The dynamics of the photoelectric effect in solid-state systems can be investigated via attosecond-time-resolved photoelectron spectroscopy. This article provides a comparison of delay information accessible by the two most important techniques, attosecond streaking spectroscopy and reconstruction of attosecond beating by interference of two-photon transitions (RABBITT) at solid surfaces, respectively. The analysis is based on simulated time-resolved photoemission spectra obtained by solving the time-dependent Schrödinger equation in a single-active-electron approximation. We show a continuous transition from the few-cycle RABBITT regime to the streaking regime as two special cases of laser-assisted photoemission. The absolute delay times obtained by both methods agree with each other, within the uncertainty limits for kinetic energies >10 eV. Moreover, for kinetic energies >10 eV, both streaking delay time and RABBITT delay time coincide with the classical time of flight for an electron propagating from the emitter atom to the bulk-vacuum interface, with only small deviations of less than 4 as due to quantum mechanical interference effects.
Titelaufnahme
Titelaufnahme
- TitelEquivalence of RABBITT and streaking delays in attosecond-time-resolved photoemission spectroscopy at solid surfaces
- Verfasser
- Enthalten inApplied Sciences, Jg. 9 H. 3
- Erschienen
- SpracheEnglisch
- DokumenttypAufsatz in einer Zeitschrift
- Schlagwörter
- URN
- DOI
Zugriffsbeschränkung
- Das Dokument ist frei verfügbar
Links
- Social MediaShare
- NachweisKein Nachweis verfügbar
- IIIF
Dateien
Klassifikation
Abstract
Inhalt
Statistik
- Das PDF-Dokument wurde 4 mal heruntergeladen.