Tactile sensors (antennae) play an important role in the animal kingdom. They are also very useful as sensors in robotic scenarios, where vision systems may fail. Active tactile movements increase the sampling performance. Here we directly control movements of the antenna of a simulated hexapod using an echo state network (ESN). ESNs can store multiple motor patterns as attractors in a single network and generate novel patterns by combining and blending already learned patterns using bifurcation inputs.