Enabling users to teach their robots new tasks at home is a major challenge for research in personal robotics. This work presents a user study in which participants were asked to teach the robot Pepper a game of skill. The robot was equipped with a state-of-the-art skill learning method, based on dynamic movement primitives (DMPs). The only feedback participants could give was a discrete rating after each of Pepper's movement executions (“very good,” “good,” “average,” “not so good,” “not good at all”). We compare the learning performance of the robot when applying user-provided feedback with a version of the learning where an objectively determined cost via hand-coded cost function and external tracking system is applied. Our findings suggest that (a) an intuitive graphical user interface for providing discrete feedback can be used for robot learning of complex movement skills when using DMP-based optimization, making the tedious definition of a cost function obsolete; and (b) un-experienced users with no knowledge about the learning algorithm naturally tend to apply a working rating strategy, leading to similar learning performance as when using the objectively determined cost. We discuss insights about difficulties when learning from user provided feedback, and make suggestions how learning continuous movement skills from non-expert humans could be improved.