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Random walk and Fibonacci matrices
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(Communicated by Matthias Löwe)

Abstract. We study a discrete random walk on a one-dimensional finite lattice, where each
state has different probabilities to move one step forward, backward, staying for a moment, or
being absorbed. We obtain expected number of arrivals and expected time until absorption
using a new concept: Fibonacci matrices.

1. Introduction

A discrete random walk with variable absorbing probabilities is described
in every state i (i = 0, 1, . . . , N) by the one-step forward probability pi, the
one-step backward probability qi, the probability to stay for a moment in the
same position ri, and si is the probability of absorption in state i, where
pi + qi + ri + si = 1 (i = 0,1, . . . ,N). For this type of random walk, we use the
notation [pqrs]. In literature (see references), there is a focus on random walks
with one or two reflecting and/or absorbing barriers. In this paper, we have the
freedom of absorption/reflection in any point at any time with state dependent
probabilities. In this way, we can model more complicated situations in physics
and operations research. In Section 2, we analyze a set of difference equations
which is strongly related to the expected number of arrivals and expected time
until absorption. Fibonacci numbers and Fibonacci matrices (a new concept)
play an important role in this setting. In Sections 3 and 4, we obtain results
for expected number of arrivals and expected time until absorption for a [pqrs]
random walk on [0,N ]. In Section 5, we analyze two simple random walks and
their relations to Fibonacci numbers.

2. Difference equations and Fibonacci matrices

In Section 3, we calculate the expected number of arrivals, and we have to
solve equations (see (3))

xn = pn−1xn−1 + qn+1xn+1 + rnxn + δ(n, i0) (0 ≤ n ≤ N),
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and in Section 4, we obtain results for expected time until absorption, where
we have to deal with (see (20))

mi = pimi+1 + qimi−1 + rimi + 1 (1 ≤ i ≤ N − 1).

We shall see that both sets of equations can be handled by solving the next
set, which will be the object of research in this section:

xi+1 = λm+ixi + µm+i−1xi−1 (i = 1, 2, . . . , N),(1)

x0 = 1, x1 = λm (m ∈ Z).

We will define Fibonacci matrices which generate in a natural way a unique
solution of difference equations (1). We start with a Fibonacci sequence

f0 = f1 = 1, fn+1 = fn + fn−1 (n = 1, 2, . . . )

Definition 2.1. Fibonacci matrices: F0 = [1], F1 = [λm] (m ∈ Z), where Fn+1

(n = 1, 2, . . .) with elements τ
(m)
ij (i = 1, 2, . . . , n + 1, j = 1, 2, . . . , fn+1) is

recursively defined by Table 1.

τ
(m)
ij 1 . . . fn fn + 1 . . . fn+1

1
... Fn Fn−1

n 1 . . . 1
n+ 1 λm+n . . . λm+n µm+n−1 . . . µm+n−1

Table 1. Fn+1

So we have

F2 =

[

λm 1
λm+1 µm

]

,

F3 =





λm 1 λm

λm+1 µm 1
λm+2 λm+2 µm+1



 ,

F4 =









λm 1 λm λm 1
λm+1 µm 1 λm+1 µm

λm+2 λm+2 µm+1 1 1
λm+3 λm+3 λm+3 µm+2 µm+2









.

Lemma 2.2. τi,fn+j = τi,j , where 1 ≤ i ≤ n− 1, 1 ≤ j ≤ fn−1.

Proof. The element Fn in Table 1 can be split in Fn−1 and Fn−2 (and some
λ, µ, and 1 below). The element Fn−1 is in the upper left corner with rows 1
until n− 1 and columns 1 until fn−1. The same element Fn−1 can be found
in rows 1 until n− 1 and columns fn + 1 until fn + fn−1 (= fn+1). �

Definition 2.3. F ∗
0 = 1; F ∗

n =
∑fn

j=1

∏n
k=1 τ

(m)
kj (n = 1, 2, . . . , N + 1).
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Proposition 2.4. F ∗
n , where n = 0, 1, . . . , N + 1, is a solution of (1).

Proof.

F ∗
n+1 =

fn+1
∑

j=1

n+1
∏

k=1

τ
(m)
kj =

fn
∑

j=1

n+1
∏

k=1

τ
(m)
kj +

fn+1
∑

j=fn+1

n+1
∏

k=1

τ
(m)
kj

=

fn
∑

j=1

[ n
∏

k=1

τ
(m)
kj τ

(m)
n+1,j

]

+

fn+1
∑

j=fn+1

[n−1
∏

k=1

τ
(m)
kj τ

(m)
n,j τ

(m)
n+1,j

]

= λm+n

fn
∑

j=1

n
∏

k=1

τ
(m)
kj + 1.µm+n−1

fn+1
∑

j=fn+1

n−1
∏

k=1

τ
(m)
kj

= λm+nF
∗
n + µm+n−1

fn−1
∑

j=1

n−1
∏

k=1

τ
(m)
kj = λm+nF

∗
n + µm+n−1F

∗
n−1,

where we used Lemma 2.2 in the penultimate step. �

Theorem 2.5. The solution of the linear system (1) is

(2) x0 = 1, xi =

fn
∑

j=1

n
∏

k=1

τ
(m)
kj (i = 1, 2, . . . , N + 1),

where
• for j ≤ fi+1,

τ
(m)
ij =











λm+i−1 (j = 1, 2, . . . , fi−1),

µm+i−2 (j = fi−1 + 1, . . . , fi),

1 (j = fi + 1, . . . , fi+1);

• for j > fi+1, there exists n ∈ N such that 1 + fn ≤ j ≤ fn+1. Let

jℓ = j − (fn + fn−2 + · · ·+ fn−2ℓ)
(

ℓ = 0, 1, . . . ,
⌊n− 1

2

⌋)

,

k = min{ℓ ∈ N | jℓ ≤ fi+1};

then

τ
(m)
i,j = τ

(m)
i,jk

=











λm+i−1 (jk = 1, 2, . . . , fi−1),

µm+i−2 (jk = fi−1 + 1, . . . , fi),

1 (jk = fi + 1, . . . , fi+1).

Proof. We start with the first case.

Case j ≤ fi+1: Substituting (2) in (1) yields

fi+1
∑

j=1

i+1
∏

k=1

τ
(m)
kj = λm+i

fi
∑

j=1

i
∏

k=1

τ
(m)
kj + µm+i−1

fi−1
∑

j=1

i−1
∏

k=1

τ
(m)
kj ,
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so

fi+1
∑

j=1

τ
(m)
1j τ

(m)
2j . . . τ

(m)
i+1,j =

fi
∑

j=1

τ
(m)
1j τ

(m)
2j . . . τ

(m)
i,j λm+i

+

fi−1
∑

j=1

τ
(m)
1j τ

(m)
2j . . . τ

(m)
i−1,j .1.µm+i−1.

Using Lemma 2.2, we get

fi+1
∑

j=1

τ
(m)
1j τ

(m)
2j . . . τ

(m)
i+1,j =

fi
∑

j=1

τ
(m)
1j τ

(m)
2j . . . τ

(m)
i,j λm+i

+

fi+1
∑

j=fi+1

τ
(m)
1j τ

(m)
2j . . . τ

(m)
i−1,j .1.µm+i−1.

It follows

τ
(m)
i+1,j = λm+i (j ≤ fi)

and

τ
(m)
ij = 1, τ

(m)
i+1,j = µm+i−1 (fi + 1 ≤ j ≤ fi+1).

Case j > fi+1: there exists n ∈ N such that 1 + fn ≤ j ≤ fn+1, so

1 ≤ j0 = j − fn ≤ fn−1.

Let jℓ (ℓ = 1, 2, . . . , ⌊n−1
2 ⌋) be defined by

jℓ = jℓ−1 − fn−2ℓ ≤ fn−2ℓ−1.

It follows

jℓ = j − (fn + fn−2 + · · ·+ fn−2ℓ)
(

ℓ = 0, 1, . . . ,
⌊n− 1

2

⌋)

.

Using Lemma 2.2, τ
(m)
i,j = τ

(m)
i,j0

= τ
(m)
i,j1

= · · · = τ
(m)
i,jk

, where i ≤ n− 1.

Let k = min{ℓ ∈ N | jℓ ≤ fi+1}; then jk ≤ fi+1, so we can apply the first
part of this proof. �

Notation 2.6.

A
(m)
i = A

(m)
i (λ, µ) =

fi
∑

j=1

i
∏

k=1

τ
(m)
kj (i = 1, 2, . . . , N + 1),

where λ = (λm, λm+1, . . . , λm+N ), µ = (µm, µm+1, . . . , µm+N−1).

Definition 2.7. A
(m)
0 = 1, A

(m)
−1 = 0 (m ∈ Z).
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Theorem 2.8. A
(m)
N+1 = λmA

(m+1)
N + µmA

(m+2)
N−1 , where m ∈ Z, N = 0,1,2, . . . .

Proof. We write the linear system

xi+1 = λm+ixi + µm+i−1xi−1 (i = 1, 2, . . . , N),

x0 = 1, x1 = λm

in matrix notation


























1 0 0 · · · · · · · · · 0
λm −1 0 0
µm λm+1 −1 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 0 · · · µm+N−1 λm+N −1









































x0

x1

x2

...
xN+1















=















1
0
0
...
0















.

The determinant of the matrix is (−1)N+1. Using Cramer’s rule, we get

A
(m)
N+1 = xN+1

= (−1)N+1 det



























1 0 0 · · · · · · · · · 1
λm −1 0 0
µm λm+1 −1 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0 0 0 · · · µm+N−1 λm+N 0



























= (−1)N+1(−1)N+1 det













λm −1
µm λm+1 −1

µm+N−1 λm+N













= λm det









λm+1 −1

µm+N−1 λm+N









+ µm det









λm+2 −1

µm+N−1 λm+N









= λmA
(m+1)
N + µmA

(m+2)
N−1 . �
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3. Expected number of arrivals

We start with two definitions.

Definition 3.1. p
(k)
ij = P (system is in state j after k steps | start in i).

Definition 3.2. xj = xi,j =
∑∞

k=0 p
(k)
ij , where xj is the expected number of

arrivals in j when starting in i.

We analyze a finite discrete random walk with different absorbing probabil-
ities: in every state i (i = 0, 1, . . . , N), we have one-step forward probability
pi, one-step backward probability qi, probability to stay for a moment in the
same position ri, and si is the probability of absorption in state i, where
pi + qi + ri + si = 1 (i = 0, 1, . . . , N) and q0 = pN = 0. The starting point of
the random walk on [0, N ] is i0 (0 ≤ i0 ≤ N).

Theorem 3.3.

(3) xn = pn−1xn−1 + qn+1xn+1 + rnxn + δ(n, i0) (0 ≤ n ≤ N).

Proof. When 0 < i0 < N , we have

xn =

∞
∑

k=0

p
(k)
i0,n

= p
(0)
i0,n

+

∞
∑

k=1

∑

l

p
(k−1)
i0,l

pl,n = δ(i0, n) +
∑

l

pl,n

∞
∑

k=1

p
(k−1)
i0,l

= δ(i0, n) + pn−1xn−1 + qn+1xn+1 + rnxn.

When i0 = 0 or i0 = N , the prove goes along the same lines. �

Lemma 3.4. The linear system

(4) xi+1 = λixi + µi−1xi−1 (i = i0 + 1, i0 + 2, . . . , N)

given xi0 and xi0+1 has the solution

(5) xi0+k+1 = xi0+1A
(i0+1)
k (λ,µ) + µi0xi0A

(i0+2)
k−1 (λ,µ) (k= 1,2, . . . ,N − i0).

Proof. We use induction.
(i) Substituting k = 1 in (5) gives

xi0+2 = xi0+1A
(i0+1)
1 (λ, µ) + µi0xi0A

(i0+2)
0 (λ, µ) = λi0+1xi0+1 + µi0xi0 .

(ii) We give that (4) is correct for i = i0 + k − 1 and i = i0 + k. We have

xi0+k+1 = λi0+kxi0+k + µi0+k−1xi0+k−1

= λi0+k[xi0+1A
(i0+1)
k−1 + µi0xi0A

(i0+2)
k−2 ]

+ µi0+k−1[xi0+1A
(i0+1)
k−2 + µi0xi0A

(i0+2)
k−3 ]

= [λi0+kA
(i0+1)
k−1 + µi0+k−1A

(i0+1)
k−2 ]xi0+1

+ [λi0+kA
(i0+2)
k−2 + µi0+k−1A

(i0+2)
k−3 ]µi0xi0

= xi0+1A
(i0+1)
k + µi0xi0A

(i0+2)
k−1 ,
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where in the last step we used that A
(m)
i is a solution of (1); substitute m =

i0 + 1, i = k − 1, and m = i0 + 2, i = k − 2 in (1). So (4) is also correct for
i = i0 + k + 1.

(iii) Apply induction. �

In this section, we use A
(m)
i (λ, µ) (m ≥ 0), where

λ = (λm, λm+1, . . . , λN ), µ = (µm, µm+1, . . . , µN−1),

λi =
1− ri

qi+1
, µi = − pi

qi+2
.

We also use A
(m)
i (ρ, θ) (m < 0), where

ρ = (ρm, ρm+1, . . . , ρ0), θ = (θm, θm+1, . . . , θ−1),

ρ−i =
1− ri

pi−1
, θ−i = − qi

pi−2
.

Theorem 3.5.

• For 0 < i0 < N ,

(6) xi0 =

[

1− ri0 + pi0−1θ−i0

A
(2−i0)
i0−1 (ρ, θ)

A
(1−i0)
i0

(ρ, θ)
+ qi0+1µi0

A
(i0+2)
N−i0−1(λ, µ)

A
(i0+1)
N−i0

(λ, µ)

]−1

.

For k = 0, 1, . . . , N − i0,

xi0+k+1 = µi0xi0 [A
(i0+2)
k−1 (λ, µ)A

(i0+1)
N−i0

(λ, µ)(7)

−A
(i0+2)
N−i0−1(λ, µ)A

(i0+1)
k (λ, µ)][A

(i0+1)
N−i0

(λ, µ)]−1,

and for k = 0, 1, . . . , i0 − 1,

xi0−(k+1) = θ−i0xi0 [A
(2−i0)
k−1 (ρ, θ)A

(1−i0)
i0

(ρ, θ)(8)

−A
(2−i0)
i0−1 (ρ, θ)A

(1−i0)
k (ρ, θ)][A

(1−i0)
i0

(ρ, θ)]−1

• For i0 = 0,

x0 =
A

(1)
N

q1A
(0)
N+1

,(9)

xi =
A

(1)
N A

(0)
i −A

(1)
i−1A

(0)
N+1

q1A
(0)
N+1

(i = 1, . . . , N)(10)

Proof. We treat the two cases separately.

Case 0 < i0 <N : We introduce two artificial states, N + 1 and −1, with spec-
ifications

xN+1 = 0, x−1 = 0,(11)

qN+1 > 0, p−1 > 0.(12)
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Using (3), we get forward and backward equations

xi+1 =
1− ri

qi+1
xi −

pi−1

qi+1
xi−1(13)

= λixi + µi−1xi−1 (i = i0 + 1, i0 + 2, . . . , N),

xi−1 =
1− ri

pi−1
xi −

qi+1

pi−1
xi+1(14)

= ρ−ixi + θ−(i+1)xi+1 (i = i0 − 1, i0 − 2, . . . , 0).

By induction, we can prove that solutions of (13) and (14) are (see Lemma 3.4
for a proof of the first linear system; the second one can be proved the same
way)

xi0+k+1 = xi0+1A
(i0+1)
k (λ, µ)(15)

+ µi0xi0A
(i0+2)
k−1 (λ, µ) (k = 1, 2, . . . , N − i0),

xi0−(k+1) = xi0−1A
(1−i0)
k (ρ, θ)(16)

+ θ−i0xi0A
(2−i0)
k−1 (ρ, θ) (k = 1, 2, . . . , i0).

Using (11), (12), (15), and (16), we get

xN+1 = xi0+1A
(i0+1)
N−i0

(λ, µ) + µi0xi0A
(i0+2)
N−i0−1(λ, µ) = 0,(17)

x−1 = xi0−1A
(1−i0)
i0

(ρ, θ) + θ−i0xi0A
(2−i0)
i0−1 (ρ, θ) = 0.(18)

Substituting n = i0 in (3) gives

(19) (1− ri0 )xi0 = 1 + pi0−1xi0−1 + qi0+1xi0+1.

Using (17), (18), and (19), we get the expected number of arrivals in the
starting point i0; see (6).

For k= 0,1, . . . ,N − i0, we find the expected number of arrivals in i0 + k+1
(use (19), (17), and (15)); see (7).

For k = 0, 1, . . . , i0, we get (8) (use (19), (18), and (16)).

Case i0 = 0 (i0 = N proceeds along the same lines): Instead of two artificial
states, we now need one artificial state N + 1 with xN+1 = 0, qN+1 > 0. We
get (use (3))

xi+1 =
1− ri

qi+1
xi −

pi−1

qi+1
xi−1 = λixi + µi−1xi−1 (i = 1, 2, . . . , N),

x1 =
1− r0

q1
x0 −

1

q1
= λ0x0 −

1

q1
(i = 0),

with solution (proved by induction)

xi = x0A
(0)
i − 1

q1
A

(1)
i−1 (i = 1, 2, . . . , N + 1),
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where A
(m)
i = A

(m)
i (λ, µ). Using the artificial state, we get

xN+1 = x0A
(0)
N+1 −

1

q1
A

(1)
N = 0,

resulting in (9) and (10). �

Remark. Equation (9) can also be derived from (6): use Theorem 2.8 and
i0 = 0, p−1 = 0.

4. Expected time until absorption

Let Ti be the time until absorption when starting in i (i = 0, 1, . . . , N).

Definition 4.1. mi = E[Ti] =
∑∞

k=1 kP (Ti = k) (i = 0, 1, . . . , N), where mi

is the expected time until absorption when starting in i.

In this section, we demand si > 0 (i = 0, 1, . . . , N). Let

s = min(s0, s1, . . . , sN ).

Then P (no absorption after n steps) ≤ (1− s)n, so absorption will always oc-
cur:

∑∞
k=1 P (Ti = k) = 1.

Theorem 4.2.

m0 = p0m1 + r0m0 + 1,

mi = pimi+1 + qimi−1 + rimi + 1 (1 ≤ i ≤ N − 1),(20)

mN = qNmN−1 + rNmN + 1.

Proof. We prove (20). The rest is going along the same lines.

mi = E[Ti] =
∞
∑

k=1

kP (Ti = k) =
∞
∑

k=1

(k − 1)P (Ti = k) +
∞
∑

k=1

P (Ti = k)

=

∞
∑

k=2

(k − 1){piP (Ti+1 = k − 1) + qiP (Ti−1 = k − 1)

+ riP (Ti = k − 1)}+ 1

= pimi+1 + qimi−1 + rimi + 1. �

Another way to obtain (20) is by observing the next step of the random
walk: with probability pi, we move to state i+ 1, and then our expectation of
time until absorption is mi+1. But we did one step, so we have to deal with
1 +mi+1. The last term is about absorption in one step:

mi = pi(1 +mi+1) + qi(1 +mi−1) + ri(1 +mi) + si.1 (1 ≤ i ≤ N − 1).
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In this section, we use the abbreviations

ωi =
1− ri

pi
(i = 0, . . . , N − 1), ωN = 1− rN ,

φi = − qi+1

pi+1
(i = 0, . . . , N − 2), φN−1 = −qN ,

αi = − 1

pi
(i = 0, . . . , N − 1), αN = −1.

Theorem 4.3. For 0 ≤ i ≤ N ,

mi =
i

∑

k=1

A
(k)
i−kαk−1(21)

−
A

(0)
i [ωN

∑N

k=1 A
(k)
N−kαk−1 + φN−1

∑N−1
k=1 A

(k)
N−1−kαk−1 + αN ]

ωNA
(0)
N + φN−1A

(0)
N−1

.

Proof. The N + 1 forward equations are (using Theorem 4.2)

m1 =
(1− r0)

p0
m0 −

1

p0
= ω0m0 + α0,

mi+1 =
(1− ri)

pi
mi −

qi

pi
mi−1 −

1

pi

= ωimi + φi−1mi−1 + αi (i = 1, 2, . . . , N − 1),

0 = (1− rN )mN − qNmN−1 − 1 = ωNmN + φN−1mN−1 + αN .(22)

By induction (as in Lemma 3.4), we can prove

(23) mi = m0A
(0)
i +

i
∑

k=1

A
(k)
i−kαk−1 (i = 0, 1, . . . , N),

where A
(m)
i = A

(m)
i (ω, φ), with ω = (ωm, . . . , ωN ) and φ = (φm, . . . , φN−1).

Substituting (23) in (22), we obtain m0, and again using (23), we get (21). �

5. Random walk and Fibonacci numbers

In this section, we study two simple random walks and their relation to
Fibonacci numbers.

5.1. Homogeneous transition probabilities. We first consider a random
walk on [0, N ] where we have homogeneous transition probabilities and there
is no option to stay for a moment in any state: pi = p, qi = q, ri = 0, si = s

(i = 1, 2, . . . ,N − 1), p+ q + s = 1, p0 = p, s0 = 1− p, qN = q, sN = 1− q. We
start in 0.

Theorem 5.2.

(24) x0 = x
[N ]
0 =

∑⌊N
2
⌋

k=0

(

N−k
k

)

(−pq)k

∑⌊N+1

2
⌋

k=0

(

N+1−k
k

)

(−pq)k
(p+ q + s = 1).
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Proof. Using (9) and homogeneity (superscripts in A
(m)
i can be omitted, and

λi = λ = 1
q
, µi = µ = − p

q
), we get, when N = 1,

(25) x
[1]
0 =

A
(1)
1

q1A
(0)
2

=
A1

qA2
=

λ

q(λ2 + µ)
=

1

1− pq
.

Using (9) and Theorem 2.8 yields

x
[j]
0 =

A
(1)
j

q1A
(0)
j+1

=
Aj

qAj+1
,

so

Aj

Aj+1
= qx

[j]
0 ,

x
[j+1]
0 =

Aj+1

qAj+2
=

Aj+1

q{λAj+1 + µAj}
=

Aj+1

Aj+1 − pAj

=
1

1− p
Aj

Aj+1

=
1

1− pqx
[j]
0

.

We get

x
[2]
0 =

1− pq

(1− pq)− pq.1
=

1− pq

1− 2pq
,

x
[3]
0 =

1− 2pq

(1− 2pq)− pq(1− pq)
=

1− 2pq

1− 3pq + p2q2

...

This leads to (24), which can be proven by using induction to N .
(i) N = 1 is correct; see (25).

(ii) Suppose (24) is correct up to N +1. We first rewrite (24) to x
[N ]
0 = σN

σN+1
;

then

x
[N+1]
0 =

1

1− pqx
[N ]
0

=
σN+1

σN+1 − pqσN

,

and for all terms except the first and last one in σN+1 − pqσN ,

σN+1 − pqσN =
∑

(

N − k + 1

k

)

(−pq)k − pq
∑

(

N − k

k

)

(−pq)k

=
∑

{(

N − k + 1

k

)

+

(

N − k + 1

k − 1

)}

(−pq)k

=
∑

(

N − k + 2

k

)

(−pq)k = σN+2.

The first term in σN+1 − pqσN is the first term in σN+1; the last term in
σN+1 − pqσN is the last term in −pqσN with index ⌊N

2 ⌋+ 1 = ⌊N+2
2 ⌋. So (24)

is also correct for N + 2.
(iii) Apply induction to N . �
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5.3. Partial absorbing barriers in the endpoints. Our next random walk
is more restricted. We study simple random walk with partial absorbing bar-
riers in the endpoints. See the previous random walk, but now with si = 0
(i = 1, 2, . . . , N − 1), p+ q = 1.

Theorem 5.4.

(26)

⌊N
2
⌋

∑

k=0

(

N − k

k

)

(−pq)k =















qN+1 − pN+1

q − p
(p 6= q),

N + 1

2N
(p = q = 1

2 ).

Proof. The well-known probability of absorption in state 0 is

qx0 =
1− (p

q
)N+1

1− (p
q
)N+2

(p 6= q).

So we have

x0 =
qN+1 − pN+1

qN+2 − pN+2
(p 6= q).

Using (24), we guess the first part of (26), which can be proven by induction
to N .

The second part of (26) is obtained by applying de l’Hospitals rule on the
first result, or by induction to N . �

Theorem 5.5.

⌊N
2
⌋

∑

k=0

(

N − k

k

)

tk =
1

2N

⌊N
2
⌋

∑

n=0

(

N + 1

2n+ 1

)

(1 + 4t)n.

Proof. Let fN,t =
∑⌊N

2
⌋

k=0

(

N−k
k

)

tk be the continuation of
∑⌊N

2
⌋

k=0

(

N−k
k

)

(−pq)k

to R. Taking t = −pq gives p2 − p− t = 0 and

fN,t =
qN+1 − pN+1

q − p
=

(1 +
√
1 + 4t)N+1 − (1−

√
1 + 4t)N+1

2N+1
√
1 + 4t

=
1

2N

⌊N
2
⌋

∑

n=0

(

N + 1

2n+ 1

)

(1 + 4t)n. �

Corollary 5.6.

fN =
1

2N

⌊N
2
⌋

∑

n=0

(

N + 1

2n+ 1

)

.5n (N = 0, 1, 2, . . . ).

By repeated differentiating of fN,t, we get the “moments” of

fN =

⌊N
2
⌋

∑

k=0

(

N − k

k

)

,
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for example,

(f ′
N,t)t=1 =

⌊N
2
⌋

∑

k=1

k

(

N − k

k

)

=
1

2N−2

⌊N
2
⌋

∑

n=1

(

N + 1

2n+ 1

)

.n.5n−1.
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