We are interested in the decomposition of motion data into a sparse linear combination of base functions which enable efficient data processing. We combine two prominent frameworks: dynamic time warping (DTW), which offers particularly successful pairwise motion data comparison, and sparse coding (SC), which enables an automatic decomposition of vectorial data into a sparse linear combination of base vectors. We enhance SC as follows: an efficient kernelization which extends its application domain to general similarity data such as offered by DTW, and its restriction to non-negative linear representations of signals and base vectors in order to guarantee a meaningful dictionary. Empirical evaluations on motion capture benchmarks show the effectiveness of our framework regarding interpretation and discrimination concerns.
Titelaufnahme
Titelaufnahme
- TitelNon-Negative Kernel Sparse Coding for the Analysis of Motion Data
- Verfasser
- Herausgeber
- Erschienen
- SpracheEnglisch
- DokumenttypKonferenzband
- Schlagwörter
- ISBN978-3-319-44780-3
- URN
- DOI
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- NachweisKein Nachweis verfügbar
- IIIF
Dateien
Klassifikation
Abstract
Statistik
- Das PDF-Dokument wurde 9 mal heruntergeladen.