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ABSTRACT
Light fields carrying orbital angular momentum (OAM) offer a broad variety of applications in which especially an accurate determination
of the respective OAM spectrum, i.e., unraveling the content of OAM by its topological charge ℓ, has become a main subject. Even though
various techniques have been proposed to measure the OAM spectrum of such modes, many of them fail if optical vortices have to be
considered in perturbed or dynamically changing experimental systems. Here, we put forward a novel technique capable of determining the
OAM spectrum of light by a single measurement shot, which specifically applies to those fields that have been distorted. Experimentally,
our technique only requires to interfere the perturbed light field with a reference field. From the resulting intensity pattern, the accurate
OAM spectrum is determined in an all-digital way. We demonstrate our novel approach by numerical simulations and a proof-of-concept
experiment employing a model ball lens as an exemplary disturbing object.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0086536

I. INTRODUCTION

In 1992, Allen et al. reported in their seminal paper that opti-
cal vortices with an azimuthally varying phase exp(iℓφ) carry a
well-defined amount of orbital angular momentum (OAM) ℓh per
photon.1 Here, φ is the azimuthal angle of the polar coordinates
(r,φ, z), ℓ is an integer number known as the topological charge,
which is associated with the number of times the phase wraps around
the optical axis, and h is the reduced Planck constant. This discovery
ignited a new era of fundamental and applied research, at both the
classical and the quantum levels (see, for example, Ref. 2 and refer-
ences therein). Applications have been proposed in optical micro-
and nano-manipulation, optical communications, high-resolution
microscopy, and optical metrology, amongmany others.3–11 In some
of these applications, the OAM of light serves as a path-breaking
information carrier. For instance, when a light field interacts with
chiral structures of scattering nanoparticles,11 the OAM of light

changes, now carrying information about the chiral nanostructure
itself. By OAM analysis, this information can be extracted and
nanoscale properties can be unveiled.

Notably, in most applications, an accurate determination of the
OAM spectrum, i.e., unraveling the content of OAM by its topo-
logical charge ℓ, is crucial, leading to several proposals on how to
measure it. Since the early days, many techniques have relied on
interferometric approaches, in some of which the unknown field
interferes with a plane wave12,13 or an inverted copy of itself.14–20

Thereby, the discrete topological charge is extracted from the inter-
ference pattern, for example, by counting the number of arms in the
spiraling intensity strips pattern. Other techniques employ diffrac-
tion phenomena, e.g., by propagating the OAM-carrying beams
through an annular aperture21 or an axicon.22 Since the number
of bright rings in the far- or near-field intensity profile, respec-
tively, is equal to the discrete topological charge of the beam, the
OAM spectrum can be identified. In a variant of these approaches, a
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triangular aperture can be implemented.23 In this case, the bright
points at any side of the triangular diffraction pattern are directly
related to its topological charge—an approach that has been gen-
eralized to also determine the radial index in Laguerre–Gaussian
modes.24 Other approaches include phase-shifting digital holog-
raphy,25 the weak measurement principle,26 and the rotational
Doppler effect,27 to name a few. More recently, the use of cus-
tomized refractive optical elements has led to the development of
a device termed the mode sorter, which allows direct measure-
ment of discrete topological charges. Such a device relies on the
conversion of OAM modes into modes with a transverse phase
gradient. Depending on their topological charge, the modes are
focused to different lateral positions.28 Subsequently, a general-
ized digital version of this mode sorter was proposed, to not
only measure the topological charge but also the radial index of
Laguerre–Gaussian modes, termed the Laguerre–Gaussian mode
sorter.29

Most of the above-mentioned techniques only allow for extract-
ing discrete ℓ values and/or can be successfully applied only to
ideal, i.e., undisturbed vortex beams or beams in static experimental
configurations. In contrast, an accurate determination of the contin-
uous OAM spectrum under nonideal conditions represents an open
challenge, which includes light propagating through a faulty, e.g.,
astigmatic optical system, under atmospheric turbulence, or when
experimental settings change dynamically. This can be the case, for
example, in fiber or free-space optical communication with struc-
tured light.9,10,30 Here, one of the “killing” factors is the resulting
modal-crosstalk, which leads to a broadening of the OAM spec-
trum. This crosstalk ultimately reduces the transmission capacity
of the optical link.31 One of the main effects caused by the exam-
ple of turbulence is the transverse shift of transmitted modes (also
known as tip or tilt). Nonetheless, for an optical vortex beam to be
accurately detected, its phase singularity (point of undefined phase)
has to be centered with respect to the OAM decoding system, e.g.,
the transverse phase vortex encoded in a decoding hologram.32 Any
misalignment will result in a crosstalk: As OAM beams represent a
complete mode set, a misaligned optical beam can be represented
as a complex linear combination of different OAM modes.33 As a
consequence, the OAM spectrum significantly and unintentionally
broadens. Therefore, many approaches have been proposed to over-
come such issues.34–38 For example in Ref. 34, the authors proposed
to use optical modes with less sensitivity for transverse shifts, such as
Hermite–Gaussian modes. Alternative approaches suggest to iden-
tify the tilt angle and correct for this aberration either by recovering
the phase distribution of the tilted OAM mode or by the use of
machine learning techniques.37–39

Nevertheless, the accurate alignment of a physical electric field
of interest to its likewise physical, analog optical decoding system
remains a major challenge, especially when disturbances or dynamic
changes are involved. The implementation of digitally controllable
elements as spatial light modulators (SLMs) or digital mirror devices
(DMDs) eases this process; however, they cannot fully solve the
problem. They allow for digital, computer-generated decoding holo-
grams, which can be adapted dynamically and enable including,
for instance, correcting functions for some disturbances. However,
accurate hologram position and correcting functions have to be
determined beforehand, but they might change dynamically. Hence,
to enable accurate determination of the OAM spectrum of light

under nonideal, maybe dynamically varying conditions, we propose
to go all-digital.

In this work, we present an all-digital technique aimed at
extracting the continuous OAM spectrum of a disturbed light
field, with specific applications to those that have suffered from
small perturbations due to, for instance, lens aberrations or angu-
lar misalignment.We demonstrate this approach through numerical
simulations and a proof-of-concept experiment, using a glass ball
lens as the perturbing medium. We transform the physical light
field of interest into a digital one by established digital holographic
phase metrology40 (DHPM)—the interference of the target optical
field with a reference field—and, subsequently, digitally process the
recorded interference pattern. This single-shot measurement facili-
tates the accurate determination of the continuous OAM spectrum
by implementing adaptable correction patterns, paving the way to
OAM spectrum analysis in dynamic, high-speed systems. For this
purpose, we implement tools of singular optics for precise iden-
tification of the transverse decoding position in light. Further, we
highlight the effect of typical errors occurring in physical decoding
systems on the OAM spectrum and present approaches for their cor-
rection by our all-digital technique. The proposed all-digital, single-
shot approach is particularly beneficial for high-speed investigations,
less sensitive to errors such as imperfections of optical systems,
and enables the accurate determination of continuous OAM spectra
with high precision due to optimized and automated determination
of the decoding position and correction of dynamically changing
disturbances.

II. DETERMINING THE OAM SPECTRUM OF LIGHT
A. Standard holographic OAM decoding

To holographically decode the OAM spectrum of a scalar light
field E = E0 ⋅ exp(iϕ), a combination of a phase-only spatial light
modulator (SLM) and a Fourier lens (Lℱ) is typically applied,32 as
illustrated in Fig. 1(a). Thereby, the field E is multiplied by the SLM
phase function in the SLM plane (=real space) and the lens creates
the far field of the result on a detector, e.g., a camera. This stan-
dard decoding approach relies on the inner product of E and each
of the OAM-carrying modes uℓ = exp(iℓφ) (φ ∈ [0, 2π]) in the sub-
space of interest ℓ = [ℓmin, ℓmax]. This technique is based on modal
decomposition (for more details, see Ref. 32), where we assume that
each optical field can be expressed as a linear combination of basis
functions from an orthogonal set of spatial modes,32

u(r⃗) =
∞
∑
ℓ=1

cℓuℓ(r⃗), (1)

with spatial coordinate r⃗ and complex coefficient cℓ = ρℓ exp(iϕℓ),
its amplitude ρℓ and intermodal phase Δϕℓ = ϕℓ − ϕ0. By displaying
u∗ℓ as a phase-only function (hologram), that is, arg(u∗ℓ ) = −ℓφ on
the SLM, the product ρ2ℓ = ∣⟨uℓ∣E⟩∣2 is shaped. In this case, the on-
axis intensity in the Fourier plane of the SLM, i.e., on the detector, is
proportional to the power content of the OAM mode of topological
charge ℓ. By measuring the power content per ℓ of interest, display-
ing the according function arg(u∗ℓ ) on the SLM, the OAM spectrum
of E is determined.

Note that one can choose to display multiple decoding holo-
grams at a time by, e.g., angular/spatial multiplexing41–43 in order to
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FIG. 1. Holographic OAM spectrum analysis of a light field under ideal conditions.
(a) The typical experimental scheme: The electric field E of interest is modulated by
the hologram of u∗ℓ , encoded onto a phase-only spatial light modulator (SLM), and
is subsequently 2D Fourier transformed onto a detector by a Fourier lens (Lℱ),
forming the product ρ2

ℓ = ∣⟨uℓ∣E⟩∣
2. The amplitude E0 and the phase ϕ of the

exemplary scalar field E, i.e., the Laguerre–Gaussian (LG) field with w0 = 0.25
mm, ℓ = 1, and p = 0 are shown in (b) and (c), respectively. (d) The respective
normalized OAM spectrum is extracted from (e) the intensity ρ2

ℓ = ∣⟨uℓ∣E⟩∣
2 in

Fourier space (examples for ℓ = [−2, 2] ∈ N).

speed up the measuring process. In this case, each hologram u∗ℓ is
assigned to a selected spatial carrier frequency by adding a blazed
grating such that ρ2ℓ is found at different transverse positions in
the Fourier space. Thereby, the system has to be calibrated with
respect to the diffraction efficiency per grating. Further, the number
of simultaneously displayed holograms is limited by, for instance,
the resolution of the SLM.

We illustrate this standard approach (without multiplexing)
in Fig. 1 (simulation) for decoding the OAM spectrum of a heli-
cal Laguerre–Gaussian (LG) light field described by a complex
amplitude,44–46

LGp,ℓ(r, φ, z) = Ap,ℓ(r, z) ⋅ ei
kr2

2R(z) ⋅ eiϕ
G
p,ℓ(z) ⋅ eiℓφ, (2)

Ap,ℓ(r, z) =
√

2p!
π(∣ℓ∣ + p)! ⋅

1
w(z) ⋅ e

− r2

w2(z)

× ( r
√
2

w(z))
∣ℓ∣
⋅ L∣ℓ∣p (

2r2

w2(z)), (3)

ϕGp,ℓ(z) = (2p + ∣ℓ∣ + 1)ϕG0,0(z), (4)

where, k is the wave number, R(z) the wave front curvature, w(z)
the beam radius, w0 = w(0) the beam waist, p ∈ N0 the radial mode
index, Lℓn(⋅) the eponymous Laguerre polynomial,47 ϕGn,ℓ the Gouy
phase shift of LG light fields, and ϕG0,0 the Gouy phase shift of fun-
damental Gaussian light field. The phase vortex structure exp(iℓφ)
is related to a twisted wave front upon propagation and causes
the formation of a point of undefined phase, i.e., a phase singu-
larity on the propagation axis of LG fields. The optical decoding
by the system of SLM, Fourier lens, and detector is simulated by
the two-dimensional (2D) Fourier transform (ℱ) of the product of
the electric field and the phase function of the SLM hologram, i.e.,
ℱ[E ⋅ exp(−iℓφ)].

Note that ℓ is also considered as the singularity index of the
embedded phase singularity (ℓsing = ∮ dφ/2π ∈ Z) and, for those,
represents a conserved quantity.48,49 However, ℓ (integer and frac-
tional) is also established as a measure for OAM of vortex beams
and is used as such in the context of this work.

The exemplary scalar light field has a topological charge ℓ = 1,
radial index p = 0, and beam waist w0 = 0.25 mm. Its ring-shaped
intensity and vortex phase are presented in Figs. 1(b) and 1(c),
respectively. When this light field passes the analysis system of SLM
and Fourier lens, in Fourier space, we observe intensity structures
as illustrated in Fig. 1(e) for integer ℓ = [−2, 2]. Considering the
respective on-axis intensities as the power content per OAM mode,
we can determine the OAM content or spectrum, as presented in
Fig. 1(d). Note that, here and in the following, we also consider
fractional OAM values with ℓ = [−3, 3], ∈ R, resulting in continuous
OAM spectra, which are of specific interest for applications in opti-
cal sensing based on OAM,3,4 in particular in nanoscale systems11
and/or if minimal changes in OAM content might be of interest. As
expected, a clear, absolute maximum is observed for ℓ = 1, reflect-
ing the chosen topological charge of the exemplary LG field. While,
as expected, for integer values with ℓ ≠ 1, minima (= 0) are found,
OAM of fractional ℓ values reveals nonzero contributions to the
total spectrum. This is due to the fact that modes of fractional ℓ
can again be represented by the complete mode set of integer OAM
fields and, therefore, also contain contributions of OAM modes of
charge ℓ = 1.

Even though this measurement procedure is well established,
it still presents some challenges to the general user. One of these
challenges is the appropriate transverse positioning of the decoding
hologram in relation to the optical axis of the light field or, more pre-
cisely, to the center of the embedded optical vortex, which represents
the carrier of OAM information. In Fig. 2, we illustrate the effect of
misaligning hologram and optical vortex when analyzing the OAM
spectrum of light. Again, we use the LG0,1 field as illustrative exam-
ple. We assume a transverse mismatch between the LG field and the
hologram by changing the x-distance between their centers. Note
that the position of the hologram is shifted by Δx in the x-direction,
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FIG. 2. Effect of misalignment between light field and decoding phase field. The
center of the decoding phase is shifted with respect to the light field center in the
x-direction by a small distance Δx. (a) The respective calculated OAM spectrum
of the LG field shown in Fig. 1. The intensity of the Fourier transforms of the elec-
tric field multiplied by the phase field are exemplified in (b) for the misalignment
Δx = 0.2 mm (= 0.8w0).

while the light field stays centered at (x, y) = (0, 0), assuming that,
in the corresponding experiment, the field and Fourier lens are well-
adjusted in the optical system. Figure 2(a) reveals an increasing shift
(in negative ℓ direction) in the OAM spectrum for increasing Δx
(orange, green), with its distribution deviating from the ideal curve
(blue). The respective change of the intensity distribution in Fourier
space ρ2l (on the detector) is exemplified forΔx = 0.2mm in Fig. 2(b).
For a mismatch of the holograms and the light field center, the
main contribution in OAM spectrum is no longer located at ℓ = 1,
but it is shifted to fractional values ℓ < 1 and significant contribu-
tions at integer values ≠ 1 appear (e.g., ℓ = 2). Note that this shifted
spectrum represents the correct OAM for the chosen point of ref-
erence, i.e., the central position of the shifted hologram. However,
we are interested in the overall OAM carried by the beam in its
propagation direction, i.e., the point of reference has to be located
on the optical axis of the beam.

Deviations from the accurate OAM spectrum, appearing for an
incorrect point of reference, may become critical and cause incorrect
results when implementing optical spectrum analysis in applica-
tions, such as information transfer and encoding50,51 or the study
of chiral media/structures.11 Optical systems can generally be opti-
mized such that the light field and the hologram center are matched
as closely as possible. However, an exact match is hard or even
impossible when the light field is moving in the transverse plane,
e.g., as a result of propagation through a refracting, maybe, dynamic
medium. The identification of the phase vortex center of the field
is further complicated by the fact that the center of OAM-carrying
light fields is, in general, dark with low to zero intensity. Tackling
these issues, in the following, we propose an alternative all-digital
approach to optimize holographic OAM spectrum analysis.

B. Single-shot, all-digital OAM spectrum analysis
The proposed all-digital OAM spectrum analysis is sketched in

Fig. 3 (simulations), exemplified for E = LG0,1. For this approach,

FIG. 3. Concept of single-shot, all-digital OAM spectrum analysis. (a) Off-axis
interference pattern of the light field of interest E and reference plane wave (in
experiment, measured on a camera), which is Fourier transformed (ℱ), giving
the pattern in (b) (logarithmic representation). By selection of the first diffrac-
tion order (blue box) and inverse Fourier transform (ℱ−1), the (c) amplitude
E0 and phase ϕ of the complex electric field E can be extracted. (d) Correct-
ing phase patterns ϕcorr can be applied to optimize the final OAM spectrum
results (ϕ→ ϕ′ = ϕ + ϕcorr). Subsequently, the measured E = E0 ⋅ exp(iϕ) [or
E′ = E ⋅ exp(iϕcorr)] is (e) multiplied by the digital holograms u∗ℓ (for integer as
well as fractional ℓ), which are adjusted according to the singularity position in (c) ϕ
[or (d) ϕ′], found by zero-lines ZR,I as exemplified in (d) (right). (f) Fourier trans-
form is used to determine ρ2

ℓ on the optical axis (kx , ky) = (0, 0), representing
the contribution per OAM mode and giving (g) the OAM spectrum.

we first apply the established digital holographic phase metrology
(DHPM; for details, see Refs. 40, 52, and 53) to extract the amplitude
and the phase of the light field E of interest and, simultaneously, dig-
italize it. Thereby, E (real space) is interfered off-axis with a plane
wave of the same polarization. In the experiment, this plane wave is
approximated by an expanded, collimated Gaussian laser beam. The
formed transverse interference pattern [Fig. 3(a)] is recorded on a
detector (camera) in real space—this pattern is all what is needed
to subsequently extract the OAM spectrum digitally. In the next
step, the interference pattern is Fourier transformed (ℱ), giving
a complex 2D field [intensity in Fig. 3(b)]. In this field, we iden-
tify and crop [see blue box in (b)] the contribution of E, located
at nonzero spatial frequencies in k-space (Fourier space) with the
location depending on the interference angle. The inverse Fourier
transform (ℱ−1) of the cropped complex field gives the measured
electric field E with amplitude E0 and phase ϕ [Fig. 3(c)]. Note that
measured phase values are only to be considered at positions where E
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is not approximately zero. Otherwise, random phase values (speck-
les) contribute to the later OAM spectrum. To do so in experiment,
we derive a binary 2D mask from the measured amplitude, deleting
all outer electric field information (i.e., the dark center of a donut
beam will be kept) where the intensity ∣E0(x, y)∣2 is smaller than 3%
of its maximum.

In order to extract the OAM spectrum of the light field, we per-
form the multiplication of E = E0 ⋅ exp(iϕ)with the hologram func-
tions u∗ℓ per ℓ [Fig. 3(e)], Fourier transform the product [Fig. 3(f)],
and determine the on-axis intensity in Fourier space [white cross in
(f)] being proportional to the OAM mode contribution [resulting
spectrum in Fig. 3(g)]. To avoid deviations due to misalignment of E
and the hologram, we center the hologram according to the posi-
tion of the optical phase singularity in E [or E′ = E ⋅ exp(iϕcorr),
see details below], which is naturally included for most OAM-
carrying light fields. For this purpose, we use zero-lines54–56 of the
real (ZR) and imaginary (ZI) part of E (E′) to identify an embed-
ded phase singularity as zero-line intersection. The implementation
of zero-lines has the advantage that the singularity identification
can be performed all-digitally without the requirement of alterna-
tive extended algorithms searching for a 2D phase vortex structures
by comparison of neighboring pixels. Zero-lines are exemplified for
the corrected phase pattern (see outline below) by white dashed and
solid line in Fig. 3(d), ϕ′. If E carries OAM of ℓh/photon with ∣ℓ∣ ≥ 2,
as in the case of higher-charged LG beams, a nongeneric higher-
order phase singularity is expected in ϕ, which, in experiment or in
combination with other spatial modes, splits into multiple closely
neighboring, generic first-order (∣ℓ∣ = 1) phase singularities54,56 due
to perturbations. In this case, the center of the hologram is chosen
to be the center between all identified first-order singularities. An
example for this approach is depicted in the supplementary mate-
rial, Fig. 1. It presents the OAM decoding results (simulations) for
a 50/50 combination of a Gaussian beam (LG0,0) and a higher-order
LG0,3 beam when positioning the holograms at the geometrical cen-
ter of split singularities. Note that one can also choose to crop the
field of view of measured E such that the found singularity or a
circle of split singularities is centered and, subsequently, place the
hologram centered.

To successfully employ the singularity position(s) for adjust-
ing the hologram, we have to ensure that the measured interference
pattern [Fig. 3(a)] is of high contrast and the area of low inten-
sity around singularities (central part of the ring-shaped intensity)
is appropriately resolved. Optimally, the intensity in the central area
only becomes zero at the position of the singularity itself. In this case,
the singularity position is clearly defined. With decreasing resolu-
tion of the central area of low intensity, the precision in determining
the singularity position(s) and, subsequently, the OAM spectrum,
decreases as well.

The described procedure also allows for additional optimiza-
tion steps [Fig. 3(d)] prior to OAM spectrum extraction, which can
be of benefit depending on the perturbations the light field of inter-
est experiences and the therefrom resulting phase distribution ϕ. We
exemplify this option in the following by analyzing an LG0,1 field
refracted by a ball lens—first numerically and, in Sec. V, experimen-
tally. Since the angular momentum of light is a conserved quantity,
the OAM content of the light field is expected to be unaffected by
the refraction by a ball lens. This allows us to suggest and inves-
tigate approaches to correct for typical errors that can disturb the

resulting OAM spectrum. Note that, even when including possible
correction steps, the outlined measurement procedure is unchanged
and still requires only a single-shot recording of the interference
pattern.

III. THE EFFECT OF WAVE FRONT CURVATURES
A wave front curvature of a light field appearing in combina-

tion with embedded phase vortices can disturb the outcome of an
OAM spectrum analysis: Additional curvatures result in a change in
the Fourier space distribution of the light field E and, therefore, eas-
ily cause errors when extracting the power content per OAM mode.
As outlined above, the Fourier transform represents the focusing of
the fieldmultiplied by the hologram through a lens. Thus, wave front
curvatures, similar to lens errors, can cause a transverse and also lon-
gitudinal shift of the lens’ focus position in Fourier space, thereby
perturbing the read-out of the power content. However, such effects
can also be negligible depending on the symmetry of the wave front
curvature. We illustrate this by the example of the LG0,1 beam pass-
ing through a ball lens, adding (among other features) spherical wave
fronts to the light field.

Propagating through a ball lens in air, a light field is strongly
refracted, experiencing aberrated focusing.57 For the LG0,1 beam
passing through a glass ball lens of 2 mm diameter (refractive
index n = 1.458), the resulting light field distribution is illustrated
in Figs. 4(a) and 4(b) (simulations). The beam waist of the LG
light field is assumed to be at the front surface of the ball lens
with w0 = 0.25 mm. Simulations are performed by the vectorial ray-
based diffraction integral (VRBDI) method introduced by Andreas
et al.58,59 (for more detailed information, see Ref. 57 where the
scheme was applied in a similar setup). We show (a) the three-
dimensional (3D) evolution of intensity and (b) the transverse
intensity and phase distribution in three selected (x, y)-planes. The
spherical wave front before and behind the focal point of the ball
lens [see (a)] will cause the phase structure of E to include not only
a phase vortex but also an additional phase curvature. Due to aber-
rations, before the focal point of the ball lens [(b), z = 1500 μm], we
observe multiple transverse intensity rings and, accordingly, phase
jumps in the spiraling phase structure of ϕ. Behind the focal point
[(b), z = {1600, 1650} μm], a blurred intensity ring is found in the
transverse plane, diverging upon propagation in the +z-direction.
Here, the transverse phase structure only contains a spiral, formed
by lines of equal phase value, and no phase jumps, corresponding to
the combination of phase vortex and spherical wave front.

Figure 4(c) shows the OAM spectrum of the light field (sim-
ulations), refracted by the ball lens, for different z-positions in
comparison to the spectrum of the input LG0,1 field (at its beam
waist). Even though the phase structure of the refracted field is devi-
ating from the typical, ideal phase vortex as carried by the exemplary
LG0,1field, the OAM spectrum is almost the same. A cylindrical
symmetric spherical wave front is responsible for a phase distri-
bution similar to the one corresponding to an optical lens and,
therefore, causes the defocusing or focusing of light in its far field,
namely, in Fourier space. Thus, when decoding the OAM spec-
trum by multiplication with the hologram function and subsequent
Fourier transform, spherical wave fronts do not affect the relative
on-axis intensity observed for different u∗ℓ . Due to their cylindri-
cal symmetry, the multiple transverse, centered rings in phase and
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FIG. 4. Simulated light field of the LG0,1 beam after passing centered through
a ball lens. (a) x-z and y-z cuts of ∣E∣2 normalized to the maximum intensity
in the plane; z values are measured from the center of the ball lens. For three
z-positions, (b) the intensity (top) and the phase (bottom) are shown in transverse
planes. The respective calculated OAM spectra are shown in (c) together with the
OAM spectrum of the input light field for comparison. All spectra are normalized to
their respective maximum value.

intensity (before the focus of the ball lens) do not affect the on-axis
intensity in Fourier space and, hence, the spectrum neither.

In contrast, if a wave front curvature that corresponds to more
complex lens errors has to be considered, the spectrum can deviate
more significantly from the ideal one. A typical example is that of
wave front curvatures with elliptical symmetry, occurring frequently
due to, for instance, astigmatic lenses, nonideal fibers, non-flat SLM
surfaces, or other optical components in the beam path. In compari-
son to the ball lens example, we now assume the LG0,1 light field to be
focused by a thick glass lens of spheroid shape (cf. Ref. 57), with its
half axis being Ry = 0.94 mm in the y-direction and Rx,z = 1.06 mm
in the x-/z-direction. In this case, two focal planes are found due to
astigmatism.57 Figure 5(a) shows the transverse intensity and phase
distribution at three different z-positions, clearly revealing the ellip-
tical deformation of the originally cylindrical symmetric LG input
field. The extracted OAM spectrum at z = 1650 μm (behind both
focal planes) is shown in Fig. 5(b) (orange) in comparison to the
spectrum of the input field (blue).

FIG. 5. Simulated light field of the LG input field after passing centered through a
spheroid lens with half axis Rx = Rz = 1.04 mm and Ry = 0.96 mm (cf. Ref. 57).
(a) Transverse cuts of the intensity (top) and the phase (bottom) at three
z-positions. (b) Calculated OAM spectrum (normalized; orange) behind both focal
planes (tangential and sagittal plane) of the lens at z = 1650 μm in comparison
with the normalized OAM spectrum of the input LG light field (blue).

Obviously, the spectrum deviates from the ideal spectrum,
showing significant contributions at integer ℓ ≠ 1 values. These con-
tributions should not be found since, for a light field only interacting
with such a glass object, OAM should be conserved. The reason for
this error in OAM spectrum analysis is the effect of the elliptical
wave front in Fourier space. Under Fourier transform, an ellipti-
cal wave front acts like an astigmatic lens (not to be confused with
the spheroid lens we applied for creating the field under investi-
gation). When holographically extracting the OAM spectrum, this
effect can be considered as applying a nonideal Fourier lens to the
OAM-carrying part of the field. In this case, the horizontal and ver-
tical distributions of the light field are focused and, thus, decoded
(=ideally Fourier transformed) in different z-planes (sagittal and
tangential plane). Hence, when selecting an observation plane, it
does not represent the required Fourier transform and the extracted
OAM spectrum is incorrect.

The proposed experimental all-digital OAM spectrum analysis
provides the opportunity to correct for these or similar errors due
to wave front curvatures. After performing DHPM, the wave front
curvature can be neutralized by multiplying the measured electric
field distribution by a 2D correction pattern [E ⋅ exp(iϕcorr) = E

′;
see Fig. 3(d)]—for instance, an inverse spherical lens. This will be
exemplified in Sec. V. For a precise determination of the required
correction, we unwrap the measured phase distribution via a robust
unwrapping algorithm, which is described in Ref. 60. This algorithm
allows transforming the 2π-folded, 2D phase map into a continu-
ous one, going beyond 2π values. In this map, the azimuthal phase
gradient corresponding to a phase vortex is minor in comparison
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to the one corresponding to a curved wave front. Hence, we fit this
continuous map by a 3D ellipsoid function and create the required
phase correction from this fit. As an alternative approach, the cor-
rection can be estimated by determining the phase gradient pointing
away from the phase singularity. This gradient can be used to create
an elliptical lens-like phase correction. The position of the singu-
larity in E is determined from zero-line intersection and does not
necessarily match the center of the spiral observed in ϕ, formed by
lines of equal phase value [Fig. 3(c), ϕ]. This effect is due to addi-
tional phase factors, namely, a phase ramp. This typical distortion
can be caused by an angular misalignment of the normal vectors on
the decoding plane and (x, y)-plane of the light field of interest and
will be described in more detail in Sec. IV. Note that before deter-
mining and applying the correction for the curved wave front, phase
ramps should be considered, since this moves the spiral in ϕ back
to surrounding the singularity. If it has been estimated, ϕcorr for the
curved wave front should be positioned according to the singularity
position.

IV. ANGULAR MISALIGNMENT OF LIGHT FIELD
AND DECODING PLANE

When analyzing the OAM spectrum of a light field, the plane
of observation does not necessarily match the propagation direction
of the field, i.e., the normal vector on the observation (=decoding)
plane and wave vector k⃗ of light field propagation are not parallel to
each other. Similar to a transverse mismatch between the decoding
hologram and the beam center (see Sec. II A), this angular devia-
tion is equal to an incorrect point of reference for the determination
of OAM spectrum. This can easily occur, for instance, when the
light field is meeting the SLM, used for holographic OAM decoding,
under an angle—SLMs are often set up like this to allow for inde-
pendent incoming and reflected beam paths. Further, when OAM-
carrying fields are used for metrology, they interact with media,
which might change their propagation direction. To exemplify this
case, we simulate the LG0,1 field propagating through the ball lens
with its propagation axis parallelly shifted by Δx = 0.1 mm. Hence,
the LG field does not meet the ball lens center. The resulting 3D
structured light field E behind the ball lens is depicted in Figs. 6(a)
and 6(b). The (a) evolution of intensity upon propagation as well
as (b) the selected z-slices reveal aberrational effects with multiple
transverse intensity rings before the focal plane (z = 1450 μm) and
smearing of intensity rings behind the focus (z = {1600, 1650} μm).
The asymmetry in the light field distribution depicts the tilting of
k⃗ in the x-direction, also visible in (a). The tilting becomes particu-
larly visible when observing the dark center (phase singularities) of
the ring-like intensity structures in the transverse planes, which are
clearly shifted off-axis.

If the propagation direction of light (k⃗) is not perpendicular to
the observation plane, one will observe a 2D phase ramp in the trans-
verse phase ϕ structure of E. For the presented example in Fig. 6, this
phase ramp affects the observed transverse phase structure shown in
(b), clearly deviating from the case in which the light field passes
the ball lens centered [cf. Fig. 4(b)]. In this case, we observe not
only the effect of aberration and wave front curvatures but addi-
tionally asymmetric deformation and the effect of tilted light field
propagation.

FIG. 6. Simulated light field of the LG0,1 beam after passing through a ball lens
with an offset of Δx = 0.1 mm between lens center and beam axis. (a) x-z and
y-z cuts of ∣E∣2 normalized to the maximum intensity in the respective plane. For
three z−positions, (b) the intensity (top) and the phase (bottom) of E are shown
in transverse planes. Normalized OAM spectra calculated at z = 1650 μm with
and without correction of the phase ramp and the OAM spectrum of the input light
field for comparison are presented in (c). The intensity of the Fourier transforms
of the electric field multiplied by the phase function exp(iℓφ) are shown without
phase ramp correction in (d) and with phase ramp correction in (e). The phase
ramp correction corresponds to a shift in Fourier space.

Under Fourier transform, a phase ramp (angular mismatch) is
identified as a transverse position shift of the far field distribution.
Hence, when applying the digital hologram u∗ℓ and Fourier trans-
forming this multiplication to extract the OAM spectrum of E, the
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respective distribution will not show the power content per OAM
mode at (kx, ky) = (0, 0), but shifted. In Fig. 6(d), the Fourier space
distribution is shown for the ball lens example, revealing the trans-
verse position shift (z = 1650 μm; no wave front corrections applied;
holograms matched to singularity position). This shift results in an
incorrect OAM spectrum, as illustrated in Fig. 6(c), red curve. In
experiments, if the expected OAM spectrum is known, often the
read-out position for the power content is adapted to the maximum
of a Gaussian-like distribution [cf. Fig. 1(d), for ℓ = 1]. However,
prior knowledge is not always given or the complex light field struc-
ture, as in the case of the field being refracted by a ball lens, does
not give a Gaussian-like distribution in Fourier space [see Fig. 6(d)].
In addition, especially in dynamic experiments (e.g., analyzing fluid
dynamics4), the phase ramp and, thus, transverse position shift in
Fourier space can change in time. Our all-digital approach allows
for easily correcting errors appearing due to angular mismatch of
observation plane and beam path.

As outlined above, corrections are typically applied to E after
the single-shot measurement of E0 and ϕ (DHPM)—we apply cor-
recting phase structures ϕcorr to ϕ. In the case of the tilted beam
path, one has to correct for the respective phase ramp, such that
the observation plane is matched to the propagation direction of
the light field. Showing the effect of this correction, we determine
and apply the phase ramp for the ball lens simulation in Fig. 6. The
correction is given by ϕcorr = αkx (k = 2π/λ) with angle α repre-
senting the angular mismatch of light field propagation direction
and the normal vector on the observation plane. This angle is
α = −0.06 rad, calculated from the singularity positions in ϕ for
z = 1600 and 1800 μm. When applying ϕcorr to E prior to OAM
decoding, the Fourier space distribution is centered around (kx, ky)
= (0, 0), as exemplified in Fig. 6(e). Extracting the power con-
tent per OAM mode as ρ2ℓ(0, 0) gives an OAM spectrum (green)
almost perfectly matching the spectrum of the input LG field (blue
curve).

In experiment, performing a single-shot measurement at only
one z-position of the light field, the determination of ϕcorr and cor-
respondingly the extraction of α have to be performed differently.
In this case, we take advantage of the Fourier space distributions
of the recorded interference pattern [Fig. 3(b)]. First, we calibrate
our measurement system by interfering the reference field (plane
wave) with our signal field, which is later our light field of inter-
est. The signal field can be a Gaussian or a LG light field (of known
integer ℓ), not passing any object that is, for instance, supposed
to be investigated by the signal field or whose effect on the sig-
nal field is of interest—in the example of this work, the ball lens
represents the object. An interference pattern is recorded and the
corresponding position k⃗ref = (kx,ref, ky,ref)T of the signal field in
Fourier space is determined. Any deviation from this position k⃗ref
when subsequently measuring the field E of interest (e.g., the field
behind the ball lens) by DHPM will result in a phase ramp in ϕ. A
comparison of the k-space position of E (k⃗E), which could vary in
time in a dynamic system, and k⃗ref enables the calculation of the cor-
responding phase ramp and, thus, its correction before extracting
the OAM spectrum. Note that this approach additionally corrects
for any kind of misidentification of k⃗E when performing DHPM of
E. Conversely, considerate selection of k⃗E can be used to avoid phase
ramps in E.

V. EXPERIMENTAL EXAMPLE OF A SINGLE-SHOT,
ALL-DIGITAL OAM SPECTRUM ANALYSIS

To experimentally demonstrate the described single-shot, all-
digital approach for decoding an OAM spectrum, we analyze a light
field refracted by a ball lens of 2 mm diameter. The experimental
setup to create the refracted light field E and to obtain the respec-
tive interference pattern with a reference wave is shown in Fig. 7(a).
Using a q-plate of charge q = 1/261 (Thorlabs, WPV10L-532),

FIG. 7. An example of experimental OAM spectrum analysis of an LG0,1 field,
refracted by a ball lens. (a) Experimental system consisting of laser (λ = 532 nm),
q-plate (q = 1/2; Thorlabs, WPV10L-532), ball lens (refractive index n = 1.458,
2 mm diameter), 20× microscope objective (MO, numerical aperture NA = 0.4),
50/50 beam splitter (BS) used to include the reference (Ref.) field, tube lens
(TL, focal distance f = 200 mm), and detector recording the interference pattern.
DHPM allows measuring (b) the amplitude E0 and (c) phase ϕ of the refracted field
E. (d) Measured phase ϕ can be corrected by ϕcorr corresponding to a spherical
wave front; ϕ + ϕcorr is shown. The intensity in Fourier space after multiplication
of E (E′) with hologram functions u∗ℓ is shown (e) without and (f) with correc-
tion applied for exemplary ℓ. The on-axis intensity values ρ2

ℓ(0, 0) give (g) the
respective OAM spectra (normalized).
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a Gaussian laser beam (circular polarization, λ = 532 nm) is trans-
formed into a hypergeometric Gaussian field62 with its beam waist
positioned at the ball lens center. This light field can be approxi-
mated as a Laguerre–Gaussian field of topological charge ℓ = 1 and
p = 0. The LG0,1 beam is focused by the ball lens and the field E at
z ≈ 1850 μm is imaged by a 20×microscope objective (MO; numeri-
cal aperture NA = 0.4) and a tube lens (TL, focal length f = 200mm)
onto a camera. The expanded reference field (Gaussian beam) is
coupled into the beam path by a 50/50 beam splitter (BS), inter-
fering with E under an angle, which enables recording the required
interference pattern.

Note that this static experimental setting would also allow for
implementing a physical decoding system, using a hologram, dis-
played by a physical component as a SLM, and a Fourier lens. With
some effort and patience, supported by the digital control of the
SLM, the decoding system could be adjusted appropriately, such that
hologram and singularities match approximately. This would allow
extracting an OAM spectrum, which might be acceptable depending
on the required precision. Further, even though an SLMwould allow
for implementing additional corrections, these corrections would
have to be determined beforehand. Hence, additional measurement
steps would be required prior to OAM decoding. Additionally,
the overall physical decoding approach would also be more time-
consuming as each hologram (or spatially multiplexed holograms)
needs to be displayed on the SLM while OAM contributions ρ2ℓ have
to be extracted from the camera image. Compared to this procedure,
the all-digital approach is clearly advantageous. By a single inter-
ference measurement, the physical field of interest is transformed
into a digital one and all required corrections can be determined and
subsequently applied, such that the continuous OAM spectrum can
be decoded with very high precision. We exemplify this procedure
below.

Following the approach described in Figs. 3(a)–3(c), we obtain
the transverse amplitude E0 and phase ϕ distribution [see Figs. 7(b)
and 7(c)] from the Fourier transform of the interference pattern,
using DHPM. We observe an asymmetric distribution in inten-
sity, partially affected by the nonideal performance of the q-plate.
The phase structure shows a spiral-like distribution, revealing the
embedded phase vortex with its singularity plus the wave front cur-
vature of E at the selected z-position (=behind the ball lens focus).
The singularity is approximately centered in the respective spiral of
equal phase values in ϕ. Note also that DHPM can add curvatures in
ϕ; however, by choosing a reference field of significantly larger beam
waist, this effect is minimized.

First, we extract the OAM spectrum without considering any
correction ϕcorr. For this purpose, the measured E (cropped by a
binary 2D mask) is digitally multiplied by the decoding holograms
u∗ℓ , which are positioned according to the embedded phase sin-
gularity found by zero-lines, and Fourier transformed afterward.
Examples of the corresponding outcome intensity distributions are
depicted in Fig. 7(e). Reading out the on-axis intensity values
ρ2ℓ(0, 0) for ℓ = [−3, 3] ∈ R, we obtain the normalized OAM spec-
trum in Fig. 7(g), blue curve. Overall, the OAM spectrum is not
very clear and does not show the expected maximum at ℓ = 1, but
it is close to ℓ = 0 with additional contributions of multiple different
ℓ ∈ R values. This can already be expected when taking a look at the
Fourier transformed fields shown in Fig. 7(e), revealing only slight
deviation from one another.

This perturbed outcome is related to the complex, asymmet-
ric amplitude E0 structure in combination with additional phase
contributions in ϕ (wave front curvature; phase ramp). To first con-
sider phase ramps in E, we extract k⃗E from the Fourier transformed
interference pattern. Here, k⃗E is approximately equal to k⃗ref of our
calibrated experimental system, resulting in a negligible phase ramp
correction. When interpreting Fourier transform as focusing by a
lens, the additional approximately spherical wave front curvature
visible in ϕ causes a discrepancy between the plane in which OAM
is correctly decoded and the actual plane of observation in Fig. 7(e).
To overcome this problem, we apply a spherical phase correction
(ϕcorr) to the experimentally measured complex field, multiplying it
by the term exp(−i( rσ )

2), σ = 40, centered around the singularity.
This correction term matches the wave front curvature for a Gaus-
sian envelope of the light field E at the selected z-position. Note
that a similar phase correction can be determined by a 3D ellip-
soidal fit of the unwrapped measured phase, as explained in Sec. III.
The corrected phase ϕ + ϕcorr is shown in Fig. 7(d). For decoding
E0 ⋅ exp(i(ϕ + ϕcorr)), examples of the respective intensity distri-
butions in Fourier space are depicted in Fig. 7(f). In this case, we
already observe a Gaussian-like distribution for ℓ = 1, indicating the
correct decoding of the light field. The corresponding OAM spec-
trum is shown in Fig. 7(g), orange curve, showing a clear maximum
at ℓ = 1. The results are in very good agreement with the simu-
lated distributions, discussed above, proving the significant benefit
of implementing the proposed single-shot, all-digital approach for
OAM spectrum analysis.

VI. CONCLUSION AND DISCUSSION
To overcome typical challenges in physical experimental

decoding systems, we propose a single-shot, all-digital approach for
OAM spectrum analysis of complex light fields, particularly advan-
tageous for disturbed and/or dynamically changing, high-speed sys-
tems. The approach extracts the continuous OAM spectrum with
high precision due to optimized and automated identification of
the decoding position and digital correction of disturbances, even
dynamically changing ones. The versatile approach is based on dig-
ital holographic phase metrology (DHPM) of the light field E of
interest combined with digital post-processing of the received data,
also including tools of singular optics.We exemplified the procedure
as well as its advantages by investigating a Laguerre–Gaussian light
field (LG0,1) passing through a ball or spheroid glass lens. In addi-
tion to numerical investigations, we provided experimental proof by
determining the correct OAM spectrum of an LG0,1 field refracted
by a ball lens, applying the enabled optimization steps within our
single-shot, all-digital approach.

A clear benefit of the proposed approach for OAM spectrum
analysis is the option to include optimization/correction steps prior
to digital spectrum decoding. As shown, the simple adjustment of
the hologram position to the optical singularity/singularities, identi-
fied automatically as zero-line intersection(s), is highly effective in
improving the spectrum results. Moreover, this approach enables
the correction of phase factors originating from standard exper-
imental measurement systems and procedures. In particular, the
angular misalignment of observation plane and light field propaga-
tion, or the incorrect selection of the read-out position in Fourier
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space (ρ2ℓ(kx, ky)), is a commonly occurring error in experimen-
tal decoding systems. By the combination of DHPM and all-digital
decoding of OAM spectrum, this error can be revealed, avoided,
and/or corrected. Additionally, phase front curvatures falsifying
the OAM spectrum can be detected and neutralized. Both angular
mismatch and disturbing wave front curvatures can be identified
automatically in the digital electric field, for instance, by applying
the phase unwrapping algorithm and subsequent 3D fitting for ellip-
tical wavefront corrections. Note that these phase corrections can
also be considered as identifying an appropriate, advanced decod-
ing hologram for a complex light field, such that the main content
of the remaining field [E ⋅ exp(iϕcorr)] is dominated by the OAM
of light. Consequently, researchers should obviously only correct for
factors that, to the best of their knowledge, do not affect the OAM
of light.

The proposed approach only requires a single-shot measure-
ment of two interfering fields. Because of this feature, it is perfectly
suited for analyzing the OAM spectrum in dynamic, even high-
speed, systems, with its temporal resolution only being limited by
the frame rate of the implemented detector. Note, however, that
in some applications, an instant, optical answer to decoding holo-
grams might be desired, e.g., in all-optical computing. In this case,
a mode sorter63–66 might be the tool of choice, in particular when
the measured OAM light fields are relatively clear (undisturbed)
or deviations of the OAM spectrum are acceptable. For an opti-
mized spectrum and in case of stronger, dynamic perturbations
in the experimental system, the all-digital approach might be pre-
ferred. Improving corrections ϕcorr can be adapted dynamically per
shot as required by the current state of the system. This feature of
our approach allows for the advanced investigation of high-speed
changes in, for instance, complex fluidic flow systems, using nano-
scatterers as tracer particles andOAM-carrying light fields as sensing
beams.4,57,67 Moreover, the single-shot measurement of interference
patterns and its all-digital post-processing also enable the detection
of small changes in the OAM spectrum, in particular, the continuous
spectrum, including not only integer but also non-integer ℓ values.

SUPPLEMENTARY MATERIAL

See the supplementary material, Fig. 1, for an example of the
all-digital OAM spectrum analysis in the case of multiple combined
Laguerre–Gaussian beams (LG0,0 + LG0,3).
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