Neue Erkenntnisse bezüglich der Polymerstruktur von Poly-L-prolinen und einzelsträngigen Polythyminen in wässriger Lösung werden in dieser Arbeit präsentiert.
Die Kombination von zeitkorrelierter Einzelphotonenregistrierung (TCSPC) und Fluoreszenzkorrelationsspektroskopie (FCS) von mit Fluoreszenzfarbstoffen markierten Polyprolinderivaten, F-(Pro)N-Trp (mit N = 2 - 10 und F = MR113, MR121, R6G), legen nahe, dass Sub-Populationen der Polyproline mit verringertem Endabstand existieren. Diese Endabstände wurden ebenfalls mittels vereinfachter Molekülmechanik-Simulationen für verschiedene Isomere der Polyproline vorausgesagt. Durch Einbringen von vereinzelten cis-Bindungen in die Prolinpolymere kann gezeigt werden, dass trans-cis-Isomerisierung die Endabstände eines Polymers deutlich verringern kann. Diese Endabstandsverkürzung entspricht den experimentell beobachteten Sub-Populationen, welche bei FCS-Messungen erhöhte Löschung durch photoinduzierten Elektronentransfer ermittelt wurden.
Mit einem Fluoreszenzfarbstoff markierte, einzelsträngige Polythymine, MR121-(dT)N (mit N = 2 - 100), wurden durch FCS und moleküldynamische Simulationen untersucht. Die spektroskopischen Messungen liefern längenabhängige hydrodynamische Radien der Polythyminproben, deren Abhängigkeit durch ein Potenzgesetz mit einem Exponenten von 0,5 - 0,7 von der Ionenstärke, I, des Lösungsmittels abhängen. Die Persistenzlänge von MR121-(dT)100, Lp, wurde berechnet und zeigt die Abhängigkeit Lp = I^m mit m = -0,22 ± 0,01. Der Vergleich mit moleküldynamischen Simulationen verschiedener markierter und unmarkierter Polythyminderivate zeigt, dass sich Polythymine wie semiflexible Polmere verhalten, dass für Kettenmoleküle mit einer Länge von N > 30 der Einfluss der Farbstoffmarkierung vernachlässigbar ist und dass elektrostatische Wechselwirkungen bei einer Natriumchlorid-Konzentration von 100 mM vollständig abgeschirmt sind. Weiterhin zeigten die Simulationen, dass die statische Flexibilität der Polythymine durch sterische und geometrische Einschränkungen limitiert ist, was durch eine intrinsische Persistenzlänge von 1,7 nm ausgedrückt werden kann.