 19 17.9
-Mid (HKDSE 4/5) 72 67.9
-Low (HKDSE 2/3) 15 14.2

The participants of this study can be interpreted as a group of educated speakers of En-
glish in Hong Kong or "mid-range" Hong Kong English speakers (Bolton and Kwok, 1990;
Hung, 2000; Q. Zhang, 2013, see also Section 2.4), who were raised and educated in post-
colonial Hong Kong. The composition of the participants also makes this study comparable
with previous studies (e.g. Bolton and Kwok, 1990; Jim YH Chan, 2013; Deterding et al.,
2008; Hansen Edwards, 2019; Hung, 2000), which also examined the English production of
university students in Hong Kong.

1The categorization of English proficiency was based on the Hong Kong Diploma of Secondary Education
Examination (HKDSE) English scores of the participants
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6.1.1 Subset of participants

The 106 participants were randomly shuffled by gender and each participant was assigned
a speaker ID (from F01 to F51 for females, and from M01 to M55 for males). The data of
25% of the participants (no. of speakers = 27) were used for acoustic analysis and training
the classification models. The subset of participants was gender-balanced (14F13M). Table
6.2 shows the information of each participant in the subset. All of them were born in Hong
Kong. The mean age was 21.4. The participants came from different faculties: 33.3% of
them studied science, 18.5% of them studied arts and humanities, 14.8% of the participants
studied social science, engineering, and business respectively, and 3.8% studied Medicine. In
terms of English proficiency, 74.1% were mid, 18.5% were high, and 7.4% were low.

Table 6.2 Information of the participants in the subset

Speaker ID Age Birthplace Faculty English Proficiency
F01 22 Hong Kong Social science Mid
F02 21 Hong Kong Medicine Mid
F03 21 Hong Kong Science High
F04 22 Hong Kong Business High
F05 19 Hong Kong Engineering Mid
F06 20 Hong Kong Business High
F07 22 Hong Kong Business Mid
F08 20 Hong Kong Arts and Humanities Mid
F09 22 Hong Kong Business Mid
F10 19 Hong Kong Science High
F11 22 Hong Kong Science Mid
F12 20 Hong Kong Arts and Humanities Mid
F13 22 Hong Kong Arts and Humanities Mid
F14 26 Hong Kong Social science Mid
M01 21 Hong Kong Engineering Low
M02 22 Hong Kong Science High
M03 22 Hong Kong Social science Mid
M04 21 Hong Kong Science Mid
M05 20 Hong Kong Arts and Humanities Mid
M06 19 Hong Kong Science Mid
M07 20 Hong Kong Science Mid
M08 28 Hong Kong Engineering Mid
M09 24 Hong Kong Science Mid
M10 20 Hong Kong Science Mid
M11 19 Hong Kong Social science Mid
M12 19 Hong Kong Engineering Low
M13 24 Hong Kong Arts and Humanities Mid
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6.2 Procedures and materials

6.2.1 Data collection procedures

The data collection took place in February and March 2019 at two universities in Hong Kong.
To observe the regulations of conducting research studies which involve human subjects in
Hong Kong, ethics approval granted by Human Research Ethics Committee was obtained
prior to the recruitment of participants and data collection. The participants were recruited
through permitted advertisements using mass mailing and posters on campus. All partici-
pants were informed that participation was completely voluntary and they could withdraw
from the study anytime. Informed consent form was signed before the start of any task.
Each participant was rewarded $100 Hong Kong Dollar as reimbursement upon completion
of all tasks.

The participants were recorded individually at a sound-proof booth inside a language
laboratory. Condenser microphone Audio-Technica AT2020USB+ was used. The micro-
phone was placed in front of a monitor and around 15-20 cm away from the speaker. It
was pivoted approximately 45 degrees to the mouth of the speaker to prevent turbulence
from direct airflow (Jongman et al., 2000). The recording programme Audacity (Version
2.2.2) was adopted. The sample rate (or sampling rate) was set to 48 kHz and the bit depth
was set to 16-bit. The higher sample rate resulted in more measurements per second, and
hence, better reconstruction of the original audio. Given that this study aimed to measure
fricatives, which are high frequency noises, setting the sample rate to 48 kHz allowed the
Nyquist frequency up to 24 kHz, which provided further buffer before downsampling and
filtering (see Section 6.3.3).

The participants were instructed to read aloud a word list and a story. Details of the
reading materials are illustrated in Section 6.2.2. The materials were embedded in a Pow-
erPoint and presented on the monitor. For the word list, each PowerPoint slide contained
one sentence. As for the story, each slide contained one paragraph. Once the participants
finished a slide, they clicked the pointer to proceed to the next slide at their own pace. There
was a practice for the word list using non-target words so that the participants were able
to familiarise themselves with the format and procedures. After the practice, the researcher
left the sound-proof booth, and the participants began the tasks. The data collection was
around 60 minutes per participant and there were three 5-minute breaks in between. The
whole process was invigilated by the researcher via the control system connected to the
sound-proof booth in the language laboratory. The participants could communicate with
the researcher at any time using the intercom.

6.2.2 Materials

Word list

To collect the production of target fricatives systematically, a list of pseudo-words was gen-
erated. A 2 × 4 factorial design was adopted with two syllable positions (onset, coda) and
four canonical vowels (/I, e, u, a/). Each syllable had a structure of an onset consonant, a
vowel, and a coda consonant: C1VC2. The consonant was either a target fricative (/f, v, s, z,
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T, ð, S, Z/), a plosive (/p, b, t, d, k, g/), or the labiovelar approximant /w/ in each syllable.
The CVC syllables were combined to form a disyllabic pseudo-word with the stress always
on the first syllable. To prevent by-design voicing and devoicing assimilation (Abdelli-Beruh,
2012), the adjacent consonants (i.e. the coda of the first syllable and the onset of the second
syllable) had the same voicing pattern.

Each pseudo-word was embedded in a carrier phrase: Say again and each sen-
tence was read twice by the participants. In the word list presented to the participants
(see Appendix A), prototypical spelling representation of the phonemes in English were em-
ployed except for the fricatives /T, ð, Z/. To avoid confusion with the spelling of /t, d, z/,
the corresponding IPA symbols were used. The participants were given time to learn the
pronunciation of the three symbols on their own, based on how they pronounced some real
English words. The same applied to the four vowels. There were four sets of word list, each
had a different randomised order of sentences.

256 target fricatives (32 tokens per fricative) were produced by each participant. In total,
27,136 tokens of fricatives were collected from the 106 participants.

Story

The reading passage (see Appendix B) was based on the story Snow White and the Seven
Dwarfs, originally by Brothers Grimm. The story was chosen because it is a well-known
fairy tale both worldwide and in Hong Kong. The participants were familiar with the story
line. The source passage (Ashliman, 1996) was shortened and modified by the researcher
by including more target fricatives. In the PowerPoint slides presented to the participants,
there was a picture beside each paragraph to facilitate comprehension. Altogether, there
were 653 words and 2267 phones in the story. 448 phones (19.8%) were fricatives. The
distribution of each fricative is listed in Table 6.3. The frequency counts were based on the
(standard) British English phonemic transcription of the words in the story. Compared to
the word list, the phonetic environments of the fricatives were more diverse in the story.
For example, there were more different vowels (monophthongs and diphthongs). Various
consonant clusters were also included. Unlike the word list, the frequencies of the fricatives
in the story were not equally distributed.

What is of more interest in the story data is the +/- 1 preceding and following context of
the target fricative. Altogether, there were 194 unique phoneme sequences. 58 of them were
in word-initial position, 89 were in word-medial position, and 47 were in word-final position.
Table 6.4 displays the sequences per fricative in SAMPA symbols of MAUS, separated by
commas (see Section 4.3 for the encoding). The story data were used to evaluate and validate
the results from the word list.
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Table 6.3 No. of fricatives in the story

Fricative n Words (unique and sorted per fricative)
f 48 after, beautiful, beef, coffin, dwarfs, fairy, famous, fell, felt, fetch,

fever, find, first, fish, five, fled, following, food, footpath, for, forest,
forks, frame, fresh, frightened, from, front, funeral, further, herself,
knife, life, paragraphs, refined, refused, safety, therefore

v 56 advice, advised, alive, arrived, attractive, develop, devise, ever, ev-
eryone’s, evil, fever, five, gave, give, given, have, having, however,
invited, live, lived, love, moved, movie, native, of, saved, seven, sev-
enteenth, survived, vegetables, venture, version, very, view, village,
vinegar, voice, voodoo

T 32 authors, birth, birthday, death, earth, footpath, health, months,
mouth, pythons, seventeenth, south, sympathy, thanks, thought,
thousand, threatened, three, through, throwing, truth, with, worth

ð 74 breathed, brothers, clothing, further, neither, that, the, them, then,
there, therefore, they, this

s 130 advice, also, answer, asked, assault, assumed, crisis, crossed, de-
cided, devise, disguised, distant, dressing, dwarfs, east, famous,
first, forest, forks, glass, herself, huntsman, inside, instantly, its,
juicy, just, kiss, lets, lips, mixed, months, most, once, outside, para-
graphs, passage, passed, past, poisonous, prestige, prince, princess,
response, sabotaged, safety, said, same, saved, saw, screaming,
screwed, season, send, seven, seventeenth, shrimps, situation, skin,
small, snow, so, soaked, someone, soon, soup, south, special, spell,
spoons, spread, spring, stay, still, story, strangers, strawberry, sui-
cide, surprise, survived, sympathy, task, thanks, this, voice, whites

z 69 advised, always, anyways, as, authors, because, brothers, cheese,
crazy, days, design, disguised, Disney, easily, everyone’s, exam-
ple, is, noise, owners, pictures, poisonous, presumably, pythons,
realised, refused, season, spoons, strangers, surprise, thousand, us-
ing, vegetables, was, whose, wizard, zigzag, zipped, zombies, zoned

S 31 condition, ensure, fish, fresh, mentioned, mushroom, rubbish,
rushed, share, she, shocked, shoot, shouted, shrimps, situation, spe-
cial, sure, wish, wished

Z 8 Asia, genre, leisure, prestige, rouge, sabotaged, usual, version
total 448
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Table 6.4 Unique +/- 1 phoneme sequences found in the story

Fricative Sequence (displayed in SAMPA symbols of MAUS)
f #,f,3: #,f,I #,f,O: #,f,Q #,f,U #,f,aI #,f,e #,f,e@ #,f,eI #,f,i:

#,f,j #,f,l #,f,r #,f,u: A:,f,s A:,f,t I,f,@ I,f,aI I,f,j O:,f,s Q,f,I aI,f,#
e@,f,O: eI,f,t f,s,# i:,f,# l,f,#

v #,v,3: #,v,I #,v,OI #,v,e #,v,j #,v,u: @,v,aI I,v,# I,v,@ I,v,aI
I,v,d I,v,e Q,v,# V,v,# aI,v,# aI,v,d d,v,aI e,v,@ e,v,r eI,v,# eI,v,d
i:,v,# i:,v,@ n,v,aI u:,v,I u:,v,d {,v,# {,v,I

T #,T,O: #,T,aU #,T,r #,T,{ 3:,T,# 3:,T,d @,T,I A:,T,# I,T,#
O:,T,@ T,s,# aI,T,@ aU,T,# e,T,# l,T,# n,T,# n,T,s u:,T,#

ð #,D,@ #,D,I #,D,e #,D,e@ #,D,eI #,D,{ 3:,D,@ @U,D,I V,D,@
i:,D,@ i:,D,d

s #,s,@ #,s,@U #,s,I #,s,O: #,s,V #,s,aU #,s,e #,s,eI #,s,i: #,s,k
#,s,m #,s,n #,s,p #,s,t #,s,u: #,s,{ 3:,s,e 3:,s,t @,s,# @,s,Q @,s,j
@U,s,t A:,f,s A:,s,# A:,s,k A:,s,t I,s,# I,s,aI I,s,g I,s,p I,s,t O:,f,s
OI,s,# Q,s,t T,s,# V,s,t aI,s,# aI,s,I e,s,# e,s,I e,s,t f,s,# i:,s,t
k,s,# k,s,t l,s,@U n,T,s n,s,# n,s,@ n,s,aI n,s,e n,s,t p,s,# t,s,#
t,s,aI t,s,m u:,s,I {,s,I

z #,z,@U #,z,I #,z,Q #,z,u: @,z,# I,z,# I,z,@ I,z,aI I,z,j I,z,n I,z,u:
OI,z,# OI,z,@ Q,z,# aI,z,# aI,z,d aU,z,@ e@,z,# eI,z,# eI,z,I g,z,A:
g,z,{ i:,z,# i:,z,@ i:,z,I l,z,# m,z,# n,z,# u:,z,# u:,z,I u:,z,d {,z,#

S #,S,Q #,S,U@ #,S,aU #,S,e@ #,S,i: #,S,r #,S,u: I,S,# I,S,@ I,S,t
V,S,r V,S,t e,S,# e,S,@ eI,S,@ n,S,@ n,S,O:

Z #,Z,Q 3:,Z,@ A:,Z,d e,Z,@ eI,Z,@ i:,Z,# u:,Z,# u:,Z,U

, denotes the phone delimiter
# denotes the word boundary
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6.3 Data processing pipeline for acoustic analysis
The collected word list data were first processed using a pipeline. The idea of establishing
a pipeline is to automate the steps for conducting acoustic analysis. The pipeline in this
study is limited to preparing the speech data for acoustic analysis and the training data for
classification. Statistical analysis is not included in the pipeline. A full automation of the
pipeline cannot be achieved due to the necessity of manual correction of the phone boundaries
and phonetic labels. Figure 6.3 is a graphical outline of the data processing pipeline. Each
step is discussed in a separate section.

Figure 6.1 Pipeline of data processing for acoustic analysis

6.3.1 BPF file generation

Firstly, BAS Partitur format (BPF) files were generated for automatic phone segmentation
(see Section 6.3.2) based on each audio file from the word list. The Partitur format was
developed by Schiel and colleagues to be used for Bavarian Archive for Speech Signals (BAS)
applications (Schiel et al., 1998). In this study, Partitur file version 1.2 was adopted. The
sample rate 48 kHz was also specified in the BPF file. The canonical pronunciation (KAN)
tier denotes the phonemic transcription of the word list in SAMPA. For each sentence in
the word list, there were three words. Therefore, the KAN tier in the BPF file had three
SAMPA transcriptions (KAN 0, 1, 2). Below is an example of a BPF file of Say figzit again
from the word list:

Example:

LHD: Partitur 1.2
SAM: 48000
LBD:
KAN: 0 s eI
KAN: 1 f I g z I t
KAN: 2 @ g e n

6.3.2 Semi-automatic segmentation

In this pipeline, a semi-automatic segmentation approach was adopted. Semi-automatic
segmentation generally refers to "the process whereby automatic segmentation is followed
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by manual checking and editing of the segment boundaries" (Gibbon et al., 1997, p. 153).
As the current study examines the fricatives of Hong Kong English using pseudo-words, such
kind of training data for the state-of-the-art aligners is sparse and the output boundaries
are not entirely accurate. Therefore, all the output boundaries from the automatic phone
segmentation were manually checked and corrected.

Automatic phone segmentation

Automatic phone segmentation was performed using WebMAUS, which is the web service
for the Munich Automatic Segmentation System (MAUS) (Kisler et al., 2017; Schiel, 1999).
It uses forced alignment, which is a technique developed for automatic speech recognition
systems. It compares "the observed speech signal and the pre-trained Hidden Markov Model
(HMM) based acoustic models" (Yuan, Lai, et al., 2018, p. 1). In general, MAUS involves
the following processing steps. First, the input orthographic texts are processed using a
toolkit called Balloon (Reichel, 2012), which involves text normalisation and part-of-speech
tagging. Examples of text normalisation include spelling out the numbers and expanding
abbreviations. It is followed by tokenising the final word chain (Schiel, n.d.), meaning the
word chain is split into smaller components (e.g. words and morphemes). Second, the
phonemic or canonical transcriptions of the tokenised texts are generated using the grapheme-
to-phoneme algorithm, with a set of probabilistic pronunciation rules applied. That is to say,
not only the phonemes but also their variants are generated (where applicable). For example,
in the standard British English (GB) model in MAUS, the deletion of the plosive is generated
as a variant of the plosive in word-final position (@,d,#>@,#), or the voiced fricative is
generated as a variant of the voiceless fricative when preceded by a vowel (@,s,#>@,z,#).
Finally, the input speech signals are time-aligned to the selected phone. The selection is
based on a priori statistical weight of each phone and the acoustic probabilities from the
acoustic model.

The processing steps of MAUS were optimised to suit the aims of the present study. Com-
monly, the inputs for the aligner are a paired audio file and an orthographic transcription.
The words are then mapped into (a grid of) possible phone sequences by using a pronuncia-
tion dictionary and/or grapheme-to-phoneme rules (Reichel, 2012; Yuan, Lai, et al., 2018).
In MAUS, the prediction is computed using a data-driven decision tree (Reichel et al., 2008),
which is trained on real corpus data. To improve the decision process, the results of part-
of-speech tagging and morphological segmentation are also considered. However, this study
adopted pseudo-words and the phoneme clusters might be different from real English words.
The part-of-speech tagging might also be erroneous and create noise for the decision pro-
cess. Hence, the grapheme-to-phoneme predictions might be less accurate. Moreover, the
calculation of phone weights and phones to speech signal path relies on the specified acoustic
model. However, the acoustic model of Hong Kong English is not available in MAUS. As a
result, some optimizations were implemented. The grapheme-to-phoneme prediction was not
adopted. Instead, the phonemes were directly defined by the researcher. As can be seen in
the BAF file (see Section 6.3.1), there was no orthographic tier but only the canonical phone
tier (KAN). "Forced alignment to input SAMPA transcript" was implemented, which left
only one phoneme option for MAUS without generating any variants. The standard British
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English (GB) MAUS was chosen as the acoustic model since British English has been the
norm in English language teaching in Hong Kong. The GB MAUS model was trained on
the AIX-MARSEC corpus (Auran et al., 2004), which contained 55,000 transcribed words
of spoken standard British English. In GB MAUS, there are 165 additional pronunciation
rules. None of them were applied to ensure the output label of phone was the same as in the
input SAMPA transcript.

22,032 phones were from the target pseudo-words were automatically segmented and
labelled, among which, 6912 were the target fricatives.

Manual correction

The output of automatic phone segmentation was a TextGrid file which contained infor-
mation of the tier and time interval of each defined phone. The output boundaries of the
phones from the pseudo-words (n = 22,032) were manually reviewed and corrected in Praat
(Boersma and Weenink, 2018) by the researcher and a trained student helper independently.
The manual correction followed the conventions for segmentation with respect to the oscil-
logram (Ellbogen, 2006; Jongman et al., 2000):

Fricative onset: the start of the increase in amplitude of noise
Fricative offset: the end of the decrease in amplitude of noise
Plosive onset: the start of occlusion, which is about 20-40 ms before the burst
Plosive offset: the end of the decay of aspiration
Vowel onset: the start of the periodic wave
Vowel offset: the end of the periodic wave

Apart from the oscillogram, the spectrogram was also taken into account. Given that
fricatives usually have a higher frequency, for a clearer visual identification of the darkened
area (i.e. high frequency of noise) in the sound spectrum, frequencies lower than 750 Hz were
filtered. The window length was set to 25 ms. Figure 6.2 is an example of the oscillogram,
the spectrogram, and the segmented tier after manual correction of the pseudo-word figzit.

Inter-rater reliability (or agreement) was calculated for the onset and offset boundaries
respectively. 20 ms tolerance is commonly used when comparing segmentation results (see
Yuan, Ryant, et al., 2013; Hosom, 2009). In this study, any onset and offset difference
less than 20 ms was considered acceptable. Since the agreement did not involve random
categorical guessing from the two segmenters (i.e. no chance agreement), a simple measure
using percent agreement between segmenters was adopted.

Table 6.5 Agreement percentages within 20 ms tolerance

onset offset total
overall (n=22,032) 85.5 83.9 84.7
fricatives (n=6912) 91.5 93.8 92.6

Overall, 85.5% of agreement were achieved for all phone boundaries, and 92.6% of agree-
ment were achieved for the target fricatives (see Table 6.5 for details). The boundaries which
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Figure 6.2 Oscillogram, spectrogram, and the phone segmentation tier of the
pseudo-word figzit in Praat (M01figzit1)

exceeded the 20 ms range were re-examined by the researcher. Changes were made when
necessary. The corrected boundaries were then input to the pipeline to extract the acoustic
features.

6.3.3 Acoustic feature extraction

After the semi-automatic segmentation, acoustic measurements of the target fricatives were
extracted using a Praat script written by the researcher. Since the extraction of measure-
ments did not require any visualization of oscillogram or spectrogram, the usual Graphical
User Interface (GUI) of Praat was not necessary in this case. The Praat script was called in
a shell/bash script. The acoustic feature extraction procedure was embedded in the pipeline
and run in the Terminal directly.

All the audio files, as a Sound object in Praat, were first downsampled to 24 kHz to reduce
the data size, and hence, reduce the processing time. Resampling the input signals to 24
kHz resulted in a new Nyquist frequency of 12 kHz which should be sufficient to preserve the
signal information of fricatives. Downsampling may violate the Nyquist-Shannon Sampling
Theorem as the new sample rate may be less than twice the signal’s bandwidth (or sampling
frequency) and produce aliasing. Aliasing is an undesirable phenomenon of "the ambiguity
of a sampled signal" (Boersma and Weenink, 2004, p. 884). Therefore, anti-aliasing low-pass
filtering was also performed prior to resampling. The signals were then further bandpass-
filtered into a number of Hann frequency bands (Boersma and Weenink, 2004) with the upper
edge at 11 kHz. This removed extraneous high frequency energy, which was not relevant to
the present study (Stuart-Smith, 2020). Other studies also adopted a similar range of low-
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pass filter (e.g. 11 kHz in the study by Jongman et al. (2000); 10,313 Hz in the study by
Bukmaier and Harrington (2016); 12 kHz in the study by Jannedy and Weirich (2017)).
Unless otherwise specified, the acoustic features were measured across the central 80% of the
duration of the fricatives to avoid co-articulation effects.

A 25 ms Hamming window was adopted and the measurements were taken at three
locations: onset (25%), middle (50%), and offset (75%). Means of the three windows were
computed and reported. To measure the spectral moments, the Sound object was first
converted into a Spectrum object using the fast Fourier Transform algorithm. The fast
version of Fourier Transform involves padding zeroes to the sound until the number of samples
N is the next highest power of two such that "the computation time scales as N log N"
(Boersma and Weenink, 2004, p. 740). The FFT spectrum was used to compute the four
spectral moments.

Some data removal procedures were taken before extracting the acoustic features. In
general, phones with a duration less than 50 ms were automatically excluded from extracting
the acoustic features. Since the acoustic features were measured across the central 80% of
the interval duration, phones which were too short would cause a runtime error.

In the rest of this section, the algorithms of measuring the acoustic characteristics, the
commands, and the values of the parameters used in the Praat script are introduced. How
the acoustic features were described with respect to fricatives in the literature is discussed
in Section 3.2.

Centre of gravity (CoG)

The centre of gravity of a spectrum is a measure of the averaged energy concentration or how
high the frequencies on average are located in a spectrum (Boersma and Weenink, 2004). It
is the average frequency across the entire frequency domain, weighted by energy. In math-
ematical terms, it can be calculated by dividing the weighted complex FFT spectrum S(f)
with the frequency f by energy, as shown in Equation 6.1. In the script, the query command
Get centre of gravity was used and the parameter p was set to two, meaning the weighting
was done by the power spectrum but not the absolute spectrum.

∫∞
0

f |S(f)|pdf∫∞
0

|S(f)|pdf
(6.1)

Standard deviation (SD)

The standard deviation of a spectrum is a measure of "how much the frequencies in a spec-
trum can deviate from the centre of gravity" (Boersma and Weenink, 2004, p. 778). In Praat,
it is defined as "the square root of the second central moment of [the] spectrum" (Boersma
and Weenink, 2004, p. 778). Here, central moment is calculated using the Equation 6.2.
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∫∞
0
(f − fc)

n|S(f)|pdf∫∞
0

|S(f)|pdf
(6.2)

S(f) is the the weighted complex FFT spectrum, f is the frequency, and fc is the centre
of gravity. When the variable n is set to two, the variance of the frequencies in the spectrum
is computed, which is also known as the second spectral moment. Taking the square root of
it is the standard deviation of the frequency. The spectral standard deviation was extracted
using the query command: Get standard deviation, and p was set to two in the script.

Skewness

The skewness of a spectrum reflects the spectral tilt, which is "the overall slant of the energy
distribution" (Jongman et al., 2000, p. 1253). It is a measure of "how much the shape of the
spectrum below the centre of gravity is different from the shape above the mean frequency"
(Boersma and Weenink, 2004, p. 779). In Equation 6.2, when n is set to three, the non-
normalised spectral skewness is calculated. Normalised skewness is calculated by dividing
the non-normalised skewness by 1.5 power of the non-normalised second moment (variance).
The normalised skewness was extracted using the query command: Get skewness, and p was
set to two in the script.

Kurtosis

The kurtosis of a spectrum concerns the tails of the distribution. In Equation 6.2, when n
is set to four, the non-normalised spectral kurtosis, which is also called the fourth spectral
moment, is computed. The normalised kurtosis is calculated by dividing the non-normalised
kurtosis by the square of the second moment (variance) and subtract three. The normalised
kurtosis was extracted using the query command: Get kurtosis, and p was set to two in the
script.

Peak

The spectral peak is a measure of the highest location of the shape of the spectrum, which is
also the frequency "associated with the maximum energy density" (Boersma and Weenink,
2004, p. 1132). In the script, a pre-emphasis filter was applied which the spectral slope
above 100 Hz increased by 6 dB/octave. The reason for using a pre-emphasis filter is that
"the pre-emphasis creates a flatter spectrum, which is better for formant analysis" (Boersma
and Weenink, 2004, p.191). Boersma and Weenink (2004) also stated that "we want our
formants to match the local peaks, not the global spectral slope" (p. 191). The Sound
object was then transformed to long-term average spectrum (Ltas), which "represents the
logarithmic power spectral density as a function of frequency" (Boersma and Weenink, 2004,
p. 631). When predicting the spectral shape (curve) for Ltas object, the round to sample
interpolation method was selected. It basically took the greatest available value. The peak
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value was extracted using the query commands: To Ltas, Get frequency of maximum in the
script.

Slope

The spectral slope is a "basic approximation of the spectrum shape by a linear regression line"
(Mitrović et al., 2010, p. 114). As described in Section 3.2, there are different interpretations
of a spectral slope. This study measured the low-frequency slope, which Stuart-Smith (2020)
described as "the low frequency ‘shoulder’ of energy visible on the spectrogram below the
main bands of high frequency energy" (p. 3). Similar to measuring the spectral peak, a pre-
emphasis filter was applied which the spectral slope above 100 Hz increased by 6 dB/octave.
The Sound object was then transformed to Ltas object. Slope was extracted using the query
command: Get slope over the range 1000 Hz to 4000 Hz. The same range was also used in
the study by Jesus and Shadle (2002) and Stuart-Smith (2020).

F2 Onset

Formants are bands of energy resulting from the resonance of vocal tract. It is generally
acknowledged that the the first formant (F1) is inversely related to the tongue height and the
second formant (F2) is related to the tongue frontness/backness. Previous studies showed
that the frequency transition of F2 can predict the place of articulation of different fricatives
(Jongman et al., 2000). The onset F2 frequencies were estimated using the first 25% of the
following vowel of the fricatives in the syllable onset position. A Formant object was created
from the Sound object in Praat using the Burg algorithm (To Formant (burg)) (Boersma
and Weenink, 2004). The maximum frequency search range was set to 5500 Hz and the
frequencies above 50 Hz were pre-emphasised by a slope of +6 dB. The mean F2 values (in
Hz) were extracted using the query command Get mean: 2 from the Formant object.

Harmonics-to-noise ratio (HNR)

The Harmonics-to-Noise Ratio, which is also called Harmonicity, is a measure of the degree of
acoustic periodicity (Boersma and Weenink, 2004). In the script, a Harmonicity object was
first created using an algorithm described in the study by Boersma (1993), which "performs
an acoustic periodicity detection on the basis of a foward cross-correlation analysis" (Boersma
and Weenink, 2004, p. 571). In Praat, "Harmonicity is expressed in dB: if 99% of the energy
of the signal is in the periodic part, and 1% is noise, the HNR is 10∗ log10(99/1) = 20 dB. A
HNR of 0 dB means that there is equal energy in the harmonics and in the noise" (Boersma
and Weenink, 2004, p. 516). Since it uses a log function, a negative value of Harmonicity
indicates that there is more noise than periodicity in the signal. The maximum value is
+/-20 dB. A 10 ms time step and a minimum pitch of 60 Hz was set respectively. The
mean harmonics-to-noise ration was extracted using the query command Get mean from the
Harmonicity object.
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Normalised amplitude

Although the root-mean-square value of the selected Sound object can be computed in Praat,
what is actually computed is the sound pressure expressed in Pascal. To extract the value in
decibel (dB), the intensity function in Praat was used. It is equivalent to the logarithm of the
root-mean-square values times 20. The term amplitude is employed hereafter. The amplitude
of the fricative amplitude was then subtracted from the neighbouring vowel amplitude in the
pseudo-word. By doing so, the amplitude differences among speakers can be normalised
(Jongman et al., 2000).

Normalised duration

The absolute duration was measured across the whole segment. Since the absolute duration
"may vary as a function of speaking rate", the normalised duration was measured as "the
ratio of fricative duration over word duration" (Jongman et al., 2000, p. 1259).

Discrete cosine transform (DCT) coefficients

The discrete cosine transform (DCT) coefficients were computed using the package emuR
(Winkelmann et al., 2020) in R (R Core Team, 2021). First, the paired audio files and the
TextGrid files were converted to the emuDB format. Similar to the measurements of other
acoustic properties, the discrete Fourier Transform (DFT) spectrum was created using the
fast Fourier Transform (FFT) algorithm. The output was a power spectrum in dB from 0 Hz
to 1200 Hz, which was the Nyquist frequency after downsampling the audio files from 48 kHz
to 24 kHz. A filter of 500 Hz to 11 kHz was applied, which was similar to the frequency range
in (Bukmaier and Harrington, 2016; Jannedy and Weirich, 2017). The DCT coefficients were
estimated using Equation 6.3 (Watson and Harrington, 1999, p. 461).

C(m) =
2

N
km

N−1∑
n=0

x(n)cos(
(2n+ 1)(m− 1)π

2N
) (6.3)

C(m) is the mth DCT coefficient, and m = 1, ..., N ; x(n) is the input data, which
is the trajectory of the feature being modelled; N is the length of the input data or the
number of points in the trajectory; by default, km is set to 1/

√
2 when m = 1 and set to 1

when m ̸= 1 (Watson and Harrington, 1999). In the present study, the first four coefficients
were computed for the target fricatives and their potential variants. Similar to other acoustic
measurements, phone segments of which the 80% duration was less than 50 ms were excluded
from the DCT analysis.

6.3.4 Phonetic transcription

The target fricatives from the subset of word list data were phonetically transcribed by the
researcher and the trained student helper (who also took part in the manual correction of
phone boundaries) independently. The phonetic transcription was performed with the help
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of the audio, the oscillogram, and spectrogram. Percentages of agreement between the two
labellers were calculated, as shown in Table 6.6.

Table 6.6 Percentages of agreement of phonetic labels of the fricatives

(N=6912) n %
Overall agreement 6350 91.9
Overall disagreement 562 8.1
non-sibilants disagreement 416 6.0
sibilants disagreement 146 2.1

The overall agreement was 91.9%, which indicated a high inter-rater reliability of the
labels. The disagreement (8.1%) was mainly due to non-sibilant fricatives. This was not
surprising since non-sibilant fricatives were not as perceptually distinguishable as sibilant
fricatives. Another disagreement came from voicing such as whether the fricative was fully
devoiced (i.e. voiceless) or partially devoiced. All the disagreed tokens were checked and
corrected by the researcher.

6.3.5 Data annotation

The final step in the data processing pipeline is annotation. Two sets of annotation were
created, one based on the phonemic transcription and the other one based on the phonetic
transcription. The following factors with respect to the fricatives were annotated for acoustic
analysis:

(i) Place of articulation: labiodental, dental, alveolar, postalveolar

(ii) Voicing: voiced, voiceless

(iii) Vowel: /i, e, u, a/

Although previous studies on the acoustic characteristics of fricatives (e.g. Jongman
et al., 2000; Nissen and Fox, 2005; Stuart-Smith, 2020) suggested more predictive factors
such as gender and age, the present study limits the investigation to the linguistic/internal
factors. Place of articulation and voicing are considered most important when it comes to
the classification of fricatives. Vowel is also included as previous studies found that there
is a co-articulation effect from the back rounded vowel /u/ (Johnson, 2011). It would be
interesting to see if there is an effect for vowel on the acoustic characteristics of Hong Kong
English fricatives. It is predicted that this co-articulation effect is not only restricted to the
following vowel but also the preceding vowel. Therefore, the factor vowel for acoustic analysis
refers to both preceding and following vowel. Although previous studies found main effects
of gender, as well as its interaction with other factors, there were no clear hypotheses and
not many discussions on the results. It makes it difficult to draw references from previous
studies and make comparisons. In addition, none of the previous studies on Hong Kong
English phonology (e.g. Bolton and Kwok, 1990; Hung, 2000; Deterding et al., 2008) have
reported an effect of gender on the English production. Hansen Edwards (2019) included
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gender as one of the fixed factors in the statistical models when studying TH variation in
Hong Kong English and did not find an effect. Therefore, gender was excluded from the
acoustic analysis for the present study.

As for the auditory (phonetic) analysis, the following factors were annotated based on
previous research on Hong Kong English phonology (e.g. Bolton and Kwok, 1990; Hung,
2000; Hansen Edwards, 2019) (see also Table 2.3):

(i) Syllable position: onset, coda

(ii) Stress pattern: stressed, unstressed

(iii) Presence of preceding /u/: yes, no

(iv) Presence of following /u/: yes, no

(v) Presence of preceding labial: yes, no

The output of the data processing pipeline is a text file per participant containing the
acoustic measurements, phonemic and phonetic transcription, and the annotated factors.

6.4 Auditory analysis
In total, 27,136 target fricatives were collected from the word list. 512 tokens from two
speakers were excluded due to audio problems and unidentifiable pronunciations. The re-
maining 26,624 tokens were phonetically transcribed. As mentioned in Section 6.3.4, 6912
tokens were transcribed by the research and the trained student helper. 19,712 tokens were
first initially transcribed by the classification model (see Section 6.6). Since the model was
only trained to classify 11 phones, namely /f, v, T, ð, s, z, S, Z, d, w, Ù/, pronunciations apart
from the 11 phones as well as deletion cannot be correctly labelled. Therefore, all the tokens
were then manually checked and corrected by the researcher. For the test performance of
the classification model, please refer to Section 6.6.

Among the 26,624 tokens, 26,443 were labelled as the target fricatives and their variants.
The remaining 181 tokens were non-target pronunciations with counts less than 28, and they
were excluded from the auditory analysis. Overall, 0.06% of the data were removed. The
realisations of the target tokens are displayed in Table 6.7.

6.5 Statistical analysis

6.5.1 Data description

After some data processing using the pipeline illustrated in Section 6.3, among the 6912
target fricatives, 41 tokens were too short (i.e. < 50 ms) and were removed from acoustic
feature extraction. For the acoustic analysis of fricatives, only those phone segments which
were phonetically labelled as fricatives were included. In total, 6111 tokens were labelled as
one of the fricatives /f, v ,T, ð, s, z, S, Z/ and 760 were labelled as other non-fricative variants.
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Table 6.7 Distributions (%) of labels and data removal

To be analysed (N=26,443) Removed (N=181) Removal (%)
/f/ [f]: 3324 [s]: 1 [v]:2 [w]:1 0.09
/v/ [v]: 189 [f]: 2919 [w]: 200 [b]: 4 [p]: 2 [s]: 2 [T]: 4 [Ù]: 4 Ø: 4 0.60
/T/ [T]: 2198 [f]: 1054 [d]: 28 [ð]: 3 [s]: 13 [S]: 5 [t]: 18 Ø: 9 2.28
/ð/ [ð]: 119 [T]: 1710 [d]: 750 [f]: 724 [b]: 5 [s]: 4 [S]: 1 [t]: 9 Ø: 6 0.75
/s/ [s]: 3248 [S]: 73 [f]: 4 [Ù]: 1 Ø: 2 0.21
/z/ [z]: 373 [s]: 2868 [S]: 76 [t]: 6 [f]: 2 [ts]: 2 Ø: 1 0.33
/S/ [S]: 3237 [s]: 60 [Ù]: 28 [T]: 1 [Z]: 1 [d]: 1 0.93
/Z/ [Z]: 121 [S]: 1583 [Ù]: 1481 [s]: 135 [f]: 4 [ts]: 4 0.24

Ø denotes deletion

Table 6.8 Response and explanatory variables in the acoustic analysis of this study

Response variable Description n
CoG Mean centre of gravity (Hz) 6111
SD Mean standard derivation (Hz) 6111
Skewness Mean skewness 6111
Kurtosis Mean kurtosis 6111
Peak Mean spectral peak frequency (Hz) 6111
Slope Mean spectral slope (dB) 6111
HNR Mean Harmonics-to-Noise ratio or harmonicity (dB) 6111
F2 Onset Mean F2 Onset frequency of the following vowel (Hz) 1566
Normalised amplitude Intensity (dB) based on the root-mean-square 3040

Amplitude of fricative minus the following vowel
Normalised duration Ratio of fricative duration over word duration 6111
DCT coefficients The first four DCT coefficients (k0-k3) of the fricatives 6111
Explanatory variable Description Level
Place Place of articulation 4

(labiodental, dental, alveolar, postalveolar)
Voicing Voicing (voiced, voiceless) 2
Vowel Vowel context /i, e, u, a/ 4

6111 tokens were used to build the statistical models for most of the acoustic properties
except for F2 Onset frequencies (n = 1566) and normalised amplitude (n = 3040), which
were dependent on the following environment. Table 6.8 lists the investigated response
variables and their predictors (explanatory variables) with the variable name, description
and number of tokens for acoustic analysis. All the acoustic measurements were numerical
data and all the predictive variables were categorical data.

Regarding the auditory analysis (N = 26,443), the response and explanatory variables
are illustrated in Table 6.9. Since the aim of the auditory analysis is to study variation of
Hong Kong English fricatives, all response and explanatory variables are categorical data
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Table 6.9 Response and explanatory variables in the auditory analysis of this study

Response variable Description n
/f/ [f] and no variant(s) 3324
/v/ [v] and variant(s) [w], [f] 3308
/T/ [T] and variant(s) [f] 3252
/ð/ [ð] and variant(s) [T], [d], [f] 3303
/s/ [s] and variant(s) [S] 3321
/z/ [z] and variant(s) [s], [S] 3317
/S/ [S] and variant(s) [s] 3297
/Z/ [Z] and variant(s) [S], [Ù], [s] 3320
Explanatory variable Description Level
SylPos Syllable Position (onset, coda) 2
Stress Stress pattern (stressed, unstressed) 2
Preceding /u/ Preceded by the high back rounded vowel /u/ (yes, no) 2
Following /u/ Followed by the high back rounded vowel /u/ (yes, no) 2
Preceding labial Preceded by bilabial or labiodental consonant in word (yes, no) 2

with at least one potential variants. Homogeneous group with no variants (i.e. /f/) was
excluded from examination. The factors syllable position (SylPos) and stress were examined
for all fricatives, while preceding /u/, following /u/ were only examined for alveolar and
postalveolar fricatives. Preceding labial was examined just for the voiceless dental fricatives
/T/.

6.5.2 Linear mixed effects model

To investigate the acoustic characteristics of fricatives of Hong Kong English, linear mixed
effects models were built using the lme4 package (Bates et al., 2015) in R (R Core Team,
2021). It primarily follows the approach and algorithms outlined in the study by Lindstrom
and Bates (1988). In general, the linear mixed effects model is a linear regression model
which takes both global and group-level effects into account. It is particularly suitable
for repeated measures data, unbalanced data, missing data, and jointly dependent random
effects (Lindstrom and Bates, 1988).

In the "language-as-a-fixed-effect fallacy", Clark (1973) critiqued the common approach
of conducting only a subject analysis but ignoring the effects of items in many (psycho-)
linguistic experiments. In repeated-measures experiments, there are often multiple subjects,
each responding to multiple items, whereas the items are presented in multiple conditions.
To explore the effects of different conditions, it is common to perform a subject analysis by
grouping the means of the response variables by condition and by subject. Depending on the
research questions, independent/paired t-tests or one-way/repeated-measures ANOVAs are
then performed. However, taking the mean of the response variables per subject is a kind of
data reduction, and hence, data loss. Also, the effect of each item is ignored. To explore the
effects of items, an item analysis can be performed by grouping the means of the response
variables by condition and by item.

Instead of running two separate analyses for subject and item, a mixed model allows
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combining random effects in a single model. Random effects refer to the expected but
unpredictable random variation of the variable in the data. For example, subjects can be
a random effect because each subject may have a different pitch, speech rate, or reaction
time. Similarly, items can be a random effect because of the different features such as word
frequency, word class, and word length. On the other hand, when designing an experiment
or a material, certain factors are incorporated specifically to examine their effects on the
response variables. These factors are called fixed effects because they are assumed to be
constant for a given population.

In the present study, crossed, independent, random effects were generally assumed for
subject (i.e. speaker) and item (i.e. pseudo-word), as opposed to nested random effects
(Baayen et al., 2008). In other words, the initial models included a by-subject and a by-item
random intercepts. The fixed factors were assumed for place of articulation, voicing, and
vowel (see the explanatory variables in Table 6.8). A step-down model building approach
was adopted to simplify the structure of the fixed effects and the interaction effects, with the
help of the lmerTest package (Kuznetsova et al., 2017). The algorithm used is stated below
(Kuznetsova et al., 2017, p. 9), where M refers to the Model:

1. Construct an ANOVA table for M, calculate F statistics and p values for each fixed-
effects term.

2. Consider the highest order interaction effects in M. The effect with the highest p value
(peff ) is identified and a model without this effect Meff is constructed.

3. Set Meff to M. If peff is less than α level or if there are no more fixed-effects then
stop, otherwise go to 2.

4. Model M from Step 2 is the final model selected by the algorithm.

In this study, the highest order interaction effect was place x voicing x vowel and the step-
down approach was applied based on this model for each acoustic measurement. The best-fit
models were then estimated using the restricted maximum likelihood (REML). Bonferroni
post-hoc tests (same in the study by Jongman et al. (2000)) were performed on the best-fit
models in order to compare each level of a factor.

6.5.3 Mixed binomial and multinomial logistic regression

As can be seen in Table 6.9, some response variables were binomial (with two levels) and
some were multinomial (with three or four levels). For modelling binary response variables,
they are generally transformed to one-dimensional variable (either success/present or fail-
ure/absent). Then logistic regression, which is treated as generalised linear model in R, is
conducted. This approach can be extended to multinomial variables by computing multiple
binomial logistic regressions. In this study, the lme4 package (Bates et al., 2015) in R (R
Core Team, 2021) was employed. Specifically, the glmer function was used to build the
generalised linear mixed-effects models.
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6.6 Classification of fricatives
The classification problem, in this study, is identified as a multiclass classification, with an
underlying assumption that each sample belongs to one and only one class or label. Three
classification models were built using the manually transcribed word list data. One for
classifying place of articulation, one for classifying voicing, and one for classifying phones.
The phones classification model aims to classify not only the Hong Kong English fricatives
but also their potential variants based on previous studies (Bolton and Kwok, 1990; Hung,
2000) and the preliminary results of the auditory analysis. The potential variants are /d,
w, Ù/. In the word list, /d/ and /w/ were also embedded in the pseudo-words (see Section
6.2.2), and they were used in training the classification model as well. Altogether, there are
11 classes or labels: /f, v, T, ð, s, z, S, Z, d, w, Ù/. All models are convolutional neural networks
(CNNs) which used Mel-frequency cepstral coefficients (MFCCs) of the phone segments as
the data. CNN can learn the features of the input data without any human supervision.
Details of the neural networks and input coefficients are described in Section 6.6.1.

6.6.1 Convolutional neural networks (CNNs)

Mel-frequency cepstral coefficients (MFCCs)

The MFCCs of each target phone segment were computed. Segments of which the 80%
duration was less than 50 ms were excluded. The steps to compute MFCCs are very similar
to that of the DCT coefficients. The MFCCs were extracted from the DCT filterbank
spectrum (in dB) in Praat. Equation 6.4 demonstrates the relation (Boersma and Weenink,
2004, p. 1162):

ci =
N∑
j=1

Pjcos(i(j − 0.5)π/N) (6.4)

where N is the number of (triangular bandpass) filters and Pj is the power in dB in the
jth filter.

Since CNNs require the input data to have the same shape, all the target phone segments
were either padded or trimmed to 30 ms. MFCCs were computed with 15 ms window length
and 5 ms shift size, and the output per each phone segment was a 12 x 54 matrix (12 MFCCs
x 54 frames). Altogether, there were 7940 matrices as the data for training and testing the
neural network. The label of each matrix was based on the phonetic (auditory) transcription
instead of the phonemic transcription. The distribution of the labels is shown in Table 6.10.

Table 6.10 Distribution of the labels in the MFCCs data

(N=7940) f v T ð s z S Z d w Ù
n 1695 47 1281 29 1600 128 1293 38 989 442 398
% 21.3 0.6 16.1 0.4 20.2 1.6 16.3 0.5 12.5 5.6 5.0
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A large imbalance in the distribution of the target classes is exhibited. For example, there
were more voiceless fricatives than the voiced counterparts. Nevertheless, it also reflects how
the phones are distributed in the phonological system of Hong Kong English fricatives, to
a certain extent. Therefore, when training the model, the imbalanced distribution was
preserved by implementing stratified sampling in the training and test data. 25% of the
data were split for testing. In total, there were 5955 tokens for training and 1985 tokens for
testing.

The CNN Architecture

In the present study, a similar CNN architecture described in Section 3.3 was adopted with
two convolutional layers, each followed by a pooling layer, and 5 fully-connected layers. A
masking layer was added before the convolutional layers so that the time steps with the
padded values were skipped in all downstream layers. For each fully-connected layer except
the last layer, a dropout layer was added which prevented over-fitting in the training dataset.
A dropout rate of 0.25 was employed, meaning 25% of the nodes were randomly dropped
out in the neural network. The model was trained for 500 epochs with a batch size of 200.
A schematic diagram of the CNN architecture is illustrated in Figure 6.3.

Figure 6.3 Schematic diagram of the convolutional neural network (CNN) archi-
tecture in this study, adapted from Phung and Rhee (2019, p. 3)

Specifically, the first and second convolutional layer used 32 filters with a 5 x 5 kernel
size and the max pooling layer used a 2 x 2 window (strides = 2). The two-dimensional
feature map was flattened to one dimensional before feeding into the fully connected layers.
The fully connected network had five hidden layers with 120, 84, 60, 40, and 20 neurons
respectively. The convolutional and hidden layers used the rectified linear unit (ReLU)
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activation function, and the output layer used the softmax activation function, which is
the same in the study by Anjos et al. (2020). The softmax function is a popular function
for multi-class classification and it is used in multinomial logistic regression. It normalises
the input vector into a probability distribution. The output of the final layer was a list of
probabilities. Therefore, a post-processing step was applied to find the highest probability
and return the corresponding class label. All models were trained using Tensorflow 2 (Abadi
et al., 2016).

6.7 Weighted MAUS rule set
The pronunciation rules regarding the fricative realisation in Hong Kong English were gen-
erated based on the results from the auditory analysis of the word list data with some
modifications to fit the phoneme sequence in the story reading data (see Section 6.2.2). In
principle, the probabilities of the realisation as different variants in the auditory analysis were
computed by syllable position (onset and coda) and they were then applied to sequences in
word-initial and word-final position in Table 6.4. For sequences in word-medial position,
the Cambridge English Pronouncing Dictionary (Jones, 2011) was consulted to decide if the
target phoneme was in the syllable onset or coda position. The same approach was adopted
in the study by Hansen Edwards (2019) as well.

Although only four vowel contexts were in the word list, the rewrite patterns were ap-
plied to all vowel contexts, regardless of monophthongs or diphthongs. The same held for
consonant contexts. In total, 175 rules were generated. 39 rules were about /v/, 17 were
about /T/, 31 were about /ð/, 64 were about /z/, and 24 were about /Z/.

As mentioned in Section 6.3.2, since the language and acoustic model of Hong Kong
English was not available in MAUS, the standard British English (GB) model was employed.
The GB model had its only weighted pronunciation rule set. As the rule set not only involved
rewriting rules of fricatives but other groups of sound (e.g. vowels and plosives), overwriting
the whole rule set might lead to drop of overall performance. Therefore, the rules generated
from this study were appended to the original GB rule set. All the rules in the original
GB rule set regarding fricatives were manually examined by the researcher. Original rules
that were contradictory to the present study were removed, such as the rule that word-final
/T/ became /ð/ when preceded by the vowel /I/ and that word-final /s/ became /z/ when
preceded by a schwa /@/.

To evaluate if the devised weighted pronunciation rules regarding fricatives actually im-
proved the phone recognition in MAUS, two models were estimated:

(i) Standard GB MAUS modus with default rule set (Baseline GB)

(ii) Standard GB MAUS modus with generated Hong Kong English rule set (GB-HKE)

Other configurations (e.g. Pron model weight) remained the same. The phone recognition
results were compared with the phonetic transcriptions conducted by the researcher. The
story reading data from four participants (2F2M) were employed for the evaluation.
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6.8 Summary
Figure 6.4 is a summary of the method presented in this chapter. After the data collection,
the word list data and story data were subjected to different analyses. Acoustic analysis was
conducted using a subset of word list data (no. of speakers = 27). Classification models
were also trained on the same subset of word list data. Auditory analysis was conducted
using the full set of word list data (no. of speakers = 106). Results of the auditory analysis
was adopted to generate the weighted pronunciation rules of Hong Kong English fricatives.
The standard British English (GB) MAUS model was adapted with the application of the
Hong Kong English rule set. Finally, a subset of story data (no. of speakers = 4) was tested
in order to evaluate the phone recognition performance of the adapted MAUS model.

Figure 6.4 Overview of the method in the present study
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Chapter 7

Acoustic analysis of Hong Kong English
fricatives and their variants

7.1 Results of the acoustic analysis of Hong Kong English
fricatives

The acoustic analysis was conducted using a subset (25%) of the word list data. The distri-
bution of fricatives based on the phonetic transcription (i.e. auditory analysis) of the subset
of word list data is presented in Table 7.1.

Table 7.1 Distribution of fricatives in the subset of word list data

(N=6111) f v T ð s z S Z
n 1695 47 1281 29 1600 128 1293 38

In the subset of word list data, all 8 English fricatives can be observed. Apart from
fricatives, three major non-fricative variants, namely i) the voiced alveolar plosive [d], ii) the
voiced labiovelar approximant [w], and iii) the voiceless alveolar affricate [Ù], are also noted.
The distribution of non-fricative variants is displayed in Table 7.2.

Table 7.2 Distribution of non-fricative variants in the subset of word list data

(N=643) d w Ù
n 190 55 398

7.1.1 Visualisation of fricative spectra

Before probing into specific acoustic characteristics of the fricatives in the data, the smoothed
spectral shapes of [f, v, T, ð, s, z, S, Z] using the first four DCT coefficients (k0-k3) are plotted
in Figure 7.1. The labels are based on the auditory analysis of the subset of the word list
data. All the spectral graphs in this chapter are plotted using the package ggplot2 (Wickham,
2016) in R. Since this package does not allow non-ASCII symbols such as some IPA symbols
(T, ð, S, Z), all the labels in the graphs are the SAMPA symbols used in MAUS, unless stated
otherwise.
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Figure 7.1 Smoothed phonetic fricative spectra using the first four DCT coefficients
(k0-k3)

As can be seen, the smoothed spectral shapes of the labiodental, dental, alveolar, and
postalveolar fricatives are distinct from each other. The overall spectra of non-sibilant frica-
tives are relatively flat and there are no well-defined peaks compared to the shapes of sibilant
fricatives. There are differences in terms of spectral slope, curvature, and/or amplitude be-
tween the voiced and voiceless fricatives per place of articulation. For alveolar and postalve-
olar fricatives, it can be interpreted that the differences between the voiced and voiceless
fricatives do not lie in the spectral shape but amplitude. However, it does not seem to be
the case for labiodental and dental fricatives. The spectral shape of voiced dental fricative
is visually different from the voiceless dental fricative, and the same holds for labiodental
fricatives. That is to say, [ð] and [v] in Hong Kong English may not simply be the voiced
counterpart of [T] and [f] respectively. Therefore, in Sections 7.1.2, 7.1.3, and 7.1.4, the spec-
tral, amplitudinal, and temporal properties of Hong Kong English fricatives are discussed
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respectively. With respect to the spectral slope and curvature, the two DCT coefficients (k1

and k2) are examined in Section 7.1.5.

7.1.2 Spectral characteristics of fricatives

Peak

Table 7.3, Table 7.4, and Table 7.5 show the mean peak values of fricatives by place of artic-
ulation, voicing, and vowel context respectively. There is an effect for place of articulation
(F (3, 6069.40) = 1848.79, p < .001) on the estimation of peak values. There is also an
interaction effect for place x vowel (F (9, 6069.06) = 16.11, p < .001).

Table 7.3 Mean peak values by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
Peak (Hz) 8829.91 8472.19 7919.97 4946.24

Table 7.4 Mean peak values by voicing (n = 6111)

Voicing voiced voiceless
Peak (Hz) 7809.08 7508.17

Table 7.5 Mean peak values by vowel (n = 6111)

Vowel i e u a
Peak (Hz) 7759.38 7589.17 7663.68 7562.06

Bonferroni post hoc tests indicate that the peak differences between all places of articula-
tion are significant (p < .001 for all pairwise comparisons), except between labiodental and
dental fricatives. The estimated mean peak values of labiodental and dental fricatives alike
are significantly higher than alveolar fricatives. Postalveolar fricatives have the lowest mean
peak values. Regarding the interaction effect, post hoc tests demonstrate that the estimated
peak value of labiodental fricatives is significantly higher when the vowel context is /u/.

Slope

The mean (low-frequency) slope values of fricatives by place of articulation, voicing, and
vowel context are displayed in Table 7.6, Table 7.7 and Table 7.8 respectively. There is a
main effect for place of articulation on the estimation of slope (F (3, 6069.44) = 4322.46, p
< .001). A two-way interaction effect is also found for place x vowel on the estimation of
slope (F (9, 6069.05) = 44.97, p < .001).

Bonferroni post hoc tests reveal that all the pairwise differences of place of articulation
are significant (p < .001) except between labiodental and alveolar fricatives. The estimated
mean slope of postalveolar fricatives is steepest, followed by alveolar fricatives and labiodental
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Table 7.6 Mean slope values by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
Slope (dB) 13.97 11.92 14.99 28.63

Table 7.7 Mean slope values by voicing (n = 6111)

Voicing voiced voiceless
Slope (dB) 16.06 17.68

Table 7.8 Mean slope values by vowel (n = 6111)

Vowel i e u a
Slope (dB) 16.78 16.37 18.39 16.37

fricatives alike. The estimated slope value is the smallest for dental fricatives. A two-way
interaction effect is found that the estimated slope value of alveolar fricatives is significantly
higher when the vowel context is /u/.

Centre of gravity (CoG)

Table 7.9, Table 7.10, and Table 7.11 show the mean centre of gravity (CoG) values by place
of articulation, voicing, and vowel context. A main effect for place of articulation (F (3,
294.04) = 33.34, p < .001) is found. With respect to interaction effects, there is a two-way
interaction effect for place x voicing (F (3, 182.71) = 6.02, p < .001) and place x vowel (F (9,
360.52) = 19.88, p < .001).

Table 7.9 Mean values of centre of gravity by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
CoG (Hz) 6126.74 6309.74 7385.89 4753.15

Table 7.10 Mean values of centre of gravity by voicing (n = 6111)

Voicing voiced voiceless
CoG (Hz) 6264.75 6194.94

Table 7.11 Mean values of centre of gravity by vowel (n = 6111)

Vowel i e u a
CoG (Hz) 6349.57 6174.82 6286.63 6092.66

Bonferroni post hoc tests indicate that for place of articulation, all pairwise comparisons
are significant (p < .001), except between labiodental and dental fricatives. Alveolar frica-
tives have the highest estimated mean value of centre of gravity and postalveolar fricatives
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have the lowest estimated value. There is an interaction effect for place x voicing: the voiced
dental fricatives and the voiced labiodental fricatives have a significantly lower centre of
gravity than the voiceless dental and labiodental fricative respectively. Another two-way
interaction effect is found for place x vowel that the centre of gravity of alveolar fricatives is
significantly lower when the vowel context is /u/.

Standard deviation (SD)

The mean values of standard deviation by place of articulation, voicing, and vowel are
reported in Table 7.12, Table 7.13, and Table 7.14 respectively. A main effect is obtained
for place of articulation (F (3, 441.83) = 2003.32, p < .001), voicing (F (1, 206.28) = 9.78, p
< .01), and vowel (F (3, 54.34) = 7.94, p < .001) on the estimation of standard deviation.
There is also a two-way interaction effect for place x vowel (F (9, 583.49) = 20.77, p < .001)
on the estimated standard deviation.

Table 7.12 Mean values of standard deviation by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
SD (Hz) 2799.71 2588.90 1702.96 1687.19

Table 7.13 Mean values of standard deviation by voicing (n = 6111)

Voicing voiced voiceless
SD (Hz) 2244.07 2161.53 4

Table 7.14 Mean values of standard deviation by vowel (n = 6111)

Vowel i e u a
SD (Hz) 2163.48 2159.89 2271.50 2198.02

Bonferroni post hoc tests show that all pairwise comparisons are significant for place of
articulation (p < .001) except between labiodental and dental fricatives. Both labiodental
and dental fricatives have a larger estimated standard deviation than alveolar fricatives; alve-
olar fricatives have a larger standard deviation than postalveolar fricatives. As for voicing,
voiced fricatives have a larger estimated standard deviation than voiceless fricatives (p <
.01). Regarding vowels, all the significant differences are due to the vowel /u/ (p < .001)
that the standard deviation of fricatives is larger when the vowel context is /u/. Post hoc
tests of the interaction effect for place x vowel also demonstrate that the estimated standard
deviation values of alveolar and postalveolar fricatives are larger when the vowel context is
/u/ (p < .001).

Skewness

The means of skewness by place of articulation, voicing, and vowel context are shown in
Table 7.15, Table 7.16, and Table 7.17 respectively. A main effect is found for place of
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articulation (F (3, 293.62) = 561.63, p < .001) and vowel (F (3, 52.88) = 10.06, p < .001)
on the estimation of skewness. There is also a two-way interaction effect for place x voicing
(F (3, 182.30) = 5.92, p < .001).

Table 7.15 Mean values of skewness by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
Skewness -0.27 -0.41 -0.37 0.98

Table 7.16 Mean values of skewness by voicing (n = 6111)

Voicing voiced voiceless
Skewness -0.096 -0.034

Table 7.17 Mean values of skewness by vowel (n = 6111)

Vowel i e u a
Skewness -0.10 0.0016 -0.15 0.0096

Bonferroni post hoc tests show that the differences in skewness among all pairwise com-
parisons are significant (p < .001). In terms of magnitude, postalveolar fricatives have the
largest estimated skewness. In terms of vowel, the main effect is primarily due to the back
rounded vowel /u/ (p < .001). Voicing, per se, does not have a main effect on the predicted
value of skewness but there is an interaction effect of place x voicing. The estimated skewness
values of dental and labiodental fricatives are larger than the voiceless counterparts.

Kurtosis

Table 7.18, Table 7.19, and Table 7.20 illustrate the mean values of kurtosis by place of
articulation, voicing, and vowel context respectively. An interaction effect is found for place
x vowel is also found (F (9, 297.11) = 6.30), p < .001).

Table 7.18 Mean values of kurtosis by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
Kurtosis 0.57 1.31 1.85 1.52

Table 7.19 Mean values of kurtosis by voicing (n = 6111)

Voicing voiced voiceless
Kurtosis 1.30 1.32

Bonferroni post hoc tests reveal the estimated kurtosis values of alveolar and postalveolar
fricatives are significantly smaller when the vowel context is /u/.
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Table 7.20 Mean values of kurtosis by vowel (n = 6111)

Vowel i e u a
Kurtosis 1.48 1.61 0.58 1.605

F2 Onset

The mean F2 onset frequencies of the following vowels by place of articulation, voicing, and
vowel are displayed in Table 7.21, Table 7.22, and in Table 7.23 respectively. Since the F2
onset values are highly correlated with vowel, this factor is excluded from the estimated
model. A main effect is found for place of articulation (F (3, 1172.84) = 114.55, p < .001)
on the estimation of F2 onset values.

Table 7.21 Mean values of F2 onset by place of articulation (n = 1566)

Place labiodental dental alveolar postalveolar
F2 Onset (Hz) 1553.72 1690.56 1760.02 1845.65

Table 7.22 Mean values of F2 onset by voicing (n = 1566)

Voicing voiced voiceless
F2 Onset (Hz) 1715.13 1716.24

Table 7.23 Mean values of F2 onset by vowel (n = 1566)

Vowel i e u a
F2 Onset (Hz) 2132.77 1846.36 1627.38 1556.50

Bonferroni post hoc tests show that all pairwise comparisons of place of articulation are
significant (p < .001) except between dental and alveolar fricatives. The estimated F2 onset
value is highest for postalveolar fricatives, followed by dental and alveolar fricatives alike.
The estimated value of F2 onset is lowest for labiodental fricatives.

7.1.3 Amplitudinal characteristics of fricatives

Normalised amplitude

The mean normalised amplitudes of fricatives by place of articulation, voicing, and vowel of
pseudo-word are illustrated in Table 7.24, Table 7.25, and Table 7.26 respectively. A main
effect of place of articulation (F (3, 1893.82) = 1195.68, p < .001) as well as voicing (F (1,
1374.75) = 80.54, p < .001) is found on the estimation of the normalised amplitude values.

Bonferroni post hoc tests reveal that the differences in normalised amplitude of fricatives
are significant in all pairwise comparisons of place of articulation (all p < .001), except be-
tween labiodental and dental fricatives. The estimated normalised amplitude of postalveolar
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Table 7.24 Mean values of normalised amplitude by place of articulation(n = 3040)

Place labiodental dental alveolar postalveolar
Normalised amplitude (dB) -17.57 -17.54 -6.91 -5.98

Table 7.25 Mean values of normalised amplitude by voicing (n = 3040)

Voicing voiced voiceless
Normalised amplitude (dB) -10.90 -12.15

Table 7.26 Mean values of normalised amplitude by vowel (n = 3040)

Vowel i e u a
Normalised amplitude (dB) -11.83 -11.04 -12.03 -11.41

fricatives is significantly larger than that of alveolar fricatives, and alveolar fricatives are
significantly louder than labiodental and dental fricatives. The post hoc tests also show that
voiced fricatives are significantly louder than voiceless fricatives (p < .001).

Harmonics-to-noise ratio (HNR)

The means of harmonics-to-noise ratio (HNR) or harmonicity by place of articulation, voic-
ing, and vowel context are displayed in Table 7.27, Table 7.28, and Table 7.29 respectively.
A main effect is found for place of articulation (F (3, 588.80) = 534.72, p < .001) and voicing
(F (1, 257.00) = 20.22, p < .001).

Table 7.27 Mean values of harmonics-to-noise ratio by place of articulation (n =
6111)

Place labiodental dental alveolar postalveolar
HNR (dB) 3.89 5.97 1.21 -0.39

Table 7.28 Mean values of harmonics-to-noise ratio by voicing (n = 6111)

Voicing voiced voiceless
HNR (dB) 3.06 2.42

Table 7.29 Mean values of harmonics-to-noise ratio by vowel (n = 6111)

Vowel i e u a
HNR (dB) 2.72 2.99 2.03 3.12

Bonferroni post hoc tests indicate that all the pairwise comparisons of harmonics-to-voice
ratio in different places of articulation are significant (p < .001). The dental fricatives have
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the largest estimated harmonics-to-noise ratio, followed by labiodental fricatives, and then
by alveolar fricatives, and lastly, by postalveolar fricatives. Regarding voicing, the voiced
fricatives have a significantly larger harmonics-to-noise ratio than the voiceless fricatives.

7.1.4 Temporal characteristics of fricatives

Normalised duration

Table 7.30, Table 7.31, and Table 7.32 show the mean normalised duration of fricatives by
place of articulation, voicing, and vowel context respectively. The normalised duration of
fricatives is the ratio of fricative duration over word duration (see Section 6.3.3). Since it is
a ratio, there is no unit. A main effect for place of articulation (F (3, 3938.43) = 148.16, p <
.001) is found on the estimation of normalised duration. There is no main effect for voicing,
per se, but there is also an interaction effect for place x voicing (F (3, 3617.86) = 6.18, p <
.001) on the estimation of normalised duration.

Table 7.30 Mean values of normalised duration by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
Normalised duration (ratio) 0.1520 0.1614 0.1759 0.1869

Table 7.31 Mean values of normalised duration by voicing (n = 6111)

Voicing voiced voiceless
Normalised duration (ratio) 0.1706 0.1669

Table 7.32 Mean values of normalised duration by vowel (n = 6111)

Vowel i e u a
Normalised duration (ratio) 0.1817 0.1652 0.1704 0.15691

Bonferroni post hoc tests suggest that the differences of normalised duration among all
places of articulation are significant (p < .001), except between labiodental and dental frica-
tives. The estimated normalised duration of postalveolar fricatives is significantly longer
than alveolar fricative. The normalised duration of alveolar fricatives is significantly longer
than labiodental and dental fricatives. Regarding interaction effects, post hoc tests demon-
strate that the estimated normalised duration is longer for voiced labiodental and voiced
postalveolar fricatives than their voiceless counterparts. Nevertheless, the estimated nor-
malised duration of voiced alveolar fricatives is shorter than the voiceless alveolar fricatives.

7.1.5 DCT coefficients

Regarding the DCT coefficients, the mean values of k1 of the fricatives by place of artic-
ulation, voicing and vowel context are reported in Table 7.33, Table 7.34, and Table 7.35
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respectively. Results of the linear mixed models show a main effect for place of articulation
(F (3, 3419.88) = 515.99, p < .001). Bonferroni post hoc tests indicate that the differences
in k1 values between alveolar and other places of articulation are significant (p < .001) but
not between labiodental and dental fricatives as well as between dental and postalveolar
fricatives. There is a three-way interaction for place x voicing x vowel on the estimation of
k1 values. The predicted value of k1 of the voiced dental fricative /ð/ is particularly low
when the vowel context is /u/.

Table 7.33 Mean values of k1 by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
k1 -1.80 -2.87 -9.83 0.38

Table 7.34 Mean values of k1 by voicing (n = 6111)

Voicing voiced voiceless
k1 -5.47 -3.60

Table 7.35 Mean values of k1 by vowel (n = 6111)

Vowel i e u a
k1 -4.18 -3.50 -4.03 -3.19

The mean values of k2 by place of articulation, voicing, and vowel of pseudo-word are
illustrated in Table 7.36, Table 7.37, and Table 7.38 respectively. A main effect is found for
place of articulation (F (3, 3430.73) = 369.05, p < .001) and voicing (F (1, 3443.49) = 44.07,
p < .001). A two-way interaction effect is also found for place x voicing (F (3, 3430.72) =
27.35, p < .001) and place x vowel (F (9, 3424.02) = 7.25, p < .001) respectively.

Table 7.36 Mean values of k2 by place of articulation (n = 6111)

Place labiodental dental alveolar postalveolar
k2 1.46 0.13 -3.89 -7.62

Table 7.37 Mean values of k2 duration by voicing (n = 6111)

Voicing voiced voiceless
k2 -0.94 -2.78

Post-hoc tests reveal that the estimated k2 values are all significantly different from each
other (all pairwise comparisons p < .001). Moreover, the differences in k2 between voiced and
voiceless fricatives are also significant (p < .05). In terms of interaction effects, the estimated
k2 values are significantly different between voiced dental and voiceless dental fricatives, as
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Table 7.38 Mean values of k2 by vowel (n = 6111)

Vowel i e u a
k2 -2.59 -2.53 -2.95 -2.54

well as for voiced alveolar and voiceless alveolar fricatives. Similarly, the estimated k2 values
are particularly low for dental and alveolar fricatives when the vowel context is /u/.

To sum up, results of the acoustic analysis in the present study indicate that the spectral,
amplitudinal, and temporal measures can provide critical information about place of articu-
lation of Hong Kong English fricatives. In fact, place of articulation is a significant predictor
for all the acoustic properties being examined in this study. Table 7.39 is a summary of the
key findings with respect to place of articulation.

Table 7.39 Summary of the key findings of acoustic analysis with respect to place
of articulation

Property Predictability of place
Spectral

-Peak all except labiodental and dental
-Slope all except labiodental and alveolar
-CoG all except labiodental and dental
-SD all except labiodental and dental
-Skewness all
-Kurtosis place x vowel only
-F2 Onset all except dental and alveolar

Amplitudinal
-Normalised amplitude all except labiodental and dental
-HNR all

Temporal
-Normalised duration all except labiodental and dental

DCT coefficients
-k1 alveolar only
-k2 all

The summary of the key findings of the acoustic analysis with respect to voicing is
displayed in Table 7.40.

75



Table 7.40 Summary of the key findings of acoustic analysis with respect to voicing

Property Predictability of voicing
Spectral

-Peak no
-Slope no
-CoG place x voicing only
-SD yes
-Skewness place x voicing only
-Kurtosis no
-F2 Onset no

Amplitudinal
-Normalised amplitude yes
-HNR yes

Temporal
-Normalised duration place x voicing only

DCT coefficients
-k1 place x voicing x vowel only
-k2 yes

7.2 Comparison of Hong Kong English fricatives and their
variants

Since a number of variants are identified in the present study, an acoustic analysis of the
variants of the fricatives was conducted to examine if these variants shared similar acoustic
properties as the phonemes. It helps answer questions like: is the realisation of /T/ as [f]
same as /f/? The smoothed spectral shape of the variants and their comparative phones are
also provided to facilitate the discussions.

Labiodental fricatives [f, v]

Figure 7.2 plotted the smoothed spectra of [f] and [v] using the first four DCT coefficients
(k0-k3). It represents the average spectra of phonetic [f] (which is the realisation of /f/ as
[f]) and [v] (which is the realisation of /v/ as [v]). The phonetic transcription is based on
the auditory analysis of the subset of the word list data. As can be seen, [f] and [v] are not
similar in terms of spectral shapes. Results from the linear mixed model show that there is a
main effect for voicing on the estimation of k1 value (F (1, 79.15) = 7.79, p < .01), suggesting
the overall slope of [f] and [v] are significantly different from each other. There is also an
effect for voicing on the estimation of centre of gravity (F (1, 1724.70) = 71.05, p < .001),
skewness (F (1, 1724.70) = 48.49, p < .001), kurtosis (F (1, 1736.60) = 8.22, p < .001), peak
(F (1, 1586.10) = 21.87, p < .001), and slope (F (1, 1719.00) = 191.73, p < .001). [v] has
a lower centre of gravity, a larger positive skewness, a larger positive kurtosis, a lower peak
value, and a lower slope value than [f].

Results from the auditory analysis of the subset of word list data show that /v/ is also
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Figure 7.2 Comparison of the smoothed spectra of [f] for /f/ and [v] for /v/

Figure 7.3 Comparison of smoothed
spectra of the variant [f] of /v/ (de-
noted as f1) and [f] for /f/ (denoted
as f2)

Figure 7.4 Comparison of smoothed
spectra of the variant [w] of /v/ (de-
noted as w1) and [w] for /w/ (denoted
as w2)

realised as the voiceless counterpart [f] and the labiovelar approximant [w]. The comparison
of the smoothed spectral shape of the realisation of /v/ as [f] and the realisation of /f/ as
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[f] as well as the comparison of the realisation of /v/ as [w] and the realisation of /w/ as [w]
is plotted in Figure 7.3 and Figure 7.4 respectively. It can be seen that the averaged spectra
of the variant [f] of /v/ and the [f] as in /f/ are very similar in terms of slope, curvature,
and amplitude, indicating that they are very likely the same sound. The averaged spectral
of the variant [w] of /v/ and the [w] as in /w/ are also similar in slope and curvature but
seems to be different in amplitude. Nevertheless, results of the linear mixed model indicate
that the label the normalised amplitude of the two labels are not significantly different from
each other.

Dental fricatives [T, ð]

The smoothed spectra of [T] and [ð] are depicted in Figure 7.5. The spectral shapes of both
labels seem different with respect to slope and curvature. In fact, there is a main effect for
voicing on the estimation of k1 (F (1, 221.11) = 52.99, p < .001) and k2 (F (1, 173.25) =
38.38, p < .001). In addition, the estimated centre of gravity (F (1, 29.46) = 4.20, p < .05)
and skewness (F (1, 28.05) = 5.21, p < .05) is affected by voicing.

Results from the auditory analysis of the subset of the word list data indicate that /T/ is
also realised as the voiceless labiodental fricative [f] (i.e. TH-fronting). When comparing the
smoothed spectra of [T] and the variant [f] of /T/, as shown in Figure 7.6, the curvature of
[T] and [f] is distinct from each other. The estimated linear mixed models reveal that place
of articulation is a significant predictor of k1 (F (1, 115.24) = 25.61, p < .001) and k2 (F (1,
80.58) = 76.91, p < .001). A main effect is also found on the kurtosis (F (1, 911.25) = 5.18,
p < .05) that [T] has a larger kurtosis value.

The comparison of the smoothed spectral shape of the realisation of /T/ as [f] and the [f]
as in /f/ is plotted in Figure 7.7. As can be seen, the spectral shapes of both labels are similar
in terms of curvature. Although the high frequency slope of [f] for /f/ appeared steeper, the
effect on k1 is not significant. A main effect for label on the estimation of kurtosis (F (1,
911.25) = 5.19, p < .05) is found and the estimated kurtosis value of the variant [f] of /T/ is
significantly higher than the value of [f] for /f/. There is no effect for label on other acoustic
properties.

Regarding the realisation of /ð/, it was found that the voiceless [T] and the voiced alveolar
plosive [d] (i.e. TH-stopping) are the main variants. Figure 7.8 illustrates the comparison of
the variant [T] of /ð/ and [T] for /T/. The spectra of both labels are very similar in shape and
curvature, implying that they are the same sound. As for the realisation of /ð/ as [d], Figure
7.9 and Figure 7.10 demonstrate the spectral comparison of [ð] for /ð/ and the variant [d]
of /ð/, as well as of the variant [d] of /ð/ and [d] for /d/. As can be seen in Figure 7.9, the
spectral shape of [ð] and the variant [d] of /ð/ are very diverse, which is also reflected on the
different estimation of k2 (F (1, 531.6) = 12, p < .001). There is also a main effect for label
on the estimation of kurtosis (F (1, 106.58) = 8.77, p < .01) that [ð] has a larger kurtosis
value. With respect to the comparison of the variant [d] of /ð/ and [d] for /d/, there is a
main effect for labels on the estimation of k1 value (F (1, 40.67) = 5.18, p < .05) but not on
k2. No other effects are found.
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Figure 7.5 Comparison of smoothed
spectra of [T] for /T/ (denoted as T)
and [ð] for /ð/ (denoted as D)

Figure 7.6 Comparison of smoothed
spectra of [T] for /T/ (denoted as T)
and the variant [f] of /T/ (denoted as
f)

Figure 7.7 Comparison of smoothed
spectra of the variant [f] of /T/ (de-
noted as f1) and [f] for /f/ (denoted
as f2)

Figure 7.8 Comparison of smoothed
spectra of the variant [T] of /ð/ (de-
noted as T1) and [T] for /T/ (denoted
as T2)
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Figure 7.9 Comparison of smoothed
spectra of [ð] for /ð/ (denoted as D)
and the variant [d] of /d/ (denoted as
d)

Figure 7.10 Comparison of
smoothed spectra of the variant
[d] of /ð/ (denoted as d1) and [d] for
/d/ (denoted as d2)

Alveolar fricatives [s, z]

The comparison of the spectra of [s] and [z] is plotted in Figure 7.11. As can be seen, the
spectral slope and curvature of both phones are similar. The estimated k1 values of /s/ and
/z/ are also significantly different (F (1, 24.30) = 5.78, p < .05). The estimated k2 values
are also different (F (1, 22.68) = 5.00, p < .05). The estimation of centre of gravity (F (1,
1662.80) = 10.21, p < .01) that /z/ has a larger estimated centre of gravity. Voicing also
has an effect on the estimation of standard deviation is significant (F (1, 1681.30) = 52.86,
p < .001) that /z/ has a larger estimated standard deviation as well as of skewness (F (1,
1671.30) = 11.47, p < .001) that /z/ has a larger negative estimation of skewness. There is
also an effect on kurtosis (F (1, 1679.40) = 31.18, p < .001) that /z/ has a greater estimated
kurtosis. Finally, the estimated slope of /s/ and /z/ are also different (F (1, 1660.20) =
52.69, p < .001) that /s/ has a larger positive estimation of slope.

Results from the auditory analysis of the subset of the word list data demonstrate that the
main variant of the realisation of /z/ is the voiceless [s]. The comparison of the smoothed
spectral shape of the variant [s] of /S/ and the [s] for /s/ is plotted in Figure 7.12. The
spectral shape and amplitude of both labels are very similar, and it could be concluded that
they are the same phone.

80



Figure 7.11 Comparison of
smoothed spectra of [s] for /s/
(denoted as s) and [z] for /z/ (de-
noted as z)

Figure 7.12 Comparison of
smoothed spectra of the variant
[s] of /S/ (denoted as s1) and [s] for
/s/ (denoted as s2)

Postalveolar fricatives [S, Z]

A comparison of the spectral shape of [S] and [Z] is displayed in Figure 7.13. Results from
the linear mixed model show that voicing has no significant effects on the estimation of k1

and k2. Nevertheless, there is a main effect for voicing on the estimation of skewness (F (1,
1218.90) = 7.49, p < .01), as well as the estimation of slope (F (1, 1260.90) = 28.27, p <
.001).

As noted in the auditory analysis of the subset of word list data, the voiced postalveolar
fricative /Z/ is also realised as the voiceless [S]. Figure 7.14 illustrates the smoothed spectra
of the variant [S] of /Z/ and the [S] for /S/. As can be seen, the spectral shape and amplitude
of both labels is almost identical, indicating that they are very likely the same phone.

In summary, for the realisations of /v/ as [f] and as [w], it was found that they are not sig-
nificantly different from the /f/ and /w/. For the realisations of /T/ as [f], it was found that
there is a difference in kurtosis between the variant [f] of /T/ and /f/. For the realisations
of /ð/ as [d], it was found that the variant [d] of /ð/ has a different estimated k1 from /d/.
As for the realisations of /Z/ as [S], it was found that the variant is not significantly different
from /S/. It can be concluded that the variants of Hong Kong English fricatives are not
acoustically different from the respective phonemes. It is important when it comes to how
many phone symbols should be established when constructing an acoustic model for Hong
Kong English. For example, if it the findings of the acoustic properties of a variant were
significantly different from the existing phone symbols, a new phone symbol may need to be
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Figure 7.13 Comparison of
smoothed spectra of [S] for /S/
(denoted as S) and [Z] for [Z] (denoted
as Z)

Figure 7.14 Comparison of
smoothed spectra of the variant
[S] of /Z/ (denoted as S1) and [S] for
/S/ (denoted as S2)

established. In many cases, even if a variant or a phone has unique acoustic properties, if
the occurrence of that sound is not frequent in the training data, a new phone symbol may
not be created. It is because the probability of backtracking that phone symbol is too low
and it may never be retrieved.

7.3 Discussion on the acoustic characteristics of Hong
Kong English fricatives

The following discussions attempt to answer the research questions:

(i) Which acoustic properties of Hong Kong English fricatives can distinguish all four
places of articulation (i.e. labiodental, dental, alveolar, and postalveolar) and voicing
(i.e. voiced and voiceless)? Are these acoustic properties for classification the same as
those for Inner Circle English fricatives?

(ii) What are the acoustic characteristics of Hong Kong English fricatives? Do they share
the same pattern as the Inner Circle English fricatives?
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7.3.1 Place of articulation

The present study found that spectral peak, slope, centre of gravity (CoG), standard devia-
tion (SD), F2 onset frequency, normalised amplitude, and normalised duration are likely to
distinguish all places of articulation except between labiodental and dental. Only 2 out of 10
properties, namely skewness and harmonics-to-noise (HNR) ratio, are likely to distinguish all
four places of articulation. This finding conforms the prediction that only a small number
of properties can distinguish all four places of articulation (see Chapter 5). This finding
is also in line with previous studies on the acoustic characteristics of fricatives of standard
American English that only four properties can distinguish all four places of articulation.
Nevertheless, the properties are not the same. For example, in the study by Jongman et al.
(2000), peak, skewness, and normalised amplitude were reported to be able to distinguish all
four places. In the study by Nissen and Fox (2005), standard deviation was reported to be
able to distinguish all four places. Since previous studies did not examine DCT coefficients,
they are excluded from comparison.

This study measured most acoustic properties at three points: 25%, 50%, and 75%,
and the mean values of the property were computed. Jongman et al. (2000) measured the
spectral moments at four locations (i.e. onset, middle, offset, and transition) and pointed
out that it was more likely to have at least one window location which can distinguish all
four places of articulation. Generally speaking, the onset and transition location carried
most distinctive formation. For the onset window location, variance, skewness, and kurtosis
were able to distinguish all four places of articulation. For the transition window location,
spectral mean (centre of gravity), variance, and skewness were able to distinguish all four
places of articulation (Jongman et al., 2000). This finding is interesting because normally
the central part of the frication noise is considered to be relatively static, as demonstrated
by Maniwa et al. (2009) and Stuart-Smith (2020). Therefore, many studies extracted the
acoustic measurements from the central 70% or 80% of the frication noise. Since previous
studies and the present study continue to the demonstrate the low success rate to distinguish
labiodental fricatives from dental fricatives, perhaps comparing more window locations is a
practical solution.

In terms of the pattern of acoustic characteristics with respect to place of articulation,
peak shares a similar patter with previous studies that the mean value decreases as the place
of articulation moves further back in the oral cavity. The mean peak value of post-alveolar
fricatives is exceptionally low due to the effect of the sublingual cavity. This pattern can
also be visually observed in the smoothed spectra of fricatives. Theoretically speaking, a
similar effect can be caused by the vowel /u/ and an interaction effect was expected for place
x vowel. Nevertheless, in this study, the interaction effect only comes from the labiodental
fricatives /f, v/. As for slope, the present study measured the low-frequency slope (0 to 4000
Hz) and the findings suggest that the slopes for postalveolar fricatives are steepest, and the
slopes for non-sibilant fricatives are relatively flat. This pattern can be observed visually in
Figure 7.1 as well.

With respect to the spectral moments, the findings of centre of gravity follow a similar
pattern as previous studies. Postalveolar fricatives have a particularly low estimated value of
centre of gravity. F. Li, Munson, et al. (2011, p. 1001) explained that "the longer the front
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resonating cavity is, the lower the overall resonating frequencies in the fricative spectrum will
be, which is reflected in a lower M1 value". It also explains why there is an interaction effect
of place x vowel in the present study. Nevertheless, this effect is only limited to alveolar
fricatives followed by a back rounded vowel /u/. Results of the standard deviation in the
present study show that the mean values of non-sibilant fricatives are significantly higher
than sibilant fricatives, which is in line with previous studies. It means that energy is more
dispersed in non-sibilant fricatives. As mentioned in Section 3.1, for non-sibilant fricatives,
since the sound source is close to the constriction, there is higher "acoustic impedance"
(Zhao, 2010, p. 128), and hence, the energy is more dispersed.

Skewness is the only overlapping acoustic property with previous studies which can dis-
tinguish all four places of articulation. Nevertheless, the pattern of skewness of the present
study is different from previous studies. For example, Jongman et al. (2000) showed mixed
results of skewness that labiodental and postalveolar fricatives were left-tilted, whereas den-
tal and alveolar fricatives were right-tilted. In the present study, labiodental, dental, and
alveolar fricatives are positively tilted (right-tilted), and only postalveolar fricatives are neg-
atively tilted (left-tilted). Negatively tilted means energy is concentrated in lower frequencies
with respect to the mean. This pattern can be visually observed in Figure 7.1 as well. The
finding of the present study is more line with Nissen and Fox (2005) in which only the spec-
tra of postalveolar fricatives were negatively tilted. Regarding kurtosis, which is related to
tailedness of distribution, results from the present study found that the spectrum was less
tailed for alveolar and postalveolar fricatives when followed by the back rounded vowel /u/,
meaning it is closer to a Gaussian distribution. In terms of pattern, results from the present
study are different from previous studies. In Jongman et al. (2000) and Nissen and Fox
(2005), postalveolar fricatives had the smallest estimated kurtosis value, while in the present
study, labiodental fricatives have the smallest estimated kurtosis value.

The F2 onset values in the present study follows a general pattern that it increases as the
place of articulation moves further back in the vocal tract, although the difference between
dental and alveolar fricatives were not significant. This pattern is consistent with previous
studies. In other words, the transitional F2 onset frequency is probably negatively correlated
to the front-/backness of the tongue.

With respect to amplitudinal properties, Jongman et al. (2000) found that normalised
root-mean-square amplitude can distinguish all four places of articulation with postalveolar
> alveolar > labiodental > dental fricatives. In the present study, it is also found that
postalveolar fricatives are the loudest, followed by alveolar fricatives. Labiodental and dental
fricatives alike have the least normalised amplitude. Generally, it follows the principle of the
mechanical model of fricative production as described in Section 3.1. As for the harmonics-to-
noise (HNR) ratio, in the present study, it was found that HNR can distinguish all four places
of articulation. Postalveolar fricatives have the most noise, followed by alveolar fricatives,
and by labiodental fricatives. Dental fricatives have the least noise in the phone segment.
Since the HNR ratios of labiodental fricatives and dental fricatives are significantly different
from each other, it can be inferred that dental fricatives exhibit more stop-like behaviour
than fricative-like manner.

Regarding the temporal properties, the normalised duration, which is the ratio of fricative
duration over word duration, is longest for sibilant fricatives than non-sibilant fricatives.
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Among the sibilant fricatives, the normalised duration of postalveolar fricatives is longer
than alveolar fricatives. There is no significant difference between the normalised duration
of labiodental and dental fricatives in the present study. This finding is consistent with
previous studies.

7.3.2 Voicing

Peak, slope, kurtosis, and F2 Onset between voiced and voiceless fricatives are not dis-
tinguishable. Standard deviation (SD), normalised amplitude and harmonics-to-noise ratio
(HNR) are able to distinguish between voiced and voiceless fricatives. This finding is dif-
ferent from the predictions and from previous studies on the acoustic analysis of standard
American English in which most of the acoustic properties studied report a main effect for
voicing.

Findings from the present study suggest that the differences of voiced and voiceless
fricatives in Hong Kong English may not lie in the spectral properties, in general, but more
on the amplitudinal properties. Results of the harmonics-to-noise (HNR) ratio from the
present study show that voiced fricatives have a higher HNR ratio than voiceless fricatives.
This finding is consistent with previous studies and is not surprising due to the nature of more
vocal fold vibration. With regards to normalised amplitude, previous studies reported that
the normalised amplitude of voiceless fricatives were higher than voiced fricatives (Jongman
et al., 2000). The present study shows an opposite pattern that voiced fricatives have a
higher normalised amplitude than voiceless fricatives. In other words, voiced fricatives are
pronounced louder than voiceless fricatives in Hong Kong English.

An interaction effect of place x voicing is reported for centre of gravity (CoG), skewness,
and normalised duration in the present study. The estimated centre values of centre of
gravity of voiced non-sibilant fricatives are smaller than the voiceless non-sibilant fricatives.
The estimated skewness values of voiced non-sibilant fricatives were larger than the voiceless
counterparts. It suggests that the behaviour of /v/ and /ð/ is different from other voiced
fricatives in Hong Kong English in terms of centre of gravity and skewness. As for normalised
duration, it was found that voiced alveolar fricative /z/ is shorter than voiceless alveolar
fricative /s/ but not other places of articulation.

Comparisons between the voiced and voiceless fricatives have been conducted per place
of articulation in order to examine if there are any differences in terms of spectral properties.
Generally speaking, there are four to five properties per place of articulation which can dis-
tinguish the voiced from the voiceless fricatives. That is to say, breaking down the fricatives
into place of articulation helps distinguishing voicing pattern.
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Chapter 8

Classification of Hong Kong English
fricatives and their variants

8.1 Results of classification of Hong Kong English frica-
tives and their variants

Three classification models based on the acoustic features of the fricatives and their vari-
ants are built using convolutional neural network (CNN). The classification accuracy was
computed by comparing the predicted labels from the classification models (i.e. hypothesis)
and the annotation based on the auditory analysis of the subset of the word list data (i.e.
reference). The overall accuracy is 83.4% for place of articulation, 96.1% for voicing, and
80.6% for phone symbols, as displayed in Table 8.1.

Table 8.1 Overall classification accuracy by place of articulation, voicing, and phone
symbol

Place Voicing Phone
Accuracy 83.4% 96.1% 80.6%

The accuracy and weighted F1 score of place of articulation, voicing, and phone symbol
are calculated to evaluate the performance of each model. F1 score, which is also called
balanced F-score, is the weighted average of precision and recall. Similar to accuracy, the
maximum F1 score is one, which indicates the best value, and the minimum F1 score is zero.
Since F1 score can better represent the results of an imbalanced dataset, which is also the
case of the present study, the results of the F1 score are mainly reported and discussed.

8.1.1 Classification of place of articulation

The accuracy and F1 score by place of articulation are displayed in Table 8.2. There are
five classes of place of articulation, namely labiodental, dental, alveolar, postalveolar, and
labiovelar. The F1 score is 0.88 for labiodental, 0.77 for dental, 0.94 for alveolar, 0.98 for
postalveolar, and 0.90 for labiovelar. Generally speaking, the class labiovelar, labiodental,
alveolar, and postalveolar can be accurately labelled based on the input acoustic signals,
except for the class dental.
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Table 8.2 Accuracy and F1 score of the classification of place of articulation

labiodental dental alveolar postalveolar labiovelar
Accuracy 0.79 0.63 0.88 0.96 0.82
F1 score 0.88 0.77 0.94 0.98 0.90

Table 8.3 Confusion matrix (in count) of the classification of place of articulation.

(N=1985) labiodental dental alveolar postalveolar labiovelar
labiodental 344 85 3 0 4
dental 102 205 17 0 3
alveolar 11 52 600 10 6
postalveolar 5 3 9 415 0
labiovelar 1 3 16 0 91

The confusion matrix is displayed in Table 8.3. In the confusion matrix, the horizontal
header of labels is the reference, which is the auditory analysis of the subset of the word
list data, and the vertical header of labels is the hypothesis, which is the predicted label by
the model. As can be seen, 102 of the phone segments are mislabelled as dental while the
correct label is labiodental. For the class dental, 85 of the phone segments are mislabelled
as labiodental and 52 are mislabelled as alveolar. For other places of articulation, there are
no major confusions.

8.1.2 Classification of voicing

The accuracy and F1 score by voicing are displayed in Table 8.4. There are two classes,
namely voiceless and voiced. The F1 score for voiceless is 0.99 and the F1 score for voiced is
0.94. That is to say, the model is able to accurately label the voicing pattern based on the
input acoustic features of the phone segment.

Table 8.4 Accuracy and F1 score of the classification of voicing

voiceless voiced
Accuracy 0.98 0.89
F1 score 0.99 0.94

8.1.3 Classification of allophones

In the CNN, there are 11 classes of phone symbols: [f, v, T, ð, s, z, S, Z, d, w, Ù]. The overall
confusion matrix is illustrated in Table 8.5. Since for this particular test dataset, there are
only two instances of [v] and zero instance of [ð] and [Z], they are excluded from further
examination and discussion.

The accuracy and F1 score for each class are computed (except for [v, ð, Z]) and displayed
in Table 8.6. Six of the eight F1 scores ([f, s, S, d, w, Ù]) are ≥ 0.90, indicating that the
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Table 8.5 Confusion matrix (in count) of the classification of phone symbols.

(N=1985) f v T ð s z S Z d w Ù
f 365 0 50 0 5 0 0 0 3 0 1
v 6 1 1 0 0 0 0 0 0 4 0
T 135 0 154 0 18 0 0 0 9 4 0
ð 0 0 3 0 0 0 0 0 3 1 0
s 7 0 14 0 356 12 11 0 0 0 0
z 1 0 4 0 9 17 0 0 0 1 0
S 2 0 0 0 8 0 303 0 0 0 10
Z 0 0 0 0 0 1 6 0 0 0 2
d 3 0 3 0 0 0 2 0 227 12 0
w 5 1 3 0 0 0 0 0 12 90 0
Ù 0 0 1 0 0 0 13 0 0 0 86

Table 8.6 Accuracy and F1 score of the classification of [f, T, s, z, S, d, w, Ù]

f T s z S d w Ù
Accuracy 0.86 0.48 0.89 0.53 0.94 0.92 0.81 0.86
F1 score 0.93 0.65 0.94 0.69 0.97 0.96 0.90 0.92

classification of these phones is relatively accurate. The F1 score of [T] and [z] is 0.65 and
0.69 respectively, which is lower than other classes but still performed better than random
guessing. As can be seen in Table 8.5, the confusion of [f] is mainly due to [T] and similarly,
the confusion of [T] is primarily due to [f] and partially due to [s]. The confusion of [z] is
primarily due to [s] but not vice versa. The classification results and the confusion matrix
matched the disagreement of the phonetic transcription by the two labellers, as mentioned
in Section 6.3.4.

This test dataset failed to present the classification of the voiced fricatives [ð, Z] since
they are not in the test dataset. Due to the extremely low occurrences in the training
dataset, not much can be concluded in terms of the classification performances of these
phones. Nevertheless, the confusion matrix (Table 8.5) indicate that these phones did not
cause much confusion either. Removing these three classes from training and classification
also did not improve the overall accuracy. Therefore, in the classification of the remaining
word list data, 11 classes instead of 8 classes are still adopted.

8.2 Discussion on the classification of Hong Kong English
fricatives and their variants

In this study, 11 phone symbols were used to represent the fricatives and their variants, as
shown in Table 8.7. Since building a full acoustic model of Hong Kong English is beyond
the scope of the present study, a mini version of a phone classifier for the 11 phone symbols
was trained instead. Each phone symbol was associated with the speech signals of the phone
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segment. Since the acoustic analysis demonstrated that some patterns were different from
previous studies on standard American English fricatives, the acoustic features associated
with the phone symbols were also different. That is to say, although the phone symbol [ð] is
used in the present study, the acoustic features may not be the same as the phone symbol
[ð] in standard American English or any other variety of English.

Table 8.7 Phone symbols of fricatives and their variants

f v s z T ð S Z d w Ù

The overall classification accuracy was 80.6%, which is significantly better than random
guessing (i.e. 9.09%). The F1 scores of most classes were over 0.90 except for voiceless
labiodental fricative [T] and voiced alveolar fricative [z]. Since each phone segment was
treated as a discrete input, the classification model is context-independent. It is different
from the actual acoustic model (such as in MAUS), which is usually context-dependent.
For classifying the phones in the pseudo-words for the present study, a context-independent
model is sufficient since the distribution of the preceding and following phone was controlled.
Nevertheless, for real word data, the phone sequence is meaningful as the probabilities of
occurrence of certain phone combination are different (also see 10.2.1).
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Chapter 9

Auditory analysis of Hong Kong English
fricatives and their variants

9.1 Results of the auditory analysis

9.1.1 Overall distribution of fricatives and variants

The overall distribution of fricatives and their variants in the full set of word list data for
auditory analysis is plotted in Figure 9.1. Realisation 1 refers to the realisation which is
same as the target fricative label. Realisation 2-4 refer to the variants of that fricative. The
corresponding frequencies of the realisations are listed in Table 9.1.

Figure 9.1 Overall distribution of fricatives and their variants in the word list
dataset

As can be seen, the phonetic realisations of /f/, /s/, and /S/ are relatively consistent as
there is zero or only one variant, and the frequency of occurrence of that variant is less than
2.5%. /T/ also has one variant but the variant plays a more dominant role in the realisation
of /T/ than the variant of /s/ and /S/. /v/ and /z/ have two variants and one of the variants
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Table 9.1 Frequencies of occurrence of the fricatives and their variants in the word
list dataset.

Realisation 1 Realisation 2 Realisation 3 Realisation 4 n
/f/ [f]: 3324 3324
/v/ [v]: 189 [f]: 2919 [w]: 200 3308
/T/ [T]: 2198 [f]: 1054 3252
/ð/ [ð]: 119 [T]: 1710 [d]: 750 [f]: 724 3303
/s/ [s]: 3248 [S]: 73 3321
/z/ [z]: 373 [s]: 2868 [S]: 76 3317
/S/ [S]: 3237 [s]: 60 3297
/Z/ [Z]: 121 [S]: 1583 [Ù]: 1481 [s]: 135 3320

plays a major role in the phonetic realisation respectively. The realisations of /ð/ and /Z/
are most diverse in the dataset, as reflected in the number of variants and their proportions.

9.1.2 Labiodental fricatives /f, v/

Altogether, the number of /f/ which is realised as [f] is 3324. It comprises 100% of the /f/
in the cleaned word list dataset. Hence, it can be concluded that there are no variants of /f/
and that /f/ is unanimously pronounced as [f] in Hong Kong English.

Table 9.2 Distribution of /v/ and variant(s) by syllable position

onset coda n (%)
[v] 121 68 189 (5.7)
[f] 1335 1584 2919 (88.2)
[w] 200 0 200 (6.1)
n 1656 1652 3308 (100)

Table 9.3 Distribution of /v/ and variant(s) by stress pattern

stressed unstressed n (%)
[v] 113 76 189 (5.7)
[f] 1443 1476 2919 (88.2)
[w] 104 96 200 (6.1)
n 1660 1648 3308 (100)

The number of target /v/ is 3308, among which 189 tokens (5.7%) are realised as [v],
2919 of the tokens (88.2%) are realised as the voiceless labiodental fricative [f], and 200 of
the tokens (6.1%) are realised as the voiced labiovelar approximant [w]. That is to say, /v/
is mostly realised as the voiceless counterpart [f] by the participants.

The distributions of /v/ by syllable position and stress pattern are displayed in Table 9.2
and Table 9.3. As can be seen in Table 9.2, [w] only occurs in the syllable onset position due
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to English phonotactics. The relation between the realisation of /v/ as [w] and the stress
pattern is not significant (Estimate = -1.02, SE = -1.29, p > .05). As for the realisation of
/v/ as [v] and the variant [f], the effects of syllable position (Estimate = -2.26, SE = 0.6361,
p < .001) and stress (Estimate = 1.52, SE = 0.61, p < .05) are found to be significant. [v] is
more likely to occur in syllable onset position than in coda position. [v] is also more likely to
occur in stressed syllables than in unstressed syllables. There is no interaction effect between
syllable position and stress pattern on the estimation of realisation of /v/.

9.1.3 Dental fricatives /T, ð/

Regarding the voiceless dental fricative /T/, there are 3252 tokens in the cleaned word list
dataset. 2198 of the tokens (67.6%) are realised as [T] and 1054 of the tokens (32.4%)
are realised as the voiceless labiodental [f]. The distributions by syllable position, stress
pattern, and presence of preceding labial are illustrated in Table 9.4, Table 9.5, and Table 9.6
respectively. Results of the mixed logistic models show that both syllable position (Estimate
= 1.23, SE = 0.4772, p < .01) and stress pattern (Estimate 1.19, SE = 0.48, p < .05) have
an influence on the probability of having TH variation of /T/. The variant [f] of /T/ is more
likely to occur in syllable coda position. Moreover, [f] is more likely to occur in unstressed
syllables. Nevertheless, the interaction between syllable position and stress pattern is not
significant (Estimate = -0.97, SE = 0.67, p > .05). Presence of preceding labial consonants
is not a significant predictor on the realisation of /T/ (Estimate = -0.70, SE = 0.41, p >
.05).

Table 9.4 Distribution of /T/ and variant(s) by syllable position

onset coda n (%)
[T] 1118 1080 2198 (67.6)
[f] 495 559 1054 (32.4)
n 1613 1639 3252 (100)

Table 9.5 Distribution of /T/ and variant(s) by stress pattern

stressed unstressed n (%)
[T] 1116 1082 2198 (67.6)
[f] 500 554 1054 (32.4)
n 1616 1636 3252 (100)

Regarding the voiced dental fricative /ð/, altogether, there are 3303 tokens. 119 of the
tokens (3.6%) are realised as [ð], 1710 of the tokens (51.8%) are realised as the voiceless
dental fricative [T], 750 of the tokens (22.7%) are realised as the voiced alveolar plosive [d],
and 724 (21.9%) are realised as the labiodental fricative [f]. The distributions of /ð/ by
syllable position and stress pattern are reported in Table 9.7 and Table 9.8.

Results of the estimated mixed models show that syllable position has an influence on
the probability of having variation of /ð/. The variation as [T] is more likely to occur in
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Table 9.6 Distribution of /T/ and variant(s) by presence of preceding labial conso-
nant(s)

present absent n (%)
[T] 1082 544 1626 (66.3)
[f] 554 272 826 (33.7)
n 1636 816 2452 (100)

Table 9.7 Distribution of /ð/ and variant(s) by syllable position

onset coda n (%)
[ð] 64 55 119 (3.6)
[T] 702 1008 1710 (51.8)
[d] 737 13 750 (22.7)
[f] 145 579 724 (21.9)
n 1648 1655 3303 (100)

Table 9.8 Distribution of /ð/ and variant(s) by stress pattern

stressed unstressed n (%)
[ð] 67 52 119 (3.6)
[T] 866 844 1710 (51.8)
[d] 384 366 750 (22.7)
[f] 336 388 724 (21.9)
n 1653 1650 3303 (100)

syllable coda position (Estimate = -2.04, SE = 0.79, p < .001). The variation as [d] is more
likely to occur in syllable onset position (Estimate = 11.08, SE = 3.51, p < .001). There is
no effect for syllable position on the realisation as [f]. Stress has no significant influence on
the realisation of /ð/.

9.1.4 Alveolar fricatives /s, z/

There are 3321 tokens of /s/ in the cleaned word list dataset, among which 3248 (97.8%)
are realised as the voiceless alveolar fricative [s] and 73 (2.2%) are realised as the voiceless
postalveolar fricative [S]. In other words, /s/ is primarily pronounced as [s]. The distributions
of [s] and [S] by syllable position, stress pattern, preceding /u/ and following /u/ are reported
in Table 9.9, Table 9.10, Table 9.11, and Table 9.12 respectively. Results of the mixed
logistic models reveal that both syllable position (Estimate = -1.86, SE = 1.21, p > .05),
stress pattern (Estimate = 0.26, SE = 1.24, p > .05), and preceding /u/ (Estimate = 2.34,
SE = 1.63, p > .05 have no effect on the probability of /s/ variation. The following back
rounded vowel /u/ has an influence on the probability of the occurrence of the variant [S] of
/s/ (Estimate = 4.38, SE = 1.82, p < .01). [S] is more likely to occur when followed by the
back rounded vowel /u/.

As for the voiced alveolar fricative /z/, there are altogether 3317 tokens in the cleaned
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Table 9.9 Distribution of /s/ and variant(s) by syllable position

onset coda n (%)
[s] 1636 1612 3248 (97.8)
[S] 28 45 73 (22.0)
n 1664 1657 3321 (100)

Table 9.10 Distribution of /s/ and variant(s) by stress pattern

stressed unstressed n (%)
[s] 1601 1647 3248 (97.8)
[S] 60 13 73 (22.0)
n 1661 1660 3321 (100)

Table 9.11 Distribution of /s/ and variant(s) by preceding /u/

present absent n (%)
[s] 380 1232 1612 (97.3)
[S] 29 16 45 (2.7)
n 409 1248 1657 (100)

Table 9.12 Distribution of /s/ and variant(s) by following /u/

present absent n (%)
[s] 395 1241 1636 (98.3)
[S] 21 7 28 (1.7)
n 416 1248 1664 (100)

word list dataset, of which 373 (11.2%) are realised as [z], 2868 (86.5%) are realised as the
voiceless alveolar fricative [s], and 76 (2.3%) are realised as the voiceless postalveolar [S]. The
distributions of /z/ and its variants by syllable position, stress pattern, preceding /u/, and
following /u/ are displayed in Table 9.13, Table 9.14, Table 9.15, and Table 9.16 respectively.

Table 9.13 Distribution of /z/ and variant(s) by syllable position

onset coda n (%)
[z] 208 165 373 (11.2)
[s] 1414 1454 2868 (86.5)
[S] 40 36 76 (2.3)
n 1662 1655 3317 (100)

Results of the mixed logistic models demonstrate that stress has an influence on the
probability of occurrence of /z/ (Estimate = -1.31, SE = 0.47, p < .01). [z] is more likely to
occur in stressed syllables. There is no effect for syllable position (Estimate = -0.71, SE =
0.51, p > .05). With respect to the variant [S] of /z/, it was found that preceding /u/ and
stress have an interaction effect (Estimate = 20.91, SE = 6.44, p < .01). The variant [S] of
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Table 9.14 Distribution of /z/ and variants by stress pattern

stressed unstressed n (%)
[z] 225 148 373 (11.2)
[s] 1411 1457 2868 (86.5)
[S] 24 52 76 (2.3)
n 1660 1657 3317 (100)

Table 9.15 Distribution of /z/ and variants by preceding /u/

present absent n (%)
[z] 36 129 165 (9.9)
[s] 351 1103 1454 (87.9)
[S] 28 8 36 (2.2)
n 415 1240 1655 (100)

Table 9.16 Distribution of /z/ and variants by following /u/

present absent n (%)
[z] 46 162 208 (9.9)
[s] 344 1070 1414 (87.9)
[S] 26 14 40 (2.2)
n 416 1246 1662 (100)

/z/ is more likely to occur in unstressed syllables and when preceded by /u/. The following
/u/ is not a significant predictor for the occurrences of the variant [S].

9.1.5 Postalveolar fricatives /S, Z/

Altogether, there are 3297 tokens of /S/ in the cleaned word list dataset, among which 3237
(98.2%) are realised as the voiceless postalveolar fricative [S] and 60 (1.8%) are realised as
the voiceless alveolar fricative [s]. That is to say, /S/ is dominantly realised as [S]. The
distributions of /S/ by syllable position and stress pattern are displayed in Table 9.17 and
Table 9.18 respectively. Results of the mixed models show that there are no effects for
syllable position (Estimate = 1.18, SE = 0.99, p > .05), neither for stress pattern (Estimate
= -0.73, SE = 0.87, p > .05) on the probability of the occurrence of the variant [S].

Table 9.17 Distribution of /S/ and variant(s) by syllable position

onset coda n (%)
[S] 1615 1622 3237 (98.2)
[s] 47 13 60 (1.8)
n 1662 1635 3297 (100)
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Table 9.18 Distribution of /S/ and variants by stress pattern

stressed unstressed n (%)
[S] 1638 1599 3237 (98.2)
[s] 20 40 60 (1.8)
n 1658 1639 3297 (100)

Table 9.19 Distribution of /Z/ and variant(s) by syllable position

onset coda n (%)
[Z] 55 66 121 (3.6)
[S] 1464 119 1583 (47.7)
[Ù] 20 1461 1481 (44.6)
[s] 123 12 135 (4.1)
n 1662 1658 3320 (100)

Table 9.20 Distribution of /Z/ and variants by stress pattern

stressed unstressed n (%)
[Z] 63 58 121 (3.6)
[S] 809 774 1583 (47.7)
[Ù] 722 759 1481 (44.6)
[s] 65 70 135 (4.1)
n 1659 1661 3320 (100)

Regarding the voiced postalveolar fricative /Z/, there are altogether 3320 tokens in the
cleaned word list dataset. 121 (3.6%) of the tokens are realised as [Z], 1583 (47.7%) are
realised as the voiceless counterpart [S], 1481 (44.6%) are realised as the voiceless postalveolar
affricate [Ù], and 135 (4.1%) are realised as the voiceless alveolar fricative [s]. In other words,
the variants [S] and [Ù] are the major realisations of /Z/ in the dataset. The distributions of
/Z/ by syllable position and stress pattern are reported in Table 9.19 and Table 9.20.

Results of the mixed logistic models reveal the variant [S] of /Z/ is more likely to occur in
syllable onset position syllables (Estimate = -2.13, SE = 0.82, p < .01). The variant [Ù] 0f
/Z/ is more likely to occur in syllable coda position (Estimate = -8.13, SE = 2.2, p < .001).
The variant [s] of /Z/ is more likely to occur in syllable onset position (Estimate = 14.81,
SE = 5.71, p < .01). No effects for stress are found.

9.2 Discussion
The following discussions attempt to answer the research questions:

(i) Which fricatives can be found in Hong Kong English and what are their distributions
in terms of frequency?
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(ii) Which variants of fricatives can be found in Hong Kong English and what are their
distributions in terms of frequency?

(iii) Which linguistic factors (i.e. syllable position, stress, preceding labial consonants,
preceding /u/, and following /u/) influence the realisation of Hong Kong English frica-
tives?

9.2.1 Inventory of Hong Kong English fricatives

One of the aims of the present study is to propose an inventory of Hong Kong English
fricatives. It would be interesting to first look at the phonetic distribution of fricatives in
the word list dataset, as plotted in Figure 9.2. Given the design of the pseudo-words in the
word list, the occurrence of each fricative phoneme in the word list is ideally 3328 (12.5% of
the whole dataset). Therefore, 12.5% is added as a reference line in the Figure 9.2. As can
be seen, the occurrences of the voiced fricatives ([v], [ð], [z], and [Z]) are much lower than
12.5%. For the actual number of occurrences of each fricative, please refer to Table 9.1.

Figure 9.2 Percentage distribution of fricatives. The reference line is 12.5%.

Generally speaking, the voiced fricatives do not occur frequently in Hong Kong English.
That is to say, for most mid-range Hong Kong English speakers, there are mainly four
fricatives /f, T, s, S/ in their phonological system. This finding confirms the predictions
stated in Chapter 5 that voiceless fricatives will be mainly found in Hong Kong English and
that the occurrences of voiced fricatives will be marginal. This finding is also in line with
previous studies on Hong Kong English phonology (e.g. Hung, 2000). Hung (2000) studied
the speech production of 15 speakers using word list and found no evidence of [z], [ð], and
[Z]. Deterding et al. (2008) examined the speech production of 15 speakers using interview
data, and only reported that "if a sound other than [ð] is used, it is generally [d]" (p. 156)
but no frequency count was provided. In the present study, 106 speakers were recruited and
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26,442 tokens of fricatives were examined. Although it cannot be claimed to represent the
whole population of Hong Kong English speakers, the current dataset should be generalisable
enough, in which the distributions of fricative should be similar.

When it comes to the phonemic inventory of Hong Kong English fricatives, the question
is always: whether there are four fricatives or eight fricatives in Hong Kong English? The
present study tends to support the latter. Table 9.21 is the proposed phonemic inventory of
Hong Kong English fricatives. Since the voiced fricatives are marginal, they are in brackets.

Table 9.21 Proposed phonemic inventory of Hong English fricatives

place labiodental dental alveolar postalveolar
fricative f (v) T (ð) s (z) S (Z)

According to Hung (2000) and Deterding (2007), the proposed phonemic inventory of
Hong Kong English fricatives is different from Singapore and Malaysian English in which
the voiced and voiceless contrasts of fricatives exist, although not for all places of articulation,
see Table 9.22 for the inventory of consonants of Singapore English fricatives (W. Chen et al.,
2010). Nevertheless, Deterding (2007) observed some instances of /T, ð/.

Table 9.22 Phonemic inventory of Singapore English fricatives extracted from W.
Chen et al. (2010)

place labiodental dental alveolar postalveolar
fricative f v s z S Z

The inventory of a variety is important when it comes to constructing the acoustic and
pronunciation model of that variety. For example, W. Chen et al. (2010) used the inven-
tory of Singapore English as stated in Table 9.22. Since there were no dental fricatives,
when constructing a pronunciation dictionary of Singapore English based on the Cambridge
pronunciation dictionary, the following rewrite rules were applied (W. Chen et al., 2010, p.
3):

• Dental fricative /T, ð/ → /t,d/ in syllable-initial position

• Dental fricative /T/ → /f/ in syllable final position

It should be noted that these rewrite rules were applied to all syllable initial or final
position in W. Chen et al. (2010).

In the present study, the pronunciation rules based on the standard British English
(GB) pronunciation dictionary in MAUS (see Section 6.7) are established using all the eight
fricatives and their variants. In general, the voiced fricatives are set with low probabilities. If
there were only four fricatives (all voiceless) in the inventory of Hong Kong English, the voiced
fricatives would be completely rewritten to other sounds, as demonstrated in Singapore
English (W. Chen et al., 2010), meaning the voiced fricatives would never be recognised.
Nevertheless, this is not the case of the present study. The possibility to recognise voiced
fricatives in Hong Kong English should be retained.
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9.2.2 Prevalence of variation of Hong Kong English fricatives

Previous studies on Hong Kong English phonology have pointed out variation of the realisa-
tions of fricatives such as TH-fronting, TH-stopping, and voiced fricatives being substituted
by voiceless fricatives. Nevertheless, many of the studies (except Hansen Edwards, 2019)
did not provide frequency counts of the observations. This study attempts to answer how
prevalent variation is in the phonology of Hong Kong English, in general. Table 9.23 shows
the prevalence of variation per fricative phoneme and the distributions of the variants.

Table 9.23 Prevalence of variation per fricative in the dataset

Fricative variation variant(s)
/f/ 0% NA
/v/ 94.3% [f]: 93.6% [w]: 6.4%
/T/ 32.4% [f]: 100%
/ð/ 96.4% [T]: 53.7% [d]: 23.6% [f]: 22.7%
/s/ 2.2% [S]: 100%
/z/ 88.8% [s]: 97.4% [S]: 2.6%
/S/ 1.8% [s]: 100%
/Z/ 96.4% [S]: 49.5% [Ù]: 46.3% [s]: 4.2%

As can be seen, for the voiced fricatives /v, ð, z, Z/, the percentages of variation observed
in the dataset are very high. It is because the phonetic voiced fricatives rarely occurred
in the data set. Nevertheless, instead of four phonemes, the present study proposed eight
phonemes for the inventory of Hong Kong English fricatives. For the voiceless fricatives, no
variation for /f/ is observed. The percentages of variation observed for /s/ and /S/ are very
low, meaning they are mostly realised as the canonical /s/ and /S/.

The prevalence percentages help decide which variation is representative in Hong Kong
English and is worth further investigation. For example, Bolton and Kwok (1990, p. 153)
reported the list of observations of substitution, as shown below:

a. RP /T/ is replaced by /f/, e.g. [fiŋ] thinks

b. /ð/ is replaced by /d/ in initial position, e.g. [deI], and by /v/ in final position, [wiv
˚
]

with

c. /v/ is replaced by /w/, e.g. [d
˚
iwaI], divide

d. /S/ is replaced by /s/, e.g. [iŋglis], English

In the present study, the variant [s] of /S/ proposed by Bolton and Kwok (1990) only
occurs 1.8% among the total number of /S/. It can be inferred that this observation is not
representative, at least based on the data of the current study. In the next section, the
variants are discussed with respect to different linguistic factors.
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9.2.3 Variation and linguistic factors

Variation of /v/

Regarding the variation of the voiced labiodental fricative /v/ (94.3%), the present study
found that it is mostly realised as [f]. Nevertheless, syllable onset position slightly favoured
[v] but the overall occurrences of [v] are still low. A small number of the variant [w] are
also noted in the syllable onset position but stress is not a significant predictor. It can be
postulated that the realisation as [w] may be idiosyncratic. 28 speakers pronounced /v/ as
[w]. Some speakers produced such a variation consistently, meaning [w] is an allophone of
/v/ in their phonological systems. Others produced a mixed [w] or [f], meaning they behave
more like free variants. In general, the present study found that:

(i) [v] is observed although the occurrence is marginal

(ii) /v/ is mostly realised as the voiceless counterpart [f] in all environments

(iii) The realisation as [w] (in syllable onset position) does not occur frequently

The findings partially confirm the predictions stated in Chapter 5: the main variants
of /v/ will be the voiceless [f] and the voiced labialised velar approximant [w] (Bolton and
Kwok, 1990; Hung, 2000). Only the first part is confirmed. In addition, although it can be
claimed that the main variant of /v/ is [f], given the high percentage of substitution of [f]
for /v/, it can also be said that /v/ is primarily realised as [f], while the realisations as [v]
and [w] are marginal.

Variation of /T/

Regarding the variation of the voiceless dental fricative /T/, the present study noted that the
variation is around two-third (32.4%). That is to say, the majority (67.6%) of the production
of /T/ are [T]. With respect to the variation, this study found that [f] is more likely to occur
in syllable coda position and unstressed syllable respectively. In general, the present study
found that:

(i) Around two-third of /T/ are realised as [T]

(ii) There is only variant [f], but no instances of [s]

(iii) The variant [f] is more likely to occur in syllable coda position than onset position

(iv) Preceding labial consonant is a not a significant predictor

The findings confirm the predictions stated in Chapter 5 that two-third of the realisations
of /T/ will be [T]. This finding is different from what Hansen Edwards (2019) reported that
46% of the production are [T] while the other 54% is variation. The finding of this study is
more in line with the findings in the studies by Hung (2000) and Deterding et al. (2008), in
which two-third of the target /T/ were realised as [T].
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Nevertheless, the prediction: the majority of the variants of /T/ will be [f] and only a
small proportion of variants will be [s] cannot be confirmed. Hansen Edwards (2019) noted
5% (n = 84) of the realisation of /T/ was [s] and found that English proficiency had an effect
on TH variation that speakers with advanced level were more likely to produce the variant
[s]. Nevertheless, in the present study, only 13 out 3329 (0.39%) observations of /T/ are
realised as [s]. Hence, this variant was discarded from modelling. The finding of this study
is more in line with the findings in the studies by Bolton and Kwok (1990), Hung (2000),
and Deterding et al. (2008).

The findings of the present study also cannot confirm the prediction: TH-fronting is more
likely to occur when there is a preceding labial consonant in the same word. Hansen Edwards
(2019) found that the presence of a preceding labial consonant in the same word was more
likely to trigger the variation but no main effect for preceding labial consonants is found in
the present study.

Variation of /ð/

Regarding the variation of the voiced dental fricative /ð/, the present study found that the
variation was very high (96.4%). There are three variants, namely [T], [d], and [f]. [T] is more
likely to occur in coda position and [d] is more likely to occur in syllable onset position, but
they are not complementarily distributed. There was a significant amount of [T] occurring in
syllable onset position as well. There was no significant predictor found for the realisation
of /ð/ as [f]. In general, the present study found that:

(i) [ð] is observed although the occurrence is marginal

(ii) The variant [d] is more likely to occur in syllable onset position

(iii) The variant [T] is more likely to occur in syllable coda position but there are still a
large amount of [T] in syllable onset position

(iv) The variant [f] occurs in all environments but with relatively low frequency

The findings of the present study partially confirm the predictions stated in Chapter 5:
the realisation of /ð/ as [d] (TH-stopping) is more likely to occur in syllable onset position
and the variant [f] is more likely to occur in syllable coda position. Syllable position has
no effect on the occurrences of variant [f] of /ð/. Overall, the occurrences of [f] are low.
The findings tend to confirm what was proposed by Hung (2000) and Bolton and Kwok
(1990) that [d] was pronounced in word-initial and intervocalic position. Nevertheless, the
realisation of /ð/ as [T] should not be ignored.

Variation of /z/

Regarding the voiced alveolar fricative /z/, the substitution rate is very high (99.8%) and
most of the /z/ are realised as the voiceless [s]. In this case, it can be postulated that there
is almost no variation. Only a small amount of /z/ are realised as [S]. The realisation of /z/
as [S] is more likely to occur when preceded by back rounded vowel /u/ and in unstressed
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syllables. Some speakers were more susceptible to the influence of /u/ when pronouncing
/z/, and hence, produced a more anterior like fricative, which is the voiceless postalveolar
fricative /S/ in this case. In general, the present study found that:

(i) [z] is observed although the occurrence is marginal

(ii) /z/ is mostly substituted by [s] in all environments

(iii) A small number of the variant [S] of /z/ is observed and the variant is more likely to
occur when preceded by the back rounded vowel /u/ and in unstressed syllables.

The findings of the current study cannot confirm the predictions stated in Chapter 5
that /z/ is more likely to be pronounced as [S] when followed by back rounded vowels. The
following /u/ has no effect on the occurrences of [S] in this study. Nevertheless, there is an
effect for preceding /u/. This is not surprising since co-articulation effect can also come from
preceding context, as demonstrated by Jongman et al. (2000). The oral cavity is enlarged or
extended due to the lip rounding of /u/, and hence, the postalveolar fricative is more likely
to be produced, as explained in Section 3.1.

Variation of /Z/

The variation of /Z/ is very high (96.4%). The present study found that the variant [S] is
more likely to occur in syllable onset position and the variant [Ù] is more likely to occur
in syllable coda position. The variant [s] is more likely to occur in syllable onset position
although the overall occurrence was very low. In summary, the present study found that:

(i) [Z] is observed although the occurrence is marginal

(ii) The main variants of /Z/ are [S] and [Ù]

(iii) The variant [S] is more likely to occur in syllable onset environment

(iv) The variant [Ù] is more likely to occur in syllable coda environment

This finding is different from the prediction stated in Chapter 5 and what Hung (2000)
and Setter et al. (2010) claimed: all /Z/ is replaced by the voiceless /S/.
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9.3 Phonological rules of Hong Kong English fricatives
The key findings and discussions can be summarised by formulating phonological rules.
Nevertheless, the phonological rule, per se, may be misleading since none of the devised
rules is absolute (in terms of probability). Therefore, each rule is labelled as ‘high’, ‘mid’,
or ‘low’, which refers to the probability of occurrence of such a variation. The phonological
rules of Hong Kong English fricatives are proposed in Table 9.24.

Table 9.24 Proposed phonological rules of Hong Kong English fricatives

Fricative Phonological rule Probability of occurrence
/v/ /v/ → [f] in all environments high

/v/ → [w] in syllable onset position low
/T/ /T/ → [f] in syllable onset position low

/T/ → [f] in syllable coda position mid-low
/ð/ /ð/ → [T] in onset position mid-high

/ð/ → [T] in syllable coda position high
/ð/ → [d] in syllable onset position high
/ð/ → [d] in syllable coda position low
/ð/ → [f] in syllable onset position low
/ð/ → [f] in syllable coda position low

/z/ /z/ → [s] in all environments high
/z/ → [S] in all environments low

/Z/ /Z/ → [S] in syllable onset position high
/Z/ → [S] in syllable coda position low
/Z/ → [Ù] in syllable onset position low
/Z/ → [Ù] in syllable coda position high
/Z/ → [s] in syllable onset position mid-low
/Z/ → [s] in syllable coda position mid-low
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Chapter 10

Application in automated speech
recognition (ASR) system

10.1 Results of MAUS adaptation
The findings from the auditory analysis and the phonological rules in Chapter 9 were trans-
formed into pronunciation rules with a prior probabilities using the method described in
Section 6.7. They were then applied in WebMAUS together with the modified standard
British English (GB) pronunciation rule set to automatically label the phones from the sub-
set of story data. For simplification purposes, this model is referred to as GB-HKE hereafter.
The baseline model is the GB MAUS model with default pronunciation rule set for British
English. The phones estimated by the models are called hypotheses (HYPs). The labels from
the phonetic transcription by the researcher are called references (REFs). A total of 1815
target fricatives were examined. The accuracy was computed by comparing the hypotheses
and references (accurate HYPs / total no. of entries). Another common metrics to evaluate
phone recognition performance is to measure the Phone Error Rate (PER), which is also the
Levenshtein distance (no. of insertions + deletions + substitutions) between the decoded
output and the reference, normalised by the length of the reference at the phonemic level
but not word level (Kong et al., 2017). Nevertheless, this study concerns isolated phones but
not phones in sequence, therefore, PER was not adopted. The overall performance of target
phone recognition is shown in Table 10.1. The phone recognition accuracy of the baseline
GB model is 61.5%. The phone recognition accuracy of the GB-HKE model is 86.0%. An
averaged improvement of 24.5% is achieved when using the GB-HKE model.

Table 10.1 Overall accuracy of target phone recognition in MAUS

(N=1815) Baseline GB GB-HKE Improvement
Accuracy 61.5% 86.0% 24.5%

The phone recognition performance per speaker is illustrated in Table 10.2. For the
performance of the baseline GB model, it ranges from 49.3% to 76.4%. As for the performance
of the GB-HKE model, it ranges from 84.1% to 88.7%. Despite the small sample size, the
improvements of phone recognition accuracy suggest that this set of pronunciation rules of
Hong Kong English fricatives are able to boost the performance to at least 84% per speaker
regardless how the baseline model performed.

104



Table 10.2 Accuracy of phone recognition by speaker

Speaker Baseline GB GB-HKE Imrovement
F01 273/457 (59.7%) 391/457 (85.6%) 25.9%
F02 275/452 (60.8%) 380/452 (84.1%) 23.3%
M01 225/456 (49.3%) 391/456 (85.8%) 36.5%
M02 344/450 (76.4%) 399/450 (88.7%) 12.3%

Table 10.3 displays the misrecognised phones by the baseline GB model and the GB-HKE
model. For the baseline GB model, altogether, there are 698 instances of misrecognition,
distributed among 23 unique types. As for the GB-HKE model, altogether, there are 254
instances of misrecognition, distributed among 27 unique types. Since there is a long tail in
the distribution of types, only the five most frequent types of misrecognition are reported in
the table.

Table 10.3 Error analysis sorted by frequency of occurrence (Top 5)

a. Baseline GB b. GB-HKE
REF HYP n %

s z 249 35.7
f v 174 24.9
d ð 170 24.4
f T 29 4.2
T ð 20 2.9

(N = 698)

REF HYP n %
d ð 83 32.7
s z 45 17.7
T f 44 17.3
f v 20 7.9
ð d 9 3.5

(N = 254)

As can be seen from the error analysis of the baseline GB model, there seem to be a ten-
dency to over-recognise voiceless fricatives as the voiced counterparts such as for voiced/voice-
less alveolar fricatives (35.7%), labiodental fricatives (24.9%) and dental fricatives (24.4%).
The confusion of /f/ and /T/ (4.2%) as well as of /T/ and /ð/ (2.9%) is also an issue for
automatic phone recognition, though not a major one. Regarding the error analysis of the
GB-HKE model, the types of most frequent misrecognition are similar to that of the baseline
GB model. The confusion of /d/ and /ð/ (32.7%) is a major problem of recognition, followed
by the confusion of /s, z/ (17.7%). There is a tendency to over-recognise /T/ as /f/ (17.3%).

10.2 Discussion on the application in an existing ASR
system

The following discussions attempt to answer the research question:

(i) To what extent can the findings of this study be applied to an existing state-of-the-
art automatic speech recognition (ASR) system and improve the phone recognition of
Hong Kong English fricatives and their variants?
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10.2.1 Pronunciation rules

One of the aims of the present study is to apply the findings of this study in an existing
state-of-the-art automatic speech recognition (ASR) system. By comparing the phone recog-
nition performances, the generalisability of the findings can be evaluated. In this study, the
fricative production using pseudo-words with highly controlled phonetic contexts embedded
in a carrier phrase was examined. The findings were then transformed into pronunciation
rules and applied in WebMAUS to automatically label the story reading data, in which real
words were used. The difference between the highly controlled pseudo-words and the real
words in the story is that the real words in the story comprise more different vowel and
consonant contexts as well as more complex syllable structures than the pseudo-words in the
word list. In terms of probability, the conditional probabilities of phoneme occurrences are
also different in the two sets of data. In the highly controlled word list data, a simplistic
approach was adopted insofar that the conditional probability of a phoneme given different
sequence combination was assumed to be the same since the English phonotactics, syntax,
and semantics were constant. In the story reading data, the sequence combinations and
their conditional probabilities are more diverse. For example, the story was written in past
tense, and hence, it is more likely for the morpheme -ed (/d/ and/or /t/) to appear in the
word-final position.

The standard British English (GB) model in MAUS was employed in this study. Since
the GB language and acoustic model was trained on the AIX-MARSEC corpus (Auran et al.,
2004), which contained 55,000 transcribed words of spoken (standard) British English, most
common phoneme sequences and their probable pronunciation variants are covered. Recall
that the pronunciation model is an acyclic directed graph, in which the nodes represent a
single phone symbol, and the arcs represent the transitions from one symbol to the next
symbol with a conditional probability. What the pronunciation rules essentially do is to
replace and add more arcs to the graph. MAUS supports two types of pronunciation rules: i)
rules with statistical information and ii) rules without statistical information. Rules without
statistical information implies that the conditional probability is one, which is an absolute
transition arc. This type of pronunciation rule is not applicable for the present study because
results from the auditory analysis of the word list data suggest that the variants of fricative
production are not complete substitution or replacement. For example, even though the
findings indicate that the realisation of /Z/ as [Ù] is more likely to occur in syllable coda
position, it can also be realised as /Z/ (although marginally) and /S/. In this case, the arcs
to /Z/ cannot be removed. Instead, the arcs to /Ù/ and /S/ needs to be added. Therefore,
rules with statistical information were adopted in the present study.

As mentioned in Section 6.7, a ‘greedy’ approach was adopted when generating the MAUS
pronunciation rules, meaning phonetic environments which appeared in the story but not in
the word list were also included and the same conditional probabilities were applied. It also
means that the original conditional probabilities were overwritten, and the new probabilities
were estimated using idealised conditions. This estimation based on the limited phonetic
environments in the word list data cannot truly represent the conditional probabilities esti-
mated from a large corpus data. Nevertheless, for experimental purposes, the probabilities
estimated from the word list data were applied. The phone labelling results of the baseline
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GB model and the GB-HKE model were compared. The overall improvement of 24.5% of the
target phone recognition (from 61.5% to 86.0%) suggests a similar pattern of the realisation
of fricatives in the story data.

Results of the error analysis indicate that the number of voiced/voiceless fricative con-
fusion as well as the confusion of /ð, d/ and /T, f/ has significantly dropped. Despite the
drop in overall misrecognition, these confusions comprise 79.1% of the misrecognition. One
way to improve the recognition performance is to adjust the conditional probabilities per
rule. In this case, more annotated story reading data or, in general, a corpus of spoken Hong
Kong English, are necessary. The remaining types of misrecognition (20.9%) are relatively
miscellaneous. It is because there were instances of mispronunciation, self-correction, hesi-
tation, and disfluency in the story data. Misrecognitions due to these reasons are difficult
to improve. That is to say, the overall phone recognition accuracy of the GB-HKE model
can be increased to around 88.9%, at most. In this case, the overall performance of 86.0%
using the idealised probabilities from the word list data suggests that the GB-HKE model is
almost optimal.

To conclude, generating pronunciation rules using results of highly-controlled pseudo-
words and applying the devised rules in an existing state-of-the-art ASR system can improve
the overall phone recognition accuracy of non-spontaneous speech data. Such an application
is particularly useful when the target variety (e.g. many new varieties of English including
Hong Kong English and low-resource languages) is not available or supported in the existing
ASR systems. Instead of training an independent language and acoustic model for the target
variety, the existing language and acoustic model of a language can be adopted and optimised
for the target variety. In fact, training a language and acoustic model requires a large amount
of annotated data and is, by no means, a trivial task (Schiel, 1999; Schiel, 2015; Kisler et al.,
2017; Auran et al., 2004). Adding pronunciation rules of the target variety to an existing
language and acoustic model is a practical solution.

It should be noted that in MAUS, the pronunciation rules use SAMPA symbols, and
each language has a different set of symbols. Each MAUS model only accepts the SAMPA
symbols of that language. Using unstated SAMPA symbols is not permitted. Moreover, since
each acoustic model and language model of a language variety is trained independently, it
can be assumed that the acoustic feature vectors associated with same SAMPA symbol are
different, depending on the language variety. For example, the acoustic vectors of /u/ in
the standard American English (US) model are slightly different from the standard British
English (GB) model, and from the German (DE) model. The application of the pronunciation
rules in existing ASR systems means the associated acoustic vectors of the chosen model will
be used. In the next Section, the application of acoustic features in the ASR systems is
discussed.

10.2.2 Acoustic and phonological features

In an ASR system, Mel-frequency cepstral coefficients (MFCCs) are the common features
to be extracted as the acoustic vectors. In this process, a series of window frame (usually
25 ms) is applied on the speech signals. Within this time frame, the signals or waveforms
are assumed to be static (C. Zhang, 2017). Apart from MFCCs, time derivatives estimated
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using linear regression coefficients within the window, are also added to the feature vector
(Young et al., 2002). The output is a sequence of feature vector. In MAUS, the standard
feature set of 12 MFCCs + Energy + the first and second time derivative is computed per
each time frame (Kisler et al., 2017). It can be assumed that other ASR systems and forced
alignment tools (e.g. FAVE-align) which use the hidden Markov Toolkit (HTK) also adopt
similar pre-processing of audio files (see Section 4.2).

What is of more interest for the present study is how a phoneme (or a phone symbol)
is treated in the acoustic model. Each phoneme is actually modelled by a hidden Markov
model (HMM). It is widely known that the acoustic properties of a phoneme change from
beginning to end (see also the figures of window location in Jongman et al., 2000 and Maniwa
et al., 2009), and that there is a coarticulation effect from the preceding and following
sound. Therefore, the phonemes are usually divided into several states. In MAUS, three
states are employed for consonants and short vowels and four states are employed for long
vowels and diphthongs. Each state represents the probability distribution of feature vector
in the beginning, middle, and end of the phone. The probability densities of each state are
modelled separately (Senior et al., 2015). In addition, since the nature of speech acoustics is
sequential and forward-in-time, the HMM is restricted to forward transitions only (Šilingas
and Telksnys, 2004). The transition probability between states essentially denotes how long
the current state has been occupied. Figure 10.1 is an illustration of a three-state HMM for
a phoneme. As can be seen, it is not necessary to parse all three states. Sometimes the state
can be passed if the phones are pronounced very fast (Šilingas and Telksnys, 2004).

Figure 10.1 A three-state left-to-right HMM of a phoneme extracted from Šilingas
and Telksnys (2004, p. 96)

In short, each state contains information of a feature bundle of MFCCs, energy and time
derivatives, all derived from the speech signals. Altogether, they form an internal HMM
of a phone. MFCCs are suitable data type for modelling since they contain adequate in-
formation which represents a phone segment (C. Zhang, 2017). Other features can also be
used. For example, Senior et al. (2015) used 40-dimensional log mel filterbank features, from
which MFCCs are derived. Nevertheless, MFCCs and log mel filterbank features are rela-
tively opaque, meaning the acoustic characteristics of a phone segment cannot be explicitly
explained.

In order to investigate the acoustic differences between phones, a multitude of properties
can be compared. The present study examined 10 acoustic properties plus two DCT coeffi-
cients of Hong Kong English fricatives and their variants. Statistical models were also run
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to estimate the predictability of two most relevant groups of phonological features, namely
place of articulation and voicing. The two phonological features facilitate the understanding
of the acoustic characteristics of each phoneme since phoneticians generally acknowledge that
a fricative with features [-voice][+alveolar] (or [+anterior][+strident]) is /s/. Results from
the acoustic analysis of Hong Kong English fricatives and their variants show that several
acoustic properties of different fricatives are significantly different from each other by place
(83.4%) and voicing (96.1%). The classification models of place and voicing using MFCCs
also demonstrate relatively good performance. It suggests that certain phonological features
are useful when it comes to improving the phone classification performance.

The error analysis of the GB-HKE model demonstrates that the confusion mainly comes
from /d, ð/, /s, z/, and /T, f/. In terms of phonological features, the confusion of /d, ð/ can
be interpreted as a confusion of continuant: /d/ is [-continuant], while /ð/ is [+continuant].
The confusion of /s, z/ can be interpreted as a confusion of voicing: /s/ is [-voice], whereas /z/
is [+voice]. The confusion of /T, f/ can be interpreted as a confusion of place of articulation:
/T/ is [+dental] (or [+coronal][-labial]), while /f/ is [+labiodental] (or [-coronal][+labial]).
As demonstrated in the present study, phonological features can be extracted from the
input signals using neural networks. These phonological features, together with the MFCCs,
can be used in the acoustic model. Unfortunately, this part cannot be manifested in the
present study because it means each HMM of a phone needs to be re-trained with the new
feature vectors, which is beyond the scope of this study. Nevertheless, previous studies have
shown recognition improvement with similar implementation. For example, Deng and D. Sun
(1994) built an HMM-based ASR system using articulatory features (e.g. lips, tongue blade,
tongue dorsum, velum, and larynx) in order to model the context-dependent behaviours (i.e.
coarticulation effect) in speech. J. Sun and Deng (2002) incorporated high-level linguistic
constraints such as "word and phrase boundaries, morpheme, syllable, syllable constituent
categories, and word stress" (p. 1086) in an HMM-based ASR system. Results showed
that the overlapping-feature model performed better than the traditional context-dependent
(triphone-based) acoustic model. Therefore, it can also be predicted that by applying neural
networks of phonological feature extraction of Hong Kong English fricatives and their variants
in an adapted ASR system, the phone recognition performance can also be improved.
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Chapter 11

Conclusion

The present study systematically examined the acoustic characteristics and the phonology of
Hong Kong English fricatives. As pointed out by Bolton and Kwok (1990), the phonological
system of Hong Kong English is dynamic in a sense that it contains Hong Kong English
phonological features as well as the British or American English features, and the distribu-
tion of features is different from speaker to speaker. If Hong Kong English phonology is to
be conceptualised as a continuum, as proposed by Q. Zhang (2013) and Hung (2000), the
ratio of endonormative features and exonormative features (of standard British or American
English) is different when moving along the continuum. The idealised Hong Kong English
phonology would demonstrate all localised features with high frequency, and vice versa for
British or American English phonology. Nevertheless, neither the dynamic representation
nor the continuum representation of Hong Kong English suggests how the phonological sys-
tem of a typical Hong Kong English speaker is like. This study recruited 106 university
students in order to construct a sample of mid-range Hong Kong English speakers. In line
with previous studies, there is an assumption that a mid-range Hong Kong English speaker
is a typical Hong Kong English speaker. The term ‘mid-range’ was first used by Bolton and
Kwok (1990, p. 151). However, none of the studies of Hong Kong English phonology have
attempted to answer what ‘mid-range’ actually denotes. Does it mean half of the phono-
logical features are Hong Kong English and half of the phonological features are standard
British/American features? Results of the current study reveal that the realisations of Hong
Kong English fricatives in terms of exonormative and endonormative features are not at all
fifty-fifty. Instead, most of the realisations of fricatives are considered as endonormative
features. Examples include substituting voiceless fricatives are substituted for the voiced
fricatives and [d] and [Ù] to substitute for /ð/ and /Z/. That is to say, the ‘mid-range’ speak-
ers in this study are more included to the idealised Hong Kong English phonology end in
the continuum of Hong Kong English phonology rather than the idealised British/American
English phonology end.

Regarding Schneider’s (2007) Dynamic model, findings of the present study suggest that
the pronunciations of fricatives are relatively consistent and predictable, although there are
cases of free variation. This means that the realisations of Hong Kong English fricatives are
"stabilised linguistically to a considerable extent" (Schneider, 2007, p. 51). A homogeneity
of the realisation of Hong Kong English fricatives with respect to different linguistic factors
(mainly syllable position) across speakers indicates that Hong Kong English is very much in
the stage four–endonormative stabilisation in the Dynamic model.
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A lot of emphasis has been put on the method and quantifying the observations into
probabilities. In this regard, this study is different from previous studies on the phonology
of Hong Kong English which suggested a number of phonological features but not much
statistical information was provided. Some phonological features and linguistic factors sug-
gested in previous studies cannot be attested in the present study. For example, replacement
of /S/ with [s] and realisation of /Z/ as [v] cannot be observed in the present study. The
realisation of /v/ as [w] is also of low occurrence. The present study also found more variants
for /ð/ and /Z/ than previous studies. The variation of fricative with respect to different
explanatory variables was also modelled. Some results suggested in previous studies such as
the variant [d] of /ð/ being more likely to occur in syllable onset position can be replicated
in this study. Nevertheless, some findings such as preceding labial consonant facilitating the
realisation of /T/ as [f] cannot be replicated. Reasons why the results cannot be replicated
are manifold. One reason is that the data of Hansen Edwards (2019) was a mixture of reading
and spontaneous speech, while the present study used only word list data for the auditory
analysis. It can be the case that the production of /T/ is more susceptible to neighbouring
sounds in spontaneous speech.

Acoustic analysis of the fricatives and their variants was also conducted. It was found
that the patterns of some acoustic properties such as skewness and kurtosis were different
from standard American English. The predictabilities of phonological features using the
acoustic properties were also found to be different. It comes to the question whether there is
a need to create an acoustic model for Hong Kong English. A classification model of phone
symbols was built using the acoustic signals and neural network, and achieved overall good
performance (80.6%). Nevertheless, the data preparation, which required a large amount
of segmented phone data, was extremely time-consuming and labour-intensive. The present
study demonstrated a practical solution by applying the weighted pronunciation rules in an
existing ASR system. The target phone labelling accuracy increased significantly from 61.5%
to 86.0%. In this case, the acoustic model of standard British English was adopted with the
phonological rules specific to Hong Kong English fricatives, and no new acoustic model was
required. In fact, the trained models and the weighted pronunciation rule set are one of the
major contributions of the present study. They can be re-used for future research studies on
Hong Kong English fricatives and can significantly reduce the time on data processing. The
computational methods used in this study can also be applied to study other low-resource
language varieties.

Last but not least, what the current study examined is just a tiny part of the phonological
system of Hong Kong English fricatives, namely how fricatives are realised in a CVC syllable
with respect to four vowels /i, e, u, a/ and how syllable position and stress pattern influence
the realisation. How fricatives behave in consonant cluster and spontaneous speech, and if
there are any social factors such as gender, English proficiency, and age which may affect the
realisations of fricatives are not covered in this study. Nevertheless, they are all interesting
research questions and can be explored in future studies.
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Appendix A

Word List

Say bevdeð again.
Say ðetsheb again.
Say Tiksib again.
Say wapZad again.
Say fagzat again.
Say vapTak again.
Say puZbuf again.
Say baftaT again.
Say ðutshub again.
Say tuTpush again.
Say deðwep again.
Say teTpesh again.
Say zatfag again.
Say bivdið again.
Say kizbiv again.
Say piZbif again.
Say peshkez again.
Say sabgas again.
Say diðwip again.
Say vupTuk again.
Say Zudvup again.
Say shibðit again.
Say bavdað again.
Say pashkaz again.
Say wepZed again.
Say zutfug again.
Say pushkuz again.
Say buftuT again.
Say sebges again.
Say zitfig again.
Say fegzet again.
Say biftiT again.
Say shubðut again.
Say fugzut again.
Say wipZid again.
Say shabðat again.
Say Taksab again.

Say vipTik again.
Say peZbef again.
Say Zadvap again.
Say Tekseb again.
Say Zidvip again.
Say Zedvep again.
Say kezbev again.
Say sibgis again.
Say guspuZagain.
Say kazbav again.
Say shebðet again.
Say Tuksub again.
Say buvduð again.
Say duðwup again.
Say gaspaZagain.
Say wupZud again.
Say paZbaf again.
Say zetfeg again.
Say befteT again.
Say vepTek again.
Say tiTpish again.
Say daðwap again.
Say ðatshab again.
Say gespeZagain.
Say kuzbuv again.
Say pishkiz again.
Say subgus again.
Say taTpash again.
Say gispiZagain.
Say figzit again.
Say ðitshib again.
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Appendix B

Story

In this task, you will tell a story using the pictures given. The pictures were taken from
a famous Disney movie called ’Snow White and the Seven Dwarfs’. The genre is fairy tale
and the authors are Brothers Grimm from Germany. The passage below is an example. You
can also devise or develop your version and add your own view. Let’s read the following
paragraphs first.

Once upon a time during the winter season, there was a queen who wished to have a child
whose skin was as white as snow, with hair as black as the wood of the window frame, and
lips as red as rouge. Soon after that in spring, she gave birth to a child as mentioned and
the princess was therefore named Snow White. Three days later, the queen died because of
fever and poor health condition.

On Snow White’s seventeenth birthday, the king re-married to an attractive but wicked
woman. The evil queen had a magical looking glass which only told the truth. She asked
it who the most beautiful lady on earth was, and she assumed it was herself. However, its
response was Snow White. The queen felt threatened and asked the huntsman to kill Snow
White.

The huntsman took Snow White to the south, through the zigzag footpath, further down to
the black forest. They crossed the bridge and arrived in front of a cottage in a small village.
Then the huntsman was about to shoot Snow White. She was frightened and shouted for
help.

The owners of the cottage, who were seven native dwarfs, were having lunch inside. They
heard the noise and the screaming voice and saw the situation. They rushed outside and
attacked the huntsman by throwing food like fish, shrimps, beef, cheese, fresh vegetables,
strawberry, mushroom, spoons, forks, knife, and rubbish at him. The huntsman fled from
the crazy assault and committed suicide as he realised the plan was sabotaged and screwed
up, and the evil queen would send him to death anyways.

Thanks to the Seven Dwarfs, Snow White passed the crisis and her life was saved. To
ensure her safety, they invited her to stay and live with them. During daytime, the Seven
Dwarfs went out to work as usual, but they advised Snow White to make sure the door was
locked and not to open for strangers easily.

Five months later, the queen asked the looking glass again, and to her surprise, its an-
swer was still the same. She was shocked to find out that Snow White survived. She decided
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to kill her again with a more refined design: a poisonous apple.

She soaked the apple in a soup made with blood of presumably one thousand zombies and
pythons in South East Asia, and mixed with vinegar, and a special spell enchanted by a
wizard from voodoo. She disguised herself by dressing like a poor old lady zipped in black
clothing and venture to fetch Snow White.

Snow White was at leisure when she heard someone knocking but she always remembered
the advice and refused to open the door. The evil queen said, ’I am just a poor old lady who
wish to share a very juicy apple with you and spread love. Let me give it to you through
the window.’

The apple looked so juicy that Snow White thought it was worth trying. She took a bite of
it in her mouth, then she zoned out.

The Seven Dwarfs thought Snow White was dead as she neither moved nor breathed. They
put her in a glass coffin and held the funeral on top of the mountain. It happened that a
prince of prestige from a distant country walked past. He instantly fell in love with Snow
White and decided to give her a kiss out of sympathy.

To everyone’s surprise, the kiss broke the spell. Snow White was alive again and they
lived happily ever after.
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Plagiatserklärung 

 

 
[Bisher am Englishen Seminar verwendeter Text:] 

 
 

Laut eines Vorstandbeschlusses des Englischen Seminars muss als letzte Seite der 

Arbeit folgende Erklärung abgegeben und unterschrieben werden: 

 
Hiermit versichere ich, dass die vorliegende Arbeit über 

 

 

….………………………………………………………………………………………  

 

selbständig verfasst worden ist, 

dass keine anderen Quellen und Hilfsmittel als die angegebenen benutzt worden sind 

und dass die Stellen der Arbeit, die anderen Werken- auch elektronischen Medien-

dem Wortlaut oder Sinn nach entnommen wurden, auf jeden Fall Angabe der Quelle 

als Entlehnung kenntlich gemacht worden sind. 
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